WorldWideScience

Sample records for long-chain base formation

  1. New long chain bases in lipophosphonoglycan of Acanthamoeba castellanii.

    Science.gov (United States)

    Karaś, Magdalena A; Russa, Ryszard

    2013-06-01

    The polymer called lipophosphonoglycan (LPG) was isolated from Acanthamoeba castellanii membranes after exhaustive delipidation and butanol extraction. A novel extremely long phytosphingosine was revealed in glycoinositolphosphosphingolipid (GIPSL). All data obtained by gas-liquid chromatography coupled with MS analyses of products liberated during acid methanolysis and products of sodium metaperiodate and permanganate-periodate oxidations showed an unusual pattern of long chain bases (LCB) with branched bases (anteiso-C₂₄, anteiso-C₂₅, anteiso-C₂₆, iso-C₂₆, anteiso-C₂₇, and anteiso-C28) and normal ones (C₂₄, C₂₅, C₂₆, C₂₇). The phytosphingosines with hexa-, hepta-, and octacosanoic chains have not been detected in Acanthamoeba cells up to now. Also, the isomer configuration of long chain bases in LPG of A. castellanii was not defined in earlier reports. In the GC-MS chromatograms, the component forming a peak corresponding to anteiso-C₂₅ phytosphingosine was the most abundant and constituted more than 50 % of all LCB.

  2. Electrical conductivity study on micelle formation of long-chain imidazolium ionic liquids in aqueous solution.

    Science.gov (United States)

    Inoue, Tohru; Ebina, Hayato; Dong, Bin; Zheng, Liqiang

    2007-10-01

    Electrical conductivity was measured for aqueous solutions of long-chain imidazolium ionic liquids (IL), 1-alkyl-3-methylimidazolium bromides with C(12)-C(16) alkyl chains. The break points appeared in specific conductivity (kappa) vs concentration (c) plot indicates that the molecular aggregates, i.e., micelles, are formed in aqueous solutions of these IL species. The critical micelle concentration (cmc) determined from the kappa vs c plot is somewhat lower than those for typical cationic surfactants, alkyltrimethylammonium bromides with the same hydrocarbon chain length. The electrical conductivity data were analyzed according to the mixed electrolyte model of micellar solution, and the aggregation number, n, and the degree of counter ion binding, beta, were estimated. The n values of the present ILs are somewhat smaller than those reported for alkyltrimethylammonium bromides, which may be attributed to bulkiness of the cationic head group of the IL species. The thermodynamic parameters for micelle formation of the present ILs were estimated using the values of cmc and beta as a function of temperature. The contribution of entropy term to the micelle formation is superior to that of enthalpy term below about 30 degrees C, and it becomes opposite at higher temperature. This coincides with the picture drawn for the micelle formation of conventional ionic surfactants.

  3. Differential cytotoxicity of long-chain bases for human oral gingival epithelial keratinocytes, oral fibroblasts, and dendritic cells

    Directory of Open Access Journals (Sweden)

    Leslie A. Mehalick

    2015-12-01

    Full Text Available Long-chain bases, found in the oral cavity, have potent antimicrobial activity against oral pathogens. In an article associated with this dataset, Poulson and colleagues determined the cytotoxicities of long-chain bases (sphingosine, dihydrosphingosine, and phytosphingosine for human oral gingival epithelial (GE keratinocytes, oral gingival fibroblasts (GF, dendritic cells (DC, and squamous cell carcinoma (SCC cell lines [1]. Poulson and colleagues found that GE keratinocytes were more resistant to long-chain bases as compared to GF, DC, and SCC cell lines [1]. In this study, we assess the susceptibility of DC to lower concentrations of long chain bases. 0.2–10.0 µM long-chain bases and GML were not cytotoxic to DC; 40.0–80.0 µM long-chain bases, but not GML, were cytotoxic for DC; and 80.0 µM long-chain bases were cytotoxic to DC and induced cellular damage and death in less than 20 mins. Overall, the LD50 of long-chain bases for GE keratinocytes, GF, and DC were considerably higher than their minimal inhibitory concentrations for oral pathogens, a finding important to pursuing their future potential in treating periodontal and oral infections.

  4. Quantitative Profiling of Long-Chain Bases by Mass Tagging and Parallel Reaction Monitoring

    DEFF Research Database (Denmark)

    Ejsing, Christer S; Bilgin, Mesut; Fabregat, Andreu

    2015-01-01

    Long-chain bases (LCBs) are both intermediates in sphingolipid metabolism and potent signaling molecules that control cellular processes. To understand how regulation of sphingolipid metabolism and levels of individual LCB species impinge upon physiological and pathophysiological processes requires...... sensitive and specific assays for monitoring these molecules. Here we describe a shotgun lipidomics method for quantitative profiling of LCB molecules. The method employs a "mass-tag" strategy where LCBs are chemically derivatized with deuterated methyliodide (CD3I) to produce trimethylated derivatives...... having a positively charged quaternary amine group. This chemical derivatization minimizes unwanted in-source fragmentation of LCB analytes and prompts a characteristic trimethylaminium fragment ion that enables sensitive and quantitative profiling of LCB molecules by parallel reaction monitoring...

  5. The effects of n-3 long-chain polyunsaturated fatty acids on bone formation and growth factors in adolescent boys

    DEFF Research Database (Denmark)

    Damsgaard, C. T.; Mølgaard, C.; Gyldenløve, S. N.

    2012-01-01

    NTRODUCTION: Animal studies indicate that n-3 long-chain polyunsaturated fatty acids (LCPUFAs) increase bone formation. To our knowledge, no studies have examined this in growing humans. This study investigated whether bone mass and markers of bone formation and growth were (i) associated......), bone area (BA), bone mineral density (BMD), plasma osteocalcin, and growth factors were measured at wk 0 and wk 16, as well as diet, physical activity, and n-3 LCPUFA status in erythrocytes. RESULTS: Fish oil strongly increased DHA status (P = 0.0001). No associations were found between DHA status...... and BMC, BA, BMD, or the markers of bone formation and growth at baseline. Furthermore, the fish oil intervention did not affect any of the outcomes as compared with control. However, dose-response analyses revealed a positive association between changes in DHA status and plasma insulin-like growth factor...

  6. Structure and properties of mixtures based on long chain polyacrylate and 1-alcohol composites

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Haifeng, E-mail: haifeng.shi@gmail.com; Zhang, Lingjian; Li, Weiwei; Han, Xu; Zhang, Xingxiang

    2014-02-14

    A series of phase change materials (PCMs) based on long chain polyacrylate and 1-alcohol, i.e., poly (stearyl methacrylate) and 1-tetradecanol (PSMA/C14OH) were prepared through the solution-mixing method. Thermal energy storage capacity, thermal stability and morphology of PSMA/C14OH PCMs were characterized by Fourier transform infrared spectroscopy (FTIR), polarized optical microscopy (POM), field emission scanning electron microscopy (FE-SEM), differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). DSC results demonstrated that the heat of fusion of PSMA/C14OH PCMs increased from 85.9 to 172.3 J g{sup −1} with the weight fraction of C14OH increasing from 20 to 80 wt%. And, the thermal stability also enhanced with PSMA weight. The spherulite (ca. 250 μm) in PSMA/C14OH composites containing 60 wt% C14OH proved the compatibility between PSMA and C14OH, indicating the cocrystallization behavior of alkyl side groups appeared. The cocrystallization behavior contributes the enhanced thermal stability of PSMA/C14OH PCMs, and it is suitable as the thermal energy storage materials in the future. - Highlights: • Heat storage capability of PSMA/C14OH PCMs increased with C14OH weight. • The spherulites exhibit the weight-dependence upon C14OH. • The thermal stability of PSMA/C14OH PCMs obviously improved.

  7. Long-Chain Bases, Phosphatidic Acid, MAPKs and Reactive Oxygen Species as Nodal Signal Transducers in stress responses in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Mariana eSaucedo-Garcia

    2015-02-01

    Full Text Available Due to their sessile condition, plants have developed sensitive, fast and successful ways to contend to environmental changes. These mechanisms operate as informational wires conforming extensive and intricate networks that are connected in several points. The responses are designed as pathways orchestrated by molecules that are transducers of protein and non-protein nature. Their chemical nature imposes selective features such as specificity, formation rate and generation site to the informational routes. Enzymes such as mitogen-activated protein kinases (MAPK and non-protein, smaller molecules, such as long chain bases, phosphatidic acid and reactive oxygen species are recurrent transducers in the pleiotropic responses to biotic and abiotic stresses in plants. In this review, we considered these four components as nodal points of converging signaling pathways that start from very different stimuli and evoke very different responses. These pleiotropic effects may be explained by the possibility that every one of these four mediators can be expressed from different sources, cellular location, temporality or magnitude. Here, we review recent advances in our understanding of the interplay of these four specific signaling components in Arabidopsis cells, with an emphasis on drought, cold and pathogen stresses.

  8. The isolation and characterization of a mutant strain of Saccharomyces cerevisiae that requires a long chain base for growth and for synthesis of phosphosphingolipids.

    Science.gov (United States)

    Wells, G B; Lester, R L

    1983-09-10

    A mutant of Saccharomyces cerevisiae has been obtained that shows an absolute growth requirement for long chain bases found in sphingolipids. In the absence of a long chain base, the cells are unable to synthesize the phosphoinositol-containing sphingolipids characteristic of yeast. These results suggest that one or more of the yeast sphingolipids plays a vital biological role.

  9. Serum long-chain n-3 polyunsaturated fatty acids, mercury, and risk of sudden cardiac death in men: a prospective population-based study.

    Directory of Open Access Journals (Sweden)

    Jyrki K Virtanen

    Full Text Available OBJECTIVES: Fish consumption has been associated with reduced risk of cardiovascular diseases (CVD, especially sudden cardiac death (SCD. Fish is the major source of long-chain n-3 polyunsaturated fatty acids (PUFA eicosapentaenoic acid and docosahexaenoic acid. It is also a major source of methylmercury, which was associated with increased risk of CVD in this study population. Impact of interaction between long-chain n-3 PUFA and methylmercury on the SCD risk is unknown. METHODS: A total of 1857 men from the prospective, population-based Kuopio Ischaemic Heart Disease Risk Factor study, aged 42-60 years and free of CVD at baseline in 1984-1989, were studied. Serum long-chain n-3 PUFA was used as the marker for long-chain n-3 PUFA intake and hair mercury as the marker for mercury exposure. RESULTS: During the mean follow-up of 20.1 years, 91 SCD events occurred. In the multivariate Cox proportional hazards regression models, serum long-chain n-3 PUFA concentration was not associated with the risk of SCD until hair mercury was accounted for; then the hazard ratio (HR in the highest vs. lowest tertile was 0.54 [95% confidence interval (CI 0.32 to 0.91, p for trend = 0.046]. When the analyses were stratified by hair mercury content, among those with lower hair mercury, each 0.5 percentage unit increase in the serum long-chain n-3 PUFA was associated with HR of 0.77 (95% CI 0.64 to 0.93, whereas no association was seen among those with higher hair mercury (p for interaction = 0.01. Among the individual long-chain n-3 PUFA, docosahexaenoic acid was most strongly associated with the risk. CONCLUSION: High exposure to mercury may reduce the benefits of long-chain n-3 PUFA on SCD.

  10. Effect of medium/ω-6 long chain triglyceride-based emulsion on leucocyte death and inflammatory gene expression

    Science.gov (United States)

    Cury-Boaventura, M F; Gorjão, R; Martins de Lima, T; Fiamoncini, J; Godoy, A B P; Deschamphs, F C; Soriano, F G; Curi, R

    2011-01-01

    Lipid emulsion (LE) containing medium/ω-6 long chain triglyceride-based emulsion (MCT/ω-6 LCT LE) has been recommended in the place of ω-6 LCT-based emulsion to prevent impairment of immune function. The impact of MCT/ω-6 LCT LE on lymphocyte and neutrophil death and expression of genes related to inflammation was investigated. Seven volunteers were recruited and infusion of MCT/ω-6 LCT LE was performed for 6 h. Four volunteers received saline and no change was found. Blood samples were collected before, immediately afterwards and 18 h after LE infusion. Lymphocytes and neutrophils were studied immediately after isolation and after 24 and 48 h in culture. The following determinations were carried out: plasma-free fatty acids, triacylglycerol and cholesterol concentrations, plasma fatty acid composition, neutral lipid accumulation in lymphocytes and neutrophils, signs of lymphocyte and neutrophil death and lymphocyte expression of genes related to inflammation. MCT/ω-6 LCT LE induced lymphocyte and neutrophil death. The mechanism for MCT/ω-6 LCT LE-dependent induction of leucocyte death may involve changes in neutral lipid content and modulation of expression of genes related to cell death, proteolysis, cell signalling, inflammatory response, oxidative stress and transcription. PMID:21682721

  11. The sphingolipid long-chain base-Pkh1/2-Ypk1/2 signaling pathway regulates eisosome assembly and turnover

    DEFF Research Database (Denmark)

    Luo, Guangzuo; Gruhler, Albrecht; Liu, Ying;

    2008-01-01

    Eisosomes are recently described fungal structures that play roles in the organization of the plasma membrane and endocytosis. Their major protein components are Pil1 and Lsp1, and previous studies showed that these proteins are phosphorylated by the sphingolipid long-chain base-activated Pkh1 an...

  12. The sphingolipid long-chain base-Pkh1/2-Ypk1/2 signaling pathway regulates eisosome assembly and turnover.

    Science.gov (United States)

    Luo, Guangzuo; Gruhler, Albrecht; Liu, Ying; Jensen, Ole N; Dickson, Robert C

    2008-04-18

    Eisosomes are recently described fungal structures that play roles in the organization of the plasma membrane and endocytosis. Their major protein components are Pil1 and Lsp1, and previous studies showed that these proteins are phosphorylated by the sphingolipid long-chain base-activated Pkh1 and Pkh2 protein kinases in vitro. We show that Pkh1 and Pkh2 phosphorylate Pil1 and Lsp1 in vivo to produce species B, and that heat stress, which activates Pkh1 and Pkh2, generates a more highly phosphorylated species, C. Cells with low Pkh activity lack species B and C and contain abnormally organized eisosomes. To verify that Pil1 phosphorylation is essential for correct eisosome organization, phosphorylated serine and threonine residues were identified and changed to alanines. A variant Pil1 protein lacking five phosphorylation sites did not form eisosomes during log phase growth, indicating that phosphorylation is critical for eisosome organization. We also found that eisosomes are dynamic structures and disassemble when the Ypk protein kinases, which are activated by the sphingolipid-Pkh signaling pathway, are inactivated or when the sphingolipid signal is pharmacologically blocked with myriocin. We conclude that eisosome formation and turnover are regulated by the sphingolipid-Pkh1/2-Ypk1/2 signaling pathway. These data and previous data showing that endocytosis is regulated by the sphingolipid-Pkh1/2-Ypk1/2 signaling pathway suggest that Pkh1 and -2 respond to changes in membrane sphingolipids and transmit this information to eisosomes via Pil1 phosphorylation. Eisosomes then control endocytosis to align the composition and function of the plasma membrane to match demand.

  13. Toward a Long-Chain Perfluoroalkyl Replacement: Water and Oil Repellency of Polyethylene Terephthalate (PET) Films Modified with Perfluoropolyether-Based Polyesters.

    Science.gov (United States)

    Demir, Tugba; Wei, Liying; Nitta, Naoki; Yushin, Gleb; Brown, Philip J; Luzinov, Igor

    2017-07-19

    Original perfluoropolyethers (PFPE)-based oligomeric polyesters (FOPs) of different macromolecular architecture were synthesized via polycondensation as low surface energy additives to engineering thermoplastics. The oligomers do not contain long-chain perfluoroalkyl segments, which are known to yield environmentally unsafe perfluoroalkyl carboxylic acids. To improve the compatibility of the materials with polyethylene terephthalate (PET) we introduced isophthalate segments into the polyesters and targeted the synthesis of lower molecular weight oligomeric macromolecules. The surface properties such as morphology, composition, and wettability of PET/FOP films fabricated from solution were investigated using atomic force microscopy, X-ray photoelectron spectroscopy, and contact angle measurements. It was demonstrated that FOPs, when added to PET film, readily migrate to the film surface and bring significant water and oil repellency to the thermoplastic boundary. We have established that the wettability of PET/FOP films depends on three main parameters: (i) end-groups of fluorinated polyesters, (ii) the concentration of fluorinated polyesters in the films, and (iii) equilibration via annealing. The most effective water/oil repellency FOP has two C4F9-PFPE-tails. The addition of this oligomeric polyester to PET allows (even at relatively low concentrations) reaching a level of oil repellency and surface energy comparable to that of polytetrafluorethylene (PTFE/Teflon). Therefore, the materials can be considered suitable replacements for additives containing long-chain perfluoroalkyl substances.

  14. Long chain diol index (LDI) as an organic-based sea surface temperature proxy in the Korean East Sea (NW Pacific)

    Science.gov (United States)

    Gal, Jong-Ku; Kim, Jung-Hyun; Kang, Su-Jin; Lee, Dong-Hun; Shin, Kyung-Hoon

    2016-04-01

    Long chain diol index (LDI) was introduced as an organic-based sea surface temperature (SST) proxy. LDI is expressed as the C30 1,15-diol abundance relative to those of C28 1,13-, C30 1,13- and C30 1,15-diols. There were a few studies which accessed the potential of LDI based on the culture, core top sediments, suspended particulate organic matters, and down-core sediments. However it is still unknown about the source of the diols and robustness as the SST proxy in the various marine environments. In the current study, we examined the applicability of the LDI in the East Sea of Korea where productivity and thus sedimentation rates are high. We will compare the LDI data with those of alkenone-based UK'37 by analyzing two multicores covering the last 100 year.

  15. Constituents of Holothuroidea, 15. Isolation of ante-iso type regio-isomer on long chain base moiety of glucocerebroside from the sea cucumber Holothuria leucospilota.

    Science.gov (United States)

    Yamada, Koji; Wada, Noriko; Onaka, Hiroyuki; Matsubara, Rei; Isobe, Ryuichi; Inagaki, Masanori; Higuchi, Ryuichi

    2005-07-01

    An ante-iso type regio-isomer on the long chain base moiety of a glucocerebroside, HLC-2-A, has been isolated from its parent glucocerebroside molecular species HLC-2 composed of iso and ante-iso isomers, from the less polar lipid fraction of a chloroform/methanol extract of the sea cucumber Holothuria leucospilota. Reverse-phase HPLC that included a recycling system was effective in separating the regio-isomer from its counterpart, revealing a very close resemblance in structure. Other typical glucocerebroside molecular species HLC-1 and HLC-3 were obtained together with HLC-2. The structures of these glucocerebrosides were determined on the basis of chemical and spectroscopic evidence.

  16. Studies on the formation of long-chain dicarboxylic acids from pure n-alkanes by a mutant of Canadida tropicalis

    Energy Technology Data Exchange (ETDEWEB)

    Hill, F.F.; Venn, I.; Lukas, K.L.

    1986-05-01

    Individual n-alkanes, from C/sub 11/-C/sub 16/, were metabolized by a mutant of Candida tropicalis. This strain was selected for its inability to grow in the presence of dodecanedioic acid and dodecane as the sole carbon source. Transformations were studied in fed-batch cultures. Undecane was only poorly transformed, but from dodecane to hexadecane high transformation yields were achieved. Maximum yield of acid-precipitable long-chain dioic acids was obtained with tridecane as substrate. All the products were mixtures of different acids. Besides the ..cap alpha..,..omega..-alkanedioic acids, the 3-hydroxy derivatives of longchain ..cap alpha..,..omega..-alkanedioic acids and dioic acids with a shortened carbon chain were found.

  17. Sea cucumber cerebrosides and long-chain bases from Acaudina molpadioides protect against high fat diet-induced metabolic disorders in mice.

    Science.gov (United States)

    Liu, Xiaofang; Xu, Jie; Xue, Yong; Gao, Zhuang; Li, Zhaojie; Leng, Kailiang; Wang, Jingfeng; Xue, Changhu; Wang, Yuming

    2015-11-01

    Metabolic syndrome (MS) is a cluster of metabolic disorders such as abdominal obesity, hypertension, glucose intolerance, dyslipidemia and hepatic steatosis that contribute to increased cardiovascular morbidity and mortality. There is an urgent need for strategies to prevent this emerging global epidemic. Recently, growing interest in discovering food functional nutrients for the prevention and treatment of MS has generated. In the present study, sea cucumber cerebrosides (SCC) and the main structural units, long-chain bases (LCB), were prepared from Acaudina molpadioides and then administered to high fat (HF) diet-induced obese C57BL/6J mice at a diet supplement dosage of 0.025% for 5 weeks to evaluate their effects on obesity-related metabolic disorders. SCC and LCB significantly decreased epididymal adipose tissue weights, lowered hepatic triacylglycerol levels, and reduced serum glucose, insulin levels and HOMA-IR index in mice. The activities of hepatic lipogenetic enzymes including FAS, ME and the mRNA levels of SREBP-1c and FAS were reduced by SCC and LCB treatment. However, SCC and LCB showed no effect on the hepatic lipolysis pathway. Besides, SCC and LCB also efficiently up-regulated the gene expression of SREBP-1c, FAS, ACC, ATGL and HSL, and down-regulated the gene expression of LPL and VLDL-r in the adipose tissue. These results demonstrated that SCC and LCB were efficacious in suppressing hepatic SREBP-1c mediated lipogenesis, inhibiting lipid uptake and increasing TG catabolism in the adipose tissue. The ameliorative degree and regulatory mechanisms of these two compounds were basically the same, suggesting that LCB are the key active structural units. Such findings would offer new insight into the application of SCC or LCB in the development of functional foods for preventing MS in humans.

  18. Long-Chain Fatty Acids Elicit a Bitterness-Masking Effect on Quinine and Other Nitrogenous Bitter Substances by Formation of Insoluble Binary Complexes.

    Science.gov (United States)

    Ogi, Kayako; Yamashita, Haruyuki; Terada, Tohru; Homma, Ryousuke; Shimizu-Ibuka, Akiko; Yoshimura, Etsuro; Ishimaru, Yoshiro; Abe, Keiko; Asakura, Tomiko

    2015-09-30

    We have previously found that fatty acids can mask the bitterness of certain nitrogenous substances through direct molecular interactions. Using isothermal titration calorimetry, we investigated the interactions between sodium oleate and 22 bitter substances. The hydrochloride salts of quinine, promethazine, and propranolol interacted strongly with fatty acids containing 12 or more carbon atoms. The (1)H NMR spectra of these substances, obtained in the presence of the sodium salts of the fatty acids in dimethyl sulfoxide, revealed the formation of hydrogen bonds between the nitrogen atoms of the bitter substances and the carboxyl groups of the fatty acids. When sodium laurate and the hydrochloride salt of quinine were mixed in water, an equimolar complex formed as insoluble heterogeneous needlelike crystals. These results suggested that fatty acids interact directly with bitter substances through hydrogen bonds and hydrophobic interactions to form insoluble binary complexes that mask bitterness.

  19. Fish and long-chain n-3 polyunsaturated fatty acid intakes during pregnancy and risk of postpartum depression: a prospective study based on a large national birth cohort

    DEFF Research Database (Denmark)

    Strøm, Marin; Mortensen, Erik Lykke; Halldorsson, Thorhallur I

    2009-01-01

    that long-chain n-3 polyunsaturated fatty acids (PUFAs) might have a beneficial effect on depression. OBJECTIVE: The objective was to explore the association between intake of fish and n-3 PUFAs during pregnancy and PPD in the Danish National Birth Cohort (DNBC). DESIGN: Exposure information from the DNBC...... was linked to the Danish patient and prescription registries for data on clinically identified cases of depression up to 1 y postpartum. Intake of fish and n-3 PUFAs was assessed in midpregnancy with a food-frequency questionnaire. Admission to the hospital for PPD (PPD-admission) and prescription...... of antidepressants (PPD-prescription) were treated as separate outcomes. A total of 54,202 women were included in the present study sample. RESULTS: Rates of depression were 0.3% (PPD-admission) and 1.6% (PPD-prescription). No association was observed between fish intake and risk of PPD-admission [crude odds ratio...

  20. Research Advances in the Inhibition of Long Chain Fatty Acid to Methanogenic Activity in Anaeroic Digestion System

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    This article reviewed the inhibition mechanism of long chain fatty acid on the formation of anaerobic system, then thoroughly analyzed the inhibition factors of long chain fatty acid, and summarized the remission method to its inhibition, finally proposed some suggestions to further study on the influence of long chain fatty acid on anaerobic digestion system.

  1. Fragrances by selective oxidation of long-chain alcohols

    Institute of Scientific and Technical Information of China (English)

    Alberto Villa; Carine E-Chan-Thaw; Marco Schiavoni; Sebastiano Campisi; Di Wang; Laura Prati

    2014-01-01

    The activity and the selectivity of Ru and Pt based carbon catalysts in the selective oxidation of long-chain aliphatic alcohols (C8, C10, C12) have been investigated. Ru/AC and Pt/AC always showed good initial activity, however deactivation phenomena rapidly depressed the catalytic per-formance of the catalysts. These phenomena can be limited by modification of Ru/AC and Pt/AC with Au improving the durability of the catalyst. Ru/AC and AuRu/AC showed good selectivity to the corresponding aldehyde (>95%) making these catalysts promising for fragrances manufactur-ing. The advantage in using Au modified catalyst lies on the easier regeneration procedure com-pared to the one necessary for Ru/AC. Pt/AC and AuPt/AC showed a lower selectivity to aldehyde promoting the formation of the acid and the ester formation respectively. The addition of water in the solvent system speeds up the reaction rate but drastically decreased the selectivity to aldehyde especially in the case of Pt based catalysts.

  2. Isolation of animal cell mutants defective in long-chain fatty aldehyde dehydrogenase. Sensitivity to fatty aldehydes and Schiff's base modification of phospholipids: implications for Sj-ogren-Larsson syndrome.

    Science.gov (United States)

    James, P F; Zoeller, R A

    1997-09-19

    Using tritium suicide, we have isolated a variant of the Chinese hamster ovary cell line, CHO-K1, that is deficient in long-chain fatty alcohol:NAD+ oxidoreductase (FAO; EC 1.1.1.192). Specifically, it was the fatty aldehyde dehydrogenase component that was affected. The enzymatic deficiency found in this mutant strain, designated FAA. K1A, was similar to that displayed by fibroblasts from patients with Sjögren-Larsson syndrome (SLS), an inheritable neurocutaneous disorder. Complementation analyses suggested that the deficiency in fatty alcohol oxidation in the FAA.K1A cells and the SLS fibroblasts is a result of lesions in homologous genes. The FAA.K1A cells were unable to convert long chain fatty aldehydes to the corresponding fatty acids. This resulted in a hypersensitivity of the FAA.K1A cells to the cytotoxic effects of long chain fatty aldehydes. The difference between the mutant and wild-type cells was most obvious when using fatty aldehydes between 14 and 20 carbons, with the greatest difference between wild-type and mutant cells found when using octadecanal. Fibroblasts from a patient with SLS also displayed the hypersensitivity phenotype when compared with FAldDH+ human fibroblasts. In both CHO and human FAldDH- cell lines, addition of long chain fatty aldehydes to the medium caused a dramatic increase in aldehyde-modified phosphatidylethanolamine, presumably through Schiff's base addition to the primary amine of the ethanolamine head group. When 25 microM hexadecanal was added to the growth medium, approximately 10% of the phosphatidylethanolamine was found in the fatty aldehyde-modified form in FAA.K1A, although this was not observed in wild-type cells. Modified phosphatidylethanolamine could be detected in FAldDH- cells even when exogenous fatty aldehydes were not added to the medium. We propose a possible role for fatty aldehydes, or other aldehydic species, in mediating some of the symptoms associated with Sjögren-Larsson syndrome.

  3. Effect of acetate formation pathway and long chain fatty acid CoA-ligase on the free fatty acid production in E. coli expressing acy-ACP thioesterase from Ricinus communis.

    Science.gov (United States)

    Li, Mai; Zhang, Xiujun; Agrawal, Arpita; San, Ka-Yiu

    2012-07-01

    Microbial biosynthesis of fatty acid like chemicals from renewable carbon sources has attracted significant attention in recent years. Free fatty acids can be used as precursors for the production of fuels or chemicals. Wild type E. coli strains produce fatty acids mainly for the biosynthesis of lipids and cell membranes and do not accumulate free fatty acids as intermediates in lipid biosynthesis. However, free fatty acids can be produced by breaking the fatty acid elongation through the overexpression of an acyl-ACP thioesterase. Since acetyl-CoA might be an important factor for fatty acid synthesis (acetate formation pathways are the main competitive pathways in consuming acetyl-CoA or pyruvate, a precursor of acetyl-CoA), and the long chain fatty acid CoA-ligase (FadD) plays a pivotal role in the transport and activation of exogenous fatty acids prior to their subsequent degradation, we examined the composition and the secretion of the free fatty acids in four different strains including the wild type MG1655, a mutant strain with inactivation of the fatty acid beta-oxidation pathway (fadD mutant (ML103)), and mutant strains with inactivation of the two major acetate production pathways (an ack-pta (acetate kinase/phosphotransacetylase), poxB (pyruvate oxidase) double mutant (ML112)) and a fadD, ack-pta, poxB triple mutant (ML115). The engineered E. coli cells expressing acyl-ACP thioesterase with glucose yield is higher than 40% of theoretical yield. Compared to MG1655(pXZ18) and ML103(pXZ18), acetate forming pathway deletion strains such as ML112(pXZ18) and ML115(pXZ18) produced similar quantity of total free fatty acids, which indicated that acetyl-CoA availability does not appear to be limiting factor for fatty acid production in these strains. However, these strains did show significant differences in the composition of free fatty acids. Different from MG1655(pXZ18) and ML103(pXZ18), acetate formation pathway deletion strains such as ML112(pXZ18) and ML115

  4. Sources and proxy potential of long chain alkyl diols in lacustrine environments.

    NARCIS (Netherlands)

    Rampen, Sebastiaan W.; Datema, Mariska; Rodrigo-Gámiz, M.; Schouten, Stefan; Reichart, Gert-Jan; Sinninghe Damste, Jaap S.

    2014-01-01

    Long chain 1,13- and 1,15-alkyl diols form the base of a number of recently proposed proxies used for climate reconstruction. However, the sources of these lipids and environmental controls on their distribution are still poorly constrained. We have analyzed the long chain alkyl diol (LCD) compositi

  5. Sources and proxy potential of long chain alkyl diols in lacustrine environments

    NARCIS (Netherlands)

    Rampen, S.; Datema, M.; Rodrigo-Gámiz, M.; Schouten, S.; Reichart, G.-J.; Sinninghe Damsté, J.S.

    2014-01-01

    Long chain 1,13- and 1,15-alkyl diols form the base of a number of recently proposed proxies used for climate reconstruction. However, the sources of these lipids and environmental controls on their distribution are still poorly constrained. We have analyzed the long chain alkyl diol (LCD) compositi

  6. Magnetic properties of cubic FeCo nanoparticles with anisotropic long chain structure

    Science.gov (United States)

    Liu, Jinming; Wu, Kai; Wang, Jian-Ping

    2016-05-01

    Cubic FeCo alloy nanoparticles (NPs) with body-centered cubic (bcc) phase were prepared using sputter based gas-condensation method. When the NPs formed long chain assemblies, the magnetic properties were quite different from that of well-dispersed NPs. Most of the well-dispersed NPs were superparamagnetic at room temperature while the long chain NP assemblies were ferromagnetic with coercivities around 765 Oe, which displayed quite different magnetic properties. The ferromagnetism of long chain NPs was from the exchange coupling between NPs, which eventually led to the transition from superparamagnetism (SPM) to superferromagetism (SFM). Zero-field-cooled (ZFC) and field-cooled (FC) curves were obtained and long chain NP assemblies displayed ferromagnetism at the temperature ranging from 10 K to 400 K. Time-dependent remanent magnetic moment curves also indicated that the long chain structure had better thermal stability due to the strong exchange coupling.

  7. Magnetic properties of cubic FeCo nanoparticles with anisotropic long chain structure

    Directory of Open Access Journals (Sweden)

    Jinming Liu

    2016-05-01

    Full Text Available Cubic FeCo alloy nanoparticles (NPs with body-centered cubic (bcc phase were prepared using sputter based gas-condensation method. When the NPs formed long chain assemblies, the magnetic properties were quite different from that of well-dispersed NPs. Most of the well-dispersed NPs were superparamagnetic at room temperature while the long chain NP assemblies were ferromagnetic with coercivities around 765 Oe, which displayed quite different magnetic properties. The ferromagnetism of long chain NPs was from the exchange coupling between NPs, which eventually led to the transition from superparamagnetism (SPM to superferromagetism (SFM. Zero-field-cooled (ZFC and field-cooled (FC curves were obtained and long chain NP assemblies displayed ferromagnetism at the temperature ranging from 10 K to 400 K. Time-dependent remanent magnetic moment curves also indicated that the long chain structure had better thermal stability due to the strong exchange coupling.

  8. Long-chain GM1 gangliosides alter transmembrane domain registration through interdigitation

    DEFF Research Database (Denmark)

    Manna, Moutusi; Javanainen, Matti; Monne, Hector Martinez Seara

    2017-01-01

    together. Based on atomistic molecular dynamics simulations, we find that long-chain GM1 in the extracellular leaflet exhibits a strong tendency to protrude into the opposing bilayer leaflet. This interdigitation modulates the order in the cytosolic monolayer and thereby strengthens the interaction...... effect, the situation is altered with long-chain GM1. Here, the significant interdigitation induced by long-chain GM1 modulates the behavior in the cytosolic GM1-free leaflet, weakening and slowing down the membrane registration process. The observed physical interaction mechanism provides a possible...

  9. Lead discovery for mammalian elongation of long chain fatty acids family 6 using a combination of high-throughput fluorescent-based assay and RapidFire mass spectrometry assay.

    Science.gov (United States)

    Takamiya, Mari; Sakurai, Masaaki; Teranishi, Fumie; Ikeda, Tomoko; Kamiyama, Tsutomu; Asai, Akira

    2016-11-25

    A high-throughput RapidFire mass spectrometry assay is described for elongation of very long-chain fatty acids family 6 (Elovl6). Elovl6 is a microsomal enzyme that regulates the elongation of C12-16 saturated and monounsaturated fatty acids. Elovl6 may be a new therapeutic target for fat metabolism disorders such as obesity, type 2 diabetes, and nonalcoholic steatohepatitis. To identify new Elovl6 inhibitors, we developed a high-throughput fluorescence screening assay in 1536-well format. However, a number of false positives caused by fluorescent interference have been identified. To pick up the real active compounds among the primary hits from the fluorescence assay, we developed a RapidFire mass spectrometry assay and a conventional radioisotope assay. These assays have the advantage of detecting the main products directly without using fluorescent-labeled substrates. As a result, 276 compounds (30%) of the primary hits (921 compounds) in a fluorescence ultra-high-throughput screening method were identified as common active compounds in these two assays. It is concluded that both methods are very effective to eliminate false positives. Compared with the radioisotope method using an expensive (14)C-labeled substrate, the RapidFire mass spectrometry method using unlabeled substrates is a high-accuracy, high-throughput method. In addition, some of the hit compounds selected from the screening inhibited cellular fatty acid elongation in HEK293 cells expressing Elovl6 transiently. This result suggests that these compounds may be promising lead candidates for therapeutic drugs. Ultra-high-throughput fluorescence screening followed by a RapidFire mass spectrometry assay was a suitable strategy for lead discovery against Elovl6.

  10. Ultrafast excited state relaxation in long-chain polyenes

    Energy Technology Data Exchange (ETDEWEB)

    Antognazza, Maria Rosa, E-mail: mariarosa.antognazza@polimi.it [Center for Nano Science and Technology of IIT-PoliMI, via Pascoli 70/3, 20133 Milano (Italy); Lueer, Larry [National Laboratory for Ultrafast and Ultraintense Optical Science, CNR-INFM, Dipartimento di Fisica, Politecnico di Milano, P.za L. da Vinci 32, 20133 Milano (Italy); Madrid Institute of Advanced Studies, IMDEA Nanociencia, Faculdad de Ciencias, Av. Tomas y Valiente 7, 28049 Madrid (Spain); Polli, Dario [National Laboratory for Ultrafast and Ultraintense Optical Science, CNR-INFM, Dipartimento di Fisica, Politecnico di Milano, P.za L. da Vinci 32, 20133 Milano (Italy); Christensen, Ronald L. [Department of Chemistry, Bowdoin College, Brunswick, ME 04011 (United States); Schrock, Richard R. [Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Lanzani, Guglielmo [Center for Nano Science and Technology of IIT-PoliMI, via Pascoli 70/3, 20133 Milano (Italy); National Laboratory for Ultrafast and Ultraintense Optical Science, CNR-INFM, Dipartimento di Fisica, Politecnico di Milano, P.za L. da Vinci 32, 20133 Milano (Italy); Cerullo, Giulio [National Laboratory for Ultrafast and Ultraintense Optical Science, CNR-INFM, Dipartimento di Fisica, Politecnico di Milano, P.za L. da Vinci 32, 20133 Milano (Italy)

    2010-07-19

    Graphical abstract: Excited state dynamics of a long-chain polyene studied by femtosecond pump-probe spectroscopy. - Abstract: We present a comprehensive study, by femtosecond pump-probe spectroscopy, of excited state dynamics in a polyene that approaches the infinite chain limit. By excitation with sub-10-fs pulses resonant with the 0-0 S{sub 0} {yields} S{sub 2} transition, we observe rapid loss of stimulated emission from the bright excited state S{sub 2}, followed by population of the hot S{sub 1} state within 150 fs. Vibrational cooling of S{sub 1} takes place within 500 fs and is followed by decay back to S{sub 0} with 1 ps time constant. By excitation with excess vibrational energy we also observe the ultrafast formation of a long-living absorption, that is assigned to the triplet state generated by singlet fission.

  11. Long-chain alkane production by the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Buijs, Nicolaas A; Zhou, Yongjin J; Siewers, Verena; Nielsen, Jens

    2015-06-01

    In the past decade industrial-scale production of renewable transportation biofuels has been developed as an alternative to fossil fuels, with ethanol as the most prominent biofuel and yeast as the production organism of choice. However, ethanol is a less efficient substitute fuel for heavy-duty and maritime transportation as well as aviation due to its low energy density. Therefore, new types of biofuels, such as alkanes, are being developed that can be used as drop-in fuels and can substitute gasoline, diesel, and kerosene. Here, we describe for the first time the heterologous biosynthesis of long-chain alkanes by the yeast Saccharomyces cerevisiae. We show that elimination of the hexadecenal dehydrogenase Hfd1 and expression of a redox system are essential for alkane biosynthesis in yeast. Deletion of HFD1 together with expression of an alkane biosynthesis pathway resulted in the production of the alkanes tridecane, pentadecane, and heptadecane. Our study provides a proof of principle for producing long-chain alkanes in the industrial workhorse S. cerevisiae, which was so far limited to bacteria. We anticipate that these findings will be a key factor for further yeast engineering to enable industrial production of alkane based drop-in biofuels, which can allow the biofuel industry to diversify beyond bioethanol.

  12. Physicochemical properties of shortening base oil rich in medium-and long-chain triacylglycerols%富含中长链甘三酯起酥油基料油的理化性质研究

    Institute of Scientific and Technical Information of China (English)

    张阳; 杨博; 王永华

    2014-01-01

    The nutritional and functional shortening base oils with low calorie, zero-trans fatty acid were prepared by palm stearin( PS) and medium- and long-chain triacylglycerols( MLCT) blended with differ-ent volume ratios (2:8, 3:7, 4:6, 5:5, 6:4, 7:3),and the physicochemical properties of the six kinds of shortening base oils were studied. The results showed that there were no trans fatty acid detected in the shortening base oils, and the linoleic acid contents were 18% -36%;the solid fat content ( SFC) of the shortening base oil increased with PS content increasing, and the solid fat content of the shortening base oil with 30% of PS met the requirement of ideal cake shortening;the content ofβ′crystal in the shorten-ing base oil increased with PS content increasing;theβcrystal converted toβ′crystal when the shortening base oil was endothermic melted, and the calorimetry curve was closely related to the compositions of fatty acids and triglycerides.%将棕榈硬脂(PS)和中长碳链甘三酯(MLCT)以6种不同体积比(2:8、3:7、4:6、5:5、6:4、7:3)混合来制备低热量、零反式脂肪酸的营养功能性起酥油基料油,并对6种起酥油基料油的理化性质进行研究。结果表明:6种起酥油基料油中不含反式脂肪酸,亚油酸含量在18%~36%;随着PS含量增加,起酥油基料油的固体脂肪含量增加,含有30%PS的起酥油基料油的固体脂肪含量符合理想蛋糕用起酥油要求;随着PS含量的增加,起酥油基料油的β′晶型含量增加;起酥油基料油吸热熔化的过程中存在β晶型向β′晶型转变的过程,其量热曲线与脂肪酸组成和甘三酯组成密切相关。

  13. Long chain branching on linear polypropylene by solid state reactions

    NARCIS (Netherlands)

    Borsig, E.; Gotsis, A. D.; Picchioni, F.

    2008-01-01

    A method was developed for the long chain branching (LCB) of isotactic polypropylene (iPP) via modification in the solid state. PP long chains have been linked as branches to the original linear iPP chains using solid state reactions in the presence of a free radical initiator and a multifunctional

  14. Hybrid striped bass feeds based on fish oil, beef tallow, and eicosapentaenoic acid/docosahexaenoic acid supplements: Insight regarding fish oil sparing and demand for -3 long-chain polyunsaturated fatty acids.

    Science.gov (United States)

    Bowzer, J; Jackson, C; Trushenski, J

    2016-03-01

    Previous research suggests that saturated (SFA) and monounsaturated fatty acid (MUFA) rich lipids, including beef tallow, can make utilization or diet-to-tissue transfer of long-chain polyunsaturated fatty acids (LC-PUFA) more efficient. We hypothesized that using beef tallow as an alternative to fish oil may effectively reduce the LC-PUFA demand of hybrid striped bass × and allow for greater fish oil sparing. Accordingly, we evaluated growth performance and tissue fatty acid profiles of juvenile fish (23.7 ± 0.3 g) fed diets containing menhaden fish oil (considered an ideal source of LC-PUFA for this taxon), beef tallow (BEEF ONLY), or beef tallow amended with purified sources of eicosapentaenoic acid (EPA) and/or docosahexaenoic acid (DHA) to achieve levels corresponding to 50 or 100% of those observed in the FISH ONLY feed. Diets were randomly assigned to quadruplicate tanks of fish ( = 4; 10 fish/tank), and fish were fed assigned diets to apparent satiation once daily for 10 wk. Survival (98-100%) was equivalent among treatments, but weight gain (117-180%), specific growth rate (1.1-1.5% BW/d), feed intake (1.4-1.8% BW/d), thermal growth coefficient (0.50-0.70), and feed conversion ratio (FCR; 1.1-1.4, DM basis) varied. Except for FCR, no differences were observed between the FISH ONLY and BEEF ONLY treatments, but performance was generally numerically superior among fish fed the diets containing beef tallow supplemented with DHA at the 100% or both EPA and DHA at the 50% or 100% level. Tissue fatty acid composition was significantly distorted in favor among fish fed the beef tallow-based feeds; however, profile distortion was most overt in peripheral tissues. Results suggest that beef tallow may be used as a primary lipid source in practical diets for hybrid striped bass, but performance may be improved by supplementation with LC-PUFA, particularly DHA. Furthermore, our results suggest that -3 LC-PUFA requirements reported for hybrid striped bass may not be

  15. Synthesis and catalysis property of Gemini surfactants with ester based long-chain fatty alcohol%含长链脂肪醇酯基双子表面活性剂合成及催化性能

    Institute of Scientific and Technical Information of China (English)

    丁效明; 潘忠稳; 何领; 李凯波; 刘玉莹

    2012-01-01

    Three Gemini surfactants (C12, C14, C16) with ester based long-chain fatty alcohol were prepared by reacting bis ( ( dimethylamino) methyl) phthalate with dodecyl 2 - chloroacetate, tetradecyl 2 -chloroacetate and hexadecyl 2-chloroacetate respectively with 80% yield in acetone for refluxing 36 h . The purity was measured by two-phase chemical titration analysis, and the critical micelle concentration (CMC) values were 2.6×l0-4, 3.6×l0-5, 8.02×l0-6 by measuring the electrical conductivity. The phase transfer catalysis property of (C16) was studied by reaction of 4-methyl benzyl chloride with sodium acetate. It was founded that C16 had good catalysis property when reaction activation energy ( Ea) was 18. 59 kJ · mol-1 lower than the blank at C b =0.004 394 mol · L-1.%以丙酮为溶剂,二(二甲基胺基乙基)邻苯二甲酸酯分别与氯乙酸正十二醇酯、氯乙酸正十四醇酯及氯乙酸正十六醇酯回流反应36 h,得到3种含长链脂肪醇酯基季铵盐双子表面活性剂C12、C14、C16,收率80%.采用两相滴定法测定了其纯度,采用电导法测定了其CMC值分别是2.6× 10-4、3.6×10-5,8.02× 10-6.在无水乙酸钠与对甲基氯苄反应中,研究了C16的催化性能.当其浓度为0.004 394 mol·L-1,该反应活化能(Ea)相对于不加催化剂降低了18.59 kJ·mol-1,具有良好的催化性能.

  16. Anaerobic degradation of long-chain alkylamines by a denitrifying Pseudomonas stutzeri

    NARCIS (Netherlands)

    Nguyen, P.D.; Ginkel, van C.G.; Plugge, C.M.

    2008-01-01

    The anaerobic degradation of tetradecylamine and other long-chain alkylamines by a newly isolated denitrifying bacterium was studied. Strain ZN6 was isolated from a mixture of soil and active sludge and was identified as representing Pseudomonas stutzeri, based on partial 16S rRNA gene sequence anal

  17. Potential biological sources of long chain alkyl diols in a lacustrine system

    NARCIS (Netherlands)

    Villanueva, Laura; Besseling, Marc; Rodrigo-Gámiz, Marta; Rampen, Sebastiaan W.; Verschuren, Dirk; Sinninghe Damsté, Jaap S.

    2014-01-01

    Long chain alkyl diols (LCDs) have been detected in a range of marine and lacustrine environments, as well as in several algal cultures. However, the identity of the producers, their preferred ecological niche and seasonality are uncertain. We applied a gene-based approach to determine the identity

  18. A new low-molecular-weight organogelator based on long chain substituted phenyl Schiff base%一种席夫碱凝胶因子的制备及凝胶化研究

    Institute of Scientific and Technical Information of China (English)

    陈发胜; 薛伟; 郭敏; 尹桂

    2009-01-01

    We report on the synthesis and self-assembly of a Schiff-based molecules N, N'-[1, 4-phenylenebis (methan-1-yl-1-ylidene)]bis[3,4,5-tris(dodecyloxy)aniline] (PBBA). It was found that PBBA could form stable gels in several weak polar solvents such as benzyl alcohol, octanol, 1-butanol and 2-propanol. The gel-to-solution phase-transition temperatures (Tg) of gels in selected solvents increase with the enhancing of gelator concentration. Scanning electron microscopy (SEM) images revealed that their xerogel morphologies were aggregations of fibers. The results from fourier trasform infrared spectrometry(FT-IR) indicated that the van der Waals interaction between the alkyl chains and n - n interactions were the main driving forces for the formation of the self-assembled gels. Further detailed analyses of their aggregation modes were conducted by X-ray diffraction (XRD) measurements. The most prominent features are reflections at 2θ=32°, which are assigned to van der Waals interactions between alkyl chains with a mean distance of 2. 796 4 A. The peak at 2θ=22° indicates another unit with a typical distance of 4. 039 6 A, which is assumed to correspond to π-π stacking interactions.%合成并表征了一种可自组装的Schiff碱凝胶因子(gelator)N,N'-(1,4-苯基二亚甲基叶立德)-二[3,4,5-三(十二烷氧基)苯胺](简称PBBA);研究了该凝胶因子在一些有机溶剂中凝胶化性能;用傅里叶变换红外光谱(FT-IR)、X射线衍射(XRD)、扫描电镜(SEM)等分析方法对凝胶进行了表征;研究了不同浓度的凝胶因子对溶胶-凝胶以及凝胶-溶胶转变温度的影响.研究表明该凝胶因子是通过范德华力,π-π堆积等次价键的作用而聚集自组装成三维网状结构,再与溶剂相互作用形成凝胶的.

  19. Radiolabeled dimethyl branched long chain fatty acid for heart imaging

    Science.gov (United States)

    Knapp, Jr., Furn F.; Goodman, Mark M.; Kirsch, Gilbert

    1988-08-16

    A radiolabeled long chain fatty acid for heart imaging that has dimethyl branching at one of the carbons of the chain which inhibits the extent to which oxidation can occur. The closer to the carboxyl the branching is positioned, the more limited the oxidation, thereby resulting in prolonged retention of the radiolabeled compound in the heart.

  20. Human health risk assessment of long chain alcohols (LCOH)

    DEFF Research Database (Denmark)

    Veenstra, Gauke; Sanderson, Hans; Webb, Catherine

    2009-01-01

    Representative chemicals from the long chain alcohols category have been extensively tested to define their toxicological hazard properties. These chemicals show low acute and repeat dose toxicity with high-dose effects (if any) related to minimal liver toxicity. These chemicals do not show evide...... of human health are documented for the uses of these chemicals. © 2008....

  1. Rapid Capacity Growth of Long Chain Fatty Alcohols

    Institute of Scientific and Technical Information of China (English)

    Shi Yuying

    2007-01-01

    @@ Long chain fatty alcohols here are referring to those alcohols with more than six carbon atoms per molecular.They are basic chemical raw materials for the synthesis of surfactants,detergents, plasticizers and various other fine chemicals and are extensively used in textile, household chemicals, papermaking, foodstuffs,pharmaceuticals and leather manufacturing sectors.

  2. Synthesis of long-chain polyunsaturated fatty acids in preterm newborns fed formula with long-chain polyunsaturated fatty acids

    NARCIS (Netherlands)

    Carnielli, Virgilio P.; Simonato, Manuela; Verlato, Giovanna; Luijendijk, Ingrid; De Curtis, Mario; Sauer, Pieter J. J.; Cogo, Paola E.

    2007-01-01

    Background: Docosahexaenoic acid (DHA) and arachidonic acid (AA) are long-chain polyunsaturated fatty acids (LCPs) that play pivotal roles in growth and neurodevelopment. Objective: We aimed to quantify the synthesis of LCPs in preterm infants fed infant formula containing LCPs. Design: Twenty-two p

  3. Synthesis of Some New Long-chain Salen Catalysts

    Institute of Scientific and Technical Information of China (English)

    WU; JinCai

    2001-01-01

    In the research of enantioselective epoxidation of unfunctionalized alkenes using Salen compounds, Katasuki1 and Jacobsen2 pointed out that 3 and 3′ groups of Salen were very important to increase the e.e of the catalytic product. Recently, in order to explore useful information concerning molecular design of metal catalysts for enantioselective epoxidation of trans-disubstituted alkenes, which remains an unresolved problem in the field of metal-catalyzed asymmetric epoxidation of unfunctionalized alkenes,some new Salen compounds containing long-chain in 3 and 3′ were designed and synthesized. We think these 3 and 3′ long-chain groups not only do as bulky group, but also act as second introduced chiral source. The following is the route:  ……

  4. Genes involved in long-chain alkene biosynthesis in Micrococcus luteus

    Energy Technology Data Exchange (ETDEWEB)

    Beller, Harry R.; Goh, Ee-Been; Keasling, Jay D.

    2010-01-07

    Aliphatic hydrocarbons are highly appealing targets for advanced cellulosic biofuels, as they are already predominant components of petroleum-based gasoline and diesel fuels. We have studied alkene biosynthesis in Micrococcus luteus ATCC 4698, a close relative of Sarcina lutea (now Kocuria rhizophila), which four decades ago was reported to biosynthesize iso- and anteiso branched, long-chain alkenes. The underlying biochemistry and genetics of alkene biosynthesis were not elucidated in those studies. We show here that heterologous expression of a three-gene cluster from M. luteus (Mlut_13230-13250) in a fatty-acid overproducing E. coli strain resulted in production of long-chain alkenes, predominantly 27:3 and 29:3 (no. carbon atoms: no. C=C bonds). Heterologous expression of Mlut_13230 (oleA) alone produced no long-chain alkenes but unsaturated aliphatic monoketones, predominantly 27:2, and in vitro studies with the purified Mlut_13230 protein and tetradecanoyl-CoA produced the same C27 monoketone. Gas chromatography-time of flight mass spectrometry confirmed the elemental composition of all detected long-chain alkenes and monoketones (putative intermediates of alkene biosynthesis). Negative controls demonstrated that the M. luteus genes were responsible for production of these metabolites. Studies with wild-type M. luteus showed that the transcript copy number of Mlut_13230-13250 and the concentrations of 29:1 alkene isomers (the dominant alkenes produced by this strain) generally corresponded with bacterial population over time. We propose a metabolic pathway for alkene biosynthesis starting with acyl-CoA (or -ACP) thioesters and involving decarboxylative Claisen condensation as a key step, which we believe is catalyzed by OleA. Such activity is consistent with our data and with the homology (including the conserved Cys-His-Asn catalytic triad) of Mlut_13230 (OleA) to FabH (?-ketoacyl-ACP synthase III), which catalyzes decarboxylative Claisen condensation during

  5. Long chain n-alkanes and their carbon isotopes in lichen species from western Hubei Province: implication for geological records

    Institute of Scientific and Technical Information of China (English)

    Xianyu HUANG; Jiantao XUE; Shouyu GUO

    2012-01-01

    Five coticolous lichen samples were collected from western Hubei Province of China to analyze the long chain n-alkanes and their carbon isotope compositions.The n-alkanes range in carbon number from C17 to C33 with strong odd-over-even predominance between C21and C33.Lichens are dominated by n-C29 in the samples of Dajiuhu,Shennongjia Mountain,but by both n-C23 and n-C29 at Qizimei Mountain.This difference may result from the different environmental conditions in these two sites.The δ13C values of long chain n-alkanes in lichen samples show the signature of C3 plants.Based on compoundspecific carbon isotopic values and previous results,we state that alkane homologs > C23 mainly originate from the symbiotic fungi,while symbiotic algae only contribute trace amount of long chain alkanes.Of great interesting is the occurrence of long chain 3-methylalkanes in the Qizimei samples.These anteiso compounds range from C24 to C32,displaying obvious even-over-odd predominance.This study reveals that the association of long chain 3-methylalkanes with n-C23 alkane might be used as proxies to reconstruct the paleoecological implications of lichens in Earth history.

  6. Long chain n-alkanes and their carbon isotopes in lichen species from western Hubei Province: implication for geological records

    Science.gov (United States)

    Huang, Xianyu; Xue, Jiantao; Guo, Shouyu

    2012-03-01

    Five coticolous lichen samples were collected from western Hubei Province of China to analyze the long chain n-alkanes and their carbon isotope compositions. The n-alkanes range in carbon number from C17 to C33 with strong odd-over-even predominance between C21 and C33. Lichens are dominated by n-C29 in the samples of Dajiuhu, Shennongjia Mountain, but by both n-C23 and n-C29 at Qizimei Mountain. This difference may result from the different environmental conditions in these two sites. The δ 13C values of long chain n-alkanes in lichen samples show the signature of C3 plants. Based on compoundspecific carbon isotopic values and previous results, we state that alkane homologs >C23 mainly originate from the symbiotic fungi, while symbiotic algae only contribute trace amount of long chain alkanes. Of great interesting is the occurrence of long chain 3-methylalkanes in the Qizimei samples. These anteiso compounds range from C24 to C32, displaying obvious even-over-odd predominance. This study reveals that the association of long chain 3-methylalkanes with n-C23 alkane might be used as proxies to reconstruct the paleoecological implications of lichens in Earth history.

  7. Rom2-dependent Phosphorylation of Elo2 Controls the Abundance of Very Long-chain Fatty Acids*

    Science.gov (United States)

    Olson, Daniel K.; Fröhlich, Florian; Christiano, Romain; Hannibal-Bach, Hans K.; Ejsing, Christer S.; Walther, Tobias C.

    2015-01-01

    Sphingolipids are essential components of eukaryotic membranes, where they serve to maintain membrane integrity. They are important components of membrane trafficking and function in signaling as messenger molecules. Sphingolipids are synthesized de novo from very long-chain fatty acids (VLCFA) and sphingoid long-chain bases, which are amide linked to form ceramide and further processed by addition of various headgroups. Little is known concerning the regulation of VLCFA levels and how cells coordinate their synthesis with the availability of long-chain bases for sphingolipid synthesis. Here we show that Elo2, a key enzyme of VLCFA synthesis, is controlled by signaling of the guanine nucleotide exchange factor Rom2, initiating at the plasma membrane. This pathway controls Elo2 phosphorylation state and VLCFA synthesis. Our data identify a regulatory mechanism for coordinating VLCFA synthesis with sphingolipid metabolism and link signal transduction pathways from the plasma membrane to the regulation of lipids for membrane homeostasis. PMID:25519905

  8. Study of Triheptanoin for Treatment of Long-Chain Fatty Acid Oxidation Disorder

    Science.gov (United States)

    2017-03-21

    Very Long-chain acylCoA Dehydrogenase (VLCAD) Deficiency; Carnitine Palmitoyltransferase 2 (CPT2) Deficiency; Mitochondrial Trifunctional Protein (TFP) Deficiency; Long-chain 3 hydroxyacylCoA Dehydrogenase (LCHAD) Deficiency

  9. Microwave-Assisted Synthesis of Cinnamyl Long Chain Aroma Esters.

    Science.gov (United States)

    Worzakowska, Marta

    2015-06-08

    Cinnamyl long chain aroma esters were prepared by using the conventional and microwave-assisted methods. The esterification reaction of naturally occurring 3-phenyl-prop-2-en-1-ol and different chain lengths acidic and diol reagents was carried out at the temperature of 140 °C under solvent free conditions. As acidic reagents, oxolane-2,5-dione, oxane-2,6-dione, hexanedioic acid and decanedioic acid were applied. Ethane-1,2-diol and 2,2'-[oxybis(2,1-ethandiyloxy)]diethanol were used as diol reagents. The synthesis of high molecular mass cinnamyl esters under conventional method conditions requires a long time to obtain high yields. The studies confirm that by using microwave irradiation, it is possible to reduce the reaction times to only 10-20 min. The structures of prepared esters were confirmed on the basis of FTIR, 1H-NMR and 13C-NMR. In addition, the newly obtained cinnamyl long chain esters were tested for their thermal properties. The TG studies proved the high thermal resistance of the obtained esters under inert and oxidative conditions.

  10. 21 CFR 178.3780 - Polyhydric alcohol esters of long chain monobasic acids.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Polyhydric alcohol esters of long chain monobasic..., PRODUCTION AIDS, AND SANITIZERS Certain Adjuvants and Production Aids § 178.3780 Polyhydric alcohol esters of long chain monobasic acids. Polyhydric alcohol esters of long chain monobasic acids identified in...

  11. APOE e4 and the associations of seafood and long-chain omega-3 fatty acids with cognitive decline

    NARCIS (Netherlands)

    Rest, van de Ondine; Wang, Yamin; Barnes, Lisa L.; Tangney, Christine; Bennett, David A.; Morris, Martha Clare

    2016-01-01

    Objective: To examine the association between consumption of seafood and long-chain n-3 fatty acids with change in 5 cognitive domains over an average of 4.9 years. Methods: From an ongoing longitudinal, community-based epidemiologic study of aging and dementia (the Rush Memory and Aging

  12. A LONG CHAIN ALCOHOL AND TWO STEROL COMPOUNDS FROM THE HEXANE EXTRACT OF STEM BARK OF Aglaia odorata Lour. (Meliaceae

    Directory of Open Access Journals (Sweden)

    Tukiran Tukiran

    2010-06-01

    Full Text Available A long chain alcohol, 1-eicosanol together with two sterols, β-sitosterol and stigmasterol had been isolated from hexane extract of stem bark of pacar cina (Aglaia odorata Lour (Meliaceae. These structures had been established based on spectroscopic data (IR and NMR and by comparison to those of standard compounds.   Keywords: Aglaia odorata Lour, Alcohol, Meliaceae, Sterol

  13. Human health risk assessment of long chain alcohols (LCOH)

    DEFF Research Database (Denmark)

    Veenstra, Gauke; Sanderson, Hans; Webb, Catherine;

    2009-01-01

    Representative chemicals from the long chain alcohols category have been extensively tested to define their toxicological hazard properties. These chemicals show low acute and repeat dose toxicity with high-dose effects (if any) related to minimal liver toxicity. These chemicals do not show...... evidence of activity in genetic toxicity tests or to the reproductive system or the developing organism. These chemicals also are not sensitizers. Irritation is dependant on chain length; generally, alcohols in the range C6-C11 are considered as irritant, intermediate chain lengths (C12-C16) alcohols...... are considered to be mild irritants and chain lengths of C18 and above are considered non-irritants. These chemicals are broadly used across the consumer products industry with highest per person consumer exposures resulting from use in personal care products. Margins of exposure adequate for the protection...

  14. Long-chain terminal alcohols through catalytic CO hydrogenation.

    Science.gov (United States)

    Xiang, Yizhi; Chitry, Véronique; Liddicoat, Peter; Felfer, Peter; Cairney, Julie; Ringer, Simon; Kruse, Norbert

    2013-05-15

    We show that long-chain 1-alcohols can be produced with high selectivities using heterogeneous CO hydrogenation catalysis. This breakthrough is achieved through the targeted design of "CoCuMn" nanosized core-shell particles using co-precipitation of metal salts into oxalate precursors and subsequent thermal decomposition. Using stoichiometric CO/H2 feeds, the selectivities to 1-alcohols or combined 1-alcohols/1-alkenes are usually higher than 60% and occasionally up to 95%. The Anderson-Schulz-Flory chain-lengthening probabilities for these products are higher than 0.6, but usually below 0.9 so as to optimize the C8-C14 slate as feedstock for plasticizers, lubricants, or detergents.

  15. Plasma long-chain free fatty acids predict mammalian longevity.

    Science.gov (United States)

    Jové, Mariona; Naudí, Alba; Aledo, Juan Carlos; Cabré, Rosanna; Ayala, Victoria; Portero-Otin, Manuel; Barja, Gustavo; Pamplona, Reinald

    2013-11-28

    Membrane lipid composition is an important correlate of the rate of aging of animals and, therefore, the determination of their longevity. In the present work, the use of high-throughput technologies allowed us to determine the plasma lipidomic profile of 11 mammalian species ranging in maximum longevity from 3.5 to 120 years. The non-targeted approach revealed a specie-specific lipidomic profile that accurately predicts the animal longevity. The regression analysis between lipid species and longevity demonstrated that the longer the longevity of a species, the lower is its plasma long-chain free fatty acid (LC-FFA) concentrations, peroxidizability index, and lipid peroxidation-derived products content. The inverse association between longevity and LC-FFA persisted after correction for body mass and phylogenetic interdependence. These results indicate that the lipidomic signature is an optimized feature associated with animal longevity, emerging LC-FFA as a potential biomarker of longevity.

  16. Bioavailability of long-chain omega-3 fatty acids.

    Science.gov (United States)

    Schuchardt, Jan Philipp; Hahn, Andreas

    2013-07-01

    Supplements have reached a prominent role in improving the supply of long-chain omega-3 fatty acids, such as Eicosapentaenoic acid (EPA 20:5n-3) and Docosahexaenoic acid (DHA 22:6n-3). Similar to other nutrients, the availability of omega-3 fatty acids is highly variable and determined by numerous factors. However, the question of omega-3 fatty acids bioavailability has long been disregarded, which may have contributed to the neutral or negative results concerning their effects in several studies. This review provides an overview of the influence of chemical binding form (free fatty acids bound in ethylesters, triacylglycerides or phospholipids), matrix effects (capsule ingestion with concomitant intake of food, fat content in food) or galenic form (i.e. microencapsulation, emulsification) on the bioavailability of omega-3 fatty acids. There is a need to systematically investigate the bioavailability of omega-3 fatty acids formulations, which might be a key to designing more effective studies in the future.

  17. Synthesis and stereochemistry of long-chain quinoxaline metallocyclophanes.

    Science.gov (United States)

    Howard, Mark J; Heirtzler, Fenton R; Dias, Sandra I G

    2008-04-04

    Condensation of 1,2-diamino-4,5-bis(n-alkoxy)arenes with an oligopyridyl-type alpha-diketone afforded a series of long-chain pyridine-quinoxaline hybrids. These were evaluated for their ability to self-assemble with tetrahedral Cu(I) and Ag(I) to form dimeric, double-decker amphiphillic complexes having a flattened metallocyclophane topology. Detailed NOESY and T1 relaxation time experimentation showed that the configuration of the dicopper(I) complexes corresponds to inversion (meso) symmetry, which leads to an extended molecular shape, wherein the alkoxy chains of the individual ligand components lie on opposite sides of the metallocyclophane core, as opposed to the same side. Preliminary measurements show that the disilver(I) complexes having nC12H25 and nC18H37 chains exhibit reversible melting processes and undergo two endothermic transitions each, at 189/237 and 59/80 degrees C, respectively.

  18. Biosynthesis of very long chain fatty acids in Trypanosoma cruzi.

    Science.gov (United States)

    Livore, Verónica I; Uttaro, Antonio D

    2015-01-01

    Trypanosoma brucei and Trypanosoma cruzi showed similar fatty acid (FA) compositions, having a high proportion of unsaturated FAs, mainly 18:2Δ9,12 (23-39%) and 18:1Δ9 (11-17%). C22 polyunsaturated FAs are in significant amounts only in T. brucei (12-20%) but represent a mere 2% of total FAs in T. cruzi. Both species have also similar profiles of medium- and long-chain saturated FAs, from 14:0 to 20:0. Interestingly, procyclic and bloodstream forms of T. brucei lack very long chain FAs (VLCFAs), whereas epimastigotes and trypomastigotes of T. cruzi contain 22:0 (0.1-0.2%), 24:0 (1.5-2%), and 26:0 (0.1-0.2%). This is in agreement with the presence of an additional FA elongase gene (TcELO4) in T. cruzi. TcELO4 was expressed in a Saccharomyces cerevisiae mutant lacking the endogenous ScELO3, rescuing the synthesis of saturated and hydroxylated C26 FAs in the yeast. Expression of TcELO4 also rescued the synthetic lethality of a ScELO2, ScELO3 double mutation, and the VLCFA profile of the transformed yeast was similar to that found in T. cruzi. By identifying TcELO4 as the enzyme responsible for the elongation of FA from 16:0 and 18:0 up to 26:0, with 24:0 being the preferred product, this work completed the characterization of FA elongases in Trypanosoma spp.

  19. Multiple erythroid isoforms of human long-chain acyl-CoA synthetases are produced by switch of the fatty acid gate domains

    Directory of Open Access Journals (Sweden)

    Kuypers Frans A

    2006-07-01

    Full Text Available Abstract Background The formation of acyl-CoA by the action of acyl-CoA synthetases plays a crucial role in membrane lipid turnover, including the plasma membrane of erythrocytes. In human, five Acyl-CoA Synthetase Long-chain (ACSL genes have been identified with as many as 3 different transcript variants for each. Results Acyl-CoA Synthetase Long-chain member 6 (ACSL6 is responsible for activation of long-chain fatty acids in erythrocytes. Two additional transcript variants were also isolated from brain and testis. We report the expression in reticulocytes of two new variants and of the one isolated from brain. All three represented different spliced variants of a mutually exclusive exon pair. They encode a slightly different short motif which contains a conserved structural domain, the fatty acid Gate domain. The motifs differ in the presence of either the aromatic residue phenylalanine (Phe or tyrosine (Tyr. Based on homology, two new isoforms for the closely related ACSL1 were predicted and characterized. One represented a switch of the Phe- to the Tyr-Gate domain motif, the other resulted from the exclusion of both. Swapping of this motif also appears to be common in all mammalian ACSL member 1 and 6 homologs. Conclusion We propose that a Phe to Tyr substitution or deletion of the Gate domain, is the structural reason for the conserved alternative splicing that affects these motifs. Our findings support our hypothesis that this region is structurally important to define the activity of these enzymes.

  20. High orientation of long chain branched poly (lactic acid) with enhanced blood compatibility and bionic structure.

    Science.gov (United States)

    Li, Zhengqiu; Ye, Lin; Zhao, Xiaowen; Coates, Phil; Caton-Rose, Fin; Martyn, Michasel

    2016-05-01

    Highly oriented poly (lactic acid) (PLA) with bionic microgrooves was fabricated through solid hot drawing technology for further improving the mechanical properties and blood biocompatibility of PLA. In order to enhance the melt strength and thus obtain high orientation degree, long chain branched PLA was prepared at first through a two-step ring-opening reaction during processing. Linear viscoelasticity combined with branch-on-branch model was used to predict probable compositions and chain topologies of the products, and it was found that the molecular weight of PLA increased and topological structures with star like chain with three arms and tree-like chain with two generations formed during reactive processing, and consequently draw ratio as high as1200% can be achieved during the subsequent hot stretching. With the increase of draw ratio, the tensile strength and orientation degree of PLA increased dramatically. Long chain branching and orientation could significantly enhance the blood compatibility of PLA by prolonging clotting time and decreasing platelet activation. Microgrooves can be observed on the surface of the oriented PLA which were similar to the intimal layer of blood vessel, and such bionic structure resulted from the formation of the oriented shish kebab-like crystals along the draw direction.

  1. Relationship between orbital energy gaps and excitation energies for long-chain systems.

    Science.gov (United States)

    Tsuneda, Takao; Singh, Raman K; Nakata, Ayako

    2016-06-15

    The difference between the excitation energies and corresponding orbital energy gaps, the exciton binding energy, is investigated based on time-dependent (TD) density functional theory (DFT) for long-chain systems: all-trans polyacetylenes and linear oligoacenes. The optimized geometries of these systems indicate that bond length alternations significantly depend on long-range exchange interactions. In TDDFT formalism, the exciton binding energy comes from the two-electron interactions between occupied and unoccupied orbitals through the Coulomb-exchange-correlation integral kernels. TDDFT calculations show that the exciton binding energy is significant when long-range exchange interactions are involved. Spin-flip (SF) TDDFT calculations are then carried out to clarify double-excitation effects in these excitation energies. The calculated SF-TDDFT results indicate that double-excitation effects significantly contribute to the excitations of long-chain systems. The discrepancies between the vertical ionization potential minus electron affinity (IP-EA) values and the HOMO-LUMO excitation energies are also evaluated for the infinitely long polyacetylene and oligoacene using the least-square fits to estimate the exciton binding energy of infinitely long systems. It is found that long-range exchange interactions are required to give the exciton binding energy of the infinitely long systems. Consequently, it is concluded that long-range exchange interactions neglected in many DFT calculations play a crucial role in the exciton binding energies of long-chain systems, while double-excitation correlation effects are also significant to hold the energy balance of the excitations. © 2016 Wiley Periodicals, Inc.

  2. Accumulation of long-chain glycosphingolipids during aging is prevented by caloric restriction.

    Directory of Open Access Journals (Sweden)

    María José Hernández-Corbacho

    Full Text Available BACKGROUND: Chronic kidney disease and end-stage renal disease are major causes of morbidity and mortality that are seen far more commonly in the aged population. Interestingly, kidney function declines during aging even in the absence of underlying renal disease. Declining renal function has been associated with age-related cellular damage and dysfunction with reports of increased levels of apoptosis, necrosis, and inflammation in the aged kidney. Bioactive sphingolipids have been shown to regulate these same cellular processes, and have also been suggested to play a role in aging and cellular senescence. METHODOLOGY/PRINCIPAL FINDINGS: We hypothesized that alterations in kidney sphingolipids play a role in the declining kidney function that occurs during aging. To begin to address this, the sphingolipid profile was measured in young (3 mo, middle aged (9 mo and old (17 mo C57BL/6 male mice. Interestingly, while modest changes in ceramides and sphingoid bases were evident in kidneys from older mice, the most dramatic elevations were seen in long-chain hexosylceramides (HexCer and lactosylceramides (LacCer, with C14- and C16-lactosylceramides elevated as much as 8 and 12-fold, respectively. Increases in long-chain LacCers during aging are not exclusive to the kidney, as they also occur in the liver and brain. Importantly, caloric restriction, previously shown to prevent the declining kidney function seen in aging, inhibits accumulation of long-chain HexCer/LacCers and prevents the age-associated elevation of enzymes involved in their synthesis. Additionally, long-chain LacCers are also significantly elevated in human fibroblasts isolated from elderly individuals. CONCLUSION/SIGNIFICANCE: This study demonstrates accumulation of the glycosphingolipids HexCer and LacCer in several different organs in rodents and humans during aging. In addition, data demonstrate that HexCer and LacCer metabolism is regulated by caloric restriction. Taken together

  3. Genetic loci associated with circulating levels of very long-chain saturated fatty acids.

    Science.gov (United States)

    Lemaitre, Rozenn N; King, Irena B; Kabagambe, Edmond K; Wu, Jason H Y; McKnight, Barbara; Manichaikul, Ani; Guan, Weihua; Sun, Qi; Chasman, Daniel I; Foy, Millennia; Wang, Lu; Zhu, Jingwen; Siscovick, David S; Tsai, Michael Y; Arnett, Donna K; Psaty, Bruce M; Djousse, Luc; Chen, Yii-Der I; Tang, Weihong; Weng, Lu-Chen; Wu, Hongyu; Jensen, Majken K; Chu, Audrey Y; Jacobs, David R; Rich, Stephen S; Mozaffarian, Dariush; Steffen, Lyn; Rimm, Eric B; Hu, Frank B; Ridker, Paul M; Fornage, Myriam; Friedlander, Yechiel

    2015-01-01

    Very long-chain saturated fatty acids (VLSFAs) are saturated fatty acids with 20 or more carbons. In contrast to the more abundant saturated fatty acids, such as palmitic acid, there is growing evidence that circulating VLSFAs may have beneficial biological properties. Whether genetic factors influence circulating levels of VLSFAs is not known. We investigated the association of common genetic variation with plasma phospholipid/erythrocyte levels of three VLSFAs by performing genome-wide association studies in seven population-based cohorts comprising 10,129 subjects of European ancestry. We observed associations of circulating VLSFA concentrations with common variants in two genes, serine palmitoyl-transferase long-chain base subunit 3 (SPTLC3), a gene involved in the rate-limiting step of de novo sphingolipid synthesis, and ceramide synthase 4 (CERS4). The SPTLC3 variant at rs680379 was associated with higher arachidic acid (20:0 , P = 5.81 × 10(-13)). The CERS4 variant at rs2100944 was associated with higher levels of 20:0 (P = 2.65 × 10(-40)) and in analyses that adjusted for 20:0, with lower levels of behenic acid (P = 4.22 × 10(-26)) and lignoceric acid (P = 3.20 × 10(-21)). These novel associations suggest an inter-relationship of circulating VLSFAs and sphingolipid synthesis.

  4. Very long chain fatty acid synthesis in sunflower kernels.

    Science.gov (United States)

    Salas, Joaquín J; Martínez-Force, Enrique; Garcés, Rafael

    2005-04-01

    Most common seed oils contain small amounts of very long chain fatty acids (VLCFAs), the main components of oils from species such as Brassica napus or Lunnaria annua. These fatty acids are synthesized from acyl-CoA precursors in the endoplasmic reticulum through the activity of a dissociated enzyme complex known as fatty acid elongase. We studied the synthesis of the arachidic, behenic, and lignoceric VLCFAs in sunflower kernels, in which they account for 1-3% of the saturated fatty acids. These VLCFAs are synthesized from 18:0-CoA by membrane-bound fatty acid elongases, and their biosynthesis is mainly dependent on NADPH equivalents. Two condensing enzymes appear to be responsible for the synthesis of VLCFAs in sunflower kernels, beta-ketoacyl-CoA synthase-I (KCS-I) and beta-ketoacyl-CoA synthase-II (KCS-II). Both of these enzymes were resolved by ion exchange chromatography and display different substrate specificities. While KCS-I displays a preference for 20:0-CoA, 18:0-CoA was more efficiently elongated by KCS-II. Both enzymes have different sensitivities to pH and Triton X-100, and their kinetic properties indicate that both are strongly inhibited by the presence of their substrates. In light of these results, the VLCFA composition of sunflower oil is considered in relation to that in other commercially exploited oils.

