WorldWideScience

Sample records for locomotor training poststroke

  1. Potential contributions of training intensity on locomotor performance in individuals with chronic stroke.

    Science.gov (United States)

    Holleran, Carey L; Rodriguez, Kelly S; Echauz, Anthony; Leech, Kristan A; Hornby, T George

    2015-04-01

    Many interventions can improve walking ability of individuals with stroke, although the training parameters that maximize recovery are not clear. For example, the contribution of training intensity has not been well established and may contribute to the efficacy of many locomotor interventions. The purpose of this preliminary study was to evaluate the effects of locomotor training intensity on walking outcomes in individuals with gait deficits poststroke. Using a randomized cross-over design, 12 participants with chronic stroke (>6-month duration) performed either high-intensity (70%-80% of heart rate reserve; n = 6) or low-intensity (30%-40% heart rate reserve; n = 6) locomotor training for 12 or fewer sessions over 4 to 5 weeks. Four weeks following completion, the alternate training intervention was performed. Training intensity was manipulated by adding loads or applying resistance during walking, with similar speeds, durations, and amount of stepping practice between conditions. Greater increases in 6-Minute Walk Test performance were observed following high-intensity training compared with low-intensity training. A significant interaction of intensity and order was also observed for 6-Minute Walk Test and peak treadmill speed, with the largest changes in those who performed high-intensity training first. Moderate correlations were observed between locomotor outcomes and measures of training intensity. This study provides the first evidence that the intensity of locomotor practice may be an important independent determinant of walking outcomes poststroke. In the clinical setting, the intensity of locomotor training can be manipulated in many ways, although this represents only 1 parameter to consider.Video Abstract available for more insights from the authors (see Supplemental Digital Content 1, http://links.lww.com/JNPT/A90).

  2. Visual and kinesthetic locomotor imagery training integrated with auditory step rhythm for walking performance of patients with chronic stroke.

    Science.gov (United States)

    Kim, Jin-Seop; Oh, Duck-Won; Kim, Suhn-Yeop; Choi, Jong-Duk

    2011-02-01

    To compare the effect of visual and kinesthetic locomotor imagery training on walking performance and to determine the clinical feasibility of incorporating auditory step rhythm into the training. Randomized crossover trial. Laboratory of a Department of Physical Therapy. Fifteen subjects with post-stroke hemiparesis. Four locomotor imagery trainings on walking performance: visual locomotor imagery training, kinesthetic locomotor imagery training, visual locomotor imagery training with auditory step rhythm and kinesthetic locomotor imagery training with auditory step rhythm. The timed up-and-go test and electromyographic and kinematic analyses of the affected lower limb during one gait cycle. After the interventions, significant differences were found in the timed up-and-go test results between the visual locomotor imagery training (25.69 ± 16.16 to 23.97 ± 14.30) and the kinesthetic locomotor imagery training with auditory step rhythm (22.68 ± 12.35 to 15.77 ± 8.58) (P kinesthetic locomotor imagery training exhibited significantly increased activation in a greater number of muscles and increased angular displacement of the knee and ankle joints compared with the visual locomotor imagery training, and these effects were more prominent when auditory step rhythm was integrated into each form of locomotor imagery training. The activation of the hamstring during the swing phase and the gastrocnemius during the stance phase, as well as kinematic data of the knee joint, were significantly different for posttest values between the visual locomotor imagery training and the kinesthetic locomotor imagery training with auditory step rhythm (P kinesthetic locomotor imagery training than in the visual locomotor imagery training. The auditory step rhythm together with the locomotor imagery training produces a greater positive effect in improving the walking performance of patients with post-stroke hemiparesis.

  3. Locomotor Training and Strength and Balance Exercises for Walking Recovery After Stroke: Response to Number of Training Sessions.

    Science.gov (United States)

    Rose, Dorian K; Nadeau, Stephen E; Wu, Samuel S; Tilson, Julie K; Dobkin, Bruce H; Pei, Qinglin; Duncan, Pamela W

    2017-11-01

    Evidence-based guidelines are needed to inform rehabilitation practice, including the effect of number of exercise training sessions on recovery of walking ability after stroke. The objective of this study was to determine the response to increasing number of training sessions of 2 interventions-locomotor training and strength and balance exercises-on poststroke walking recovery. This is a secondary analysis of the Locomotor Experience Applied Post-Stroke (LEAPS) randomized controlled trial. Six rehabilitation sites in California and Florida and participants' homes were used. Participants were adults who dwelled in the community (N=347), had had a stroke, were able to walk at least 3 m (10 ft) with assistance, and had completed the required number of intervention sessions. Participants received 36 sessions (3 times per week for 12 weeks), 90 minutes in duration, of locomotor training (gait training on a treadmill with body-weight support and overground training) or strength and balance training. Talking speed, as measured by the 10-Meter Walk Test, and 6-minute walking distance were assessed before training and following 12, 24, and 36 intervention sessions. Participants at 2 and 6 months after stroke gained in gait speed and walking endurance after up to 36 sessions of treatment, but the rate of gain diminished steadily and, on average, was very low during the 25- to 36-session epoch, regardless of treatment type or severity of impairment. Results may not generalize to people who are unable to initiate a step at 2 months after stroke or people with severe cardiac disease. In general, people who dwelled in the community showed improvements in gait speed and walking distance with up to 36 sessions of locomotor training or strength and balance exercises at both 2 and 6 months after stroke. However, gains beyond 24 sessions tended to be very modest. The tracking of individual response trajectories is imperative in planning treatment. Published by Oxford University

  4. Locomotor training improves premotoneuronal control after chronic spinal cord injury.

    Science.gov (United States)

    Knikou, Maria; Mummidisetty, Chaithanya K

    2014-06-01

    Spinal inhibition is significantly reduced after spinal cord injury (SCI) in humans. In this work, we examined if locomotor training can improve spinal inhibition exerted at a presynaptic level. Sixteen people with chronic SCI received an average of 45 training sessions, 5 days/wk, 1 h/day. The soleus H-reflex depression in response to low-frequency stimulation, presynaptic inhibition of soleus Ia afferent terminals following stimulation of the common peroneal nerve, and bilateral EMG recovery patterns were assessed before and after locomotor training. The soleus H reflexes evoked at 1.0, 0.33, 0.20, 0.14, and 0.11 Hz were normalized to the H reflex evoked at 0.09 Hz. Conditioned H reflexes were normalized to the associated unconditioned H reflex evoked with subjects seated, while during stepping both H reflexes were normalized to the maximal M wave evoked after the test H reflex at each bin of the step cycle. Locomotor training potentiated homosynaptic depression in all participants regardless the type of the SCI. Presynaptic facilitation of soleus Ia afferents remained unaltered in motor complete SCI patients. In motor incomplete SCIs, locomotor training either reduced presynaptic facilitation or replaced presynaptic facilitation with presynaptic inhibition at rest. During stepping, presynaptic inhibition was modulated in a phase-dependent manner. Locomotor training changed the amplitude of locomotor EMG excitability, promoted intralimb and interlimb coordination, and altered cocontraction between knee and ankle antagonistic muscles differently in the more impaired leg compared with the less impaired leg. The results provide strong evidence that locomotor training improves premotoneuronal control after SCI in humans at rest and during walking. Copyright © 2014 the American Physiological Society.

  5. Feasibility of Focused Stepping Practice During Inpatient Rehabilitation Poststroke and Potential Contributions to Mobility Outcomes.

    Science.gov (United States)

    Hornby, T George; Holleran, Carey L; Leddy, Abigail L; Hennessy, Patrick; Leech, Kristan A; Connolly, Mark; Moore, Jennifer L; Straube, Donald; Lovell, Linda; Roth, Elliot

    2015-01-01

    Optimal physical therapy strategies to maximize locomotor function in patients early poststroke are not well established. Emerging data indicate that substantial amounts of task-specific stepping practice may improve locomotor function, although stepping practice provided during inpatient rehabilitation is limited (inpatient rehabilitation following implementation of a focused training program to maximize stepping practice during clinical physical therapy sessions. Primary outcomes included distance and physical assistance required during a 6-minute walk test (6MWT) and balance using the Berg Balance Scale (BBS). Retrospective data analysis included multiple regression techniques to evaluate the contributions of demographics, training activities, and baseline motor function to primary outcomes at discharge. Median stepping activity recorded from patients was 1516 steps/d, which is 5 to 6 times greater than that typically observed. The number of steps per day was positively correlated with both discharge 6MWT and BBS and improvements from baseline (changes; r = 0.40-0.87), independently contributing 10% to 31% of the total variance. Stepping activity also predicted level of assistance at discharge and discharge location (home vs other facility). Providing focused, repeated stepping training was feasible early poststroke during inpatient rehabilitation and was related to mobility outcomes. Further research is required to evaluate the effectiveness of these training strategies on short- or long-term mobility outcomes as compared with conventional interventions. © The Author(s) 2015.

  6. Targeting paretic propulsion to improve poststroke walking function: a preliminary study.

    Science.gov (United States)

    Awad, Louis N; Reisman, Darcy S; Kesar, Trisha M; Binder-Macleod, Stuart A

    2014-05-01

    To determine the feasibility and safety of implementing a 12-week locomotor intervention targeting paretic propulsion deficits during walking through the joining of 2 independent interventions, walking at maximal speed on a treadmill and functional electrical stimulation of the paretic ankle musculature (FastFES); to determine the effects of FastFES training on individual subjects; and to determine the influence of baseline impairment severity on treatment outcomes. Single group pre-post preliminary study investigating a novel locomotor intervention. Research laboratory. Individuals (N=13) with locomotor deficits after stroke. FastFES training was provided for 12 weeks at a frequency of 3 sessions per week and 30 minutes per session. Measures of gait mechanics, functional balance, short- and long-distance walking function, and self-perceived participation were collected at baseline, posttraining, and 3-month follow-up evaluations. Changes after treatment were assessed using pairwise comparisons and compared with known minimal clinically important differences or minimal detectable changes. Correlation analyses were run to determine the correlation between baseline clinical and biomechanical performance versus improvements in walking speed. Twelve of the 13 subjects that were recruited completed the training. Improvements in paretic propulsion were accompanied by improvements in functional balance, walking function, and self-perceived participation (each Pstudy of this promising locomotor intervention for persons poststroke. Copyright © 2014 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  7. Poststroke Hemiparesis Impairs the Rate but not Magnitude of Adaptation of Spatial and Temporal Locomotor Features

    Science.gov (United States)

    Savin, Douglas N.; Tseng, Shih-Chiao; Whitall, Jill; Morton, Susanne M.

    2015-01-01

    Background Persons with stroke and hemiparesis walk with a characteristic pattern of spatial and temporal asymmetry that is resistant to most traditional interventions. It was recently shown in nondisabled persons that the degree of walking symmetry can be readily altered via locomotor adaptation. However, it is unclear whether stroke-related brain damage affects the ability to adapt spatial or temporal gait symmetry. Objective Determine whether locomotor adaptation to a novel swing phase perturbation is impaired in persons with chronic stroke and hemiparesis. Methods Participants with ischemic stroke (14) and nondisabled controls (12) walked on a treadmill before, during, and after adaptation to a unilateral perturbing weight that resisted forward leg movement. Leg kinematics were measured bilaterally, including step length and single-limb support (SLS) time symmetry, limb angle center of oscillation, and interlimb phasing, and magnitude of “initial” and “late” locomotor adaptation rates were determined. Results All participants had similar magnitudes of adaptation and similar initial adaptation rates both spatially and temporally. All 14 participants with stroke and baseline asymmetry temporarily walked with improved SLS time symmetry after adaptation. However, late adaptation rates poststroke were decreased (took more strides to achieve adaptation) compared with controls. Conclusions Mild to moderate hemiparesis does not interfere with the initial acquisition of novel symmetrical gait patterns in both the spatial and temporal domains, though it does disrupt the rate at which “late” adaptive changes are produced. Impairment of the late, slow phase of learning may be an important rehabilitation consideration in this patient population. PMID:22367915

  8. Treatment of post-stroke dysphagia by vitalstim therapy coupled with conventional swallowing training.

    Science.gov (United States)

    Xia, Wenguang; Zheng, Chanjuan; Lei, Qingtao; Tang, Zhouping; Hua, Qiang; Zhang, Yangpu; Zhu, Suiqiang

    2011-02-01

    To investigate the effects of VitalStim therapy coupled with conventional swallowing training on recovery of post-stroke dysphagia, a total of 120 patients with post-stroke dysphagia were randomly and evenly divided into three groups: conventional swallowing therapy group, VitalStim therapy group, and VitalStim therapy plus conventional swallowing therapy group. Prior to and after the treatment, signals of surface electromyography (sEMG) of swallowing muscles were detected, swallowing function was evaluated by using the Standardized Swallowing Assessment (SSA) and Videofluoroscopic Swallowing Study (VFSS) tests, and swallowing-related quality of life (SWAL-QOL) was evaluated using the SWAL-QOL questionnaire. There were significant differences in sEMG value, SSA, VFSS, and SWAL-QOL scores in each group between prior to and after treatment. After 4-week treatment, sEMG value, SSA, VFSS and SWAL-QOL scores were significantly greater in the VitalStim therapy plus conventional swallowing training group than in the conventional swallowing training group and VitalStim therapy group, but no significant difference existed between conventional swallowing therapy group and VitalStim therapy group. It was concluded that VitalStim therapy coupled with conventional swallowing training was conducive to recovery of post-stroke dysphagia.

  9. Is Pelvic Floor Muscle Training Effective for Men With Poststroke Lower Urinary Tract Symptoms?

    DEFF Research Database (Denmark)

    Tibaek, Sigrid; Gard, Gunvor; Dehlendorff, Christian

    2017-01-01

    The aim of the current study was to evaluate the effect of pelvic floor muscle training in men with poststroke lower urinary tract symptoms. Thirty-one poststroke men, median age 68 years, were included in this single-blinded randomized controlled trial. Thirty participants, 15 in each group......, completed the study. The intervention consisted of 3 months (12 weekly sessions) of pelvic floor muscle training in groups and home exercises. The effect was evaluated by the DAN-PSS-1 (Danish Prostate Symptom Score) questionnaire, a voiding diary, and digital anal palpation of the pelvic floor muscle...... that pelvic floor muscle training has an effect for lower urinary tract symptoms, although statistical significance was only seen for pelvic floor muscle....

  10. Perturbation training to promote safe independent mobility post-stroke: study protocol for a randomized controlled trial

    OpenAIRE

    Mansfield, Avril; Aqui, Anthony; Centen, Andrew; Danells, Cynthia J.; DePaul, Vincent G.; Knorr, Svetlana; Schinkel-Ivy, Alison; Brooks, Dina; Inness, Elizabeth L.; McIlroy, William E.; Mochizuki, George

    2015-01-01

    Background Falls are one of the most common medical complications post-stroke. Physical exercise, particularly exercise that challenges balance, reduces the risk of falls among healthy and frail older adults. However, exercise has not proven effective for preventing falls post-stroke. Falls ultimately occur when an individual fails to recover from a loss of balance. Thus, training to specifically improve reactive balance control could prevent falls. Perturbation training aims to improve react...

  11. The peacock train does not handicap cursorial locomotor performance

    Science.gov (United States)

    Thavarajah, Nathan K.; Tickle, Peter G.; Nudds, Robert L.; Codd, Jonathan R.

    2016-01-01

    Exaggerated traits, like the peacock train, are recognized as classic examples of sexual selection. The evolution of sexual traits is often considered paradoxical as, although they enhance reproductive success, they are widely presumed to hinder movement and survival. Many exaggerated traits represent an additional mechanical load that must be carried by the animal and therefore may influence the metabolic cost of locomotion and constrain locomotor performance. Here we conducted respirometry experiments on peacocks and demonstrate that the exaggerated sexually selected train does not compromise locomotor performance in terms of the metabolic cost of locomotion and its kinematics. Indeed, peacocks with trains had a lower absolute and mass specific metabolic cost of locomotion. Our findings suggest that adaptations that mitigate any costs associated with exaggerated morphology are central in the evolution of sexually selected traits. PMID:27805067

  12. A cable-driven locomotor training system for restoration of gait in human SCI.

    Science.gov (United States)

    Wu, Ming; Hornby, T George; Landry, Jill M; Roth, Heidi; Schmit, Brian D

    2011-02-01

    A novel cable-driven robotic locomotor training system was developed to provide compliant assistance/resistance forces to the legs during treadmill training in patients with incomplete spinal cord injury (SCI). Eleven subjects with incomplete SCI were recruited to participate in two experiments to test the feasibility of the robotic gait training system. Specifically, 10 subjects participated in one experimental session to test the characteristics of the robotic gait training system and one subject participated in repeated testing sessions over 8 weeks with the robotic device to test improvements in locomotor function. Limb kinematics were recorded in one experiment to evaluate the system characteristics of the cable-driven locomotor trainer and the overground gait speed and 6 min walking distance were evaluated at pre, 4 and 8 weeks post treadmill training of a single subject as well. The results indicated that the cable driven robotic gait training system improved the kinematic performance of the leg during treadmill walking and had no significant impact on the variability of lower leg trajectory, suggesting a high backdrivability of the cable system. In addition, results from a patient with incomplete SCI indicated that prolonged robotic gait training using the cable robot improved overground gait speed. Results from this study suggested that a cable driven robotic gait training system is effective in improving leg kinematic performance, yet allows variability of gait kinematics. Thus, it seems feasible to improve the locomotor function in human SCI using this cable driven robotic system, warranting testing with a larger group of patients. Copyright © 2010 Elsevier B.V. All rights reserved.

  13. Slow Versus Fast Robot-Assisted Locomotor Training After Severe Stroke: A Randomized Controlled Trial.

    Science.gov (United States)

    Rodrigues, Thais Amanda; Goroso, Daniel Gustavo; Westgate, Philip M; Carrico, Cheryl; Batistella, Linamara R; Sawaki, Lumy

    2017-10-01

    Robot-assisted locomotor training on a bodyweight-supported treadmill is a rehabilitation intervention that compels repetitive practice of gait movements. Standard treadmill speed may elicit rhythmic movements generated primarily by spinal circuits. Slower-than-standard treadmill speed may elicit discrete movements, which are more complex than rhythmic movements and involve cortical areas. Compare effects of fast (i.e., rhythmic) versus slow (i.e., discrete) robot-assisted locomotor training on a bodyweight-supported treadmill in subjects with chronic, severe gait deficit after stroke. Subjects (N = 18) were randomized to receive 30 sessions (5 d/wk) of either fast or slow robot-assisted locomotor training on a bodyweight-supported treadmill in an inpatient setting. Functional ambulation category, time up and go, 6-min walk test, 10-m walk test, Berg Balance Scale, and Fugl-Meyer Assessment were administered at baseline and postintervention. The slow group had statistically significant improvement on functional ambulation category (first quartile-third quartile, P = 0.004), 6-min walk test (95% confidence interval [CI] = 1.8 to 49.0, P = 0.040), Berg Balance Scale (95% CI = 7.4 to 14.8, P locomotor training on a bodyweight-supported treadmill after severe stroke, slow training targeting discrete movement may yield greater benefit than fast training.

  14. Altered Patterns of Reflex Excitability, Balance, and Locomotion Following Spinal Cord Injury (SCI and Locomotor Training.

    Directory of Open Access Journals (Sweden)

    Prodip K Bose

    2012-07-01

    Full Text Available Spasticity is an important problem that complicates daily living in many individuals with SCI. While previous studies in human and animals revealed significant improvements in locomotor ability with treadmill locomotor training, it is not known to what extent locomotor training influences spasticity. In addition, it would be of considerable practical interest to know how the more ergonomically feasible cycle training compares with treadmill training as therapy to manage SCI-induced spasticity and to improve locomotor function. Our present studies were initiated to evaluate the influence of different types of locomotor training on measures of limb spasticity, gait, and reflex components that contribute to locomotion. For these studies, thirty animals received midthoracic SCI using the standard MASCIS protocol (10 g 2.5 cm weight drop. They were divided randomly into three equal groups: control (contused untrained, contused treadmill trained, and contused cycle trained. Velocity-dependent ankle torque was tested across a wide range of velocities (612 – 49 deg/sec to permit quantitation of tonic (low velocity and dynamic (high velocity contributions to lower limb spasticity. Treadmill and cycle training were started on post-injury day 8. By post-injury weeks 4 and 6, the untrained group revealed significant velocity-dependent ankle extensor spasticity, compared to pre-surgical control values. At these post-injury time points, spasticity was not observed in either of the two training groups. Instead, a significantly milder form of velocity dependent spasticity was detected at postcontusion week 8 through 12 in both treadmill and bicycle training groups at the four fastest ankle rotation velocities (350 - 612 deg/sec. Locomotor training using treadmill or bicycle also produced significant increase in the rate of recovery of limb placement measures (limb axis, base of support, and BBB and reflex rate depression, a quantitative assessment of

  15. Improved gait after repetitive locomotor training in children with cerebral palsy.

    Science.gov (United States)

    Smania, Nicola; Bonetti, Paola; Gandolfi, Marialuisa; Cosentino, Alessandro; Waldner, Andreas; Hesse, Stefan; Werner, Cordula; Bisoffi, Giulia; Geroin, Christian; Munari, Daniele

    2011-02-01

    The aim of this study was to evaluate the effectiveness of repetitive locomotor training with an electromechanical gait trainer in children with cerebral palsy. In this randomized controlled trial, 18 ambulatory children with diplegic or tetraplegic cerebral palsy were randomly assigned to an experimental group or a control group. The experimental group received 30 mins of repetitive locomotor training with an applied technology (Gait Trainer GT I) plus 10 mins of passive joint mobilization and stretching exercises. The control group received 40 mins of conventional physiotherapy. Each subject underwent a total of 10 treatment sessions over a 2-wk period. Performance on the 10-m walk test, 6-min walk test, WeeFIM scale, and gait analysis was evaluated by a blinded rater before and after treatment and at 1-mo follow-up. The experimental group showed significant posttreatment improvement on the 10-m walk test, 6-min walk test, hip kinematics, gait speed, and step length, all of which were maintained at the 1-mo follow-up assessment. No significant changes in performance parameters were observed in the control group. Repetitive locomotor training with an electromechanical gait trainer may improve gait velocity, endurance, spatiotemporal, and kinematic gait parameters in patients with cerebral palsy.

  16. Likelihood of myocardial infarction during stroke rehabilitation preceded by cardiovascular screening and an exercise tolerance test: the Locomotor Experience Applied Post-Stroke (LEAPS) trial.

    Science.gov (United States)

    Nadeau, Stephen E; Rose, Dorian Kay; Dobkin, Bruce; Wu, Samuel S; Dai, Yufeng E; Schofield, Richard; Duncan, Pamela W

    2014-12-01

    Coronary artery disease is highly prevalent in patients with stroke, but because revascularization does not improve major clinical outcomes in patients with stable coronary artery disease relative to intensive medical therapy, routine evaluation for this disease is not warranted in stroke patients. However, it might be warranted in patients destined to undergo vigorous physical therapy. The Locomotor Experience Applied Post-Stroke study, a randomized controlled trial of 408 participants that tested the relative efficacy of two rehabilitation techniques on functional walking level, provided the opportunity to address this question. The study aims to test the efficacy of screening for cardiovascular disease and an exercise tolerance test in assuring safety among patients undergoing vigorous rehabilitation for gait impairment. All participants were screened for serious cardiovascular and pulmonary conditions. At six-weeks poststroke, they also completed a cardiovascular screening inventory and underwent an exercise tolerance test involving bicycle ergometry. Participants received 36, 90-min sessions of a prescribed physical therapy (three per week), initiated at either two-months or six-months poststroke. Twenty-nine participants were excluded on the basis of the cardiac screening questionnaire, and 15 failed the exercise tolerance test for cardiovascular reasons. No participant experienced a cardiac event during a treatment session. Two participants experienced myocardial infarctions, but continued in the trial. In three additional participants, myocardial infarctions caused or contributed to death. The combination of a negative cardiac screen and the absence of exercise tolerance test failure appeared to have a high negative predictive value for cardiac events during treatment, despite the likelihood of a high prevalence of coronary artery disease in our population. © 2014 World Stroke Organization.

  17. Perturbation training to promote safe independent mobility post-stroke: study protocol for a randomized controlled trial.

    Science.gov (United States)

    Mansfield, Avril; Aqui, Anthony; Centen, Andrew; Danells, Cynthia J; DePaul, Vincent G; Knorr, Svetlana; Schinkel-Ivy, Alison; Brooks, Dina; Inness, Elizabeth L; McIlroy, William E; Mochizuki, George

    2015-06-06

    Falls are one of the most common medical complications post-stroke. Physical exercise, particularly exercise that challenges balance, reduces the risk of falls among healthy and frail older adults. However, exercise has not proven effective for preventing falls post-stroke. Falls ultimately occur when an individual fails to recover from a loss of balance. Thus, training to specifically improve reactive balance control could prevent falls. Perturbation training aims to improve reactive balance control by repeatedly exposing participants to postural perturbations. There is emerging evidence that perturbation training reduces fall rates among individuals with neurological conditions, such as Parkinson disease. The primary aim of this work is to determine if perturbation-based balance training can reduce occurrence of falls in daily life among individuals with chronic stroke. Secondary objectives are to determine the effect of perturbation training on balance confidence and activity restriction, and functional balance and mobility. Individuals with chronic stroke will be recruited. Participants will be randomly assigned to one of two groups: 1) perturbation training, or 2) 'traditional' balance training. Perturbation training will involve both manual perturbations (e.g., a push or pull from a physiotherapist), and rapid voluntary movements to cause a loss of balance. Training will occur twice per week for 6 weeks. Participants will record falls and activity for 12 months following completion of the training program. Standardized clinical tools will be used to assess functional balance and mobility, and balance confidence before and after training. Falls are a significant problem for those with stroke. Despite the large body of work demonstrating effective interventions, such as exercise, for preventing falls in other populations, there is little evidence for interventions that prevent falls post-stroke. The proposed study will investigate a novel and promising

  18. NeuroRecovery Network provides standardization of locomotor training for persons with incomplete spinal cord injury.

    Science.gov (United States)

    Morrison, Sarah A; Forrest, Gail F; VanHiel, Leslie R; Davé, Michele; D'Urso, Denise

    2012-09-01

    To illustrate the continuity of care afforded by a standardized locomotor training program across a multisite network setting within the Christopher and Dana Reeve Foundation NeuroRecovery Network (NRN). Single patient case study. Two geographically different hospital-based outpatient facilities. This case highlights a 25-year-old man diagnosed with C4 motor incomplete spinal cord injury with American Spinal Injury Association Impairment Scale grade D. Standardized locomotor training program 5 sessions per week for 1.5 hours per session, for a total of 100 treatment sessions, with 40 sessions at 1 center and 60 at another. Ten-meter walk test and 6-minute walk test were assessed at admission and discharge across both facilities. For each of the 100 treatment sessions percent body weight support, average, and maximum treadmill speed were evaluated. Locomotor endurance, as measured by the 6-minute walk test, and overground gait speed showed consistent improvement from admission to discharge. Throughout training, the patient decreased the need for body weight support and was able to tolerate faster treadmill speeds. Data indicate that the patient continued to improve on both treatment parameters and walking function. Standardization across the NRN centers provided a mechanism for delivering consistent and reproducible locomotor training programs across 2 facilities without disrupting training or recovery progression. Copyright © 2012 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  19. A Challenge-Based Approach to Body Weight-Supported Treadmill Training Poststroke: Protocol for a Randomized Controlled Trial.

    Science.gov (United States)

    Naidu, Avantika; Brown, David; Roth, Elliot

    2018-05-03

    Body weight support treadmill training protocols in conjunction with other modalities are commonly used to improve poststroke balance and walking function. However, typical body weight support paradigms tend to use consistently stable balance conditions, often with handrail support and or manual assistance. In this paper, we describe our study protocol, which involved 2 unique body weight support treadmill training paradigms of similar training intensity that integrated dynamic balance challenges to help improve ambulatory function post stroke. The first paradigm emphasized walking without any handrails or manual assistance, that is, hands-free walking, and served as the control group, whereas the second paradigm incorporated practicing 9 essential challenging mobility skills, akin to environmental barriers encountered during community ambulation along with hands-free walking (ie hands-free + challenge walking). We recruited individuals with chronic poststroke hemiparesis and randomized them to either group. Participants trained for 6 weeks on a self-driven, robotic treadmill interface that provided body weight support and a safe gait-training environment. We assessed participants at pre-, mid- and post 6 weeks of intervention-training, with a 6-month follow-up. We hypothesized greater walking improvements in the hands-free + challenge walking group following training because of increased practice opportunity of essential mobility skills along with hands-free walking. We assessed 77 individuals with chronic hemiparesis, and enrolled and randomized 30 individuals poststroke for our study (hands-free group=19 and hands-free + challenge walking group=20) from June 2012 to January 2015. Data collection along with 6-month follow-up continued until January 2016. Our primary outcome measure is change in comfortable walking speed from pre to post intervention for each group. We will also assess feasibility, adherence, postintervention efficacy, and changes in various

  20. Ankle voluntary movement enhancement following robotic-assisted locomotor training in spinal cord injury

    OpenAIRE

    Varoqui, Deborah; Niu, Xun; Mirbagheri, Mehdi M

    2014-01-01

    Background In incomplete spinal cord injury (iSCI), sensorimotor impairments result in severe limitations to ambulation. To improve walking capacity, physical therapies using robotic-assisted locomotor devices, such as the Lokomat, have been developed. Following locomotor training, an improvement in gait capabilities—characterized by increases in the over-ground walking speed and endurance—is generally observed in patients. To better understand the mechanisms underlying these improvements, we...

