WorldWideScience

Sample records for logarithmic utility functions

  1. Two-point functions and logarithmic boundary operators in boundary logarithmic conformal field theories

    International Nuclear Information System (INIS)

    Ishimoto, Yukitaka

    2004-01-01

    Amongst conformal field theories, there exist logarithmic conformal field theories such as c p,1 models. We have investigated c p,q models with a boundary in search of logarithmic theories and have found logarithmic solutions of two-point functions in the context of the Coulomb gas picture. We have also found the relations between coefficients in the two-point functions and correlation functions of logarithmic boundary operators, and have confirmed the solutions in [hep-th/0003184]. Other two-point functions and boundary operators have also been studied in the free boson construction of boundary CFT with SU(2) k symmetry in regard to logarithmic theories. This paper is based on a part of D. Phil. Thesis [hep-th/0312160]. (author)

  2. Some Bounds for the Logarithmic Function

    DEFF Research Database (Denmark)

    Topsøe, Flemming

    2007-01-01

    Development in continued fraction, rational approximations and orthogonal polynomials in relation to the logarithmic function are discussed.......Development in continued fraction, rational approximations and orthogonal polynomials in relation to the logarithmic function are discussed....

  3. Logarithmic-function generator

    Science.gov (United States)

    Caron, P. R.

    1975-01-01

    Solid-state logarithmic-function generator is compact and provides improved accuracy. Generator includes a stable multivibrator feeding into RC circuit. Resulting exponentially decaying voltage is compared with input signal. Generator output is proportional to time required for exponential voltage to decay from preset reference level to level of input signal.

  4. Mean-variance portfolio optimization by using time series approaches based on logarithmic utility function

    Science.gov (United States)

    Soeryana, E.; Fadhlina, N.; Sukono; Rusyaman, E.; Supian, S.

    2017-01-01

    Investments in stocks investors are also faced with the issue of risk, due to daily price of stock also fluctuate. For minimize the level of risk, investors usually forming an investment portfolio. Establishment of a portfolio consisting of several stocks are intended to get the optimal composition of the investment portfolio. This paper discussed about optimizing investment portfolio of Mean-Variance to stocks by using mean and volatility is not constant based on logarithmic utility function. Non constant mean analysed using models Autoregressive Moving Average (ARMA), while non constant volatility models are analysed using the Generalized Autoregressive Conditional heteroscedastic (GARCH). Optimization process is performed by using the Lagrangian multiplier technique. As a numerical illustration, the method is used to analyse some Islamic stocks in Indonesia. The expected result is to get the proportion of investment in each Islamic stock analysed.

  5. Timelike single-logarithm-resummed splitting functions

    Energy Technology Data Exchange (ETDEWEB)

    Albino, S.; Bolzoni, P.; Kniehl, B.A. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Kotikov, A.V. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Joint Inst. of Nuclear Research, Moscow (Russian Federation). Bogoliubov Lab. of Theoretical Physics

    2011-08-15

    We calculate the single logarithmic contributions to the quark singlet and gluon matrix of timelike splitting functions at all orders in the modified minimal-subtraction (MS) scheme. We fix two of the degrees of freedom of this matrix from the analogous results in the massive-gluon regularization scheme by using the relation between that scheme and the MS scheme. We determine this scheme transformation from the double logarithmic contributions to the timelike splitting functions and the coefficient functions of inclusive particle production in e{sup +}e{sup -} annihilation now available in both schemes. The remaining two degrees of freedom are fixed by reasonable physical assumptions. The results agree with the fixed-order results at next-to-next-to-leading order in the literature. (orig.)

  6. Logarithmically completely monotonic functions involving the Generalized Gamma Function

    OpenAIRE

    Faton Merovci; Valmir Krasniqi

    2010-01-01

    By a simple approach, two classes of functions involving generalization Euler's gamma function and originating from certain  problems of traffic flow are proved to be logarithmically  completely monotonic and a class of functions involving the psi function is showed to be completely monotonic.

  7. Logarithmically completely monotonic functions involving the Generalized Gamma Function

    Directory of Open Access Journals (Sweden)

    Faton Merovci

    2010-12-01

    Full Text Available By a simple approach, two classes of functions involving generalization Euler's gamma function and originating from certain  problems of traffic flow are proved to be logarithmically  completely monotonic and a class of functions involving the psi function is showed to be completely monotonic.

  8. Students' Understanding of Exponential and Logarithmic Functions.

    Science.gov (United States)

    Weber, Keith

    Exponential, and logarithmic functions are pivotal mathematical concepts that play central roles in advanced mathematics. Unfortunately, these are also concepts that give students serious difficulty. This report describe a theory of how students acquire an understanding of these functions by prescribing a set of mental constructions that a student…

  9. Logarithmic residues of analytic Banach algebra valued functions possessing a simply meromorphic inverse

    NARCIS (Netherlands)

    H. Bart (Harm); T. Ehrhardt; B. Silbermann

    2001-01-01

    textabstractA logarithmic residue is a contour integral of a logarithmic derivative (left or right) of an analytic Banach algebra valued function. For functions possessing a meromorphic inverse with simple poles only, the logarithmic residues are identified as the sums of idempotents. With the help

  10. Completely monotonic functions related to logarithmic derivatives of entire functions

    DEFF Research Database (Denmark)

    Pedersen, Henrik Laurberg

    2011-01-01

    The logarithmic derivative l(x) of an entire function of genus p and having only non-positive zeros is represented in terms of a Stieltjes function. As a consequence, (-1)p(xml(x))(m+p) is a completely monotonic function for all m ≥ 0. This generalizes earlier results on complete monotonicity...... of functions related to Euler's psi-function. Applications to Barnes' multiple gamma functions are given....

  11. Logarithmic residues of analytic Banach algebra valued functions possessing a simply meromorphic inverse

    OpenAIRE

    Bart, Harm; Ehrhardt, T.; Silbermann, B.

    2001-01-01

    textabstractA logarithmic residue is a contour integral of a logarithmic derivative (left or right) of an analytic Banach algebra valued function. For functions possessing a meromorphic inverse with simple poles only, the logarithmic residues are identified as the sums of idempotents. With the help of this observation, the issue of left versus right logarithmic residues is investigated, both for connected and nonconnected underlying Cauchy domains. Examples are given to elucidate the subject ...

  12. Resummation of soft gluon logarithms in the DGLAP evolution of fragmentation functions

    International Nuclear Information System (INIS)

    Albino, S.; Kniehl, B.A.; Kramer, G.; Ochs, W.

    2005-10-01

    We define a general scheme for the evolution of fragmentation functions which resums both soft gluon logarithms and mass singularities in a consistent manner and to any order, and requires no additional theoretical assumptions. Using the Double Logarithmic Approximation and the known perturbative results for the splitting functions, we present our scheme with the complete contribution from the double logarithms, being the largest soft gluon logarithms. We show that the resulting approximation is more complete than the Modified Leading Logarithm Approximation even with the fixed order contribution calculated to leading order only, and find, after using it to fit quark and gluon fragmentation functions to experimental data, that this approximation in our scheme gives a good description of the data from the largest χ p values to the peak region in ξ=ln(1/χ p ), in contrast to other approximations. In addition, we develop a treatment of hadron mass effects which gives additional improvements at large ξ. (orig.)

  13. Monotonicity and Logarithmic Concavity of Two Functions Involving Exponential Function

    Science.gov (United States)

    Liu, Ai-Qi; Li, Guo-Fu; Guo, Bai-Ni; Qi, Feng

    2008-01-01

    The function 1 divided by "x"[superscript 2] minus "e"[superscript"-x"] divided by (1 minus "e"[superscript"-x"])[superscript 2] for "x" greater than 0 is proved to be strictly decreasing. As an application of this monotonicity, the logarithmic concavity of the function "t" divided by "e"[superscript "at"] minus "e"[superscript"(a-1)""t"] for "a"…

  14. An antisymmetric psychometric function on a logarithmic scale

    NARCIS (Netherlands)

    Bergmann Tiest, W.M.; Kappers, A.M.L.

    2011-01-01

    This very brief report introduces a psychometric function, very suitable for psychophysical data that displays Weber-like behaviour, because it is antisymmetric on a logarithmic scale. © 2011 a Pion publication.

  15. Logarithmically complete monotonicity of a function related to the Catalan-Qi function

    Directory of Open Access Journals (Sweden)

    Qi Feng

    2016-08-01

    Full Text Available In the paper, the authors find necessary and sufficient conditions such that a function related to the Catalan-Qi function, which is an alternative generalization of the Catalan numbers, is logarithmically complete monotonic.

  16. Integral definition of the logarithmic function and the derivative of the exponential function in calculus

    Science.gov (United States)

    Vaninsky, Alexander

    2015-04-01

    Defining the logarithmic function as a definite integral with a variable upper limit, an approach used by some popular calculus textbooks, is problematic. We discuss the disadvantages of such a definition and provide a way to fix the problem. We also consider a definition-based, rigorous derivation of the derivative of the exponential function that is easier, more intuitive, and complies with the standard definitions of the number e, the logarithmic, and the exponential functions.

  17. Approximating Exponential and Logarithmic Functions Using Polynomial Interpolation

    Science.gov (United States)

    Gordon, Sheldon P.; Yang, Yajun

    2017-01-01

    This article takes a closer look at the problem of approximating the exponential and logarithmic functions using polynomials. Either as an alternative to or a precursor to Taylor polynomial approximations at the precalculus level, interpolating polynomials are considered. A measure of error is given and the behaviour of the error function is…

  18. The logarithmic conformal field theories

    International Nuclear Information System (INIS)

    Rahimi Tabar, M.R.; Aghamohammadi, A.; Khorrami, M.

    1997-01-01

    We study the correlation functions of logarithmic conformal field theories. First, assuming conformal invariance, we explicitly calculate two- and three-point functions. This calculation is done for the general case of more than one logarithmic field in a block, and more than one set of logarithmic fields. Then we show that one can regard the logarithmic field as a formal derivative of the ordinary field with respect to its conformal weight. This enables one to calculate any n-point function containing the logarithmic field in terms of ordinary n-point functions. Finally, we calculate the operator product expansion (OPE) coefficients of a logarithmic conformal field theory, and show that these can be obtained from the corresponding coefficients of ordinary conformal theory by a simple derivation. (orig.)

  19. On a Functional Equation for the Generating Function of the Logarithmic Series Distribution

    OpenAIRE

    Panaretos, John

    1987-01-01

    This note deals with finding the solution of a functional equation, where the function involved has the additional property of being a probability generating function. It turns out that the unique solution of this particular functional equation is the probability generating function of the logarithmic series distribution

  20. A new method for predicting functional recovery of stroke patients with hemiplegia: logarithmic modelling.

    Science.gov (United States)

    Koyama, Tetsuo; Matsumoto, Kenji; Okuno, Taiji; Domen, Kazuhisa

    2005-10-01

    To examine the validity and applicability of logarithmic modelling for predicting functional recovery of stroke patients with hemiplegia. Longitudinal postal survey. Stroke patients with hemiplegia staying in a long-term rehabilitation facility, who had been referred from acute medical service 30-60 days after onset. Functional Independence Measure (FIM) scores were periodically assessed during hospitalization. For each individual, a logarithmic formula that was scaled by an interval increase in FIM scores during the initial 2-6 weeks was used for predicting functional recovery. For the study, we recruited 18 patients who showed a wide variety of disability levels on admission (FIM scores 25-107). For each patient, the predicted FIM scores derived from the logarithmic formula matched the actual change in FIM scores. The changes predicted the recovery of motor rather than cognitive functions. Regression analysis showed a close fit between logarithmic modelling and actual FIM scores (across-subject R2 = 0.945). Provided with two initial time-point samplings, logarithmic modelling allows accurate prediction of functional recovery for individuals. Because the modelling is mathematically simple, it can be widely applied in daily clinical practice.

  1. Evaluation of integrals with hypergeometric and logarithmic functions

    Directory of Open Access Journals (Sweden)

    Sofo Anthony

    2018-02-01

    Full Text Available We provide an explicit analytical representation for a number of logarithmic integrals in terms of the Lerch transcendent function and other special functions. The integrals in question will be associated with both alternating harmonic numbers and harmonic numbers with positive terms. A few examples of integrals will be given an identity in terms of some special functions including the Riemann zeta function. In general none of these integrals can be solved by any currently available mathematical package.

  2. Predicting recovery of cognitive function soon after stroke: differential modeling of logarithmic and linear regression.

    Science.gov (United States)

    Suzuki, Makoto; Sugimura, Yuko; Yamada, Sumio; Omori, Yoshitsugu; Miyamoto, Masaaki; Yamamoto, Jun-ichi

    2013-01-01

    Cognitive disorders in the acute stage of stroke are common and are important independent predictors of adverse outcome in the long term. Despite the impact of cognitive disorders on both patients and their families, it is still difficult to predict the extent or duration of cognitive impairments. The objective of the present study was, therefore, to provide data on predicting the recovery of cognitive function soon after stroke by differential modeling with logarithmic and linear regression. This study included two rounds of data collection comprising 57 stroke patients enrolled in the first round for the purpose of identifying the time course of cognitive recovery in the early-phase group data, and 43 stroke patients in the second round for the purpose of ensuring that the correlation of the early-phase group data applied to the prediction of each individual's degree of cognitive recovery. In the first round, Mini-Mental State Examination (MMSE) scores were assessed 3 times during hospitalization, and the scores were regressed on the logarithm and linear of time. In the second round, calculations of MMSE scores were made for the first two scoring times after admission to tailor the structures of logarithmic and linear regression formulae to fit an individual's degree of functional recovery. The time course of early-phase recovery for cognitive functions resembled both logarithmic and linear functions. However, MMSE scores sampled at two baseline points based on logarithmic regression modeling could estimate prediction of cognitive recovery more accurately than could linear regression modeling (logarithmic modeling, R(2) = 0.676, PLogarithmic modeling based on MMSE scores could accurately predict the recovery of cognitive function soon after the occurrence of stroke. This logarithmic modeling with mathematical procedures is simple enough to be adopted in daily clinical practice.

  3. Minimal string theory is logarithmic

    International Nuclear Information System (INIS)

    Ishimoto, Yukitaka; Yamaguchi, Shun-ichi

    2005-01-01

    We study the simplest examples of minimal string theory whose worldsheet description is the unitary (p,q) minimal model coupled to two-dimensional gravity ( Liouville field theory). In the Liouville sector, we show that four-point correlation functions of 'tachyons' exhibit logarithmic singularities, and that the theory turns out to be logarithmic. The relation with Zamolodchikov's logarithmic degenerate fields is also discussed. Our result holds for generic values of (p,q)

  4. Asymptotic behavior of the logarithmic derivative for entire functions of order zero

    Directory of Open Access Journals (Sweden)

    M. V. Zabolotskyj

    2014-12-01

    Full Text Available We get an approximation theorem for the logarithmic derivative $F$ of entire functions of order zero and, with it's help, establish the asymptotic of $ F $ outside the exceptional set.

  5. Logarithmic two-point correlation functions from a z=2 Lifshitz model

    International Nuclear Information System (INIS)

    Zingg, T.

    2014-01-01

    The Einstein-Proca action is known to have asymptotically locally Lifshitz spacetimes as classical solutions. For dynamical exponent z=2, two-point correlation functions for fluctuations around such a geometry are derived analytically. It is found that the retarded correlators are stable in the sense that all quasinormal modes are situated in the lower half-plane of complex frequencies. Correlators in the longitudinal channel exhibit features that are reminiscent of a structure usually obtained in field theories that are logarithmic, i.e. contain an indecomposable but non-diagonalizable highest weight representation. This provides further evidence for conjecturing the model at hand as a candidate for a gravity dual of a logarithmic field theory with anisotropic scaling symmetry

  6. Singlet structure function F_1 in double-logarithmic approximation

    Science.gov (United States)

    Ermolaev, B. I.; Troyan, S. I.

    2018-03-01

    The conventional ways to calculate the perturbative component of the DIS singlet structure function F_1 involve approaches based on BFKL which account for the single-logarithmic contributions accompanying the Born factor 1 / x. In contrast, we account for the double-logarithmic (DL) contributions unrelated to 1 / x and because of that they were disregarded as negligibly small. We calculate the singlet F_1 in the double-logarithmic approximation (DLA) and account at the same time for the running α _s effects. We start with a total resummation of both quark and gluon DL contributions and obtain the explicit expression for F_1 in DLA. Then, applying the saddle-point method, we calculate the small- x asymptotics of F_1, which proves to be of the Regge form with the leading singularity ω _0 = 1.066. Its large value compensates for the lack of the factor 1 / x in the DLA contributions. Therefore, this Reggeon can be identified as a new Pomeron, which can be quite important for the description of all QCD processes involving the vacuum (Pomeron) exchanges at very high energies. We prove that the expression for the small- x asymptotics of F_1 scales: it depends on a single variable Q^2/x^2 only instead of x and Q^2 separately. Finally, we show that the small- x asymptotics reliably represent F_1 at x ≤ 10^{-6}.

  7. The gluon Green's function in the BFKL approach at next-to-leading logarithmic accuracy

    International Nuclear Information System (INIS)

    Andersen, Jeppe R.; Sabio Vera, Agustin

    2004-01-01

    We investigate the gluon Green's function in the high energy limit of QCD using a recently proposed iterative solution of the Balitsky-Fadin-Kuraev-Lipatov (BFKL) equation at next-to-leading logarithmic (NLL) accuracy. To establish the applicability of this method in the NLL approximation we solve the BFKL equation as originally written by Fadin and Lipatov, and compare the results with previous studies in the leading logarithmic (LL) approximation

  8. A new algorithm for the integration of exponential and logarithmic functions

    Science.gov (United States)

    Rothstein, M.

    1977-01-01

    An algorithm for symbolic integration of functions built up from the rational functions by repeatedly applying either the exponential or logarithm functions is discussed. This algorithm does not require polynomial factorization nor partial fraction decomposition and requires solutions of linear systems with only a small number of unknowns. It is proven that if this algorithm is applied to rational functions over the integers, a computing time bound for the algorithm can be obtained which is a polynomial in a bound on the integer length of the coefficients, and in the degrees of the numerator and denominator of the rational function involved.

  9. Effect of logarithmic terms on the energy level and wave function of a dtμ system

    International Nuclear Information System (INIS)

    Zhen, Z.

    1990-01-01

    The effect of the logarithmic terms on the ground-state energy level and wave function of a dtμ system is investigated. No significant contribution of the logarithmic terms on either the energy level or wave function is found. At the same time, we find the lowest upper bound of the ground-state energy ever obtained by the variational method using the Hylleraas-type trial function and that the corresponding wave function satisfies the cusp condition as r dt →0 automatically to a reasonable accuracy for r<3 (muonic a.u.), where r is the distance between the fused dt nuclear compound and the muon

  10. Logarithmic learning for generalized classifier neural network.

    Science.gov (United States)

    Ozyildirim, Buse Melis; Avci, Mutlu

    2014-12-01

    Generalized classifier neural network is introduced as an efficient classifier among the others. Unless the initial smoothing parameter value is close to the optimal one, generalized classifier neural network suffers from convergence problem and requires quite a long time to converge. In this work, to overcome this problem, a logarithmic learning approach is proposed. The proposed method uses logarithmic cost function instead of squared error. Minimization of this cost function reduces the number of iterations used for reaching the minima. The proposed method is tested on 15 different data sets and performance of logarithmic learning generalized classifier neural network is compared with that of standard one. Thanks to operation range of radial basis function included by generalized classifier neural network, proposed logarithmic approach and its derivative has continuous values. This makes it possible to adopt the advantage of logarithmic fast convergence by the proposed learning method. Due to fast convergence ability of logarithmic cost function, training time is maximally decreased to 99.2%. In addition to decrease in training time, classification performance may also be improved till 60%. According to the test results, while the proposed method provides a solution for time requirement problem of generalized classifier neural network, it may also improve the classification accuracy. The proposed method can be considered as an efficient way for reducing the time requirement problem of generalized classifier neural network. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. On logarithmic extensions of local scale-invariance

    International Nuclear Information System (INIS)

    Henkel, Malte

    2013-01-01

    Ageing phenomena far from equilibrium naturally present dynamical scaling and in many situations this may be generalised to local scale-invariance. Generically, the absence of time-translation-invariance implies that each scaling operator is characterised by two independent scaling dimensions. Building on analogies with logarithmic conformal invariance and logarithmic Schrödinger-invariance, this work proposes a logarithmic extension of local scale-invariance, without time-translation-invariance. Carrying this out requires in general to replace both scaling dimensions of each scaling operator by Jordan cells. Co-variant two-point functions are derived for the most simple case of a two-dimensional logarithmic extension. Their form is compared to simulational data for autoresponse functions in several universality classes of non-equilibrium ageing phenomena

  12. Fully double-logarithm-resummed cross sections

    International Nuclear Information System (INIS)

    Albino, S.; Bolzoni, P.; Kniehl, B.A.; Kotikov, A.

    2011-01-01

    We calculate the complete double logarithmic contribution to cross sections for semi-inclusive hadron production in the modified minimal-subtraction (MS-bar) scheme by applying dimensional regularization to the double logarithm approximation. The full double logarithmic contribution to the coefficient functions for inclusive hadron production in e + e - annihilation is obtained in this scheme for the first time. Our result agrees with all fixed order results in the literature, which extend to next-to-next-to-leading order.

  13. Energy demand with the flexible double-logarithmic functional form

    International Nuclear Information System (INIS)

    Nan, G.D.; Murry, D.A.

    1992-01-01

    A flexible double-logarithmic function form is developed to meet assumptions of consumer behavior. Then annual residential and commercial data (1970-87) are applied to this functional form to examine demand for petroleum products, electricity, and natural gas in California. The traditional double log-linear functional form has shortcomings of constant elasticities. The regression equations in this study, with varied estimated elasticities, overcome some of these shortcomings. All short-run own-price elasticities are inelastic and all income elasticities are close to unity in this study. According to the short-run time-trend elasticities, consumers' fuel preference in California is electricity. The long-run income elasticities also indicate that the residential consumers will consume more electricity and natural gas as their energy budgets increase in the long run. 14 refs., 5 tabs

  14. General Large Deviations and Functional Iterated Logarithm Law for Multivalued Stochastic Differential Equations

    OpenAIRE

    Ren, Jiagang; Wu, Jing; Zhang, Hua

    2015-01-01

    In this paper, we prove a large deviation principle of Freidlin-Wentzell's type for the multivalued stochastic differential equations. As an application, we derive a functional iterated logarithm law for the solutions of multivalued stochastic differential equations.

  15. A more accurate half-discrete Hardy-Hilbert-type inequality with the logarithmic function.

    Science.gov (United States)

    Wang, Aizhen; Yang, Bicheng

    2017-01-01

    By means of the weight functions, the technique of real analysis and Hermite-Hadamard's inequality, a more accurate half-discrete Hardy-Hilbert-type inequality related to the kernel of logarithmic function and a best possible constant factor is given. Moreover, the equivalent forms, the operator expressions, the reverses and some particular cases are also considered.

  16. Logarithmic correction in the deformed AdS5 model to produce the heavy quark potential and QCD beta function

    International Nuclear Information System (INIS)

    He Song; Huang Mei; Yan Qishu

    2011-01-01

    We study the holographic QCD model, which contains a quadratic term -σz 2 and a logarithmic term -c 0 log[(z IR -z)/z IR ] with an explicit infrared cutoff z IR in the deformed AdS 5 warp factor. We investigate the heavy-quark potential for three cases, i.e., with only a quadratic correction, with both quadratic and logarithmic corrections, and with only a logarithmic correction. We solve the dilaton field and dilation potential from the Einstein equation and investigate the corresponding beta function in the Guersoy-Kiritsis-Nitti framework. Our studies show that in the case with only a quadratic correction, a negative σ or the Andreev-Zakharov model is favored to fit the heavy-quark potential and to produce the QCD beta function at 2-loop level; however, the dilaton potential is unbounded in the infrared regime. One interesting observation for the case of positive σ is that the corresponding beta function exists in an infrared fixed point. In the case with only a logarithmic correction, the heavy-quark Cornell potential can be fitted very well, the corresponding beta function agrees with the QCD beta function at 2-loop level reasonably well, and the dilaton potential is bounded from below in the infrared. At the end, we propose a more compact model which has only a logarithmic correction in the deformed warp factor and has less free parameters.

  17. The pigeon's discrimination of visual entropy: a logarithmic function.

    Science.gov (United States)

    Young, Michael E; Wasserman, Edward A

    2002-11-01

    We taught 8 pigeons to discriminate 16-icon arrays that differed in their visual variability or "entropy" to see whether the relationship between entropy and discriminative behavior is linear (in which equivalent differences in entropy should produce equivalent changes in behavior) or logarithmic (in which higher entropy values should be less discriminable from one another than lower entropy values). Pigeons received a go/no-go task in which the lower entropy arrays were reinforced for one group and the higher entropy arrays were reinforced for a second group. The superior discrimination of the second group was predicted by a theoretical analysis in which excitatory and inhibitory stimulus generalization gradients fall along a logarithmic, but not a linear scale. Reanalysis of previously published data also yielded results consistent with a logarithmic relationship between entropy and discriminative behavior.

  18. On the form of the forgetting function: the effects of arithmetic and logarithmic distributions of delays.

    Science.gov (United States)

    Sargisson, Rebecca J; White, K Geoffrey

    2003-11-01

    Forgetting functions with 18 delay intervals were generated for delayed matching-to-sample performance in pigeons. Delay interval variation was achieved by arranging five different sets of five delays across daily sessions. In different conditions, the delays were distributed in arithmetic or logarithmic series. There was no convincing evidence for different effects on discriminability of the distributions of different delays. The mean data were better fitted by some mathematical functions than by others, but the best-fitting functions depended on the distribution of delays. In further conditions with a fixed set of five delays, discriminability was higher with a logarithmic distribution of delays than with an arithmetic distribution. This result is consistent with the treatment of the forgetting function in terms of generalization decrement.

  19. A more accurate half-discrete Hardy-Hilbert-type inequality with the logarithmic function

    Directory of Open Access Journals (Sweden)

    Aizhen Wang

    2017-06-01

    Full Text Available Abstract By means of the weight functions, the technique of real analysis and Hermite-Hadamard’s inequality, a more accurate half-discrete Hardy-Hilbert-type inequality related to the kernel of logarithmic function and a best possible constant factor is given. Moreover, the equivalent forms, the operator expressions, the reverses and some particular cases are also considered.

  20. Biomedical Mathematics, Unit VII: Exponential and Logarithmic Functions. Student Text. Revised Version, 1977.

    Science.gov (United States)

    Biomedical Interdisciplinary Curriculum Project, Berkeley, CA.

    This collection of lessons, exercises, and experiments deals with exponential and logarithmic mathematical functions in the context of biomedical situations. Typical units in this collection provide discussion of the biomedical problem or setting, discussion of the mathematical concept, several example problems and solutions, and a set of problems…

  1. On calculating double logarithmical asymptotics of vertex functions defined on the mass shell

    International Nuclear Information System (INIS)

    Belokurov, V.V.; Usyukina, N.I.

    1981-01-01

    The essence of the calculation method of double logarithmical asymptotics of vertex functions defined on the mass shell is presented. Using the method the asymptotics of the form-factor of electron is calculated. The ladder and cross-ladder diagrams are asymptotically considerable in every order of the perturbation theory. The way in which the asymptotics of the 4-order diagrams is calculated has been shown. The diagrams of this order and reduction procedures for them are given in a graphic form. The photon mass μ 2 not equal to 0 plays the role of a regulator, removing infrared divergencies. The double logarithmical asymptotics of the form-factor of electron on the mass shell is calculated rigorously in an arbitrary order of the perturbation theory [ru

  2. Superaging correlation function and ergodicity breaking for Brownian motion in logarithmic potentials.

    Science.gov (United States)

    Dechant, A; Lutz, E; Kessler, D A; Barkai, E

    2012-05-01

    We consider an overdamped Brownian particle moving in a confining asymptotically logarithmic potential, which supports a normalized Boltzmann equilibrium density. We derive analytical expressions for the two-time correlation function and the fluctuations of the time-averaged position of the particle for large but finite times. We characterize the occurrence of aging and nonergodic behavior as a function of the depth of the potential, and we support our predictions with extensive Langevin simulations. While the Boltzmann measure is used to obtain stationary correlation functions, we show how the non-normalizable infinite covariant density is related to the superaging behavior.

  3. Interpolation of the discrete logarithm in a finite field of characteristic two by Boolean functions

    DEFF Research Database (Denmark)

    Brandstaetter, Nina; Lange, Tanja; Winterhof, Arne

    2005-01-01

    We obtain bounds on degree, weight, and the maximal Fourier coefficient of Boolean functions interpolating the discrete logarithm in finite fields of characteristic two. These bounds complement earlier results for finite fields of odd characteristic....

  4. The logarithmic slope in diffractive DIS

    International Nuclear Information System (INIS)

    Gay Ducati, M.B.; Goncalves, V.P.; Machado, M.V.T.

    2002-01-01

    The logarithmic slope of diffractive structure function is a potential observable to separate the hard and soft contributions in diffraction, allowing to disentangle the QCD dynamics at small-x region. In this paper we extend our previous analyzes and calculate the diffractive logarithmic slope for three current approaches in the literature: (i) the Bartels-Wusthoff model, based on perturbative QCD, (ii) the CKMT model, based on Regge theory and (iii) the Golec-Biernat-Wusthoff model which assumes that the saturation phenomena is present in the HERA kinematic region. We analyze the transition region of small to large momentum transfer and verify that future experimental results on the diffractive logarithmic slope could discriminate between these approaches

  5. Necessary and sufficient conditions for a class of functions and their reciprocals to be logarithmically completely monotonic

    OpenAIRE

    Lv Yu-Pei; Sun Tian-Chuan; Chu Yu-Ming

    2011-01-01

    Abstract We prove that the function F α,β (x) = x α Γ β (x)/Γ(βx) is strictly logarithmically completely monotonic on (0, ∞) if and only if (α, β) ∈ {(α, β) : β > 0, β ≥ 2α + 1, β ≥ α + 1}{(α, β) : α = 0, β = 1} and that [F α,β (x)]-1 is strictly logarithmically completely monotonic on (0, ∞) if and only if (α, β) ∈ {(α, β ...

  6. Logarithmic Spiral

    Indian Academy of Sciences (India)

    Switzerland) even today can see the. Archimedian spiral and the inscription under it on the tombstone of Jacob Bernoulli 1. Logarithmic Spiral in Nature. Apart from logarithmic spiral no other curve seems to have attracted the attention of scientists, ...

  7. Slow logarithmic relaxation in models with hierarchically constrained dynamics

    OpenAIRE

    Brey, J. J.; Prados, A.

    2000-01-01

    A general kind of models with hierarchically constrained dynamics is shown to exhibit logarithmic anomalous relaxation, similarly to a variety of complex strongly interacting materials. The logarithmic behavior describes most of the decay of the response function.

  8. Logarithmic conformal field theory

    Science.gov (United States)

    Gainutdinov, Azat; Ridout, David; Runkel, Ingo

    2013-12-01

    Conformal field theory (CFT) has proven to be one of the richest and deepest subjects of modern theoretical and mathematical physics research, especially as regards statistical mechanics and string theory. It has also stimulated an enormous amount of activity in mathematics, shaping and building bridges between seemingly disparate fields through the study of vertex operator algebras, a (partial) axiomatisation of a chiral CFT. One can add to this that the successes of CFT, particularly when applied to statistical lattice models, have also served as an inspiration for mathematicians to develop entirely new fields: the Schramm-Loewner evolution and Smirnov's discrete complex analysis being notable examples. When the energy operator fails to be diagonalisable on the quantum state space, the CFT is said to be logarithmic. Consequently, a logarithmic CFT is one whose quantum space of states is constructed from a collection of representations which includes reducible but indecomposable ones. This qualifier arises because of the consequence that certain correlation functions will possess logarithmic singularities, something that contrasts with the familiar case of power law singularities. While such logarithmic singularities and reducible representations were noted by Rozansky and Saleur in their study of the U (1|1) Wess-Zumino-Witten model in 1992, the link between the non-diagonalisability of the energy operator and logarithmic singularities in correlators is usually ascribed to Gurarie's 1993 article (his paper also contains the first usage of the term 'logarithmic conformal field theory'). The class of CFTs that were under control at this time was quite small. In particular, an enormous amount of work from the statistical mechanics and string theory communities had produced a fairly detailed understanding of the (so-called) rational CFTs. However, physicists from both camps were well aware that applications from many diverse fields required significantly more

  9. Analytical expression for the nonsinglet structure functions at small x in the double logarithmic approximation

    International Nuclear Information System (INIS)

    Lublinsky, Michael

    2004-01-01

    A simple analytic expression for the nonsinglet structure function f NS is given. The expression is derived from the result of Ermolaev, Manaenkov, and Ryskin obtained by low x resummation of the quark ladder diagrams in the double logarithmic approximation of perturbative QCD

  10. Entire Functions of Bounded L-Index: Its Zeros and Behavior of Partial Logarithmic Derivatives

    Directory of Open Access Journals (Sweden)

    Andriy Bandura

    2017-01-01

    Full Text Available In this paper, we obtain new sufficient conditions of boundedness of L-index in joint variables for entire function in Cn functions. They give an estimate of maximum modulus of an entire function by its minimum modulus on a skeleton in a polydisc and describe the behavior of all partial logarithmic derivatives and the distribution of zeros. In some sense, the obtained results are new for entire functions of bounded index and l-index in C too. They generalize known results of Fricke, Sheremeta, and Kuzyk.

  11. Small range logarithm calculation on Intel Quartus II Verilog

    Science.gov (United States)

    Mustapha, Muhazam; Mokhtar, Anis Shahida; Ahmad, Azfar Asyrafie

    2018-02-01

    Logarithm function is the inverse of exponential function. This paper implement power series of natural logarithm function using Verilog HDL in Quartus II. The mode of design used is RTL in order to decrease the number of megafunctions. The simulations were done to determine the precision and number of LEs used so that the output calculated accurately. It is found that the accuracy of the system only valid for the range of 1 to e.

  12. The logarithmic potential

    CERN Document Server

    Evans, Griffith Conrad

    1927-01-01

    This book studies fundamental properties of the logarithmic potential and their connections to the theory of Fourier series, to potential theory, and to function theory. The material centers around a study of Poisson's integral in two dimensions and of the corresponding Stieltjes integral. The results are then extended to the integrals in terms of Green's functions for general regions. There are some thirty exercises scattered throughout the text. These are designed in part to familiarize the reader with the concepts introduced, and in part to complement the theory. The reader should know some

  13. Logarithmic conformal field theory through nilpotent conformal dimensions

    International Nuclear Information System (INIS)

    Moghimi-Araghi, S.; Rouhani, S.; Saadat, M.

    2001-01-01

    We study logarithmic conformal field theories (LCFTs) through the introduction of nilpotent conformal weights. Using this device, we derive the properties of LCFTs such as the transformation laws, singular vectors and the structure of correlation functions. We discuss the emergence of an extra energy momentum tensor, which is the logarithmic partner of the energy momentum tensor

  14. Gaussian solitary waves for the logarithmic-KdV and the logarithmic-KP equations

    International Nuclear Information System (INIS)

    Wazwaz, Abdul-Majid

    2014-01-01

    We investigate the logarithmic-KdV equation for more Gaussian solitary waves. We extend this work to derive the logarithmic-KP (Kadomtsev–Petviashvili) equation. We show that both logarithmic models are characterized by their Gaussian solitons. (paper)

  15. Arithmetical and geometrical means of generalized logarithmic and exponential functions: Generalized sum and product operators

    International Nuclear Information System (INIS)

    Arruda, Tiago Jose; Silva Gonzalez, Rodrigo; Sangaletti Tercariol, Cesar Augusto; Souto Martinez, Alexandre

    2008-01-01

    One-parameter generalizations of the logarithmic and exponential functions have been obtained as well as algebraic operators to retrieve extensivity. Analytical expressions for the successive applications of the sum or product operators on several values of a variable are obtained here. Applications of the above formalism are considered

  16. Quenched chiral logarithms

    International Nuclear Information System (INIS)

    Sharpe, S.R.

    1992-04-01

    I develop a diagrammatic method for calculating chiral logarithms in the quenched approximation. While not rigorous, the method is based on physically reasonable assumptions, which can be tested by numerical simulations. The main results are that, at leading order in the chiral expansion, (a) there are no chiral logarithms in quenched f π m u = m d ; (b) the chiral logarithms in B K and related kaon B-parameters are, for m d = m s the same in the quenched approximation as in the full theory (c) for m π and the condensate, there are extra chiral logarithms due to loops containing the η', which lead to a peculiar non-analytic dependence of these quantities on the bare quark mass. Following the work of Gasser and Leutwyler, I discuss how there is a predictable finite volume dependence associated with each chiral logarithm. I compare the resulting predictions with numerical results: for most quantities the expected volume dependence is smaller than the errors. but for B V and B A there is an observed dependence which is consistent with the predictions

  17. Source-independent elastic waveform inversion using a logarithmic wavefield

    KAUST Repository

    Choi, Yun Seok

    2012-01-01

    The logarithmic waveform inversion has been widely developed and applied to some synthetic and real data. In most logarithmic waveform inversion algorithms, the subsurface velocities are updated along with the source estimation. To avoid estimating the source wavelet in the logarithmic waveform inversion, we developed a source-independent logarithmic waveform inversion algorithm. In this inversion algorithm, we first normalize the wavefields with the reference wavefield to remove the source wavelet, and then take the logarithm of the normalized wavefields. Based on the properties of the logarithm, we define three types of misfit functions using the following methods: combination of amplitude and phase, amplitude-only, and phase-only. In the inversion, the gradient is computed using the back-propagation formula without directly calculating the Jacobian matrix. We apply our algorithm to noise-free and noise-added synthetic data generated for the modified version of elastic Marmousi2 model, and compare the results with those of the source-estimation logarithmic waveform inversion. For the noise-free data, the source-independent algorithms yield velocity models close to true velocity models. For random-noise data, the source-estimation logarithmic waveform inversion yields better results than the source-independent method, whereas for coherent-noise data, the results are reversed. Numerical results show that the source-independent and source-estimation logarithmic waveform inversion methods have their own merits for random- and coherent-noise data. © 2011.

  18. Stability of a Jensen Type Logarithmic Functional Equation on Restricted Domains and Its Asymptotic Behaviors

    Directory of Open Access Journals (Sweden)

    Chung Jae-Young

    2010-01-01

    Full Text Available Let be the set of positive real numbers, a Banach space, and , with . We prove the Hyers-Ulam stability of the Jensen type logarithmic functional inequality in restricted domains of the form for fixed with or and . As consequences of the results we obtain asymptotic behaviors of the inequality as .

  19. Leading infrared logarithms and vacuum structure of QCD3

    International Nuclear Information System (INIS)

    Guendelman, E.I.

    1990-01-01

    QCD 3 is a superrenormalizable, massless theory; therefore off-mass-shell infrared divergences appear in the loop expansion. This paper shows how certain infrared divergences can be subtracted by changing the boundary conditions in the functional integral, letting the vector potentials approach non-zero constant values at infinity. Infrared divergences, in the Green's functions, come together with powers of logarithms of the external momenta, and among the infrared divergences we deal with, there are those that give rise to the leading and first subleading logarithms. The authors show how for two-point functions it is possible to sum the leading and first subleading logarithms to all orders. This procedure defines a nonperturbative approximation for QCD 3 . The authors find that in the ultraviolet region these summations are well defined, while in the infrared region, some additional prescription is needed to make sense out of them

  20. Optimized logarithmic phase masks used to generate defocus invariant modulation transfer function for wavefront coding system.

    Science.gov (United States)

    Zhao, Hui; Li, Yingcai

    2010-08-01

    In a previous Letter [Opt. Lett. 33, 1171 (2008)], we proposed an improved logarithmic phase mask by making modifications to the original one designed by Sherif. However, further studies in another paper [Appl. Opt. 49, 229 (2010)] show that even when the Sherif mask and the improved one are optimized, their corresponding defocused modulation transfer functions (MTFs) are still not stable with respect to focus errors. So, by further modifying their phase profiles, we design another two logarithmic phase masks that exhibit more stable defocused MTF. However, with the defocus-induced phase effect considered, we find that the performance of the two masks proposed in this Letter is better than the Sherif mask, but worse than our previously proposed phase mask, according to the Hilbert space angle.

  1. Logarithmic residues in Banach algebras

    NARCIS (Netherlands)

    H. Bart (Harm); T. Ehrhardt; B. Silbermann

    1994-01-01

    textabstractLet f be an analytic Banach algebra valued function and suppose that the contour integral of the logarithmic derivative f′f-1 around a Cauchy domain D vanishes. Does it follow that f takes invertible values on all of D? For important classes of Banach algebras, the answer is positive. In

  2. A logarithmic quantization index modulation for perceptually better data hiding.

    Science.gov (United States)

    Kalantari, Nima Khademi; Ahadi, Seyed Mohammad

    2010-06-01

    In this paper, a novel arrangement for quantizer levels in the Quantization Index Modulation (QIM) method is proposed. Due to perceptual advantages of logarithmic quantization, and in order to solve the problems of a previous logarithmic quantization-based method, we used the compression function of mu-Law standard for quantization. In this regard, the host signal is first transformed into the logarithmic domain using the mu-Law compression function. Then, the transformed data is quantized uniformly and the result is transformed back to the original domain using the inverse function. The scalar method is then extended to vector quantization. For this, the magnitude of each host vector is quantized on the surface of hyperspheres which follow logarithmic radii. Optimum parameter mu for both scalar and vector cases is calculated according to the host signal distribution. Moreover, inclusion of a secret key in the proposed method, similar to the dither modulation in QIM, is introduced. Performance of the proposed method in both cases is analyzed and the analytical derivations are verified through extensive simulations on artificial signals. The method is also simulated on real images and its performance is compared with previous scalar and vector quantization-based methods. Results show that this method features stronger a watermark in comparison with conventional QIM and, as a result, has better performance while it does not suffer from the drawbacks of a previously proposed logarithmic quantization algorithm.

  3. An analytical expression for the non-singlet structure functions at small χ in the double logarithmic approximation

    International Nuclear Information System (INIS)

    Lublinsky, M.

    2004-01-01

    A simple analytic expression for the non-singlet structure function fns is given. The expression is derived from the result of B. I. Ermolaev et al. (1996) obtained by low x resummation of the quark ladder diagrams in the double logarithmic approximation of perturbative QCD. (orig.)

  4. On the logarithmic-singularity correction in the kernel function method of subsonic lifting-surface theory

    Science.gov (United States)

    Lan, C. E.; Lamar, J. E.

    1977-01-01

    A logarithmic-singularity correction factor is derived for use in kernel function methods associated with Multhopp's subsonic lifting-surface theory. Because of the form of the factor, a relation was formulated between the numbers of chordwise and spanwise control points needed for good accuracy. This formulation is developed and discussed. Numerical results are given to show the improvement of the computation with the new correction factor.

  5. Weighted Composition Operators from Hardy Spaces into Logarithmic Bloch Spaces

    Directory of Open Access Journals (Sweden)

    Flavia Colonna

    2012-01-01

    Full Text Available The logarithmic Bloch space Blog⁡ is the Banach space of analytic functions on the open unit disk 𝔻 whose elements f satisfy the condition ∥f∥=sup⁡z∈𝔻(1-|z|2log⁡  (2/(1-|z|2|f'(z|<∞. In this work we characterize the bounded and the compact weighted composition operators from the Hardy space Hp (with 1≤p≤∞ into the logarithmic Bloch space. We also provide boundedness and compactness criteria for the weighted composition operator mapping Hp into the little logarithmic Bloch space defined as the subspace of Blog⁡ consisting of the functions f such that lim⁡|z|→1(1-|z|2log⁡  (2/(1-|z|2|f'(z|=0.

  6. Logarithmic compression methods for spectral data

    Science.gov (United States)

    Dunham, Mark E.

    2003-01-01

    A method is provided for logarithmic compression, transmission, and expansion of spectral data. A log Gabor transformation is made of incoming time series data to output spectral phase and logarithmic magnitude values. The output phase and logarithmic magnitude values are compressed by selecting only magnitude values above a selected threshold and corresponding phase values to transmit compressed phase and logarithmic magnitude values. A reverse log Gabor transformation is then performed on the transmitted phase and logarithmic magnitude values to output transmitted time series data to a user.

  7. Characterization of short necklace states in the logarithmic transmission spectra of localized systems.

    Science.gov (United States)

    Chen, Liang; Jiang, Xunya

    2013-05-01

    High transmission plateaus exist widely in the logarithmic transmission spectra of localized systems. Their physical origins are short chains of coupled localized states embedded inside the localized system, which are dubbed as 'short necklace states'. In this work, we define the essential quantities and then, based on these quantities, we investigate the properties of the short necklace states statistically and quantitatively. Two different approaches are utilized and their results agree very well. In the first approach, the typical plateau-width and the typical order of short necklace states are obtained from the correlation function of the logarithmic transmission. In the second approach, we investigate the statistical distribution of the peak/plateau-width measured in the logarithmic transmission spectra. A novel distribution is found, which can be exactly fitted by the summation of two Gaussian distributions. These two distributions are the results of sharp peaks of localized states and the high plateaus of short necklace states. The center of the second distribution also tells us the typical plateau-width of short necklace states. With increasing system length, the scaling property of the typical plateau-width is very special since it hardly decreases. The methods and quantities defined in this work can be widely used in Anderson localization studies.

  8. One-way functions based on the discrete logarithm problem in the groups meeting conditions C(3-T (6

    Directory of Open Access Journals (Sweden)

    N. V. Bezverkhniy

    2014-01-01

    Full Text Available In this work we are consider a possibility to create schemes of open key distribution in the groups meeting conditions C(3-T(6. Our constructions use the following algorithms.1. The algorithm that solves the membership problem for cyclic subgroups, also known as the discrete logarithm problem.2. The algorithm that solves the word problem in this class of groups.Our approach is based on the geometric methods of combinatorial group theory (the method of diagrams in groups.In a cryptographic scheme based on the open key distribution one-way functions are used, i.e. functions direct calculation of which must be much easier than that of the inverse one. Our task was to construct a one-way function using groups with small cancelation conditions C(3-T(6 and to compare the calculation complexity of this function with the calculation complexity of its inverse.P.W. Shor has shown in the paper that there exists a polynomial algorithm that can be implemented in a quantum computer to solve the discrete logarithm problem in the groups of units of finite fields and the rings of congruences mod n. This stimulated a series of investigations trying to find alternative complicated mathematical problems that can be used for construction of new asymmetric cryptosystems. For example, open key distribution systems based on the conjugacy problem in matrix groups and the braid groups were proposed.In the other papers the constructions used the discrete logarithm problem in the groups of inner automorphisms of semi-direct products of SL(2,Z and Zp and GL(2,Zp and Zp. groups. The paper of E. Sakalauskas, P. Tvarijonas, A. Raulinaitis proposed a scheme that uses a composition of two problems of group theory, namely the conjugacy problem and the discrete logarithm problem.Our results show that the scheme that we propose is of polynomial complexity. Therefore its security is not sufficient for further applications in communications. However the security can be improved

  9. Mathematical model for logarithmic scaling of velocity fluctuations in wall turbulence.

    Science.gov (United States)

    Mouri, Hideaki

    2015-12-01

    For wall turbulence, moments of velocity fluctuations are known to be logarithmic functions of the height from the wall. This logarithmic scaling is due to the existence of a characteristic velocity and to the nonexistence of any characteristic height in the range of the scaling. By using the mathematics of random variables, we obtain its necessary and sufficient conditions. They are compared with characteristics of a phenomenological model of eddies attached to the wall and also with those of the logarithmic scaling of the mean velocity.

  10. The ABC (in any D) of logarithmic CFT

    Science.gov (United States)

    Hogervorst, Matthijs; Paulos, Miguel; Vichi, Alessandro

    2017-10-01

    Logarithmic conformal field theories have a vast range of applications, from critical percolation to systems with quenched disorder. In this paper we thoroughly examine the structure of these theories based on their symmetry properties. Our analysis is model-independent and holds for any spacetime dimension. Our results include a determination of the general form of correlation functions and conformal block decompositions, clearing the path for future bootstrap applications. Several examples are discussed in detail, including logarithmic generalized free fields, holographic models, self-avoiding random walks and critical percolation.

  11. Logarithmic Laplacian Prior Based Bayesian Inverse Synthetic Aperture Radar Imaging.

    Science.gov (United States)

    Zhang, Shuanghui; Liu, Yongxiang; Li, Xiang; Bi, Guoan

    2016-04-28

    This paper presents a novel Inverse Synthetic Aperture Radar Imaging (ISAR) algorithm based on a new sparse prior, known as the logarithmic Laplacian prior. The newly proposed logarithmic Laplacian prior has a narrower main lobe with higher tail values than the Laplacian prior, which helps to achieve performance improvement on sparse representation. The logarithmic Laplacian prior is used for ISAR imaging within the Bayesian framework to achieve better focused radar image. In the proposed method of ISAR imaging, the phase errors are jointly estimated based on the minimum entropy criterion to accomplish autofocusing. The maximum a posterior (MAP) estimation and the maximum likelihood estimation (MLE) are utilized to estimate the model parameters to avoid manually tuning process. Additionally, the fast Fourier Transform (FFT) and Hadamard product are used to minimize the required computational efficiency. Experimental results based on both simulated and measured data validate that the proposed algorithm outperforms the traditional sparse ISAR imaging algorithms in terms of resolution improvement and noise suppression.

  12. Logarithmic Laplacian Prior Based Bayesian Inverse Synthetic Aperture Radar Imaging

    Directory of Open Access Journals (Sweden)

    Shuanghui Zhang

    2016-04-01

    Full Text Available This paper presents a novel Inverse Synthetic Aperture Radar Imaging (ISAR algorithm based on a new sparse prior, known as the logarithmic Laplacian prior. The newly proposed logarithmic Laplacian prior has a narrower main lobe with higher tail values than the Laplacian prior, which helps to achieve performance improvement on sparse representation. The logarithmic Laplacian prior is used for ISAR imaging within the Bayesian framework to achieve better focused radar image. In the proposed method of ISAR imaging, the phase errors are jointly estimated based on the minimum entropy criterion to accomplish autofocusing. The maximum a posterior (MAP estimation and the maximum likelihood estimation (MLE are utilized to estimate the model parameters to avoid manually tuning process. Additionally, the fast Fourier Transform (FFT and Hadamard product are used to minimize the required computational efficiency. Experimental results based on both simulated and measured data validate that the proposed algorithm outperforms the traditional sparse ISAR imaging algorithms in terms of resolution improvement and noise suppression.

  13. Static versus Dynamic Disposition: The Role of GeoGebra in Representing Polynomial-Rational Inequalities and Exponential-Logarithmic Functions

    Science.gov (United States)

    Caglayan, Günhan

    2014-01-01

    This study investigates prospective secondary mathematics teachers' visual representations of polynomial and rational inequalities, and graphs of exponential and logarithmic functions with GeoGebra Dynamic Software. Five prospective teachers in a university in the United States participated in this research study, which was situated within a…

  14. Using History to Teach Mathematics: The Case of Logarithms

    Science.gov (United States)

    Panagiotou, Evangelos N.

    2011-01-01

    Many authors have discussed the question why we should use the history of mathematics to mathematics education. For example, Fauvel (For Learn Math, 11(2): 3-6, 1991) mentions at least fifteen arguments for applying the history of mathematics in teaching and learning mathematics. Knowing how to introduce history into mathematics lessons is a more difficult step. We found, however, that only a limited number of articles contain instructions on how to use the material, as opposed to numerous general articles suggesting the use of the history of mathematics as a didactical tool. The present article focuses on converting the history of logarithms into material appropriate for teaching students of 11th grade, without any knowledge of calculus. History uncovers that logarithms were invented prior of the exponential function and shows that the logarithms are not an arbitrary product, as is the case when we leap straight in the definition given in all modern textbooks, but they are a response to a problem. We describe step by step the historical evolution of the concept, in a way appropriate for use in class, until the definition of the logarithm as area under the hyperbola. Next, we present the formal development of the theory and define the exponential function. The teaching sequence has been successfully undertaken in two high school classrooms.

  15. Logarithmic current-measuring transistor circuits

    DEFF Research Database (Denmark)

    Højberg, Kristian Søe

    1967-01-01

    Describes two transistorized circuits for the logarithmic measurement of small currents suitable for nuclear reactor instrumentation. The logarithmic element is applied in the feedback path of an amplifier, and only one dual transistor is used as logarithmic diode and temperature compensating...... transistor. A simple one-amplifier circuit is compared with a two-amplifier system. The circuits presented have been developed in connexion with an amplifier using a dual m.o.s. transistor input stage with diode-protected gates....

  16. Logarithmic scaling in the near-dissipation range of turbulence

    International Nuclear Information System (INIS)

    Sreenivasan, K.R.; Bershadskii, A.

    2006-12-01

    A logarithmic scaling for structure functions, in the form S p ∼ [ln(r/η)] ζp , where η is the Kolmogorov dissipation scale and ζ p are the scaling exponents, is suggested for the statistical description of the near-dissipation range for which classical power-law scaling does not apply. From experimental data at moderate Reynolds numbers, it is shown that the logarithmic scaling, deduced from general considerations for the near-dissipation range, covers almost the entire range of scales (about two decades) of structure functions, for both velocity and passive scalar fields. This new scaling requires two empirical constants, just as the classical scaling does, and can be considered the basis for extended self-similarity. (author)

  17. Lee-Yang zeroes and logarithmic corrections in the Φ44 theory

    International Nuclear Information System (INIS)

    Kenna, R.; Lang, C.B.

    1993-01-01

    The leading mean-field critical behaviour of φ 4 4 -theory is modified by multiplicative logarithmic corrections. We analyse these corrections both analytically and numerically. In particular we present a finite-size scaling theory for the Lee-Yang zeroes and temperature zeroes, both of which exhibit logarithmic corrections. On lattices from size 8 4 to 24 4 , Monte-Carlo cluster methods and multi-histogram techniques are used to determine the partition function zeroes closest to the critical point. Finite-size scaling behaviour is verified and the logarithmic corrections are found to be in good agreement with our analytical predictions. (orig.)