  5. The long-chain alkane metabolism network of Alcanivorax dieselolei.

    Science.gov (United States)

    Wang, Wanpeng; Shao, Zongze

    2014-12-12

    Alkane-degrading bacteria are ubiquitous in marine environments, but little is known about how alkane degradation is regulated. Here we investigate alkane sensing, chemotaxis, signal transduction, uptake and pathway regulation in Alcanivorax dieselolei. The outer membrane protein OmpS detects the presence of alkanes and triggers the expression of an alkane chemotaxis complex. The coupling protein CheW2 of the chemotaxis complex, which is induced only by long-chain (LC) alkanes, sends signals to trigger the expression of Cyo, which participates in modulating the expression of the negative regulator protein AlmR. This change in turn leads to the expression of ompT1 and almA, which drive the selective uptake and hydroxylation of LC alkanes, respectively. AlmA is confirmed as a hydroxylase of LC alkanes. Additional factors responsible for the metabolism of medium-chain-length alkanes are also identified, including CheW1, OmpT1 and OmpT2. These results provide new insights into alkane metabolism pathways from alkane sensing to degradation.

  6. Regulation of energy metabolism by long-chain fatty acids.

    Science.gov (United States)

    Nakamura, Manabu T; Yudell, Barbara E; Loor, Juan J

    2014-01-01

    In mammals, excess energy is stored primarily as triglycerides, which are mobilized when energy demands arise. This review mainly focuses on the role of long chain fatty acids (LCFAs) in regulating energy metabolism as ligands of peroxisome proliferator-activated receptors (PPARs). PPAR-alpha expressed primarily in liver is essential for metabolic adaptation to starvation by inducing genes for beta-oxidation and ketogenesis and by downregulating energy expenditure through fibroblast growth factor 21. PPAR-delta is highly expressed in skeletal muscle and induces genes for LCFA oxidation during fasting and endurance exercise. PPAR-delta also regulates glucose metabolism and mitochondrial biogenesis by inducing FOXO1 and PGC1-alpha. Genes targeted by PPAR-gamma in adipocytes suggest that PPAR-gamma senses incoming non-esterified LCFAs and induces the pathways to store LCFAs as triglycerides. Adiponectin, another important target of PPAR-gamma may act as a spacer between adipocytes to maintain their metabolic activity and insulin sensitivity. Another topic of this review is effects of skin LCFAs on energy metabolism. Specific LCFAs are required for the synthesis of skin lipids, which are essential for water barrier and thermal insulation functions of the skin. Disturbance of skin lipid metabolism often causes apparent resistance to developing obesity at the expense of normal skin function.

  7. Aggregation Behavior of Long-Chain Piperidinium Ionic Liquids in Ethylammonium Nitrate

    Directory of Open Access Journals (Sweden)

    Caili Dai

    2014-12-01

    Full Text Available Micelles formed by the long-chain piperidinium ionic liquids (ILs N-alkyl-N-methylpiperidinium bromide of general formula CnPDB (n = 12, 14, 16 in ethylammonium nitrate (EAN were investigated through surface tension and dissipative particle dynamics (DPD simulations. Through surface tension measurements, the critical micelle concentration (cmc, the effectiveness of surface tension reduction (Πcmc, the maximum excess surface concentration (Гmax and the minimum area occupied per surfactant molecule (Amin can be obtained. A series of thermodynamic parameters (DG0 m, DH0 m and DS0 m of micellization can be calculated and the results showed that the micellization was entropy-driven. In addition, the DPD simulation was performed to simulate the whole aggregation process behavior to better reveal the micelle formation process.

  8. An oleaginous bacterium that intrinsically accumulates long-chain free Fatty acids in its cytoplasm.

    Science.gov (United States)

    Katayama, Taiki; Kanno, Manabu; Morita, Naoki; Hori, Tomoyuki; Narihiro, Takashi; Mitani, Yasuo; Kamagata, Yoichi

    2014-02-01

    Medium- and long-chain fatty acids are present in organisms in esterified forms that serve as cell membrane constituents and storage compounds. A large number of organisms are known to accumulate lipophilic materials as a source of energy and carbon. We found a bacterium, designated GK12, that intrinsically accumulates free fatty acids (FFAs) as intracellular droplets without exhibiting cytotoxicity. GK12 is an obligatory anaerobic, mesophilic lactic acid bacterium that was isolated from a methanogenic reactor. Phylogenetic analysis based on 16S rRNA gene sequences showed that GK12 is affiliated with the family Erysipelotrichaceae in the phylum Firmicutes but is distantly related to type species in this family (less than 92% similarity in 16S rRNA gene sequence). Saturated fatty acids with carbon chain lengths of 14, 16, 18, and 20 were produced from glucose under stress conditions, including higher-than-optimum temperatures and the presence of organic solvents that affect cell membrane integrity. FFAs were produced at levels corresponding to up to 25% (wt/wt) of the dry cell mass. Our data suggest that FFA accumulation is a result of an imbalance between excess membrane fatty acid biosynthesis due to homeoviscous adaptation and limited β-oxidation activity due to anaerobic growth involving lactic acid fermentation. FFA droplets were not further utilized as an energy and carbon source, even under conditions of starvation. A naturally occurring bacterium that accumulates significant amounts of long-chain FFAs with noncytotoxicity would provide useful strategies for microbial biodiesel production.

  9. Long-chain n-3 PUFA: plant v. marine sources.

    Science.gov (United States)

    Williams, Christine M; Burdge, Graham

    2006-02-01

    Increasing recognition of the importance of the long-chain n-3 PUFA, EPA and DHA, to cardiovascular health, and in the case of DHA to normal neurological development in the fetus and the newborn, has focused greater attention on the dietary supply of these fatty acids. The reason for low intakes of EPA and DHA in most developed countries (0.1-0.5 g/d) is the low consumption of oily fish, the richest dietary source of these fatty acids. An important question is whether dietary intake of the precursor n-3 fatty acid, alpha-linolenic acid (alphaLNA), can provide sufficient amounts of tissue EPA and DHA by conversion through the n-3 PUFA elongation-desaturation pathway. alphaLNA is present in marked amounts in plant sources, including green leafy vegetables and commonly-consumed oils such as rape-seed and soyabean oils, so that increased intake of this fatty acid would be easier to achieve than via increased fish consumption. However, alphaLNA-feeding studies and stable-isotope studies using alphaLNA, which have addressed the question of bioconversion of alphaLNA to EPA and DHA, have concluded that in adult men conversion to EPA is limited (approximately 8%) and conversion to DHA is extremely low (<0.1%). In women fractional conversion to DHA appears to be greater (9%), which may partly be a result of a lower rate of utilisation of alphaLNA for beta-oxidation in women. However, up-regulation of the conversion of EPA to DHA has also been suggested, as a result of the actions of oestrogen on Delta6-desaturase, and may be of particular importance in maintaining adequate provision of DHA in pregnancy. The effect of oestrogen on DHA concentration in pregnant and lactating women awaits confirmation.

  10. Micellization Behavior of Long-Chain Substituted Alkylguanidinium Surfactants

    Directory of Open Access Journals (Sweden)

    Roza Bouchal

    2016-02-01

    Full Text Available Surface activity and micelle formation of alkylguanidinium chlorides containing 10, 12, 14 and 16 carbon atoms in the hydrophobic tail were studied by combining conductivity and surface tension measurements with isothermal titration calorimetry. The purity of the resulting surfactants, their temperatures of Cr→LC and LC→I transitions, as well as their propensity of forming birefringent phases, were assessed based on the results of 1H and 13C NMR, differential scanning calorimetry (DSC, and polarizing microscopy studies. Whenever possible, the resulting values of Krafft temperature (TK, critical micelle concentration (CMC, minimum surface tension above the CMC, chloride counter-ion binding to the micelle, and the standard enthalpy of micelle formation per mole of surfactant (ΔmicH° were compared to those characterizing alkyltrimethylammonium chlorides or bromides with the same tail lengths. The value of TK ranged between 292 and 314 K and increased strongly with the increase in the chain length of the hydrophobic tail. Micellization was described as both entropy and enthalpy-driven. Based on the direct calorimetry measurements, the general trends in the CMC with the temperature, hydrophobic tail length, and NaCl addition were found to be similar to those of other types of cationic surfactants. The particularly exothermic character of micellization was ascribed to the hydrogen-binding capacity of the guanidinium head-group.

  11. Micellization Behavior of Long-Chain Substituted Alkylguanidinium Surfactants.

    Science.gov (United States)

    Bouchal, Roza; Hamel, Abdellah; Hesemann, Peter; In, Martin; Prelot, Bénédicte; Zajac, Jerzy

    2016-02-06

    Surface activity and micelle formation of alkylguanidinium chlorides containing 10, 12, 14 and 16 carbon atoms in the hydrophobic tail were studied by combining conductivity and surface tension measurements with isothermal titration calorimetry. The purity of the resulting surfactants, their temperatures of Cr→LC and LC→I transitions, as well as their propensity of forming birefringent phases, were assessed based on the results of ¹H and (13)C NMR, differential scanning calorimetry (DSC), and polarizing microscopy studies. Whenever possible, the resulting values of Krafft temperature (TK), critical micelle concentration (CMC), minimum surface tension above the CMC, chloride counter-ion binding to the micelle, and the standard enthalpy of micelle formation per mole of surfactant (ΔmicH°) were compared to those characterizing alkyltrimethylammonium chlorides or bromides with the same tail lengths. The value of TK ranged between 292 and 314 K and increased strongly with the increase in the chain length of the hydrophobic tail. Micellization was described as both entropy and enthalpy-driven. Based on the direct calorimetry measurements, the general trends in the CMC with the temperature, hydrophobic tail length, and NaCl addition were found to be similar to those of other types of cationic surfactants. The particularly exothermic character of micellization was ascribed to the hydrogen-binding capacity of the guanidinium head-group.

  12. Structural and solubility parameter correlations of gelation abilities for dihydroxylated derivatives of long-chain, naturally occurring fatty acids.

    Science.gov (United States)

    Zhang, Mohan; Selvakumar, Sermadurai; Zhang, Xinran; Sibi, Mukund P; Weiss, Richard G

    2015-06-01

    Creating structure-property correlations at different distance scales is one of the important challenges to the rational design of molecular gelators. Here, a series of dihydroxylated derivatives of long-chain fatty acids, derived from three naturally occurring molecules-oleic, erucic and ricinoleic acids-are investigated as gelators of a wide variety of liquids. Conclusions about what constitutes a more (or less!) efficient gelator are based upon analyses of a variety of thermal, structural, molecular modeling, and rheological results. Correlations between the manner of molecular packing in the neat solid or gel states of the gelators and Hansen solubility data from the liquids leads to the conclusion that diol stereochemistry, the number of carbon atoms separating the two hydroxyl groups, and the length of the alkanoic chains are the most important structural parameters controlling efficiency of gel formation for these gelators. Some of the diol gelators are as efficient or even more efficient than the well-known, excellent gelator, (R)-12-hydroxystearic acid; others are much worse. The ability to form extensive intermolecular H-bonding networks along the alkyl chains appears to play a key role in promoting fiber growth and, thus, gelation. In toto, the results demonstrate how the efficiency of gelation can be modulated by very small structural changes and also suggest how other structural modifications may be exploited to create efficient gelators.

  13. 78 FR 62443 - Perfluoroalkyl Sulfonates and Long-Chain Perfluoroalkyl Carboxylate Chemical Substances; Final...

    Science.gov (United States)

    2013-10-22

    ... AGENCY 40 CFR Parts 9 and 721 RIN 2070-AJ95 Perfluoroalkyl Sulfonates and Long-Chain Perfluoroalkyl... new use rule (SNUR) for perfluoroalkyl sulfonate (PFAS) chemical substances to add PFAS chemical.... EPA is also finalizing a SNUR for long-chain perfluoroalkyl carboxylate (LCPFAC) chemical...

  14. Management of familial Mediterranean fever by colchicine does not normalize the altered profile of microbial long chain fatty acids in the human metabolome

    Directory of Open Access Journals (Sweden)

    Zhanna eKtsoyan

    2013-01-01

    Full Text Available In our previous works we established that in an autoinflammatory condition, familial Mediterranean fever, the gut microbial diversity is specifically restructured, which also results in the altered profiles of microbial long chain fatty acids (LCFAs present in the systemic metabolome. The mainstream management of the disease is based on oral administration of colchicine to suppress clinical signs and extend remission periods and our aim was to determine whether this therapy normalizes the microbial LCFA profiles in the metabolome as well. Unexpectedly, the treatment does not normalize these profiles. Moreover, it results in the formation of new distinct microbial LCFA clusters, which are well separated from the corresponding values in healthy controls and FMF patients without the therapy. We hypothesize that the therapy alters the proinflammatory network specific for the disease, with the concomitant changes in gut microbiota and the corresponding microbial LCFAs in the metabolome.

  15. Management of familial Mediterranean fever by colchicine does not normalize the altered profile of microbial long chain fatty acids in the human metabolome.

    Science.gov (United States)

    Ktsoyan, Zhanna A; Beloborodova, Natalia V; Sedrakyan, Anahit M; Osipov, George A; Khachatryan, Zaruhi A; Manukyan, Gayane P; Arakelova, Karine A; Hovhannisyan, Alvard I; Arakelyan, Arsen A; Ghazaryan, Karine A; Zakaryan, Magdalina K; Aminov, Rustam I

    2013-01-01

    In our previous works we established that in an autoinflammatory condition, familial Mediterranean fever (FMF), the gut microbial diversity is specifically restructured, which also results in the altered profiles of microbial long chain fatty acids (LCFAs) present in the systemic metabolome. The mainstream management of the disease is based on oral administration of colchicine to suppress clinical signs and extend remission periods and our aim was to determine whether this therapy normalizes the microbial LCFA profiles in the metabolome as well. Unexpectedly, the treatment does not normalize these profiles. Moreover, it results in the formation of new distinct microbial LCFA clusters, which are well separated from the corresponding values in healthy controls and FMF patients without the therapy. We hypothesize that the therapy alters the proinflammatory network specific for the disease, with the concomitant changes in gut microbiota and the corresponding microbial LCFAs in the metabolome.

  16. Zeolites relieves inhibitory stress from high concentrations of long chain fatty acids.

    Science.gov (United States)

    Nordell, Erik; Hansson, Anna B; Karlsson, Martin

    2013-12-01

    Protein and fat rich slaughterhouse waste is a very attractive waste stream for the production of biogas because of the high biochemical methane potential of the substrate. The material has however some drawbacks as the sole material for biogas production due to the production of several process disturbing metabolites such as ammonia, sulfides and long chain fatty acids. We can in this work present results that show that zeolites have the potential to relieve inhibitory stress from the presence of long chain fatty acids. Moreover, the results strongly indicate that it is mainly acetic acid consumers that are most negatively affected by long chain fatty acids and that the mechanism of stress relief is an adsorption of long chain fatty acids to the zeolites. In addition to this, it is shown that the effect is immediate and that only a small amount of zeolites is necessary to cancel the inhibitory effect of long chain fatty acids.

  17. Interdigitation of long-chain sphingomyelin induces coupling of membrane leaflets in a cholesterol dependent manner

    DEFF Research Database (Denmark)

    Róg, Tomasz; Orłowski, Adam; Llorente, Alicia

    2016-01-01

    It has been a long-standing question how the two leaflets in a lipid bilayer modulate each others' physical properties. In this paper, we discuss how this interaction may take place through interdigitation. We use atomistic molecular dynamics simulations to consider asymmetric lipid membrane models...... whose compositions are based on the lipidomics data determined for exosomes released by PC-3 prostate cancer cells. The simulations show interdigitation to be exceptionally strong for long-chain sphingomyelin (SM) molecules. In asymmetric membranes the amide-linked chain of SM is observed to extend deep......, and that cholesterol modulates the effect of SM interdigitation by influencing the conformational order of lipid hydrocarbon chains in the opposing (cytosolic) leaflet....

  18. Biodiscovery of new Australian thraustochytrids for production of biodiesel and long-chain omega-3 oils

    Energy Technology Data Exchange (ETDEWEB)

    Lee Chang, Kim Jye [CSIRO, Hobart, TAS (Australia). Energy Transformed National Research Flagship; CSIRO Marine and Atmospheric Research, Hobart, TAS (Australia); Tasmania Univ., Hobart, TAS (Australia). School of Plant Science; Dunstan, Graeme A.; Blackburn, Susan I. [CSIRO, Hobart, TAS (Australia). Energy Transformed National Research Flagship; CSIRO Marine and Atmospheric Research, Hobart, TAS (Australia); Abell, Guy C.J.; Clementson, Lesley A. [CSIRO Marine and Atmospheric Research, Hobart, TAS (Australia); Nichols, Peter D. [CSIRO, Hobart, TAS (Australia). Food Futures National Research Flagship; CSIRO Marine and Atmospheric Research, Hobart, TAS (Australia); Koutoulis, Anthony [Tasmania Univ., Hobart, TAS (Australia). School of Plant Science

    2012-03-15

    Heterotrophic growth of thraustochytrids has potential in co-producing a feedstock for biodiesel and long-chain (LC, {>=}C{sub 20}) omega-3 oils. Biodiscovery of thraustochytrids from Tasmania (temperate) and Queensland (tropical), Australia, covered a biogeographic range of habitats including fresh, brackish, and marine waters. A total of 36 thraustochytrid strains were isolated and separated into eight chemotaxonomic groups (A-H) based on fatty acid (FA) and sterol composition which clustered closely with four different genera obtained by 18S rDNA molecular identification. Differences in the relative proportions (%FA) of long-chain C{sub 20}, C{sub 22}, omega-3, and omega-6 polyunsaturated fatty acids (PUFA), including docosahexaenoic acid (DHA), docosapentaenoic acid, arachidonic acid, eicosapentaenoic acid (EPA), and saturated FA, as well as the presence of odd-chain PUFA (OC-PUFA) were the major factors influencing the separation of these groups. OC-PUFA were detected in temperate strains of groups A, B, and C (Schizochytrium and Thraustochytrium). Group D (Ulkenia) had high omega-3 LC-PUFA (53% total fatty acids (TFA)) and EPA up to 11.2% TFA. Strains from groups E and F (Aurantiochytrium) contained DHA levels of 50-61% TFA after 7 days of growth in basal medium at 20 C. Groups G and H (Aurantiochytrium) strains had high levels of 15:0 (20-30% TFA) and the sum of saturated FA was in the range of 32-51%. {beta},{beta}-Carotene, canthaxanthin, and astaxanthin were identified in selected strains. Phylogenetic and chemotaxonomic groupings demonstrated similar patterns for the majority of strains. Our results demonstrate the potential of these new Australian thraustochytrids for the production of biodiesel in addition to omega-3 LC-PUFA-rich oils. (orig.)

  19. Padronização de três ELISAs polivalentes com lipopolissacarídeos de cadeia longa dos sorotipos 1 e 5, 2, 3 e 7 ou 10 e 12 de Actinobacillus pleuropneumoniae Standardization of three polyvalent ELISA based on long chain lipopolysaccharides of serotypes 1 and 5, 2, 3 and 7, or 10 and 12 of Actinobacillus pleuropneumoniae

    Directory of Open Access Journals (Sweden)

    S.S. Kuchiishi

    2008-04-01

    Full Text Available Três ELISAs polivalentes baseados em lipopolissacarídeos de cadeia longa (LPS-CL foram estabelecidos para detectar anticorpos para todos os sorotipos prevalentes de Actinobacillus pleuropneumoniae. Foram testadas amostras provenientes do banco de soros de suínos experimentalmente inoculados com todos os sorotipos de A. pleuropneumoniae. Os ELISAs foram sensíveis à detecção de anticorpos contra todos os LPS-CL. Foram observadas reações cruzadas no ELISA polivalente produzido com os sorotipos 1 e 5, com anti-soros específicos para os sorotipos 9 e 11, pois os sorotipos 1, 9 e 11 apresentaram antígenos somáticos comuns. No polivalente com os sorotipos 2, 3 e 7, observaram-se reações com anti-soros dos sorotipos 4, 6 e 8, devido à presença de antígenos somáticos entre os sorotipos 3, 6 e 8 e entre os sorotipos 4 e 7. Amostras de soros de animais infectados com Mycoplasma hyopneumoniae, Mycoplasma flocculare e Haemophilus parasuis, agentes que acometem o sistema respiratório dos suínos, não apresentaram reações cruzadas com os antígenos baseados em LPS-CL.Three polyvalent ELISA based on long chain lipopolysaccharides (LC-LPS were established to detect all prevalent serotypes of Actinobacillus pleuropneumoniae. Samples from a serum bank of experimentally inoculated animals with all serotypes of A. pleuropneumoniae were tested. Antibodies specific to LC-LPS of each serotype were detected. Cross-reactions were observed in the polyvalent ELISA produced with serotypes 1 and 5, with specific antisera to serotypes 9 and 11 due to common somatic antigens presence in serotypes 1, 9, and 11. In the polyvalent with serotypes 2, 3 and 7 reactions were observed with antisera of serotypes 4, 6, and 8, due to the presence of somatic antigens in serotypes 3, 6, and 8 and serotypes 4 and 7. Experimentally infected animals with respiratory agents of swine Mycoplasma hyopneumoniae, Mycoplasma flocculare, and Haemophilus parasuis did not present

  20. Identification of long chain dicarboxylic acids in the serum of two patients with Reye's syndrome.

    Science.gov (United States)

    Ng, K J; Andresen, B D; Hilty, M D; Bianchine, J R

    1983-08-12

    Sera from two patients with Reye's Syndrome were analysed by computerized capillary gas chromatography--mass spectrometry profiling techniques. The most striking abnormalities were the accumulation of long chain dicarboxylic acids. Four saturated dicarboxylic acids (dodecanedioic, tetradecanedioic, hexadecanedioic, and octadecanedioic), and six unsaturated long chain dicarboxylic acids (dodecenedioic, tetradecenedioic, tetradecadienedioic, hexadecenedioic, octadecadienedioic, and octadecenedioic) were identified. The C16 and C13 dicarboxylic acids have never been reported for Reye's Syndrome or any other dicarboxylic acidemias. The data might reflect marked increase of extramitochondrial omega-oxidation of long chain fatty acids or impaired metabolism of omega-dicarboxylic acids formed in Reye's patients.

  1. Substrate Trapping in Crystals of the Thiolase OleA Identifies Three Channels That Enable Long Chain Olefin Biosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Goblirsch, Brandon R.; Jensen, Matthew R.; Mohamed, Fatuma A.; Wackett, Lawrence P.; Wilmot, Carrie M.

    2016-11-04

    Phylogenetically diverse microbes that produce long chain, olefinic hydrocarbons have received much attention as possible sources of renewable energy biocatalysts. One enzyme that is critical for this process is OleA, a thiolase superfamily enzyme that condenses two fatty acyl-CoA substrates to produce a β-ketoacid product and initiates the biosynthesis of long chain olefins in bacteria. Thiolases typically utilize a ping-pong mechanism centered on an active site cysteine residue. Reaction with the first substrate produces a covalent cysteine-thioester tethered acyl group that is transferred to the second substrate through formation of a carbon-carbon bond. Although the basics of thiolase chemistry are precedented, the mechanism by which OleA accommodates two substrates with extended carbon chains and a coenzyme moiety—unusual for a thiolase—are unknown. Gaining insights into this process could enable manipulation of the system for large scale olefin production with hydrocarbon chains lengths equivalent to those of fossil fuels. In this study, mutagenesis of the active site cysteine in Xanthomonas campestris OleA (Cys143) enabled trapping of two catalytically relevant species in crystals. In the resulting structures, long chain alkyl groups (C12 and C14) and phosphopantetheinate define three substrate channels in a T-shaped configuration, explaining how OleA coordinates its two substrates and product. The C143A OleA co-crystal structure possesses a single bound acyl-CoA representing the Michaelis complex with the first substrate, whereas the C143S co-crystal structure contains both acyl-CoA and fatty acid, defining how a second substrate binds to the acyl-enzyme intermediate. An active site glutamate (Gluβ117) is positioned to deprotonate bound acyl-CoA and initiate carbon-carbon bond formation.

  2. Long-Chain Fatty Acid Oxidation Disorders (LC-FAOD) Extension Study for Subjects Previously Enrolled in Triheptanoin Studies.

    Science.gov (United States)

    2017-05-22

    Carnitine Palmitoyltransferase (CPT I or CPT II) Deficiency; Very Long Chain Acyl-CoA Dehydrogenase (VLCAD) Deficiency; Long-chain 3-hydroxy-acyl-CoA Dehydrogenase (LCHAD) Deficiency; Trifunctional Protein (TFP) Deficiency; Carnitine-acylcarnitine Translocase (CACT) Deficiency

  3. Application of long-chain aikenones and U37k values for paleotemperature estimation in the Arctic Chukchi Sea- Bering Sea area

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    -Long-chain alkenones were detected in samples of sea surface sediments from the Chukchi Sea and the Bering Sea areas, the Arctic Pole. The analysis result indicates that C37:3 methylketone is pre dominate in the long-chain alkenones from the Chukchi and Bering Sea sediments. The abundance of C37to C39 unsaturated alkenones changes in an order of C37 >C38 >C39. Based on ∑37/∑38 ratio, the de tected organism precursors of the long-chain alkenones are mainly coccolithophrid (Emiliania huxleyi).By the calibration relationship between U3k7 and U37k indices, the sea surface paleotemperature in these seas is estimated. The estimated values of U37k vary from 4.147℃ to 5. 706℃, with a mean value of 5.092℃.

  4. Long-chain alkanoic acid esters of lupeol from Dorstenia harmsiana Engl. (Moraceae).

    Science.gov (United States)

    Poumale, Herve Martial P; Awoussong, Kenzo Patrice; Randrianasolo, Rivoarison; Simo, Christophe Colombe F; Ngadjui, Bonaventure Tchaleu; Shiono, Yoshihito

    2012-01-01

    In addition to lupeol (1a), three long-chain alkanoic acid esters of lupeol, in which two were new, were isolated from the hexane and ethyl acetate twigs extract of Dorstenia harmsiana Engl. (Moraceae). The structures of the new compounds were elucidated on the basis of 1D and 2D NMR experiments. Some isolated compounds were evaluated for their antimicrobial activities. The lupeol and its three long-chain alkanoic acid esters showed antifungal and antibacterial activities.

  5. The Role of Long-Chain Polyunsaturated Fatty Acids in the Nutrition of Infants

    Directory of Open Access Journals (Sweden)

    D.O. Dobrianskyi

    2015-08-01

    Full Text Available Long-chain polyunsaturated fatty acids (LCPSFA are the main functional fats of mother’s milk. The predominant and functionally most important LCPSFA are arachidonic acid (AA and docosahexanoic acid (DHA. In addition to imitation of breast milk, there are two important reasons to add LCPSFA in infant formula for babies. Firstly, infants can not synthesize sufficient number of LCPSFA to compensate for the lack of these substances in food. Secondly, the brain tissue, the retina of the eyes and immune system require a large number of LCPSFA as a building material and functional components to support intensive growth and development in early childhood. This period is critical for the formation and development of organs, therefore, optimal supply of substrates is necessary for their optimal functioning. These ideas, combined with the results of over 20 randomized controlled clinical trials and numerous other studies that show the positive impact of food LCPSFA on the health and development of infants, indicate the need for enrichment of baby food with DHA and AK. The most studied positive effects of this enrichment are the improvement of visual function and cognitive development of young children. According to new data, increased consumption of LCPSFA is associated with beneficial effects on immune functions and cardiovascular system of infants.

  6. Very long-chain fatty acids: elongation, physiology and related disorders.

    Science.gov (United States)

    Kihara, Akio

    2012-11-01

    Very long-chain fatty acids (VLCFAs) are fatty acids (FAs) with a chain-length of ≥22 carbons. Mammals have a variety of VLCFAs differing in chain-length and the number of double bonds. Each VLCFA exhibits certain functions, for example in skin barrier formation, liver homeostasis, myelin maintenance, spermatogenesis, retinal function and anti-inflammation. These functions are elicited not by free VLCFAs themselves, but through their influences as components of membrane lipids (sphingolipids and glycerophospholipids) or precursors of inflammation-resolving lipid mediators. VLCFAs are synthesized by endoplasmic reticulum membrane-embedded enzymes through a four-step cycle. The most important enzymes determining the tissue distribution of VLCFAs are FA elongases, which catalyze the first, rate-limiting step of the FA elongation cycle. Mammals have seven elongases (ELOVL1-7), each exhibiting a characteristic substrate specificity. Several inherited disorders are caused by mutations in genes involved in VLCFA synthesis or degradation. In this review, I describe the molecular mechanism of FA elongation and the responsible enzymes in mammals and yeast, as well as VLCFA-related disorders in human.

  7. Cooperative Synthesis of Ultra Long-Chain Fatty Acid and Ceramide during Keratinocyte Differentiation.

    Directory of Open Access Journals (Sweden)

    Yukiko Mizutani

    Full Text Available The lipid lamellae in the stratum corneum is important for the epidermal permeability barrier. The lipid lamellae component ceramide (CER, comprising an ultra long-chain (ULC fatty acid (FA of ≥26 carbons (ULC CER, plays an essential role in barrier formation. ULC acyl-CoAs, produced by the FA elongase ELOVL4, are converted to ULC CERs by the CER synthase CERS3. In the presented study, we observed that ELOVL4 and CERS3 mRNAs increased during keratinocyte differentiation in vivo and in vitro. We also determined that peroxisome proliferator-activated receptor β/δ is involved in the up-regulation of the mRNAs. Knockdown of CERS3 caused a reduction in the elongase activities toward ULC acyl-CoAs, suggesting that CERS3 positively regulates ULCFA. Thus, we reveal that the two key players in ULC CER production in epidermis, CERS3 and ELOVL4, are coordinately regulated at both the transcriptional and enzymatic levels.

  8. Single-Step Access to Long-Chain α,ω-Dicarboxylic Acids by Isomerizing Hydroxycarbonylation of Unsaturated Fatty Acids

    KAUST Repository

    Goldbach, Verena

    2016-11-09

    Dicarboxylic acids are compounds of high value, but to date long-chain alpha,omega-dicarboxylic acids have been difficult to access in a direct way. Unsaturated fatty acids are ideal starting materials with their molecular structure of long methylene sequences and a carboxylate functionality, in addition to a double bond that offers itself for functionalization. Within this paper, we established a direct access to alpha,omega-dicarboxylic acids by combining isomerization and selective terminal carbonylation of the internal double bond with water as a nucleophile on unsaturated fatty acids. We identified the key elements of this reaction: a homogeneous reaction mixture ensuring sufficient contact between all reactants and a catalyst system allowing for activation of the Pd precursor under aqueous conditions. Experiments under pressure reactor conditions with [(dtbpx)Pd(OTf)(2)] as catalyst precursor revealed the importance of nucleophile and reactant concentrations and the addition of the diprotonated diphosphine ligand (dtbpxH(2))(OTf)(2) to achieve turnover numbers >120. A variety of unsaturated fatty acids, including a triglyceride, were converted to valuable long-chain dicarboxylic acids with high turnover numbers and selectivities for the linear product of >90%. We unraveled the activation pathway of the Pd-II precursor, which proceeds via a reductive elimination step forming a Pd species and oxidative addition of the diprotonated diphosphine ligand, resulting in the formation of the catalytically active Pd hydride species. Theoretical calculations identified the hydrolysis as the rate-determining step. A low nucleophile concentration in the reaction mixture in combination with this high energetic barrier limits the potential of this reaction. In conclusion, water can be utilized as a nucleophile in isomerizing functionalization reactions and gives access to long-chain dicarboxylic acids from a variety of unsaturated substrates. The activity of the catalytic

  9. Ultrafast excited state relaxation in long-chain polyenes

    Science.gov (United States)

    Antognazza, Maria Rosa; Lüer, Larry; Polli, Dario; Christensen, Ronald L.; Schrock, Richard R.; Lanzani, Guglielmo; Cerullo, Giulio

    2010-07-01

    We present a comprehensive study, by femtosecond pump-probe spectroscopy, of excited state dynamics in a polyene that approaches the infinite chain limit. By excitation with sub-10-fs pulses resonant with the 0-0 S 0 → S 2 transition, we observe rapid loss of stimulated emission from the bright excited state S 2, followed by population of the hot S 1 state within 150 fs. Vibrational cooling of S 1 takes place within 500 fs and is followed by decay back to S 0 with 1 ps time constant. By excitation with excess vibrational energy we also observe the ultrafast formation of a long-living absorption, that is assigned to the triplet state generated by singlet fission.

  10. Inhibition of lysozyme amyloidogenesis by phospholipids. Focus on long-chain dimyristoylphosphocholine.

    Science.gov (United States)

    Ponikova, Slavomira; Kubackova, Jana; Bednarikova, Zuzana; Marek, Jozef; Demjen, Erna; Antosova, Andrea; Musatov, Andrey; Gazova, Zuzana

    2017-11-01

    Protein amyloid aggregation is an important pathological feature of a group of different degenerative human diseases called amyloidosis. We tested effect of two phospholipids, 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and 1,2-dihexanoyl-sn-glycero-3-phosphocholine (DHPC) on amyloid aggregation of hen egg white (HEW) lysozyme in vitro. Effect of phospholipids was investigated using spectroscopic techniques (fluorescence and CD spectroscopy), atomic force microscopy and image analysis. Phospholipids DMPC and DHPC are able dose-dependently inhibit lysozyme fibril formation. The length of the phospholipid tails and different structural arrangement of the phospholipid molecules affect inhibitory activity; long-chain DMPC inhibits fibrillization more efficiently. Interestingly, interference of DMPC with lysozyme amyloid fibrils has no effect on their morphology or amount. Phospholipid molecules have significant effect on lysozyme amyloid fibrillization. We suggest that inhibitory activity is due to the interference of phospholipids with lysozyme leading to the blocking of the intermolecular protein interactions important for formation of the cross-β structure within the core of the fibrils. The higher inhibitory activity of DMPC is probably due to adsorption of protein molecules on the liposome surfaces which caused decrease of species needed for fibrillization. Interaction of the phospholipids with formed fibrils is not sufficient enough to interrupt the bonds in β-sheets which are required for destroying of amyloid fibrils. The obtained results contribute to a better understanding of the effect of phospholipids on amyloid fibrillization of the lysozyme. The data suggest that DMPC and DHPC phospholipids represent agents able to modulate lysozyme amyloid aggregation. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Energy optimal routing for long chain-type wireless sensor networks in underground mines

    Institute of Scientific and Technical Information of China (English)

    Jiang Haifeng; Qian Jiansheng; Sun Yanjing; Zhang Guoyong

    2011-01-01

    Wireless sensor networks are useful complements to existing monitoring systems in underground mines.They play an important role of enhancing and improving coverage and flexibility of safety monitoring systems. Regions prone to danger and enyironments after disasters in underground mines require saving and balancing energy consumption of nodes to prolong the lifespan of networks. Based on the structure of a tunnel, we present a Long Chain-type Wireless Sensor Network (LC-WSN) to monitor the safety of underground mine tunnels. We define the optimal transmission distance and the range of the key region and present an Energy Optimal Routing (EOR) algorithm for LC-WSN to balance the energy consumption of nodes and maximize the lifespan of networks. EOR constructs routing paths based on an optimal transmission distance and uses an energy balancing strategy in the key region. Simulation results show that the EOR algorithm extends the lifespan of a network, balances the energy consumption of nodes in the key region and effectively limits the length of routing paths, compared with similar algorithms.

  12. Susceptibility of synthetic long-chain alkylbenzenes to degradation in reducing marine sediments

    Science.gov (United States)

    Eganhouse, Robert P.; Pontolillo, James

    2008-01-01

    Long-chain alkylbenzenes (LCABs) synthesized for production of alkylbenzene sulfonate surfactants have been used as molecular markers of anthropogenic waste for 25 years. Synthetic LCABs comprise two classes, the tetrapropylene-based alkylbenzenes (TABs) and the linear alkylbenzenes (LABs). LABs supplanted TABs in the mid-1960s because of improved biodegradability of their sulfonated analogs. Use of LCABs for molecular stratigraphy depends on their preservation in sediments over decadal time scales. Most laboratory and field studies suggest that LABs degrade rapidly under aerobic conditions but are resistant to degradation when oxygen is absent. However, recent work indicates that LABs may not be as persistent under reducing conditions as previously thought. To assess the potential for degradation of LCABs in reducing sediments, box cores collected in 1992 and 2003 near a submarine wastewater outfall system were analyzed using gas chromatography/mass spectrometry. The TABs were effectively preserved; differences between whole-core inventories were within analytical error. By contrast, whole-core inventories of the LABs decreased by about 50-60% during the same time interval. Based on direct comparison of chemical inventories in coeval core sections, LAB transformation rates are estimated at 0.07 ±. 0.01 yr-1. These results indicate that caution should be exercised when using synthetic LCABs for reconstruction of depositional records.

  13. Comparison of serum triglyceride levels with propofol in long chain triglyceride and propofol in medium and long chain triglyceride after short term anesthesia in pediatric patients

    OpenAIRE

    Ishwar Bhukal; Gokul Thimmarayan; Indu Bala; Sohan Lal Solanki; Tanvir Samra

    2014-01-01

    Background: Significant increase in serum triglyceride (ST) concentration have been described in adult population after prolonged administration of propofol formulation containing long chain triglyceride (LCT). Though, medium chain triglyceride-LCT (MCT-LCT) propofol when compared with LCT propofol for long-term sedation in adults resulted in identical triglyceride levels, the elimination of triglyceride was faster in patients administered MCT-LCT propofol. Materials and Methods: A total of 4...

  14. Assessment of the environmental risk of long chain alcohols (LCOH)

    DEFF Research Database (Denmark)

    Belanger, Scott; Sanderson, Hans; Fisk, Peter

    2009-01-01

    all uses of alcohol (i.e., the use of alcohol as a substance and as an intermediate for the manufacturing of alcohol-based surfactants). The 90th percentile effluent discharge concentration of 1.979 μg/L (C12-C15) was determined for wastewater treatment plants in 7 countries. Chronic aquatic toxicity...

  15. 长链烯烃的应用%The Application of Long Chain Olefins

    Institute of Scientific and Technical Information of China (English)

    姜秋实; 赵萌; 刘姝

    2013-01-01

    概述了长链烯烃的生产工艺,石蜡裂解和低碳烯烃齐聚.详述了长链烯烃的应用,可生产烯烃共聚体、润滑油、表面活性剂、油田化学品等.通过对它们需求量和生产能力数据进行分析,得出国内外对长链烯烃需求量日益增大,开发生产长链烯烃具有重要意义.%An overview of the production process of long chain olefins, paraffin cracking and low-carbon olefin oligomerization was given. The applications of long chain olefins were detailed, such as producing olefin copolymer, lubricants, surfactants and oil field chemicals, etc. Through the data analysis of demand for long chain olefins and production capacity, it was concluded that the demand for long chain olefins at home and abroad was increasing; the development and production of long chain olefins had a great significance.

  16. Catalytic synthesis of long-chained alcohols from syngas

    DEFF Research Database (Denmark)

    Christensen, Jakob Munkholt

    This work has been an investigation of the catalytic conversion of syngas into mixed alcohols with Mo-based catalysts. The primary focus has been on the use of alkali promoted cobalt-molybdenum sulfide as a catalyst for the alcohol synthesis. The alcohol synthesis is a possibility...... the user to employ a less thorough and therefore less costly syngas cleaning. To evaluate, to which extent a removal of other components in the raw syngas is necessary, the influence of NH3 and H2O in the feed has also been investigated. Ammonia (741 ppmv) in the feed is observed to cause a general...

  17. Dynamics of interfacial reactions between O(3 P) atoms and long-chain liquid hydrocarbons

    Science.gov (United States)

    Allan, Mhairi; Bagot, Paul A. J.; Köhler, Sven P. K.; Reed, Stewart K.; Westacott, Robin E.; Costen, Matthew L.; McKendrick, Kenneth G.

    2007-09-01

    Recent progress that has been made towards understanding the dynamics of collisions at the gas-liquid interface is summarized briefly. We describe in this context a promising new approach to the experimental study of gas-liquid interfacial reactions that we have introduced. This is based on laser-photolytic production of reactive gas-phase atoms above the liquid surface and laser-spectroscopic probing of the resulting nascent products. This technique is illustrated for reaction of O(3P) atoms at the surface of the long-chain liquid hydrocarbon squalane (2,6,10,15,19,23-hexamethyltetracosane). Laser-induced fluorescence detection of the nascent OH has revealed mechanistically diagnostic correlations between its internal and translational energy distributions. Vibrationally excited OH molecules are able to escape the surface. At least two contributions to the product rotational distributions are identified, confirming and extending previous hypotheses of the participation of both direct and trapping-desorption mechanisms. We speculate briefly on future experimental and theoretical developments that might be necessary to address the many currently unanswered mechanistic questions for this, and other, classes of gas-liquid interfacial reaction.

  18. Modelling inhibitory effects of long chain fatty acids in the anaerobic digestion process.

    Science.gov (United States)

    Zonta, Z; Alves, M M; Flotats, X; Palatsi, J

    2013-03-01

    Mathematical modelling of anaerobic digestion process has been used to give new insights regarding dynamics of the long chain fatty acids (LCFA) inhibition. Previously published experimental data, including batch tests with clay mineral bentonite additions, were used for parameter identification. New kinetics were considered to describe the bio-physics of the inhibitory process, including: i) adsorption of LCFA over granular biomass and ii) specific LCFA substrate (saturated/unsaturated) and LCFA-degrading populations. Furthermore, iii) a new variable was introduced to describe the state of damage of the acetoclastic methanogens in order to account for the loss of cell-functionality (inhibition) induced by the adsorbed LCFAs. The proposed model modifications are state compatible and easy to be integrated into the International Water Association's Anaerobic Digestion Model N°1 (ADM1) framework. Practical identifiability of model parameters was assessed with a global sensitivity analysis, while calibration and model structure validation were performed on independent data sets. A reliable simulation of the LCFA-inhibition process can be achieved, if the model includes the description of the adsorptive nature of the LCFAs and the LCFA-damage over specific biomass. The importance of microbial population structure (saturated/unsaturated LCFA-degraders) and the high sensitivity of acetoclastic population to LCFA are evidenced, providing a plausible explanation of experimental based hypothesis.

  19. Anaerobic degradation of long-chain alkylamines by a denitrifying Pseudomonas stutzeri.

    Science.gov (United States)

    Nguyen, Phuong D; van Ginkel, Cornelis G; Plugge, Caroline M

    2008-10-01

    The anaerobic degradation of tetradecylamine and other long-chain alkylamines by a newly isolated denitrifying bacterium was studied. Strain ZN6 was isolated from a mixture of soil and active sludge and was identified as representing Pseudomonas stutzeri, based on partial 16S rRNA gene sequence analysis. Strain ZN6 was a mesophilic, motile, Gram-negative rod-shaped bacterium and was able to grow on a variety of compounds including even-numbered primary fatty amines with alkyl chains ranging from C(4) to C(18) coupled to nitrate reduction. Alkylamines were used as sole carbon, energy and nitrogen source and were completely mineralized. Nitrate was dissimilated by ZN6 to nitrite. When strain ZN6 was grown under nitrate limitation, nitrite was slowly dissimilated further. When cocultivated with the complete denitrifier Castellaniella defragens ZN3, anaerobic degradation under denitrifying of alkylamines by strain ZN6 was slightly faster. Strain ZN3 is a complete denitrifier, unable to convert tetradecylamine, and was copurified from the same enrichment culture as strain ZN6. The proposed pathway for the degradation of alkylamines in strain ZN6 starts with C-N cleavages to alkanals and further oxidation to the corresponding fatty acids.

  20. Continuous reaction performances of benzene alkylation with long chain olefins catalyzed by ionic liquid

    Institute of Scientific and Technical Information of China (English)

    Congzhen QIAO; Chengyue LI

    2008-01-01

    Based on a compulsive mixing-reacting-sepa-rating-recycling small experimental setup,the continuous reaction performances of benzene alkylation with long chain olefins catalyzed by [BMIM]Cl-AlCl3 ionic liquid were investigated. Three different situations including normal continuous operation mode (reagent materials), sidetrack feeding from different axial positions along the static mixing reactor (reagent materials) and normal con-tinuous alkylation using industrial paraffin and olefins materials were examined. Even under the relatively hype-critical reaction conditions, the single pass conversion of pure 1-dodecene could reach to nearly 100.0%, and the selectivity of 2-phenyl isomer was higher than 37.7%. Although the positions along the reactor for sidetrack feeding were different, the 100.0% single pass conversion of 1-dodecene was also attained before the outlet of the reactor. The refined industrial olefins as raw material could meet with the requirements of continuous alkyla-tion. The influences of impurities such as di-olefins and non-benzene aromatics on the catalytic activity and stability should be studied further.

  1. Alternative Sources of n-3 Long-Chain Polyunsaturated Fatty Acids in Marine Microalgae

    Directory of Open Access Journals (Sweden)

    João Varela

    2013-06-01

    Full Text Available The main source of n-3 long-chain polyunsaturated fatty acids (LC-PUFA in human nutrition is currently seafood, especially oily fish. Nonetheless, due to cultural or individual preferences, convenience, geographic location, or awareness of risks associated to fatty fish consumption, the intake of fatty fish is far from supplying the recommended dietary levels. The end result observed in most western countries is not only a low supply of n-3 LC-PUFA, but also an unbalance towards the intake of n-6 fatty acids, resulting mostly from the consumption of vegetable oils. Awareness of the benefits of LC-PUFA in human health has led to the use of fish oils as food supplements. However, there is a need to explore alternatives sources of LC-PUFA, especially those of microbial origin. Microalgae species with potential to accumulate lipids in high amounts and to present elevated levels of n-3 LC-PUFA are known in marine phytoplankton. This review focuses on sources of n-3 LC-PUFA, namely eicosapentaenoic and docosahexaenoic acids, in marine microalgae, as alternatives to fish oils. Based on current literature, examples of marketed products and potentially new species for commercial exploitation are presented.

  2. Effects of Long Chain Fatty Acid Synthesis and Associated Gene Expression in Microalga Tetraselmis sp.

    Directory of Open Access Journals (Sweden)

    T. Catalina Adarme-Vega

    2014-06-01

    Full Text Available With the depletion of global fish stocks, caused by high demand and effective fishing techniques, alternative sources for long chain omega-3 fatty acids are required for human nutrition and aquaculture feeds. Recent research has focused on land-based cultivation of microalgae, the primary producers of omega-3 fatty acids in the marine food web. The effect of salinity on fatty acids and related gene expression was studied in the model marine microalga, Tetraselmis sp. M8. Correlations were found for specific fatty acid biosynthesis and gene expression according to salinity and the growth phase. Low salinity was found to increase the conversion of C18:4 stearidonic acid (SDA to C20:4 eicosatetraenoic acid (ETA, correlating with increased transcript abundance of the Δ-6-elongase-encoding gene in salinities of 5 and 10 ppt compared to higher salinity levels. The expression of the gene encoding β-ketoacyl-coenzyme was also found to increase at lower salinities during the nutrient deprivation phase (Day 4, but decreased with further nutrient stress. Nutrient deprivation also triggered fatty acids synthesis at all salinities, and C20:5 eicosapentaenoic acid (EPA increased relative to total fatty acids, with nutrient starvation achieving a maximum of 7% EPA at Day 6 at a salinity of 40 ppt.

  3. Alternative Sources of n-3 Long-Chain Polyunsaturated Fatty Acids in Marine Microalgae

    Science.gov (United States)

    Martins, Dulce Alves; Custódio, Luísa; Barreira, Luísa; Pereira, Hugo; Ben-Hamadou, Radhouan; Varela, João; Abu-Salah, Khalid M.

    2013-01-01

    The main source of n-3 long-chain polyunsaturated fatty acids (LC-PUFA) in human nutrition is currently seafood, especially oily fish. Nonetheless, due to cultural or individual preferences, convenience, geographic location, or awareness of risks associated to fatty fish consumption, the intake of fatty fish is far from supplying the recommended dietary levels. The end result observed in most western countries is not only a low supply of n-3 LC-PUFA, but also an unbalance towards the intake of n-6 fatty acids, resulting mostly from the consumption of vegetable oils. Awareness of the benefits of LC-PUFA in human health has led to the use of fish oils as food supplements. However, there is a need to explore alternatives sources of LC-PUFA, especially those of microbial origin. Microalgae species with potential to accumulate lipids in high amounts and to present elevated levels of n-3 LC-PUFA are known in marine phytoplankton. This review focuses on sources of n-3 LC-PUFA, namely eicosapentaenoic and docosahexaenoic acids, in marine microalgae, as alternatives to fish oils. Based on current literature, examples of marketed products and potentially new species for commercial exploitation are presented. PMID:23807546

  4. Antibacterial Activity of Long-Chain Fatty Alcohols against Staphylococcus aureus

    Directory of Open Access Journals (Sweden)

    Yoshihiro Inoue

    2007-02-01

    Full Text Available The antibacterial activity against Staphylococcus aureus of long-chain fatty alcohols was investigated, with a focus on normal alcohols. The antibacterial activity varied with the length of the aliphatic carbon chain and not with the water/octanol partition coefficient. 1-Nonanol, 1-decanol and 1-undecanol had bactericidal activity and membrane-damaging activity. 1-Dodecanol and 1-tridecanol had the highest antibacterial activity among the long-chain fatty alcohols tested, but had no membrane-damaging activity. Consequently, it appears that not only the antibacterial activity but also the mode of action of long-chain fatty alcohols might be determined by the length of the aliphatic carbon chain.

  5. A severe genotype with favourable outcome in very long chain acyl-CoA dehydrogenase deficiency

    Science.gov (United States)

    Touma, E; Rashed, M; Vianey-Saban, C; Sakr, A; Divry, P; Gregersen, N; Andresen, B

    2001-01-01

    A patient with very long chain acyl-CoA dehydrogenase (VLCAD) deficiency is reported. He had a severe neonatal presentation and cardiomyopathy. He was found to be homozygous for a severe mutation with no residual enzyme activity. Tandem mass spectrometry on dried blood spots revealed increased long chain acylcarnitines. VLCAD enzyme activity was severely decreased to 2% of control levels. Dietary management consisted of skimmed milk supplemented with medium chain triglycerides and L-carnitine. Outcome was good and there was no acute recurrence.

 PMID:11124787

  6. Long-chain L-3-hydroxyacyl-coenzyme a dehydrogenase deficiency: a molecular and biochemical review.

    Science.gov (United States)

    Rakheja, Dinesh; Bennett, Michael J; Rogers, Beverly B

    2002-07-01

    Since the first report of long-chain L-3-hydroxyacyl-coenzyme A dehydrogenase deficiency a little more than a decade ago, its phenotypic and genotypic heterogeneity in individuals homozygous for the enzyme defect has become more and more evident. Even more interesting is its association with pregnancy-specific disorders, including preeclampsia, HELLP syndrome (hemolysis, elevated liver enzymes, low platelets), hyperemesis gravidarum, acute fatty liver of pregnancy, and maternal floor infarct of the placenta. In this review we discuss the biochemical and molecular basis, clinical features, diagnosis, and management of long-chain L-3-hydroxyacyl-coenzyme A dehydrogenase deficiency.

  7. Lymphatic recovery of exogenous oleic acid in rats on long chain or specific structured triacylglycerol diets

    DEFF Research Database (Denmark)

    Vistisen, Bodil; Mu, Huiling; Høy, Carl-Erik

    2006-01-01

    Specific structured triacylglycerols, MLM (M = medium-chain fatty acid, L = long-chain fatty acid), rapidly deliver energy and long-chain fatty acids to the body and are used for longer periods in human enteral feeding. In the present study rats were fed diets of 10 wt% MLM or LLL (L = oleic acid...... structure and composition (P = 0.07). This study demonstrated that with a diet containing specific structured triacylglycerol, the lymphatic recovery of 18:1 n-9 after a single bolus of fat was dependent on the triacylglycerol structure of the bolus. This indicates that the lymphatic recovery of long...

  8. Long chain N-3 polyunsaturated fatty acids in the prevention of allergic and cardiovascular disease.

    Science.gov (United States)

    van den Elsen, Lieke; Garssen, Johan; Willemsen, Linette

    2012-01-01

    The diet is considered to have a major impact on human health. Dietary lipids including long chain polyunsaturated fatty acids (LCPUFA) possess potent immunomodulatory activities. Over the last decades the incidence of inflammatory disorders including allergic and cardiovascular diseases (CVD) has been rising. This phenomenon is associated with deficiencies in N-3 LCPUFA, found in fatty fish, and increased content of N-6 LCPUFA in the Western diet. LCPUFA act via different mechanisms including membrane fluidity, raft composition, lipid mediator formation, signaling pathways and transmembrane receptors. N-3 LCPUFA eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) can reduce the development of allergic disease by affecting both the innate and adaptive immune system involved in the initiation and persistence of allergic disease. Fish oil has been shown to be effective in the primary prevention of allergic disease in infants at risk when supplemented during pregnancy and lactation. Subtle effects of N-3 LCPUFA on the outcome of the immune response may underlie these protective effects. This review describes the currently reported effects of LCPUFA on dendritic cells, T cells, B cells and mast cells. Also CVD are positively affected by N-3 LCPUFA. Populations consuming high amounts of oily fish are protected against CVD. Moreover N-3 LCPUFA are effective in the secondary prevention of cardiovascular events. Amongst other effects, EPA and DHA have been shown to suppress endothelial cell activation hereby reducing adhesion molecule expression and endothelial cell - leukocyte interactions. This review describes the mechanistic basis of the preventive role for N-3 LCPUFA in allergic disease and CVD.

  9. [Synthesis of a nano-antibacterial inorganic filler containing a quaternary ammonium salt with long chain alkyl and its effect on dental resin composites].

    Science.gov (United States)

    Junling, Wu; Kaiyun, Zhou; Ting, Zhu; Chuanjian, Zhou

    2014-10-01

    This study aimed to synthesize a novel nano-antibacterial inorganic filler that contains a quaternary ammonium salt with long chain alkyl and to report the antibacterial property of dental resin composites. A novel nano-antibacterial inorganic filler that contains a quaternary ammonium salt with long chain alkyl was synthesized based on previous research. The antibacterial property of the filler was measured. The surface of the novel nano-antibacterial inorganic filler was modified by a coupling agent to achieve a good interfacial bonding between the filler and the resin matrix. Infrared spectrum analysis was carried out. The modified novel nano-antibacterial inorganic fillers were then incorporated into the dental resin matrix. The dispersion of the fillers was observed and compared with those incorporated into Tetric N-Ceram, a commercial resin composite, under a scanning electron microscope. Streptococcus mutans was used in testing the antibacterial property of the dental resin composites. A quaternary ammonium salt with a long chain alkyl was successfully grafted onto the surface of nano-silica particles. The novel nano-antibacterial inorganic filler that contains quaternary ammonium salt with a long chain alkyl showed stronger antibacterial efficacy than the antibacterial inorganic filler that contains quaternary ammonium salt with a short chain alkyl. The modified novel antibacterial inorganic fillers displayed a homogeneous dispersion in the resin composite bulk and combined closely with the resin matrix, similar to the Tetric N-Ceram. The resin composites that contain novel antibacterial inorganic fillers showed stronger antibacterial effect on Streptococcus mutans compared with the control group. The novel nano-antibacterial inorganic filler that contains a quaternary ammonium salt with long chain alkyl showed a strong antibacterial property. It also exhibited good compatibility with the dental resin matrix after undergoing coupling treatment.

  10. Long-chain n-3 fatty acids - New anabolic compounds improving protein metabolism

    Science.gov (United States)

    Previous animal studies demonstrated that chronic feeding of long-chain n-3 polyunsaturated fatty acids (LCn-3PUFA) that modifies muscle membrane fatty acid composition promotes protein anabolism by blunting the age-associated deterioration in insulin sensitivity. The current study assessed, as a pr...

  11. Yeast sphingolipids do not need to contain very long chain fatty acids

    DEFF Research Database (Denmark)

    Cerantola, Vanessa; Vionnet, Christine; Aebischer, Olivier F

    2007-01-01

    , the very long chain fatty acids (C26 and C24) account for 97%. Notwithstanding, IPCs incorporated into glycosylphosphatidylinositol anchors of 4Delta.Lass5 show normal mobility on TLC and the ceramide- and raft-dependent traffic of Gas1p (glycophospholipid-anchored surface...

  12. Plasma Phospholipid Long-Chain n-3 Polyunsaturated Fatty Acids and Body Weight Change

    DEFF Research Database (Denmark)

    Jakobsen, Marianne U; Dethlefsen, Claus; Due, Karen M

    2011-01-01

    We investigated the association between the proportion of long-chain n-3 polyunsaturated fatty acids (PUFA) in plasma phospholipids from blood samples drawn at enrollment and subsequent change in body weight. Sex, age, and BMI were considered as potential effect modifiers....

  13. Effects of long-chain PUFA supplementation in infant formula on cognitive function in later childhood

    NARCIS (Netherlands)

    P. Willatts (Peter); S. Forsyth (Stewart); C. Agostoni (Carlo); P. Casaer (Paul); E. Riva (Enrica); G. Boehm (Günther)

    2013-01-01

    textabstractBackground: Evidence is accumulating that a dietary supply of long-chain polyunsaturated fatty acids (LC-PUFAs) enhances the development of attention and efficient information processing in infants. However, it is uncertain whether LC-PUFAs in infancy influence cognitive development in l

  14. Environmental properties of long-chain alcohols. Structure-activity Relationship for Chronic Aquatic Toxicity

    DEFF Research Database (Denmark)

    Schaefers, Christoph; Sanderson, Hans; Boshof, Udo;

    2009-01-01

    Daphnia magna reproduction tests were performed with C10, C12, C14 and C15 alcohols to establish a structure-activity relationship of chronic effects of long-chain alcohols. The data generation involved substantial methodological efforts due to the exceptionally rapid biodegradability of the test...

  15. Strategies for recovering inhibition caused by long chain fatty acids on anaerobic thermophilic biogas reactors

    DEFF Research Database (Denmark)

    Palatsi, J.; Laureni, M.; Andres, M.V.

    2009-01-01

    Long chain fatty acids (LCFA) concentrations over 1.0 g L1 were inhibiting manure thermophilic digestion, in batch and semi-continuous experiments, resulting in a temporary cease of the biogas production. The aim of the work was to test and evaluate several recovery actions, such as reactor feedi...

  16. A Long Chain Alcohol as Support in Solid Phase Organic Synthesis

    NARCIS (Netherlands)

    Nurlela, Yeni; Minnaard, Adrian J.; Achmad, Sadijah; Wahyuningrum, Deana

    2011-01-01

    The solid phase synthesis is a method by which organic compound synthesis are performed on a support. With this method, the purification can be carried out easily by simple filtration and washing procedures. Long-chain alcohol (C-100 alcohol) can be used as a support because of its insolubility in o

  17. Long-chain polyunsaturated fatty acids in chronic childhood disorders: panacea, promising, or placebo

    Science.gov (United States)

    Long-chain polyunsaturated fatty acids (LCPUFA, or LCP) include the essential fatty acids alpha-linolenic acid (ALA, 18:3 n-3) and linoleic acid (LA, 18:2 n-6) as well as a number of metabolites of both, including eicosapentaenoic acid (EPA, 20:5n-3), docosahexaenoic acid (DHA, 22:6n-3), and arachid...

  18. Fuel utilization in patients with very long-chain acyl-coa dehydrogenase deficiency

    DEFF Research Database (Denmark)

    ØRngreen, Mette C; Nørgaard, Mette; Sacchetti, Massimo

    2004-01-01

    Fuel utilization in two adult patients with the myopathic form of very long-chain acyl-CoA dehydrogenase (VLCAD) deficiency and five healthy subjects was investigated with stable isotopes during exercise at 50% of VO2max. The findings indicate that residual VLCAD activity in the patients...

  19. Roles of Long-chain Acyl Coenzyme A Synthetase in Absorption and Transport of Fatty Acid

    Institute of Scientific and Technical Information of China (English)

    Fan Gao; Xue-feng Yang; Nian Fu; Yang Hu; Yan Ouyang; Kai Qing

    2016-01-01

    Abstract Long-chain acyl coenzyme A synthetase (ACSL) is a member of the synthetase family encoded by a multigene family; it plays an important role in the absorption and transport of fatty acid. Here we review the roles of ACSL in the regulating absorption and transport of fatty acid, as well as the connection between ACSL and some metabolic diseases.

  20. Synthesis of Long Chain Unsaturated-alpha,omega-Dicarboxylic Acids from Renewable Materials via Olefin Metathesis

    Science.gov (United States)

    The self-metathesis reaction of soy, rapeseed, tall, and linseed oil fatty acids was investigated for the synthesis of symmetrical long-chain unsaturated-alpha,omega-dicarboxylic acids. The metathesis reactions were carried out in the presence of a Grubbs catalyst under solvent-free conditions at a...

  1. Prevalence of Long-Chain 3-Hydroxyacyl-CoA Dehydrogenase Deficiency in Estonia

    DEFF Research Database (Denmark)

    Joost, K; Ounap, K; Zordania, R;

    2012-01-01

    The aim of our study was to evaluate the prevalence of long chain 3-hydroxyacyl-CoA dehydrogenase deficiency (LCHADD) in the general Estonian population and among patients with symptoms suggestive of fatty acid oxidation (FAO) defects. We collected DNA from a cohort of 1,040 anonymous newborn blo...... prevalence of LCHADD in Estonia would be 1: 91,700....

  2. gamma-linolenic acid does not augment long-chain polyunsaturated fatty acid omega-3 status

    NARCIS (Netherlands)

    Brouwer, DAJ; Hettema, Y; van Doormaal, JJ; Muskiet, FAJ

    1998-01-01

    Augmentation of long chain polyunsaturated omega 3 fatty acid (LCPUFA omega 3) status can be reached by consumption of fish oil or by improvement of the conversion of a-linolenic acid (ALA) to LCPUFA omega 3. Since gamma-linolenic acid (GLA) might activate the rate-limiting Delta-6 desaturation, we

  3. Long-chain polyunsaturated fatty acids in maternal and infant nutrition

    NARCIS (Netherlands)

    Muskiet, Frits A. J.; van Goor, Saskia A.; Kuipers, Remko S.; Velzing-Aarts, Francien V.; Smit, Ella N.; Bouwstra, Hylco; Dijck-Brouwer, D. A. Janneke; Boersma, E. Rudy; Hadders-Algra, Mijna

    2006-01-01

    Homo sapiens has evolved on a diet rich in alpha-linolenic acid and long chain polyunsaturated fatty acids (LCP). We have, however, gradually changed our diet from about 10,000 years ago and accelerated this change from about 100 to 200 years ago. The many dietary changes, including lower intake of

  4. gamma-linolenic acid does not augment long-chain polyunsaturated fatty acid omega-3 status

    NARCIS (Netherlands)

    Brouwer, DAJ; Hettema, Y; van Doormaal, JJ; Muskiet, FAJ

    1998-01-01

    Augmentation of long chain polyunsaturated omega 3 fatty acid (LCPUFA omega 3) status can be reached by consumption of fish oil or by improvement of the conversion of a-linolenic acid (ALA) to LCPUFA omega 3. Since gamma-linolenic acid (GLA) might activate the rate-limiting Delta-6 desaturation, we

  5. LIPID CLASS DISTRIBUTION OF HIGHLY UNSATURATED LONG-CHAIN FATTY ACIDS IN MARINE DINOFLAGELLATES

    Science.gov (United States)

    Very-long-chain highly unsaturated C28 fatty acids (HUFAs), found in a number of dinoflagellates, are released as methyl esters from phospholipids obtained by fractionation of lipid extracts. By contrast, the highly unsaturated C18 fatty acid octadecapentaenoic acid (18:5n-3), co...

  6. LIPID CLASS DISTRIBUTION OF HIGHLY UNSATURATED LONG CHAIN FATTY ACIDS IN MARINE DINOFLAGELLATES.

    Science.gov (United States)

    The very long chain highly unsaturated C28 fatty acids, octacosaheptaenoic [28:7(n-6)] and octacosaoctaenoic acid [28:8(n-3)], were found to be associated with phospholipids, obtained by fractionation of total lipid extracts into distinct lipid classes, in 4 and 6, respectively, ...

  7. A lattice Monte Carlo study of long chain conformations at solid-polymer melt interfaces

    NARCIS (Netherlands)

    Bitsanis, Ioannis A.; Brinke, Gerrit ten

    1993-01-01

    In this paper we present a comprehensive lattice Monte Carlo study of long chain conformations at solid-polymer melt interfaces. Segmental scale interfacial features, like the bond orientational distribution were found to be independent of surface-segment energetics, and statistically identical with

  8. Metagenomic analysis on thermophilic biogas reactors fed with high load of Long Chain Fatty Acids (LCFA)

    DEFF Research Database (Denmark)

    Zhu, Xinyu; De Francisci, Davide; Treu, Laura;

    In anaerobic digestion systems, the accumulation of long chain fatty acids (LCFA) leads to process instability and decrease of the methane production. This detrimental condition is known to be reversible depending on the concentration of the accumulated LCFAs and mainly on the microbial consortiu...

  9. Pregnancy duration and the ratio of long-chain n-3 fatty acids to arachidonic acid in erythrocytes from Faroese women

    DEFF Research Database (Denmark)

    Olsen, S.F.; Hansen, Harald S.; Jensen, B.

    1989-01-01

    Dietary long-chain n-3 fatty acids (FA) may prolong gestation by inhibiting formation of prostaglandins from arachidonic acid. FA were quantified in phosphatidylcholine (PC), phosphatidylethanolamine (PE), and total lipids (TL) of red cells sampled during pregnancy from 29 Faroese women. The ratio...... of long-chain n-3 FA to arachidonic acid (the (3/6) ratio) was used as the most relevant single measure of exposure. In 18 women with certain gestational age and with spontaneous onset of delivery, gestational age was significantly associated with the (3/6) ratio quantified in PC (correlation coefficient...... 0.50, P = 0.035), but not with the (3/6) radio in PE (correlation coefficient 0.21, P = 0.40) or TL (correlation coefficient 0.29, P = 0.26). The association with the (3/6) ratio in PC could not be attributed to confounding by maternal age, weight, marital status or smoking....

  10. Long-chain acyl-CoA synthetase isoforms differ in preferences for eicosanoid species and long-chain fatty acids.

    Science.gov (United States)

    Klett, Eric L; Chen, Shufen; Yechoor, Alekhya; Lih, Fred B; Coleman, Rosalind A

    2017-02-16

    Because the signaling eicosanoids, epoxyeicosatrienoic acids (EETs) and hydroxyeicosatetraenoic acids (HETEs), are esterified to membrane phospholipids, we asked which long-chain acyl-CoA synthetase (ACSL) isoforms would activate these molecules and whether the apparent fatty acid substrate preferences of each ACSL isoform might differ depending on whether it was assayed in mammalian cell membranes or as a purified bacterial recombinant protein. We found that all five ACSL isoforms were able to use EETs and HETEs as substrates and showed by LC-MS that ACSLs produce EET-CoAs. We found differences in substrate preference between ACS assays performed in COS7 cell membranes and recombinant purified proteins. Similarly, preferences and Michaelis-Menten kinetics for long-chain fatty acids were distinctive. Substrate preferences identified for the purified ACSLs did not correspond to those observed in ACSL-deficient mouse models. Taken together, these data support the concept that each ACSL isoform exhibits a distinct substrate preference, but apparent substrate specificities depend upon multiple factors including membrane character, co-activators, inhibitors, protein interactions, and post-translational modification.

  11. Inhibition of cereulide toxin synthesis by emetic Bacillus cereus via long-chain polyphosphates.

    Science.gov (United States)

    Frenzel, Elrike; Letzel, Thomas; Scherer, Siegfried; Ehling-Schulz, Monika

    2011-02-01

    Severe intoxications caused by the Bacillus cereus emetic toxin cereulide can hardly be prevented due to the ubiquitous distribution and heat resistance of spores and the extreme thermal and chemical stability of cereulide. It would therefore be desirable to inhibit cereulide synthesis during food manufacturing processes or in prepared foods, which are stored under time-temperature abuse conditions. Toward this end, the impacts of three long-chain polyphosphate (polyP) formulations on growth and cereulide production were examined. The inhibition was dependent on the concentration and the type of the polyP blend, indicating that polyPs and not the orthophosphates were effective. Quantitative PCR (qPCR) monitoring at sublethal concentrations revealed that polyPs reduced the transcription of ces nonribosomal peptide synthetase (NRPS) genes by 3- to 4-fold along with a significantly reduced toxin production level. At lower concentrations, toxin synthesis was decreased, although the growth rate was not affected. These data indicate a differential effect on toxin synthesis independent of growth inhibition. The inhibition of toxin synthesis in food was also observed. Despite the growth of B. cereus, toxin synthesis was reduced by 70 to 100% in two model food systems (reconstituted infant food and oat milk), which were analyzed with HEp-2 cell culture assays and high-performance liquid chromatography (HPLC)/electrospray ionization-time of flight mass spectrometry (ESI-TOF-MS). Accordingly, ces promoter activity was strongly downregulated, as visualized by using a lux-based reporter strain. These data illustrate the potential of polyphosphate formulations to reduce the risk of cereulide synthesis in food and may contribute to targeted hurdle concepts.

  12. Dietary polychlorinated biphenyls, long-chain n-3 polyunsaturated fatty acids and incidence of malignant melanoma.

    Science.gov (United States)

    Donat-Vargas, Carolina; Berglund, Marika; Glynn, Anders; Wolk, Alicja; Åkesson, Agneta

    2017-02-01

    For malignant melanoma, other risk factors aside from sun exposure have been hardly explored. Polychlorinated biphenyls (PCBs)-mainly from fatty fish- may affect melanogenesis and promote melanoma progression, while long-chain n-3 polyunsaturated fatty acids seem to exert antineoplastic actions in melanoma cells. We aimed to assess the association of validated estimates of dietary PCB exposure as well as the intake of eicosapentaenoic acid and docosahexaenoic acid (EPA-DHA), accounting for sun habits and skin type, with the risk of malignant melanoma in middle-aged and elderly women. We included 20,785 women at baseline in 2009 from the prospective population-based Swedish Mammography Cohort. Validated estimates of dietary PCB exposure and EPA-DHA intake were obtained via a food frequency questionnaire. Incident melanoma cases were ascertained through register-linkage. During 4.5 years of follow-up, we ascertained 67 incident cases of melanoma. After multivariable adjustments, exposure to dietary PCBs was associated with four-fold increased risk of malignant melanoma (hazard ratio [HR], 4.0 [95% confidence interval {CI}, 1.2-13; P for trend = 0.02]), while EPA-DHA intake was associated with 80% lower risk (HR, 0.2 [95% CI, 0.1-0.8; P for trend = 0.03]), comparing the highest exposure tertiles with the lowest. While we found a direct association between dietary PCB exposure and risk of melanoma, EPA-DHA intake showed to have a substantial protective association. Question of benefits and risk from fish consumption is very relevant and further prospective studies in the general population verifying these findings are warranted. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Breastfeeding, long-chain polyunsaturated fatty acids in colostrum, and infant mental development.

    Science.gov (United States)

    Guxens, Mònica; Mendez, Michelle A; Moltó-Puigmartí, Carolina; Julvez, Jordi; García-Esteban, Raquel; Forns, Joan; Ferrer, Muriel; Vrijheid, Martine; López-Sabater, M Carmen; Sunyer, Jordi

    2011-10-01

    Breastfeeding has been associated with improved neurodevelopment in children. However, it remains unknown to what extent nutritional advantages of breast milk may explain this relationship. We assessed the role of parental psychosocial factors and colostrum long-chain polyunsaturated fatty acid (LC-PUFA) levels in the relationship between breastfeeding and children's neurodevelopment. A population-based birth cohort was established in the city of Sabadell (Catalonia, Spain) as part of the INMA-INfancia y Medio Ambiente Project. A total of 657 women were recruited during the first trimester of pregnancy. Information about parental characteristics and breastfeeding was obtained by using a questionnaire, and trained psychologists assessed mental and psychomotor development by using the Bayley Scales of Infant Development in 504 children at 14 months of age. A high percentage of breastfeeds among all milk feeds accumulated during the first 14 months was positively related with child mental development (0.37 points per month of full breastfeeding [95% confidence interval: 0.06-0.67]). Maternal education, social class, and intelligence quotient only partly explained this association. Children with a longer duration of breastfeeding also exposed to higher ratios between n-3 and n-6 PUFAs in colostrum had significantly higher mental scores than children with low breastfeeding duration exposed to low levels. Greater levels of accumulated breastfeeding during the first year of life were related to higher mental development at 14 months, largely independently from a wide range of parental psychosocial factors. LC-PUFA levels seem to play a beneficial role in children's mental development when breastfeeding levels are high.

  14. Long-chain n-3 fatty acids and inflammation: potential application in surgical and trauma patients

    Directory of Open Access Journals (Sweden)

    Calder P.C.

    2003-01-01

    Full Text Available Lipids used in nutritional support of surgical or critically ill patients have been based on soybean oil, which is rich in the n-6 fatty acid linoleic acid (18:2n-6. Linoleic acid is the precursor of arachidonic acid (20:4n-6. In turn, arachidonic acid in cell membrane phospholipids is the substrate for the synthesis of a range of biologically active compounds (eicosanoids including prostaglandins, thromboxanes, and leukotrienes. These compounds can act as mediators in their own right and can also act as regulators of other processes, such as platelet aggregation, blood clotting, smooth muscle contraction, leukocyte chemotaxis, inflammatory cytokine production, and immune function. There is a view that an excess of n-6 fatty acids should be avoided since this could contribute to a state where physiological processes become dysregulated. One alternative is the use of fish oil. The rationale of this latter approach is that fish oil contains long chain n-3 fatty acids, such as eicosapentaenoic acid. When fish oil is provided, eicosapentaenoic acid is incorporated into cell membrane phospholipids, partly at the expense of arachidonic acid. Thus, there is less arachidonic acid available for eicosanoid synthesis. Hence, fish oil decreases production of prostaglandins like PGE2 and of leukotrienes like LTB4. Thus, n-3 fatty acids can potentially reduce platelet aggregation, blood clotting, smooth muscle contraction, and leukocyte chemotaxis, and can modulate inflammatory cytokine production and immune function. These effects have been demonstrated in cell culture, animal feeding and healthy volunteer studies. Fish oil decreases the host metabolic response and improves survival to endotoxin in laboratory animals. Recently clinical studies performed in various patient groups have indicated benefit from this approach.

  15. Drug discovery opportunities and challenges at G protein coupled receptors for long chain free fatty acids

    Directory of Open Access Journals (Sweden)

    Nicholas D Holliday

    2012-01-01

    Full Text Available Discovery of G protein coupled receptors for long chain free fatty acids (FFAs, FFA1 (GPR40 and GPR120, has expanded our understanding of these nutrients as signalling molecules. These receptors have emerged as important sensors for FFA levels in the circulation or the gut lumen, based on evidence from in vitro and rodent models, and an increasing number of human studies. Here we consider their promise as therapeutic targets for metabolic disease, including type 2 diabetes and obesity. FFA1 directly mediates acute FFA-induced glucose-stimulated insulin secretion in pancreatic beta-cells, while GPR120 and FFA1 trigger release of incretins from intestinal endocrine cells, and so indirectly enhance insulin secretion and promote satiety. GPR120 signalling in adipocytes and macrophages also results in insulin sensitizing and beneficial anti-inflammatory effects. Drug discovery has focussed on agonists to replicate acute benefits of FFA receptor signalling, with promising early results for FFA1 agonists in man. Controversy surrounding chronic effects of FFA1 on beta-cells illustrates that long term benefits of antagonists also need exploring. It has proved challenging to generate highly selective potent ligands for FFA1 or GPR120 subtypes, given that both receptors have hydrophobic orthosteric binding sites, which are not completely defined and have modest ligand affinity. Structure activity relationships are also reliant on functional read outs, in the absence of robust binding assays to provide direct affinity estimates. Nevertheless synthetic ligands have already helped dissect specific contributions of FFA1 and GPR120 signalling from the many possible cellular effects of FFAs. Approaches including use of fluorescent ligand binding assays, and targeting allosteric receptor sites, may improve further preclinical ligand development at these receptors, to exploit their unique potential to target multiple facets of diabetes.