  1. Role of spared pathways in locomotor recovery after body-weight-supported treadmill training in contused rats.

    Science.gov (United States)

    Singh, Anita; Balasubramanian, Sriram; Murray, Marion; Lemay, Michel; Houle, John

    2011-12-01

    Body-weight-supported treadmill training (BWSTT)-related locomotor recovery has been shown in spinalized animals. Only a few animal studies have demonstrated locomotor recovery after BWSTT in an incomplete spinal cord injury (SCI) model, such as contusion injury. The contribution of spared descending pathways after BWSTT to behavioral recovery is unclear. Our goal was to evaluate locomotor recovery in contused rats after BWSTT, and to study the role of spared pathways in spinal plasticity after BWSTT. Forty-eight rats received a contusion, a transection, or a contusion followed at 9 weeks by a second transection injury. Half of the animals in the three injury groups were given BWSTT for up to 8 weeks. Kinematics and the Basso-Beattie-Bresnahan (BBB) test assessed behavioral improvements. Changes in Hoffmann-reflex (H-reflex) rate depression property, soleus muscle mass, and sprouting of primary afferent fibers were also evaluated. BWSTT-contused animals showed accelerated locomotor recovery, improved H-reflex properties, reduced muscle atrophy, and decreased sprouting of small caliber afferent fibers. BBB scores were not improved by BWSTT. Untrained contused rats that received a transection exhibited a decrease in kinematic parameters immediately after the transection; in contrast, trained contused rats did not show an immediate decrease in kinematic parameters after transection. This suggests that BWSTT with spared descending pathways leads to neuroplasticity at the lumbar spinal level that is capable of maintaining locomotor activity. Discontinuing training after the transection in the trained contused rats abolished the improved kinematics within 2 weeks and led to a reversal of the improved H-reflex response, increased muscle atrophy, and an increase in primary afferent fiber sprouting. Thus continued training may be required for maintenance of the recovery. Transected animals had no effect of BWSTT, indicating that in the absence of spared pathways this

  2. Gait quality is improved by locomotor training in individuals with SCI regardless of training approach

    NARCIS (Netherlands)

    Nooijen, C.F.J.; ter Hoeve, N.; Field-Fote, E.C.

    2009-01-01

    Background: While various body weight supported locomotor training (BWSLT) approaches are reported in the literature for individuals with spinal cord injury (SCI), none have evaluated outcomes in terms of gait quality. The purpose of this study was to compare changes in measures of gait quality

  3. An Intensive Locomotor Training Paradigm Improves Neuropathic Pain following Spinal Cord Compression Injury in Rats.

    Science.gov (United States)

    Dugan, Elizabeth A; Sagen, Jacqueline

    2015-05-01

    Spinal cord injury (SCI) is often associated with both locomotor deficits and sensory dysfunction, including debilitating neuropathic pain. Unfortunately, current conventional pharmacological, physiological, or psychological treatments provide only marginal relief for more than two-thirds of patients, highlighting the need for improved treatment options. Locomotor training is often prescribed as an adjunct therapy for peripheral neuropathic pain but is rarely used to treat central neuropathic pain. The goal of this study was to evaluate the potential anti-nociceptive benefits of intensive locomotor training (ILT) on neuropathic pain consequent to traumatic SCI. Using a rodent SCI model for central neuropathic pain, ILT was initiated either 5 d after injury prior to development of neuropathic pain symptoms (the "prevention" group) or delayed until pain symptoms fully developed (∼3 weeks post-injury, the "reversal" group). The training protocol consisted of 5 d/week of a ramping protocol that started with 11 m/min for 5 min and increased in speed (+1 m/min/week) and time (1-4 minutes/week) to a maximum of two 20-min sessions/d at 15 m/min by the fourth week of training. ILT prevented and reversed the development of heat hyperalgesia and cold allodynia, as well as reversed developed tactile allodynia, suggesting analgesic benefits not seen with moderate levels of locomotor training. Further, the analgesic benefits of ILT persisted for several weeks once training had been stopped. The unique ability of an ILT protocol to produce robust and sustained anti-nociceptive effects, as assessed by three distinct outcome measures for below-level SCI neuropathic pain, suggests that this adjunct therapeutic approach has great promise in a comprehensive treatment strategy for SCI pain.

  4. Walking during body-weight-supported treadmill training and acute responses to varying walking speed and body-weight support in ambulatory patients post-stroke.

    Science.gov (United States)

    Aaslund, Mona Kristin; Helbostad, Jorunn Lægdheim; Moe-Nilssen, Rolf

    2013-05-01

    Rehabilitating walking in ambulatory patients post-stroke, with training that is safe, task-specific, intensive, and of sufficient duration, can be challenging. Some challenges can be met by using body-weight-supported treadmill training (BWSTT). However, it is not known to what degree walking characteristics are similar during BWSTT and overground walking. In addition, important questions regarding the training protocol of BWSTT remain unanswered, such as how proportion of body-weight support (BWS) and walking speed affect walking characteristics during training. The objective was therefore to investigate if and how kinematic walking characteristics are different between overground walking and treadmill walking with BWS in ambulatory patients post-stroke, and the acute response of altering walking speed and percent BWS during treadmill walking with BWS. A cross-sectional repeated-measures design was used. Ambulating patients post-stroke walked in slow, preferred, and fast walking speed overground and at comparable speeds on the treadmill with 20% and 40% BWS. Kinematic walking characteristics were obtained using a kinematic sensor attached over the lower back. Forty-four patients completed the protocol. Kinematic walking characteristics were similar during treadmill walking with BWS, compared to walking overground. During treadmill walking, choice of walking speed had greater impact on kinematic walking characteristics than proportion of BWS. Faster walking speeds tended to affect the kinematic walking characteristics positively. This implies that in order to train safely and with sufficient intensity and duration, therapists may choose to include BWSTT in walking rehabilitation also for ambulatory patients post-stroke without aggravating gait pattern during training.

  5. Balance and ambulation improvements in individuals with chronic incomplete spinal cord injury using locomotor training-based rehabilitation.

    Science.gov (United States)

    Harkema, Susan J; Schmidt-Read, Mary; Lorenz, Douglas J; Edgerton, V Reggie; Behrman, Andrea L

    2012-09-01

    To evaluate the effects of intensive locomotor training on balance and ambulatory function at enrollment and discharge during outpatient rehabilitation after incomplete SCI. Prospective observational cohort. Seven outpatient rehabilitation centers from the Christopher and Dana Reeve Foundation NeuroRecovery Network (NRN). Patients (N=196) with American Spinal Injury Association Impairment Scale (AIS) grade C or D SCI who received at least 20 locomotor training treatment sessions in the NRN. Intensive locomotor training, including step training using body-weight support and manual facilitation on a treadmill followed by overground assessment and community integration. Berg Balance Scale; Six-Minute Walk Test; 10-Meter Walk Test. Outcome measures at enrollment showed high variability between patients with AIS grades C and D. Significant improvement from enrollment to final evaluation was observed in balance and walking measures for patients with AIS grades C and D. The magnitude of improvement significantly differed between AIS groups for all measures. Time since SCI was not associated significantly with outcome measures at enrollment, but was related inversely to levels of improvement. Significant variability in baseline values of functional outcome measures is evident after SCI in individuals with AIS grades C and D and significant functional recovery can continue to occur even years after injury when provided with locomotor training. These results indicate that rehabilitation, which provides intensive activity-based therapy, can result in functional improvements in individuals with chronic incomplete SCI. Copyright © 2012 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  6. Effects of high-intensity physical training on muscle fiber characteristics in poststroke patients

    DEFF Research Database (Denmark)

    Andersen, Jesper Løvind; Jørgensen, Jørgen R.; Zeeman, Peter

    2017-01-01

    INTRODUCTION: Stroke is a leading cause of disability worldwide. High-intensity physical training can improve muscle strength and gait speed, but adaptive mechanisms at the muscle cellular level are largely unknown. METHODS: Outpatients with poststroke hemiparesis participated in a 3-month...... rehabilitation program combining high-intensity strength and body-weight supported treadmill-training. Biopsies sampled bilaterally from vastus lateralis muscles, before, after, and at 1-year follow-up after intervention, were analyzed for fiber size, type, and capillarization. RESULTS: At baseline, paretic...... lower limbs had smaller muscle fiber size and lower type I and IIA and higher type IIX percentages than nonparetic lower limbs. Paretic lower limbs had increased type IIA fibers after training. At follow-up, no difference between the lower limbs remained. CONCLUSIONS: Although high-intensity training...

  7. Therapeutic effect of acupuncture combining standard swallowing training for post-stroke dysphagia: A prospective cohort study.

    Science.gov (United States)

    Mao, Li-Ya; Li, Li-Li; Mao, Zhong-Nan; Han, Yan-Ping; Zhang, Xiao-Ling; Yao, Jun-Xiao; Li, Ming

    2016-07-01

    To assess the therapeutic effect of acupuncture combining standard swallowing training for patients with dysphagia after stroke. A total of 105 consecutively admitted patients with post-stroke dysphagia in the Affiliated Hospital of Gansu University of Chinese Medicine were included: 50 patients from the Department of Neurology and Rehabilitation received standard swallowing training and acupuncture treatment (acupuncture group); 55 patients from the Department of Neurology received standard swallowing training only (control group). Participants in both groups received 5-day therapy per week for a 4-week period. The primary outcome measures included the scores of Videofluoroscopic Swallow Study (VFSS) and the Standardized Swallowing Assessment (SSA); the secondary outcome measure was the Royal Brisbane Hospital Outcome Measure for Swallowing (RBHOMS), all of which were assessed before and after the 4-week treatment. A total of 98 subjects completed the study (45 in the acupuncture group and 53 in the control group). Significant differences were seen in VFSS, SSA and RBHOMS scores in each group after 4-week treatment as compared with before treatment (Pdysphagia, and acupuncture therapy is worth further investigation in the treatment of post-stroke dysphagia.

  8. Ankle voluntary movement enhancement following robotic-assisted locomotor training in spinal cord injury.

    Science.gov (United States)

    Varoqui, Deborah; Niu, Xun; Mirbagheri, Mehdi M

    2014-03-31

    In incomplete spinal cord injury (iSCI), sensorimotor impairments result in severe limitations to ambulation. To improve walking capacity, physical therapies using robotic-assisted locomotor devices, such as the Lokomat, have been developed. Following locomotor training, an improvement in gait capabilities-characterized by increases in the over-ground walking speed and endurance-is generally observed in patients. To better understand the mechanisms underlying these improvements, we studied the effects of Lokomat training on impaired ankle voluntary movement, known to be an important limiting factor in gait for iSCI patients. Fifteen chronic iSCI subjects performed twelve 1-hour sessions of Lokomat training over the course of a month. The voluntary movement was qualified by measuring active range of motion, maximal velocity peak and trajectory smoothness for the spastic ankle during a movement from full plantar-flexion (PF) to full dorsi-flexion (DF) at the patient's maximum speed. Dorsi- and plantar-flexor muscle strength was quantified by isometric maximal voluntary contraction (MVC). Clinical assessments were also performed using the Timed Up and Go (TUG), the 10-meter walk (10MWT) and the 6-minute walk (6MWT) tests. All evaluations were performed both before and after the training and were compared to a control group of fifteen iSCI patients. After the Lokomat training, the active range of motion, the maximal velocity, and the movement smoothness were significantly improved in the voluntary movement. Patients also exhibited an improvement in the MVC for their ankle dorsi- and plantar-flexor muscles. In terms of functional activity, we observed an enhancement in the mobility (TUG) and the over-ground gait velocity (10MWT) with training. Correlation tests indicated a significant relationship between ankle voluntary movement performance and the walking clinical assessments. The improvements of the kinematic and kinetic parameters of the ankle voluntary movement

  9. Training Enhances Both Locomotor and Cognitive Adaptability to a Novel Sensory Environment

    Science.gov (United States)

    Bloomberg, J. J.; Peters, B. T.; Mulavara, A. P.; Brady, R. A.; Batson, C. D.; Ploutz-Snyder, R. J.; Cohen, H. S.

    2010-01-01

    During adaptation to novel gravitational environments, sensorimotor disturbances have the potential to disrupt the ability of astronauts to perform required mission tasks. The goal of this project is to develop a sensorimotor adaptability (SA) training program to facilitate rapid adaptation. We have developed a unique training system comprised of a treadmill placed on a motion-base facing a virtual visual scene that provides an unstable walking surface combined with incongruent visual flow designed to enhance sensorimotor adaptability. The goal of our present study was to determine if SA training improved both the locomotor and cognitive responses to a novel sensory environment and to quantify the extent to which training would be retained. Methods: Twenty subjects (10 training, 10 control) completed three, 30-minute training sessions during which they walked on the treadmill while receiving discordant support surface and visual input. Control subjects walked on the treadmill but did not receive any support surface or visual alterations. To determine the efficacy of training all subjects performed the Transfer Test upon completion of training. For this test, subjects were exposed to novel visual flow and support surface movement, not previously experienced during training. The Transfer Test was performed 20 minutes, 1 week, 1, 3 and 6 months after the final training session. Stride frequency, auditory reaction time, and heart rate data were collected as measures of postural stability, cognitive effort and anxiety, respectively. Results: Using mixed effects regression methods we determined that subjects who received SA training showed less alterations in stride frequency, auditory reaction time and heart rate compared to controls. Conclusion: Subjects who received SA training improved performance across a number of modalities including enhanced locomotor function, increased multi-tasking capability and reduced anxiety during adaptation to novel discordant sensory

  10. Use of hippotherapy in gait training for hemiparetic post-stroke.

    Science.gov (United States)

    Beinotti, Fernanda; Correia, Nilzete; Christofoletti, Gustavo; Borges, Guilherme

    2010-12-01

    To evaluate the hippotherapy influence on gait training in post-stroke hemiparetic individuals. The study was constituted of 20 individuals divided into two groups. Group A performed the conventional treatment while group B the conventional treatment along with hippotherapy during 16 weeks. The patients were evaluated by using the Functional Ambulation Category Scale, Fugl-Meyer Scale, only the lower limbs and balance sub items, Berg Balance Scale, and functional assessment of gait (cadence) in the beginning and end of the treatment. Significant improvements were observed in the experimental group including motor impairment in lower limbs (p=0.004), balance, over time (p=0.007) but a significant trend between groups (p=0.056). The gait independence, cadence and speed were not significantly in both groups (p=0.93, 0.69 and 0.44). Hippotherapy associated with conventional physical therapy demonstrates a positive influence in gait training, besides bringing the patients' gait standard closer to normality than the control group.

  11. Use of hippotherapy in gait training for hemiparetic post-stroke

    Directory of Open Access Journals (Sweden)

    Fernanda Beinotti

    2010-12-01

    Full Text Available OBJECTIVE: To evaluate the hippotherapy influence on gait training in post-stroke hemiparetic individuals. METHOD: The study was constituted of 20 individuals divided into two groups. Group A performed the conventional treatment while group B the conventional treatment along with hippotherapy during 16 weeks. The patients were evaluated by using the Functional Ambulation Category Scale, Fugl-Meyer Scale, only the lower limbs and balance sub items, Berg Balance Scale, and functional assessment of gait (cadence in the beginning and end of the treatment. RESULTS: Significant improvements were observed in the experimental group including motor impairment in lower limbs (p=0.004, balance, over time (p=0.007 but a significant trend between groups (p=0.056. The gait independence, cadence and speed were not significantly in both groups (p=0.93, 0.69 and 0.44. CONCLUSION: Hippotherapy associated with conventional physical therapy demonstrates a positive influence in gait training, besides bringing the patients' gait standard closer to normality than the control group.

  12. Early application of tail nerve electrical stimulation-induced walking training promotes locomotor recovery in rats with spinal cord injury.

    Science.gov (United States)

    Zhang, S-X; Huang, F; Gates, M; Shen, X; Holmberg, E G

    2016-11-01

    This is a randomized controlled prospective trial with two parallel groups. The objective of this study was to determine whether early application of tail nerve electrical stimulation (TANES)-induced walking training can improve the locomotor function. This study was conducted in SCS Research Center in Colorado, USA. A contusion injury to spinal cord T10 was produced using the New York University impactor device with a 25 -mm height setting in female, adult Long-Evans rats. Injured rats were randomly divided into two groups (n=12 per group). One group was subjected to TANES-induced walking training 2 weeks post injury, and the other group, as control, received no TANES-induced walking training. Restorations of behavior and conduction were assessed using the Basso, Beattie and Bresnahan open-field rating scale, horizontal ladder rung walking test and electrophysiological test (Hoffmann reflex). Early application of TANES-induced walking training significantly improved the recovery of locomotor function and benefited the restoration of Hoffmann reflex. TANES-induced walking training is a useful method to promote locomotor recovery in rats with spinal cord injury.

  13. [Clinical study of post-stroke speech apraxia treated with scalp electric acupuncture under anatomic orientation and rehabilitation training].

    Science.gov (United States)

    Jiang, Yujuan; Yang, Yuxia; Xiang, Rong; Chang, E; Zhang, Yanchun; Zuo, Bingfang; Zhang, Qianwei

    2015-07-01

    To compare the differences in the clinical efficacy on post-stroke speech disorder between scalp electric acupuncture (EA) under anatomic orientation combined with rehabilitation training and simple rehabilitation training. Sixty patients of post-stroke speech apraxia were randomized into an observation group and a control group, 30 cases in each one. In the observation group, under anatomic orientation, the scalp EA was adopted to the dominant hemisphere Broca area on the left cerebrum. Additionally, the speech rehabilitation training was combined. In the control group, the speech rehabilitation training was simply,used. The treatment lasted for 4 weeks totally. The speech movement program module in the psychological language assessment and treatment system of Chinese aphasia was used for the evident of efficacy assessment. The scores of counting, singing scale, repeating phonetic alphabet, repeating monosyllable and repeating disyllable were observed in the patients of the two groups. The assessment was done separately on the day of grouping and 4 weeks after treatment. In 4 weeks of treatment, the scores of counting, singing scale, repeating phonetic alphabet, repeating monosyllable and repeating disyllable were all improved as compared with those before treatment in the two groups (all Pspeech rehabilitation training obviously improves speech apraxia in stroke patients so that the speech disorder cani be relieved. The efficacy is better than that in simple rehabilitation training.

  14. [The application of kinesiotaping for the rehabilitation of the post-stroke patients].

    Science.gov (United States)

    Berezutsky, V I

    2018-05-21

    This review of the scientific literature was designed to consider the prospects for the application of kinesiotaping for the rehabilitation of the post-stroke patients. The relevance of the work arises from the absence of a systemic analysis of the large number of investigations that have been carried out during the past two years. The objective of the present review article was to evaluate the influence of kinesiotaping on the health status of the post-stroke patients and the course of their rehabilitative treatment based on the results of analysis of the scientific reports published during the period from 2015 to 2017. The analysis has demonstrated that the method under consideration makes it possible to effectively reduce spasticity, increase the paretic limb power, improve the static and dynamic balance, and alleviate the pain syndrome by virtue of the ability to improve the articulation proprioception and to regulate the muscle tone. Such effects are known to promote the reduction of muscle tone asymmetry in the patients suffering from hemiparesis and articulation instability which in its turn improves the patients' gait and walking ability, hightens their living standards, and allows to tolerate enhanced physical exertion. Kinesiotaping actually improves the locomotor function in the post-stroke patients Taken together, the advantages of the approach in question give reason to recommend kinesiotaping for the wide application for the combined rehabilitative treatment of the post-stroke patients.

  15. Active robotic training improves locomotor function in a stroke survivor

    Directory of Open Access Journals (Sweden)

    Krishnan Chandramouli

    2012-08-01

    Full Text Available Abstract Background Clinical outcomes after robotic training are often not superior to conventional therapy. One key factor responsible for this is the use of control strategies that provide substantial guidance. This strategy not only leads to a reduction in volitional physical effort, but also interferes with motor relearning. Methods We tested the feasibility of a novel training approach (active robotic training using a powered gait orthosis (Lokomat in mitigating post-stroke gait impairments of a 52-year-old male stroke survivor. This gait training paradigm combined patient-cooperative robot-aided walking with a target-tracking task. The training lasted for 4-weeks (12 visits, 3 × per week. The subject’s neuromotor performance and recovery were evaluated using biomechanical, neuromuscular and clinical measures recorded at various time-points (pre-training, post-training, and 6-weeks after training. Results Active robotic training resulted in considerable increase in target-tracking accuracy and reduction in the kinematic variability of ankle trajectory during robot-aided treadmill walking. These improvements also transferred to overground walking as characterized by larger propulsive forces and more symmetric ground reaction forces (GRFs. Training also resulted in improvements in muscle coordination, which resembled patterns observed in healthy controls. These changes were accompanied by a reduction in motor cortical excitability (MCE of the vastus medialis, medial hamstrings, and gluteus medius muscles during treadmill walking. Importantly, active robotic training resulted in substantial improvements in several standard clinical and functional parameters. These improvements persisted during the follow-up evaluation at 6 weeks. Conclusions The results indicate that active robotic training appears to be a promising way of facilitating gait and physical function in moderately impaired stroke survivors.

  16. Effects of real-time gait biofeedback on paretic propulsion and gait biomechanics in individuals post-stroke.

    Science.gov (United States)

    Genthe, Katlin; Schenck, Christopher; Eicholtz, Steven; Zajac-Cox, Laura; Wolf, Steven; Kesar, Trisha M

    2018-04-01

    Objectives Gait training interventions that target paretic propulsion induce improvements in walking speed and function in individuals post-stroke. Previously, we demonstrated that able-bodied individuals increase propulsion unilaterally when provided real-time biofeedback targeting anterior ground reaction forces (AGRF). The purpose of this study was to, for the first time, investigate short-term effects of real-time AGRF gait biofeedback training on post-stroke gait. Methods Nine individuals with post-stroke hemiparesis (6 females, age = 54 ± 12.4 years 39.2 ± 24.4 months post-stroke) completed three 6-minute training bouts on an instrumented treadmill. During training, visual and auditory biofeedback were provided to increase paretic AGRF during terminal stance. Gait biomechanics were evaluated before training, and during retention tests conducted 2, 15, and 30 minutes post-training. Primary dependent variables were paretic and non-paretic peak AGRF; secondary variables included paretic and non-paretic peak trailing limb angle, plantarflexor moment, and step length. In addition to evaluating the effects of biofeedback training on these dependent variables, we compared effects of a 6-minute biofeedback training bout to a non-biofeedback control condition. Results Compared to pre-training, significantly greater paretic peak AGRFs were generated during the 2, 15, and 30-minute retention tests conducted after the 18-minute biofeedback training session. Biofeedback training induced no significant effects on the non-paretic leg. Comparison of a 6-minute biofeedback training bout with a speed-matched control bout without biofeedback demonstrated a main effect for training type, with greater peak AGRF generation during biofeedback. Discussion Our results suggest that AGRF biofeedback may be a feasible and promising gait training strategy to target propulsive deficits in individuals post-stroke.

  17. Improvements in bladder, bowel and sexual outcomes following task-specific locomotor training in human spinal cord injury.

    Directory of Open Access Journals (Sweden)

    Charles H Hubscher

    Full Text Available Locomotor training (LT as a therapeutic intervention following spinal cord injury (SCI is an effective rehabilitation strategy for improving motor outcomes, but its impact on non-locomotor functions is unknown. Given recent results of our labs' pre-clinical animal SCI LT studies and existing overlap of lumbosacral spinal circuitries controlling pelvic-visceral and locomotor functions, we addressed whether LT can improve bladder, bowel and sexual function in humans at chronic SCI time-points (> two years post-injury.Prospective cohort study; pilot trial with small sample size.Eight SCI research participants who were undergoing 80 daily one-hour sessions of LT on a treadmill using body-weight support, or one-hour of LT and stand training on alternate days, as part of another research study conducted at the Kentucky Spinal Cord Injury Research Center, University of Louisville, were enrolled in this pilot trial. Urodynamic assessments were performed and International Data Set questionnaire forms completed for bladder, bowel and sexual functions at pre-and post-training time points. Four usual care (non-trained; regular at-home routine research participants were also enrolled in this study and had the same assessments collected twice, at least 3 months apart.Filling cystometry documented significant increases in bladder capacity, voiding efficiency and detrusor contraction time as well as significant decreases in voiding pressure post-training relative to baseline. Questionnaires revealed a decrease in the frequency of nocturia and urinary incontinence for several research participants as well as a significant decrease in time required for defecation and a significant increase in sexual desire post-training. No significant differences were found for usual care research participants.These results suggest that an appropriate level of sensory information provided to the spinal cord, generated through task-specific stepping and/or loading, can positively

  18. Locomotor training with body weight support in SCI: EMG improvement is more optimally expressed at a low testing speed.

    Science.gov (United States)

    Meyns, P; Van de Crommert, H W A A; Rijken, H; van Kuppevelt, D H J M; Duysens, J

    2014-12-01

    Case series. To determine the optimal testing speed at which the recovery of the EMG (electromyographic) activity should be assessed during and after body weight supported (BWS) locomotor training. Tertiary hospital, Sint Maartenskliniek, Nijmegen, The Netherlands. Four participants with incomplete chronic SCI were included for BWS locomotor training; one AIS-C and three AIS-D (according to the ASIA (American Spinal Injury Association) Impairment Scale or AIS). All were at least 5 years after injury. The SCI participants were trained three times a week for a period of 6 weeks. They improved their locomotor function in terms of higher walking speed, less BWS and less assistance needed. To investigate which treadmill speed for EMG assessment reflects the functional improvement most adequately, all participants were assessed weekly using the same two speeds (0.5 and 1.5 km h(-1), referred to as low and high speed, respectively) for 6 weeks. The change in root mean square EMG (RMS EMG) was assessed in four leg muscles; biceps femoris, rectus femoris, gastrocnemius medialis and tibialis anterior. The changes in RMS EMG occurred at similar phases of the step cycle for both walking conditions, but these changes were larger when the treadmill was set at a low speed (0.5 km h(-1)). Improvement in gait is feasible with BWS treadmill training even long after injury. The EMG changes after treadmill training are more optimally expressed using a low rather than a high testing treadmill speed.

  19. Short-Term Effects of Whole-Body Vibration Combined with Task-Related Training on Upper Extremity Function, Spasticity, and Grip Strength in Subjects with Poststroke Hemiplegia: A Pilot Randomized Controlled Trial.

    Science.gov (United States)

    Lee, Jung-Sun; Kim, Chang-Yong; Kim, Hyeong-Dong

    2016-08-01

    The aim of this study was to determine the effect of whole-body vibration training combined with task-related training on arm function, spasticity, and grip strength in subjects with poststroke hemiplegia. Forty-five subjects with poststroke were randomly allocated to 3 groups, each with 15 subjects as follows: control group, whole-body vibration group, and whole-body vibration plus task-related training group. Outcome was evaluated by clinical evaluation and measurements of the grip strength before and 4 weeks after intervention. Our results show that there was a significantly greater increase in the Fugl-Meyer scale, maximal grip strength of the affected hand, and grip strength normalized to the less affected hand in subjects undergoing the whole-body vibration training compared with the control group after the test. Furthermore, there was a significantly greater increase in the Wolf motor function test and a decrease in the modified Ashworth spasticity total scores in subjects who underwent whole-body vibration plus task-related training compared with those in the other 2 groups after the test. The findings indicate that the use of whole-body vibration training combined with task-related training has more benefits on the improvement of arm function, spasticity, and maximal grip strength than conventional upper limb training alone or with whole-body vibration in people with poststroke hemiplegia.

  20. Effects of Innovative WALKBOT Robotic-Assisted Locomotor Training on Balance and Gait Recovery in Hemiparetic Stroke: A Prospective, Randomized, Experimenter Blinded Case Control Study With a Four-Week Follow-Up.