  18. Fast logarithmic amplifier

    International Nuclear Information System (INIS)

    Tai, I.; Hasegawa, K.

    1975-01-01

    This paper reports on the improvement of frequency characteristics of a logarithmic amplifier with a Paterson transdiode connection. The improvement of the response speed has been achieved by using a phase compensation technique. Small signal response analyses of the logging circuit revealed the effects of a series resistor Rsub(p) and a parallel capacitance Csub(p) on the response of the circuit. The improvement of the frequency characteristics are remarkable at higher current levels. These facts were proved by the practical logarithmic amplifier. (auth.)

  19. Evaporation Loss of Light Elements as a Function of Cooling Rate: Logarithmic Law

    Science.gov (United States)

    Xiong, Yong-Liang; Hewins, Roger H.

    2003-01-01

    Knowledge about the evaporation loss of light elements is important to our understanding of chondrule formation processes. The evaporative loss of light elements (such as B and Li) as a function of cooling rate is of special interest because recent investigations of the distribution of Li, Be and B in meteoritic chondrules have revealed that Li varies by 25 times, and B and Be varies by about 10 times. Therefore, if we can extrapolate and interpolate with confidence the evaporation loss of B and Li (and other light elements such as K, Na) at a wide range of cooling rates of interest based upon limited experimental data, we would be able to assess the full range of scenarios relating to chondrule formation processes. Here, we propose that evaporation loss of light elements as a function of cooling rate should obey the logarithmic law.

  20. Logarithmic residues and sums of idempotents in the Banach algebra generated by the compact operators and the identity.

    NARCIS (Netherlands)

    H. Bart (Harm); T. Ehrhardt; B. Silbermann

    2001-01-01

    textabstractA logarithmic residue is a contour integral of the (left or right) logarithmic derivative of an analytic Banach algebra valued function. Logarithmic residues are intimately related to sums of idempotents. The present paper is concerned with logarithmic residues and sums of idempotents in

  1. Summing up subleading Sudakov logarithms

    International Nuclear Information System (INIS)

    Kuehn, J.H.; Penin, A.A.; Smirnov, V.A.

    2000-01-01

    We apply the strategy of regions within dimensional regularization to find functions involved in evolution equations which govern the asymptotic dynamics of the Abelian form factor and four-fermion amplitude in the SU(N) gauge theory in the Sudakov limit up to the next-to-leading logarithmic approximation. The results are used for the analysis of the dominant electroweak corrections to the fermion-antifermion pair production in the e + e - annihilation at high energy. (orig.)

  2. Altering Height Data by Using Natural Logarithm as 3D Modelling Function for Reverse Engineering Application

    Science.gov (United States)

    Ilham Aminullah Abdulqawi, Nur; Salman Abu Mansor, Mohd

    2018-01-01

    The raw data extracted from reverse engineering based on vision mostly do not resemble the actual geometrical representation yet. Even though the higher object surface reflected the most visible light towards the camera and yield higher number of value based on Lambertian illumination model, this does not mean the curvature profile are always accurate. After all, there are many mathematical models to shape curvature profiles into the correct representation. However, one of the most appropriate models found is the natural logarithm function. The function itself has alteration properties towards the raw data generated from reverse engineering based on vision.

  3. Logarithmic corrections to scaling in the XY2-model

    International Nuclear Information System (INIS)

    Kenna, R.; Irving, A.C.

    1995-01-01

    We study the distribution of partition function zeroes for the XY-model in two dimensions. In particular we find the scaling behaviour of the end of the distribution of zeroes in the complex external magnetic field plane in the thermodynamic limit (the Yang-Lee edge) and the form for the density of these zeroes. Assuming that finite-size scaling holds, we show that there have to exist logarithmic corrections to the leading scaling behaviour of thermodynamic quantities in this model. These logarithmic corrections are also manifest in the finite-size scaling formulae and we identify them numerically. The method presented here can be used to check the compatibility of scaling behaviour of odd and even thermodynamic functions in other models too. ((orig.))

  4. One-Way Functions and Composition of Conjugacy and Discrete Logarithm Problems in the Small Cancellation Groups

    Directory of Open Access Journals (Sweden)

    N. V. Bezverkhniy

    2015-01-01

    Full Text Available The paper considers the possibility for building a one-way function in the small cancellation group. Thus, it uses the algorithm to solve the problem for a cyclic subgroup, also known as a discrete logarithm problem, and the algorithm to solve the word problem in this class of groups.Research is conducted using geometric methods of combinatorial group theory (the method of diagrams in groups.In public channel exchange of information are used one-way functions, direct calculation of which should be much less complicated than the calculation of the inverse function. The paper considers the combination of two problems: discrete logarithms and conjugacy. This leads to the problem of conjugate membership for a cyclic subgroup. The work proposes an algorithm based on this problem, which can be used as a basis in investigation of the appropriate one-way function for its fitness to build a public key distribution scheme.The study used doughnut charts of word conjugacy, and for one special class of such charts has been proven a property of the layer-based periodicity. The presence of such properties is obviously leads to a solution of the power conjugacy of words in the considered class of groups. Unfortunately, this study failed to show any periodicity of a doughnut chart, but for one of two possible classes this periodicity has been proven.The building process of one-way function considered in the paper was studied in terms of possibility to calculate both direct and inverse mappings. The computational complexity was not considered. Thus, the following two tasks were yet unresolved: determining the quality of one-way function in the above protocol of the public key distribution and completing the study of the periodicity of doughnut charts of word conjugacy, leading to a positive solution of the power conjugacy of words in the class groups under consideration.

  5. Design of a Programmable Gain, Temperature Compensated Current-Input Current-Output CMOS Logarithmic Amplifier.

    Science.gov (United States)

    Ming Gu; Chakrabartty, Shantanu

    2014-06-01

    This paper presents the design of a programmable gain, temperature compensated, current-mode CMOS logarithmic amplifier that can be used for biomedical signal processing. Unlike conventional logarithmic amplifiers that use a transimpedance technique to generate a voltage signal as a logarithmic function of the input current, the proposed approach directly produces a current output as a logarithmic function of the input current. Also, unlike a conventional transimpedance amplifier the gain of the proposed logarithmic amplifier can be programmed using floating-gate trimming circuits. The synthesis of the proposed circuit is based on the Hart's extended translinear principle which involves embedding a floating-voltage source and a linear resistive element within a translinear loop. Temperature compensation is then achieved using a translinear-based resistive cancelation technique. Measured results from prototypes fabricated in a 0.5 μm CMOS process show that the amplifier has an input dynamic range of 120 dB and a temperature sensitivity of 230 ppm/°C (27 °C- 57°C), while consuming less than 100 nW of power.

  6. Logarithmic conformal field theory: beyond an introduction

    International Nuclear Information System (INIS)

    Creutzig, Thomas; Ridout, David

    2013-01-01

    This article aims to review a selection of central topics and examples in logarithmic conformal field theory. It begins with the remarkable observation of Cardy that the horizontal crossing probability of critical percolation may be computed analytically within the formalism of boundary conformal field theory. Cardy’s derivation relies on certain implicit assumptions which are shown to lead inexorably to indecomposable modules and logarithmic singularities in correlators. For this, a short introduction to the fusion algorithm of Nahm, Gaberdiel and Kausch is provided. While the percolation logarithmic conformal field theory is still not completely understood, there are several examples for which the formalism familiar from rational conformal field theory, including bulk partition functions, correlation functions, modular transformations, fusion rules and the Verlinde formula, has been successfully generalized. This is illustrated for three examples: the singlet model M(1,2), related to the triplet model W(1,2), symplectic fermions and the fermionic bc ghost system; the fractional level Wess–Zumino–Witten model based on sl-hat (2) at k=−(1/2), related to the bosonic βγ ghost system; and the Wess–Zumino–Witten model for the Lie supergroup GL(1∣1), related to SL(2∣1) at k=−(1/2) and 1, the Bershadsky–Polyakov algebra W 3 (2) and the Feigin–Semikhatov algebras W n (2) . These examples have been chosen because they represent the most accessible, and most useful, members of the three best-understood families of logarithmic conformal field theories. The logarithmic minimal models W(q,p), the fractional level Wess–Zumino–Witten models, and the Wess–Zumino–Witten models on Lie supergroups (excluding OSP(1∣2n)). In this review, the emphasis lies on the representation theory of the underlying chiral algebra and the modular data pertaining to the characters of the representations. Each of the archetypal logarithmic conformal field theories is

  7. A comparison of linear and logarithmic auditory tones in pulse oximeters.

    Science.gov (United States)

    Brown, Zoe; Edworthy, Judy; Sneyd, J Robert; Schlesinger, Joseph

    2015-11-01

    This study compared the ability of forty anaesthetists to judge absolute levels of oxygen saturation, direction of change, and size of change in saturation using auditory pitch and pitch difference in two laboratory-based studies that compared a linear pitch scale with a logarithmic scale. In the former the differences in saturation become perceptually closer as the oxygenation level becomes higher whereas in the latter the pitch differences are perceptually equivalent across the whole range of values. The results show that anaesthetist participants produce significantly more accurate judgements of both absolute oxygenation values and size of oxygenation level difference when a logarithmic, rather than a linear, scale is used. The line of best fit for the logarithmic function was also closer to x = y than for the linear function. The results of these studies can inform the development and standardisation of pulse oximetry tones in order to improve patient safety. Copyright © 2015 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  8. The European Logarithmic Microprocessor

    Czech Academy of Sciences Publication Activity Database

    Coleman, J. N.; Softley, C. I.; Kadlec, Jiří; Matoušek, R.; Tichý, Milan; Pohl, Zdeněk; Heřmánek, Antonín; Benschop, N. F.

    2008-01-01

    Roč. 57, č. 4 (2008), s. 532-546 ISSN 0018-9340 Grant - others:Evropská komise(BE) ESPRIT 33544 Institutional research plan: CEZ:AV0Z10750506 Source of funding: R - rámcový projekt EK Keywords : Processor architecture * arithmetic unit * logarithmic arithmetic Subject RIV: JC - Computer Hardware ; Software Impact factor: 2.611, year: 2008 http://library.utia.cas.cz/separaty/2008/ZS/kadlec-the%20european%20logarithmic%20microprocessor.pdf

  9. Intersection of the Exponential and Logarithmic Curves

    Science.gov (United States)

    Boukas, Andreas; Valahas, Theodoros

    2009-01-01

    The study of the number of intersection points of y = a[superscript x] and y = log[subscript a]x can be an interesting topic to present in a single-variable calculus class. In this article, the authors present a classroom presentation outline involving the basic algebra and the elementary calculus of the exponential and logarithmic functions. The…

  10. Computing Logarithms Digit-by-Digit

    Science.gov (United States)

    Goldberg, Mayer

    2005-01-01

    In this work, we present an algorithm for computing logarithms of positive real numbers, that bears structural resemblance to the elementary school algorithm of long division. Using this algorithm, we can compute successive digits of a logarithm using a 4-operation pocket calculator. The algorithm makes no use of Taylor series or calculus, but…

  11. How to average logarithmic retrievals?

    Directory of Open Access Journals (Sweden)

    B. Funke

    2012-04-01

    Full Text Available Calculation of mean trace gas contributions from profiles obtained by retrievals of the logarithm of the abundance rather than retrievals of the abundance itself are prone to biases. By means of a system simulator, biases of linear versus logarithmic averaging were evaluated for both maximum likelihood and maximum a priori retrievals, for various signal to noise ratios and atmospheric variabilities. These biases can easily reach ten percent or more. As a rule of thumb we found for maximum likelihood retrievals that linear averaging better represents the true mean value in cases of large local natural variability and high signal to noise ratios, while for small local natural variability logarithmic averaging often is superior. In the case of maximum a posteriori retrievals, the mean is dominated by the a priori information used in the retrievals and the method of averaging is of minor concern. For larger natural variabilities, the appropriateness of the one or the other method of averaging depends on the particular case because the various biasing mechanisms partly compensate in an unpredictable manner. This complication arises mainly because of the fact that in logarithmic retrievals the weight of the prior information depends on abundance of the gas itself. No simple rule was found on which kind of averaging is superior, and instead of suggesting simple recipes we cannot do much more than to create awareness of the traps related with averaging of mixing ratios obtained from logarithmic retrievals.

  12. Logarithmic bred vectors in spatiotemporal chaos: structure and growth.

    Science.gov (United States)

    Hallerberg, Sarah; Pazó, Diego; López, Juan M; Rodríguez, Miguel A

    2010-06-01

    Bred vectors are a type of finite perturbation used in prediction studies of atmospheric models that exhibit spatially extended chaos. We study the structure, spatial correlations, and the growth rates of logarithmic bred vectors (which are constructed by using a given norm). We find that, after a suitable transformation, logarithmic bred vectors are roughly piecewise copies of the leading Lyapunov vector. This fact allows us to deduce a scaling law for the bred vector growth rate as a function of its amplitude. In addition, we relate growth rates with the spectrum of Lyapunov exponents corresponding to the most expanding directions. We illustrate our results with simulations of the Lorenz 1996 model.

  13. Numerical differentiation methods for the logarithmic derivative technique used in dielectric spectroscopy

    Directory of Open Access Journals (Sweden)

    Henrik Haspel

    2010-06-01

    Full Text Available In dielectric relaxation spectroscopy the conduction contribution often hampers the evaluation of dielectric spectra, especially in the low-frequency regime. In order to overcome this the logarithmic derivative technique could be used, where the calculation of the logarithmic derivative of the real part of the complex permittivity function is needed. Since broadband dielectric measurement provides discrete permittivity function, numerical differentiation has to be used. Applicability of the Savitzky-Golay convolution method in the derivative analysis is examined, and a detailed investigation of the influential parameters (frequency, spectrum resolution, peak shape is presented on synthetic dielectric data.

  14. On the Divergence of N(o)rlund Logarithmic Means of Walsh-Fourier Series

    Institute of Scientific and Technical Information of China (English)

    Gy(o)rgy GAT; Ushangi GOGINAVA

    2009-01-01

    It is well known in the literature that the logarithmic means1/log n n-1∑k=1 Sk(f)/kof Walsh or trigonometric Fourier series converge a.e. to the function for each integrable function on the unit interval. This is not the case if we take the partial sums. In this paper we prove that the behavior of the so-called N(o)rlund logarithmic means1/log n n-1∑k=1 Sk(f)/n-kis closer to the properties of partial sums in this point of view.

  15. Thermodynamic basis for expressing dose logarithmically

    International Nuclear Information System (INIS)

    Waddell, William J.

    2008-01-01

    The current explanations for using a logarithmic scale for the dose of a chemical, administered to a biological system, have all been empirical. There is a fundamental, thermodynamic reason why a logarithmic scale must be used. The chemical potential is the effect that a chemical exerts on any system, including biological systems. The chemical potential of a chemical in any system is directly proportional to the logarithm of its activity or concentration. Lack of understanding of this concept and the consequent use of a linear scale for dose has led to misinterpretation of many biological experiments

  16. Improvement of two-dimensional gravity analysis by using logarithmic functions; Taisu kansu wo mochiita nijigen juryoku kaiseki no kairyo

    Energy Technology Data Exchange (ETDEWEB)

    Makino, M; Murata, Y [Geological Survey of Japan, Tsukuba (Japan)

    1996-05-01

    An examination was made, in the two dimensional tectonic analysis by gravity exploration, on a method that was applicable from a deep underground part to a shallow geological structure by using logarithmic functions. In the examination, a case was considered in which an underground structure was divided into a basement and a covering formation and in which the boundary part had undulations. An equation to calculate a basement structure from a gravity anomaly was derived so that, taking into consideration the effect from the height of an observation point, it might be applicable to the shallow distribution of the basement depth. In the test calculation, a model was assumed reaching the depth near the surface with the basement being a step structure. Density difference was set as 0.4g/cm{sup 3}. An analysis using an equation two-dimensionally modified from Ogihara`s (1987) method produced a fairly reasonable result, showing, however, a deformed basement around the boundary of the step structure, with the appearance of a small pulse-shaped structure. The analysis using logarithmic functions revealed that the original basement structure was faithfully restored. 3 refs., 5 figs.

  17. A factorization approach to next-to-leading-power threshold logarithms

    Energy Technology Data Exchange (ETDEWEB)

    Bonocore, D. [Nikhef,Science Park 105, NL-1098 XG Amsterdam (Netherlands); Laenen, E. [Nikhef,Science Park 105, NL-1098 XG Amsterdam (Netherlands); ITFA, University of Amsterdam,Science Park 904, Amsterdam (Netherlands); ITF, Utrecht University,Leuvenlaan 4, Utrecht (Netherlands); Magnea, L. [Dipartimento di Fisica, Università di Torino and INFN, Sezione di Torino,Via P. Giuria 1, I-10125, Torino (Italy); Melville, S. [School of Physics and Astronomy, University of Glasgow,Glasgow, G12 8QQ (United Kingdom); Vernazza, L. [Higgs Centre for Theoretical Physics, School of Physics and Astronomy, University of Edinburgh,Edinburgh, EH9 3JZ, Scotland (United Kingdom); White, C.D. [School of Physics and Astronomy, University of Glasgow,Glasgow, G12 8QQ (United Kingdom)

    2015-06-03

    Threshold logarithms become dominant in partonic cross sections when the selected final state forces gluon radiation to be soft or collinear. Such radiation factorizes at the level of scattering amplitudes, and this leads to the resummation of threshold logarithms which appear at leading power in the threshold variable. In this paper, we consider the extension of this factorization to include effects suppressed by a single power of the threshold variable. Building upon the Low-Burnett-Kroll-Del Duca (LBKD) theorem, we propose a decomposition of radiative amplitudes into universal building blocks, which contain all effects ultimately responsible for next-to-leading-power (NLP) threshold logarithms in hadronic cross sections for electroweak annihilation processes. In particular, we provide a NLO evaluation of the radiative jet function, responsible for the interference of next-to-soft and collinear effects in these cross sections. As a test, using our expression for the amplitude, we reproduce all abelian-like NLP threshold logarithms in the NNLO Drell-Yan cross section, including the interplay of real and virtual emissions. Our results are a significant step towards developing a generally applicable resummation formalism for NLP threshold effects, and illustrate the breakdown of next-to-soft theorems for gauge theory amplitudes at loop level.

  18. Airy asymptotics: the logarithmic derivative and its reciprocal

    International Nuclear Information System (INIS)

    Kearney, Michael J; Martin, Richard J

    2009-01-01

    We consider the asymptotic expansion of the logarithmic derivative of the Airy function Ai'(z)/Ai(z), and also its reciprocal Ai(z)/Ai'(z), as |z| → ∞. We derive simple, closed-form solutions for the coefficients which appear in these expansions, which are of interest since they are encountered in a wide variety of problems. The solutions are presented as Mellin transforms of given functions; this fact, together with the methods employed, suggests further avenues for research.

  19. SLE local martingales in logarithmic representations

    International Nuclear Information System (INIS)

    Kytölä, Kalle

    2009-01-01

    A space of local martingales of SLE-type growth processes forms a representation of Virasoro algebra, but apart from a few simplest cases, not much is known about this representation. The purpose of this paper is to exhibit examples of representations where L 0 is not diagonalizable—a phenomenon characteristic of logarithmic conformal field theory. Furthermore, we observe that the local martingales bear a close relation to the fusion product of the boundary changing fields. Our examples reproduce first of all many familiar logarithmic representations at certain rational values of the central charge. In particular we discuss the case of SLE κ=6 describing the exploration path in critical percolation and its relation to the question of operator content of the appropriate conformal field theory of zero central charge. In this case one encounters logarithms in a probabilistically transparent way, through conditioning on a crossing event. But we also observe that some quite natural SLE variants exhibit logarithmic behavior at all values of κ, thus at all central charges and not only at specific rational values

  20. Ageing in dense colloids as diffusion in the logarithm of time

    International Nuclear Information System (INIS)

    Boettcher, Stefan; Sibani, Paolo

    2011-01-01

    The far-from-equilibrium dynamics of glassy systems share important phenomenological traits. A transition is generally observed from a time-homogeneous dynamical regime to an ageing regime where physical changes occur intermittently and, on average, at a decreasing rate. It has been suggested that a global change of the independent time variable to its logarithm may render the ageing dynamics homogeneous: for colloids, this entails diffusion but on a logarithmic timescale. Our novel analysis of experimental colloid data confirms that the mean square displacement grows linearly in time at low densities and shows that it grows linearly in the logarithm of time at high densities. Correspondingly, pairs of particles initially in close contact survive as pairs with a probability which decays exponentially in either time or its logarithm. The form of the probability density function of the displacements shows that long-ranged spatial correlations are very long-lived in dense colloids. A phenomenological stochastic model is then introduced which relies on the growth and collapse of strongly correlated clusters ('dynamic heterogeneity'), and which reproduces the full spectrum of observed colloidal behaviors depending on the form assumed for the probability that a cluster collapses during a Monte Carlo update. In the limit where large clusters dominate, the collapse rate is ∝1/t, implying a homogeneous, log-Poissonian process that qualitatively reproduces the experimental results for dense colloids. Finally, an analytical toy-model is discussed to elucidate the strong dependence of the simulation results on the integrability (or lack thereof) of the cluster collapse probability function.

  1. Quantum Critical Scaling and Temperature-Dependent Logarithmic Corrections in the Spin-Half Heisenberg Chain

    International Nuclear Information System (INIS)

    Starykh, O.; Singh, R.; Sandvik, A.

    1997-01-01

    Low temperature dynamics of the S=(1)/(2) Heisenberg chain is studied via a simple ansatz generalizing the conformal mapping and analytic continuation procedures to correlation functions with multiplicative logarithmic factors. Closed form expressions for the dynamic susceptibility and the NMR relaxation rates 1/T 1 and 1/T 2G are obtained, and are argued to improve the agreement with recent experiments. Scaling in q/T and ω/T are violated due to these logarithmic terms. Numerical results show that the logarithmic corrections are very robust. While not yet in the asymptotic low temperature regime, they provide striking qualitative confirmation of the theoretical results. copyright 1997 The American Physical Society

  2. Investigation of logarithmic spiral nanoantennas at optical frequencies

    Science.gov (United States)

    Verma, Anamika; Pandey, Awanish; Mishra, Vigyanshu; Singh, Ten; Alam, Aftab; Dinesh Kumar, V.

    2013-12-01

    The first study is reported of a logarithmic spiral antenna in the optical frequency range. Using the finite integration technique, we investigated the spectral and radiation properties of a logarithmic spiral nanoantenna and a complementary structure made of thin gold film. A comparison is made with results for an Archimedean spiral nanoantenna. Such nanoantennas can exhibit broadband behavior that is independent of polarization. Two prominent features of logarithmic spiral nanoantennas are highly directional far field emission and perfectly circularly polarized radiation when excited by a linearly polarized source. The logarithmic spiral nanoantenna promises potential advantages over Archimedean spirals and could be harnessed for several applications in nanophotonics and allied areas.

  3. Children's Early Mental Number Line: Logarithmic or Decomposed Linear?

    Science.gov (United States)

    Moeller, Korbinean; Pixner, Silvia; Kaufmann, Liane; Nuerk, Hans-Christoph

    2009-01-01

    Recently, the nature of children's mental number line has received much investigation. In the number line task, children are required to mark a presented number on a physical number line with fixed endpoints. Typically, it was observed that the estimations of younger/inexperienced children were accounted for best by a logarithmic function, whereas…

  4. Time constant of logarithmic creep and relaxation

    CSIR Research Space (South Africa)

    Nabarro, FRN

    2001-07-15

    Full Text Available length and hardness which vary logarithmically with time. For dimensional reasons, a logarithmic variation must involve a time constant tau characteristic of the process, so that the deformation is proportional to ln(t/tau). Two distinct mechanisms...

  5. Finite-Reynolds-number effects in turbulence using logarithmic expansions

    International Nuclear Information System (INIS)

    Sreenivasan, K.R.; Bershadskii, A.

    2006-12-01

    Experimental or numerical data in turbulence are invariably obtained at finite Reynolds numbers whereas theories of turbulence correspond to infinitely large Reynolds numbers. A proper merger of the two approaches is possible only if corrections for finite Reynolds numbers can be quantified. This paper heuristically considers examples in two classes of finite-Reynolds-number effects. Expansions in terms of logarithms of appropriate variables are shown to yield results in agreement with experimental and numerical data in the following instances: the third-order structure function in isotropic turbulence, the mixed-order structure function for the passive scalar and the Reynolds shear stress around its maximum point. Results suggestive of expansions in terms of the inverse logarithm of the Reynolds number, also motivated by experimental data, concern the tendency for turbulent structures to cluster along a line of observation and (more speculatively) for the longitudinal velocity derivative to become singular at some finite Reynolds number. We suggest an elementary hydrodynamical process that may provide a physical basis for the expansions considered here, but note that the formal justification remains tantalizingly unclear. (author)

  6. Advances in Computational High-Resolution Mechanical Spectroscopy HRMS Part I: Logarithmic Decrement

    International Nuclear Information System (INIS)

    Majewski, M; Magalas, L B; Piłat, A

    2012-01-01

    The comparison between different methods used to compute the logarithmic decrement in high-resolution mechanical spectroscopy (HRMS) is analyzed. The performance of parametric OMI method (Optimization in Multiple Intervals) and interpolated discrete Fourier transform (IpDFT) methods are investigated as a function of the sampling frequency used to digitize free decaying oscillations in low-frequency resonant mechanical spectrometers. It is clearly demonstrated that a new Yoshida-Magalas (YM) method is the most powerful IpDFT-based method which outperforms the standard Yoshida (Y) method and other DFT-based methods. Four IpDFT methods and the OMI method are carefully analyzed as a function of the sampling frequency. The results presented in this work clearly show that the relative error in the estimation of the logarithmic decrement depends both on the length of free decaying signal and on the sampling frequency. The effect of the sampling frequency was not yet reported in the literature. The performance of different methods used in the computations of the logarithmic decrement can be listed in the following order: (1) the OMI, (2) the Yoshida-Magalas YM, (3) the Yoshida-Magalas YMC, and finally (4) the Yoshida Y.

  7. Value distribution and the Lemma of the logarithmic derivative on polydiscs

    Directory of Open Access Journals (Sweden)

    Wilhelm Stoll

    1983-01-01

    Full Text Available Value distribution is developed on polydiscs with the special emphasis that the value distribution function depend on a vector variable. A Lemma of the logarithmic derivative for meromorphic functions on polydiscs is derived. Here the Bergman boundary of the polydiscs is approached along cones of any dimension and exceptional sets for such an approach are defined.

  8. Growth of Logarithmic Derivatives and Their Applications in Complex Differential Equations

    Directory of Open Access Journals (Sweden)

    Zinelâabidine Latreuch

    2014-01-01

    of their logarithmic derivatives. We also give an estimate of the growth of the quotient of two differential polynomials generated by solutions of the equation f″+A(zf′+B(zf=0, where A(z and B(z are entire functions.

  9. Logarithmic axicon characterized by scanning optical probe system.

    Science.gov (United States)

    Cao, Zhaolou; Wang, Keyi; Wu, Qinglin

    2013-05-15

    A scanning optical probe system is proposed to measure a logarithmic axicon (LA) with subwavelength resolution. Multiple plane intensity profiles measured by a fiber probe are interpreted by solving an optimization problem to get the phase retardation function (PRF) of the LA. Experimental results show that this approach can accurately obtain the PRF with which the optical path difference of the generated quasi-nondiffracting beam in the propagation is calculated.

  10. Incoherently combining logarithmic aspheric lenses for extended depth of field.

    Science.gov (United States)

    Chu, Kaiqin; George, Nicholas; Chi, Wanli

    2009-10-01

    We describe a method for combining concentric logarithmic aspheric lenses in order to obtain an extended depth of field. Substantial improvement in extending the depth of field is obtained by carefully controlling the optical path difference among the concentric lenses so that their outputs combine incoherently. The system is analyzed through diffraction theory and the point spread function is shown to be highly invariant over a long range of object distances. After testing the image performance on a three-dimensional scene, we found that the incoherently combined logarithmic aspheres can provide a high-quality image over an axial distance corresponding to a defocus of +/- 14(lambda/4). Studies of the images of two-point objects are presented to illustrate the resolution of these lenses.

  11. Logarithmic spiral trajectories generated by Solar sails

    Science.gov (United States)

    Bassetto, Marco; Niccolai, Lorenzo; Quarta, Alessandro A.; Mengali, Giovanni

    2018-02-01

    Analytic solutions to continuous thrust-propelled trajectories are available in a few cases only. An interesting case is offered by the logarithmic spiral, that is, a trajectory characterized by a constant flight path angle and a fixed thrust vector direction in an orbital reference frame. The logarithmic spiral is important from a practical point of view, because it may be passively maintained by a Solar sail-based spacecraft. The aim of this paper is to provide a systematic study concerning the possibility of inserting a Solar sail-based spacecraft into a heliocentric logarithmic spiral trajectory without using any impulsive maneuver. The required conditions to be met by the sail in terms of attitude angle, propulsive performance, parking orbit characteristics, and initial position are thoroughly investigated. The closed-form variations of the osculating orbital parameters are analyzed, and the obtained analytical results are used for investigating the phasing maneuver of a Solar sail along an elliptic heliocentric orbit. In this mission scenario, the phasing orbit is composed of two symmetric logarithmic spiral trajectories connected with a coasting arc.

  12. Logarithmic corrections of the two-body QED problem

    International Nuclear Information System (INIS)

    Khriplovich, I.B.; Mil'shtejn, A.I.; Elkhovskij, A.S.

    1992-01-01

    The logarithmic part of the Lamb shift, the contribution of the relative order α 3 log(1/α) to the atomic state energy, is related to the usual infrared divergence. For positronium, the calculated logarithmic correction does not vanish only in n 3 S 1 states and constitutes 5/24mα 6 log(1/α)/m 3 . Logarithmic corrections of the relative order α 2 log(1/α) to the positronium decay rate are also of the relativistic origin and can be easily computed within the same approach. 31 refs.; 11 figs

  13. Approach to equilibrium of diffusion in a logarithmic potential.

    Science.gov (United States)

    Hirschberg, Ori; Mukamel, David; Schütz, Gunter M

    2011-10-01

    The late-time distribution function P(x,t) of a particle diffusing in a one-dimensional logarithmic potential is calculated for arbitrary initial conditions. We find a scaling solution with three surprising features: (i) the solution is given by two distinct scaling forms, corresponding to a diffusive (x∼t(1/2)) and a subdiffusive (x∼t(γ) with a given γfunction is selected by the initial condition, and (iii) depending on the tail of the initial condition, the scaling exponent that characterizes the scaling function is found to exhibit a transition from a continuously varying to a fixed value.

  14. Universality of non-leading logarithmic contributions in transverse-momentum distributions

    CERN Document Server

    Catani, S; Grazzini, Massimiliano

    2001-01-01

    We consider the resummation of the logarithmic contributions to the region of small transverse momenta in the distributions of high-mass systems (lepton pairs, vector bosons, Higgs particles, ....) produced in hadron collisions. We point out that the resummation formulae that are usually used to compute the distributions in perturbative QCD involve process-dependent form factors and coefficient functions. We present a new universal form of the resummed distribution, in which the dependence on the process is embodied in a single perturbative factor. The new form simplifies the calculation of non-leading logarithms at higher perturbative orders. It can also be useful to systematically implement process-independent non-perturbative effects in transverse-momentum distributions. We also comment on the dependence of these distributions on the factorization and renormalization scales.

  15. STRAIGHTENING THE DENSITY-DISPLACEMENT RELATION WITH A LOGARITHMIC TRANSFORM

    International Nuclear Information System (INIS)

    Falck, Bridget L.; Neyrinck, Mark C.; Aragon-Calvo, Miguel A.; Lavaux, Guilhem; Szalay, Alexander S.

    2012-01-01

    We investigate the use of a logarithmic density variable in estimating the Lagrangian displacement field motivated by the success of a logarithmic transformation in restoring information to the matter power spectrum. The logarithmic relation is an extension of the linear relation, motivated by the continuity equation, in which the density field is assumed to be proportional to the divergence of the displacement field; we compare the linear and logarithmic relations by measuring both of these fields directly in a cosmological N-body simulation. The relative success of the logarithmic and linear relations depends on the scale at which the density field is smoothed. Thus we explore several ways of measuring the density field, including Cloud-In-Cell smoothing, adaptive smoothing, and the (scale-independent) Delaunay tessellation, and we use both a Fourier-space and a geometrical tessellation approach to measuring the divergence. We find that the relation between the divergence of the displacement field and the density is significantly tighter and straighter with a logarithmic density variable, especially at low redshifts and for very small (∼2 h –1 Mpc) smoothing scales. We find that the grid-based methods are more reliable than the tessellation-based method of calculating both the density and the divergence fields, though in both cases the logarithmic relation works better in the appropriate regime, which corresponds to nonlinear scales for the grid-based methods and low densities for the tessellation-based method.

  16. Moment Convergence Rates in the Law of the Logarithm for ...

    Indian Academy of Sciences (India)

    Home; Journals; Proceedings – Mathematical Sciences; Volume 119; Issue 3. Moment Convergence Rates in the Law of the Logarithm for Dependent Sequences. Ke-Ang Fu Xiao-Rong Yang ... Keywords. The law of the logarithm; Chung-type law of the logarithm; negative association; moment convergence; tail probability.

  17. Logarithmic superposition of force response with rapid length changes in relaxed porcine airway smooth muscle.

    Science.gov (United States)

    Ijpma, G; Al-Jumaily, A M; Cairns, S P; Sieck, G C

    2010-12-01

    We present a systematic quantitative analysis of power-law force relaxation and investigate logarithmic superposition of force response in relaxed porcine airway smooth muscle (ASM) strips in vitro. The term logarithmic superposition describes linear superposition on a logarithmic scale, which is equivalent to multiplication on a linear scale. Additionally, we examine whether the dynamic response of contracted and relaxed muscles is dominated by cross-bridge cycling or passive dynamics. The study shows the following main findings. For relaxed ASM, the force response to length steps of varying amplitude (0.25-4% of reference length, both lengthening and shortening) are well-fitted with power-law functions over several decades of time (10⁻² to 10³ s), and the force response after consecutive length changes is more accurately fitted assuming logarithmic superposition rather than linear superposition. Furthermore, for sinusoidal length oscillations in contracted and relaxed muscles, increasing the oscillation amplitude induces greater hysteresivity and asymmetry of force-length relationships, whereas increasing the frequency dampens hysteresivity but increases asymmetry. We conclude that logarithmic superposition is an important feature of relaxed ASM, which may facilitate a more accurate prediction of force responses in the continuous dynamic environment of the respiratory system. In addition, the single power-function response to length changes shows that the dynamics of cross-bridge cycling can be ignored in relaxed muscle. The similarity in response between relaxed and contracted states implies that the investigated passive dynamics play an important role in both states and should be taken into account.

  18. Progress on double-logarithmic large-x and small-x resummations for (semi-)inclusive hard processes

    International Nuclear Information System (INIS)

    Vogt, A.; Kom, C.H.; Lo Presti, N.A.; Soar, G.; Vermaseren, J.A.M.; Yeats, K.

    2012-12-01

    Over the past few years considerable progress has been made on the resummation of double-logarithmically enhanced threshold (large-x) and high-energy (small-x) higher-order contributions to the splitting functions for parton and fragmentation distributions and to the coefficient functions for inclusive deep-inelastic scattering and semi-inclusive e + e - annihilation. We present an overview of the methods which allow, in many cases, to derive the coefficients of the highest three logarithms at all orders in the strong coupling from next-to-next-to-leading order results in massless perturbative QCD. Some representative analytical and numerical results are shown, and the present limitations of these resummations are discussed.

  19. Semi-automatic logarithmic converter of logs

    International Nuclear Information System (INIS)

    Gol'dman, Z.A.; Bondar's, V.V.

    1974-01-01

    Semi-automatic logarithmic converter of logging charts. An original semi-automatic converter was developed for use in converting BK resistance logging charts and the time interval, ΔT, of acoustic logs from a linear to a logarithmic scale with a specific ratio for subsequent combining of them with neutron-gamma logging charts in operative interpretation of logging materials by a normalization method. The converter can be used to increase productivity by giving curves different from those obtained in manual, pointwise processing. The equipment operates reliably and is simple in use. (author)

  20. Logarithmic black hole entropy corrections and holographic Renyi entropy

    Energy Technology Data Exchange (ETDEWEB)

    Mahapatra, Subhash [The Institute of Mathematical Sciences, Chennai (India); KU Leuven - KULAK, Department of Physics, Kortrijk (Belgium)

    2018-01-15

    The entanglement and Renyi entropies for spherical entangling surfaces in CFTs with gravity duals can be explicitly calculated by mapping these entropies first to the thermal entropy on hyperbolic space and then, using the AdS/CFT correspondence, to the Wald entropy of topological black holes. Here we extend this idea by taking into account corrections to the Wald entropy. Using the method based on horizon symmetries and the asymptotic Cardy formula, we calculate corrections to the Wald entropy and find that these corrections are proportional to the logarithm of the area of the horizon. With the corrected expression for the entropy of the black hole, we then find corrections to the Renyi entropies. We calculate these corrections for both Einstein and Gauss-Bonnet gravity duals. Corrections with logarithmic dependence on the area of the entangling surface naturally occur at the order G{sub D}{sup 0}. The entropic c-function and the inequalities of the Renyi entropy are also satisfied even with the correction terms. (orig.)

  1. Logarithmic black hole entropy corrections and holographic Renyi entropy

    International Nuclear Information System (INIS)

    Mahapatra, Subhash

    2018-01-01

    The entanglement and Renyi entropies for spherical entangling surfaces in CFTs with gravity duals can be explicitly calculated by mapping these entropies first to the thermal entropy on hyperbolic space and then, using the AdS/CFT correspondence, to the Wald entropy of topological black holes. Here we extend this idea by taking into account corrections to the Wald entropy. Using the method based on horizon symmetries and the asymptotic Cardy formula, we calculate corrections to the Wald entropy and find that these corrections are proportional to the logarithm of the area of the horizon. With the corrected expression for the entropy of the black hole, we then find corrections to the Renyi entropies. We calculate these corrections for both Einstein and Gauss-Bonnet gravity duals. Corrections with logarithmic dependence on the area of the entangling surface naturally occur at the order G D 0 . The entropic c-function and the inequalities of the Renyi entropy are also satisfied even with the correction terms. (orig.)

  2. Simple utility functions with Giffen demand

    DEFF Research Database (Denmark)

    Sørensen, Peter Norman

    2007-01-01

    Simple utility functions with the Giffen property are presented: locally, the demand curve for a good is upward sloping. The utility functions represent continuous, monotone, convex preferences......Simple utility functions with the Giffen property are presented: locally, the demand curve for a good is upward sloping. The utility functions represent continuous, monotone, convex preferences...

  3. The logarithmic hypervolume indicator

    DEFF Research Database (Denmark)

    Friedrich, Tobias; Bringmann, Karl; Voß, Thomas

    2011-01-01

    It was recently proven that sets of points maximizing the hypervolume indicator do not give a good multiplicative approximation of the Pareto front. We introduce a new “logarithmic hypervolume indicator” and prove that it achieves a close-to-optimal multiplicative approximation ratio. This is exp...

  4. The role of crowding in parallel search: Peripheral pooling is not responsible for logarithmic efficiency in parallel search.

    Science.gov (United States)

    Madison, Anna; Lleras, Alejandro; Buetti, Simona

    2018-02-01

    Recent results from our laboratory showed that, in fixed-target parallel search tasks, reaction times increase in a logarithmic fashion with set size, and the slope of this logarithmic function is modulated by lure-target similarity. These results were interpreted as being consistent with a processing architecture where early vision (stage one) processes elements in the display in exhaustive fashion with unlimited capacity and with a limitation in resolution. Here, we evaluate the contribution of crowding to our recent logarithmic search slope findings, considering the possibility that peripheral pooling of features (as observed in crowding) may be responsible for logarithmic efficiency. Factors known to affect the strength of crowding were varied, specifically: item spacing and similarity. The results from three experiments converge on the same pattern of results: reaction times increased logarithmically with set size and were modulated by lure-target similarity even when crowding was minimized within displays through an inter-item spacing manipulation. Furthermore, we found logarithmic search efficiencies were overall improved in displays where crowding was minimized compared to displays where crowding was possible. The findings from these three experiments suggest logarithmic efficiency in efficient search is not the result peripheral pooling of features. That said, the presence of crowding does tend to reduce search efficiency, even in "pop-out" search situations.

  5. Source-independent elastic waveform inversion using a logarithmic wavefield

    KAUST Repository

    Choi, Yun Seok; Min, Dong Joon

    2012-01-01

    The logarithmic waveform inversion has been widely developed and applied to some synthetic and real data. In most logarithmic waveform inversion algorithms, the subsurface velocities are updated along with the source estimation. To avoid estimating

  6. Exponential and Logarithmic Functions

    OpenAIRE

    Todorova, Tamara

    2010-01-01

    Exponential functions find applications in economics in relation to growth and economic dynamics. In these fields, quite often the choice variable is time and economists are trying to determine the best timing for certain economic activities to take place. An exponential function is one in which the independent variable appears in the exponent. Very often that exponent is time. In highly mathematical courses, it is a truism that students learn by doing, not by reading. Tamara Todorova’s Pr...

  7. Progress on double-logarithmic large-x and small-x resummations for (semi-)inclusive hard processes

    Energy Technology Data Exchange (ETDEWEB)

    Vogt, A.; Kom, C.H.; Lo Presti, N.A.; Soar, G. [Liverpool Univ. (United Kingdom). Dept. of Mathematical Sciences; Almasy, A.A.; Moch, S. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Vermaseren, J.A.M. [NIKHEF Theory Group, Amsterdam (Netherlands); Yeats, K. [Simon Fraser Univ., Burnaby, BC (Canada). Dept. of Mathematics

    2012-12-15

    Over the past few years considerable progress has been made on the resummation of double-logarithmically enhanced threshold (large-x) and high-energy (small-x) higher-order contributions to the splitting functions for parton and fragmentation distributions and to the coefficient functions for inclusive deep-inelastic scattering and semi-inclusive e{sup +}e{sup -} annihilation. We present an overview of the methods which allow, in many cases, to derive the coefficients of the highest three logarithms at all orders in the strong coupling from next-to-next-to-leading order results in massless perturbative QCD. Some representative analytical and numerical results are shown, and the present limitations of these resummations are discussed.

  8. Double logarithmic term Ln2(1/x) in the polarized non singlet structure function at small x in valon model

    International Nuclear Information System (INIS)

    Taghavi Shahri Fatemeh; Arash, F.

    2009-01-01

    We study the low x behavior of non-singlet spin structure Function, of the nucleon in the so-called the valon representation. We find the double logarithmic term Ln 2 (1/x) in the polarized non singlet structure function at small x with using the valon model .The Structure of the valon itself develops through the perturbative dressing of a valence quark in QCD, which is independent of the hosting hadron. The results of non-singlet spin structure Function is in excellent agreement with the experimental data from HERMES collaborations for the entire measured range of x. It also provides an acceptable agreement with the older data from SMC, E143 and E155 experiments. We have further compared our results with those from AA, BB, GRSV, and DNS global fits. (authors)

  9. The critical role of logarithmic transformation in Nernstian equilibrium potential calculations.

    Science.gov (United States)

    Sawyer, Jemima E R; Hennebry, James E; Revill, Alexander; Brown, Angus M

    2017-06-01

    The membrane potential, arising from uneven distribution of ions across cell membranes containing selectively permeable ion channels, is of fundamental importance to cell signaling. The necessity of maintaining the membrane potential may be appreciated by expressing Ohm's law as current = voltage/resistance and recognizing that no current flows when voltage = 0, i.e., transmembrane voltage gradients, created by uneven transmembrane ion concentrations, are an absolute requirement for the generation of currents that precipitate the action and synaptic potentials that consume >80% of the brain's energy budget and underlie the electrical activity that defines brain function. The concept of the equilibrium potential is vital to understanding the origins of the membrane potential. The equilibrium potential defines a potential at which there is no net transmembrane ion flux, where the work created by the concentration gradient is balanced by the transmembrane voltage difference, and derives from a relationship describing the work done by the diffusion of ions down a concentration gradient. The Nernst equation predicts the equilibrium potential and, as such, is fundamental to understanding the interplay between transmembrane ion concentrations and equilibrium potentials. Logarithmic transformation of the ratio of internal and external ion concentrations lies at the heart of the Nernst equation, but most undergraduate neuroscience students have little understanding of the logarithmic function. To compound this, no current undergraduate neuroscience textbooks describe the effect of logarithmic transformation in appreciable detail, leaving the majority of students with little insight into how ion concentrations determine, or how ion perturbations alter, the membrane potential. Copyright © 2017 the American Physiological Society.

  10. Logarithmic Exchange Kinetics in Monodisperse Copolymeric Micelles

    Science.gov (United States)

    García Daza, Fabián A.; Bonet Avalos, Josep; Mackie, Allan D.

    2017-06-01

    Experimental measurements of the relaxation kinetics of copolymeric surfactant exchange for micellar systems unexpectedly show a peculiar logarithmic decay. Several authors use polydispersity as an explanation for this behavior. However, in coarse-grained simulations that preserve microscopic details of the surfactants, we find evidence of the same logarithmic behavior. Since we use a strictly monodisperse distribution of chain lengths such a relaxation process cannot be attributed to polydispersity, but has to be caused by an inherent physical process characteristic of this type of system. This is supported by the fact that the decay is specifically logarithmic and not a power law with an exponent inherited from the particular polydispersity distribution of the sample. We suggest that the degeneracy of the energy states of the hydrophobic block in the core, which is broken on leaving the micelle, can qualitatively explain the broad distribution of energy barriers, which gives rise to the observed nonexponential relaxation.

  11. Coulomb Logarithm in Nonideal and Degenerate Plasmas

    Science.gov (United States)

    Filippov, A. V.; Starostin, A. N.; Gryaznov, V. K.

    2018-03-01

    Various methods for determining the Coulomb logarithm in the kinetic theory of transport and various variants of the choice of the plasma screening constant, taking into account and disregarding the contribution of the ion component and the boundary value of the electron wavevector are considered. The correlation of ions is taken into account using the Ornstein-Zernike integral equation in the hypernetted-chain approximation. It is found that the effect of ion correlation in a nondegenerate plasma is weak, while in a degenerate plasma, this effect must be taken into account when screening is determined by the electron component alone. The calculated values of the electrical conductivity of a hydrogen plasma are compared with the values determined experimentally in the megabar pressure range. It is shown that the values of the Coulomb logarithm can indeed be smaller than unity. Special experiments are proposed for a more exact determination of the Coulomb logarithm in a magnetic field for extremely high pressures, for which electron scattering by ions prevails.

  12. Logarithmic black hole entropy corrections and holographic Rényi entropy

    Science.gov (United States)

    Mahapatra, Subhash

    2018-01-01

    The entanglement and Rényi entropies for spherical entangling surfaces in CFTs with gravity duals can be explicitly calculated by mapping these entropies first to the thermal entropy on hyperbolic space and then, using the AdS/CFT correspondence, to the Wald entropy of topological black holes. Here we extend this idea by taking into account corrections to the Wald entropy. Using the method based on horizon symmetries and the asymptotic Cardy formula, we calculate corrections to the Wald entropy and find that these corrections are proportional to the logarithm of the area of the horizon. With the corrected expression for the entropy of the black hole, we then find corrections to the Rényi entropies. We calculate these corrections for both Einstein and Gauss-Bonnet gravity duals. Corrections with logarithmic dependence on the area of the entangling surface naturally occur at the order GD^0. The entropic c-function and the inequalities of the Rényi entropy are also satisfied even with the correction terms.

  13. On the method of logarithmic cumulants for parametric probability density function estimation.

    Science.gov (United States)

    Krylov, Vladimir A; Moser, Gabriele; Serpico, Sebastiano B; Zerubia, Josiane

    2013-10-01

    Parameter estimation of probability density functions is one of the major steps in the area of statistical image and signal processing. In this paper we explore several properties and limitations of the recently proposed method of logarithmic cumulants (MoLC) parameter estimation approach which is an alternative to the classical maximum likelihood (ML) and method of moments (MoM) approaches. We derive the general sufficient condition for a strong consistency of the MoLC estimates which represents an important asymptotic property of any statistical estimator. This result enables the demonstration of the strong consistency of MoLC estimates for a selection of widely used distribution families originating from (but not restricted to) synthetic aperture radar image processing. We then derive the analytical conditions of applicability of MoLC to samples for the distribution families in our selection. Finally, we conduct various synthetic and real data experiments to assess the comparative properties, applicability and small sample performance of MoLC notably for the generalized gamma and K families of distributions. Supervised image classification experiments are considered for medical ultrasound and remote-sensing SAR imagery. The obtained results suggest that MoLC is a feasible and computationally fast yet not universally applicable alternative to MoM. MoLC becomes especially useful when the direct ML approach turns out to be unfeasible.

  14. Why allometric variation in mammalian metabolism is curvilinear on the logarithmic scale.

    Science.gov (United States)

    Packard, Gary C

    2017-11-01

    Studies performed over the last 20 years have repeatedly documented a slight convex curvature (relative to the x-axis) in double-logarithmic plots of basal metabolic rate (BMR) versus body mass in mammals. This curvilinear pattern has usually been interpreted in the context of a simple, two-parameter power function on the arithmetic scale, y  =  a  ×  x b , with the exponent in the equation supposedly increasing systematically with body size. An equation of this form has caused concern among ecologists because a variable exponent is inconsistent with an assumption underlying the metabolic theory of ecology (MTE). However, the appearance of an exponent that varies with body size is an artifact resulting from the widespread use of logarithmic transformations in allometric analyses. Curvature in the distribution on the logarithmic scale actually is caused by a requirement for an explicit, non-zero intercept-and not a variable exponent-in the model describing the distribution on the arithmetic scale. Thus, the MTE need not be revised to accommodate an exponent that varies with body size in the scaling of mammalian BMR, but the theory may need to be tweaked to accommodate an intercept in the allometric equation. In general, any bivariate dataset that is well described by a three-parameter power equation on the arithmetic scale will follow a curvilinear path when displayed on the logarithmic scale. Consequently, reports of curvilinearity in log domain (i.e., "complex allometry") need to be revisited because conclusions from those investigations are likely to be flawed. © 2018 Wiley Periodicals, Inc.

  15. Law of Iterated Logarithm for NA Sequences with Non-Identical ...

    Indian Academy of Sciences (India)

    Based on a law of the iterated logarithm for independent random variables sequences, an iterated logarithm theorem for NA sequences with non-identical distributions is obtained. The proof is based on a Kolmogrov-type exponential inequality.

  16. How Do Students Acquire an Understanding of Logarithmic Concepts?

    Science.gov (United States)

    Mulqueeny, Ellen

    2012-01-01

    The use of logarithms, an important tool for calculus and beyond, has been reduced to symbol manipulation without understanding in most entry-level college algebra courses. The primary aim of this research, therefore, was to investigate college students' understanding of logarithmic concepts through the use of a series of instructional tasks…

  17. Benchmark Two-Good Utility Functions

    NARCIS (Netherlands)

    de Jaegher, K.

    Benchmark two-good utility functions involving a good with zero income elasticity and unit income elasticity are well known. This paper derives utility functions for the additional benchmark cases where one good has zero cross-price elasticity, unit own-price elasticity, and zero own price

  18. On the use of logarithmic scales for analysis of diffraction data

    Energy Technology Data Exchange (ETDEWEB)

    Urzhumtsev, Alexandre, E-mail: sacha@igbmc.fr [IGBMC, CNRS-INSERM-UdS, 1 Rue Laurent Fries, BP 10142, 67404 Illkirch (France); Physics Department, University of Nancy, BP 239, Faculté des Sciences et des Technologies, 54506 Vandoeuvre-lès-Nancy (France); Afonine, Pavel V. [Lawrence Berkeley National Laboratory, One Cyclotron Road, BLDG 64R0121, Berkeley, CA 94720 (United States); Adams, Paul D. [Lawrence Berkeley National Laboratory, One Cyclotron Road, BLDG 64R0121, Berkeley, CA 94720 (United States); Department of Bioengineering, University of California Berkeley, Berkeley, CA 94720 (United States); IGBMC, CNRS-INSERM-UdS, 1 Rue Laurent Fries, BP 10142, 67404 Illkirch (France)

    2009-12-01

    Conventional and free R factors and their difference, as well as the ratio of the number of measured reflections to the number of atoms in the crystal, were studied as functions of the resolution at which the structures were reported. When the resolution was taken uniformly on a logarithmic scale, the most frequent values of these functions were quasi-linear over a large resolution range. Predictions of the possible model parameterization and of the values of model characteristics such as R factors are important for macromolecular refinement and validation protocols. One of the key parameters defining these and other values is the resolution of the experimentally measured diffraction data. The higher the resolution, the larger the number of diffraction data N{sub ref}, the larger its ratio to the number N{sub at} of non-H atoms, the more parameters per atom can be used for modelling and the more precise and detailed a model can be obtained. The ratio N{sub ref}/N{sub at} was calculated for models deposited in the Protein Data Bank as a function of the resolution at which the structures were reported. The most frequent values for this distribution depend essentially linearly on resolution when the latter is expressed on a uniform logarithmic scale. This defines simple analytic formulae for the typical Matthews coefficient and for the typically allowed number of parameters per atom for crystals diffracting to a given resolution. This simple dependence makes it possible in many cases to estimate the expected resolution of the experimental data for a crystal with a given Matthews coefficient. When expressed using the same logarithmic scale, the most frequent values for R and R{sub free} factors and for their difference are also essentially linear across a large resolution range. The minimal R-factor values are practically constant at resolutions better than 3 Å, below which they begin to grow sharply. This simple dependence on the resolution allows the prediction of

  19. Electron-pair logarithmic convexity and interelectronic moments in atoms: Application to heliumlike ions

    International Nuclear Information System (INIS)

    Koga, T.; Kasai, Y.; Dehesa, J.S.; Angulo, J.C.