  16. Influence of C18 long chain fatty acids on hydrogen metabolism.

    Science.gov (United States)

    Templer, Jennifer; Lalman, Jerald A; Jing, Nin; Ndegwa, Pius M

    2006-01-01

    During anaerobic treatment, several microorganisms mediate a series of reactions to convert reduced compounds (electron donors) into methane. Inhibitors such as long chain fatty acids (LCFAs) can affect several anaerobic microbial populations and decrease the treatment efficiency. The effects of three C18 LCFAs on hydrogenotrophic methanogens in a flocculated mixed anaerobic culture were assessed in this study. The reaction half-life and the hydrogen versus time profiles were used to characterize the inhibition process. The half-life values and profiles were similar for controls and cultures exposed to LCFAs for 1 h. The hydrogen inhibition was a function of the exposure time and the LCFA concentration except for cultures exposed to stearic acid (SA). A statistical analysis of the reaction half-life for cultures incubated with 1,500 and 2,000 mg L(-1) LCFAs for 48 h, revealed the following inhibition trend: linoleic acid (LA) > oleic acid (OA) > SA. After 48 h of exposure, no clear inhibition trend was observed for cultures inoculated with LCFA mixtures; however, at levels of 1,500 and 2,000 mg L(-1), the reaction half-life values were less than that observed for cultures fed with only LA. Based on the reaction half-life data, all of the LCFAs except SA at threshold levels of approximately 1,500 mg L(-1) inhibited hydrogen metabolism. The greatest inhibition and, hence, the largest amount of accumulated hydrogen was observed in cultures fed with 2,000 mg L(-1) LA and incubated for 48 h.

  17. Perinatal long chain polyunsaturated fatty acid supply Are there long term consequences?

    Directory of Open Access Journals (Sweden)

    Demmelmair Hans

    2007-05-01

    Full Text Available Long-chain polyunsaturated fatty acids (LC-PUFA, especially docosahexaenoic acid (DHA, are essential components of biological membranes or act as precursors for eicosanoid formation, in case of the 20 carbon atom fatty acids, arachidonic acid (AA, dihomo-c-linolenic acid and eicosapentaenoic acid. During pregnancy LC-PUFA are enriched in the fetal circulation relative to maternal plasma. The corresponding placental processes have not been fully elucidated so far, but there are good indications that the LC-PUFA enrichment during the materno-fetal transfer is mediated by differences in the incorporation into lipid classes within the placenta between fatty acids and that specific fatty acid binding and transfer proteins are of major importance. In vitro a plasma membrane fatty acid binding protein could be identified, which preferentially binds DHA and AA compared to linoleic and oleic acids; in addition the m-RNA expression of fatty acid transfer protein 4 (FATP-4 in placental tissue was found to correlate significantly with the DHA percentage in cord blood phospholipids. After birth the percentage of LC-PUFA in infantile blood rapidly declines to levels depending on the dietary LC-PUFA supply, although preterm and full-term babies can convert linoleic and _-linolenic acids into AA and DHA, respectively. Breast milk provides preformed LC-PUFA, and breastfed infants have higher LC-PUFA levels in plasma and tissue than infants fed formulas without LC-PUFA. The high percentage of DHA in brain and other nervous tissue and the fact that the perinatal period is a period of fast brain growth suggests the importance of placental DHA transfer and dietary DHA content for optimal infantile development. Most but not all randomized, double blind, controlled clinical trials in preterm and in healthy full term infants demonstrated benefits of formulas supplemented with DHA and AA for the neurological development compared to formulas without LC-PUFA. Furthermore

  18. Comprehensive and sensitive quantification of long-chain and very long-chain polyunsaturated fatty acids in small samples of human and mouse retina.

    Science.gov (United States)

    Liu, Aihua; Terry, Ryan; Lin, Yanhua; Nelson, Kelly; Bernstein, Paul S

    2013-09-13

    Fatty acids (FAs), including long-chain and very long-chain polyunsaturated fatty acids (LC-PUFAs, C12-22; VLC-PUFAs, C24-38), play an important role in retinal function and health. Deficiencies in LC-PUFAs and VLC-PUFAs, as well as mutations in the enzyme responsible for elongation of very long-chain fatty acids (ELOVL4), have been associated with macular dystrophies and degenerations. Published analytical methods, including high-performance liquid chromatography coupled with mass spectrometry (HPLC-MS) and gas chromatography-MS (GC-MS), can quantify VLC-PUFAs but require at least an entire human retina which limits the ability to understand physiologically relevant variations in lipids that can occur at a regional level within the retina. Until now, quantification of VLC-PUFAs in just the human macula, the cone-rich region of the central retina responsible for high acuity vision, has not been feasible due to its small size (4-5mm in diameter). In this study, we have developed a sensitive GC-MS method using newer generation enhanced GC-MS detector sensitivity which for the first time quantifies not only 14 VLC-PUFAs and 26 LC-FAs but also n-3/n-6 ratios of PUFAs in 4mm punches of human retina or a single pair of mouse retinas. Our results showed that saturated LC-FAs are higher in the human peripheral retina than in the macula, while unsaturated LC-FAs are higher in the macula than in the peripheral retina. On the other hand, the VLC-PUFAs are higher in the peripheral retina compared to macula. There is no difference in n-3/n-6 ratios of PUFAs observed between human macula and peripheral retina, while mouse retina has almost ten times more VLC-PUFAs than human macula and peripheral retina (2.27% versus 0.25% and 0.32%, respectively) and much higher n-3/n-6 ratios compared to human retina (9:1 versus ∼0.9:1). This high sensitivity analytical technique provides a valuable new tool for studies on the role of FAs in the pathological processes of macular

  19. Long Chain N-acyl Homoserine Lactone Production by Enterobacter sp. Isolated from Human Tongue Surfaces

    Directory of Open Access Journals (Sweden)

    Kok-Gan Chan

    2012-10-01

    Full Text Available We report the isolation of N-acyl homoserine lactone-producing Enterobacter sp. isolate T1-1 from the posterior dorsal surfaces of the tongue of a healthy individual. Spent supernatants extract from Enterobacter sp. isolate T1-1 activated the biosensor Agrobacterium tumefaciens NTL4(pZLR4, suggesting production of long chain AHLs by these isolates. High resolution mass spectrometry analysis of these extracts confirmed that Enterobacter sp. isolate T1-1 produced a long chain N-acyl homoserine lactone, namely N-dodecanoyl-homoserine lactone (C12-HSL. To the best of our knowledge, this is the first isolation of Enterobacter sp., strain T1-1 from the posterior dorsal surface of the human tongue and N-acyl homoserine lactones production by this bacterium.

  20. Very long chain acyl-coenzyme A dehydrogenase deficiency with adult onset

    DEFF Research Database (Denmark)

    Smelt, A H; Poorthuis, B J; Onkenhout, W;

    1998-01-01

    Very long chain acyl-coenzyme A (acyl-CoA) dehydrogenase (VLCAD) deficiency is a severe disorder of mitochondrial beta-oxidation in infants. We report adult onset of attacks of painful rhabdomyolysis. Gas chromatography identified strongly elevated levels of tetradecenoic acid, 14:1(n-9), tetrade......Very long chain acyl-coenzyme A (acyl-CoA) dehydrogenase (VLCAD) deficiency is a severe disorder of mitochondrial beta-oxidation in infants. We report adult onset of attacks of painful rhabdomyolysis. Gas chromatography identified strongly elevated levels of tetradecenoic acid, 14:1(n-9......), tetradecadienoic acid, 14:2(n-6), and hexadecadienoic acid, 16:2(n-6). Palmitoyl-CoA and behenoyl-CoA dehydrogenase in fibroblasts were deficient. Muscle VLCAD activity was very low. DNA analysis revealed compound heterozygosity for two missense mutations in the VLCAD gene. The relatively mild clinical course may...

  1. Shear Modification of long-chain branched polymers : a theoretical approach using POM-POM model

    OpenAIRE

    Bourrigault, S.; Marin, Gérard; Poitou, Arnaud

    2003-01-01

    International audience; “Shear modification” is a strong modification of rheological properties which affects mainly long-chain branched polymers like LDPE. The aim of this work is to explain this effect using recent advances in molecular dynamics and especially the pom-pom model which was designed for branched polymers. The original model was slightly modified in order to take into account the change in molecular topology related to the branch point withdrawal mechanism without introducing a...

  2. Modelling inhibitory effects of long chain fatty acids in the anaerobic digestion process

    OpenAIRE

    Flotats Ripoll, Xavier

    2013-01-01

    Mathematical modelling of anaerobic digestion process has been used to give new insights regarding dynamics of the long chain fatty acids (LCFA) inhibition. Previously published experimental data, including batch tests with clay mineral bentonite additions, were used for parameter identification. New kinetics were considered to describe the bio-physics of the inhibitory process, including: i) adsorption of LCFA over granular biomass and ii) specific LCFA substrate (saturated/unsaturated) a...

  3. Flocculation of fine fluorite particles with Corynebacterium xerosis and commercial long chain polymers

    Directory of Open Access Journals (Sweden)

    Rigo Lisandra N.

    2002-01-01

    Full Text Available This work aimed to study, comparatively, the flocculation of fluorite particles with Corynebacterium xerosis cells and three commercial long chain polymers. Best flocculation results were obtained with cells of C. xerosis and with an anionic polyacrylamide. Both were effective in solids removal and water clarification, although flocculation with C. xerosis cells requires a higher dosage of reagent per mass unit of processed ore.

  4. Modification of nano-sized layered double hydroxides by long-chain organic aliphatic surfactants

    OpenAIRE

    RAMASAMY ANBARASAN; SEUNG SOON IM; WANDUC LEE

    2008-01-01

    The inter-layer anion of layered double hydroxides (LDH) with a hydrotalcite (HT)-like structure was ion-exchanged with various organic surfactants, particularly with long chain aliphatic surfactants. After the ion-exchange process, the basal spacing of the LDH was increased and the increase of the basal spacing depended on various factors, such as the intercalation capacity functionality and orientation capability of the surfactant. Of the employed surfactants, stearic acid intercalated LDH ...

  5. FORMATE-BASED FLUIDS: FORMULATION AND APPLICATION

    Directory of Open Access Journals (Sweden)

    Nediljka Gaurina-Međimurec

    2008-12-01

    Full Text Available Formate-based fluids has been successfully used in over hunders HPHT well operations since they introduced in field practice. They have many advantages when compared with conventional HPHT drilling and completion fluids such as: minimal formation damage, maintenance of additve properties at high temperatures, reduced hydraulic flow resistance, low potential for differential sticking, naturally lubricating, very low corrosion rates, biodegradable and pose little risk to the environment etc. Formate-based fluids can be applied during deep slim hole drilling, shale drilling, reservoir drilling, salt and gas hydrate formations drilling. The laboratory research was carried out to evaluate the rheological behavior of formate-based fluids as a function of temperature. Formate-based fluids were formulated using potassium formate brine, xanthan polymer, PAC, starch and calcium carbonate. Experimental results show that potassium formate improves the thermal stability of polymers.

  6. Soluble Polyimides Bearing Long-Chain Alkyl Groups on Their Side Chain via Polymer Reaction

    Directory of Open Access Journals (Sweden)

    Yusuke Tsuda

    2012-01-01

    Full Text Available Novel soluble polyimides having long-chain alkyl groups on their side chain were synthesized via polymer reaction with the polyimides having phenolic OH groups and 3,4,5-tris(dodecyloxybenzoic acid (12GA using N,N′-dicyclohexylcarbodiimide (DCC as a dehydration reagent. The polyimides having phenolic OH groups were synthesized from the tetracarboxylic dianhydrides such as 5-(2,5-dioxotetrahydrofuryl-3-methyl-3-cyclohexene-1,2-dicarboxylic anhydride (cyclohexene-DA, 4,4′-hexafluoroisopropylidendi(phthalic anhydride (6FDA, and 3,3′,4,4′-diphenylsulfone tetracarboxylic dianhydride (DSDA and aromatic diamines such as 4,4′-diamino-3,3′-dihydroxybiphenyl (HAB. The polymer reactions were carried out in NMP and the progresses of polymer reactions were quantitatively monitored by 1H NMR measurements (conversion; 12.2–98.7%. The obtained polyimides bearing long-chain alkyl groups have enough molecular weights, good film-forming ability, good solubility for various organic solvents, and enough thermal stability. The water contact angles of the polyimide films were investigated, and it is noted that the introduction of long-chain alkyl groups increases the hydrophobicity of polyimide surface. These polyimides are expected to be applicable as the functional materials for microelectronics such as the alignment layers of LCDs.

  7. Successful Treatment of Cardiomyopathy due to Very Long-Chain Acyl-CoA Dehydrogenase Deficiency: First Case Report from Oman with Literature Review

    Directory of Open Access Journals (Sweden)

    Sharef Waadallah Sharef

    2013-09-01

    Full Text Available Very long-chain acyl-CoA dehydrogenase deficiency (MIM 201475 is a severe defect of mitochondrial energy production from oxidation of very long-chain fatty acids. This inherited metabolic disorder often presents in early neonatal period with episodes of symptomatic hypoglycemia usually responding well to intravenous glucose infusion. These babies are often discharged without establishment of diagnosis but return by 2-5 months of age with severe and progressive cardiac failure due to hypertrophic cardiomyopathy with or without hepatic failure and steatosis. An early diagnosis and treatment with high concentration medium chain triglycerides based feeding formula can be life saving in such patients. Here, we report the first diagnosed and treated case of Very long-chain acyl-CoA dehydrogenase deficiency in Oman. This infant developed heart failure with left ventricular dilation, hypertrophy and pericardial effusion at the age of 7 weeks. Prompt diagnosis and subsequent intervention with medium chain triglycerides-based formula resulted in a reversal of severe clinical symptoms with significant improvement of cardiac status. This treatment also ensured normal growth and neurodevelopment. It is stressed that the disease must be recognized by the pediatricians and cardiologists since the disease can be identified by Tandem Mass Spectrometry; therefore, it should be considered to be included in expanded newborn screening program, allowing early diagnosis and intervention in order to ensure better outcome and prevent complications.

  8. Climate warming is predicted to reduce omega-3, long-chain, polyunsaturated fatty acid production in phytoplankton.

    Science.gov (United States)

    Hixson, Stefanie M; Arts, Michael T

    2016-08-01

    Phytoplankton are the main source of energy and omega-3 (n-3) long-chain essential fatty acids (EFA) in aquatic ecosystems. Their growth and biochemical composition are affected by surrounding environmental conditions, including temperature, which continues to increase as a result of climate warming. Increasing water temperatures may negatively impact the production of EFA by phytoplankton through the process of homeoviscous adaptation. To investigate this, we conducted an exploratory data synthesis with 952 fatty acid (FA) profiles from six major groups of marine and freshwater phytoplankton. Temperature was strongly correlated with a decrease in the proportion of n-3 long-chain polyunsaturated FA (LC-PUFA) and an increase in omega-6 FA and saturated FA. Based on linear regression models, we predict that global n-3 LC-PUFA production will be reduced by 8.2% for eicosapentaenoic acid (EPA) and 27.8% for docosahexaenoic acid (DHA) with an increase in water temperature of 2.5 °C. Using a previously published estimate of the global production of EPA by diatoms, which contribute to most of the world's supply of EPA, we predict a loss of 14.2 Mt of EPA annually as a result of ocean warming. The n-3 LC-PUFA are vitally important for an array of key physiological functions in aquatic and terrestrial organisms, and these FA are mainly produced by phytoplankton. Therefore, reduced production of these EFA, as a consequence of climate warming, is predicted to negatively affect species that depend on these compounds for optimum physiological function. Such profound changes in the biochemical composition of phytoplankton cell membranes can lead to cascading effects throughout the world's ecosystems.

  9. Arabidopsis CER8 encodes LONG-CHAIN ACYL-COA SYNTHETASE 1 (LACS1) that has overlapping functions with LACS2 in plant wax and cutin synthesis.

    Science.gov (United States)

    Lü, Shiyou; Song, Tao; Kosma, Dylan K; Parsons, Eugene P; Rowland, Owen; Jenks, Matthew A

    2009-08-01

    Plant cuticle is an extracellular lipid-based matrix of cutin and waxes, which covers aerial organs and protects them from many forms of environmental stress. We report here the characterization of CER8/LACS1, one of nine Arabidopsis long-chain acyl-CoA synthetases thought to activate acyl chains. Mutations in LACS1 reduced the amount of wax in all chemical classes on the stem and leaf, except in the very long-chain fatty acid (VLCFA) class wherein acids longer than 24 carbons (C(24)) were elevated more than 155%. The C(16) cutin monomers on lacs1 were reduced by 37% and 22%, whereas the C(18) monomers were increased by 28% and 20% on stem and leaf, respectively. Amounts of wax and cutin on a lacs1-1 lacs2-3 double mutant were much lower than on either parent, and lacs1-1 lacs2-3 had much higher cuticular permeability than either parent. These additive effects indicate that LACS1 and LACS2 have overlapping functions in both wax and cutin synthesis. We demonstrated that LACS1 has synthetase activity for VLCFAs C(20)-C(30), with highest activity for C(30) acids. LACS1 thus appears to function as a very long-chain acyl-CoA synthetase in wax metabolism. Since C(16) but not C(18) cutin monomers are reduced in lacs1, and C(16) acids are the next most preferred acid (behind C(30)) by LACS1 in our assays, LACS1 also appears to be important for the incorporation of C(16) monomers into cutin polyester. As such, LACS1 defines a functionally novel acyl-CoA synthetase that preferentially modifies both VLCFAs for wax synthesis and long-chain (C(16)) fatty acids for cutin synthesis.

  10. Very-long-chain aldehydes promote in vitro prepenetration processes of Blumeria graminis in a dose- and chain length-dependent manner.

    Science.gov (United States)

    Hansjakob, Anton; Bischof, Sebastian; Bringmann, Gerhard; Riederer, Markus; Hildebrandt, Ulrich

    2010-12-01

    Surface properties of aerial plant organs have been shown to affect the interaction of fungal plant pathogens and their hosts. Conidial germination and differentiation - the so-called prepenetration processes - of the barley powdery mildew fungus (Blumeria graminis f. sp. hordei) are known to be triggered by n-hexacosanal (C(26)-aldehyde), a minor constituent of barley leaf wax. In order to analyze the differentiation-inducing capabilities of typical aldehyde wax constituents on conidia of wheat and barley powdery mildew, synthetic even-numbered very-long-chain aldehydes (C(22)-C(30)) were assayed, applying an in vitro system based on Formvar(®)/n-hexacosane-coated glass slides. n-Hexacosanal was the most effective aldehyde tested. Germination and differentiation rates of powdery mildew conidia increased with increasing concentrations of very-long-chain aldehydes. Relative to n-hexacosanal, the other aldehyde compounds showed a gradual decrease in germination- and differentiation-inducing capabilities with both decreasing and increasing chain length. In addition to n-hexacosanal, several other ubiquitous very-long-chain aldehyde wax constituents were capable of effectively stimulating B. graminis prepenetration processes in a dose- and chain length-dependent manner. Other wax constituents, such as n-alkanes, primary alcohols (with the exception of n-hexacosanol), fatty acids and alkyl esters, did not affect fungal prepenetration. © The Authors (2010). Journal compilation © New Phytologist Trust (2010).

  11. Characterisation and quantification of medium chain and long chain triglycerides and their in vitro digestion products, by HPTLC coupled with in situ densitometric analysis.

    Science.gov (United States)

    Sek, L; Porter, C J; Charman, W N

    2001-06-01

    The development of new and simple high performance thin layer chromatography (HPTLC) assays for the quantification of medium chain triglycerides (MCT, tricaprylin) and long chain triglycerides (LCT, triolein) and their lipolytic products, bile salts (BS) and phospholipids (PL) are described. Different classes of lipids (PL, BS, fatty acids, monoglycerides, diglycerides, and triglycerides) were separated on a single silica gel 60 HPTLC plate by Automated Multiple Development (AMD) methods using a Camag AMD 2. Post-chromatographic staining of long chain lipids (triolein, diolein, monoolein, and oleic acid), PL and BS with a solution of copper sulphate-phosphoric acid and medium chain lipids (tricaprylin, dicaprylin, monocaprylin, and caprylic acid) with a solution of ammonium molybdate-perchloric acid allowed visualisation of the lipids. Lipids were quantified by in situ spectrodensitometric measurements using a Camag TLC scanner 3. The intra- and inter-assay accuracy was between 83 and 115% and the assay was precise to within a CV of less than 20% over a range of 0.1-1 and 5-50 microg for long chain lipids and medium chain lipids, respectively. The methods have been employed to study the kinetics of triolein and tricaprylin lipolysis in an in vitro lipid digestion model commonly used to assess the digestibility of novel oral lipid-based formulations.

  12. Very long-chain n-3 polyunsaturated fatty acids: a head start to win some years between the ears?

    OpenAIRE

    Dullemeijer, C.

    2009-01-01

    Very long-chain n-3 (or omega-3) polyunsaturated fatty acids have attracted considerable public interest during the past few years for their potential beneficial role in cognitive performance. The proposed benefits stretch from advantages in developing brains of infants and children to preventing cognitive decline at old age. In this thesis, we first examined the role of very long-chain n-3 PUFA at the beginning of the lifespan. We investigated the effects of dietary very long-chain n-3 PUFA ...

  13. CATALYTIC DEHYDROGENATION OF LONG CHAIN ALKANES IN SUPERCRITICAL PHASE%超临界相中的长链烷烃催化脱氢

    Institute of Scientific and Technical Information of China (English)

    魏伟; 孙予罕; 钟炳

    1999-01-01

    @@ The preparation of olefins from long chain alkanes by catalytic dehydrogenation is an important process in synthetic detergents and surface-active agents[1]. Because of equilibrium limitation, the present process only reaches about 10 % of the conversion with 90 % of the selectivity. In addition, the lifetime of the catalysts ( e. g. Pt-Sn/Al2O3) is around 40 d owing to the severe coke formation even with n(H2 )/n(alkane)= 8. Although the catalysts have been well improved, both conversion and selectivity were hardly enhanced. New technique is therefore required to improve the process.

  14. 3D-Membrane Stacks on Supported Membranes Composed of Diatom Lipids Induced by Long-Chain Polyamines.

    Science.gov (United States)

    Gräb, Oliver; Abacilar, Maryna; Daus, Fabian; Geyer, Armin; Steinem, Claudia

    2016-10-04

    Long-chain polyamines (LCPAs) are intimately involved in the biomineralization process of diatoms taking place in silica deposition vesicles being acidic compartments surrounded by a lipid bilayer. Here, we addressed the question whether and how LCPAs interact with lipid membranes composed of glycerophospholipids and glyceroglycolipids mimicking the membranes of diatoms and higher plants. Solid supported lipid bilayers and monolayers containing the three major components that are unique in diatoms and higher plants, i.e., monogalactosyldiacylglycerol (MGDG), digalactosyldiacylglycerol (DGDG), and sulfoquinovosyldiacylglycerol (SQDG), were prepared by spreading small unilamellar vesicles. The integrity of the membranes was investigated by fluorescence microscopy and atomic force microscopy showing continuous flat bilayers and monolayers with small protrusions on top of the membrane. The addition of a synthetic polyamine composed of 13 amine groups separated by a propyl spacer (C3N13) results in flat but three-dimensional membrane stacks within minutes. The membrane stacks are connected with the underlying membrane as verified by fluorescence recovery after photobleaching experiments. Membrane stack formation was found to be independent of the lipid composition; i.e., neither glyceroglycolipids nor negatively charged lipids were required. However, the formation process was strongly dependent on the chain length of the polyamine. Whereas short polyamines such as the naturally occurring spermidine, spermine, and the synthetic polyamines C3N4 and C3N5 do not induce stack formation, those containing seven and more amine groups (C3N7, C3N13, and C3N18) do form membrane stacks. The observed stack formation might have implications for the stability and expansion of the silica deposition vesicle during valve and girdle band formation in diatoms.

  15. Study on Extracting Rare Earth from Sulfate System by Long-Chain Fatty Acid

    Institute of Scientific and Technical Information of China (English)

    Xu Yanhui; Zhao Zengqi; Liu Quansheng

    2004-01-01

    The extraction of rare earths by long-chain fatty acid in kerosene from sulphate system was described.It was demonstrated from the experimental results that the ratio of kerosene: fatty acid: isooctanol = 55 : 30: 15 ( V/V),By the saturation capability method and the slope method, the extracted reaction mechanism of the extraction of rare earth was studied.It is shown that the extraction reaction conform to the cation exchange reaction mechanism.The extracted sequence of rare earth was determined in this system and it is shown that there is no tetrad effect and the position of yttrium is between lanthanum and cerium.

  16. Very long-chain acyl CoA dehydrogenase deficiency which was accepted as infanticide.

    Science.gov (United States)

    Eminoglu, Tuba F; Tumer, Leyla; Okur, Ilyas; Ezgu, Fatih S; Biberoglu, Gursel; Hasanoglu, Alev

    2011-07-15

    Very-long-chain acyl-coenzyme A (CoA) dehydrogenase deficiency (VLCADD) (OMIM #201475) is an autosomal recessive disorder of fatty acid oxidation. Major phenotypic expressions are hypoketotic hypoglycemia, hepatomegaly, cardiomyopathy, myopathy, rhabdomyolysis, elevated creatinine kinase, and lipid infiltration of liver and muscle. At the same time, it is a rare cause of Sudden Infant Death Syndrome (SIDS) or unexplained death in the neonatal period [1-4]. We report a patient with VLCADD whose parents were investigated for infanticide because her three previous siblings had suddenly died after normal deliveries.

  17. Bioavailability of omega-3 long-chain polyunsaturated fatty acids from foods

    DEFF Research Database (Denmark)

    Mu, Huiling

    2008-01-01

    Increasing recognition of the importance of the omega-3 long chain polyunsaturated fatty acids (LCPUFA) has caused greater attention about dietary intake of these fatty acids. Fatty fish is the major dietary source of these fatty acids. Because of the low intake of fish at many places, foods...... enriched with omega-3 LCPUFA can be good alternatives to improve the intake of these fatty acids. Effects of lipid structures and food matrices on bioavailability of omega-3 LCPUFA have been investigated. Short term studies showed that both lipid structure and food matrix affect the bioavailability...

  18. Rom2-dependent phosphorylation of Elo2 controls the abundance of very long chain fatty acids

    DEFF Research Database (Denmark)

    Olson, Daniel K; Fröhlich, Florian; Christiano, Romain

    2015-01-01

    Sphingolipids are essential components of eukaryotic membranes, where they serve to maintain membrane integrity. They are important components of membrane trafficking and function in signaling as messenger molecules. Sphingolipids are synthesized de novo from very long chain fatty acids (VLCFA...... that Elo2, a key enzyme of VLCFA synthesis, is controlled by signaling of the guanine nucleotide exchange factor Rom2, initiating at the plasma membrane. This pathway controls Elo2 phosphorylation state and VLCFA synthesis. Our data identify a regulatory mechanism for coordinating VLCFA synthesis...

  19. Soluble Polyimides Bearing Long-Chain Alkyl Groups on Their Side Chain via Polymer Reaction

    OpenAIRE

    2012-01-01

    Novel soluble polyimides having long-chain alkyl groups on their side chain were synthesized via polymer reaction with the polyimides having phenolic OH groups and 3,4,5-tris(dodecyloxy)benzoic acid (12GA) using N,N′-dicyclohexylcarbodiimide (DCC) as a dehydration reagent. The polyimides having phenolic OH groups were synthesized from the tetracarboxylic dianhydrides such as 5-(2,5-dioxotetrahydrofuryl)-3-methyl-3-cyclohexene-1,2-dicarboxylic anhydride (cyclohexene-DA), 4,4′-hexafluoroisoprop...

  20. Induction of aP2 gene expression by nonmetabolized long-chain fatty acids.

    OpenAIRE

    Grimaldi, P A; Knobel, S.M.; Whitesell, R R; Abumrad, N A

    1992-01-01

    Long-chain fatty acids (FA) have been shown to regulate expression of the gene for the adipocyte FA-binding protein aP2. We examined whether this effect was exerted by FA themselves or by a FA metabolite. The alpha-bromo derivative of palmitate, an inhibitor of FA oxidation, was synthesized in the radioactive form, and its metabolism was investigated and correlated with its ability to induce aP2 in Ob1771 preadipocytes. alpha-Bromopalmitate was not utilized by preadipocytes. It was not cleare...

  1. Incorporation of Amino Acids with Long-Chain Terminal Olefins into Proteins

    OpenAIRE

    Exner, Matthias P.; Sebastian Köhling; Julie Rivollier; Sandrine Gosling; Puneet Srivastava; Palyancheva, Zheni I; Piet Herdewijn; Marie-Pierre Heck; Jörg Rademann; Nediljko Budisa

    2016-01-01

    The increasing need for site-specific protein decorations that mimic natural posttranslational modifications requires access to a variety of noncanonical amino acids with moieties enabling bioorthogonal conjugation chemistry. Here we present the incorporation of long-chain olefinic amino acids into model proteins with rational variants of pyrrolysyl-tRNA synthetase (PylRS). Nε-heptenoyl lysine was incorporated for the first time using the known promiscuous variant PylRS(Y306A/Y384F), and Nε-p...

  2. Peanut consumption increases levels of plasma very long chain fatty acids in humans.

    Science.gov (United States)

    Lam, Christina; Wong, Derek; Cederbaum, Stephen; Lim, Bennie; Qu, Yong

    2012-11-01

    Peanut consumption has been suspected of raising plasma very long chain fatty acid (VLCFA) levels in humans. The effect of peanut consumption on VLCFAs was studied in six human subjects. After 3 to 4h of peanut butter ingestion, plasma C26:0 and C26:0/C22:0 were found to be significantly elevated to levels seen in patients with peroxisomal disorders. These levels returned to normal within 12h. Peanut consumption needs to be accounted for when interpreting VLCFAs.

  3. Dynamic functional characterization and phylogenetic changes due to Long Chain Fatty Acids pulses in biogas reactors

    DEFF Research Database (Denmark)

    Kougias, Panagiotis; Treu, Laura; Campanaro, Stefano;

    2016-01-01

    The process stability of biogas plants is often deteriorated by the accumulation of Long Chain Fatty Acids (LCFA). The microbial community shifts due to LCFA disturbances have been poorly understood as the molecular techniques used were not able to identify the genome characteristics of uncultured...... microorganisms, and additionally, the presence of limited number of reference genomes in public databases prevented the comprehension of specific functional roles characterizing these microorganisms. The present study is the first research which deciphers by means of high throughput shotgun sequencing...

  4. A severe genotype with favourable outcome in very long chain acyl-CoA dehydrogenase deficiency

    DEFF Research Database (Denmark)

    Touma, E H; Rashed, M S; Vianey-Saban, C

    2001-01-01

    A patient with very long chain acyl-CoA dehydrogenase (VLCAD) deficiency is reported. He had a severe neonatal presentation and cardiomyopathy. He was found to be homozygous for a severe mutation with no residual enzyme activity. Tandem mass spectrometry on dried blood spots revealed increased lo...... chain acylcarnitines. VLCAD enzyme activity was severely decreased to 2% of control levels. Dietary management consisted of skimmed milk supplemented with medium chain triglycerides and L-carnitine. Outcome was good and there was no acute recurrence....

  5. An Open-label Phase 2 Study of UX007 (Triheptanoin) in Subjects With Long-Chain Fatty Acid Oxidation Disorders (LC-FAOD)

    Science.gov (United States)

    2016-11-23

    Long-chain Fatty Acid Oxidation Disorders (LC-FAOD); Carnitine Palmitoyltransferase (CPT II) Deficiency; Very Long Chain Acyl-CoA Dehydrogenase (VLCAD) Deficiency; Longchain 3-hydroxy-acyl-CoA Dehydrogenase (LCHAD) Deficiency; Trifunctional Protein (TFP) Deficiency

  6. Standard Review Risk Assessment on Medium-chain and Long-chain Chlorinated paraffin PMN submissions by INEOS Chlor Americas

    Science.gov (United States)

    This assessment was conducted under EPA’s TSCA Section 5 New Chemicals Program. EPA is assessing Medium-chain Chlorinated Paraffin (MCCP) and Long-Chain Chlorinated Paraffin (LCCP) chemicals as part of its New Chemicals Review program.

  7. Standard Review Risk Assessment on Medium-chain and Long-chain Chlorinated paraffin PMN submissions by Qualice, LLC

    Science.gov (United States)

    This assessment was conducted under EPA’s TSCA Section 5 New Chemicals Program. EPA is assessing Medium-chain Chlorinated Paraffin (MCCP) and Long-Chain Chlorinated Paraffin (LCCP) chemicals as part of its New Chemicals Review program.

  8. Standard Review Risk Assessment on Medium-chain and Long-chain Chlorinated paraffin PMN submissions by Dover Chemical

    Science.gov (United States)

    This assessment was conducted under EPA’s TSCA Section 5 New Chemicals Program. EPA is assessing Medium-chain Chlorinated Paraffin (MCCP) and Long-Chain Chlorinated Paraffin (LCCP) chemicals as part of its New Chemicals Review program.

  9. Long-chain saturated and monounsaturated fatty acids associate with development of premature infants up to 18 months of age.

    Science.gov (United States)

    Strandvik, Birgitta; Ntoumani, Eleni; Lundqvist-Persson, Cristina; Sabel, Karl-Göran

    2016-04-01

    Myelination is important perinatally and highly dependent on long-chain saturated and monounsaturated fatty acids. Long-chain polyunsaturated fatty acids, nowadays often supplemented, inhibit oleic acid synthesis. Using data from a premature cohort, we studied if nervonic, lignoceric and oleic acids correlated to growth and early development up to 18 months corrected age. Small for gestational age infants had lower concentrations than infants appropriate for gestational age. Only oleic acid was negatively correlated to long-chain polyunsaturated fatty acids. Oleic and lignoceric acids correlated to social interaction at one month, and nervonic acid to mental, psychomotor and behavioral development at 6, 10 and 18 months, also when adjusted for several confounders. Negative association between oleic acid and long-chain polyunsaturated fatty acids suggests inhibition of delta-9 desaturase, and nervonic acid´s divergent correlation to lignoceric and oleic acids suggests different metabolism in neonatal period. Our results may have implications for the supplementation of premature infants.

  10. Long chain n-3 polyunsaturated fatty acids and vascular function in patients with chronic kidney disease and healthy subjects

    DEFF Research Database (Denmark)

    Borg, Morten; Svensson, My; Povlsen, Johan V;

    2016-01-01

    BACKGROUND: Patients with chronic kidney disease have a markedly increased cardiovascular mortality compared with the general population. Long chain n-3 polyunsaturated fatty acids have been suggested to possess cardioprotective properties. This cross-sectional and comparative study evaluated cor...

  11. A Novel Protocol to Analyze Short- and Long-Chain Fatty Acids Using Nonaqueous Microchip Capillary Electrophoresis

    Science.gov (United States)

    Cable, M. L.; Stockton, A. M.; Mora, Maria F; Willis, P. A.

    2013-01-01

    We propose a new protocol to identify and quantify both short- and long-chain saturated fatty acids in samples of astrobiological interest using non-aqueous microchip capillary electrophoresis (micronNACE) with laser induced fluorescence (LIF).

  12. Parenteral Administration of Medium- but Not Long-Chain Lipid Emulsions May Increase the Risk for Infections by Candida albicans

    OpenAIRE

    Wanten, Geert J.; Netea, Mihai G.; Naber, Ton H.; Curfs, Jo H.; Jacobs, Liesbeth E.; Verver-Jansen, Trees J.; Kullberg, Bart-Jan

    2002-01-01

    Intravenous administration to volunteers of an emulsion of medium-chain lipids, but not of an emulsion of pure long-chain lipids or a placebo, increased the growth of Candida albicans in serum and modulated Candida-induced cytokine production by mononuclear cells in a way suggesting that medium-chain, but not long-chain, triglycerides increase the risk for infections by Candida.

  13. Diverse physiological effects of long-chain saturated fatty acids: implications for cardiovascular disease.

    Science.gov (United States)

    Flock, Michael R; Kris-Etherton, Penny M

    2013-03-01

    The purpose of this review is to discuss the metabolism of long-chain saturated fatty acids and the ensuing effects on an array of metabolic events. Individual long-chain saturated fatty acids exhibit unique biological properties. Dietary saturated fat absorption varies depending on chain-length and the associated food matrix. The in-vivo metabolism of saturated fatty acids varies depending on the individual fatty acid and the nutritional state of the individual. A variety of fatty acid metabolites are formed, each with their own unique structure and properties that warrant further research. Replacing saturated fatty acids with unsaturated fatty acids improves the blood lipid profile and reduces cardiovascular disease risk, although the benefits depend on the specific saturated fatty acid(s) being replaced. Acknowledging the complexity of saturated fatty acid metabolism and associated metabolic events is important when assessing their effects on cardiovascular disease risk. Investigating the biological effects of saturated fatty acids will advance our understanding of how they affect cardiovascular disease risk.

  14. Significance of long-chain polyunsaturated fatty acids (PUFAs) for the development and behaviour of children.

    Science.gov (United States)

    Schuchardt, Jan Philipp; Huss, Michael; Stauss-Grabo, Manuela; Hahn, Andreas

    2010-02-01

    omega-6 and omega-3 polyunsaturated fatty acids (PUFAs) play a central role in the normal development and functioning of the brain and central nervous system. Long-chain PUFAs (LC-PUFAs) such as eicosapentaenoic acid (EPA, C20:5omega-3), docosahexaenoic acid (DHA, C22:6omega-3) and arachidonic acid (AA, C20:4omega-6), in particular, are involved in numerous neuronal processes, ranging from effects on membrane fluidity to gene expression regulation. Deficiencies and imbalances of these nutrients, not only during the developmental phase but throughout the whole life span, have significant effects on brain function. Numerous observational studies have shown a link between childhood developmental disorders and omega-6:omega-3 fatty acid imbalances. For instance, neurocognitive disorders such as attention-deficit hyperactivity disorder (ADHD), dyslexia, dyspraxia and autism spectrum disorders are often associated with a relative lack of omega-3 fatty acids. In addition to a high omega-6 fatty acid intake and, in many cases, an insufficient supply of omega-3 fatty acids among the population, evidence is increasing to suggest that PUFA metabolism can be impaired in individuals with ADHD. In this context, PUFA imbalances are being discussed as potential risk factors for neurodevelopmental disorders. Another focus is whether the nutritive PUFA requirements-especially long-chain omega-3 fatty acid requirements-are higher among some individuals. Meanwhile, several controlled studies investigated the clinical benefits of LC-PUFA supplementation in affected children and adolescents, with occasionally conflicting results.

  15. Genes associated with long-chain omega-3 fatty acids in bovine skeletal muscle.

    Science.gov (United States)

    Perez, R; Cañón, J; Dunner, S

    2010-01-01

    Long-chain omega-3 fatty acids (n-3 FAs) influence meat tenderness, juiciness, and flavor, and are beneficial to human health. The percentage of long-chain n-3 FAs in total FAs is termed the omega-3 index (O3I). It is thus of great interest to favor rising this index in bovine skeletal muscle, to obtain healthier, tastier, and more nutritive meat. This study was aimed to detect transcriptomic variations related to O3I in muscles in 15-month-old males of 4 Spanish cattle breeds raised under the same conditions. Through the analysis of extreme O3I phenotypes, 3 genes of interest (AANAT, UCP2 and AHA1) were identified. AANAT and UCP2 were strongly up-regulated, while AHA1 was repressed in animals with a high O3I. Moreover, gene expression differed between GDF8-null animal muscles (tested for nt821del11 and Q204X mutations) and the wild-type muscles for genes GDH1, IGF2R, FADS1, ASPH, and AIM1, all showing down-regulation in Asturiana de los Valles calves with muscle hypertrophy (GDF8-null). This shows that in GDF8-null animals other pathways are used for FA synthesis.

  16. Conversion of raw lignocellulosic biomass into branched long-chain alkanes through three tandem steps.

    Science.gov (United States)

    Li, Chunrui; Ding, Daqian; Xia, Qineng; Liu, Xiaohui; Wang, Yanqin

    2016-07-07

    Synthesis of branched long-chain alkanes from renewable biomass has attracted intensive interest in recent years, but the feedstock for this synthesis is restricted to platform chemicals. Here, we develop an effective and energy-efficient process to convert raw lignocellulosic biomass (e.g., corncob) into branched diesel-range alkanes through three tandem steps for the first time. Furfural and isopropyl levulinate (LA ester) were prepared from hemicellulose and cellulose fractions of corncob in toluene/water biphasic system with added isopropanol, which was followed by double aldol condensation of furfural with LA ester into C15 oxygenates and the final hydrodeoxygenation of C15 oxygenates into branched long-chain alkanes. The core point of this tandem process is the addition of isopropanol in the first step, which enables the spontaneous transfer of levulinic acid (LA) into the toluene phase in the form of LA ester through esterification, resulting in LA ester co-existing with furfural in the same phase, which is the basis for double aldol condensation in the toluene phase. Moreover, the acidic aqueous phase and toluene can be reused and the residues, including lignin and humins in aqueous phase, can be separated and carbonized to porous carbon materials.

  17. Bacterial Long-Chain Polyunsaturated Fatty Acids: Their Biosynthetic Genes, Functions, and Practical Use.

    Science.gov (United States)

    Yoshida, Kiyohito; Hashimoto, Mikako; Hori, Ryuji; Adachi, Takumi; Okuyama, Hidetoshi; Orikasa, Yoshitake; Nagamine, Tadashi; Shimizu, Satoru; Ueno, Akio; Morita, Naoki

    2016-05-12

    The nutritional and pharmaceutical values of long-chain polyunsaturated fatty acids (LC-PUFAs) such as arachidonic, eicosapentaenoic and docosahexaenoic acids have been well recognized. These LC-PUFAs are physiologically important compounds in bacteria and eukaryotes. Although little is known about the biosynthetic mechanisms and functions of LC-PUFAs in bacteria compared to those in higher organisms, a combination of genetic, bioinformatic, and molecular biological approaches to LC-PUFA-producing bacteria and some eukaryotes have revealed the notably diverse organization of the pfa genes encoding a polyunsaturated fatty acid synthase complex (PUFA synthase), the LC-PUFA biosynthetic processes, and tertiary structures of the domains of this enzyme. In bacteria, LC-PUFAs appear to take part in specific functions facilitating individual membrane proteins rather than in the adjustment of the physical fluidity of the whole cell membrane. Very long chain polyunsaturated hydrocarbons (LC-HCs) such as hentriacontanonaene are considered to be closely related to LC-PUFAs in their biosynthesis and function. The possible role of LC-HCs in strictly anaerobic bacteria under aerobic and anaerobic environments and the evolutionary relationships of anaerobic and aerobic bacteria carrying pfa-like genes are also discussed.

  18. Bacterial Long-Chain Polyunsaturated Fatty Acids: Their Biosynthetic Genes, Functions, and Practical Use

    Directory of Open Access Journals (Sweden)

    Kiyohito Yoshida

    2016-05-01

    Full Text Available The nutritional and pharmaceutical values of long-chain polyunsaturated fatty acids (LC-PUFAs such as arachidonic, eicosapentaenoic and docosahexaenoic acids have been well recognized. These LC-PUFAs are physiologically important compounds in bacteria and eukaryotes. Although little is known about the biosynthetic mechanisms and functions of LC-PUFAs in bacteria compared to those in higher organisms, a combination of genetic, bioinformatic, and molecular biological approaches to LC-PUFA-producing bacteria and some eukaryotes have revealed the notably diverse organization of the pfa genes encoding a polyunsaturated fatty acid synthase complex (PUFA synthase, the LC-PUFA biosynthetic processes, and tertiary structures of the domains of this enzyme. In bacteria, LC-PUFAs appear to take part in specific functions facilitating individual membrane proteins rather than in the adjustment of the physical fluidity of the whole cell membrane. Very long chain polyunsaturated hydrocarbons (LC-HCs such as hentriacontanonaene are considered to be closely related to LC-PUFAs in their biosynthesis and function. The possible role of LC-HCs in strictly anaerobic bacteria under aerobic and anaerobic environments and the evolutionary relationships of anaerobic and aerobic bacteria carrying pfa-like genes are also discussed.

  19. Hydrophobic, electrostatic, and dynamic polymer forces at silicone surfaces modified with long-chain bolaform surfactants.

    Science.gov (United States)

    Rapp, Michael V; Donaldson, Stephen H; Gebbie, Matthew A; Das, Saurabh; Kaufman, Yair; Gizaw, Yonas; Koenig, Peter; Roiter, Yuri; Israelachvili, Jacob N

    2015-05-06

    Surfactant self-assembly on surfaces is an effective way to tailor the complex forces at and between hydrophobic-water interfaces. Here, the range of structures and forces that are possible at surfactant-adsorbed hydrophobic surfaces are demonstrated: certain long-chain bolaform surfactants-containing a polydimethylsiloxane (PDMS) mid-block domain and two cationic α, ω-quarternary ammonium end-groups-readily adsorb onto thin PDMS films and form dynamically fluctuating nanostructures. Through measurements with the surface forces apparatus (SFA), it is found that these soft protruding nanostructures display polymer-like exploration behavior at the PDMS surface and give rise to a long-ranged, temperature- and rate-dependent attractive bridging force (not due to viscous forces) on approach to a hydrophilic bare mica surface. Coulombic interactions between the cationic surfactant end-groups and negatively-charged mica result in a rate-dependent polymer bridging force during separation as the hydrophobic surfactant mid-blocks are pulled out from the PDMS interface, yielding strong adhesion energies. Thus, (i) the versatile array of surfactant structures that may form at hydrophobic surfaces is highlighted, (ii) the need to consider the interaction dynamics of such self-assembled polymer layers is emphasized, and (iii) it is shown that long-chain surfactants can promote robust adhesion in aqueous solutions.

  20. Associations of human retinal very long-chain polyunsaturated fatty acids with dietary lipid biomarkers.

    Science.gov (United States)

    Gorusupudi, Aruna; Liu, Aihua; Hageman, Gregory S; Bernstein, Paul S

    2016-03-01

    The human retina is well-known to have unique lipid profiles enriched in long-chain polyunsaturated fatty acids (LC-PUFAs) and very long-chain polyunsaturated fatty acids (VLC-PUFAs) that appear to promote normal retinal structure and function, but the influence of diet on retinal lipid profiles in health and disease remains controversial. In this study, we examined two independent cohorts of donor eyes and related their retinal lipid profiles with systemic biomarkers of lipid intake. We found that serum and red blood cell lipids, and to a lesser extent orbital fat, are indeed excellent biomarkers of retinal lipid content and n-3/n-6 ratios in both the LC-PUFA and VLC-PUFA series. Eyes from age-related macular degeneration (AMD) donors have significantly decreased levels of VLC-PUFAs and low n-3/n-6 ratios. These results are consistent with the protective role of dietary n-3 LC-PUFAs against AMD and emphasize the importance of monitoring systemic biomarkers of lipid intake when undertaking clinical trials of lipid supplements for prevention and treatment of retinal disease.

  1. Application of the Long-Chain Linear Polyester in Plastification of PVC

    Institute of Scientific and Technical Information of China (English)

    LI Yan; WANG Changming; WANG Guojian; QU Zehua

    2008-01-01

    The plastification modification of poly(vinyl chloride)(PVC)with the long-chain linear polyester(LP)synthesized by linear dodecanedioic acid(DC12)or tetradecanedioic acid(DC 14)with different diols is investigated.The processing characteristics,mechanical properties and extraction property of the PVC/LP blends in different solvents(xylene,cyclohexane,ethanol)were also studied in detail.All results were compared with that of the PVC plasticized with dioctyl phthalate(DOP).The results show that the molecular weight,molecular structure and loading of LP greatly influence the mechanical properties of the PVC/LP blends.The processability and the mechanical properties of PVC plasticized by LP are comparable to those of the corresponding PVC/DOP blends.However,the PVC/LP blends posses much better migration resistance property than the corresponding PVC/DOP blends,which makes the long-chain linear polyester become a very good plasticizer candidate for PVC industry.

  2. ECERIFERUM2-LIKE proteins have unique biochemical and physiological functions in very-long-chain fatty acid elongation.

    Science.gov (United States)

    Haslam, Tegan M; Haslam, Richard; Thoraval, Didier; Pascal, Stéphanie; Delude, Camille; Domergue, Frédéric; Fernández, Aurora Mañas; Beaudoin, Frédéric; Napier, Johnathan A; Kunst, Ljerka; Joubès, Jérôme

    2015-03-01

    The extension of very-long-chain fatty acids (VLCFAs) for the synthesis of specialized apoplastic lipids requires unique biochemical machinery. Condensing enzymes catalyze the first reaction in fatty acid elongation and determine the chain length of fatty acids accepted and produced by the fatty acid elongation complex. Although necessary for the elongation of all VLCFAs, known condensing enzymes cannot efficiently synthesize VLCFAs longer than 28 carbons, despite the prevalence of C28 to C34 acyl lipids in cuticular wax and the pollen coat. The eceriferum2 (cer2) mutant of Arabidopsis (Arabidopsis thaliana) was previously shown to have a specific deficiency in cuticular waxes longer than 28 carbons, and heterologous expression of CER2 in yeast (Saccharomyces cerevisiae) demonstrated that it can modify the acyl chain length produced by a condensing enzyme from 28 to 30 carbon atoms. Here, we report the physiological functions and biochemical specificities of the CER2 homologs CER2-LIKE1 and CER2-LIKE2 by mutant analysis and heterologous expression in yeast. We demonstrate that all three CER2-LIKEs function with the same small subset of condensing enzymes, and that they have different effects on the substrate specificity of the same condensing enzyme. Finally, we show that the changes in acyl chain length caused by each CER2-LIKE protein are of substantial importance for cuticle formation and pollen coat function.

  3. Characterization of coke deposited on nano-sized Pt-Pd/H-beta spent during long-chain paraffin hydroisomerization

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, F.; Einicke, W.D.; Ficht, K.; Glaeser, R. [Leipzig Univ. (Germany). Inst. of Chemical Technology; Bertmer, M. [Leipzig Univ. (Germany). Inst. of Experimental Physics II; Kuchling, T. [Technische Univ. Bergakademie Freiberg (Germany). Inst. of Energy Process Engineering and Chemical Engineering

    2013-11-01

    The hydroisomerization of long-chain n-paraffins were studied in the temperature range 205- 230 C at p{sub H2}=50 bar using a bench scale trickle-bed continuous-flow reactor. The bimetallic catalysts consisted of mixtures of platinum and palladium supported on commercially available nano-sized zeolites Beta (n{sub Si}/n{sub Al} = 12 and 25) extruded with a binder ({gamma}-alumina). For hexadecane conversion, high yields to isomers (25 and 45 wt.% of mono- and multibranched isomers, respectively) without extensive cracking (>10 wt.%) were obtained at a conversion of 80 %. Long-term tests with C{sub 16}H{sub 34} and blends of solid n-paraffins for 30-60 days on stream clearly indicate that a minor loss in catalyst activity can easily be compensated by increasing the reaction temperature from 230 C to 235 C. The zeolite sample with a 'mild acidity' revealed low hydrocracking at isomerization yield up to 70 wt.% and high stability. Carbonaceous deposits formed during n-paraffin hydroisomerization were investigated by temperature-programmed oxidation, elemental analysis, ATR-FTIR and {sup 13}C MAS NMR spectroscopy showing the formation of low-temperature, hydrogen-rich coke. (orig.)

  4. Comparison of serum triglyceride levels with propofol in long chain triglyceride and propofol in medium and long chain triglyceride after short term anesthesia in pediatric patients

    Directory of Open Access Journals (Sweden)

    Ishwar Bhukal

    2014-01-01

    Full Text Available Background: Significant increase in serum triglyceride (ST concentration have been described in adult population after prolonged administration of propofol formulation containing long chain triglyceride (LCT. Though, medium chain triglyceride-LCT (MCT-LCT propofol when compared with LCT propofol for long-term sedation in adults resulted in identical triglyceride levels, the elimination of triglyceride was faster in patients administered MCT-LCT propofol. Materials and Methods: A total of 40 children were randomized into two groups of 20 each; Group I were induced with 1% LCT propofol (3 mg/kg and Group II with 1% medium and LCT propofol and maintained with descalating dose of 20.15 and 10 mg/kg/h at 10 min intervals. Blood samples for ST concentration were obtained before induction of anesthesia, at the end of propofol infusion and 4 h after terminating propofol infusion. Results: ST levels were raised significantly above the basal values in both the groups but the rise was significantly higher in Group I (P < 0.05. Four hours after stopping propofol infusion the triglyceride levels were similar to the basal values in Group II, whereas in Group I the values were significantly greater than the baseline (P < 0.05 as well as those of Group II (P < 0.05. No clinically significant adverse effect of hypertriglyceridemia was observed. Conclusion: Even short term anesthesia with LCT and MCT-LCT propofol (1% leads to elevated ST levels. The increase in ST levels is less with MCT-LCT propofol and elimination of triglyceride is also rapid after terminating MCT-LCT propofol infusion.

  5. Attenuated Total Reflectance Fourier transform infrared spectroscopy for determination of Long Chain Free Fatty Acid concentration in oily wastewater using the double wavenumber extrapolation technique.

    Science.gov (United States)

    Hao, Zisu; Malyala, Divya; Dean, Lisa; Ducoste, Joel

    2017-04-01

    Long Chain Free Fatty Acids (LCFFAs) from the hydrolysis of fat, oil and grease (FOG) are major components in the formation of insoluble saponified solids known as FOG deposits that accumulate in sewer pipes and lead to sanitary sewer overflows (SSOs). A Double Wavenumber Extrapolative Technique (DWET) was developed to simultaneously measure LCFFAs and FOG concentrations in oily wastewater suspensions. This method is based on the analysis of the Attenuated Total Reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) spectrum, in which the absorbance of carboxyl bond (1710cm(-1)) and triglyceride bond (1745cm(-1)) were selected as the characteristic wavenumbers for total LCFFAs and FOG, respectively. A series of experiments using pure organic samples (Oleic acid/Palmitic acid in Canola oil) were performed that showed a linear relationship between the absorption at these two wavenumbers and the total LCFFA. In addition, the DWET method was validated using GC analyses, which displayed a high degree of agreement between the two methods for simulated oily wastewater suspensions (1-35% Oleic acid in Canola oil/Peanut oil). The average determination error of the DWET approach was ~5% when the LCFFA fraction was above 10wt%, indicating that the DWET could be applied as an experimental method for the determination of both LCFFAs and FOG concentrations in oily wastewater suspensions. Potential applications of this DWET approach includes: (1) monitoring the LCFFAs and FOG concentrations in grease interceptor (GI) effluents for regulatory compliance; (2) evaluating alternative LCFFAs/FOG removal technologies; and (3) quantifying potential FOG deposit high accumulation zones in the sewer collection system.

  6. Depletion of ceramides with very long chain fatty acids causes defective skin permeability barrier function, and neonatal lethality in ELOVL4 deficient mice

    Directory of Open Access Journals (Sweden)

    Wenmei Li, Roger Sandhoff, Mari Kono, Patricia Zerfas, Vickie Hoffmann, Bryan Char-Hoa Ding, Richard L. Proia, Chu-Xia Deng

    2007-01-01

    Full Text Available Very long chain fatty acids (VLCFA, either free or as components of glycerolipids and sphingolipids, are present in many organs. Elongation of very long chain fatty acids-4 (ELOVL4 belongs to a family of 6 members of putative fatty acid elongases that are involved in the formation of VLCFA. Mutations in ELOVL4 were found to be responsible for an autosomal dominant form of Stargardt's-like macular dystrophy (STGD3 in human. We have previously disrupted the mouse Elovl4 gene, and found that Elovl4+/- mice were developmentally normal, suggesting that haploinsufficiency of ELOVL4 is not a cause for the juvenile retinal degeneration in STGD3 patients. However, Elovl4-/- mice died within several hours of birth for unknown reason(s. To study functions of ELOVL4 further, we have explored the causes for the postnatal lethality in Elovl4-/- mice. Our data indicated that the mutant mice exhibited reduced thickness of the dermis, delayed differentiation of keratinocytes, and abnormal structure of the stratum corneum. We showed that all Elovl4-/- mice exhibited defective skin water permeability barrier function, leading to the early postnatal death. We further showed that the absence of ELOVL4 results in depletion in the epidermis of ceramides with ω-hydroxy very long chain fatty acids (≥C28 and accumulation of ceramides with non ω-hydroxy fatty acids of C26, implicating C26 fatty acids as possible substrates of ELOVL4. These data demonstrate that ELOVL4 is required for VLCFA synthesis that is essential for water permeability barrier function of skin.

  7. Long-chain acyl-CoA esters in metabolism and signaling

    DEFF Research Database (Denmark)

    Neess, Ditte; Sørensen, Signe Bek; Engelsby, Hanne

    2015-01-01

    Long-chain fatty acyl-CoA esters are key intermediates in numerous lipid metabolic pathways, and recognized as important cellular signaling molecules. The intracellular flux and regulatory properties of acyl-CoA esters have been proposed to be coordinated by acyl-CoA-binding domain containing...... proteins (ACBDs). The ACBDs, which comprise a highly conserved multigene family of intracellular lipid-binding proteins, are found in all eukaryotes and ubiquitously expressed in all metazoan tissues, with distinct expression patterns for individual ACBDs. The ACBDs are involved in numerous intracellular...... studies have gained further insights into their in vivo functions and provided further evidence for ACBD-specific functions in cellular signaling and lipid metabolic pathways. This review summarizes the structural and functional properties of the various ACBDs, with special emphasis on the function...

  8. Environmental properties of long chain alcohols. Part 1: Physicochemical, environmental fate and acute aquatic toxicity properties

    DEFF Research Database (Denmark)

    Fisk, Peter; Sanderson, Hans; Wildey, Ross

    2009-01-01

    This paper summarises the physicochemical, biodegradation and acute aquatic ecotoxicity properties of long chain aliphatic alcohols. Properties of pure compounds are shown to follow somewhat predictable trends, which are amenable to estimation by quantitative structure-activity relationships ((Q...... possible bioaccumulation potential, available data suggest that these substances are not as bioaccumulative as estimations would predict. For acute aquatic toxicity, solubility limits the possibility of effects being appropriately observed and become increasingly challenging above C12. Further, a model has...... been developed for multi-component mixtures which give an excellent account of aquatic ecotoxicity allowing for the prediction of acute effects of un-tested mixtures. © 2008 Elsevier Inc. All rights reserved....

  9. Dielectric relaxation of long-chain glass-forming monohydroxy alcohols

    Science.gov (United States)

    Gao, Yanqin; Tu, Wenkang; Chen, Zeming; Tian, Yongjun; Liu, Riping; Wang, Li-Min

    2013-10-01

    The dielectric relaxation of two long-chain glass forming monohydroxy alcohols, 2-butyl-1-octanol and 2-hexyl-1-decanol, is studied at low temperature. Remarkable broadening from the pure Debye relaxation is identified for the slowest dynamics, differing from the dielectric spectra of short-chain alcohols. The broadening of the Debye-like relaxation in the two liquids develops as temperature increases, and the approaching of the Debye-like and structural relaxation widths is shown. Similar results are observed in the dielectric spectra of dilute 2-ethyl-1-hexanol in either 2-hexyl-1-decanol or squalane. The results of the liquids and mixtures reveal a correlation between the broadening and the Debye-like relaxation strength. Molecular associations in monohydroxy alcohols are discussed with the modification of the Debye relaxation.

  10. Resistance to herbicides inhibiting the biosynthesis of very-long-chain fatty acids.

    Science.gov (United States)

    Busi, Roberto

    2014-09-01

    Herbicides that act by inhibiting the biosynthesis of very-long-chain fatty acids (VLCFAs) have been used to control grass weeds in major crops throughout the world for the past 60 years. VLCFA-inhibiting herbicides are generally highly selective in crops, induce similar symptoms in susceptible grasses and can be found within the herbicide groups classified by the HRAC as K3 and N. Even after many years of continuous use, only 12 grass weed species have evolved resistance to VLCFA-inhibiting herbicides. Here, the cases of resistance that have evolved in major grass weed species belonging to the Avena, Echinochloa and Lolium genera in three different agricultural systems are reviewed. In particular we explore the possible reasons why VLCFA herbicides have been slow to select resistant weeds, outline the herbicide mode of action and discuss the resistance mechanisms that are most likely to have been selected.

  11. Metabolic engineering of Saccharomyces cerevisiae for production of very long chain fatty acid-derived chemicals

    DEFF Research Database (Denmark)

    Yu, Tao; Zhou, Yongjin J.; Wenning, Leonie

    2017-01-01

    Production of chemicals and biofuels through microbial fermentation is an economical and sustainable alternative for traditional chemical synthesis. Here we present the construction of a Saccharomyces cerevisiae platform strain for high-level production of very-long-chain fatty acid (VLCFA......)-derived chemicals. Through rewiring the native fatty acid elongation system and implementing a heterologous Mycobacteria FAS I system, we establish an increased biosynthesis of VLCFAs in S. cerevisiae. VLCFAs can be selectively modified towards the fatty alcohol docosanol (C22H46O) by expressing a specific fatty...... acid reductase. Expression of this enzyme is shown to impair cell growth due to consumption of VLCFA-CoAs. We therefore implement a dynamic control strategy for separating cell growth from docosanol production. We successfully establish high-level and selective docosanol production of 83.5 mg l-1 in...

  12. Regulation of lipolytic activity by long-chain acyl-coenzyme A in islets and adipocytes

    DEFF Research Database (Denmark)

    Hu, Liping; Deeney, Jude T; Nolan, Christopher J

    2005-01-01

    -cells. The mechanisms by which lipolysis is regulated in different tissues is, therefore, of considerable interest. Here, the effects of long-chain acyl-CoA esters (LC-CoA) on lipase activity in islets and adipocytes were compared. Palmitoyl-CoA (Pal-CoA, 1-10 microM) stimulated lipase activity in islets from both...... relationship between islets and adipocytes with respect to fatty acid metabolism, LC-CoA signaling, and lipolysis. Elevated LC-CoA in islets stimulates lipolysis to generate a signal to increase insulin secretion, whereas elevated LC-CoA in adipocytes inhibits lipolysis. Together, these opposite actions of LC......-CoA lower circulating fat by inhibiting its release from adipocytes and promoting fat storage via insulin action....

  13. Modification of nano-sized layered double hydroxides by long-chain organic aliphatic surfactants

    Directory of Open Access Journals (Sweden)

    RAMASAMY ANBARASAN

    2008-03-01

    Full Text Available The inter-layer anion of layered double hydroxides (LDH with a hydrotalcite (HT-like structure was ion-exchanged with various organic surfactants, particularly with long chain aliphatic surfactants. After the ion-exchange process, the basal spacing of the LDH was increased and the increase of the basal spacing depended on various factors, such as the intercalation capacity functionality and orientation capability of the surfactant. Of the employed surfactants, stearic acid intercalated LDH showed the highest increase of the basal spacing, which was confirmed by XRD analysis. FTIR results supported the interaction of the surfactants with the LDH. In addition, an increase in the thermal stability of the dodecanedioic acid intercalated HT was evidenced by the TGA method.

  14. Odd-numbered very-long-chain fatty acids from the microbial, animal and plant kingdoms.

    Science.gov (United States)

    Rezanka, Tomás; Sigler, Karel

    2009-01-01

    Very long chain fatty acids (FAs) are important components of different classes of lipids in all organisms from bacteria to man. They include also, usually as minor components, odd-numbered FAs. These have so far been given little attention because of technical difficulties inherent in their detection and identification. Current modern analytical methods such as GC-MS and/or LC-MS make this detection and identification possible, and should promote a study of their properties. This review brings, in a concise manner, most of the currently available information about these FAs, their occurrence in different organisms, their structure and other properties. It should provide an impetus for further research into these very interesting compounds whose chemical, biochemical and biological properties are poorly known.

  15. Bioavailability of omega-3 long-chain polyunsaturated fatty acids from foods

    DEFF Research Database (Denmark)

    Mu, Huiling

    2008-01-01

    Increasing recognition of the importance of the omega-3 long chain polyunsaturated fatty acids (LCPUFA) has caused greater attention about dietary intake of these fatty acids. Fatty fish is the major dietary source of these fatty acids. Because of the low intake of fish at many places, foods...... enriched with omega-3 LCPUFA can be good alternatives to improve the intake of these fatty acids. Effects of lipid structures and food matrices on bioavailability of omega-3 LCPUFA have been investigated. Short term studies showed that both lipid structure and food matrix affect the bioavailability...... of these fatty acids, whereas diverse results have been reported from long-term studies. Therefore more studies are encouraged to clarify the long-term effects....

  16. Determination of Diffusion Coefficients of Selected Long Chain Hydrocarbons using Reversed- Flow Gas Chromatographic Technique

    Directory of Open Access Journals (Sweden)

    Khalisanni Khalid

    2011-01-01

    Full Text Available The reversed-flow gas chromatography (RF-GC technique was used to study the evaporation rate and estimating the diffusion coefficient of samples. The RF-GC system comprises of six-port valve, sampling and diffusion column, detector and modified commercial gas chromatography machine. Selected long chain of hydrocarbons (99.99% purity was used as samples. The solute (stationary phase were carried out by carrier gas (mobile phase to the detector. The data obtained from the RF-GC analysis were analysed by deriving the elution curve of the sample peaks using mathematical expression to find the diffusion coefficients values of respective liquids. The values obtained were compared with theoretical values to ensure the accuracy of readings. The interesting findings of the research showed the theoretical values of equilibrium at liquid-gas interphase lead to profound an agreement with the experimental evidence, which contributes for the references of future studies.

  17. Long-Chain Omega-3 Oils–An Update on Sustainable Sources

    Directory of Open Access Journals (Sweden)

    Peter D. Nichols

    2010-05-01

    Full Text Available Seafood is currently the best and generally a safe source of long-chain (LC, (≥C20 omega-3 oils amongst the common food groups. LC omega-3 oils are also obtained in lower amounts per serve from red meat, egg and selected other foods. As global population increases the opportunities to increase seafood harvest are limited, therefore new alternate sources are required. Emerging sources include microalgae and under-utilized resources such as Southern Ocean krill. Prospects for new land plant sources of these unique and health-benefiting oils are also particularly promising, offering hope for alternate and sustainable supplies of these key oils, with resulting health, social, economic and environmental benefits.

  18. Establishing very long-chain fatty alcohol and wax ester biosynthesis in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Wenning, Leonie; Yu, Tao; David, Florian

    2017-01-01

    for producing very long-chain fatty alcohols (VLCFOHs) up to a chain length of C22 by heterologous expression of a FAR derived from Apis mellifera (AmFAR1) or Marinobacter aquaeolei VT8 (Maqu_2220) in S. cerevisiae and achieved maximum yields of 3.22±0.36mg/g cell dry weight (CDW) and 7.84±3.09mg/g CDW......Wax esters (WEs) are neutral lipids and can be used for a broad range of commercial applications, including personal care products, lubricants, or coatings. They are synthesized by enzymatic reactions catalyzed by a fatty acyl reductase (FAR) and a wax ester synthase (WS). At present, commercially...

  19. Very long-chain fatty acids support synaptic structure and function in the mammalian retina

    Directory of Open Access Journals (Sweden)

    Hopiavuori Blake R.

    2016-01-01

    Full Text Available Elongation of Very Long chain fatty acids-like 4 (ELOVL4 is a fatty acid elongase responsible for the biosynthesis of very long chain (VLC; ≥ C26 fatty acids in the retina, brain, skin, Meibomian gland, and testes. Heterozygous inheritance of mutant ELOVL4 causes juvenile macular degeneration in autosomal dominant Stargardt-like macular dystrophy (STGD3. Retinal photoreceptors are enriched with VLC polyunsaturated fatty acids (VLC-PUFAs, which have been shown by our group and others to be necessary for the survival of rod photoreceptors. Our group performed a series of studies using mice conditionally depleted of retinal Elovl4 (KO aimed at understanding the role of VLC-PUFAs in long-term retinal health and function, focusing on the role of these fatty acids in mediating synaptic function between the photoreceptors and the rest of the neural retina. The absence of VLC-PUFA from the retina of KO mice resulted in a marked decrease in retinal b-wave responses of the electroretinogram as well as a decrease in the amplitude of the oscillatory potentials mediated by the neural retina. Although there were no measureable differences between KO and wild type (WT mice in either pre-synaptic rod calcium channel function or post-synaptic bipolar cell glutamate receptor responses, ultrastructural analysis revealed a marked decrease in the diameter of synaptic vesicles in rod terminals. Recent quantification suggests that this decrease in synaptic vesicle size due to the absence of VLC-PUFAs in KO mice, and the consequent decrease in glutamate content, could account for the decrease in b-wave response amplitudes that were previously measured in these animals.

  20. Immunomodulation by dietary long chain omega-3 fatty acids and the potential for adverse health outcomes.

    Science.gov (United States)

    Fenton, Jenifer I; Hord, Norman G; Ghosh, Sanjoy; Gurzell, Eric A

    2013-01-01

    Recommendations to consume fish for prevention of cardiovascular disease (CVD), along with the U.S. Food and Drug Administration-approved generally recognized as safe (GRAS) status for long chain omega-3 fatty acids, may have had the unanticipated consequence of encouraging long-chain omega-3 (ω-3) fatty acid [(eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)] supplementation and fortification practices. While there is evidence supporting a protective role for EPA/DHA supplementation in reducing sudden cardiac events, the safety and efficacy of supplementation with LCω-3PUFA in the context of other disease outcomes is unclear. Recent studies of bacterial, viral, and fungal infections in animal models of infectious disease demonstrate that LCω-3PUFA intake dampens immunity and alters pathogen clearance and can result in reduced survival. The same physiological properties of EPA/DHA that are responsible for the amelioration of inflammation associated with chronic cardiovascular pathology or autoimmune states, may impair pathogen clearance during acute infections by decreasing host resistance or interfere with tumor surveillance resulting in adverse health outcomes. Recent observations that high serum LCω-3PUFA levels are associated with higher risk of prostate cancer and atrial fibrillation raise concern for adverse outcomes. Given the widespread use of supplements and fortification of common food items with LCω-3PUFA, this review focuses on the immunomodulatory effects of the dietary LCω-3PUFAs, EPA and DHA, the mechanistic basis for potential negative health outcomes, and calls for biomarker development and validation as rational first steps towards setting recommended dietary intake levels.

  1. TORC1 Inhibits GSK3-Mediated Elo2 Phosphorylation to Regulate Very Long Chain Fatty Acid Synthesis and Autophagy

    Directory of Open Access Journals (Sweden)

    Christine Zimmermann

    2013-11-01

    Full Text Available Very long chain fatty acids (VLCFAs are essential fatty acids with multiple functions, including ceramide synthesis. Although the components of the VLCFA biosynthetic machinery have been elucidated, how their activity is regulated to meet the cell’s metabolic demand remains unknown. The goal of this study was to identify mechanisms that regulate the rate of VLCFA synthesis, and we discovered that the fatty acid elongase Elo2 is regulated by phosphorylation. Elo2 phosphorylation is induced upon inhibition of TORC1 and requires GSK3. Expression of nonphosphorylatable Elo2 profoundly alters the ceramide spectrum, reflecting aberrant VLCFA synthesis. Furthermore, VLCFA depletion results in constitutive activation of autophagy, which requires sphingoid base phosphorylation. This constitutive activation of autophagy diminishes cell survival, indicating that VLCFAs serve to dampen the amplitude of autophagy. Together, our data reveal a function for TORC1 and GSK3 in the regulation of VLCFA synthesis that has important implications for autophagy and cell homeostasis.

  2. Dynamics of interfacial reactions between O({sup 3} P) atoms and long-chain liquid hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Allan, Mhairi [School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS (United Kingdom); Bagot, Paul A J [School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS (United Kingdom); Koehler, Sven P K [School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS (United Kingdom); Reed, Stewart K [Department of Physics and Astronomy, University of Edinburgh, The King' s Buildings, Edinburgh EH9 3JZ (United Kingdom); Westacott, Robin E [School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS (United Kingdom); Costen, Matthew L [School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS (United Kingdom); McKendrick, Kenneth G [School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS (United Kingdom)

    2007-09-15

    Recent progress that has been made towards understanding the dynamics of collisions at the gas-liquid interface is summarized briefly. We describe in this context a promising new approach to the experimental study of gas-liquid interfacial reactions that we have introduced. This is based on laser-photolytic production of reactive gas-phase atoms above the liquid surface and laser-spectroscopic probing of the resulting nascent products. This technique is illustrated for reaction of O({sup 3}P) atoms at the surface of the long-chain liquid hydrocarbon squalane (2,6,10,15,19,23-hexamethyltetracosane). Laser-induced fluorescence detection of the nascent OH has revealed mechanistically diagnostic correlations between its internal and translational energy distributions. Vibrationally excited OH molecules are able to escape the surface. At least two contributions to the product rotational distributions are identified, confirming and extending previous hypotheses of the participation of both direct and trapping-desorption mechanisms. We speculate briefly on future experimental and theoretical developments that might be necessary to address the many currently unanswered mechanistic questions for this, and other, classes of gas-liquid interfacial reaction.

  3. Long chain fatty acid acylated derivatives of quercetin-3-o-glucoside as antioxidants to prevent lipid oxidation.

    Science.gov (United States)

    Warnakulasuriya, Sumudu N; Ziaullah; Rupasinghe, H P Vasantha

    2014-11-06

    Flavonoids have shown promise as natural plant-based antioxidants for protecting lipids from oxidation. It was hypothesized that their applications in lipophilic food systems can be further enhanced by esterification of flavonoids with fatty acids. Quercetin-3-O-glucoside (Q3G) was esterified individually with six selected long chain fatty acids: stearic acid (STA), oleic acid (OLA), linoleic acid (LNA), α-linolenic acid (ALA), eicosapentaenoic acid (EPA) and decosahexaenoic acid (DHA), using Candida antarctica B lipase as the biocatalyst. The antioxidant activity of esterified flavonoids was evaluated using lipid oxidation model systems of poly-unsaturated fatty acids-rich fish oil and human low density lipoprotein (LDL), in vitro. In the oil-in-water emulsion, Q3G esters exhibited 50% to 100% inhibition in primary oxidation and 30% to 75% inhibition in secondary oxidation. In bulk oil, Q3G esters did not provide considerable protection from lipid oxidation; however, Q3G demonstrated more than 50% inhibition in primary oxidation. EPA, DHA and ALA esters of Q3G showed significantly higher inhibition in Cu2+- and peroxyl radical-induced LDL oxidation in comparison to Q3G.