    Science.gov (United States)

    Kim, Soo-Yeon; Yang, Li; Park, In Jae; Kim, Eun Joo; JoshuaPark, Min Su; You, Sung Hyun; Kim, Yun-Hee; Ko, Hyun-Yoon; Shin, Yong-Il

    2015-07-01

    The present clinical investigation was to ascertain whether the effects of WALKBOT-assisted locomotor training (WLT) on balance, gait, and motor recovery were superior or similar to the conventional locomotor training (CLT) in patients with hemiparetic stroke. Thirty individuals with hemiparetic stroke were randomly assigned to either WLT or CLT. WLT emphasized on a progressive, conventional locomotor retraining practice (40 min) combined with the WALKBOT-assisted, haptic guidance and random variable locomotor training (40 min) whereas CLT involved conventional physical therapy alone (80 min). Both intervention dosages were standardized and provided for 80 min, five days/week for four weeks. Clinical outcomes included function ambulation category (FAC), Berg balance scale (BBS), Korean modified Barthel index (K-MBI), modified Ashworth scale (MAS), and EuroQol-5 dimension (EQ-5D) before and after the four-week program as well as at follow-up four weeks after the intervention. Two-way repeated measure ANOVA showed significant interaction effect (time × group) for FAC (p=0.02), BBS (p=0.03) , and K-MBI (p=0.00) across the pre-training, post-training, and follow-up tests, indicating that WLT was more beneficial for balance, gait and daily activity function than CLT alone. However, no significant difference in other variables was observed. This is the first clinical trial that highlights the superior, augmented effects of the WALKBOT-assisted locomotor training on balance, gait and motor recovery when compared to the conventional locomotor training alone in patients with hemiparetic stroke.

  1. Cerebellar Fastigial Nucleus Electrical Stimulation Alleviates Depressive-Like Behaviors in Post-Stroke Depression Rat Model and Potential Mechanisms

    Directory of Open Access Journals (Sweden)

    Lei Zhang

    2017-03-01

    Full Text Available Objective: To identify the molecular mechanism of post-stroke depression (PSD, and observe the therapeutic effects of cerebellar fastigial nucleus electrical stimulation (FNS on the behaviors and regional cerebral blood flow (rCBF in a PSD rat model. Methods: Healthy SD rats were randomly divided into four groups (sham, stroke, post-stroke depress and FNS group. Sham group (n = 6 underwent sham operation. The other three groups (n = 6*3 underwent MCAO. Rats were examined twice a week in open filed test. Moreover, neuroprotective effect on cerebellar Purkinje cells and expression of cytokines in hippocampal tissue were examined. Results: The PSD group showed a significant weight loss, decreased consumption of sucrose water, reduced rearing and locomotor activities. The FNS significantly alleviates the body weight loss and sucrose preference, locomotor and rearing activities. The bilateral rCBF was also restored after FNS treatment. Moreover, FNS improved the neuroprotection via suppressing apoptosis of cerebellar Purkinje cells. And the inflammatory cytokines mRNA level in hippocampus was significantly decreased. Conclusion: FNS treatment alleviates depressive-like behaviors and rCBF in PSD rats model, which could be attributed to its ability to protect cerebellar Purkinje cells and decrease the mRNA level of inflammatory cytokines.

  2. Locomotor circumvention strategies are altered by stroke: II. Postural Coordination.

    Science.gov (United States)

    Darekar, Anuja; Lamontagne, Anouk; Fung, Joyce

    2017-06-15

    Locomotor strategies for obstacle circumvention require appropriate postural coordination that depends on sensorimotor integration within the central nervous system. It is not known how these strategies are affected by a stroke. The objective of this study was to contrast postural coordination strategies used for obstacle circumvention between post-stroke participants (n = 12) and healthy controls (n = 12). Participants walked towards a target in a virtual environment (11 × 8 m room) with cylindrical obstacles that were stationary or approaching from head-on, or diagonally 30° left/right. Two stepping strategies for obstacle circumvention were identified: 1) side step: increase in step width by the foot ipsilateral to the side of circumvention; 2) cross step: decrease in step width by the foot contralateral to the side of circumvention. The side step strategy was favoured by post-stroke individuals in circumventing stationary and head-on approaching obstacles. In circumventing diagonally approaching obstacles, healthy controls generally veered opposite to obstacle approach (>60% trials), whereas the majority of post-stroke participants (7/12) veered to the same side of obstacle approach (V same ). Post-stroke participants who veered to the opposite side (V opp , 5/12) were more independent and faster ambulators who favoured the side step strategy in circumventing obstacles approaching from the paretic side and cross step strategy for obstacles approaching from the non-paretic side. V same participants generally favoured the side step strategy for both diagonal approaches. Segmental rotation amplitudes and latencies were largest in the V same group, and significantly greater in post-stroke participants than controls for all obstacle conditions. All participants initiated circumvention with the feet followed by the pelvis and thorax, demonstrating a caudal-rostral sequence of reorientation. Postural coordination strategies for obstacle circumvention

  3. The Use of Cuff Weights for Aquatic Gait Training in People Post-Stroke with Hemiparesis.

    Science.gov (United States)

    Nishiyori, Ryota; Lai, Byron; Lee, Do Kyeong; Vrongistinos, Konstantinos; Jung, Taeyou

    2016-03-01

    This study aimed to examine how spatiotemporal and kinematic gait variables are influenced by the application of a cuff weight during aquatic walking in people post-stroke. The secondary purpose was to compare the differences in gait responses between the placements of cuff weights on the proximal (knee weight) and distal end (ankle weight) of the shank. Twenty-one participants post-stroke with hemiparesis aged 66.3 ± 11.3 years participated in a cross-sectional comparative study. Participants completed two aquatic walking trials at their self-selected maximum walking speed across an 8-m walkway under each of the three conditions: 1) walking with a knee weight; 2) walking with an ankle weight; and 3) walking with no weight. Cuff weights were worn on the paretic leg of each participant. Gait speed, cadence, step width and joint kinematics of the hip, knee and ankle joints were recorded by a customized three-dimensional underwater motion analysis system. Mean aquatic walking speeds significantly increased with the use of cuff weights when compared to walking with no weight. Changes in gait variables were found in the non-paretic leg with the addition of weight, while no significant changes were found in the paretic leg. The results suggest that the use of additional weight can be helpful if the goal of gait training is to improve walking speed of people post-stroke during pool floor walking. However, it is interesting to note that changes in gait variables were not found in the paretic limb where favourable responses were expected to occur. Copyright © 2014 John Wiley & Sons, Ltd.

  4. Improvements in bladder, bowel and sexual outcomes following task-specific locomotor training in human spinal cord injury

    Science.gov (United States)

    Williams, Carolyn S.; Montgomery, Lynnette R.; Willhite, Andrea M.; Angeli, Claudia A.; Harkema, Susan J.

    2018-01-01

    Objective Locomotor training (LT) as a therapeutic intervention following spinal cord injury (SCI) is an effective rehabilitation strategy for improving motor outcomes, but its impact on non-locomotor functions is unknown. Given recent results of our labs’ pre-clinical animal SCI LT studies and existing overlap of lumbosacral spinal circuitries controlling pelvic-visceral and locomotor functions, we addressed whether LT can improve bladder, bowel and sexual function in humans at chronic SCI time-points (> two years post-injury). Study design Prospective cohort study; pilot trial with small sample size. Methods Eight SCI research participants who were undergoing 80 daily one-hour sessions of LT on a treadmill using body-weight support, or one-hour of LT and stand training on alternate days, as part of another research study conducted at the Kentucky Spinal Cord Injury Research Center, University of Louisville, were enrolled in this pilot trial. Urodynamic assessments were performed and International Data Set questionnaire forms completed for bladder, bowel and sexual functions at pre-and post-training time points. Four usual care (non-trained; regular at-home routine) research participants were also enrolled in this study and had the same assessments collected twice, at least 3 months apart. Results Filling cystometry documented significant increases in bladder capacity, voiding efficiency and detrusor contraction time as well as significant decreases in voiding pressure post-training relative to baseline. Questionnaires revealed a decrease in the frequency of nocturia and urinary incontinence for several research participants as well as a significant decrease in time required for defecation and a significant increase in sexual desire post-training. No significant differences were found for usual care research participants. Conclusions These results suggest that an appropriate level of sensory information provided to the spinal cord, generated through task

  5. Feasibility of virtual reality augmented cycling for health promotion of people poststroke.

    Science.gov (United States)

    Deutsch, Judith E; Myslinski, Mary Jane; Kafri, Michal; Ranky, Richard; Sivak, Mark; Mavroidis, Constantinos; Lewis, Jeffrey A

    2013-09-01

    A virtual reality (VR) augmented cycling kit (VRACK) was developed to address motor control and fitness deficits of individuals with chronic stroke. In this article, we report on the safety, feasibility, and efficacy of using the VR augmented cycling kit to improve cardiorespiratory (CR) fitness of individuals in the chronic phase poststroke. Four individuals with chronic stroke (47-65 years old and ≥3 years poststroke), with residual lower extremity impairments (Fugl-Meyer 24-26/34), who were limited community ambulators (gait speed range 0.56-1.1 m/s) participated in this study. Safety was defined as the absence of adverse events. Feasibility was measured using attendance, total exercise time, and "involvement" measured with the presence questionnaire (PQ). Efficacy of CR fitness was evaluated using a submaximal bicycle ergometer test before and after an 8-week training program. The intervention was safe and feasible with participants having 1 adverse event, 100% adherence, achieving between 90 and 125 minutes of cycling each week, and a mean PQ score of 39 (SD 3.3). There was a statistically significant (13%; P = 0.035) improvement in peak VO(2), with a range of 6% to 24.5%. For these individuals, poststroke, VR augmented cycling, using their heart rate to set their avatar's speed, fostered training of sufficient duration and intensity to promote CR fitness. In addition, there was a transfer of training from the bicycle to walking endurance. VR augmented cycling may be an addition to the therapist's tools for concurrent training of mobility and health promotion of individuals poststroke.

  6. Locomotor circumvention strategies are altered by stroke: I. Obstacle clearance.

    Science.gov (United States)

    Darekar, Anuja; Lamontagne, Anouk; Fung, Joyce

    2017-06-15

    Functional locomotion requires the ability to adapt to environmental challenges such as the presence of stationary or moving obstacles. Difficulties in obstacle circumvention often lead to restricted community ambulation in individuals with stroke. The objective of this study was to contrast obstacle circumvention strategies between post-stroke (n = 12) and healthy individuals (n = 12) performing locomotor and perceptuomotor (joystick navigation) tasks with different obstacle approaches. Participants walked and navigated with a joystick towards a central target, in a virtual environment simulating a large room, while avoiding an obstacle that either remained stationary at the pre-determined point of intersection or moved from head-on or diagonally 30° left/right. The outcome measures included dynamic clearance (DC), instantaneous distance from obstacle at crossing (IDC), number of collisions and preferred side of circumvention. These measures were compared between groups (stroke vs. healthy), obstacle parameter (stationary vs. moving head-on) and direction of approach (left/paretic vs. right/non-paretic). DC was significantly larger when circumventing a moving obstacle that approached head-on as compared to a stationary obstacle for both groups during both tasks, while not significantly different in either diagonal approach in either group. IDC was smaller in the stroke group while walking and larger in both groups during joystick navigation when avoiding moving as compared to stationary obstacle. IDC was significantly larger in the stroke group compared to controls for diagonal approaches during walking, wherein two different strategies emerged amongst individuals with stroke: circumventing to the same (V same n = 6) or opposite (V opp n = 4) side of obstacle approach. This behavior was not seen in the perceptuomotor task, wherein post-stroke participants circumvented to opposite side of the obstacle approach as seen in healthy participants. In the

  7. Effect of the treadmill training factors on the locomotor ability after space flight

    Science.gov (United States)

    Lysova, Nataliya; Fomina, Elena

    Training on the treadmill constitutes the central component of the Russian system of countermeasures against the negative effects of microgravity. Effectiveness of the treadmill training is influenced by three main factors. Namely, these are intensity (velocity and regularity), axial loading with the use of elastic bungee cords and percentage of time for training on the non-motorized treadmill within the overall training program. Previously we have demonstrated the significance of each factor separately: intensity (Kozlovskaya I.B. et al., 2011), passive mode (Fomina E.V. et al., 2012) and axial loading (Fomina E.V. et al., 2013). The Russian system of in-flight countermeasures gives preference to interval training sessions in which walking alternates with short episodes of intensive running. Locomotion on the non-motorized treadmill should make approx. 30% of the total time of locomotor training. The ISS RS treadmill can be utilized with the motor in motion (active mode) or out of motion so that the cosmonaut has to push the belt with his feet (passive mode). Axial loading of the cosmonaut must be 60-70% of his body weight. However, there is a huge variety of strategies cosmonauts choose of when they exercise on the treadmill in the course of long-duration ISS missions. Purpose of the investigation was comparative analysis of different locomotion training regimens from the standpoint of their effectiveness in microgravity. Criteria of effectiveness evaluation were the results of the locomotion test that includes walking along the fixed support at the preset rate of 90 steps/min. Peak amplitude on the m. soleus electromyogram was analyzed. The experiment was performed with participation of 18 Russian members of extended ISS missions. Each locomotion training factors was rated using the score scale from 0 to 10: Intensity (0 to 10), Percentage of passive mode training (recommended 30% was taken as 10 and could go down to 0 if the passive mode was not applied) and

  8. Improved clinical status, quality of life, and walking capacity in Parkinson's disease after body weight-supported high-intensity locomotor training

    DEFF Research Database (Denmark)

    Rose, Martin Høyer; Løkkegaard, Annemette; Sonne-Holm, Stig

    2013-01-01

    OBJECTIVE: To evaluate the effect of body weight-supported progressive high-intensity locomotor training in Parkinson's disease (PD) on (1) clinical status; (2) quality of life; and (3) gait capacity. DESIGN: Open-label, fixed sequence crossover study. SETTING: University motor control laboratory......±93 to 637±90m. CONCLUSIONS: Body weight-supported progressive high-intensity locomotor training is feasible and well tolerated by patients with PD. The training improved clinical status, quality of life, and gait capacity significantly....... were found in all outcome measures compared with the control period. Total MDS-UPDRS score changed from (mean ± 1SD) 58±18 to 47±18, MDS-UPDRS motor part score changed from 35±10 to 29±12, PDQ-39 summary index score changed from 22±13 to 13±12, and the six-minute walking distance changed from 576...

  9. Corticospinal Reorganization after Locomotor Training in a Person with Motor Incomplete Paraplegia

    Directory of Open Access Journals (Sweden)

    Nupur Hajela

    2013-01-01

    Full Text Available Activity-dependent plasticity as a result of reorganization of neural circuits is a fundamental characteristic of the central nervous system that occurs simultaneously in multiple sites. In this study, we established the effects of subthreshold transcranial magnetic stimulation (TMS over the primary motor cortex region on the tibialis anterior (TA long-latency flexion reflex. Neurophysiological tests were conducted before and after robotic gait training in one person with a motor incomplete spinal cord injury (SCI while at rest and during robotic-assisted stepping. The TA flexion reflex was evoked following nonnociceptive sural nerve stimulation and was conditioned by TMS at 0.9 TA motor evoked potential resting threshold at conditioning-test intervals that ranged from 70 to 130 ms. Subthreshold TMS induced a significant facilitation on the TA flexion reflex before training, which was reversed to depression after training with the subject seated at rest. During stepping, corticospinal facilitation of the flexion reflex at early and midstance phases before training was replaced with depression at early and midswing followed by facilitation at late swing after training. These results constitute the first neurophysiologic evidence that locomotor training reorganizes the cortical control of spinal interneuronal circuits that generate patterned motor activity, modifying spinal reflex function, in the chronic lesioned human spinal cord.

  10. What Is Being Trained? How Divergent Forms of Plasticity Compete To Shape Locomotor Recovery after Spinal Cord Injury.

    Science.gov (United States)

    Huie, J Russell; Morioka, Kazuhito; Haefeli, Jenny; Ferguson, Adam R

    2017-05-15

    Spinal cord injury (SCI) is a devastating syndrome that produces dysfunction in motor and sensory systems, manifesting as chronic paralysis, sensory changes, and pain disorders. The multi-faceted and heterogeneous nature of SCI has made effective rehabilitative strategies challenging. Work over the last 40 years has aimed to overcome these obstacles by harnessing the intrinsic plasticity of the spinal cord to improve functional locomotor recovery. Intensive training after SCI facilitates lower extremity function and has shown promise as a tool for retraining the spinal cord by engaging innate locomotor circuitry in the lumbar cord. As new training paradigms evolve, the importance of appropriate afferent input has emerged as a requirement for adaptive plasticity. The integration of kinematic, sensory, and loading force information must be closely monitored and carefully manipulated to optimize training outcomes. Inappropriate peripheral input may produce lasting maladaptive sensory and motor effects, such as central pain and spasticity. Thus, it is important to closely consider the type of afferent input the injured spinal cord receives. Here we review preclinical and clinical input parameters fostering adaptive plasticity, as well as those producing maladaptive plasticity that may undermine neurorehabilitative efforts. We differentiate between passive (hindlimb unloading [HU], limb immobilization) and active (peripheral nociception) forms of aberrant input. Furthermore, we discuss the timing of initiating exposure to afferent input after SCI for promoting functional locomotor recovery. We conclude by presenting a candidate rapid synaptic mechanism for maladaptive plasticity after SCI, offering a pharmacological target for restoring the capacity for adaptive spinal plasticity in real time.

  11. Training in positivity for stroke? A qualitative study of acceptability of use of Positive Mental Training (PosMT) as a tool to assist stroke survivors with post-stroke psychological problems and in coping with rehabilitation.

    Science.gov (United States)

    Mavaddat, Nahal; Ross, Sheila; Dobbin, Alastair; Williams, Kate; Graffy, Jonathan; Mant, Jonathan

    2017-01-01

    Post-stroke psychological problems predict poor recovery, while positive affect enables patients to focus on rehabilitation and may improve functional outcomes. Positive Mental Training (PosMT), a guided self-help audio shows promise as a tool in promoting positivity, optimism and resilience. To assess acceptability of training in positivity with PosMT for prevention and management of post-stroke psychological problems and to help with coping with rehabilitation. A modified PosMT tool consisted of 12 audio tracks each lasting 18 minutes, one listened to every day for a week. Survivors and carers were asked to listen for 4 weeks, but could volunteer to listen for more. Interviews took place about experiences of the tool after 4 and 12 weeks. 10 stroke survivors and 5 carers from Stroke Support Groups in the UK. Three stroke survivors did not engage with the tool. The remainder reported positive physical and psychological benefits including improved relaxation, better sleep and reduced anxiety after four weeks. Survivors who completed the programme gained a positive outlook on the future, increased motivation, confidence and ability to cope with rehabilitation. No adverse effects were reported. The PosMT shows potential as a tool for coping with rehabilitation and overcoming post-stroke psychological problems including anxiety and depression.

  12. A Multiposture Locomotor Training Device with Force-Field Control

    Directory of Open Access Journals (Sweden)

    Jianfeng Sui

    2014-11-01

    Full Text Available This paper introduces a multiposture locomotor training device (MPLTD with a closed-loop control scheme based on joint angle feedback, which is able to overcome various difficulties resulting from mechanical vibration and the weight of trainer to achieve higher accuracy trajectory. By introducing the force-field control scheme used in the closed-loop control, the device can obtain the active-constrained mode including the passive one. The MPLTD is mainly composed of three systems: posture adjusting and weight support system, lower limb exoskeleton system, and control system, of which the lower limb exoskeleton system mainly includes the indifferent equilibrium mechanism with two degrees of freedom (DOF and the driving torque is calculated by the Lagrangian function. In addition, a series of experiments, the weight support and the trajectory accuracy experiment, demonstrate a good performance of mechanical structure and the closed-loop control.

  13. Locomotor training with body weight support in SCI : EMG improvement is more optimally expressed at a low testing speed

    NARCIS (Netherlands)

    Meyns, P.; Van de Crommert, H. W. A. A.; Rijken, H.; van Kuppevelt, D. H. J. M.; Duysens, J.

    2014-01-01

    Study design: Case series. Objectives: To determine the optimal testing speed at which the recovery of the EMG (electromyographic) activity should be assessed during and after body weight supported (BWS) locomotor training. Setting: Tertiary hospital, Sint Maartenskliniek, Nijmegen, The Netherlands.

  14. Cardiorespiratory Responses to Pool Floor Walking in People Poststroke.

    Science.gov (United States)

    Jeng, Brenda; Fujii, Takuto; Lim, Hyosok; Vrongistinos, Konstantinos; Jung, Taeyou

    2018-03-01

    To compare cardiorespiratory responses between pool floor walking and overground walking (OW) in people poststroke. Cross-sectional study. University-based therapeutic exercise facility. Participants (N=28) were comprised of 14 community-dwelling individuals poststroke (5.57±3.57y poststroke) and 14 age- and sex-matched healthy adults (mean age, 58.00±15.51y; male/female ratio, 9:5). Not applicable. A telemetric metabolic system was used to collect cardiorespiratory variables, including oxygen consumption (V˙o 2 ), energy expenditure (EE), and expired volume per unit time (V˙e), during 6-minute walking sessions in chest-depth water and on land at a matched speed, determined by average of maximum walking speed in water. Individuals poststroke elicited no significant differences in cardiorespiratory responses between pool floor walking and OW. However, healthy controls showed significant increases in mean V˙o 2 values by 94%, EE values by 109%, and V˙e values by 94% (all Pstroke group did not. Our results indicate that people poststroke, unlike healthy adults, do not increase EE while walking in water compared with on land. Unlike stationary walking on an aquatic treadmill, forward locomotion during pool floor walking at faster speeds may have increased drag force, which requires greater EE from healthy adults. Without demanding excessive EE, walking in water may offer a naturally supportive environment for gait training in the early stages of rehabilitation. Copyright © 2017 American Congress of Rehabilitation Medicine. All rights reserved.

  15. Dynamic clearance measure to evaluate locomotor and perceptuo-motor strategies used for obstacle circumvention in a virtual environment.

    Science.gov (United States)

    Darekar, Anuja; Lamontagne, Anouk; Fung, Joyce

    2015-04-01

    Circumvention around an obstacle entails a dynamic interaction with the obstacle to maintain a safe clearance. We used a novel mathematical interpolation method based on the modified Shepard's method of Inverse Distance Weighting to compute dynamic clearance that reflected this interaction as well as minimal clearance. This proof-of-principle study included seven young healthy, four post-stroke and four healthy age-matched individuals. A virtual environment designed to assess obstacle circumvention was used to administer a locomotor (walking) and a perceptuo-motor (navigation with a joystick) task. In both tasks, participants were asked to navigate towards a target while avoiding collision with a moving obstacle that approached from either head-on, or 30° left or right. Among young individuals, dynamic clearance did not differ significantly between obstacle approach directions in both tasks. Post-stroke individuals maintained larger and smaller dynamic clearance during the locomotor and the perceptuo-motor task respectively as compared to age-matched controls. Dynamic clearance was larger than minimal distance from the obstacle irrespective of the group, task and obstacle approach direction. Also, in contrast to minimal distance, dynamic clearance can respond differently to different avoidance behaviors. Such a measure can be beneficial in contrasting obstacle avoidance behaviors in different populations with mobility problems. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. [Post-stroke speech disorder treated with acupuncture and psychological intervention combined with rehabilitation training: a randomized controlled trial].

    Science.gov (United States)

    Wang, Ling; Liu, Shao-ming; Liu, Min; Li, Bao-jun; Hui, Zhen-liang; Gao, Xiang

    2011-06-01

    To assess the clinical efficacy on post-stroke speech disorder treated with acupuncture and psychological intervention combined with rehabilitation training. The multi-central randomized controlled study was adopted. One hundred and twenty cases of brain stroke were divided into a speech rehabilitation group (control group), a speech rehabilitation plus acupuncture group (observation group 1) and a speech rehabilitation plus acupuncture combined with psychotherapy group (observation group 2), 40 cases in each one. The rehabilitation training was conducted by a professional speech trainer. In acupuncture treatment, speech function area in scalp acupuncture, Jinjin (EX-HN 12) and Yuye (EX-HN 13) in tongue acupuncture and Lianquan (CV 23) were the basic points. The supplementary points were selected according to syndrome differentiation. Bloodletting method was used in combination with acupuncture. Psychotherapy was applied by the physician in psychiatric department of the hospital. The corresponding programs were used in each group. Examination of Aphasia of Chinese of Beijing Hospital was adopted to observe the oral speech expression, listening comprehension and reading and writing ability. After 21-day treatment, the total effective rate was 92.5% (37/40) in observation group 1, 97.5% (39/40) in observation group 2 and 87.5% (35/40) in control group. The efficacies were similar in comparison among 3 groups. The remarkable effective rate was 15.0% (6/40) in observation group 1, 50.0% (20/40) in observation group 2 and 2.5% (1/40) in control group. The result in observation group 2 was superior to the other two groups (Prehabilitation training is obviously advantageous in the treatment of post-stroke speech disorder.

  17. Satisfaction and perceptions of long-term manual wheelchair users with a spinal cord injury upon completion of a locomotor training program with an overground robotic exoskeleton.

    Science.gov (United States)

    Gagnon, Dany H; Vermette, Martin; Duclos, Cyril; Aubertin-Leheudre, Mylène; Ahmed, Sara; Kairy, Dahlia

    2017-12-19

    The main objectives of this study were to quantify clients' satisfaction and perception upon completion of a locomotor training program with an overground robotic exoskeleton. A group of 14 wheelchair users with a spinal cord injury, who finished a 6-8-week locomotor training program with the robotic exoskeleton (18 training sessions), were invited to complete a web-based electronic questionnaire. This questionnaire encompassed 41 statements organized around seven key domains: overall satisfaction related to the training program, satisfaction related to the overground robotic exoskeleton, satisfaction related to the program attributes, perceived learnability, perceived health benefits and risks and perceived motivation to engage in physical activity. Each statement was rated using a visual analogue scale ranging from "0 = totally disagree" to "100 = completely agree". Overall, respondents unanimously considered themselves satisfied with the locomotor training program with the robotic exoskeleton (95.7 ± 0.7%) and provided positive feedback about the robotic exoskeleton itself (82.3 ± 6.9%), the attributes of the locomotor training program (84.5 ± 6.9%) and their ability to learn to perform sit-stand transfers and walk with the robotic exoskeleton (79.6 ± 17%). Respondents perceived some health benefits (67.9 ± 16.7%) and have reported no fear of developing secondary complications or of potential risk for themselves linked to the use of the robotic exoskeleton (16.7 ± 8.2%). At the end of the program, respondents felt motivated to engage in a regular physical activity program (91.3 ± 0.1%). This study provides new insights on satisfaction and perceptions of wheelchair users while also confirming the relevance to continue to improve such technologies, and informing the development of future clinical trials. Implications for Rehabilitation All long-term manual wheelchair users with a spinal cord injury who participated in the

  18. Development of Testing Methodologies to Evaluate Postflight Locomotor Performance

    Science.gov (United States)

    Mulavara, A. P.; Peters, B. T.; Cohen, H. S.; Richards, J. T.; Miller, C. A.; Brady, R.; Warren, L. E.; Bloomberg, J. J.

    2006-01-01

    Crewmembers experience locomotor and postural instabilities during ambulation on Earth following their return from space flight. Gait training programs designed to facilitate recovery of locomotor function following a transition to a gravitational environment need to be accompanied by relevant assessment methodologies to evaluate their efficacy. The goal of this paper is to demonstrate the operational validity of two tests of locomotor function that were used to evaluate performance after long duration space flight missions on the International Space Station (ISS).

  19. Lower Limb Voluntary Movement Improvement Following a Robot-Assisted Locomotor Training in Spinal Cord Injury

    Directory of Open Access Journals (Sweden)

    Mirbagheri Mehdi

    2011-12-01

    Full Text Available Individuals with spinal cord injury (SCI suffer from severe impairments in voluntary movements. Literature reports a reduction in major kinematic and kinetic parameters of lower limbs’ joints. A body weight support treadmill training with robotic assistance has been widely used to improve lower-extremity function and locomotion in persons with SCI. Our objective was to explore the effects of 4-weeks robot-assisted locomotor training on voluntary movement of the ankle musculature in patients with incomplete SCI. In particular, we aimed to characterize the therapeutic effects of Lokomat training on kinematic measures (range of motion, velocity, smoothness during a dorsiflexion movement. We hypothesized that training would improve these measures. Preliminary results show an improvement of kinematic parameters during ankle dorsiflexion voluntary movement after a 4-weeks training in the major part of our participants. Complementary investigations are in progress to confirm these results and understand underlying mechanisms associated with the recovery.

  20. Neuromodulation of the lumbar spinal locomotor circuit.

    Science.gov (United States)

    AuYong, Nicholas; Lu, Daniel C

    2014-01-01

    The lumbar spinal cord contains the necessary circuitry to independently drive locomotor behaviors. This function is retained following spinal cord injury (SCI) and is amenable to rehabilitation. Although the effectiveness of task-specific training and pharmacologic modulation has been repeatedly demonstrated in animal studies, results from human studies are less striking. Recently, lumbar epidural stimulation (EDS) along with locomotor training was shown to restore weight-bearing function and lower-extremity voluntary control in a chronic, motor-complete human SCI subject. Related animal studies incorporating EDS as part of the therapeutic regiment are also encouraging. EDS is emerging as a promising neuromodulatory tool for SCI. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. A Comparison of Locomotor Therapy Interventions: Partial-Body Weight-Supported Treadmill, Lokomat, and G-EO Training in People With Traumatic Brain Injury.