    1993-01-01

    The electron-pair function h(u) of a finite many-electron system is not monotonic, but the related quantity h(u)/u α , α>0, is not only monotonically decreasing from the origin but also convex for the values α 1 and α 2 , respectively, as has been recently found. Here, it is first argued that this quantity is also logarithmically convex for any α≥α' with α'=max{-u 2 d2[lnh(u)]/du 2 }. Then this property is used to obtain a general inequality which involves three interelectronic moments left-angle u t right-angle. Particular cases of this inequality involve relevant characteristics of the system such as the number of electrons and the total electron-electron repulsion energy. Second, the logarithmic-convexity property of h(u) as well as the accuracy of this inequality are investigated by the optimum 20-term Hylleraas-type wave functions for two-electron atoms with nuclear charge Z=1, 2, 3, 5, and 10. It is found that (i) 14 2 much-gt α 1 ) and (ii) the accuracy of the inequality which involves moments of contiguous orders oscillates between 62.4% and 96.7% according to the specific He-like atom and the moments involved. Finally, the importance of the logarithmic-convexity effects on the interelectronic moments relative to those coming from other monotonicity properties of h(u)/u α are analyzed in the same numerical Hylleraas framework

  20. Indecomposability parameters in chiral logarithmic conformal field theory

    International Nuclear Information System (INIS)

    Vasseur, Romain; Jacobsen, Jesper Lykke; Saleur, Hubert

    2011-01-01

    Work of the last few years has shown that the key algebraic features of Logarithmic Conformal Field Theories (LCFTs) are already present in some finite lattice systems (such as the XXZ spin-1/2 chain) before the continuum limit is taken. This has provided a very convenient way to analyze the structure of indecomposable Virasoro modules and to obtain fusion rules for a variety of models such as (boundary) percolation etc. LCFTs allow for additional quantum numbers describing the fine structure of the indecomposable modules, and generalizing the 'b-number' introduced initially by Gurarie for the c=0 case. The determination of these indecomposability parameters (or logarithmic couplings) has given rise to a lot of algebraic work, but their physical meaning has remained somewhat elusive. In a recent paper, a way to measure b for boundary percolation and polymers was proposed. We generalize this work here by devising a general strategy to compute matrix elements of Virasoro generators from the numerical analysis of lattice models and their continuum limit. The method is applied to XXZ spin-1/2 and spin-1 chains with open (free) boundary conditions. They are related to gl(n+m|m) and osp(n+2m|2m)-invariant superspin chains and to non-linear sigma models with supercoset target spaces. These models can also be formulated in terms of dense and dilute loop gas. We check the method in many cases where the results were already known analytically. Furthermore, we also confront our findings with a construction generalizing Gurarie's, where logarithms emerge naturally in operator product expansions to compensate for apparently divergent terms. This argument actually allows us to compute indecomposability parameters in any logarithmic theory. A central result of our study is the construction of a Kac table for the indecomposability parameters of the logarithmic minimal models LM(1,p) and LM(p,p+1).

  1. Performance of an improved logarithmic phase mask with optimized parameters in a wavefront-coding system.

    Science.gov (United States)

    Zhao, Hui; Li, Yingcai

    2010-01-10

    In two papers [Proc. SPIE 4471, 272-280 (2001) and Appl. Opt. 43, 2709-2721 (2004)], a logarithmic phase mask was proposed and proved to be effective in extending the depth of field; however, according to our research, this mask is not that perfect because the corresponding defocused modulation transfer function has large oscillations in the low-frequency region, even when the mask is optimized. So, in a previously published paper [Opt. Lett. 33, 1171-1173 (2008)], we proposed an improved logarithmic phase mask by making a small modification. The new mask can not only eliminate the drawbacks to a certain extent but can also be even less sensitive to focus errors according to Fisher information criteria. However, the performance comparison was carried out with the modified mask not being optimized, which was not reasonable. In this manuscript, we optimize the modified logarithmic phase mask first before analyzing its performance and more convincing results have been obtained based on the analysis of several frequently used metrics.

  2. Universal scaling of the logarithmic negativity in massive quantum field theory

    Science.gov (United States)

    Blondeau-Fournier, Olivier; Castro-Alvaredo, Olalla A.; Doyon, Benjamin

    2016-03-01

    We consider the logarithmic negativity, a measure of bipartite entanglement, in a general unitary 1 + 1-dimensional massive quantum field theory, not necessarily integrable. We compute the negativity between a finite region of length r and an adjacent semi-infinite region, and that between two semi-infinite regions separated by a distance r. We show that the former saturates to a finite value, and that the latter tends to zero, as r\\to ∞ . We show that in both cases, the leading corrections are exponential decays in r (described by modified Bessel functions) that are solely controlled by the mass spectrum of the model, independently of its scattering matrix. This implies that, like the entanglement entropy (EE), the logarithmic negativity displays a very high level of universality, allowing one to extract information about the mass spectrum. Further, a study of sub-leading terms shows that, unlike the EE, a large-r analysis of the negativity allows for the detection of bound states.

  3. Fractal scattering of Gaussian solitons in directional couplers with logarithmic nonlinearities

    Energy Technology Data Exchange (ETDEWEB)

    Teixeira, Rafael M.P.; Cardoso, Wesley B., E-mail: wesleybcardoso@gmail.com

    2016-08-12

    In this paper we study the interaction of Gaussian solitons in a dispersive and nonlinear media with log-law nonlinearity. The model is described by the coupled logarithmic nonlinear Schrödinger equations, which is a nonintegrable system that allows the observation of a very rich scenario in the collision patterns. By employing a variational approach and direct numerical simulations, we observe a fractal-scattering phenomenon from the exit velocities of each soliton as a function of the input velocities. Furthermore, we introduce a linearization model to identify the position of the reflection/transmission window that emerges within the chaotic region. This enables us the possibility of controlling the scattering of solitons as well as the lifetime of bound states. - Highlights: • We study the interaction of Gaussian solitons in a system with log-law nonlinearity. • The model is described by the coupled logarithmic nonlinear Schrödinger equations. • We observe a fractal-scattering phenomenon of the solitons.

  4. Measurement of Galactic Logarithmic Spiral Arm Pitch Angle Using Two-Dimensional Fast Fourier Transform Decomposition

    OpenAIRE

    Davis, Benjamin L.; Berrier, Joel C.; Shields, Douglas W.; Kennefick, Julia; Kennefick, Daniel; Seigar, Marc S.; Lacy, Claud H. S.; Puerari, Ivânio

    2012-01-01

    A logarithmic spiral is a prominent feature appearing in a majority of observed galaxies. This feature has long been associated with the traditional Hubble classification scheme, but historical quotes of pitch angle of spiral galaxies have been almost exclusively qualitative. We have developed a methodology, utilizing two-dimensional fast Fourier transformations of images of spiral galaxies, in order to isolate and measure the pitch angles of their spiral arms. Our technique provides a quanti...

  5. An efficient method for minimizing a convex separable logarithmic function subject to a convex inequality constraint or linear equality constraint

    Directory of Open Access Journals (Sweden)

    2006-01-01

    Full Text Available We consider the problem of minimizing a convex separable logarithmic function over a region defined by a convex inequality constraint or linear equality constraint, and two-sided bounds on the variables (box constraints. Such problems are interesting from both theoretical and practical point of view because they arise in some mathematical programming problems as well as in various practical problems such as problems of production planning and scheduling, allocation of resources, decision making, facility location problems, and so forth. Polynomial algorithms are proposed for solving problems of this form and their convergence is proved. Some examples and results of numerical experiments are also presented.

  6. Hierarchical random additive process and logarithmic scaling of generalized high order, two-point correlations in turbulent boundary layer flow

    Science.gov (United States)

    Yang, X. I. A.; Marusic, I.; Meneveau, C.

    2016-06-01

    Townsend [Townsend, The Structure of Turbulent Shear Flow (Cambridge University Press, Cambridge, UK, 1976)] hypothesized that the logarithmic region in high-Reynolds-number wall-bounded flows consists of space-filling, self-similar attached eddies. Invoking this hypothesis, we express streamwise velocity fluctuations in the inertial layer in high-Reynolds-number wall-bounded flows as a hierarchical random additive process (HRAP): uz+=∑i=1Nzai . Here u is the streamwise velocity fluctuation, + indicates normalization in wall units, z is the wall normal distance, and ai's are independently, identically distributed random additives, each of which is associated with an attached eddy in the wall-attached hierarchy. The number of random additives is Nz˜ln(δ /z ) where δ is the boundary layer thickness and ln is natural log. Due to its simplified structure, such a process leads to predictions of the scaling behaviors for various turbulence statistics in the logarithmic layer. Besides reproducing known logarithmic scaling of moments, structure functions, and correlation function [" close="]3/2 uz(x ) uz(x +r ) >, new logarithmic laws in two-point statistics such as uz4(x ) > 1 /2, 1/3, etc. can be derived using the HRAP formalism. Supporting empirical evidence for the logarithmic scaling in such statistics is found from the Melbourne High Reynolds Number Boundary Layer Wind Tunnel measurements. We also show that, at high Reynolds numbers, the above mentioned new logarithmic laws can be derived by assuming the arrival of an attached eddy at a generic point in the flow field to be a Poisson process [Woodcock and Marusic, Phys. Fluids 27, 015104 (2015), 10.1063/1.4905301]. Taken together, the results provide new evidence supporting the essential ingredients of the attached eddy hypothesis to describe streamwise velocity fluctuations of large, momentum transporting eddies in wall-bounded turbulence, while observed deviations suggest the need for further extensions of the

  7. Empirical Specification of Utility Functions.

    Science.gov (United States)

    Mellenbergh, Gideon J.

    Decision theory can be applied to four types of decision situations in education and psychology: (1) selection; (2) placement; (3) classification; and (4) mastery. For the application of the theory, a utility function must be specified. Usually the utility function is chosen on a priori grounds. In this paper methods for the empirical assessment…

  8. Classification of hypergeometric identities for pi and other logarithms of algebraic numbers.

    Science.gov (United States)

    Chudnovsky, D V; Chudnovsky, G V

    1998-03-17

    This paper provides transcendental and algebraic framework for the classification of identities expressing pi and other logarithms of algebraic numbers as rapidly convergent generalized hypergeometric series in rational parameters. Algebraic and arithmetic relations between values of p+1Fp hypergeometric functions and their values are analyzed. The existing identities are explained, and new exhaustive classes of new ones are presented.

  9. Multiplicative by nature: Logarithmic transformation in allometry.

    Science.gov (United States)

    Packard, Gary C

    2014-06-01

    The traditional allometric method, which is at the heart of research paradigms used by comparative biologists around the world, entails fitting a straight line to logarithmic transformations of the original bivariate data and then back-transforming the resulting equation to form a two-parameter power function in the arithmetic scale. The method has the dual advantages of enabling investigators to fit statistical models that describe multiplicative growth while simultaneously addressing the multiplicative nature of residual variation in response variables (heteroscedasticity). However, important assumptions of the traditional method seldom are assessed in contemporary practice. When the assumptions are not met, mean functions may fail to capture the dominant pattern in the original data and incorrect form for error may be imposed upon the fitted model. A worked example from metabolic allometry in doves and pigeons illustrates both the power of newer statistical procedures and limitations of the traditional allometric method. © 2014 Wiley Periodicals, Inc.

  10. Evaluation of the Coulomb logarithm using cutoff and screened Coulomb interaction potentials

    International Nuclear Information System (INIS)

    Ordonez, C.A.; Molina, M.I.

    1994-01-01

    The Coulomb logarithm is a fundamental plasma parameter which is commonly derived within the framework of the binary collision approximation. The conventional formula for the Coulomb logarithm, λ=ln Λ, takes into account a pure Coulomb interaction potential for binary collisions and is not accurate at small values (λ D in place of λ D (the Debye length) in the conventional formula for the Coulomb logarithm

  11. Time Functions as Utilities

    Science.gov (United States)

    Minguzzi, E.

    2010-09-01

    Every time function on spacetime gives a (continuous) total preordering of the spacetime events which respects the notion of causal precedence. The problem of the existence of a (semi-)time function on spacetime and the problem of recovering the causal structure starting from the set of time functions are studied. It is pointed out that these problems have an analog in the field of microeconomics known as utility theory. In a chronological spacetime the semi-time functions correspond to the utilities for the chronological relation, while in a K-causal (stably causal) spacetime the time functions correspond to the utilities for the K + relation (Seifert’s relation). By exploiting this analogy, we are able to import some mathematical results, most notably Peleg’s and Levin’s theorems, to the spacetime framework. As a consequence, we prove that a K-causal (i.e. stably causal) spacetime admits a time function and that the time or temporal functions can be used to recover the K + (or Seifert) relation which indeed turns out to be the intersection of the time or temporal orderings. This result tells us in which circumstances it is possible to recover the chronological or causal relation starting from the set of time or temporal functions allowed by the spacetime. Moreover, it is proved that a chronological spacetime in which the closure of the causal relation is transitive (for instance a reflective spacetime) admits a semi-time function. Along the way a new proof avoiding smoothing techniques is given that the existence of a time function implies stable causality, and a new short proof of the equivalence between K-causality and stable causality is given which takes advantage of Levin’s theorem and smoothing techniques.

  12. Gluons from logarithmic slopes of F2 in the NLL approximation

    International Nuclear Information System (INIS)

    Golec-Biernat, K.

    1994-02-01

    We make a critical, next-to-leading order, study of the accuracy of the ''Prytz'' relation, which is frequently used to extract the gluon distribution at small x from the logarithmic slopes of the structure function F 2 . We find that the simple relation is not generally valid in the HERA regime, but show that it is a reasonable approximation for gluons which are sufficiency singular at small x. (author). 9 refs, 3 figs

  13. Intelligent Models Performance Improvement Based on Wavelet Algorithm and Logarithmic Transformations in Suspended Sediment Estimation

    Directory of Open Access Journals (Sweden)

    R. Hajiabadi

    2016-10-01

    data are applied to models training and one year is estimated by each model. Accuracy of models is evaluated by three indexes. These three indexes are mean absolute error (MAE, root mean squared error (RMSE and Nash-Sutcliffecoefficient (NS. Results and Discussion In order to suspended sediment load estimation by intelligent models, different input combination for model training evaluated. Then the best combination of input for each intelligent model is determined and preprocessing is done only for the best combination. Two logarithmic transforms, LN and LOG, considered to data transformation. Daubechies wavelet family is used as wavelet transforms. Results indicate that diagnosing causes Nash Sutcliffe criteria in ANN and GEPincreases 0.15 and 0.14, respectively. Furthermore, RMSE value has been reduced from 199.24 to 141.17 (mg/lit in ANN and from 234.84 to 193.89 (mg/lit in GEP. The impact of the logarithmic transformation approach on the ANN result improvement is similar to diagnosing approach. While the logarithmic transformation approach has an adverse impact on GEP. Nash Sutcliffe criteria, after Ln and Log transformations as preprocessing in GEP model, has been reduced from 0.57 to 0.31 and 0.21, respectively, and RMSE value increases from 234.84 to 298.41 (mg/lit and 318.72 (mg/lit respectively. Results show that data denoising by wavelet transform is effective for improvement of two intelligent model accuracy, while data transformation by logarithmic transformation causes improvement only in artificial neural network. Results of the ANN model reveal that data transformation by LN transfer is better than LOG transfer, however both transfer function cause improvement in ANN results. Also denoising by different wavelet transforms (Daubechies family indicates that in ANN models the wavelet function Db2 is more effective and causes more improvement while on GEP models the wavelet function Db1 (Harr is better. Conclusions: In the present study, two different

  14. Logarithmic scaling for fluctuations of a scalar concentration in wall turbulence.

    Science.gov (United States)

    Mouri, Hideaki; Morinaga, Takeshi; Yagi, Toshimasa; Mori, Kazuyasu

    2017-12-01

    Within wall turbulence, there is a sublayer where the mean velocity and the variance of velocity fluctuations vary logarithmically with the height from the wall. This logarithmic scaling is also known for the mean concentration of a passive scalar. By using heat as such a scalar in a laboratory experiment of a turbulent boundary layer, the existence of the logarithmic scaling is shown here for the variance of fluctuations of the scalar concentration. It is reproduced by a model of energy-containing eddies that are attached to the wall.

  15. Relating the archetypes of logarithmic conformal field theory

    International Nuclear Information System (INIS)

    Creutzig, Thomas; Ridout, David

    2013-01-01

    Logarithmic conformal field theory is a rich and vibrant area of modern mathematical physics with well-known applications to both condensed matter theory and string theory. Our limited understanding of these theories is based upon detailed studies of various examples that one may regard as archetypal. These include the c=−2 triplet model, the Wess–Zumino–Witten model on SL(2;R) at level k=−1/2 , and its supergroup analogue on GL(1|1). Here, the latter model is studied algebraically through representation theory, fusion and modular invariance, facilitating a subsequent investigation of its cosets and extended algebras. The results show that the archetypes of logarithmic conformal field theory are in fact all very closely related, as are many other examples including, in particular, the SL(2|1) models at levels 1 and −1/2 . The conclusion is then that the archetypal examples of logarithmic conformal field theory are practically all the same, so we should not expect that their features are in any way generic. Further archetypal examples must be sought

  16. Relating the archetypes of logarithmic conformal field theory

    Energy Technology Data Exchange (ETDEWEB)

    Creutzig, Thomas, E-mail: tcreutzig@mathematik.tu-darmstadt.de [Department of Physics and Astronomy, University of North Carolina, Phillips Hall, CB 3255, Chapel Hill, NC 27599-3255 (United States); Fachbereich Mathematik, Technische Universität Darmstadt, Schloßgartenstraße 7, 64289 Darmstadt (Germany); Ridout, David, E-mail: david.ridout@anu.edu.au [Department of Theoretical Physics, Research School of Physics and Engineering, Australian National University, Canberra, ACT 0200 (Australia); Mathematical Sciences Institute, Australian National University, Canberra, ACT 0200 (Australia)

    2013-07-21

    Logarithmic conformal field theory is a rich and vibrant area of modern mathematical physics with well-known applications to both condensed matter theory and string theory. Our limited understanding of these theories is based upon detailed studies of various examples that one may regard as archetypal. These include the c=−2 triplet model, the Wess–Zumino–Witten model on SL(2;R) at level k=−1/2 , and its supergroup analogue on GL(1|1). Here, the latter model is studied algebraically through representation theory, fusion and modular invariance, facilitating a subsequent investigation of its cosets and extended algebras. The results show that the archetypes of logarithmic conformal field theory are in fact all very closely related, as are many other examples including, in particular, the SL(2|1) models at levels 1 and −1/2 . The conclusion is then that the archetypal examples of logarithmic conformal field theory are practically all the same, so we should not expect that their features are in any way generic. Further archetypal examples must be sought.

  17. Linking the Negative Binomial and Logarithmic Series Distributions via their Associated Series

    OpenAIRE

    SADINLE, MAURICIO

    2008-01-01

    The negative binomial distribution is associated to the series obtained by taking derivatives of the logarithmic series. Conversely, the logarithmic series distribution is associated to the series found by integrating the series associated to the negative binomial distribution. The parameter of the number of failures of the negative binomial distribution is the number of derivatives needed to obtain the negative binomial series from the logarithmic series. The reasoning in this article could ...

  18. Operator content of the critical Potts model in d dimensions and logarithmic correlations

    International Nuclear Information System (INIS)

    Vasseur, Romain; Jacobsen, Jesper Lykke

    2014-01-01

    Using the symmetric group S Q symmetry of the Q-state Potts model, we classify the (scalar) operator content of its underlying field theory in arbitrary dimension. In addition to the usual identity, energy and magnetization operators, we find fields that generalize the N-cluster operators well-known in two dimensions, together with their subleading counterparts. We give the explicit form of all these operators – up to non-universal constants – both on the lattice and in the continuum limit for the Landau theory. We compute exactly their two- and three-point correlation functions on an arbitrary graph in terms of simple probabilities, and give the general form of these correlation functions in the continuum limit at the critical point. Specializing to integer values of the parameter Q, we argue that the analytic continuation of the S Q symmetry yields logarithmic correlations at the critical point in arbitrary dimension, thus implying a mixing of some scaling fields by the scale transformation generator. All these logarithmic correlation functions are given a clear geometrical meaning, which can be checked in numerical simulations. Several physical examples are discussed, including bond percolation, spanning trees and forests, resistor networks and the Ising model. We also briefly address the generalization of our approach to the O(n) model

  19. Fusion algebras of logarithmic minimal models

    International Nuclear Information System (INIS)

    Rasmussen, Joergen; Pearce, Paul A

    2007-01-01

    We present explicit conjectures for the chiral fusion algebras of the logarithmic minimal models LM(p,p') considering Virasoro representations with no enlarged or extended symmetry algebra. The generators of fusion are countably infinite in number but the ensuing fusion rules are quasi-rational in the sense that the fusion of a finite number of representations decomposes into a finite direct sum of representations. The fusion rules are commutative, associative and exhibit an sl(2) structure but require so-called Kac representations which are typically reducible yet indecomposable representations of rank 1. In particular, the identity of the fundamental fusion algebra p ≠ 1 is a reducible yet indecomposable Kac representation of rank 1. We make detailed comparisons of our fusion rules with the results of Gaberdiel and Kausch for p = 1 and with Eberle and Flohr for (p, p') = (2, 5) corresponding to the logarithmic Yang-Lee model. In the latter case, we confirm the appearance of indecomposable representations of rank 3. We also find that closure of a fundamental fusion algebra is achieved without the introduction of indecomposable representations of rank higher than 3. The conjectured fusion rules are supported, within our lattice approach, by extensive numerical studies of the associated integrable lattice models. Details of our lattice findings and numerical results will be presented elsewhere. The agreement of our fusion rules with the previous fusion rules lends considerable support for the identification of the logarithmic minimal models LM(p,p') with the augmented c p,p' (minimal) models defined algebraically

  20. Boundary states in c=-2 logarithmic conformal field theory

    International Nuclear Information System (INIS)

    Bredthauer, Andreas; Flohr, Michael

    2002-01-01

    Starting from first principles, a constructive method is presented to obtain boundary states in conformal field theory. It is demonstrated that this method is well suited to compute the boundary states of logarithmic conformal field theories. By studying the logarithmic conformal field theory with central charge c=-2 in detail, we show that our method leads to consistent results. In particular, it allows to define boundary states corresponding to both, indecomposable representations as well as their irreducible subrepresentations

  1. Lattice for FPGAs using logarithmic arithmetic

    Czech Academy of Sciences Publication Activity Database

    Kadlec, Jiří; Matoušek, Rudolf; Heřmánek, Antonín; Líčko, Miroslav; Tichý, Milan

    2002-01-01

    Roč. 74, č. 906 (2002), s. 53-56 ISSN 0013-4902 Grant - others: ESPRIT (XE) 33544 Institutional research plan: CEZ:AV0Z1075907 Keywords : lattice Rls algorithm * FPGA * logarithmic arithmetic Subject RIV: JC - Computer Hardware ; Software Impact factor: 0.039, year: 2002

  2. Equilibrium Solutions of the Logarithmic Hamiltonian Leapfrog for the N-body Problem

    Science.gov (United States)

    Minesaki, Yukitaka

    2018-04-01

    We prove that a second-order logarithmic Hamiltonian leapfrog for the classical general N-body problem (CGNBP) designed by Mikkola and Tanikawa and some higher-order logarithmic Hamiltonian methods based on symmetric multicompositions of the logarithmic algorithm exactly reproduce the orbits of elliptic relative equilibrium solutions in the original CGNBP. These methods are explicit symplectic methods. Before this proof, only some implicit discrete-time CGNBPs proposed by Minesaki had been analytically shown to trace the orbits of elliptic relative equilibrium solutions. The proof is therefore the first existence proof for explicit symplectic methods. Such logarithmic Hamiltonian methods with a variable time step can also precisely retain periodic orbits in the classical general three-body problem, which generic numerical methods with a constant time step cannot do.

  3. The use of logarithmic pulse height and energy scales in organic scintillator spectroscopy

    International Nuclear Information System (INIS)

    Whittlestone, S.

    1980-01-01

    The use of logarithmic pulse height and energy scales is advantageous for organic for organic scintillator neutron spectroscopy, providing an expanded dynamic range and economy of computer usage. An experimental logarithmic pulse height analysis system is shown to be feasible. A pulse height spectrum from a neutron measurement has been analysed using linear and logarithmic scales; the latter reduced the computer storage requirements by a factor of 13 and analysis time by 8.7, and there was no degradation of the analysed spectrum. Most of the arguments favouring use of logarithmic scales apply equally well to other types of scintillation spectroscopy. (orig.)

  4. Logarithmic corrections to black hole entropy from Kerr/CFT

    Energy Technology Data Exchange (ETDEWEB)

    Pathak, Abhishek [Center for the Fundamental Laws of Nature, Harvard University,Cambridge, MA 02138 (United States); Porfyriadis, Achilleas P. [Center for the Fundamental Laws of Nature, Harvard University,Cambridge, MA 02138 (United States); Department of Physics, UCSB,Santa Barbara, CA 93106 (United States); Strominger, Andrew [Center for the Fundamental Laws of Nature, Harvard University,Cambridge, MA 02138 (United States); Varela, Oscar [Center for the Fundamental Laws of Nature, Harvard University,Cambridge, MA 02138 (United States); Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut),Am Mühlenberg 1, D-14476 Potsdam (Germany); Department of Physics, Utah State University,Logan, UT 84322 (United States)

    2017-04-14

    It has been shown by A. Sen that logarithmic corrections to the black hole area-entropy law are entirely determined macroscopically from the massless particle spectrum. They therefore serve as powerful consistency checks on any proposed enumeration of quantum black hole microstates. Sen’s results include a macroscopic computation of the logarithmic corrections for a five-dimensional near extremal Kerr-Newman black hole. Here we compute these corrections microscopically using a stringy embedding of the Kerr/CFT correspondence and find perfect agreement.

  5. Logarithmic corrections to black hole entropy from Kerr/CFT

    International Nuclear Information System (INIS)

    Pathak, Abhishek; Porfyriadis, Achilleas P.; Strominger, Andrew; Varela, Oscar

    2017-01-01

    It has been shown by A. Sen that logarithmic corrections to the black hole area-entropy law are entirely determined macroscopically from the massless particle spectrum. They therefore serve as powerful consistency checks on any proposed enumeration of quantum black hole microstates. Sen’s results include a macroscopic computation of the logarithmic corrections for a five-dimensional near extremal Kerr-Newman black hole. Here we compute these corrections microscopically using a stringy embedding of the Kerr/CFT correspondence and find perfect agreement.

  6. Problems associated with use of the logarithmic equivalent strain in high pressure torsion

    International Nuclear Information System (INIS)

    Jonas, J J; Aranas, C Jr

    2014-01-01

    The logarithmic 'equivalent' strain is frequently recommended for description of the experimental flow curves determined in high pressure torsion (HPT) tests. Some experimental results determined at -196 and 190 °C on a 2024 aluminum alloy are plotted using both the von Mises and logarithmic equivalent strains. Three types of problems associated with use of the latter are described. The first involves the lack of work conjugacy between the logarithmic and shear stress/shear strain curves, a topic that has been discussed earlier. The second concerns the problems associated with testing at constant logarithmic strain rate, a feature of particular importance when the material is rate sensitive. The third type of problem involves the 'history dependence' of this measure in that the incremental logarithmic strain depends on whether the prior strain accumulated in the sample is known or not. This is a difficulty that does not affect use of the von Mises equivalent strain. For these reasons, it is concluded that the qualifier 'equivalent' should not be used when the logarithmic strain is employed to describe HPT results

  7. Logarithmic conformal field theories as limits of ordinary CFTs and some physical applications

    International Nuclear Information System (INIS)

    Cardy, John

    2013-01-01

    We describe an approach to logarithmic conformal field theories as limits of sequences of ordinary conformal field theories with varying central charge c. Logarithmic behaviour arises from degeneracies in the spectrum of scaling dimensions at certain values of c. The theories we consider are all invariant under some internal symmetry group, and logarithmic behaviour occurs when the decomposition of the physical observables into irreducible operators becomes singular. Examples considered are quenched random magnets using the replica formalism, self-avoiding walks as the n → 0 limit of the O(n) model, and percolation as the limit Q → 1 of the Potts model. In these cases we identify logarithmic operators and pay particular attention to how the c → 0 paradox is resolved and how the b-parameter is evaluated. We also show how this approach gives information on logarithmic behaviour in the extended Ising model, uniform spanning trees and the O( − 2) model. Most of our results apply to general dimensionality. We also consider massive logarithmic theories and, in two dimensions, derive sum rules for the effective central charge and the b-parameter. (review)

  8. Time-Dependent Mean-Field Games with Logarithmic Nonlinearities

    KAUST Repository

    Gomes, Diogo A.

    2015-10-06

    In this paper, we prove the existence of classical solutions for time-dependent mean-field games with a logarithmic nonlinearity and subquadratic Hamiltonians. Because the logarithm is unbounded from below, this nonlinearity poses substantial mathematical challenges that have not been addressed in the literature. Our result is proven by recurring to a delicate argument which combines Lipschitz regularity for the Hamilton-Jacobi equation with estimates for the nonlinearity in suitable Lebesgue spaces. Lipschitz estimates follow from an application of the nonlinear adjoint method. These are then combined with a priori bounds for solutions of the Fokker-Planck equation and a concavity argument for the nonlinearity.

  9. Time-Dependent Mean-Field Games with Logarithmic Nonlinearities

    KAUST Repository

    Gomes, Diogo A.; Pimentel, Edgard

    2015-01-01

    In this paper, we prove the existence of classical solutions for time-dependent mean-field games with a logarithmic nonlinearity and subquadratic Hamiltonians. Because the logarithm is unbounded from below, this nonlinearity poses substantial mathematical challenges that have not been addressed in the literature. Our result is proven by recurring to a delicate argument which combines Lipschitz regularity for the Hamilton-Jacobi equation with estimates for the nonlinearity in suitable Lebesgue spaces. Lipschitz estimates follow from an application of the nonlinear adjoint method. These are then combined with a priori bounds for solutions of the Fokker-Planck equation and a concavity argument for the nonlinearity.

  10. Logarithmic unification from symmetries enhanced in the sub-millimeter infrared

    International Nuclear Information System (INIS)

    Arkani-Hamed, Nima; Dimopoulos, Savas; March-Russell, John

    1999-01-01

    In theories with TeV string scale and sub-millimeter extra dimensions the attractive picture of logarithmic gauge coupling unification at 10 16 GeV is seemingly destroyed. In this paper we argue to the contrary that logarithmic unification can occur in such theories. The rationale for unification is no longer that a gauge symmetry is restored at short distances, but rather that a geometric symmetry is restored at large distances in the bulk away from our 3-brane. The apparent ''running'' of the gauge couplings to energies far above the string scale actually arises from the logarithmic variation of classical fields in (sets of) two large transverse dimensions. We present a number of N = 2 and N = 1 supersymmetric D-brane constructions illustrating this picture for unification

  11. Soft gluons and superleading logarithms in QCD

    CERN Document Server

    Forshaw, J R

    2009-01-01

    After a brief introduction to the physics of soft gluons in QCD we present a surprising prediction. Dijet production in hadron-hadron collisions provides the paradigm, i.e. h_1 +h_2 \\to jj+X. In particular, we look at the case where there is a restriction placed on the emission of any further jets in the region in between the primary (highest p_T) dijets. Logarithms in the ratio of the jet scale to the veto scale can be summed to all orders in the strong coupling. Surprisingly, factorization of collinear emissions fails at scales above the veto scale and triggers the appearance of double logarithms in the hard sub-process. The effect appears first at fourth order relative to the leading order prediction and is subleading in the number of colours.

  12. Dynamical scaling and crossover from algebraic to logarithmic growth in dilute systems

    DEFF Research Database (Denmark)

    Mouritsen, Ole G.; Shah, Peter Jivan

    1989-01-01

    The ordering dynamics of the two-dimensional Ising antiferromagnet with mobile vacancies and nonconserved order parameter is studied by Monte Carlo temperature-quenching experiments. The domain-size distribution function is shown to obey dynamical scaling. A crossover is found from an algebraic...... growth law for the pure system to effectively logarithmic growth behavior in the dilute system, in accordance with recent experiments on ordering kinetics in impure chemisorbed overlayers and off-stoichiometric alloys....

  13. Weighted Differentiation Composition Operator from Logarithmic Bloch Spaces to Zygmund-Type Spaces

    Directory of Open Access Journals (Sweden)

    Huiying Qu

    2014-01-01

    Full Text Available Let H( denote the space of all holomorphic functions on the unit disk of ℂ, u∈H( and let  n be a positive integer, φ a holomorphic self-map of , and μ a weight. In this paper, we investigate the boundedness and compactness of a weighted differentiation composition operator φ,unf(z=u(zf(n(φ(z,f∈H(, from the logarithmic Bloch spaces to the Zygmund-type spaces.

  14. Logarithmic corrections to entropy of magnetically charged AdS4 black holes

    Directory of Open Access Journals (Sweden)

    Imtak Jeon

    2017-11-01

    Full Text Available Logarithmic terms are quantum corrections to black hole entropy determined completely from classical data, thus providing a strong check for candidate theories of quantum gravity purely from physics in the infrared. We compute these terms in the entropy associated to the horizon of a magnetically charged extremal black hole in AdS×4S7 using the quantum entropy function and discuss the possibility of matching against recently derived microscopic expressions.

  15. Using Logarithmic Fuzzy Preference Programming To Prioritization Social Media Utilization Based On Tourists’ Perspective

    Directory of Open Access Journals (Sweden)

    Balouchi Mina

    2015-06-01

    Full Text Available The advent of Web 2.0 or social media technologies gives travelers a chance to access quickly and conveniently to a mass of travel-related information. This study investigates the importance of social media in travel process in three different phases (pre-visit, on site, post-visit from the perspective of Iranian travelers. It is worthwhile to know the level of influence of social media on respondents’ travel behavior. Logarithmic fuzzy preference programming methodology is used in this article to determine the importance of social media usage in each phase of travel process and its subcategories. Fuzzy analytic hierarchy process methodology, based on Chang’s Fuzzy Extent Analysis is also used for the data analysis, then the results of these two methods are presented for comparison and better understanding. The results of this study suggest that the most usage of social media is on pre-visit phase while post-visit has the least usage. This study shows that Iranian travelers use social media mainly to share experiences (post-visit phase, get help in different circumstances and gain travel advice.

  16. Analysis of the logarithmic slope of F2 from the Regge gluon density behavior at small x

    International Nuclear Information System (INIS)

    Boroun, G. R.

    2010-01-01

    We study the accuracy of the Regge behavior of the gluon distribution function for an approximate relation that is frequently used to extract the logarithmic slopes of the structure function from the gluon distribution at small x. We show that the Regge behavior analysis results are comparable with HERA data and are also better than other methods that expand the gluon density at distinct points of expansion. We also show that for Q 2 = 22.4 GeV 2 , the x dependence of the data is well described by gluon shadowing corrections to the GLR-MQ equation. The resulting analytic expression allows us to predict the logarithmic derivative ∂F 2 (x, Q 2 )/∂lnQ 2 and to compare the results with the H1 data and a QCD analysis fit with the MRST parameterization input.

  17. Moment convergence rates in the law of the logarithm for dependent ...

    Indian Academy of Sciences (India)

    Inspired by Chow [3] and Jiang et al [6], here we consider the exact convergence rates in the law of the logarithm and Chung-type law of the logarithm for negatively associated. (NA) random variables including partial sums and the maximum of the partial sums. First, we shall give the definition of negatively associated ...

  18. Logarithms in the Year 10 A.C.

    Science.gov (United States)

    Kalman, Dan; Mitchell, Charles E.

    1981-01-01

    An alternative application of logarithms in the high school algebra curriculum that is not undermined by the existence and widespread availability of calculators is presented. The importance and use of linear relationships are underscored in the proposed lessons. (MP)

  19. Double logarithms, ln2(1/x), and the NLO Dokshitzer-Gribov-Lipatov-Altarelli-Parisi evolution for the nonsinglet component of the nucleon spin structure function g1

    International Nuclear Information System (INIS)

    Ziaja, Beata

    2002-01-01

    Theoretical predictions show that at low values of Bjorken x the spin structure function g 1 is influenced by large logarithmic corrections ln 2 (1/x), which may be predominant in this region. These corrections are also partially contained in the next leading order (NLO) part of the standard Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) evolution. Here we calculate the nonsinglet component of the nucleon structure function, g 1 NS =g 1 p -g 1 n , and its first moment, using a unified evolution equation. This equation incorporates the terms describing the NLO DGLAP evolution and the terms contributing to the ln 2 (1/x) resummation. In order to avoid double counting in the overlapping regions of the phase space, a unique way of including the NLO terms into the unified evolution equation is proposed. The scheme-independent results obtained from this unified evolution are compared to the NLO fit to experimental data, GRSV2000. An analysis of the first moments of g 1 NS shows that the unified evolution including the ln 2 (1/x) resummation goes beyond the NLO DGLAP analysis. Corrections generated by double logarithms at low x influence the Q 2 dependence of the first moments strongly

  20. Non-Compact and Sharp Embeddings of Logarithmic Bessel Potential Spaces into Hölder-Type Spaces

    Czech Academy of Sciences Publication Activity Database

    Edmunds, D. E.; Gurka, P.; Opic, Bohumír

    2006-01-01

    Roč. 25, č. 1 (2006), s. 73-80 ISSN 0232-2064 R&D Projects: GA ČR(CZ) GA201/01/0333 Institutional research plan: CEZ:AV0Z10190503 Keywords : generalized Lorentz-Zygmund spaces * logarithmic Bessel potential spaces * Hölder-continuous functions Subject RIV: BA - General Mathematics Impact factor: 0.360, year: 2006

  1. Weighted Bergman Kernels for Logarithmic Weights

    Czech Academy of Sciences Publication Activity Database

    Engliš, Miroslav

    2010-01-01

    Roč. 6, č. 3 (2010), s. 781-813 ISSN 1558-8599 R&D Projects: GA AV ČR IAA100190802 Keywords : Bergman kernel * Toeplitz operator * logarithmic weight * pseudodifferential operator Subject RIV: BA - General Mathematics Impact factor: 0.462, year: 2010 http://www.intlpress.com/site/pub/pages/journals/items/pamq/content/vols/0006/0003/a008/

  2. Logarithmic corrections in a quantization rule. The polaron spectrum

    International Nuclear Information System (INIS)

    Karasev, M.V.; Pereskokov, A.V.

    1994-01-01

    A nonlinear integrodifferential equation that arises in polaron theory is considered. The integral nonlinearity is given by a convolution with the Coulomb potential. Radially symmetric solutions are sought. In the semiclassical limit, an equation for the self-consistent potential is found and studied. The potential has a logarithmic singularity at the origin, and also a turning point at 1. The phase shifts at these points are determined. The quantization rule that takes into account the logarithmic corrections gives a simple asymptotic formula for the polaron spectrum. Global semiclassical solutions of the original nonlinear equation are constructed. 18 refs., 1 tab

  3. Holographic applications of logarithmic conformal field theories

    NARCIS (Netherlands)

    Grumiller, D.; Riedler, W.; Rosseel, J.; Zojer, T.

    2013-01-01

    We review the relations between Jordan cells in various branches of physics, ranging from quantum mechanics to massive gravity theories. Our main focus is on holographic correspondences between critically tuned gravity theories in anti-de Sitter space and logarithmic conformal field theories in

  4. The utility function and the emotional well-being function

    OpenAIRE

    Parada Daza, Jose Rigoberto

    2004-01-01

    Behind the utility function, which is the basis for economic and finance theory, is a philosophical and ethical approach based essentially on the Utilitarian and Hedonistic schools. Once qualitative, the utility function’s approach shifted to a quantitative one based on the work of the mathematician, D. Bernoulli. This quantitative approach is normative and based on a maximizing agent. In this paper, the “emotional well-being” function is developed which mixes the ethics of a rationa...

  5. Low-frequency logarithmic discretization of the reservoir spectrum for improving the efficiency of hierarchical equations of motion approach.

    Science.gov (United States)

    Ye, LvZhou; Zhang, Hou-Dao; Wang, Yao; Zheng, Xiao; Yan, YiJing

    2017-08-21

    An efficient low-frequency logarithmic discretization (LFLD) scheme for the decomposition of fermionic reservoir spectrum is proposed for the investigation of quantum impurity systems. The scheme combines the Padé spectrum decomposition (PSD) and a logarithmic discretization of the residual part in which the parameters are determined based on an extension of the recently developed minimum-dissipaton ansatz [J. J. Ding et al., J. Chem. Phys. 145, 204110 (2016)]. A hierarchical equations of motion (HEOM) approach is then employed to validate the proposed scheme by examining the static and dynamic system properties in both the Kondo and noninteracting regimes. The LFLD scheme requires a much smaller number of exponential functions than the conventional PSD scheme to reproduce the reservoir correlation function and thus facilitates the efficient implementation of the HEOM approach in extremely low temperature regimes.

  6. Next-to-leading-logarithmic power corrections for N -jettiness subtraction in color-singlet production

    Science.gov (United States)

    Boughezal, Radja; Isgrò, Andrea; Petriello, Frank

    2018-04-01

    We present a detailed derivation of the power corrections to the factorization theorem for the 0-jettiness event shape variable T . Our calculation is performed directly in QCD without using the formalism of effective field theory. We analytically calculate the next-to-leading logarithmic power corrections for small T at next-to-leading order in the strong coupling constant, extending previous computations which obtained only the leading-logarithmic power corrections. We address a discrepancy in the literature between results for the leading-logarithmic power corrections to a particular definition of 0-jettiness. We present a numerical study of the power corrections in the context of their application to the N -jettiness subtraction method for higher-order calculations, using gluon-fusion Higgs production as an example. The inclusion of the next-to-leading-logarithmic power corrections further improves the numerical efficiency of the approach beyond the improvement obtained from the leading-logarithmic power corrections.

  7. A planar microfluidic mixer based on logarithmic spirals

    International Nuclear Information System (INIS)

    Scherr, Thomas; Nandakumar, Krishnaswamy; Quitadamo, Christian; Tesvich, Preston; Park, Daniel Sang-Won; Hayes, Daniel; Monroe, W Todd; Tiersch, Terrence; Choi, Jin-Woo

    2012-01-01

    A passive, planar micromixer design based on logarithmic spirals is presented. The device was fabricated using polydimethylsiloxane soft photolithography techniques, and mixing performance was characterized via numerical simulation and fluorescent microscopy. Mixing efficiency initially declined as the Reynolds number increased, and this trend continued until a Reynolds number of 15 where a minimum was reached at 53%. Mixing efficiency then began to increase reaching a maximum mixing efficiency of 86% at Re = 67. Three-dimensional (3D) simulations of fluid mixing in this design were compared to other planar geometries such as the Archimedes spiral and Meandering-S mixers. The implementation of logarithmic curvature offers several unique advantages that enhance mixing, namely a variable cross-sectional area and a logarithmically varying radius of curvature that creates 3D Dean vortices. These flow phenomena were observed in simulations with multilayered fluid folding and validated with confocal microscopy. This design provides improved mixing performance over a broader range of Reynolds numbers than other reported planar mixers, all while avoiding external force fields, more complicated fabrication processes and the introduction of flow obstructions or cavities that may unintentionally affect sensitive or particulate-containing samples. Due to the planar design requiring only single-step lithographic features, this compact geometry could be easily implemented into existing micro-total analysis systems requiring effective rapid mixing. (paper)

  8. Inflation via logarithmic entropy-corrected holographic dark energy model

    Energy Technology Data Exchange (ETDEWEB)

    Darabi, F.; Felegary, F. [Azarbaijan Shahid Madani University, Department of Physics, Tabriz (Iran, Islamic Republic of); Setare, M.R. [University of Kurdistan, Department of Science, Bijar (Iran, Islamic Republic of)

    2016-12-15

    We study the inflation in terms of the logarithmic entropy-corrected holographic dark energy (LECHDE) model with future event horizon, particle horizon, and Hubble horizon cut-offs, and we compare the results with those obtained in the study of inflation by the holographic dark energy HDE model. In comparison, the spectrum of primordial scalar power spectrum in the LECHDE model becomes redder than the spectrum in the HDE model. Moreover, the consistency with the observational data in the LECHDE model of inflation constrains the reheating temperature and Hubble parameter by one parameter of holographic dark energy and two new parameters of logarithmic corrections. (orig.)

  9. Inflation via logarithmic entropy-corrected holographic dark energy model

    International Nuclear Information System (INIS)

    Darabi, F.; Felegary, F.; Setare, M.R.

    2016-01-01

    We study the inflation in terms of the logarithmic entropy-corrected holographic dark energy (LECHDE) model with future event horizon, particle horizon, and Hubble horizon cut-offs, and we compare the results with those obtained in the study of inflation by the holographic dark energy HDE model. In comparison, the spectrum of primordial scalar power spectrum in the LECHDE model becomes redder than the spectrum in the HDE model. Moreover, the consistency with the observational data in the LECHDE model of inflation constrains the reheating temperature and Hubble parameter by one parameter of holographic dark energy and two new parameters of logarithmic corrections. (orig.)

  10. Product and Quotient Rules from Logarithmic Differentiation

    Science.gov (United States)

    Chen, Zhibo

    2012-01-01

    A new application of logarithmic differentiation is presented, which provides an alternative elegant proof of two basic rules of differentiation: the product rule and the quotient rule. The proof can intrigue students, help promote their critical thinking and rigorous reasoning and deepen their understanding of previously encountered concepts. The…

  11. The Hilbert polynomial and linear forms in the logarithms of algebraic numbers

    International Nuclear Information System (INIS)

    Aleksentsev, Yu M

    2008-01-01

    We prove a new estimate for homogeneous linear forms with integer coefficients in the logarithms of algebraic numbers. We obtain a qualitative improvement of the estimate depending on the coefficients of the linear form and the best value of the constant in the estimate in the case when the number of logarithms is not too large

  12. Logarithmic Similarity Measure between Interval-Valued Fuzzy Sets and Its Fault Diagnosis Method

    Directory of Open Access Journals (Sweden)

    Zhikang Lu

    2018-02-01

    Full Text Available Fault diagnosis is an important task for the normal operation and maintenance of equipment. In many real situations, the diagnosis data cannot provide deterministic values and are usually imprecise or uncertain. Thus, interval-valued fuzzy sets (IVFSs are very suitable for expressing imprecise or uncertain fault information in real problems. However, existing literature scarcely deals with fault diagnosis problems, such as gasoline engines and steam turbines with IVFSs. However, the similarity measure is one of the important tools in fault diagnoses. Therefore, this paper proposes a new similarity measure of IVFSs based on logarithmic function and its fault diagnosis method for the first time. By the logarithmic similarity measure between the fault knowledge and some diagnosis-testing samples with interval-valued fuzzy information and its relation indices, we can determine the fault type and ranking order of faults corresponding to the relation indices. Then, the misfire fault diagnosis of the gasoline engine and the vibrational fault diagnosis of a turbine are presented to demonstrate the simplicity and effectiveness of the proposed diagnosis method. The fault diagnosis results of gasoline engine and steam turbine show that the proposed diagnosis method not only gives the main fault types of the gasoline engine and steam turbine but also provides useful information for multi-fault analyses and predicting future fault trends. Hence, the logarithmic similarity measure and its fault diagnosis method are main contributions in this study and they provide a useful new way for the fault diagnosis with interval-valued fuzzy information.

  13. Logarithmic divergences in the k-inflationary power spectra computed through the uniform approximation

    Energy Technology Data Exchange (ETDEWEB)

    Alinea, Allan L.; Kubota, Takahiro; Naylor, Wade, E-mail: alinea@het.phys.sci.osaka-u.ac.jp, E-mail: kubota@celas.osaka-u.ac.jp, E-mail: naylor@phys.sci.osaka-u.ac.jp [Department of Physics, Osaka University, Toyonaka, Osaka 560-0043 (Japan)

    2016-02-01

    We investigate a calculation method for solving the Mukhanov-Sasaki equation in slow-roll k-inflation based on the uniform approximation (UA) in conjunction with an expansion scheme for slow-roll parameters with respect to the number of e-folds about the so-called turning point. Earlier works on this method have so far gained some promising results derived from the approximating expressions for the power spectra among others, up to second order with respect to the Hubble and sound flow parameters, when compared to other semi-analytical approaches (e.g., Green's function and WKB methods). However, a closer inspection is suggestive that there is a problem when higher-order parts of the power spectra are considered; residual logarithmic divergences may come out that can render the prediction physically inconsistent. Looking at this possibility, we map out up to what order with respect to the mentioned parameters several physical quantities can be calculated before hitting a logarithmically divergent result. It turns out that the power spectra are limited up to second order, the tensor-to-scalar ratio up to third order, and the spectral indices and running converge to all orders. This indicates that the expansion scheme is incompatible with the working equations derived from UA for the power spectra but compatible with that of the spectral indices. For those quantities that involve logarithmically divergent terms in the higher-order parts, existing results in the literature for the convergent lower-order parts calculated in the equivalent fashion should be viewed with some caution; they do not rest on solid mathematical ground.

  14. Parameters Design for Logarithmic Quantizer Based on Zoom Strategy

    Directory of Open Access Journals (Sweden)

    Jingjing Yan

    2017-01-01

    Full Text Available This paper is concerned with the problem of designing suitable parameters for logarithmic quantizer such that the closed-loop system is asymptotic convergent. Based on zoom strategy, we propose two methods for quantizer parameters design, under which it ensures that the state of the closed-loop system can load in the invariant sets after some certain moments. Then we obtain that the quantizer is unsaturated, and thus the quantization errors are bounded under the time-varying logarithm quantization strategy. On that basis, we obtain that the closed-loop system is asymptotic convergent. A benchmark example is given to show the usefulness of the proposed methods, and the comparison results are illustrated.

  15. Tensor categories and the mathematics of rational and logarithmic conformal field theory

    International Nuclear Information System (INIS)

    Huang, Yi-Zhi; Lepowsky, James

    2013-01-01

    We review the construction of braided tensor categories and modular tensor categories from representations of vertex operator algebras, which correspond to chiral algebras in physics. The extensive and general theory underlying this construction also establishes the operator product expansion for intertwining operators, which correspond to chiral vertex operators, and more generally, it establishes the logarithmic operator product expansion for logarithmic intertwining operators. We review the main ideas in the construction of the tensor product bifunctors and the associativity isomorphisms. For rational and logarithmic conformal field theories, we review the precise results that yield braided tensor categories, and in the rational case, modular tensor categories as well. In the case of rational conformal field theory, we also briefly discuss the construction of the modular tensor categories for the Wess–Zumino–Novikov–Witten models and, especially, a recent discovery concerning the proof of the fundamental rigidity property of the modular tensor categories for this important special case. In the case of logarithmic conformal field theory, we mention suitable categories of modules for the triplet W-algebras as an example of the applications of our general construction of the braided tensor category structure. (review)

  16. Leading logarithms in the anomalous sector of two-flavour QCD

    International Nuclear Information System (INIS)

    Bijnens, Johan; Kampf, Karol; Lanz, Stefan

    2012-01-01

    We add the Wess-Zumino-Witten term to the N=3 massive nonlinear sigma model and study the leading logarithms in the anomalous sector. We obtain the leading logarithms to six loops for π 0 →γ ⁎ γ ⁎ and to five loops for γ ⁎ πππ. In addition we extend the earlier work on the mass and decay constant to six loops and the vector form factor to five loops. We present numerical results for the anomalous processes and the vector form factor. In all cases the series are found to converge rapidly.

  17. The evolution of utility functions and psychological altruism.

    Science.gov (United States)

    Clavien, Christine; Chapuisat, Michel

    2016-04-01

    Numerous studies show that humans tend to be more cooperative than expected given the assumption that they are rational maximizers of personal gain. As a result, theoreticians have proposed elaborated formal representations of human decision-making, in which utility functions including "altruistic" or "moral" preferences replace the purely self-oriented "Homo economicus" function. Here we review mathematical approaches that provide insights into the mathematical stability of alternative utility functions. Candidate utility functions may be evaluated with help of game theory, classical modeling of social evolution that focuses on behavioral strategies, and modeling of social evolution that focuses directly on utility functions. We present the advantages of the latter form of investigation and discuss one surprisingly precise result: "Homo economicus" as well as "altruistic" utility functions are less stable than a function containing a preference for the common welfare that is only expressed in social contexts composed of individuals with similar preferences. We discuss the contribution of mathematical models to our understanding of human other-oriented behavior, with a focus on the classical debate over psychological altruism. We conclude that human can be psychologically altruistic, but that psychological altruism evolved because it was generally expressed towards individuals that contributed to the actor's fitness, such as own children, romantic partners and long term reciprocators. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Choice probability generating functions

    DEFF Research Database (Denmark)

    Fosgerau, Mogens; McFadden, Daniel; Bierlaire, Michel

    2010-01-01

    This paper establishes that every random utility discrete choice model (RUM) has a representation that can be characterized by a choice-probability generating function (CPGF) with specific properties, and that every function with these specific properties is consistent with a RUM. The choice...... probabilities from the RUM are obtained from the gradient of the CPGF. Mixtures of RUM are characterized by logarithmic mixtures of their associated CPGF. The paper relates CPGF to multivariate extreme value distributions, and reviews and extends methods for constructing generating functions for applications....... The choice probabilities of any ARUM may be approximated by a cross-nested logit model. The results for ARUM are extended to competing risk survival models....

  19. [Ophthalmologic reading charts : Part 2: Current logarithmically scaled reading charts].

    Science.gov (United States)

    Radner, W

    2016-12-01

    To analyze currently available reading charts regarding print size, logarithmic print size progression, and the background of test-item standardization. For the present study, the following logarithmically scaled reading charts were investigated using a measuring microscope (iNexis VMA 2520; Nikon, Tokyo): Eschenbach, Zeiss, OCULUS, MNREAD (Minnesota Near Reading Test), Colenbrander, and RADNER. Calculations were made according to EN-ISO 8596 and the International Research Council recommendations. Modern reading charts and cards exhibit a logarithmic progression of print sizes. The RADNER reading charts comprise four different cards with standardized test items (sentence optotypes), a well-defined stop criterion, accurate letter sizes, and a high print quality. Numbers and Landolt rings are also given in the booklet. The OCULUS cards have currently been reissued according to recent standards and also exhibit a high print quality. In addition to letters, numbers, Landolt rings, and examples taken from a timetable and the telephone book, sheet music is also offered. The Colenbrander cards use short sentences of 44 characters, including spaces, and exhibit inaccuracy at smaller letter sizes, as do the MNREAD cards. The MNREAD cards use sentences of 60 characters, including spaces, and have a high print quality. Modern reading charts show that international standards can be achieved with test items similar to optotypes, by using recent technology and developing new concepts of test-item standardization. Accurate print sizes, high print quality, and a logarithmic progression should become the minimum requirements for reading charts and reading cards in ophthalmology.