  4. Long Chain Fatty Acid Acylated Derivatives of Quercetin-3-O-Glucoside as Antioxidants to Prevent Lipid Oxidation

    Directory of Open Access Journals (Sweden)

    Sumudu N. Warnakulasuriya

    2014-11-01

    Full Text Available Flavonoids have shown promise as natural plant-based antioxidants for protecting lipids from oxidation. It was hypothesized that their applications in lipophilic food systems can be further enhanced by esterification of flavonoids with fatty acids. Quercetin-3-O-glucoside (Q3G was esterified individually with six selected long chain fatty acids: stearic acid (STA, oleic acid (OLA, linoleic acid (LNA, α-linolenic acid (ALA, eicosapentaenoic acid (EPA and decosahexaenoic acid (DHA, using Candida antarctica B lipase as the biocatalyst. The antioxidant activity of esterified flavonoids was evaluated using lipid oxidation model systems of poly-unsaturated fatty acids-rich fish oil and human low density lipoprotein (LDL, in vitro. In the oil-in-water emulsion, Q3G esters exhibited 50% to 100% inhibition in primary oxidation and 30% to 75% inhibition in secondary oxidation. In bulk oil, Q3G esters did not provide considerable protection from lipid oxidation; however, Q3G demonstrated more than 50% inhibition in primary oxidation. EPA, DHA and ALA esters of Q3G showed significantly higher inhibition in Cu2+- and peroxyl radical-induced LDL oxidation in comparison to Q3G.

  5. CPI values of terrestrial higher plant-derived long-chain n-alkanes: a potential paleoclimatic proxy

    Institute of Scientific and Technical Information of China (English)

    Zhiguo RAO; Zhaoyu ZHU; Suping WANG; Guodong JIA; Mingrui QIANG; Yi WU

    2009-01-01

    Carbon Preference Index (CPI values) of higher plant-derived long-chain n-alkanes extracted from 62 surface soil samples in eastern China exhibited a specific pattern of variations, namely gradual increase with the increasing latitudes. Such regular variations existed in both forest soil and grassland soil. Our data implied that CPI values of higher plant-derived long-chain n-alkanes had a certain connection with climatic conditions, and such a connection was not influenced by vegetation types. Together with previous data from marine sediments, loess/ paleosol sequences, tertiary red clay and modern plants, our observation made us conclude that CPI values of higher plant-derived long-chain n-alkanes may be used as an excellent proxy for paleoclimatic studies.

  6. Molecular and functional characterisation of two elovl4 elongases involved in the biosynthesis of very long-chain (>C24) polyunsaturated fatty acids in black seabream Acanthopagrus schlegelii.

    Science.gov (United States)

    Jin, Min; Monroig, Óscar; Navarro, Juan Carlos; Tocher, Douglas R; Zhou, Qi-Cun

    2017-10-01

    Elongation of very long-chain fatty acid (Elovl) 4 proteins are important fatty acyl elongases that participate in the biosynthesis of long-chain (C20-24) and very long-chain (˃C24) polyunsaturated fatty acids (LC-PUFA and VLC-PUFA, respectively) in teleost fish, especially in marine species. Moreover, knowledge of Elovl4 and other elongases such as Elovl2 has contributed to an advanced understanding of the LC-PUFA biosynthetic pathway in marine fish. In the present study, elovl4a and elovl4b were cloned from black seabream Acanthopagrus schlegelii and functionally characterised using recombinant expression in yeast. The elovl4a and elovl4b cDNA sequences included open reading frames (ORF) of 969 and 918 base pairs (bp), encoding proteins of 322 and 315 amino acids (aa), respectively. The functional characterisation of A. schlegelii Elovl4 proteins showed they were able to utilise all assayed C18-22 PUFA substrates except 22:6n-3. Moreover, it was particularly noteworthy that both A. schlegelii Elovl4a and Elovl4b proteins had the ability to elongate 20:5n-3 and 22:5n-3 to 24:5n-3, which can be potentially desaturated and β-oxidised to 22:6n-3. Tissue transcript abundance analysis showed the highest expression of elovl4a and elovl4b in brain and eye, respectively, suggesting these tissues were major sites for VLC-PUFA biosynthesis in black seabream. The functions of the A. schlegelii Elovl4-like elongases, Elovl4a and Elovl4b, characterised in the present study, along with those of the Elovl5 and fatty acyl desaturase (Fads2) proteins of A. schlegelii characterised previously, provided evidence of the biosynthetic pathways of LC-PUFA and VLC-PUFA in this teleost species. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Dietary α-linolenic acid, linoleic acid, and n-3 long-chain PUFA and risk of ischemic heart disease

    DEFF Research Database (Denmark)

    Vedtofte, Mia Sadowa; Jakobsen, Marianne Uhre; Lauritzen, Lotte

    2011-01-01

    n-3 (omega-3) PUFA has been proposed as having health-promoting effects, primarily in relation to ischemic heart disease (IHD). Whether these benefits can be achieved by both α-linolenic acid (ALA, 18:3n-3) and n-3 long-chain PUFA (LC-PUFA) is debatable.......n-3 (omega-3) PUFA has been proposed as having health-promoting effects, primarily in relation to ischemic heart disease (IHD). Whether these benefits can be achieved by both α-linolenic acid (ALA, 18:3n-3) and n-3 long-chain PUFA (LC-PUFA) is debatable....

  8. Tissue-specific strategies of the very-long chain acyl-CoA dehydrogenase-deficient (VLCAD-/- mouse to compensate a defective fatty acid β-oxidation.

    Directory of Open Access Journals (Sweden)

    Sara Tucci

    Full Text Available Very long-chain acyl-CoA dehydrogenase (VLCAD-deficiency is the most common long-chain fatty acid oxidation disorder presenting with heterogeneous phenotypes. Similar to many patients with VLCADD, VLCAD-deficient mice (VLCAD(-/- remain asymptomatic over a long period of time. In order to identify the involved compensatory mechanisms, wild-type and VLCAD(-/- mice were fed one year either with a normal diet or with a diet in which medium-chain triglycerides (MCT replaced long-chain triglycerides, as approved intervention in VLCADD. The expression of the mitochondrial long-chain acyl-CoA dehydrogenase (LCAD and medium-chain acyl-CoA dehydrogenase (MCAD was quantified at mRNA and protein level in heart, liver and skeletal muscle. The oxidation capacity of the different tissues was measured by LC-MS/MS using acyl-CoA substrates with a chain length of 8 to 20 carbons. Moreover, in white skeletal muscle the role of glycolysis and concomitant muscle fibre adaptation was investigated. In one year old VLCAD(-/- mice MCAD and LCAD play an important role in order to compensate deficiency of VLCAD especially in the heart and in the liver. However, the white gastrocnemius muscle develops alternative compensatory mechanism based on a different substrate selection and increased glucose oxidation. Finally, the application of an MCT diet over one year has no effects on LCAD or MCAD expression. MCT results in the VLCAD(-/- mice only in a very modest improvement of medium-chain acyl-CoA oxidation capacity restricted to cardiac tissue. In conclusion, VLCAD(-/- mice develop tissue-specific strategies to compensate deficiency of VLCAD either by induction of other mitochondrial acyl-CoA dehydrogenases or by enhancement of glucose oxidation. In the muscle, there is evidence of a muscle fibre type adaptation with a predominance of glycolytic muscle fibres. Dietary modification as represented by an MCT-diet does not improve these strategies long-term.

  9. Human tear film and meibum. Very long chain wax esters and (O-acyl)-omega-hydroxy fatty acids of meibum

    Science.gov (United States)

    Butovich, Igor A.; Wojtowicz, Jadwiga C.; Molai, Mike

    2009-01-01

    Human meibum was targetly analyzed for the presence of intact wax esters (WEs) and related compounds by means of reverse-phase HPLC in combination with ion trap mass spectrometry. The major detected WEs were based on C18:n (n = 1–4) unsaturated FAs ranking in the following order of abundance: C18:1>C18:2>C18:3>C18:4. The major fatty alcohols (FAls) found in WE were of saturated nature and varied from C18:0 to C28:0. The three most abundant species were C18:1-FA esters of C24:0, C25:0, and C26:0-FAl. Typically, a major compound based on C18:1-FA and a saturated FAl was accompanied by a few related compounds based on a C18:2, C18:3, and C18:4-FA. Contrary to previous reports, no epoxy-WEs or epoxy-FAs were detected in fresh and 1-year-old meibum samples. More than 20 (O-acyl)-ω-hydroxy-FAs (OAHFAs) were observed. The main detected OAHFAs were based on very long-chain ω-hydroxy-FA (C30:1, C32:1, and C34:1) acylated through their ω-hydroxyls by a C18:1-FA. Due to their amphiphilic anionogenic nature, OAHFAs may be responsible for stabilization of the tear film lipid layer by creating an interface between the vast pool of strictly nonpolar lipids of meibum (WEs, cholesteryl esters, etc.) and the aqueous subphase beneath it, a role previously attributed to phospholipids. PMID:19535818

  10. Satellite Formation based on SDDF Method

    Directory of Open Access Journals (Sweden)

    Yu Wang

    2014-04-01

    Full Text Available The technology of satellite formation flying has being a research focus in flight application. The relative position and velocity between satellites are basic parameters to achieve the control of formation flight during the satellite formation flying mission. In order to improve the navigation accuracy, a new filter different from Extended Kalman Filter (EKF should be adopted to estimate the errors of relative position and velocity, which is based on the nonlinearity of the kinetic model for the satellite formation flying. A nonlinear Divided Difference Filter (DDF based on Stirling interpolation formula was proposed in this paper. According to the linearity of the measurement equation for the filter, a simplified differential filter was designed by means of expanding the polynomial of the nonlinear system equation and linear approximating of the finite differential interpolation. Digital simulation experiment for the relative positioning of satellite formation flying was carried out. The result demonstrates that the filter proposed in this paper has a higher filtering accuracy, faster convergence speed and better stability. Compared with the EKF, the estimation accuracy of the relative position and velocity has improved by 77.1%and 47% respectively in the method of simplified DDF, which indicates the significance for practical applications. 

  11. Kinetics and reaction mechanism of yeast alcohol dehydrogenase with long-chain primary alcohols.

    Science.gov (United States)

    Schöpp, W; Aurich, H

    1976-01-01

    Kinetic studies of yeast alcohol dehydrogenase with NAD+ and ethanol, hexanol or decanol as substrates invariably result in non-linear Lineweaver-Burk plots if the alcohol is the variable substrate. The kinetic coefficients determined from secondary plots are consistent with an 'equilibrium random-order' mechanism for extremely low alcohol concentrations and for all alcohols, the transformation of the ternary complexes being the rate-limiting step of the reaction. This mechanism also applies to long-chain substrates at high concentrations, whereas the rate of the ethanol-NAD+ reaction at high ethanol concentrations is determined by the dissociation of the enzyme-NADH complex. The dissociation constants for the enzyme-NAD+ complex and for the enzyme-alcohol complexes obtained from the kinetic quotients satisfactorily correspond to the dissociation constants obtained by use of other techniques. It is suggested that the non-linear curves may be attributed to a structural change in the enzyme itself, caused by the alcohol. PMID:183740

  12. Differences in NEXAFS of odd/even long chain n-alkane crystals

    Energy Technology Data Exchange (ETDEWEB)

    Swaraj, Sufal, E-mail: sufal.swaraj@synchrotron-soleil.fr [Synchrotron SOLEIL, L’Orme des Merisiers, Saint-Aubin – BP 48, F-91192 Gif-sur-Yvette Cedex (France); Ade, Harald [North Carolina State University, Raleigh, NC (United States)

    2013-12-15

    Highlights: •Number and parity of Carbon backbone influences the NEXAFS spectra of n-alkane crystals. •Odd/even effect observed is attributed to the geometrical consequence of a zig–zag chain structure. •NEXAFS spectra are influenced by Interaction of molecular orbitals with periodic lattice. -- Abstract: We present the near edge X-ray absorption fine structure (NEXAFS) spectra of several long chain n-alkanes crystallites formed on Silicon nitride (Si{sub 3}N{sub 4}) windows. Dichroic signature was investigated with the C-C backbone aligned perpendicular to the substrate. Significant changes in the dichroic signature of spectral intensities at energies below the ionization edge (287.5 and 288.1 eV) have been observed. While the dichroic ratio corresponding to the spectral feature at 287.5 eV remains relatively unaffected by the overall length of C-C backbone, it is noticeably affected by the parity (odd or even) of the number of Carbon atoms in the n-alkane backbone. Data obtained provide evidence of the influence of interaction of molecular orbitals with periodic lattice structure.

  13. Saturated long-chain fatty acids activate inflammatory signaling in astrocytes.

    Science.gov (United States)

    Gupta, Sunita; Knight, Alecia G; Gupta, Shruti; Keller, Jeffrey N; Bruce-Keller, Annadora J

    2012-03-01

    This study describes the effects of long-chain fatty acids on inflammatory signaling in cultured astrocytes. Data show that the saturated fatty acid palmitic acid, as well as lauric acid and stearic acid, trigger the release of TNFα and IL-6 from astrocytes. Unsaturated fatty acids were unable to induce cytokine release from cultured astrocytes. Furthermore, the effects of palmitic acid on cytokine release require Toll-like receptor 4 rather than CD36 or Toll-like receptor 2, and do not depend on palmitic acid metabolism to palmitoyl-CoA. Inhibitor studies revealed that pharmacologic inhibition of p38 or p42/44 MAPK pathways prevents the pro-inflammatory effects of palmitic acid, whereas JNK and PI3K inhibition does not affect cytokine release. Depletion of microglia from primary astrocyte cultures using the lysosomotropic agent l-leucine methyl ester revealed that the ability of palmitic acid to trigger cytokine release is not dependent on the presence of microglia. Finally, data show that the essential ω-3 fatty acid docosahexaenoic acid acts in a dose-dependent manner to prevent the actions of palmitic acid on inflammatory signaling in astrocytes. Collectively, these data demonstrate the ability of saturated fatty acids to induce astrocyte inflammation in vitro. These data thus raise the possibility that high levels of circulating saturated fatty acids could cause reactive gliosis and brain inflammation in vivo, and could potentially participate in the reported adverse neurologic consequences of obesity and metabolic syndrome.

  14. Metabolic engineering of microorganisms to produce omega-3 very long-chain polyunsaturated fatty acids.

    Science.gov (United States)

    Gong, Yangmin; Wan, Xia; Jiang, Mulan; Hu, Chuanjiong; Hu, Hanhua; Huang, Fenghong

    2014-10-01

    Omega-3 long-chain polyunsaturated fatty acids (LC-PUFAs) have received growing attention due to their significant roles in human health. Currently the main source of these nutritionally and medically important fatty acids is marine fish, which has not met ever-increasing global demand. Microorganisms are an important alternative source also being explored. Although many microorganisms accumulate omega-3 LC-PUFAs naturally, metabolic engineering might still be necessary for significantly improving their yields. Here, we review recent research involving the engineering of microorganisms for production of omega-3 LC-PUFAs, including eicospentaenoic acid and docosohexaenoic acid. Both reconstitution of omega-3 LC-PUFA biosynthetic pathways and modification of existing pathways in microorganisms have demonstrated the potential to produce high levels of omega-3 LC-PUFAs. However, the yields of omega-3 LC-PUFAs in host systems have been substantially limited by potential metabolic bottlenecks, which might be caused partly by inefficient flux of fatty acid intermediates between the acyl-CoA and different lipid class pools. Although fatty acid flux in both native and heterologous microbial hosts might be controlled by several acyltransferases, evidence has suggested that genetic manipulation of one acyltransferase alone could significantly increase the accumulation of LC-PUFAs. The number of oleaginous microorganisms that can be genetically transformed is increasing, which will advance engineering efforts to maximize LC-PUFA yields in microbial strains.

  15. Long-chain fatty acid analogues suppress breast tumorigenesis and progression.

    Science.gov (United States)

    Gluschnaider, Udi; Hertz, Rachel; Ohayon, Sarit; Smeir, Elia; Smets, Martha; Pikarsky, Eli; Bar-Tana, Jacob

    2014-12-01

    Obesity and type 2 diabetes (T2D) are associated with increased breast cancer incidence and mortality, whereas carbohydrate-restricted ketogenic diets ameliorate T2D and suppress breast cancer. These observations suggest an inherent efficacy of nonesterified long-chain fatty acids (LCFA) in suppressing T2D and breast tumorigenesis. In this study, we investigated novel antidiabetic MEDICA analogues consisting of methyl-substituted LCFA that are neither β-oxidized nor esterified to generate lipids, prompting interest in their potential efficacy as antitumor agents in the context of breast cancer. In the MMTV-PyMT oncomouse model of breast cancer, in which we confirmed that tumor growth could be suppressed by a carbohydrate-restricted ketogenic diet, MEDICA treatment suppressed tumor growth, and lung metastasis, promoting a differentiated phenotype while suppressing mesenchymal markers. In human breast cancer cells, MEDICA treatment attenuated signaling through the STAT3 and c-Src transduction pathways. Mechanistic investigations suggested that MEDICA suppressed c-Src-transforming activity by elevating reactive oxygen species production, resulting in c-Src oxidation and oligomerization. Our findings suggest that MEDICA analogues may offer therapeutic potential in breast cancer and overcome the poor compliance of patients to dietary carbohydrate restriction.

  16. Long-chain acyl-CoA dehydrogenase deficiency as a cause of pulmonary surfactant dysfunction.

    Science.gov (United States)

    Goetzman, Eric S; Alcorn, John F; Bharathi, Sivakama S; Uppala, Radha; McHugh, Kevin J; Kosmider, Beata; Chen, Rimei; Zuo, Yi Y; Beck, Megan E; McKinney, Richard W; Skilling, Helen; Suhrie, Kristen R; Karunanidhi, Anuradha; Yeasted, Renita; Otsubo, Chikara; Ellis, Bryon; Tyurina, Yulia Y; Kagan, Valerian E; Mallampalli, Rama K; Vockley, Jerry

    2014-04-11

    Long-chain acyl-CoA dehydrogenase (LCAD) is a mitochondrial fatty acid oxidation enzyme whose expression in humans is low or absent in organs known to utilize fatty acids for energy such as heart, muscle, and liver. This study demonstrates localization of LCAD to human alveolar type II pneumocytes, which synthesize and secrete pulmonary surfactant. The physiological role of LCAD and the fatty acid oxidation pathway in lung was subsequently studied using LCAD knock-out mice. Lung fatty acid oxidation was reduced in LCAD(-/-) mice. LCAD(-/-) mice demonstrated reduced pulmonary compliance, but histological examination of lung tissue revealed no obvious signs of inflammation or pathology. The changes in lung mechanics were found to be due to pulmonary surfactant dysfunction. Large aggregate surfactant isolated from LCAD(-/-) mouse lavage fluid had significantly reduced phospholipid content as well as alterations in the acyl chain composition of phosphatidylcholine and phosphatidylglycerol. LCAD(-/-) surfactant demonstrated functional abnormalities when subjected to dynamic compression-expansion cycling on a constrained drop surfactometer. Serum albumin, which has been shown to degrade and inactivate pulmonary surfactant, was significantly increased in LCAD(-/-) lavage fluid, suggesting increased epithelial permeability. Finally, we identified two cases of sudden unexplained infant death where no lung LCAD antigen was detectable. Both infants were homozygous for an amino acid changing polymorphism (K333Q). These findings for the first time identify the fatty acid oxidation pathway and LCAD in particular as factors contributing to the pathophysiology of pulmonary disease.

  17. Egg yolk as a source of long-chain polyunsaturated fatty acids in infant feeding.

    Science.gov (United States)

    Simopoulos, A P; Salem, N

    1992-02-01

    In this paper we compare the fatty acid content of egg yolks from hens fed four different feeds as a source of docosahexaenoic acid to supplement infant formula. Greek eggs contain more docosahexaenoic acid (DHA, 22:6 omega 3) and less linoleic acid (LA, 18:2 omega 6) and alpha-linolenic acid (LNA, 18:3 omega 3) than do fish-meal or flax eggs. Two to three grams of Greek egg yolk may provide an adequate amount of DHA and arachidonic acid for a preterm neonate. Mean intake of breast milk at age 1 mo provides 250 mg long-chain omega 3 fatty acids. This amount can be obtained from less than 1 yolk of a Greek egg (0.94), greater than 1 yolk of flax eggs (1.6) and fish-meal eggs (1.4), or 8.3 yolks of supermarket eggs. With proper manipulation of the hens' diets, eggs could be produced with fatty acid composition similar to that of Greek eggs.

  18. Long-chain carboxylic acids in pyrolysates of Green River kerogen

    Science.gov (United States)

    Kawamura, K.; Tannenbaum, E.; Huizinga, B. J.; Kaplan, I. R.

    1986-01-01

    Long-chain fatty acids (C10-C32), as well as C14-C21 isoprenoid acids (except for C18), have been identified in anhydrous and hydrous pyrolyses products of Green River kerogen (200-400 degrees C, 2-1000 hr). These kerogen-released fatty acids are characterized by a strong even/odd predominance (CPI: 4.8-10.2) with a maximum at C16 followed by lesser amounts of C18 and C22 acids. This distribution is different from that of unbound and bound geolipids extracted from Green River shale. The unbound fatty acids show a weak even/odd predominance (CPI: 1.64) with a maximum at C14, and bound fatty acids display an even/odd predominance (CPI: 2.8) with maxima at C18 and C30. These results suggest that fatty acids were incorporated into kerogen during sedimentation and early diagenesis and were protected from microbial and chemical changes over geological periods of time. Total quantities of fatty acids produced during heating of the kerogen ranged from 0.71 to 3.2 mg/g kerogen. Highest concentrations were obtained when kerogen was heated with water for 100 hr at 300 degrees C. Generally, their amounts did not decrease under hydrous conditions with increase in temperature or heating time, suggesting that significant decarboxylation did not occur under the pyrolysis conditions used, although hydrocarbons were extensively generated.

  19. Critical constants and acentric factors for long-chain alkanes suitable for corresponding states applications

    DEFF Research Database (Denmark)

    Kontogeorgis, Georgios; Dimitrios, Tassios

    1997-01-01

    Several methods for the estimation of the critical temperature T-c, the critical pressure P-c, and the acentric factor omega for long-chain n-alkanes are reviewed and evaluated for the prediction of vapor pressures using Corresponding States (CS) methods, like the Lee-Kesler equation and the cubic...... equations of state. Most reliable and recent literature methods proposed for the estimation of the acentric factor of heavy alkanes yield similar values and the emphasis is, thus, given to the determination of the best sets of T-c and P-c. Various extrapolation schemes proposed for this purpose and several...... general group-contribution methods were investigated in this work. The correlations proposed by K. Magoulas and D. Tassios, Thermophysical properties of n-alkanes from C-1 to C-20 and their prediction for higher ones, Fluid Phase Equilibria, 56 ( 1990) 119-140; A.S. Teja, R.J. Lee, D.J. Rosenthal, M...

  20. Long-chain carboxylic acids in pyrolysates of Green River kerogen

    Science.gov (United States)

    Kawamura, K.; Tannenbaum, E.; Huizinga, B. J.; Kaplan, I. R.

    1986-01-01

    Long-chain fatty acids (C10-C32), as well as C14-C21 isoprenoid acids (except for C18), have been identified in anhydrous and hydrous pyrolyses products of Green River kerogen (200-400 degrees C, 2-1000 hr). These kerogen-released fatty acids are characterized by a strong even/odd predominance (CPI: 4.8-10.2) with a maximum at C16 followed by lesser amounts of C18 and C22 acids. This distribution is different from that of unbound and bound geolipids extracted from Green River shale. The unbound fatty acids show a weak even/odd predominance (CPI: 1.64) with a maximum at C14, and bound fatty acids display an even/odd predominance (CPI: 2.8) with maxima at C18 and C30. These results suggest that fatty acids were incorporated into kerogen during sedimentation and early diagenesis and were protected from microbial and chemical changes over geological periods of time. Total quantities of fatty acids produced during heating of the kerogen ranged from 0.71 to 3.2 mg/g kerogen. Highest concentrations were obtained when kerogen was heated with water for 100 hr at 300 degrees C. Generally, their amounts did not decrease under hydrous conditions with increase in temperature or heating time, suggesting that significant decarboxylation did not occur under the pyrolysis conditions used, although hydrocarbons were extensively generated.

  1. H2O2 release from the very long chain acyl-CoA dehydrogenase

    Science.gov (United States)

    Kakimoto, Pâmela A.H.B.; Tamaki, Fábio K.; Cardoso, Ariel R.; Marana, Sandro R.; Kowaltowski, Alicia J.

    2015-01-01

    Enhanced mitochondrial generation of oxidants, including hydrogen peroxide (H2O2), is related to a large number of pathological conditions, including diet-induced obesity and steatohepatosis. Indeed, we have previously shown that high fat diets increase the generation of H2O2 in liver mitochondria energized by activated fatty acids. Here, we further study fatty-acid induced H2O2 release in liver mitochondria, and determine the characteristics that regulate it. We find that this production of H2O2 is independent of mitochondrial inner membrane integrity and insensitive to purine nucleotides. On the other hand, palmitate-induced H2O2 production is strongly enhanced by high fat diets and is pH-sensitive, with a peak at a matrix pH of ~8.5. Using recombinantly expressed human very long chain acyl-CoA dehydrogenase, we are able to demonstrate that palmitate-induced H2O2 release may be ascribed to the activity of this enzyme alone, acting as an oxidase. Our results add to a number of findings indicating that sources outside of the electron transport chain can generate significant, physiopathologically relevant, amounts of oxidants in mitochondria. PMID:25728796

  2. H2O2 release from the very long chain acyl-CoA dehydrogenase

    Directory of Open Access Journals (Sweden)

    Pâmela A.H.B. Kakimoto

    2015-04-01

    Full Text Available Enhanced mitochondrial generation of oxidants, including hydrogen peroxide (H2O2, is related to a large number of pathological conditions, including diet-induced obesity and steatohepatosis. Indeed, we have previously shown that high fat diets increase the generation of H2O2 in liver mitochondria energized by activated fatty acids. Here, we further study fatty-acid induced H2O2 release in liver mitochondria, and determine the characteristics that regulate it. We find that this production of H2O2 is independent of mitochondrial inner membrane integrity and insensitive to purine nucleotides. On the other hand, palmitate-induced H2O2 production is strongly enhanced by high fat diets and is pH-sensitive, with a peak at a matrix pH of ~8.5. Using recombinantly expressed human very long chain acyl-CoA dehydrogenase, we are able to demonstrate that palmitate-induced H2O2 release may be ascribed to the activity of this enzyme alone, acting as an oxidase. Our results add to a number of findings indicating that sources outside of the electron transport chain can generate significant, physiopathologically relevant, amounts of oxidants in mitochondria.

  3. H2O2 release from the very long chain acyl-CoA dehydrogenase.

    Science.gov (United States)

    Kakimoto, Pâmela A H B; Tamaki, Fábio K; Cardoso, Ariel R; Marana, Sandro R; Kowaltowski, Alicia J

    2015-01-01

    Enhanced mitochondrial generation of oxidants, including hydrogen peroxide (H2O2), is related to a large number of pathological conditions, including diet-induced obesity and steatohepatosis. Indeed, we have previously shown that high fat diets increase the generation of H2O2 in liver mitochondria energized by activated fatty acids. Here, we further study fatty-acid induced H2O2 release in liver mitochondria, and determine the characteristics that regulate it. We find that this production of H2O2 is independent of mitochondrial inner membrane integrity and insensitive to purine nucleotides. On the other hand, palmitate-induced H2O2 production is strongly enhanced by high fat diets and is pH-sensitive, with a peak at a matrix pH of ~8.5. Using recombinantly expressed human very long chain acyl-CoA dehydrogenase, we are able to demonstrate that palmitate-induced H2O2 release may be ascribed to the activity of this enzyme alone, acting as an oxidase. Our results add to a number of findings indicating that sources outside of the electron transport chain can generate significant, physiopathologically relevant, amounts of oxidants in mitochondria. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  4. The Role of Long-Chained Marine N-3 Polyunsaturated Fatty Acids in Cardiovascular Disease

    Directory of Open Access Journals (Sweden)

    Hildegunn Aarsetoey

    2012-01-01

    Full Text Available This paper reviews the current evidence regarding long-chained marine omega-3 polyunsaturated fatty acids (PUFAs and cardiovascular disease (CVD, their possible mechanisms of action, and results of clinical trials. Also, primary and secondary prevention trials as studies on antiarrhythmic effects and meta-analyses are summarized. However, the individual bioavailability of n-3 PUFAs along with the highly different study designs and estimations of FAs intake or supplementation dosages in patient populations with different background intake of n-3 PUFAs might be some of the reasons for the inconsistent findings of the studies evaluating the impact of n-3 PUFAs on CVD. The question of an optimum dose of n-3 PUFAs or whether there exists a dose-response relation for n-3 PUFA supplementation is widely discussed. Moreover, the difficulties in interpreting meta-analyses are clearly demonstrated by two recently published meta-analyses (Rizos et al. and Delgado Lista et al., evaluating the efficacy of n-3 PUFAs on CVD, including 12 common studies, but drawing opposite conclusions. We definitely need more large-scale, randomized clinical trials of long duration, also reporting harmful effects of n-3 PUFAs.

  5. Waste lipids to energy: how to optimize methane production from long-chain fatty acids (LCFA).

    Science.gov (United States)

    Alves, M Madalena; Pereira, M Alcina; Sousa, Diana Z; Cavaleiro, Ana J; Picavet, Merijn; Smidt, Hauke; Stams, Alfons J M

    2009-09-01

    The position of high-rate anaerobic technology (HR-AnWT) in the wastewater treatment and bioenergy market can be enhanced if the range of suitable substrates is expanded. Analyzing existing technologies, applications and problems, it is clear that, until now, wastewaters with high lipids content are not effectively treated by HR-AnWT. Nevertheless, waste lipids are ideal potential substrates for biogas production, since theoretically more methane can be produced, when compared with proteins or carbohydrates. In this minireview, the classical problems of lipids methanization in anaerobic processes are discussed and new concepts to enhance lipids degradation are presented. Reactors operation, feeding strategies and prospects of technological developments for wastewater treatment are discussed. Long-chain fatty acids (LCFA) degradation is accomplished by syntrophic communities of anaerobic bacteria and methanogenic archaea. For optimal performance these syntrophic communities need to be clustered in compact aggregates, which is often difficult to achieve with wastewaters that contain fats and lipids. Driving the methane production from lipids/LCFA at industrial scale without risk of overloading and inhibition is still a challenge that has the potential for filling a gap in the existing processes and technologies for biological methane production associated to waste and wastewater treatment.

  6. Evaluation of the atmospheric transport of marine-derived particles using long-chain unsaturated ketones

    Energy Technology Data Exchange (ETDEWEB)

    Sicre, M.A.; Gagosian, R.B.; Peltzer, E.T. (Woods Hole Oceanographic Institution, MA (United States))

    1990-02-20

    Biomarker source information provided by long-chain alkenone (LCA) distribution patterns was used to assess the transport pathways of marine aerosols. The C{sub 37}-C{sub 39}LCA were found in significant amounts in aerosols collected in New Zealand. Their occurrence in the atmosphere stems from their introduction by bubble-bursting processes during wave breaking. The surface water temperatures calculated from the U{sub 37}{sup k} ratios suggested a local origin and short atmospheric residence times of the LCA. They were not detected in aerosol samples collected on American Samoa due to the absence of the source organisms in surface waters. The distribution of LCA was also investigated in size-fractionated aerosols over a range of < 0.5 to > 7.2 {mu}m equivalent diameter. Their distribution over the size spectrum demonstrated that they were only associated with large particles (d{sub eq} > 3.0 {mu}m), suggesting a direct injection of algal cells and/or their fragments into the atmosphere.

  7. Reversible Self-Assembly of Backbone-Thermoresponsive Long Chain Hyperbranched Poly(N-Isopropyl Acrylamide

    Directory of Open Access Journals (Sweden)

    Ting-Ting Liu

    2016-01-01

    Full Text Available In this paper, we mainly described the reversible self-assembly of a backbone-thermoresponsive, long-chain, hyperbranched poly(N-isopropyl acrylamide (LCHBPNIPAM in aqueous solution. Here, we revealed a reversible self-assembly behavior of LCHBPNIPAM aqueous solution derived from temperature. By controlling the temperature of LCHBPNIPAM aqueous solution, we tune the morphology of the LCHBPNIPAM self-assemblies. When the solution temperature increased from the room temperature to the lower critical solution temperature of PNIPAM segments, LCHBPNIPAM self-assembled from multi-compartment vesicles into solid micelles. The morphology of LCHBPNIPAM self-assemblies changed from solid micelles to multi-compartment vesicles again when the temperature decreased back to the room temperature. The size presented, at first, an increase, and then a decrease, tendency in the heating-cooling process. The above thermally-triggered self-assembly behavior of LCHBPNIPAM aqueous solution was investigated by dynamic/static light scattering, transmission electron microscopy, atomic force microscopy, fluorescence spectroscopy, 1H nuclear magnetic resonance in D2O, and attenuated total reflectance Fourier transform infrared spectroscopy. These results indicated that LCHBPNIPAM aqueous solution presents a reversible self-assembly process. The controlled release behaviors of doxorubicin from the vesicles and micelles formed by LCHBPNIPAM further proved the feasibility of these self-assemblies as the stimulus-responsive drug delivery system.

  8. The function of very long chain polyunsaturated fatty acids in the pineal gland.

    Science.gov (United States)

    Catalá, Angel

    2010-02-01

    The mammalian pineal gland is a prominent secretory organ with a high metabolic activity. Melatonin (N-acetyl-5-methoxytryptamine), the main secretory product of the pineal gland, efficiently scavenges both the hydroxyl and peroxyl radicals counteracting lipid peroxidation in biological membranes. Approximately 25% of the total fatty acids present in the rat pineal lipids are represented by arachidonic acid (20:4n-6) and docosahexaenoic acid (22:6n-3). These very long chain polyunsaturated fatty acids play important roles in the pineal gland. In addition to the production of melatonin, the mammalian pineal gland is able of convert these polyunsaturated fatty acids into bioactive lipid mediators. Lipoxygenation is the principal lipoxygenase (LOX) activity observed in the rat pineal gland. Lipoxygenation in the pineal gland is exceptional because no other brain regions express significant LOX activities under normal physiological conditions. The rat pineal gland expresses both 12- and 15-lipoxygenase (LOX) activities, producing 12- and 15-hydroperoxyeicosatetraenoic acid (12- and 15-HpETE) from arachidonic acid and 14- and 17-hydroxydocosahexaenoic acid (14- and 17-HdoHE) from docosahexaenoic acid, respectively. The rat pineal also produces hepoxilins via LOX pathways. The hepoxilins are bioactive epoxy-hydroxy products of the arachidonic acid metabolism via the 12S-lipoxygenase (12S-LOX) pathway. The two key pineal biochemical functions, lipoxygenation and melatonin synthesis, may be synergistically regulated by the status of n-3 essential fatty acids.

  9. Long-chain omega-3 fatty acid supply in pregnancy and lactation.

    Science.gov (United States)

    Cetin, Irene; Koletzko, Berthold

    2008-05-01

    Long-chain omega-3 fatty acids are essential for the developing fetus. Docosahexaenoic acid, the most important omega-3 fatty acid, is an important component of neural and retinal membranes, and rapidly accumulates in the brain during gestation and the postnatal period. Positive associations have been shown between maternal intake of fish, seafood and omega-3 fatty acids during pregnancy and/or lactation and visual and cognitive development. The review focuses on new findings by both observational and interventional studies on the influence of omega-3 fatty acids during pregnancy or lactation on gestation length and birth weight, preterm delivery, preeclampsia, maternal depression and infant visual function and neural development. Omega-3 fatty acids have been associated with reduced risk of cardiovascular and other diseases. Observational and interventional studies indicate a significant association with prolonging gestation and reducing the risk of preterm delivery both in low-risk and in high-risk pregnancies. Further benefits have been suggested for intrauterine growth restriction, preeclampsia and postpartum depression, but the evidence is inconclusive. Higher maternal docosahexaenoic acid intake both in pregnancy and lactation is associated with positive infant neurodevelopmental outcomes. Women of reproductive age should achieve an average dietary docosahexaenoic acid intake of at least 200 mg/day.

  10. A Long-Chain Alkylation of Dialdehyde Starch to Improve Its Thermal Stability and Hydrophobicity

    Directory of Open Access Journals (Sweden)

    Jiang Zhu

    2016-01-01

    Full Text Available Hydrophobic dialdehyde starch (HDAS was synthesized by dialdehyde starch (DAS and eighteen-alkyl primary amine as the raw material in DMSO. The effect of the reaction conditions on the yield of HDAS was investigated such as catalyst content, reaction temperature, reaction time, and the in-feed molar ratio of -CHO/-NH2. Moreover, the optimized test parameters were obtained by conducting orthogonal experiment. The molecular structure and the morphology of HDAS were characterized via Fourier transform infrared spectroscopy (FTIR and scanning electron microscope (SEM. And the thermal stability and the hydrophobic properties of HDAS were investigated by thermal gravimetric analyzer (TG and the hydrophobic testing. The results indicate that the yield of HDAS is the highest up to 44.21%, with feed composition 1 : 0.9, reaction temperature 40°C, reaction time 8 h, and acetic acid content 3%. And the introduction of the long-chain alkyl groups into the DAS backbones will ameliorate efficaciously the thermal stability and the hydrophobic properties of DAS, which almost has no effect on the DAS particle size.

  11. Genetically engineering cyanobacteria to convert CO₂, water, and light into the long-chain hydrocarbon farnesene.

    Science.gov (United States)

    Halfmann, Charles; Gu, Liping; Gibbons, William; Zhou, Ruanbao

    2014-12-01

    Genetically engineered cyanobacteria offer a shortcut to convert CO2 and H2O directly into biofuels and high value chemicals for societal benefits. Farnesene, a long-chained hydrocarbon (C15H24), has many applications in lubricants, cosmetics, fragrances, and biofuels. However, a method for the sustainable, photosynthetic production of farnesene has been lacking. Here, we report the photosynthetic production of farnesene by the filamentous cyanobacterium Anabaena sp. PCC 7120 using only CO2, mineralized water, and light. A codon-optimized farnesene synthase gene was chemically synthesized and then expressed in the cyanobacterium, enabling it to synthesize farnesene through its endogenous non-mevalonate (MEP) pathway. Farnesene excreted from the engineered cyanobacterium volatilized into the flask head space and was recovered by adsorption in a resin column. The maximum photosynthetic productivity of farnesene was 69.1 ± 1.8 μg·L(-1)·O.D.(-1)·d(-1). Compared to the wild type, the farnesene-producing cyanobacterium also exhibited a 60 % higher PSII activity under high light, suggesting increased farnesene productivity in such conditions. We envision genetically engineered cyanobacteria as a bio-solar factory for photosynthetic production of a wide range of biofuels and commodity chemicals.

  12. Suppression of adipose lipolysis by long-chain fatty acid analogs.

    Science.gov (United States)

    Kalderon, Bella; Azazmeh, Narmen; Azulay, Nili; Vissler, Noam; Valitsky, Michael; Bar-Tana, Jacob

    2012-05-01

    Agonist-induced lipolysis of adipose fat is robustly inhibited by insulin or by feedback inhibition by the long-chain fatty acids (LCFA) produced during lipolysis. However, the mode of action of LCFA in suppressing adipose lipolysis is not clear. β,β'-Tetramethyl hexadecanedioic acid (Mββ/ EDICA16) is a synthetic LCFA that is neither esterified into lipids nor β-oxidized, and therefore, it was exploited for suppressing agonist-induced lipolysis in analogy to natural LCFA. Mββ is shown here to suppress isoproterenol-induced lipolysis in the rat in vivo as well as in 3T3-L1 adipocytes. Inhibition of isoproterenol-induced lipolysis is due to decrease in isoproterenol-induced cAMP with concomitant inhibition of the phosphorylation of hormone-sensitive lipase and perilipin by protein kinase A. Suppression of cellular cAMP levels is accounted for by inhibition of the adenylate cyclase due to suppression of Raf1 expression by Mββ-activated AMPK. Suppression of Raf1 is further complemented by induction of components of the unfolded-protein-response by Mββ. Our findings imply genuine inhibition of agonist-induced adipose lipolysis by LCFA, independent of their β-oxidation or reesterification. Mββ suppression of agonist-induced lipolysis and cellular cAMP levels independent of the insulin transduction pathway may indicate that synthetic LCFA could serve as insulin mimetics in the lipolysis context under conditions of insulin resistance.

  13. Long-chain omega-3 fatty acids improve brain function and structure in older adults.

    Science.gov (United States)

    Witte, A Veronica; Kerti, Lucia; Hermannstädter, Henrike M; Fiebach, Jochen B; Schreiber, Stephan J; Schuchardt, Jan Philipp; Hahn, Andreas; Flöel, Agnes

    2014-11-01

    Higher intake of seafish or oil rich in long-chain omega-3 polyunsaturated fatty acids (LC-n3-FA) may be beneficial for the aging brain. We tested in a prospective interventional design whether high levels of supplementary LC-n3-FA would improve cognition, and addressed potential mechanisms underlying the effects. Sixty-five healthy subjects (50-75 years, 30 females) successfully completed 26 weeks of either fish oil (2.2 g/day LC-n3-FA) or placebo intake. Before and after the intervention period, cognitive performance, structural neuroimaging, vascular markers, and blood parameters were assayed. We found a significant increase in executive functions after LC-n3-FA compared with placebo (P = 0.023). In parallel, LC-n3-FA exerted beneficial effects on white matter microstructural integrity and gray matter volume in frontal, temporal, parietal, and limbic areas primarily of the left hemisphere, and on carotid intima media thickness and diastolic blood pressure. Improvements in executive functions correlated positively with changes in omega-3-index and peripheral brain-derived neurotrophic factor, and negatively with changes in peripheral fasting insulin. This double-blind randomized interventional study provides first-time evidence that LC-n3-FA exert positive effects on brain functions in healthy older adults, and elucidates underlying mechanisms. Our findings suggest novel strategies to maintain cognitive functions into old age.

  14. Candida cloacae oxidation of long-chain fatty acids to dioic acids.

    Science.gov (United States)

    Green; Turner; Woodley

    2000-08-01

    Candida cloacae cells oxidize long-chain fatty acids to their corresponding dicarboxylic acids (dioic acids) at rates dependent on their chain length and degree of saturation. This is despite the well-known toxicity of the fatty acids. Among the saturated substrates, the oxidation is limited to lauric acid (C12). The addition of pristane (5% v/v), which acts as an inert carrier for the poorly water-soluble substrate, boosts the oxidation of lauric acid to a rate that is comparable to that of dodecane. When dissolved in pristane, myristic (C14) and palmitic (C16) acids are effective carbon sources for C. cloacae, but dioic acid production is very low. Media glucose concentration and pH also influence cell growth and productivity. After the glucose is depleted, oxidation is optimal at a low pH. A two-phase (pristane/water) reaction was tested in a 2-l stirred tank bioreactor in which growth and oxidation were separated. A 50% w/w conversion of lauric acid (10 g/l) to dodecanedioic acid was achieved. The bioreactor also alleviated poor mass transfer characteristics experienced in shake flasks.

  15. Study the cooperative motion of long-chain polyelectrolyte in presence of small globular protein

    Science.gov (United States)

    Trabelsi, Saber; Bassalah, Mohamed Arbi; Aschi, Adel; Othman, Tahar; Gharbi, Abdelhafidh

    2016-12-01

    We study in this paper the effect of small globular protein on the dynamic properties of long-chain NaPSS in semidilute regime using Dynamic Light Scattering and viscometry in three phases respecting the pH of the medium. The scaling concept of the heterogeneous system is compared with the De Gennes argument for homogeneous polymer solutions. The results showed a positive and negative deviations to the De Gennes approach of the correlation length scale of mixture defined by (c/c*)δ. The macroscopic viscosity of protein and the potential electrostatic interaction are taken as principal factors affecting the cooperative motion of blobs. δ was discussed as the parameter responsible for the conformational change of polyelectrolyte chain subunit within blob. The theoretical analysis of the electrostatic interaction between protein and subunit gave one possible solution relating the deviation δ to the dimensionless coupling constant u as δ uu+1 and δ - 1/3 u/u+1 for a swollen and shrunk subunit, respectively. A good accordance of experimental values of δ to theoretical approach was found.

  16. Clinical overview of effects of dietary long-chain polyunsaturated fatty acids during the perinatal period.

    Science.gov (United States)

    Scholtz, Susan A; Colombo, John; Carlson, Susan E

    2013-01-01

    The current report provides a brief background introducing 30 years of research on long-chain polyunsaturated fatty acids (LC-PUFA) and infant development, but focuses mainly on challenges for future studies. Infants fed formulas containing only vegetable fats were found to have lower docosahexaenoic acid (DHA, 22:6n-3) and arachidonic acid (20:4n-6) status than infants fed human milk. Studies soon focused on efforts to improve LC-PUFA status and evaluate functions suggested by early primate studies of DHA deficiency. Despite evidence for the importance of these fatty acids for development, particularly DHA, several recent meta-analyses conclude dietary supplementation does not enhance development. Future studies should employ (1) more finely grained measures of brain development as opposed to global measures, and (2) tests that evaluate development later in childhood when children are able to be tested on more complex behaviors (if found effective these would also be evidence of early brain programming). (3) Studies are needed to understand the cause of high variability in transfer of DHA to the fetus. (4) Finally, the role of single-nucleotide polymorphisms of the fatty acid desaturase genes 1 and 2 of mother and infant needs study to determine how they affect requirements for these fatty acids by the fetus/infant.

  17. High contents of very long-chain polyunsaturated fatty acids in different moss species.

    Science.gov (United States)

    Beike, Anna K; Jaeger, Carsten; Zink, Felix; Decker, Eva L; Reski, Ralf

    2014-02-01

    Polyunsaturated fatty acids (PUFAs) are important cellular compounds with manifold biological functions. Many PUFAs are essential for the human diet and beneficial for human health. In this study, we report on the high amounts of very long-chain (vl) PUFAs (≥C₂₀) such as arachidonic acid (AA) in seven moss species. These species were established in axenic in vitro culture, as a prerequisite for comparative metabolic studies under highly standardized laboratory conditions. In the model organism Physcomitrella patens, tissue-specific differences in the fatty acid compositions between the filamentous protonema and the leafy gametophores were observed. These metabolic differences correspond with differential gene expression of fatty acid desaturase (FADS)-encoding genes in both developmental stages, as determined via microarray analyses. Depending on the developmental stage and the species, AA amounts for 6-31 %, respectively, of the total fatty acids. Subcellular localization of the corresponding FADS revealed the endoplasmic reticulum as the cellular compartment for AA synthesis. Our results show that vlPUFAs are highly abundant metabolites in mosses. Standardized cultivation techniques using photobioreactors along with the availability of the P. patens genome sequence and the high rate of homologous recombination are the basis for targeted metabolic engineering in moss. The potential of producing vlPUFAs of interest from mosses will be highlighted as a promising area in plant biotechnology.

  18. Aminocarnitine and acylaminocarnitines: Carnitine acyltransferase inhibitors affecting long-chain fatty acid and glucose metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Clark, D.J.

    1989-01-01

    DL-Aminocarnitine (DL-3-amino-4-trimethylaminobutyrate) and the acylaminocarnitines acetyl-, decanoyl- and palmitoyl-DL-aminocarnitine have been synthesized and tested as inhibitors of carnitine palmitoyl-transferase and carnitine acetyltransferase in vitro and in vivo. Acetyl-DL-aaminocarnitine is the most potent reversible inhibitor of carnitine acetyltransferase reported to date, and is competitive with respect to acetyl-L-carnitine. Mice given acetyl-DL-aminocarnitine metabolize (U-{sup 14}C)acetyl-L-carnitine at about 60% of the rate of control mice. Palmitoyl-DL-aminocarnitine is the most potent reversible inhibitor of carnitine palmitoyltransferase reported to date. Decanoyl-DL-aminocarnitine and DL-aminocarnitine are also very potent inhibitors; all compounds inhibit the catabolism of ({sup 14}C)palmitate to {sup 14}CO{sub 2} in intact mice by at least 50%. Carnitine palmitoyltransferase controls the entry of long-chain fatty acids into the mitochondrial matrix for {beta}-oxidation. The inhibition of carnitine palmitoyltransferase by aminocarnitine or acylaminocarnitines in vivo prevents or reverses ketogenesis in fasted mice, and causes the reversible accumulation of triglycerides in liver, kidney and plasma. Administration of DL-aminocarnitine to streptozotocindiabetic mice lowers plasma glucose levels and improves the glucose tolerance test.

  19. Transesterification reaction between medium- and long-chain fatty acid triglycerides using surfactant-modified lipase.

    Science.gov (United States)

    Mogi, K; Nakajima, M; Mukataka, S

    2000-03-05

    Transesterification between medium-chain fatty acid triglycerides (MCT) and long-chain fatty acid triglycerides (LCT) in a nonsolvent system was investigated using surfactant modified lipase which is a complex of lipase, Rhizopus japonicus and surfactant, sorbitan monostearate. 74% conversion of was obtained after a 48-h reaction period, and the triglyceride composition was well described by the 1, 3-random 2-random stochastic model. The transesterification reaction between MCT and LCT closely followed the simple kinetic model, and the change in MCT and LCT contents could be simulated using one parameter. The effects of the water activity (A(w)) of modified lipase, the water content of the reaction system and the reaction temperature on the reaction rate were studied. A modified lipase A(w) of 0.35 and a water content of the reaction system at 0.09 wt % showed the highest activity. Inactivation did not occur below 60 degrees C, however, the activity decreased at temperatures over 70 degrees C. Copyright 2000 John Wiley & Sons, Inc.

  20. Soluble Platinum Nanoparticles Ligated by Long-Chain N-Heterocyclic Carbenes as Catalysts.

    Science.gov (United States)

    Martínez-Prieto, Luis M; Rakers, Lena; López-Vinasco, Angela M; Cano, Israel; Coppel, Yannick; Philippot, Karine; Glorius, Frank; Chaudret, Bruno; van Leeuwen, Piet W N M

    2017-09-18

    Soluble platinum nanoparticles (Pt NPs) ligated by two different long-chain N-heterocyclic carbenes (LC-IPr and LC-IMe) were synthesized and fully characterized by TEM, high-resolution TEM, wide-angle X-ray scattering (WAXS), X-ray photoelectron spectroscopy (XPS), and solution NMR. The surface chemistry of these NPs (Pt@LC-IPr and Pt@LC-IMe) was investigated by FT-IR and solid state NMR using CO as a probe molecule. A clear influence of the bulkiness of the N-substituents on the size, surface state, and catalytic activity of these Pt NPs was observed. While Pt@LC-IMe showed no activity in the hydroboration of phenylacetylene, Pt@LC-IPr revealed good selectivity for the trans-isomer, which may be supported by a homogeneous species. This is the first example of hydroboration of acetylenes catalyzed by non-supported Pt NPs. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. "Green" functionalization of pristine multi-walled carbon nanotubes with long-chain aliphatic amines.

    Science.gov (United States)

    Basiuk, Elena V; Ochoa-Olmos, Omar; Contreras-Torres, Flavio F; Meza-Laguna, Víctor; Alvarez-Zauco, Edgar; Puente-Lee, Iván; Basiuk, Vladimir A

    2011-06-01

    Short pristine multi-walled carbon nanotubes (MWNTs) were functionalized with a series of long-chain (including polymeric) aliphatic amines, namely octadecylamine (ODA), 1,8-diaminooctane (DO), polyethylene glycol diamine (PEGDA) and polyethylenimine (PEI), via two "green" approaches: (1) gas-phase functionalization (for volatile ODA and DO) and (2) direct heating in the melt (for polymeric PEGDA and PEI). Both of them consist in one-step reaction between MWNTs and amine without the use of organic solvents. The nanostructures obtained were characterized by using infrared spectroscopy, thermogravimetric analysis, scanning electron microscopy, atomic force microscopy, and transmission electron microscopy. It was observed that both solvent-free methods were efficient in the nanotube functionalization, and the nanostructures of variable solubility and morphology were obtained depending on the amines attached. ODA, PEGDA and PEI-functionalized MWNTs were found to be soluble in propanol, meanwhile the MWNTs-PEGDA and MWNTs-PEI were soluble in water as well. The attachment of 1,8-diaminooctane onto MWNTs resulted in cross-linked stable nanostructure.

  2. Contrasting metabolic effects of medium- versus long-chain fatty acids in skeletal muscle.

    Science.gov (United States)

    Montgomery, Magdalene K; Osborne, Brenna; Brown, Simon H J; Small, Lewin; Mitchell, Todd W; Cooney, Gregory J; Turner, Nigel

    2013-12-01

    Dietary intake of long-chain fatty acids (LCFAs) plays a causative role in insulin resistance and risk of diabetes. Whereas LCFAs promote lipid accumulation and insulin resistance, diets rich in medium-chain fatty acids (MCFAs) have been associated with increased oxidative metabolism and reduced adiposity, with few deleterious effects on insulin action. The molecular mechanisms underlying these differences between dietary fat subtypes are poorly understood. To investigate this further, we treated C2C12 myotubes with various LCFAs (16:0, 18:1n9, and 18:2n6) and MCFAs (10:0 and 12:0), as well as fed mice diets rich in LCFAs or MCFAs, and investigated fatty acid-induced changes in mitochondrial metabolism and oxidative stress. MCFA-treated cells displayed less lipid accumulation, increased mitochondrial oxidative capacity, and less oxidative stress than LCFA-treated cells. These changes were associated with improved insulin action in MCFA-treated myotubes. MCFA-fed mice exhibited increased energy expenditure, reduced adiposity, and better glucose tolerance compared with LCFA-fed mice. Dietary MCFAs increased respiration in isolated mitochondria, with a simultaneous reduction in reactive oxygen species generation, and subsequently low oxidative damage. Collectively our findings indicate that in contrast to LCFAs, MCFAs increase the intrinsic respiratory capacity of mitochondria without increasing oxidative stress. These effects potentially contribute to the beneficial metabolic actions of dietary MCFAs.

  3. Long-chain omega-3 from low-trophic-level fish provides value to farmed seafood.

    Science.gov (United States)

    Bibus, Douglas M

    2015-03-01

    Low-trophic-level fish are a crucial source of long-chain (LC) omega-3 fatty acids for farmed fish and humans. Many farm-raised fish species have a clear need for these nutrients. Farmed fish deposit the LC omega-3s in their flesh and transfer them up the food chain. However, the content of LC omega-3s in farm-raised seafood continues to decline, while the content of shorter-chain plant-sourced omega-3s, and pro-inflammtory omega-6s continue to increase. This reduces its nutritional worth. The value of low-trophic-level fish is often viewed merely as its price at the dock. Some reports and metrics steer public attention towards the mass balance between quantities of low-trophic-level fish and farmed seafood. However, the the nutritional value of seafood is more important than its mere quantities. The role of low-trophic-level fish in human nutrition, health, and wellbeing is a fundamental component of its economic value to society.

  4. Neutral fat hydrolysis and long-chain fatty acid oxidation during anaerobic digestion of slaughterhouse wastewater.

    Science.gov (United States)

    Masse, L; Massé, D I; Kennedy, K J; Chou, S P

    2002-07-05

    Neutral fat hydrolysis and long-chain fatty acid (LCFA) oxidation rates were determined during the digestion of slaughterhouse wastewater in anaerobic sequencing batch reactors operated at 25 degrees C. The experimental substrate consisted of filtered slaughterhouse wastewater supplemented with pork fat particles at various average initial sizes (D(in)) ranging from 60 to 450 microm. At the D(in) tested, there was no significant particle size effect on the first-order hydrolysis rate. The neutral fat hydrolysis rate averaged 0.63 +/- 0.07 d(-1). LCFA oxidation rate was modelled using a Monod-type equation. The maximum substrate utilization rate (kmax) and the half-saturation concentration (Ks) averaged 164 +/- 37 mg LCFA/L/d and 35 +/- 31 mg LCFA/L, respectively. Pork fat particle degradation was mainly controlled by LCFA oxidation rate and, to a lesser extent, by neutral fat hydrolysis rate. Hydrolysis pretreatment of fat-containing wastewaters and sludges should not substantially accelerate their anaerobic treatment. At a D(in) of 450 microm, fat particles were found to inhibit methane production during the initial 20 h of digestion. Inhibition of methane production in the early phase of digestion was the only significant effect of fat particle size on anaerobic digestion of pork slaughterhouse wastewater. Soluble COD could not be used to determine the rate of lipid hydrolysis due to LCFA adsorption on the biomass.

  5. Extracorporeal membrane oxygenation promotes long chain fatty acid oxidation in the immature swine heart in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Kajimoto, Masaki; O' Kelly-Priddy, Colleen M.; Ledee, Dolena R.; Xu, Chun; Isern, Nancy G.; Olson, Aaron; Portman, Michael A.

    2013-09-01

    Extracorporeal membrane oxygenation (ECMO) supports infants and children with severe cardiopulmonary compromise. Nutritional support for these children includes provision of medium- and long-chain fatty acids (FAs). However, ECMO induces a stress response, which could limit the capacity for FA oxidation. Metabolic impairment could induce new or exacerbate existing myocardial dysfunction. Using a clinically relevant piglet model, we tested the hypothesis that ECMO maintains the myocardial capacity for FA oxidation and preserves myocardial energy state. Provision of 13-Carbon labeled medium-chain FA (octanoate), longchain free FAs (LCFAs), and lactate into systemic circulation showed that ECMO promoted relative increases in myocardial LCFA oxidation while inhibiting lactate oxidation. Loading of these labeled substrates at high dose into the left coronary artery demonstrated metabolic flexibility as the heart preferentially oxidized octanoate. ECMO preserved this octanoate metabolic response, but also promoted LCFA oxidation and inhibited lactate utilization. Rapid upregulation of pyruvate dehydrogenase kinase-4 (PDK4) protein appeared to participate in this metabolic shift during ECMO. ECMO also increased relative flux from lactate to alanine further supporting the role for pyruvate dehydrogenase inhibition by PDK4. High dose substrate loading during ECMO also elevated the myocardial energy state indexed by phosphocreatine to ATP ratio. ECMO promotes LCFA oxidation in immature hearts, while maintaining myocardial energy state. These data support the appropriateness of FA provision during ECMO support for the immature heart.

  6. Plasma very long-chain n-3 polyunsaturated fatty acids and age-related hearing loss in older adults

    NARCIS (Netherlands)

    Dullemeijer, C.; Verhoef, P.; Brouwer, I.A.; Kok, F.J.; Brummer, R.J.; Durga, J.

    2010-01-01

    Objectives: Age-related hearing loss is a common social and health problem in the older adult population. Up until now, very little scientific attention has been given to the potential role of fatty acids in agerelated hearing loss. In this study we investigated whether plasma very long-chain n-3 po

  7. Plasma very long-chain n-3 polyunsaturated fatty acids and age-related hearing loss in older adults

    NARCIS (Netherlands)

    Dullemeijer, C.; Verhoef, P.; Brouwer, I.A.; Kok, F.J.; Brummer, R.J.; Durga, J.

    2010-01-01

    Objectives: Age-related hearing loss is a common social and health problem in the older adult population. Up until now, very little scientific attention has been given to the potential role of fatty acids in agerelated hearing loss. In this study we investigated whether plasma very long-chain n-3

  8. Prenatal long-chain polyunsaturated fatty acid status : the importance of a balanced intake of docosahexaenoic acid and arachidonic acid

    NARCIS (Netherlands)

    Hadders-Algra, Mijna

    2008-01-01

    This review addresses the effect of prenatal long-chain polyunsaturated fatty acid (LCPUFA) status on neuro-developmental outcome. It focuses on the major LPCUFA doxosahexaenoic acid (DNA; 22:6 omega 3) and arachidonic acid (AA; 20:4 omega 6). Due to enzymatic competition high DHA intake results in

  9. The Impact of Dietary Long-Chain Polyunsaturated Fatty Acids on Respiratory Illness in Infants and Children

    NARCIS (Netherlands)

    Hageman, J.H.J.; Hooyenga, P.; Diersen-Schade, D.A.; Scalabrin, D.M.F.; Wichers, H.J.; Birch, E.E.

    2012-01-01

    Increasing evidence suggests that intake of long-chain polyunsaturated fatty acids (LCPUFA), especially omega-3 LCPUFA, improves respiratory health early in life. This review summarizes publications from 2009 through July 2012 that evaluated effects of fish, fish oil or LCPUFA intake during pregnanc

  10. Effect of Long-Chain Polyunsaturated Fatty Acid Supplementation on Neurodevelopmental Outcome in Full-Term Infants

    NARCIS (Netherlands)

    Hadders-Algra, Mijna

    2010-01-01

    It takes more than 20 years before the human brain obtains its complex, adult configuration. Most dramatic developmental changes occur prenatally and early postnatally. During development, long-chain polyunsaturated fatty acids (LCPUFA) such as doxosahexaenoic acid (DHA) and arachidonic acid (AA) ar

  11. Increased and early lipolysis in children with long-chain 3-hydroxyacyl-CoA dehydrogenase (LCHAD) deficiency during fast.

    Science.gov (United States)

    Haglind, C Bieneck; Nordenström, A; Ask, S; von Döbeln, U; Gustafsson, J; Stenlid, M Halldin

    2015-03-01

    Children with long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency (LCHAD) have a defect in the degradation of long-chain fatty acids and are at risk of hypoketotic hypoglycemia and insufficient energy production as well as accumulation of toxic fatty acid intermediates. Knowledge on substrate metabolism in children with LCHAD deficiency during fasting is limited. Treatment guidelines differ between centers, both as far as length of fasting periods and need for night feeds are concerned. To increase the understanding of fasting intolerance and improve treatment recommendations, children with LCHAD deficiency were investigated with stable isotope technique, microdialysis, and indirect calometry, in order to assess lipolysis and glucose production during 6 h of fasting. We found an early and increased lipolysis and accumulation of long chain acylcarnitines after 4 h of fasting, albeit no patients developed hypoglycemia. The rate of glycerol production, reflecting lipolysis, averaged 7.7 ± 1.6 µmol/kg/min, which is higher compared to that of peers. The rate of glucose production was normal for age; 19.6 ± 3.4 µmol/kg/min (3.5 ± 0.6 mg/kg/min). Resting energy expenditure was also normal, even though the respiratory quotient was increased indicating mainly glucose oxidation. The results show that lipolysis and accumulation of long chain acylcarnitines occurs before hypoglycemia in fasting children with LCHAD, which may indicate more limited fasting tolerance than previously suggested.

  12. On the role of long-chain aldehydes in the light reaction in Photobacterium phosphoreum enzyme preparations

    NARCIS (Netherlands)

    Terpstra, Willemke

    1960-01-01

    1. (1) Active luciferase-DPNH-oxidase preparations from Photobacterium phosphoreum generally contain some aldehyde-attacking enzyme, probably ADH. Under the experimental conditions applied this enzyme appears to attack decanal, but not palmital. 2. (2) The presence of long-chain aldehydes in the en

  13. Establishment and Characterization of an Anaerobic Thermophilic (55 degrees C) Enrichment Culture Degrading Long-Chain Fatty Acids

    DEFF Research Database (Denmark)

    Angelidaki, Irini; Ahring, Birgitte Kiær

    1995-01-01

    A thermophilic, long-chain fatty acid-oxidizing culture was enriched. Stearate was used as the substrate, and methane and carbon dioxide were the sole end products. Cultivation was possible only when a fed-batch system was used or with addition of activated carbon or bentonite. The enrichment...

  14. Prenatal long-chain polyunsaturated fatty acid status : the importance of a balanced intake of docosahexaenoic acid and arachidonic acid

    NARCIS (Netherlands)

    Hadders-Algra, Mijna

    2008-01-01

    This review addresses the effect of prenatal long-chain polyunsaturated fatty acid (LCPUFA) status on neuro-developmental outcome. It focuses on the major LPCUFA doxosahexaenoic acid (DNA; 22:6 omega 3) and arachidonic acid (AA; 20:4 omega 6). Due to enzymatic competition high DHA intake results in

  15. Very long-chain n-3 polyunsaturated fatty acids: a head start to win some years between the ears?

    NARCIS (Netherlands)

    Dullemeijer, C.

    2009-01-01

    Very long-chain n-3 (or omega-3) polyunsaturated fatty acids have attracted considerable public interest during the past few years for their potential beneficial role in cognitive performance. The proposed benefits stretch from advantages in developing brains of infants and children to preventing

  16. Long-chain Acyl-CoA is not primarily increased in myotubes established from type 2 diabetic subjects

    DEFF Research Database (Denmark)

    Just, Malene; Faergeman, Nils J; Knudsen, Jens

    2006-01-01

    Accumulation of intramuscular long-chain acyl-CoA esters (LCACoA) has previously in animal and human models been suggested to play an important role in lipid induced insulin resistance. The aim of this study was to examine whether myotubes established from type 2 diabetic (T2D) subjects and lean...

  17. Reduced absorption of long-chain fatty acids during methotrexate-induced gastrointestinal mucositis in the rat

    NARCIS (Netherlands)

    Fijlstra, Margot; Tissing, Wim J. E.; Stellaard, Frans; Verkade, Henkjan J.; Rings, Edmond H. H. M.

    2013-01-01

    Background & aims: Patients with chemotherapy-induced gastrointestinal mucositis suffer from weight loss and possibly malabsorption. Since long-chain fatty acids serve important functions in the body, we aimed to determine the intestinal capacity of fat absorption in rats with and without methotrexa

  18. Industrial development of long chain paraffin (n-C10-C13) dehydrogenation catalysts and the deactivation characterization

    NARCIS (Netherlands)

    He, Songbo; Wang, Bin; Dai, Xihai; Sun, Chenglin; Bai, Ziwu; Wang, Xiao; Guo, Qi

    2015-01-01

    Pt–Sn–K–Mg/Al2O3 catalysts for the dehydrogenation of long chain paraffins (n-C100–C130) were successfully developed and applied in the industry. The catalysts were tested on both the industrial side fixed bed reactor and the industrial PACOL dehydrogenation plant. The industrially deactivated Pt–Sn

  19. Abnormal mitochondrial bioenergetics and heart rate dysfunction in mice lacking very-long-chain acyl-CoA dehydrogenase

    NARCIS (Netherlands)

    Exil, VJ; Gardner, CD; Rottman, JN; Sims, H; Bartelds, B; Khuchua, Z; Sindhal, R; Ni, GM; Strauss, AW

    2006-01-01

    Mitochondrial very-long-chain acyl-CoA dehydrogenase ( VLCAD) deficiency is associated with severe hypoglycemia, cardiac dysfunction, and sudden death in neonates and children. Sudden death is common, but the underlying mechanisms are not fully understood. We report on a mouse model of VLCAD deficie

  20. Diatomite-supported Pd-M (M=Cu, Co, Ni) bimetal nanocatalysts for selective hydrogenation of long-chain aliphatic esters.

    Science.gov (United States)

    Huang, Changliang; Zhang, Hongye; Zhao, Yanfei; Chen, Sha; Liu, Zhimin

    2012-11-15

    Diatomite supported Pd-M (M=Cu, Co, Ni) bimetal nanocatalysts with various metal compositions were prepared and characterized by means of X-ray diffraction, transmission electron microscopy, and X-ray photoelectron spectroscopy. It was demonstrated that the metal nanoparticles were uniformly distributed on the support, and their size was centered around 8 nm with a relatively narrow size distribution. The catalysts were used to catalyze hydrogenation of long-chain aliphatic esters, including methyl palmitate, methyl stearate, and methyl laurate. It was indicated that the all diatomite-supported Pd-based bimetal catalysts were active to the selective hydrogenation of long-chain esters to corresponding alcohols at 270°C, originated from the synergistic effect between the metal particles and the diatomite support. For the selective hydrogenation of methyl palmitate, Pd-Cu/diatomite with metal loading of 1% and Pd/Cu=3 displayed the highest performance, giving a 1-hexadecanol yield of 82.9% at the substrate conversion of 98.8%. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. Progress in the Synthesis Methods of Long Chain Alcohol Acrylate%长链醇丙烯酸酯合成方法的研究进展

    Institute of Scientific and Technical Information of China (English)

    毛文娟; 许孝良

    2014-01-01

    The long chain alcohol acrylate have gained enormous attention among material chemists over the years because of their three-dimensional effect and hydrophilic or hydrophobic macromolecule. They can be used as synthetic organic monomer of various polymers. In this paper, the synthesis methods of long chain alcohol acrylate were reviewed, which provided a fundamental base for the application in biological medicine, materials, surface active agent, etc.%长链醇丙烯酸酯是支链具有空间立体效应以及亲水性或疏水性的大分子,可以用作多种聚合化合物的有机合成单体。本文综述了长链丙烯酸酯的合成方法,为以后进一步研究其在生物医药、材料、表面活性剂等方面的应用提供依据。

  2. Concentrations and abundance ratios of long-chain alkenones and glycerol dialkyl glycerol tetraethers in sinking particles south of Java

    Science.gov (United States)

    Chen, Wenwen; Mohtadi, Mahyar; Schefuß, Enno; Mollenhauer, Gesine

    2016-06-01

    In this study, we obtained concentrations and abundance ratios of long-chain alkenones and glycerol dialkyl glycerol tetraethers (GDGTs) in a one-year time-series of sinking particles collected with a sediment trap moored from December 2001 to November 2002 at 2200 m water depth south of Java in the eastern Indian Ocean. We investigate the seasonality of alkenone and GDGT fluxes as well as the potential habitat depth of the Thaumarchaeota producing the GDGTs entrained in sinking particles. The alkenone flux shows a pronounced seasonality and ranges from 1 μg m-2 d-1 to 35 μg m-2 d-1. The highest alkenone flux is observed in late September during the Southeast monsoon, coincident with high total organic carbon fluxes as well as high net primary productivity. Flux-weighted mean temperature for the high flux period using the alkenone-based sea-surface temperature (SST) index U37K‧ is 26.7 °C, which is similar to satellite-derived Southeast (SE) monsoon SST (26.4 °C). The GDGT flux displays a weaker seasonality than that of the alkenones. It is elevated during the SE monsoon period compared to the Northwest (NW) monsoon and intermonsoon periods (approximately 2.5 times), which is probably related to seasonal variation of the abundance of Thaumarchaeota, or to enhanced export of GDGTs by aggregation with sinking phytoplankton detritus. Flux-weighted mean temperature inferred from the GDGT-based TEX86H index is 26.2 °C, which is 1.8 °C lower than mean annual (ma) SST but similar to SE monsoon SST. As the time series of TEX86H temperature estimates, however, does not record a strong seasonal amplitude, we infer that TEX86H reflects ma upper thermocline temperature at approximately 50 m water depth.

  3. Long-chain omega 3 fatty acids: molecular bases of potential antioxidant actions.

    Science.gov (United States)

    Giordano, Elena; Visioli, Francesco

    2014-01-01

    Several lines of investigation are being developed to assess the impact of polyunsaturated fatty acids, namely those of the omega 3 series, intake on oxidative stress. Keeping in mind that there might be a dose-response relation, in vivo and in vitro data strongly suggest that omega 3 fatty acids might act as anti- rather than pro-oxidant in several cells such as vascular cells, hence diminishing inflammation, oxidative stress, and, in turn, the risk of atherosclerosis and degenerative disorders such as cardiovascular disease. © 2013 Published by Elsevier Ltd.

  4. Hexagonal phase based gel-emulsion (O/H1 gel-emulsion): formation and rheology.

    Science.gov (United States)

    Alam, Mohammad Mydul; Aramaki, Kenji

    2008-11-04

    The formation, stability, and rheological behavior of a hexagonal phase based gel-emulsion (O/H1 gel-emulsion) have been studied in water/C12EO8/hydrocarbon oil systems. A partial phase behavior study indicates that the oil nature has no effect on the phase sequences in the ternary phase diagram of water/C12EO8/oil systems but the domain size of the phases or the oil solubilization capacity considerably changes with oil nature. Excess oil is in equilibrium with the hexagonal phase (H1) in the ternary phase diagram in the H1+O region. The O/H1 gel-emulsion was prepared (formation) and kept at 25 degrees C to check stability. It has been found that the formation and stability of the O/H1 gel-emulsion depends on the oil nature. After 2 min observation (formation), the results show that short chain linear hydrocarbon oils (heptane, octane) are more apt to form a O/H1 gel-emulsion compared to long chain linear hydrocarbon oils (tetradecane, hexadecane), though the stability is not good enough in either system, that is, oil separates within 24 h. Nevertheless, the formation and stability of the O/H1 gel-emulsion is appreciably increased in squalane and liquid paraffin. It is surmised that the high transition temperature of the H1+O phase and the presence of a bicontinuous cubic phase (V1) might hamper the formation of a gel-emulsion. It has been pointed out that the solubilization of oil in the H1 phase could be related to emulsion stability. On the other hand, the oil nature has little or no effect on the formation and stability of a cubic phase based gel-emulsion (O/I1 gel-emulsion). From rheological measurements, it has found that the rheogram of the O/H1 gel-emulsion indicates gel-type structure and shows shear thinning behavior similar to the case of the O/I1 gel-emulsion. Rheological data infer that the O/I1 gel-emulsion is more viscous than the O/H1 gel-emulsion at room temperature but the O/H1 gel-emulsion shows consistency at elevated temperature.

  5. PCSK9 variant, long-chain n-3 PUFAs, and risk of nonfatal myocardial infarction in Costa Rican Hispanics.

    Science.gov (United States)

    Yu, Zhi; Huang, Tao; Zheng, Yan; Wang, Tiange; Heianza, Yoriko; Sun, Dianjianyi; Campos, Hannia; Qi, Lu

    2017-03-22

    Background: Previous studies have indicated that the cardioprotective effects of long-chain (LC) n-3 (ω-3) polyunsaturated fatty acids (PUFAs) may vary across various ethnic populations. Emerging evidence has suggested that the gene-environment interaction may partly explain such variations. Proprotein convertase subtilisin/kexin type 9 (PCSK9) was shown to have a mutually regulating relation with LC n-3 PUFAs and also to reduce the risk of cardiovascular diseases (CVDs). Therefore, we hypothesized that certain PCSK9 genetic variants may modify the association between LC n-3 PUFA intake and CVD risk.Objective: We determined whether a PCSK9 variant (rs11206510), which has been identified for early onset myocardial infarction (MI), modified the association of LC n-3 PUFAs with nonfatal MI risk in Costa Rican Hispanics.Design: We analyzed cross-sectional data from 1932 case subjects with a first nonfatal MI and 2055 population-based control subjects who were living in Costa Rica to examine potential gene-environment interactions. Two-sided P values n-3 PUFA intake on nonfatal MI risk (P-interaction = 0.012). The OR of nonfatal MI was 0.84 (95% CI: 0.72, 0.98) per 0.1% increase in total energy intake from LC n-3 PUFAs in protective-allele (C-allele) carriers, whereas the corresponding OR (95% CI) in non-C-allele carriers was 1.02 (95% CI: 0.95, 1.10). Similar results were observed when we examined the association between docosahexaenoic acid, which is one type of LC n-3 PUFA, and nonfatal MI risk (P-interaction = 0.003).Conclusion: LC n-3 PUFA intake is associated with a lower risk of nonfatal MI in C-allele carriers of PCSK9 rs11206510 (n = 799) but not in non-C-allele carriers (n = 3188).

  6. Predictors of Australian consumers' intentions to consume conventional and novel sources of long-chain omega-3 fatty acids.

    Science.gov (United States)

    Cox, D N; Evans, G; Lease, H J

    2008-01-01

    To elicit predictors of variation in likelihood to purchase foods rich in long-chain omega-3 fatty acids. Responses from a community sample (n = 220) were elicited using a computer-administered questionnaire based on an adaptation of Protection Motivation Theory including measures of perceived risk and vulnerability to coronary heart disease (CHD). Other measures included health status, body mass index (BMI), perceived risk/benefits of novel technologies and sociodemographics. Descriptions of model products were presented, including farmed fish fed fishmeal (FFFF); farmed fish fed genetically modified (GM) oilseed (FFFGM); bread, milk and supplements containing fish oil (SFO) or GM oilseed. It was hypothesised that perceived vulnerability to CHD would enhance acceptance of GM products (H1). Furthermore, information describing the benefits of LCO3FA, limitations to fish supply and potential alternatives was given to a treatment group (50%) and hypothesised to have a positive effect on the acceptance of GM products (H2). No evidence was found to support H1 or H2. FFFF was most likely to be purchased (P purchase FFFF: self-efficacy 0.56; behaviour (product) efficacy 0.19; belief that fishmeal is unnatural -0.14 (R2 = 0.44) and for FFFGM: self-efficacy 0.65; perceived severity of CHD 0.15; BMI -0.13; significant other has/had arthritis 0.11; belief that GM oilseed is unnatural 0.11 (R2 = 0.49). Self-efficacy (confidence to consume) was the most important predictor of likelihood to purchase all products.