    Science.gov (United States)

    Esquenazi, Alberto; Lee, Stella; Wikoff, Amanda; Packel, Andrew; Toczylowski, Theresa; Feeley, John

    2017-09-01

    Literature in the application of gait training techniques in persons with traumatic brain injury (TBI) is limited. Current techniques require multiple staff and are physically demanding. The use of a robotic locomotor training may provide improved training capacity for this population. To examine the impact of 3 different modes of locomotor therapy on gait velocity and spatiotemporal symmetry using an end effector robot (G-EO); a robotic exoskeleton (Lokomat), and manual assisted partial-body weight-supported treadmill training (PBWSTT) in participants with traumatic brain injury. Randomized, prospective study. Tertiary rehabilitation hospital. A total of 22 individuals with ≥12 months chronic TBI with hemiparetic pattern able to walk overground without assistance at velocities between 0.2 and 0.6 m/s. Eighteen sessions of 45 minutes of assigned locomotor training. Overground walking self-selected velocity (SSV), maximal velocity (MV), spatiotemporal asymmetry ratio, 6-Minute Walk Test (6MWT), and mobility domain of Stroke Impact Scale (MSIS). Severity in walking dysfunction was similar across groups as determined by walking velocity data. At baseline, participants in the Lokomat group had a baseline velocity that was slightly slower compared with the other groups. Training elicited a statistically significant median increase in SSV for all groups compared with pretraining (Lokomat, P = .04; G-EO, P = .03; and PBWSTT, P = .02) and MV excluding the G-EO group (Lokomat, P = .04; PBWSTT, P = .03 and G-EO, P = .15). There were no pre-post significant differences in swing time, stance time, and step length asymmetry ratios at SSV or MV for any of the interventions. Mean rank in the change of SSV and MV was not statistically significantly different between groups. Participants in the G-EO and PBWSTT groups significantly improved their 6MWT posttraining (P = .04 and .03, respectively). The MSIS significantly improved only for the Lokomat group (P = .04 and .03). The

  2. Cognitive-motor dual-task interference modulates mediolateral dynamic stability during gait in post-stroke individuals.

    Science.gov (United States)

    Tisserand, R; Armand, S; Allali, G; Schnider, A; Baillieul, S

    2018-04-01

    Gait asymmetry and dynamic balance impairments observed in post-stroke individuals increase their risk of fall. Moreover, walking while performing a cognitive task (i.e. dual-task) disturbs the control of balance in post-stroke individuals. Here we investigated the mediolateral dynamic stability in twenty-two community-dwelling participants (12 post-strokes and 10 healthy controls) while walking in single-task (normal gait) and four different dual-tasks (cognitive-motor interference). Positions of the extrapolated center of mass and mediolateral widths of both margin of stability and base of support were extracted from 35 marker trajectories. Post-stroke participants presented larger margin of stability and base of support than controls during single-task (both p dual-task was found between groups. In post-stroke participants, dual-task induced slight modification of the mediolateral stability strategy, as the margin of stability was not different between the two limbs at foot-strike, and significantly reduced the performance in every cognitive task. Post-stroke participants increased their dynamic stability in the frontal plane in single-task by extending their base of support and mainly relying on their non-paretic limb. Under cognitive-motor interference (dual-task), post-stroke participants prioritized dynamic stability over cognitive performance to ensure a safe locomotion. Thus, rehabilitation programs should consider both dynamic balance and dual-task training, even at a chronic delay following stroke, to reduce the risk of fall in post-stroke individuals. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Task-specific ankle robotics gait training after stroke: a randomized pilot study.

    Science.gov (United States)

    Forrester, Larry W; Roy, Anindo; Hafer-Macko, Charlene; Krebs, Hermano I; Macko, Richard F

    2016-06-02

    An unsettled question in the use of robotics for post-stroke gait rehabilitation is whether task-specific locomotor training is more effective than targeting individual joint impairments to improve walking function. The paretic ankle is implicated in gait instability and fall risk, but is difficult to therapeutically isolate and refractory to recovery. We hypothesize that in chronic stroke, treadmill-integrated ankle robotics training is more effective to improve gait function than robotics focused on paretic ankle impairments. Participants with chronic hemiparetic gait were randomized to either six weeks of treadmill-integrated ankle robotics (n = 14) or dose-matched seated ankle robotics (n = 12) videogame training. Selected gait measures were collected at baseline, post-training, and six-week retention. Friedman, and Wilcoxon Sign Rank and Fisher's exact tests evaluated within and between group differences across time, respectively. Six weeks post-training, treadmill robotics proved more effective than seated robotics to increase walking velocity, paretic single support, paretic push-off impulse, and active dorsiflexion range of motion. Treadmill robotics durably improved gait dorsiflexion swing angle leading 6/7 initially requiring ankle braces to self-discarded them, while their unassisted paretic heel-first contacts increased from 44 % to 99.6 %, versus no change in assistive device usage (0/9) following seated robotics. Treadmill-integrated, but not seated ankle robotics training, durably improves gait biomechanics, reversing foot drop, restoring walking propulsion, and establishing safer foot landing in chronic stroke that may reduce reliance on assistive devices. These findings support a task-specific approach integrating adaptive ankle robotics with locomotor training to optimize mobility recovery. NCT01337960. https://clinicaltrials.gov/ct2/show/NCT01337960?term=NCT01337960&rank=1.

  4. Effects of acupuncture and computer-assisted cognitive training for post-stroke attention deficits: study protocol for a randomized controlled trial.

    Science.gov (United States)

    Huang, Jia; McCaskey, Michael A; Yang, Shanli; Ye, Haicheng; Tao, Jing; Jiang, Cai; Schuster-Amft, Corina; Balzer, Christian; Ettlin, Thierry; Schupp, Wilfried; Kulke, Hartwig; Chen, Lidian

    2015-12-02

    A majority of stroke survivors present with cognitive impairments. Attention disturbance, which leads to impaired concentration and overall reduced cognitive functions, is strongly associated with stroke. The clinical efficacy of acupuncture with Baihui (GV20) and Shenting (GV24) as well as computer-assisted cognitive training in stroke and post-stroke cognitive impairment have both been demonstrated in previous studies. To date, no systematic comparison of these exists and the potential beneficial effects of a combined application are yet to be examined. The main objective of this pilot study is to evaluate the effects of computer-assisted cognitive training compared to acupuncture on the outcomes of attention assessments. The second objective is to test the effects of a combined cognitive intervention that incorporates computer-assisted cognitive training and acupuncture (ACoTrain). An international multicentre, single-blinded, randomised controlled pilot trial will be conducted. In a 1:1:1 ratio, 60 inpatients with post-stroke cognitive dysfunction will be randomly allocated into either the acupuncture group, the computer-assisted cognitive training group, or the ACoTrain group in addition to their individual rehabilitation programme. The intervention period of this pilot trial will last 4 weeks (30 minutes per day, 5 days per week, Monday to Friday). The primary outcome is the test battery for attentional performance. The secondary outcomes include the Trail Making Test, Test des Deux Barrages, National Institute of Health Stroke Scale, and Modified Barthel Index for assessment of daily life competence, and the EuroQol Questionnaire for health-related quality of life. This trial mainly focuses on evaluating the effects of computer-assisted cognitive training compared to acupuncture on the outcomes of attention assessments. The results of this pilot trial are expected to provide new insights on how Eastern and Western medicine can complement one another and

  5. Concurrent neuromechanical and functional gains following upper-extremity power training post-stroke

    Directory of Open Access Journals (Sweden)

    Patten Carolynn

    2013-01-01

    Full Text Available Abstract Background Repetitive task practice is argued to drive neural plasticity following stroke. However, current evidence reveals that hemiparetic weakness impairs the capacity to perform, and practice, movements appropriately. Here we investigated how power training (i.e., high-intensity, dynamic resistance training affects recovery of upper-extremity motor function post-stroke. We hypothesized that power training, as a component of upper-extremity rehabilitation, would promote greater functional gains than functional task practice without deleterious consequences. Method Nineteen chronic hemiparetic individuals were studied using a crossover design. All participants received both functional task practice (FTP and HYBRID (combined FTP and power training in random order. Blinded evaluations performed at baseline, following each intervention block and 6-months post-intervention included: Wolf Motor Function Test (WMFT-FAS, Primary Outcome, upper-extremity Fugl-Meyer Motor Assessment, Ashworth Scale, and Functional Independence Measure. Neuromechanical function was evaluated using isometric and dynamic joint torques and concurrent agonist EMG. Biceps stretch reflex responses were evaluated using passive elbow stretches ranging from 60 to 180º/s and determining: EMG onset position threshold, burst duration, burst intensity and passive torque at each speed. Results Primary outcome: Improvements in WMFT-FAS were significantly greater following HYBRID vs. FTP (p = .049, regardless of treatment order. These functional improvements were retained 6-months post-intervention (p = .03. Secondary outcomes: A greater proportion of participants achieved minimally important differences (MID following HYBRID vs. FTP (p = .03. MIDs were retained 6-months post-intervention. Ashworth scores were unchanged (p > .05. Increased maximal isometric joint torque, agonist EMG and peak power were significantly greater following HYBRID vs. FTP (p p

  6. In-Hospital Risk Prediction for Post-stroke Depression. Development and Validation of the Post-stroke Depression Prediction Scale

    NARCIS (Netherlands)

    Thóra Hafsteinsdóttir; Roelof G.A. Ettema; Diederick Grobbee; Prof. Dr. Marieke J. Schuurmans; Janneke van Man-van Ginkel; Eline Lindeman

    2013-01-01

    Background and Purpose—The timely detection of post-stroke depression is complicated by a decreasing length of hospital stay. Therefore, the Post-stroke Depression Prediction Scale was developed and validated. The Post-stroke Depression Prediction Scale is a clinical prediction model for the early

  7. Therapeutic effects of an anti-gravity locomotor training (AlterG) on postural balance and cerebellum structure in children with Cerebral Palsy.

    Science.gov (United States)

    Rasooli, A H; Birgani, P M; Azizi, Sh; Shahrokhi, A; Mirbagheri, M M

    2017-07-01

    We evaluated the therapeutic effects of anti-gravity locomotor treadmill (AlterG) training on postural stability in children with Cerebral Palsy (CP) and spasticity, particularly in the lower extremity. AlterG can facilitate walking by reducing the weight of CP children by up to 80%; it can also help subjects maintain an appropriate posture during the locomotor AlterG training. Thus, we hypothesized that AlterG training, for a sufficient period of time, has a potential to produce cerebellum neuroplasticity, and consequently result in an effective permanent postural stability. AlterG training was given for 45 minutes, three times a week for two months. Postural balance was evaluated using posturography. The parameters of the Romberg based posturography were extracted to quantify the Center of Balance (CoP). The neuroplasticity of Cerebellum was evaluated using a Diffusion Tensor Imaging (DTI). The evaluations were done pre- and post-training. The Fractional Anisotropy (FA) feature was used for quantifying structural changes in the cerebellum. The results showed that AlterG training resulted in an increase in average FA value of the cerebellum white matter following the training. The results of the posturography evaluations showed a consistent improvement in postural stability. These results were consistent in all subjects. Our findings indicated that the improvement in the posture was accompanied with the enhancement of the cerebellum white matter structure. The clinical implication is that AlterG training can be considered a therapeutic tool for an effective and permanent improvement of postural stability in CP children.

  8. Effects of Robot-assisted Gait Training Combined with Functional Electrical Stimulation on Recovery of Locomotor Mobility in Chronic Stroke Patients: A Randomized Controlled Trial.

    Science.gov (United States)

    Bae, Young-Hyeon; Ko, Young Jun; Chang, Won Hyuk; Lee, Ju Hyeok; Lee, Kyeong Bong; Park, Yoo Jung; Ha, Hyun Geun; Kim, Yun-Hee

    2014-12-01

    [Purpose] The purpose of the present study was to investigate the effects of robot-assisted gait training combined with functional electrical stimulation on locomotor recovery in patients with chronic stroke. [Subjects] The 20 subjects were randomly assigned into either an experimental group (n = 10) that received a combination of robot-assisted gait training and functional electrical stimulation on the ankle dorsiflexor of the affected side or a control group (n = 10) that received robot-assisted gait training only. [Methods] Both groups received the respective therapies for 30 min/day, 3 days/week for 5 weeks. The outcome was measured using the Modified Motor Assessment Scale (MMAS), Timed Up-and-Go Test (TUG), Berg Balance Scale (BBS), and gait parameters through gait analysis (Vicon 370 motion analysis system, Oxford Metrics Ltd., Oxford, UK). All the variables were measured before and after training. [Results] Step length and maximal knee extension were significantly greater than those before training in the experimental group only. Maximal Knee flexion showed a significant difference between the experimental and control groups. The MMAS, BBS, and TUG scores improved significantly after training compared with before training in both groups. [Conclusion] We suggest that the combination of robot-assisted gait training and functional electrical stimulation encourages patients to actively participate in training because it facilitates locomotor recovery without the risk of adverse effects.

  9. Improved clinical status, quality of life, and walking capacity in Parkinson's disease after body weight-supported high-intensity locomotor training.

    Science.gov (United States)

    Rose, Martin H; Løkkegaard, Annemette; Sonne-Holm, Stig; Jensen, Bente R

    2013-04-01

    To evaluate the effect of body weight-supported progressive high-intensity locomotor training in Parkinson's disease (PD) on (1) clinical status; (2) quality of life; and (3) gait capacity. Open-label, fixed sequence crossover study. University motor control laboratory. Patients (N=13) with idiopathic PD (Hoehn and Yahr stage 2 or 3) and stable medication use. Patients completed an 8-week (3 × 1h/wk) training program on a lower-body positive-pressure treadmill. Body weight support was used to facilitate increased intensity and motor challenges during treadmill training. The training program contained combinations of (1) running and walking intervals, (2) the use of sudden changes (eg, in body weight support and speed), (3) different types of locomotion (eg, chassé, skipping, and jumps), and (4) sprints at 50 percent body weight. The Movement Disorders Society-Unified Parkinson's Disease Rating Scale (MDS-UPDRS), Parkinson's Disease Questionnaire-39 items (PDQ-39), and the six-minute walk test were conducted 8 weeks before and pre- and posttraining. At the end of training, statistically significant improvements were found in all outcome measures compared with the control period. Total MDS-UPDRS score changed from (mean ± 1SD) 58±18 to 47±18, MDS-UPDRS motor part score changed from 35±10 to 29±12, PDQ-39 summary index score changed from 22±13 to 13±12, and the six-minute walking distance changed from 576±93 to 637±90m. Body weight-supported progressive high-intensity locomotor training is feasible and well tolerated by patients with PD. The training improved clinical status, quality of life, and gait capacity significantly. Copyright © 2013 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  10. Post-stroke cognitive impairment: epidemiology, mechanisms and management

    Science.gov (United States)

    Sun, Jia-Hao

    2014-01-01

    Post-stroke cognitive impairment occurs frequently in the patients with stroke. The prevalence of post-stroke cognitive impairment ranges from 20% to 80%, which varies for the difference between the countries, the races, and the diagnostic criteria. The risk of post-stroke cognitive impairment is related to both the demographic factors like age, education and occupation and vascular factors. The underlying mechanisms of post-stroke cognitive impairment are not known in detail. However, the neuroanatomical lesions caused by the stroke on strategic areas such as the hippocampus and the white matter lesions (WMLs), the cerebral microbleeds (CMBs) due to the small cerebrovascular diseases and the mixed AD with stroke, alone or in combination, contribute to the pathogenesis of post-stroke cognitive impairment. The treatment of post-stroke cognitive impairment may benefit not only from the anti-dementia drugs, but also the manage measures on cerebrovascular diseases. In this review, we will describe the epidemiological features and the mechanisms of post-stroke cognitive impairment, and discuss the promising management strategies for these patients. PMID:25333055

  11. Locomotor activity: A distinctive index in morphine self-administration in rats.

    Science.gov (United States)

    Zhang, Jian-Jun; Kong, Qingyao

    2017-01-01

    Self-administration of addictive drugs is a widely used tool for studying behavioral, neurobiological, and genetic factors in addiction. However, how locomotor activity is affected during self-administration of addictive drugs has not been extensively studied. In our present study, we tested the locomotor activity levels during acquisition, extinction and reinstatement of morphine self-administration in rats. We found that compared with saline self-administration (SA), rats that trained with morphine SA had higher locomotor activity. Rats that successfully acquired SA also showed higher locomotor activity than rats that failed in acquiring SA. Moreover, locomotor activity was correlated with the number of drug infusions but not with the number of inactive pokes. We also tested the locomotor activity in the extinction and the morphine-primed reinstatement session. Interestingly, we found that in the first extinction session, although the number of active pokes did not change, the locomotor activity was significantly lower than in the last acquisition session, and this decrease can be maintained for at least six days. Finally, morphine priming enhanced the locomotor activity during the reinstatement test, regardless of if the active pokes were significantly increased or not. Our results clearly suggest that locomotor activity, which may reflect the pharmacological effects of morphine, is different from drug seeking behavior and is a distinctive index in drug self-administration.

  12. Locomotor activity: A distinctive index in morphine self-administration in rats

    Science.gov (United States)

    Kong, Qingyao

    2017-01-01

    Self-administration of addictive drugs is a widely used tool for studying behavioral, neurobiological, and genetic factors in addiction. However, how locomotor activity is affected during self-administration of addictive drugs has not been extensively studied. In our present study, we tested the locomotor activity levels during acquisition, extinction and reinstatement of morphine self-administration in rats. We found that compared with saline self-administration (SA), rats that trained with morphine SA had higher locomotor activity. Rats that successfully acquired SA also showed higher locomotor activity than rats that failed in acquiring SA. Moreover, locomotor activity was correlated with the number of drug infusions but not with the number of inactive pokes. We also tested the locomotor activity in the extinction and the morphine-primed reinstatement session. Interestingly, we found that in the first extinction session, although the number of active pokes did not change, the locomotor activity was significantly lower than in the last acquisition session, and this decrease can be maintained for at least six days. Finally, morphine priming enhanced the locomotor activity during the reinstatement test, regardless of if the active pokes were significantly increased or not. Our results clearly suggest that locomotor activity, which may reflect the pharmacological effects of morphine, is different from drug seeking behavior and is a distinctive index in drug self-administration. PMID:28380023

  13. Action observation training of community ambulation for improving walking ability of patients with post-stroke hemiparesis: a randomized controlled pilot trial.

    Science.gov (United States)

    Park, Hyun-Ju; Oh, Duck-Won; Choi, Jong-Duk; Kim, Jong-Man; Kim, Suhn-Yeop; Cha, Yong-Jun; Jeon, Su-Jin

    2017-08-01

    To investigate the effects of action observation training involving community-based ambulation for improving walking ability after stroke. Randomized, controlled pilot study. Inpatient rehabilitation hospital. A total of 25 inpatients with post-stroke hemiparesis were randomly assigned to either the experimental group ( n = 12) or control group ( n = 13). Subjects of the experimental group watched video clips demonstrating four-staged ambulation training with a more complex environment factor for 30 minutes, three times a week for four weeks. Meanwhile, subjects of the control group watched video clips, which showed different landscape pictures. Walking function was evaluated before and after the four-week intervention using a 10-m walk test, community walk test, activities-specific balance confidence scale, and spatiotemporal gait measures. Changes in the values for the 10-m walk test (0.17 ±0.19 m/s vs. 0.05 ±0.08 m/s), community walk test (-151.42 ±123.82 seconds vs. 67.08 ±176.77 seconds), and activities-specific balance confidence (6.25 ±5.61 scores vs. 0.72 ±2.24 scores) and the spatiotemporal parameters (i.e. stride length (19.00 ±11.34 cm vs. 3.16 ±11.20 cm), single support (5.87 ±5.13% vs. 0.25 ±5.95%), and velocity (15.66 ±12.34 cm/s vs. 2.96 ±10.54 cm/s)) indicated a significant improvement in the experimental group compared with the control group. In the experimental group, walking function and ambulation confidence was significantly different between the pre- and post-intervention, whereas the control group showed a significant difference only in the 10-m walk test. Action observation training of community ambulation may be favorably used for improving walking function of patients with post-stroke hemiparesis.

  14. Sexual function in post-stroke patients: considerations for rehabilitation.

    Science.gov (United States)

    Rosenbaum, Talli; Vadas, Dor; Kalichman, Leonid

    2014-01-01

    While the rehabilitation goals of post-stroke patients include improving quality of life and returning to functional activities, the extent to which sexual activity is addressed as part of the standard rehabilitation process is unknown. Moreover, the specific sexual concerns of stroke patients, including the effect of stroke on intimate relationships and sexuality of the partner, the ability to physically engage in sex, and the effect of psychological components such as role identity, depression, and anxiety on sexuality, all warrant examination by rehabilitation professionals. The aim of this study is to examine the existing literature on sexuality and stroke patients in order to better understand how the sexual lives of stroke patients and their partners are affected and to provide recommendations to rehabilitation professionals for addressing sexuality as part of treatment. Narrative review, PubMed, PEDro, ISI Web of Science, and Google Scholar databases (inception-December 2012) were searched for the key words "stroke," "sexual dysfunction," "sexuality," "quality of life," and their combination. All relevant articles in English and secondary references were reviewed. We report the results of the literature review. Sexual dysfunction and decreased sexual satisfaction are common in the post-stroke population and are related to physical, psychosocial, and relational factors. However, they are not adequately addressed in post-stroke rehabilitation. As sexual function is an important component to quality of life and activities of daily living, physicians and rehabilitation specialists, including physical, occupational, and speech therapists, should receive training in addressing sexuality in the treatment of post-stroke patients. Sexologists and sex therapists should be an integral part of the rehabilitation team. © 2013 International Society for Sexual Medicine.

  15. Locomotor recovery after spinal cord contusion injury in rats is improved by spontaneous exercise

    NARCIS (Netherlands)

    Gispen, W.H.; Meeteren, N.L. van; Eggers, L.; Lankhorst, A.J.; Hamers, F.P.

    2003-01-01

    We have recently shown that enriched environment (EE) housing significantly enhances locomotor recovery following spinal cord contusion injury (SCI) in rats. As the type and intensity of locomotor training with EE housing are rather poorly characterized, we decided to compare the effectiveness of EE

  16. Distributed plasticity of locomotor pattern generators in spinal cord injured patients.

    Science.gov (United States)

    Grasso, Renato; Ivanenko, Yuri P; Zago, Myrka; Molinari, Marco; Scivoletto, Giorgio; Castellano, Vincenzo; Macellari, Velio; Lacquaniti, Francesco

    2004-05-01

    Recent progress with spinal cord injured (SCI) patients indicates that with training they can recover some locomotor ability. Here we addressed the question of whether locomotor responses developed with training depend on re-activation of the normal motor patterns or whether they depend on learning new motor patterns. To this end we recorded detailed kinematic and EMG data in SCI patients trained to step on a treadmill with body-weight support (BWST), and in healthy subjects. We found that all patients could be trained to step with BWST in the laboratory conditions, but they used new coordinative strategies. Patients with more severe lesions used their arms and body to assist the leg movements via the biomechanical coupling of limb and body segments. In all patients, the phase-relationship of the angular motion of the different lower limb segments was very different from the control, as was the pattern of activity of most recorded muscles. Surprisingly, however, the new motor strategies were quite effective in generating foot motion that closely matched the normal in the laboratory conditions. With training, foot motion recovered the shape, the step-by-step reproducibility, and the two-thirds power relationship between curvature and velocity that characterize normal gait. We mapped the recorded patterns of muscle activity onto the approximate rostrocaudal location of motor neuron pools in the human spinal cord. The reconstructed spatiotemporal maps of motor neuron activity in SCI patients were quite different from those of healthy subjects. At the end of training, the locomotor network reorganized at both supralesional and sublesional levels, from the cervical to the sacral cord segments. We conclude that locomotor responses in SCI patients may not be subserved by changes localized to limited regions of the spinal cord, but may depend on a plastic redistribution of activity across most of the rostrocaudal extent of the spinal cord. Distributed plasticity underlies

  17. Locomotor activity: A distinctive index in morphine self-administration in rats

    OpenAIRE

    Zhang, Jian-Jun; Kong, Qingyao

    2017-01-01

    Self-administration of addictive drugs is a widely used tool for studying behavioral, neurobiological, and genetic factors in addiction. However, how locomotor activity is affected during self-administration of addictive drugs has not been extensively studied. In our present study, we tested the locomotor activity levels during acquisition, extinction and reinstatement of morphine self-administration in rats. We found that compared with saline self-administration (SA), rats that trained with ...

  18. The value of the NDT-Bobath method in post-stroke gait training.

    Science.gov (United States)

    Mikołajewska, Emilia

    2013-01-01

    Stroke is perceived a major cause of disability, including gait disorders. Looking for more effective methods of gait reeducation in post-stroke survivors is one of the most important issues in contemporary neurorehabilitation. Following a stroke, patients suffer from gait disorders. The aim of this paper is to present the outcomes of a study of post-stroke gait reeducation using the NeuroDevelopmental Treatment-Bobath (NDT-Bobath) method. The research was conducted among 60 adult patients who had undergone ischemic stroke. These patients were treated using the NDT-Bobath method. These patients' gait reeducation was assessed using spatio-temporal gait parameters (gait velocity, cadence and stride length). Measurements of these parameters were conducted by the same therapist twice: on admission, and after the tenth session of gait reeducation. Among the 60 patients involved in the study, the results were as follows: in terms of gait velocity, recovery was observed in 39 cases (65%), in terms of cadence, recovery was observed in 39 cases (65%), in terms of stride length, recovery was observed in 50 cases (83.33%). Benefits were observed after short-term therapy, reflected by measurable statistically significant changes in the patients' gait parameters.

  19. Rhythmic auditory stimulation improves gait more than NDT/Bobath training in near-ambulatory patients early poststroke: a single-blind, randomized trial.

    Science.gov (United States)

    Thaut, M H; Leins, A K; Rice, R R; Argstatter, H; Kenyon, G P; McIntosh, G C; Bolay, H V; Fetter, M

    2007-01-01

    The effectiveness of 2 different types of gait training in stroke rehabilitation, rhythmic auditory stimulation (RAS) versus neurodevelopmental therapy (NDT)/Bobath- based training, was compared in 2 groups of hemiparetic stroke patients over a 3-week period of daily training (RAS group, n = 43; NDT/Bobath group =35). Mean entry date into the study was 21.3 days poststroke for the RAS group and 22.3 days for the control group. Patients entered the study as soon as they were able to complete 5 stride cycles with handheld assistance. Patients were closely equated by age, gender, and lesion site. Motor function in both groups was pre-assessed by the Barthel Index and the Fugl-Meyer Scales. Pre- to posttest measures showed a significant improvement in the RAS group for velocity (P = .006), stride length (P = .0001), cadence (P = .0001) and symmetry (P = .0049) over the NDT/Bobath group. Effect sizes for RAS over NDT/Bobath training were 13.1 m/min for velocity, 0.18 m for stride length, and 19 steps/min for cadence. The data show that after 3 weeks of gait training, RAS is an effective therapeutic method to enhance gait training in hemiparetic stroke rehabilitation. Gains were significantly higher for RAS compared to NDT/Bobath training.

  20. Longitudinal Recovery and Reduced Costs After 120 Sessions of Locomotor Training for Motor Incomplete Spinal Cord Injury.