  20. Finite strain logarithmic hyperelasto-plasticity with softening: a strongly non-local implicit gradient framework

    NARCIS (Netherlands)

    Geers, M.G.D.

    2004-01-01

    This paper addresses the extension of a Eulerian logarithmic finite strain hyperelasto-plasticity model in order to incorporate an isotropic plastic damage variable that leads to softening and failure of the plastic material. It is shown that a logarithmic elasto-plastic model with a strongly

  1. Logarithmic asymptotic behaviour of the renormalized G-convolution product in axiomatic quantum field theory II: Taylor rests of graded Weinberg functions

    International Nuclear Information System (INIS)

    Ducomet, B.

    1984-03-01

    We give a technical result necessary for a preceding paper on the logarithmic asymptotic behaviour (with respect to the external momenta, in the euclidean space) of the convolution product associated with a general graph, in quantum field theory [fr

  2. CFT and Logarithmic Corrections to the Black Hole Entropy Product Formula

    Directory of Open Access Journals (Sweden)

    Parthapratim Pradhan

    2017-01-01

    Full Text Available We examine the logarithmic corrections to the black hole (BH entropy product formula of outer horizon and inner horizon by taking into account the effects of statistical quantum fluctuations around the thermal equilibrium and via conformal field theory (CFT. We argue that, in logarithmic corrections to the BH entropy product formula when calculated using CFT and taking into account the effects of quantum fluctuations around the thermal equilibrium, the formula should not be universal and it also should not be quantized. These results have been explicitly checked by giving several examples.

  3. Sharp Embeddings of Besov Spaces with Logarithmic Smoothness

    Czech Academy of Sciences Publication Activity Database

    Gurka, P.; Opic, Bohumír

    2005-01-01

    Roč. 18, č. 1 (2005), s. 81-110 ISSN 1139-1138 R&D Projects: GA ČR(CZ) GA201/01/0333 Institutional research plan: CEZ:AV0Z10190503 Keywords : Besov spaces wirh logarithmic smoothness * Lorentz-Zygmund spaces * sharp embeddings Subject RIV: BA - General Mathematics

  4. Large Logarithms in the Beam Normal Spin Asymmetry of Elastic Electron--Proton Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Andrei Afanasev; Mykola Merenkov

    2004-06-01

    We study a parity-conserving single-spin beam asymmetry of elastic electron-proton scattering induced by an absorptive part of the two-photon exchange amplitude. It is demonstrated that excitation of inelastic hadronic intermediate states by the consecutive exchange of two photons leads to logarithmic and double-logarithmic enhancement due to contributions of hard collinear quasi-real photons. The asymmetry at small electron scattering angles is expressed in terms of the total photoproduction cross section on the proton, and is predicted to reach the magnitude of 20-30 parts per million. At these conditions and fixed 4-momentum transfers, the asymmetry is rising logarithmically with increasing electron beam energy, following the high-energy diffractive behavior of total photoproduction cross section on the proton.

  5. Logarithmic Superdiffusion in Two Dimensional Driven Lattice Gases

    Science.gov (United States)

    Krug, J.; Neiss, R. A.; Schadschneider, A.; Schmidt, J.

    2018-03-01

    The spreading of density fluctuations in two-dimensional driven diffusive systems is marginally anomalous. Mode coupling theory predicts that the diffusivity in the direction of the drive diverges with time as (ln t)^{2/3} with a prefactor depending on the macroscopic current-density relation and the diffusion tensor of the fluctuating hydrodynamic field equation. Here we present the first numerical verification of this behavior for a particular version of the two-dimensional asymmetric exclusion process. Particles jump strictly asymmetrically along one of the lattice directions and symmetrically along the other, and an anisotropy parameter p governs the ratio between the two rates. Using a novel massively parallel coupling algorithm that strongly reduces the fluctuations in the numerical estimate of the two-point correlation function, we are able to accurately determine the exponent of the logarithmic correction. In addition, the variation of the prefactor with p provides a stringent test of mode coupling theory.

  6. Logarithmic velocity structure in the deep hypolimnetic waters of Lake Michigan

    Science.gov (United States)

    Troy, Cary; Cannon, David; Liao, Qian; Bootsma, Harvey

    2016-01-01

    The characteristics of the bottom boundary layer are reported from a Lake Michigan field study carried out in deep hypolimnetic waters (55 m depth) during the stratified period (June-September 2012). The sandy substrate at the measurement site was densely covered with invasive quagga mussels (mean size: 1.6 cm; mean density: 10,000 mussels m-2). The measurements reveal a sluggish, compact bottom boundary layer, with flow speeds at 1 mab less than 5 cm s-1 for most of the period, and a dominance of subinertial energy. A downwelling event caused the largest currents observed during the deployment (10 cm s-1 at 1 mab) and a logarithmic layer thickness of 15 m. In spite of the weak flow, logarithmic profile fitting carried out on high-resolution, near-bed velocity profiles show consistent logarithmic structure (90% of profiles). Flow was dominated by subinertial energy but strong modified by near-inertial waves. Fitted drag coefficients and roughness values are = 0.004 and = 0.12 cm, respectively. These values increase with decreasing flow speed, but approach canonical values for 1 mab flow speeds exceeding 4 cm s-1. The estimated vertical extent of the logarithmic region was compact, with a mean value of 1.2 m and temporal variation that is reasonably described by Ekman scaling, 0.07 /, and the estimated overall Ekman layer thickness was generally less than 10 m. Near-bed dissipation rates inferred from the law of the wall were 10-8-10-7 W kg-1 and turbulent diffusivities were 10-4-10-3 m2s-1.

  7. Strategic Risk Management Behavior: What Can Utility Functions Tell Us

    NARCIS (Netherlands)

    Pennings, J.M.E.; Garcia, P.

    2004-01-01

    Abstract The validity of the utility concept, particularly in an expected utility framework, has been questioned because of its inability to predict revealed behavior. In this paper we focus on the global shape of the utility function instead of the local shape of the utility function. We examine

  8. QCD traveling waves beyond leading logarithms

    International Nuclear Information System (INIS)

    Peschanski, R.; Sapeta, S.

    2006-01-01

    We derive the asymptotic traveling-wave solutions of the nonlinear 1-dimensional Balitsky-Kovchegov QCD equation for rapidity evolution in momentum space, with 1-loop running coupling constant and equipped with the Balitsky-Kovchegov-Kuraev-Lipatov kernel at next-to-leading logarithmic accuracy, conveniently regularized by different resummation schemes. Traveling waves allow us to define ''universality classes'' of asymptotic solutions, i.e. independent of initial conditions and of the nonlinear damping. A dependence on the resummation scheme remains, which is analyzed in terms of geometric scaling properties

  9. Super-leading logarithms in non-global observables in QCD colour basis independent calculation

    CERN Document Server

    Forshaw, J R; Seymour, M H

    2008-01-01

    In a previous paper we reported the discovery of super-leading logarithmic terms in a non-global QCD observable. In this short update we recalculate the first super-leading logarithmic contribution to the 'gaps between jets' cross-section using a colour basis independent notation. This sheds light on the structure and origin of the super-leading terms and allows them to be calculated for gluon scattering processes for the first time.

  10. Optimal Wonderful Life Utility Functions in Multi-Agent Systems

    Science.gov (United States)

    Wolpert, David H.; Tumer, Kagan; Swanson, Keith (Technical Monitor)

    2000-01-01

    The mathematics of Collective Intelligence (COINs) is concerned with the design of multi-agent systems so as to optimize an overall global utility function when those systems lack centralized communication and control. Typically in COINs each agent runs a distinct Reinforcement Learning (RL) algorithm, so that much of the design problem reduces to how best to initialize/update each agent's private utility function, as far as the ensuing value of the global utility is concerned. Traditional team game solutions to this problem assign to each agent the global utility as its private utility function. In previous work we used the COIN framework to derive the alternative Wonderful Life Utility (WLU), and experimentally established that having the agents use it induces global utility performance up to orders of magnitude superior to that induced by use of the team game utility. The WLU has a free parameter (the clamping parameter) which we simply set to zero in that previous work. Here we derive the optimal value of the clamping parameter, and demonstrate experimentally that using that optimal value can result in significantly improved performance over that of clamping to zero, over and above the improvement beyond traditional approaches.

  11. Quantum square-well with logarithmic central spike

    Czech Academy of Sciences Publication Activity Database

    Znojil, Miloslav; Semorádová, Iveta

    2018-01-01

    Roč. 33, č. 2 (2018), č. článku 1850009. ISSN 0217-7323 R&D Projects: GA ČR GA16-22945S Institutional support: RVO:61389005 Keywords : state-dependence of interactions * effective Hamiltonians * logarithmic nonlinearities * linearized quantum toy model Subject RIV: BE - Theoretical Physics OBOR OECD: Atomic, molecular and chemical physics ( physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect) Impact factor: 1.165, year: 2016

  12. Double logarithmic asymptotics of quark amplitudes with flavour exchange

    International Nuclear Information System (INIS)

    Kirschner, R.

    1982-01-01

    Results on the quark scattering and annihilation amplitudes in the Regge region are presented. The perturbative contribution to those amplitudes in the double logarithmic approximation are calculated. In the calculations a method based on dispersion relations and gauge invariance is used. (M.F.W.)

  13. Quantum effects on the coulomb logarithm for energetic ions during the initial thermalization phase

    CERN Document Server

    Deng Bai Quan; Deng Mei Gen; Peng Li Lin

    2002-01-01

    The authors have discussed the quantum mechanical effects for the energetic charged particles produced in D-He sup 3 fusion reactions. Authors' results show that it is better to use the proper Coulomb logarithm at the high-energy end in describing the thermalization process, because the quantum mechanical effects on the Coulomb logarithm are not negligible, based on an assumption of binary collision

  14. High values of disorder-generated multifractals and logarithmically correlated processes

    International Nuclear Information System (INIS)

    Fyodorov, Yan V.; Giraud, Olivier

    2015-01-01

    In the introductory section of the article we give a brief account of recent insights into statistics of high and extreme values of disorder-generated multifractals following a recent work by the first author with P. Le Doussal and A. Rosso (FLR) employing a close relation between multifractality and logarithmically correlated random fields. We then substantiate some aspects of the FLR approach analytically for multifractal eigenvectors in the Ruijsenaars–Schneider ensemble (RSE) of random matrices introduced by E. Bogomolny and the second author by providing an ab initio calculation that reveals hidden logarithmic correlations at the background of the disorder-generated multifractality. In the rest we investigate numerically a few representative models of that class, including the study of the highest component of multifractal eigenvectors in the Ruijsenaars–Schneider ensemble

  15. Orbital stability of Gausson solutions to logarithmic Schrodinger equations

    Directory of Open Access Journals (Sweden)

    Alex H. Ardila

    2016-12-01

    Full Text Available In this article we prove of the orbital stability of the ground state for logarithmic Schrodinger equation in any dimension and under nonradial perturbations. This general stability result was announced by Cazenave and Lions [9, Remark II.3], but no details were given there.

  16. Logarithmic corrections to scaling in critical percolation and random resistor networks.

    Science.gov (United States)

    Stenull, Olaf; Janssen, Hans-Karl

    2003-09-01

    We study the critical behavior of various geometrical and transport properties of percolation in six dimensions. By employing field theory and renormalization group methods we analyze fluctuation induced logarithmic corrections to scaling up to and including the next-to-leading order correction. Our study comprehends the percolation correlation function, i.e., the probability that two given points are connected, and some of the fractal masses describing percolation clusters. To be specific, we calculate the mass of the backbone, the red bonds, and the shortest path. Moreover, we study key transport properties of percolation as represented by the random resistor network. We investigate the average two-point resistance as well as the entire family of multifractal moments of the current distribution.

  17. MEASUREMENT OF GALACTIC LOGARITHMIC SPIRAL ARM PITCH ANGLE USING TWO-DIMENSIONAL FAST FOURIER TRANSFORM DECOMPOSITION

    International Nuclear Information System (INIS)

    Davis, Benjamin L.; Berrier, Joel C.; Shields, Douglas W.; Kennefick, Julia; Kennefick, Daniel; Seigar, Marc S.; Lacy, Claud H. S.; Puerari, Ivânio

    2012-01-01

    A logarithmic spiral is a prominent feature appearing in a majority of observed galaxies. This feature has long been associated with the traditional Hubble classification scheme, but historical quotes of pitch angle of spiral galaxies have been almost exclusively qualitative. We have developed a methodology, utilizing two-dimensional fast Fourier transformations of images of spiral galaxies, in order to isolate and measure the pitch angles of their spiral arms. Our technique provides a quantitative way to measure this morphological feature. This will allow comparison of spiral galaxy pitch angle to other galactic parameters and test spiral arm genesis theories. In this work, we detail our image processing and analysis of spiral galaxy images and discuss the robustness of our analysis techniques.

  18. Measurement of Galactic Logarithmic Spiral Arm Pitch Angle Using Two-dimensional Fast Fourier Transform Decomposition

    Science.gov (United States)

    Davis, Benjamin L.; Berrier, Joel C.; Shields, Douglas W.; Kennefick, Julia; Kennefick, Daniel; Seigar, Marc S.; Lacy, Claud H. S.; Puerari, Ivânio

    2012-04-01

    A logarithmic spiral is a prominent feature appearing in a majority of observed galaxies. This feature has long been associated with the traditional Hubble classification scheme, but historical quotes of pitch angle of spiral galaxies have been almost exclusively qualitative. We have developed a methodology, utilizing two-dimensional fast Fourier transformations of images of spiral galaxies, in order to isolate and measure the pitch angles of their spiral arms. Our technique provides a quantitative way to measure this morphological feature. This will allow comparison of spiral galaxy pitch angle to other galactic parameters and test spiral arm genesis theories. In this work, we detail our image processing and analysis of spiral galaxy images and discuss the robustness of our analysis techniques.

  19. MEASUREMENT OF GALACTIC LOGARITHMIC SPIRAL ARM PITCH ANGLE USING TWO-DIMENSIONAL FAST FOURIER TRANSFORM DECOMPOSITION

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Benjamin L.; Berrier, Joel C.; Shields, Douglas W.; Kennefick, Julia; Kennefick, Daniel; Seigar, Marc S.; Lacy, Claud H. S. [Arkansas Center for Space and Planetary Sciences, 202 Field House, University of Arkansas, Fayetteville, AR 72701 (United States); Puerari, Ivanio [Instituto Nacional de Astrofisica, Optica y Electronica, Calle Luis Enrique Erro 1, 72840 Santa Maria Tonantzintla, Puebla (Mexico)

    2012-04-01

    A logarithmic spiral is a prominent feature appearing in a majority of observed galaxies. This feature has long been associated with the traditional Hubble classification scheme, but historical quotes of pitch angle of spiral galaxies have been almost exclusively qualitative. We have developed a methodology, utilizing two-dimensional fast Fourier transformations of images of spiral galaxies, in order to isolate and measure the pitch angles of their spiral arms. Our technique provides a quantitative way to measure this morphological feature. This will allow comparison of spiral galaxy pitch angle to other galactic parameters and test spiral arm genesis theories. In this work, we detail our image processing and analysis of spiral galaxy images and discuss the robustness of our analysis techniques.

  20. Austenite Grain Size Estimtion from Chord Lengths of Logarithmic-Normal Distribution

    Directory of Open Access Journals (Sweden)

    Adrian H.

    2017-12-01

    Full Text Available Linear section of grains in polyhedral material microstructure is a system of chords. The mean length of chords is the linear grain size of the microstructure. For the prior austenite grains of low alloy structural steels, the chord length is a random variable of gamma- or logarithmic-normal distribution. The statistical grain size estimation belongs to the quantitative metallographic problems. The so-called point estimation is a well known procedure. The interval estimation (grain size confidence interval for the gamma distribution was given elsewhere, but for the logarithmic-normal distribution is the subject of the present contribution. The statistical analysis is analogous to the one for the gamma distribution.

  1. An Empirical Assessment of the Form of Utility Functions

    Science.gov (United States)

    Kirby, Kris N.

    2011-01-01

    Utility functions, which relate subjective value to physical attributes of experience, are fundamental to most decision theories. Seven experiments were conducted to test predictions of the most widely assumed mathematical forms of utility (power, log, and negative exponential), and a function proposed by Rachlin (1992). For pairs of gambles for…

  2. Non-abelian factorisation for next-to-leading-power threshold logarithms

    International Nuclear Information System (INIS)

    Bonocore, D.; Laenen, E.; Magnea, L.; Vernazza, L.; White, C.D.

    2016-01-01

    Soft and collinear radiation is responsible for large corrections to many hadronic cross sections, near thresholds for the production of heavy final states. There is much interest in extending our understanding of this radiation to next-to-leading power (NLP) in the threshold expansion. In this paper, we generalise a previously proposed all-order NLP factorisation formula to include non-abelian corrections. We define a non-abelian radiative jet function, organising collinear enhancements at NLP, and compute it for quark jets at one loop. We discuss in detail the issue of double counting between soft and collinear regions. Finally, we verify our prescription by reproducing all NLP logarithms in Drell-Yan production up to NNLO, including those associated with double real emission. Our results constitute an important step in the development of a fully general resummation formalism for NLP threshold effects.

  3. Non-abelian factorisation for next-to-leading-power threshold logarithms

    Energy Technology Data Exchange (ETDEWEB)

    Bonocore, D. [Nikhef, Science Park 105, NL-1098 XG Amsterdam (Netherlands); Institute for Theoretical Particle Physics and Cosmology, RWTH Aachen University, Sommerfeldstr. 16, 52074 Aachen (Germany); Laenen, E. [Nikhef, Science Park 105, NL-1098 XG Amsterdam (Netherlands); ITFA, University of Amsterdam, Science Park 904, Amsterdam (Netherlands); ITF, Utrecht University, Leuvenlaan 4, Utrecht (Netherlands); Kavli Institute for Theoretical Physics, University of California, Santa Barbara, CA 93106-4030 (United States); Magnea, L. [Dipartimento di Fisica, Università di Torino and INFN, Sezione di Torino, Via P. Giuria 1, I-10125 Torino (Italy); Vernazza, L. [Higgs Centre for Theoretical Physics, School of Physics and Astronomy, The University of Edinburgh, Edinburgh EH9 3JZ, Scotland (United Kingdom); White, C.D. [Centre for Research in String Theory, School of Physics and Astronomy, Queen Mary University of London, 327 Mile End Road, London E1 4NS (United Kingdom)

    2016-12-22

    Soft and collinear radiation is responsible for large corrections to many hadronic cross sections, near thresholds for the production of heavy final states. There is much interest in extending our understanding of this radiation to next-to-leading power (NLP) in the threshold expansion. In this paper, we generalise a previously proposed all-order NLP factorisation formula to include non-abelian corrections. We define a non-abelian radiative jet function, organising collinear enhancements at NLP, and compute it for quark jets at one loop. We discuss in detail the issue of double counting between soft and collinear regions. Finally, we verify our prescription by reproducing all NLP logarithms in Drell-Yan production up to NNLO, including those associated with double real emission. Our results constitute an important step in the development of a fully general resummation formalism for NLP threshold effects.

  4. Density of states of two-dimensional systems with long-range logarithmic interactions

    Energy Technology Data Exchange (ETDEWEB)

    Somoza, Andrés M.; Ortuño, Miguel; Baturina, Tatyana I.; Vinokur, Valerii M.

    2015-08-03

    We investigate a single-particle density of states (DOS) in strongly disordered two- dimensional high dielectric permittivity systems with logarithmic Coulomb interaction between particles. We derive self-consistent DOS at zero temperature and show that it is appreciably suppressed as compared to the DOS expected from the Efros-Shklovskii approach.We carry out zero- and finite-temperature Monte Carlo numerical studies of the DOS and find the perfect agreement between the numerical and analytical results at zero temperature, observing, in particular, a hardening of the Coulomb gap with the increasing electrostatic screening length. At finite temperatures, we reveal a striking scaling of the DOS as a function of energy normalized to the temperature of the system.

  5. The structure functions of the photon at large x

    International Nuclear Information System (INIS)

    Chase, M.K.

    1981-01-01

    We derive 'improved' perturbative results in QCD for the structure functions of the photon at large Bjorken x by (a) using a correct phase-space treatment of the leading mass-singularity logarithms and (b) summing the leading logarithms of (1-x) associated with the wave function of the final state. We obtain explicit results in three kinematic regimes: (i) Q 2 low enough for logarithmic QCD corrections to the parton model to be negligible; we estimate that this is the case for all presently realistic values of Q 2 (approx. 2 ). (ii) Q 2 high enough (at fixed x) for the effects of the leading mass-singularity logarithms to be important; we discuss the modifications to Witten's result at large x due to the correct kinematical treatment of the leading logarithms. (iii) Q 2 /s → infinite, where we sum the wave-function logarithms of (1-x); we show that F 2 sup(γ) → finite constant as Q 2 /s → infinite and that there is a close inclusive-exclusive connection in this limit. (orig.)

  6. Four-loop logarithms in 3d gauge + Higgs theory

    CERN Document Server

    Kajantie, Keijo; Rummukainen, K; Schröder, Y

    2003-01-01

    We discuss the logarithmic contributions to the vacuum energy density of the three-dimensional SU(3) + adjoint Higgs theory in its symmetric phase, and relate them to numerical Monte Carlo simulations. We also comment on the implications of these results for perturbative and non-perturbative determinations of the pressure of finite-temperature QCD.

  7. The exponentiated Hencky-logarithmic strain energy. Improvement of planar polyconvexity

    Czech Academy of Sciences Publication Activity Database

    Ghiba, I.-D.; Neff, P.; Šilhavý, Miroslav

    2015-01-01

    Roč. 71, May (2015), s. 48-51 ISSN 0020-7462 Institutional support: RVO:67985840 Keywords : finite isotropis elasticity * polyconvexity * logarithmic strain Subject RIV: BA - General Mathematics Impact factor: 1.920, year: 2015 http://www.sciencedirect.com/science/article/pii/S0020746215000190

  8. The Bloom-Gilman duality and leading logarithms

    International Nuclear Information System (INIS)

    Carlson, C.E.; Mukhopadhyay, N.C.

    1994-01-01

    The existing inclusive electroproduction data base allows the authors a look at the issue of the relative behaviors of background and resonance excitations, a part of the Bloom-Gilman duality. These data lack accuracy at high Q 2 but establish PQCD scaling in the resonance region and even allow the authors a glimpse at the leading logarithmic corrections due to the gluon radiation and its possible quenching at large W and x. These should inspire better quality experimental tests at facilities like CEBAF II

  9. The Bloom-Gilman duality and leading logarithms

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, C.E. [College of William and Mary, Williamsburg, VA (United States); Mukhopadhyay, N.C. [Rensselaer Polytechnic Inst., Troy, NY (United States)

    1994-04-01

    The existing inclusive electroproduction data base allows the authors a look at the issue of the relative behaviors of background and resonance excitations, a part of the Bloom-Gilman duality. These data lack accuracy at high Q{sup 2} but establish PQCD scaling in the resonance region and even allow the authors a glimpse at the leading logarithmic corrections due to the gluon radiation and its possible quenching at large W and x. These should inspire better quality experimental tests at facilities like CEBAF II.

  10. Logarithmic Transformations in Regression: Do You Transform Back Correctly?

    Science.gov (United States)

    Dambolena, Ismael G.; Eriksen, Steven E.; Kopcso, David P.

    2009-01-01

    The logarithmic transformation is often used in regression analysis for a variety of purposes such as the linearization of a nonlinear relationship between two or more variables. We have noticed that when this transformation is applied to the response variable, the computation of the point estimate of the conditional mean of the original response…

  11. Maximize Minimum Utility Function of Fractional Cloud Computing System Based on Search Algorithm Utilizing the Mittag-Leffler Sum

    Directory of Open Access Journals (Sweden)

    Rabha W. Ibrahim

    2018-01-01

    Full Text Available The maximum min utility function (MMUF problem is an important representative of a large class of cloud computing systems (CCS. Having numerous applications in practice, especially in economy and industry. This paper introduces an effective solution-based search (SBS algorithm for solving the problem MMUF. First, we suggest a new formula of the utility function in term of the capacity of the cloud. We formulate the capacity in CCS, by using a fractional diffeo-integral equation. This equation usually describes the flow of CCS. The new formula of the utility function is modified recent active utility functions. The suggested technique first creates a high-quality initial solution by eliminating the less promising components, and then develops the quality of the achieved solution by the summation search solution (SSS. This method is considered by the Mittag-Leffler sum as hash functions to determine the position of the agent. Experimental results commonly utilized in the literature demonstrate that the proposed algorithm competes approvingly with the state-of-the-art algorithms both in terms of solution quality and computational efficiency.

  12. Difference of Sums Containing Products of Binomial Coefficients and Their Logarithms

    National Research Council Canada - National Science Library

    Miller, Allen R; Moskowitz, Ira S

    2005-01-01

    Properties of the difference of two sums containing products of binomial coefficients and their logarithms which arise in the application of Shannon's information theory to a certain class of covert channels are deduced...

  13. Difference of Sums Containing Products of Binomial Coefficients and their Logarithms

    National Research Council Canada - National Science Library

    Miller, Allen R; Moskowitz, Ira S

    2004-01-01

    Properties of the difference of two sums containing products of binomial coefficients and their logarithms which arise in the application of Shannon's information theory to a certain class of covert channels are deduced...

  14. Variational principles for the spectral radius of functional operators

    International Nuclear Information System (INIS)

    Antonevich, A B; Zajkowski, K

    2006-01-01

    The spectral radius of a functional operator with positive coefficients generated by a set of maps (a dynamical system) is shown to be a logarithmically convex functional of the logarithms of the coefficients. This yields the following variational principle: the logarithm of the spectral radius is the Legendre transform of a convex functional T defined on a set of vector-valued probability measures and depending only on the original dynamical system. A combinatorial construction of the functional T by means of the random walk process corresponding to the dynamical system is presented in the subexponential case. Examples of the explicit calculation of the functional T and the spectral radius are presented.

  15. Logarithmic Adaptive Neighborhood Image Processing (LANIP): Introduction, Connections to Human Brightness Perception, and Application Issues

    OpenAIRE

    J. Debayle; J.-C. Pinoli

    2007-01-01

    A new framework for image representation, processing, and analysis is introduced and exposed through practical applications. The proposed approach is called logarithmic adaptive neighborhood image processing (LANIP) since it is based on the logarithmic image processing (LIP) and on the general adaptive neighborhood image processing (GANIP) approaches, that allow several intensity and spatial properties of the human brightness perception to be mathematically modeled and operationalized, and c...

  16. A Formula for the Logarithm of the KZ Associator

    Directory of Open Access Journals (Sweden)

    Benjamin Enriquez

    2006-11-01

    Full Text Available We prove that the logarithm of a group-like element in a free algebra coincides with its image by a certain linear map. We use this result and the formula of Le and Murakami for the Knizhnik-Zamolodchikov (KZ associator Φ to derive a formula for log(Φ in terms of MZV's (multiple zeta values.

  17. Logarithmic terms in entanglement entropies of 2D quantum critical points and Shannon entropies of spin chains.

    Science.gov (United States)

    Zaletel, Michael P; Bardarson, Jens H; Moore, Joel E

    2011-07-08

    Universal logarithmic terms in the entanglement entropy appear at quantum critical points (QCPs) in one dimension (1D) and have been predicted in 2D at QCPs described by 2D conformal field theories. The entanglement entropy in a strip geometry at such QCPs can be obtained via the "Shannon entropy" of a 1D spin chain with open boundary conditions. The Shannon entropy of the XXZ chain is found to have a logarithmic term that implies, for the QCP of the square-lattice quantum dimer model, a logarithm with universal coefficient ±0.25. However, the logarithm in the Shannon entropy of the transverse-field Ising model, which corresponds to entanglement in the 2D Ising conformal QCP, is found to have a singular dependence on the replica or Rényi index resulting from flows to different boundary conditions at the entanglement cut.

  18. The Shape of Utility Functions and Organizational Behavior

    NARCIS (Netherlands)

    J.M.E. Pennings; A. Smidts (Ale)

    2002-01-01

    textabstractBased on measurements with 332 owner-managers, the global shape of the utility function (i.e., S-shaped versus concave or convex over the total range of outcomes) appears to discriminate organizational behavior. Whereas the degree of risk aversion, based on the local shape of the utility

  19. Riemann zeta function from wave-packet dynamics

    DEFF Research Database (Denmark)

    Mack, R.; Dahl, Jens Peder; Moya-Cessa, H.

    2010-01-01

    We show that the time evolution of a thermal phase state of an anharmonic oscillator with logarithmic energy spectrum is intimately connected to the generalized Riemann zeta function zeta(s, a). Indeed, the autocorrelation function at a time t is determined by zeta (sigma + i tau, a), where sigma...... index of JWKB. We compare and contrast exact and approximate eigenvalues of purely logarithmic potentials. Moreover, we use a numerical method to find a potential which leads to exact logarithmic eigenvalues. We discuss possible realizations of Riemann zeta wave-packet dynamics using cold atoms...

  20. On the use of logarithmic scales for analysis of diffraction data.

    Science.gov (United States)

    Urzhumtsev, Alexandre; Afonine, Pavel V; Adams, Paul D

    2009-12-01

    Predictions of the possible model parameterization and of the values of model characteristics such as R factors are important for macromolecular refinement and validation protocols. One of the key parameters defining these and other values is the resolution of the experimentally measured diffraction data. The higher the resolution, the larger the number of diffraction data N(ref), the larger its ratio to the number N(at) of non-H atoms, the more parameters per atom can be used for modelling and the more precise and detailed a model can be obtained. The ratio N(ref)/N(at) was calculated for models deposited in the Protein Data Bank as a function of the resolution at which the structures were reported. The most frequent values for this distribution depend essentially linearly on resolution when the latter is expressed on a uniform logarithmic scale. This defines simple analytic formulae for the typical Matthews coefficient and for the typically allowed number of parameters per atom for crystals diffracting to a given resolution. This simple dependence makes it possible in many cases to estimate the expected resolution of the experimental data for a crystal with a given Matthews coefficient. When expressed using the same logarithmic scale, the most frequent values for R and R(free) factors and for their difference are also essentially linear across a large resolution range. The minimal R-factor values are practically constant at resolutions better than 3 A, below which they begin to grow sharply. This simple dependence on the resolution allows the prediction of expected R-factor values for unknown structures and may be used to guide model refinement and validation.

  1. UTILIZATION OF PLANT PROTEINS IN FUNCTIONAL NUTRITION

    Directory of Open Access Journals (Sweden)

    V. G. Kulakov

    2017-01-01

    Full Text Available Development of functional food products technology is considered to be a prospect way for creating new food products. Such products are known to be popular among consumers. Utilization of plant proteins allows to widen and improve food assortment and quality. The article represents a review of plant proteins utilization in production of functional food. For optimization of flour confectionery chemical composition the authors utilized a method of receipts modeling. Simulation of combined products is based on the principles of food combinatorics and aims to create recipes of new types of food products on basis of methods of mathematical optimization by reasonable selection of the basic raw materials, ingredients, food additives and dietary supplements, totality of which ensures formation desired organoleptic, physical and chemical properties product as well as a predetermined level of food, biological and energy value. Modeling process of combined products recipes includes the following three stages: preparation of input data for the design, formalization requirements for the composition and properties of raw ingredients and quality final product, process modeling; product design with desired structural properties.

  2. GrDHP: a general utility function representation for dual heuristic dynamic programming.

    Science.gov (United States)

    Ni, Zhen; He, Haibo; Zhao, Dongbin; Xu, Xin; Prokhorov, Danil V

    2015-03-01

    A general utility function representation is proposed to provide the required derivable and adjustable utility function for the dual heuristic dynamic programming (DHP) design. Goal representation DHP (GrDHP) is presented with a goal network being on top of the traditional DHP design. This goal network provides a general mapping between the system states and the derivatives of the utility function. With this proposed architecture, we can obtain the required derivatives of the utility function directly from the goal network. In addition, instead of a fixed predefined utility function in literature, we conduct an online learning process for the goal network so that the derivatives of the utility function can be adaptively tuned over time. We provide the control performance of both the proposed GrDHP and the traditional DHP approaches under the same environment and parameter settings. The statistical simulation results and the snapshot of the system variables are presented to demonstrate the improved learning and controlling performance. We also apply both approaches to a power system example to further demonstrate the control capabilities of the GrDHP approach.

  3. Dishonest Academic Conduct: From the Perspective of the Utility Function.

    Science.gov (United States)

    Sun, Ying; Tian, Rui

    Dishonest academic conduct has aroused extensive attention in academic circles. To explore how scholars make decisions according to the principle of maximal utility, the author has constructed the general utility function based on the expected utility theory. The concrete utility functions of different types of scholars were deduced. They are as follows: risk neutral, risk averse, and risk preference. Following this, the assignment method was adopted to analyze and compare the scholars' utilities of academic conduct. It was concluded that changing the values of risk costs, internal condemnation costs, academic benefits, and the subjective estimation of penalties following dishonest academic conduct can lead to changes in the utility of academic dishonesty. The results of the current study suggest that within scientific research, measures to prevent and govern dishonest academic conduct should be formulated according to the various effects of the above four variables.

  4. Using polynomials to simplify fixed pattern noise and photometric correction of logarithmic CMOS image sensors.

    Science.gov (United States)

    Li, Jing; Mahmoodi, Alireza; Joseph, Dileepan

    2015-10-16

    An important class of complementary metal-oxide-semiconductor (CMOS) image sensors are those where pixel responses are monotonic nonlinear functions of light stimuli. This class includes various logarithmic architectures, which are easily capable of wide dynamic range imaging, at video rates, but which are vulnerable to image quality issues. To minimize fixed pattern noise (FPN) and maximize photometric accuracy, pixel responses must be calibrated and corrected due to mismatch and process variation during fabrication. Unlike literature approaches, which employ circuit-based models of varying complexity, this paper introduces a novel approach based on low-degree polynomials. Although each pixel may have a highly nonlinear response, an approximately-linear FPN calibration is possible by exploiting the monotonic nature of imaging. Moreover, FPN correction requires only arithmetic, and an optimal fixed-point implementation is readily derived, subject to a user-specified number of bits per pixel. Using a monotonic spline, involving cubic polynomials, photometric calibration is also possible without a circuit-based model, and fixed-point photometric correction requires only a look-up table. The approach is experimentally validated with a logarithmic CMOS image sensor and is compared to a leading approach from the literature. The novel approach proves effective and efficient.

  5. Information management applications for the compliance function: a utility perspective

    International Nuclear Information System (INIS)

    Savoie, R.A.

    1986-01-01

    Today's complex and changing regulatory environment presents many challenges to those involved in the nuclear power industry. This is particularly true of technical personnel and managers involved in serving the compliance function for nuclear utilities. Adequately supporting the construction, startup, and operations of a nuclear power plant while simultaneously satisfying each regulatory requirement requires the meshing of thousands of individual regulatory tasks with each possible implementation option. The compliance function acts as a screen or filter between the regulatory bodies and the utility nuclear staff. Many varied approaches are taken by utilities in performing this compliance function, both from an organizational and information management perspective. The purpose of this paper is to describe the experiences of Louisiana Power and Light (LP and L) in developing its compliance function and to describe the innovative information management techniques LP and L has developed to serve this function

  6. Next-to-next-to-leading logarithms in four-fermion electroweak processes at high energy

    International Nuclear Information System (INIS)

    Kuehn, J.H.; Moch, S.; Penin, A.A.; Smirnov, V.A.

    2001-01-01

    We sum up the next-to-next-to-leading logarithmic virtual electroweak corrections to the high energy asymptotics of the neutral current four-fermion processes for light fermions to all orders in the coupling constants using the evolution equation approach. From this all order result we derive finite order expressions through next-to-next-to leading order for the total cross section and various asymmetries. We observe an amazing cancellation between the sizable leading, next-to-leading and next-to-next-to-leading logarithmic contributions at TeV energies

  7. Logarithmic corrections to gravitational entropy and the null energy condition

    Energy Technology Data Exchange (ETDEWEB)

    Parikh, Maulik, E-mail: maulik.parikh@asu.edu; Svesko, Andrew

    2016-10-10

    Using a relation between the thermodynamics of local horizons and the null energy condition, we consider the effects of quantum corrections to the gravitational entropy. In particular, we find that the geometric form of the null energy condition is not affected by the inclusion of logarithmic corrections to the Bekenstein–Hawking entropy.

  8. Beyond Emotion Regulation: Emotion Utilization and Adaptive Functioning

    OpenAIRE

    Izard, Carroll; Stark, Kevin; Trentacosta, Christopher; Schultz, David

    2008-01-01

    Recent research indicates that emotionality, emotion information processing, emotion knowledge, and discrete emotion experiences may influence and interact with emotion utilization, that is, the effective use of the inherently adaptive and motivational functions of emotions. Strategies individuals learn for emotion modulation and emotion utilization become stabilized in emerging affective-cognitive structures, or emotion schemas. In these emotion schemas, the feeling/motivational component of...

  9. Logarithmic corrections to gravitational entropy and the null energy condition

    Directory of Open Access Journals (Sweden)

    Maulik Parikh

    2016-10-01

    Full Text Available Using a relation between the thermodynamics of local horizons and the null energy condition, we consider the effects of quantum corrections to the gravitational entropy. In particular, we find that the geometric form of the null energy condition is not affected by the inclusion of logarithmic corrections to the Bekenstein–Hawking entropy.

  10. Learning a decision maker's utility function from (possibly) inconsistent behavior

    DEFF Research Database (Denmark)

    Nielsen, Thomas Dyhre; Jensen, Finn Verner

    2004-01-01

    developed for learning the probabilities from a database.However, methods for learning the utilities have only received limitedattention in the computer science community. A promising approach for learning a decision maker's utility function is to takeoutset in the decision maker's observed behavioral...... patterns, and then find autility function which (together with a domain model) can explainthis behavior. That is, it is assumed that decision maker's preferences arereflected in the behavior. Standard learning algorithmsalso assume that the decision maker is behavioralconsistent, i.e., given a model ofthe...... decision problem, there exists a utility function which canaccount for all the observed behavior. Unfortunately, this assumption israrely valid in real-world decision problems, and in these situationsexisting learning methods may only identify a trivial utilityfunction. In this paper we relax...

  11. Paradox-Proof Utility Functions for Heavy-Tailed Payoffs: Two Instructive Two-Envelope Problems

    Directory of Open Access Journals (Sweden)

    Michael R. Powers

    2015-01-01

    Full Text Available We identify restrictions on a decision maker’s utility function that are both necessary and sufficient to preserve dominance reasoning in each of two versions of the Two-Envelope Paradox (TEP. For the classical TEP, the utility function must satisfy a certain recurrence inequality. For the St. Petersburg TEP, the utility function must be bounded above asymptotically by a power function, which can be tightened to a constant. By determining the weakest conditions for dominance reasoning to hold, the article settles an open question in the research literature. Remarkably, neither constant-bounded utility nor finite expected utility is necessary for resolving the classical TEP; instead, finite expected utility is both necessary and sufficient for resolving the St. Petersburg TEP.

  12. Asymptotically anti-de Sitter spacetimes and scalar fields with a logarithmic branch

    International Nuclear Information System (INIS)

    Henneaux, Marc; Martinez, Cristian; Troncoso, Ricardo; Zanelli, Jorge

    2004-01-01

    We consider a self-interacting scalar field whose mass saturates the Breitenlohner-Freedman bound, minimally coupled to Einstein gravity with a negative cosmological constant in D≥3 dimensions. It is shown that the asymptotic behavior of the metric has a slower fall-off than that of pure gravity with a localized distribution of matter, due to the back-reaction of the scalar field, which has a logarithmic branch decreasing as r -(D-1)/2 ln r for large radius r. We find the asymptotic conditions on the fields which are invariant under the same symmetry group as pure gravity with negative cosmological constant (conformal group in D-1 dimensions). The generators of the asymptotic symmetries are finite even when the logarithmic branch is considered but acquire, however, a contribution from the scalar field

  13. A logarithmic interpretation of Edixhoven's jumps for Jacobians

    DEFF Research Database (Denmark)

    Eriksson, Dennis; Halle, Lars Halvard; Nicaise, Johannes

    2015-01-01

    Let A be an abelian variety over a discretely valued field. Edixhoven has defined a filtration on the special fiber of the N\\'eron model of A that measures the behaviour of the N\\'eron model under tame base change. We interpret the jumps in this filtration in terms of lattices of logarithmic...... differential forms in the case where A is the Jacobian of a curve C , and we give a compact explicit formula for the jumps in terms of the combinatorial reduction data of C. ...

  14. Double logarithmic asymptotics of quark scattering amplitudes with flavour exchange

    International Nuclear Information System (INIS)

    Kirschner , R.; Lipatov, L.N.

    1982-02-01

    We propose simple equations in terms of the definite signature partial waves of the quark scattering and annihilation amplitudes with quark-quark and quark-antiquark states in the exchange channel. We discuss the singularities in the complex angular momentum plane generated by the double logarithmic contributions and point out their relation to the particle Regge trajectories. (author)

  15. Functions of Conflict: Perceived Utility in the Emergent Professions.

    Science.gov (United States)

    Henkin, Alan B.; And Others

    1991-01-01

    Describes perceptions of conflict as a utility (functional conflict) among 1,953 department executives in programs of social work, education, and nursing (the emergent professions); and analyzes perceptual data in terms of organizational conflict climate and demographics. Variations in terms of perceived operational utility of organizational…

  16. Limit law of the iterated logarithm for B-valued trimmed sums

    Indian Academy of Sciences (India)

    Limit law of the iterated logarithm for B-valued trimmed sums. KE-ANG FU1, YUYANG QIU1,∗ and YELING TONG2. 1School of Statistics and Mathematics, Zhejiang Gongshang University,. Hangzhou 310018, China. 2Zhejiang Institute of Traditional Chinese Medicine, Hangzhou 310028, China. *Corresponding author.

  17. Extraction and ion exchange equilibrium. A study by means logarith-mic diagrams

    International Nuclear Information System (INIS)

    Vicente Perez, S.; Alvarez, M.D.; Durand, S.

    1990-01-01

    A general logarithmic mole fraction diagram for the study of distribution equilibria of a) a neutral chemical species between two inmiscible solvents and b) and ionic species between an aqueous phase and ion-exchange resin, is proposed. (Author)

  18. Limit law of the iterated logarithm for B-valued trimmed sums

    Indian Academy of Sciences (India)

    Annual Meetings · Mid Year Meetings · Discussion Meetings · Public Lectures · Lecture Workshops · Refresher Courses · Symposia · Live Streaming. Home; Journals; Proceedings – Mathematical Sciences; Volume 125; Issue 2. Limit law of the iterated logarithm for -valued trimmed sums. Ke-Ang Fu Yuyang Qiu Yeling ...

  19. Ten-decimal tables of the logarithms of complex numbers and for the transformation from Cartesian to polar coordinates

    CERN Document Server

    Lyusternik, L A

    1965-01-01

    Ten-Decimal Tables of the Logarithms of Complex Numbers and for the Transformation from Cartesian to Polar Coordinates contains Tables of mathematical functions up to ten-decimal value. These tables are compiled in the Department for Approximate Computations of the Institute of Exact Mechanics and Computational Methods of the U.S.S.R. Academy of Sciences. The computations are carried out by this department in conjunction with the Computational-Experimental Laboratory of the Institute.This book will be of value to mathematicians and researchers.

  20. Q2 evolution of a soft gluon distribution function

    International Nuclear Information System (INIS)

    Enkovskij, L.L.; Kotikov, A.V.; Pakkanoni, F.

    1992-01-01

    Model parameter dependence refferring to the function of gluon distribution linked with the exchange of a dipole pomeron from Q 2 is calculated within the framework of the Gribov-Lipatov-Altarelli-Parisi evolution equation (GLAP) both in the leading logarithm approximation and in the double logarithmic approximation. The behaviour of logarithmic parametrization ∼ (ln(1/x)) b appears to be unstable in relation to perturbative calculations

  1. A pair density functional theory utilizing the correlated wave function

    International Nuclear Information System (INIS)

    Higuchi, M; Higuchi, K

    2009-01-01

    We propose a practical scheme for calculating the ground-state pair density (PD) by utilizing the correlated wave function. As the correlated wave function, we adopt a linear combination of the single Slater determinants that are constructed from the solutions of the initial scheme [Higuchi M and Higuchi K 2007 Physica B 387, 117]. The single-particle equation is derived by performing the variational principle within the set of PDs that are constructed from such correlated wave functions. Since the search region of the PD is substantially extended as compared with the initial scheme, it is expected that the present scheme can cover more correlation effects. The single-particle equation is practical, and may be easily applied to actual calculations.

  2. Continuous time random walk model with asymptotical probability density of waiting times via inverse Mittag-Leffler function

    Science.gov (United States)

    Liang, Yingjie; Chen, Wen

    2018-04-01

    The mean squared displacement (MSD) of the traditional ultraslow diffusion is a logarithmic function of time. Recently, the continuous time random walk model is employed to characterize this ultraslow diffusion dynamics by connecting the heavy-tailed logarithmic function and its variation as the asymptotical waiting time density. In this study we investigate the limiting waiting time density of a general ultraslow diffusion model via the inverse Mittag-Leffler function, whose special case includes the traditional logarithmic ultraslow diffusion model. The MSD of the general ultraslow diffusion model is analytically derived as an inverse Mittag-Leffler function, and is observed to increase even more slowly than that of the logarithmic function model. The occurrence of very long waiting time in the case of the inverse Mittag-Leffler function has the largest probability compared with the power law model and the logarithmic function model. The Monte Carlo simulations of one dimensional sample path of a single particle are also performed. The results show that the inverse Mittag-Leffler waiting time density is effective in depicting the general ultraslow random motion.

  3. Logarithmic circuit with wide dynamic range

    Science.gov (United States)

    Wiley, P. H.; Manus, E. A. (Inventor)

    1978-01-01

    A circuit deriving an output voltage that is proportional to the logarithm of a dc input voltage susceptible to wide variations in amplitude includes a constant current source which forward biases a diode so that the diode operates in the exponential portion of its voltage versus current characteristic, above its saturation current. The constant current source includes first and second, cascaded feedback, dc operational amplifiers connected in negative feedback circuit. An input terminal of the first amplifier is responsive to the input voltage. A circuit shunting the first amplifier output terminal includes a resistor in series with the diode. The voltage across the resistor is sensed at the input of the second dc operational feedback amplifier. The current flowing through the resistor is proportional to the input voltage over the wide range of variations in amplitude of the input voltage.

  4. Freezing and extreme-value statistics in a random energy model with logarithmically correlated potential

    International Nuclear Information System (INIS)

    Fyodorov, Yan V; Bouchaud, Jean-Philippe

    2008-01-01

    We investigate some implications of the freezing scenario proposed by Carpentier and Le Doussal (CLD) for a random energy model (REM) with logarithmically correlated random potential. We introduce a particular (circular) variant of the model, and show that the integer moments of the partition function in the high-temperature phase are given by the well-known Dyson Coulomb gas integrals. The CLD freezing scenario allows one to use those moments for extracting the distribution of the free energy in both high- and low-temperature phases. In particular, it yields the full distribution of the minimal value in the potential sequence. This provides an explicit new class of extreme-value statistics for strongly correlated variables, manifestly different from the standard Gumbel class. (fast track communication)

  5. Freezing and extreme-value statistics in a random energy model with logarithmically correlated potential

    Energy Technology Data Exchange (ETDEWEB)

    Fyodorov, Yan V [School of Mathematical Sciences, University of Nottingham, Nottingham NG72RD (United Kingdom); Bouchaud, Jean-Philippe [Science and Finance, Capital Fund Management 6-8 Bd Haussmann, 75009 Paris (France)

    2008-09-19

    We investigate some implications of the freezing scenario proposed by Carpentier and Le Doussal (CLD) for a random energy model (REM) with logarithmically correlated random potential. We introduce a particular (circular) variant of the model, and show that the integer moments of the partition function in the high-temperature phase are given by the well-known Dyson Coulomb gas integrals. The CLD freezing scenario allows one to use those moments for extracting the distribution of the free energy in both high- and low-temperature phases. In particular, it yields the full distribution of the minimal value in the potential sequence. This provides an explicit new class of extreme-value statistics for strongly correlated variables, manifestly different from the standard Gumbel class. (fast track communication)

  6. A Variation on Uncertainty Principle and Logarithmic Uncertainty Principle for Continuous Quaternion Wavelet Transforms

    Directory of Open Access Journals (Sweden)

    Mawardi Bahri

    2017-01-01

    Full Text Available The continuous quaternion wavelet transform (CQWT is a generalization of the classical continuous wavelet transform within the context of quaternion algebra. First of all, we show that the directional quaternion Fourier transform (QFT uncertainty principle can be obtained using the component-wise QFT uncertainty principle. Based on this method, the directional QFT uncertainty principle using representation of polar coordinate form is easily derived. We derive a variation on uncertainty principle related to the QFT. We state that the CQWT of a quaternion function can be written in terms of the QFT and obtain a variation on uncertainty principle related to the CQWT. Finally, we apply the extended uncertainty principles and properties of the CQWT to establish logarithmic uncertainty principles related to generalized transform.

  7. Utilization of Natural Products as Functional Feed

    Directory of Open Access Journals (Sweden)

    Stella Magdalena

    2013-03-01

    Full Text Available The use of antibiotics as feed additive improves performance in livestock. However, scientific data related to the use of antibiotics in feed merge spreading of bacterial resistance in animal and human bodies, therefore the usage of antibiotics in animal production is restricted. This condition raise the utilization of natural antibiotic as functional feed such as phytogenics (essential oil, flavonoid, saponin, and tannin, enzyme, probiotic, and prebiotic to improve the livestock’s performance, quality, and health. Functional feeds increase profitability in animal husbandry production and its use is feeds are expected to be functional foods that may have positive effects in human nutrition.

  8. SU-E-I-45: Reconstruction of CT Images From Sparsely-Sampled Data Using the Logarithmic Barrier Method

    International Nuclear Information System (INIS)

    Xu, H

    2014-01-01

    Purpose: To develop and investigate whether the logarithmic barrier (LB) method can result in high-quality reconstructed CT images using sparsely-sampled noisy projection data Methods: The objective function is typically formulated as the sum of the total variation (TV) and a data fidelity (DF) term with a parameter λ that governs the relative weight between them. Finding the optimized value of λ is a critical step for this approach to give satisfactory results. The proposed LB method avoid using λ by constructing the objective function as the sum of the TV and a log function whose augment is the DF term. Newton's method was used to solve the optimization problem. The algorithm was coded in MatLab2013b. Both Shepp-Logan phantom and a patient lung CT image were used for demonstration of the algorithm. Measured data were simulated by calculating the projection data using radon transform. A Poisson noise model was used to account for the simulated detector noise. The iteration stopped when the difference of the current TV and the previous one was less than 1%. Results: Shepp-Logan phantom reconstruction study shows that filtered back-projection (FBP) gives high streak artifacts for 30 and 40 projections. Although visually the streak artifacts are less pronounced for 64 and 90 projections in FBP, the 1D pixel profiles indicate that FBP gives noisier reconstructed pixel values than LB does. A lung image reconstruction is presented. It shows that use of 64 projections gives satisfactory reconstructed image quality with regard to noise suppression and sharp edge preservation. Conclusion: This study demonstrates that the logarithmic barrier method can be used to reconstruct CT images from sparsely-amped data. The number of projections around 64 gives a balance between the over-smoothing of the sharp demarcation and noise suppression. Future study may extend to CBCT reconstruction and improvement on computation speed

  9. On the maximal operators of Riesz logarithmic means of Vilenkin-Fourier series

    OpenAIRE

    Tephnadze, George

    2014-01-01

    Comment: Vilenkin system, Riesz logarithmic means, martingale Hardy space. arXiv admin note: text overlap with arXiv:1410.6101, arXiv:1410.6416, arXiv:1410.7204, arXiv:1410.7635, arXiv:1410.6186, arXiv:1410.7075, arXiv:1410.6102

  10. Analytic solution of the BCS gap equation with a logarithmic singularity in the density of states

    International Nuclear Information System (INIS)

    Bhardwaj, A.; Muthu, S.K.

    1999-01-01

    The Bardeen-Cooper-Schrieffer (BCS) gap equation is solved analytically for a density of states function with a logarithmic singularity. It is an extension of our earlier work where we had assumed a constant density of states. We continue to work in the weak-coupling limit and consider both phononic and non-phononic pairings. Expressions are obtained for T c , Δ 0 (the gap at T=0), and the jump in the electronic specific heat at T=T c . We also calculate the isotope exponent and show that it is possible to reproduce the broad features of the experimental results in this framework. (orig.)

  11. The Informational Content of the Shape of Utility Functions: Financial Strategic Behavior

    NARCIS (Netherlands)

    Pennings, J.M.E.; Garcia, P.

    2009-01-01

    Recently, Pennings and Smidts (2003) showed a relationship between organizational behavior and the global shape of the utility function. Their results suggest that the shape of the utility function may be related to `higher-order¿ decisions. This research examines the relationship between financial

  12. Rock Failure Analysis Based on a Coupled Elastoplastic-Logarithmic Damage Model

    Science.gov (United States)

    Abdia, M.; Molladavoodi, H.; Salarirad, H.