  7. Erythrocyte very long-chain saturated fatty acids associated with lower risk of incident sudden cardiac arrest.

    Science.gov (United States)

    Lemaitre, Rozenn N; King, Irena B; Rice, Kenneth; McKnight, Barbara; Sotoodehnia, Nona; Rea, Thomas D; Johnson, Catherine O; Raghunathan, Trivellore E; Cobb, Leonard A; Mozaffarian, Dariush; Siscovick, David S

    2014-10-01

    Prior studies suggest that circulating n-3 and trans-fatty acids influence the risk of sudden cardiac arrest (SCA). Yet, while other fatty acids also differ in their membrane properties and biological activities which may influence SCA, little is known about the associations of other circulating fatty acids with SCA. The aim of this study was to investigate the associations of 17 erythrocyte membrane fatty acids with SCA risk. We used data from a population-based case-control study of SCA in the greater Seattle, Washington, area. Cases, aged 25-74 years, were out-of-hospital SCA patients, attended by paramedics (n=265). Controls, matched to cases by age, sex and calendar year, were randomly identified from the community (n=415). All participants were free of prior clinically-diagnosed heart disease. Blood was obtained at the time of cardiac arrest by attending paramedics (cases) or at the time of an interview (controls). Higher levels of erythrocyte very long-chain saturated fatty acids (VLSFA) were associated with lower risk of SCA. After adjustment for risk factors and levels of n-3 and trans-fatty acids, higher levels of 20:0 corresponding to 1 SD were associated with 30% lower SCA risk (13-43%, p=0.001). Higher levels of 22:0 and 24:0 were associated with similar lower SCA risk (ORs for 1 SD-difference: 0.71 [95% CI: 0.57-0.88, p=0.002] for 22:0; and 0.79 [95% CI: 0.63-0.98, p=0.04] for 24:0). These novel findings support the need for investigation of biologic effects of circulating VLSFA and their determinants.

  8. Long Chain Alcohols Produced by Trichoderma citrinoviride Have Phagodeterrent Activity Against the Bird Cherry-Oat Aphid Rhopalosiphum padi

    Directory of Open Access Journals (Sweden)

    Sonia eGanassi

    2016-03-01

    Full Text Available In this study we report the effects of fungal metabolites isolated from cultures of the fungus Trichoderma citrinoviride ITEM 4484 on the feeding preference of the aphid Rhopalosiphum padi, a major pest of cereal crops. Different phagodeterrent metabolites were purified by a combination of direct and reverse phase column chromatography and thin-layer chromatography. Chemical investigations, by spectroscopic and chemical methods, led to the identification of different long chain primary alcohols (LCOHs of the general formula R-OH, wherein R is a long, unbranched, unsubstituted, linear aliphatic group. LCOHs have been reported as components of lepidopteran pheromone blends, but their phagodeterrent effect to aphids is herein reported for the first time. We studied the effects of LCOHs on R. padi by behavioral and electrophysiological bioassays. Feeding preference tests that were carried out with winged and wingless morphs of R. padi showed that LCOHs have a distinctly high phagodeterrent activity and significantly restrain aphids from settling on treated leaves already at a concentration as low as 0.15 mM (0.036 g/l. The results of different electrophysiological analyses indicate that taste receptor neurons located on the aphid tarsomeres are involved in the LCOHs perception. Behavioral assays carried out with some commercial agrochemicals, including azadirachtin A, pyrethrum and mineral oil based products, in combination with 1-hexadecanol, the LCOH most abundantly produced by T. citrinoviride ITEM 4484, showed that these different active principles can be applied together, resulting in a useful increase of the phagodeterrent effect. Therefore these compounds can be profitably utilized for novel applications in biotechnical control of aphid pests. The LCOHs tested have no chiral centers and therefore can be obtained in good yields and at low cost through chemical synthesis, beside than from natural sources.

  9. Structural identification of long-chain polyamines associated with diatom biosilica in a Southern Ocean sediment core

    Science.gov (United States)

    Bridoux, Maxime C.; Ingalls, Anitra E.

    2010-07-01

    Long-chain polyamines (LCPAs) constitute a new family of natural organic compounds that have recently been isolated and characterized from the biosilicified cell walls of diatom cultures. To date, diatom-specific polyamines have not been investigated from the marine environment and their fate in the environment is entirely unknown. Here, we report a series of LCPAs in a diatom frustule-rich sediment core (TNO57-13 PC4), originating from the Atlantic sector of the Southern Ocean and spanning from the Holocene to the Last Glacial Maximum (LGM). Liquid chromatography with electrospray ionization mass spectrometry (LC-ESI-MS) revealed a complex mixture of linear polyamines with at least 28 individual molecular species. Ion trap mass fragmentation studies, combined with high resolution Time of Flight (TOF) mass spectrometry showed that the polyamine pool consisted of a series of N-methylated propylamine compounds attached to a putrescine moiety, with individual LCPAs varying in chain length and degree of methylation. The structural similarity between LCPAs extracted from the diatom-rich sediment core and those extracted from the frustules of cultured diatoms suggests that sedimentary LCPAs are derived from diatom frustules. We hypothesize that these intrinsically labile organic molecular fossils are protected from diagenesis by encapsulation within the frustule. These compounds constitute a new class of biomarkers that could potentially be indicators of diatom species distribution. Isotopic analysis of LCPAs could be used to improve age models for sediment cores that lack calcium carbonate and to improve current interpretations of diatom-based paleoproxies, including diatom-bound nitrogen isotopes.

  10. PTH1 receptor is involved in mediating cellular response to long-chain polyunsaturated fatty acids.

    Directory of Open Access Journals (Sweden)

    Jose Candelario

    Full Text Available The molecular pathways by which long chain polyunsaturated fatty acids (LCPUFA influence skeletal health remain elusive. Both LCPUFA and parathyroid hormone type 1 receptor (PTH1R are known to be involved in bone metabolism while any direct link between the two is yet to be established. Here we report that LCPUFA are capable of direct, PTH1R dependent activation of extracellular ligand-regulated kinases (ERK. From a wide range of fatty acids studied, varying in chain length, saturation, and position of double bonds, eicosapentaenoic (EPA and docosahexaenoic fatty acids (DHA caused the highest ERK phosphorylation. Moreover, EPA potentiated the effect of parathyroid hormone (PTH(1-34 in a superagonistic manner. EPA or DHA dependent ERK phosphorylation was inhibited by the PTH1R antagonist and by knockdown of PTH1R. Inhibition of PTH1R downstream signaling molecules, protein kinases A (PKA and C (PKC, reduced EPA and DHA dependent ERK phosphorylation indicating that fatty acids predominantly activate G-protein pathway and not the β-arrestin pathway. Using picosecond time-resolved fluorescence microscopy and a genetically engineered PTH1R sensor (PTH-CC, we detected conformational responses to EPA similar to those caused by PTH(1-34. PTH1R antagonist blocked the EPA induced conformational response of the PTH-CC. Competitive binding studies using fluorescence anisotropy technique showed that EPA and DHA competitively bind to and alter the affinity of PTH1 receptor to PTH(1-34 leading to a superagonistic response. Finally, we showed that EPA stimulates protein kinase B (Akt phosphorylation in a PTH1R-dependent manner and affects the osteoblast survival pathway, by inhibiting glucocorticoid-induced cell death. Our findings demonstrate for the first time that LCPUFAs, EPA and DHA, can activate PTH1R receptor at nanomolar concentrations and consequently provide a putative molecular mechanism for the action of fatty acids in bone.

  11. Nanostructured solvation in mixtures of protic ionic liquids and long-chained alcohols.

    Science.gov (United States)

    Montes-Campos, Hadrián; Otero-Mato, José M; Méndez-Morales, Trinidad; López-Lago, Elena; Russina, Olga; Cabeza, Oscar; Gallego, Luis J; Varela, Luis M

    2017-03-28

    The structural and dynamical properties of bulk mixtures of long-chained primary and secondary alcohols (propanol, butanol, and 2-pentanol) with protic ionic liquids (ethylammonium and butylammonium nitrate) were studied by means of molecular dynamics simulations and small angle X-ray scattering (SAXS). Changes in the structure with the alcohol concentration and with the alkyl chain length of the alcohol moieties were found, showing variations in the radial distribution function and in the number of hydrogen bonds in the bulk liquids. Moreover, the structural behaviour of the studied mixtures is further clarified with the spatial distribution functions. The global picture in the local scale is in good agreement with the nanostructured solvation paradigm [T. Méndez-Morales et al. Phys. Chem. B 118, 761 (2014)], according to which alcohols are accommodated into the hydrogen bonds' network of the ionic liquid instead of forming clusters in the bulk. Indeed, our study reveals that the alcohol molecules are placed with their polar heads at the interfaces between polar and nonpolar nanodomains in the ionic liquid, with their alkyl chains inside the nonpolar organic nanodomains. The influence of alcohol chain length in the single-particle dynamics of the mixtures is also reported calculating the velocity autocorrelation function and vibrational densities of states of the different species in the ionic liquid-alcohol mixtures, and a weak caging effect for the ethylammonium cations independent of the chain size of the alcohols was found. However, the SAXS data collected for the studied mixtures show an excess of the scattering intensities which indicates that there are also some structural heterogeneities at the nanoscale.

  12. Long-chain carboxylic acids in pyrolysates of Green River kerogen

    Energy Technology Data Exchange (ETDEWEB)

    Kawamura, K.; Tannenbaum, E.; Huizinga, B.J.; Kaplan, I.R.

    1986-01-01

    Long-chain fatty acids (C/sub 10/-C/sub 32/), as well as C/sub 14/-C/sub 21/ isoprenoid acids (except for C/sub 18/), have been identified in anhydrous and hydrous pyrolyses products of Green River kerogen (200-400/sup 0/C, 2-1000 hr). These kerogen-released fatty acids are characterized by a strong even/odd predominance (CPI: 4.8-10.2) with a maximum at C/sub 16/ followed by lesser amounts of C/sub 18/ and C/sub 22/ acids. This distribution is different from that of unbound and bound geolipids extracted from Green River shale. The unbound fatty acids show a weak even/odd predominance (CPI: 1.64) with a maximum at C/sub 14/, and bound fatty acids display an even/odd predominance (CPI: 2.8) with maxima at C/sub 18/ and C/sub 30/. These results suggest that fatty acids were incorporated into kerogen during sedimentation and early diagenesis and were protected from microbial and chemical changes over geological periods of time. Total quantities of fatty acids produced during heating of the kerogen ranged from 0.71 to 3.2 mg/g kerogen. Highest concentrations were obtained when kerogen was heated with water for 100 hr at 300/sup 0/C. Generally, their amounts did not decrease under hydrous conditions with increase in temperature or heating time, suggesting that significant decarboxylation did not occur under the pyrolysis conditions used, although hydrocarbons were extensively generated.

  13. Intracellular long-chain acyl CoAs activate TRPV1 channels.

    Directory of Open Access Journals (Sweden)

    Yi Yu

    Full Text Available TRPV1 channels are an important class of membrane proteins that play an integral role in the regulation of intracellular cations such as calcium in many different tissue types. The anionic phospholipid phosphatidylinositol 4,5-bisphosphate (PIP2 is a known positive modulator of TRPV1 channels and the negatively charged phosphate groups interact with several basic amino acid residues in the proximal C-terminal TRP domain of the TRPV1 channel. We and other groups have shown that physiological sub-micromolar levels of long-chain acyl CoAs (LC-CoAs, another ubiquitous anionic lipid, can also act as positive modulators of ion channels and exchangers. Therefore, we investigated whether TRPV1 channel activity is similarly regulated by LC-CoAs. Our results show that LC-CoAs are potent activators of the TRPV1 channel and interact with the same PIP2-binding residues in TRPV1. In contrast to PIP2, LC-CoA modulation of TRPV1 is independent of Ca2+i, acting in an acyl side-chain saturation and chain-length dependent manner. Elevation of LC-CoAs in intact Jurkat T-cells leads to significant increases in agonist-induced Ca2+i levels. Our novel findings indicate that LC-CoAs represent a new fundamental mechanism for regulation of TRPV1 channel activity that may play a role in diverse cell types under physiological and pathophysiological conditions that alter fatty acid transport and metabolism such as obesity and diabetes.

  14. On the appearance of traffic jams in a long chain with a shortcut in the bulk

    Science.gov (United States)

    Bunzarova, N. Zh.; Pesheva, N. C.; Brankov, J. G.

    2015-11-01

    The Totally Asymmetric Simple Exclusion Process (TASEP) is studied on open long chains with a shunted section between two simple chain segments in the maximum current phase. The reference case, when the two branches are chosen with equal probability, is considered. The conditions for the occurrence of traffic jams and their properties are investigated both within the effective rates approximation and by extensive Monte Carlo simulations for arbitrary length of the shortcut. Our main results are: (1) For any length of the shortcut and any values of the external rates in the domain of the maximum current phase, there exists a position of the shortcut where the shunted segment is in a phase of coexistence with a completely delocalized domain wall; (2) The main features of the coexistence phase and the density profiles in the whole network are well described by the domain wall theory. Apart from the small inter-chain correlations, they depend only on the current through the shortcut; (3) The model displays unexpected features: (a) the current through the longer shunted segment is larger than the current through the shortcut, and (b) the delocalized domain wall in the coexistence phase of the long shunted segment induces similar behavior even in shortcuts containing a small number of sites; (4) From the viewpoint of vehicular traffic, most comfortable conditions for the drivers are provided when the shortcut is shifted downstream from the position of coexistence, when both the shunted segment and the shortcut exhibit low-density lamellar flow. Most unfavorable is the opposite case of upstream shifted shortcut, when both the shunted segment and the shortcut are in a high-density phase describing congested traffic of slowly moving cars. The above results are relevant also to phenomena like crowding of molecular motors moving along twisted protofilaments.

  15. Impact of medium and long chain triglycerides consumption on appetite and food intake in overweight men.

    Science.gov (United States)

    St-Onge, M-P; Mayrsohn, B; O'Keeffe, M; Kissileff, H R; Choudhury, A R; Laferrère, B

    2014-10-01

    Medium chain triglycerides (MCT) enhance thermogenesis and may reduce food intake relative to long chain triglycerides (LCT). The goal of this study was to establish the effects of MCT on appetite and food intake and determine whether differences were due to differences in hormone concentrations. Two randomized, crossover studies were conducted in which overweight men consumed 20 g of MCT or corn oil (LCT) at breakfast. Blood samples were obtained over 3 h. In Study 1 (n=10), an ad lib lunch was served after 3 h. In Study 2 (n=7), a preload containing 10 g of test oil was given at 3 h and lunch was served 1 h later. Linear mixed model analyses were performed to determine the effects of MCT and LCT oil on change in hormones and metabolites from fasting, adjusting for body weight. Correlations were computed between differences in hormones just before the test meals and differences in intakes after the two oils for Study 1 only. Food intake at the lunch test meal after the MCT preload (Study 2) was (mean±s.e.m.) 532±389 kcal vs 804±486 kcal after LCT (Ptriglycerides (P=0.014) and glucose (P=0.066) and a higher rise in peptide YY (PYY, P=0.017) and leptin (P=0.036) compared with LCT (combined data). Correlations between differences in hormone levels (glucagon-like peptide (GLP-1), PYY) and differences in food intake were in the opposite direction to expectations. MCT consumption reduced food intake acutely but this does not seem to be mediated by changes in GLP-1, PYY and insulin.

  16. Relationship between plasma free fatty acid, intramyocellular triglycerides and long-chain acylcarnitines in resting humans

    Science.gov (United States)

    Kanaley, Jill A; Shadid, Samyah; Sheehan, Michael T; Guo, ZengKui; Jensen, Michael D

    2009-01-01

    We hypothesized that plasma non-esterified fatty acids (NEFA) are trafficked directly to intramyocellular long-chain acylcarnitines (imLCAC) rather than transiting intramyocellular triglycerides (imTG) on the way to resting muscle fatty acid oxidation. Overnight fasted adults (n= 61) received intravenous infusions of [U-13C]palmitate (0400–0830 h) and [U-13C]oleate (0800–1400 h) labelling plasma NEFA, imTG, imLCAC and im-non-esterified FA (imNEFA). Two muscle biopsies (0830 and 1400 h) were performed following 6 h, overlapping, sequential palmitate/oleate tracer infusions. Enrichment of plasma palmitate was ∼15 times greater than enrichment of imTG, imNEFA-palmitate and im-palmitoyl-carnitine. Fatty acid enrichment in LCAC was correlated with imTG and imNEFA; there was a significant correlation between imTG concentrations and imLCAC concentrations in women (r= 0.51, P= 0.005), but not men (r= 0.30, P= 0.11). We estimated that ∼11% of NEFA were stored in imTG. imTG NEFA storage was correlated only with NEFA concentrations (r= 0.52, P= 0.004) in women and with (r= 0.45, P= 0.02) in men. At rest, plasma NEFA are trafficked largely to imTG before they enter LCAC oxidative pools; thus, imTG are an important, central pool that regulates the delivery of fatty acids to the intracellular environment. Factors relating to plasma NEFA storage into imTG differ in men and women. PMID:19858228

  17. Long chain microRNA conjugates in calcium phosphate nanoparticles for efficient formulation and delivery.

    Science.gov (United States)

    Jung, Hyosook; Kim, Seung An; Yang, Yong Geun; Yoo, Hyundong; Lim, Soo-Jeong; Mok, Hyejung

    2015-01-01

    A long chain microRNA-34a conjugate (lc-miRNA) was prepared by chemical crosslinking in order to improve entrapment efficiency into calcium phosphate nanoparticles (CaPs) and intracellular delivery. Thiol-modified miRNA at both terminal ends was chemically conjugated using crosslinkers to form lc-miRNA which was encapsulated within CaPs by a conventional co-precipitation method. Encapsulation efficiencies, physicochemical properties, and in vitro intracellular delivery efficiencies of the prepared linear polyethyleneimine (LPEI)-coated CaPs (LPEI-CaP) containing common miRNA and lc-miRNA were comparatively evaluated. The prepared lc-miRNA exhibited noticeably enhanced encapsulation efficiency during the CaP formulation process when compared to common miRNA. LPEI-CaP/lc-miRNAs consisted of nano-sized particles with great homogeneity and were observed to be successfully delivered into PC-3 cells. Fabricated LPEI-CaPs with duplex form of lc-miRNA (lc-miRNA-d) suppressed cancer cell proliferation as well as migration much more efficiently than those with duplex form of miRNA (miRNA-d). In addition, LPEI-CaP/lc-miRNA-d conferred negligible cytotoxicity on PC-3 cells. Chemical crosslinking of therapeutic miRNAs via a reducible linkage may allow more efficient encapsulation within CaPs as well as homogeneous particle formulation due to a higher spatial charge density than common miRNAs. The well-formulated LPEI-CaPs with lc-miRNA-d have the potential to provide superior miRNA transfection efficiency and inhibition of cancer proliferation.

  18. Omega-3 long chain fatty acid "bioavailability": a review of evidence and methodological considerations.

    Science.gov (United States)

    Ghasemifard, Samaneh; Turchini, Giovanni M; Sinclair, Andrew J

    2014-10-01

    This review considers the bioavailability of different forms of omega-3 long chain polyunsaturated fatty acids (n-3 LC-PUFA), including ethyl esters (EEs), free fatty acids (FFAs), triacylglycerols (TAGs) and phospholipids (PLs). The retrieved studies include short-term and longer-term studies in humans, and a number of animal studies, which were highly heterogeneous in their design making it difficult to draw substantiated conclusions. The apparent bioavailability (as defined by the authors of these studies) seems to be lowest for the EE form and highest for the FFA form, whilst no conclusion can be made for TAG versus PL from human data. Animal studies suggest that there are substantial differences in the bioavailability of PL form of LC-PUFA compared with the TAG form. This apparent limited knowledge and understanding is fundamentally driven by methodological limitations of these studies. The major limitations with the studies to date include: (between studies) loose definition of the term "bioavailability", lack of standardisation of analytical methodology, and differences in which blood compartment was analysed; (within a study) failure to provide equal amounts the n-3 LC-PUFA of the different forms being compared, failure to provide the dose of n-3 LC-PUFA on a body weight basis, failure to measure fatty acid excretion, failure to control the total fat intake, and failure to adequately power the studies from a statistical point of view. This review has laid out a set of suggestions and criteria for conducting future studies on the bioavailability of different chemical forms of n-3 LC-PUFA.

  19. Mechanisms involved in the selective transfer of long chain polyunsaturted fatty acids to the fetus

    Directory of Open Access Journals (Sweden)

    Alfonso eGil-Sánchez

    2011-09-01

    Full Text Available The concentration of long chain polyunsaturated fatty acid (LCPUFA in the fetal brain increases dramatically from the third trimester until 18 months of life. Several studies have shown an association between the percentage of maternal plasma docosahexaenoic acid (DHA during gestation and development of the cognitive functions in the neonate. Since only very low levels of LCPUFA are synthesized in the fetus and placenta, their primary source for the fetus is that of maternal origin. Both in vitro and human in vivo studies using labelled fatty acids have shown the preferential transfer of LCPUFA from the placenta to the fetus compared with other fatty acids, although the mechanisms involved are still uncertain. The placenta takes up circulating maternal non-esterified fatty acids (NEFA and fatty acids released mainly by maternal lipoprotein lipase and endothelial lipase. These NEFA may enter the cell by passive diffusion or by means of membrane carrier proteins. Once in the cytosol, NEFA bind to cytosolic fatty acid-binding proteins for transfer to the fetal circulation or can be oxidized within the trophoblasts and even re-esterified and stored in lipid droplets (LD. Although trophoblast cells are not specialized in lipid storage, LCPUFA may up-regulate peroxisome proliferator activated receptor-γ (PPARγ and hence the gene expression of fatty acid transport carriers, fatty acid acyl-CoA synthetases and adipophilin or other enzymes related with lipolysis, modifying their rate of placental transfer and metabolization. The placental transfer of LCPUFA during pregnancy seems to be a key factor in the neurological development of the fetus. Increased knowledge on the factors that modify placental transfer of fatty acids would contribute to our understanding of this complex process.

  20. Inhibition of gastrin-stimulated gastric acid secretion by medium-chain triglycerides and long-chain triglycerides in healthy young men.

    NARCIS (Netherlands)

    Maas, M.I.M.; Hopman, W.P.M.; Katan, M.B.; Jansen, J.B.M.J.

    1996-01-01

    Long-chain triglycerides inhibit gastric acid secretion, but the effect of medium-chain triglycerides in humans is unknown. We compared the effects of intraduodenally perfused saline, medium-chain and long-chain triglycerides on gastrin-stimulated gastric acid secretion and cholecystokinin release.

  1. Field trial evaluation of the accumulation of omega-3 long chain polyunsaturated fatty acids in transgenic Camelina sativa: Making fish oil substitutes in plants

    Directory of Open Access Journals (Sweden)

    Sarah Usher

    2015-12-01

    Full Text Available The global consumption of fish oils currently exceeds one million tonnes, with the natural de novo source of these important fatty acids forming the base of marine foodwebs. Here we describe the first field-based evaluation of a terrestrial source of these essential nutrients, synthesised in the seeds of transgenic Camelina sativa plants via the heterologous reconstitution of the omega-3 long chain polyunsaturated fatty acid biosynthetic pathway. Our data demonstrate the robust nature of this novel trait, and the feasibility of making fish oils in genetically modified crops. Moreover, to our knowledge, this is the most complex example of plant genetic engineering to undergo environmental release and field evaluation.

  2. Human Milk Plasmalogens Are Highly Enriched in Long-Chain PUFAs.

    Science.gov (United States)

    Moukarzel, Sara; Dyer, Roger A; Keller, Bernd O; Elango, Rajavel; Innis, Sheila M

    2016-11-01

    Human milk contains unique glycerophospholipids, including ethanolamine-containing plasmalogens (Pls-PEs) in the milk fat globule membrane, which have been implicated in infant brain development. Brain Pls-PEs accumulate postnatally and are enriched in long-chain polyunsaturated fatty acids (LC-PUFAs), particularly docosahexaenoic acid (DHA). Fatty acid (FA) composition of Pls-PEs in milk is poorly understood because of the analytical challenges in separating Pls-PEs from other phospholipids in the predominating presence of triacylglycerols. The variability of Pls-PE FAs and the potential role of maternal diet remain unknown. Our primary objectives were to establish improved methodology for extracting Pls-PEs from human milk, enabling FA analysis, and to compare FA composition between Pls-PEs and 2 major milk phospholipids, phosphatidylcholine and phosphatidylethanolamine. Our secondary objective was to explore associations between maternal DHA intake and DHA in milk phospholipids and variability in phospholipid-DHA within a woman. Mature milk was collected from 25 women, with 4 providing 3 milk samples on 3 separate days. Lipids were extracted, and phospholipids were removed by solid phase extraction. Pls-PEs were separated by using normal-phase HPLC, recovered and analyzed for FAs by GLC. Diet was assessed by using a validated food-frequency questionnaire. Pls-PE concentration in human milk was significantly higher in LC-PUFAs than phosphatidylethanolamine and phosphatidylcholine, including arachidonic acid (AA) and DHA. The mean ± SD concentration of AAs in Pls-PEs was ∼2.5-fold higher than in phosphatidylethanolamine (10.5 ± 1.71 and 3.82 ± 0.92 g/100 g, respectively). DHA in Pls-PEs varied across women (0.95-6.51 g/100 g), likely independent of maternal DHA intake. Pls-PE DHA also varied within a woman across days (CV ranged from 9.8% to 28%). Human milk provides the infant with LC-PUFAs from multiple lipid pools, including a source from Pls-PEs. The

  3. Long-chain acyl-CoA-dependent regulation of gene expression in bacteria, yeast and mammals

    DEFF Research Database (Denmark)

    Black, P N; Færgeman, Nils J.; DiRusso, C C

    2000-01-01

    signal that modulates gene expression. In the bacteria Escherichia coli, long-chain fatty acyl-CoA bind directly to the transcription factor FadR. Acyl-CoA binding renders the protein incapable of binding DNA, thus preventing transcription activation and repression of many genes and operons. In the yeast......). Both repression and activation are dependent upon the function of either of the acyl-CoA synthetases Faa1p or Faa4p. In mammals, purified hepatocyte nuclear transcription factor 4alpha (HNF-4alpha) like E. coli FadR, binds long chain acyl-CoA directly. Coexpression of HNF-4alpha and acyl-CoA synthetase...... increases the activation of transcription of a fatty acid-responsive promoter, whereas coexpression with thioesterase decreases the fatty acid-mediated response. Conflicting data exist in support of the notion that fatty acyl-CoA are natural ligands for peroxisomal proliferator-activated receptor alpha...

  4. Long-chain acyl-CoA-dependent regulation of gene expression in bacteria, yeast and mammals

    DEFF Research Database (Denmark)

    Black, P N; Færgeman, Nils J.; DiRusso, C C

    2000-01-01

    signal that modulates gene expression. In the bacteria Escherichia coli, long-chain fatty acyl-CoA bind directly to the transcription factor FadR. Acyl-CoA binding renders the protein incapable of binding DNA, thus preventing transcription activation and repression of many genes and operons. In the yeast......). Both repression and activation are dependent upon the function of either of the acyl-CoA synthetases Faa1p or Faa4p. In mammals, purified hepatocyte nuclear transcription factor 4alpha (HNF-4alpha) like E. coli FadR, binds long chain acyl-CoA directly. Coexpression of HNF-4alpha and acyl-CoA synthetase...

  5. Nutritional evaluation of microalgae oils rich in omega-3 long chain polyunsaturated fatty acids as an alternative for fish oil.

    Science.gov (United States)

    Ryckebosch, Eline; Bruneel, Charlotte; Termote-Verhalle, Romina; Goiris, Koen; Muylaert, Koenraad; Foubert, Imogen

    2014-10-01

    The purpose of this work was to evaluate the nutritional value of the total lipid extract of different omega-3 long chain polyunsaturated fatty acids producing photoautotrophic microalgae in one study. It was shown that microalgae oils from Isochrysis, Nannochloropsis, Phaeodactylum, Pavlova and Thalassiosira contain sufficient omega-3 LC-PUFA to serve as an alternative for fish oil, which was used as the 'golden standard'. In the microalgae oils an important part of the omega-3 long chain polyunsaturated fatty acids are present in the polar lipid fraction, which may be favourable from a bioavailability and stability viewpoint. Consumption of microalgae oil ensures intake of sterols and carotenoids. The intake of sterols, including cholesterol and phytosterols, is probably not relevant. The intake of carotenoids is however definitely significant and could give the microalgae oils a nutritional added value compared to fish oil.

  6. The 1,3-dipolar cycloaddition reaction of chiral carbohydrate-derived nitrone and olefin: towards long-chain sugars.

    Science.gov (United States)

    Oukani, Hassan; Pellegrini-Moïse, Nadia; Jackowski, Olivier; Chrétien, Françoise; Chapleur, Yves

    2013-11-15

    The thermal and microwave-activated 1,3-dipolar cycloadditions of several α,β-unsaturated esters derived from d-mannose and chiral nitrones derived from threitol have been studied as a model reaction en route to eleven carbon long chain carbohydrates. Very high facial selectivity is observed for the chiral nitrones whereas the olefin facial selectivity varies with the substrate. The presence of a dioxolane ring α to the olefinic bond is beneficial to the facial selectivity of the olefin whereas a pyranose ring is not. The combination of a d-mannose derivative and a l-threitol-derived nitrone is a matched pair suitable for the synthesis of long chain sugars with nine contiguous chiral centres. Finally complete facial selectivity was observed with exo-glycals which gave a single cycloadduct.

  7. Growth and development of term infants fed with milk with long-chain polyunsaturated fatty acid supplementation

    Institute of Scientific and Technical Information of China (English)

    BEN Xiao-ming 贲晓明; ZHOU Xiao-yu 周晓玉; ZHAO Wei-hua 赵卫华; YU Wen-liang 喻文亮; PAN Wei 潘伟; ZHANG Wei-li 张伟利; WU Sheng-mei 吴圣楣; Christien M. Van Beusekom; Anne Schaafsma

    2004-01-01

    @@ Presently, there is growing interest in long-chain polyunsaturated fatty acids (LCPUFAs), which are considered a major determinant of growth, visual and neural development, and long-term health.1 Two groups of LCPUFAs have received special interest: homologues of linoleic acid (LA) of the n-6 series, which are precursors of arachidonic acid (AA), and homologues of α-linolenic acid (ALA) of the n-3 series, which are precursors of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA).

  8. Light conditions alter accumulation of long chain polyprenols in leaves of trees and shrubs throughout the vegetation season.

    Science.gov (United States)

    Bajda, Agnieszka; Chojnacki, Tadeusz; Hertel, Józefina; Swiezewska, Ewa; Wójcik, Jacek; Kaczkowska, Alicja; Marczewski, Andrzej; Bojarczuk, Tomasz; Karolewski, Piotr; Oleksyn, Jacek

    2005-01-01

    In many plants belonging to angiosperms and gymnosperms the accumulation in leaves of long chain polyprenols and polyprenyl esters during growth in natural habitats depends on the light intensity. The amount of polyprenols in leaves is also positively correlated with the thickness of the leaf blade (SLA, specific leaf area). The polyprenol content of leaves shows seasonal changes with a maximum in autumn and a minimum in early summer with the difference between poorly and well illuminated plants persisting throughout the vegetation season.

  9. Long-Chain Omega-3 Polyunsaturated Fatty Acids May Be Beneficial for Reducing Obesity—A Review

    OpenAIRE

    Howe, Peter R. C.; Buckley, Jonathan D.

    2010-01-01

    Current recommendations for counteracting obesity advocate the consumption of a healthy diet and participation in regular physical activity, but many individuals have difficulty complying with these recommendations. Studies in rodents and humans have indicated that long-chain omega-3 polyunsaturated fatty acids (LC n-3 PUFA) potentially elicit a number of effects which might be useful for reducing obesity, including suppression of appetite, improvements in circulation which might facilitate n...

  10. Hypothalamic GPR40 Signaling Activated by Free Long Chain Fatty Acids Suppresses CFA-Induced Inflammatory Chronic Pain

    OpenAIRE

    Kazuo Nakamoto; Takashi Nishinaka; Naoya Sato; Mitsumasa Mankura; Yutaka Koyama; Fumiyo Kasuya; Shogo Tokuyama

    2013-01-01

    GPR40 has been reported to be activated by long-chain fatty acids, such as docosahexaenoic acid (DHA). However, reports studying functional role of GPR40 in the brain are lacking. The present study focused on the relationship between pain regulation and GPR40, investigating the functional roles of hypothalamic GPR40 during chronic pain caused using a complete Freund's adjuvant (CFA)-induced inflammatory chronic pain mouse model. GPR40 protein expression in the hypothalamus was transiently inc...

  11. N-长链胆酸酰胺的合成%Synthesis of N-long-chain alkyl cholic amide

    Institute of Scientific and Technical Information of China (English)

    王立中; 卞小琴; 周兰香; 李双双; 李广州; 王存德

    2012-01-01

    本文研究了具有长脂链胆酸基非离子型表面活性剂的合成,以商品化胆酸和一系列的长链伯胺(C12~C18)为原料,经过多步反应获得了N-长链烷基胆酸酰胺.目标化合物结构经IR,1H-NMR,13C-NMR,LC-MS等表征确证,同时,对其表面活性进行了初步研究.%The long-chain alkyl cholic amide derivatives were synthesized using bile acid and long-chain alkyl amines as starting materials. All these structures were confirmed by IR/H-NMR^C-NMR.LC-MS and their tensionmetric property was tested. The results were indicated that the long-chain alkyl induced in the cholic acid increased its hydrophobic property.

  12. Short- and long-chain perfluoroalkyl substances in the water, suspended particulate matter, and surface sediment of a turbid river.

    Science.gov (United States)

    Zhao, Pujun; Xia, Xinghui; Dong, Jianwei; Xia, Na; Jiang, Xiaoman; Li, Yang; Zhu, Yuemei

    2016-10-15

    Perfluoroalkyl substances (PFASs) have attracted attentions all around the world. However, little is known about their distribution among water, suspended particulate matter (SPM), and sediment phases in rivers, especially for the short-chain PFASs. In this work, the Yellow River, the largest turbid river in the world, was selected as a case to study eleven kinds of PFASs in the three phases of rivers. These PFASs included C4-C12 perfluorinated carboxylates (PFCAs), perfluorobutyl sulfonate (PFBS), and perfluorooctansulfonate (PFOS), among which C4-C7 PFCAs and PFBS belong to short-chain PFASs, while C8-C12 PFCAs and PFOS belong to long-chain PFASs. The results showed that the total PFAS concentration ranged from 44.7ngL(-1) to 1.52μgL(-1) in the water, from 8.19 to 17.4ngg(-1) in the sediment, and from 3.44 to 14.7ngg(-1) in the SPM. Short-chain PFASs predominated in the water and could reach up to 88.8% of the total PFAS concentration in water, while long-chain PFASs prevailed in the sediment and SPM. The PFAS concentration in SPM showed a significant negative correlation with SPM concentration in river water (pperfluoroalkyl chemicals from traditional long-chain ones to short-chain ones. Further studies should be conducted to evaluate the eco-environmental risks of these short-chain PFASs in water environments.

  13. Crystallization of the C-terminal domain of the mouse brain cytosolic long-chain acyl-CoA thioesterase

    Energy Technology Data Exchange (ETDEWEB)

    Serek, Robert; Forwood, Jade K. [School of Molecular and Microbial Sciences, University of Queensland, Brisbane, Queensland 4072 (Australia); Hume, David A. [School of Molecular and Microbial Sciences, University of Queensland, Brisbane, Queensland 4072 (Australia); Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland 4072 (Australia); Cooperative Research Centre for Chronic Inflammatory Diseases, University of Queensland, Brisbane, Queensland 4072 (Australia); Special Research Centre for Functional and Applied Genomics, University of Queensland, Brisbane, Queensland 4072 (Australia); Martin, Jennifer L.; Kobe, Bostjan, E-mail: b.kobe@uq.edu.au [School of Molecular and Microbial Sciences, University of Queensland, Brisbane, Queensland 4072 (Australia); Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland 4072 (Australia); Special Research Centre for Functional and Applied Genomics, University of Queensland, Brisbane, Queensland 4072 (Australia)

    2006-02-01

    The C-terminal domain of the mouse long-chain acyl-CoA thioesterase has been expressed in bacteria and crystallized by vapour diffusion. The crystals diffract to 2.4 Å resolution. The mammalian long-chain acyl-CoA thioesterase, the enzyme that catalyses the hydrolysis of acyl-CoAs to free fatty acids, contains two fused 4HBT (4-hydroxybenzoyl-CoA thioesterase) motifs. The C-terminal domain of the mouse long-chain acyl-CoA thioesterase (Acot7) has been expressed in bacteria and crystallized. The crystals were obtained by vapour diffusion using PEG 2000 MME as precipitant at pH 7.0 and 290 K. The crystals have the symmetry of space group R32 (unit-cell parameters a = b = 136.83, c = 99.82 Å, γ = 120°). Two molecules are expected in the asymmetric unit. The crystals diffract to 2.4 Å resolution using the laboratory X-ray source and are suitable for crystal structure determination.

  14. H$_2$-based star formation laws in galaxy formation models

    CERN Document Server

    Xie, Lizhi; Hirschmann, Michaela; Fontanot, Fabio; Zoldan, Anna

    2016-01-01

    We update our recently published model for GAlaxy Evolution and Assembly (GAEA), to include a self-consistent treatment of the partition of cold gas in atomic and molecular hydrogen. Our model provides significant improvements with respect to previous ones used for similar studies. In particular, GAEA (i) includes a sophisticated chemical enrichment scheme accounting for non-instantaneous recycling of gas, metals, and energy; (ii) reproduces the measured evolution of the galaxy stellar mass function; (iii) reproduces the observed correlation between galaxy stellar mass and gas metallicity at different redshifts. These are important prerequisites for models considering a metallicity dependent efficiency of molecular gas formation. We also update our model for disk sizes and show that model predictions are in nice agreement with observational estimates for the gas, stellar and star forming disks at different cosmic epochs. We analyse the influence of different star formation laws including empirical relations b...

  15. Chemotaxonomic significance of distribution and stable carbon isotopic composition of long-chain alkanes and alkan-1-ols in C{sub 4} grass waxes

    Energy Technology Data Exchange (ETDEWEB)

    Rommerskirchen, F.; Plader, A. [Carl von Ossietzky University, Oldenburg (Germany). Institute of Chemistry and Biology of the Marine Environment; Eglinton, G. [Hanse Institute for Advanced Study, Delmenhorst (Germany); Chikaraishii, Yoshito [Japan Agency for Marine-Earth Science and Technology, Yokosuka (Japan). Institute for Research on Earth Evolution

    2006-10-15

    Grasses (Poaceae) are distributed across the world in broad latitudinal belts and are an important source of C4 biomass in the geological record of soils as well as lake and marine sediments. We examined long-chain leaf wax components of thirty-five C{sub 4} grasses of the subfamilies Aristidoideae, Chloridoideae and Panicoideae from the southern African grasslands and savannas and three C{sub 3} grasses of the subfamily Pooideae from Peru and Australia and review the relevant botanical, phytogeographic and leaf wax compositional background information. Contents, distribution patterns and molecular stable carbon isotopic compositions of long-chain n-alkanes (n-C{sub 27} to n-C{sub 35}) and n-alkan-1-ols (n-C{sub 22} to n-C{sub 32}) were used to estimate the chemotaxonomic relevance of wax signatures of whole plants, separately for different subfamilies and for members of the three C{sub 4} subtypes (NADP-ME, NAD-ME and PCK). Two grass species were separated into flower heads, leaves and stems and the parts analysed separately. Grass flowers contain remarkable amounts of short-chain n-alkanes, which may have a significant influence on the chemical signature of the whole plant, whereas n-alkanol distribution patterns exhibit no systematics. The stable carbon isotopic composition of both biomarker types in different plant parts is remarkably uniform. Chemotaxonomic differentiation was not possible on a species level based on whole plant samples, but was more successful for averages of subfamily and photosynthetic subtype data. Wax signatures of C{sub 4} grasses are generally distinguishable from those of C{sub 3} species by heavier isotopic values, higher contents of n-C{sub 31} and n-C{sub 33} alkanes and the abundance of the n-C{sub 32} n-alkanol, which is largely absent in C{sub 3} grass waxes. Especially the waxes of the NAD-ME and PCK C{sub 4}-subtype grasses, which thrive in extremely arid tropical and subtropical areas, contain high relative amounts of longer

  16. Crystal Structures of Xanthomonas campestris OleA Reveal Features That Promote Head-to-Head Condensation of Two Long-Chain Fatty Acids

    Energy Technology Data Exchange (ETDEWEB)

    Goblirsch, Brandon R.; Frias, Janice A.; Wackett, Lawrence P.; Wilmot, Carrie M. (UMM)

    2012-10-25

    OleA is a thiolase superfamily enzyme that has been shown to catalyze the condensation of two long-chain fatty acyl-coenzyme A (CoA) substrates. The enzyme is part of a larger gene cluster responsible for generating long-chain olefin products, a potential biofuel precursor. In thiolase superfamily enzymes, catalysis is achieved via a ping-pong mechanism. The first substrate forms a covalent intermediate with an active site cysteine that is followed by reaction with the second substrate. For OleA, this conjugation proceeds by a nondecarboxylative Claisen condensation. The OleA from Xanthomonas campestris has been crystallized and its structure determined, along with inhibitor-bound and xenon-derivatized structures, to improve our understanding of substrate positioning in the context of enzyme turnover. OleA is the first characterized thiolase superfamily member that has two long-chain alkyl substrates that need to be bound simultaneously and therefore uniquely requires an additional alkyl binding channel. The location of the fatty acid biosynthesis inhibitor, cerulenin, that possesses an alkyl chain length in the range of known OleA substrates, in conjunction with a single xenon binding site, leads to the putative assignment of this novel alkyl binding channel. Structural overlays between the OleA homologues, 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) synthase and the fatty acid biosynthesis enzyme FabH, allow assignment of the two remaining channels: one for the thioester-containing pantetheinate arm and the second for the alkyl group of one substrate. A short {beta}-hairpin region is ordered in only one of the crystal forms, and that may suggest open and closed states relevant for substrate binding. Cys143 is the conserved catalytic cysteine within the superfamily, and the site of alkylation by cerulenin. The alkylated structure suggests that a glutamic acid residue (Glu117{beta}) likely promotes Claisen condensation by acting as the catalytic base. Unexpectedly

  17. Crystal Structures of Xanthomonas campestris OleA Reveal Features That Promote Head-to-Head Condensation of Two Long-Chain Fatty Acids

    Energy Technology Data Exchange (ETDEWEB)

    Goblirsch, BR; Frias, JA; Wackett, LP; Wilmot, CM

    2012-05-22

    OleA is a thiolase superfamily enzyme that has been shown to catalyze the condensation of two long-chain fatty acylcoenzyme A (CoA) substrates. The enzyme is part of a larger gene cluster responsible for generating long-chain olefin products, a potential biofuel precursor. In thiolase superfamily enzymes, catalysis is achieved via a ping-pong mechanism. The first substrate forms a covalent intermediate with an active site cysteine that is followed by reaction with the second substrate. For OleA, this conjugation proceeds by a nondecarboxylative Claisen condensation. The OleA from Xanthomonas campestris has been crystallized and its structure determined, along with inhibitor-bound and xenon-derivatized structures, to improve our understanding of substrate positioning in the context of enzyme turnover. OleA is the first characterized thiolase superfamily member that has two long-chain alkyl substrates that need to be bound simultaneously and therefore uniquely requires an additional alkyl binding channel. The location of the fatty acid biosynthesis inhibitor, cerulenin, that possesses an alkyl chain length in the range of known OleA substrates, in conjunction with a single xenon binding site, leads to the putative assignment of this novel alkyl binding channel. Structural overlays between the OleA homologues, 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) synthase and the fatty acid biosynthesis enzyme FabH, allow assignment of the two remaining channels: one for the thioester-containing pantetheinate arm and the second for the alkyl group of one substrate. A short beta-hairpin region is ordered in only one of the crystal forms, and that may suggest open and closed states relevant for substrate binding. Cys143 is the conserved catalytic cysteine within the superfamily, and the site of alkylation by cerulenin. The alkylated structure suggests that a glutamic acid residue (Glu117 beta) likely promotes Claisen condensation by acting as the catalytic base. Unexpectedly, Glu117

  18. The effect of polar end of long-chain fluorocarbon oligomers in promoting the superamphiphobic property over multi-scale rough Al alloy surfaces

    Science.gov (United States)

    Saifaldeen, Zubayda S.; Khedir, Khedir R.; Camci, Merve T.; Ucar, Ahmet; Suzer, Sefik; Karabacak, Tansel

    2016-08-01

    Rough structures with re-entrant property and their subsequent surface energy reduction with long-chain fluorocarbon oligomers are both critical in developing superamphiphobic (SAP, i.e. both super hydrophobic and superoleophobic) surfaces. However, morphology of the low-surface energy layer on a rough re-entrant substrate can strongly depend on the fluorocarbon oligomers used. In this study, the effect of polar end of different kinds of long-chain fluorocarbon oligomers in promoting a self-assembled monolayer with close packed molecules and robust adhesion on multi-scale rough Al alloy surfaces was investigated. Hierarchical Al alloy surfaces with microgrooves and nanograss structures were developed by a simple combination of one-directional mechanical sanding and post treatment in boiling de-ionized water (DIW). Three types of long-chain fluorocarbon oligomers of 1H, 1H, 2H, 2H-perfluorodecyltriethoxysilane (PFDTS), 1H, 1H, 2H, 2H-perfluorodecyltrichlorosilane (PFDCS), and perfluorooctanoic acid (PFOA) were chemically vaporized onto these rough Al alloy surfaces. The PFDCS exhibited the lowest surface free energy of less than 10 mN/m. The contact angle and sliding angle measurements for water, ethylene glycol, and peanut oil verified the SAP property of hierarchical rough Al alloy surfaces treated with alkylsilane oligomers (PFDTS, PFDCS). However, the hierarchical surfaces treated with fluorocarbon oligomer with polar acidic tail (PFOA) showed highly amphiphobic properties but could not reach the threshold for SAP. Chemical stability of the hierarchical Al alloy surfaces treated with the fluorocarbon oligomers was tested under the harsh conditions of ultra-sonication in acetone and annealing at high temperature after different treatment times. Contact angle measurements revealed the robustness of the alkylsilane oligomers and deterioration of the PFOA coating particularly for low surface tension liquids. The robust adhesion and close-packing of the alkylsilane

  19. Identification of intact long-chain p-hydroxycinnamate esters in leaf fibers of abaca (Musa textilis) using gas chromatography/mass spectrometry.

    Science.gov (United States)

    del Río, José C; Rodríguez, Isabel M; Gutiérrez, Ana

    2004-01-01

    The study of acetone-extractable components from the leaf fibers of the non-wood plant abaca (Musa textilis) resulted in the isolation and identification of series of intact hydroxycinnamate esters consisting of ferulic and p-coumaric acids esterified to long-chain fatty alcohols (C20 to C28) and omega-hydroxyfatty acids (C22 to C28). These series of compounds were characterized by high-temperature gas chromatography/mass spectrometry (GC/MS) using capillary columns (12 m length) with thin films that allowed the analysis of intact (i.e., without prior saponification) hydroxycinnamate esters. Characterization of intact individual compounds was achieved based on the mass spectra obtained by GC/MS of the underivatized compounds and their methyl and/or trimethylsilyl ether derivatives.

  20. α-Gel formation by amino acid-based gemini surfactants.

    Science.gov (United States)

    Sakai, Kenichi; Ohno, Kiyomi; Nomura, Kazuyuki; Endo, Takeshi; Sakamoto, Kazutami; Sakai, Hideki; Abe, Masahiko

    2014-07-08

    Ternary mixtures being composed of surfactant, long-chain alcohol, and water sometimes form a highly viscous lamellar gel with a hexagonal packing arrangement of their crystalline hydrocarbon chains. This molecular assembly is called "α-crystalline phase" or "α-gel". In this study, we have characterized α-gels formed by the ternary mixtures of amino acid-based gemini surfactants, 1-hexadecanol (C16OH), and water. The surfactants used in this study were synthesized by reacting dodecanoylglutamic acid anhydride with alkyl diamines and abbreviated as 12-GsG-12 (s: the spacer chain length of 2, 5, and 8 methylene units). An amino acid-based monomeric surfactant, dodecanoylglutamic acid (12-Glu), was also used for comparison. At a fixed water concentration the melting point of the α-gel increased with increasing C16OH concentration, and then attained a saturation level at the critical mole ratio of 12-GsG-12/C16OH = 1/2 under the normalization by the number of hydrocarbon chains of the surfactants. This indicates that, to obtain the saturated α-gel, a lesser amount of C16OH is required for the gemini surfactants than for the monomeric one (the critical mole ratio of 12-Glu/C16OH = 1/3). Small- and wide-angle X-ray scattering measurements demonstrated an increase in the long-range d-spacing of the saturated α-gels in the order 12-Glu gels at a given water concentration. This is caused by the decreased amount of excess water being present outside the α-gel structure (or the increased amount of water incorporated between the surfactant-alcohol bilayers). To the best of our knowledge, this is the first report focusing on the formation of α-gel in gemini surfactant systems.

  1. Diversity of flavin-binding monooxygenase genes (almA) in marine bacteria capable of degradation long-chain alkanes.

    Science.gov (United States)

    Wang, Wanpeng; Shao, Zongze

    2012-06-01

    Many bacteria have been reported as degraders of long-chain (LC) n-alkanes, but the mechanism is poorly understood. Flavin-binding monooxygenase (AlmA) was recently found to be involved in LC-alkane degradation in bacteria of the Acinetobacter and Alcanivorax genera. However, the diversity of this gene and the role it plays in other bacteria remains unclear. In this study, we surveyed the diversity of almA in marine bacteria and in bacteria found in oil-enrichment communities. To identify the presence of this gene, a pair of degenerate PCR primers were was designed based on conserved motifs of the almA gene sequences in public databases. Using this approach, we identified diverse almA genes in the hydrocarbon-degrading bacteria and in bacterial communities from the surface seawater of the Xiamen coastal area, the South China Sea, the Indian Ocean, and the Atlantic Ocean. As a result, almA was positively detected in 35 isolates belonging to four genera, and a total of 39 different almA sequences were obtained. Five isolates were confirmed to harbor two to three almA genes. From the Xiamen coastal area and the Atlantic Ocean oil-enrichment communities, a total of 60 different almA sequences were obtained. These sequences mainly formed two clusters in the phylogenetic tree, named Class I and Class II, and these shared 45-56% identity at the amino acid level. Class I contained 11 sequences from bacteria represented by the Salinisphaera and Parvibaculum genera. Class II was larger and more diverse, and it was composed of 88 sequences from Proteobacteria, Gram-negative bacteria, and the enriched bacterial communities. These communities were represented by the Alcanivorax and Marinobacter genera, which are the two most popular genera hosting the almA gene. AlmA was also detected across a wide geographical range, as determined by the origin of the bacterial host. Our results demonstrate the diversity of almA and confirm its high rate of occurrence in hydrocarbon

  2. Thermosyntropha lipolytica gen. nov., sp. nov., a lipolytic, anaerobic, alkalitolerant, thermophilic bacterium utilizing short- and long-chain fatty acids in syntrophic coculture with a methanogenic archaeum.

    Science.gov (United States)

    Svetlitshnyi, V; Rainey, F; Wiegel, J

    1996-10-01

    Three strains of an anaerobic thermophilic organoheterotrophic lipolytic alkalitolerant bacterium, Thermosyntropha lipolytica gen. nov., sp. nov. (type strain JW/VS-265T; DSM 11003), were isolated from alkaline hot springs of Lake Bogoria (Kenya). The cells were nonmotile, non-spore forming, straight or slightly curved rods. At 60 degrees C the pH range for growth determined at 25 degrees C [pH25 degrees C] was 7.15 to 9.5, with an optimum between 8.1 and 8.9 (pH60 degrees C of 7.6 and 8.1). At a pH25 degrees C of 8.5 the temperature range for growth was from 52 to 70 degrees C, with an optimum between 60 and 66 degrees C. The shortest doubling time was around 1 h. In pure culture the bacterium grew in a mineral base medium supplemented with yeast extract, tryptone, Casamino Acids, betaine, and crotonate as carbon sources, producing acetate as a major product and constitutively a lipase. During growth in the presence of olive oil, free long-chain fatty acids were accumulated in the medium but the pure culture could not utilize olive oil, triacylglycerols, short- and long-chain fatty acids, and glycerol for growth. In syntrophic coculture (Methanobacterium strain JW/VS-M29) the lipolytic bacteria grew on triacylglycerols and linear saturated and unsaturated fatty acids with 4 to 18 carbon atoms, but glycerol was not utilized. Fatty acids with even numbers of carbon atoms were degraded to acetate and methane, while from odd-numbered fatty acids 1 mol of propionate per mol of fatty acid was additionally formed. 16S rDNA sequence analysis identified Syntrophospora and Syntrophomonas spp. as closest phylogenetic neighbors.

  3. Long chain polyunsaturated fatty acid supplementation in infants born at term.

    Science.gov (United States)

    Jasani, Bonny; Simmer, Karen; Patole, Sanjay K; Rao, Shripada C

    2017-03-10

    The long chain polyunsaturated fatty acids (LCPUFA) docosahexaenoic acid (DHA) and arachidonic acid (AA) are considered essential for maturation of the developing brain, retina and other organs in newborn infants. Standard infant milk formulae are not supplemented with LCPUFA; they contain only alpha-linolenic acid and linoleic acid, from which formula-fed infants must synthesise their own DHA and AA, respectively. Over the past few years, some manufacturers have added LCPUFA to formula milk and have marketed these products as providing an advantage for the overall development of full-term infants. To assess whether supplementation of formula milk with LCPUFA is both safe and beneficial for full-term infants, while focusing on effects on visual function, neurodevelopment and physical growth. Two review authors independently searched the Cochrane Central Register of Controlled Trials (CENTRAL; December 2016), MEDLINE (Ovid, 1966 to December 2016), Embase (Ovid, 1980 to December 2016), the Cumulative Index to Nursing and Allied Health Literature (CINAHL; 1980 to December 2016) and abstracts of the Pediatric Academic Societies (2000 to 2016). We applied no language restrictions. We reviewed all randomised controlled trials (RCTs) evaluating effects of LCPUFA supplemented versus non-supplemented formula milk on visual function, neurodevelopment and physical growth. We did not include trials reporting only biochemical outcomes. Two review authors extracted data independently. We assessed risk of bias of included studies using the guidelines of the Cochrane Neonatal Review Group. When appropriate, we conducted meta-analysis to determine a pooled estimate of effect. We identified 31 RCTs and included 15 of these in the review (N = 1889).Nine studies assessed visual acuity, six of which used visual evoked potentials (VEP), two Teller cards and one both. Four studies reported beneficial effects, and the remaining five did not. Meta-analysis of three RCTs showed significant

  4. Very long-chain acyl-CoA synthetase 3: overexpression and growth dependence in lung cancer.

    Directory of Open Access Journals (Sweden)

    Zhengtong Pei

    Full Text Available Lung cancer is the leading cause of cancer deaths worldwide. In the United States, only one in six lung cancer patients survives five years after diagnosis. These statistics may improve if new therapeutic targets are identified. We previously reported that an enzyme of fatty acid metabolism, very long-chain acyl-CoA synthetase 3 (ACSVL3, is overexpressed in malignant glioma, and that depleting glioblastoma cells of ACSVL3 diminishes their malignant properties. To determine whether ACSVL3 expression was also increased in lung cancer, we studied tumor histologic sections and lung cancer cell lines. Immunohistochemical analysis of normal human lung showed moderate ACSVL3 expression only in bronchial epithelial cells. In contrast, all of 69 different lung tumors tested, including adeno-, squamous cell, large cell, and small cell carcinomas, had robustly elevated ACSVL3 levels. Western blot analysis of lung cancer cell lines derived from these tumor types also had significantly increased ACSVL3 protein compared to normal bronchial epithelial cells. Decreasing the growth rate of lung cancer cell lines did not change ACSVL3 expression. However, knocking down ACSVL3 expression by RNA interference reduced cell growth rates in culture by 65-76%, and the ability of tumor cells to form colonies in soft agar suspension by 65-80%. We also conducted studies to gain a better understanding of the biochemical properties of human ACSVL3. ACSVL3 mRNA was detected in many human tissues, but the expression pattern differed somewhat from that of the mouse. The enzyme activated long- and very long-chain saturated fatty acid substrates, as well as long-chain mono- and polyunsaturated fatty acids to their respective coenzyme A derivatives. Endogenous human ACSVL3 protein was found in a punctate subcellular compartment that partially colocalized with mitochondria as determined by immunofluorescence microscopy and subcellular fractionation. From these studies, we conclude

  5. Efficient photochemical decomposition of long-chain perfluorocarboxylic acids by means of an aqueous/liquid CO2 biphasic system.

    Science.gov (United States)

    Hori, Hisao; Yamamoto, Ari; Kutsuna, Shuzo

    2005-10-01

    Photochemical decomposition of persistent and bioaccumulative long-chain (C9-C11) perfluorocarboxylic acids (PFCAs) with persulfate ion (S2O8(2-)) in an aqueous/liquid CO2 biphasic system was examined to develop a technique to neutralize stationary sources of the long-chain PFCAs. The long-chain PFCAs, namely, perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDA), and perfluoroundecanoic acid (PFUA), which are used as emulsifying agents and as surface treatment agents in industry, are relatively insoluble in water but are soluble in liquid CO2; therefore, introduction of liquid CO2 to the aqueous photoreaction system reduces the interference of colloidal PFCA particles. When the biphasic system was used to decompose these PFCAs, the extent of reaction was 6.4-51 times as high as that achieved in the absence of CO2. In the biphasic system, PFNA, PFDA, and PFUA (33.5-33.6 micromol) in 25.0 mL of water were 100%, 100%, and 77.1% decomposed, respectively, after 12 h of irradiation with a 200-W xenon-mercury lamp; F- ions were produced as a major product, and short-chain PFCAs, which are less bioaccumulative than the original PFCAs, were minor products. All of the initial S2O8(2-) was transformed to SO42-. The system also efficiently decomposed PFCAs at lower concentrations (e.g., 4.28-16.7 micromol of PFDA in 25.0 mL) and was successfully applied to decompose PFNA in floor wax.

  6. Anti-inflammatory coumarins with short- and long-chain hydrophobic groups from roots of Angelica dahurica cv. Hangbaizhi.

    Science.gov (United States)

    Wei, Wei; Wu, Xiu-Wen; Deng, Gai-Gai; Yang, Xiu-Wei

    2016-03-01

    The (1)H NMR-guided fractionation of a cyclohexane soluble portion of the 75% ethanolic extract of the roots of Angelica dahurica cv. Hangbaizhi led to the isolation of two coumarins, namely, 5-(3"-hydroxy-3"-methylbutyl)-8-hydroxyfuranocoumarin, and isobyakangelicin hydrate-3"-ethyl ether, and ten coumarins with short- or long-chain hydrophobic groups, namely, andafocoumarins A-J. Their structures were elucidated by extensive spectroscopic analyses. The absolute configurations of the C-2" secondary alcohols in ten of these compounds were deduced via the circular dichroism data of the in situ formed [Rh2(OCOCF3)4] complex, and oxidation reactions were utilized to determine location of the double bonds in the lipid chain of andafocoumarins H and I, respectively. The long-chain hydrophobic group of andafocoumarin J was determined by the method of chemical degradation and GC-MS analysis. It was the first time that coumarins with short- or long-chain hydrophobic groups in this plant had been comprehensively investigated. All isolates were assayed for their inhibitory effect against nitric oxide (NO) production in a lipopolysaccharide (LPS)-activated RAW264.7 macrophage cell line, among which andafocoumarins A and B exhibited a potent inhibition on LPS-activated NO production with IC50 values of 19.7 and 13.9 μM, respectively, indicating their stronger inhibitory activity than l-N(6)-(1-iminoethyl)-lysine (IC50=23.7 μM), a selective inhibitor of inducible nitric oxide synthase.

  7. Study of Sorption Properties of Anion Exchangers with Long-Chained Cross-Linking Agents for Tungsten Hydrometallurgy

    Institute of Scientific and Technical Information of China (English)

    O.N.Kononova; S.V.Kachin; O.P.Kalyakina; G.L.Pashkov; A.G.Kholmogorov

    2000-01-01

    The macroporous anion exchangers with long-chained cross-linking agents were investigated for the tungsten recovery from salt solutions. The physical-chemical characteristics of these sorbents were studied by means of sorption-desorption experiment aswell as electron and IR-spectroscopy. The anion exchangers on the basis of macroporous copolymers of methylacrylate and divinyl-ester of diethyleneglycol or tetravinyl-ester of pentaerythritol possess the exchange capacity to tungsten 2--5 times greater than the porous anion exchangers on the basis of styrene and divinylbenzene, therefore they can be used for selective tungsten recovery from comulex salt solutions.

  8. Surface passivation of (100 GaSb using self-assembled monolayers of long-chain octadecanethiol

    Directory of Open Access Journals (Sweden)

    E. Papis-Polakowska

    2016-05-01

    Full Text Available The passivation of (100 GaSb surface was investigated by means of the long-chain octadecanethiol (ODT self-assembled monolayer (SAM. The properties of ODT SAM on (100 GaSb were characterized by the atomic force microscopy using Kelvin probe force microscopy mode and X-ray photoelectron spectroscopy. The chemical treatment of 10mM ODT-C2H5OH has been applied to the passivation of a type-II superlattice InAs/GaSb photodetector. The electrical measurements indicate that the current density was reduced by one order of magnitude as compared to an unpassivated photodetector.

  9. Dietary conjugated linoleic acid and long-chain n-3 fatty acids in mammary and prostate cancer protection: a review.

    Science.gov (United States)

    Heinze, Verónica M; Actis, Adriana B

    2012-02-01

    The role of dietary fatty acids on cancer is still controversial. To examine the current literature on the protective role of conjugated linoleic acid (CLA) and marine long-chain fatty acids [eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)] and the risk of breast and prostate cancer, data from 41 case-control and cohort studies and relevant in vitro and animal experiments were included in this 2000-2010 revision. Epidemiological studies on CLA intake or its tissue concentration related to breast and prostate tumorigenesis are not conclusive; EPA and DHA intake have shown important inverse associations just in some studies. Additional research on the analysed association is required.

  10. Maternal but Not Fetal FADS Gene Variants Modify the Association between Maternal Long-Chain PUFA Intake in Pregnancy and Birth Weight1-3

    National Research Council Canada - National Science Library

    Carolina Moltó-Puigmartí; Martien C J M van Dongen; Pieter C Dagnelie; Jogchum Plat; Ronald P Mensink; Frans ES Tan; Joachim Heinrich; Carel Thijs

    2014-01-01

    ...), probably due to fish n-3 (ω-3) long-chain polyunsaturated fatty acids (LC-PUFAs). n-3 LC-PUFAs can also be synthesized endogenously, and their synthesis depends on single nucleotide polymorphisms (SNPs...

  11. Towards App-based Formative Feedback to Support Summarizing Skills

    NARCIS (Netherlands)

    Van Rosmalen, Peter; Kester, Liesbeth; Boshuizen, Els

    2013-01-01

    Van Rosmalen, P., Kester, L., & Boshuizen, H. P. A. (2013, 18 September). Towards App‐based Formative Feedback to Support Summarizing Skills. Presentation given at ECTEL 2013: Workshop on Technology-Enhanced Formative Assessment (TEFA), Paphos, Cyprus.

  12. Formation Feedback Applied to Behavior-Based Approach to Formation Keeping

    Institute of Scientific and Technical Information of China (English)

    苏治宝; 陆际联

    2004-01-01

    Approaches to the study of formation keeping for multiple mobile robots are analyzed and a behavior-based robot model is built in this paper. And, a kind of coordination architecture is presented, which is similar to the infantry squad organization and is used to realize multiple mobile robots to keep formations. Simulations verify the validity of the approach to keep formation, which combines the behavior-based method and formation feedback. The effects of formation feedback on the performance of the system are analyzed.

  13. A novel high-performance thin layer chromatography method for quantification of long chain aliphatic hydrocarbons from Cissus quadrangularis

    Directory of Open Access Journals (Sweden)

    Vandana Jain

    2016-08-01

    Full Text Available Context: A high-performance thin layer chromatography (HPTLC is an analytical technique, which can be used for the determination of constituents or marker components in various parts of the plants. Earlier studies have estimated phytoconstituents from the stem and other aerial plant parts of Cissus quadrangularis Linn. Estimation of hydrocarbons can also be successfully done using HPTLC technique using suitable derivatization. Aims: To develop and validate a simple and rapid method for the estimation of long chain aliphatic hydrocarbons from the leaves of C. quadrangularis using HPTLC technique. Methods: Precoated silica gel 60 F254 plates were used as stationary phase. The mobile phase used was hexane (100 %. The detection of spots was carried out using berberine sulphate as detecting reagent. Results: The method was validated in terms of linearity, sensitivity, accuracy, and precision. Linearity range was found to be 2-10 µg/mL, limit of detection 0.127 µg/mL, and limit of quantification 0.384 µg/mL. Conclusions: A novel, simple, accurate, precise and sensitive HPTLC method has been developed and validated for the estimation of long chain aliphatic hydrocarbons obtained from the leaves of C. quadrangularis Linn.

  14. Effects of ethanol and long-chain ethyl ester concentrations on volatile partitioning in a whisky model system.

    Science.gov (United States)

    Boothroyd, Emily L; Linforth, Robert S T; Cook, David J

    2012-10-10

    Ethanolic atmospheric pressure chemical ionization mass spectrometry (APCI-MS) was used to analyze the headspace concentrations of a test set of 14 whisky volatile compounds above a series of aqueous ethanolic solutions differing in alcohol content (5-40% ABV) and with regard to concentration of ethyl hexadecanoate (0-500 mg/L). The latter was selected to represent the long-chain ethyl esters found at various concentrations in new-make spirit. Headspace ion intensities were modeled against ethanol and ethyl hexadecanoate concentrations as factors. A separate model was prepared for each compound. Not surprisingly, ethanol content in the range of 5-40% ABV had a significant effect (P 2.5). This finding is discussed in terms of the "structuring" effects of ethyl hexadecanoate when present above critical micelle concentration, leading to the selective incorporation of hydrophobic volatile compounds into the interior of micelle-like structures. Data presented illustrate that dilution of whiskies to 23% ABV for "nosing" in the presence of long-chain ethyl esters is likely to change the balance of volatile compounds in the headspace and thus the perceived aroma character.

  15. A novel role for central ACBP/DBI as a regulator of long-chain fatty acid metabolism in astrocytes

    DEFF Research Database (Denmark)

    Bouyakdan, Khalil; Taïb, Bouchra; Budry, Lionel;

    2015-01-01

    Acyl-CoA-binding protein (ACBP) is a ubiquitously expressed protein that binds intracellular acyl-CoA esters. Several studies have suggested that ACBP acts as an acyl-CoA pool former and regulates long-chain fatty acids (LCFA) metabolism in peripheral tissues. In the brain, ACBP is known as Diaze......Acyl-CoA-binding protein (ACBP) is a ubiquitously expressed protein that binds intracellular acyl-CoA esters. Several studies have suggested that ACBP acts as an acyl-CoA pool former and regulates long-chain fatty acids (LCFA) metabolism in peripheral tissues. In the brain, ACBP is known...... (palmitate, stearate) LCFA metabolic fluxes in hypothalamic slices and astrocyte cultures. In addition, lack of ACBP differently affects the expression of genes involved in FA metabolism in cortical versus hypothalamic astrocytes. Finally, ACBP deficiency increases FA content and impairs their release...... in response to palmitate in hypothalamic astrocytes. Collectively, these findings reveal for the first time that central ACBP acts as a regulator of LCFA intracellular metabolism in astrocytes. Acyl-CoA-binding protein (ACBP) or diazepam-binding inhibitor is a secreted peptide acting centrally as a GABAA...

  16. Selective transport of long-chain fatty acids by FAT/CD36 in skeletal muscle of broilers.

    Science.gov (United States)

    Guo, J; Shu, G; Zhou, L; Zhu, X; Liao, W; Wang, S; Yang, J; Zhou, G; Xi, Q; Gao, P; Zhang, Y; Zhang, S; Yuan, L; Jiang, Q

    2013-03-01

    Fatty acid translocase (FAT/CD36) is a membrane receptor that facilitates long-chain fatty acid uptake. To investigate its role in the regulation of long-chain fatty acid composition in muscle tissue, we studied and compared FAT/CD36 gene expression in muscle tissues of commercial broiler chickens and Chinese local Silky fowls. The results from gas chromatography-mass spectrometry analysis of muscle samples demonstrated that Chinese local Silky fowls had significantly higher (P FAT/CD36 and caveolin-1) in the m. ipsilateral pectoralis and biceps femoris were analyzed by Q-PCR, and FAT/CD36 expression levels showed significant differences between these types of chickens (P FAT/CD36 expression are positively correlated with LA content (r = 0.567, P FAT/CD36 cDNA demonstrated that overexpression of FAT/CD36 improves total FA uptake with a significant increase in the proportion of LA and AA, and a decreased proportion of palmitic acid. These results suggest that chicken FAT/CD36 may selectively transport LA and AA, which may lead to the higher LA deposition in muscle tissue.

  17. Inborn Errors of Long-Chain Fatty Acid β-Oxidation Link Neural Stem Cell Self-Renewal to Autism

    Directory of Open Access Journals (Sweden)

    Zhigang Xie

    2016-02-01

    Full Text Available Inborn errors of metabolism (IEMs occur with high incidence in human populations. Especially prevalent among these are inborn deficiencies in fatty acid β-oxidation (FAO, which are clinically associated with developmental neuropsychiatric disorders, including autism. We now report that neural stem cell (NSC-autonomous insufficiencies in the activity of TMLHE (an autism risk factor that supports long-chain FAO by catalyzing carnitine biosynthesis, of CPT1A (an enzyme required for long-chain FAO transport into mitochondria, or of fatty acid mobilization from lipid droplets reduced NSC pools in the mouse embryonic neocortex. Lineage tracing experiments demonstrated that reduced flux through the FAO pathway potentiated NSC symmetric differentiating divisions at the expense of self-renewing stem cell division modes. The collective data reveal a key role for FAO in controlling NSC-to-IPC transition in the mammalian embryonic brain and suggest NSC self renewal as a cellular mechanism underlying the association between IEMs and autism.

  18. Overexpression of Arabidopsis ECERIFERUM1 promotes wax very-long-chain alkane biosynthesis and influences plant response to biotic and abiotic stresses.

    Science.gov (United States)

    Bourdenx, Brice; Bernard, Amélie; Domergue, Frédéric; Pascal, Stéphanie; Léger, Amandine; Roby, Dominique; Pervent, Marjorie; Vile, Denis; Haslam, Richard P; Napier, Johnathan A; Lessire, René; Joubès, Jérôme

    2011-05-01

    Land plant aerial organs are covered by a hydrophobic layer called the cuticle that serves as a waterproof barrier protecting plants against desiccation, ultraviolet radiation, and pathogens. Cuticle consists of a cutin matrix as well as cuticular waxes in which very-long-chain (VLC) alkanes are the major components, representing up to 70% of the total wax content in Arabidopsis (Arabidopsis thaliana) leaves. However, despite its major involvement in cuticle formation, the alkane-forming pathway is still largely unknown. To address this deficiency, we report here the characterization of the Arabidopsis ECERIFERUM1 (CER1) gene predicted to encode an enzyme involved in alkane biosynthesis. Analysis of CER1 expression showed that CER1 is specifically expressed in the epidermis of aerial organs and coexpressed with other genes of the alkane-forming pathway. Modification of CER1 expression in transgenic plants specifically affects VLC alkane biosynthesis: waxes of TDNA insertional mutant alleles are devoid of VLC alkanes and derivatives, whereas CER1 overexpression dramatically increases the production of the odd-carbon-numbered alkanes together with a substantial accumulation of iso-branched alkanes. We also showed that CER1 expression is induced by osmotic stresses and regulated by abscisic acid. Furthermore, CER1-overexpressing plants showed reduced cuticle permeability together with reduced soil water deficit susceptibility. However, CER1 overexpression increased susceptibility to bacterial and fungal pathogens. Taken together, these results demonstrate that CER1 controls alkane biosynthesis and is highly linked to responses to biotic and abiotic stresses.

  19. Behavior-Based Formation Control of Swarm Robots

    Directory of Open Access Journals (Sweden)

    Dongdong Xu

    2014-01-01

    Full Text Available Swarm robotics is a specific research field of multirobotics where a large number of mobile robots are controlled in a coordinated way. Formation control is one of the most challenging goals for the coordination control of swarm robots. In this paper, a behavior-based control design approach is proposed for two kinds of important formation control problems: efficient initial formation and formation control while avoiding obstacles. In this approach, a classification-based searching method for generating large-scale robot formation is presented to reduce the computational complexity and speed up the initial formation process for any desired formation. The behavior-based method is applied for the formation control of swarm robot systems while navigating in an unknown environment with obstacles. Several groups of experimental results demonstrate the success of the proposed approach. These methods have potential applications for various swarm robot systems in both the simulation and the practical environments.

  20. Very long-chain fatty acid-containing lipids rather than sphingolipids per se are required for raft association and stable surface transport of newly synthesized plasma membrane ATPase in yeast.

    Science.gov (United States)

    Gaigg, Barbara; Toulmay, Alexandre; Schneiter, Roger

    2006-11-10

    The proton-pumping H+-ATPase, Pma1p, is an abundant and very long lived polytopic protein of the yeast plasma membrane. Pma1p constitutes a major cargo of the secretory pathway and thus serves as a model to study plasma membrane biogenesis. Pma1p associates with detergent-resistant membrane domains (lipid "rafts") already in the ER, and a lack of raft association correlates with mistargeting of the protein to the vacuole, where it is degraded. We are analyzing the role of specific lipids in membrane domain formation and have previously shown that surface transport of Pma1p is independent of newly synthesized sterols but that sphingolipids with C26 very long chain fatty acid are crucial for raft association and surface transport of Pma1p (Gaigg, B., Timischl, B., Corbino, L., and Schneiter, R. (2005) J. Biol. Chem. 280, 22515-22522). We now describe a more detailed analysis of the function that sphingolipids play in this process. Using a yeast strain in which the essential function of sphingolipids is substituted by glycerophospholipids containing C26 very long chain fatty acids, we find that sphingolipids per se are dispensable for raft association and surface delivery of Pma1p but that the C26 fatty acid is crucial. We thus conclude that the essential function of sphingolipids for membrane domain formation and stable surface delivery of Pma1p is provided by the C26 fatty acid that forms part of the yeast ceramide.