    Science.gov (United States)

    Morrison, Sarah A; Lorenz, Douglas; Eskay, Carol P; Forrest, Gail F; Basso, D Michele

    2018-03-01

    To determine the impact of long-term, body weight-supported locomotor training after chronic, incomplete spinal cord injury (SCI), and to estimate the health care costs related to lost recovery potential and preventable secondary complications that may have occurred because of visit limits imposed by insurers. Prospective observational cohort with longitudinal follow-up. Eight outpatient rehabilitation centers that participate in the Christopher & Dana Reeve Foundation NeuroRecovery Network (NRN). Individuals with motor incomplete chronic SCI (American Spinal Injury Association Impairment Scale C or D; N=69; 0.1-45y after SCI) who completed at least 120 NRN physical therapy sessions. Manually assisted locomotor training (LT) in a body weight-supported treadmill environment, overground standing and stepping activities, and community integration tasks. International Standards for Neurological Classification of Spinal Cord Injury motor and sensory scores, orthostatic hypotension, bowel/bladder/sexual function, Spinal Cord Injury Functional Ambulation Inventory (SCI-FAI), Berg Balance Scale, Modified Functional Reach, 10-m walk test, and 6-minute walk test. Longitudinal outcome measure collection occurred every 20 treatments and at 6- to 12-month follow-up after discharge from therapy. Significant improvement occurred for upper and lower motor strength, functional activities, psychological arousal, sensation of bowel movement, and SCI-FAI community ambulation. Extended training enabled minimal detectable changes at 60, 80, 100, and 120 sessions. After detectable change occurred, it was sustained through 120 sessions and continued 6 to 12 months after treatment. Delivering at least 120 sessions of LT improves recovery from incomplete chronic SCI. Because walking reduces rehospitalization, LT delivered beyond the average 20-session insurance limit can reduce rehospitalizations and long-term health costs. Copyright © 2018 American Congress of Rehabilitation Medicine

  1. Diagnostic Uncertainties in Post-stroke Pain

    NARCIS (Netherlands)

    Roosink, M.; Renzenbrink, G.J.; Van Dongen, R.T.M.; Buitenweg, Jan R.; Geurts, A.C.H.; IJzerman, Maarten Joost

    2008-01-01

    Aim of Investigation Pain is a common complication after stroke. The etiology of post-stroke pain is largely unknown and classification of post-stroke pain subtypes is primarily based on neurological examination and pain assessment. Classification could probably be improved by a better understanding

  2. Twelve month follow-up on a randomised controlled trial of relaxation training for post-stroke anxiety.

    Science.gov (United States)

    Golding, Katherine; Fife-Schaw, Chris; Kneebone, Ian

    2017-09-01

    To follow up participants in a randomised controlled trial of relaxation training for anxiety after stroke at 12 months. Twelve month follow-up to a randomised controlled trial, in which the control group also received treatment. Community. Fifteen of twenty one original participants with post-stroke anxiety participated in a one year follow-up study. A self-help autogenic relaxation CD listened to five times a week for one month, immediately in the intervention group and after three months in the control group. Hospital Anxiety and Depression Scale-Anxiety subscale and the Telephone Interview of Cognitive Status for inclusion. Hospital Anxiety and Depression Scale-Anxiety subscale for outcome. All measures were administered by phone. Anxiety ratings reduced significantly between pre and post-intervention, and between pre-intervention and one year follow-up ( χ 2 (2) = 22.29, p autogenic relaxation CD appear to be maintained after one year.

  3. [Remote intelligent Brunnstrom assessment system for upper limb rehabilitation for post-stroke based on extreme learning machine].

    Science.gov (United States)

    Wang, Yue; Yu, Lei; Fu, Jianming; Fang, Qiang

    2014-04-01

    In order to realize an individualized and specialized rehabilitation assessment of remoteness and intelligence, we set up a remote intelligent assessment system of upper limb movement function of post-stroke patients during rehabilitation. By using the remote rehabilitation training sensors and client data sampling software, we collected and uploaded the gesture data from a patient's forearm and upper arm during rehabilitation training to database of the server. Then a remote intelligent assessment system, which had been developed based on the extreme learning machine (ELM) algorithm and Brunnstrom stage assessment standard, was used to evaluate the gesture data. To evaluate the reliability of the proposed method, a group of 23 stroke patients, whose upper limb movement functions were in different recovery stages, and 4 healthy people, whose upper limb movement functions were normal, were recruited to finish the same training task. The results showed that, compared to that of the experienced rehabilitation expert who used the Brunnstrom stage standard table, the accuracy of the proposed remote Brunnstrom intelligent assessment system can reach a higher level, as 92.1%. The practical effects of surgery have proved that the proposed system could realize the intelligent assessment of upper limb movement function of post-stroke patients remotely, and it could also make the rehabilitation of the post-stroke patients at home or in a community care center possible.

  4. Examination of the Combined Effects of Chondroitinase ABC, Growth Factors and Locomotor Training following Compressive Spinal Cord Injury on Neuroanatomical Plasticity and Kinematics

    Science.gov (United States)

    Alluin, Olivier; Fehlings, Michael G.; Rossignol, Serge; Karimi-Abdolrezaee, Soheila

    2014-01-01

    While several cellular and pharmacological treatments have been evaluated following spinal cord injury (SCI) in animal models, it is increasingly recognized that approaches to address the glial scar, including the use of chondroitinase ABC (ChABC), can facilitate neuroanatomical plasticity. Moreover, increasing evidence suggests that combinatorial strategies are key to unlocking the plasticity that is enabled by ChABC. Given this, we evaluated the anatomical and functional consequences of ChABC in a combinatorial approach that also included growth factor (EGF, FGF2 and PDGF-AA) treatments and daily treadmill training on the recovery of hindlimb locomotion in rats with mid thoracic clip compression SCI. Using quantitative neuroanatomical and kinematic assessments, we demonstrate that the combined therapy significantly enhanced the neuroanatomical plasticity of major descending spinal tracts such as corticospinal and serotonergic-spinal pathways. Additionally, the pharmacological treatment attenuated chronic astrogliosis and inflammation at and adjacent to the lesion with the modest synergistic effects of treadmill training. We also observed a trend for earlier recovery of locomotion accompanied by an improvement of the overall angular excursions in rats treated with ChABC and growth factors in the first 4 weeks after SCI. At the end of the 7-week recovery period, rats from all groups exhibited an impressive spontaneous recovery of the kinematic parameters during locomotion on treadmill. However, although the combinatorial treatment led to clear chronic neuroanatomical plasticity, these structural changes did not translate to an additional long-term improvement of locomotor parameters studied including hindlimb-forelimb coupling. These findings demonstrate the beneficial effects of combined ChABC, growth factors and locomotor training on the plasticity of the injured spinal cord and the potential to induce earlier neurobehavioral recovery. However, additional

  5. Examination of the combined effects of chondroitinase ABC, growth factors and locomotor training following compressive spinal cord injury on neuroanatomical plasticity and kinematics.

    Directory of Open Access Journals (Sweden)

    Olivier Alluin

    Full Text Available While several cellular and pharmacological treatments have been evaluated following spinal cord injury (SCI in animal models, it is increasingly recognized that approaches to address the glial scar, including the use of chondroitinase ABC (ChABC, can facilitate neuroanatomical plasticity. Moreover, increasing evidence suggests that combinatorial strategies are key to unlocking the plasticity that is enabled by ChABC. Given this, we evaluated the anatomical and functional consequences of ChABC in a combinatorial approach that also included growth factor (EGF, FGF2 and PDGF-AA treatments and daily treadmill training on the recovery of hindlimb locomotion in rats with mid thoracic clip compression SCI. Using quantitative neuroanatomical and kinematic assessments, we demonstrate that the combined therapy significantly enhanced the neuroanatomical plasticity of major descending spinal tracts such as corticospinal and serotonergic-spinal pathways. Additionally, the pharmacological treatment attenuated chronic astrogliosis and inflammation at and adjacent to the lesion with the modest synergistic effects of treadmill training. We also observed a trend for earlier recovery of locomotion accompanied by an improvement of the overall angular excursions in rats treated with ChABC and growth factors in the first 4 weeks after SCI. At the end of the 7-week recovery period, rats from all groups exhibited an impressive spontaneous recovery of the kinematic parameters during locomotion on treadmill. However, although the combinatorial treatment led to clear chronic neuroanatomical plasticity, these structural changes did not translate to an additional long-term improvement of locomotor parameters studied including hindlimb-forelimb coupling. These findings demonstrate the beneficial effects of combined ChABC, growth factors and locomotor training on the plasticity of the injured spinal cord and the potential to induce earlier neurobehavioral recovery. However

  6. What is the evidence for physical therapy poststroke? A systematic review and meta-analysis.

    Directory of Open Access Journals (Sweden)

    Janne Marieke Veerbeek

    Full Text Available Physical therapy (PT is one of the key disciplines in interdisciplinary stroke rehabilitation. The aim of this systematic review was to provide an update of the evidence for stroke rehabilitation interventions in the domain of PT.Randomized controlled trials (RCTs regarding PT in stroke rehabilitation were retrieved through a systematic search. Outcomes were classified according to the ICF. RCTs with a low risk of bias were quantitatively analyzed. Differences between phases poststroke were explored in subgroup analyses. A best evidence synthesis was performed for neurological treatment approaches. The search yielded 467 RCTs (N = 25373; median PEDro score 6 [IQR 5-7], identifying 53 interventions. No adverse events were reported. Strong evidence was found for significant positive effects of 13 interventions related to gait, 11 interventions related to arm-hand activities, 1 intervention for ADL, and 3 interventions for physical fitness. Summary Effect Sizes (SESs ranged from 0.17 (95%CI 0.03-0.70; I(2 = 0% for therapeutic positioning of the paretic arm to 2.47 (95%CI 0.84-4.11; I(2 = 77% for training of sitting balance. There is strong evidence that a higher dose of practice is better, with SESs ranging from 0.21 (95%CI 0.02-0.39; I(2 = 6% for motor function of the paretic arm to 0.61 (95%CI 0.41-0.82; I(2 = 41% for muscle strength of the paretic leg. Subgroup analyses yielded significant differences with respect to timing poststroke for 10 interventions. Neurological treatment approaches to training of body functions and activities showed equal or unfavorable effects when compared to other training interventions. Main limitations of the present review are not using individual patient data for meta-analyses and absence of correction for multiple testing.There is strong evidence for PT interventions favoring intensive high repetitive task-oriented and task-specific training in all phases poststroke. Effects are mostly restricted to the

  7. Evaluation of an interprofessional educational curriculum pilot course for practitioners working with post-stroke patients.

    Science.gov (United States)

    Olaisen, Rho Henry; Mariscal-Hergert, Cheryl; Shaw, Alissa; Macchiavelli, Cecilia; Marsheck, Joanna

    2014-03-01

    This report describes the design and evaluation of an interprofessional pilot training course aimed at pre-licensure practitioners working with post-stroke patients in community-based settings. The course was developed by community-based practitioners from nine health professions. Course learning activities included traditional methods (lectures) and interactive modules (problem-based learning and exchange-based learning). The study's aim was to assess the program's effectiveness in adapting and incorporating knowledge, skills and self-confidence when delivering tertiary care in therapeutic pool environments; gauge adoption of course principles into practice, and assess overall course satisfaction. Methods of evaluation included conceptual mapping of course format, pre- and post-questionnaires, daily reflection questionnaires, course satisfaction survey and adoption survey, 10 weeks follow-up. Overall, the findings indicate students' knowledge, skills and self-confidence in delivering effective post-stroke care increased following the training. Students reported adopting clinical practices in 10 weeks follow-up. Implications for designing interprofessional curricula are discussed.

  8. Plasticity of locomotor sensorimotor interactions after peripheral and/or spinal lesions

    DEFF Research Database (Denmark)

    Rossignol, Serge; Barrière, Grégory; Frigon, Alain

    2008-01-01

    The present paper reviews aspects of locomotor sensorimotor interactions by focussing on work performed in spinal cats. We provide a brief overview of spinal locomotion and describe the effects of various types of sensory deprivations (e.g. rhizotomies, and lesions of muscle and cutaneous nerves......) to highlight the spinal neuroplasticity necessary for adapting to sensory loss. Recent work on plastic interactions between reflex pathways that could be responsible for such plasticity, in particular changes in proprioceptive and cutaneous pathways that occur during locomotor training of spinal cats...

  9. Optimizing learning of a locomotor task: amplifying errors as needed.

    Science.gov (United States)

    Marchal-Crespo, Laura; López-Olóriz, Jorge; Jaeger, Lukas; Riener, Robert

    2014-01-01

    Research on motor learning has emphasized that errors drive motor adaptation. Thereby, several researchers have proposed robotic training strategies that amplify movement errors rather than decrease them. In this study, the effect of different robotic training strategies that amplify errors on learning a complex locomotor task was investigated. The experiment was conducted with a one degree-of freedom robotic stepper (MARCOS). Subjects were requested to actively coordinate their legs in a desired gait-like pattern in order to track a Lissajous figure presented on a visual display. Learning with three different training strategies was evaluated: (i) No perturbation: the robot follows the subjects' movement without applying any perturbation, (ii) Error amplification: existing errors were amplified with repulsive forces proportional to errors, (iii) Noise disturbance: errors were evoked with a randomly-varying force disturbance. Results showed that training without perturbations was especially suitable for a subset of initially less-skilled subjects, while error amplification seemed to benefit more skilled subjects. Training with error amplification, however, limited transfer of learning. Random disturbing forces benefited learning and promoted transfer in all subjects, probably because it increased attention. These results suggest that learning a locomotor task can be optimized when errors are randomly evoked or amplified based on subjects' initial skill level.

  10. Neuroimaging Correlates of Post-Stroke Aphasia Rehabilitation in a Pilot Randomized Trial of Constraint-Induced Aphasia Therapy.

    Science.gov (United States)

    Nenert, Rodolphe; Allendorfer, Jane B; Martin, Amber M; Banks, Christi; Ball, Angel; Vannest, Jennifer; Dietz, Aimee R; Szaflarski, Jerzy P

    2017-07-18

    BACKGROUND Recovery from post-stroke aphasia is a long and complex process with an uncertain outcome. Various interventions have been proposed to augment the recovery, including constraint-induced aphasia therapy (CIAT). CIAT has been applied to patients suffering from post-stroke aphasia in several unblinded studies to show mild-to-moderate linguistic gains. The aim of the present study was to evaluate the neuroimaging correlates of CIAT in patients with chronic aphasia related to left middle cerebral artery stroke. MATERIAL AND METHODS Out of 24 patients recruited in a pilot randomized blinded trial of CIAT, 19 patients received fMRI of language. Eleven of them received CIAT (trained) and eight served as a control group (untrained). Each patient participated in three fMRI sessions (before training, after training, and 3 months later) that included semantic decision and verb generation fMRI tasks, and a battery of language tests. Matching healthy control participants were also included (N=38; matching based on age, handedness, and sex). RESULTS Language testing showed significantly improved performance on Boston Naming Test (BNT; paphasia with no specific effect from CIAT training.

  11. Locomotor problems among rural elderly population in a District of Aligarh, North India.

    Science.gov (United States)

    Maroof, Mohd; Ahmad, Anees; Khalique, Najam; Ansari, M Athar

    2017-01-01

    Locomotor functions decline with the age along with other physiological changes. This results in deterioration of the quality of life with decreased social and economic role in the society, as well as increased dependency, for the health care and other basic services. The demographic transition resulting in increased proportion of elderly may pose a burden to the health system. To find the prevalence of locomotor problems among the elderly population, and related sociodemographic factors. The study was a community-based cross-sectional study done at field practice area of Rural Health Training Centre, JN Medical College, AMU, Aligarh, Uttar Pradesh, India. A sample of 225 was drawn from 1018 elderly population aged 60 years and above using systematic random sampling with probability proportionate to size. Sociodemographic characteristics were obtained using pretested and predesigned questionnaire. Locomotor problems were assessed using the criteria used by National Sample Survey Organization. Data were analyzed using SPSS version 20. Chi-square test was used to test relationship of locomotor problems with sociodemographic factors. P locomotor problems among the elderly population was 25.8%. Locomotor problems were significantly associated with age, gender, and working status whereas no significant association with literacy status and marital status was observed. The study concluded that approximately one-fourth of the elderly population suffered from locomotor problems. The sociodemographic factors related to locomotor problems needs to be addressed properly to help them lead an independent and economically productive life.

  12. Dual spinal lesion paradigm in the cat: evolution of the kinematic locomotor pattern.

    Science.gov (United States)

    Barrière, Grégory; Frigon, Alain; Leblond, Hugues; Provencher, Janyne; Rossignol, Serge

    2010-08-01

    The recovery of voluntary quadrupedal locomotion after an incomplete spinal cord injury can involve different levels of the CNS, including the spinal locomotor circuitry. The latter conclusion was reached using a dual spinal lesion paradigm in which a low thoracic partial spinal lesion is followed, several weeks later, by a complete spinal transection (i.e., spinalization). In this dual spinal lesion paradigm, cats can express hindlimb walking 1 day after spinalization, a process that normally takes several weeks, suggesting that the locomotor circuitry within the lumbosacral spinal cord had been modified after the partial lesion. Here we detail the evolution of the kinematic locomotor pattern throughout the dual spinal lesion paradigm in five cats to gain further insight into putative neurophysiological mechanisms involved in locomotor recovery after a partial spinal lesion. All cats recovered voluntary quadrupedal locomotion with treadmill training (3-5 days/wk) over several weeks. After the partial lesion, the locomotor pattern was characterized by several left/right asymmetries in various kinematic parameters, such as homolateral and homologous interlimb coupling, cycle duration, and swing/stance durations. When no further locomotor improvement was observed, cats were spinalized. After spinalization, the hindlimb locomotor pattern rapidly reappeared, but left/right asymmetries in swing/stance durations observed after the partial lesion could disappear or reverse. It is concluded that, after a partial spinal lesion, the hindlimb locomotor pattern was actively maintained by new dynamic interactions between spinal and supraspinal levels but also by intrinsic changes within the spinal cord.

  13. Delayed-Onset Post-Stroke Delusional Disorder: A Case Report

    Directory of Open Access Journals (Sweden)

    Raíssa B. Barboza

    2013-01-01

    Full Text Available Although the prevalence of neuropsychiatric disorders among patients with cerebrovascular illness is relatively high, there are only few case reports describing post-stroke psychotic symptoms. In general, post-stroke psychoses have been reported to emerge few days after the vascular event and to vanish soon afterwards. In this report, we describe delayed-onset post-stroke delusional disorder, persecutory type. A middle-aged female patient developed a persistent delusional disorder with homicidal behavior about one year after a cerebrovascular accident affecting the right fronto-temporo-parietal region and a long period of chronic post-stroke mixed anxiety and depressive symptoms. Our case suggests that there might be long intervals between stroke and the appearance of psychotic symptoms.

  14. Efficacy of Stochastic Vestibular Stimulation to Improve Locomotor Performance in a Discordant Sensory Environment

    Science.gov (United States)

    Temple, D. R.; De Dios, Y. E.; Layne, C. S.; Bloomberg, J. J.; Mulavara, A. P.

    2016-01-01

    Astronauts exposed to microgravity face sensorimotor challenges incurred when readapting to a gravitational environment. Sensorimotor Adaptability (SA) training has been proposed as a countermeasure to improve locomotor performance during re-adaptation, and it is suggested that the benefits of SA training may be further enhanced by improving detection of weak sensory signals via mechanisms such as stochastic resonance when a non-zero level of stochastic white noise based electrical stimulation is applied to the vestibular system (stochastic vestibular stimulation, SVS). The purpose of this study was to test the efficacy of using SVS to improve short-term adaptation in a sensory discordant environment during performance of a locomotor task.

  15. Post-stroke Movement Disorders: Clinical Manifestations and Pharmacological Management

    OpenAIRE

    Siniscalchi, Antonio; Gallelli, Luca; Labate, Angelo; Malferrari, Giovanni; Palleria, Caterina; Sarro, Giovambattista De

    2012-01-01

    Involuntary abnormal movements have been reported after ischaemic and haemorrhagic stroke. Post stroke movement disorders can appear as acute or delayed sequel. At the moment, for many of these disorders the knowledge of pharmacological treatment is still inadequate. Dopaminergic and GABAergic systems may be mainly involved in post-stroke movement disorders. This article provides a review on drugs commonly used in post-stroke movement disorders, given that some post-stroke movement disorders ...

  16. Use of trunk stabilization and locomotor training in an adult with cerebellar ataxia: a single system design.

    Science.gov (United States)

    Freund, Jane E; Stetts, Deborah M

    2010-10-01

    The purpose of this study is to describe the effects of trunk stabilization training and locomotor training (LT) using body-weight support on a treadmill (BWST) and overground walking on balance, gait, self-reported function, and trunk muscle performance in an adult with severe ataxia secondary to brain injury. There are no studies on the effectiveness of these combined interventions in persons with ataxia. The subject was a 23-year-old male who had a traumatic brain injury 13 months prior. An A-B-A withdrawal single-system design was used. Outcome measures were Berg Balance Test (BBT), timed unsupported stance, Functional Ambulation Category (FAC), 10-meter walk test (10-MWT), Outpatient Physical Therapy Improvement in Movement Assessment Log (OPTIMAL), transverse abdominis (TrA) thickness, and isometric trunk endurance tests. Performance on the BBT, timed unsupported stance, FAC, 10-MWT, and OPTIMAL each improved after 10 weeks of intervention. In additions, TrA symmetry at rest improved as did right side-bridge endurance time. LT, using BWST and overground walking, and trunk stabilization training may be effective in improving balance, gait, function, and trunk performance in individuals with severe ataxia. Further research with additional subjects is indicated.

  17. Effects of combined aerobic and resistance exercise on central arterial stiffness and gait velocity in patients with chronic poststroke hemiparesis.

    Science.gov (United States)

    Lee, Yong Hee; Park, Soo Hyun; Yoon, Eun Sun; Lee, Chong-Do; Wee, Sang Ouk; Fernhall, Bo; Jae, Sae Young

    2015-09-01

    The effects of combined aerobic and resistance exercise training on central arterial stiffness and gait velocity in patients with chronic poststroke hemiparesis were investigated. Twenty-six patients with chronic poststroke hemiparesis were randomly assigned to either the combined aerobic and resistance exercise group (n = 14) or the control group (n = 12). The exercise intervention group received a combined aerobic and resistance exercise training (1 hr/day, three times/week for 16 wks), whereas the control group received usual care. Central arterial stiffness was determined by pulse wave velocity and augmentation index. Gait velocity was assessed using the 6-min walk test, 10-m walk test, and the Timed Up-and-Go test. Patients in the exercise intervention group had greater improvement of mean pulse wave velocity (P hemiparesis.

  18. Soleus H-reflex excitability during pedaling post-stroke

    DEFF Research Database (Denmark)

    Schindler-Ivens, Sheila; Brown, David A.; Lewis, Gwyn N.

    2008-01-01

    A major contributor to impaired locomotion post-stroke is abnormal phasing of paretic muscle activity, but the mechanisms remain unclear. Previous studies have shown that, in the paretic limb of people post-stroke, Group Ia reflexes are abnormally elevated and fail to decrease in amplitude during...

  19. Music-supported therapy (MST) in improving post-stroke patients' upper-limb motor function: a randomised controlled pilot study.

    Science.gov (United States)

    Tong, Yanna; Forreider, Brian; Sun, Xinting; Geng, Xiaokun; Zhang, Weidong; Du, Huishan; Zhang, Tong; Ding, Yuchuan

    2015-05-01

    Music-supported therapy (MST) is a new approach for motor rehabilitation of stroke patients. Recently, many studies have demonstrated that MST improved the motor functions of post-stroke patients. However, the underlying mechanism for this effect is still unclear. It may result from repeated practice or repeated practice combined with musical stimulation. Currently, few studies have been designed to clarify this discrepancy. In this study, the application of "mute" musical instruments allowed for the study of music as an independent factor. Thirty-three post-stroke patients with no substantial previous musical training were included. Participants were assigned to either audible music group (MG) or mute music group (CG), permitting observation of music's independent effect. All subjects received the conventional rehabilitation treatments. Patients in MG (n = 15) received 20 extra sessions of audible musical instrument training over 4 weeks. Patients in CG (n = 18) received "mute" musical instrument training of the same protocol as that of MG. Wolf motor function test (WMFT) and Fugl-Meyer assessment (FMA) for upper limbs were utilised to evaluate motor functions of patients in both groups before and after the treatment. Three patients in CG dropped out. All participants in both groups showed significant improvements in motor functions of upper limbs after 4  weeks' treatment. However, significant differences in the WMFT were found between the two groups (WMFT-quality: P = 0.025; WMFT-time: P = 0.037), but not in the FMA (P = 0.448). In short, all participants showed significant improvement after 4 weeks' treatment, but subjects in MG demonstrated greater improvement than those in CG. This study supports that MST, when combined with conventional treatment, is effective for the recovery of motor skills in post-stroke patients. Additionally, it suggests that apart from the repetitive practices of MST, music may play a unique role in improving

  20. Post-stroke Movement Disorders: Clinical Manifestations and Pharmacological Management.

    Science.gov (United States)

    Siniscalchi, Antonio; Gallelli, Luca; Labate, Angelo; Malferrari, Giovanni; Palleria, Caterina; Sarro, Giovambattista De

    2012-09-01

    Involuntary abnormal movements have been reported after ischaemic and haemorrhagic stroke. Post stroke movement disorders can appear as acute or delayed sequel. At the moment, for many of these disorders the knowledge of pharmacological treatment is still inadequate. Dopaminergic and GABAergic systems may be mainly involved in post-stroke movement disorders. This article provides a review on drugs commonly used in post-stroke movement disorders, given that some post-stroke movement disorders have shown a partial benefit with pharmacological approach.

  1. Repetitive transcranial magnetic stimulation once a week induces sustainable long-term relief of central poststroke pain.

    Science.gov (United States)

    Kobayashi, Masahito; Fujimaki, Takamitsu; Mihara, Ban; Ohira, Takayuki

    2015-06-01

    Central poststroke pain is a serious problem for some patients after stroke. Repetitive transcranial magnetic stimulation (rTMS) has been reported to relieve poststroke pain but its efficacy is still controversial. We tested the possibility that rTMS, when applied once a week, would induce sustainable relief of poststroke pain. Eighteen patients with central poststroke pain were included in this study. rTMS (10 trains of 10-sec 5 Hz-rTMS) was delivered over the primary motor cortex on the affected side. The rTMS session was repeated once a week for 12 weeks, and for six patients the intervention was continued for one year. The degree of the pain was assessed before each weekly rTMS session to evaluate sustainable effects. The effects of the rTMS reached a plateau at the eighth week. At the 12th week, the rTMS was effective in 61.1% of the patients; 5 of the 18 patients showed more than 70% reduction based on a visual analog scale, 6 patients showed 40-69% reduction, and 7 remained at a pain reduction level of less than 40%. When patients were divided into two groups with or without severe dysesthesia, it was found that eight patients with severe dysesthesia showed less pain relief than those without. In the six patients who continued rTMS for one year, the pain relief effects also were sustained. Although this was an open-label study without a control group, our findings suggest that rTMS of the primary motor cortex, when maintained once a week, could help to relieve poststroke pain. © 2015 International Neuromodulation Society.

  2. Adaptive locomotor training on an end-effector gait robot: evaluation of the ground reaction forces in different training conditions.

    Science.gov (United States)

    Tomelleri, Christopher; Waldner, Andreas; Werner, Cordula; Hesse, Stefan

    2011-01-01

    The main goal of robotic gait rehabilitation is the restoration of independent gait. To achieve this goal different and specific patterns have to be practiced intensively in order to stimulate the learning process of the central nervous system. The gait robot G-EO Systems was designed to allow the repetitive practice of floor walking, stair climbing and stair descending. A novel control strategy allows training in adaptive mode. The force interactions between the foot and the ground were analyzed on 8 healthy volunteers in three different conditions: real floor walking on a treadmill, floor walking on the gait robot in passive mode, floor walking on the gait robot in adaptive mode. The ground reaction forces were measured by a Computer Dyno Graphy (CDG) analysis system. The results show different intensities of the ground reaction force across all of the three conditions. The intensities of force interactions during the adaptive training mode are comparable to the real walking on the treadmill. Slight deviations still occur in regard to the timing pattern of the forces. The adaptive control strategy comes closer to the physiological swing phase than the passive mode and seems to be a promising option for the treatment of gait disorders. Clinical trials will validate the efficacy of this new option in locomotor therapy on the patients. © 2011 IEEE

  3. The one-year attributable cost of post-stroke dysphagia.

    Science.gov (United States)

    Bonilha, Heather Shaw; Simpson, Annie N; Ellis, Charles; Mauldin, Patrick; Martin-Harris, Bonnie; Simpson, Kit

    2014-10-01

    With the recent emphasis on evidence-based practice and healthcare reform, understanding the cost of dysphagia management has never been more important. It is helpful for clinicians to understand and objectively report the costs associated with dysphagia when they advocate for their services in this economy. Having carefully estimated cost of illness, inputs are needed for cost-effectiveness analyses that help support the value of treatments. This study sought to address this issue by examining the 1-year cost associated with a diagnosis of dysphagia post-stroke in South Carolina. Furthermore, this study investigated whether ethnicity and residence differences exist in the cost of dysphagia post-stroke. Data on 3,200 patients in the South Carolina Medicare database from 2004 who had ICD-9 codes for ischemic stroke, 434 and 436, were retrospectively included in this study. Differences between persons with and without dysphagia post-stroke were compared with respect to age, gender, ethnicity, mortality, length of stay, comorbidity, rurality, discharge disposition, and cost to Medicare. Univariate analyses and a gamma-distributed generalized linear multivariable model with a log link function were completed. We found that the 1-year cost to Medicare for persons with dysphagia post ischemic stroke was $4,510 higher than that for persons without dysphagia post ischemic stroke when controlling for age, comorbidities, ethnicity, and proportion of time alive. Univariate analysis revealed that rurality, ethnicity, and gender were not statistically significantly different in comparisons of individuals with or without dysphagia post-stroke. Post-stroke dysphagia significantly increases post-stroke medical expenses. Understanding the expenditures associated with post-stroke dysphagia is helpful for optimal allocation and use of resources. Such information is needed to conduct cost-effectiveness studies.