    2017-12-01

    The rock materials surrounding the underground excavations typically demonstrate nonlinear mechanical response and irreversible behavior in particular under high in-situ stress states. The dominant causes of irreversible behavior are plastic flow and damage process. The plastic flow is controlled by the presence of local shear stresses which cause the frictional sliding. During this process, the net number of bonds remains unchanged practically. The overall macroscopic consequence of plastic flow is that the elastic properties (e.g. the stiffness of the material) are insensitive to this type of irreversible change. The main cause of irreversible changes in quasi-brittle materials such as rock is the damage process occurring within the material. From a microscopic viewpoint, damage initiates with the nucleation and growth of microcracks. When the microcracks length reaches a critical value, the coalescence of them occurs and finally, the localized meso-cracks appear. The macroscopic and phenomenological consequence of damage process is stiffness degradation, dilatation and softening response. In this paper, a coupled elastoplastic-logarithmic damage model was used to simulate the irreversible deformations and stiffness degradation of rock materials under loading. In this model, damage evolution & plastic flow rules were formulated in the framework of irreversible thermodynamics principles. To take into account the stiffness degradation and softening on post-peak region, logarithmic damage variable was implemented. Also, a plastic model with Drucker-Prager yield function was used to model plastic strains. Then, an algorithm was proposed to calculate the numerical steps based on the proposed coupled plastic and damage constitutive model. The developed model has been programmed in VC++ environment. Then, it was used as a separate and new constitutive model in DEM code (UDEC). Finally, the experimental Oolitic limestone rock behavior was simulated based on the developed

  13. Logarithmic of mass singularities theorem in non massive quantum electrodynamics

    International Nuclear Information System (INIS)

    Mares G, R.; Luna, H.

    1997-01-01

    We give an explicit example of the use of dimensional regularization to calculate in a unified approach, all the ultraviolet, infrared and mass singularities, by considering the LMS (logarithms of mass singularities) theorem in the frame of massless QED (Quantum electrodynamics). In the calculation of the divergent part of the cross section, all singularities are found to cancel provided soft and hard photon emission are both taken into account. (Author)

  14. On Feller's criterion for the law of the iterated logarithm

    Directory of Open Access Journals (Sweden)

    Deli Li

    1994-01-01

    Full Text Available Combining Feller's criterion with a non-uniform estimate result in the context of the Central Limit Theorem for partial sums of independent random variables, we obtain several results on the Law of the Iterated Logarithm. Two of these results refine corresponding results of Wittmann (1985 and Egorov (1971. In addition, these results are compared with the corresponding results of Teicher (1974, Tomkins (1983 and Tomkins (1990

  15. Generalized Second Law of Thermodynamics in Wormhole Geometry with Logarithmic Correction

    International Nuclear Information System (INIS)

    Faiz-ur-Rahman; Salahuddin; Akbar, M.

    2011-01-01

    We construct various cases for validity of the generalized second law (GSL) of thermodynamics by assuming the logarithmic correction to the horizon entropy of an evolving wormhole. It is shown that the GSL is always respected for α 0 ≤ 0, whereas for α 0 > 0 the GSL is respected only if πr 2 A+ /ℏ < α. (general)

  16. An Estimation of the Logarithmic Timescale in Ergodic Dynamics

    Science.gov (United States)

    Gomez, Ignacio S.

    An estimation of the logarithmic timescale in quantum systems having an ergodic dynamics in the semiclassical limit, is presented. The estimation is based on an extension of the Krieger’s finite generator theorem for discretized σ-algebras and using the time rescaling property of the Kolmogorov-Sinai entropy. The results are in agreement with those obtained in the literature but with a simpler mathematics and within the context of the ergodic theory. Moreover, some consequences of the Poincaré’s recurrence theorem are also explored.

  17. Holographic two-point functions for 4d log-gravity

    NARCIS (Netherlands)

    Johansson, Niklas; Naseh, Ali; Zojer, Thomas

    We compute holographic one- and two-point functions of critical higher-curvature gravity in four dimensions. The two most important operators are the stress tensor and its logarithmic partner, sourced by ordinary massless and by logarithmic non-normalisable gravitons, respectively. In addition, the

  18. Elastic scattering of virtual photons via a quark loop in the double-logarithmic approximation

    Science.gov (United States)

    Ermolaev, B. I.; Ivanov, D. Yu.; Troyan, S. I.

    2018-04-01

    We calculate the amplitude of elastic photon-photon scattering via a single quark loop in the double-logarithmic approximation, presuming all external photons to be off-shell and unpolarized. At the same time we account for the running coupling effects. We consider this process in the forward kinematics at arbitrary relations between t and the external photon virtualities. We obtain explicit expressions for the photon-photon scattering amplitudes in all double-logarithmic kinematic regions. Then we calculate the small-x asymptotics of the obtained amplitudes and compare them with the parent amplitudes, thereby fixing the applicability regions of the asymptotics, i.e., fixing the applicability region for the nonvacuum Reggeons. We find that these Reggeons should be used at x <10-8 only.

  19. Correlation functions and Schwinger-Dyson equations for Penner's model

    International Nuclear Information System (INIS)

    Chair, N.; Panda, S.

    1991-05-01

    The free energy of Penner's model exhibits logarithmic singularity in the continuum limit. We show, however, that the one and two point correlators of the usual loop-operators do not exhibit logarithmic singularity. The continuum Schwinger-Dyson equations involving these correlation functions are derived and it is found that within the space of the corresponding couplings, the resulting constraints obey a Virasoro algebra. The puncture operator having the correct (logarithmic) scaling behaviour is identified. (author). 13 refs

  20. John Napier life, logarithms, and legacy

    CERN Document Server

    Havil, Julian

    2014-01-01

    John Napier (1550–1617) is celebrated today as the man who invented logarithms—an enormous intellectual achievement that would soon lead to the development of their mechanical equivalent in the slide rule: the two would serve humanity as the principal means of calculation until the mid-1970s. Yet, despite Napier’s pioneering efforts, his life and work have not attracted detailed modern scrutiny. John Napier is the first contemporary biography to take an in-depth look at the multiple facets of Napier’s story: his privileged position as the eighth Laird of Merchiston and the son of influential Scottish landowners; his reputation as a magician who dabbled in alchemy; his interest in agriculture; his involvement with a notorious outlaw; his staunch anti-Catholic beliefs; his interactions with such peers as Henry Briggs, Johannes Kepler, and Tycho Brahe; and, most notably, his estimable mathematical legacy. Julian Havil explores Napier’s original development of logarithms, the motivations for his approa...

  1. Solving the Schrödinger equation of helium and its isoelectronic ions with the exponential integral (Ei) function in the free iterative complement interaction method.

    Science.gov (United States)

    Kurokawa, Yusaku I; Nakashima, Hiroyuki; Nakatsuji, Hiroshi

    2008-08-14

    We introduce here the exponential integral (Ei) function for variationally solving the Schrödinger equation of helium and its isoelectronic ions with the free iterative complement interaction (ICI) method. In our previous study [J. Chem. Phys., 2007, 127, 224104], we could calculate very accurate energies of these atoms by using the logarithmic function as the starting function of the free ICI calculation. The Ei function has a weak singularity at the origin, similarly to the logarithmic function, which is important for accurately describing the three-particle coalescence region. The logarithmic function, however, has a node and a maximum along the radial coordinate which may be physically meaningless. In contrast, the Ei function does not have such unphysical behaviors and so would provide an improvement over the logarithmic function. Actually, using the Ei function, instead of the logarithmic function, we obtained the energy, E= -2.903 724 377 034 119 598 311 159 245 194 404 446 696 924 865 a.u. for the helium ground state with 21 035 functions, which is a slight improvement over our previous result (the bold face shows the digits that are believed to have converged). This result supports the suggestion that the Ei function is better than the logarithmic function for describing the three-particle coalescence region.

  2. An ab initio approach to free-energy reconstruction using logarithmic mean force dynamics

    International Nuclear Information System (INIS)

    Nakamura, Makoto; Obata, Masao; Morishita, Tetsuya; Oda, Tatsuki

    2014-01-01

    We present an ab initio approach for evaluating a free energy profile along a reaction coordinate by combining logarithmic mean force dynamics (LogMFD) and first-principles molecular dynamics. The mean force, which is the derivative of the free energy with respect to the reaction coordinate, is estimated using density functional theory (DFT) in the present approach, which is expected to provide an accurate free energy profile along the reaction coordinate. We apply this new method, first-principles LogMFD (FP-LogMFD), to a glycine dipeptide molecule and reconstruct one- and two-dimensional free energy profiles in the framework of DFT. The resultant free energy profile is compared with that obtained by the thermodynamic integration method and by the previous LogMFD calculation using an empirical force-field, showing that FP-LogMFD is a promising method to calculate free energy without empirical force-fields

  3. Decay of Correlations, Quantitative Recurrence and Logarithm Law for Contracting Lorenz Attractors

    Science.gov (United States)

    Galatolo, Stefano; Nisoli, Isaia; Pacifico, Maria Jose

    2018-03-01

    In this paper we prove that a class of skew products maps with non uniformly hyperbolic base has exponential decay of correlations. We apply this to obtain a logarithm law for the hitting time associated to a contracting Lorenz attractor at all the points having a well defined local dimension, and a quantitative recurrence estimation.

  4. Higher-order predictions for splitting functions and coefficient functions from physical evolution kernels

    International Nuclear Information System (INIS)

    Vogt, A; Soar, G.; Vermaseren, J.A.M.

    2010-01-01

    We have studied the physical evolution kernels for nine non-singlet observables in deep-inelastic scattering (DIS), semi-inclusive e + e - annihilation and the Drell-Yan (DY) process, and for the flavour-singlet case of the photon- and heavy-top Higgs-exchange structure functions (F 2 , F φ ) in DIS. All known contributions to these kernels show an only single-logarithmic large-x enhancement at all powers of (1-x). Conjecturing that this behaviour persists to (all) higher orders, we have predicted the highest three (DY: two) double logarithms of the higher-order non-singlet coefficient functions and of the four-loop singlet splitting functions. The coefficient-function predictions can be written as exponentiations of 1/N-suppressed contributions in Mellin-N space which, however, are less predictive than the well-known exponentiation of the ln k N terms. (orig.)

  5. Some properties of the Catalan-Qi function related to the Catalan numbers.

    Science.gov (United States)

    Qi, Feng; Mahmoud, Mansour; Shi, Xiao-Ting; Liu, Fang-Fang

    2016-01-01

    In the paper, the authors find some properties of the Catalan numbers, the Catalan function, and the Catalan-Qi function which is a generalization of the Catalan numbers. Concretely speaking, the authors present a new expression, asymptotic expansions, integral representations, logarithmic convexity, complete monotonicity, minimality, logarithmically complete monotonicity, a generating function, and inequalities of the Catalan numbers, the Catalan function, and the Catalan-Qi function. As by-products, an exponential expansion and a double inequality for the ratio of two gamma functions are derived.

  6. Simple regular black hole with logarithmic entropy correction

    Energy Technology Data Exchange (ETDEWEB)

    Morales-Duran, Nicolas; Vargas, Andres F.; Hoyos-Restrepo, Paulina; Bargueno, Pedro [Universidad de los Andes, Departamento de Fisica, Bogota, Distrito Capital (Colombia)

    2016-10-15

    A simple regular black hole solution satisfying the weak energy condition is obtained within Einstein-non-linear electrodynamics theory. We have computed the thermodynamic properties of this black hole by a careful analysis of the horizons and we have found that the usual Bekenstein-Hawking entropy gets corrected by a logarithmic term. Therefore, in this sense our model realises some quantum gravity predictions which add this kind of correction to the black hole entropy. In particular, we have established some similitudes between our model and a quadratic generalised uncertainty principle. This similitude has been confirmed by the existence of a remnant, which prevents complete evaporation, in agreement with the quadratic generalised uncertainty principle case. (orig.)

  7. New exponential, logarithm and q-probability in the non-extensive statistical physics

    OpenAIRE

    Chung, Won Sang

    2013-01-01

    In this paper, a new exponential and logarithm related to the non-extensive statistical physics is proposed by using the q-sum and q-product which satisfy the distributivity. And we discuss the q-mapping from an ordinary probability to q-probability. The q-entropy defined by the idea of q-probability is shown to be q-additive.

  8. Logarithmic r-θ mapping for hybrid optical neural network filter for multiple objects recognition within cluttered scenes

    Science.gov (United States)

    Kypraios, Ioannis; Young, Rupert C. D.; Chatwin, Chris R.; Birch, Phil M.

    2009-04-01

    θThe window unit in the design of the complex logarithmic r-θ mapping for hybrid optical neural network filter can allow multiple objects of the same class to be detected within the input image. Additionally, the architecture of the neural network unit of the complex logarithmic r-θ mapping for hybrid optical neural network filter becomes attractive for accommodating the recognition of multiple objects of different classes within the input image by modifying the output layer of the unit. We test the overall filter for multiple objects of the same and of different classes' recognition within cluttered input images and video sequences of cluttered scenes. Logarithmic r-θ mapping for hybrid optical neural network filter is shown to exhibit with a single pass over the input data simultaneously in-plane rotation, out-of-plane rotation, scale, log r-θ map translation and shift invariance, and good clutter tolerance by recognizing correctly the different objects within the cluttered scenes. We record in our results additional extracted information from the cluttered scenes about the objects' relative position, scale and in-plane rotation.

  9. SU-E-I-45: Reconstruction of CT Images From Sparsely-Sampled Data Using the Logarithmic Barrier Method

    Energy Technology Data Exchange (ETDEWEB)

    Xu, H [Department of Radiation Oncology, Dalhousie University, Halifax, NS (Canada)

    2014-06-01

    Purpose: To develop and investigate whether the logarithmic barrier (LB) method can result in high-quality reconstructed CT images using sparsely-sampled noisy projection data Methods: The objective function is typically formulated as the sum of the total variation (TV) and a data fidelity (DF) term with a parameter λ that governs the relative weight between them. Finding the optimized value of λ is a critical step for this approach to give satisfactory results. The proposed LB method avoid using λ by constructing the objective function as the sum of the TV and a log function whose augment is the DF term. Newton's method was used to solve the optimization problem. The algorithm was coded in MatLab2013b. Both Shepp-Logan phantom and a patient lung CT image were used for demonstration of the algorithm. Measured data were simulated by calculating the projection data using radon transform. A Poisson noise model was used to account for the simulated detector noise. The iteration stopped when the difference of the current TV and the previous one was less than 1%. Results: Shepp-Logan phantom reconstruction study shows that filtered back-projection (FBP) gives high streak artifacts for 30 and 40 projections. Although visually the streak artifacts are less pronounced for 64 and 90 projections in FBP, the 1D pixel profiles indicate that FBP gives noisier reconstructed pixel values than LB does. A lung image reconstruction is presented. It shows that use of 64 projections gives satisfactory reconstructed image quality with regard to noise suppression and sharp edge preservation. Conclusion: This study demonstrates that the logarithmic barrier method can be used to reconstruct CT images from sparsely-amped data. The number of projections around 64 gives a balance between the over-smoothing of the sharp demarcation and noise suppression. Future study may extend to CBCT reconstruction and improvement on computation speed.

  10. Unique determination of the effective potential in terms of renormalization group functions

    International Nuclear Information System (INIS)

    Chishtie, F. A.; Hanif, T.; McKeon, D. G. C.; Steele, T. G.

    2008-01-01

    The perturbative effective potential V in the massless λφ 4 model with a global O(N) symmetry is uniquely determined to all orders by the renormalization group functions alone when the Coleman-Weinberg renormalization condition (d 4 V/dφ 4 )| φ=μ =λ is used, where μ represents the renormalization scale. Systematic methods are developed to express the n-loop effective potential in the Coleman-Weinberg scheme in terms of the known n-loop minimal-subtraction (MS) renormalization group functions. Moreover, it also proves possible to sum the leading- and subsequent-to-leading-logarithm contributions to V. An essential element of this analysis is a conversion of the renormalization group functions in the Coleman-Weinberg scheme to the renormalization group functions in the MS scheme. As an example, the explicit five-loop effective potential is obtained from the known five-loop MS renormalization group functions and we explicitly sum the leading-logarithm, next-to-leading-logarithm, and further subleading-logarithm contributions to V. Extensions of these results to massless scalar QED are also presented. Because massless scalar QED has two couplings, conversion of the renormalization group functions from the MS scheme to the Coleman-Weinberg scheme requires the use of multiscale renormalization group methods.

  11. U-matrix approach in the investigation of the low-x behaviour of the nuclear structure function F2A(x,Q2)

    International Nuclear Information System (INIS)

    Davidovs'kij, V.V.

    2000-01-01

    The U-matrix method is applied to build the amplitude for virtual photon absorption by nuclei which satisfies unitarity. This amplitude is utilized to obtain the expression for the structure function F 24 , which is convenient to perform analytic calculations. Profile functions of nuclei with the Gauss, Woods-Saxon, and constant density distributions are considered. It is shown that effects of quark-antiquark pair rescattering in a nucleus cause the change of a power-like behavior of F 24 to a logarithmic one at small x. Numerical estimations are given

  12. Mechanical quadrature method as applied to singular integral equations with logarithmic singularity on the right-hand side

    Science.gov (United States)

    Amirjanyan, A. A.; Sahakyan, A. V.

    2017-08-01

    A singular integral equation with a Cauchy kernel and a logarithmic singularity on its righthand side is considered on a finite interval. An algorithm is proposed for the numerical solution of this equation. The contact elasticity problem of a П-shaped rigid punch indented into a half-plane is solved in the case of a uniform hydrostatic pressure occurring under the punch, which leads to a logarithmic singularity at an endpoint of the integration interval. The numerical solution of this problem shows the efficiency of the proposed approach and suggests that the singularity has to be taken into account in solving the equation.

  13. Utilization of Natural Products as Functional Feed

    OpenAIRE

    Stella Magdalena; Natadiputri G H; Nailufar; Purwadaria T

    2013-01-01

    The use of antibiotics as feed additive improves performance in livestock. However, scientific data related to the use of antibiotics in feed merge spreading of bacterial resistance in animal and human bodies, therefore the usage of antibiotics in animal production is restricted. This condition raise the utilization of natural antibiotic as functional feed such as phytogenics (essential oil, flavonoid, saponin, and tannin), enzyme, probiotic, and prebiotic to improve the livestock’s performan...

  14. Utility function under decision theory: A construction arbitration application

    Science.gov (United States)

    Alozn, Ahmad E.; Galadari, Abdulla

    2017-08-01

    While a wide range of dispute resolution mechanisms exist, practitioners favor legally binding ones such as litigation and arbitration. Since initiating a litigation or arbitration case against a business partner may dissolve the business relationship between them, predicting the arbitrator's decision becomes valuable to the arbitrating parties. This paper proposes a construction-specific utility framework for the arbitrating party through decision theory, and based on expected utility theory. The proposed framework preserves the industry practicality and most importantly, considers direct short-term factors and indirect long-term factors as well. It is suggested that the arbitrating parties' utility functions could be then used to identify equilibrium points among them when interact via game theory principles, which would serve the purpose of predicting the arbitration outcome.

  15. Linear Independence of -Logarithms over the Eisenstein Integers

    Directory of Open Access Journals (Sweden)

    Peter Bundschuh

    2010-01-01

    Full Text Available For fixed complex with ||>1, the -logarithm is the meromorphic continuation of the series ∑>0/(−1,||1,≠,2,3,…. In 2004, Tachiya showed that this is true in the Subcase =ℚ, ∈ℤ, =−1, and the present authors extended this result to arbitrary integer from an imaginary quadratic number field , and provided a quantitative version. In this paper, the earlier method, in particular its arithmetical part, is further developed to answer the above question in the affirmative if is the Eisenstein number field √ℚ(−3, an integer from , and a primitive third root of unity. Under these conditions, the linear independence holds also for 1,(,(−1, and both results are quantitative.

  16. Approximation solutions for indifference pricing under general utility functions

    NARCIS (Netherlands)

    Chen, An; Pelsser, Antoon; Vellekoop, M.H.

    2008-01-01

    With the aid of Taylor-based approximations, this paper presents results for pricing insurance contracts by using indifference pricing under general utility functions. We discuss the connection between the resulting "theoretical" indifference prices and the pricing rule-of-thumb that practitioners

  17. Approximate Solutions for Indifference Pricing under General Utility Functions

    NARCIS (Netherlands)

    Chen, A.; Pelsser, A.; Vellekoop, M.

    2007-01-01

    With the aid of Taylor-based approximations, this paper presents results for pricing insurance contracts by using indifference pricing under general utility functions. We discuss the connection between the resulting "theoretical" indifference prices and the pricing rule-of-thumb that practitioners

  18. Biostimulants and Its Potential Utilization in Functional Water-soluble Fertilizers

    Directory of Open Access Journals (Sweden)

    ZHANG Qiang

    2018-02-01

    Full Text Available Biostimulants are becoming widely applied and extended in the fertilizer industry, because of their effects on soil improvement, anti-stress ability enhancement and root growth promotion, which can increase efficient uptake and utilization of soil nutrients, crop yield and quality.This review introduced the concepts of biostimulants, and summarized the functions and related mechanisms of commonly-applied biostimulants in the market, i.e.humic acid, amino acid, seaweed extracts and plant-growth-promoting bacteria(PGPR. The properties and applied characteristics of different organic wastes containing some biostimulating compounds as the main material of functional water soluble fertilizers (WSFin the industry were presented. The technical keys to compound these organic wastes with some bio-active substances to produce the functional WSF were explored, with the aims to support the value -added utilization of organic wastes, reduce the use of fertilizers, and promote crops忆 quality and quantity.

  19. The functional properties, modification and utilization of whey proteins

    Directory of Open Access Journals (Sweden)

    B. G. Venter

    1986-03-01

    Full Text Available Whey protein has an excellent nutritional value and exhibits a functional potential. In comparison with certain other food proteins, the whey protein content of essential amino acids is extremely favourable for human consumption. Depending on the heat-treatment history thereof, soluble whey proteins with utilizable functional properties, apart from high biological value, true digestibility, protein efficiency ratio and nett protein utilization, can be recovered. Various technological and chemical recovery processes have been designed. Chemically and enzymatically modified whey protein is manufactured to obtain technological and functional advantages. The important functional properties of whey proteins, namely hydration, gelation, emulsifying and foaming properties, are reviewed.

  20. Zeta Function Expression of Spin Partition Functions on Thermal AdS3

    Directory of Open Access Journals (Sweden)

    Floyd L.Williams

    2015-07-01

    Full Text Available We find a Selberg zeta function expression of certain one-loop spin partition functions on three-dimensional thermal anti-de Sitter space. Of particular interest is the partition function of higher spin fermionic particles. We also set up, in the presence of spin, a Patterson-type formula involving the logarithmic derivative of zeta.

  1. Reducing Approximation Error in the Fourier Flexible Functional Form

    Directory of Open Access Journals (Sweden)

    Tristan D. Skolrud

    2017-12-01

    Full Text Available The Fourier Flexible form provides a global approximation to an unknown data generating process. In terms of limiting function specification error, this form is preferable to functional forms based on second-order Taylor series expansions. The Fourier Flexible form is a truncated Fourier series expansion appended to a second-order expansion in logarithms. By replacing the logarithmic expansion with a Box-Cox transformation, we show that the Fourier Flexible form can reduce approximation error by 25% on average in the tails of the data distribution. The new functional form allows for nested testing of a larger set of commonly implemented functional forms.

  2. Pareto utility

    NARCIS (Netherlands)

    Ikefuji, M.; Laeven, R.J.A.; Magnus, J.R.; Muris, C.H.M.

    2013-01-01

    In searching for an appropriate utility function in the expected utility framework, we formulate four properties that we want the utility function to satisfy. We conduct a search for such a function, and we identify Pareto utility as a function satisfying all four desired properties. Pareto utility

  3. Systemic-Functional Approach to Utilities Supplys

    Directory of Open Access Journals (Sweden)

    Nikolay I. Komkov

    2017-01-01

    Full Text Available Purpose: the purpose of the article consists in statement of management approach to development of utilities supply processes based on conflict situations decision – making search. It had appeared in the period of the transition from the planned and directive management to market development. Methods: the research methodology is based on the system analysis of full life cycle processes functioning, forecasting of complex systems development, mathematical modeling of processes of services supply and innovative and investment projects modeling as well as development of supplying services processes. Results: the results of the work are concentrated in the presentation of systemic-functional approach to managing the development of processes of municipal services, able to resolve conflict situations in this sphere. Conclusions and Relevance: the traditional management approach on the basis of elimination of "bottlenecks" and emergencies prevailing within planned and directive system at its transformation in the market conditions has led to accumulation of conflict situations and unsolvable problems. The offered systemic-functional approach based on forecasting of full life cycle of the modernized processes and the services providing systems allows to consider costs of modernization, prime cost and quality of the rendered services. 

  4. A basic design of microcontroller based data processor and local display for digital logarithmic power channel

    International Nuclear Information System (INIS)

    Nur Khasan; Syahrudin Yusuf

    2009-01-01

    A data processor and its local display for a digital logarithmic power channel, which will be used as a complement and diversification of nuclear reactor instrument, has been designed using micro controller base circuit. This power channel has been designed using TTL device and microcontroller. The roll of the microcontroller will be as data acquisition, data processing for the measurement of percentage reactor power, period and the trip decision. In this design has beer; created display of numerical value will be display on the local display in on-line mode for 1 nV to 10 10 nV neutron flux measurement range. This logarithmic power channel is expected to support the existing instrument which uses analog system in Instrumentation and Control System of nuclear reactor. (author)

  5. Calculation of the mean scattering angle, the logarithmic decrement and its mean square

    International Nuclear Information System (INIS)

    Bersillon, O.; Caput, B.

    1984-06-01

    The calculation of the mean scattering angle, the logarithmic decrement and its mean square, starting from the Legendre polynomial expansion coefficients of the relevant elastic scattering angular distribution, is numerically studied with different methods, one of which is proposed for the usual determination of these quantities which are present in the evaluated data files ENDF [fr

  6. X fluorescence spectrometer including at least one toroidal monochromator with logarithmic spiral

    International Nuclear Information System (INIS)

    Florestan, J.

    1986-01-01

    This spectrometer includes a X-ray source, an entrance diaphragm, a revolution monochromator with monocrystal thin plates and a seal set in its center, an outer diaphragm and a X-ray detector. A second monochromator can be set between the source and the sample. The thin plates are set so as to be a toroidal ring whose cross section in an axial plane describes a logarithmic spiral [fr

  7. Platelet function testing: methods of assessment and clinical utility.

    LENUS (Irish Health Repository)

    Mylotte, Darren

    2012-02-01

    Platelets play a central role in the regulation of both thrombosis and haemostasis yet tests of platelet function have, until recently, been exclusively used in the diagnosis and management of bleeding disorders. Recent advances have demonstrated the clinical utility of platelet function testing in patients with cardiovascular disease. The ex vivo measurement of response to antiplatelet therapies (aspirin and clopidogrel), by an ever-increasing array of platelet function tests, is with some assays, predictive of adverse clinical events and thus, represents an emerging area of interest for both the clinician and basic scientist. This review article will describe the advantages and disadvantages of the currently available methods of measuring platelet function and discuss both the limitations and emerging data supporting the role of platelet function studies in clinical practice.

  8. Platelet function testing: methods of assessment and clinical utility.

    LENUS (Irish Health Repository)

    Mylotte, Darren

    2011-01-01

    Platelets play a central role in the regulation of both thrombosis and haemostasis yet tests of platelet function have, until recently, been exclusively used in the diagnosis and management of bleeding disorders. Recent advances have demonstrated the clinical utility of platelet function testing in patients with cardiovascular disease. The ex vivo measurement of response to antiplatelet therapies (aspirin and clopidogrel), by an ever-increasing array of platelet function tests, is with some assays, predictive of adverse clinical events and thus, represents an emerging area of interest for both the clinician and basic scientist. This review article will describe the advantages and disadvantages of the currently available methods of measuring platelet function and discuss both the limitations and emerging data supporting the role of platelet function studies in clinical practice.

  9. Boundary layer and fundamental problems of hydrodynamics (compatibility of a logarithmic velocity profile in a turbulent boundary layer with the experience values)

    Science.gov (United States)

    Zaryankin, A. E.

    2017-11-01

    The compatibility of the semiempirical turbulence theory of L. Prandtl with the actual flow pattern in a turbulent boundary layer is considered in this article, and the final calculation results of the boundary layer is analyzed based on the mentioned theory. It shows that accepted additional conditions and relationships, which integrate the differential equation of L. Prandtl, associating the turbulent stresses in the boundary layer with the transverse velocity gradient, are fulfilled only in the near-wall region where the mentioned equation loses meaning and are inconsistent with the physical meaning on the main part of integration. It is noted that an introduced concept about the presence of a laminar sublayer between the wall and the turbulent boundary layer is the way of making of a physical meaning to the logarithmic velocity profile, and can be defined as adjustment of the actual flow to the formula that is inconsistent with the actual boundary conditions. It shows that coincidence of the experimental data with the actual logarithmic profile is obtained as a result of the use of not particular physical value, as an argument, but function of this value.

  10. DATASPACE - A PROGRAM FOR THE LOGARITHMIC INTERPOLATION OF TEST DATA

    Science.gov (United States)

    Ledbetter, F. E.

    1994-01-01

    Scientists and engineers work with the reduction, analysis, and manipulation of data. In many instances, the recorded data must meet certain requirements before standard numerical techniques may be used to interpret it. For example, the analysis of a linear visoelastic material requires knowledge of one of two time-dependent properties, the stress relaxation modulus E(t) or the creep compliance D(t), one of which may be derived from the other by a numerical method if the recorded data points are evenly spaced or increasingly spaced with respect to the time coordinate. The problem is that most laboratory data are variably spaced, making the use of numerical techniques difficult. To ease this difficulty in the case of stress relaxation data analysis, NASA scientists developed DATASPACE (A Program for the Logarithmic Interpolation of Test Data), to establish a logarithmically increasing time interval in the relaxation data. The program is generally applicable to any situation in which a data set needs increasingly spaced abscissa values. DATASPACE first takes the logarithm of the abscissa values, then uses a cubic spline interpolation routine (which minimizes interpolation error) to create an evenly spaced array from the log values. This array is returned from the log abscissa domain to the abscissa domain and written to an output file for further manipulation. As a result of the interpolation in the log abscissa domain, the data is increasingly spaced. In the case of stress relaxation data, the array is closely spaced at short times and widely spaced at long times, thus avoiding the distortion inherent in evenly spaced time coordinates. The interpolation routine gives results which compare favorably with the recorded data. The experimental data curve is retained and the interpolated points reflect the desired spacing. DATASPACE is written in FORTRAN 77 for IBM PC compatibles with a math co-processor running MS-DOS and Apple Macintosh computers running MacOS. With

  11. Logarithmic laws of echoic memory and auditory change detection in humans

    OpenAIRE

    Koji Inui; Tomokazu Urakawa; Koya Yamashiro; Naofumi Otsuru; Yasuyuki Takeshima; Ryusuke Kakigi

    2009-01-01

    The cortical mechanisms underlying echoic memory and change detection were investigated using an auditory change-related component (N100c) of event-related brain potentials. N100c was elicited by paired sound stimuli, a standard followed by a deviant, while subjects watched a silent movie. The amplitude of N100c elicited by a fixed sound pressure deviance (70 dB vs. 75 dB) was negatively correlated with the logarithm of the interval between the standard sound and deviant sound (1 ~ 1000 ms), ...

  12. Critical Assessment Of The Issues In The Application Of Hilbert Transform To Compute The Logarithmic Decrement

    Directory of Open Access Journals (Sweden)

    Majewski M.

    2015-06-01

    Full Text Available The parametric OMI (Optimization in Multiple Intervals, the Yoshida-Magalas (YM and a novel Hilbert-twin (H-twin methods are advocated for computing the logarithmic decrement in the field of internal friction and mechanical spectroscopy of solids. It is shown that dispersion in experimental points results mainly from the selection of the computing methods, the number of oscillations, and noise. It is demonstrated that conventional Hilbert transform method suffers from high dispersion in internal friction values. It is unequivocally demonstrated that the Hilbert-twin method, which yields a ‘true envelope’ for exponentially damped harmonic oscillations is superior to conventional Hilbert transform method. The ‘true envelope’ of free decaying strain signals calculated from the Hilbert-twin method yields excellent estimation of the logarithmic decrement in metals, alloys, and solids.

  13. A viable logarithmic f(R) model for inflation

    Energy Technology Data Exchange (ETDEWEB)

    Amin, M.; Khalil, S. [Center for Fundamental Physics, Zewail City of Science and Technology,6 October City, Giza (Egypt); Salah, M. [Center for Fundamental Physics, Zewail City of Science and Technology,6 October City, Giza (Egypt); Department of Mathematics, Faculty of Science, Cairo University,Giza (Egypt)

    2016-08-18

    Inflation in the framework of f(R) modified gravity is revisited. We study the conditions that f(R) should satisfy in order to lead to a viable inflationary model in the original form and in the Einstein frame. Based on these criteria we propose a new logarithmic model as a potential candidate for f(R) theories aiming to describe inflation consistent with observations from Planck satellite (2015). The model predicts scalar spectral index 0.9615

  14. Development of utility generic functional requirements for electronic work packages and computer-based procedures

    Energy Technology Data Exchange (ETDEWEB)

    Oxstrand, Johanna [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-06-01

    The Nuclear Electronic Work Packages - Enterprise Requirements (NEWPER) initiative is a step toward a vision of implementing an eWP framework that includes many types of eWPs. This will enable immediate paper-related cost savings in work management and provide a path to future labor efficiency gains through enhanced integration and process improvement in support of the Nuclear Promise (Nuclear Energy Institute 2016). The NEWPER initiative was organized by the Nuclear Information Technology Strategic Leadership (NITSL) group, which is an organization that brings together leaders from the nuclear utility industry and regulatory agencies to address issues involved with information technology used in nuclear-power utilities. NITSL strives to maintain awareness of industry information technology-related initiatives and events and communicates those events to its membership. NITSL and LWRS Program researchers have been coordinating activities, including joint organization of NEWPER-related meetings and report development. The main goal of the NEWPER initiative was to develop a set of utility generic functional requirements for eWP systems. This set of requirements will support each utility in their process of identifying plant-specific functional and non-functional requirements. The NEWPER initiative has 140 members where the largest group of members consists of 19 commercial U.S. nuclear utilities and eleven of the most prominent vendors of eWP solutions. Through the NEWPER initiative two sets of functional requirements were developed; functional requirements for electronic work packages and functional requirements for computer-based procedures. This paper will describe the development process as well as a summary of the requirements.

  15. Tracer particles in two-dimensional elastic networks diffuse logarithmically slow

    International Nuclear Information System (INIS)

    Lizana, Ludvig; Ambjörnsson, Tobias; Lomholt, Michael A

    2017-01-01

    Several experiments on tagged molecules or particles in living systems suggest that they move anomalously slow—their mean squared displacement (MSD) increase slower than linearly with time. Leading models aimed at understanding these experiments predict that the MSD grows as a power law with a growth exponent that is smaller than unity. However, in some experiments the growth is so slow (fitted exponent  ∼0.1–0.2) that they hint towards other mechanisms at play. In this paper, we theoretically demonstrate how in-plane collective modes excited by thermal fluctuations in a two dimensional membrane lead to logarithmic time dependence for the the tracer particle’s MSD. (paper)

  16. Optimal investment and indifference pricing when risk aversion is not monotone: SAHARA utility functions

    NARCIS (Netherlands)

    Chen, A.; Pelsser, A.; Vellekoop, M.

    2008-01-01

    Abstract. We develop a new class of utility functions, SAHARA utility, with the dis- tinguishing feature that they implement the assumption that agents may become less risk-averse for very low values of wealth. This means that SAHARA utility can be used to characterize risk gambling behavior of an

  17. Evidence of a logarithmic relationship between motor capacity and actual performance in daily life of the paretic arm following stroke.

    Science.gov (United States)

    Michielsen, Marian E; de Niet, Mark; Ribbers, Gerard M; Stam, Henk J; Bussmann, Johannes B

    2009-04-01

    To examine the associations between actual performance in daily life and function, capacity and self-perceived performance of the paretic upper limb following stroke. Seventeen individuals with stroke. Correlation coefficients between actual performance (measured with the Stroke-Upper Limb Activity Monitor), function (Fugl-Meyer Assessment), capacity (Action Research Arm test) and self-perceived performance (ABILHAND questionnaire). High correlations were found between actual performance and function (r = 0.75; 95% confidence interval (CI): 0.42-0.90), and capacity (r =0.71; 95% CI: 0.35-0.89), whereas a moderate correlation was found between actual performance and self-perceived performance (r = 0.64; 95% CI: 0.21-0.86). For the relationship between actual performance and both function and capacity, logarithmic regression explained more variance than did linear regression. The present study provides first evidence of the existence of a non-linear relationship between actual performance, function and capacity of the paretic upper limb following stroke. The results indicate that function and capacity need to reach a certain threshold-level before actual performance also starts to increase. Because of the small sample size of the present study caution is needed when generalizing these results.

  18. Longitudinal structure function from logarithmic slopes of F2 at low x

    Science.gov (United States)

    Boroun, G. R.

    2018-01-01

    Using Laplace transform techniques, I calculate the longitudinal structure function FL(x ,Q2) from the scaling violations of the proton structure function F2(x ,Q2) and make a critical study of this relationship between the structure functions at leading order (LO) up to next-to-next-to leading order (NNLO) analysis at small x . Furthermore, I consider heavy quark contributions to the relation between the structure functions, which leads to compact formula for Nf=3 +Heavy . The nonlinear corrections to the longitudinal structure function at LO up to NNLO analysis are shown in the Nf=4 (light quark flavor) based on the nonlinear corrections at R =2 and R =4 GeV-1 . The results are compared with experimental data of the longitudinal proton structure function FL in the range of 6.5 ≤Q2≤800 GeV2 .

  19. Generalized finite polynomial approximation (WINIMAX) to the reduced partition function of isotopic molecules

    International Nuclear Information System (INIS)

    Lee, M.W.; Bigeleisen, J.

    1978-01-01

    The MINIMAX finite polynomial approximation to an arbitrary function has been generalized to include a weighting function (WINIMAX). It is suggested that an exponential is a reasonable weighting function for the logarithm of the reduced partition function of a harmonic oscillator. Comparison of the error function for finite orthogonal polynomial (FOP), MINIMAX, and WINIMAX expansions of the logarithm of the reduced vibrational partition function show WINIMAX to be the best of the three approximations. A condensed table of WINIMAX coefficients is presented. The FOP, MINIMAX, and WINIMAX approximations are compared with exact calculations of the logarithm of the reduced partition function ratios for isotopic substitution in H 2 O, CH 4 , CH 2 O, C 2 H 4 , and C 2 H 6 at 300 0 K. Both deuterium and heavy atom isotope substitution are studied. Except for a third order expansion involving deuterium substitution, the WINIMAX method is superior to FOP and MINIMAX. At the level of a second order expansion WINIMAX approximations to ln(s/s')f are good to 2.5% and 6.5% for deuterium and heavy atom substitution, respectively

  20. Factorization for groomed jet substructure beyond the next-to-leading logarithm

    Energy Technology Data Exchange (ETDEWEB)

    Frye, Christopher; Larkoski, Andrew J.; Schwartz, Matthew D.; Yan, Kai [Center for the Fundamental Laws of Nature, Harvard University,17 Oxford Street, Cambridge, MA 02138 (United States)

    2016-07-12

    Jet grooming algorithms are widely used in experimental analyses at hadron colliders to remove contaminating radiation from within jets. While the algorithms perform a great service to the experiments, their intricate algorithmic structure and multiple parameters has frustrated precision theoretic understanding. In this paper, we demonstrate that one particular groomer called soft drop actually makes precision jet substructure easier. In particular, we derive a factorization formula for a large class of soft drop jet substructure observables, including jet mass. The essential observation that allows for this factorization is that, without the soft wide-angle radiation groomed by soft drop, all singular contributions are collinear. The simplicity and universality of the collinear limit in QCD allows us to show that to all orders, the normalized differential cross section has no contributions from non-global logarithms. It is also independent of process, up to the relative fraction of quark and gluon jets. In fact, soft drop allows us to define this fraction precisely. The factorization theorem also explains why soft drop observables are less sensitive to hadronization than their ungroomed counterparts. Using the factorization theorem, we resum the soft drop jet mass to next-to-next-to-leading logarithmic accuracy. This requires calculating some clustering effects that are closely related to corresponding effects found in jet veto calculations. We match our resummed calculation to fixed order results for both e{sup +}e{sup −}→ dijets and pp→Z+j events, producing the first jet substructure predictions (groomed or ungroomed) to this accuracy for the LHC.

  1. Probabilistic wind power forecasting based on logarithmic transformation and boundary kernel

    International Nuclear Information System (INIS)

    Zhang, Yao; Wang, Jianxue; Luo, Xu

    2015-01-01

    Highlights: • Quantitative information on the uncertainty of wind power generation. • Kernel density estimator provides non-Gaussian predictive distributions. • Logarithmic transformation reduces the skewness of wind power density. • Boundary kernel method eliminates the density leakage near the boundary. - Abstracts: Probabilistic wind power forecasting not only produces the expectation of wind power output, but also gives quantitative information on the associated uncertainty, which is essential for making better decisions about power system and market operations with the increasing penetration of wind power generation. This paper presents a novel kernel density estimator for probabilistic wind power forecasting, addressing two characteristics of wind power which have adverse impacts on the forecast accuracy, namely, the heavily skewed and double-bounded nature of wind power density. Logarithmic transformation is used to reduce the skewness of wind power density, which improves the effectiveness of the kernel density estimator in a transformed scale. Transformations partially relieve the boundary effect problem of the kernel density estimator caused by the double-bounded nature of wind power density. However, the case study shows that there are still some serious problems of density leakage after the transformation. In order to solve this problem in the transformed scale, a boundary kernel method is employed to eliminate the density leak at the bounds of wind power distribution. The improvement of the proposed method over the standard kernel density estimator is demonstrated by short-term probabilistic forecasting results based on the data from an actual wind farm. Then, a detailed comparison is carried out of the proposed method and some existing probabilistic forecasting methods

  2. Factorization for groomed jet substructure beyond the next-to-leading logarithm

    International Nuclear Information System (INIS)

    Frye, Christopher; Larkoski, Andrew J.; Schwartz, Matthew D.; Yan, Kai

    2016-01-01

    Jet grooming algorithms are widely used in experimental analyses at hadron colliders to remove contaminating radiation from within jets. While the algorithms perform a great service to the experiments, their intricate algorithmic structure and multiple parameters has frustrated precision theoretic understanding. In this paper, we demonstrate that one particular groomer called soft drop actually makes precision jet substructure easier. In particular, we derive a factorization formula for a large class of soft drop jet substructure observables, including jet mass. The essential observation that allows for this factorization is that, without the soft wide-angle radiation groomed by soft drop, all singular contributions are collinear. The simplicity and universality of the collinear limit in QCD allows us to show that to all orders, the normalized differential cross section has no contributions from non-global logarithms. It is also independent of process, up to the relative fraction of quark and gluon jets. In fact, soft drop allows us to define this fraction precisely. The factorization theorem also explains why soft drop observables are less sensitive to hadronization than their ungroomed counterparts. Using the factorization theorem, we resum the soft drop jet mass to next-to-next-to-leading logarithmic accuracy. This requires calculating some clustering effects that are closely related to corresponding effects found in jet veto calculations. We match our resummed calculation to fixed order results for both e + e − → dijets and pp→Z+j events, producing the first jet substructure predictions (groomed or ungroomed) to this accuracy for the LHC.

  3. Zeros and logarithmic asymptotics of Sobolev orthogonal polynomials for exponential weights

    Science.gov (United States)

    Díaz Mendoza, C.; Orive, R.; Pijeira Cabrera, H.

    2009-12-01

    We obtain the (contracted) weak zero asymptotics for orthogonal polynomials with respect to Sobolev inner products with exponential weights in the real semiaxis, of the form , with [gamma]>0, which include as particular cases the counterparts of the so-called Freud (i.e., when [phi] has a polynomial growth at infinity) and Erdös (when [phi] grows faster than any polynomial at infinity) weights. In addition, the boundness of the distance of the zeros of these Sobolev orthogonal polynomials to the convex hull of the support and, as a consequence, a result on logarithmic asymptotics are derived.

  4. Strong interactions and quantum chromodynamics at the leading logarithm approximation

    International Nuclear Information System (INIS)

    Mantrach, A.

    1982-11-01

    This thesis is a contribution to the study of Quantum Chromodynamics (QCD) at the leading logarithm approximation (LLA). We have used the interpretation of the LLA in terms of the generalized parton model to propose tests of elementary processes of QCD in large transverse momentum photoproduction reactions. We have used the LLA to sum gluon radiation effects induced in high energy hadronic reactions. We have obtained this way a rise of the nucleon-nucleon total cross section of 15 mb from 60 GeV to 540 GeV. We have exploited the existence of a preconfinement transition in the LLA to study scaling violations in the framework of the dual parton model [fr

  5. Application of a disease-specific mapping function to estimate utility gains with effective treatment of schizophrenia

    Directory of Open Access Journals (Sweden)

    Rupnow Marcia FT

    2005-09-01

    Full Text Available Abstract Background Most tools for estimating utilities use clinical trial data from general health status models, such as the 36-Item Short-Form Health Survey (SF-36. A disease-specific model may be more appropriate. The objective of this study was to apply a disease-specific utility mapping function for schizophrenia to data from a large, 1-year, open-label study of long-acting risperidone and to compare its performance with an SF-36-based utility mapping function. Methods Patients with schizophrenia or schizoaffective disorder by DSM-IV criteria received 25, 50, or 75 mg long-acting risperidone every 2 weeks for 12 months. The Positive and Negative Syndrome Scale (PANSS and SF-36 were used to assess efficacy and health-related quality of life. Movement disorder severity was measured using the Extrapyramidal Symptom Rating Scale (ESRS; data concerning other common adverse effects (orthostatic hypotension, weight gain were collected. Transforms were applied to estimate utilities. Results A total of 474 patients completed the study. Long-acting risperidone treatment was associated with a utility gain of 0.051 using the disease-specific function. The estimated gain using an SF-36-based mapping function was smaller: 0.0285. Estimates of gains were only weakly correlated (r = 0.2. Because of differences in scaling and variance, the requisite sample size for a randomized trial to confirm observed effects is much smaller for the disease-specific mapping function (156 versus 672 total subjects. Conclusion Application of a disease-specific mapping function was feasible. Differences in scaling and precision suggest the clinically based mapping function has greater power than the SF-36-based measure to detect differences in utility.

  6. REJUVENATING THE MATTER POWER SPECTRUM: RESTORING INFORMATION WITH A LOGARITHMIC DENSITY MAPPING

    International Nuclear Information System (INIS)

    Neyrinck, Mark C.; Szalay, Alexander S.; Szapudi, Istvan

    2009-01-01

    We find that nonlinearities in the dark matter power spectrum are dramatically smaller if the density field first undergoes a logarithmic mapping. In the Millennium simulation, this procedure gives a power spectrum with a shape hardly departing from the linear power spectrum for k ∼ -1 at all redshifts. Also, this procedure unveils pristine Fisher information on a range of scales reaching a factor of 2-3 smaller than in the standard power spectrum, yielding 10 times more cumulative signal to noise at z = 0.

  7. Logarithmic distributions prove that intrinsic learning is Hebbian [version 2; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Gabriele Scheler

    2017-10-01

    Full Text Available In this paper, we present data for the lognormal distributions of spike rates, synaptic weights and intrinsic excitability (gain for neurons in various brain areas, such as auditory or visual cortex, hippocampus, cerebellum, striatum, midbrain nuclei. We find a remarkable consistency of heavy-tailed, specifically lognormal, distributions for rates, weights and gains in all brain areas examined. The difference between strongly recurrent and feed-forward connectivity (cortex vs. striatum and cerebellum, neurotransmitter (GABA (striatum or glutamate (cortex or the level of activation (low in cortex, high in Purkinje cells and midbrain nuclei turns out to be irrelevant for this feature. Logarithmic scale distribution of weights and gains appears to be a general, functional property in all cases analyzed. We then created a generic neural model to investigate adaptive learning rules that create and maintain lognormal distributions. We conclusively demonstrate that not only weights, but also intrinsic gains, need to have strong Hebbian learning in order to produce and maintain the experimentally attested distributions. This provides a solution to the long-standing question about the type of plasticity exhibited by intrinsic excitability.

  8. Assessing the Utility of a Demand Assessment for Functional Analysis

    Science.gov (United States)

    Roscoe, Eileen M.; Rooker, Griffin W.; Pence, Sacha T.; Longworth, Lynlea J.

    2009-01-01

    We evaluated the utility of an assessment for identifying tasks for the functional analysis demand condition with 4 individuals who had been diagnosed with autism. During the demand assessment, a therapist presented a variety of tasks, and observers measured problem behavior and compliance to identify demands associated with low levels of…

  9. Threshold resummation of the structure function FL

    International Nuclear Information System (INIS)

    Moch, S.; Vogt, A.

    2009-02-01

    The behaviour of the quark coefficient function for the longitudinal structure function F L in deepinelastic scattering is investigated for large values of the Bjorken variable x. We combine a highly plausible conjecture on the large-x limit of the physical evolution kernel for this quantity with our explicit three-loop results to derive the coefficients of the three leading large-x logarithms, α s n ln 2n-1-k (1-x), k=1,2,3, to all orders in the strong coupling constant α s . Corresponding results are derived for the non-C F part of the gluon coefficient function suppressed by a factor 1-x, and for the analogous subleading (1-x)ln k (1-x) contributions in the quark case. Our results appear to indicate an obstacle for an exponentiation with a higher logarithmic accuracy. (orig.)

  10. Metatranscriptomic and functional metagenomic analysis of methylphosphonate utilization by marine bacteria

    Directory of Open Access Journals (Sweden)

    Asuncion eMartinez

    2013-11-01

    Full Text Available Aerobic degradation of methylphosphonate (MPn by marine bacterioplankton has been hypothesized to contribute significantly to the ocean’s methane supersaturation, yet little is known about MPn utilization by marine microbes. To identify the microbial taxa and metabolic functions associated with MPn-driven methane production we performed parallel metagenomic, metatranscriptomic, and functional screening of microcosm perturbation experiments using surface water collected in North Pacific Subtropical Gyre. In nutrient amended microcosms containing MPn, a substrate-driven microbial succession occurred. Initially, the addition of glucose and nitrate resulted in a bloom of Vibrionales and a transcriptional profile dominated by glucose-specific PTS transport and polyhydroxyalkanoate biosynthesis. Transcripts associated with phosphorus (P acquisition were also overrepresented and suggested that the addition of glucose and nitrate had driven the community to P depletion. At this point, a second community shift occurred characterized by the increase in C-P lyase containing microbes of the Vibrionales and Rhodobacterales orders. Transcripts associated with C-P lyase components were among the most highly expressed at the community level, and only C-P lyase clusters were recovered in a functional screen for MPn utilization, consistent with this pathway being responsible for the majority, if not all the methane accumulation we observed. Our results identify specific bacterioplankton taxa that can utilize MPn aerobically under conditions of P limitation using the C-P lyase pathway, and thereby elicit a significant increase in the dissolved methane concentration.

  11. Linear-logarithmic converter of a multi-channel selector-analyser type SA40 for automatic tracing; Convertisseur lineaire logarithmique pour le trace automatique de spectres d'un selecteur SA40

    Energy Technology Data Exchange (ETDEWEB)

    Desmaretz, M; Espanel, P; Ferlicci, R; Feyt, J

    1967-11-01

    The converter described in this note has been built to give the spectra stored in the memory of a type Sa40 selector in semi logarithmic coordinates. It must answer to several functions from numerical information appearing at the output of the selector - to command the address advance of the selector. - to decode numerical information and to transform it in analog tensions. - to operate the linear - logarithmic transformation for the register. - to send an start order to the table servo-motors. [French] L'appareil decrit dans la presente note a ete construit pour delivrer en coordonnees semi-logarithmiques les spectres stockes dans la memoire d'un selecteur type Sa40. Il doit remplir plusieurs fonctions a partir des informations numeriques apparaissant a la sortie parallele du selecteur - Commander l'avance adresse du selecteur. - decoder les informations numeriques et les transformer en tensions analogiques. - operer la transformation lineaire-logarithmique pour le registre. - envoyer un ordre de depart aux servo-moteurs de la table. (auteurs)

  12. Unifying logarithmic and factorial behavior in high-energy scattering

    International Nuclear Information System (INIS)

    Cornwall, J.M.; Morris, D.A.

    1995-01-01

    The elegant instanton calculus of Lipatov and others used to find factorially divergent behavior (g N N exclamation point) for N g much-gt 1 in gφ 4 perturbation theory is strictly only applicable when all external momenta vanish; a description of high-energy 2→N scattering with N massive particles is beyond the scope of such techniques. On the other hand, a standard multiperipheral treatment of scattering with its emphasis on leading logarithms gives a reasonable picture of high-energy behavior but does not result in factorial divergences. Using a straightforward graphical analysis we present a unified picture of both these phenomena as they occur in the two-particle total cross section of gφ 4 theory. We do not attempt to tame the unitarity violations associated with either multiperipheralism or the Lipatov technique at strong coupling

  13. Swarm formation control utilizing elliptical surfaces and limiting functions.

    Science.gov (United States)

    Barnes, Laura E; Fields, Mary Anne; Valavanis, Kimon P

    2009-12-01

    In this paper, we present a strategy for organizing swarms of unmanned vehicles into a formation by utilizing artificial potential fields that were generated from normal and sigmoid functions. These functions construct the surface on which swarm members travel, controlling the overall swarm geometry and the individual member spacing. Nonlinear limiting functions are defined to provide tighter swarm control by modifying and adjusting a set of control variables that force the swarm to behave according to set constraints, formation, and member spacing. The artificial potential functions and limiting functions are combined to control swarm formation, orientation, and swarm movement as a whole. Parameters are chosen based on desired formation and user-defined constraints. This approach is computationally efficient and scales well to different swarm sizes, to heterogeneous systems, and to both centralized and decentralized swarm models. Simulation results are presented for a swarm of 10 and 40 robots that follow circle, ellipse, and wedge formations. Experimental results are included to demonstrate the applicability of the approach on a swarm of four custom-built unmanned ground vehicles (UGVs).