  1. Thermodynamic Interactions between Polystyrene and Long-Chain Poly(n-Alkyl Acrylates) Derived from Plant Oils.

    Science.gov (United States)

    Wang, Shu; Robertson, Megan L

    2015-06-10

    Vegetable oils and their fatty acids are promising sources for the derivation of polymers. Long-chain poly(n-alkyl acrylates) and poly(n-alkyl methacrylates) are readily derived from fatty acids through conversion of the carboxylic acid end-group to an acrylate or methacrylate group. The resulting polymers contain long alkyl side-chains with around 10-22 carbon atoms. Regardless of the monomer source, the presence of alkyl side-chains in poly(n-alkyl acrylates) and poly(n-alkyl methacrylates) provides a convenient mechanism for tuning their physical properties. The development of structured multicomponent materials, including block copolymers and blends, containing poly(n-alkyl acrylates) and poly(n-alkyl methacrylates) requires knowledge of the thermodynamic interactions governing their self-assembly, typically described by the Flory-Huggins interaction parameter χ. We have investigated the χ parameter between polystyrene and long-chain poly(n-alkyl acrylate) homopolymers and copolymers: specifically we have included poly(stearyl acrylate), poly(lauryl acrylate), and their random copolymers. Lauryl and stearyl acrylate were chosen as model alkyl acrylates derived from vegetable oils and have alkyl side-chain lengths of 12 and 18 carbon atoms, respectively. Polystyrene is included in this study as a model petroleum-sourced polymer, which has wide applicability in commercially relevant multicomponent polymeric materials. Two independent methods were employed to measure the χ parameter: cloud point measurements on binary blends and characterization of the order-disorder transition of triblock copolymers, which were in relatively good agreement with one another. The χ parameter was found to be independent of the alkyl side-chain length (n) for large values of n (i.e., n > 10). This behavior is in stark contrast to the n-dependence of the χ parameter predicted from solubility parameter theory. Our study complements prior work investigating the interactions between

  2. Effect of Long Chain Alcohol on the Self Assembling Nature of CTAB/KBr/Alcohol System

    Science.gov (United States)

    Jasila, K.; Sreejith, Lisa

    2011-10-01

    Surfactants self-assemble in bulk aqueous solution to form different microstructure. The self assembled structures may easily rearrange if parameters like concentration, ionic strength, or temperature are changed, which renders self-assembled systems particularly interesting. Here we examine the influence of n-nonanol and n-decanol on the viscosity behaviour of CTAB/KBr system. The alcohols of varying concentrations were added to CTAB/KBr solutions and were kept in a hot bath at a temperature of 45 °C with proper shaking for homogeneity. The viscosity of the micellar solution was measured using Brookfield DV-II + viscometer at temperatures ranging from 25-60 °C. It is observed that the η0 is a strong function of concentration of alcohols. In the case of nonanol four regions were identified in the plot of zero shear viscosity Vs. concentration of alcohol. At low C0, viscosity is low (Region I). With increase in concentration of alcohols the spherical micelles will grow into cylinders and at higher C0, they entangle with each other to form worm like micelles, indicated by a rapid increase in viscosity resulting in a peak (Region II). Subsequent to this observation a decrease of η0 (Region III) followed by a plateau is observed. The drastic decrease in viscosity could be due to decrease in the mean size of the micelles or due to the formation of other self assembled structures. With further increase in C0 the viscosity again decreases. In this region the micellar solution is turbid and show optically birefringence In region (IV), it show very interesting viscosity behavior. Here viscosity increases with increase in temperature. Only three regions were identified in the case of CTAB/KBr/decanol system and there was no lyotropic liquid crystal formation at high concentration. Thus by just increasing the length of alcohol by one carbon, there was drastic change in their property.

  3. Formation Tracking Based on Approximate Velocities

    Directory of Open Access Journals (Sweden)

    Eduardo Gamaliel Hernandez-Martinez

    2015-12-01

    Full Text Available This paper analyses the formation tracking of groups of mobile robots moving on the plane. A leader robot is chosen to follow a prescribed trajectory whilst the rest, considered as followers, are formed in an open-chain configuration. Two formation-tracking control laws using approximate velocities are proposed, in which some velocities must be communicated between robots in order to ensure the simultaneous preservation of the formation and the following of the group path. The main result is analysis of the convergence of the two proposed control laws. The restriction of inaccurate information occurs in decentralized multi-robot platforms, in which the mobile agents are only able to measure positions and the velocities’ functions are estimated using online numerical methods. A numerical simulation of both controllers in the case of omnidirectional robots is shown. For the case of the unicycle-type robots, real-time experiments of both controllers were implemented and tested.

  4. High levels of both n-3 and n-6 long-chain polyunsaturated fatty acids in cord serum phospholipids predict allergy development.

    Directory of Open Access Journals (Sweden)

    Malin Barman

    Full Text Available BACKGROUND: Long-chain polyunsaturated fatty acids (LCPUFAs reduce T-cell activation and dampen inflammation. They might thereby counteract the neonatal immune activation and hamper normal tolerance development to harmless environmental antigens. We investigated whether fatty acid composition of cord serum phospholipids affects allergy development up to age 13 years. METHODS: From a population-based birth-cohort born in 1996/7 and followed until 13 years of age (n = 794, we selected cases with atopic eczema (n = 37 or respiratory allergy (n = 44, as well as non-allergic non-sensitized controls (n = 48 based on diagnosis at 13 years of age. Cord and maternal sera obtained at delivery from cases and controls were analysed for proportions of saturated, monounsaturated and polyunsaturated fatty acids among serum phospholipids. RESULTS: The cord serum phospholipids from subject who later developed either respiratory allergy or atopic eczema had significantly higher proportions of 5/8 LCPUFA species, as well as total n-3 LCPUFA, total n-6 LCPUFA and total LCPUFA compared to cord serum phospholipids from controls who did not develop allergy (P<0.001 for all comparisons. Conversely, individuals later developing allergy had lower proportion of the monounsaturated fatty acid 18∶1n-9 as well as total MUFA (p<0.001 among cord serum phospholipids. The risk of respiratory allergy at age 13 increased linearly with the proportion of n-3 LCPUFA (Ptrend<0.001, n-6 LCPUFA (Ptrend = 0.001, and total LCPUFA (Ptrend<0.001 and decreased linearly with the proportions of total MUFA (Ptrend = 0.025 in cord serum phospholipids. Furthermore, Kaplan-Meier estimates of allergy development demonstrated that total LCPUFA proportion in cord serum phospholipids was significantly associated with respiratory allergy (P = 0.008 and sensitization (P = 0.002, after control for sex and parental allergy. CONCLUSION: A high proportion of long-chain

  5. Structural determination of ethylene-propylene-diene rubber (EPDM) containing high degree of controlled long-chain branching

    DEFF Research Database (Denmark)

    Mitra, Susanta; Jørgensen, Mikkel; Pedersen, Walther Batsberg

    2009-01-01

    This work highlights an attempt to characterize the degree and nature of long-chain branching (LCB) in an unknown sample of ethylene-propylene-diene rubber (EPDM). Two EPDM rubbers selected for this study were comparable in comonomer compositions but significantly different with respect to molar...... mass and the presence of LCB. Both rubbers contained 5-ethylidene-2-norbornene (ENB) as diene. Solution cast films of pure EPDM samples were used for different characterization techniques. 1H-NMR, and 13C-NMR were used for assessing the comonomer ratios and LCB. Size exclusion chromatography (SEC...... findings and the available theories, an attempt was made to identify the chemical nature and degree of LCB. This study reveals the possibility of detailed characterization of molecular architecture of EPDM containing LCB by comparing with an essentially linear EPDM in light of an existing theory. © 2009...

  6. Effect of copper nanofluid in aqueous solution of long chain alcohols in the performance of heat pipes

    Science.gov (United States)

    Senthil Kumar, R.; Vaidyanathan, S.; Sivaraman, B.

    2015-02-01

    Heat pipes are widely used for the thermal control of electronic devices due to their capability of heat transport at high rate over considerable distance with small temperature drop. This study investigates the experimental performance of the heat pipe using the combination of copper nanofluids and the different types of aqueous solution of long chain alcohols. An experimental system is set up to measure the temperature distribution of heat pipes along the surface to determine the thermal efficiency and the thermal resistance of different working fluids computed. The working fluids used in this analysis illustrate certain improvement in the metrics over the conventional working fluids, pertaining to the heat transport limitations. The experimental results display higher efficiency and lower thermal resistance of the heat pipe when compared with the conventional working fluids like water.

  7. Discovery of pyrazole carboxylic acids as potent inhibitors of rat long chain L-2-hydroxy acid oxidase.

    Science.gov (United States)

    Barawkar, Dinesh A; Bandyopadhyay, Anish; Deshpande, Anil; Koul, Summon; Kandalkar, Sachin; Patil, Pradeep; Khose, Goraksha; Vyas, Samir; Mone, Mahesh; Bhosale, Shubhangi; Singh, Umesh; De, Siddhartha; Meru, Ashwin; Gundu, Jayasagar; Chugh, Anita; Palle, Venkata P; Mookhtiar, Kasim A; Vacca, Joseph P; Chakravarty, Prasun K; Nargund, Ravi P; Wright, Samuel D; Roy, Sophie; Graziano, Michael P; Cully, Doris; Cai, Tian-Quan; Singh, Sheo B

    2012-07-01

    Long chain L-2-hydroxy acid oxidase 2 (Hao2) is a peroxisomal enzyme expressed in the kidney and the liver. Hao2 was identified as a candidate gene for blood pressure (BP) quantitative trait locus (QTL) but the identity of its physiological substrate and its role in vivo remains largely unknown. To define a pharmacological role of this gene product, we report the development of selective inhibitors of Hao2. We identified pyrazole carboxylic acid hits 1 and 2 from screening of a compound library. Lead optimization of these hits led to the discovery of 15-XV and 15-XXXII as potent and selective inhibitors of rat Hao2. This report details the structure activity relationship of the pyrazole carboxylic acids as specific inhibitors of Hao2.

  8. RNA expression and chromosomal location of the mouse long-chain acyl-CoA dehydrogenase gene

    Energy Technology Data Exchange (ETDEWEB)

    Hinsdale, M.E.; Farmer, S.C.; Hamm, D.A.; Tolwani, R.J.; Wood, P.A. [Univ. of Alabama, Birmingham, AL (United States)] [and others

    1995-07-20

    The cDNA for mouse long-chain acyl-CoA dehydrogenase (Acadl, gene symbol; LCAD, enzyme) was cloned and characterized. The cDNA was obtained by library screening and reverse transcription-polymerase chain reaction (RT-PCR). The deduced amino acid sequence showed a high degree of homology to both the rat and the human LCAD sequence. Northern analysis of multiple tissues using the mouse Acadl cDNA as a probe showed two bands in all tissues examined. We found a total of three distinct mRNAs for Acadl. These three mRNAs were encoded by a single gene that we mapped to mouse chromosome 1. The three transcripts differed in the 3{prime} untranslated region due to use of alternative polyadenylation sites. Quantitative evaluation of a multitissue Northern blot showed a varied ratio of the larger transcript as compared with the smaller transcripts. 40 refs., 6 figs., 1 tab.

  9. Inhibitory Effect of Long-Chain Fatty Acids on Biogas Production and the Protective Effect of Membrane Bioreactor

    Science.gov (United States)

    Dasa, Kris Triwulan; Westman, Supansa Y.; Cahyanto, Muhammad Nur; Niklasson, Claes

    2016-01-01

    Anaerobic digestion of lipid-containing wastes for biogas production is often hampered by the inhibitory effect of long-chain fatty acids (LCFAs). In this study, the inhibitory effects of LCFAs (palmitic, stearic, and oleic acid) on biogas production as well as the protective effect of a membrane bioreactor (MBR) against LCFAs were examined in thermophilic batch digesters. The results showed that palmitic and oleic acid with concentrations of 3.0 and 4.5 g/L resulted in >50% inhibition on the biogas production, while stearic acid had an even stronger inhibitory effect. The encased cells in the MBR system were able to perform better in the presence of LCFAs. This system exhibited a significantly lower percentage of inhibition than the free cell system, not reaching over 50% at any LCFA concentration tested. PMID:27699172

  10. Production of long chain alkyl esters from carbon dioxide and electricity by a two-stage bacterial process.

    Science.gov (United States)

    Lehtinen, Tapio; Efimova, Elena; Tremblay, Pier-Luc; Santala, Suvi; Zhang, Tian; Santala, Ville

    2017-11-01

    Microbial electrosynthesis (MES) is a promising technology for the reduction of carbon dioxide into value-added multicarbon molecules. In order to broaden the product profile of MES processes, we developed a two-stage process for microbial conversion of carbon dioxide and electricity into long chain alkyl esters. In the first stage, the carbon dioxide is reduced to organic compounds, mainly acetate, in a MES process by Sporomusa ovata. In the second stage, the liquid end-products of the MES process are converted to the final product by a second microorganism, Acinetobacter baylyi in an aerobic bioprocess. In this proof-of-principle study, we demonstrate for the first time the bacterial production of long alkyl esters (wax esters) from carbon dioxide and electricity as the sole sources of carbon and energy. The process holds potential for the efficient production of carbon-neutral chemicals or biofuels. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Carnitine supplementation and ketogenesis by small-for-date neonates on medium-and long-chain fatty acid formulae.

    Science.gov (United States)

    Labadaridis, J; Mavridou, I; Sarafidou, G; Alexiou, N; Costalos, C; Michelakakis, H

    2000-01-01

    Carnitine is a key molecule in energy production from various substrates. Although it is generally believed that it plays no role in the metabolism of medium-chain triglycerides, quite a few data exist to the contrary. In the present study we investigated the effect of carnitine on ketogenesis in small-for-date neonates fed formulae of equal caloric value and fat content that was predominantly long-chain triglycerides or medium-chain triglycerides (46% of total fat). According to our results there was a statistically significant interaction between carnitine and the chain length of the administered fat with respect to ketone production. Increased ketogenesis was only shown by the neonates receiving medium-chain triglycerides and carnitine. Our results provide further evidence for the involvement of carnitine in medium-chain triglyceride metabolism.

  12. A computational search for lipases that can preferentially hydrolyze long-chain omega-3 fatty acids from fish oil triacylglycerols.

    Science.gov (United States)

    Kamal, Md Zahid; Barrow, Colin J; Rao, Nalam Madhusudhana

    2015-04-15

    Consumption of long-chain omega-3 fatty acids is known to decrease the risk of major cardiovascular events. Lipases, a class of triacylglycerol hydrolases, have been extensively tested to concentrate omega-3 fatty acids from fish oils, under mild enzymatic conditions. However, no lipases with preference for omega-3 fatty acids selectivity have yet been discovered or developed. In this study we performed an exhaustive computational study of substrate-lipase interactions by docking, both covalent and non-covalent, for 38 lipases with a large number of structured triacylglycerols containing omega-3 fatty acids. We identified some lipases that have potential to preferentially hydrolyze omega-3 fatty acids from structured triacylglycerols. However omega-3 fatty acid preferences were found to be modest. Our study provides an explanation for absence of reports of lipases with omega-3 fatty acid hydrolyzing ability and suggests methods for developing these selective lipases.

  13. TORC1 Inhibits GSK3-Mediated Elo2 Phosphorylation to Regulate Very Long Chain Fatty Acid Synthesis and Autophagy

    DEFF Research Database (Denmark)

    Zimmermann, Christine; Santos, Aline; Gable, Kenneth;

    2013-01-01

    Very long chain fatty acids (VLCFAs) are essential fatty acids with multiple functions, including ceramide synthesis. Although the components of the VLCFA biosynthetic machinery have been elucidated, how their activity is regulated to meet the cell's metabolic demand remains unknown. The goal...... of this study was to identify mechanisms that regulate the rate of VLCFA synthesis, and we discovered that the fatty acid elongase Elo2 is regulated by phosphorylation. Elo2 phosphorylation is induced upon inhibition of TORC1 and requires GSK3. Expression of nonphosphorylatable Elo2 profoundly alters...... of autophagy. Together, our data reveal a function for TORC1 and GSK3 in the regulation of VLCFA synthesis that has important implications for autophagy and cell homeostasis....

  14. Two-dimensional array of nanoparticles intermitted by long chain molecules

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    It is an important theme in nanoscience to control the interval of the ordered array of nanoparticles through modifying the chain length of the passivating molecules of the nanoparticles. The theme runs through most of the applications of the ordered array of nanoparticles. Though the Langmuir-Blodgett (LB) technique is one of the most important ways to prepare the two- dimensional ordered array of nanoparticles, it has only been used in case that the passivating molecules are short enough (formation of the two-dimensional array of the octadecyl- amine-passivated gold nanoparticles at the air/water interface. By properly modifying the ordinary LB technique, the long-term two-dimensional ordered array of nanoparticles was successfully achieved. The surface pressure-area isotherms and the electron microscopy observation showed that the key to preparing the two-dimensional ordered arrangement of nanoparticles is to overcome the interaction among the passivant shells.

  15. Role of fatty acid binding proteins and long chain fatty acids in modulating nuclear receptors and gene transcription.

    Science.gov (United States)

    Schroeder, Friedhelm; Petrescu, Anca D; Huang, Huan; Atshaves, Barbara P; McIntosh, Avery L; Martin, Gregory G; Hostetler, Heather A; Vespa, Aude; Landrock, Danilo; Landrock, Kerstin K; Payne, H Ross; Kier, Ann B

    2008-01-01

    Abnormal energy regulation may significantly contribute to the pathogenesis of obesity, diabetes mellitus, cardiovascular disease, and cancer. For rapid control of energy homeostasis, allosteric and posttranslational events activate or alter activity of key metabolic enzymes. For longer impact, transcriptional regulation is more effective, especially in response to nutrients such as long chain fatty acids (LCFA). Recent advances provide insights into how poorly water-soluble lipid nutrients [LCFA; retinoic acid (RA)] and their metabolites (long chain fatty acyl Coenzyme A, LCFA-CoA) reach nuclei, bind their cognate ligand-activated receptors, and regulate transcription for signaling lipid and glucose catabolism or storage: (i) while serum and cytoplasmic LCFA levels are in the 200 mircroM-mM range, real-time imaging recently revealed that LCFA and LCFA-CoA are also located within nuclei (nM range); (ii) sensitive fluorescence binding assays show that LCFA-activated nuclear receptors [peroxisome proliferator-activated receptor-alpha (PPARalpha) and hepatocyte nuclear factor 4alpha (HNF4alpha)] exhibit high affinity (low nM KdS) for LCFA (PPARalpha) and/or LCFA-CoA (PPARalpha, HNF4alpha)-in the same range as nuclear levels of these ligands; (iii) live and fixed cell immunolabeling and imaging revealed that some cytoplasmic lipid binding proteins [liver fatty acid binding protein (L-FABP), acyl CoA binding protein (ACBP), cellular retinoic acid binding protein-2 (CRABP-2)] enter nuclei, bind nuclear receptors (PPARalpha, HNF4alpha, CRABP-2), and activate transcription of genes in fatty acid and glucose metabolism; and (iv) studies with gene ablated mice provided physiological relevance of LCFA and LCFA-CoA binding proteins in nuclear signaling. This led to the hypothesis that cytoplasmic lipid binding proteins transfer and channel lipidic ligands into nuclei for initiating nuclear receptor transcriptional activity to provide new lipid nutrient signaling pathways that

  16. Systematic investigations on the biodegradation and viscosity reduction of long chain hydrocarbons using Pseudomonas aeruginosa and Pseudomonas fluorescens.

    Science.gov (United States)

    Sakthipriya, N; Doble, Mukesh; Sangwai, Jitendra S

    2016-03-01

    The use of microorganisms has been researched extensively for possible applications related to hydrocarbon degradation in the petroleum industry. However, attempts to improve the effect of microorganisms on the viscosity of hydrocarbons, which find potential use in the development of robust models for biodegradation, have been rarely documented. This study investigates the degradation of long chain hydrocarbons, such as hexadecane and eicosane using Pseudomonas fluorescens PMMD3 (P. fluorescens) and Pseudomonas aeruginosa CPCL (P. aeruginosa). P. aeruginosa used here is isolated from petroleum contaminated sediments and the P. fluorescens is from the coastal area, and both have hydrocarbon degrading genes. The degradation of hydrocarbons is studied using carbon profiling and reduction in viscosity pre- and post-degradation of hydrocarbons. The carbon profiling has been obtained using gas chromatography-mass spectroscopy (GC-MS), and Fourier transform infrared spectrometer (FTIR) results. GC-MS results have indicated an improved biodegradation of hydrocarbons by 77-93% in one day. The yield coefficients of biomass (YX/S) for P. aeruginosa and P. fluorescens using hexadecane as a carbon source are 1.35 and 0.81 g g(-1), and the corresponding values with eicosane are 0.84 and 0.88 g g(-1). The viscosity of hexadecane is reduced by the order of 53 and 47%, while that of eicosane was reduced by 53 and 65%, using P. aeruginosa and P. fluorescens, respectively. This study also presents information on the activity of enzymes responsible for the hydrocarbon degradation. Pseudomonas species have shown their use in potential applications for bioremediation, oil-spill treatment, and flow assurance. We believe that this study will also provide stringent tests for possible model development for the bioremediation of long chain paraffins suitable for oilfield applications.

  17. Long-chain n-3 polyunsaturated fatty acids in plasma in British meat-eating, vegetarian, and vegan men.

    Science.gov (United States)

    Rosell, Magdalena S; Lloyd-Wright, Zouë; Appleby, Paul N; Sanders, Thomas A B; Allen, Naomi E; Key, Timothy J

    2005-08-01

    Plasma concentrations of long-chain n-3 polyunsaturated fatty acids are lower in vegetarians and in vegans than in omnivores. No data are available on whether these concentrations differ between long- and short-term vegetarians and vegans. We compared plasma fatty acid composition in meat-eaters, vegetarians, and vegans and examined whether the proportions of eicosapentaenoic acid (20:5n-3; EPA), docosapentaenoic acid (22:5n-3; DPA), and docosahexaenoic acid (22:6n-3; DHA) were related to the subjects' duration of adherence to their diets or to the proportions of plasma linoleic acid (18:2n-6; LA) and alpha-linolenic acid (18:3n-3; ALA). The present cross-sectional study included 196 meat-eating, 231 vegetarian, and 232 vegan men in the United Kingdom. Information on anthropometry, diet, and smoking habits was obtained through a questionnaire. Total fatty acid composition in plasma was measured. The proportions of plasma EPA and DHA were lower in the vegetarians and in the vegans than in the meat-eaters, whereas only small differences were seen for DPA. Plasma EPA, DPA, and DHA proportions were not significantly associated with the duration of time since the subjects became vegetarian or vegan, which ranged from 20 y. In the vegetarians and the vegans, plasma DHA was inversely correlated with plasma LA. The proportions of plasma long-chain n-3 fatty acids were not significantly affected by the duration of adherence to a vegetarian or vegan diet. This finding suggests that when animal foods are wholly excluded from the diet, the endogenous production of EPA and DHA results in low but stable plasma concentrations of these fatty acids.

  18. Blood clearance and tissue uptake of intravenous lipid emulsions containing long-chain and medium-chain triglycerides and fish oil in a mouse model.

    Science.gov (United States)

    Treskova, E; Carpentier, Y A; Ramakrishnan, R; Al-Haideri, M; Seo, T; Deckelbaum, R J

    1999-01-01

    Increasing interest in using different triglycerides (TGs) for specific clinical applications raised the question as to how the emulsion TG composition would affect blood clearance and emulsion delivery to hepatic and extrahepatic tissues. Emulsions used were long-chain soy oil TG (long-chain triglyceride [LCT]), LCT/ medium-chain triglyceride (MCT; 1:1, wt/wt), LCT/MCT/C/omega-3 (5:4:1, wt/wt) and pure fish oil (omega-3 TG) labeled with non-degradable 3H-cholesteryl oleoyl ether (3H-CE) as a particle marker. Mice (C57BL/6J) were injected with four different commercial emulsions at a nonsaturating dose of 0.4 mg TG/20 to 25 g per mouse to obtain 1st order kinetics. Blood was sampled at 0.5, 2, 5, 10, 15, and 25 minutes, and the fractional catabolic rate was determined by fitting a straight line to the logarithm of the blood 3H-CE radioactivity. Retention of 3H-CE for each tissue at 25 minutes reflected organ uptake of the emulsion. Blood clearance of pure omega-3 TG (10.40% +/- 0.54% pools/h; mean +/- SE) was significantly slower than that of LCT, LCT/MCT, and LCT/MCT/omega-3 emulsion (18.9 +/- 0.6 pools/h, 17.0 +/- 0.96 pools/h, 16.5 +/- 1.08 pools/h, respectively) (p < .01). Based on 3H-CE uptake, LCT, LCT/MCT, and omega-3 TG emulsions showed similar delivery to liver (39% +/- 3.9%, 46% +/- 3.6%, 34% +/- 3.2%). Liver uptake of LCT/MCT/omega-3, (23% +/- 2.2%) was less than LCT/MCT (46% +/-3.6%, p < .0001) and LCT (39% +/- 3.9%, p = .002). Results indicate slow blood clearance of pure omega-3 TG emulsion from the blood compared with emulsion in which omega-3 TG was mixed with LCT and MCT. Earlier data showed that omega-3 TG are poorly hydrolyzed in extracellular media and therefore are delivered to tissues as part of the core of emulsion remnants. Thus, our data suggest that the incorporation of omega-3 TG with LCT/MCT will result in greater delivery of omega-3 fatty acids to extrahepatic tissue, which could be important in modulating immune and other responses.

  19. Fish oil and mental health: the role of n-3 long-chain polyunsaturated fatty acids in cognitive development and neurological disorders.

    Science.gov (United States)

    Assisi, Alessandro; Banzi, Rita; Buonocore, Carmela; Capasso, Filippo; Di Muzio, Valeria; Michelacci, Francesca; Renzo, Danila; Tafuri, Giovanni; Trotta, Francesco; Vitocolonna, Maria; Garattini, Silvio

    2006-11-01

    Epidemiological and experimental studies have indicated that consumption of more n-3 long-chain polyunsaturated fatty acids may reduce the risk for a variety of diseases, including cardiovascular, neurological and immunological disorders, diabetes and cancer. This article focuses on the role of marine n-3 long-chain polyunsaturated fatty acids in brain functions, including the development of the central nervous system and neurological disorders. An overview of the major animal studies and clinical trials is provided here, focusing on fatty acid supplementation during pregnancy and infancy, and prevention and management of Alzheimer's disease, schizophrenia, depression and attention deficit hyperactive disorder. Although an optimal balance in n-3/n-6 long-chain polyunsaturated fatty acid ratio is important for proper neurodevelopment and cognitive functions, results from randomized controlled trials are controversial and do not confirm any useful effect of supplementation on development of preterm and term infants. The relationship between fatty acid status and mental disorders is confirmed by reduced levels of n-3 long-chain polyunsaturated fatty acids in erythrocyte membranes of patients with central nervous system disorders. Nevertheless, there are very little data supporting the use of fish oil in those patients. The only way to verify whether n-3 long-chain polyunsaturated fatty acids are a potential therapeutic option in the management and prevention of mental disorders is to conduct a large definitive randomized controlled trials similar to those required for the licensing of any new pharmacological treatment.

  20. Self-assembly of long chain fatty acids: Effect of a methyl branch

    DEFF Research Database (Denmark)

    Liljeblad, Jonathan F. D.; Tyrode, Eric; Thormann, Esben

    2014-01-01

    chains of the straight chain fatty acids appear to be oriented perpendicular to the sample surface, based on an orientational analysis of VSFS data and the odd/even effect. In addition, the selection of the subphase (neat water or CdCl2 containing water buffered to pH 6.0) used for the LB-deposition has...... a profound influence on the monolayer morphology, packing density, compressibility, and conformational order. Finally, the orientation of the 19-MEA dimethyl moiety is estimated, and a strategy for performing an orientational analysis to determine the complete molecular orientation of the aliphatic chains...

  1. DHA-Containing Oilseed: A Timely Solution for the Sustainability Issues Surrounding Fish Oil Sources of the Health-Benefitting Long-Chain Omega-3 Oils

    Directory of Open Access Journals (Sweden)

    Soressa M. Kitessa

    2014-05-01

    Full Text Available Benefits of long-chain (≥C20 omega-3 oils (LC omega-3 oils for reduction of the risk of a range of disorders are well documented. The benefits result from eicosapentaenoic acid (EPA and docosahexaenoic acid (DHA; optimal intake levels of these bioactive fatty acids for maintenance of normal health and prevention of diseases have been developed and adopted by national and international health agencies and science bodies. These developments have led to increased consumer demand for LC omega-3 oils and, coupled with increasing global population, will impact on future sustainable supply of fish. Seafood supply from aquaculture has risen over the past decades and it relies on harvest of wild catch fisheries also for its fish oil needs. Alternate sources of LC omega-3 oils are being pursued, including genetically modified soybean rich in shorter-chain stearidonic acid (SDA, 18:4ω3. However, neither oils from traditional oilseeds such as linseed, nor the SDA soybean oil have shown efficient conversion to DHA. A recent breakthrough has seen the demonstration of a land plant-based oil enriched in DHA, and with omega-6 PUFA levels close to that occurring in marine sources of EPA and DHA. We review alternative sources of DHA supply with emphasis on the need for land plant oils containing EPA and DHA.

  2. NMR metabolomics profiling of blood plasma mimics shows that medium- and long-chain fatty acids differently release metabolites from human serum albumin

    Science.gov (United States)

    Jupin, M.; Michiels, P. J.; Girard, F. C.; Spraul, M.; Wijmenga, S. S.

    2014-02-01

    Metabolite profiling by NMR of body fluids is increasingly used to successfully differentiate patients from healthy individuals. Metabolites and their concentrations are direct reporters of body biochemistry. However, in blood plasma the NMR-detected free-metabolite concentrations are also strongly affected by interactions with the abundant plasma proteins, which have as of yet not been considered much in metabolic profiling. We previously reported that many of the common NMR-detected metabolites in blood plasma bind to human serum albumin (HSA) and many are released by fatty acids present in fatted HSA. HSA is the most abundant plasma protein and main transporter of endogenous and exogenous metabolites. Here, we show by NMR how the two most common fatty acids (FAs) in blood plasma - the long-chain FA, stearate (C18:0) and medium-chain FA, myristate (C14:0) - affect metabolite-HSA interaction. Of the set of 18 common NMR-detected metabolites, many are released by stearate and/or myristate, lactate appearing the most strongly affected. Myristate, but not stearate, reduces HSA-binding of phenylalanine and pyruvate. Citrate signals were NMR invisible in the presence of HSA. Only at high myristate-HSA mole ratios 11:1, is citrate sufficiently released to be detected. Finally, we find that limited dilution of blood-plasma mimics releases HSA-bound metabolites, a finding confirmed in real blood plasma samples. Based on these findings, we provide recommendations for NMR experiments for quantitative metabolite profiling.

  3. DHA-containing oilseed: a timely solution for the sustainability issues surrounding fish oil sources of the health-benefitting long-chain omega-3 oils.

    Science.gov (United States)

    Kitessa, Soressa M; Abeywardena, Mahinda; Wijesundera, Chakra; Nichols, Peter D

    2014-05-22

    Benefits of long-chain (≥C20) omega-3 oils (LC omega-3 oils) for reduction of the risk of a range of disorders are well documented. The benefits result from eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA); optimal intake levels of these bioactive fatty acids for maintenance of normal health and prevention of diseases have been developed and adopted by national and international health agencies and science bodies. These developments have led to increased consumer demand for LC omega-3 oils and, coupled with increasing global population, will impact on future sustainable supply of fish. Seafood supply from aquaculture has risen over the past decades and it relies on harvest of wild catch fisheries also for its fish oil needs. Alternate sources of LC omega-3 oils are being pursued, including genetically modified soybean rich in shorter-chain stearidonic acid (SDA, 18:4ω3). However, neither oils from traditional oilseeds such as linseed, nor the SDA soybean oil have shown efficient conversion to DHA. A recent breakthrough has seen the demonstration of a land plant-based oil enriched in DHA, and with omega-6 PUFA levels close to that occurring in marine sources of EPA and DHA. We review alternative sources of DHA supply with emphasis on the need for land plant oils containing EPA and DHA.

  4. Identification of long-chain isoprenoid alkylbenzenes in sediments and crude oils

    Science.gov (United States)

    Sinninghe Damsté, Jaap S.; Kock-van Dalen, A. C.; de Leeuw, Jan W.

    1988-11-01

    A series of novel methylated phytanylbenzenes (phytanylbenzene, 1-methyl-3-phytanylbenzene, 1,4-dimethyl-2-phytanylbenzene, 1,2-dimethyl-4-phytanylbenzene and 1,2,4-trimethyl-5-phytanylbenzene) have been identified in sediment extracts and oils ranging in age from Miocene to Permian. Identifications were based on comparison of mass spectra and Chromatographie data of synthetic methylated phytanylbenzenes with those of geologically occurring methylated phytanylbenzenes and by coinjections with the standards. Although methylated phytanylbenzenes are structurally related to the methylated 2-methyl-2-(4,8,12-trimethyltridecyl)chromans, components also present in the samples studied, the former do not appear to be the diagenetic derivatives of the latter. The methylated phytanylbenzenes are thought to be derived diagenetically from isoprenoid quinones or may represent a direct biosynthetic origin from specific archaebacteria.

  5. Single-component solid lipid nanocarriers prepared with ultra-long chain amphiphilic lipids

    DEFF Research Database (Denmark)

    Wei, Wei; Lu, Xiaonan; Wang, Zegao

    2017-01-01

    HYPOTHESIS: Synthetic sugar alcohol mono-behenates with high melting points, surface activity and resistance to enzymatic lipolysis, are expected to form stable single-component solid lipid nanocarriers (SC-SLNs). The preparation methods and the polar head group of the molecules should affect...... the smallest mean size (∼100nm with PdI of 0.26). In addition, they displayed high entrapment efficiency of fenofibrate (95%) and long term drug release. Nanocarriers prepared by emulsification-diffusion method entrapped fenofibrate into lipid bilayers. In contrast, Nanocarriers prepared by melting......-probe sonication method had a micelle structure with fenofibrate incorporated into a lipid monolayer. This study provides an insight into the systematic development of novel amphiphilic lipids for solid lipid-based drug delivery system....

  6. Characterization of a long-chain fatty acid-CoA ligase 1 gene and association between its SNPs and growth traits in the clam Meretrix meretrix.

    Science.gov (United States)

    Dai, Ping; Huan, Pin; Wang, Hongxia; Lu, Xia; Liu, Baozhong

    2015-07-25

    Long-chain fatty acid-CoA ligases (ACSLs) play crucial roles in fatty acid (FA) metabolism. They convert free long-chain FA into acyl-CoAs, which are key intermediates in both anabolic and catabolic pathways. A long-chain fatty acid-CoA ligase gene was cloned in the clam Meretrix meretrix (MmeACSL1), with a full-length cDNA of 1865 bp encoding 475 amino acids. Its expression was only detected in hepatopancreas by semi-quantitative reverse transcription PCR. Expression level of MmeACSL1 exhibited a significant increase in a starvation experiment (Pgrowth traits (Pgrowth-related (Pgrowth traits of M. meretrix.

  7. Synthesis, characterization and antibacterial properties of dihydroxy quaternary ammonium salts with long chain alkyl bromides.

    Science.gov (United States)

    Liu, Wen-Shuai; Wang, Chun-Hua; Sun, Ju-Feng; Hou, Gui-Ge; Wang, Yu-Peng; Qu, Rong-Jun

    2015-01-01

    Five N-methyl-N-R-N,N-bis(2-hydroxyethyl) ammonium bromides (R = -benzyl (chloride, BNQAS), -dodecyl (C12QAS), -tetradecyl (C14QAS), -hexadecyl (C16QAS), -octadecyl (C18QAS)) were prepared based on N-methyldiethanolamine (MDEA) and halohydrocarbon. Five QAS were characterized by FTIR, NMR, and MS. BNQAS, C12QAS, C14QAS, and C16QAS were confirmed by X-ray single-crystal diffraction. Their antibacterial properties indicated good antibacterial abilities against E. coli, S. aureus, B. subtilis, especially C12QAS with the best antibacterial ability (100% to E. coli, 95.65% to S. aureus, and 91.41% to B. subtilis). In addition, C12QAS also displayed the best antifungal activities than BNQAS and C18QAS against Cytospora mandshurica, Botryosphaeria ribis, Physalospora piricola, and Glomerella cingulata with the ratio of full marks. The strategy provides a facile way to design and develop new types of antibacterial drugs for application in preventing the fruit rot, especially apple. © 2014 John Wiley & Sons A/S.

  8. The effects of format in computer-based procedure displays

    Science.gov (United States)

    Desaulniers, David R.; Gillan, Douglas J.; Rudisill, Marianne

    1988-01-01

    Two experiments were conducted to investigate display variables likely to influence the effectiveness of computer-based procedure displays. In experiment 1, procedures were presented in three formats, text, extended-text, and flowchart. Text and extended-text are structured prose formats which differ in the spatial density of presentation. The flowchart format differs from the text format in both syntax and spatial representation. Subjects were required to use the procedures to diagnose a hypothetical system anomaly. The results indicate that performance was most accurate with the flowchart format. In experiment 2, procedure window size was varied (6-line, 12-line, and 24-line) in addition to procedure format. In the six line window condition, experiment 2 replicated the findings of experiment 1. As predicted, completion times for flowchart procedures decreased with increasing window size; however, accuracy of performance decreased substantially. Implications for the design of computer-based procedure displays are discussed.

  9. Long-chain polyunsaturated fatty acid (LCPUFA requirement for brain development: A personal view

    Directory of Open Access Journals (Sweden)

    Gibson Robert A

    2016-01-01

    Full Text Available Dietary docosahexaenoic acid (DHA is known to accumulate in the infant brain and clinical trials have established that dietary DHA is associated with improvements in visual and neural function in preterm infants. Thus, an elevated DHA status is considered to be important throughout infancy for brain development. While DHA can be added directly to infant foods, there have been important studies to show that infants can partially meet their own DHA requirements by consuming adequate levels of omega 3 alpha linolenic acid (ALA. A key requirement to allow for the conversion of ALA to DHA and to maximise its incorporation into tissues is a diet that is also low in omega 6 linoleic acid (LA. Such diets are hard to find commercially because dietary guidelines dictate that ~3% energy of infant diets should be in the form of LA. These estimates were based on early animal experiments in which basal diets were devoid of both LA and ALA. However, recent animal experiments have indicated that the level of LA required to avoid essential fatty acid deficiency is much lower when ALA is also present in the diet. When a wide range diets are evaluated in animal systems, it is possible to see that the level of DHA found in the blood of animals fed diets containing only LA and ALA can reach levels similar to that of animals fed diets rich in fish oil, but only when the ALA:LA ratio is high and the total amount of dietary polyunsaturated fatty acids (PUFA is low. Diets that are rich in either monounsaturates or saturates meet these requirements. Importantly, there are human infant studies that have tested such diets and demonstrated that human infants accumulate greater amounts of DHA than when diets are high in LA. It might be time to reconsider the dietary requirement of the two essential fatty acids LA and ALA in human infants in terms of their ability to enhance endogenous synthesis of DHA rather than more adult biomarkers like cholesterol levels.

  10. A Network Formation Model Based on Subgraphs

    CERN Document Server

    Chandrasekhar, Arun

    2016-01-01

    We develop a new class of random-graph models for the statistical estimation of network formation that allow for substantial correlation in links. Various subgraphs (e.g., links, triangles, cliques, stars) are generated and their union results in a network. We provide estimation techniques for recovering the rates at which the underlying subgraphs were formed. We illustrate the models via a series of applications including testing for incentives to form cross-caste relationships in rural India, testing to see whether network structure is used to enforce risk-sharing, testing as to whether networks change in response to a community's exposure to microcredit, and show that these models significantly outperform stochastic block models in matching observed network characteristics. We also establish asymptotic properties of the models and various estimators, which requires proving a new Central Limit Theorem for correlated random variables.

  11. Sex Differences in Long Chain Fatty Acid Utilization and Fatty Acid Binding Protein Concentration in Rat Liver

    Science.gov (United States)

    Ockner, Robert K.; Burnett, David A.; Lysenko, Nina; Manning, Joan A.

    1979-01-01

    Female sex and estrogen administration are associated with increased hepatic production of triglyceride-rich lipoproteins; the basis for this has not been fully elucidated. Inasmuch as hepatic lipoprotein production is also influenced by FFA availability and triglyceride biosynthesis, we investigated sex differences in FFA utilization in rat hepatocyte suspensions and in the components of the triglyceride biosynthetic pathway. Isolated adult rat hepatocyte suspensions were incubated with albumin-bound [14C]oleate for up to 15 min. At physiological and low oleate concentrations, cells from females incorporated significantly more 14C into glycerolipids, especially triglycerides, and into oxidation products than did male cells, per milligram cell protein. At 0.44 mM oleate, incorporation into triglycerides in female cells was approximately twice that in male cells. Comparable sex differences were observed in cells from fasted animals and when [14C]-glycerol incorporation was measured. At higher oleate concentrations, i.e., fatty acid:albumin mole ratios in excess of 2:1, these sex differences were no longer demonstrable, suggesting that maximal rates of fatty acid esterification and oxidation were similar in female and male cells. In female and male hepatic microsomes, specific activities of long chain acyl coenzyme A synthetase, phosphatidate phosphohydrolase, and diglyceride acyltransferase were similar, but glycerol-3-phosphate acyltransferase activity was slightly greater in females at certain substrate concentrations. Microsomal incorporation of [14C]oleate into total glycerolipids was not significantly greater in females. In further contrast to intact cells, microsomal incorporation of [14C]oleate into triglycerides, although significantly greater in female microsomes, accounted for only a small fraction of the fatty acid esterified. The binding affinity and stoichiometry of partially purified female hepatic fatty acid binding protein (FABP) were similar to

  12. Clinical features and mutations in seven Chinese patients with very long chain acyl-CoA dehydrogenase deficiency

    Institute of Scientific and Technical Information of China (English)

    Rui-Nan Zhang; Yi-Fan Li; Wen-Juan Qiu; Jun Ye; Lian-Shu Han; Hui-Wen Zhang; Na Lin; Xue-Fan Gu

    2014-01-01

    Background: Very long chain acyl-CoA dehydrogenase deficiency (VLCADD) is an inherited metabolic disease caused by deleterious mutations in the ACADVL gene that encodes very long chain acyl-CoA dehydrogenase (VLCAD), and which can present as cardiomyopathy in neonates, as hypoketotic hypoglycemia in infancy, and as myopathy in late-onset patients. Although many ACADVL mutations have been described, no prevalent mutations in the ACADVL gene have been associated with VLCADD. Herein, we report the clinical course of the disease and explore the genetic mutation spectrum in seven Chinese patients with VLCADD. Methods: Seven Chinese patients, from newborn to 17 years old, were included in this study. Tandem mass spectrometry was performed to screen for VLCAD defi ciency. All exons and fl anking introns of the ACADVL gene were analyzed using polymerase chain reaction and direct sequencing. Online analysis tools were used to predict the impact of novel mutations. Results: All cases had elevated serum levels of tetradecanoylcarnitine (C14:1) which is the characteristic biomarker for VLCADD. The phenotype of VLCADD is heterogeneous. Two patients were hospitalized for hypoactivity and hypoglycemia shortly after birth. Three patients showed hepatomegaly and hypoglycemia in infancy. The other two adolescent patients showed initial manifestations of exercise intolerance or rhabdomyolysis. Three of the patients died at the age of 6-8 months. Eleven different mutations in the ACADVL gene in the 7 patients were identified, including seven reported mutations (p.S22X, p.W427X, p.A213T, p.G222R, p.R450H, c.296- 297delCA, c.1605+1G>T) and four novel mutations (p.S72F, p.Q100X, p.M437T, p.D466Y). The p.R450H and p.D466Y (14.28%, 2/14 alleles) mutations were identifi ed in two alleles respectively. Conclusions: The clinical manifestations were heterogeneous and ACADVL gene mutations were heterozygous in the seven VLCADD Chinese patients. R450H may be a relatively common mutation in Asian

  13. Calibrating Long-chain Diols for Quantitative Temperature Reconstructions in the High Elevation, Lacustrine Environments of the Sierra Nevada, Spain

    Science.gov (United States)

    Toney, J. L.; García-Alix, A.; Jimenez-Moreno, G.; Anderson, R. S.; Perez-Martinez, C.; Jimenez, L.

    2016-12-01

    High-alpine, oligotrophic lakes in the Sierra Nevada are sensitive archives of paleoclimate and paleoecology. In this study we present the first quantitative calibration of lacustrine long-chain diols to instrumental temperature anamoly data. The data suggest that the long-chain diol index (LDI) is linearly correlated with the regional temperature anomaly data (TA = 8.8997 x LDI - 2.1113, r2 = 0.65) over the past 165-years and that this correlation can accurately be applied downcore to reconstructure temperature change over the course of the Holocene. This study compares the newly generated diol-inferred temperature dataset with existing multiproxy records to show that the mid-Holocene transition that shows a step change in vegetation and humidity toward aridification was likely driven by an increased and sustained temperature anomaly of +1.5°C from 6.4 to 5.8ka. Major changes occurred with respect to biogeography and vegetation communities in the Sierra Nevada at this time, but until now, the drivers of change have been unclear. In addition to the diol-inferred temperature anomaly data, compound-specific stable H-isotopes of terrestrial and aquatic plant waxes indicate that this warm event was directly preceded by a brief cold excursion at Laguna de Rio Seco that likely reduced terrestrial plant development and enhanced input of meltwater - suggested by low lake-water H-isotope values. The diol-inferred temperatures suggest that meltwater lowered the lake water temperature with a -1.2°C anomaly from 6.6 to 6.4ka. This suggests that the subsequent warming over the next 600-years likely caused a local, extreme shift to higher temperatures due to the lack of buffering by meltwater once the year-on-year snowpack was depleted. Briefer warm anomalies occur at 5.5, 3.2, and 1.5ka, which correspond to know periods of reduced precipitation in the Mediterranean region (e.g., see discussion in Martin-Puertas et al. 2010, doi:10.5194/cpd-6-1655-2010). A similar, but more

  14. Clinical features and mutations in seven Chinese patients with very long chain acyl-CoA dehydrogenase deficiency.

    Science.gov (United States)

    Zhang, Rui-Nan; Li, Yi-Fan; Qiu, Wen-Juan; Ye, Jun; Han, Lian-Shu; Zhang, Hui-Wen; Lin, Na; Gu, Xue-Fan

    2014-05-01

    Very long chain acyl-CoA dehydrogenase deficiency (VLCADD) is an inherited metabolic disease caused by deleterious mutations in the ACADVL gene that encodes very long chain acyl-CoA dehydrogenase (VLCAD), and which can present as cardiomyopathy in neonates, as hypoketotic hypoglycemia in infancy, and as myopathy in late-onset patients. Although many ACADVL mutations have been described, no prevalent mutations in the ACADVL gene have been associated with VLCADD. Herein, we report the clinical course of the disease and explore the genetic mutation spectrum in seven Chinese patients with VLCADD. Seven Chinese patients, from newborn to 17 years old, were included in this study. Tandem mass spectrometry was performed to screen for VLCAD deficiency. All exons and flanking introns of the ACADVL gene were analyzed using polymerase chain reaction and direct sequencing. Online analysis tools were used to predict the impact of novel mutations. All cases had elevated serum levels of tetradecanoylcarnitine (C14:1) which is the characteristic biomarker for VLCADD. The phenotype of VLCADD is heterogeneous. Two patients were hospitalized for hypoactivity and hypoglycemia shortly after birth. Three patients showed hepatomegaly and hypoglycemia in infancy. The other two adolescent patients showed initial manifestations of exercise intolerance or rhabdomyolysis. Three of the patients died at the age of 6-8 months. Eleven different mutations in the ACADVL gene in the 7 patients were identified, including seven reported mutations (p.S22X, p.W427X, p.A213T, p.G222R, p.R450H, c.296-297delCA, c.1605+1G>T) and four novel mutations (p.S72F, p.Q100X, p.M437T, p.D466Y). The p.R450H and p.D466Y (14.28%, 2/14 alleles) mutations were identified in two alleles respectively. The clinical manifestations were heterog-eneous and ACADVL gene mutations were heterozygous in the seven VLCADD Chinese patients. R450H may be a relatively common mutation in Asian populations. The genotype and phenotype had a

  15. Hypothalamic GPR40 signaling activated by free long chain fatty acids suppresses CFA-induced inflammatory chronic pain.

    Science.gov (United States)

    Nakamoto, Kazuo; Nishinaka, Takashi; Sato, Naoya; Mankura, Mitsumasa; Koyama, Yutaka; Kasuya, Fumiyo; Tokuyama, Shogo

    2013-01-01

    GPR40 has been reported to be activated by long-chain fatty acids, such as docosahexaenoic acid (DHA). However, reports studying functional role of GPR40 in the brain are lacking. The present study focused on the relationship between pain regulation and GPR40, investigating the functional roles of hypothalamic GPR40 during chronic pain caused using a complete Freund's adjuvant (CFA)-induced inflammatory chronic pain mouse model. GPR40 protein expression in the hypothalamus was transiently increased at day 7, but not at days 1, 3 and 14, after CFA injection. GPR40 was co-localized with NeuN, a neuron marker, but not with glial fibrillary acidic protein (GFAP), an astrocyte marker. At day 1 after CFA injection, GFAP protein expression was markedly increased in the hypothalamus. These increases were significantly inhibited by the intracerebroventricular injection of flavopiridol (15 nmol), a cyclin-dependent kinase inhibitor, depending on the decreases in both the increment of GPR40 protein expression and the induction of mechanical allodynia and thermal hyperalgesia at day 7 after CFA injection. Furthermore, the level of DHA in the hypothalamus tissue was significantly increased in a flavopiridol reversible manner at day 1, but not at day 7, after CFA injection. The intracerebroventricular injection of DHA (50 µg) and GW9508 (1.0 µg), a GPR40-selective agonist, significantly reduced mechanical allodynia and thermal hyperalgesia at day 7, but not at day 1, after CFA injection. These effects were inhibited by intracerebroventricular pretreatment with GW1100 (10 µg), a GPR40 antagonist. The protein expression of GPR40 was colocalized with that of β-endorphin and proopiomelanocortin, and a single intracerebroventricular injection of GW9508 (1.0 µg) significantly increased the number of neurons double-stained for c-Fos and proopiomelanocortin in the arcuate nucleus of the hypothalamus. Our findings suggest that hypothalamic GPR40 activated by free long chain fatty

  16. Hypothalamic GPR40 signaling activated by free long chain fatty acids suppresses CFA-induced inflammatory chronic pain.

    Directory of Open Access Journals (Sweden)

    Kazuo Nakamoto

    Full Text Available GPR40 has been reported to be activated by long-chain fatty acids, such as docosahexaenoic acid (DHA. However, reports studying functional role of GPR40 in the brain are lacking. The present study focused on the relationship between pain regulation and GPR40, investigating the functional roles of hypothalamic GPR40 during chronic pain caused using a complete Freund's adjuvant (CFA-induced inflammatory chronic pain mouse model. GPR40 protein expression in the hypothalamus was transiently increased at day 7, but not at days 1, 3 and 14, after CFA injection. GPR40 was co-localized with NeuN, a neuron marker, but not with glial fibrillary acidic protein (GFAP, an astrocyte marker. At day 1 after CFA injection, GFAP protein expression was markedly increased in the hypothalamus. These increases were significantly inhibited by the intracerebroventricular injection of flavopiridol (15 nmol, a cyclin-dependent kinase inhibitor, depending on the decreases in both the increment of GPR40 protein expression and the induction of mechanical allodynia and thermal hyperalgesia at day 7 after CFA injection. Furthermore, the level of DHA in the hypothalamus tissue was significantly increased in a flavopiridol reversible manner at day 1, but not at day 7, after CFA injection. The intracerebroventricular injection of DHA (50 µg and GW9508 (1.0 µg, a GPR40-selective agonist, significantly reduced mechanical allodynia and thermal hyperalgesia at day 7, but not at day 1, after CFA injection. These effects were inhibited by intracerebroventricular pretreatment with GW1100 (10 µg, a GPR40 antagonist. The protein expression of GPR40 was colocalized with that of β-endorphin and proopiomelanocortin, and a single intracerebroventricular injection of GW9508 (1.0 µg significantly increased the number of neurons double-stained for c-Fos and proopiomelanocortin in the arcuate nucleus of the hypothalamus. Our findings suggest that hypothalamic GPR40 activated by free long

  17. Towards App-based Formative Feedback to Support Summarizing Skills

    NARCIS (Netherlands)

    Van Rosmalen, Peter; Kester, Liesbeth; Boshuizen, Els

    2013-01-01

    Van Rosmalen, P., Kester, L., & Boshuizen, H. P. A. (2013). Towards App‐based Formative Feedback to Support Summarizing Skills. ECTEL 2013: Workshop on Technology-Enhanced Formative Assessment (TEFA). September, 17-18, 2013, Paphos, Cyprus. Available online at: http://www.kbs.uni-hannover.de/tefa201

  18. Feedback in formative OSCEs: comparison between direct observation and video-based formats

    Directory of Open Access Journals (Sweden)

    Noëlle Junod Perron

    2016-11-01

    Full Text Available Introduction: Medical students at the Faculty of Medicine, University of Geneva, Switzerland, have the opportunity to practice clinical skills with simulated patients during formative sessions in preparation for clerkships. These sessions are given in two formats: 1 direct observation of an encounter followed by verbal feedback (direct feedback and 2 subsequent review of the videotaped encounter by both student and supervisor (video-based feedback. The aim of the study was to evaluate whether content and process of feedback differed between both formats. Methods: In 2013, all second- and third-year medical students and clinical supervisors involved in formative sessions were asked to take part in the study. A sample of audiotaped feedback sessions involving supervisors who gave feedback in both formats were analyzed (content and process of the feedback using a 21-item feedback scale. Results: Forty-eight audiotaped feedback sessions involving 12 supervisors were analyzed (2 direct and 2 video-based sessions per supervisor. When adjusted for the length of feedback, there were significant differences in terms of content and process between both formats; the number of communication skills and clinical reasoning items addressed were higher in the video-based format (11.29 vs. 7.71, p=0.002 and 3.71 vs. 2.04, p=0.010, respectively. Supervisors engaged students more actively during the video-based sessions than during direct feedback sessions (self-assessment: 4.00 vs. 3.17, p=0.007; active problem-solving: 3.92 vs. 3.42, p=0.009. Students made similar observations and tended to consider that the video feedback was more useful for improving some clinical skills. Conclusion: Video-based feedback facilitates discussion of clinical reasoning, communication, and professionalism issues while at the same time actively engaging students. Different time and conceptual frameworks may explain observed differences. The choice of feedback format should depend on

  19. Feedback in formative OSCEs: comparison between direct observation and video-based formats

    Science.gov (United States)

    Junod Perron, Noëlle; Louis-Simonet, Martine; Cerutti, Bernard; Pfarrwaller, Eva; Sommer, Johanna; Nendaz, Mathieu

    2016-01-01

    Introduction Medical students at the Faculty of Medicine, University of Geneva, Switzerland, have the opportunity to practice clinical skills with simulated patients during formative sessions in preparation for clerkships. These sessions are given in two formats: 1) direct observation of an encounter followed by verbal feedback (direct feedback) and 2) subsequent review of the videotaped encounter by both student and supervisor (video-based feedback). The aim of the study was to evaluate whether content and process of feedback differed between both formats. Methods In 2013, all second- and third-year medical students and clinical supervisors involved in formative sessions were asked to take part in the study. A sample of audiotaped feedback sessions involving supervisors who gave feedback in both formats were analyzed (content and process of the feedback) using a 21-item feedback scale. Results Forty-eight audiotaped feedback sessions involving 12 supervisors were analyzed (2 direct and 2 video-based sessions per supervisor). When adjusted for the length of feedback, there were significant differences in terms of content and process between both formats; the number of communication skills and clinical reasoning items addressed were higher in the video-based format (11.29 vs. 7.71, p=0.002 and 3.71 vs. 2.04, p=0.010, respectively). Supervisors engaged students more actively during the video-based sessions than during direct feedback sessions (self-assessment: 4.00 vs. 3.17, p=0.007; active problem-solving: 3.92 vs. 3.42, p=0.009). Students made similar observations and tended to consider that the video feedback was more useful for improving some clinical skills. Conclusion Video-based feedback facilitates discussion of clinical reasoning, communication, and professionalism issues while at the same time actively engaging students. Different time and conceptual frameworks may explain observed differences. The choice of feedback format should depend on the educational

  20. Script format document authentication scheme based on watermarking techniques

    Directory of Open Access Journals (Sweden)

    M. González-Lee

    2015-06-01

    Full Text Available In almost all watermarking-based document authentication systems, the documents are considered as binary images and then, the watermark is embedded using some image watermarking algorithm. However actually important documents are saved using document file formats, such as Portable Document Format (PDF or Open Document Format (ODF, among others, because in general the file size is smaller compared with an image file, and also these are considered as more secure than other types of file format. However, the documents with these formats can also be maliciously modified for illegal purposes, making necessary the development of mechanisms that are able to detect such modifications. Considering the situations mentioned above, this paper proposes a document authentication scheme in which a watermark is directly embedded into the document file format as part of the document itself. The experimental results show a desirable performance of the proposed algorithm.

  1. Acute exposure to long-chain fatty acids impairs {alpha}2-adrenergic receptor-mediated antilipolysis in human adipose tissue.

    Science.gov (United States)

    Polak, Jan; Moro, Cédric; Bessière, David; Hejnova, Jindra; Marquès, Marie A; Bajzova, Magda; Lafontan, Max; Crampes, Francois; Berlan, Michel; Stich, Vladimir

    2007-10-01

    The acute in vitro and in vivo effects of long-chain fatty acids (LCFAs) on the regulation of adrenergic lipolysis were investigated in human adipose tissue. The effect of a 2 h incubation, without or with LCFA (200 mumol/l), on basal and hormonally induced lipolysis was tested in vitro on isolated fat cells. The lipolytic response to epinephrine was enhanced by suppression of the antilipolytic alpha(2)-adrenergic effect. Then, healthy lean and obese male subjects performed a 45 min exercise bout at 50% of their heart rate reserve either after an overnight fast or 3 h after a high-fat meal (HFM: 95% fat, 5% carbohydrates). Subcutaneous adipose tissue lipolysis was measured by microdialysis in the presence or absence of an alpha-antagonist (phentolamine). In vivo, a HFM increased plasma levels of nonesterified fatty acids in lean and obese subjects. In both groups, the HFM did not alter hormonal responses to exercise. Under fasting conditions, the alpha(2)-adrenergic antilipolytic effect was more pronounced in obese than in lean subjects. The HFM totally suppressed the alpha(2)-adrenergic antilipolytic effect in lean and obese subjects during exercise. LCFAs per se, in vitro as well as in vivo, suppress alpha(2)-adrenergic-mediated antilipolysis in adipose tissue. LCFA-mediated suppression of antilipolytic pathways represents another mechanism whereby a high fat content in the diet might increase adipose tissue lipolysis.

  2. Heterotrophic Production of Omega-3 Long-Chain Polyunsaturated Fatty Acids by Trophically Converted Marine Diatom Phaeodactylum tricornutum

    Directory of Open Access Journals (Sweden)

    Mary L. Hamilton

    2016-03-01

    Full Text Available We have created via metabolic engineering a heterotrophic strain of Phaeodactylum tricornutum that accumulates enhanced levels of the high value omega-3 long chain polyunsaturated fatty acid (LC-PUFAs docosahexaenoic acid (DHA. This was achieved by generation of transgenic strains in which the Δ5-elongase from Ostreococcus tauri was co-expressed with a glucose transporter from the moss Physcomitrella patens. This double transformant has the capacity to grow in the dark in liquid medium supplemented with glucose and accumulate substantial levels of omega-3 LC-PUFAs. The effects of glucose concentrations on growth and LC-PUFA production of wild type and transformed strains cultivated in the light and dark were studied. The highest omega-3 LC-PUFAs accumulation was observed in cultures grown under mixotrophic conditions in the presence of 1% glucose (up to 32.2% of total fatty acids, TFA. Both DHA and EPA are detected at high levels in the neutral lipids of transgenic cells grown under phototrophic conditions, averaging 36.5% and 23.6% of TFA, respectively. This study demonstrates the potential for P. tricornutum to be developed as a viable commercial strain for both EPA and DHA production under mixo- and heterotrophic conditions.

  3. UV-induced self-assembly of the inclusion complexes formed between a long-chain photochromic spiropyran and cyclodextrins

    Institute of Scientific and Technical Information of China (English)

    隋强; 周金渭; 何炜; 李仲杰; 王艳乔

    1999-01-01

    Photochromic spiropyran with a long chain alkyl substitute can form axial complexes with α-, β-, and γ-cyclodextrin, respectively. The complexes show normal photochromism. The novel property of the colored forms of the inclusion complexes is that they can assemble into dimers at relatively low concentration or J-aggregates at relatively high concentration. For α-, β-, and γ-cyclodextrin, λmax of the J-aggregates appear at 700 650, and 630 nm, respectively. The sizes of the cavities of cyclodextrins have very little effect on the spectra and decoloration kinetics of the dimers, but have great effects on the spectra of the J-aggregates. Unlike the charge transfer complex of Krongauz, the decoloration process of the dimers or J-aggregates cannot be described by an exponential or a two-exponential kinetics, but obey half-order kinetics very well. Another result that can be deduced from the kinetic analysis is that unlike the dimers formed in apolar solvents or in polymers, which consist of a color

  4. Improving rheology and enzymatic hydrolysis of high-solid corncob slurries by adding lignosulfonate and long-chain fatty alcohols.

    Science.gov (United States)

    Lou, Hongming; Wu, Shun; Li, Xiuli; Lan, Tianqing; Yang, Dongjie; Pang, Yuxia; Qiu, Xueqing; Li, Xuehui; Huang, Jinhao

    2014-08-20

    The effects of lignosulfonate (SXSL) and long-chain fatty alcohols (LFAs) on the rheology and enzymatic hydrolysis of high-solid corncob slurries were investigated. The application of 2.5% (w/w) SXSL increased the substrate enzymatic digestibility (SED) of high-solid corncob slurries at 72 h from 31.7 to 54.0%, but meanwhile it increased the slurry's yield stress and complex viscosity to make the slurry difficult to stir and pump. The smallest molecular weight (MW) SXSL fraction had the strongest enhancement on SED. The SXSL fraction with large MW had a negative effect on rheology. n-Octanol (C8) and n-decanol (C10) improved the rheological properties of high-solid slurry and are strong enough to counteract the negative effect of SXSL. Furthermore, C8 and C10 clearly enhanced the enzymatic hydrolysis of high-solid corncob slurries with and without SXSL. A mechanism was proposed to explain the observed negative effect of SXSL and the positive effect of LFAs on the rheological properties.

  5. Chlamydia trachomatis growth and development requires the activity of host Long-chain Acyl-CoA Synthetases (ACSLs).

    Science.gov (United States)

    Recuero-Checa, Maria A; Sharma, Manu; Lau, Constance; Watkins, Paul A; Gaydos, Charlotte A; Dean, Deborah

    2016-03-18

    The obligate-intracellular pathogen Chlamydia trachomatis (Ct) has undergone considerable genome reduction with consequent dependence on host biosynthetic pathways, metabolites and enzymes. Long-chain acyl-CoA synthetases (ACSLs) are key host-cell enzymes that convert fatty acids (FA) into acyl-CoA for use in metabolic pathways. Here, we show that the complete host ACSL family [ACSL1 and ACSL3-6] translocates into the Ct membrane-bound vacuole, termed inclusion, and remains associated with membranes of metabolically active forms of Ct throughout development. We discovered that three different pharmacologic inhibitors of ACSL activity independently impede Ct growth in a dose-dependent fashion. Using an FA competition assay, host ACSLs were found to activate Ct branched-chain FAs, suggesting that one function of the ACSLs is to activate Ct FAs and host FAs (recruited from the cytoplasm) within the inclusion. Because the ACSL inhibitors can deplete lipid droplets (LD), we used a cell line where LD synthesis was switched off to evaluate whether LD deficiency affects Ct growth. In these cells, we found no effect on growth or on translocation of ACSLs into the inclusion. Our findings support an essential role for ACSL activation of host-cell and bacterial FAs within the inclusion to promote Ct growth and development, independent of LDs.

  6. Involvement of atypical protein kinase C in the regulation of cardiac glucose and long-chain fatty acid uptake

    DEFF Research Database (Denmark)

    Habets, Daphna D J; Luiken, Joost J F P; Ouwens, Margriet

    2012-01-01

    Aim: The signaling pathways involved in the regulation of cardiac GLUT4 translocation/glucose uptake and CD36 translocation/long-chain fatty acid uptake are not fully understood. We compared in heart/muscle-specific PKC-¿ knockout mice the roles of atypical PKCs (PKC-¿ and PKC-¿) in regulating...... acid uptake by >80% in both wild-type and PKC-¿-knockout cardiomyocytes. In PKC-¿ knockout cardiomyocytes, PKC-¿ is the sole remaining atypical PKC isoform, and its expression level is not different from wild-type cardiomyocytes, in which it contributes to 29% and 17% of total atypical PKC expression...... and phosphorylation, respectively. Conclusion: Taken together, atypical PKCs are necessary for insulin-stimulated and AMPK-mediated glucose uptake into the heart, as well as for insulin-stimulated and AMPK-mediated fatty acid uptake. However, the residual PKC-¿ activity in PKC-¿-knockout cardiomyocytes is sufficient...

  7. Long-chain ceramide produced in response to N-hexanoylsphingosine does not induce apoptosis in CHP-100 cells.

    Science.gov (United States)

    Mancinetti, Adriano; Di Bartolomeo, Sabrina; Spinedi, Angelo

    2009-11-01

    It has been previously reported that treatment of CHP-100 human neuroepithelioma cells with N-hexanoylsphingosine (C6-Cer) induces intracellular accumulation of long-chain ceramide (LC-Cer) and apoptosis. Herein, we investigated the existence of any causal relationship between the two phenomena. We report that C6-Cer-evoked LC-Cer accumulation is potently attenuated by the ceramide synthase inhibitor fumonisin B1; however, fumonisin B1 neither affects the apoptotic response evoked by C6-Cer administration, nor is toxic by itself to CHP-100 cells. Different to fumonisin B1, the serine-palmitoyltransferase inhibitor L: -cycloserine does not attenuate C6-Cer-evoked LC-Cer accumulation, thus suggesting that LC-Cer is produced via the sphingosine salvage pathway. Consistently, CHP-100 cells accumulate LC-Cer in response to sphingosine administration; however, their viability is not affected. The above-reported results indicate that, in the cell system investigated, C6-Cer, but not LC-Cer, is involved in apoptosis induction. As this finding is discussed in the light of the evidence that C6-Cer-induced apoptosis associates with cytochrome c release into the cytosol and caspase-9 activation, thus calling for an involvement of the mitochondrial pathway, it also lends support to the notion that caution must be exercised when investigating the biological effects of endogenous ceramide by use of exogenously administered short-chain analogues.

  8. Effect of a long chain aliphatic alkohols on growth. gas exchange and assimilate parlitioning in radish plant

    Directory of Open Access Journals (Sweden)

    Zbyszek K. Blamowski

    2013-12-01

    Full Text Available In pot experiments the influence of long chain aliphatic alcohols (hexacosanol - HEXA, octacosanol - OCTA and triacontanol - TRIA, which were used in concentration O.00l mg·dm3 , on growth, assimilate partitioning and gas exchange of radish plants cv. "Krakowianka" and "Sopel lodu" were studied. The received results showed that triacontanol was characterized by higher physiological activity than remaining alcohols. TRIA significantly increased yield of mass, as well as it changed the pattern of distribution of assimilates in plants. Under its influence the rate of mass of leaves to mass of storage organs decreased as well as the share of mass of leaves in the total mass of both plant cultivars. TRIA stimulated the rate of net photosynthesis (Pn, howewer, it did not influence the other detennined gas exchange parameters: substomatal concentration of CO2 (ci, stomatal conductance for water vapour (gs and rate of transpiration (Tr. Remaining alcohols (HEXA and OCFA did not any influence on growth of plants and their gas exchange but only on distribution of biomass.

  9. Synthesis of CdSe quantum dots using various long-chain fatty acids and their phase transfer.

    Science.gov (United States)

    Zhang, Qiang; Zhang, Aiyu; Yang, Ping; Shen, Jianxing

    2013-06-01

    Monodispersed colloidal photoluminescent CdSe quantum dots (QDs) were synthesized via an organic approach by using cadmium oxide and elemental selenium as precursors, and long-chain fatty acids as surface ligands. The hydrocarbon chain length of the fatty acid was adjusted to investigate the effect on CdSe QDs. The fatty acid ligands with different hydrocarbon chain lengths showed an apparent effect on the nanocrystal nucleation and growth which is the key controlling the size, size distribution and crystal structure of resulting CdSe QDs. This effect was attributable to the steric hindrance of different hydrocarbon length of the fatty acids, which affected the reactivity of the monomers and nanocrystals during the nanocrystal nucleation and growth. The water-soluble CdSe QDs were obtained by encapsulating the CdSe ODs in oil phase with amphiphilic poly(styrene-co-maleic anhydride) (PSMA)-ethanolamine (EA) polymers, which made it possible for further applications of the CdSe QDs in aqueous environment such as surface functionalization for biological labeling and application in photocatalysis and photosensitization.

  10. Clear correlation of genotype with disease phenotype in very-long-chain acyl-CoA dehydrogenase deficiency.

    Science.gov (United States)

    Andresen, B S; Olpin, S; Poorthuis, B J; Scholte, H R; Vianey-Saban, C; Wanders, R; Ijlst, L; Morris, A; Pourfarzam, M; Bartlett, K; Baumgartner, E R; deKlerk, J B; Schroeder, L D; Corydon, T J; Lund, H; Winter, V; Bross, P; Bolund, L; Gregersen, N

    1999-01-01

    Very-long-chain acyl-CoA dehydrogenase (VLCAD) catalyzes the initial rate-limiting step in mitochondrial fatty acid beta-oxidation. VLCAD deficiency is clinically heterogenous, with three major phenotypes: a severe childhood form, with early onset, high mortality, and high incidence of cardiomyopathy; a milder childhood form, with later onset, usually with hypoketotic hypoglycemia as the main presenting feature, low mortality, and rare cardiomyopathy; and an adult form, with isolated skeletal muscle involvement, rhabdomyolysis, and myoglobinuria, usually triggered by exercise or fasting. To examine whether these different phenotypes are due to differences in the VLCAD genotype, we investigated 58 different mutations in 55 unrelated patients representing all known clinical phenotypes and correlated the mutation type with the clinical phenotype. Our results show a clear relationship between the nature of the mutation and the severity of disease. Patients with the severe childhood phenotype have mutations that result in no residual enzyme activity, whereas patients with the milder childhood and adult phenotypes have mutations that may result in residual enzyme activity. This clear genotype-phenotype relationship is in sharp contrast to what has been observed in medium-chain acyl-CoA dehydrogenase deficiency, in which no correlation between genotype and phenotype can be established. PMID:9973285

  11. Role of long-chain fatty acyl-CoA esters in the regulation of metabolism and in cell signalling

    DEFF Research Database (Denmark)

    Færgeman, Nils J.; Knudsen, J

    1997-01-01

    The intracellular concentration of free unbound acyl-CoA esters is tightly controlled by feedback inhibition of the acyl-CoA synthetase and is buffered by specific acyl-CoA binding proteins. Excessive increases in the concentration are expected to be prevented by conversion into acylcarnitines...... or by hydrolysis by acyl-CoA hydrolases. Under normal physiological conditions the free cytosolic concentration of acyl-CoA esters will be in the low nanomolar range, and it is unlikely to exceed 200 nM under the most extreme conditions. The fact that acetyl-CoA carboxylase is active during fatty acid synthesis...... in the presence of the appropriate acyl-CoA-buffering binding proteins. Re-evaluation of many of the reported effects is therefore urgently required. However, the observations that the ryanodine-senstitive Ca2+-release channel is regulated by long-chain acyl-CoA esters in the presence of a molar excess of acyl...

  12. Long Chain Alkyl Esters of Hydroxycinnamic Acids as Promising Anticancer Agents: Selective Induction of Apoptosis in Cancer Cells.

    Science.gov (United States)

    Menezes, José C J M D S; Edraki, Najmeh; Kamat, Shrivallabh P; Khoshneviszadeh, Mahsima; Kayani, Zahra; Mirzaei, Hossein Hadavand; Miri, Ramin; Erfani, Nasrollah; Nejati, Maryam; Cavaleiro, José A S; Silva, Tiago; Saso, Luciano; Borges, Fernanda; Firuzi, Omidreza

    2017-08-23

    Cancer is the major cause of morbidity and mortality worldwide. Hydroxycinnamic acids (HCAs) are naturally occurring compounds and their alkyl esters may possess enhanced biological activities. We evaluated C4, C14, C16, and C18 alkyl esters of p-coumaric, ferulic, sinapic, and caffeic acids (19 compounds) for their cytotoxic activity against four human cancer cells and also examined their effect on cell cycle alteration and apoptosis induction. The tetradecyl (1c) and hexadecyl (1d) esters of p-coumaric acid and tetradecyl ester of caffeic acid (4c), but not the parental HCAs, were selectively effective against MOLT-4 (human lymphoblastic leukemia) cells with IC50 values of 0.123 ± 0.012, 0.301 ± 0.069 and 1.0 ± 0.1 μM, respectively. Compounds 1c, 1d, and 4c significantly increased apoptotic cells in sub-G1 phase and activated the caspase-3 enzyme in MOLT-4 cells. Compound 1c was 15.4 and 23.6 times more potent than doxorubicin and cisplatin, respectively, against the drug resistant MES-SA-DX5 uterine sarcoma cells. These p-coumarate esters were several times less effective against NIH/3T3 fibroblast cells. Docking studies showed that 1c may cause cytotoxicity by interaction with carbonic anhydrase IX. In conclusion, long chain alkyl esters of p-coumaric acid are promising scaffolds for selective apoptosis induction in cancer cells.

  13. Effect of Long-Chain Polyunsaturated Fatty Acid Supplementation on Neurodevelopmental Outcome in Full-Term Infants

    Directory of Open Access Journals (Sweden)

    Mijna Hadders-Algra

    2010-07-01

    Full Text Available It takes more than 20 years before the human brain obtains its complex, adult configuration. Most dramatic developmental changes occur prenatally and early postnatally. During development, long-chain polyunsaturated fatty acids (LCPUFA such as doxosahexaenoic acid (DHA and arachidonic acid (AA are accreted in the brain. Since breastfeeding is associated with a better developmental outcome than formula feeding, and human milk in contrast to traditional standard formula contains LCPUFA, the question arose whether LCPUFA supplementation of infant formula may promote the neurodevelopmental outcome. The current paper reviews the evidence available in full-term infants. It concludes that postnatal supplementation of formula with LCPUFA is associated with a beneficial effect on short-term neurodevelopmental outcome. However, no evidence is available that LCPUFA supplementation enhances neurodevelopmental outcome in full-term infants beyond the age of four months. Nevertheless, it should be realized that very limited information is available on the effect of LCPUFA supplementation on neurodevelopmental outcome at school age or later. It is conceivable that effects of LCPUFA supplementation first emerge or re-emerge at school age when more complex neural functions are expressed.

  14. N-terminal domain of turkey pancreatic lipase is active on long chain triacylglycerols and stabilized by colipase.

    Directory of Open Access Journals (Sweden)

    Madiha Bou Ali

    Full Text Available The gene encoding the TPL N-terminal domain (N-TPL, fused with a His6-tag, was cloned and expressed in Pichia pastoris, under the control of the glyceraldehyde-3-phosphate dehydrogenase (GAP constitutive promoter. The recombinant protein was successfully expressed and secreted with an expression level of 5 mg/l of culture medium after 2 days of culture. The N-TPL was purified through a one-step Ni-NTA affinity column with a purification factor of approximately 23-fold. The purified N-TPL, with a molecular mass of 35 kDa, had a specific activity of 70 U/mg on tributyrin. Surprisingly, this domain was able to hydrolyse long chain TG with a specific activity of 11 U/mg using olive oil as substrate. This result was confirmed by TLC analysis showing that the N-TPL was able to hydrolyse insoluble substrates as olive oil. N-TPL was unstable at temperatures over 37°C and lost 70% of its activity at acid pH, after 5 min of incubation. The N-TPL exhibited non linear kinetics, indicating its rapid denaturation at the tributyrin-water interface. Colipase increased the N-TPL stability at the lipid-water interface, so the TPL N-terminal domain probably formed functional interactions with colipase despite the absence of the C-terminal domain.