  4. The One-Year Attributable Cost of Post-Stroke Dysphagia

    Science.gov (United States)

    Bonilha, Heather Shaw; Simpson, Annie N.; Ellis, Charles; Mauldin, Patrick; Martin-Harris, Bonnie; Simpson, Kit

    2014-01-01

    With the recent emphasis on evidence-based practice and healthcare reform, understanding the cost of dysphagia management has never been more important. It is helpful for clinicians to understand and objectively report the costs associated with dysphagia when they advocate for their services in this economy. Having carefully estimated cost of illness, inputs are needed for cost-effectiveness analyses that help support the value of treatments. This study sought to address this issue by examining the 1-year cost associated with a diagnosis of dysphagia post-stroke in South Carolina. Furthermore, this study investigated whether ethnicity and residence differences exist in the cost of dysphagia post-stroke. Data on 3,200 patients in the South Carolina Medicare database from 2004 who had ICD-9 codes for ischemic stroke, 434 and 436, were retrospectively included in this study. Differences between persons with and without dysphagia post-stroke were compared with respect to age, gender, ethnicity, mortality, length of stay, comorbidity, rurality, discharge disposition, and cost to Medicare. Univariate analyses and a gamma-distributed generalized linear multivariable model with a log link function were completed. We found that the 1-year cost to Medicare for persons with dysphagia post ischemic stroke was $4,510 higher than that for persons without dysphagia post ischemic stroke when controlling for age, comorbidities, ethnicity, and proportion of time alive. Univariate analysis revealed that rurality, ethnicity, and gender were not statistically significantly different in comparisons of individuals with or without dysphagia post-stroke. Post-stroke dysphagia significantly increases post-stroke medical expenses. Understanding the expenditures associated with post-stroke dysphagia is helpful for optimal allocation and use of resources. Such information is needed to conduct cost-effectiveness studies. PMID:24948438

  5. Rehabilitation Interventions for Poststroke Hand Oedema: A Systematic Review

    Directory of Open Access Journals (Sweden)

    Thuy Anh Giang

    2016-06-01

    Conclusion: Further study needs to focus solely on interventions for poststroke hand oedema and their long-term effects. No conclusion can be made on the most effective management of poststroke hand oedema until much more evidence is available.

  6. Clinical relevance of the effects of reach-to-grasp training using trunk restraint in individuals with hemiparesis poststroke: A systematic review.

    Science.gov (United States)

    Greisberger, Andrea; Aviv, Hanna; Garbade, Sven F; Diermayr, Gudrun

    2016-04-28

    To evaluate the evidence for, and clinical relevance of, immediate and long-term effects of trunk restraint during reach-to-grasp training poststroke on movement patterns and functional abilities within the framework of the International Classification of Functioning, Disability and Health. PubMed, Web of Science, CINAHL, Embase, PEDro, Cochrane Library (publication dates January 1985 to March 2015). Randomized controlled trials comparing training using trunk restraint with any other exercise training. Data were extracted by one researcher and checked by two other researchers. The Cochrane Collaboration's tool for assessing risk of bias and the Physiotherapy Evidence Database scale were used by two researchers to assess study quality and risk of bias. Eight studies met the inclusion criteria. Five studies found better recovery of movement patterns (trunk displacement, elbow extension, and/or shoulder flexion - body function/structure) at post-test in the experimental compared with the control groups. Functional abilities (activity/participation) improved more in the experimental groups in 3 studies at post-test. Long-term effects were found in one study after 4 weeks. Trunk restraint has immediate and some long-term effects in adults with chronic stroke. However, these effects are not consistently clinically relevant when referring to minimal detectable change or minimal clinically important difference values.

  7. In-hospital risk prediction for post-stroke depression: development and validation of the Post-stroke Depression Prediction Scale.

    Science.gov (United States)

    de Man-van Ginkel, Janneke M; Hafsteinsdóttir, Thóra B; Lindeman, Eline; Ettema, Roelof G A; Grobbee, Diederick E; Schuurmans, Marieke J

    2013-09-01

    The timely detection of post-stroke depression is complicated by a decreasing length of hospital stay. Therefore, the Post-stroke Depression Prediction Scale was developed and validated. The Post-stroke Depression Prediction Scale is a clinical prediction model for the early identification of stroke patients at increased risk for post-stroke depression. The study included 410 consecutive stroke patients who were able to communicate adequately. Predictors were collected within the first week after stroke. Between 6 to 8 weeks after stroke, major depressive disorder was diagnosed using the Composite International Diagnostic Interview. Multivariable logistic regression models were fitted. A bootstrap-backward selection process resulted in a reduced model. Performance of the model was expressed by discrimination, calibration, and accuracy. The model included a medical history of depression or other psychiatric disorders, hypertension, angina pectoris, and the Barthel Index item dressing. The model had acceptable discrimination, based on an area under the receiver operating characteristic curve of 0.78 (0.72-0.85), and calibration (P value of the U-statistic, 0.96). Transforming the model to an easy-to-use risk-assessment table, the lowest risk category (sum score, depression, which increased to 82% in the highest category (sum score, >21). The clinical prediction model enables clinicians to estimate the degree of the depression risk for an individual patient within the first week after stroke.

  8. Powered robotic exoskeletons in post-stroke rehabilitation of gait: a scoping review.

    Science.gov (United States)

    Louie, Dennis R; Eng, Janice J

    2016-06-08

    Powered robotic exoskeletons are a potential intervention for gait rehabilitation in stroke to enable repetitive walking practice to maximize neural recovery. As this is a relatively new technology for stroke, a scoping review can help guide current research and propose recommendations for advancing the research development. The aim of this scoping review was to map the current literature surrounding the use of robotic exoskeletons for gait rehabilitation in adults post-stroke. Five databases (Pubmed, OVID MEDLINE, CINAHL, Embase, Cochrane Central Register of Clinical Trials) were searched for articles from inception to October 2015. Reference lists of included articles were reviewed to identify additional studies. Articles were included if they utilized a robotic exoskeleton as a gait training intervention for adult stroke survivors and reported walking outcome measures. Of 441 records identified, 11 studies, all published within the last five years, involving 216 participants met the inclusion criteria. The study designs ranged from pre-post clinical studies (n = 7) to controlled trials (n = 4); five of the studies utilized a robotic exoskeleton device unilaterally, while six used a bilateral design. Participants ranged from sub-acute (6 months) stroke. Training periods ranged from single-session to 8-week interventions. Main walking outcome measures were gait speed, Timed Up and Go, 6-min Walk Test, and the Functional Ambulation Category. Meaningful improvement with exoskeleton-based gait training was more apparent in sub-acute stroke compared to chronic stroke. Two of the four controlled trials showed no greater improvement in any walking outcomes compared to a control group in chronic stroke. In conclusion, clinical trials demonstrate that powered robotic exoskeletons can be used safely as a gait training intervention for stroke. Preliminary findings suggest that exoskeletal gait training is equivalent to traditional therapy for chronic stroke

  9. The effect of visual scanning exercises integrated into physiotherapy in patients with unilateral spatial neglect poststroke: a matched-pair randomized control trial.

    Science.gov (United States)

    van Wyk, Andoret; Eksteen, Carina A; Rheeder, Paul

    2014-01-01

    Unilateral spatial neglect (USN) is a visual-perceptual disorder that entails the inability to perceive and integrate stimuli on one side of the body, resulting in the neglect of one side of the body. Stroke patients with USN present with extensive functional disability and duration of therapy input. To determine the effect of saccadic eye movement training with visual scanning exercises (VSEs) integrated with task-specific activities on USN poststroke. A matched-pair randomized control trial was conducted. Subjects were matched according to their functional activity level and allocated to either a control (n = 12) or an experimental group (n = 12). All patients received task-specific activities for a 4-week intervention period. The experimental group received saccadic eye movement training with VSE integrated with task specific activities as an "add on" intervention. Assessments were conducted weekly over the intervention period. Statistical significant difference was noted on the King-Devick Test (P = .021), Star Cancellation Test (P = .016), and Barthel Index (P = .004). Intensive saccadic eye movement training with VSE integrated with task-specific activities has a significant effect on USN in patients poststroke. Results of this study are supported by findings from previously reviewed literature in the sense that the effect of saccadic eye movement training with VSE as an intervention approach has a significant effect on the visual perceptual processing of participants with USN poststroke. The significant improved visual perceptual processing translate to significantly better visual function and ability to perform activities of daily living following the stroke. © The Author(s) 2014.

  10. [Rehabilitation evaluation on post-stroke abnormal movement pattern prevented and treated with acupuncture and rehabilitation].

    Science.gov (United States)

    Zhang, Hui-min; Tang, Qiang

    2011-06-01

    To explore the impacts of acupuncture and rehabilitation on post-stroke abnormal patterns of limb movement and evaluate them via rehabilitation method. Ninety cases of post-stroke movement disorder were randomly divided into an acupuncture-rehabilitation group, a body acupuncture group and a medication group, 30 cases in each group. In medication group, the conventional medication in neurological department was administered. In acupuncture-rehabilitation group and body acupuncture group, on the basis of the therapy as medication group, scalp acupuncture (such as parietal area and anterior parietal area, etc.), rehabilitation training and traditional body acupuncture [such as Jianyu (LI 15) and Fengshi (GB 31),etc.] were supplemented. The continuous electric stimulation was applied in body acupuncture group. The treatment lasted for 8 weeks. The assessment of clinical efficacy, Fugl-Meyer score, Modified Ashworth scale (MAS), range of motion (ROM) and shoulder pain score were taken as observation indices for rehabilitation evaluation before and after treatment in each group. The effective rate was 93.1% (27/29) in acupuncture-rehabilitation group, which was superior to 66.7% (20/30) in body acupuncture group and 57.1% (16/28) in control group (both Prehabilitation group were significantly superior to those in body acupuncture group and medication group (Prehabilitation therapy and traditional body acupuncture remarkably improve in post-stroke movement disorder. But acupuncture and rehabilitation therapy is apparently superior to traditional body acupuncture. This therapy can effectively prevent and treat post-stroke abnormal patterns and it is greatly significant in the improvement of survival quality for the patients.

  11. Home-based Constraint Induced Movement Therapy Poststroke

    OpenAIRE

    Stephen Isbel HScD; Christine Chapparo PhD; David McConnell PhD; Judy Ranka PhD

    2014-01-01

    Background: This study examined the efficacy of a home-based Constraint Induced Movement Therapy (CI Therapy) protocol with eight poststroke survivors. Method: Eight ABA, single case experiments were conducted in the homes of poststroke survivors. The intervention comprised restraint of the intact upper limb in a mitt for 21 days combined with a home-based and self-directed daily activity regime. Motor changes were measured using The Wolf Motor Function Test (WMFT) and the Motor Activity L...

  12. Psychological and emotional needs, assessment, and support post-stroke: a multi-perspective qualitative study.

    Science.gov (United States)

    Harrison, Madeleine; Ryan, Tony; Gardiner, Clare; Jones, Amanda

    2017-03-01

    International stroke care guidelines recommend the routine assessment and management of psychological and emotional problems post-stroke. Understanding the experiences of those delivering and receiving these services is vital to improving the provision of psychological support post-stroke. To explore patients', carers', and health professionals' experiences of psychological need, assessment, and support post-stroke while in hospital and immediately post-discharge. Participants were recruited from seven specialist stroke services in the north of England. Qualitative semi-structured interviews and focus groups were conducted with 31 stroke patients, 28 carers, and 66 health professionals. The interviews were recorded and transcribed verbatim and analyzed using thematic analysis. Two central themes emerged minding the gap: psychological expertise, and protective factors perceived to reduce the need for formal psychological support. The lack of psychological expertise among healthcare professionals working on stroke units was a source of frustration and resulted in other disciplines assuming the role of a psychologist without the required skills and training. Multiple stakeholders discussed the importance of protective factors, including downward social comparison, social support, peer support, communication, and information provision, that were perceived to reduce the need for formal psychological support. Stroke patients need better access to psychological support, including information, advice, and peer or social support. More research is required to establish the effectiveness of alternative options to formal psychological support.

  13. What about self-management post-stroke? Challenges for stroke survivors, spouses and professionals

    NARCIS (Netherlands)

    Satink, A.J.H.

    2016-01-01

    Self-management post-stroke is challenging for many persons after a stroke. In this thesis is explored how stroke survivors, spouses and professionals perceived self-management post-stroke and how the process of self-management post-stroke evolved over time. The following studies are conducted: a

  14. The effects of the novel DA D3 receptor antagonist SR 21502 on cocaine reward, cocaine seeking and cocaine-induced locomotor activity in rats.

    Science.gov (United States)

    Galaj, E; Ananthan, S; Saliba, M; Ranaldi, Robert

    2014-02-01

    There is a focus on developing D3 receptor antagonists as cocaine addiction treatments. We investigated the effects of a novel selective D3 receptor antagonist, SR 21502, on cocaine reward, cocaine-seeking, food reward, spontaneous locomotor activity and cocaine-induced locomotor activity in rats. In Experiment 1, rats were trained to self-administer cocaine under a progressive ratio (PR) schedule of reinforcement and tested with vehicle or one of three doses of SR 21502. In Experiment 2, animals were trained to self-administer cocaine under a fixed ratio schedule of reinforcement followed by extinction of the response. Then, animals were tested with vehicle or one of the SR 21502 doses on cue-induced reinstatement of responding. In Experiment 3, animals were trained to lever press for food under a PR schedule and tested with vehicle or one dose of the compound. In Experiments 4 and 5, in separate groups of animals, the vehicle and three doses of SR 21502 were tested on spontaneous or cocaine (10 mg/kg, IP)-induced locomotor activity, respectively. SR 21502 produced significant, dose-related (3.75, 7.5 and 15 mg/kg) reductions in breakpoint for cocaine self-administration, cue-induced reinstatement (3.75, 7.5 and 15 mg/kg) and cocaine-induced locomotor activity (3.75, 7.5 and 15 mg/kg) but failed to reduce food self-administration and spontaneous locomotor activity. SR 21502 decreases cocaine reward, cocaine-seeking and locomotor activity at doses that have no effect on food reward or spontaneous locomotor activity. These data suggest SR 21502 may selectively inhibit cocaine's rewarding, incentive motivational and stimulant effects.

  15. Modafinil May Alleviate Poststroke Fatigue

    DEFF Research Database (Denmark)

    Poulsen, Mai Bang; Damgaard, Bodil; Zerahn, Bo

    2015-01-01

    was randomized, double-blinded, and placebo-controlled. Patients were treated with 400-mg modafinil or placebo for 90 days. Assessments were done at inclusion, 30, 90, and 180 days. The primary end point was fatigue at 90 days measured by the Multidimensional Fatigue Inventory-20 general fatigue domain......BACKGROUND AND PURPOSE: Poststroke fatigue is common and reduces quality of life. Current evidence for intervention is limited, and this is the first placebo-controlled trial to investigate treatment of poststroke fatigue with the wakefulness promoting drug modafinil. METHODS: The trial....... Secondary end points included the Fatigue Severity Scale, the Montreal Cognitive Assessment, the modified Rankin Scale and the Stroke-specific quality of Life questionnaire. Adult patients with a recent stroke achieving a score of ≥12 on the Multidimensional Fatigue Inventory-20 general fatigue domain were...

  16. Four birds with one stone? Reparative, neuroplastic, cardiorespiratory, and metabolic benefits of aerobic exercise poststroke.

    Science.gov (United States)

    Ploughman, Michelle; Kelly, Liam P

    2016-12-01

    Converging evidence from animal models of stroke and clinical trials suggests that aerobic exercise has effects across multiple targets. The subacute phase is characterized by a period of heightened neuroplasticity when aerobic exercise has the potential to optimize recovery. In animals, low intensity aerobic exercise shrinks lesion size and reduces cell death and inflammation, beginning 24 h poststroke. Also in animals, aerobic exercise upregulates brain-derived neurotrophic factor near the lesion and improves learning. In terms of neuroplastic effects, clinical trial results are less convincing and have only examined effects in chronic stroke. Stroke patients demonstrate cardiorespiratory fitness levels below the threshold required to carry out daily activities. This may contribute to a 'neurorehabilitation ceiling' that limits capacity to practice at a high enough frequency and intensity to promote recovery. Aerobic exercise when delivered 2-5 days per week at moderate to high intensity beginning as early as 5 days poststroke improves cardiorespiratory fitness, dyslipidemia, and glucose tolerance. Based on the evidence discussed and applying principles of periodization commonly used to prepare athletes for competition, we have created a model of aerobic training in subacute stroke in which training is delivered in density blocks (duration × intensity) matched to recovery phases.

  17. Transcranial Direct Current Stimulation Does Not Improve Language Outcome in Subacute Poststroke Aphasia.

    Science.gov (United States)

    Spielmann, Kerstin; van de Sandt-Koenderman, W Mieke E; Heijenbrok-Kal, Majanka H; Ribbers, Gerard M

    2018-04-01

    The aim of the present study is to investigate the effect of transcranial direct current stimulation on word-finding treatment outcome in subacute poststroke aphasia. In this multi-center, double-blind, randomized controlled trial with 6-month follow-up, we included 58 patients with subacute aphasia (transcranial direct current stimulation (1 mA, 20 minutes; experimental group) or sham transcranial direct current stimulation (control group) over the left inferior frontal gyrus. The primary outcome measure was the Boston Naming Test. Secondary outcome measures included naming performance for trained/untrained picture items and verbal communication. Both the experimental (n=26) and the control group (n=32) improved on the Boston Naming Test over the intervention period and 6-month follow-up; however, there were no significant differences between groups. Also for the secondary outcome measures, no significant differences were found. The results of the present study do not support an effect of transcranial direct current stimulation as an adjuvant treatment in subacute poststroke aphasia. URL: http://www.trialregister.nl/trialreg/admin/rctview.asp. Unique identifier: NTR4364. © 2018 American Heart Association, Inc.

  18. Dynamic balance during walking adaptability tasks in individuals post-stroke.

    Science.gov (United States)

    Vistamehr, Arian; Balasubramanian, Chitralakshmi K; Clark, David J; Neptune, Richard R; Fox, Emily J

    2018-04-24

    Maintaining dynamic balance during community ambulation is a major challenge post-stroke. Community ambulation requires performance of steady-state level walking as well as tasks that require walking adaptability. Prior studies on balance control post-stroke have mainly focused on steady-state walking, but walking adaptability tasks have received little attention. The purpose of this study was to quantify and compare dynamic balance requirements during common walking adaptability tasks post-stroke and in healthy adults and identify differences in underlying mechanisms used for maintaining dynamic balance. Kinematic data were collected from fifteen individuals with post-stroke hemiparesis during steady-state forward and backward walking, obstacle negotiation, and step-up tasks. In addition, data from ten healthy adults provided the basis for comparison. Dynamic balance was quantified using the peak-to-peak range of whole-body angular-momentum in each anatomical plane during the paretic, nonparetic and healthy control single-leg-stance phase of the gait cycle. To understand differences in some of the key underlying mechanisms for maintaining dynamic balance, foot placement and plantarflexor muscle activation were examined. Individuals post-stroke had significant dynamic balance deficits in the frontal plane across most tasks, particularly during the paretic single-leg-stance. Frontal plane balance deficits were associated with wider paretic foot placement, elevated body center-of-mass, and lower soleus activity. Further, the obstacle negotiation task imposed a higher balance requirement, particularly during the trailing leg single-stance. Thus, improving paretic foot placement and ankle plantarflexor activity, particularly during obstacle negotiation, may be important rehabilitation targets to enhance dynamic balance during post-stroke community ambulation. Copyright © 2018. Published by Elsevier Ltd.

  19. Use of electromyography to optimize Lokomat® settings for subject-specific gait rehabilitation in post-stroke hemiparetic patients: A proof-of-concept study.

    Science.gov (United States)

    Cherni, Yosra; Begon, Mickael; Chababe, Hicham; Moissenet, Florent

    2017-09-01

    While generic protocols exist for gait rehabilitation using robotic orthotics such as the Lokomat ® , several settings - guidance, body-weight support (BWS) and velocity - may be adjusted to individualize patient training. However, no systematic approach has yet emerged. Our objective was to assess the feasibility and effects of a systematic approach based on electromyography to determine subject-specific settings with application to the strengthening of the gluteus maximus muscle in post-stroke hemiparetic patients. Two male patients (61 and 65 years) with post-stroke hemiparesis performed up to 9 Lokomat ® trials by changing guidance and BWS while electromyography of the gluteus maximus was measured. For each subject, the settings that maximized gluteus maximus activity were used in 20 sessions of Lokomat ® training. Modified Functional Ambulation Classification (mFAC), 6-minutes walking test (6-MWT), and extensor strength were measured before and after training. The greatest gluteus maximus activity was observed at (Guidance: 70% -BWS: 20%) for Patient 1 and (Guidance: 80% - BWS: 30%) for Patient 2. In both patients, mFAC score increased from 4 to 7. The additional distance in 6-MWT increased beyond minimal clinically important difference (MCID=34.4m) reported for post-stroke patients. The isometric strength of hip extensors increased by 43 and 114%. Defining subject-specific settings for a Lokomat ® training was feasible and simple to implement. These two case reports suggest a benefit of this approach for muscle strengthening. It remains to demonstrate the superiority of such an approach for a wider population, compared to the use of a generic protocol. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  20. POST-STROKE COGNITIVE IMPAIRMENT – PHENOMENOLOGY AND PROGNOSTIC FACTORS

    Directory of Open Access Journals (Sweden)

    Maya Danovska

    2012-09-01

    Full Text Available Stroke patients are at higher risk of developing cognitive impairment. Cognitive dysfunctions, especially progressive ones, worsen stroke prognosis and outcome. A longitudinal follow-up of cognitive disorders, however, is rendered difficult by their heterogeneity and the lack of definitions generally agreed upon. Stroke is a major cause of cognitive deficit. The identification of risk factors, clinical determinants and laboratory markers of post-stroke cognitive deficit may help detect patients at increased risk of cognitive deterioration, and prevent or delay the occurrence of post-stroke cognitive impairments. Though inflammatory processes have been implicated in the pathogenesis of stroke, their role in the complex pathophysiological mechanisms of post-stroke cognitive impairment is not completely understood. Evidence suggests that elevated serum C-reactive protein is associated with both the increased risk of stroke and post-stroke cognitive deficit. The hypothesis of a possible relationship between markers of systemic inflammation and cognitive dysfunctions raises the question of how rational the option of applying non-steroidal anti-inflammatory drugs in a proper therapeutic window will be, especially during the acute phase of stroke, to prevent cognitive decline and dementia.

  1. Prediction of Post-stroke Falls by Quantitative Assessment of Balance.

    Science.gov (United States)

    Lee, Hyun Haeng; Jung, Se Hee

    2017-06-01

    To evaluate characteristics of the postural instability in patients with stroke and to present a prediction model of post-stroke falls. Patients with a first-ever stroke who had been evaluated by the Balance Master (BM) at post-stroke 3 months (±1 month) between August 2011 and December 2015 were enrolled. Parameters for the postural instability, such as the weight bearing asymmetry (WBA) and postural sway velocity (PSV), were obtained. The fall events in daily lives were assessed via structured telephone interview with a fall related questionnaire. A total of 71 patients (45 men; 45 with ischemic stroke) were enrolled in this study. All subjects underwent BM evaluation at 3.03±0.40 months after stroke. The mean WBA was 17.18%±13.10% and mean PSV (measured as °/s) were noted as 0.66±0.37 (eyes-open on firm surface), 0.89±0.75 (eyes-closed on firm surface), 1.45±1.09 (eyes-open on soft surface), and 3.10±1.76 (eyes-closed on soft surface). A prediction model of post-stroke falls was drawn by multiple logistic regression analysis as follows: Risk of post-stroke falls = -2.848 + 1.878 x (PSV ECSS ) + 0.154 x (age=1 if age≥65; age=0 if agerisk of post-stroke falls.

  2. Prediabetes is associated with post-stroke cognitive impairment in ischaemic stroke patients.

    Science.gov (United States)

    Wang, Qiongzhang; Zhao, Kai; Cai, Yan; Tu, Xinjie; Liu, Yuntao; He, Jincai

    2018-05-15

    Diabetes mellitus is associated with post-stroke cognitive impairment. To the best of our knowledge, no study has explored the relationship between prediabetes and post-stroke cognitive impairment. The purpose of this study is to explore the association between prediabetes and cognitive impairment in ischaemic stroke patients at 1 month. Two hundred one acute ischaemic stroke patients were consecutively recruited within the first 24 h after admission and were followed up for 1 month. Patients were divided into a diabetes mellitus group, prediabetes group and non-diabetes mellitus group by fasting glucose levels, 2-h postprandial blood glucose levels and glycosylated haemoglobin levels at admission. Cognitive function was evaluated by the Mini-Mental State Examination at 1 month after stroke. The prediabetes group had a higher risk of post-stroke cognitive impairment than the non-diabetes group (35.7% vs. 18.1%, χ 2  = 4.252, P = .039). In logistical analyses, prediabetes was associated with post-stroke cognitive impairment after adjusting for potential confounding factors (odds ratio 3.062, 95% confidence interval 1.130-8.299, P = .028). Our findings show that prediabetes is associated with post-stroke cognitive impairment and may predict its development at 1 month post-stroke. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Augmented Cognitive Behavioral Therapy for Poststroke Depressive Symptoms: A Randomized Controlled Trial.

    Science.gov (United States)

    Kootker, Joyce A; Rasquin, Sascha M C; Lem, Frederik C; van Heugten, Caroline M; Fasotti, Luciano; Geurts, Alexander C H

    2017-04-01

    To evaluate the effectiveness of individually tailored cognitive behavioral therapy (CBT) for reducing depressive symptoms with or without anxiety poststroke. Multicenter, assessor-blinded, randomized controlled trial. Ambulatory rehabilitation setting. Patients who had a Hospital Anxiety and Depression Scale-depression subscale (HADS-D) score >7 at least 3 months poststroke (N=61). Participants were randomly allocated to either augmented CBT or computerized cognitive training (CCT). The CBT intervention was based on the principles of recognizing, registering, and altering negative thoughts and cognitions. CBT was augmented with goal-directed real-life activity training given by an occupational or movement therapist. HADS-D was the primary outcome, and measures of participation and quality of life were secondary outcomes. Outcome measurements were performed at baseline, immediately posttreatment, and at 4- and 8-month follow-up. Analysis was performed with linear mixed models using group (CBT vs CCT) as the between-subjects factor and time (4 assessments) as the within-subjects factor. Mixed model analyses showed a significant and persistent time effect for HADS-D (mean difference, -4.6; 95% confidence interval, -5.7 to -3.6; P<.001) and for participation and quality of life in both groups. There was no significant group × time effect for any of the outcome measures. Our augmented CBT intervention was not superior to CCT for the treatment of mood disorders after stroke. Future studies should determine whether both interventions are better than natural history. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  4. Botulinum therapy for poststroke spasticity of the lower extremity (clinical cases

    Directory of Open Access Journals (Sweden)

    L. V. Krylova

    2014-01-01

    Full Text Available The paper deals with the topical problem – the medical rehabilitation of patients with poststroke spasticity. It describes clinical cases of patients with poststroke spasticity of the upper and lower extremities who have received combined therapy using botulinum toxin type A (Botox injections.

  5. High-Intensity Interval Training After Stroke: An Opportunity to Promote Functional Recovery, Cardiovascular Health, and Neuroplasticity.

    Science.gov (United States)

    Crozier, Jennifer; Roig, Marc; Eng, Janice J; MacKay-Lyons, Marilyn; Fung, Joyce; Ploughman, Michelle; Bailey, Damian M; Sweet, Shane N; Giacomantonio, Nicholas; Thiel, Alexander; Trivino, Michael; Tang, Ada

    2018-04-01

    Stroke is the leading cause of adult disability. Individuals poststroke possess less than half of the cardiorespiratory fitness (CRF) as their nonstroke counterparts, leading to inactivity, deconditioning, and an increased risk of cardiovascular events. Preserving cardiovascular health is critical to lower stroke risk; however, stroke rehabilitation typically provides limited opportunity for cardiovascular exercise. Optimal cardiovascular training parameters to maximize recovery in stroke survivors also remains unknown. While stroke rehabilitation recommendations suggest the use of moderate-intensity continuous exercise (MICE) to improve CRF, neither is it routinely implemented in clinical practice, nor is the intensity always sufficient to elicit a training effect. High-intensity interval training (HIIT) has emerged as a potentially effective alternative that encompasses brief high-intensity bursts of exercise interspersed with bouts of recovery, aiming to maximize cardiovascular exercise intensity in a time-efficient manner. HIIT may provide an alternative exercise intervention and invoke more pronounced benefits poststroke. To provide an updated review of HIIT poststroke through ( a) synthesizing current evidence; ( b) proposing preliminary considerations of HIIT parameters to optimize benefit; ( c) discussing potential mechanisms underlying changes in function, cardiovascular health, and neuroplasticity following HIIT; and ( d) discussing clinical implications and directions for future research. Preliminary evidence from 10 studies report HIIT-associated improvements in functional, cardiovascular, and neuroplastic outcomes poststroke; however, optimal HIIT parameters remain unknown. Larger randomized controlled trials are necessary to establish ( a) effectiveness, safety, and optimal training parameters within more heterogeneous poststroke populations; (b) potential mechanisms of HIIT-associated improvements; and ( c) adherence and psychosocial outcomes.