  14. Platelet Function Tests: Preanalytical Variables, Clinical Utility, Advantages, and Disadvantages.

    Science.gov (United States)

    Hvas, Anne-Mette; Grove, Erik Lerkevang

    2017-01-01

    Platelet function tests are mainly used in the diagnostic work-up of platelet disorders. During the last decade, the additional use of platelet function tests to evaluate the effect of antiplatelet therapy has also emerged in an attempt to identify patients with an increased risk of arterial thrombosis. Furthermore, platelet function tests are increasingly used to measure residual effect of antiplatelet therapy prior to surgery with the aim of reducing the risk of bleeding. To a limited extend, platelet function tests are also used to evaluate hyperaggregability as a potential marker of a prothrombotic state outside the setting of antiplatelet therapy. This multifaceted use of platelet function tests and the development of simpler point-of-care tests with narrower application have increased the use of platelet function testing and also facilitated the use of platelet function tests outside the highly specialized laboratories. The present chapter describes the preanalytical variables, which should be taken into account when planning platelet function testing. Also, the most widely used platelet function tests are introduced, and their clinical utility and their relative advantages and disadvantages are discussed.

  15. Joint resummation for pion wave function and pion transition form factor

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hsiang-nan [Institute of Physics, Academia Sinica,Academia Rd., Taipei, Taiwan 115 (China); Department of Physics, National Cheng-Kung University,University Rd., Tainan, Taiwan 701 (China); Department of Physics, National Tsing-Hua University,Kuang-Fu Rd., Hsinchu, Taiwan 300 (China); Shen, Yue-Long [College of Information Science and Engineering, Ocean University of China,Songling Rd, Qingdao, Shandong 266100 (China); Wang, Yu-Ming [Institut für Theoretische Teilchenphysik und Kosmologie RWTH Aachen,Physikzentrum Otto-Blumenthal-Straße, D-52056 Aachen (Germany); Physik Department T31, Technische Universität München,James-Franck-Straße, D-85748 Garching (Germany)

    2014-01-03

    We construct an evolution equation for the pion wave function in the k{sub T} factorization formalism, whose solution sums the mixed logarithm ln xln k{sub T} to all orders, with x (k{sub T}) being a parton momentum fraction (transverse momentum). This joint resummation induces strong suppression of the pion wave function in the small x and large b regions, b being the impact parameter conjugate to k{sub T}, and improves the applicability of perturbative QCD to hard exclusive processes. The above effect is similar to those from the conventional threshold resummation for the double logarithm ln{sup 2} x and the conventional k{sub T} resummation for ln{sup 2} k{sub T}. Combining the evolution equation for the hard kernel, we are able to organize all large logarithms in the γ{sup ∗}π{sup 0}→γ scattering, and to establish a scheme-independent k{sub T} factorization formula. It will be shown that the significance of next-to-leading-order contributions and saturation behaviors of this process at high energy differ from those under the conventional resummations. It implies that QCD logarithmic corrections to a process must be handled appropriately, before its data are used to extract a hadron wave function. Our predictions for the involved pion transition form factor, derived under the joint resummation and the input of a non-asymptotic pion wave function with the second Gegenbauer moment a{sub 2}=0.05, match reasonably well the CLEO, BaBar, and Belle data.

  16. Generalized Probability Functions

    Directory of Open Access Journals (Sweden)

    Alexandre Souto Martinez

    2009-01-01

    Full Text Available From the integration of nonsymmetrical hyperboles, a one-parameter generalization of the logarithmic function is obtained. Inverting this function, one obtains the generalized exponential function. Motivated by the mathematical curiosity, we show that these generalized functions are suitable to generalize some probability density functions (pdfs. A very reliable rank distribution can be conveniently described by the generalized exponential function. Finally, we turn the attention to the generalization of one- and two-tail stretched exponential functions. We obtain, as particular cases, the generalized error function, the Zipf-Mandelbrot pdf, the generalized Gaussian and Laplace pdf. Their cumulative functions and moments were also obtained analytically.

  17. On the Existence of the Logarithmic Surface Layer in the Inner Core of Hurricanes

    Science.gov (United States)

    2012-01-01

    characteristics of eyewall boundary layer of Hurricane Hugo (1989). Mon. Wea. Rev., 139, 1447-1462. Zhang, JA, Montgomery MT. 2012 Observational...the inner core of hurricanes Roger K. Smitha ∗and Michael T. Montgomeryb a Meteorological Institute, University of Munich, Munich, Germany b Dept. of...logarithmic surface layer”, or log layer, in the boundary layer of the rapidly-rotating core of a hurricane . One such study argues that boundary-layer

  18. Universal principles governing multiple random searchers on complex networks: The logarithmic growth pattern and the harmonic law

    Science.gov (United States)

    Weng, Tongfeng; Zhang, Jie; Small, Michael; Harandizadeh, Bahareh; Hui, Pan

    2018-03-01

    We propose a unified framework to evaluate and quantify the search time of multiple random searchers traversing independently and concurrently on complex networks. We find that the intriguing behaviors of multiple random searchers are governed by two basic principles—the logarithmic growth pattern and the harmonic law. Specifically, the logarithmic growth pattern characterizes how the search time increases with the number of targets, while the harmonic law explores how the search time of multiple random searchers varies relative to that needed by individual searchers. Numerical and theoretical results demonstrate these two universal principles established across a broad range of random search processes, including generic random walks, maximal entropy random walks, intermittent strategies, and persistent random walks. Our results reveal two fundamental principles governing the search time of multiple random searchers, which are expected to facilitate investigation of diverse dynamical processes like synchronization and spreading.

  19. Logarithmic entropy of Kehagias-Sfetsos black hole with self-gravitation in asymptotically flat IR modified Horava gravity

    International Nuclear Information System (INIS)

    Liu Molin; Lu Junwang

    2011-01-01

    Motivated by recent logarithmic entropy of Horava-Lifshitz gravity, we investigate Hawking radiation for Kehagias-Sfetsos black hole from tunneling perspective. After considering the effect of self-gravitation, we calculate the emission rate and entropy of quantum tunneling by using Kraus-Parikh-Wilczek method. Meanwhile, both massless and massive particles are considered in this Letter. Interestingly, two types tunneling particles have the same emission rate Γ and entropy S b whose analytical formulae are Γ=exp[π(r in 2 -r out 2 )/2+π/αlnr in /r out ] and S b =A/4+π/αln(A/4), respectively. Here, α is the Horava-Lifshitz field parameter. The results show that the logarithmic entropy of Horava-Lifshitz gravity could be explained well by the self-gravitation, which is totally different from other methods. The study of this semiclassical tunneling process may shed light on understanding the Horava-Lifshitz gravity.

  20. Summary of the function and the safety design of the Tokai Reprocessing Utility Center

    International Nuclear Information System (INIS)

    Yanai, Chisato; Yamazaki, Toshihiko; Tomita, Tsuneo; Horii, Shinichi; Uryu, Mituru; Ishiguro, Nobuharu; Kobayashi, Kentarou

    1998-01-01

    The Tokai Reprocessing Utility Center is a new facility to replace the utilities to the Tokai Reprocessing Plant such as the emergency power supply, compressed air, etc. which are scattered about the site and have became superannuated. The Facility building has a base-isolation system that is a strongly resistant to earthquake. After completion, the center will supply utilities to the Main Plant, the Central Building, the Auxiliary Active Facility, etc. of the Tokai Reprocessing Plant. This document outlines the function and the safety design of the Tokai Reprocessing Utility Center. (author)

  1. Medicare home health utilization as a function of nursing home market factors.

    OpenAIRE

    Swan, J H; Benjamin, A E

    1990-01-01

    Rapid increases in the size and costs of the home health market, unknown impacts of Medicare's DRG hospital reimbursement on the posthospital market, and general lack of knowledge about factors that explain interstate variation in home health utilization all suggest the importance of developing and testing models of Medicare home health use. This article proposes and tests a model of state home health utilization as a function of the nursing home market. This model proposes that home health u...

  2. Factorization for the light-jet mass and hemisphere soft function

    Energy Technology Data Exchange (ETDEWEB)

    Becher, Thomas [Albert Einstein Center for Fundamental Physics,Institut für Theoretische Physik, Universität Bern,Sidlerstrasse 5, CH-3012 Bern (Switzerland); Pecjak, Benjamin D. [Institute for Particle Physics Phenomenology, University of Durham,DH1 3LE Durham (United Kingdom); Shao, Ding Yu [Albert Einstein Center for Fundamental Physics,Institut für Theoretische Physik, Universität Bern,Sidlerstrasse 5, CH-3012 Bern (Switzerland)

    2016-12-05

    Many collider observables suffer from non-global logarithms not captured by standard resummation techniques. Classic examples are the light-jet mass event shape in the limit of small mass and the related hemisphere soft function. We derive factorization formulas for both of these and explicitly demonstrate that they capture all logarithms present at NNLO. These formulas achieve full scale separation and provide the basis for all-order resummations. A characteristic feature of non-global observables is that the soft radiation is driven by multi-Wilson-line operators, and the ones arising here map onto those relevant for the case of narrow-cone jet cross sections. Numerically, the contributions of non-global logarithms to resummed hemisphere-mass event shapes are sizeable.

  3. A study of the apsidal angle and a proof of monotonicity in the logarithmic potential case

    NARCIS (Netherlands)

    Castelli, Roberto

    2014-01-01

    This paper concerns the behaviour of the apsidal angle for orbits of central force system with homogeneous potential of degree -2 ≤ α ≤ 1 and logarithmic potential. We derive a formula for the apsidal angle as a fixed end-points integral and we study the derivative of the apsidal angle with respect

  4. Once more on the radiative corrections to the nucleon structure functions in QCD

    International Nuclear Information System (INIS)

    Stamenov, D.B.

    1994-09-01

    A new representation of the next to leading QCD corrections to the nucleon structure functions is given in terms of parton distributions. All O(α s ) corrections to the leading logarithmic approximation (LLA) are included. In contrast to the similar representations in the literature terms of order O(α 2 s ) do not attend in our expressions for the nucleon structure functions taken in the next to leading logarithmic approximation. This result is generalized for any order in α s beyond the LLA. Terms of order O(α n s ) which belong only tot he approximation in consideration are present in such a representation for the structure functions. (author). 11 refs

  5. Free Energy Reconstruction from Logarithmic Mean-Force Dynamics Using Multiple Nonequilibrium Trajectories.

    Science.gov (United States)

    Morishita, Tetsuya; Yonezawa, Yasushige; Ito, Atsushi M

    2017-07-11

    Efficient and reliable estimation of the mean force (MF), the derivatives of the free energy with respect to a set of collective variables (CVs), has been a challenging problem because free energy differences are often computed by integrating the MF. Among various methods for computing free energy differences, logarithmic mean-force dynamics (LogMFD) [ Morishita et al., Phys. Rev. E 2012 , 85 , 066702 ] invokes the conservation law in classical mechanics to integrate the MF, which allows us to estimate the free energy profile along the CVs on-the-fly. Here, we present a method called parallel dynamics, which improves the estimation of the MF by employing multiple replicas of the system and is straightforwardly incorporated in LogMFD or a related method. In the parallel dynamics, the MF is evaluated by a nonequilibrium path-ensemble using the multiple replicas based on the Crooks-Jarzynski nonequilibrium work relation. Thanks to the Crooks relation, realizing full-equilibrium states is no longer mandatory for estimating the MF. Additionally, sampling in the hidden subspace orthogonal to the CV space is highly improved with appropriate weights for each metastable state (if any), which is hardly achievable by typical free energy computational methods. We illustrate how to implement parallel dynamics by combining it with LogMFD, which we call logarithmic parallel dynamics (LogPD). Biosystems of alanine dipeptide and adenylate kinase in explicit water are employed as benchmark systems to which LogPD is applied to demonstrate the effect of multiple replicas on the accuracy and efficiency in estimating the free energy profiles using parallel dynamics.

  6. Phase pupil functions for focal-depth enhancement derived from a Wigner distribution function.

    Science.gov (United States)

    Zalvidea, D; Sicre, E E

    1998-06-10

    A method for obtaining phase-retardation functions, which give rise to an increase of the image focal depth, is proposed. To this end, the Wigner distribution function corresponding to a specific aperture that has an associated small depth of focus in image space is conveniently sheared in the phase-space domain to generate a new Wigner distribution function. From this new function a more uniform on-axis image irradiance can be accomplished. This approach is illustrated by comparison of the imaging performance of both the derived phase function and a previously reported logarithmic phase distribution.

  7. Abstraction of continuous dynamical systems utilizing lyapunov functions

    DEFF Research Database (Denmark)

    Sloth, Christoffer; Wisniewski, Rafael

    2010-01-01

    This paper considers the development of a method for abstracting continuous dynamical systems by timed automata. The method is based on partitioning the state space of dynamical systems with invariant sets, which form cells representing locations of the timed automata. To enable verification...... of the dynamical system based on the abstraction, conditions for obtaining sound, complete, and refinable abstractions are set up. It is proposed to partition the state space utilizing sub-level sets of Lyapunov functions, since they are positive invariant sets. The existence of sound abstractions for Morse......-Smale systems and complete and refinable abstractions for linear systems are shown....

  8. Potentiometric urea biosensor utilizing nanobiocomposite of chitosan-iron oxide magnetic nanoparticles

    International Nuclear Information System (INIS)

    Ali, A; Israr, M Q; Sadaf, J R; Nur, O; Willander, M; AlSalhi, M S; Atif, M; Ansari, Anees A; Ahmed, E

    2013-01-01

    The iron oxide (Fe 3 O 4 ) magnetic nanoparticles have been fabricated through a simple, cheap and reproducible approach. Scanning electron microscope, x-rays powder diffraction of the fabricated nanoparticles. Furthermore, the fabrication of potentiometric urea biosensor is carried out through drop casting the initially prepared isopropanol and chitosan solution, containing Fe 3 O 4 nanoparticles, on the glass fiber filter with a diameter of 2 cm and a copper wire (of thickness −500 μm) has been utilized to extract the voltage signal from the functionalized nanoparticles. The functionalization of surface of the Fe 3 O 4 nanoparticles is obtained by the electrostatically immobilization of urease onto the nanobiocomposite of the chitosan- Fe 3 O 4 in order to enhance the sensitivity, specificity, stability and reusability of urea biosensor. Electrochemical detection procedure has been adopted to measure the potentiometric response over the wide logarithmic concentration range of the 0.1 mM to 80 mM. The Fe 3 O 4 nanoparticles based urea biosensor depicts good sensitivity with ∼42 mV per decade at room temperature. Durability of the biosensor could be considerably enhanced by applying a thin layer of the nafion. In addition, the reasonably stable output response of the biosensor has been found to be around 12 sec.

  9. Error Analysis for RADAR Neighbor Matching Localization in Linear Logarithmic Strength Varying Wi-Fi Environment

    Directory of Open Access Journals (Sweden)

    Mu Zhou

    2014-01-01

    Full Text Available This paper studies the statistical errors for the fingerprint-based RADAR neighbor matching localization with the linearly calibrated reference points (RPs in logarithmic received signal strength (RSS varying Wi-Fi environment. To the best of our knowledge, little comprehensive analysis work has appeared on the error performance of neighbor matching localization with respect to the deployment of RPs. However, in order to achieve the efficient and reliable location-based services (LBSs as well as the ubiquitous context-awareness in Wi-Fi environment, much attention has to be paid to the highly accurate and cost-efficient localization systems. To this end, the statistical errors by the widely used neighbor matching localization are significantly discussed in this paper to examine the inherent mathematical relations between the localization errors and the locations of RPs by using a basic linear logarithmic strength varying model. Furthermore, based on the mathematical demonstrations and some testing results, the closed-form solutions to the statistical errors by RADAR neighbor matching localization can be an effective tool to explore alternative deployment of fingerprint-based neighbor matching localization systems in the future.

  10. Error Analysis for RADAR Neighbor Matching Localization in Linear Logarithmic Strength Varying Wi-Fi Environment

    Science.gov (United States)

    Tian, Zengshan; Xu, Kunjie; Yu, Xiang

    2014-01-01

    This paper studies the statistical errors for the fingerprint-based RADAR neighbor matching localization with the linearly calibrated reference points (RPs) in logarithmic received signal strength (RSS) varying Wi-Fi environment. To the best of our knowledge, little comprehensive analysis work has appeared on the error performance of neighbor matching localization with respect to the deployment of RPs. However, in order to achieve the efficient and reliable location-based services (LBSs) as well as the ubiquitous context-awareness in Wi-Fi environment, much attention has to be paid to the highly accurate and cost-efficient localization systems. To this end, the statistical errors by the widely used neighbor matching localization are significantly discussed in this paper to examine the inherent mathematical relations between the localization errors and the locations of RPs by using a basic linear logarithmic strength varying model. Furthermore, based on the mathematical demonstrations and some testing results, the closed-form solutions to the statistical errors by RADAR neighbor matching localization can be an effective tool to explore alternative deployment of fingerprint-based neighbor matching localization systems in the future. PMID:24683349

  11. Logarithmic sℓ-hat (2) CFT models from Nichols algebras: I

    International Nuclear Information System (INIS)

    Semikhatov, A M; Tipunin, I Yu

    2013-01-01

    We construct chiral algebras that centralize rank-2 Nichols algebras with at least one fermionic generator. This gives ‘logarithmic’ W-algebra extensions of a fractional-level sℓ-hat (2) algebra. We discuss crucial aspects of the emerging general relation between Nichols algebras and logarithmic conformal field theory (CFT) models: (i) the extra input, beyond the Nichols algebra proper, needed to uniquely specify a conformal model; (ii) a relation between the CFT counterparts of Nichols algebras connected by Weyl groupoid maps; and (iii) the common double bosonization U(X) of such Nichols algebras. For an extended chiral algebra, candidates for its simple modules that are counterparts of the U(X) simple modules are proposed, as a first step toward a functorial relation between U(X) and W-algebra representation categories. (paper)

  12. A matrix-algebraic algorithm for the Riemannian logarithm on the Stiefel manifold under the canonical metric

    DEFF Research Database (Denmark)

    Zimmermann, Ralf

    2017-01-01

    We derive a numerical algorithm for evaluating the Riemannian logarithm on the Stiefel manifold with respect to the canonical metric. In contrast to the optimization-based approach known from the literature, we work from a purely matrix-algebraic perspective. Moreover, we prove that the algorithm...... converges locally and exhibits a linear rate of convergence....

  13. A matrix-algebraic algorithm for the Riemannian logarithm on the Stiefel manifold under the canonical metric

    OpenAIRE

    Zimmermann, Ralf

    2016-01-01

    We derive a numerical algorithm for evaluating the Riemannian logarithm on the Stiefel manifold with respect to the canonical metric. In contrast to the optimization-based approach known from the literature, we work from a purely matrix-algebraic perspective. Moreover, we prove that the algorithm converges locally and exhibits a linear rate of convergence.

  14. A direct current amplifier with linear or logarithmic response; Amplificateur courant continu a reponse lineaire ou logarithmique

    Energy Technology Data Exchange (ETDEWEB)

    Ailloud, J; Chandanson, P [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1956-07-01

    The following paper examines the conditions governing the construction of an instrument with logarithmic response, capable of measuring currents between 10{sup -10} A and 10{sup -4} A. The development is described of a type of stabilised direct current amplifier, designed particularly to operate in a Pile control board, giving indications proportional either to the power, on to the log. of this power, and which may also be linked to an instrument for measuring reactivity. (author) [French] On examine dans ce qui suit les conditions qui president a la realisation d'un ensemble a reponse logarithmique, utilisable pour mesurer des courants compris entre 10{sup -10} A et 10{sup -4} A. On decrit la realisation d'un type d'amplificateur courant continu stable, destine plus specialement a fonctionner dans un tableau de commande de Pile, donnant des indications proportionnelles soit a la puissance, soit au logarithme de cette puissance et de plus associe avec un ensemble de mesure de reactivite. (auteur)

  15. Correction method of nonlinearity due to logarithm operation for X-ray CT projection data with noise in photon-starved state

    International Nuclear Information System (INIS)

    Iwamoto, Shin-ichiro; Shiozaki, Akira

    2007-01-01

    In the acquisition of projection data of X-ray CT, logarithm operation is indispensable. But noise distribution is nonlinearly projected by the logarithm operation, and this deteriorates the precision of CT number. This influence becomes particularly remarkable when only a few photons are caught with a detector. It generates a strong streak artifact (SA) in a reconstructed image. Previously we have clarified the influence of the nonlinearity by statistical analysis and proposed a correction method for such nonlinearity. However, there is a problem that the compensation for clamp processing cannot be performed and that the suppression of SA is not enough in photon shortage state. In this paper, we propose a new technique for correcting the nonlinearity due to logarithm operation for noisy data by combining the previously presented method and an adaptive filtering method. The technique performs an adaptive filtering only when the number of captured photons is very few. Moreover we quantitatively evaluate the influence of noise on the reconstructed image in the proposed method by the experiment using numerical phantoms. The experimental results show that there is less influence on spatial resolution despite suppressing SA effectively and that CT number are hardly dependent on the number of the incident photons. (author)

  16. Fission track retention in minerals as a function of heating time during isothermal experiments

    International Nuclear Information System (INIS)

    Burchart, J.; Butkiewicz, T.; Dakowski, M.; Galazka-Friedman, J.

    1979-01-01

    The linear dependence of track retention on logarithm of heating time (at constant temperature) has been verified by statistical analysis of data on isothermal annealing of apatite. The other functions proposed (rho/rho 0 as a linearly decreasing function of exp t or t) fit the experimental data only within a limited range of heating times, where the shapes of all three are experimentally hard to resolve. The logarithmic relationship implies a memory of tracks for thermal events and creates a basis for methods of age corrections. (author)

  17. Utility of TICS-M for the assessment of cognitive function in older adults.

    Science.gov (United States)

    de Jager, Celeste A; Budge, Marc M; Clarke, Robert

    2003-04-01

    Routine screening of high-risk elderly people for early cognitive impairment is constrained by the limitations of currently available cognitive function tests. The Telephone Interview of Cognitive Status is a novel instrument for assessment of cognitive function that can be administered in person or by telephone. To evaluate the determinants and utility of TICS-M (13-item modified version) for assessment of cognitive function in healthy elderly people. The utility of TICS-M was compared with more widely used MMSE and CAMCOG in a cross-sectional survey of 120 older (62 to 89 years) UK adults. The TICS-M cognitive test scores (27.97, SD 4.15) were normally distributed in contrast with those for MMSE and CAMCOG that had a negatively skewed distribution. TICS-M scores were inversely correlated with age (r = -0.21) and with the NART fullscale IQ (r = -0.35), but were independent of years of education in this cohort. TICS-M was highly correlated with MMSE (r = 0.57) and with CAMCOG (r = 0.62) scores. The time required to complete the test is comparable to MMSE and substantially less than CAMCOG. The normal distribution of TICS-M test scores suggest that this test is less constrained by the ceiling effect which limits the utility of MMSE and CAMCOG test scores in detecting early cognitive impairment. TICS-M is an appropriate instrument to assess cognitive function in both research and in clinical practice. Copyright 2003 John Wiley & Sons, Ltd.

  18. Different methods to define utility functions yield similar results but engage different neural processes

    Directory of Open Access Journals (Sweden)

    Marcus Heldmann

    2009-10-01

    Full Text Available Although the concept of utility is fundamental to many economic theories, up to now a generally accepted method determining a subject’s utility function is not available. We investigated two methods that are used in economic sciences for describing utility functions by using response-locked event-related potentials in order to assess their neural underpinnings. For defining the certainty equivalent (CE, we used a lottery game with probabilities to win p=0.5, for identifying the subjects’ utility functions directly a standard bisection task was applied. Although the lottery tasks’ payoffs were only hypothetical, a pronounced negativity was observed resembling the error related negativity (ERN previously described in action monitoring research, but this occurred only for choices far away from the indifference point between money and lottery. By contrast, the bisection task failed to evoke an ERN irrespective of the responses’ correctness. Based on these findings we are reasoning that only decisions made in the lottery task achieved a level of subjective relevance that activates cognitive-emotional monitoring. In terms of economic sciences, our findings support the view that the bisection method is unaffected by any kind of probability valuation or other parameters related to risk and in combination with the lottery task can, therefore, be used to differentiate between payoff and probability valuation.

  19. Interactive Preference Learning of Utility Functions for Multi-Objective Optimization

    OpenAIRE

    Dewancker, Ian; McCourt, Michael; Ainsworth, Samuel

    2016-01-01

    Real-world engineering systems are typically compared and contrasted using multiple metrics. For practical machine learning systems, performance tuning is often more nuanced than minimizing a single expected loss objective, and it may be more realistically discussed as a multi-objective optimization problem. We propose a novel generative model for scalar-valued utility functions to capture human preferences in a multi-objective optimization setting. We also outline an interactive active learn...

  20. Holographic correlation functions in Critical Gravity

    Science.gov (United States)

    Anastasiou, Giorgos; Olea, Rodrigo

    2017-11-01

    We compute the holographic stress tensor and the logarithmic energy-momentum tensor of Einstein-Weyl gravity at the critical point. This computation is carried out performing a holographic expansion in a bulk action supplemented by the Gauss-Bonnet term with a fixed coupling. The renormalization scheme defined by the addition of this topological term has the remarkable feature that all Einstein modes are identically cancelled both from the action and its variation. Thus, what remains comes from a nonvanishing Bach tensor, which accounts for non-Einstein modes associated to logarithmic terms which appear in the expansion of the metric. In particular, we compute the holographic 1-point functions for a generic boundary geometric source.

  1. Generalizing the DGLAP evolution of fragmentation functions to the smallest x values

    International Nuclear Information System (INIS)

    Albino, S.; Kniehl, B.A.; Kramer, G.; Ochs, W.

    2005-03-01

    An approach which unifies the double logarithmic approximation at small x and the leading order DGLAP evolution of fragmentation functions at large x is presented. This approach reproduces exactly the modified leading logarithm approximation, but is more complete due to the degrees of freedom given to the quark sector and the inclusion of the fixed order terms. We find that data from the largest x values to the peak region can be better fitted than with other approaches. (orig.)

  2. Remote Sensing Image Enhancement Based on Non-subsampled Shearlet Transform and Parameterized Logarithmic Image Processing Model

    Directory of Open Access Journals (Sweden)

    TAO Feixiang

    2015-08-01

    Full Text Available Aiming at parts of remote sensing images with dark brightness and low contrast, a remote sensing image enhancement method based on non-subsampled Shearlet transform and parameterized logarithmic image processing model is proposed in this paper to improve the visual effects and interpretability of remote sensing images. Firstly, a remote sensing image is decomposed into a low-frequency component and high frequency components by non-subsampled Shearlet transform.Then the low frequency component is enhanced according to PLIP (parameterized logarithmic image processing model, which can improve the contrast of image, while the improved fuzzy enhancement method is used to enhance the high frequency components in order to highlight the information of edges and details. A large number of experimental results show that, compared with five kinds of image enhancement methods such as bidirectional histogram equalization method, the method based on stationary wavelet transform and the method based on non-subsampled contourlet transform, the proposed method has advantages in both subjective visual effects and objective quantitative evaluation indexes such as contrast and definition, which can more effectively improve the contrast of remote sensing image and enhance edges and texture details with better visual effects.

  3. Six-point remainder function in multi-Regge-kinematics: an efficient approach in momentum space

    Energy Technology Data Exchange (ETDEWEB)

    Broedel, Johannes [Institut für Theoretische Physik, Eidgenössische Technische Hochschule Zürich,Wolfgang-Pauli-Strasse 27, 8093 Zürich (Switzerland); Institut für Mathematik und Institut für Physik, Humboldt-Universität zu Berlin,IRIS Adlershof, Zum Großen Windkanal 6, 12489 Berlin (Germany); Sprenger, Martin [Institut für Theoretische Physik, Eidgenössische Technische Hochschule Zürich,Wolfgang-Pauli-Strasse 27, 8093 Zürich (Switzerland)

    2016-05-10

    Starting from the known all-order expressions for the BFKL eigenvalue and impact factor, we establish a formalism allowing the direct calculation of the six-point remainder function in N=4 super-Yang-Mills theory in momentum space to — in principle — all orders in perturbation theory. Based upon identities which relate different integrals contributing to the inverse Fourier-Mellin transform recursively, the formalism allows to easily access the full remainder function in multi-Regge kinematics up to 7 loops and up to 10 loops in the fourth logarithmic order. Using the formalism, we prove the all-loop formula for the leading logarithmic approximation proposed by Pennington and investigate the behavior of several newly calculated functions.

  4. [Colon adenoma detection using Kubelka-Munk spectral function of DNA and protein bands].

    Science.gov (United States)

    Wei, Hua-Jiang; Guo, Zhou-Yi; Xie, Shu-Sen; He, Bo-Hua; Li, Li-Bo; Chen, Xue-Mei; Wu, Guo-Yong; Lu, Jian-Jun

    2009-06-01

    Differential diagnosis of human colon adenoma was studied using the Kubelka-Munk spectral function of the DNA and protein absorption bands at 260 and 280 nm in vitro. Diffuse reflectance spectra of tissue were measured using a spectrophotometer with an integrating sphere attachment. The results of measurement showed that for the spectral range from 590 to 1 064 nm pathological changes of colon epithelial tissues were induced so that there were significant differences in the averaged values of the Kubelka-Munk function f(r infinity) and logarithmic Kubelka-Munk function log [f(r infinity)] of the DNA absorption bands at 260 nm between normal and adenomatous colon epithelial tissues, and the differences were 218% (p function f(r infinity) and logarithmic Kubelka-Munk function log [f(r infinity)] of the protein absorption bands at 280 nm between normal and adenomatous colon epithelial tissues, and the differences were 208% (p function f(r infinity) and logarithmic Kubelka-Munk function log [f(r infinity)] of the beta-carotene absorption bands at 480 nm between normal and adenomatous colon epithelial tissues, and the differences were 41.7% (p < 0.05) and 32.9% (p < 0.05) respectively. Obviously, pathological changes of colon epithelial tissues were induced so that there were significant changes in the contents of the DNA, protein and beta-carotene of colon epithelial tissues. The conclusion can be applied to rapid, low-cost and noninvasive optical biopsy of colon adenoma, and provides a useful reference.

  5. Logarithmic sensing in Bacillus subtilis aerotaxis.

    Science.gov (United States)

    Menolascina, Filippo; Rusconi, Roberto; Fernandez, Vicente I; Smriga, Steven; Aminzare, Zahra; Sontag, Eduardo D; Stocker, Roman

    2017-01-01

    Aerotaxis, the directed migration along oxygen gradients, allows many microorganisms to locate favorable oxygen concentrations. Despite oxygen's fundamental role for life, even key aspects of aerotaxis remain poorly understood. In Bacillus subtilis, for example, there is conflicting evidence of whether migration occurs to the maximal oxygen concentration available or to an optimal intermediate one, and how aerotaxis can be maintained over a broad range of conditions. Using precisely controlled oxygen gradients in a microfluidic device, spanning the full spectrum of conditions from quasi-anoxic to oxic (60 n mol/l-1 m mol/l), we resolved B. subtilis' 'oxygen preference conundrum' by demonstrating consistent migration towards maximum oxygen concentrations ('monotonic aerotaxis'). Surprisingly, the strength of aerotaxis was largely unchanged over three decades in oxygen concentration (131 n mol/l-196 μ mol/l). We discovered that in this range B. subtilis responds to the logarithm of the oxygen concentration gradient, a rescaling strategy called 'log-sensing' that affords organisms high sensitivity over a wide range of conditions. In these experiments, high-throughput single-cell imaging yielded the best signal-to-noise ratio of any microbial taxis study to date, enabling the robust identification of the first mathematical model for aerotaxis among a broad class of alternative models. The model passed the stringent test of predicting the transient aerotactic response despite being developed on steady-state data, and quantitatively captures both monotonic aerotaxis and log-sensing. Taken together, these results shed new light on the oxygen-seeking capabilities of B. subtilis and provide a blueprint for the quantitative investigation of the many other forms of microbial taxis.

  6. Analytic properties for the honeycomb lattice Green function at the origin

    Science.gov (United States)

    Joyce, G. S.

    2018-05-01

    The analytic properties of the honeycomb lattice Green function are investigated, where is a complex variable which lies in a plane. This double integral defines a single-valued analytic function provided that a cut is made along the real axis from w  =  ‑3 to . In order to analyse the behaviour of along the edges of the cut it is convenient to define the limit function where . It is shown that and can be evaluated exactly for all in terms of various hypergeometric functions, where the argument function is always real-valued and rational. The second-order linear Fuchsian differential equation satisfied by is also used to derive series expansions for and which are valid in the neighbourhood of the regular singular points and . Integral representations are established for and , where with . In particular, it is proved that where J 0(z) and Y 0(z) denote Bessel functions of the first and second kind, respectively. The results derived in the paper are utilized to evaluate the associated logarithmic integral where w lies in the cut plane. A new set of orthogonal polynomials which are connected with the honeycomb lattice Green function are also briefly discussed. Finally, a link between and the theory of Pearson random walks in a plane is established.

  7. Role of Utility and Inference in the Evolution of Functional Information

    Science.gov (United States)

    Sharov, Alexei A.

    2009-01-01

    Functional information means an encoded network of functions in living organisms from molecular signaling pathways to an organism’s behavior. It is represented by two components: code and an interpretation system, which together form a self-sustaining semantic closure. Semantic closure allows some freedom between components because small variations of the code are still interpretable. The interpretation system consists of inference rules that control the correspondence between the code and the function (phenotype) and determines the shape of the fitness landscape. The utility factor operates at multiple time scales: short-term selection drives evolution towards higher survival and reproduction rate within a given fitness landscape, and long-term selection favors those fitness landscapes that support adaptability and lead to evolutionary expansion of certain lineages. Inference rules make short-term selection possible by shaping the fitness landscape and defining possible directions of evolution, but they are under control of the long-term selection of lineages. Communication normally occurs within a set of agents with compatible interpretation systems, which I call communication system. Functional information cannot be directly transferred between communication systems with incompatible inference rules. Each biological species is a genetic communication system that carries unique functional information together with inference rules that determine evolutionary directions and constraints. This view of the relation between utility and inference can resolve the conflict between realism/positivism and pragmatism. Realism overemphasizes the role of inference in evolution of human knowledge because it assumes that logic is embedded in reality. Pragmatism substitutes usefulness for truth and therefore ignores the advantage of inference. The proposed concept of evolutionary pragmatism rejects the idea that logic is embedded in reality; instead, inference rules are

  8. Multiattribute Utility Theory, Intertemporal Utility and Correlation Aversion

    DEFF Research Database (Denmark)

    Andersen, Steffen; Harrison, Glenn W.; Lau, Morten

    2018-01-01

    Convenient assumptions about qualitative properties of the intertemporal utility function have generated counterintuitive implications for the relationship between atemporal risk aversion and the intertemporal elasticity of substitution. If the intertemporal utility function is additively separable...... aversion. Our results show that subjects are correlation averse over lotteries with intertemporal income profiles....

  9. Regge behaviour of distribution functions and evolution of gluon ...

    Indian Academy of Sciences (India)

    work we solved DGLAP evolution equation for gluon distribution function at low-x in next-to-leading order (NLO) and the t and x-evolutions of gluon distribution function thus obtained have been compared with global MRST2004 and GRV98 parametrizations. In PQCD, since the higher-order terms in the leading logarithmic.

  10. Health and functional status and utilization of health care services among holocaust survivors and their counterparts in Israel.

    Science.gov (United States)

    Iecovich, Esther; Carmel, Sara

    2010-01-01

    To examine differences in health and functional status and in utilization of health services between holocaust survivors and their counterparts; and (b) to investigate if holocaust survivor status is a significant predictor of health status, functional status, and utilization of health services. The study included 1255 respondents of whom 272 were holocaust survivors. Interviews were conducted face-to-face at the respondents' homes. Participants were asked about their health (self-rated health and comorbidity) and functional (ADL and IADL) status, utilization of inpatient and outpatient health care services, age, gender, education, marital status, length of residence in Israel, and if they were holocaust survivors. Holocaust survivors, who were frailer and more chronically ill compared to their counterparts, visited their family physician and the nurse at the health care clinic more often than their counterparts did, and received more homecare services. Yet, there were no differences between them in the utilization of other health care services such as visits to specialists, emergency department, and hospitalizations. Holocaust survivors are more homebound due to more morbidity and functional limitations and therefore receive more health home care services that offset the utilization of other health services. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  11. Schrodinger Equations with Logarithmic Self-Interactions: From Antilinear PT-Symmetry to the Nonlinear Coupling of Channels

    Czech Academy of Sciences Publication Activity Database

    Znojil, Miloslav; Růžička, František; Zloshchastiev, K. G.

    2017-01-01

    Roč. 9, č. 8 (2017), č. článku 165. ISSN 2073-8994 R&D Projects: GA ČR GA16-22945S Institutional support: RVO:61389005 Keywords : PT symmetry * nonlinear Schrodinger equations * logarithmic nonlinearities Subject RIV: BE - Theoretical Physics OBOR OECD: Atomic, molecular and chemical physics ( physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect) Impact factor: 1.457, year: 2016

  12. Examination of wall functions for a Parabolized Navier-Stokes code for supersonic flow

    Energy Technology Data Exchange (ETDEWEB)

    Alsbrooks, T.H. [New Mexico Univ., Albuquerque, NM (United States). Dept. of Mechanical Engineering

    1993-04-01

    Solutions from a Parabolized Navier-Stokes (PNS) code with an algebraic turbulence model are compared with wall functions. The wall functions represent the turbulent flow profiles in the viscous sublayer, thus removing many grid points from the solution procedure. The wall functions are intended to replace the computed profiles between the body surface and a match point in the logarithmic region. A supersonic adiabatic flow case was examined first. This adiabatic case indicates close agreement between computed velocity profiles near the wall and the wall function for a limited range of suitable match points in the logarithmic region. In an attempt to improve marching stability, a laminar to turbulent transition routine was implemented at the start of the PNS code. Implementing the wall function with the transitional routine in the PNS code is expected to reduce computational time while maintaining good accuracy in computed skin friction.

  13. Examination of wall functions for a Parabolized Navier-Stokes code for supersonic flow

    Energy Technology Data Exchange (ETDEWEB)

    Alsbrooks, T.H. (New Mexico Univ., Albuquerque, NM (United States). Dept. of Mechanical Engineering)

    1993-01-01

    Solutions from a Parabolized Navier-Stokes (PNS) code with an algebraic turbulence model are compared with wall functions. The wall functions represent the turbulent flow profiles in the viscous sublayer, thus removing many grid points from the solution procedure. The wall functions are intended to replace the computed profiles between the body surface and a match point in the logarithmic region. A supersonic adiabatic flow case was examined first. This adiabatic case indicates close agreement between computed velocity profiles near the wall and the wall function for a limited range of suitable match points in the logarithmic region. In an attempt to improve marching stability, a laminar to turbulent transition routine was implemented at the start of the PNS code. Implementing the wall function with the transitional routine in the PNS code is expected to reduce computational time while maintaining good accuracy in computed skin friction.

  14. The four-loop six-gluon NMHV ratio function

    Energy Technology Data Exchange (ETDEWEB)

    Dixon, Lance J. [SLAC National Accelerator Lab., Stanford, CA (United States); California Inst. of Technology (CalTech), Pasadena, CA (United States); von Hippel, Matt [Perimeter Inst. for Theoretical Physics, Waterloo, ON (Canada); McLeod, Andrew J. [SLAC National Accelerator Lab., Stanford, CA (United States)

    2016-01-11

    We use the hexagon function bootstrap to compute the ratio function which characterizes the next-to-maximally-helicity-violating (NMHV) six-point amplitude in planar N = 4 super-Yang-Mills theory at four loops. A powerful constraint comes from dual superconformal invariance, in the form of a Q- differential equation, which heavily constrains the first derivatives of the transcendental functions entering the ratio function. At four loops, it leaves only a 34-parameter space of functions. Constraints from the collinear limits, and from the multi-Regge limit at the leading-logarithmic (LL) and next-to-leading-logarithmic (NLL) order, suffice to fix these parameters and obtain a unique result. We test the result against multi- Regge predictions at NNLL and N3LL, and against predictions from the operator product expansion involving one and two flux-tube excitations; all cross-checks are satisfied. We also study the analytical and numerical behavior of the parity-even and parity-odd parts on various lines and surfaces traversing the three-dimensional space of cross ratios. As part of this program, we characterize all irreducible hexagon functions through weight eight in terms of their coproduct. Furthermore, we provide representations of the ratio function in particular kinematic regions in terms of multiple polylogarithms.

  15. The four-loop six-gluon NMHV ratio function

    Energy Technology Data Exchange (ETDEWEB)

    Dixon, Lance J. [SLAC National Accelerator Laboratory, Stanford University,Stanford, CA 94309 (United States); Walter Burke Institute for Theoretical Physics, California Institute of Technology,Pasadena, CA 91125 (United States); Hippel, Matt von [Perimeter Institute for Theoretical Physics,Waterloo, Ontario N2L 2Y5 (Canada); McLeod, Andrew J. [SLAC National Accelerator Laboratory, Stanford University,Stanford, CA 94309 (United States)

    2016-01-11

    We use the hexagon function bootstrap to compute the ratio function which characterizes the next-to-maximally-helicity-violating (NMHV) six-point amplitude in planar N=4 super-Yang-Mills theory at four loops. A powerful constraint comes from dual superconformal invariance, in the form of a Q̄ differential equation, which heavily constrains the first derivatives of the transcendental functions entering the ratio function. At four loops, it leaves only a 34-parameter space of functions. Constraints from the collinear limits, and from the multi-Regge limit at the leading-logarithmic (LL) and next-to-leading-logarithmic (NLL) order, suffice to fix these parameters and obtain a unique result. We test the result against multi-Regge predictions at NNLL and N{sup 3}LL, and against predictions from the operator product expansion involving one and two flux-tube excitations; all cross-checks are satisfied. We study the analytical and numerical behavior of the parity-even and parity-odd parts on various lines and surfaces traversing the three-dimensional space of cross ratios. As part of this program, we characterize all irreducible hexagon functions through weight eight in terms of their coproduct. We also provide representations of the ratio function in particular kinematic regions in terms of multiple polylogarithms.

  16. Twist operator correlation functions in O(n) loop models

    International Nuclear Information System (INIS)

    Simmons, Jacob J H; Cardy, John

    2009-01-01

    Using conformal field theoretic methods we calculate correlation functions of geometric observables in the loop representation of the O(n) model at the critical point. We focus on correlation functions containing twist operators, combining these with anchored loops, boundaries with SLE processes and with double SLE processes. We focus further upon n = 0, representing self-avoiding loops, which corresponds to a logarithmic conformal field theory (LCFT) with c = 0. In this limit the twist operator plays the role of a 0-weight indicator operator, which we verify by comparison with known examples. Using the additional conditions imposed by the twist operator null states, we derive a new explicit result for the probabilities that an SLE 8/3 winds in various ways about two points in the upper half-plane, e.g. that the SLE passes to the left of both points. The collection of c = 0 logarithmic CFT operators that we use deriving the winding probabilities is novel, highlighting a potential incompatibility caused by the presence of two distinct logarithmic partners to the stress tensor within the theory. We argue that both partners do appear in the theory, one in the bulk and one on the boundary and that the incompatibility is resolved by restrictive bulk-boundary fusion rules

  17. Logarithmic corrections from ferromagnetic impurity ending bonds of open antiferromagnetic host chains

    International Nuclear Information System (INIS)

    Lou Jizhong; Qin Shaojin; Su Zhaobin; Dai Jianhui; Yu Lu

    2000-06-01

    We analyze the logarithmic corrections due to ferromagnetic impurity ending bonds of open spin 1/2 antiferromagnetic chains, using the density matrix renormalization group technique. A universal finite size scaling ∼ 1/L log L for impurity contributions in the quasi-degenerate ground state energy is demonstrated for a zigzag spin 1/2 chain at the critical next nearest neighbor coupling and the standard Heisenberg spin 1/2 chain, in the long chain limit. Using an exact solution for the latter case it is argued that one can extract the impurity contributions to the entropy and specific heat from the scaling analysis. It is also shown that a pure spin 3/2 open Heisenberg chain belongs to the same universality class. (author)

  18. Logarithmic Type Image Processing Framework for Enhancing Photographs Acquired in Extreme Lighting

    Directory of Open Access Journals (Sweden)

    FLOREA, C.

    2013-05-01

    Full Text Available The Logarithmic Type Image Processing (LTIP tools are mathematical models that were constructed for the representation and processing of gray tones images. By careful redefinition of the fundamental operations, namely addition and scalar multiplication, a set of mathematical properties are achieved. Here we propose the extension of LTIP models by a novel parameterization rule that ensures preservation of the required cone space structure. To prove the usability of the proposed extension we present an application for low-light image enhancement in images acquired with digital still camera. The closing property of the named model facilitates similarity with human visual system and digital camera processing pipeline, thus leading to superior behavior when compared with state of the art methods.

  19. Critical Assessment Of The Issues In The Application Of Hilbert Transform To Compute The Logarithmic Decrement

    OpenAIRE

    Majewski M.; Magalas L.B.

    2015-01-01

    The parametric OMI (Optimization in Multiple Intervals), the Yoshida-Magalas (YM) and a novel Hilbert-twin (H-twin) methods are advocated for computing the logarithmic decrement in the field of internal friction and mechanical spectroscopy of solids. It is shown that dispersion in experimental points results mainly from the selection of the computing methods, the number of oscillations, and noise. It is demonstrated that conventional Hilbert transform method suffers from high dispersion in in...

  20. On Higgs-exchange DIS, physical evolution kernels and fourth-order splitting functions at large x

    International Nuclear Information System (INIS)

    Soar, G.; Vogt, A.; Vermaseren, J.A.M.

    2009-12-01

    We present the coefficient functions for deep-inelastic scattering (DIS) via the exchange of a scalar φ directly coupling only to gluons, such as the Higgs boson in the limit of a very heavy top quark and n f effectively massless light flavours, to the third order in perturbative QCD. The two-loop results are employed to construct the next-to-next-to-leading order physical evolution kernels for the system (F 2 ,F φ ) of flavour-singlet structure functions. The practical relevance of these kernels as an alternative to MS factorization is bedevilled by artificial double logarithms at small values of the scaling variable x, where the large top-mass limit ceases to be appropriate. However, they show an only single-logarithmic enhancement at large x. Conjecturing that this feature persists to the next order also in the present singlet case, the three-loop coefficient functions facilitate exact predictions (backed up by their particular colour structure) of the double-logarithmic contributions to the fourth-order singlet splitting functions, i.e., of the terms (1-x) a ln k (1-x) with k=4,5,6 and k=3,4,5, respectively, for the off-diagonal and diagonal quantities to all powers a in (1-x). (orig.)

  1. On higher-order flavour-singlet splitting and coefficient functions at large x

    International Nuclear Information System (INIS)

    Vogt, A.; Soar, G.; Vermaseren, J.A.M.

    2010-08-01

    We discuss the large-x behaviour of the splitting functions P qg and P gq and of flavour-singlet coefficient functions, such as the gluon contributions C 2,g and C L,g to the structure functions F 2,L , in massless perturbative QCD. These quantities are suppressed by one or two powers of (1-x) with respect to the (1-x) -1 terms which are the subject of the well-known threshold exponentiation. We show that the double-logarithmic contributions to P qg , P gq and C L at order α s 4 can be predicted from known third-order results and present, as a first step towards a full all-order generalization, the leading-logarithmic large-x behaviour of P qg , P gq and C 2,g at all orders in α s . (orig.)

  2. Critical Correlation Functions for the 4-Dimensional Weakly Self-Avoiding Walk and n-Component {|\\varphi|^4} Model

    Science.gov (United States)

    Slade, Gordon; Tomberg, Alexandre

    2016-03-01

    We extend and apply a rigorous renormalisation group method to study critical correlation functions, on the 4-dimensional lattice Z4, for the weakly coupled n-component {|\\varphi|4} spin model for all {n ≥ 1}, and for the continuous-time weakly self-avoiding walk. For the {|\\varphi|4} model, we prove that the critical two-point function has | x|-2 (Gaussian) decay asymptotically, for {n ≥ 1}. We also determine the asymptotic decay of the critical correlations of the squares of components of {\\varphi}, including the logarithmic corrections to Gaussian scaling, for {n ≥ 1}. The above extends previously known results for n = 1 to all {n ≥ 1}, and also observes new phenomena for n > 1, all with a new method of proof. For the continuous-time weakly self-avoiding walk, we determine the decay of the critical generating function for the "watermelon" network consisting of p weakly mutually- and self-avoiding walks, for all {p ≥ 1}, including the logarithmic corrections. This extends a previously known result for p = 1, for which there is no logarithmic correction, to a much more general setting. In addition, for both models, we study the approach to the critical point and prove the existence of logarithmic corrections to scaling for certain correlation functions. Our method gives a rigorous analysis of the weakly self-avoiding walk as the n = 0 case of the {|\\varphi|4} model, and provides a unified treatment of both models, and of all the above results.

  3. Utilization of Educational Innovations and Technology in Research and Extension Functions of State Universities

    Directory of Open Access Journals (Sweden)

    Rosalinda M. Comia

    2017-11-01

    Full Text Available The study focused on the extent of utilization of the educational innovations and technology in research and extension functions of SUs. The descriptive design, triangulation method, and purposive sampling were applied in this study. The findings revealed that majority of the respondents are married adults and master’s degree graduates with education as their area of specialization. They are permanent in status and have considerable years in the University serving as research or extension officer. Research of SUs have common research thrusts in terms of environment and natural resources management but differ in their own respective agenda; similarly the SUs share common extension thrusts and concerns but differ in their programs, activities and projects related to community services. Commonly encountered problems concern inadequate funds and inability to access the available technology. Officers utilized educational innovations on research and extension to a moderate extent but software and hardware were utilized to a great extent; likewise internet-based communication was utilized to a great extent for research but used moderately for extension. This implies that compared to research, most of the extension functions do not require the use of internet-based communication. From the results of the study, it was recommended that review of the existing allocation of funds for technology development may be done to improve the existing hardware, software and communication facilities.

  4. PRELIMINARY ESTIMATION OF POSTSEISMIC DEFORMATION PARAMETERS FROM CONTINUOUS GPS DATA IN KOREA PENINSULA AND IEODO AFTER THE 2011 TOHOKU-OKI MW9.0 EARTHQUAKE

    Directory of Open Access Journals (Sweden)

    W. A. W. Aris

    2016-09-01

    Full Text Available This paper describes utilization of GPS data in Korea Peninsula and IEODO ocean research station for investigation of postseismic deformation characteristic after the 2011 Tohoku-oki Mw9.0 Earthquake. Analytical logarithmic and exponential functions were used to evaluate the postseismic deformation parameters. The results found that the data in Korea Peninsula and IEODO during periods of mid-2011 – mid-2014 are fit better using logarithmic function with deformation decay at 134.5 ±0.1 days than using the exponential function. The result also clearly indicates that further investigation into postseismic deformation over longer data span should be taken into account to explain tectonic deformation over the region.

  5. [An oral function improvement program utilizing health behavior theories ameliorates oral functions and oral hygienic conditions of pre-frail elderly persons].

    Science.gov (United States)

    Sakaguchi, Hideo

    2014-06-01

    Oral function improvement programs utilizing health behavior theories are considered to be effective in preventing the need for long-term social care. In the present study, an oral function improvement program based upon health behavior theories was designed, and its utility was assessed in 102 pre-frail elderly persons (33 males, 69 females, mean age: 76.9 +/- 5.7) considered to be in potential need of long-term social care and attending a long-term care prevention class in Sayama City, Saitama Prefecture, Japan. The degree of improvement in oral functions (7 items) and oral hygienic conditions (3 items) was assessed by comparing oral health before and after participation in the program. The results showed statistically significant improvements in the following oral functions: (1) lip functions (oral diadochokinesis, measured by the regularity of the repetition of the syllable "Pa"), (2) tongue functions, (3) tongue root motor skills (oral diadochokinesis, measured by the regularity of the repetition of the syllables "Ta" and "Ka"), (4) tongue extension/retraction, (5) side-to-side tongue movement functions, (6) cheek motor skills, and (7) repetitive saliva swallowing test (RSST). The following measures of oral hygiene also showed a statistically significant improvement: (1) debris on dentures or teeth, (2) coated tongue, and (3) frequency of oral cleaning. These findings demonstrated that an improvement program informed by health behavior theories is useful in improving oral functions and oral hygiene conditions.

  6. Value function in economic growth model

    Science.gov (United States)

    Bagno, Alexander; Tarasyev, Alexandr A.; Tarasyev, Alexander M.

    2017-11-01

    Properties of the value function are examined in an infinite horizon optimal control problem with an unlimited integrand index appearing in the quality functional with a discount factor. Optimal control problems of such type describe solutions in models of economic growth. Necessary and sufficient conditions are derived to ensure that the value function satisfies the infinitesimal stability properties. It is proved that value function coincides with the minimax solution of the Hamilton-Jacobi equation. Description of the growth asymptotic behavior for the value function is provided for the logarithmic, power and exponential quality functionals and an example is given to illustrate construction of the value function in economic growth models.

  7. Assessment of Postflight Locomotor Performance Utilizing a Test of Functional Mobility: Strategic and Adaptive Responses

    Science.gov (United States)

    Warren, L. E.; Mulavara, A. P.; Peters, B. T.; Cohen, H. S.; Richards, J. T.; Miller, C. A.; Brady, R.; Ruttley, T. M.; Bloomberg, J. J.