  15. Short-term long chain omega3 diet protects from neuroinflammatory processes and memory impairment in aged mice.

    Directory of Open Access Journals (Sweden)

    Virginie F Labrousse

    Full Text Available Regular consumption of food enriched in omega3 polyunsaturated fatty acids (ω3 PUFAs has been shown to reduce risk of cognitive decline in elderly, and possibly development of Alzheimer's disease. Docosahexaenoic acid (DHA and eicosapentaenoic acid (EPA are the most likely active components of ω3-rich PUFAs diets in the brain. We therefore hypothesized that exposing mice to a DHA and EPA enriched diet may reduce neuroinflammation and protect against memory impairment in aged mice. For this purpose, mice were exposed to a control diet throughout life and were further submitted to a diet enriched in EPA and DHA during 2 additional months. Cytokine expression together with a thorough analysis of astrocytes morphology assessed by a 3D reconstruction was measured in the hippocampus of young (3-month-old and aged (22-month-old mice. In addition, the effects of EPA and DHA on spatial memory and associated Fos activation in the hippocampus were assessed. We showed that a 2-month EPA/DHA treatment increased these long-chain ω3 PUFAs in the brain, prevented cytokines expression and astrocytes morphology changes in the hippocampus and restored spatial memory deficits and Fos-associated activation in the hippocampus of aged mice. Collectively, these data indicated that diet-induced accumulation of EPA and DHA in the brain protects against neuroinflammation and cognitive impairment linked to aging, further reinforcing the idea that increased EPA and DHA intake may provide protection to the brain of aged subjects.

  16. Long-chain n-3 polyunsaturated fatty acids: new insights into mechanisms relating to inflammation and coronary heart disease.

    Science.gov (United States)

    de Roos, Baukje; Mavrommatis, Yiannis; Brouwer, Ingeborg A

    2009-09-01

    Evidence from observational studies, prospective cohort studies and randomized clinical intervention studies indicate that moderate doses of long-chain n-3 polyunsaturated fatty acids (LC n-3 PUFA) significantly decrease risk of fatal coronary heart disease (CHD). Higher doses and longer duration of intervention may also protect from non-fatal CHD events. The exact mechanisms through which LC n-3 PUFA has an effect on CHD are not well established but may include a decrease in fasting and postprandial triacylglycerol levels, a decrease in arrhythmias, modulation of platelet aggregation and decreased synthesis of pro-inflammatory agents. The mechanistic relation between LC n-3 PUFA and inflammation has attracted great interest, and in vitro studies have revealed that these fatty acids decrease endothelial activation, affect eicosanoid metabolism (including epoxygenation pathways) and induce inflammatory resolution. However, the effects of LC n-3 PUFA on established biomarkers of inflammation and endothelial activation in vivo are not strong. Consequently we need new and more sensitive and systemic biomarkers to reveal the effects of LC n-3 PUFA on localized inflammatory processes.

  17. Altered Energetics of Exercise Explain Risk of Rhabdomyolysis in Very Long-Chain Acyl-CoA Dehydrogenase Deficiency.

    Directory of Open Access Journals (Sweden)

    E F Diekman

    Full Text Available Rhabdomyolysis is common in very long-chain acyl-CoA dehydrogenase deficiency (VLCADD and other metabolic myopathies, but its pathogenic basis is poorly understood. Here, we show that prolonged bicycling exercise against a standardized moderate workload in VLCADD patients is associated with threefold bigger changes in phosphocreatine (PCr and inorganic phosphate (Pi concentrations in quadriceps muscle and twofold lower changes in plasma acetyl-carnitine levels than in healthy subjects. This result is consistent with the hypothesis that muscle ATP homeostasis during exercise is compromised in VLCADD. However, the measured rates of PCr and Pi recovery post-exercise showed that the mitochondrial capacity for ATP synthesis in VLCADD muscle was normal. Mathematical modeling of oxidative ATP metabolism in muscle composed of three different fiber types indicated that the observed altered energy balance during submaximal exercise in VLCADD patients may be explained by a slow-to-fast shift in quadriceps fiber-type composition corresponding to 30% of the slow-twitch fiber-type pool in healthy quadriceps muscle. This study demonstrates for the first time that quadriceps energy balance during exercise in VLCADD patients is altered but not because of failing mitochondrial function. Our findings provide new clues to understanding the risk of rhabdomyolysis following exercise in human VLCADD.

  18. Examination of fluorination effect on physical properties of saturated long-chain alcohols by DSC and Langmuir monolayer.

    Science.gov (United States)

    Nakahara, Hiromichi; Nakamura, Shohei; Okahashi, Yoshinori; Kitaguchi, Daisuke; Kawabata, Noritake; Sakamoto, Seiichi; Shibata, Osamu

    2013-02-01

    Partially fluorinated long-chain alcohols have been newly synthesized from a radical reaction, which is followed by a reductive reaction. The fluorinated alcohols have been investigated by differential scanning calorimetry (DSC) and compression isotherms in a Langmuir monolayer state. Their melting points increase with an increase in chain length due to elongation of methylene groups. However, the melting points for the alcohols containing shorter fluorinated moieties are lower than those for the typical hydrogenated fatty alcohols. Using the Langmuir monolayer technique, surface pressure (π)-molecular area (A) and surface potential (ΔV)-A isotherms of monolayers of the fluorinated alcohols have been measured in the temperature range from 281.2 to 303.2K. In addition, a compressibility modulus (Cs(-1)) is calculated from the π-A isotherms. Four kinds of the alcohol monolayers show a phase transition (π(eq)) from a disordered to an ordered state upon lateral compression. The π(eq) values increase linearly with increasing temperatures. A slope of π(eq) against temperature for the alcohols with shorter fluorocarbons is unexpectedly larger than that for the corresponding fatty alcohols. Generally, fluorinated amphiphiles have a greater thermal stability (or resistance), which is a characteristic of highly fluorinated or perfluorinated compounds. Herein, however, the alcohols containing perfluorobutylated and perfluorohexylated chains show the irregular thermal behavior in both the solid and monolayer states.

  19. Altered development and function of the placental regions in preeclampsia and its association with long-chain polyunsaturated fatty acids.

    Science.gov (United States)

    Rani, Alka; Wadhwani, Nisha; Chavan-Gautam, Preeti; Joshi, Sadhana

    2016-09-01

    The placenta is an essential organ formed during pregnancy that mainly transfers nutrients from the mother to the fetus. Nutrients taken up by the placenta are required for its own growth and development and to optimize fetal growth. Hence, placental function is an important determinant of pregnancy outcome. Among various nutrients, fatty acids, especially long-chain polyunsaturated fatty acids (LCPUFAs), including omega 3 and omega 6 fatty acids, are essential for placental development from the time of implantation. Studies have associated these LCPUFAs with placental development through their roles in regulating oxidative stress, angiogenesis, and inflammation, which may in turn influence their transfer to the fetus. The placenta has a heterogeneous morphology with variable regional vasculature, oxidative stress, and LCPUFA levels in healthy pregnancies depending upon the location within the placenta. However, these regional structural and functional parameters are found to be disturbed in pathological conditions, such as preeclampsia (PE), thereby affecting pregnancy outcome. Hence, the alterations in LCPUFA metabolism and transport in different regions of the PE placenta as compared with normal placenta could potentially be contributing to the pathological features of PE. The regional variations in development and function of the placenta and its possible association with placental LCPUFA metabolism and transport in normal and PE pregnancies are discussed in this review. WIREs Dev Biol 2016, 5:582-597. doi: 10.1002/wdev.238 For further resources related to this article, please visit the WIREs website.

  20. Assessment of crude glycerol for Enhanced Biological Phosphorus Removal: Stability and role of long chain fatty acids.

    Science.gov (United States)

    Tayà, Carlota; Guerrero, Javier; Suárez-Ojeda, María Eugenia; Guisasola, Albert; Baeza, Juan Antonio

    2015-12-01

    Enhanced Biological Phosphorus Removal (EBPR) of urban wastewaters is usually limited by the available carbon source required by Polyphosphate Accumulating Organisms (PAO). External carbon sources as volatile fatty acids (VFA) or other pure organic compounds have been tested at lab scale demonstrating its ability to enhance PAO activity, but the application of this strategy at full-scale WWTPs is not cost-effective. The utilization of industrial by-products with some of these organic compounds provides lower cost, but it has the possible drawback of having inhibitory or toxic compounds to PAO. This study is focused on the utilization of crude glycerol, the industrial by-product generated in the biodiesel production, as a possible carbon source to enhance EBPR in carbon-limited urban wastewaters. Crude glycerol has non-negligible content of other organic compounds as methanol, salts, VFA and long chain fatty acids (LCFA). VFA and methanol have been demonstrated to enhance PAO activity, but there is no previous study about the effect of LCFA on PAO. This work presents the operation of an EBPR SBR system using crude glycerol as sole carbon source, studying also its long-term stability. The effect of LCFA is evaluated at short and long-term operation, demonstrating for the first time EBPR activity with LCFA as sole carbon source and its long-term failure due to the increased hydrophobicity of the sludge. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. The influence of maternal early to mid-gestation nutrient restriction on long chain polyunsaturated fatty acids in fetal sheep.

    Science.gov (United States)

    Zhou, Yunhua; Nijland, Mark; Miller, Myrna; Ford, Stephen; Nathanielsz, Peter W; Brenna, J Thomas

    2008-06-01

    The early to mid-gestational period (days 28-78) in sheep is the period of most rapid placental development. Maternal nutrient restriction (MNR) in this phase has negative consequences on fetal growth and development, predisposing the fetus to disease in adult life. The influence of MNR on fetal tissue fatty acids has not been reported. Ewes were fed to 50% (MNR) or 100% (control fed) of total digestible nutrients from days 28 to 78 of gestation. At 78 days, fetuses were sacrificed and the fatty acids in fetal liver, lung and muscle as well as maternal and fetal plasma were analyzed. Most fatty acids were not influenced by MNR. The n-3 long chain PUFA eicosapentaenoic acid (20:5n-3, EPA) concentration (microg/mg) was low and more than doubled in the MNR sheep. Similarly, docosapentaenoic acid (22:5n-3, DPA) increased by 60, 19, and 38% in liver, lung, and muscle, respectively. Neither docosahexaenoic acid (22:6n-3, DHA) nor any of n-6 PUFA changed. Arachidonic acid (20:4n-6; ARA) increased in MNR maternal plasma as a percent of total fatty acids only, while in MNR fetal plasma only EPA increased. These results provide the first indication that MNR in early to mid-gestation influences the profiles of LCPUFA in fetal tissues, and suggest that metabolic processes involving LCPUFA should be considered in evaluations of the impact of maternal nutriture on perinatal health.

  2. Dietary long-chain inulin reduces abdominal fat but has no effect on bone density in growing female rats.

    Science.gov (United States)

    Jamieson, Jennifer A; Ryz, Natasha R; Taylor, Carla G; Weiler, Hope A

    2008-08-01

    New strategies to improve Ca absorption and bone health are needed to address the current state of osteoporosis prevention and management. Inulin-type fructans have shown great promise as a dietary intervention strategy, but have not yet been tested in a young female model. Our objective was to investigate the effect of long chain (LC) inulin on bone mineralization and density in growing, female rats, as well as the quality of growth. Weanling Sprague-Dawley rats were assigned to inulin or cellulose treatments for either 4 or 8 weeks. Growth was measured weekly and quality of growth assessed using fat pad weights and dual-energy X-ray absorptiometry (DXA). Whole body (WB) and selected regions were analysed for bone mineral density (BMD) and body composition by DXA. Serum markers of bone turnover were assessed by enzyme-linked immunosorbent assays. Ca and P concentrations were determined in excised femurs by inductively coupled plasma spectrometry. Feeding inulin resulted in 4 % higher femoral weight (adjusted for body weight) and 6 % less feed intake. Inulin did not affect WB or regional BMD, but was associated with a 28 % lower parametrial fat pad mass, 21 % less WB fat mass and 5 % less WB mass. In summary, LC-inulin lowered body fat mass, without consequence to bone density in growing female rats.

  3. Application of novel catalytic-ceramic-filler in a coupled system for long-chain dicarboxylic acids manufacturing wastewater treatment.

    Science.gov (United States)

    Wu, Suqing; Qi, Yuanfeng; Fan, Chunzhen; He, Shengbing; Dai, Bibo; Huang, Jungchen; Zhou, Weili; Gao, Lei

    2016-02-01

    To gain systematic technology for long-chain dicarboxylic acids (LDCA) manufacturing wastewater treatment, catalytic micro-electrolysis (CME) coupling with adsorption-biodegradation sludge (AB) process was studied. Firstly, novel catalytic-ceramic-filler was prepared from scrap iron, clay and copper sulfate solution and packed in the CME reactor. To remove residual n-alkane and LDCA, the CME reactor was utilized for LDCA wastewater pretreatment. The results revealed that about 94% of n-alkane, 98% of LDCA and 84% of chemical oxygen demand (COD) were removed by the aerated CME reactor at the optimum hydraulic retention time (HRT) of 3.0 h. In this process, catalysis from Cu and montmorillonites played an important role in improving the contaminants removal. Secondly, to remove residual COD in the wastewater, AB process was designed for the secondary biological treatment, about 90% of the influent COD could be removed by biosorption, bio-flocculation and biodegradation effects. Finally, the effluent COD (about 150 mg L(-1)) discharged from the coupled CME-AB system met the requirement of the national discharged standard (COD ≤ 300 mg L(-1)). All of these results suggest that the coupled CME-AB system is a promising technology due to its high-efficient performance, and has the potential to be applied for the real LDCA wastewater treatment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Short-term long chain omega3 diet protects from neuroinflammatory processes and memory impairment in aged mice.

    Science.gov (United States)

    Labrousse, Virginie F; Nadjar, Agnès; Joffre, Corinne; Costes, Laurence; Aubert, Agnès; Grégoire, Stéphane; Bretillon, Lionel; Layé, Sophie

    2012-01-01

    Regular consumption of food enriched in omega3 polyunsaturated fatty acids (ω3 PUFAs) has been shown to reduce risk of cognitive decline in elderly, and possibly development of Alzheimer's disease. Docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) are the most likely active components of ω3-rich PUFAs diets in the brain. We therefore hypothesized that exposing mice to a DHA and EPA enriched diet may reduce neuroinflammation and protect against memory impairment in aged mice. For this purpose, mice were exposed to a control diet throughout life and were further submitted to a diet enriched in EPA and DHA during 2 additional months. Cytokine expression together with a thorough analysis of astrocytes morphology assessed by a 3D reconstruction was measured in the hippocampus of young (3-month-old) and aged (22-month-old) mice. In addition, the effects of EPA and DHA on spatial memory and associated Fos activation in the hippocampus were assessed. We showed that a 2-month EPA/DHA treatment increased these long-chain ω3 PUFAs in the brain, prevented cytokines expression and astrocytes morphology changes in the hippocampus and restored spatial memory deficits and Fos-associated activation in the hippocampus of aged mice. Collectively, these data indicated that diet-induced accumulation of EPA and DHA in the brain protects against neuroinflammation and cognitive impairment linked to aging, further reinforcing the idea that increased EPA and DHA intake may provide protection to the brain of aged subjects.

  5. Long-chain n-3 DHA reduces the extent of skeletal muscle fatigue in the rat in vivo hindlimb model.

    Science.gov (United States)

    Peoples, Gregory E; McLennan, Peter L

    2014-03-28

    Dietary fish oil modifies skeletal muscle membrane fatty acid composition and oxygen efficiency similar to changes in the myocardium. Oxygen efficiency is a key determinant of sustained force in mammalian skeletal muscle. Therefore, in the present study, we tested the effects of a fish-oil diet on skeletal muscle fatigue under the stress of contraction using the rat in vivo autologous perfused hindlimb model. For 8 weeks, male Wistar rats were fed a diet rich in saturated fat (SF), a diet rich in n-6 PUFA or a diet rich in long-chain (LC) n-3 PUFA DHA derived from fish oil. In anaesthetised, mechanically ventilated rats, with their hindlimbs perfused with arterial blood at a constant flow, the gastrocnemius-plantaris-soleus muscle bundle was stimulated via sciatic nerve (2 Hz, 6-12 V, 0·05 ms) to contract repetitively for 30 min. Rats fed the n-3 PUFA diet developed higher maximum twitch tension than those fed the SF and n-6 PUFA diets (PDHA into skeletal muscle membranes increases the efficiency of oxygen use over a range of contractile force and this is expressed as a higher sustained force and prolonged time to fatigue.

  6. Cryptoschemes Based on New Signature Formation Mechanism

    Directory of Open Access Journals (Sweden)

    A.A.Moldovyan

    2006-12-01

    Full Text Available Several variants of new digital signature schemes (DSS based on the discrete logarithm and factorization problems have been proposed. Considered DSS are characterized in that a novel mechanism of the signature generation is used, in which two parameters of the (k,S or (R,S signature are defined after solving a system of two congruences. In the case of composite modulus additional restrictions conditions have been introduced for selection of the public key.

  7. Peroxisomal very long-chain fatty acid [beta]-oxidation in human skin fibroblasts: activity in Zellweger syndrome and other peroxisomal disorders

    NARCIS (Netherlands)

    Wanders, R.J.A.; Roermund, C.W.T. van; Wijland, M.J.A. van; Heikoop, J.; Schutgens, R.B.H.; Schram, A.W.; Tager, J.M.; Bosch, H. van den; Poll-Thé, B.T.; Saudubray, J.M.; Moser, H.W.; Moser, A.B.

    1987-01-01

    Since very long-chain fatty acids with a chain length of 24 carbons or more are known to accumulate in tissues and body fluids from patients with the cerebro-hepato-renal (Zellweger) syndrome, infantile Refsum disease, neonatal adrenoleukodystrophy and X-linked adrenoleukodystrophy, we studied very

  8. Long-chain n-3 fatty acids enhance neonatal insulin-regulated protein metabolism in piglets by differentially altering muscle lipid composition

    Science.gov (United States)

    This study investigated the role of long-chain n-3 polyunsaturated fatty acids (LCn-3PUFAs) of muscle phospholipids in the regulation of neonatal metabolism. Twenty-eight piglets were weaned at 2 days of age and raised on one of two milk formulas that consisted of either a control formula supplying ...

  9. Does supplementation of formula with evening primrose and fish oils augment long chain polyunsaturated fatty acid status of low birthweight infants to that of breast-fed counterparts?

    NARCIS (Netherlands)

    Woltil, HA; van Beusekom, CM; Schaafsma, A; Okken, A; Muskiet, FAJ

    1999-01-01

    We investigated whether formulae with evening primrose and fish oils raise long chain polyunsaturated fatty acids (LCPUFA) in plasma cholesterol esters (CE), erythrocytes (RSC) and platelets (PLT) to levels encountered in breast-fed infants. Low birthweight infants (less than or equal to 2500 g) rec

  10. Impaired maternal glucose homeostasis during pregnancy is associated with low status of long-chain polyunsaturated fatty acids (LCP) and essential fatty acids (EFA) in the fetus

    NARCIS (Netherlands)

    Dijck-Brouwer, DAJ; Hadders-Algra, M; Bouwstra, H; Decsi, T; Boehm, G; Martini, IA; Boersma, ER; Muskiet, FAJ

    2005-01-01

    Low status of long-chain polyunsaturated fatty acids (LCP) and essential fatty acids (EFA) in the fetus is associated with less favorable neonatal neurological condition. A 'relative', rather than 'absolute' EFA deficiency might explain this finding. A relative EFA deficiency may derive from impaire

  11. Heterologous co-expression of accA, fabD, and thioesterase genes for improving long-chain fatty acid production in Pseudomonas aeruginosa and Escherichia coli.

    Science.gov (United States)

    Lee, Sunhee; Jeon, Eunyoung; Jung, Yeontae; Lee, Jinwon

    2012-05-01

    The goal of the present study was to increase the content of intracellular long-chain fatty acids in two bacterial strains, Pseudomonas aeruginosa PA14 and Escherichia coli K-12 MG1655, by co-overexpressing essential enzymes that are involved in the fatty acid synthesis metabolic pathway. Recently, microbial fatty acids and their derivatives have been receiving increasing attention as an alternative source of fuel. By introducing two genes (accA and fabD) of P. aeruginosa into the two bacterial strains and by co-expressing with them the fatty acyl-acyl carrier protein thioesterase gene of Streptococcus pyogenes (strain MGAS10270), we have engineered recombinant strains that are efficient producers of long-chain fatty acids (C16 and C18). The recombinant strains exhibit a 1.3-1.7-fold increase in the production of long-chain fatty acids over the wild-type strains. To enhance the production of total long-chain fatty acids, we researched the carbon sources for optimized culture conditions and results were used for post-culture incubation period. E. coli SGJS17 (containing the accA, fabD, and thioesterase genes) produced the highest content of intracellular total fatty acids; in particular, the unsaturated fatty acid content was about 20-fold higher than that in the wild-type E. coli.

  12. Effect of three low-dose fish oil supplements, administered during pregnancy, on neonatal long-chain polyunsaturated fatty acid status at birth

    NARCIS (Netherlands)

    Velzing-Aarts, FV; van der Klis, FRM; van der Dijs, FPL; van Beusekom, CM; Landman, H; Capello, JJ; Muskiet, FAJ

    2001-01-01

    Adequate long-chain polyunsaturated fatty acid (LCP) status during pregnancy is important. We studied the effect of three low-dose fish oil supplements, administered during uncomplicated pregnancy, on neonatal LCP status at term delivery. Supplements were administered from the second trimester to de

  13. High-fat diets rich in medium- versus long-chain fatty acids induce distinct patterns of tissue specific insulin resistance

    NARCIS (Netherlands)

    Vogel-van den Bosch, J. de; Berg, S.A.A. van den; Bijland, S.; Voshol, P.J.; Havekes, L.M.; Romijn, H.A.; Hoeks, J.; Beurden, D. van; Hesselink, M.K.C.; Schrauwen, P.; Dijk, K.W. van

    2011-01-01

    Excess dietary long-chain fatty acid (LCFA) intake results in ectopic lipid accumulation and insulin resistance. Since medium-chain fatty acids (MCFA) are preferentially oxidized over LCFA, we hypothesized that diets rich in MCFA result in a lower ectopic lipid accumulation and insulin resistance co

  14. Peroxisomal very long-chain fatty acid [beta]-oxidation in human skin fibroblasts: activity in Zellweger syndrome and other peroxisomal disorders

    NARCIS (Netherlands)

    Wanders, R.J.A.; Roermund, C.W.T. van; Wijland, M.J.A. van; Heikoop, J.; Schutgens, R.B.H.; Schram, A.W.; Tager, J.M.; Bosch, H. van den; Poll-Thé, B.T.; Saudubray, J.M.; Moser, H.W.; Moser, A.B.

    1987-01-01

    Since very long-chain fatty acids with a chain length of 24 carbons or more are known to accumulate in tissues and body fluids from patients with the cerebro-hepato-renal (Zellweger) syndrome, infantile Refsum disease, neonatal adrenoleukodystrophy and X-linked adrenoleukodystrophy, we studied very

  15. The roles of long-chain polyunsaturated fatty acids in pregnancy, lactation and infancy: review of current knowledge and consensus recommendations

    DEFF Research Database (Denmark)

    Koletzko, Berthold; Lien, Eric; Agostoni, Carlo;

    2008-01-01

    This paper reviews current knowledge on the role of the long-chain polyunsaturated fatty acids (LC-PUFA), docosahexaenoic acid (DHA, C22:6n-3) and arachidonic acid (AA, 20:4n-6), in maternal and term infant nutrition as well as infant development. Consensus recommendations and practice guidelines...

  16. Effect of a long-chained fructan Raftiline HP on blood lipids and spontaneous atherosclerosis in low density receptor knockout mice

    DEFF Research Database (Denmark)

    Mortensen, Alicja; Poulsen, Morten; Frandsen, Henrik Lauritz

    2002-01-01

    The effect of a long-chained fructan Raftiline HP on spontaneous hypercholesterolemia and atherosclerosis was studied in 40 LDLR-/- male mice receiving isocaloric, balanced in fat content, purified diets with 0 or 10% Raftiline HP, for 16 weeks. The feed intake was comparable (3.9 v. 3.8 g/day) b...

  17. Different effects of short- and long-chained fructans on large intestinal physiology and carcinogen-induced aberrant crypt foci in rats

    DEFF Research Database (Denmark)

    Poulsen, Morten; Molck, Anne-Marie; Jacobsen, Bodil Lund

    2002-01-01

    Inulin-type fructans, which are nondigestible carbohydrates, have been shown to modulate the number of induced preneoplastic lesions in the colon as well as the colonic microflora in laboratory animals. The present study was designed to investigate the effect of a short- and long-chained inulin...

  18. Nanohybrids of Mg/Al layered double hydroxide and long-chain (C18) unsaturated fatty acid anions: Structure and sorptive properties

    Science.gov (United States)

    Long-chain (C18) unsaturated fatty acid anions, elaidate (ELA), oleate (OLE), linoleate (LINO), and linolenate (LINOLEN), were intercalated into Mg/Al (3:1) layered double hydroxide (LDH) and the resultant organo-LDH nanohybrid materials were characterized and subsequently evaluated as sorbents of s...

  19. Delineation of the influence of propionylcarnitine on the accumulation of long-chain acylcarnitines and electrophysiologic derangements evoked by hypoxia in canine myocardium.

    Science.gov (United States)

    Yamada, K A; Dobmeyer, D J; Kanter, E M; Priori, S G; Corr, P B

    1991-02-01

    To investigate the potential influence on one analogue of carnitine on the electrophysiologic derangements elicited by myocardial ischemia and subsequent reperfusion, we evaluated whether increasing concentrations of propionylcarnitine would interact with carnitine acyltransferase I and thereby decrease the accumulation of long-chain acylcarnitines during hypoxia in isolated adult canine myocytes. Propionylcarnitine (1-100 microM) did not alter the sixfold reversible increase in long-chain acylcarnitines elicited by 10 minutes of hypoxia. Likewise, propionylcarnitine did not alter the reversal of the accumulation of long-chain acylcarnitines associated with reoxygenation of hypoxic myocytes. To assess whether analogues of carnitine could influence the development or reversal of the electrophysiologic derangements induced by hypoxia in adult canine epicardial tissue, selected concentrations of propionylcarnitine (1 microM to 10 mM) were administered prior to and during 15 minutes of hypoxic perfusion at 35 degrees C followed by 5-20 minutes of reoxygenation. Continuous intracellular transmembrane action potentials were recorded with glass microelectrodes. Administration of propionylcarnitine prior to and during hypoxia did not alter the electrophysiologic derangements elicited by hypoxia or subsequent reoxygenation. Therefore, propionylcarnitine does not influence the activity of carnitine acyltransferase I and does not alter the accumulation of long-chain acylcarnitines during hypoxia. Although propionylcarnitine may protect ischemic myocardium by enhancing the recovery of contractile function during reperfusion, propionylcarnitine does not attenuate any of the electrophysiologic alterations observed during hypoxia or subsequent reoxygenation in isolated tissue.

  20. Long-chain fatty acids inhibition and adaptation process in anaerobic thermophilic digestion: Batch tests, microbial community structure and mathematical modelling

    DEFF Research Database (Denmark)

    Paltsi, Jordi; Illa, J.; Prenafeta-Boldu, F.X.

    2010-01-01

    Biomass samples taken during the continuous operation of thermophilic anaerobic digestors fed with manure and exposed to successive inhibitory pulses of long-chain fatty acids (LCFA) were characterized in terms of specific metabolic activities and 16S rDNA DGGE profiling of the microbial communit...

  1. Impaired maternal glucose homeostasis during pregnancy is associated with low status of long-chain polyunsaturated fatty acids (LCP) and essential fatty acids (EFA) in the fetus

    NARCIS (Netherlands)

    Dijck-Brouwer, DAJ; Hadders-Algra, M; Bouwstra, H; Decsi, T; Boehm, G; Martini, IA; Boersma, ER; Muskiet, FAJ

    Low status of long-chain polyunsaturated fatty acids (LCP) and essential fatty acids (EFA) in the fetus is associated with less favorable neonatal neurological condition. A 'relative', rather than 'absolute' EFA deficiency might explain this finding. A relative EFA deficiency may derive from

  2. The Enantiomer Separations of Allethrone and Propargyllone Using Two Long Chain Acylated β-Cyclodextrin Derivatives as CGC Capillary Stationary Phases

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Using two β-cyclodextrin derivatives (CDs) with long chain of acyl groups as chiral stationary phases (CSPs) of capillary gas chromatography (CGC), the enantiomers of racemic allethrone and propargyllone were well resolved after derived with acetyl chloride. The enantiomer excess values (e.e.%) of 1S-allethrone and 1S-propargyllone were also determined successfully using these CDs.

  3. Maternal long-chain polyunsaturated fatty acid status during early pregnancy and children’s risk of problem behaviour at age 5-6 years

    NARCIS (Netherlands)

    Loomans, E.M.; Van den Bergh, B.R.H.; Schelling, M.; Vrijkotte, T.G.M.; van Eijsden, M.

    2014-01-01

    Objective To prospectively investigate the association between maternal long-chain polyunsaturated fatty acid (LCPUFA) status and ratio during pregnancy and children's risk of problem behavior at 5 years of age. Study design Maternal LCPUFA status in plasma phospholipids during pregnancy (M = 13.3,

  4. Human milk beyond one year post-partum: lower content of protein, calcium, and saturated very long-chain fatty acids.

    Science.gov (United States)

    Shehadeh, Naim; Aslih, Nardin; Shihab, Shihab; Werman, Moshe J; Sheinman, Rivkah; Shamir, Raanan

    2006-01-01

    Maternal milk feeding for more than 1 year is encouraged by many health care authorities. We demonstrate that human milk beyond 1 year of lactation had a small but significantly lower concentration of protein, calcium, and long-chain saturated fatty acids compared with human milk at 3 months after delivery.

  5. Structural basis for the discrepancy of spectral behavior in C-H stretching band between steroids and long chain hydrocarbon compounds

    Institute of Scientific and Technical Information of China (English)

    徐怡庄; 陶靖; 许振华; 翁诗甫; 徐建平; 吴瑾光; 徐端夫; 徐光宪

    1999-01-01

    The discrepancies of the spectral behavior for the C-H stretching band between some long chain hydrocarbon compounds and steroids were investigated. At low temperature, the C-H stretching bands exhibit complex fine structure in steroids but remain simple in long chain hydrocarbon compounds. MM3 molecular mechanics calculation indicates that, for long chain hydrocarbon compounds, the C-H groups vibrate with large scale coupling. There exist a few bands where the C-H groups vibrate in synchronous and inphase mode. Thus the variations of dipole moment for these bands are enhanced and the intensities are obviously stronger than others and cover other band in the spectra. This is just the reason why the C-H stretching bands are simple even at low temperature environment. Nevertheless, for the steroids, the C-H stretching bands vibrate with local coupling mode. The synchronous enhancement effect does not occur, the differences of intensities for various modes are not as large as those in long chain hydrocarbo

  6. Development of low birthweight infants at 19 months of age correlates with early intake and status of long-chain polyunsaturated fatty acids

    NARCIS (Netherlands)

    Woltil, HA; van Beusekom, CM; Okken-Beukens, M; Schaafsma, A; Muskiet, FAJ; Okken, A

    1999-01-01

    We investigated the influence of early nutrition with and without long-chain polyunsaturated fatty acids (LCP) on later development of less than or equal to 2500 g newborns receiving preterm formula without LCP (n=75), preterm formula with 18:3 omega 6 and LCP omega 3 (at two doses; n=26) or their m

  7. Development of low birthweight infants at 19 months of age correlates with early intake and status of long-chain polyunsaturated fatty acids

    NARCIS (Netherlands)

    Woltil, HA; van Beusekom, CM; Okken-Beukens, M; Schaafsma, A; Muskiet, FAJ; Okken, A

    1999-01-01

    We investigated the influence of early nutrition with and without long-chain polyunsaturated fatty acids (LCP) on later development of less than or equal to 2500 g newborns receiving preterm formula without LCP (n=75), preterm formula with 18:3 omega 6 and LCP omega 3 (at two doses; n=26) or their

  8. Association between fish consumption, long chain omega 3 fatty acids, and risk of cerebrovascular disease: Systematic review and meta-analysis

    NARCIS (Netherlands)

    R. Chowdhury (Rajiv); S. Stevens (Sarah); D. Gorman (Donal); A. Pan (An); S. Warnakula (Samantha); S. Chowdhury (Susmita); H. Ward (Heather); L.A. Johnson (Laura); F. Crowe (Francesca); F.B. Hu (Frank); O.H. Franco (Oscar)

    2012-01-01

    textabstractObjective: To clarify associations of fish consumption and long chain omega 3 fatty acids with risk of cerebrovascular disease for primary and secondary prevention. Design: Systematic review and meta-analysis. Data sources: Studies published before September 2012 identified through

  9. Does supplementation of formula with evening primrose and fish oils augment long chain polyunsaturated fatty acid status of low birthweight infants to that of breast-fed counterparts?

    NARCIS (Netherlands)

    Woltil, HA; van Beusekom, CM; Schaafsma, A; Okken, A; Muskiet, FAJ

    We investigated whether formulae with evening primrose and fish oils raise long chain polyunsaturated fatty acids (LCPUFA) in plasma cholesterol esters (CE), erythrocytes (RSC) and platelets (PLT) to levels encountered in breast-fed infants. Low birthweight infants (less than or equal to 2500 g)

  10. Development of low birthweight infants at 19 months of age correlates with early intake and status of long-chain polyunsaturated fatty acids

    NARCIS (Netherlands)

    Woltil, HA; van Beusekom, CM; Okken-Beukens, M; Schaafsma, A; Muskiet, FAJ; Okken, A

    1999-01-01

    We investigated the influence of early nutrition with and without long-chain polyunsaturated fatty acids (LCP) on later development of less than or equal to 2500 g newborns receiving preterm formula without LCP (n=75), preterm formula with 18:3 omega 6 and LCP omega 3 (at two doses; n=26) or their m

  11. Does supplementation of formula with evening primrose and fish oils augment long chain polyunsaturated fatty acid status of low birthweight infants to that of breast-fed counterparts?

    NARCIS (Netherlands)

    Woltil, HA; van Beusekom, CM; Schaafsma, A; Okken, A; Muskiet, FAJ

    1999-01-01

    We investigated whether formulae with evening primrose and fish oils raise long chain polyunsaturated fatty acids (LCPUFA) in plasma cholesterol esters (CE), erythrocytes (RSC) and platelets (PLT) to levels encountered in breast-fed infants. Low birthweight infants (less than or equal to 2500 g) rec

  12. Association between fish consumption, long chain omega 3 fatty acids, and risk of cerebrovascular disease: Systematic review and meta-analysis

    NARCIS (Netherlands)

    R. Chowdhury (Rajiv); S. Stevens (Sarah); D. Gorman (Donal); A. Pan (An); S. Warnakula (Samantha); S. Chowdhury (Susmita); H. Ward (Heather); L.A. Johnson (Laura); F. Crowe (Francesca); F.B. Hu (Frank); O.H. Franco (Oscar)

    2012-01-01

    textabstractObjective: To clarify associations of fish consumption and long chain omega 3 fatty acids with risk of cerebrovascular disease for primary and secondary prevention. Design: Systematic review and meta-analysis. Data sources: Studies published before September 2012 identified through elect

  13. Effects of long-chain polyunsaturated fatty acid supplementation of infant formula on cognition and behaviour at 9 years of age

    NARCIS (Netherlands)

    De Jong, Corina; Kikkert, Hedwig K.; Fidler, Vaclav; Hadders-Algra, Mijna

    2012-01-01

    AIM: Long-chain polyunsaturated fatty acid (LCPUFA) supplementation of infant formula may have a beneficial effect on cognitive development. This study aimed to investigate the effect of LCPUFA formula supplementation primarily on cognition and secondarily on behaviour at age 9 years. Special attent

  14. Bioavailability of seocalcitol I: Relating solubility in biorelevant media with oral bioavailability in rats--effect of medium and long chain triglycerides

    DEFF Research Database (Denmark)

    Grove, Mette; Pedersen, Gitte P; Nielsen, Jeanet L

    2005-01-01

    the influence of fatty acid chain length on the in vitro solubility of seocalcitol. The same solubility of seocalcitol was found in media containing either MC-LP or LC-LP. The bioavailability after oral administration of seocalcitol dissolved in medium chain triglyceride (MCT), long chain triglyceride (LCT...

  15. Dietary intake and adipose tissue content of long-chain n-3 polyunsaturated fatty acids and subsequent 5-y change in body weight and waist circumference

    DEFF Research Database (Denmark)

    Jakobsen, Marianne U; Madsen, Lise; Skjøth, Flemming

    2017-01-01

    Background: Adding long-chain n-3 (ω-3) polyunsaturated fatty acids (PUFAs) to a rodent diet reduces fat mass and prevents the development of obesity, but evidence of a similar effect in humans is rather limited.Objectives: We investigated the associations between dietary intake and adipose tissue...

  16. The effect of fatty acid positioning in dietary triacylglycerols and intake of long-chain n-3 polyunsaturated fatty acids on bone mineral accretion in growing piglets

    DEFF Research Database (Denmark)

    Andersen, Anders Daniel; Ludvig, Stine E; Damsgaard, Camilla Trab;

    2013-01-01

    Long-chain n-3 PUFA (LCPUFA) and palmitate (16:0) positioning in the triacylglycerol (TAG) of infant formula may affect calcium-uptake which could affect bone health. We investigated if a human milk fat substitute (HMFS) with a modified TAG structure holding 16:0 predominantly in the sn-2-position...

  17. The Groningen LCPUFA study : no effect of postnatal long-chain polyunsaturated fatty acids in healthy term infants on neurological condition at 9 years

    NARCIS (Netherlands)

    de Jong, Corina; Kikkert, Hedwig K.; Fidler, Vaclav; Hadders-Algra, Mijna

    2010-01-01

    Long-chain PUFA (LCPUFA) supplementation of formula can have beneficial effects on neurodevelopmental outcome in early infancy, but uncertainty exists regarding effects after 6 months. The present study is the first to investigate whether consumption by term infants of formula containing LCPUFA for

  18. Long-chain polyunsaturated fatty acids (LCPUFA) from genesis to senescence: the influence of LCPUFA on neural development, aging, and neurodegeneration.

    NARCIS (Netherlands)

    Janssen, C.I.F.; Kiliaan, A.J.

    2014-01-01

    Many clinical and animal studies demonstrate the importance of long-chain polyunsaturated fatty acids (LCPUFA) in neural development and neurodegeneration. This review will focus on involvement of LCPUFA from genesis to senescence. The LCPUFA docosahexaenoic acid and arachidonic acid are important

  19. High-fat diets rich in medium- versus long-chain fatty acids induce distinct patterns of tissue specific insulin resistance

    NARCIS (Netherlands)

    Vogel-van den Bosch, J. de; Berg, S.A.A. van den; Bijland, S.; Voshol, P.J.; Havekes, L.M.; Romijn, H.A.; Hoeks, J.; Beurden, D. van; Hesselink, M.K.C.; Schrauwen, P.; Dijk, K.W. van

    2011-01-01

    Excess dietary long-chain fatty acid (LCFA) intake results in ectopic lipid accumulation and insulin resistance. Since medium-chain fatty acids (MCFA) are preferentially oxidized over LCFA, we hypothesized that diets rich in MCFA result in a lower ectopic lipid accumulation and insulin resistance

  20. Long-chain polyunsaturated fatty acids (LCPUFA) from genesis to senescence: the influence of LCPUFA on neural development, aging, and neurodegeneration.

    NARCIS (Netherlands)

    Janssen, C.I.F.; Kiliaan, A.J.

    2014-01-01

    Many clinical and animal studies demonstrate the importance of long-chain polyunsaturated fatty acids (LCPUFA) in neural development and neurodegeneration. This review will focus on involvement of LCPUFA from genesis to senescence. The LCPUFA docosahexaenoic acid and arachidonic acid are important c

  1. Short communication: Genome-wide scan for bovine milk-fat composition. II. Quantitative trait loci for long-chain fatty acids

    NARCIS (Netherlands)

    Schennink, A.; Stoop, W.M.; Visker, M.H.P.W.; Poel, van der J.J.; Bovenhuis, H.; Arendonk, van J.A.M.

    2009-01-01

    We present the results of a genome-wide scan to identify quantitative trait loci (QTL) that contribute to genetic variation in long-chain milk fatty acids. Milk-fat composition phenotypes were available on 1,905 Dutch Holstein-Friesian cows. A total of 849 cows and their 7 sires were genotyped for 1

  2. Knowledge formations in Problem Based Learning

    DEFF Research Database (Denmark)

    Larsen, Verner

    2013-01-01

    The paper presents some of the results from a recent completed Ph.D. program about disciplinarity and inter-disciplinarity in problem based learning (PBL). Disciplinary content in PBL-programs has been questioned during recent years, so stronger concepts of how knowledge is actually organized...... and structured in PBL are needed to qualify this discussion. This paper focuses on the research question: How has the structuring/organization of knowledge in curriculum changed over time and what kinds of connections and interrelations between disciplines/subjects can be identified in current PBL......-courses? The research has aimed to conceptualize how various knowledge areas blend in two educational contexts applying PBL. Interrelationships have often been referred to as inter-cross- or trans-disciplinarity. However, these terms are ambiguous. Thus I introduce the term transversality to suggests that knowledge...

  3. Orthogonal separation and identification of long-chain peptides from scorpion Buthus martensi Karsch venom by using two-dimensional mixed-mode reversed phase-reversed phase chromatography coupled to tandem mass spectrometry.

    Science.gov (United States)

    Xu, Junyan; Zhang, Xiuli; Guo, Zhimou; Yan, Jingyu; Yu, Long; Li, Xiuling; Xue, Xingya; Liang, Xinmiao

    2013-03-21

    Peptide components of scorpion venom have been employed as useful pharmacological tools in the study of ion channel function. The isolation of individual components is necessary for determination of their biological significance. Here, we have described a novel reversed phase (RP)/ion exchange stationary phase, Click oligo ethylene glycol (Click OEG), and the chromatographic efficiency of its mixed-mode sorbent in peptide separation experiments. The Click OEG presents a mixed-mode RP/weak anion-exchange type stationary phase at pH 3.5 and mixed-mode RP/weak cation-exchange type stationary phase at pH 6.0, and it was suitable for separation of long-chain peptides in scorpion venom. Subsequently, a two dimensional mixed-mode RP-RP system based Click OEG and C18 with different pH values in two dimensions was developed for orthogonal separation of scorpion venom. Furthermore, two fractions were analyzed in depth, and 11 long-chain peptides were purified and sequences were identified by using tandem mass spectrometry incorporating the tryptic approach. Among these, we isolated six novel peptides including one peptide with a new sequence and five transcript-level peptides, and speculated on their possible bioactivities.

  4. Linseed oil in the maternal diet increases long chain-PUFA status of the foetus and the newborn during the suckling period in pigs.

    Science.gov (United States)

    de Quelen, Francine; Boudry, Gaëlle; Mourot, Jacques

    2010-08-01

    Linseed oil, being rich in 18 : 3n-3, represents an alternative source of n-3 PUFA in the maternal diet. However, little is known about the effect of this oil on the long chain n-3 PUFA composition of offspring, which are required for normal growth and maturation of numerous organs. The main objective of the experiment was therefore to investigate fatty acid composition of tissues from sows at the end of gestation and from piglets during the first week of postnatal life in response to maternal dietary linseed oil intake. Sows received either a lard (LAR)-based diet or a linseed oil (LSO)-based diet during gestation and lactation. Fatty acid composition was evaluated in sow plasma, placenta and milk, and in different tissues of piglets on days 0, 3, 7, 21 and 32. The LSO diet increased the proportions of n-3 PUFA and especially 22 : 6n-3 in the placenta. The carcass of LSO piglets at birth contained greater proportions of 20 : 5n-3, 22 : 5n-3 and 22 : 6n-3. The LSO sow milk exhibited greater proportions of 18 : 3n-3 compared with the LAR sow milk. The piglets suckling LSO sows had greater proportions of 18 : 3n-3, 20 : 5n-3 and 22 : 5n-3 in plasma and carcass. The proportions of 22 : 5n-3 and 22 : 6n-3 were greater in the brain of LSO piglets than in that of LAR piglets during the suckling period. In conclusion, LSO in the maternal diet during gestation and lactation increases 22 : 6n-3 concentrations in the placenta and in the foetus carcass, and it maintains 22 : 6n-3 concentrations in the brain during the first week of postnatal life.

  5. Adaptive neural network consensus based control of robot formations

    Science.gov (United States)

    Guzey, H. M.; Sarangapani, Jagannathan

    2013-05-01

    In this paper, adaptive consensus based formation control scheme is derived for mobile robots in a pre-defined formation when full dynamics of the robots which include inertia, Corolis, and friction vector are considered. It is shown that dynamic uncertainties of robots can make overall formation unstable when traditional consensus scheme is utilized. In order to estimate the affine nonlinear robot dynamics, a NN based adaptive scheme is utilized. In addition to this adaptive feedback control input, an additional control input is introduced based on the consensus approach to make the robots keep their desired formation. Subsequently, the outer consensus loop is redesigned for reduced communication. Lyapunov theory is used to show the stability of overall system. Simulation results are included at the end.

  6. [Effects of expression of mitochondria long-chain fatty acid oxidative enzyme with different chain lengths of free fatty acids in trophoblast cells].

    Science.gov (United States)

    Sun, Xiao-le; Yang, Zi; Wang, Xiao-ye; Wang, Jia-lue; Wu, Shu-ying

    2012-08-07

    To explore the interacting mechanisms and influences of different chain lengths of fatty acids and the expression of mitochondria long-chain 3 hydroxyacyl CoA dehydrogenase (LCHAD) in trophoblast cells. The serum-free trophoblast cells cultured in vitro were divided into 5 groups to receive the stimulations of DMEM/F12 medium without FFA (F-FFA), short-chain fatty acids (SC-FFA), medium-chain fatty acids (MC-FFA), long-chain fatty acids (LC-FFA), very long-chain fatty acids (VLC-FFA). The expressions of mRNA and protein of LCHAD in trophoblast cells were detected by real-time polymerase chain reaction (PCR) and Western blot. Compared with the F-FFA, SC-FFA and MC-FFA groups, the expressions of gene and protein of LCHAD significantly decreased (P 0.05). Gene expression of LCHAD had no difference among the F-FFA, SC-FFA, MC-FFA groups (P > 0.05). Compared with the LC-FFA group, the expression of gene of LCHAD increased significantly in the VLC-FFA group (P fatty acids may affect the expression of mitochondrial β-oxidation enzyme of LCHAD in trophoblast cells. Long-chain fatty acid alters the LCHAD gene protein expression. The correlation between very long chain fatty acids and the gene expression of LCHAD has been detected and their interactions needs further explorations. Short or medium chain fatty acids have no significant effect on the mitochondrial metabolism of fatty acid β-oxidation in trophoblast cells.

  7. Long-Chain Fatty Acid Sensor, PsrA, Modulates the Expression of rpoS and the Type III Secretion exsCEBA Operon in Pseudomonas aeruginosa

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Y.; Lunin, V. V.; Skarina, T.; Savchenko, A.; Schurr, M. J.; Hoang, T. T.

    2009-01-01

    The Pseudomonas aeruginosa PsrA autorepressor has dual roles as a repressor of the fadBA5{beta}-oxidation operon and an activator of the stationary-phase sigma factor rpoS and exsCEBA operon of the type III secretion system (TTSS). Previously, we demonstrated that the repression of the fadBA5 operon by PsrA is relieved by long-chain fatty acids (LCFAs). However, the signal affecting the activation of rpoS and exsC via PsrA is unknown. In this study, microarray and gene fusion data suggested that LCFA (e.g. oleate) affected the expression of rpoS and exsC. DNA binding studies confirmed that PsrA binds to the rpoS and exsC promoter regions. This binding was inhibited by LCFA, indicating that LCFA directly affects the activation of these two genes through PsrA. LCFA decreased rpoS and exsC expression, resulting in increased N-(butyryl)-l-homoserine-lactone quorum sensing signal and decreased ExoS/T production respectively. Based on the crystal structure of PsrA, site-directed mutagenesis of amino acid residues, within the hydrophobic channel thought to accommodate LCFA, created two LCFA-non-responsive PsrA mutants. The binding and activation of rpoS and exsC by these PsrA mutants was no longer inhibited by LCFA. These data support a mechanistic model where LCFAs influence PsrA regulation to control LCFA metabolism and some virulence genes in P. aeruginosa.

  8. Thermosyntropha lipolytica gen. nov., sp. nov., a lipolytic, anaerobic, alkalitolerant, thermophilic bacterium utilizing short- and long-chain fatty acids in syntrophic coculture with a methanogenic archaeum

    Energy Technology Data Exchange (ETDEWEB)

    Svetlitshnyi, V.; Wiegel, J. [Univ. of Georgia, Athens, GA (United States); Rainey, F. [German Collection of Microorganisms and Cell Cultures, Braunschweig (Germany)

    1996-10-01

    Three strains of an anaerobic thermophilic organoheterotrophic lipolytic alkalitolerant bacterium, Thermosyntropha lipolytica gen. nov., sp. nov. (type strain JW/VS-264{sup T}; DSM 11003) were isolated from alkaline hot springs of Lake Bogoria (Kenya). The cells were nonmotile, non-spore forming, straight or slightly curved rods. At 60{degrees}C, the pH range for growth determined at 25{degrees}C [pH{sup 25{degrees}C}] was 7.15 to 9.5, with an optimum between 8.1 and 8.9 (pH{sup 60{degrees}C} of 7.6 and 8.1). At a pH{sup 25{degrees}C} of 8.5 temperature range for growth was from 52 to 70{degrees}C, with an optimum between 60 and 66{degrees}C. The shortest doubling time was around 1 h. In pure culture the bacterium grew in a mineral base medium supplemented with yeast extract, tryptone, Casamino Acids, betaine, and crotonate as carbon sources, producing acetate as a major product and constitutively a lipase. During growth in the presence of olive oil, free long-chain fatty acids were accumulated in the medium but the pure culture syntrophic coculture (Methanobacterium strain JW/VS-M29) the lipolytic bacteria grew on triacylglycerols and linear saturated and unsaturated fatty acids with 4 to 18 carbon atoms, but glycerol was not utilized. Fatty acids with even numbers of carbon atoms were degraded to acetate and methane, while from odd-numbered fatty acids 1 mol of propionate per mol of fatty acid was additionally formed. 16S rDNA sequence analysis identified Syntrophospora and Syntrophomonas spp. as closest phylogenetic neighbors.

  9. Progress in Long-Chain Hyperbranched Polymers%长链超支化聚合物的合成研究进展

    Institute of Scientific and Technical Information of China (English)

    刘婷婷; 田威; 白阳; 范晓东

    2013-01-01

    长链超支化聚合物(HyperMacs)凭借其含有大量的功能端基和可调控的链结构等优点已经引起国内外科研人员越来越广泛的关注.HyperMcs除了拥有超支化聚合物固有的低粘度、溶解性好、含有大量的功能性端基的特点外,同时拥有高剪切敏感性、熔体弹性、冲击强度和零剪切粘度,因而在药物载体、能量存储及传递和纳米催化剂等方面可能拥有更为广泛的应用.本文根据HyperMacs合成方法的不同,分别从迭代法和ABx线型大分子单体法两个主要方面对其研究进展进行了总结和评述,并在此基础上展望了该类聚合物的研究方向和发展趋势.%Long-chain hyperbranched polymers (HyperMacs) with well-defined and well-adjusted linear chains between branch points have received widespread attention in the macromolecule research due to their potential applications in various fields such as drug carrier,energy storage,and delivery,nanotechnology and catalysis.In this paper,we reviewed the various synthetic strategies for HyperMacs:including iteration and ABx linear macromonomer apporaches.In addition,new research trends are expected based on the progress of this kind of polymers.

  10. [Peroxisomal neurologic diseases and Refsum disease: very long chain fatty acids and phytanic acid as diagnostic markers].

    Science.gov (United States)

    Molzer, B; Stöckler, S; Bernheimer, H

    1992-01-01

    Peroxisomal disorders are genetic metabolic diseases with generalized, multiple, or single functional disturbances of the peroxisome. According to the extent of the functional disturbances 3 groups of diseases can be differentiated: disorders with generalized loss of peroxisomal functions (Zellweger syndrome, ZS; neonatal adrenoleukodystrophy, NALD; infantile Refsum's disease), disorders with multiple enzymatic defects (e.g. rhizomelic chondrodysplasia punctata), and disorders with a single enzymatic defect in the peroxisome, the most important being adrenoleukodystrophy/adrenomyeloneuropathy (ALD/AMN). Adult Refsum's disease, a genetic neurological disorder with phytanic acid accumulation, is due to a mitochondrial enzyme deficiency, but is often considered together with peroxisomal diseases because of phytanic acid (PHYT) accumulation in most peroxisomal diseases. The main clinical and pathological criteria of the major disorders and the biochemical parameters of their differentiation are presented. Elevated levels of very long chain fatty acids (VLCFA) and/or PHYT are the primary diagnostic markers for all peroxisomal disorders and adult Refsum's disease, respectively. Our investigations disclosed 30 ALD/AMN hemizygotes, 16 ALD/AMN heterozygotes, 8 cases of ZS/NALD and 7 patients with adult Refsum's disease. In addition, 15 cases of peroxisomal disorders were confirmed by biochemical investigations in autopsy material. With regard to peroxisomal disorders, therapeutic concepts exist only for ALD/AMN: corticosteroid substitution for adrenal insufficiency, dietary treatment, and bone marrow transplantation (BMT). Adult Refsum's disease can be treated successfully by dietary therapy. In case of dietary treatment and BMT, assay of VLCFA and/or PHYT is important for the biochemical evaluation of these therapies.

  11. Essential and long-chain polyunsaturated fatty acid status and fatty acid composition of breast milk of lactating adolescents.

    Science.gov (United States)

    Meneses, Flávia; Torres, Alexandre G; Trugo, Nádia M F

    2008-11-01

    The aims of the present study were to evaluate essential fatty acids (EFA) and long-chain PUFA (LCPUFA) status in lactating adolescents and its association with breast milk composition. Healthy nursing adolescents from Rio de Janeiro, Brazil (n 30; 14-19 years; 30-120 d postpartum), exclusively or predominantly breast-feeding, participated in this study. Breast milk and blood samples were collected after overnight fasting. Fatty acid composition of breast milk, erythrocyte membrane (EM) and plasma NEFA were determined by GC. Indices of fatty acid status (mean melting point (MMP); EFA status index; DHA status indices, 22 : 5n-6:22 : 4n-6 and 22 : 6n-3:22 : 5n-6 ratios) were calculated from EM fatty acid composition. Dietary intake of n-3 fatty acids was low when compared with current recommendations for lactating women. MMP was associated with indices of DHA status, some individual fatty acids in EM and years post-menarche and weeks postpartum, suggesting the use of erythrocyte MMP as a possible comprehensive biochemical marker of LCPUFA status in this physiological condition. The DHA status of lactating adolescents and their milk DHA concentrations were similar to the values of Brazilian lactating adults, but lower compared with the values of lactating adults from other countries. Therefore, these lactating adolescents were apparently not disadvantaged, as compared with the Brazilian adults, when EM and breast milk fatty acid composition were considered. In general, PUFA in milk from adolescents presented few associations with their concentrations in plasma NEFA and with maternal status. However, milk DHA was associated with maternal LCPUFA and DHA states.

  12. Role of Intracellular Lipid Logistics in the Preferential Usage of Very Long Chain-Ceramides in Glucosylceramide

    Science.gov (United States)

    Yamaji, Toshiyuki; Horie, Aya; Tachida, Yuriko; Sakuma, Chisato; Suzuki, Yusuke; Kushi, Yasunori; Hanada, Kentaro

    2016-01-01

    Ceramide is a common precursor of sphingomyelin (SM) and glycosphingolipids (GSLs) in mammalian cells. Ceramide synthase 2 (CERS2), one of the six ceramide synthase isoforms, is responsible for the synthesis of very long chain fatty acid (C20–26 fatty acids) (VLC)-containing ceramides (VLC-Cer). It is known that the proportion of VLC species in GSLs is higher than that in SM. To address the mechanism of the VLC-preference of GSLs, we used genome editing to establish three HeLa cell mutants that expressed different amounts of CERS2 and compared the acyl chain lengths of SM and GSLs by metabolic labeling experiments. VLC-sphingolipid expression was increased along with that of CERS2, and the proportion of VLC species in glucosylceramide (GlcCer) was higher than that in SM for all expression levels of CERS2. This higher proportion was still maintained even when the proportion of C16-Cer to the total ceramides was increased by disrupting the ceramide transport protein (CERT)-dependent C16-Cer delivery pathway for SM synthesis. On the other hand, merging the Golgi apparatus and the endoplasmic reticulum (ER) by Brefeldin A decreased the proportion of VLC species in GlcCer probably due to higher accessibility of UDP-glucose ceramide glucosyltransferase (UGCG) to C16-rich ceramides. These results suggest the existence of a yet-to-be-identified mechanism rendering VLC-Cer more accessible than C16-Cer to UGCG, which is independent of CERT. PMID:27775668

  13. Effect of long-chain triglyceride lipid emulsion on bupivacaine-induced changes in electrophysiological parameters of rabbit Purkinje cells.

    Science.gov (United States)

    Lemoine, Sandrine; Rouet, René; Manrique, Alain; Hanouz, Jean-Luc

    2014-10-01

    Lipid emulsions are used in the reversal of local anesthetic toxicity. The aim of this study was to investigate the cellular electrophysiological effects of long-chain triglyceride lipid emulsion (LCTE) on cardiac action potential characteristics and conduction disturbances induced by bupivacaine. Purkinje fibers were dissected from the left ventricle of New Zealand white rabbit hearts and superfused with either Tyrode's solution during 30 min (control group), with bupivacaine 10(-6) M, 10(-5) M, and 5.10(-5) M alone, or in the presence of LCTE 0.5%, in addition, LCTE at 0.1%, 0.5%, and 1% was perfused alone. Electrophysiological parameters were recorded using the conventional microelectrode technique (37 °C, 1 Hz frequency). Bupivacaine 5.10(-5) M-induced conduction blocks (8/8 preparations): LCTE 0.5% suppressed the bupivacaine 5.10(-5) M-induced conduction blocks (1/8 preparations). Exposure to bupivacaine 10(-6) M, 10(-5) M, and 5.10(-5) M resulted in a significant decrease in the maximal rate of depolarization (Vmax) (respectively, 25%, 55%, 75%; P bupivacaine 10(-6) M did not significantly decreased Vmax (13%; P = 0.10 vs. control group). The decrease in Vmax resulting from bupivacaine 10(-5) M alone was significantly less in the presence of LCTE 0.5% (P bupivacaine 10(-5) M alone). Exposure to bupivacaine 10(-6) M, 10(-5) M, and 5.10(-5) M alone or in the presence of LCTE 0.5% resulted in a significant decrease in action potential duration measured at 50% and 90% repolarization (APD50 and APD90; P bupivacaine. Moreover, LCTE 0.5% attenuates the decrease in Vmax induced by bupivacaine 10(-6) M and 10(-5) M.

  14. High-Throughput Determination and Characterization of Short-, Medium-, and Long- Chain Chlorinated Paraffins in Human Blood.

    Science.gov (United States)

    Li, Tong; Wan, Yi; Gao, Shixiong; Wang, Beili; Hu, Jianying

    2017-02-22

    The industrial chlorinated paraffins (CPs) are comprised of short-chain (SCCPs), medium chain (MCCPs), and long chain (LCCPs) CPs. Although SCCPs and MCCPs are environmentally ubiquitous, little is known about CPs in humans. This study established a method for simultaneous determination of 261 SCCP, MCCP, and LCCP congener groups in one injection by reversed ultra-high-pressure liquid chromatography coupled with chlorine-enhanced electron spray ionization-quadrupole time-of-flight mass spectrometry. The method yielded good peak shapes, high sensitivities, and low co-eluted interferences for all examined CPs. LCCPs with carbon numbers of 21 to 27 were detected in their standard technical mixtures, and MCCPs and LCCPs impurities were detected in the LCCP and MCCP standard technical mixtures, respectively, causing quantification deviations when these mixtures were used for calibration. After considering these impurities' contribution to the total concentrations, the quantification accuracies for ∑SCCPs, ∑MCCPs, and ∑LCCPs ranged from 95.1±8.4% to 105.6±9.2% in the eight CP technical mixtures. The method was successfully applied to determine CPs in about 6 g human blood samples from a general population, and estimated ∑SCCP, ∑MCCP, and ∑LCCP concentrations to be 370-35,000, 130-3200, and 22-530 ng/g lipid weight (n=50), respectively. A comparison of blood and soil/air CP profiles from the same areas suggested a relatively higher potential for the accumulation of SCCPs, compared with MCCPs, in humans.

  15. A peroxisomal long-chain acyl-CoA synthetase from Glycine max involved in lipid degradation.

    Directory of Open Access Journals (Sweden)

    Lili Yu

    Full Text Available Seed storage oil, in the form of triacylglycerol (TAG, is degraded to provide carbon and energy during germination and early seedling growth by the fatty acid β-oxidation in the peroxisome. Although the pathways for lipid degradation have been uncovered, understanding of the exact involved enzymes in soybean is still limited. Long-chain acyl-CoA synthetase (ACSL is a critical enzyme that activates free fatty acid released from TAG to form the fatty acyl-CoA. Recent studies have shown the importance of ACSL in lipid degradation and synthesis, but few studies were focused on soybean. In this work, we cloned a ACSL gene from soybean and designated it as GmACSL2. Sequence analysis revealed that GmACSL2 encodes a protein of 733 amino acid residues, which is highly homologous to the ones in other higher plants. Complementation test showed that GmACSL2 could restore the growth of an ACS-deficient yeast strain (YB525. Co-expression assay in Nicotiana benthamiana indicated that GmACSL2 is located at peroxisome. Expression pattern analysis showed that GmACSL2 is highly expressed in germinating seedling and strongly induced 1 day after imbibition, which indicate that GmACSL2 may take part in the seed germination. GmACSL2 overexpression in yeast and soybean hairy root severely reduces the contents of the lipids and fatty acids, compared with controls in both cells, and enhances the β-oxidation efficiency in yeast. All these results suggest that GmACSL2 may take part in fatty acid and lipid degradation. In conclusion, peroxisomal GmACSL2 from Glycine max probably be involved in the lipid degradation during seed germination.

  16. PPARδ activation induces hepatic long-chain acyl-CoA synthetase 4 expression in vivo and in vitro.

    Science.gov (United States)

    Kan, Chin Fung Kelvin; Singh, Amar Bahadur; Dong, Bin; Shende, Vikram Ravindra; Liu, Jingwen

    2015-05-01

    The arachidonic acid preferred long-chain acyl-CoA synthetase 4 (ACSL4) is a key enzyme for fatty acid metabolism in various metabolic tissues. In this study, we utilized hamsters fed a normal chow diet, a high-fat diet or a high cholesterol and high fat diet (HCHFD) as animal models to explore novel transcriptional regulatory mechanisms for ACSL4 expression under hyperlipidemic conditions. Through cloning hamster ACSL4 homolog and tissue profiling ACSL4 mRNA and protein expressions we observed a selective upregulation of ACSL4 in testis and liver of HCHFD fed animals. Examination of transcriptional activators of the ACSL family revealed an increased hepatic expression of PPARδ but not PPARα in HCHFD fed hamsters. To explore a role of PPARδ in dietary cholesterol-mediated upregulation of ACSL4, we administered a PPARδ specific agonist L165041 to normolipidemic and dyslipidemic hamsters. We observed significant increases of hepatic ACSL4 mRNA and protein levels in all L165041-treated hamsters as compared to control animals. The induction of ACSL4 expression by L165041 in liver tissue in vivo was recapitulated in human primary hepatocytes and hepatocytes isolated from hamster and mouse. Moreover, employing the approach of adenovirus-mediated gene knockdown, we showed that depletion of PPARδ in hamster hepatocytes specifically reduced ACSL4 expression. Finally, utilizing HepG2 as a model system, we demonstrate that PPARδ activation leads to increased ACSL4 promoter activity, mRNA and protein expression, and consequently higher arachidonoyl-CoA synthetase activity. Taken together, we have discovered a novel PPARδ-mediated regulatory mechanism for ACSL4 expression in liver tissue and cultured hepatic cells.

  17. Role of Intracellular Lipid Logistics in the Preferential Usage of Very Long Chain-Ceramides in Glucosylceramide

    Directory of Open Access Journals (Sweden)

    Toshiyuki Yamaji

    2016-10-01

    Full Text Available Ceramide is a common precursor of sphingomyelin (SM and glycosphingolipids (GSLs in mammalian cells. Ceramide synthase 2 (CERS2, one of the six ceramide synthase isoforms, is responsible for the synthesis of very long chain fatty acid (C20–26 fatty acids (VLC-containing ceramides (VLC-Cer. It is known that the proportion of VLC species in GSLs is higher than that in SM. To address the mechanism of the VLC-preference of GSLs, we used genome editing to establish three HeLa cell mutants that expressed different amounts of CERS2 and compared the acyl chain lengths of SM and GSLs by metabolic labeling experiments. VLC-sphingolipid expression was increased along with that of CERS2, and the proportion of VLC species in glucosylceramide (GlcCer was higher than that in SM for all expression levels of CERS2. This higher proportion was still maintained even when the proportion of C16-Cer to the total ceramides was increased by disrupting the ceramide transport protein (CERT-dependent C16-Cer delivery pathway for SM synthesis. On the other hand, merging the Golgi apparatus and the endoplasmic reticulum (ER by Brefeldin A decreased the proportion of VLC species in GlcCer probably due to higher accessibility of UDP-glucose ceramide glucosyltransferase (UGCG to C16-rich ceramides. These results suggest the existence of a yet-to-be-identified mechanism rendering VLC-Cer more accessible than C16-Cer to UGCG, which is independent of CERT.

  18. Long chain polyunsaturated fatty acids alter oxytocin signaling and receptor density in cultured pregnant human myometrial smooth muscle cells.

    Directory of Open Access Journals (Sweden)

    Paul Y Kim

    Full Text Available Epidemiological studies and interventional clinical trials indicate that consumption of long chain n-3 polyunsaturated fatty acids (LC n-3 PUFA such as docosahexaenoic acid (DHA lengthen gestational duration. Although the mechanisms are not well understood, prostaglandins (PG of the 2-series are known to play a role in the initiation and progress of labor. In animal studies, modest DHA provision has been shown to reduce placental and uterine PGE(2 and PGF(2α, matrix metalloproteinase (MMP-2 and MMP-9 expression, and placental collagenase activity. However, modulation of PG biosynthesis may not account for all the effects of LC n-3 PUFAs in labor. We investigated one potential PG-independent mechanism of LC PUFA action using cultured pregnant human myometrial smooth muscle cells. Our goal was to characterize the effect of LC PUFA treatment on oxytocin signaling, a potent uterotonic hormone involved in labor. The addition of 10 µM-100 µM DHA or arachidonic acid (AA to the culture media for 48 h resulted in dose dependent enrichment of these fatty acids in membrane lipid. DHA and AA significantly inhibited phosphatidylinositol turnover and [Ca(2+](i mobilization with oxytocin stimulation compared to bovine serum albumin control and equimolar oleic acid. DHA and AA significantly reduced oxytocin receptor membrane concentration without altering binding affinity or rate of receptor internalization. These findings demonstrate a role for LC n-3 PUFAs in regulation of oxytocin signaling and provide new insight into additional mechanisms pertaining to reports of dietary fish and fish oil consumption prolonging gestation.

  19. Long-chain omega3 polyunsaturated fatty acids and cognition in older people: interaction with APOE genotype

    Directory of Open Access Journals (Sweden)

    Barberger-Gateau Pascale

    2016-01-01

    Full Text Available Basic research and epidemiological studies suggest a protective effect of long-chain omega3 polyunsaturated fatty acids (LC n-3 PUFA against age-related cognitive decline. However, most randomized controlled trials with LC n-3 PUFA supplements have yielded disappointing results on cognitive outcomes in older persons. One explanation for this discrepancy may be an inadequate targeting of potential beneficiaries of LC n-3 PUFA according to their Apolipoprotein E (APOE genotype. The aim of this paper was to examine the potential modifying effect of APOE genotype on LC n-3 PUFA metabolism and its relation to cognitive decline in older persons. At least five epidemiological studies and three intervention studies with LC n-3 PUFA supplements have found an interaction between LC n-3 PUFA and APOE genotype on cognition. However, the direction of the effect is inconsistent across studies: the impact of LC n-3 PUFA on cognition is stronger in APOE4 carriers (the main genetic risk factor for Alzheimer’s disease in some studies, but conversely stronger in APOE4 non-carriers in other studies. These discordant results may be explained by different age groups, cognitive status, measures of cognition, or amounts of DHA intake across studies. Experimental studies suggest that the APOE4 genotype modifies the metabolism of DHA. The APOE genotype should be systematically taken into account and interactions tested in epidemiological and intervention studies with LC n-3 PUFA. Further research is needed to better understand the underlying mechanisms of this gene X diet interaction.

  20. Environmental and Climatic Control on the Occurrence and Abundance of Long Chain Alkenones in Lakes of the Interior United States

    Science.gov (United States)

    Toney, J. L.; Fritz, S.; Baker, P. A.; Grimm, E. C.; Nyren, P.; Theroux, S.; Huang, Y.

    2008-12-01

    Long chain alkenones are a class of temperature sensitive lipids with great potential for quantitative paleoclimatic reconstructions from continental locations. We have surveyed 57 lacustrine core-top sediments in the in the interior US for alkenones in order to constrain the environmental conditions that control the occurrence of alkenone-producing haptophytes in lakes and determine the possibility of using lacustrine alkenones to reconstruct temperature. Thirteen out of the 57 sites surveyed contain alkenones in surface sediments. Three of the 13 lakes contain abundant C37:4 alkenones as commonly found in lake sediments, whereas the rest of the lakes show a surprising absence of C37:4 alkenone. 18S Ribosomal DNA sequences amplified from the C37:4 containing lakes suggests the alkenone-producing haptophyte falls amongst the Isochrysis spp. and showcases a strong similarity to a haptophyte derived from Ace Lake, Antarctica, whereas the other lakes probably contain a different species. We also find cold, oligosaline conditions with high concentrations of sodium and sulfate promote high concentrations of alkenones. Salinity serves as a threshold control on the C37:4 alkenone such that C37:4 is only found in lakes with salinity above 2.74 g / L. Sites with the C37:4 alkenone plot along a previously published calibration. We also create a new alkenone temperature calibration using water column filters from Lake George spanning a temperature range of 8 to 24 degrees C. In addition, we obtain an alkenone- inferred temperature record from Lake George, ND for the instrumental period and a high-resolution (~20 year resolution) Holocene length record from Brush Lake, MT, in order to further assess the applicability of lacustrine alkenones for continental paleo-temperature reconstructions.

  1. Microchip Non-Aqueous Capillary Electrophoresis (MicronNACE) Method to Analyze Long-Chain Primary Amines

    Science.gov (United States)

    Willis, Peter A.; Mora, Maria; Cable, Morgan L.; Stockton, Amanda M.

    2012-01-01

    A protocol was developed as a first step in analyzing the complex organic aerosols present on Saturn's moon Titan, as well as the analogues of these aerosols (tholins) made on Earth. Labeling of primary amines using Pacific Blue succinimidyl ester is effected in ethanol with 25 mM triethylamine to maintain basic conditions. This reaction is allowed to equilibrate for at least one hour. Separation of the labeled primary amines is performed in ethanol with 1.05 M acetic acid, and 50 mM ammonium acetate in a commercial two-layer glass device with a standard crossmicrochannel measuring 50 microns wide by 20 microns deep. Injection potentials are optimized at 2 kV from the sample (negative) to the waste well (positive), with slight bias applied to the other two wells ( 0.4 and 0.8 V) to pinch the injection plug for the 30-s injection. Separation is performed at a potential of 5 kV along the channel, which has an effective separation distance of 7 cm. The use of ethanol in this method means that long-chain primary amines can be dissolved. Due to the low pH of the separation buffer, electro-osmotic flow (EOF) is minimized to allow for separation of both short-chain and longchain amines. As the freezing point of ethanol is much lower than water, this protocol can perform separations at temperatures lower than 0 C, which would not be possible in aqueous phase. This is of particular importance when considering in situ sampling of Titan aerosols, where unnecessary heating of the sample (even to room temperature) would lead to decomposition or unpredictable side reactions, which would make it difficult to characterize the sample appropriately.

  2. Diversity and history of the long-chain acyl-CoA synthetase (Acsl) gene family in vertebrates.

    Science.gov (United States)

    Lopes-Marques, Mónica; Cunha, Isabel; Reis-Henriques, Maria Armanda; Santos, Miguel M; Castro, L Filipe C

    2013-12-12

    Fatty acids, a considerable fraction of lipid molecules, participate in fundamental physiological processes. They undergo activation into their corresponding CoA esters for oxidation or esterification into complex lipids (e.g. triglycerides, phospholipids and cholesterol esters), a process that is carried out by acyl-CoA synthases (ACS). Here we analyze the evolution of the gene family encoding for the long-chain acyl-CoA synthetases (Acsl) in vertebrates. By means of phylogenetics and comparative genomics we show that genome duplications (2R) generated the diversity of Acsl genes in extant vertebrate lineages. In the vertebrate ancestor two separate genes originated the current Acsl1/5/6 and the Acsl3/4 gene families, and the extra gene duplicates in teleosts are a consequence of the teleost specific third round of genome duplication (3R). Moreover, the diversity of Acsl family members is broader than anticipated. Our strategy uncovered a novel uncharacterized Acsl-like gene found in teleosts, spotted gar, coelacanth and possibly lamprey, which we designate Acsl2. The detailed analysis of the Acsl2 teleost gene locus strongly supports the conclusion that it corresponds to a retained 2R paralogue, lost in tetrapods. We provide here the first evolutionary analysis of the Acsl gene family in vertebrates, showing the specific contribution of 2R/3R to the diversity of this gene family. We find also that the division of ACSL enzymes into two groups predates at least the emergence of deuterostomes. Our study indicates that genome duplications significantly contributed to the elaboration of fatty acid activation metabolism in vertebrates.

  3. Involvement of atypical protein kinase C in the regulation of cardiac glucose and long-chain fatty acid uptake

    Directory of Open Access Journals (Sweden)

    Daphna D.J. Habets

    2012-09-01

    Full Text Available Aim: The signaling pathways involved in the regulation of cardiac GLUT4 translocation/glucose uptake and CD36 translocation/ long-chain fatty acid uptake are not fully understood. We compared in heart/muscle-specific PKC-λ knockout mice the roles of atypical PKCs (PKC-ζ and PKC-λ in regulating cardiac glucose and fatty acid uptake. Results: Neither insulin-stimulated nor AMPK-mediated glucose and fatty acid uptake were inhibited upon genetic PKC-λ ablation in cardiomyocytes. In contrast, myristoylated PKC-ζ pseudosubstrate inhibited both insulin-stimulated and AMPK-mediated glucose and fatty acid uptake by >80% in both wild-type and PKC-λ-knockout cardiomyocytes. In PKC-λ knockout cardiomyocytes, PKC-ζ is the sole remaining atypical PKC isoform, and its expression level is not different from wild-type cardiomyocytes, in which it contributes to 29% and 17% of total atypical PKC expression and phosphorylation, respectively. Conclusion: Taken together, atypical PKCs are necessary for insulin-stimulated and AMPK-mediated glucose uptake into the heart, as well as for insulin-stimulated and AMPK-mediated fatty acid uptake. However, the residual PKC-ζ activity in PKC-λ-knockout cardiomyocytes is sufficient to allow optimal stimulation of glucose and fatty acid uptake, indicating that atypical PKCs are necessary but not rate-limiting in the regulation of cardiac substrate uptake and that PKC-λ and PKC-ζ have interchangeable functions in these processes.