  6. Efficacy of early intervention of motor relearning program on post-stroke hemiplemia:A randomized controlled observation

    Institute of Scientific and Technical Information of China (English)

    Jia Xue; Liang Bai; Qingrong Guo; Chengrong Yang; Jie Lu

    2006-01-01

    BACKGROUND: Previous studies believed that the effect of rehabilitation training within 6 months after stroke (early rehabilitation training) is usually unsatisfactory. The rehabilitation training when acute stroke is stabilized may be better for the recovery of limb function.OBJECTIVE: To observe the effects of the rehabilitation training of motor relearning program plus Bobath technique on the motor function of limbs, nerve function and activities of daily life (ADL) in patients with acute stroke hemiplegia.DESIGN: A randomized controlled observation.SETTING: Department of Neurology, Yaan People's Hospital.PARTICrPANTS: A total of 150 patients with acute post-stroke hemiplegia were selected from the Department of Neurology, Yaan People's Hospital from March 2000 to October 2002. The patients were all accorded with the diagnostic standards about stroke set by the Fifth National Academic Meeting for Cerebrovascular Disease (1996), confirmed by CT and MRI, and they were all informed with the interventions and the items of evaluation. The enrolled patients were randomly divided into training group (n=78) and control group (n=72) at admission. METHODS: ① Interventions: All the patients were given routine treatments for stroke, including managin blood pressure, maintaining the balance of hydrolyte and electrolure, reducing intracranial pressure by dehydration,and venous injection of citicoline, besides those in the training group received rehabilitation training by motor relearning program and Bobath technique. The rehabilitation training began after the vital signs became stable within 24 hours to 3 days after attack for the patients with cerebral infarction and 48 hours to 5 days after attack for those with cerebral hemorrhage respectively, three times a day in the morning, at noon and in the evening respectively, 30 minutes for each time, they were trained for 1 month. Lying position: The patients should keep the anti-spasm posture in the supine position

  7. Comparison of energy expenditure between aquatic and overground treadmill walking in people post-stroke.

    Science.gov (United States)

    Jung, Taeyou; Ozaki, Yoshi; Lai, Byron; Vrongistinos, Konstantinos

    2014-03-01

    This study aimed to compare the cardiorespiratory responses between aquatic treadmill walking (ATW) and overground treadmill walking (OTW) in people with hemiparesis post-stroke. Eight participants post-stroke aged 58.5 ± 11.4 years and eight healthy adult controls aged 56.1 ± 8.6 years participated in a cross-sectional comparative study. Participants completed three 8-minute walking sessions separated by at least 72-hour rest. On the first visit, participants identified their comfortable walking speed on an aquatic and overground treadmill. The second and third visit consisted of either ATW or OTW at a matched speed. Oxygen consumption (VO2), carbon dioxide production (VCO2 ), minute ventilation (VE) and energy expenditure (EE) were measured at rest and during walking in both exercise modes. Mean steady-state cardiorespiratory responses during ATW showed a significant decrease compared with OTW at a matched speed. During ATW, mean VO2 values decreased by 39% in the stroke group and 21% in the control group, mean VCO2 values decreased by 42% in the stroke group and 30% in the control group, and mean EE decreased by 40% in the stroke group and 25% in the control group. Mean steady-state VE values and resting cardiorespiratory response values showed no significant change between the two conditions. This study demonstrated a decreased metabolic cost when ATW at matched speeds to that of OTW. Reduced metabolic cost during ATW may allow for longer durations of treadmill-induced gait training compared with OTW for improved outcomes. This knowledge may aid clinicians when prescribing aquatic treadmill exercise for people post-stroke with goals of improving gait and functional mobility. However, decreased metabolic cost during ATW suggests that to improve cardiovascular fitness, ATW may not be a time-efficient method of cardiovascular exercise for healthy adults and people post-stroke. Copyright © 2013 John Wiley & Sons, Ltd.

  8. Chinese Medicine Patterns in Patients with Post-Stroke Dementia

    OpenAIRE

    Tang, Nou-Ying; Liu, Chung-Hsiang; Liu, Hsu-Jan; Li, Tsai-Chung; Liu, Jui-Chen; Chen, Ping-Kun; Hsieh, Ching-Liang

    2012-01-01

    A stroke often results in post-stroke dementia, a rapid decline in memory and intelligence causing dysfunctions in daily life. The Chinese medicine doctor uses 4 examinations of inspection, listening, smelling, and feeling to determine the Chinese medicine pattern (CMP). Therefore, the purpose of the present study was to investigate the CMP in patients with post-stroke dementia. A total of 101 stroke patients were examined, consistent with the DSM IV diagnostic criteria of the American Psychi...

  9. Gait post-stroke: Pathophysiology and rehabilitation strategies.

    Science.gov (United States)

    Beyaert, C; Vasa, R; Frykberg, G E

    2015-11-01

    We reviewed neural control and biomechanical description of gait in both non-disabled and post-stroke subjects. In addition, we reviewed most of the gait rehabilitation strategies currently in use or in development and observed their principles in relation to recent pathophysiology of post-stroke gait. In both non-disabled and post-stroke subjects, motor control is organized on a task-oriented basis using a common set of a few muscle modules to simultaneously achieve body support, balance control, and forward progression during gait. Hemiparesis following stroke is due to disruption of descending neural pathways, usually with no direct lesion of the brainstem and cerebellar structures involved in motor automatic processes. Post-stroke, improvements of motor activities including standing and locomotion are variable but are typically characterized by a common postural behaviour which involves the unaffected side more for body support and balance control, likely in response to initial muscle weakness of the affected side. Various rehabilitation strategies are regularly used or in development, targeting muscle activity, postural and gait tasks, using more or less high-technology equipment. Reduced walking speed often improves with time and with various rehabilitation strategies, but asymmetric postural behaviour during standing and walking is often reinforced, maintained, or only transitorily decreased. This asymmetric compensatory postural behaviour appears to be robust, driven by support and balance tasks maintaining the predominant use of the unaffected side over the initially impaired affected side. Based on these elements, stroke rehabilitation including affected muscle strengthening and often stretching would first need to correct the postural asymmetric pattern by exploiting postural automatic processes in various particular motor tasks secondarily beneficial to gait. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  10. Chromium supplementation improved post-stroke brain infarction and hyperglycemia.

    Science.gov (United States)

    Chen, Wen-Ying; Mao, Frank Chiahung; Liu, Chia-Hsin; Kuan, Yu-Hsiang; Lai, Nai-Wei; Wu, Chih-Cheng; Chen, Chun-Jung

    2016-04-01

    Hyperglycemia is common after acute stroke and is associated with a worse outcome of stroke. Thus, a better understanding of stress hyperglycemia is helpful to the prevention and therapeutic treatment of stroke. Chromium is an essential nutrient required for optimal insulin activity and normal carbohydrate and lipid metabolism. Beyond its nutritional effects, dietary supplement of chromium causes beneficial outcomes against several diseases, in particular diabetes-associated complications. In this study, we investigated whether post-stroke hyperglycemia involved chromium dynamic mobilization in a rat model of permanent focal cerebral ischemia and whether dietary supplement of chromium improved post-stroke injury and alterations. Stroke rats developed brain infarction, hyperglycemia, hyperinsulinemia, glucose intolerance, and insulin resistance. Post-stroke hyperglycemia was accompanied by elevated secretion of counter-regulatory hormones including glucagon, corticosterone, and norepinephrine, decreased insulin signaling in skeletal muscles, and increased hepatic gluconeogenesis. Correlation studies revealed that counter-regulatory hormone secretion showed a positive correlation with chromium loss and blood glucose increased together with chromium loss. Daily chromium supplementation increased tissue chromium levels, attenuated brain infarction, improved hyperglycemia, and decreased plasma levels of glucagon and corticosterone in stroke rats. Our findings suggest that stroke rats show disturbance of tissue chromium homeostasis with a net loss through urinary excretion and chromium mobilization and loss might be an alternative mechanism responsible for post-stroke hyperglycemia.

  11. Determinants of limb preference for initiating compensatory stepping poststroke.

    Science.gov (United States)

    Mansfield, Avril; Inness, Elizabeth L; Lakhani, Bimal; McIlroy, William E

    2012-07-01

    To investigate the determinants of limb preference for initiating compensatory stepping poststroke. Retrospective chart review. Inpatient rehabilitation. Convenience sample of individuals admitted to inpatient rehabilitation with poststroke hemiparesis. Not applicable. Compensatory stepping responses were evoked using a lean-and-release postural perturbation. The limb used to initiate compensatory stepping was determined. The relationships between stepping with the paretic limb and premorbid limb dominance, weight bearing on the paretic limb in quiet standing, ability to bear weight on the paretic limb, preperturbation weight bearing on the paretic limb, and lower-limb motor recovery scores were determined. The majority (59.1%) of responses were steps initiated with the nonparetic limb. Increased lower-limb motor recovery scores and preperturbation weight bearing on the nonparetic limb were significantly related to increased frequency of stepping with the paretic limb. When the preferred limb was physically blocked, an inappropriate response was initiated in 21% of trials (ie, nonstep responses or an attempt to step with the blocked limb). This study reveals the challenges that individuals with poststroke hemiparesis face when executing compensatory stepping responses to prevent a fall after a postural perturbation. The inability or challenges to executing a compensatory step with the paretic limb may increase the risk for falls poststroke. Copyright © 2012 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  12. Telerehabilitation in poststroke anomia.

    Science.gov (United States)

    Agostini, Michela; Garzon, Martina; Benavides-Varela, Silvia; De Pellegrin, Serena; Bencini, Giulia; Rossi, Giulia; Rosadoni, Sara; Mancuso, Mauro; Turolla, Andrea; Meneghello, Francesca; Tonin, Paolo

    2014-01-01

    Anomia, a word-finding difficulty, is a frequent consequence of poststroke linguistic disturbance, associated with fluent and nonfluent aphasia that needs long-term specific and intensive speech rehabilitation. The present study explored the feasibility of telerehabilitation as compared to a conventional face-to-face treatment of naming, in patients with poststroke anomia. Five aphasic chronic patients participated in this study characterized by: strictly controlled crossover design; well-balanced lists of words in picture-naming tasks where progressive phonological cues were provided; same kind of the treatment in the two ways of administration. ANOVA was used to compare naming accuracy in the two types of treatment, at three time points: baseline, after treatment, and followup. The results revealed no main effect of treatment type (P = 0.844) indicating that face-to-face and tele-treatment yielded comparable results. Moreover, there was a significant main effect of time (P = 0.0004) due to a better performance immediately after treatment and in the followup when comparing them to baseline. These preliminary results show the feasibility of teletreatment applied to lexical deficits in chronic stroke patients, extending previous work on telerehabilitation and opening new vistas for future studies on teletreatment of language functions.

  13. Locomotor adaptation to a soleus EMG-controlled antagonistic exoskeleton.

    Science.gov (United States)

    Gordon, Keith E; Kinnaird, Catherine R; Ferris, Daniel P

    2013-04-01

    Locomotor adaptation in humans is not well understood. To provide insight into the neural reorganization that occurs following a significant disruption to one's learned neuromuscular map relating a given motor command to its resulting muscular action, we tied the mechanical action of a robotic exoskeleton to the electromyography (EMG) profile of the soleus muscle during walking. The powered exoskeleton produced an ankle dorsiflexion torque proportional to soleus muscle recruitment thus limiting the soleus' plantar flexion torque capability. We hypothesized that neurologically intact subjects would alter muscle activation patterns in response to the antagonistic exoskeleton by decreasing soleus recruitment. Subjects practiced walking with the exoskeleton for two 30-min sessions. The initial response to the perturbation was to "fight" the resistive exoskeleton by increasing soleus activation. By the end of training, subjects had significantly reduced soleus recruitment resulting in a gait pattern with almost no ankle push-off. In addition, there was a trend for subjects to reduce gastrocnemius recruitment in proportion to the soleus even though only the soleus EMG was used to control the exoskeleton. The results from this study demonstrate the ability of the nervous system to recalibrate locomotor output in response to substantial changes in the mechanical output of the soleus muscle and associated sensory feedback. This study provides further evidence that the human locomotor system of intact individuals is highly flexible and able to adapt to achieve effective locomotion in response to a broad range of neuromuscular perturbations.

  14. Locomotor adaptation to a soleus EMG-controlled antagonistic exoskeleton

    Science.gov (United States)

    Kinnaird, Catherine R.; Ferris, Daniel P.

    2013-01-01

    Locomotor adaptation in humans is not well understood. To provide insight into the neural reorganization that occurs following a significant disruption to one's learned neuromuscular map relating a given motor command to its resulting muscular action, we tied the mechanical action of a robotic exoskeleton to the electromyography (EMG) profile of the soleus muscle during walking. The powered exoskeleton produced an ankle dorsiflexion torque proportional to soleus muscle recruitment thus limiting the soleus' plantar flexion torque capability. We hypothesized that neurologically intact subjects would alter muscle activation patterns in response to the antagonistic exoskeleton by decreasing soleus recruitment. Subjects practiced walking with the exoskeleton for two 30-min sessions. The initial response to the perturbation was to “fight” the resistive exoskeleton by increasing soleus activation. By the end of training, subjects had significantly reduced soleus recruitment resulting in a gait pattern with almost no ankle push-off. In addition, there was a trend for subjects to reduce gastrocnemius recruitment in proportion to the soleus even though only the soleus EMG was used to control the exoskeleton. The results from this study demonstrate the ability of the nervous system to recalibrate locomotor output in response to substantial changes in the mechanical output of the soleus muscle and associated sensory feedback. This study provides further evidence that the human locomotor system of intact individuals is highly flexible and able to adapt to achieve effective locomotion in response to a broad range of neuromuscular perturbations. PMID:23307949

  15. Effect of anterior cervical osteophyte in poststroke dysphagia: a case-control study.

    Science.gov (United States)

    Kim, Youngkook; Park, Geun-Young; Seo, Yu Jung; Im, Sun

    2015-07-01

    To investigate whether the concomitant presence of anterior cervical osteophytes can influence the severity and outcome of patients with poststroke dysphagia. Retrospective case-control study. Hospital. A total of 40 participants were identified (N=40). Patients with poststroke dysphagia with anterior cervical osteophytes (n=20) were identified and matched by age, sex, location, and laterality of the stroke lesion to a poststroke dysphagia control group with no anterior cervical osteophytes (n=20). Not applicable. Videofluoroscopic swallowing study, Functional Oral Intake Scale (FOIS), and Penetration-Aspiration Scale results assessed within the first month of stroke were analyzed. The FOIS at 6 months was recorded, and severity of dysphagia was compared between the 2 groups. The case group had larger degrees of postswallow residues in the valleculae and pyriform sinuses (P=.020 and Pdysphagia (OR=15.375; 95% CI, 3.195-infinity). The presence of anterior cervical osteophytes, which may cause mechanical obstruction and interfere with residue clearance at the valleculae and pyriform sinuses and result in more postswallow aspiration, may influence initial severity and outcome of poststroke dysphagia. The presence of anterior cervical osteophytes may be considered an important clinical condition that may affect poststroke dysphagia rehabilitation. Copyright © 2015 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  16. [Correlation between post-stroke pneumonia and outcome in patients with acute brain infarction].

    Science.gov (United States)

    Li, S J; Hu, H Q; Wang, X L; Cao, B Z

    2016-09-20

    Objective: To investigate the correlation between post-stroke pneumonia and outcome in patients with acute brain infarction. Methods: Consecutive acute cerebral infarction patients who were hospitalized in Department of Neurology, Jinan Military General Hospital were prospectively recruited from August 2010 to August 2014. The baseline data including age, sex, the National Institute of Health Stroke Scale (NIHSS) scores, type of Oxfordshire Community Stroke Project (OCSP: total anterior circulation infarct, partial anterior circulation infarct, posterior circulation infarct and lacunar infarct), fasting blood glucose etc. after admission were recorded. Post-stroke pneumonia was diagnosed by treating physician according to criteria for hospital-acquired pneumonia of the Centers for Disease Control and Prevention. Recovery was assessed by modified Rankin Scale (mRS) 180 days after stroke by telephone interview (mRS≤2 reflected good prognosis, and mRS>2 reflected unfavorable prognosis). Multinominal Logistic regression analysis, Kaplan-Meier curve and log rank test were used. Results: A total of 1 249 patients were enrolled, among them 173 patients were lost during follow-up. A total of 159 patients had post-stroke pneumonia, while 1 090 patients were without post-stroke. Compared with patients without post-stoke pneumonia, patients with post-stroke pneumonia were older (67±13 vs 63±12 years, P =0.000), more severe (NIHSS, 15(14) vs 4(4), P =0.000). Compared with patients without post-stoke pneumonia, more patients with post-stroke pneumonia suffered from heart failure (12.58% vs 3.40%, P =0.000), atrial fibrillation (26.42% vs 8.81%, P =0.000), myocardial infarction (10.06% vs 5.05%, P =0.016), recurrent brain infarction (30.19% vs 22.66%, P =0.045), total anterior circulation infarct type of OCSP (46.54% vs 19.63%, P =0.000), posterior circulation infarct of OCSP (39.62% vs 25.51%, P =0.001); more patients suffered from disorder of consciousness (60.38% vs 9

  17. Sex Differences in Neuromuscular Fatigability of the Knee Extensors Post-Stroke

    Directory of Open Access Journals (Sweden)

    Meghan Kirking

    2017-01-01

    Full Text Available Background and Purpose: Despite the implications of optimizing strength training post-stroke, little is known about the differences in fatigability between men and women with chronic stroke. The purpose of this study was to determine the sex differences in knee extensor muscle fatigability and potential mechanisms in individuals with stroke. Methods: Eighteen participants (10 men, eight women with chronic stroke (≥6 months and 23 (12 men, 11 women nonstroke controls participated in the study. Participants performed an intermittent isometric contraction task (6 s contraction, 3 s rest at 30% of maximal voluntary contraction (MVC torque until failure to maintain the target torque. Electromyography was used to determine muscle activation and contractile properties were assessed with electrical stimulation of the quadriceps muscles. Results: Individuals with stroke had a briefer task duration (greater fatigability than nonstroke individuals (24.1 ± 17 min vs. 34.9 ± 16 min. Men were more fatigable than women for both nonstroke controls and individuals with stroke (17.9 ± 9 min vs. 41.6 ± 15 min. Individuals with stroke had less fatigue-related changes in muscle contractile properties and women with stroke differed in their muscle activation strategy during the fatiguing contractions. Conclusions: Men and women fatigue differently post-stroke and this may be due to the way they neurally activate muscle groups.

  18. Ethnic Differences in Poststroke Quality of Life in the Brain Attack Surveillance in Corpus Christi (BASIC) Project.

    Science.gov (United States)

    Reeves, Sarah L; Brown, Devin L; Baek, Jonggyu; Wing, Jeffrey J; Morgenstern, Lewis B; Lisabeth, Lynda D

    2015-10-01

    Mexican Americans (MAs) have an increased risk of stroke and experience worse poststroke disability than non-Hispanic whites, which may translate into worse poststroke quality of life (QOL). We assessed ethnic differences in poststroke QOL, as well as potential modification of associations by age, sex, and initial stroke severity. Ischemic stroke survivors were identified through the biethnic, population-based Brain Attack Surveillance in Corpus Christi (BASIC) Project. Data were collected from medical records, baseline interviews, and 90-day poststroke interviews. Poststroke QOL was measured at ≈90 days by the validated short-form stroke-specific QOL in 3 domains: overall, physical, and psychosocial (range, 0-5; higher scores represent better QOL). Tobit regression was used to model associations between ethnicity and poststroke QOL scores, adjusted for demographics, clinical characteristics, and prestroke cognition and function. Among 290 eligible stroke survivors (66% MA, 34% non-Hispanic whites, median age=69 years), median scores for overall, physical, and psychosocial poststroke QOL were 3.3, 3.8, and 2.7, respectively. Poststroke QOL was lower for MAs than non-Hispanic whites both overall (mean difference, -0.30; 95% confidence interval, -0.59, -0.01) and in the physical domain (mean difference, -0.47; 95% confidence interval, -0.81, -0.14) after multivariable adjustment. No ethnic difference was found in the psychosocial domain. Age modified the associations between ethnicity and poststroke QOL such that differences were present in older but not in younger ages. Disparities exist in poststroke QOL for MAs and seem to be driven by differences in older stroke patients. Targeted interventions to improve outcomes among MA stroke survivors are urgently needed. © 2015 American Heart Association, Inc.

  19. Risk of Suicide Attempt in Poststroke Patients: A Population-Based Cohort Study.

    Science.gov (United States)

    Harnod, Tomor; Lin, Cheng-Li; Kao, Chia-Hung

    2018-01-10

    This nationwide population-based cohort study evaluated the risk of and risk factors for suicide attempt in poststroke patients in Taiwan. The poststroke and nonstroke cohorts consisted of 713 690 patients and 1 426 009 controls, respectively. Adults (aged >18 years) who received new stroke diagnoses according to the International Classification of Diseases, Ninth Revision, Clinical Modification (ICD-9-CM ; codes 430-438) between 2000 and 2011 were included in the poststroke cohort. We calculated the adjusted hazard ratio for suicide attempt ( ICD-9-CM codes E950-E959) after adjustment for age, sex, monthly income, urbanization level, occupation category, and various comorbidities. Kaplan-Meier analysis was used to measure the cumulative incidence of suicide attempt, and the Fine and Gray method was used as a competing event when estimating death subhazard ratios and 95% confidence intervals between groups. The cumulative incidence of suicide attempt was higher in the poststroke cohort, and the adjusted hazard ratio of suicide attempt was 2.20 (95% confidence interval, 2.04-2.37) compared with that of the controls. The leading risk factors for poststroke suicide attempt were earning low monthly income (US dollars), living in less urbanized regions, doing manual labor, and having a stroke before age 50 years. The attempted suicide risk did not differ significantly between male and female patients in this study. These results convey crucial information to clinicians and governments for preventing suicide attempt in poststroke patients in Taiwan and other Asian countries. © 2018 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

  20. Physical inactivity post-stroke: a 3-year longitudinal study.

    Science.gov (United States)

    Kunkel, Dorit; Fitton, Carolyn; Burnett, Malcolm; Ashburn, Ann

    2015-01-01

    To explore change in activity levels post-stroke. We measured activity levels using the activPAL™ in hospital and at 1, 2 and 3 years' post-stroke onset. Of the 74 participants (mean age 76 (SD 11), 39 men), 61 were assessed in hospital: 94% of time was spent in sitting/lying, 4% standing and 2% walking. Activity levels improved over time (complete cases n = 15); time spent sitting/lying decreased (p = 0.001); time spent standing, walking and number of steps increased (p = 0.001, p = 0.028 and p = 0.03, respectively). At year 3, 18% of time was spent in standing and 9% walking. Time spent upright correlated significantly with Barthel (r = 0.69 on admission, r = 0.68 on discharge, both p inactive for the majority of time. Time spent upright improved significantly by 1 year post-stroke; improvements slowed down thereafter. Poor activity levels correlated with physical and psychological measures. Larger studies are indicated to identify predictors of activity levels. Implications for Rehabilitation Activity levels (measured using activPAL™ activity monitor), increased significantly by 1 year post-stroke but improvements slowed down at 2 and 3 years. People with stroke were inactive for the majority of their day in hospital and in the community. Poor activity levels correlated with physical and psychological measures. Larger studies are indicated to identify the most important predictors of activity levels.

  1. Post-stroke cognitive impairments

    Directory of Open Access Journals (Sweden)

    Elena Anatolyevna Katunina

    2013-01-01

    Full Text Available Post-stroke cognitive impairments are common effects of stroke. Vascular cognitive impairments are characterized by the heterogeneity of the neuropsychological profile in relation to the site and pattern of stroke. Their common trait is the presence of dysregulation secondary to frontal dysfunction. The treatment of vascular cognitive impairments should be multimodality and aimed at stimulating neuroplasticity processes, restoring neurotransmitter imbalance, and preventing recurrent vascular episodes.

  2. Persistent post-stroke dysphagia treated with cricopharyngeal myotomy

    Directory of Open Access Journals (Sweden)

    Sruthi S Nair

    2016-01-01

    Full Text Available Post-stroke dysphagia is a common problem after stroke. About 8-13% patients have persistent dysphagia and are unable to return to pre-stroke diet even after 6 months of stroke. Use of percutaneous endoscopic gastrostomy (PEG may be required in these patients, which may be psychologically unacceptable and impair the quality of life. In those with cricopharyngeal dysfunction leading on to refractory post-stroke dysphagia, cricopharyngeal myotomy and injection of botulinum toxin are the treatment options. We present a case of vertebrobasilar stroke who had persistent dysphagia due to cricopharyngeal dysfunction with good recovery of swallowing function following cricopharyngeal myotomy 1.5 years after the stroke.

  3. Behavior Correlates of Post-Stroke Disability Using Data Mining and Infographics.

    Science.gov (United States)

    Yoon, Sunmoo; Gutierrez, Jose

    Disability is a potential risk for stroke survivors. This study aims to identify disability risk factors associated with stroke and their relative importance and relationships from a national behavioral risk factor dataset. Data of post-stroke individuals in the U.S (n=19,603) including 397 variables were extracted from a publically available national dataset and analyzed. Data mining algorithms including C4.5 and linear regression with M5s methods were applied to build association models for post-stroke disability using Weka software. The relative importance and relationship of 70 variables associated with disability were presented in infographics for clinicians to understand easily. Fifty-five percent of post-stroke patients experience disability. Exercise, employment and satisfaction of life were relatively important factors associated with disability among stroke patients. Modifiable behavior factors strongly associated with disability include exercise (OR: 0.46, PData mining is promising to discover factors associated with post-stroke disability from a large population dataset. The findings can be potentially valuable for establishing the priorities for clinicians and researchers and for stroke patient education. The methods may generalize to other health conditions.

  4. Discriminating poststroke depression from stroke by nuclear magnetic resonance spectroscopy-based metabonomic analysis

    Directory of Open Access Journals (Sweden)

    Xiao J

    2016-08-01

    Full Text Available Jianqi Xiao,1,* Jie Zhang,2,* Dan Sun,3,* Lin Wang,4,* Lijun Yu,5 Hongjing Wu,5 Dan Wang,5 Xuerong Qiu5 1Department of Neurosurgery, The First Hospital of Qiqihar City, Qiqihar, 2Department of Internal Medicine, Central Hospital of Jiamusi City, Jiamusi, 3Department of Geriatrics, General Hospital of Daqing Oil Field, Daqing, 4Department of Nursing, 5Department of Neurology, The First Hospital of Qiqihar City, Qiqihar, Heilongjiang, People’s Republic of China *These authors contributed equally to this work Abstract: Poststroke depression (PSD, the most common psychiatric disease that stroke survivors face, is estimated to affect ~30% of poststroke patients. However, there are still no objective methods to diagnose PSD. In this study, to explore the differential metabolites in the urine of PSD subjects and to identify a potential biomarker panel for PSD diagnosis, the nuclear magnetic resonance-based metabonomic method was applied. Ten differential metabolites responsible for discriminating PSD subjects from healthy control (HC and stroke subjects were found, and five of these metabolites were identified as potential biomarkers (lactate, α-hydroxybutyrate, phenylalanine, formate, and arabinitol. The panel consisting of these five metabolites provided excellent performance in discriminating PSD subjects from HC and stroke subjects, achieving an area under the receiver operating characteristic curve of 0.946 in the training set (43 HC, 45 stroke, and 62 PSD subjects. Moreover, this panel could classify the blinded samples from the test set (31 HC, 33 stroke, and 32 PSD subjects with an area under the curve of 0.946. These results laid a foundation for the future development of urine-based objective methods for PSD diagnosis and investigation of PSD pathogenesis. Keywords: poststroke depression, PSD, stroke, nuclear magnetic resonance, NMR, metabonomic

  5. [Age-specific dynamics of mental working capacity in different regimens of locomotor activity].