    2006-01-01

    have further analyzed the FMT data to characterize strategic and adaptive components during the postflight readaptation period. Crewmembers walked at a preferred pace through an obstacle course set up on a base of 10 cm thick medium density foam (Sunmate Foam, Dynamic Systems, Inc., Leicester, NC). The 6.0m X 4.0m course consisted of several pylons made of foam; a Styrofoam barrier 46.0cm high that crewmembers stepped over; and a portal constructed of two Styrofoam blocks, each 31cm high, with a horizontal bar covered by foam and suspended from the ceiling which was adjusted to the height of the crewmember s shoulder. The portal required crewmembers to bend at the waist and step over a barrier simultaneously. All obstacles were lightweight, soft and easily knocked over. Crewmembers were instructed to walk through the course as quickly and as safely as possible without touching any of the objects on the course. This task was performed three times in the clockwise direction and three times in the counterclockwise direction that was randomly chosen. The dependent measures for each trial were: time to complete the course (seconds) and the number of obstacles touched or knocked down. For each crewmember, the time to complete each FMT trial from postflight days 1, 2, 4, 7 and 25 were further analyzed. A single logarithmic curve using a least squares calculation was fit through these data to produce a single comprehensive curve (macro). This macro curve composed of data spanning 25 days, illustrates the re-adaptive learning function over the longer time scale term. Additionally, logarithmic curves were fit to the 6 data trials within each individual post flight test day to produce 5 separate daily curves. These micro curves, produced from data obtained over the course of minutes, illustrates the strategic learning function exhibited over a relative shorter time scale. The macro curve for all subjects exhibited adaptive motor learning patterns over the 25 day period. Howev, 9

  8. VALUING BENEFITS FROM WATER QUALITY IMPROVEMENTS USING KUHN TUCKER MODEL - A COMPARATIVE ANALYSIS ON UTILITY FUNCTIONAL FORMS-

    Science.gov (United States)

    Okuyama, Tadahiro

    Kuhn-Tucker model, which has studied in recent years, is a benefit valuation technique using the revealed-preference data, and the feature is to treatvarious patterns of corner solutions flexibly. It is widely known for the benefit calculation using the revealed-preference data that a value of a benefit changes depending on a functional form. However, there are little studies which examine relationship between utility functions and values of benefits in Kuhn-Tucker model. The purpose of this study is to analysis an influence of the functional form to the value of a benefit. Six types of utility functions are employed for benefit calculations. The data of the recreational activity of 26 beaches of Miyagi Prefecture were employed. Calculation results indicated that Phaneuf and Siderelis (2003) and Whitehead et al.(2010)'s functional forms are useful for benefit calculations.

  9. Utility Function for modeling Group Multicriteria Decision Making problems as games

    OpenAIRE

    Alexandre Bevilacqua Leoneti

    2016-01-01

    To assist in the decision making process, several multicriteria methods have been proposed. However, the existing methods assume a single decision-maker and do not consider decision under risk, which is better addressed by Game Theory. Hence, the aim of this research is to propose a Utility Function that makes it possible to model Group Multicriteria Decision Making problems as games. The advantage of using Game Theory for solving Group Multicriteria Decision Making problems is to evaluate th...

  10. On criteria for algebraic independence of collections of functions satisfying algebraic difference relations

    Directory of Open Access Journals (Sweden)

    Hiroshi Ogawara

    2017-01-01

    Full Text Available This paper gives conditions for algebraic independence of a collection of functions satisfying a certain kind of algebraic difference relations. As applications, we show algebraic independence of two collections of special functions: (1 Vignéras' multiple gamma functions and derivatives of the gamma function, (2 the logarithmic function, \\(q\\-exponential functions and \\(q\\-polylogarithm functions. In a similar way, we give a generalization of Ostrowski's theorem.

  11. Vibration of Elastic Functionally Graded Thick Rings

    Directory of Open Access Journals (Sweden)

    Guang-Hui Xu

    2017-01-01

    Full Text Available The free vibration behaviors of functionally graded rings were investigated theoretically. The material graded in the thickness direction according to the power law rule and the rings were assumed to be in plane stress and plane strain states. Based on the first-order shear deformation theory and the kinetic relation of von Kárman type, the frequency equation for free vibration of functionally graded ring was derived. The derived results were verified by those in literatures which reveals that the present theory can be appropriate to predict the free vibration characteristics for quite thick rings with the radius-to-thickness ratio from 60 down to 2.09. Comparison between the plane stress case and the plane strain case indicates a slight difference. Meanwhile, the effects of the structural dimensional parameters and the material inhomogeneous parameter are examined. It is interesting that the value of the logarithmic form of vibration frequency is inversely proportional to the logarithmic form of the radius-to-thickness ratio or the mean radius.

  12. Associative-algebraic approach to logarithmic conformal field theories

    International Nuclear Information System (INIS)

    Read, N.; Saleur, Hubert

    2007-01-01

    We set up a strategy for studying large families of logarithmic conformal field theories by using the enlarged symmetries and non-semisimple associative algebras appearing in their lattice regularizations (as discussed in a companion paper [N. Read, H. Saleur, Enlarged symmetry algebras of spin chains, loop models, and S-matrices, cond-mat/0701259]). Here we work out in detail two examples of theories derived as the continuum limit of XXZ spin-1/2 chains, which are related to spin chains with supersymmetry algebras gl(n|n) and gl(n+1 vertical bar n), respectively, with open (or free) boundary conditions in all cases. These theories can also be viewed as vertex models, or as loop models. Their continuum limits are boundary conformal field theories (CFTs) with central charge c=-2 and c=0 respectively, and in the loop interpretation they describe dense polymers and the boundaries of critical percolation clusters, respectively. We also discuss the case of dilute (critical) polymers as another boundary CFT with c=0. Within the supersymmetric formulations, these boundary CFTs describe the fixed points of certain nonlinear sigma models that have a supercoset space as the target manifold, and of Landau-Ginzburg field theories. The submodule structures of indecomposable representations of the Virasoro algebra appearing in the boundary CFT, representing local fields, are derived from the lattice. A central result is the derivation of the fusion rules for these fields

  13. Holographic conductivity for logarithmic charged dilaton-Lifshitz solutions

    Directory of Open Access Journals (Sweden)

    A. Dehyadegari

    2016-07-01

    Full Text Available We disclose the effects of the logarithmic nonlinear electrodynamics on the holographic conductivity of Lifshitz dilaton black holes/branes. We analyze thermodynamics of these solutions as a necessary requirement for applying gauge/gravity duality, by calculating conserved and thermodynamic quantities such as the temperature, entropy, electric potential and mass of the black holes/branes. We calculate the holographic conductivity for a (2+1-dimensional brane boundary and study its behavior in terms of the frequency per temperature. Interestingly enough, we find out that, in contrast to the Lifshitz–Maxwell-dilaton black branes which have conductivity for all z, here in the presence of nonlinear gauge field, the holographic conductivity does exist provided z≤3 and vanishes for z>3. It is shown that independent of the nonlinear parameter β, the real part of the conductivity is the same for a specific value of frequency per temperature in both AdS and Lifshitz cases. Besides, the behavior of real part of conductivity for large frequencies has a positive slope with respect to large frequencies for a system with Lifshitz symmetry whereas it tends to a constant for a system with AdS symmetry. This behavior may be interpreted as existence of an additional charge carrier rather than the AdS case, and is due to the presence of the scalar dilaton field in model. Similar behavior for optical conductivity of single-layer graphene induced by mild oxygen plasma exposure has been reported.

  14. Social Service Utilization, Sense of Community, Family Functioning and the Mental Health of New Immigrant Women in Hong Kong

    OpenAIRE

    Wu, Qiaobing; Chow, Julian

    2013-01-01

    Drawing upon a sample of 296 new immigrant women in Hong Kong, this study investigated how social service utilization, family functioning, and sense of community influenced the depressive symptoms of new immigrant women. Results of the structural equation modeling suggested that family functioning and sense of community were both significantly and negatively associated with the depression of new immigrant women. Utilization of community services also influenced the depression of immigrant wom...

  15. Gravitational Field as a Pressure Force from Logarithmic Lagrangians and Non-Standard Hamiltonians: The Case of Stellar Halo of Milky Way

    Science.gov (United States)

    El-Nabulsi, Rami Ahmad

    2018-03-01

    Recently, the notion of non-standard Lagrangians was discussed widely in literature in an attempt to explore the inverse variational problem of nonlinear differential equations. Different forms of non-standard Lagrangians were introduced in literature and have revealed nice mathematical and physical properties. One interesting form related to the inverse variational problem is the logarithmic Lagrangian, which has a number of motivating features related to the Liénard-type and Emden nonlinear differential equations. Such types of Lagrangians lead to nonlinear dynamics based on non-standard Hamiltonians. In this communication, we show that some new dynamical properties are obtained in stellar dynamics if standard Lagrangians are replaced by Logarithmic Lagrangians and their corresponding non-standard Hamiltonians. One interesting consequence concerns the emergence of an extra pressure term, which is related to the gravitational field suggesting that gravitation may act as a pressure in a strong gravitational field. The case of the stellar halo of the Milky Way is considered.

  16. Structure functions of electroweak boson and leptons

    International Nuclear Information System (INIS)

    Slominski, W.; Szwed, J.

    1996-01-01

    The QCD structure of the electroweak bosons is reviewed and the lepton structure function is defined and calculated. The leading order splitting functions of electron into quarks are extracted, showing an important contribution from γ-Z interference. Leading logarithmic QCD evolution equations are constructed and solved in the asymptotic region where log 2 behavior of the Parton densities is observed. Possible applications with clear manifestation of ''resolved'' photon and weak bosons are discussed. 8 refs., 3 figs

  17. Social security as Markov equilibrium in OLG models: A note

    DEFF Research Database (Denmark)

    Gonzalez Eiras, Martin

    2011-01-01

    I refine and extend the Markov perfect equilibrium of the social security policy game in Forni (2005) for the special case of logarithmic utility. Under the restriction that the policy function be continuous, instead of differentiable, the equilibrium is globally well defined and its dynamics...

  18. Crosslinking of milk proteins by microbial transglutaminase: Utilization in functional yogurt products

    DEFF Research Database (Denmark)

    Gharibzahedi, Seyed Mohammad Taghi; Chronakis, Ioannis S.

    2018-01-01

    Key modifying roles of microbial transglutaminase (MTGase) in the development of innovative probiotic and non-probiotic yogurts with improved functional and quality characteristics have been comprehensively reviewed. MTGase crosslinking reactions with milk proteins stabilize the three-dimensional......Key modifying roles of microbial transglutaminase (MTGase) in the development of innovative probiotic and non-probiotic yogurts with improved functional and quality characteristics have been comprehensively reviewed. MTGase crosslinking reactions with milk proteins stabilize the three......-dimensional structure of yogurt. Yogurts treated with MTGase showed decreased syneresis, increased water-holding capacity and viscosity, homogeneous structure, desired texture, and physicochemical high stability during storage time. The utilization of MTGase does not affect negatively the sensory attributes of yogurt...

  19. Utilization of ultraviolet radiation in effluent disinfestation of domestic waste treatment systems

    International Nuclear Information System (INIS)

    Camacho, P.R.R.; Andrade e Silva, L.G. de

    1995-01-01

    Ultraviolet radiation disinfection of Upflow Anaerobic Sludge Biodigestor (UASB) and UASB with aerated lagoon pos-treatment effluents is possible to be reached utilizing a single low pressure mercury lamp arc (15 W nominal power) in a shell tube flow through reactor (1.2 L useful volume). Fecal coliforms, total coliforms and colifages were used as microbiological parameters. For fecal coliforms, about 3 logarithmic units (log. un.) was removed from UASB with aerated lagoon pos-treatment effluent and 4 log. un. from UASB effluent with 7 and 30 seconds of hydraulic retention time, respectively. Good empirical correlations were obtained between microbiological parameters and hydraulic retention times. (author). 4 refs, 1 fig, 3 tabs

  20. Some approaches to the formation of the financialmechanism of efficient housing and utility services functioning

    Directory of Open Access Journals (Sweden)

    Chernyshev Aleksey Valentinovich

    2014-02-01

    Full Text Available In modern market conditions the purpose of the financial mechanism formation of housing and utility services has to consist in ensuring efficient functioning of rendering services of this complex. While creating the financial mechanism of housing and utility services development, only such criteria are considered as purpose and operating principles of organizations. Thus, the main goal of this research is to establish the transparent mechanism of reflection of the price policy in housing services industry, and also the payment size control at the contents and repair of objects of housing and utility services. The financial mechanism formation has to be carried out within the principles of the finance management. Also, considering various points of view of the scientists on the quantity and essence of the principles, the authors discuss such of them, which are most specific to the sphere of housing and utility services.Many economists put as a basis of housing and utility services financial mechanism such purpose as creating favorable conditions for social development, which means compliance with the interests and requirements of the population.

  1. The Utilization of the Cobb-Douglas Production Function for Analyzing Indonesia's and Malaysia's Economic Growth

    Directory of Open Access Journals (Sweden)

    Elis Ratna Wulan

    2014-06-01

    Full Text Available This paper presents the utilization Cobb-Douglas production function in its classical form for analyzing Indonesia's and Malaysia's economic growth in relation to the intensity of using capital and labour as determinants of the production.

  2. Hyperbolic functions with configuration theorems and equivalent and equidecomposable figures

    CERN Document Server

    Shervatov, V G; Skornyakov, L A; Boltyanskii, V G

    2007-01-01

    This single-volume compilation of three books centers on Hyperbolic Functions, an introduction to the relationship between the hyperbolic sine, cosine, and tangent, and the geometric properties of the hyperbola. The development of the hyperbolic functions, in addition to those of the trigonometric (circular) functions, appears in parallel columns for comparison. A concluding chapter introduces natural logarithms and presents analytic expressions for the hyperbolic functions.The second book, Configuration Theorems, requires only the most elementary background in plane and solid geometry. It dis

  3. Managing the GPS/GIS function in an electric utility

    International Nuclear Information System (INIS)

    Michelsen, M.W. Jr.

    1999-01-01

    A new period of higher significance has arrived for the GPS/GIS function at electric utilities such that to a degree never seen before, utility managers are looking to their GIS programs, filled with increasingly accurate data collected by GPS technology, before making many decisions. With this capability comes an expectation for GPS/GIS professionals to provide higher levels of planning and management of their data collection process. At Duke Power in Charlotte, North Carolina, managers rely on GPS mapping to fill their data collection equipment needs. When the city of Charlotte requested a more detailed billing system, Duke Power co-sponsored the street lighting inventory project, a comprehensive program implemented to fully account for street lighting facilities within the billing area. One of the key projects to be kept in mind was the creation of a common data base viewable by GIS from which a bill could be created and as well reveal data. A billing calculation routine can be run against the data base to generate a bill or use MapInfo to see a graphical picture. Prior to the creation of this data base capability, the difference between the data base as a display tool and billing system was a potential source of discrepancy, which is eliminated now. Creating the data base allows more than just creating a bill for the city, it allows Duke Power to work better with the city by improving its billing accountability and provides better service as well

  4. Equilibrium arrival times to queues with general service times and non-linear utility functions

    DEFF Research Database (Denmark)

    Breinbjerg, Jesper

    2017-01-01

    by a general utility function which is decreasing in the waiting time and service completion time of each customer. Applications of such queueing games range from people choosing when to arrive at a grand opening sale to travellers choosing when to line up at the gate when boarding an airplane. We develop...

  5. Utility Function and Optimum Consumption in the models with Habit Formation and Catching up with the Joneses

    OpenAIRE

    Naryshkin, Roman; Davison, Matt

    2009-01-01

    This paper analyzes popular time-nonseparable utility functions that describe "habit formation" consumer preferences comparing current consumption with the time averaged past consumption of the same individual and "catching up with the Joneses" (CuJ) models comparing individual consumption with a cross-sectional average consumption level. Few of these models give reasonable optimum consumption time series. We introduce theoretically justified utility specifications leading to a plausible cons...

  6. Dynamic Functional Imaging of Brain Glucose Utilization using fPET-FDG

    Science.gov (United States)

    Villien, Marjorie; Wey, Hsiao-Ying; Mandeville, Joseph B.; Catana, Ciprian; Polimeni, Jonathan R.; Sander, Christin Y.; Zürcher, Nicole R.; Chonde, Daniel B.; Fowler, Joanna S.; Rosen, Bruce R.; Hooker, Jacob M.

    2014-01-01

    Glucose is the principal source of energy for the brain and yet the dynamic response of glucose utilization to changes in brain activity is still not fully understood. Positron emission tomography (PET) allows quantitative measurement of glucose metabolism using 2-[18F]-fluorodeoxyglucose (FDG). However, FDG PET in its current form provides an integral (or average) of glucose consumption over tens of minutes and lacks the temporal information to capture physiological alterations associated with changes in brain activity induced by tasks or drug challenges. Traditionally, changes in glucose utilization are inferred by comparing two separate scans, which significantly limits the utility of the method. We report a novel method to track changes in FDG metabolism dynamically, with higher temporal resolution than exists to date and within a single session. Using a constant infusion of FDG, we demonstrate that our technique (termed fPET-FDG) can be used in an analysis pipeline similar to fMRI to define within-session differential metabolic responses. We use visual stimulation to demonstrate the feasibility of this method. This new method has a great potential to be used in research protocols and clinical settings since fPET-FDG imaging can be performed with most PET scanners and data acquisition and analysis is straightforward. fPET-FDG is a highly complementary technique to MRI and provides a rich new way to observe functional changes in brain metabolism. PMID:24936683

  7. Optimization of the dressing parameters in cylindrical grinding based on a generalized utility function

    Science.gov (United States)

    Aleksandrova, Irina

    2016-01-01

    The existing studies, concerning the dressing process, focus on the major influence of the dressing conditions on the grinding response variables. However, the choice of the dressing conditions is often made, based on the experience of the qualified staff or using data from reference books. The optimal dressing parameters, which are only valid for the particular methods and dressing and grinding conditions, are also used. The paper presents a methodology for optimization of the dressing parameters in cylindrical grinding. The generalized utility function has been chosen as an optimization parameter. It is a complex indicator determining the economic, dynamic and manufacturing characteristics of the grinding process. The developed methodology is implemented for the dressing of aluminium oxide grinding wheels by using experimental diamond roller dressers with different grit sizes made of medium- and high-strength synthetic diamonds type ??32 and ??80. To solve the optimization problem, a model of the generalized utility function is created which reflects the complex impact of dressing parameters. The model is built based on the results from the conducted complex study and modeling of the grinding wheel lifetime, cutting ability, production rate and cutting forces during grinding. They are closely related to the dressing conditions (dressing speed ratio, radial in-feed of the diamond roller dresser and dress-out time), the diamond roller dresser grit size/grinding wheel grit size ratio, the type of synthetic diamonds and the direction of dressing. Some dressing parameters are determined for which the generalized utility function has a maximum and which guarantee an optimum combination of the following: the lifetime and cutting ability of the abrasive wheels, the tangential cutting force magnitude and the production rate of the grinding process. The results obtained prove the possibility of control and optimization of grinding by selecting particular dressing

  8. Determination of first order rate constants by natural logarithm of the slope plot exemplified by analysis of Aspergillus niger in batch culture

    NARCIS (Netherlands)

    Poulsen, B.R.; Ruiter, G.; Visser, J.; Iversen, J.J.L.

    2003-01-01

    Finding rate constants from experimental data is often difficult because of offset and noise. A computer program was developed to average experimental data points, reducing the effect of noise, and to produce a loge of slope plot - a plot of the natural logarithm of the slope of a curve -

  9. Discussion of "On the interpretation of the logarithmic strain tensor in an arbitrary system of representation" by M. Latorre and FJ Montans

    Czech Academy of Sciences Publication Activity Database

    Fiala, Zdeněk

    56/57, March (2015), s. 290-291 ISSN 0020-7683 Institutional support: RVO:68378297 Keywords : logarithmic strain tensor * evolution equations of Lie type * finite deformations * solid mechanics Subject RIV: JN - Civil Engineering Impact factor: 2.081, year: 2015 http://www.sciencedirect.com/science/article/pii/S002076831400448X

  10. One- and two-channel Kondo model with logarithmic Van Hove singularity: A numerical renormalization group solution

    Science.gov (United States)

    Zhuravlev, A. K.; Anokhin, A. O.; Irkhin, V. Yu.

    2018-02-01

    Simple scaling consideration and NRG solution of the one- and two-channel Kondo model in the presence of a logarithmic Van Hove singularity at the Fermi level is given. The temperature dependences of local and impurity magnetic susceptibility and impurity entropy are calculated. The low-temperature behavior of the impurity susceptibility and impurity entropy turns out to be non-universal in the Kondo sense and independent of the s-d coupling J. The resonant level model solution in the strong coupling regime confirms the NRG results. In the two-channel case the local susceptibility demonstrates a non-Fermi-liquid power-law behavior.

  11. A generalized logarithmic image processing model based on the gigavision sensor model.

    Science.gov (United States)

    Deng, Guang

    2012-03-01

    The logarithmic image processing (LIP) model is a mathematical theory providing generalized linear operations for image processing. The gigavision sensor (GVS) is a new imaging device that can be described by a statistical model. In this paper, by studying these two seemingly unrelated models, we develop a generalized LIP (GLIP) model. With the LIP model being its special case, the GLIP model not only provides new insights into the LIP model but also defines new image representations and operations for solving general image processing problems that are not necessarily related to the GVS. A new parametric LIP model is also developed. To illustrate the application of the new scalar multiplication operation, we propose an energy-preserving algorithm for tone mapping, which is a necessary step in image dehazing. By comparing with results using two state-of-the-art algorithms, we show that the new scalar multiplication operation is an effective tool for tone mapping.

  12. Quark parton model with logarithmic scaling violation and high energy neutrino interactions

    International Nuclear Information System (INIS)

    Isaev, P.S.; Kovalenko, S.G.

    1979-01-01

    In the framework of the proposed earlier quark parton model with logarithmic scaling violation the cross sections of deep inelastic ν(anti ν)N interactions are calculated, the contribution of the charmed particle production are evaluated. The kinematical mass corrections to scaling violations and threshold effects are taken into account. Joint analysis of the experimental data on deep inelastic ep, ed scattering and charged current neutrino interaction are performed by using the unique set of free parameters of the model. Evaluations of the c-quark and W-boson masses are obtained. Neutral current data as well are analysed. The analysis is performed with taken into account scaling violation effects. The obtained estimations of the charmed quark mass Msub(c)=3.0+-1.2 GeV. W-boson mass Mw=50+-10 GeV, and the Weinberg angle SINsup(2)THETAsub(w)=0.26+-0.04 are within errors in agreement with the generally accepted ones

  13. Risk-Sensitive Multiagent Decision-Theoretic Planning Based on MDP and One-Switch Utility Functions

    Directory of Open Access Journals (Sweden)

    Wei Zeng

    2014-01-01

    Full Text Available In high stakes situations decision-makers are often risk-averse and decision-making processes often take place in group settings. This paper studies multiagent decision-theoretic planning under Markov decision processes (MDPs framework with considering the change of agent’s risk attitude as his wealth level varies. Based on one-switch utility function that describes agent’s risk attitude change with his wealth level, we give the additive and multiplicative aggregation models of group utility and adopt maximizing expected group utility as planning objective. When the wealth level approaches infinity, the characteristics of optimal policy are analyzed for the additive and multiplicative aggregation model, respectively. Then a backward-induction method is proposed to divide the wealth level interval from negative infinity to initial wealth level into subintervals and determine the optimal policy in states and subintervals. The proposed method is illustrated by numerical examples and the influences of agent’s risk aversion parameters and weights on group decision-making are also analyzed.

  14. Certain integrals involving logarithmic and exponential functions

    Directory of Open Access Journals (Sweden)

    M. Aslam Chaudhry

    1994-01-01

    Full Text Available In this paper we have evaluated the integrals∫0∞xn−1lnxexp(−ax−bx−1dxand∫0∞xn−2(ax2−b(lnx2exp(−ax−bx−1dxfor all n=1,2,3,…. Some applications of the results are discussed and an open problem is posed.

  15. Dopamine reward prediction error responses reflect marginal utility.

    Science.gov (United States)

    Stauffer, William R; Lak, Armin; Schultz, Wolfram

    2014-11-03

    Optimal choices require an accurate neuronal representation of economic value. In economics, utility functions are mathematical representations of subjective value that can be constructed from choices under risk. Utility usually exhibits a nonlinear relationship to physical reward value that corresponds to risk attitudes and reflects the increasing or decreasing marginal utility obtained with each additional unit of reward. Accordingly, neuronal reward responses coding utility should robustly reflect this nonlinearity. In two monkeys, we measured utility as a function of physical reward value from meaningful choices under risk (that adhered to first- and second-order stochastic dominance). The resulting nonlinear utility functions predicted the certainty equivalents for new gambles, indicating that the functions' shapes were meaningful. The monkeys were risk seeking (convex utility function) for low reward and risk avoiding (concave utility function) with higher amounts. Critically, the dopamine prediction error responses at the time of reward itself reflected the nonlinear utility functions measured at the time of choices. In particular, the reward response magnitude depended on the first derivative of the utility function and thus reflected the marginal utility. Furthermore, dopamine responses recorded outside of the task reflected the marginal utility of unpredicted reward. Accordingly, these responses were sufficient to train reinforcement learning models to predict the behaviorally defined expected utility of gambles. These data suggest a neuronal manifestation of marginal utility in dopamine neurons and indicate a common neuronal basis for fundamental explanatory constructs in animal learning theory (prediction error) and economic decision theory (marginal utility). Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Multiple utility constrained multi-objective programs using Bayesian theory

    Science.gov (United States)

    Abbasian, Pooneh; Mahdavi-Amiri, Nezam; Fazlollahtabar, Hamed

    2018-03-01

    A utility function is an important tool for representing a DM's preference. We adjoin utility functions to multi-objective optimization problems. In current studies, usually one utility function is used for each objective function. Situations may arise for a goal to have multiple utility functions. Here, we consider a constrained multi-objective problem with each objective having multiple utility functions. We induce the probability of the utilities for each objective function using Bayesian theory. Illustrative examples considering dependence and independence of variables are worked through to demonstrate the usefulness of the proposed model.

  17. Effects of mindfulness meditation on occupational functioning and health care utilization in individuals with anxiety.

    Science.gov (United States)

    Hoge, Elizabeth A; Guidos, Brittany M; Mete, Mihriye; Bui, Eric; Pollack, Mark H; Simon, Naomi M; Dutton, Mary Ann

    2017-04-01

    To examine the effect of mindfulness meditation on occupational functioning in individuals with Generalized anxiety disorder (GAD). Fifty-seven individuals with GAD (mean (SD) age=39 (13); 56% women) participated in an 8-week clinical trial in which they were randomized to mindfulness-based stress reduction (MBSR) or an attention control class. In this secondary analysis, absenteeism, entire workdays missed, partial workdays missed, and healthcare utilization patterns were assessed before and after treatment. Compared to the attention control class, participation in MBSR was associated with a significantly greater decrease in partial work days missed for adults with GAD (t=2.734, df=51, p=0.009). Interestingly, a dose effect was observed during the 24-week post-treatment follow-up period: among MBSR participants, greater home mindfulness meditation practice was associated with less work loss and with fewer mental health professional visits. Mindfulness meditation training may improve occupational functioning and decrease healthcare utilization in adults with GAD. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Optimizing virtual machine placement for energy and SLA in clouds using utility functions

    Directory of Open Access Journals (Sweden)

    Abdelkhalik Mosa

    2016-10-01

    Full Text Available Abstract Cloud computing provides on-demand access to a shared pool of computing resources, which enables organizations to outsource their IT infrastructure. Cloud providers are building data centers to handle the continuous increase in cloud users’ demands. Consequently, these cloud data centers consume, and have the potential to waste, substantial amounts of energy. This energy consumption increases the operational cost and the CO2 emissions. The goal of this paper is to develop an optimized energy and SLA-aware virtual machine (VM placement strategy that dynamically assigns VMs to Physical Machines (PMs in cloud data centers. This placement strategy co-optimizes energy consumption and service level agreement (SLA violations. The proposed solution adopts utility functions to formulate the VM placement problem. A genetic algorithm searches the possible VMs-to-PMs assignments with a view to finding an assignment that maximizes utility. Simulation results using CloudSim show that the proposed utility-based approach reduced the average energy consumption by approximately 6 % and the overall SLA violations by more than 38 %, using fewer VM migrations and PM shutdowns, compared to a well-known heuristics-based approach.

  19. Mental Task Classification Scheme Utilizing Correlation Coefficient Extracted from Interchannel Intrinsic Mode Function.

    Science.gov (United States)

    Rahman, Md Mostafizur; Fattah, Shaikh Anowarul

    2017-01-01

    In view of recent increase of brain computer interface (BCI) based applications, the importance of efficient classification of various mental tasks has increased prodigiously nowadays. In order to obtain effective classification, efficient feature extraction scheme is necessary, for which, in the proposed method, the interchannel relationship among electroencephalogram (EEG) data is utilized. It is expected that the correlation obtained from different combination of channels will be different for different mental tasks, which can be exploited to extract distinctive feature. The empirical mode decomposition (EMD) technique is employed on a test EEG signal obtained from a channel, which provides a number of intrinsic mode functions (IMFs), and correlation coefficient is extracted from interchannel IMF data. Simultaneously, different statistical features are also obtained from each IMF. Finally, the feature matrix is formed utilizing interchannel correlation features and intrachannel statistical features of the selected IMFs of EEG signal. Different kernels of the support vector machine (SVM) classifier are used to carry out the classification task. An EEG dataset containing ten different combinations of five different mental tasks is utilized to demonstrate the classification performance and a very high level of accuracy is achieved by the proposed scheme compared to existing methods.

  20. Utility and Limitations of Using Gene Expression Data to Identify Functional Associations.

    Directory of Open Access Journals (Sweden)

    Sahra Uygun

    2016-12-01

    Full Text Available Gene co-expression has been widely used to hypothesize gene function through guilt-by association. However, it is not clear to what degree co-expression is informative, whether it can be applied to genes involved in different biological processes, and how the type of dataset impacts inferences about gene functions. Here our goal is to assess the utility and limitations of using co-expression as a criterion to recover functional associations between genes. By determining the percentage of gene pairs in a metabolic pathway with significant expression correlation, we found that many genes in the same pathway do not have similar transcript profiles and the choice of dataset, annotation quality, gene function, expression similarity measure, and clustering approach significantly impacts the ability to recover functional associations between genes using Arabidopsis thaliana as an example. Some datasets are more informative in capturing coordinated expression profiles and larger data sets are not always better. In addition, to recover the maximum number of known pathways and identify candidate genes with similar functions, it is important to explore rather exhaustively multiple dataset combinations, similarity measures, clustering algorithms and parameters. Finally, we validated the biological relevance of co-expression cluster memberships with an independent phenomics dataset and found that genes that consistently cluster with leucine degradation genes tend to have similar leucine levels in mutants. This study provides a framework for obtaining gene functional associations by maximizing the information that can be obtained from gene expression datasets.

  1. Reference values for paediatric pulmonary function testing: The Utrecht dataset.

    Science.gov (United States)

    Koopman, Marije; Zanen, Pieter; Kruitwagen, Cas L J J; van der Ent, Cornelis K; Arets, Hubertus G M

    2011-01-01

    Since populations evolve, measurement protocols and equipment improve and analysis techniques progress, there is an ongoing need to reassess reference data for pulmonary function tests. Furthermore, reference values for total lung capacity and carbon monoxide diffusion capacity are scarcely available in children. We aimed to provide updated reference equations for most commonly used pulmonary function indices in Caucasian children. In the 'Utrecht Pulmonary Function Reference Data Study' we collected data in Caucasian children aged 2-18 years. We analyzed them using the 'Generalized Additive Models for Location Scale and Shape' (GAMLSS) statistical method. Measurements of interrupter resistance (R(int)) (n = 877), spirometry (n = 1042), body plethysmography (n = 723) and carbon monoxide diffusion/helium dilution (n = 543) were obtained in healthy children. Height (or the natural logarithm of height) and age (or the natural logarithm of age) were both significantly related to most outcome measures. Also sex was a significant determinant, except for RV, RV/TLC, FRC(pleth), Raw(0,5), Raw(tot), R(int) and FEF values. The application of previously published reference equations on the study population resulted in misinterpretation of pulmonary function. These new paediatric reference equations provide accurate estimates of the range of normality for most commonly used pulmonary function indices, resulting in less underdiagnosis and overdiagnosis of pulmonary diseases. Copyright © 2010 Elsevier Ltd. All rights reserved.

  2. Algebraic relaxation of a time correlation function

    International Nuclear Information System (INIS)

    Srivastava, S.; Kumar, C.N.; Tankeshwar, K.

    2004-06-01

    A second order non-linear differential equation obtained from Mori's integro- differential equation is shown to transform to another form which provides algebraic decay to a time correlation function. Involved parameters in algebraic formula are related to exact properties of the corresponding correlation function. The model has been used to study a sol-gel system which is known, experimentally, to exhibit a power law decay to stress auto-correlation function. The expression obtained for the viscosity shows a logarithmic divergence at some critical value of the parameter. Some features of the model have also been tested using available information about Lennard-Jones fluids. (author)

  3. Evaluating gambles using dynamics

    Science.gov (United States)

    Peters, O.; Gell-Mann, M.

    2016-02-01

    Gambles are random variables that model possible changes in wealth. Classic decision theory transforms money into utility through a utility function and defines the value of a gamble as the expectation value of utility changes. Utility functions aim to capture individual psychological characteristics, but their generality limits predictive power. Expectation value maximizers are defined as rational in economics, but expectation values are only meaningful in the presence of ensembles or in systems with ergodic properties, whereas decision-makers have no access to ensembles, and the variables representing wealth in the usual growth models do not have the relevant ergodic properties. Simultaneously addressing the shortcomings of utility and those of expectations, we propose to evaluate gambles by averaging wealth growth over time. No utility function is needed, but a dynamic must be specified to compute time averages. Linear and logarithmic "utility functions" appear as transformations that generate ergodic observables for purely additive and purely multiplicative dynamics, respectively. We highlight inconsistencies throughout the development of decision theory, whose correction clarifies that our perspective is legitimate. These invalidate a commonly cited argument for bounded utility functions.

  4. Computational estimation of logarithm of octanol/air partition coefficients and subcooled vapour pressures for each of 75 chloronaphtalene congeners

    Energy Technology Data Exchange (ETDEWEB)

    Puzyn, T.; Falandysz, J.; Rostkowski, P.; Piliszek, S.; Wilczyniska, A. [Univ. of Gdansk (Poland)

    2004-09-15

    Polychlorinated naphthalenes (PCNs, CNs) are known persistent organic pollutants, contaminating natural ecosystems in effect of technical human activity. Toxic effects induced by individual congers of PCNs are reported elsewhere. Great risk of these chemical compounds is additionally connected with theirs excellent ability to be transported via atmosphere from a source to the remote regions on the Glob. Chloronaphthalene congeners had been found in Arctic regions at significant level in spite of the fact, that they had never been synthesized there, and also thermal processes like municipal waste incineration or domestic heating (other possible sources of PCNs in the environment) were not so intensive there. In 1996 F. Wania and D. Mackay have formulated some empirical rules, which have been very useful in estimation and modeling of environmental transport processes of persistent organic pollutants like PCNs. Two very important physico-chemical parameters in the theory of global distillation and cold condensation are: logarithm of n-octanol/air partition coefficient (log K{sub OA}) and logarithm of subcooled vapour pressure (log P{sub L}). Values of log K{sub OA} and log P{sub L} in standard procedures are determined by means of chromatographic methods. In order to reduce costs and number of experiments, we have proposed simple computational method of estimation log K{sub OA} and log P{sub L}.

  5. Quantum gravity of Kerr-Schild spacetimes and the logarithmic correction to Schwarzschild black hole entropy

    Energy Technology Data Exchange (ETDEWEB)

    El-Menoufi, Basem Kamal [Department of Physics, University of Massachusetts,Amherst, MA 01003 (United States)

    2016-05-05

    In the context of effective field theory, we consider quantum gravity with minimally coupled massless particles. Fixing the background geometry to be of the Kerr-Schild type, we fully determine the one-loop effective action of the theory whose finite non-local part is induced by the long-distance portion of quantum loops. This is accomplished using the non-local expansion of the heat kernel in addition to a non-linear completion technique through which the effective action is expanded in gravitational curvatures. Via Euclidean methods, we identify a logarithmic correction to the Bekenstein-Hawking entropy of Schwarzschild black hole. Using dimensional transmutation the result is shown to exhibit an interesting interplay between the UV and IR properties of quantum gravity.

  6. Thermodynamics of Charged Rotating Dilaton Black Branes Coupled to Logarithmic Nonlinear Electrodynamics

    Directory of Open Access Journals (Sweden)

    A. Sheykhi

    2016-01-01

    Full Text Available We construct a new class of charged rotating black brane solutions in the presence of logarithmic nonlinear electrodynamics with complete set of the rotation parameters in arbitrary dimensions. The topology of the horizon of these rotating black branes is flat, while due to the presence of the dilaton field the asymptotic behavior of them is neither flat nor (anti-de Sitter [(AdS]. We investigate the physical properties of the solutions. The mass and angular momentum of the spacetime are obtained by using the counterterm method inspired by AdS/CFT correspondence. We derive temperature, electric potential, and entropy associated with the horizon and check the validity of the first law of thermodynamics on the black brane horizon. We study thermal stability of the solutions in both canonical and grand-canonical ensemble and disclose the effects of the rotation parameter, nonlinearity of electrodynamics, and dilaton field on the thermal stability conditions. We find the solutions are thermally stable for α1 the solutions may encounter an unstable phase, where α is dilaton-electromagnetic coupling constant.

  7. Parameterization of NMR relaxation curves in terms of logarithmic moments of the relaxation time distribution.

    Science.gov (United States)

    Petrov, Oleg V; Stapf, Siegfried

    2017-06-01

    This work addresses the problem of a compact and easily comparable representation of multi-exponential relaxation data. It is often convenient to describe such data in a few parameters, all being of physical significance and easy to interpret, and in such a way that enables a model-free comparison between different groups of samples. Logarithmic moments (LMs) of the relaxation time constitute a set of parameters which are related to the characteristic relaxation time on the log-scale, the width and the asymmetry of an underlying distribution of exponentials. On the other hand, the calculation of LMs does not require knowing the actual distribution function and is reduced to a numerical integration of original data. The performance of this method has been tested on both synthetic and experimental NMR relaxation data which differ in a signal-to-noise ratio, the sampling range and the sampling rate. The calculation of two lower-order LMs, the log-mean time and the log-variance, has proved robust against deficiencies of the experiment such as scattered data point and incomplete sampling. One may consider using them as such to monitor formation of a heterogeneous structure, e.g., in phase separation, vitrification, polymerization, hydration, aging, contrast agent propagation processes. It may also assist in interpreting frequency and temperature dependences of relaxation, revealing a crossover from slow to fast exchange between populations. The third LM was found to be a less reliable quantity due to its susceptibility to the noise and must be used with caution. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Parameterization of NMR relaxation curves in terms of logarithmic moments of the relaxation time distribution

    Science.gov (United States)

    Petrov, Oleg V.; Stapf, Siegfried

    2017-06-01

    This work addresses the problem of a compact and easily comparable representation of multi-exponential relaxation data. It is often convenient to describe such data in a few parameters, all being of physical significance and easy to interpret, and in such a way that enables a model-free comparison between different groups of samples. Logarithmic moments (LMs) of the relaxation time constitute a set of parameters which are related to the characteristic relaxation time on the log-scale, the width and the asymmetry of an underlying distribution of exponentials. On the other hand, the calculation of LMs does not require knowing the actual distribution function and is reduced to a numerical integration of original data. The performance of this method has been tested on both synthetic and experimental NMR relaxation data which differ in a signal-to-noise ratio, the sampling range and the sampling rate. The calculation of two lower-order LMs, the log-mean time and the log-variance, has proved robust against deficiencies of the experiment such as scattered data point and incomplete sampling. One may consider using them as such to monitor formation of a heterogeneous structure, e.g., in phase separation, vitrification, polymerization, hydration, aging, contrast agent propagation processes. It may also assist in interpreting frequency and temperature dependences of relaxation, revealing a crossover from slow to fast exchange between populations. The third LM was found to be a less reliable quantity due to its susceptibility to the noise and must be used with caution.

  9. Assessment of Global Functioning in Adolescents with Autism Spectrum Disorders: Utility of the Developmental Disability-Child Global Assessment Scale

    Science.gov (United States)

    White, Susan W.; Smith, Laura A.; Schry, Amie R.

    2014-01-01

    Assessment of global functioning is an important consideration in treatment outcome research; yet, there is little guidance on its evidence-based assessment for children with autism spectrum disorders. This study investigated the utility and validity of clinician-rated global functioning using the Developmental Disability-Child Global Assessment…

  10. Performance of the advanced photon source (APS) linac beam position monitors (BPMs) with logarithmic amplifier electronics

    International Nuclear Information System (INIS)

    Fuja, R.E.; White, M.

    1995-01-01

    This paper discusses the performance of the logarithmic amplifier electronics system used with stripline BPMs to measure electron and positron beam positions at the APS linac. The 2856-MHz, S-band linac accelerates 30-nsec pulses of 1.7 A of electrons to 200 MeV, and focuses them onto a positron conversion target. The resulting 8 mA of positrons are further accelerated to 450 MeV by the positron linac. Beam position resolutions of 50 μm are easily obtainable in both the electron and positron linacs. The resolution of the 12-bit A/D converters limits the ultimate beam positron resolution to between 20 and 30 μm at this time

  11. PC-version of RAM6-code for calculation of parameters of the effective logarithmic boundary condition at the absorbent rod surface in reactor

    International Nuclear Information System (INIS)

    Le Van Ngoc; Ngo Dang Nhan

    1990-01-01

    The RAM-6 code for calculation of parameters of the effective logarithmic boundary condition at the absorbent rod surface in reactor is suitably modofied to work on IBM PC, the instructions for its usage are presented and capabilities of the personal cpmputer oriented RAM-6 code are demonstrated. (author). 4 refs, 5 tabs, 2 figs

  12. Method for estimating modulation transfer function from sample images.

    Science.gov (United States)

    Saiga, Rino; Takeuchi, Akihisa; Uesugi, Kentaro; Terada, Yasuko; Suzuki, Yoshio; Mizutani, Ryuta

    2018-02-01

    The modulation transfer function (MTF) represents the frequency domain response of imaging modalities. Here, we report a method for estimating the MTF from sample images. Test images were generated from a number of images, including those taken with an electron microscope and with an observation satellite. These original images were convolved with point spread functions (PSFs) including those of circular apertures. The resultant test images were subjected to a Fourier transformation. The logarithm of the squared norm of the Fourier transform was plotted against the squared distance from the origin. Linear correlations were observed in the logarithmic plots, indicating that the PSF of the test images can be approximated with a Gaussian. The MTF was then calculated from the Gaussian-approximated PSF. The obtained MTF closely coincided with the MTF predicted from the original PSF. The MTF of an x-ray microtomographic section of a fly brain was also estimated with this method. The obtained MTF showed good agreement with the MTF determined from an edge profile of an aluminum test object. We suggest that this approach is an alternative way of estimating the MTF, independently of the image type. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. On the Utility of Island Models in Dynamic Optimization

    DEFF Research Database (Denmark)

    Lissovoi, Andrei; Witt, Carsten

    2015-01-01

    A simple island model with λ islands and migration occurring after every τ iterations is studied on the dynamic fitness function Maze. This model is equivalent to a (1+λ) EA if τ=1, i.e., migration occurs during every iteration. It is proved that even for an increased offspring population size up...... to λ=O(n1-ε), the (1+λ) EA is still not able to track the optimum of Maze. If the migration interval is increased, the algorithm is able to track the optimum even for logarithmic λ. Finally, the relationship of τ, λ, and the ability of the island model to track the optimum is investigated more closely....

  14. Stochastic optimization under risk constraint and utility functions

    International Nuclear Information System (INIS)

    Seck, B.

    2008-09-01

    In a context of concurrence and emergence of energy markets, the production of electricity is affected by the new sources of risks which are the price variations on the energy markets. These new sources of risks generate a new risk: the market risk. In this research, the author explores the possibility of introducing constraints, expressed by measurements of risk, into the process of optimization of electricity production when financial contracts are signed on the energy market. The author makes the distinction between the engineering approach (taking the risk into account by risk measurements) and the economist approach (taking the risk into account by utility functions). After an overview of these both approaches in a static framework, he gives an economical formulation (a Maccheroni type one) for a static optimization problem under a risk constraint when the risk measurement is written under the form of an expected infimum like the variance, the 'conditional value at risk', and so on. The obtained results are then extended to a dynamic optimization framework under risk constraints. A numerical application of this approach is presented to solve a problem of electricity production management under a constraint of 'conditional value at risk' on a middle term

  15. Hilbert-Twin – A Novel Hilbert Transform-Based Method To Compute Envelope Of Free Decaying Oscillations Embedded In Noise, And The Logarithmic Decrement In High-Resolution Mechanical Spectroscopy HRMS

    Directory of Open Access Journals (Sweden)

    Magalas L.B.

    2015-06-01

    Full Text Available In this work, we present a novel Hilbert-twin method to compute an envelope and the logarithmic decrement, δ, from exponentially damped time-invariant harmonic strain signals embedded in noise. The results obtained from five computing methods: (1 the parametric OMI (Optimization in Multiple Intervals method, two interpolated discrete Fourier transform-based (IpDFT methods: (2 the Yoshida-Magalas (YM method and (3 the classic Yoshida (Y method, (4 the novel Hilbert-twin (H-twin method based on the Hilbert transform, and (5 the conventional Hilbert transform (HT method are analyzed and compared. The fundamental feature of the Hilbert-twin method is the efficient elimination of intrinsic asymmetrical oscillations of the envelope, aHT (t, obtained from the discrete Hilbert transform of analyzed signals. Excellent performance in estimation of the logarithmic decrement from the Hilbert-twin method is comparable to that of the OMI and YM for the low- and high-damping levels. The Hilbert-twin method proved to be robust and effective in computing the logarithmic decrement and the resonant frequency of exponentially damped free decaying signals embedded in experimental noise. The Hilbert-twin method is also appropriate to detect nonlinearities in mechanical loss measurements of metals and alloys.

  16. Elementary functions algorithms and implementation

    CERN Document Server

    Muller, Jean-Michel

    2016-01-01

    This textbook presents the concepts and tools necessary to understand, build, and implement algorithms for computing elementary functions (e.g., logarithms, exponentials, and the trigonometric functions). Both hardware- and software-oriented algorithms are included, along with issues related to accurate floating-point implementation. This third edition has been updated and expanded to incorporate the most recent advances in the field, new elementary function algorithms, and function software. After a preliminary chapter that briefly introduces some fundamental concepts of computer arithmetic, such as floating-point arithmetic and redundant number systems, the text is divided into three main parts. Part I considers the computation of elementary functions using algorithms based on polynomial or rational approximations and using table-based methods; the final chapter in this section deals with basic principles of multiple-precision arithmetic. Part II is devoted to a presentation of “shift-and-add” algorithm...

  17. The Individual Taxpayer Utility Function with Tax Optimization and Fiscal Fraud Environment

    Directory of Open Access Journals (Sweden)

    Paweł Pankiewicz

    2011-11-01

    Full Text Available In this paper I examine a taxpayer utility function determined by the extended set of variables – i.e. consumption, labor and tax-evasion propensity. This constitutes the main framework for the analysis of taxpayer’s decision making process under assumption that in the economy there exist two main reduction methods: a access to tax optimization techniques, which may decrease effective tax burden and are fully compliant with binding laws, but generate transactional costs and 2 possibility of fiscal fraud – in particular tax evasion, as the alternative method of reducing tax due, which has no direct transactional costs, but involves tax litigation risk.

  18. On the Use of a Cumulative Distribution as a Utility Function in Educational or Employment Selection.

    Science.gov (United States)

    1981-02-01

    economic applications. LI In the previous section, we discussed some properties of the TNU function. A GBU with a> 1 and b> 1 has similar characteristics...76/443 1 Dir :ctor, Office of Manpower Utilization Maxwell AFB, AL 36112 HQ, Marine Corps ( MPU ) BCB, Bldg. 2009 1 Dr. Earl A. Alluisi Quantico, VA

  19. Exponential function and its derivative revisited

    Science.gov (United States)

    Ho, Weng Kin; Him Ho, Foo; Lee, Tuo Yeong

    2013-04-01

    Most of the available proofs for ? rely on results involving either power series, uniform convergence or a round-about definition of the natural logarithm function ln(x) by the definite integral ? , and are thus not readily accessible by high school teachers and students. Even instructors of calculus courses avoid showing the complete proof to their undergraduate students because a direct and elementary approach is missing. This short article fills in this gap by supplying a simple proof of the aforementioned basic calculus fact.

  20. One-loop quantum gravitational corrections to the scalar two-point function at fixed geodesic distance

    Science.gov (United States)

    Fröb, Markus B.

    2018-02-01

    We study a proposal for gauge-invariant correlation functions in perturbative quantum gravity, which are obtained by fixing the geodesic distance between points in the fluctuating geometry. These correlation functions are non-local and strongly divergent, and we show how to renormalise them by performing a ‘wave function renormalisation’ of the geodesic embedding coordinates. The result is finite and gauge-independent, but displays unusual features such as double logarithms at one-loop order.

  1. Flavor singlet contribution to the structure function g1 at small-x

    International Nuclear Information System (INIS)

    Bartels, J.; Ryskin, M.G.

    1996-02-01

    The singlet contribution to the g 1 (x, Q 2 ) structure function are calculated in the double-logarithmic approximation of perturbative QCD in the region x s ln 2 (1/x)) k which are not included in the GLAP evolution equations are shown to give a power-like rise at small-x which is much stronger than the extrapolation of the GLAP expressions. The dominant contribution is due to the gluons which, in contrast to the unpolarized case, mix with the fermions also in the region x<<1. The two main reasons why the small-x behavior of the double logarithmic approximation is so much stronger than the usual GLAP evolution are: the larger kinematical region of integration (in particular, no ordering in transverse momentum) and the contributions from non-ladder diagrams. (orig.)

  2. Structure-function relationships using spectral-domain optical coherence tomography: comparison with scanning laser polarimetry.

    Science.gov (United States)

    Aptel, Florent; Sayous, Romain; Fortoul, Vincent; Beccat, Sylvain; Denis, Philippe

    2010-12-01

    To evaluate and compare the regional relationships between visual field sensitivity and retinal nerve fiber layer (RNFL) thickness as measured by spectral-domain optical coherence tomography (OCT) and scanning laser polarimetry. Prospective cross-sectional study. One hundred and twenty eyes of 120 patients (40 with healthy eyes, 40 with suspected glaucoma, and 40 with glaucoma) were tested on Cirrus-OCT, GDx VCC, and standard automated perimetry. Raw data on RNFL thickness were extracted for 256 peripapillary sectors of 1.40625 degrees each for the OCT measurement ellipse and 64 peripapillary sectors of 5.625 degrees each for the GDx VCC measurement ellipse. Correlations between peripapillary RNFL thickness in 6 sectors and visual field sensitivity in the 6 corresponding areas were evaluated using linear and logarithmic regression analysis. Receiver operating curve areas were calculated for each instrument. With spectral-domain OCT, the correlations (r(2)) between RNFL thickness and visual field sensitivity ranged from 0.082 (nasal RNFL and corresponding visual field area, linear regression) to 0.726 (supratemporal RNFL and corresponding visual field area, logarithmic regression). By comparison, with GDx-VCC, the correlations ranged from 0.062 (temporal RNFL and corresponding visual field area, linear regression) to 0.362 (supratemporal RNFL and corresponding visual field area, logarithmic regression). In pairwise comparisons, these structure-function correlations were generally stronger with spectral-domain OCT than with GDx VCC and with logarithmic regression than with linear regression. The largest areas under the receiver operating curve were seen for OCT superior thickness (0.963 ± 0.022; P polarimetry, and was better expressed logarithmically than linearly. Measurements with these 2 instruments should not be considered to be interchangeable. Copyright © 2010 Elsevier Inc. All rights reserved.

  3. Risk aversion and uncertainty in cost-effectiveness analysis: the expected-utility, moment-generating function approach.

    Science.gov (United States)

    Elbasha, Elamin H

    2005-05-01

    The availability of patient-level data from clinical trials has spurred a lot of interest in developing methods for quantifying and presenting uncertainty in cost-effectiveness analysis (CEA). Although the majority has focused on developing methods for using sample data to estimate a confidence interval for an incremental cost-effectiveness ratio (ICER), a small strand of the literature has emphasized the importance of incorporating risk preferences and the trade-off between the mean and the variance of returns to investment in health and medicine (mean-variance analysis). This paper shows how the exponential utility-moment-generating function approach is a natural extension to this branch of the literature for modelling choices from healthcare interventions with uncertain costs and effects. The paper assumes an exponential utility function, which implies constant absolute risk aversion, and is based on the fact that the expected value of this function results in a convenient expression that depends only on the moment-generating function of the random variables. The mean-variance approach is shown to be a special case of this more general framework. The paper characterizes the solution to the resource allocation problem using standard optimization techniques and derives the summary measure researchers need to estimate for each programme, when the assumption of risk neutrality does not hold, and compares it to the standard incremental cost-effectiveness ratio. The importance of choosing the correct distribution of costs and effects and the issues related to estimation of the parameters of the distribution are also discussed. An empirical example to illustrate the methods and concepts is provided. Copyright 2004 John Wiley & Sons, Ltd

  4. Multibloc system electronic equipment: D.C. linear - logarithmic amplifier and periodmeter and wide range (pulses, fluctuations and direct current) measuring set

    International Nuclear Information System (INIS)

    Guerre, J.; Plaige, Y.; Vaux, C.

    1974-01-01

    The requirements which have led to the design of a specific equipment for reactor neutron control (Multibloc system) are briefly recalled. It is shown how, for reasons of saving the cost of installation, the development tended towards a multifunction performance from signals delivered by one detector. Two major achievments in accordance with the above trend are described: the D.C. linear - logarithmic amplifier and periodmeter, and the wide dynamics range measuring set [fr

  5. A new and self-contained presentation of the theory of boundary operators for slit diffraction and their logarithmic approximations

    Energy Technology Data Exchange (ETDEWEB)

    Gorenflo, Norbert [Beuth Hochschule fuer Technik Berlin (Germany). Fachbereich II; Kunik, Matthias [Magdeburg Univ. (Germany). Inst. fuer Analysis und Numerik

    2009-07-01

    We present a new and self-contained theory for mapping properties of the boundary operators for slit diffraction occurring in Sommerfeld's diffraction theory, covering two different cases of the polarisation of the light. This theory is entirely developed in the context of the boundary operators with a Hankel kernel and not based on the corresponding mixed boundary value problem for the Helmholtz equation. For a logarithmic approximation of the Hankel kernel we also study the corresponding mapping properties and derive explicit solutions together with certain regularity results. (orig.)

  6. All-loops calculation of the structure function x→0 in perturbative QCD

    International Nuclear Information System (INIS)

    Catani, S.