  4. CD36 abnormality and impaired myocardial long-chain fatty acid uptake in patients with hypertrophic cardiomyopathy

    Energy Technology Data Exchange (ETDEWEB)

    Okamoto, Fumio; Tanaka, Takao; Sohmiya, Koichi; Kawamura, Keishiro [Osaka Medical Coll., Takatsuki (Japan)

    1998-07-01

    In this study, in order to discover the relationship between hypertrophic cardiomyopathy (HCM) and the CD36 molecular abnormality, the expression level of platelet CD36 and CD36 cDNA in 55 HCM patients was analyzed. Twelve patients showed negligible (<5%) CD36 expression on their platelets. Among them, one was found to be homozygous for the C-478{yields}T substitution and 6 were heterozygous for the C-478{yields}T substitution. In 9 patients, CD36 was expressed by less than 50% of the platelets. One of them was found to be heterozygous for the C-478{yields}T substitution. Two other patients were also found to be heterozygous for this point mutation, although their platelets expressed CD36. Thus, 23 out of 55 (41.8%) HCM patients had negligible (<5%) or reduced (<50%) levels of CD36 expression on platelets, or had a point mutation of CD36 cDNA. These 55 HCM patients were also evaluated with myocardial scintigraphy both for long-chain fatty acid (LCFA) uptake and perfusion, which showed a moderate to severe discrepancy between myocardial LCFA accumulation and myocardial perfusion in 95.5% of the patients (21/23). On the other hand, 70% of the patients with normal (>90%) CD36 expression (14/20) did not show any severe discrepancies between myocardial LCFA accumulation and myocardial perfusion. These data could suggest that abnormal myocardial LCFA metabolism seen in HCM patients may be related to abnormality of the CD36 molecule, and that abnormalities of this molecule may be linked to the cause of some types of HCM. (K.H.)

  5. Impact of the long chain omega-acylceramides on the stratum corneum lipid nanostructure. Part 1: Thermotropic phase behaviour of CER[EOS] and CER[EOP] studied using X-ray powder diffraction and FT-Raman spectroscopy.

    Science.gov (United States)

    Kessner, Doreen; Brezesinski, Gerald; Funari, Sergio S; Dobner, Bodo; Neubert, Reinhard H H

    2010-01-01

    The stratum corneum (SC), the outermost layer of the mammalian skin, is the main skin barrier. Ceramides (CERs) as the major constituent of the SC lipid matrix are of particular interest. At the moment, 11 classes of CERs are identified, but the effect of each single ceramide species is still not known. Therefore in this article, the thermotropic behaviour of the long chain omega-acylceramides CER[EOS] and CER[EOP] was studied using X-ray powder diffraction and FT-Raman spectroscopy. It was found that the omega-acylceramides CER[EOS] and CER[EOP] do not show a pronounced polymorphism which is observed for shorter chain ceramides as a significant feature. The phase behaviour of both ceramides is strongly influenced by the extremely long acyl-chain residue. The latter has a much stronger influence compared with the structure of the polar head group, which is discussed as extremely important for the appearance of a rich polymorphism. Despite the strong influence of the long chain, the additional OH-group of the phyto-sphingosine type CER[EOP] influences the lamellar repeat distance and the chain packing. The less polar sphingosine type CER[EOS] is stronger influenced by the long acyl-chain residue. Hydration is necessary for the formation of an extended hydrogen-bonding network between the polar head groups leading to the appearance of a long-periodicity phase (LPP). In contrast, the more polar CER[EOP] forms the LPP with densely packed alkyl chains already in the dry state.

  6. Effect of salinity on the biosynthesis of n-3 long-chain polyunsaturated fatty acids in silverside Chirostoma estor.

    Science.gov (United States)

    Fonseca-Madrigal, J; Pineda-Delgado, D; Martínez-Palacios, C; Rodríguez, C; Tocher, D R

    2012-08-01

    The genus Chirostoma (silversides) belongs to the family Atherinopsidae, which contains around 150 species, most of which are marine. However, Mexican silverside (Chirostoma estor) is one of the few representatives of freshwater atherinopsids and is only found in some lakes of the Mexican Central Plateau. However, studies have shown that C. estor has improved survival, growth, and development when cultured in water conditions with increased salinity. In addition, C. estor displays an unusual fatty acid composition for a freshwater fish with high docosahexaenoic acid (DHA)/ eicosapentaenoic acid (EPA) ratios. Freshwater and marine fish species display very different essential fatty acid metabolism and requirements, and so the present study investigated long-chain polyunsaturated fatty acid (LC-PUFA) biosynthesis to determine the capacity of C. estor for endogenous production of EPA and DHA, and the effect that salinity has on these pathways. Briefly, C. estor were maintained at three salinities (0, 5, and 15 ppt), and the metabolism of ¹⁴C-labeled 18:3n-3 was determined in isolated hepatocyte and enterocyte cells. The results showed that C. estor has the capacity for endogenous biosynthesis of LC-PUFA from 18-carbon fatty acid precursors, but that the pathway was essentially only active in saline conditions with virtually no activity in cells isolated from fish grown in freshwater. The activity of the LC-PUFA biosynthesis pathway was also higher in cells isolated from fish at 15 ppt compared with fish at 5 ppt. The activity was around fivefold higher in hepatocytes compared with enterocytes; although the majority of 18:3n-3 was converted to 18:4n-3 and 20:4n-3 in hepatocytes, the proportions of 18:3n-3 converted to EPA and DHA were higher in enterocytes. The data were consistent with the hypothesis that conversion of EPA to DHA could contribute, at least in part, to the generally high DHA/EPA ratios observed in the tissue lipids of C. estor.

  7. Long chain fatty acid uptake in vivo: comparison of [125I]-BMIPP and [3H]-bromopalmitate.

    Science.gov (United States)

    Shearer, Jane; Coenen, Kimberly R; Pencek, R Richard; Swift, Larry L; Wasserman, David H; Rottman, Jeffrey N

    2008-08-01

    Insulin resistance is characterized by increased metabolic uptake of fatty acids. Accordingly, techniques to examine in vivo shifts in fatty acid metabolism are of value in both clinical and experimental settings. Partially metabolizable long chain fatty acid (LCFA) tracers have been recently developed and employed for this purpose: [9,10-3H]-(R)-2-bromopalmitate ([3H]-BROMO) and [125I]-15-(rho-iodophenyl)-3-R,S-methylpentadecanoic acid ([125I]-BMIPP). These analogues are taken up like native fatty acids, but once inside the cell do not directly enter beta-oxidation. Rather, they become trapped in the slower processes of omega and alpha-oxidation. Study aims were to (1) simultaneously assess and compare [3H]-BROMO and [125I]-BMIPP and (2) determine if tracer breakdown is affected by elevated metabolic demands. Catheters were implanted in a carotid artery and jugular vein of Sprague-Dawley rats. Following 5 days recovery, fasted animals (5 h) underwent a rest (n = 8) or exercise (n = 8) (0.6 mi/h) protocol. An instantaneous bolus containing both [3H]-BROMO and [125I]-BMIPP was administered to determine LCFA uptake. No significant difference between [125I]-BMIPP and [3H]-BROMO uptake was found in cardiac or skeletal muscle during rest or exercise. In liver, rates of uptake were more than doubled with [3H]-BROMO compared to [125I]-BMIPP. Analysis of tracer conversion by TLC demonstrated no difference at rest. Exercise resulted in greater metabolism and excretion of tracers with approximately 37% and approximately 53% of [125I]-BMIPP and [3H]-BROMO present in conversion products at 40 min. In conclusion, [3H]-BROMO and [125I]-BMIPP are indistinguishable for the determination of tissue kinetics at rest in skeletal and cardiac muscle. Exercise preferentially exacerbates the breakdown of [3H]-BROMO, making [125I]-BMIPP the analogue of choice for prolonged (>30 min) experimental protocols with elevated metabolic demands.

  8. Long-chain fatty acid combustion rate is associated with unique metabolite profiles in skeletal muscle mitochondria.

    Directory of Open Access Journals (Sweden)

    Erin L Seifert

    Full Text Available BACKGROUND/AIM: Incomplete or limited long-chain fatty acid (LCFA combustion in skeletal muscle has been associated with insulin resistance. Signals that are responsive to shifts in LCFA beta-oxidation rate or degree of intramitochondrial catabolism are hypothesized to regulate second messenger systems downstream of the insulin receptor. Recent evidence supports a causal link between mitochondrial LCFA combustion in skeletal muscle and insulin resistance. We have used unbiased metabolite profiling of mouse muscle mitochondria with the aim of identifying candidate metabolites within or effluxed from mitochondria and that are shifted with LCFA combustion rate. METHODOLOGY/PRINCIPAL FINDINGS: Large-scale unbiased metabolomics analysis was performed using GC/TOF-MS on buffer and mitochondrial matrix fractions obtained prior to and after 20 min of palmitate catabolism (n = 7 mice/condition. Three palmitate concentrations (2, 9 and 19 microM; corresponding to low, intermediate and high oxidation rates and 9 microM palmitate plus tricarboxylic acid (TCA cycle and electron transport chain inhibitors were each tested and compared to zero palmitate control incubations. Paired comparisons of the 0 and 20 min samples were made by Student's t-test. False discovery rate were estimated and Type I error rates assigned. Major metabolite groups were organic acids, amines and amino acids, free fatty acids and sugar phosphates. Palmitate oxidation was associated with unique profiles of metabolites, a subset of which correlated to palmitate oxidation rate. In particular, palmitate oxidation rate was associated with distinct changes in the levels of TCA cycle intermediates within and effluxed from mitochondria. CONCLUSIONS/SIGNIFICANCE: This proof-of-principle study establishes that large-scale metabolomics methods can be applied to organelle-level models to discover metabolite patterns reflective of LCFA combustion, which may lead to identification of molecules

  9. Towards the Industrial Production of Omega-3 Long Chain Polyunsaturated Fatty Acids from a Genetically Modified Diatom Phaeodactylum tricornutum.

    Directory of Open Access Journals (Sweden)

    Mary L Hamilton

    Full Text Available The marine diatom Phaeodactylum tricornutum can accumulate up to 30% of the omega-3 long chain polyunsaturated fatty acid (LC-PUFA eicosapentaenoic acid (EPA and, as such, is considered a good source for the industrial production of EPA. However, P. tricornutum does not naturally accumulate significant levels of the more valuable omega-3 LC-PUFA docosahexaenoic acid (DHA. Previously, we have engineered P. tricornutum to accumulate elevated levels of DHA and docosapentaenoic acid (DPA by overexpressing heterologous genes encoding enzyme activities of the LC-PUFA biosynthetic pathway. Here, the transgenic strain Pt_Elo5 has been investigated for the scalable production of EPA and DHA. Studies have been performed at the laboratory scale on the cultures growing in up to 1 L flasks a 3.5 L bubble column, a 550 L closed photobioreactor and a 1250 L raceway pond with artificial illumination. Detailed studies were carried out on the effect of different media, carbon sources and illumination on omega-3 LC-PUFAs production by transgenic strain Pt_Elo5 and wild type P. tricornutum grown in 3.5 L bubble columns. The highest content of DHA (7.5% of total fatty acids, TFA in transgenic strain was achieved in cultures grown in seawater salts, Instant Ocean (IO, supplemented with F/2 nutrients (F2N under continuous light. After identifying the optimal conditions for omega-3 LC-PUFA accumulation in the small-scale experiments we compared EPA and DHA levels of the transgenic strain grown in a larger fence-style tubular photobioreactor and a raceway pond. We observed a significant production of DHA over EPA, generating an EPA/DPA/DHA profile of 8.7%/4.5%/12.3% of TFA in cells grown in a photobioreactor, equivalent to 6.4 μg/mg dry weight DHA in a mid-exponentially growing algal culture. Omega-3 LC-PUFAs production in a raceway pond at ambient temperature but supplemented with artificial illumination (110 μmol photons m-2s-1 on a 16:8h light:dark cycle, in

  10. Kinetics of ruminal lipolysis of triacylglycerol and biohydrogenation of long-chain fatty acids: new insights from old data.

    Science.gov (United States)

    Moate, P J; Boston, R C; Jenkins, T C; Lean, I J

    2008-02-01

    Previous investigations into ruminal lipolysis of triacylglycerol and ruminal biohydrogenation (BH) of unsaturated long-chain fatty acids have generally quantified these processes with either zero-order or first-order kinetics. This investigation examined if Michaelis-Menten and other nonlinear kinetics might be useful for quantifying these processes. Data from 2 previously published in vitro experiments employing rumen fluid from sheep to investigate the lipolysis of trilinolein, the BH of cis-9, cis-12 linoleic acid (LA), and the BH of fatty acids derived from the lipolysis of trilinolein were used for the development of a multi-compartmental model. The model described the lipolysis of triacylglycerol well. The model also provided a good mathematical description of the resulting production of nonesterified fatty acids, the isomerization of nonesterified LA, and subsequent production of rumenic acid (RA), vaccenic acid (VA), and stearic acid (SA). However, the model described poorly the patterns of the concentrations of LA, RA, VA, and SA after incubation of trilinolein in rumen fluid. The model is consistent with known stoichiometry and biochemistry and is parsimonious in that it employs a minimal number of parameters to describe all of the major aspects of lipolysis and BH. The first step in the lipolysis of trilinolein was described by Michaelis-Menten kinetics (Vmax = 529 +/- 16 mg/L per h; Km = 698 +/- 41 mg/L). Both subsequent lipolysis steps were approximated by a first-order (linear kinetics) rate constant (k = 2.64 +/- 0.041 /h). Isomerization of LA to RA was modeled by simple Michaelis-Menten kinetics (Vmax = 2,421 +/- 83 mg/L per h; Km = 440 +/- 22 mg/L). The kinetics of the BH of RA to VA was described by a Michaelis-Menten-type process involving competitive inhibition by VA (Vmax = 492 +/- 6.5 mg/L per h; Km = 1 mg/L). The final step, the BH of VA to SA, was modeled by a quasi-first-order process (k = 0.533 +/- 0.021 /h), but as the concentration of

  11. Very-long-chain ω-3 fatty acid supplements and adipose tissue functions: a randomized controlled trial.

    Science.gov (United States)

    Hames, Kazanna C; Morgan-Bathke, Maria; Harteneck, Debra A; Zhou, Lendia; Port, John D; Lanza, Ian R; Jensen, Michael D

    2017-06-01

    Background: Increased omega-3 (n-3) fatty acid consumption is reported to benefit patients with metabolic syndrome, possibly due to improved adipose tissue function.Objective: We tested the effects of high-dose, very-long-chain ω-3 fatty acids on adipose tissue inflammation and insulin regulation of lipolysis.Design: A double-blind, placebo-controlled study compared 6 mo of 3.9 g eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)/d (4.2 g total ω-3/d; n = 12) with a placebo (4.2 g oleate/d; n = 9) in insulin-resistant adults. Before and after treatment, the volunteers underwent adipose tissue biopsies to measure the total (CD68(+)), pro- (CD14(+) = M1), and anti- (CD206(+) = M2) inflammatory macrophages, crown-like structures, and senescent cells, as well as a 2-step pancreatic clamping with a [U-(13)C]palmitate infusion to determine the insulin concentration needed to suppress palmitate flux by 50% (IC50(palmitate)f).Results: In the ω-3 group, the EPA and DHA contributions to plasma free fatty acids increased (P = 0.0003 and P = 0.003, respectively), as did the EPA and DHA content in adipose tissue (P adipose and plasma EPA and DHA in the ω-3 group, there were no significant changes in the IC50(palmitate)f (19 ± 2 compared with 24 ± 3 μIU/mL), adipose macrophages (total: 31 ± 2/100 adipocytes compared with 33 ± 2/100 adipocytes; CD14(+): 13 ± 2/100 adipocytes compared with 14 ± 2/100 adipocytes; CD206(+): 28 ± 2/100 adipocytes compared with 29 ± 3/100 adipocytes), crown-like structures (1 ± 0/10 images compared with 1 ± 0/10 images), or senescent cells (4% ± 1% compared with 4% ± 1%). There were no changes in these outcomes in the placebo group.Conclusions: Six months of high-dose ω-3 supplementation raised plasma and adipose ω-3 fatty acid concentrations but had no beneficial effects on adipose tissue lipolysis or inflammation in insulin-resistant adults. This trial was registered at clinicaltrials.gov as NCT01686568. © 2017 American

  12. Study on maintaining formations during satellite formation flying based on SDRE and LQR

    Science.gov (United States)

    Ke, Zhang; Zhenqi, He; Meibo, Lv

    2017-06-01

    Due to the influence of various perturbations of space, satellites flying in formation cannot maintain specific configurations for long durations [1,2]. In order to ensure that formation configurations are able to meet the requirements of space missions, it is important to maintain control of formation configurations. This is an urgent problem to be solved. The traditional control method for controlling formations is based on the average orbit element, and uses the assumption that the average orbit element deviation and the instantaneous orbit element deviation are approximately equal. However, the continuous control system is more difficult to achieve in engineering practice. Using a LQR (linear quadratic regulator) optimal control algorithm and SDRE (state-dependent Riccati equation) optimal control algorithm to maintain the formation flying [3,4]. Through simulation, it was found that when using the SDRE controller in the system transition process time is shorter than when the LQR controller is used, and fuel consumption is less for the SDRE controller than for the LQR controller.

  13. Dietary intervention increases n-3 long-chain polyunsaturated fatty acids in sceletal muscle membrane phospholipids of obese subjects. Inplications for insulin sensitivity

    DEFF Research Database (Denmark)

    Haugaard, Steen B; Madsbad, Sten; Høy, C-E

    2006-01-01

    OBJECTIVE: Cross-sectional studies suggest that the fatty acid (FA) composition of phospholipids in skeletal muscle cell membrane may modulate insulin sensitivity in humans. We examined the impact of a hypocaloric low-fat dietary intervention on membrane FA composition and insulin sensitivity...... that included changes in weight, fat mass, waist circumference, plasma lipids, PUFA, SFA and long-chain PUFAn-3 indicated that SFA and long-chain PUFAn-3 were independent predictors of HOMA-IR (R(2)=0.33, Pfat dietary intervention programme increased incorporation of long....... DESIGN Muscle membrane FA profiles were determined in muscle (vastus lateralis) biopsies from 21 obese subjects before and after 6 months of dietary restriction. Diet instructions emphasized low intake of FA of marine origin by recommending lean fish and prohibiting fatty fish and fish oil supplements...

  14. Dietary intervention increases n-3 long-chain polyunsaturated fatty acids in skeletal muscle membrane phospholipids of obese subjects. Implications for insulin sensitivity

    DEFF Research Database (Denmark)

    Haugaard, S.B.; Madsbad, S.; Høy, Carl-Erik

    2006-01-01

    Objective Cross-sectional studies suggest that the fatty acid (FA) composition of phospholipids in skeletal muscle cell membrane may modulate insulin sensitivity in humans. We examined the impact of a hypocaloric low-fat dietary intervention on membrane FA composition and insulin sensitivity...... analysis that included changes in weight, fat mass, waist circumference, plasma lipids, PUFA, SFA and long-chain PUFAn-3 indicated that SFA and long-chain PUFAn-3 were independent predictors of HOMA-IR (R-2 = 0.33, P fat dietary intervention programme increased....... Design Muscle membrane FA profiles were determined in muscle (vastus lateralis) biopsies from 21 obese subjects before and after 6 months of dietary restriction. Diet instructions emphasized low intake of FA of marine origin by recommending lean fish and prohibiting fatty fish and fish oil supplements...

  15. Dietary intervention increases n-3 long-chain polyunsaturated fatty acids in sceletal muscle membrane phospholipids of obese subjects. Inplications for insulin sensitivity

    DEFF Research Database (Denmark)

    Haugaard, Steen B; Madsbad, Sten; Høy, C-E

    2006-01-01

    OBJECTIVE: Cross-sectional studies suggest that the fatty acid (FA) composition of phospholipids in skeletal muscle cell membrane may modulate insulin sensitivity in humans. We examined the impact of a hypocaloric low-fat dietary intervention on membrane FA composition and insulin sensitivity....... Insulin resistance was estimated by the homeostasis model assessment (HOMA-IR). RESULTS The mean weight loss was 5.1 kg (range -15.3 to +1.3 kg). BMI decreased from 36.5 to 34.9 kg/m(2) (P=0.003). Saturated FA (SFA) decreased 11% (P=0.0001). Polyunsaturated FA (PUFA)n-6 increased 4% (P =0.003). Long...... that included changes in weight, fat mass, waist circumference, plasma lipids, PUFA, SFA and long-chain PUFAn-3 indicated that SFA and long-chain PUFAn-3 were independent predictors of HOMA-IR (R(2)=0.33, Pfat dietary intervention programme increased incorporation of long...

  16. Dietary intervention increases n-3 long-chain polyunsaturated fatty acids in sceletal muscle membrane phospholipids of obese subjects. Inplications for insulin sensitivity

    DEFF Research Database (Denmark)

    Haugaard, Steen B; Madsbad, Sten; Høy, C-E;

    2006-01-01

    OBJECTIVE: Cross-sectional studies suggest that the fatty acid (FA) composition of phospholipids in skeletal muscle cell membrane may modulate insulin sensitivity in humans. We examined the impact of a hypocaloric low-fat dietary intervention on membrane FA composition and insulin sensitivity...... that included changes in weight, fat mass, waist circumference, plasma lipids, PUFA, SFA and long-chain PUFAn-3 indicated that SFA and long-chain PUFAn-3 were independent predictors of HOMA-IR (R(2)=0.33, Pdietary intervention programme increased incorporation of long....... DESIGN Muscle membrane FA profiles were determined in muscle (vastus lateralis) biopsies from 21 obese subjects before and after 6 months of dietary restriction. Diet instructions emphasized low intake of FA of marine origin by recommending lean fish and prohibiting fatty fish and fish oil supplements...

  17. Toxicity of linear alkylbenzene sulfonate and one long-chain degradation intermediate, sulfophenyl carboxylic acid on early life-stages of seabream (sparus aurata).

    Science.gov (United States)

    Hampel, M; Blasco, J

    2002-01-01

    Seabream embryos (Sparus aurata) were exposed to various concentrations (0.05 to 10.0 mg L-1) of different homologues (C10 to C14) and a commercial mixture of linear alkylbenzene sulfonates (LAS), as well as one long-chain degradation intermediate, sulfophenyl carboxylic acid (SPC C11), to study the acute toxicity of these compounds. LAS homologues of higher chain length (C13 and C14) were proved to be more toxic than shorter species (C10, C11, and C12). LAS C13 and C14 provoked 100% lethality at concentrations of 0.1-0.25 mg L-1. On the other hand, shorter LAS homologues (chain length) did not produce any lethal effect at concentrations up to 5 mg L-1. In this work, results on the toxicity of a long-chain degradation intermediate of LAS, SPC C11, are presented. This compound did not produce any mortality at all the concentration ranges chosen.

  18. [Overexpression of four fatty acid synthase genes elevated the efficiency of long-chain polyunsaturated fatty acids biosynthesis in mammalian cells].

    Science.gov (United States)

    Zhu, Guiming; Saleh, Abdulmomen Ali Mohammed; Bahwal, Said Ahmed; Wang, Kunfu; Wang, Mingfu; Wang, Didi; Ge, Tangdong; Sun, Jie

    2014-09-01

    Three long-chain polyunsaturated fatty acids, docosahexaenoic acid (DHA, 22:6n-3), eicosapentaenoic acid (EPA, 20:5n-3) and arachidonic acid (ARA, 20:4n-6), are the most biologically active polyunsaturated fatty acids in the body. They are important in developing and maintaining the brain function, and in preventing and treating many diseases such as cardiovascular disease, inflammation and cancer. Although mammals can biosynthesize these long-chain polyunsaturated fatty acids, the efficiency is very low and dietary intake is needed to meet the requirement. In this study, a multiple-genes expression vector carrying mammalian A6/A5 fatty acid desaturases and multiple-genes expression vector carrying mammalian Δ6/Δ5 fatty acid desaturases and Δ6/Δ5 fatty acid elongases coding genes was used to transfect HEK293T cells, then the overexpression of the target genes was detected. GC-MS analysis shows that the biosynthesis efficiency and level of DHA, EPA and ARA were significantly increased in cells transfected with the multiple-genes expression vector. Particularly, DHA level in these cells was 2.5 times higher than in the control cells. This study indicates mammal possess a certain mechanism for suppression of high level of biosynthesis of long chain polyunsaturated fatty acids, and the overexpression of Δ6/Δ5 fatty acid desaturases and Δ6/Δ5 fatty acid elongases broke this suppression mechanism so that the level of DHA, EPA and ARA was significantly increased. This study also provides a basis for potential applications of this gene construct in transgenic animal to produce high level of these long-chain polyunsaturated fatty acid.

  19. Comparison of the carbon isotope composition of total organic carbon and long-chain n-alkanes from surface soils in eastern China and their significance

    Institute of Scientific and Technical Information of China (English)

    RAO ZhiGuo; JIA GuoDong; ZHU ZhaoYu; WU Yi; ZHANG JiaWu

    2008-01-01

    Surface soil samples collected over a high spatial resolution in eastern China were analyzed for carbon isotope composition (δ13C) of total organic carbon (TOC) and higher plant-derived long-chain n-alkanes,with the latter reported as weighted mean values. The two sets of δ13C values are significantly correlated and show similar trends in spatial variation. The spatial distribution of δ13C shows less negative values in the mid-latitudes between 31°N and 40°N and more negative ones at higher and lower latitudes. This is consistent with previously reported carbon isotope data from surface soil phytoliths in the same region and suggests that the mid-latitude area provides relatively favorable growing conditions for C4 plants. Furthermore, δ13C values of both TOC and long-chain n-alkanes from 12 surface soil samples collected from a small grassland in north China displayed similar carbon isotope values and the difference between paired δ13C of a soil samples remains relatively constant. Our data demonstrate that in eastern China, soil δ13C composition of both TOC and long-chain n-alkanes is effective indicators of Ca/C4 ratios of the prevailing vegetation. This work suggests that -22‰ and -32‰ are good estimated end members for the weighted mean δ13C values of long-chain n-alkanes (C27, C29 and C31 n-alkanes) from soils under dominant C4 or C3 vegetation, allowing us to reconstruct paleovegetation trends.

  20. Fatty acid profile and composition of milk protein fraction in dairy cows fed long-chain unsaturated fatty acids during the transition period

    Directory of Open Access Journals (Sweden)

    Francisco Palma Rennó

    2013-11-01

    Full Text Available The objective of this study was to evaluate the utilization of different sources of unsaturated long-chain fatty acids in diets for dairy cows during the transition period and early lactation on the milk fatty acid profile and composition of the protein fraction. Thirty-six Holstein cows were divided into three groups, fed the following diets: control (C; soybean oil (SO; and calcium salts of long-chain unsaturated fatty acids (CS. The milk samples utilized for analysis were obtained weekly from parturition to twelve weeks of lactation; each one of the samples originated from two daily milkings. Milk composition and total nitrogen, non-protein nitrogen and non-casein nitrogen levels were analyzed. The cows receiving the diet with calcium salts had lower concentrations of non-protein nitrogen (%CP in milk compared with the animals fed the diet with soybean oil. There was a decrease in concentration of medium-chain fatty acids C12-C16, and a concomitant increase in concentrations of long-chain fatty acids >C18 in milk fat for the animals fed the diets CS and SO when compared with diet C. Soybean oil and CS diets increased milk-fat concentrations of the acids C18: 1 trans-11, C18: 2 cis-9, trans-11 and C18: 2 trans-10 cis-12 in relation to diet C. The utilization of sources of long-chain fatty acids in the diet of dairy cows increases the biological value of milk in early lactation due to higher concentrations of specific fatty acids such as CLA C18: 2cis-9, trans-11.

  1. Long-chain SFA at the sn-1, 3 positions of TAG reduce body fat deposition in C57BL/6 mice.

    Science.gov (United States)

    Gouk, Shiou Wah; Cheng, Sit Foon; Mok, Josephine Shiueh Lian; Ong, Augustine Soon Hock; Chuah, Cheng Hock

    2013-12-14

    The present study aimed to determine the effect of positional distribution of long-chain SFA in TAG, especially at the sn-1, 3 positions, on fat deposition using the C57BL/6 mouse model. Throughout the 15 weeks of the study, mice were fed with diets fortified with palm olein (POo), chemically interesterified POo (IPOo) and soyabean oil (SOY). Mice receiving the SOY-enriched diet gained significantly higher amounts of subcutaneous fat (P= 0·011) and total fat (P= 0·013) compared with the POo group, despite similar body mass gain being recorded. During normalisation with food consumption to obtain the fat:feed ratio, mice fed with the POo-enriched diet exhibited significantly lower visceral (P= 0·044), subcutaneous (P= 0·006) and total (P= 0·003) fat:feed than those fed with the SOY-enriched diet. It is noteworthy that mice fed with the IPOo-enriched diet gained 14·3 % more fat per food consumed when compared with the POo group (P= 0·013), despite their identical total fatty acid compositions. This was mainly attributed to the higher content of long-chain SFA at the sn-1, 3 positions of TAG in POo, which results in delayed absorption after deacylation as evidenced by the higher amounts of long-chain SFA excreted in the faeces of mice fed with the POo-enriched diet. Negative correlations were found between the subcutaneous, visceral as well as total fat accretion per food consumption and the total SFA content at the sn-1, 3 positions, while no relationships were found for MUFA and PUFA. The present results show that the positional distribution of long-chain SFA exerts a more profound effect on body fat accretion than the total SFA content.

  2. Cancer Risk and Eicosanoid Production: Interaction between the Protective Effect of Long Chain Omega-3 Polyunsaturated Fatty Acid Intake and Genotype

    OpenAIRE

    Georgia Lenihan-Geels; Karen S. Bishop; Ferguson, Lynnette R

    2016-01-01

    Dietary inclusion of fish and fish supplements as a means to improve cancer prognosis and prevent tumour growth is largely controversial. Long chain omega-3 polyunsaturated fatty acids (LCn-3 PUFA), eicosapentaenoic acid and docosahexaenoic acid, may modulate the production of inflammatory eicosanoids, thereby influencing local inflammatory status, which is important in cancer development. Although in vitro studies have demonstrated inhibition of tumour cell growth and proliferation by LCn-3 ...

  3. Real-Time Tracking of BODIPY-C12 Long-Chain Fatty Acid in Human Term Placenta Reveals Unique Lipid Dynamics in Cytotrophoblast Cells.

    Directory of Open Access Journals (Sweden)

    Kevin Kolahi

    Full Text Available While the human placenta must provide selected long-chain fatty acids to support the developing fetal brain, little is known about the mechanisms underlying the transport process. We tracked the movement of the fluorescently labeled long-chain fatty acid analogue, BODIPY-C12, across the cell layers of living explants of human term placenta. Although all layers took up the fatty acid, rapid esterification of long-chain fatty acids and incorporation into lipid droplets was exclusive to the inner layer cytotrophoblast cells rather than the expected outer syncytiotrophoblast layer. Cytotrophoblast is a progenitor cell layer previously relegated to a repair role. As isolated cytotrophoblasts differentiated into syncytialized cells in culture, they weakened their lipid processing capacity. Syncytializing cells suppress previously active genes that regulate fatty-acid uptake (SLC27A2/FATP2, FABP4, ACSL5 and lipid metabolism (GPAT3, LPCAT3. We speculate that cytotrophoblast performs a previously unrecognized role in regulating placental fatty acid uptake and metabolism.

  4. Short communication: Influence of long-chain inulin and Lactobacillus paracasei subspecies paracasei on the sensory profile and acceptance of a traditional yogurt.

    Science.gov (United States)

    Pimentel, T C; Cruz, A G; Prudencio, S H

    2013-10-01

    The objectives of this study were to evaluate the influence of the addition of long-chain inulin as a fat replacer and prebiotic agent (20g/L) and (or) probiotic Lactobacillus paracasei ssp. paracasei on the sensory profile and acceptance of yogurts, and to assess the influence of descriptive attributes on the sensory acceptance of the products. The addition of inulin to low-fat yogurt improved its brightness and firmness, which was similar to the full-fat yogurt. However, the use of long-chain inulin increased the separation of serum and no influence on creaminess was observed. Regarding the product's acceptability, the low-fat yogurt with added inulin presented similar acceptance compared with the full-fat yogurt. The addition of Lb. paracasei ssp. paracasei did not affect the sensory profile and acceptance of the low-fat yogurt. Using external preference mapping, it was possible to verify that the sensory acceptance was driven positively by the sweetness and creaminess and negatively driven by firmness (appearance and texture) and homogeneity (appearance). It was possible to formulate low-fat yogurts with added probiotics that presented similar sensory characteristics to those of full-fat yogurts, and this was due to the addition of the long-chain inulin as a fat replacer.

  5. 光引发长链正构烷烃多氯代反应机理与动力学%Mechanism and Kinetics of Polychlorination of Long Chain n-Alkanes by Photo-Initiation

    Institute of Scientific and Technical Information of China (English)

    易玲敏; 詹晓力; 陈丰秋

    2004-01-01

    Based on the mechanism analysis of the polychlorination of long chain n-alkanes by photo-initiation,a kinetic model was developed. The model parameters were obtained by the method of non-linear fitting. The influences of luminous intensity and concentration of molecular chlorine on the rate of polychlorination are demonstrated by the model. If the luminous intensity is adequate, the polychlorination rate of n-alkane is only controlled by the flow rate of molecular chlorine in a wide range of temperature, and the changes of temperature and luminous intensity have less effect on the reaction rate. In addition, the predictions of chlorine content of polychlorinated n-alkane calculated with the model agree very well with experimental results.

  6. Microbial community adaptation influences long-chain fatty acid conversion during anaerobic codigestion of fats, oils, and grease with municipal sludge.

    Science.gov (United States)

    Ziels, Ryan M; Karlsson, Anna; Beck, David A C; Ejlertsson, Jörgen; Yekta, Sepehr Shakeri; Bjorn, Annika; Stensel, H David; Svensson, Bo H

    2016-10-15

    Codigesting fats, oils, and greases with municipal wastewater sludge can greatly improve biomethane recovery at wastewater treatment facilities. Process loading rates of fats, oils, and greases have been previously tested with little knowledge of the digester microbial community structure, and high transient fat loadings have led to long chain fatty acid (LCFA) accumulation and digester upsets. This study utilized recently-developed quantitative PCR assays for syntrophic LCFA-degrading bacteria along with 16S amplicon sequencing to relate changes in microbial community structure to LCFA accumulation during transient loading increases to an anaerobic codigester receiving waste restaurant oil and municipal wastewater sludge. The 16S rRNA gene concentration of the syntrophic β-oxidizing genus Syntrophomonas increased to ∼15% of the Bacteria community in the codigester, but stayed below 3% in the control digester that was fed only wastewater sludge. Methanosaeta and Methanospirillum were the dominant methanogenic genera enriched in the codigester, and together comprised over 80% of the Archaea community by the end of the experimental period. Constrained ordination showed that changes in the codigester Bacteria and Archaea community structures were related to measures of digester performance. Notably, the effluent LCFA concentration in the codigester was positively correlated to the specific loading rate of waste oil normalized to the Syntrophomonas 16S rRNA concentration. Specific loading rates of 0-1.5 × 10(-12) g VS oil/16S gene copies-day resulted in LCFA concentrations below 30 mg/g TS, whereas LCFA accumulated up to 104 mg/g TS at higher transient loading rates. Based on the community-dependent loading limitations found, enhanced biomethane production from high loadings of fats, oils and greases can be achieved by promoting a higher biomass of slow-growing syntrophic consortia, such as with longer digester solids retention times. This work also

  7. Efficient stereoscopic contents file format on the basis of ISO base media file format

    Science.gov (United States)

    Kim, Kyuheon; Lee, Jangwon; Suh, Doug Young; Park, Gwang Hoon

    2009-02-01

    A lot of 3D contents haven been widely used for multimedia services, however, real 3D video contents have been adopted for a limited applications such as a specially designed 3D cinema. This is because of the difficulty of capturing real 3D video contents and the limitation of display devices available in a market. However, diverse types of display devices for stereoscopic video contents for real 3D video contents have been recently released in a market. Especially, a mobile phone with a stereoscopic camera has been released in a market, which provides a user as a consumer to have more realistic experiences without glasses, and also, as a content creator to take stereoscopic images or record the stereoscopic video contents. However, a user can only store and display these acquired stereoscopic contents with his/her own devices due to the non-existence of a common file format for these contents. This limitation causes a user not share his/her contents with any other users, which makes it difficult the relevant market to stereoscopic contents is getting expanded. Therefore, this paper proposes the common file format on the basis of ISO base media file format for stereoscopic contents, which enables users to store and exchange pure stereoscopic contents. This technology is also currently under development for an international standard of MPEG as being called as a stereoscopic video application format.

  8. Effects of calcium salts of long-chain fatty acids and rumen-protected methionine on plasma concentrations of ghrelin, glucagon-like peptide-1 (7 to 36) amide and pancreatic hormones in lactating cows.

    Science.gov (United States)

    Fukumori, R; Sugino, T; Shingu, H; Moriya, N; Hasegawa, Y; Kojima, M; Kangawa, K; Obitsu, T; Kushibiki, S; Taniguchi, K

    2012-02-01

    Our objective was to determine the effects of calcium salts of long-chain fatty acids (CLFAs) and rumen-protected methionine (RPM) on plasma concentrations of ghrelin, glucagon-like peptide-1 (7 to 36) amide, and pancreatic hormones in lactating cows. Four Holstein cows in midlactation were used in a 4 by 4 Latin square experiment in each 2-wk period. Cows were fed corn silage-based diets with supplements of CLFAs (1.5% added on dry matter basis), RPM (20 g/d), CLFAs plus RPM, and without supplement. Jugular blood samples were taken from 1 h before to 2 h after morning feeding at 10-min intervals on day 12 of each period. CLFAs decreased dry matter intake, but RPM did not affect dry matter intake. Both supplements of CLFAs and RPM did not affect metabolizable energy intake and milk yield and composition. Plasma concentrations of NEFAs, triglyceride (TG), and total cholesterol (T-Cho) were increased with CLFAs alone, but increases of plasma concentrations of TG and T-Cho were moderated by CLFAs plus RPM. Calcium salts of long-chain fatty acids increased plasma ghrelin concentration, and the ghrelin concentration with CLFAs plus RPM was the highest among the treatments. Plasma concentrations of glucagon-like peptide-1, glucagon, and insulin were decreased with CLFAs, whereas adding RPM moderated the decrease of plasma glucagon concentration by CLFAs. These results indicate that the addition of methionine to cows given CLFAs increases plasma concentrations of ghrelin and glucagon associated with the decrease in plasma concentrations of TG and T-Cho.

  9. Preparation of medium/long-chain structured triglycerides by sodium methoxide catalyzed transesterification%甲醇钠催化酯交换制备中/长链结构甘三酯

    Institute of Scientific and Technical Information of China (English)

    彭亮; 宋志华; 腾传震; 范时根; 王一茜; 王兴国

    2011-01-01

    以中碳链链甘三醋和大豆油为原料,以甲醉钠为催化剂催化醋交换反应合成中/长链结构甘三酯.研究了反应温度、反应时间和甲醇钠添加童3个因素对酯交换反应的影响.结果表明,反应温度50℃,反应时间20min,甲醉钠添加童(以油质童计)0.3%时酯交换反应达到最佳状态,产物中中/长链结构甘三酯的含童为75.29%.通过正交极差分析得出,甲醉钠添加量是影响酯交换反应的主要因素,其次是反应温度,反应时间的影响较小.%The soybean oil and medium -chain triglycerides were selected as the raw materials to prepare the medium / long - chain structured triglycerides. The effects of the reaction temperature, reaction time and catalyst (sodium methoxide)dosage on the degree of transesterification were researched. The results showed that the optimal conditions were as follows: reaction temperature 50 ℃, reaction time 20 min,catalyst dosage 0.3% ( based on the mass of oil). Under the optimal conditions, the yield of medium / long -chain structured triglycerides was 75.29%. In addition, the orthogonal range analysis showed that the amount of catalyst was the most important factor for the degree of transesterification, followed by the reaction temperature, reaction time.

  10. Vision-based formation control of mobile robots

    Institute of Scientific and Technical Information of China (English)

    Shicai LIU; Dalong TAN; Guangjun LIU

    2005-01-01

    In this paper,a formation control algorithm and an obstacle avoidance control algorithm for mobile robots are developed based on a relative motion sensory system such as a pan/tilt camera vision system,without the need for global sensing and communication between robots.This is achieved by employing the velocity variation,instead of actual velocities,as the control inputs.Simulation and experimental results have demonstrated the effectiveness of the proposed control methods.

  11. Acid-base metabolism: implications for kidney stones formation.

    Science.gov (United States)

    Hess, Bernhard

    2006-04-01

    The physiology and pathophysiology of renal H+ ion excretion and urinary buffer systems are reviewed. The main focus is on the two major conditions related to acid-base metabolism that cause kidney stone formation, i.e., distal renal tubular acidosis (dRTA) and abnormally low urine pH with subsequent uric acid stone formation. Both the entities can be seen on the background of disturbances of the major urinary buffer system, NH3+ NH4+. On the one hand, reduced distal tubular secretion of H+ ions results in an abnormally high urinary pH and either incomplete or complete dRTA. On the other hand, reduced production/availability of NH4+ is the cause of an abnormally low urinary pH, which predisposes to uric acid stone formation. Most recent research indicates that the latter abnormality may be a renal manifestation of the increasingly prevalent metabolic syndrome. Despite opposite deviations from normal urinary pH values, both the dRTA and uric acid stone formation due to low urinary pH require the same treatment, i.e., alkali. In the dRTA, alkali is needed for improving the body's buffer capacity, whereas the goal of alkali treatment in uric acid stone formers is to increase the urinary pH to 6.2-6.8 in order to minimize uric acid crystallization.

  12. Elliptical formation control based on relative orbit elements

    Institute of Scientific and Technical Information of China (English)

    Yin Jianfeng; Han Chao

    2013-01-01

    A new set of relative orbit elements (ROEs) is used to derive a new elliptical formation flying model. In-plane and out-of-plane motions can be completely decoupled, which benefits ellip-tical formation design. The inverse transformation of the state transition matrix is derived to study the relative orbit control strategy. Impulsive feedback control laws are developed for both in-plane and out-of-plane relative motions. Control of in-plane and out-of-plane relative motions can be completely decoupled using the ROE-based feedback control law. A tangential impulsive control method is proposed to study the relationship of fuel consumption and maneuvering positions. An optimal analytical along-track impulsive control strategy is then derived. Different typical orbit maneuvers, including formation establishment, reconfiguration, long-distance maneuvers, and for-mation keeping, are taken as examples to demonstrate the performance of the proposed control laws. The effects of relative measurement errors are also considered to validate the high accuracy of the proposed control method.

  13. A tentative classification of paleoweathering formations based on geomorphological criteria

    Science.gov (United States)

    Battiau-Queney, Yvonne

    1996-05-01

    A geomorphological classification is proposed that emphasizes the usefulness of paleoweathering records in any reconstruction of past landscapes. Four main paleoweathering records are recognized: 1. Paleoweathering formations buried beneath a sedimentary or volcanic cover. Most of them are saprolites, sometimes with preserved overlying soils. Ages range from Archean to late Cenozoic times; 2. Paleoweathering formations trapped in karst: some of them have buried pre-existent karst landforms, others have developed simultaneously with the subjacent karst; 3. Relict paleoweathering formations: although inherited, they belong to the present landscape. Some of them are indurated (duricrusts, silcretes, ferricretes,…); others are not and owe their preservation to a stable morphotectonic environment; 4. Polyphased weathering mantles: weathering has taken place in changing geochemical conditions. After examples of each type are provided, the paper considers the relations between chemical weathering and landform development. The climatic significance of paleoweathering formations is discussed. Some remote morphogenic systems have no present equivalent. It is doubtful that chemical weathering alone might lead to widespread planation surfaces. Moreover, classical theories based on sea-level and rivers as the main factors of erosion are not really adequate to explain the observed landscapes.

  14. Supplementation with long chain polyunsaturated fatty acids (LCPUFA) to breastfeeding mothers for improving child growth and development.

    Science.gov (United States)

    Delgado-Noguera, Mario F; Calvache, Jose Andres; Bonfill Cosp, Xavier; Kotanidou, Eleni P; Galli-Tsinopoulou, Assimina

    2015-07-14

    Long chain polyunsaturated fatty acids (LCPUFA), especially docosahexaenoic acid (DHA), are the most abundant fatty acids in the brain and are necessary for growth and maturation of an infant's brain and retina. LCPUFAs are named "essential" because they cannot be synthesised efficiently by the human body and come from maternal diet. It remains controversial whether LCPUFA supplementation to breastfeeding mothers is beneficial for the development of their infants. To assess the effectiveness and safety of supplementation with LCPUFA in breastfeeding mothers in the cognitive and physical development of their infants as well as safety for the mother and infant. We searched the Cochrane Pregnancy and Childbirth Group's Trials Register (6 August 2014), CENTRAL (Cochrane Library 2014, Issue 8), PubMed (1966 to August 2014), EMBASE (1974 to August 2014), LILACS (1982 to August 2014), Google Scholar (August 2014) and reference lists of published narrative and systematic reviews. Randomised controlled trials or cluster-randomised controlled trials evaluating the effects of LCPUFA supplementation on breastfeeding mothers (including the pregnancy period) and their infants. Two review authors independently assessed eligibility and trial quality, performed data extraction and evaluated data accuracy. We included eight randomised controlled trials involving 1567 women. All the studies were performed in high-income countries. The longest follow-up was seven years.We report the results from the longest follow-up time point from included studies. Overall, there was moderate quality evidence as assessed using the GRADE approach from these studies for the following outcomes measured beyond 24 months age of children: language development and child weight. There was low-quality evidence for the outcomes: Intelligence or solving problems ability, psychomotor development, child attention, and child visual acuity.We found no significant difference in children's neurodevelopment at long

  15. Comparison of Traditional Versus Evidence-Based Journal Club Formats

    Directory of Open Access Journals (Sweden)

    Kathleen Packard, PharmD, MS, BCPS

    2011-01-01

    Full Text Available AbstractPurpose: The objective of the study was to compare a traditionally structured journal club with an evidence based structured journal club during an advanced clinical pharmacy rotation and to determine the best utilization that aligns with recent changes to the pharmacy school accreditation standards.Methods: The study included 21 students who completed journal club utilizing the traditional journal club format and 24 students who utilized an evidence based journal club format. Background characteristics, student reported beliefs, and mean critical evaluation skills scores were evaluated and compared in each group.Results: There were no statistically significant differences between the two cohorts in mean overall percentage grade for the activity. Students in the traditional cohort received significantly higher grades for the Study Analysis and Critique section (90.97 + 12.18 versus 81.25 + 11.18, P=0.01 as well as for the Preparedness section (96.11 + 8.03 versus 85.0 + 17.13, P=0.002. Students in the evidence based cohort received statistically superior grades for the Presentation Skills section (96.43 + 6.39 versus 82.47 + 14.12, P=0.0004.Conclusion: An evidence based journal club is a reasonable and effective alternative to the traditionally structured journal club when the primary objective is to assist students in understanding evidence based concepts and to apply current literature to clinical practice.

  16. Fabric-based alkaline direct formate microfluidic fuel cells.

    Science.gov (United States)

    Domalaon, Kryls; Tang, Catherine; Mendez, Alex; Bernal, Franky; Purohit, Krutarth; Pham, Linda; Haan, John; Gomez, Frank A

    2017-01-12

    Fabric-based microfluidic fuel cells (MFCs) serve as a novel, cost-efficient alternative to traditional FCs and batteries, since fluids naturally travel across fabric via capillary action, eliminating the need for an external pump and lowering production and operation costs. Building on previous research with Y-shaped paper-based MFCs, fabric-based MFCs mitigate fragility and durability issues caused by long periods of fuel immersion. In this study, we describe a microfluidic fabric-based direct formate fuel cell, with 5 M potassium formate and 30% hydrogen peroxide as the anode fuel and cathode oxidant, respectively. Using a two-strip, stacked design, the optimized parameters include the type of encasement, the barrier, and the fabric type. Surface contact of the fabric and laminate sheet expedited flow and respective chemical reactions. The maximum current (22.83 mA/cm(2) ) and power (4.40 mW/cm(2) ) densities achieved with a 65% cotton/35% polyester blend material are a respective 8.7% and 32% higher than previous studies with Y-shaped paper-based MFCs. In series configuration, the MFCs generate sufficient energy to power a handheld calculator, a thermometer, and a spectrum of light-emitting diodes.

  17. Long-chain omega-3 fatty acids, fibrates and niacin as therapeutic options in the treatment of hypertriglyceridemia: a review of the literature.

    Science.gov (United States)

    Ito, Matthew K

    2015-10-01

    Hypertriglyceridemia affects approximately 33% of the US population. Elevated triglyceride levels are independently associated with cardiovascular disease (CVD) risk, and severe hypertriglyceridemia is a risk factor for acute pancreatitis. Guidelines for the management of severe hypertriglyceridemia (≥5.6 mmol/L [≥500 mg/dL]) recommend immediate use of triglyceride-lowering agents; however, statins remain the first line of therapy for the management of mild to moderate hypertriglyceridemia (1.7-5.6 mmol/L [150-499 mg/dL]). Statins primarily target elevated low-density lipoprotein cholesterol levels, but have also been shown to reduce mean triglyceride levels by up to 18% (or 43% in patients with triglyceride levels≥3.1 mmol/L [≥273 mg/dL]). However, individuals with hypertriglyceridemia may need additional reduction in triglyceride-rich lipoproteins and remnant particles to further reduce residual CVD risk. A number of guidelines recommend the addition of fibrates, niacin, or long-chain omega-3 fatty acids if elevated triglyceride or non-high-density lipoprotein cholesterol levels persist despite the use of high-intensity statin therapy. This review evaluates the impact of fibrates, niacin, and long-chain omega-3 fatty acids on lipid profiles and cardiovascular outcomes in patients with hypertriglyceridemia. It also assesses the adverse effects and drug-drug interactions associated with these triglyceride-lowering agents, because although they have all been shown to effectively reduce triglyceride levels in patients with hypertriglyceridemia, they differ with regard to their associated benefit-risk profiles. Long-chain omega-3 fatty acids may be a well-tolerated and effective alternative to fibrates and niacin, yet further large-scale clinical studies are required to evaluate their effects on cardiovascular outcomes and CVD risk reduction in patients with hypertriglyceridemia. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  18. The impact of motivation on race-based impression formation.

    Science.gov (United States)

    Li, Tianyi; Cardenas-Iniguez, Carlos; Correll, Joshua; Cloutier, Jasmin

    2016-01-01

    Affective biases toward racial out-group members, characterized by White perceivers' negative evaluations of Black individuals, prevail in U.S. culture. Such affective associations have been found to guide race-based impression formation. Accordingly, individuals may strive to resolve inconsistencies when perceiving targets violating their expectations. The current study focuses on the impact of evaluative incongruence on the activity of the dorsomedial prefrontal cortex (dmPFC) - a brain region previously shown to support impression formation. When asking participants to form impressions of positively and negatively evaluated Black and White individuals, we found preferential dmPFC activity in response to individuals paired with information that violates race-based affective associations. Importantly, individual differences in internal motivation to respond without prejudice (IMS) were found to shape the extent to which dmPFC activity indexes the interactive effects of race and affective associations during impression formation. Specifically, preferential dmPFC activity in response to evaluatively incongruent targets (i.e., Black-positive & White-negative) was present among participants with lower, but not those with higher, levels of IMS. Implications and future directions are discussed in the context of dmPFC involvement in social cognition.

  19. Formation of rarefaction waves in origami-based metamaterials.

    Science.gov (United States)

    Yasuda, H; Chong, C; Charalampidis, E G; Kevrekidis, P G; Yang, J

    2016-04-01

    We investigate the nonlinear wave dynamics of origami-based metamaterials composed of Tachi-Miura polyhedron (TMP) unit cells. These cells exhibit strain softening behavior under compression, which can be tuned by modifying their geometrical configurations or initial folded conditions. We assemble these TMP cells into a cluster of origami-based metamaterials, and we theoretically model and numerically analyze their wave transmission mechanism under external impact. Numerical simulations show that origami-based metamaterials can provide a prototypical platform for the formation of nonlinear coherent structures in the form of rarefaction waves, which feature a tensile wavefront upon the application of compression to the system. We also demonstrate the existence of numerically exact traveling rarefaction waves in an effective lumped-mass model. Origami-based metamaterials can be highly useful for mitigating shock waves, potentially enabling a wide variety of engineering applications.

  20. Formation of rarefaction waves in origami-based metamaterials

    Science.gov (United States)

    Yasuda, H.; Chong, C.; Charalampidis, E. G.; Kevrekidis, P. G.; Yang, J.

    2016-04-01

    We investigate the nonlinear wave dynamics of origami-based metamaterials composed of Tachi-Miura polyhedron (TMP) unit cells. These cells exhibit strain softening behavior under compression, which can be tuned by modifying their geometrical configurations or initial folded conditions. We assemble these TMP cells into a cluster of origami-based metamaterials, and we theoretically model and numerically analyze their wave transmission mechanism under external impact. Numerical simulations show that origami-based metamaterials can provide a prototypical platform for the formation of nonlinear coherent structures in the form of rarefaction waves, which feature a tensile wavefront upon the application of compression to the system. We also demonstrate the existence of numerically exact traveling rarefaction waves in an effective lumped-mass model. Origami-based metamaterials can be highly useful for mitigating shock waves, potentially enabling a wide variety of engineering applications.

  1. Original Research: Effect of various dietary fats on fatty acid profile in duck liver: Efficient conversion of short-chain to long-chain omega-3 fatty acids.

    Science.gov (United States)

    Chen, Xi; Du, Xue; Shen, Jianliang; Lu, Lizhi; Wang, Weiqun

    2017-01-01

    Omega-3 fatty acids, especially long-chain omega-3 fatty acids, have been associated with potential health benefits for chronic disease prevention. Our previous studies found that dietary omega-3 fatty acids could accumulate in the meat and eggs in a duck model. This study was to reveal the effects of various dietary fats on fatty acid profile and conversion of omega-3 fatty acids in duck liver. Female Shan Partridge Ducks were randomly assigned to five dietary treatments, each consisting of 6 replicates of 30 birds. The experimental diets substituted the basal diet by 2% of flaxseed oil, rapeseed oil, beef tallow, or fish oil, respectively. In addition, a dose response study was further conducted for flaxseed and fish oil diets at 0.5%, 1%, and 2%, respectively. At the end of the five-week treatment, fatty acids were extracted from the liver samples and analyzed by GC-FID. As expected, the total omega-3 fatty acids and the ratio of total omega-3/omega-6 significantly increased in both flaxseed and fish oil groups when compared with the control diet. No significant change of total saturated fatty acids or omega-3 fatty acids was found in both rapeseed and beef tallow groups. The dose response study further indicated that 59-81% of the short-chain omega-3 ALA in flaxseed oil-fed group was efficiently converted to long-chain DHA in the duck liver, whereas 1% of dietary flaxseed oil could produce an equivalent level of DHA as 0.5% of dietary fish oil. The more omega-3 fatty acids, the less omega-6 fatty acids in the duck liver. Taken together, this study showed the fatty acid profiling in the duck liver after various dietary fat consumption, provided insight into a dose response change of omega-3 fatty acids, indicated an efficient conversion of short- to long-chain omega-3 fatty acid, and suggested alternative long-chain omega-3 fatty acid-enriched duck products for human health benefits.

  2. THE EFFECT OF SULPHURIC ACID CONCENTRATION ON SOLVENT EXTRACTION OF ReO4 - BY THE LONG-CHAIN ALIPHATIC TERTIARY AMINES AND ALCOHOLS

    Directory of Open Access Journals (Sweden)

    Aleksander G. Kasikov

    2010-06-01

    Full Text Available The effect of sulphuric acid concentration on solvent extraction of ReO4- by the long-chain aliphatic tertiary amines and alcohols in a wide range of H2SO4 concentrations in initial solutions is discussed. It has been established that the influence of the sulphuric acid concentration on rhenium solvent extraction is largely due to the extraction process mechanism. In the case of the anion-exchange mechanism, ReO4- is best extracted from weakly acidic solutions, whereas when the hydrate-solvate mechanism takes place – from solutions containing 4-7 mole/l H2SO4.

  3. Transient overshoot extensional rheology of long-chain branched polyethylenes: Experimental and numerical comparisons between filament stretching and cross-slot flow

    DEFF Research Database (Denmark)

    Hoyle, D.M.; Huang, Qian; Auhl, D.

    2013-01-01

    This work analyses the high-strain extensional behavior of long-chain branched polyethylenes, employing two novel extensional rheometer devices, the filament stretching rheometer and the cross-slot extensional rheometer. The filament stretching rheometer uses an active feedback loop to control...... the outflow centre line (named W-cusps). Using constitutive modeling of the observed transient overshoot in extension seen in the filament stretching rheometer and using finite element simulations we show that the overshoot explains the W-cusps seen in the cross-slot extensional rheometer, further confirming...

  4. Different effects of short- and long-chained fructans on large intestinal physiology and carcinogen-induced aberrant crypt foci in rats

    DEFF Research Database (Denmark)

    Poulsen, Morten; Molck, Anne-Marie; Jacobsen, Bodil Lund

    2002-01-01

    -type fructan on 1,2-dimethylhydrazine dihydrochloride-induced aberrant crypt foci (ACF) in the rat colon. In addition, the present study investigated the influence of chain length, dietary level (5% or 15%), and duration of feeding (5 or 10 wk) on the following intestinal parameters supposed to be involved......Inulin-type fructans, which are nondigestible carbohydrates, have been shown to modulate the number of induced preneoplastic lesions in the colon as well as the colonic microflora in laboratory animals. The present study was designed to investigate the effect of a short- and long-chained inulin...

  5. Characterization of Oilseed Lipids from “DHA-Producing Camelina sativa”: A New Transformed Land Plant Containing Long-Chain Omega-3 Oils

    OpenAIRE

    Maged P. Mansour; Pushkar Shrestha; Srinivas Belide; Petrie, James R.; Peter D Nichols; Surinder P. Singh

    2014-01-01

    New and sustainable sources of long-chain (LC, ≥C20) omega-3 oils containing DHA (docosahexaenoic acid, 22:6ω3) are required to meet increasing demands. The lipid content of the oilseed of a novel transgenic, DHA-producing land plant, Camelina sativa, containing microalgal genes able to produce LC omega-3 oils, contained 36% lipid by weight with triacylglycerols (TAG) as the major lipid class in hexane extracts (96% of total lipid). Subsequent chloroform-methanol (CM) extraction recovered fur...

  6. Uptake of long chain fatty acids is regulated by dynamic interaction of FAT/CD36 with cholesterol/sphingolipid enriched microdomains (lipid rafts

    Directory of Open Access Journals (Sweden)

    Herrmann Thomas

    2008-08-01

    Full Text Available Abstract Background Mechanisms of long chain fatty acid uptake across the plasma membrane are important targets in treatment of many human diseases like obesity or hepatic steatosis. Long chain fatty acid translocation is achieved by a concert of co-existing mechanisms. These lipids can passively diffuse, but certain membrane proteins can also accelerate the transport. However, we now can provide further evidence that not only proteins but also lipid microdomains play an important part in the regulation of the facilitated uptake process. Methods Dynamic association of FAT/CD36 a candidate fatty acid transporter with lipid rafts was analysed by isolation of detergent resistant membranes (DRMs and by clustering of lipid rafts with antibodies on living cells. Lipid raft integrity was modulated by cholesterol depletion using methyl-β-cyclodextrin and sphingolipid depletion using myriocin and sphingomyelinase. Functional analyses were performed using an [3H]-oleate uptake assay. Results Overexpression of FAT/CD36 and FATP4 increased long chain fatty acid uptake. The uptake of long chain fatty acids was cholesterol and sphingolipid dependent. Floating experiments showed that there are two pools of FAT/CD36, one found in DRMs and another outside of these domains. FAT/CD36 co-localized with the lipid raft marker PLAP in antibody-clustered domains at the plasma membrane and segregated away from the non-raft marker GFP-TMD. Antibody cross-linking increased DRM association of FAT/CD36 and accelerated the overall fatty acid uptake in a cholesterol dependent manner. Another candidate transporter, FATP4, was neither present in DRMs nor co-localized with FAT/CD36 at the plasma membrane. Conclusion Our observations suggest the existence of two pools of FAT/CD36 within cellular membranes. As increased raft association of FAT/CD36 leads to an increased fatty acid uptake, dynamic association of FAT/CD36 with lipid rafts might regulate the process. There is no

  7. Readily Available Sources of Long-Chain Omega-3 Oils: Is Farmed Australian Seafood a Better Source of the Good Oil than Wild-Caught Seafood?

    OpenAIRE

    Peter D Nichols; Brett Glencross; Petrie, James R.; Surinder P. Singh

    2014-01-01

    Seafood consumption enhances intake of omega-3 long-chain (≥C20) polyunsaturated fatty acids (termed LC omega-3 oils). Humans biosynthesize only small amounts of LC-omega-3, so they are considered semi-essential nutrients in our diet. Concern has been raised that farmed fish now contain lower LC omega-3 content than wild-harvested seafood due to the use of oil blending in diets fed to farmed fish. However, we observed that two major Australian farmed finfish species, Atlantic salmon (Salmo ...

  8. Silica-gel-supported Phosphorus Pentoxide: a Simple and Efficient Solid-supported Reagent for Esterification of Long-Chain Carboxylic Acids and Their Antimicrobial Screening

    Institute of Scientific and Technical Information of China (English)

    RAUF Abdul; GANGAL Saloni; SHARMA Shweta

    2008-01-01

    A silica-gel-supported heterogeneous phosphorus pentoxide reagent has been developed for the esterification of various long-chain carboxylic acids with aromatic alcohols. The reactions occurred under relatively mild conditions and afforded the desired products in good yields. All the compounds 3a-3x were screened for antibacterial and antifungal activity, which showed good activity against Gram positive and Gram negative bacteria and also good results against almost all fungal strains. The structures of the synthesized compounds were elucidated by IR, 1H NMR,13C NMR, mass spectroscopic techniques and elemental analysis.

  9. The change in cholesterol content of long chain fatty acid egg during processing and its influence to the Rattus norvegicus L. blood cholesterol content

    OpenAIRE

    Dini Hardini; Tri Yuwanta; Zuprizal (Zuprizal); Supadmo (Supadmo)

    2006-01-01

    Egg containing long chain unsaturated fatty acids is a functional food, because it is highly nutritious and could prevent diseases, (omega 3 and 6) such as coronary heart attack. The research was aimed to measure the change of egg cholesterol content during proceesing: frying, oiless frying and boiling and their influence to the blood plasma cholesterol of normal and hypercholesterolemia rat. Seven treatments of egg yolk were frying at 170°C for 3 min (welldone = GM), and 1min (half medium f...

  10. Long-Chain Acetylenic Ketones from the Micronesian Sponge Haliclona sp. Importance of the 1-yn-3-ol Group for Antitumor Activity

    Directory of Open Access Journals (Sweden)

    Guang-Xiong Zhou

    2003-11-01

    Full Text Available Abstract: Two new long-chain C33 polyacetylenic compounds, halicynones A and B were isolated from the marine sponge Haliclona sp. along with known analogs. The known compound pellynol A possessing a 1-yn-3-ol terminus, exhibited strong antitumor activity against the human colon tumor cell line HCT-116 (IC50 0.026 μg/mL, however, the corresponding 1-yn-3-one, halicynone A, was inactive, which suggests an important role for the terminal 1-yn-3-ol functional group in mediating cytotoxic activity.

  11. Extraction of beryllium sulfate by a long chain amine; Extraction du sulfate de beryllium par une amine a longue chaine

    Energy Technology Data Exchange (ETDEWEB)

    Etaix, E.S. [Commissariat a l' Energie Atomique, Fontenay-Aux-Roses (France). Centre d' Etudes Nucleaires

    1968-06-01

    The extraction of sulfuric acid in aqueous solution by a primary amine in benzene solution, 3-9 (diethyl) - 6-amino tri-decane (D.E.T. ) - i.e., with American nomenclature 1-3 (ethyl-pentyl) - 4-ethyl-octyl amine (E.P.O.) - has made it possible to calculate the formation constants of alkyl-ammonium sulfate and acid sulfate. The formula of the beryllium and alkyl-ammonium sulfate complex formed in benzene has next been determined, for various initial acidity of the aqueous solution. Lastly, evidence has been given of negatively charged complexes of beryllium and sulfate in aqueous solution, through the dependence of the aqueous sulfate ions concentration upon beryllium extraction. The formation constant of these anionic complexes has been evaluated. (author) [French] L'etude de l'extraction de l'acide sulfurique en solution aqueuse par une amine primaire en solution dans le benzene, le diethyl-3,9 amino-6 tridecane (D.E.T.) - autre nom americain 1-3 (ethylpentyl) - 4-ethyloctylamine (E.P.O.) a permis de calculer les constantes de formation du sulfate et de l'hydrogenosulfate d'alkyl-ammonium. La formule du complexe de sulfate de beryllium et d'alkyl-ammonium forme en solution benzenique a ete ensuite determinee pour diverses acidites initiales de la solution aqueuse. Enfin, l'influence de la concentration des ions sulfate de la phase aqueuse sur l'extraction du beryllium a mis en evidence la formation en solution aqueuse de complexes anioniques de sulfate et de beryllium dont la constante de formation a ete evaluee. (auteur)

  12. An LMI-based decoupling control for electromagnetic formation flight

    Directory of Open Access Journals (Sweden)

    Huang Xianlin

    2015-04-01

    Full Text Available Electromagnetic formation flight (EMFF leverages electromagnetic force to control the relative position of satellites. EMFF offers a promising alternative to traditional propellant-based spacecraft flight formation. This novel strategy is very attractive since it does not consume fuel. Due to the highly coupled nonlinearity of electromagnetic force, it is difficult to individually design a controller for one satellite without considering others, which poses challenges to communications. This paper is devoted to decoupling control of EMFF, including regulations, constraints and controller design. A learning-based adaptive sliding mode decoupling controller is analyzed to illustrate the problem of existing results, and input rate saturation is introduced to guarantee the validity of frequency division technique. Through transformation, the imposed input rate saturation is converted to state and input constraints. A linear matrix inequalities (LMI-based robust optimal control method can then be used and improved to solve the transformed problem. Simulation results are presented to demonstrate the effectiveness of the proposed decoupling control.

  13. Cooperative coalition for formation flight scheduling based on incomplete information

    Directory of Open Access Journals (Sweden)

    Meng Linghang

    2015-12-01

    Full Text Available This study analyzes the cooperative coalition problem for formation scheduling based on incomplete information. A multi-agent cooperative coalition framework is developed to optimize the formation scheduling problem in a decentralized manner. The social class differentiation mechanism and role-assuming mechanism are incorporated into the framework, which, in turn, ensures that the multi-agent system (MAS evolves in the optimal direction. Moreover, a further differentiation pressure can be achieved to help MAS escape from local optima. A Bayesian coalition negotiation algorithm is constructed, within which the Harsanyi transformation is introduced to transform the coalition problem based on incomplete information to the Bayesian-equivalent coalition problem based on imperfect information. The simulation results suggest that the distribution of agents’ expectations of other agents’ unknown information approximates to the true distribution after a finite set of generations. The comparisons indicate that the MAS cooperative coalition algorithm produces a significantly better utility and possesses a more effective capability of escaping from local optima than the proposal-engaged marriage algorithm and the Simulated Annealing algorithm.

  14. Cooperative coalition for formation flight scheduling based on incomplete information

    Institute of Scientific and Technical Information of China (English)

    Meng Linghang; Xu Xiaohao; Zhao Yifei

    2015-01-01

    This study analyzes the cooperative coalition problem for formation scheduling based on incomplete information. A multi-agent cooperative coalition framework is developed to optimize the formation scheduling problem in a decentralized manner. The social class differentiation mech-anism and role-assuming mechanism are incorporated into the framework, which, in turn, ensures that the multi-agent system (MAS) evolves in the optimal direction. Moreover, a further differen-tiation pressure can be achieved to help MAS escape from local optima. A Bayesian coalition nego-tiation algorithm is constructed, within which the Harsanyi transformation is introduced to transform the coalition problem based on incomplete information to the Bayesian-equivalent coali-tion problem based on imperfect information. The simulation results suggest that the distribution of agents’ expectations of other agents’ unknown information approximates to the true distribution after a finite set of generations. The comparisons indicate that the MAS cooperative coalition algo-rithm produces a significantly better utility and possesses a more effective capability of escaping from local optima than the proposal-engaged marriage algorithm and the Simulated Annealing algorithm.

  15. Gel Formation in Polymers Undergoing Radiation-Induced Crosslinking and Scission

    DEFF Research Database (Denmark)

    Handlos, V. N.; Singer, Klaus Albert Julius

    1976-01-01

    A study was made of the solubility of irradiated polyethylene. The experimental data were treated according to the Saito-Inokuti theory for gel formation in polymers exposed to ionizing radiation. Among other things, this theory is based upon the molecular weight distribution of the unirradiated...... polymer; in the present work, the actual distributions were determined by high-temperature gel permeation chromatography and corrected for long-chain branching. Under these circumstances, good agreement between theory and experimental data was obtained, which allowed the determination of the radiation...

  16. Formation of Jupiter using opacities based on detailed grain physics

    CERN Document Server

    Movshovitz, Naor; Podolak, Morris; Lissauer, Jack J

    2010-01-01

    Numerical simulations, based on the core-nucleated accretion model, are presented for the formation of Jupiter at 5.2 AU in 3 primordial disks with three different assumed values of the surface density of solid particles. The grain opacities in the envelope of the protoplanet are computed using a detailed model that includes settling and coagulation of grains and that incorporates a recalculation of the grain size distribution at each point in time and space. We generally find lower opacities than the 2% of interstellar values used in previous calculations [Hubickyj, O., Bodenheimer, P., Lissauer, J. J., 2005. Icarus 179, 415--431; Lissauer, J. J., Hubickyj, O., D'Angelo, G., Bodenheimer, P., 2009. Icarus 199, 338-350]. These lower opacities result in more rapid heat loss from and more rapid contraction of the protoplanetary envelope. For a given surface density of solids, the new calculations result in a substantial speedup in formation time as compared with those previous calculations. Formation times are c...

  17. Formats

    Directory of Open Access Journals (Sweden)

    Gehmann, Ulrich

    2012-03-01

    Full Text Available In the following, a new conceptual framework for investigating nowadays’ “technical” phenomena shall be introduced, that of formats. The thesis is that processes of formatting account for our recent conditions of life, and will do so in the very next future. It are processes whose foundations have been laid in modernity and which will further unfold for the time being. These processes are embedded in the format of the value chain, a circumstance making them resilient to change. In addition, they are resilient in themselves since forming interconnected systems of reciprocal causal circuits.Which leads to an overall situation that our entire “Lebenswelt” became formatted to an extent we don’t fully realize, even influencing our very percep-tion of it.

  18. Partial replacement of dietary linoleic acid with long chain n-3 polyunsaturated fatty acids protects against dextran sulfate sodium-induced colitis in rats.

    Science.gov (United States)

    Tyagi, Anupama; Kumar, Uday; Santosh, Vadakattu Sai; Reddy, Suryam; Mohammed, Saazida Bhanu; Ibrahim, Ahamed

    2014-12-01

    Imbalances in the dietary n-6 and n-3 polyunsaturated fatty acids have been implicated in the increased prevalence of inflammatory bowel disease. This study investigated the effects of substitution of linoleic acid with long chain n-3 polyunsaturated fatty acids and hence decreasing n-6:n-3 fatty acid ratio on inflammatory response in dextran sulfate sodium induced colitis. Male weanling Sprague Dawley rats were fed diets with n-6:n-3 fatty acid in the ratios of 215,50,10 or 5 for 3 months and colitis was induced by administration of dextran sulfate sodium in drinking water during last 11 days. Decreasing the dietary n-6:n-3 fatty acid ratio to 10 and 5 significantly attenuated the severity of colitis as evidenced by improvements in clinical symptoms, reversal of shortening of colon length, reduced severity of anemia, preservation of colonic architecture as well as reduced colonic mucosal myeloperoxidase activity. This protection was associated with suppression of colonic mucosal proinflammatory mediators such as TNFα, IL-1β and nitric oxide. These findings suggest that long chain n-3 polyunsaturated fatty acids at a level of 3.0 g/kg diet (n-6:n-3 ratio of 10) prevents dextran sulfate sodium induced colitis by suppressing the proinflammatory mediators.

  19. Molecular cloning and nutrient regulation analysis of long chain acyl-CoA synthetase 1 gene in grass carp, Ctenopharyngodon idella L.

    Science.gov (United States)

    Cheng, Han-Liang; Chen, Shuai; Xu, Jian-He; Yi, Le-Fei; Peng, Yong-Xing; Pan, Qian; Shen, Xin; Dong, Zhi-Guo; Zhang, Xia-Qing; Wang, Wen-Xiang

    2017-02-01

    Long chain acyl-CoA synthetase 1 (ACSL1), a key regulatory enzyme of fatty acid metabolism, catalyzes the conversion of long-chain fatty acids to acyl-coenzyme A. The full-length cDNAs of ACSL1a and ACSL1b were cloned from the liver of a grass carp. Both cDNAs contained a 2094bp open reading frame encoding 697 amino acids. Amino acid sequence alignment showed that ACSL1a shared 73.5% sequence identity with ACSL1b. Each of the two ACSL1s proteins had a transmembrane domain, a P-loop domain, and L-, A-, and G-motifs, which were relatively conserved in comparison to other vertebrates. Relative expression profile of ACSL1 mRNAs in different tissues indicated that ACSL1a is highly expressed in heart, mesenteric adipose, and brain tissues, whereas ACSL1b is highly expressed in heart, white muscle, foregut, and liver tissues. Nutrient regulation research showed that the expression levels of ACSL1a and ACSL1b were significantly down-regulated when 3, 6, and 9% fish oil were added in diet of grass carp as compared to the control group. However, no significant difference in the levels of ACSL1 mRNA was observed between the experimental groups. This study demonstrated the relationship between ACSL1a and ACSL1b genes in grass carp and laid a foundation for further research on ACSL family members in other species.

  20. Is autism a disorder of fatty acid metabolism? Possible dysfunction of mitochondrial beta-oxidation by long chain acyl-CoA dehydrogenase.

    Science.gov (United States)

    Clark-Taylor, Tonya; Clark-Taylor, Benjamin E

    2004-01-01

    Long chain acyl-CoA dehydrogenase (LCAD) has recently been shown to be the mitochondrial enzyme responsible for the beta-oxidation of branched chain and unsaturated fatty acids [Biochim. Biophys. Acta 1393 (1998) 35; Biochim. Biophys. Acta 1485 (2000) 121]. Whilst disorders of short, medium and very long chain acyl dehydrogenases are known, there is no known disorder of LCAD deficiency in humans. Experimental LCAD deficiency in mice shows an acyl-carnitine profile with prominent elevations of unsaturated fatty acid metabolites C14:1 and C14:2 [Hum. Mol. Genet. 10 (2001) 2069]. A child with autism whose acyl-carnitine profile also shows these abnormalities is presented, and it is hypothesized that the child may have LCAD deficiency. Additional metabolic abnormalities seen in this patient include alterations of TCA energy production, ammonia detoxification, reduced synthesis of omega-3 DHA, and abnormal cholesterol metabolism. These metabolic changes are also seen as secondary abnormalities in dysfunction of fatty acid beta-oxidation, and have also been reported in autism. It is hypothesized that LCAD deficiency may be a cause of autism. Similarities between metabolic disturbances in autism, and those of disorders of fatty acid beta-oxidation are discussed.