    1991-01-01

    We study in perturbative QCD the initial-state radiation associated to hadron processes in the semi-hard region of small x (x is the Bjorken variable). A recent analysis of the exclusive multi-gluon distributions to double (infrared and collinear) logarithmic accuracy is extended to the case of inclusive distributions, which we evaluate to single (infrared) logarithmic accuracy. Thus the resulting x→0 structure function or N→1 gluon anomalous dimension is computed to all-loops accuracy. For the inclusive distributions we are able to perform a calculation to such an accuracy by extensively using cancellations which originate from coherence of QCD radiation and the infrared regularity of real-virtual singularities. We find that the x→0 structure function satisfies the Lipatov equation. With the present study we therefore provide a new derivation of the Lipatov result in the context of hard collisions together with a fully exclusive description. We discuss the structure of the Lipatov equation in relation with the x→0 exclusive distributions previously obtained and with the Altarelli-Parisi equation valid for finite values of x. (orig.)

  7. Quality parameters analysis of optical imaging systems with enhanced focal depth using the Wigner distribution function

    Science.gov (United States)

    Zalvidea; Colautti; Sicre

    2000-05-01

    An analysis of the Strehl ratio and the optical transfer function as imaging quality parameters of optical elements with enhanced focal length is carried out by employing the Wigner distribution function. To this end, we use four different pupil functions: a full circular aperture, a hyper-Gaussian aperture, a quartic phase plate, and a logarithmic phase mask. A comparison is performed between the quality parameters and test images formed by these pupil functions at different defocus distances.

  8. The logarithmic contributions to the O(α{sub s}{sup 3}) asymptotic massive Wilson coefficients and operator matrix elements in deeply inelastic scattering

    Energy Technology Data Exchange (ETDEWEB)

    Behring, A.; Bluemlein, J.; Freitas, A. de [Deutsches Elektronen Synchrotron, DESY, Zeuthen (Germany); Bierenbaum, I. [Universitaet Hamburg, II. Institut fuer Theoretische Physik, Hamburg (Germany); Klein, S. [RWTH Aachen University, Institut fuer Theoretische Teilchenphysik und Kosmologie, Aachen (Germany); Wissbrock, F. [Deutsches Elektronen Synchrotron, DESY, Zeuthen (Germany); Johannes Kepler University, Research Institute for Symbolic Computation (RISC), Linz (Austria); IHES, Bures-sur-Yvette (France)

    2014-09-15

    We calculate the logarithmic contributions to the massive Wilson coefficients for deep-inelastic scattering in the asymptotic region Q{sup 2} >> m{sup 2} to 3-loop order in the fixed flavor number scheme and present the corresponding expressions for the massive operator matrix elements needed in the variable flavor number scheme. Explicit expressions are given in Mellin N-space. (orig.)

  9. The effect of loss functions on empirical Bayes reliability analysis

    Directory of Open Access Journals (Sweden)

    Vincent A. R. Camara

    1999-01-01

    Full Text Available The aim of the present study is to investigate the sensitivity of empirical Bayes estimates of the reliability function with respect to changing of the loss function. In addition to applying some of the basic analytical results on empirical Bayes reliability obtained with the use of the “popular” squared error loss function, we shall derive some expressions corresponding to empirical Bayes reliability estimates obtained with the Higgins–Tsokos, the Harris and our proposed logarithmic loss functions. The concept of efficiency, along with the notion of integrated mean square error, will be used as a criterion to numerically compare our results.

  10. Applying Utility Functions to Adaptation Planning for Home Automation Applications

    Science.gov (United States)

    Bratskas, Pyrros; Paspallis, Nearchos; Kakousis, Konstantinos; Papadopoulos, George A.

    A pervasive computing environment typically comprises multiple embedded devices that may interact together and with mobile users. These users are part of the environment, and they experience it through a variety of devices embedded in the environment. This perception involves technologies which may be heterogeneous, pervasive, and dynamic. Due to the highly dynamic properties of such environments, the software systems running on them have to face problems such as user mobility, service failures, or resource and goal changes which may happen in an unpredictable manner. To cope with these problems, such systems must be autonomous and self-managed. In this chapter we deal with a special kind of a ubiquitous environment, a smart home environment, and introduce a user-preference-based model for adaptation planning. The model, which dynamically forms a set of configuration plans for resources, reasons automatically and autonomously, based on utility functions, on which plan is likely to best achieve the user's goals with respect to resource availability and user needs.

  11. Jet substructure using semi-inclusive jet functions in SCET

    International Nuclear Information System (INIS)

    Kang, Zhong-Bo; Ringer, Felix; Vitev, Ivan

    2016-01-01

    We propose a new method to evaluate jet substructure observables in inclusive jet measurements, based upon semi-inclusive jet functions in the framework of Soft Collinear Effective Theory (SCET). As a first example, we consider the jet fragmentation function, where a hadron h is identified inside a fully reconstructed jet. We introduce a new semi-inclusive fragmenting jet function G_i"h(z=ω_J/ω,z_h=ω_h/ω_J,ω_J,R,μ), which depends on the jet radius R and the large light-cone momenta of the parton ‘i’ initiating the jet (ω), the jet (ω_J), and the hadron h (ω_h). The jet fragmentation function can then be expressed as a semi-inclusive observable, in the spirit of actual experimental measurements, rather than as an exclusive one. We demonstrate the consistency of the effective field theory treatment and standard perturbative QCD calculations of this observable at next-to-leading order (NLO). The renormalization group (RG) equation for the semi-inclusive fragmenting jet function G_i"h(z,z_h,ω_J,R,μ) are also derived and shown to follow exactly the usual timelike DGLAP evolution equations for fragmentation functions. The newly obtained RG equations can be used to perform the resummation of single logarithms of the jet radius parameter R up to next-to-leading logarithmic (NLL_R) accuracy. In combination with the fixed NLO calculation, we obtain NLO+NLL_R results for the hadron distribution inside the jet. We present numerical results for pp→(jet h)X in the new framework, and find excellent agreement with existing LHC experimental data.

  12. Scale breaking parton fragmentation functions, analytical parametrizations and comparison with charged multiplicities in e+e- annihilation

    International Nuclear Information System (INIS)

    Perlt, H.

    1980-01-01

    Scale breaking quark and gluon fragmentation functions obtained by solving numerically Altarelli-Parisi type equations are presented. Analytical parametrizations are given for the fragmentation of u and d quarks into pions. The calculated Q 2 dependent fragmentation functions are compared with experimental data. With these scale breaking fragmentation functions the average charged multiplicity is calculated in e + e - annihilation, which rises with energy more than logarithmically and is in good agreement with experiment. (author)

  13. Evaluation of a HDR image sensor with logarithmic response for mobile video-based applications

    Science.gov (United States)

    Tektonidis, Marco; Pietrzak, Mateusz; Monnin, David

    2017-10-01

    The performance of mobile video-based applications using conventional LDR (Low Dynamic Range) image sensors highly depends on the illumination conditions. As an alternative, HDR (High Dynamic Range) image sensors with logarithmic response are capable to acquire illumination-invariant HDR images in a single shot. We have implemented a complete image processing framework for a HDR sensor, including preprocessing methods (nonuniformity correction (NUC), cross-talk correction (CTC), and demosaicing) as well as tone mapping (TM). We have evaluated the HDR sensor for video-based applications w.r.t. the display of images and w.r.t. image analysis techniques. Regarding the display we have investigated the image intensity statistics over time, and regarding image analysis we assessed the number of feature correspondences between consecutive frames of temporal image sequences. For the evaluation we used HDR image data recorded from a vehicle on outdoor or combined outdoor/indoor itineraries, and we performed a comparison with corresponding conventional LDR image data.

  14. Rigorous control of logarithmic corrections in four-dimensional phi4 spin systems. II. Critical behavior of susceptibility and correlation length

    International Nuclear Information System (INIS)

    Hara, T.; Tasaki, H.

    1987-01-01

    Continuing the analysis started in Part I of this work, they investigate critical phenomena in weakly coupled phi 4 spin systems in four dimensions. Concerning the critical behavior of the susceptibility and the correlation length (in the high-temperature phase), the existence of logarithmic corrections to their mean field type behavior is rigorously shown (i.e., they prove chi(t) ∼ t -1 absolute value 1n t/sup 1/3/, zeta(t) ∼ t/sup -1/2/ absolute value of ln t/sup 1/6/)

  15. Structural and Functional Characterization of a Short-Chain Flavodoxin Associated with a Noncanonical 1,2-Propanediol Utilization Bacterial Microcompartment

    Energy Technology Data Exchange (ETDEWEB)

    Plegaria, Jefferson S. [MSU-DOE; Sutter, Markus [MSU-DOE; Molecular; Ferlez, Bryan [MSU-DOE; Aussignargues, Clément [MSU-DOE; Niklas, Jens [Solar; Poluektov, Oleg G. [Solar; Fromwiller, Ciara [MSU-DOE; TerAvest, Michaela [Department; amp, Molecular Biology, Michigan State University, East; Utschig, Lisa M. [Solar; Tiede, David M. [Solar; Kerfeld, Cheryl A. [MSU-DOE; Molecular; Department; amp, Molecular Biology, Michigan State University, East; Berkeley Synthetic Biology Institute, Berkeley, California 94720, United States

    2017-09-21

    Bacterial microcompartments (BMCs) are proteinaceous organelles that encapsulate enzymes involved in CO2 fixation (carboxysomes). or carbon catabolism (metabolosomes). Metabolosomes share a common core of enzymes and a distinct signature enzyme for substrate degradation that defines the function of the BMC (e,g., propanediol or ethanolamine utilization BMCs, or glycyl-radical enzyme microcompartments). Loci encoding metabolosomes also typically contain genes for proteins that support organelle function, such as regulation, transport of substrate, and cofactor (e.g., vitamin B-12) synthesis and recycling. Flavoproteins are frequently among these ancillary gene products, suggesting that these redox active proteins play an undetermined function in many metabolosomes. Here, we report the first characterization of a BMC-associated flavodoxin (Fld1C), a small flavoprotein, derived from the noncanonical 1,2-propanediol utilization BMC locus (PDU1C) of Lactobacillus reuteri. The 2.0 angstrom X-ray structure of Fld1C displays the alpha/beta flavodoxin fold, which noncovalently binds a single flavin mononucleotide molecule. Fld1C is a short-chain flavodoxin with redox potentials of -240 +/- 3 mV oxidized/semiquinone and -344 +/- 1 mV semiquinone/hydroquinone versus the standard hydrogen electrode at pH 7.5. It can participate in an electron transfer reaction with a photoreductant to form a stable semiquinone species. Collectively, our structural and functional results suggest that PDU1C BMCs encapsulate Fld1C to store and transfer electrons for the reactivation and/or recycling of the B-12 cofactor utilized by the signature enzyme.

  16. A New Filled Function Method with One Parameter for Global Optimization

    Directory of Open Access Journals (Sweden)

    Fei Wei

    2013-01-01

    Full Text Available The filled function method is an effective approach to find the global minimizer of multidimensional multimodal functions. The conventional filled functions are numerically unstable due to exponential or logarithmic term and sensitive to parameters. In this paper, a new filled function with only one parameter is proposed, which is continuously differentiable and proved to satisfy all conditions of the filled function definition. Moreover, this filled function is not sensitive to parameter, and the overflow can not happen for this function. Based on these, a new filled function method is proposed, and it is numerically stable to the initial point and the parameter variable. The computer simulations indicate that the proposed filled function method is efficient and effective.

  17. Removing divergences in the negative moments of the multi-fractal parition function with the wavelet transformation

    NARCIS (Netherlands)

    Z.R. Struzik

    1998-01-01

    textabstractWe present a promising technique which is capable of accessing the divergence free component of the partition function for the negative moments of the multi-fractal analysis of data using the wavelet transformation. It is based on implicitly bounding the local logarithmic slope of the

  18. Eliciting and Combining Decision Criteria Using a Limited Palette of Utility Functions and Uncertainty Distributions: Illustrated by Application to Pest Risk Analysis.

    Science.gov (United States)

    Holt, Johnson; Leach, Adrian W; Schrader, Gritta; Petter, Françoise; MacLeod, Alan; van der Gaag, Dirk Jan; Baker, Richard H A; Mumford, John D

    2014-01-01

    Utility functions in the form of tables or matrices have often been used to combine discretely rated decision-making criteria. Matrix elements are usually specified individually, so no one rule or principle can be easily stated for the utility function as a whole. A series of five matrices are presented that aggregate criteria two at a time using simple rules that express a varying degree of constraint of the lower rating over the higher. A further nine possible matrices were obtained by using a different rule either side of the main axis of the matrix to describe situations where the criteria have a differential influence on the outcome. Uncertainties in the criteria are represented by three alternative frequency distributions from which the assessors select the most appropriate. The output of the utility function is a distribution of rating frequencies that is dependent on the distributions of the input criteria. In pest risk analysis (PRA), seven of these utility functions were required to mimic the logic by which assessors for the European and Mediterranean Plant Protection Organization arrive at an overall rating of pest risk. The framework enables the development of PRAs that are consistent and easy to understand, criticize, compare, and change. When tested in workshops, PRA practitioners thought that the approach accorded with both the logic and the level of resolution that they used in the risk assessments. © 2013 Society for Risk Analysis.

  19. [Gastric cancer detection using kubelka-Munk spectral function of DNA and protein absorption bands].

    Science.gov (United States)

    Li, Lan-quan; Wei, Hua-jiang; Guo, Zhou-yi; Yang, Hong-qin; Xie, Shu-sen; Chen, Xue-mei; Li, Li-bo; He, Bol-hua; Wu, Guo-yong; Lu, Jian-jun

    2009-09-01

    Differential diagnosis for epithelial tissues of normal human gastric, undifferentiation gastric adenocarcinoma, gastric squamous cell carcinomas, and poorly differentiated gastric adenocarcinoma were studied using the Kubelka-Munk spectral function of the DNA and protein absorption bands at 260 and 280 nm in vitro. Diffuse reflectance spectra of tissue were measured using a spectrophotometer with an integrating sphere attachment. The results of measurement showed that for the spectral range from 250 to 650 nm, pathological changes of gastric epithelial tissues induced that there were significant differences in the averaged value of the Kubelka-Munk function f(r infinity) and logarithmic Kubelka-Munk function log[f(r infinity)] of the DNA absorption bands at 260 nm between epithelial tissues of normal human stomach and human undifferentiation gastric cancer, between epithelial tissues of normal human stomach and human gastric squamous cell carcinomas, and between epithelial tissues of normal human stomach and human poorly differentiated cancer. Their differences were 68.5% (p function f(r infinity) and logarithmic Kubelka-Munk function log[f(r infinity)] of the protein absorption bands at 280 nm between epithelial tissues of normal human stomach and human undifferentiation gastric cancer, between epithelial tissues of normal human stomach and human gastric squamous cell carcinomas, and between epithelial tissues of normal human stomach and human poorly differentiated cancer. Their differences were 86.8% (p function f(r infinity) and logarithmic Kubelka-Munk function log[f(r infinity)] of the carotene absorption bands at 480 nm between epithelial tissues of normal human stomach and human undifferentiation gastric cancer, between epithelial tissues of normal human stomach and human gastric squamous cell carcinomas, and between epithelial tissues of normal human stomach and human poorly differentiated cancer. Their differences were 59.5% (p < 0.05), 73% (p < 0

  20. A Highly Efficient Xylan-Utilization System in Aspergillus niger An76: A Functional-Proteomics Study

    OpenAIRE

    Weili Gong; Lin Dai; Huaiqiang Zhang; Lili Zhang; Lushan Wang; Lushan Wang

    2018-01-01

    Xylan constituted with β-1,4-D-xylose linked backbone and diverse substituted side-chains is the most abundant hemicellulose component of biomass, which can be completely and rapidly degraded into fermentable sugars by Aspergillus niger. This is of great value for obtaining renewable biofuels and biochemicals. To clarify the underlying mechanisms associated with highly efficient xylan degradation, assimilation, and metabolism by A. niger, we utilized functional proteomics to analyze the secre...

  1. Logarithmic spatial variations and universal f-1 power spectra of temperature fluctuations in turbulent Rayleigh-Bénard convection.

    Science.gov (United States)

    He, Xiaozhou; van Gils, Dennis P M; Bodenschatz, Eberhard; Ahlers, Guenter

    2014-05-02

    We report measurements of the temperature variance σ(2)(z,r) and frequency power spectrum P(f,z,r) (z is the distance from the sample bottom and r the radial coordinate) in turbulent Rayleigh-Bénard convection (RBC) for Rayleigh numbers Ra = 1.6 × 10(13) and 1.1 × 10(15) and for a Prandtl number Pr ≃ 0.8 for a sample with a height L = 224 cm and aspect ratio D/L=0.50 (D is the diameter). For z/L ≲ 0.1 σ(2)(z,r) was consistent with a logarithmic dependence on z, and there was a universal (independent of Ra, r, and z) normalized spectrum which, for 0.02 ≲ fτ(0) ≲ 0.2, had the form P(fτ(0)) = P(0)(fτ(0))(-1) with P(0) = 0.208 ± 0.008 a universal constant. Here τ(0) = sqrt[2R] where R is the radius of curvature of the temperature autocorrelation function C(τ) at τ = 0. For z/L ≃ 0.5 the measurements yielded P(fτ(0))∼(fτ(0))(-α) with α in the range from 3/2 to 5/3. All the results are similar to those for velocity fluctuations in shear flows at sufficiently large Reynolds numbers, suggesting the possibility of an analogy between the flows that is yet to be determined in detail.

  2. A wide dynamic range BF3 neutron monitor with front-end electronics based on a logarithmic amplifier

    International Nuclear Information System (INIS)

    Ferrarini, M.; Varoli, V.; Favalli, A.; Caresana, M.; Pedersen, B.

    2010-01-01

    This paper describes a wide dynamic range neutron monitor based on a BF 3 neutron detector. The detector is used in current mode, and front-end electronics based on a logarithmic amplifier are used in order to have a measurement capability ranging over many orders of magnitude. The system has been calibrated at the Polytechnic of Milan, CESNEF, with an AmBe neutron source, and has been tested in a pulsed field at the PUNITA facility at JRC, Ispra. The detector has achieved a dynamic range of over 6 orders of magnitude, being able to measure single neutron pulses and showing saturation-free response for a reaction rate up to 10 6 s -1 . It has also proved effective in measuring the PUNITA facility pulse integral fluence.

  3. Risk Aversion and Expected-Utility Theory: A Calibration Theorem.

    OpenAIRE

    Matthew Rabin.

    2000-01-01

    Within the expected-utility framework, the only explanation for risk aversion is that the utility function for wealth is concave: A person has lower marginal utility for additional wealth when she is wealthy than when she is poor. This paper provides a theorem showing that expected-utility theory is an utterly implausible explanation for appreciable risk aversion over modest stakes: Within expected-utility theory, for any concave utility function, even very little risk aversion over modest st...

  4. The maximization of Tsallis entropy with complete deformed functions and the problem of constraints

    International Nuclear Information System (INIS)

    Oikonomou, Thomas; Bagci, G. Baris

    2010-01-01

    By only requiring the q deformed logarithms (q exponentials) to possess arguments chosen from the entire set of positive real numbers (all real numbers), we show that the q-logarithm (q exponential) can be written in such a way that its argument varies between 0 and 1 (among negative real numbers) for 1≤q<2, while the interval 0< q≤1 corresponds to any real argument greater than 1 (positive real numbers). These two distinct intervals of the nonextensivity index q, also the expressions of the deformed functions associated with them, are related to one another through the relation (2-q), which is so far used to obtain the ordinary stationary distributions from the corresponding escort distributions, and vice versa in an almost ad hoc manner. This shows that the escort distributions are only a means of extending the interval of validity of the deformed functions to the one of ordinary, undeformed ones. Moreover, we show that, since the Tsallis entropy is written in terms of the q-logarithm and its argument, being the inverse of microstate probabilities, takes values equal to or greater than 1, the resulting stationary solution is uniquely described by the one obtained from the ordinary constraint. Finally, we observe that even the escort stationary distributions can be obtained through the use of the ordinary averaging procedure if the argument of the q-exponential lies in (-∞,0]. However, this case corresponds to, although related, a different entropy expression than the Tsallis entropy.

  5. Jet substructure using semi-inclusive jet functions in SCET

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Zhong-Bo [Theoretical Division, Los Alamos National Laboratory,Los Alamos, NM 87545 (United States); Department of Physics and Astronomy, University of California,Los Angeles, CA 90095 (United States); Ringer, Felix; Vitev, Ivan [Theoretical Division, Los Alamos National Laboratory,Los Alamos, NM 87545 (United States)

    2016-11-25

    We propose a new method to evaluate jet substructure observables in inclusive jet measurements, based upon semi-inclusive jet functions in the framework of Soft Collinear Effective Theory (SCET). As a first example, we consider the jet fragmentation function, where a hadron h is identified inside a fully reconstructed jet. We introduce a new semi-inclusive fragmenting jet function G{sub i}{sup h}(z=ω{sub J}/ω,z{sub h}=ω{sub h}/ω{sub J},ω{sub J},R,μ), which depends on the jet radius R and the large light-cone momenta of the parton ‘i’ initiating the jet (ω), the jet (ω{sub J}), and the hadron h (ω{sub h}). The jet fragmentation function can then be expressed as a semi-inclusive observable, in the spirit of actual experimental measurements, rather than as an exclusive one. We demonstrate the consistency of the effective field theory treatment and standard perturbative QCD calculations of this observable at next-to-leading order (NLO). The renormalization group (RG) equation for the semi-inclusive fragmenting jet function G{sub i}{sup h}(z,z{sub h},ω{sub J},R,μ) are also derived and shown to follow exactly the usual timelike DGLAP evolution equations for fragmentation functions. The newly obtained RG equations can be used to perform the resummation of single logarithms of the jet radius parameter R up to next-to-leading logarithmic (NLL{sub R}) accuracy. In combination with the fixed NLO calculation, we obtain NLO+NLL{sub R} results for the hadron distribution inside the jet. We present numerical results for pp→(jet h)X in the new framework, and find excellent agreement with existing LHC experimental data.

  6. Decomposing a Utility Function Based on Discrete Distribution Independence

    DEFF Research Database (Denmark)

    He, Ying; Dyer, James; Butler, John

    2014-01-01

    For two-attribute decision-making problems, the multilinear utility model cannot be applied when the risk aversion on one attribute depends on the level of the other attribute. We propose a family of general preference conditions called nth-degree discrete distribution independence that can...... accommodate a variety of dependence relationships between two attributes. The special case of second-degree discrete distribution independence is equivalent to the utility independence condition. We focus on third-degree discrete distribution independence that leads to a decomposition formula that contains...

  7. Structure functions of deep inelastic scattering and e+e- annihilation at small x in QCD

    International Nuclear Information System (INIS)

    Zinov'ev, G.M.; Pavlenko, O.P.; Snigirev, A.M.; Shelest, V.P.

    1984-01-01

    Small x behaviour of the distribution and fragmentation functions from perturbative QCD in various asymptotic regimes is discussed. It is shown that in the leading logarithmic approximation, the Gribov - Lipatov relation between these functions is fulfilled at Q 2 → infinity, x → 0 and is violated at Q 2 =const, x → 0. Taking into account the nonleading terms we have found that the relation is invald in the former regime too

  8. The utility of health and wealth.

    Science.gov (United States)

    Levy, Moshe; Nir, Adi Rizansky

    2012-03-01

    Tradeoffs between health and wealth are among the most important decisions individuals make, and are central to social and economic policy. Yet, only a few studies have investigated the utility of health and wealth empirically. This paper investigates this utility function both theoretically and empirically. We conduct detailed personal interviews with 180 cancer patients, and also obtain questionnaires from 132 diabetes patients. We find strong support for the utility function U(h, w)=h·log(w), where h denotes health and w denotes wealth. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Holographic Dark Energy in Brans-Dicke Theory with Logarithmic Form of Scalar Field

    Science.gov (United States)

    Singh, C. P.; Kumar, Pankaj

    2017-10-01

    In this paper, an interacting holographic dark energy model with Hubble horizon as an infra-red cut-off is considered in the framework of Brans-Dicke theory. We assume the Brans-Dicke scalar field as a logarithmic form ϕ = ϕ 0 l n( α + β a), where a is the scale factor, α and β are arbitrary constants, to interpret the physical phenomena of the Universe. The equation of state parameter w h and deceleration parameter q are obtained to discuss the dynamics of the evolution of the Universe. We present a unified model of holographic dark energy which explains the early time acceleration (inflation), medieval time deceleration and late time acceleration. It is also observed that w h may cross the phantom divide line in the late time evolution. We also discuss the cosmic coincidence problem. We obtain a time-varying density ratio of holographic dark energy to dark matter which is a constant of order one (r˜ O(1)) during early and late time evolution, and may evolve sufficiently slow at present time. Thus, the model successfully resolves the cosmic coincidence problem.

  10. Present status of research on radiation utilization in 1994 at JAERI. Utilization of irradiation and RI production and utilization

    International Nuclear Information System (INIS)

    1994-10-01

    In Japan Atomic Energy Research Institute, Takasaki Radiation Chemistry Research Establishment is in charge of the utilization of irradiation, and Tokai Research Establishment is in charge of the production and utilization of radioisotopes. As for the utilization of irradiation the development of new polymers, the development of environment preservation technology such as flue gas treatment, and by using various ion beams from four accelerators, the development of the materials used for space environment, nuclear fusion and new functional materials, the research on the radiation application to biotechnology, the development of the production and utilization of new radioisotopes have been carried out. As for the production and utilization of radioisotopes, the development of new products and new utilization techniques, the technology of producing and using a large amount of tritium, and the research on the chemical behavior of tritium have been carried out. The international cooperations have been promoted positively. In this report, the research activities in 1994 are described. (K.I.)

  11. The periodic sℓ(2|1) alternating spin chain and its continuum limit as a bulk logarithmic conformal field theory at c=0

    International Nuclear Information System (INIS)

    Gainutdinov, A.M.; Read, N.; Saleur, H.; Vasseur, R.

    2015-01-01

    The periodic sℓ(2|1) alternating spin chain encodes (some of) the properties of hulls of percolation clusters, and is described in the continuum limit by a logarithmic conformal field theory (LCFT) at central charge c=0. This theory corresponds to the strong coupling regime of a sigma model on the complex projective superspace CP 1|1 =U(2|1)/(U(1)×U(1|1)), and the spectrum of critical exponents can be obtained exactly. In this paper we push the analysis further, and determine the main representation theoretic (logarithmic) features of this continuum limit by extending to the periodic case the approach of http://dx.doi.org/10.1016/j.nuclphysb.2007.03.033 [N. Read and H. Saleur, Nucl. Phys. B 777 (2007) 316]. We first focus on determining the representation theory of the finite size spin chain with respect to the algebra of local energy densities provided by a representation of the affine Temperley-Lieb algebra at fugacity one. We then analyze how these algebraic properties carry over to the continuum limit to deduce the structure of the space of states as a representation over the product of left and right Virasoro algebras. Our main result is the full structure of the vacuum module of the theory, which exhibits Jordan cells of arbitrary rank for the Hamiltonian.

  12. Power Law and Logarithmic Ricci Dark Energy Models in Hořava-Lifshitz Cosmology

    Science.gov (United States)

    Pasqua, Antonio; Chattopadhyay, Surajit; Khurshudyan, Martiros; Myrzakulov, Ratbay; Hakobyan, Margarit; Movsisyan, Artashes

    2015-03-01

    In this work, we studied the Power Law and the Logarithmic Entropy Corrected versions of the Ricci Dark Energy (RDE) model in a spatially non-flat universe and in the framework of Hořava-Lifshitz cosmology. For the two cases containing non-interacting and interacting RDE and Dark Matter (DM), we obtained the exact differential equation that determines the evolutionary form of the RDE energy density. Moreover, we obtained the expressions of the deceleration parameter q and, using a parametrization of the equation of state (EoS) parameter ω D given by the relation ω D ( z) = ω 0+ ω 1 z, we derived the expressions of both ω 0 and ω 1. We interestingly found that the expression of ω 0 is the same for both non-interacting and interacting case. The expression of ω 1 for the interacting case has strong dependence from the interacting parameter b 2. The parameters derived in this work are done in small redshift approximation and for low redshift expansion of the EoS parameter.

  13. Spectral Elements Analysis for Viscoelastic Fluids at High Weissenberg Number Using Logarithmic conformation Tensor Model

    Science.gov (United States)

    Jafari, Azadeh; Deville, Michel O.; Fiétier, Nicolas

    2008-09-01

    This study discusses the capability of the constitutive laws for the matrix logarithm of the conformation tensor (LCT model) within the framework of the spectral elements method. The high Weissenberg number problems (HWNP) usually produce a lack of convergence of the numerical algorithms. Even though the question whether the HWNP is a purely numerical problem or rather a breakdown of the constitutive law of the model has remained somewhat of a mystery, it has been recognized that the selection of an appropriate constitutive equation constitutes a very crucial step although implementing a suitable numerical technique is still important for successful discrete modeling of non-Newtonian flows. The LCT model formulation of the viscoelastic equations originally suggested by Fattal and Kupferman is applied for 2-dimensional (2D) FENE-CR model. The Planar Poiseuille flow is considered as a benchmark problem to test this representation at high Weissenberg number. The numerical results are compared with numerical solution of the standard constitutive equation.

  14. Efficient elicitation of utility and probability weighting functions

    Czech Academy of Sciences Publication Activity Database

    Blavatskyy, Pavlo R.

    -, č. 211 (2004), s. 1-31 ISSN 1424-0459 Institutional research plan: CEZ:AV0Z7085904 Keywords : decision theory * rank-dependent expected utility * cumulative prospect theory Subject RIV: AH - Economics http://www.iew.unizh.ch/wp/iewwp211.pdf

  15. Rapidity resummation for B-meson wave functions

    Directory of Open Access Journals (Sweden)

    Shen Yue-Long

    2014-01-01

    Full Text Available Transverse-momentum dependent (TMD hadronic wave functions develop light-cone divergences under QCD corrections, which are commonly regularized by the rapidity ζ of gauge vector defining the non-light-like Wilson lines. The yielding rapidity logarithms from infrared enhancement need to be resummed for both hadronic wave functions and short-distance functions, to achieve scheme-independent calculations of physical quantities. We briefly review the recent progress on the rapidity resummation for B-meson wave functions which are the key ingredients of TMD factorization formulae for radiative-leptonic, semi-leptonic and non-leptonic B-meson decays. The crucial observation is that rapidity resummation induces a strong suppression of B-meson wave functions at small light-quark momentum, strengthening the applicability of TMD factorization in exclusive B-meson decays. The phenomenological consequence of rapidity-resummation improved B-meson wave functions is further discussed in the context of B → π transition form factors at large hadronic recoil.

  16. A Comparative Analysis of the Value of Information in a Continuous Time Market Model with Partial Information: The Cases of Log-Utility and CRRA

    Directory of Open Access Journals (Sweden)

    Zhaojun Yang

    2011-01-01

    Full Text Available We study the question what value an agent in a generalized Black-Scholes model with partial information attributes to the complementary information. To do this, we study the utility maximization problems from terminal wealth for the two cases partial information and full information. We assume that the drift term of the risky asset is a dynamic process of general linear type and that the two levels of observation correspond to whether this drift term is observable or not. Applying methods from stochastic filtering theory we derive an analytical tractable formula for the value of information in the case of logarithmic utility. For the case of constant relative risk aversion (CRRA we derive a semianalytical formula, which uses as an input the numerical solution of a system of ODEs. For both cases we present a comparative analysis.

  17. The functional dependence of canopy conductance on water vapor pressure deficit revisited

    Science.gov (United States)

    Fuchs, Marcel; Stanghellini, Cecilia

    2018-03-01

    Current research seeking to relate between ambient water vapor deficit (D) and foliage conductance (g F ) derives a canopy conductance (g W ) from measured transpiration by inverting the coupled transpiration model to yield g W = m - n ln(D) where m and n are fitting parameters. In contrast, this paper demonstrates that the relation between coupled g W and D is g W = AP/D + B, where P is the barometric pressure, A is the radiative term, and B is the convective term coefficient of the Penman-Monteith equation. A and B are functions of g F and of meteorological parameters but are mathematically independent of D. Keeping A and B constant implies constancy of g F . With these premises, the derived g W is a hyperbolic function of D resembling the logarithmic expression, in contradiction with the pre-set constancy of g F . Calculations with random inputs that ensure independence between g F and D reproduce published experimental scatter plots that display a dependence between g W and D in contradiction with the premises. For this reason, the dependence of g W on D is a computational artifact unrelated to any real effect of ambient humidity on stomatal aperture and closure. Data collected in a maize field confirm the inadequacy of the logarithmic function to quantify the relation between canopy conductance and vapor pressure deficit.

  18. Impact of lung function on exacerbations, health care utilization, and costs among patients with COPD

    Directory of Open Access Journals (Sweden)

    Ke X

    2016-07-01

    Full Text Available Xuehua Ke,1 Jessica Marvel,2 Tzy-Chyi Yu,2 Debra Wertz,1 Caroline Geremakis,1 Liya Wang,1 Judith J Stephenson,1 David M Mannino3 1HealthCore Inc., Wilmington, DE, 2Novartis Pharmaceuticals Corporation, East Hanover, NJ, 3University of Kentucky, Lexington, KY, USA Objective: To evaluate the impact of lung function, measured as forced expiratory volume in 1 second (FEV1 % predicted, on health care resource utilization and costs among patients with COPD in a real-world US managed-care population.Methods: This observational retrospective cohort study utilized administrative claim data augmented with medical record data. The study population consisted of patients with one or more medical claims for pre- and postbronchodilator spirometry during the intake period (July 1, 2012 to June 30, 2013. The index date was the date of the earliest medical claim for pre- and postbronchodilator spirometry. Spirometry results were abstracted from patients’ medical records. Patients were divided into two groups (low FEV1% predicted [<50%] and high FEV1% predicted [≥50%] based on the 2014 Global Initiative for Chronic Obstructive Lung Disease report. Health care resource utilization and costs were based on the prevalence and number of discrete encounters during the 12-month postindex follow-up period. Costs were adjusted to 2014 US dollars.Results: A total of 754 patients were included (n=297 low FEV1% predicted group, n=457 high FEV1% predicted group. COPD exacerbations were more prevalent in the low FEV1% predicted group compared with the high group during the 12-month pre- (52.5% vs 39.6% and postindex periods (49.8% vs 36.8%. Mean (standard deviation follow-up all-cause and COPD-related costs were $27,380 ($38,199 and $15,873 ($29,609 for patients in the low FEV1% predicted group, and $22,075 ($28,108 and $10,174 ($18,521 for patients in the high group. In the multivariable analyses, patients in the low FEV1% predicted group were more likely to have COPD

  19. A note on additive risk measures in rank-dependent utility

    NARCIS (Netherlands)

    Goovaerts, M.J.; Kaas, R.; Laeven, R.J.A.

    2010-01-01

    This note proves that risk measures obtained by applying the equivalent utility principle in rank-dependent utility are additive if and only if the utility function is linear or exponential and the probability weighting (distortion) function is the identity.

  20. Logarithmic corrections to the uncertainty principle and infinitude of the number of bound states of n-particle systems

    International Nuclear Information System (INIS)

    Perez, J.F.; Coutinho, F.A.B.; Malta, C.P.

    1985-01-01

    It is shown that critical long distance behaviour for a two-body potential, defining the finiteness or infinitude of the number of negative eigenvalues of Schrodinger operators in ν-dimensions, are given by v sub(k) (r) = - [ν-2/2r] 2 - 1/(2rlnr) 2 + ... - 1/(2rlnr.lnlnr...ln sub(k)r) 2 where k=0,1... for ν not=2 and k=1,2... if ν=2. This result is a consequence of logarithmic corrections to an inequality known as Uncertainty Principle. If the continuum threshold in the N-body problem is defined by a two-cluster break up our results generate corrections to the existing sufficient conditions for the existence of infinitely many bound states. (Author) [pt

  1. Casimir energies in M4≥/sup N/ for even N. Green's-function and zeta-function techniques

    International Nuclear Information System (INIS)

    Kantowski, R.; Milton, K.A.

    1987-01-01

    The Green's-function technique developed in the first paper in this series is generalized to apply to massive scalar, vector, second-order tensor, and Dirac spinor fields, as a preliminary to a full graviton calculation. The Casimir energies are of the form u/sub Casimir/ = (1/a 4 )[α/sub N/lna/b)+β/sub N/], where N (even) is the dimension of the internal sphere, a is its radius, and b/sup -1/ is an ultraviolet cutoff (presumably at the Planck scale). The coefficient of the divergent logarithm, α/sub N/, is unambiguously obtained for each field considered. The Green's-function technique gives rise to no difficulties in the evaluation of imaginary-mass-mode contributions to the Casimir energy. In addition, a new, simplified zeta-function technique is presented which is very easily implemented by symbolic programs, and which, of course, gives the same results. An error in a previous zeta-function calculation of the Casimir energy for even N is pointed out

  2. Modeling of stochastic broadening in a poloidally diverted discharge with piecewise analytic symplectic mapping flux functions

    International Nuclear Information System (INIS)

    Punjabi, Alkesh; Ali, Halima; Evans, Todd; Boozer, Allen

    2008-01-01

    A highly accurate calculation of the magnetic field line Hamiltonian in DIII-D [J. L. Luxon and L. E. Davis, Fusion Technol. 8, 441 (1985)] is made from piecewise analytic equilibrium fit data for shot 115467 3000 ms. The safety factor calculated from this Hamiltonian has a logarithmic singularity at an ideal separatrix. The logarithmic region inside the ideal separatrix contains 2.5% of toroidal flux inside the separatrix. The logarithmic region is symmetric about the separatrix. An area-preserving map for the field line trajectories is obtained in magnetic coordinates from the Hamiltonian equations of motion for the lines and a canonical transformation. This map is used to calculate trajectories of magnetic field lines in DIII-D. The field line Hamiltonian in DIII-D is used as the generating function for the map and to calculate stochastic broadening from field-errors and spatial noise near the separatrix. A very negligible amount (0.03%) of magnetic flux is lost from inside the separatrix due to these nonaxisymmetric fields. It is quite easy to add magnetic perturbations to generating functions and calculate trajectories for maps in magnetic coordinates. However, it is not possible to integrate across the separatrix. It is also difficult to find the physical position corresponding to magnetic coordinates. For open field lines, periodicity in the poloidal angle is assumed, which is not satisfactory. The goal of this paper is to demonstrate the efficacy of the symplectic mapping approach rather than using realistic DIII-D parameters or modeling specific experimental results

  3. Risk and utility in portfolio optimization

    Science.gov (United States)

    Cohen, Morrel H.; Natoli, Vincent D.

    2003-06-01

    Modern portfolio theory (MPT) addresses the problem of determining the optimum allocation of investment resources among a set of candidate assets. In the original mean-variance approach of Markowitz, volatility is taken as a proxy for risk, conflating uncertainty with risk. There have been many subsequent attempts to alleviate that weakness which, typically, combine utility and risk. We present here a modification of MPT based on the inclusion of separate risk and utility criteria. We define risk as the probability of failure to meet a pre-established investment goal. We define utility as the expectation of a utility function with positive and decreasing marginal value as a function of yield. The emphasis throughout is on long investment horizons for which risk-free assets do not exist. Analytic results are presented for a Gaussian probability distribution. Risk-utility relations are explored via empirical stock-price data, and an illustrative portfolio is optimized using the empirical data.

  4. Subjective expected utility without preferences

    OpenAIRE

    Bouyssou , Denis; Marchant , Thierry

    2011-01-01

    This paper proposes a theory of subjective expected utility based on primitives only involving the fact that an act can be judged either "attractive" or "unattractive". We give conditions implying that there are a utility function on the set of consequences and a probability distribution on the set of states such that attractive acts have a subjective expected utility above some threshold. The numerical representation that is obtained has strong uniqueness properties.

  5. The comparison of alternatives for nuclear spent fuel management using multi-attribute utility function

    International Nuclear Information System (INIS)

    Yang, J. W.; Kang, C. S.

    1999-01-01

    It is necessary to find a solution immediately to nuclear spent fuel management that is temporarily stored in on-site spent fuel storage before the saturation of the storage. However the choice of alternative for nuclear spent fuel management consists of complex process that are affected by economic, technical and social factors. And it is not easy to quantify these factors; public opinion, probability of diplomatic problem and contribution to development of nuclear technology. Therefore the analysis of the affecting factors and assessment of alternatives are required. This study performed the comparison of the alternatives for nuclear spent fuel management using MAU (Multi-Attribute Utility Function) and AHP(Analytic Hierarchy Process)

  6. The effect of loss functions on empirical Bayes reliability analysis

    Directory of Open Access Journals (Sweden)

    Camara Vincent A. R.

    1998-01-01

    Full Text Available The aim of the present study is to investigate the sensitivity of empirical Bayes estimates of the reliability function with respect to changing of the loss function. In addition to applying some of the basic analytical results on empirical Bayes reliability obtained with the use of the “popular” squared error loss function, we shall derive some expressions corresponding to empirical Bayes reliability estimates obtained with the Higgins–Tsokos, the Harris and our proposed logarithmic loss functions. The concept of efficiency, along with the notion of integrated mean square error, will be used as a criterion to numerically compare our results. It is shown that empirical Bayes reliability functions are in general sensitive to the choice of the loss function, and that the squared error loss does not always yield the best empirical Bayes reliability estimate.

  7. Plasma dispersion function for a Fermi-Dirac distribution

    International Nuclear Information System (INIS)

    Melrose, D. B.; Mushtaq, A.

    2010-01-01

    A plasma dispersion function (PDF) is defined for a nonrelativistic Fermi-Dirac distribution and its properties are explored. The degree of degeneracy is described by a parameter ξ=e μ e /T e , for electrons, with μ e /T e large and negative in the nondegenerate limit, and large and positive in the completely degenerate limit. The PDF is denoted Z(y,ξ), where the variable y=ω/√(2)kV e , is the argument of the conventional PDF, Z(y)=Z(y,0), for a Maxwellian distribution. In the completely degenerate limit, Z(y,ξ) approaches a logarithmic function that depends on the Fermi temperature and is independent of T e . Analytic approximations to Z(y,ξ) are derived in terms of polylogarithmic functions for y 2 >>1 and for y 2 <<1.

  8. Hadronic wave functions at short distances and the operator product expansion

    International Nuclear Information System (INIS)

    Brodsky, S.J.; Lepage, G.P.

    1980-01-01

    The operator product expansion, of appropriate products of quark fields, is used to find the anamalous dimensions which control the short distance behavior of hadronic wave functions. This vehavior in turn controls the high-Q 2 limit of hadronic form factors. In particular, we relate each anamalous dimension of the nonsinglet structure functions to a corresponding logarithmic correction factor to the nominal αsub(s)(Q 2 )/Q 2 fall off of meson form factors. Unlike the case of deep inelastic lepton-hadron scattering, the operator product necessary here involves extra terms which do not contribute to forward matrix elements. (orig.)

  9. TWRS LDUA utilization study report

    International Nuclear Information System (INIS)

    Rieck, R.H.

    1994-01-01

    Tank Waste Remediation Systems functional requirements were reviewed. The Light Duty Utility Arm capabilities were considered as a means to support completion of these functional requirements. The recommendation is made to continue to develop the LDUA, integrating TWRS functional needs into the design to better support completion of TWRS mission needs

  10. New logarithmic technique of diffusivity identification using the flash method; Nouvelle technique logarithmique d`identification de la diffusivite par la methode flash

    Energy Technology Data Exchange (ETDEWEB)

    Thermitus, M.A.; Laurent, M. [Institut National des Sciences Appliquees (INSA), 69 - Villeurbanne (France)

    1997-12-31

    Using a logarithmic transformation, the thermogram of a flash experiment can be interpreted as the sum of the adiabatic model solution with a term representative of the losses. Two methods based on this transformation are proposed in this study. They are based on the identification of a parameter that depends on the thickness of the sample and on its diffusivity and not on the experimental conditions. They allow to identify the diffusivity with a high precision even for materials with a low conductivity at high temperatures. (J.S.) 12 refs.

  11. The exponent λ (x,Q ) of the proton structure function F (x, Q ) at low ...

    Indian Academy of Sciences (India)

    from the gluon (g —q¯q) and so the contribution from the quark can be neglected. In the DGLAP formalism an approximate relationship can be obtained between the gluon momentum density G(x,Q2) and the logarithmic slope of the structure function F2(x,Q2). There are several such relations [6–8] available in the literature.

  12. Determining firms׳ utility functions and competitive roles from data on market shares using Lotka–Volterra models

    Directory of Open Access Journals (Sweden)

    A. Marasco

    2016-06-01

    Full Text Available In this article, we include data on historical and estimated market shares of two markets. In particular, we include annual data on the market shares of the Japanese beer market (1963–2000 and biannual data on the market shares of the mobile phones market in Greece (1998–2007. In addition, we estimate monthly data on market shares for both markets. We show how this data can be used to derive firms’ utility functions and their competitive roles.

  13. Anti-Money Laundry regulation and Crime: A two-period model of money-in-the-utility-function

    OpenAIRE

    Fanta, F; Mohsin, H

    2010-01-01

    The paper presents a two period model with two types of money i.e. dirty and cleans (legal) money in utility function. Clean money is earned from working in legal sector and dirty from illegal sector. Our two-two period model reveals that an increase in labor wage in legal sector unambiguously decease the labor hours allocated for illegal sector by increasing the opportunity cost for illegal activities. However, the crime-reducing impact of anti-money laundry regulation and the probability of...

  14. Using Multicriteria Analysis in Issues Concerning Adaptation of Historic Facilities for the Needs of Public Utility Buildings with a Function of a Theatre

    Science.gov (United States)

    Obracaj, Piotr; Fabianowski, Dariusz

    2017-10-01

    Implementations concerning adaptation of historic facilities for public utility objects are associated with the necessity of solving many complex, often conflicting expectations of future users. This mainly concerns the function that includes construction, technology and aesthetic issues. The list of issues is completed with proper protection of historic values, different in each case. The procedure leading to obtaining the expected solution is a multicriteria procedure, usually difficult to accurately define and requiring designer’s large experience. An innovative approach has been used for the analysis, namely - the modified EA FAHP (Extent Analysis Fuzzy Analytic Hierarchy Process) Chang’s method of a multicriteria analysis for the assessment of complex functional and spatial issues. Selection of optimal spatial form of an adapted historic building intended for the multi-functional public utility facility was analysed. The assumed functional flexibility was determined in the scope of: education, conference, and chamber spectacles, such as drama, concerts, in different stage-audience layouts.

  15. Causal analysis of self-sustaining processes in the logarithmic layer of wall-bounded turbulence

    Science.gov (United States)

    Bae, H. J.; Encinar, M. P.; Lozano-Durán, A.

    2018-04-01

    Despite the large amount of information provided by direct numerical simulations of turbulent flows, their underlying dynamics remain elusive even in the most simple and canonical configurations. Most common approaches to investigate the turbulence phenomena do not provide a clear causal inference between events, which is essential to determine the dynamics of self-sustaining processes. In the present work, we examine the causal interactions between streaks, rolls and mean shear in the logarithmic layer of a minimal turbulent channel flow. Causality between structures is assessed in a non-intrusive manner by transfer entropy, i.e., how much the uncertainty of one structure is reduced by knowing the past states of the others. We choose to represent streaks by the first Fourier modes of the streamwise velocity, while rolls are defined by the wall-normal and spanwise velocity modes. The results show that the process is mainly unidirectional rather than cyclic, and that the log-layer motions are sustained by extracting energy from the mean shear which controls the dynamics and time-scales. The well-known lift-up effect is also identified, but shown to be of secondary importance in the causal network between shear, streaks and rolls.

  16. The exponentiated Hencky-logarithmic strain energy. Part II: Coercivity, planar polyconvexity and existence of minimizers

    Science.gov (United States)

    Neff, Patrizio; Lankeit, Johannes; Ghiba, Ionel-Dumitrel; Martin, Robert; Steigmann, David

    2015-08-01

    We consider a family of isotropic volumetric-isochoric decoupled strain energies based on the Hencky-logarithmic (true, natural) strain tensor log U, where μ > 0 is the infinitesimal shear modulus, is the infinitesimal bulk modulus with the first Lamé constant, are dimensionless parameters, is the gradient of deformation, is the right stretch tensor and is the deviatoric part (the projection onto the traceless tensors) of the strain tensor log U. For small elastic strains, the energies reduce to first order to the classical quadratic Hencky energy which is known to be not rank-one convex. The main result in this paper is that in plane elastostatics the energies of the family are polyconvex for , extending a previous finding on its rank-one convexity. Our method uses a judicious application of Steigmann's polyconvexity criteria based on the representation of the energy in terms of the principal invariants of the stretch tensor U. These energies also satisfy suitable growth and coercivity conditions. We formulate the equilibrium equations, and we prove the existence of minimizers by the direct methods of the calculus of variations.

  17. Mean Field Games for Stochastic Growth with Relative Utility

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Minyi, E-mail: mhuang@math.carleton.ca [Carleton University, School of Mathematics and Statistics (Canada); Nguyen, Son Luu, E-mail: sonluu.nguyen@upr.edu [University of Puerto Rico, Department of Mathematics (United States)

    2016-12-15

    This paper considers continuous time stochastic growth-consumption optimization in a mean field game setting. The individual capital stock evolution is determined by a Cobb–Douglas production function, consumption and stochastic depreciation. The individual utility functional combines an own utility and a relative utility with respect to the population. The use of the relative utility reflects human psychology, leading to a natural pattern of mean field interaction. The fixed point equation of the mean field game is derived with the aid of some ordinary differential equations. Due to the relative utility interaction, our performance analysis depends on some ratio based approximation error estimate.

  18. Mean Field Games for Stochastic Growth with Relative Utility

    International Nuclear Information System (INIS)

    Huang, Minyi; Nguyen, Son Luu

    2016-01-01

    This paper considers continuous time stochastic growth-consumption optimization in a mean field game setting. The individual capital stock evolution is determined by a Cobb–Douglas production function, consumption and stochastic depreciation. The individual utility functional combines an own utility and a relative utility with respect to the population. The use of the relative utility reflects human psychology, leading to a natural pattern of mean field interaction. The fixed point equation of the mean field game is derived with the aid of some ordinary differential equations. Due to the relative utility interaction, our performance analysis depends on some ratio based approximation error estimate.

  19. Genetic Variation of the SusC/SusD Homologs from a Polysaccharide Utilization Locus Underlies Divergent Fructan Specificities and Functional Adaptation in Bacteroides thetaiotaomicron Strains.

    Science.gov (United States)

    Joglekar, Payal; Sonnenburg, Erica D; Higginbottom, Steven K; Earle, Kristen A; Morland, Carl; Shapiro-Ward, Sarah; Bolam, David N; Sonnenburg, Justin L

    2018-01-01

    Genomic differences between gut-resident bacterial strains likely underlie significant interindividual variation in microbiome function. Traditional methods of determining community composition, such as 16S rRNA gene amplicon sequencing, fail to capture this functional diversity. Metagenomic approaches are a significant step forward in identifying strain-level sequence variants; however, given the current paucity of biochemical information, they too are limited to mainly low-resolution and incomplete functional predictions. Using genomic, biochemical, and molecular approaches, we identified differences in the fructan utilization profiles of two closely related Bacteroides thetaiotaomicron strains. B. thetaiotaomicron 8736 ( Bt-8736 ) contains a fructan polysaccharide utilization locus (PUL) with a divergent susC / susD homolog gene pair that enables it to utilize inulin, differentiating this strain from other characterized Bt strains. Transfer of the distinct pair of susC / susD genes from Bt-8736 into the noninulin using type strain B. thetaiotaomicron VPI-5482 resulted in inulin use by the recipient strain, Bt ( 8736-2 ). The presence of the divergent susC / susD gene pair alone enabled the hybrid Bt ( 8736-2 ) strain to outcompete the wild-type strain in vivo in mice fed an inulin diet. Further, we discovered that the susC / susD homolog gene pair facilitated import of inulin into the periplasm without surface predigestion by an endo-acting enzyme, possibly due to the short average chain length of inulin compared to many other polysaccharides. Our data builds upon recent reports of dietary polysaccharide utilization mechanisms found in members of the Bacteroides genus and demonstrates how the acquisition of two genes can alter the functionality and success of a strain within the gut. IMPORTANCE Dietary polysaccharides play a dominant role in shaping the composition and functionality of our gut microbiota. Dietary interventions using these m icrobiota- a

  20. A wide dynamic range BF{sub 3} neutron monitor with front-end electronics based on a logarithmic amplifier

    Energy Technology Data Exchange (ETDEWEB)

    Ferrarini, M., E-mail: michele.ferrarini@polimi.i [Politecnico di Milano, Dipartimento Energia, via G. Ponzio 34/3, I-20133 Milano (Italy); Fondazione CNAO, via Caminadella 16, 20123 Milano (Italy); Varoli, V. [Politecnico di Milano, Dipartimento Energia, via G. Ponzio 34/3, I-20133 Milano (Italy); Favalli, A. [European Commission, Joint Research Centre, Institute for the Protection and Security of Citizen, TP 800, Via E. Fermi, 21027 Ispra (Vatican City State, Holy See) (Italy); Caresana, M. [Politecnico di Milano, Dipartimento Energia, via G. Ponzio 34/3, I-20133 Milano (Italy); Pedersen, B. [European Commission, Joint Research Centre, Institute for the Protection and Security of Citizen, TP 800, Via E. Fermi, 21027 Ispra (Italy)

    2010-02-01

    This paper describes a wide dynamic range neutron monitor based on a BF{sub 3} neutron detector. The detector is used in current mode, and front-end electronics based on a logarithmic amplifier are used in order to have a measurement capability ranging over many orders of magnitude. The system has been calibrated at the Polytechnic of Milan, CESNEF, with an AmBe neutron source, and has been tested in a pulsed field at the PUNITA facility at JRC, Ispra. The detector has achieved a dynamic range of over 6 orders of magnitude, being able to measure single neutron pulses and showing saturation-free response for a reaction rate up to 10{sup 6} s{sup -1}. It has also proved effective in measuring the PUNITA facility pulse integral fluence.