    Science.gov (United States)

    Miakotnykh, V V; Khodasevich, L S

    2012-01-01

    The present study included a total of 392 practically healthy men aged between 40 and 79 years differing in the character of routine locomotor activity and the training status (from masters of sport of international grade to the subjects who had never been engaged in sporting activities). They were divided into 4 groups each comprised of subjects ranged by age with a ten-year interval. Their mental working capacity was estimated from the results of the correction test. The study demonstrated that the subjects characterized by a high level of day-to-day locomotor activity have higher indices of attention intensity and information processing speed compared with the age-matched ones leading a relatively sedentary lifestyle. Moreover, they have better chances to retain the mental working capacity up to the age of 70 years.

  6. Clinical Characteristics, Management, and Outcomes of Suspected Poststroke Acute Coronary Syndrome

    OpenAIRE

    Biso, Sylvia Marie; Lu, Marvin; De Venecia, Toni Anne; Wongrakpanich, Supakanya; Rodriguez-Ziccardi, Mary; Yadlapati, Sujani; Kishlyansky, Marina; Rammohan, Harish Seetha; Figueredo, Vincent M.

    2017-01-01

    Background Acute coronary syndrome (ACS) can complicate acute ischemic stroke, causing significant morbidity and mortality. To date, literatures that describe poststroke acute coronary syndrome and its morbidity and mortality burden are lacking. Methods This is a single center, retrospective study where clinical characteristics, cardiac evaluation, and management of patients with suspected poststroke ACS were compared and analyzed for their association with inpatient mortality and 1-year all-...

  7. Telerehabilitation in Poststroke Anomia

    Directory of Open Access Journals (Sweden)

    Michela Agostini

    2014-01-01

    Full Text Available Anomia, a word-finding difficulty, is a frequent consequence of poststroke linguistic disturbance, associated with fluent and nonfluent aphasia that needs long-term specific and intensive speech rehabilitation. The present study explored the feasibility of telerehabilitation as compared to a conventional face-to-face treatment of naming, in patients with poststroke anomia. Five aphasic chronic patients participated in this study characterized by: strictly controlled crossover design; well-balanced lists of words in picture-naming tasks where progressive phonological cues were provided; same kind of the treatment in the two ways of administration. ANOVA was used to compare naming accuracy in the two types of treatment, at three time points: baseline, after treatment, and followup. The results revealed no main effect of treatment type (P=0.844 indicating that face-to-face and tele-treatment yielded comparable results. Moreover, there was a significant main effect of time (P=0.0004 due to a better performance immediately after treatment and in the followup when comparing them to baseline. These preliminary results show the feasibility of teletreatment applied to lexical deficits in chronic stroke patients, extending previous work on telerehabilitation and opening new vistas for future studies on teletreatment of language functions.

  8. Statistical Analysis of Zebrafish Locomotor Response.

    Science.gov (United States)

    Liu, Yiwen; Carmer, Robert; Zhang, Gaonan; Venkatraman, Prahatha; Brown, Skye Ashton; Pang, Chi-Pui; Zhang, Mingzhi; Ma, Ping; Leung, Yuk Fai

    2015-01-01

    Zebrafish larvae display rich locomotor behaviour upon external stimulation. The movement can be simultaneously tracked from many larvae arranged in multi-well plates. The resulting time-series locomotor data have been used to reveal new insights into neurobiology and pharmacology. However, the data are of large scale, and the corresponding locomotor behavior is affected by multiple factors. These issues pose a statistical challenge for comparing larval activities. To address this gap, this study has analyzed a visually-driven locomotor behaviour named the visual motor response (VMR) by the Hotelling's T-squared test. This test is congruent with comparing locomotor profiles from a time period. Different wild-type (WT) strains were compared using the test, which shows that they responded differently to light change at different developmental stages. The performance of this test was evaluated by a power analysis, which shows that the test was sensitive for detecting differences between experimental groups with sample numbers that were commonly used in various studies. In addition, this study investigated the effects of various factors that might affect the VMR by multivariate analysis of variance (MANOVA). The results indicate that the larval activity was generally affected by stage, light stimulus, their interaction, and location in the plate. Nonetheless, different factors affected larval activity differently over time, as indicated by a dynamical analysis of the activity at each second. Intriguingly, this analysis also shows that biological and technical repeats had negligible effect on larval activity. This finding is consistent with that from the Hotelling's T-squared test, and suggests that experimental repeats can be combined to enhance statistical power. Together, these investigations have established a statistical framework for analyzing VMR data, a framework that should be generally applicable to other locomotor data with similar structure.

  9. Prediction of Post-stroke Falls by Quantitative Assessment of Balance

    OpenAIRE

    Lee, Hyun Haeng; Jung, Se Hee

    2017-01-01

    Objective To evaluate characteristics of the postural instability in patients with stroke and to present a prediction model of post-stroke falls. Methods Patients with a first-ever stroke who had been evaluated by the Balance Master (BM) at post-stroke 3 months (?1 month) between August 2011 and December 2015 were enrolled. Parameters for the postural instability, such as the weight bearing asymmetry (WBA) and postural sway velocity (PSV), were obtained. The fall events in daily lives were as...

  10. Locomotor Adaptation Improves Balance Control, Multitasking Ability and Reduces the Metabolic Cost of Postural Instability

    Science.gov (United States)

    Bloomberg, J. J.; Peters, B. T.; Mulavara, A. P.; Brady, R. A.; Batson, C. D.; Miller, C. A.; Ploutz-Snyder, R. J.; Guined, J. R.; Buxton, R. E.; Cohen, H. S.

    2011-01-01

    During exploration-class missions, sensorimotor disturbances may lead to disruption in the ability to ambulate and perform functional tasks during the initial introduction to a novel gravitational environment following a landing on a planetary surface. The overall goal of our current project is to develop a sensorimotor adaptability training program to facilitate rapid adaptation to these environments. We have developed a unique training system comprised of a treadmill placed on a motion-base facing a virtual visual scene. It provides an unstable walking surface combined with incongruent visual flow designed to enhance sensorimotor adaptability. Greater metabolic cost incurred during balance instability means more physical work is required during adaptation to new environments possibly affecting crewmembers? ability to perform mission critical tasks during early surface operations on planetary expeditions. The goal of this study was to characterize adaptation to a discordant sensory challenge across a number of performance modalities including locomotor stability, multi-tasking ability and metabolic cost. METHODS: Subjects (n=15) walked (4.0 km/h) on a treadmill for an 8 -minute baseline walking period followed by 20-minutes of walking (4.0 km/h) with support surface motion (0.3 Hz, sinusoidal lateral motion, peak amplitude 25.4 cm) provided by the treadmill/motion-base system. Stride frequency and auditory reaction time were collected as measures of locomotor stability and multi-tasking ability, respectively. Metabolic data (VO2) were collected via a portable metabolic gas analysis system. RESULTS: At the onset of lateral support surface motion, subj ects walking on our treadmill showed an increase in stride frequency and auditory reaction time indicating initial balance and multi-tasking disturbances. During the 20-minute adaptation period, balance control and multi-tasking performance improved. Similarly, throughout the 20-minute adaptation period, VO2 gradually

  11. Older people's attitudes towards resuming driving in the first four months post-stroke.

    Science.gov (United States)

    McNamara, Annabel; George, Stacey; Ratcliffe, Julie; Walker, Ruth

    2015-03-01

    Little is known about how older people recovering from stroke perceive their return to driving, particularly in the early stages of recovery when they may receive driving information. Semistructured interviews were conducted with 21 participants (52% female, mean age 74.5 years) within the first 16 weeks post-stroke, while inpatients in either acute or rehabilitation stroke wards. Interview data were analysed using content analysis. Three main themes emerged: 'driving as independence', 'emphasis on physical recovery', and 'limits on driving pre-stroke'. For the most part, driving was not a key consideration for participants during this phase of their recovery. Physical restrictions and confidence were seen as the main deterrent to driving post-stroke; however, this varied according to gender. Driving information is generally not retained in the first four weeks of recovery post-stroke. This has implications for the content and timing of driving information given post-stroke. © 2014 ACOTA.

  12. The locomotor activity of soccer players based on playing positions during the 2010 World Cup.

    Science.gov (United States)

    Soroka, Andrzej

    2018-06-01

    The aim of this study was to define the locomotor activity of footballer players during the 2010 World Cup and to assess what differences existed among different playing positions. Research was conducted using research material collected from the Castrol Performance Index, a kinematic game analysis system that records player movements during a game by use of semi-automatic cameras. A total of 599 players who participated in the championships were analyzed. The results were evaluated using one-way analysis of variance (ANOVA) and a post-hoc test that calculated the Honestly Significant Difference (HSD) in order to determine which mean values significantly differed among the player positions. It was found that midfielders covered on average the largest distance during a match (10,777.6 m, Plocomotor activity at high and sprint intensities (2936.8 m and 108.4 m, respectively). Additionally, midfielders also spent the largest amount of time at performing at a high intensity (10.6%). Strikers also featured high levels of the above parameters; the total length of distance covered with high intensities was found to be on average 2586.7 m, the distance covered at sprint intensity was 105 m. The footballers, playing at the championship level feature excellent locomotor preparation. This fact is undoubtedly supported by the aerobic training of high intensity. Such training allows footballers to extend the distance they cover during the match, increase the intensity of locomotor activities and sprint speed distance.

  13. [The influence of locomotor treatment using robotic body-weight-supported treadmill training on rehabilitation outcome of patients suffering from neurological disorders].

    Science.gov (United States)

    Schwartz, Isabella; Meiner, Zeev

    2013-03-01

    Regaining one's ability to walk is of great importance for neurological patients and is a major goal of all rehabilitation programs. Treating neurological patients in the acute phase after the event is technically difficult because of their motor weakness and balance disturbances. Based on studies in spinalized animals, a novel locomotor training that incorporates high repetitions of task-oriented practice by the use of body weight-supported treadmill training (BWSTT) was developed to overcome these obstacles. The use of BWSTT enables early initiation of gait training, integration of weightbearing activities, stepping and balance by the use of a task-specific approach, and a symmetrical gait pattern. However, despite the theoretical potential of BWSTT to become an invaluable therapeutic tool, its effect on walking outcomes was disappointing when compared with conventional training of the same duration. To facilitate the deLivery of BWSTT, a motorized robotic driven gait orthosis (RBWSTT) was recently developed. It has many advantages over the conventional method, including less effort for the physiotherapists, longer session duration, more physiological and reproducible gait patterns, and the possibility of measuring a patient's performances. Several studies have been conducted using RBWSTT in patients after stroke, spinal cord injury, multiple sclerosis and other neurological diseases. Although some of the results were encouraging, there is still uncertainty regarding proper patient selection, timing and protocol for RBWTT treatment following neurological diseases. More large randomized controlled studies are needed in order to answer these questions.

  14. Lower Urinary Tract Symptoms, Erectile Dysfunction, and Quality of Life in Poststroke Men

    DEFF Research Database (Denmark)

    Tibaek, Sigrid; Gard, Gunvor; Dehlendorff, Christian

    2017-01-01

    The aim of the current study was to compare lower urinary tract symptoms (LUTS), erectile dysfunction (ED), and quality of life (QoL) in poststroke and healthy men. Thirty poststroke men with stroke-related LUTS, and as controls, 96 healthy men participated in this controlled, cross-sectional study...

  15. Clinical Characteristics, Management, and Outcomes of Suspected Poststroke Acute Coronary Syndrome

    Directory of Open Access Journals (Sweden)

    Sylvia Marie Biso

    2017-01-01

    Full Text Available Background. Acute coronary syndrome (ACS can complicate acute ischemic stroke, causing significant morbidity and mortality. To date, literatures that describe poststroke acute coronary syndrome and its morbidity and mortality burden are lacking. Methods. This is a single center, retrospective study where clinical characteristics, cardiac evaluation, and management of patients with suspected poststroke ACS were compared and analyzed for their association with inpatient mortality and 1-year all-cause mortality. Results. Of the 82 patients, 32% had chest pain and 88% had ischemic ECG changes; mean peak troponin level was 18, and mean ejection fraction was 40%. The medical management group had older individuals (73 versus 67 years, p<0.05, lower mean peak troponin levels (12 versus 49, p<0.05, and lower mean length of stay (12 versus 25 days, p<0.05 compared to those who underwent stent or CABG. Troponin levels were significantly associated with 1-year all-cause mortality. Conclusion. Age and troponin level appear to play a role in the current clinical decision making for patient with suspected poststroke ACS. Troponin level appears to significantly correlate with 1-year all-cause mortality. In the management of poststroke acute coronary syndrome, optimal medical therapy had similar inpatient and all-cause mortality compared to PCI and/or CABG.

  16. Clinical Characteristics, Management, and Outcomes of Suspected Poststroke Acute Coronary Syndrome

    Science.gov (United States)

    De Venecia, Toni Anne; Wongrakpanich, Supakanya; Rodriguez-Ziccardi, Mary; Yadlapati, Sujani; Kishlyansky, Marina; Rammohan, Harish Seetha; Figueredo, Vincent M.

    2017-01-01

    Background Acute coronary syndrome (ACS) can complicate acute ischemic stroke, causing significant morbidity and mortality. To date, literatures that describe poststroke acute coronary syndrome and its morbidity and mortality burden are lacking. Methods This is a single center, retrospective study where clinical characteristics, cardiac evaluation, and management of patients with suspected poststroke ACS were compared and analyzed for their association with inpatient mortality and 1-year all-cause mortality. Results Of the 82 patients, 32% had chest pain and 88% had ischemic ECG changes; mean peak troponin level was 18, and mean ejection fraction was 40%. The medical management group had older individuals (73 versus 67 years, p < 0.05), lower mean peak troponin levels (12 versus 49, p < 0.05), and lower mean length of stay (12 versus 25 days, p < 0.05) compared to those who underwent stent or CABG. Troponin levels were significantly associated with 1-year all-cause mortality. Conclusion Age and troponin level appear to play a role in the current clinical decision making for patient with suspected poststroke ACS. Troponin level appears to significantly correlate with 1-year all-cause mortality. In the management of poststroke acute coronary syndrome, optimal medical therapy had similar inpatient and all-cause mortality compared to PCI and/or CABG. PMID:29130017

  17. Defining post-stroke pain: diagnostic challenges

    NARCIS (Netherlands)

    Roosink, M.; Geurts, Alexander C.H.; IJzerman, Maarten Joost

    Recently, a new grading system for central post-stroke pain (CPSP) was proposed, which might be used to distinguish patients with stroke who have central neuropathic pain from patients who have peripheral pain. Accordingly, for a CPSP diagnosis, all other causes of pain have to be excluded. Although

  18. Effect of surface sensory and motor electrical stimulation on chronic poststroke oropharyngeal dysfunction.

    Science.gov (United States)

    Rofes, L; Arreola, V; López, I; Martin, A; Sebastián, M; Ciurana, A; Clavé, P

    2013-11-01

    Chronic poststroke oropharyngeal dysfunction (OD) is a common condition, leading to severe complications, including death. Treatments for chronic poststroke OD are scarce. The aim of our study was to assess and compare the efficacy and safety of treatment with surface electrical stimulation (e-stim) at sensory and motor intensities in patients with chronic poststroke OD. Twenty chronic poststroke patients with OD were randomly assigned to (i) sensory e-stim (treatment intensity: 75% of motor threshold) or (ii) motor e-stim (treatment intensity: motor threshold). Patients were treated during 10 days, 1 h/day. Videofluoroscopy was performed at the beginning and end of the study to assess signs of impaired efficacy and safety of swallow and timing of swallow response. Patients presented advanced age (74.95 ± 2.18), 75% were men. The mean days poststroke was 336.26 ± 89.6. After sensory stimulation, the number of unsafe swallows was reduced by 66.7% (p swallows was reduced by 62.5% (p = 0.002), the laryngeal vestibule closure time by 38.26% (p = 0.009) and maximal vertical hyoid extension time by 24.8% (p = 0.008). Moreover, the motor stimulus reduced the pharyngeal residue by 66.7% (p = 0.002), the upper esophageal sphincter opening time by 39.39% (p = 0.009), and increased bolus propulsion force by 211.1% (p = 0.008). No serious adverse events were detected during the treatment. Surface e-stim is a safe and effective treatment for chronic poststroke dysphagic patients. © 2013 John Wiley & Sons Ltd.

  19. Dopamine and the Brainstem Locomotor Networks: From Lamprey to Human

    Directory of Open Access Journals (Sweden)

    Dimitri Ryczko

    2017-05-01

    Full Text Available In vertebrates, dopamine neurons are classically known to modulate locomotion via their ascending projections to the basal ganglia that project to brainstem locomotor networks. An increased dopaminergic tone is associated with increase in locomotor activity. In pathological conditions where dopamine cells are lost, such as in Parkinson's disease, locomotor deficits are traditionally associated with the reduced ascending dopaminergic input to the basal ganglia. However, a descending dopaminergic pathway originating from the substantia nigra pars compacta was recently discovered. It innervates the mesencephalic locomotor region (MLR from basal vertebrates to mammals. This pathway was shown to increase locomotor output in lampreys, and could very well play an important role in mammals. Here, we provide a detailed account on the newly found dopaminergic pathway in lamprey, salamander, rat, monkey, and human. In lampreys and salamanders, dopamine release in the MLR is associated with the activation of reticulospinal neurons that carry the locomotor command to the spinal cord. Dopamine release in the MLR potentiates locomotor movements through a D1-receptor mechanism in lampreys. In rats, stimulation of the substantia nigra pars compacta elicited dopamine release in the pedunculopontine nucleus, a known part of the MLR. In a monkey model of Parkinson's disease, a reduced dopaminergic innervation of the brainstem locomotor networks was reported. Dopaminergic fibers are also present in human pedunculopontine nucleus. We discuss the conserved locomotor role of this pathway from lamprey to mammals, and the hypothesis that this pathway could play a role in the locomotor deficits reported in Parkinson's disease.

  20. Frontal white matter hyperintensities, clasmatodendrosis and gliovascular abnormalities in ageing and post-stroke dementia.

    Science.gov (United States)

    Chen, Aiqing; Akinyemi, Rufus O; Hase, Yoshiki; Firbank, Michael J; Ndung'u, Michael N; Foster, Vincent; Craggs, Lucy J L; Washida, Kazuo; Okamoto, Yoko; Thomas, Alan J; Polvikoski, Tuomo M; Allan, Louise M; Oakley, Arthur E; O'Brien, John T; Horsburgh, Karen; Ihara, Masafumi; Kalaria, Raj N

    2016-01-01

    White matter hyperintensities as seen on brain T2-weighted magnetic resonance imaging are associated with varying degrees of cognitive dysfunction in stroke, cerebral small vessel disease and dementia. The pathophysiological mechanisms within the white matter accounting for cognitive dysfunction remain unclear. With the hypothesis that gliovascular interactions are impaired in subjects with high burdens of white matter hyperintensities, we performed clinicopathological studies in post-stroke survivors, who had exhibited greater frontal white matter hyperintensities volumes that predicted shorter time to dementia onset. Histopathological methods were used to identify substrates in the white matter that would distinguish post-stroke demented from post-stroke non-demented subjects. We focused on the reactive cell marker glial fibrillary acidic protein (GFAP) to study the incidence and location of clasmatodendrosis, a morphological attribute of irreversibly injured astrocytes. In contrast to normal appearing GFAP+ astrocytes, clasmatodendrocytes were swollen and had vacuolated cell bodies. Other markers such as aldehyde dehydrogenase 1 family, member L1 (ALDH1L1) showed cytoplasmic disintegration of the astrocytes. Total GFAP+ cells in both the frontal and temporal white matter were not greater in post-stroke demented versus post-stroke non-demented subjects. However, the percentage of clasmatodendrocytes was increased by >2-fold in subjects with post-stroke demented compared to post-stroke non-demented subjects (P = 0.026) and by 11-fold in older controls versus young controls (P < 0.023) in the frontal white matter. High ratios of clasmotodendrocytes to total astrocytes in the frontal white matter were consistent with lower Mini-Mental State Examination and the revised Cambridge Cognition Examination scores in post-stroke demented subjects. Double immunofluorescent staining showed aberrant co-localization of aquaporin 4 (AQP4) in retracted GFAP+ astrocytes with

  1. Neurophysiologic Correlates of Post-Stroke Mood and Emotional Control

    Directory of Open Access Journals (Sweden)

    Deniz Doruk

    2016-08-01

    Full Text Available Objective: Emotional disturbance is a common complication of stroke significantly affecting functional recovery and quality of life. Identifying relevant neurophysiologic markers associated with post-stroke emotional disturbance may lead to a better understanding of this disabling condition, guiding the diagnosis, development of new interventions and the assessments of treatment response. Methods: Thirty-five subjects with chronic stroke were enrolled in this study. The emotion sub-domain of Stroke Impact Scale (SIS-Emotion was used to assess post-stroke mood and emotional control. The relation between SIS-Emotion and neurophysiologic measures was assessed by using covariance mapping and univariate linear regression. Multivariate analyses were conducted to identify and adjust for potential confounders. Neurophysiologic measures included power asymmetry and coherence assessed by electroencephalography (EEG; and motor threshold, intracortical inhibition (ICI and intracortical facilitation (ICF measured by transcranial magnetic stimulation (TMS. Results: Lower scores on SIS-Emotion was associated with 1 frontal EEG power asymmetry in alpha and beta bands, 2 central EEG power asymmetry in alpha and theta bands, and 3 lower inter-hemispheric coherence over frontal and central areas in alpha band. SIS-Emotion also correlated with higher ICF and MT in the unlesioned hemisphere as measured by TMS. Conclusions: To our knowledge, this is the first study using EEG and TMS to index neurophysiologic changes associated with post-stroke mood and emotional control. Our results suggest that inter-hemispheric imbalance measured by EEG power and coherence, as well as an increased intracortical facilitation in the unlesioned hemisphere measured by TMS might be relevant markers associated with post-stroke mood and emotional control which can guide future studies investigating new diagnostic and treatment modalities in stroke rehabilitation.

  2. Either brain-derived neurotrophic factor or neurotrophin-3 only neurotrophin-producing grafts promote locomotor recovery in untrained spinalized cats.

    Science.gov (United States)

    Ollivier-Lanvin, Karen; Fischer, Itzhak; Tom, Veronica; Houlé, John D; Lemay, Michel A

    2015-01-01

    Background. Transplants of cellular grafts expressing a combination of 2 neurotrophic factors, brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3) have been shown to promote and enhance locomotor recovery in untrained spinalized cats. Based on the time course of recovery and the absence of axonal growth through the transplants, we hypothesized that recovery was due to neurotrophin-mediated plasticity within the existing locomotor circuitry of the lumbar cord. Since BDNF and NT-3 have different effects on axonal sprouting and synaptic connectivity/strengthening, it becomes important to ascertain the contribution of each individual neurotrophins to recovery. Objective. We studied whether BDNF or NT-3 only producing cellular grafts would be equally effective at restoring locomotion in untrained spinal cats. Methods. Rat fibroblasts secreting one of the 2 neurotrophins were grafted into the T12 spinal transection site of adult cats. Four cats in each group (BDNF alone or NT-3 alone) were evaluated. Locomotor recovery was tested on a treadmill at 3 and 5 weeks post-transection/grafting. Results. Animals in both groups were capable of plantar weight-bearing stepping at speed up to 0.8 m/s as early as 3 weeks and locomotor capabilities were similar at 3 and 5 weeks for both types of graft. Conclusions. Even without locomotor training, either BDNF or NT-3 only producing grafts promote locomotor recovery in complete spinal animals. More clinically applicable delivery methods need to be developed. © The Author(s) 2014.

  3. Training to Facilitate Adaptation to Novel Sensory Environments

    Science.gov (United States)

    Bloomberg, J. J.; Peters, B. T.; Mulavara, A. P.; Brady, R. A.; Batson, C. D.; Ploutz-Snyder, R. J.; Cohen, H. S.

    2010-01-01

    After spaceflight, the process of readapting to Earth s gravity causes locomotor dysfunction. We are developing a gait training countermeasure to facilitate adaptive responses in locomotor function. Our training system is comprised of a treadmill placed on a motion-base facing a virtual visual scene that provides an unstable walking surface combined with incongruent visual flow designed to train subjects to rapidly adapt their gait patterns to changes in the sensory environment. The goal of our present study was to determine if training improved both the locomotor and dual-tasking ability responses to a novel sensory environment and to quantify the retention of training. Subjects completed three, 30-minute training sessions during which they walked on the treadmill while receiving discordant support surface and visual input. Control subjects walked on the treadmill without any support surface or visual alterations. To determine the efficacy of training, all subjects were then tested using a novel visual flow and support surface movement not previously experienced during training. This test was performed 20 minutes, 1 week, and 1, 3, and 6 months after the final training session. Stride frequency and auditory reaction time were collected as measures of postural stability and cognitive effort, respectively. Subjects who received training showed less alteration in stride frequency and auditory reaction time compared to controls. Trained subjects maintained their level of performance over 6 months. We conclude that, with training, individuals became more proficient at walking in novel discordant sensorimotor conditions and were able to devote more attention to competing tasks.

  4. Effect of body-weight suspension training versus treadmill training on gross motor abilities of children with spastic diplegic cerebral palsy.

    Science.gov (United States)

    Emara, Hatem A; El-Gohary, Tarek M; Al-Johany, Ahmed A

    2016-06-01

    Suspension training and treadmill training are commonly used for promoting functional gross motor skills in children with cerebral palsy. The aim of this study was to compare the effect of body-weight suspension training versus treadmill training on gross motor functional skills. Assessor-blinded, randomized, controlled intervention study. Outpatient rehabilitation facility. Twenty children with spastic diplegia (7 boys and 13 girls) in the age ranged from 6 to 8 years old were randomly allocated into two equal groups. All children were assessed at baseline, after 18-session and after 36-session. During the twelve-week outpatient rehabilitation program, both groups received traditional therapeutic exercises. Additionally, one group received locomotor training using the treadmill while the other group received locomotor training using body-weight suspension through the dynamic spider cage. Assessment included dimensions "D" standing and "E" walking of the gross motor function measure, in addition to the 10-m Walking Test and the five times sit to stand test. Training was applied three times per week for twelve consecutive weeks. No significant difference was found in standing or walking ability for measurements taken at baseline or after 18-session of therapy. Measurements taken at 36-session showed that suspension training achieved significantly (Ptraining for dimension D as well as for dimension E. No significant difference was found between suspension training and treadmill training regarding walking speed or sit to stand transitional skills. Body-weight suspension training is effective in improving walking and locomotor capabilities in children with spastic diplegia. After three month suspension training was superior to treadmill training. Body-weight suspension training promotes adequate postural stability, good balance control, and less exertion which facilitates efficient and safe gait.

  5. PROBLEMAS LOCOMOTORES EM FRANGOS DE CORTE - REVISÃO. / LOCOMOTOR PROBLEMS IN BROILER CHICKENS - A REVIEW.

    Directory of Open Access Journals (Sweden)

    IBIARA CORREIA DE LIMA ALMEIDA PAZ

    2008-12-01

    Full Text Available O bem estar animal é, sem dúvida, um dos pontos em que os produtores de aves devem se atentar para conseguir melhor rentabilidade e colocação no mercado externo. No entanto, é necessário ter uma ampla idéia de que alguns pontos impostos por mercados importadores, muitas vezes não tem fundamento científico e tratam-se mais de barreiras não tarifárias que de problemas de produção propriamente ditos. Dentre os vários fatores que afetam o bem estar animal pode-se destacar a incidência de problemas locomotores, principalmente em animais confinados. Estes distúrbios podem acarretar em perdas de até 6% em lotes comercias de frangos de corte, além de outras perdas não mensuráveis em linhas de abate, por fraturas e hematomas. Existem diversas metodologias para diagnosticar problemas locomotores, entretanto, a mais difundida na indústria avícola é o Gait Score, por sua facilidade de aplicação e por englobar os diferentes tipos de problemas locomotores. Sabe-se, contudo que esta metodologia é bastante subjetiva e pode inferir  em  diferentes  níveis  de  avaliação  dependendo  do método  utilizado. Os  problemas locomotores devem ser prevenidos já que depois de estabelecidos as perdas são inevitáveis.

  6. Chinese medicine patterns in patients with post-stroke dementia.

    Science.gov (United States)

    Tang, Nou-Ying; Liu, Chung-Hsiang; Liu, Hsu-Jan; Li, Tsai-Chung; Liu, Jui-Chen; Chen, Ping-Kun; Hsieh, Ching-Liang

    2012-04-01

    A stroke often results in post-stroke dementia, a rapid decline in memory and intelligence causing dysfunctions in daily life. The Chinese medicine doctor uses 4 examinations of inspection, listening, smelling, and feeling to determine the Chinese medicine pattern (CMP). Therefore, the purpose of the present study was to investigate the CMP in patients with post-stroke dementia. A total of 101 stroke patients were examined, consistent with the DSM IV diagnostic criteria of the American Psychiatric Association, as well as the National Institute of Neurological Disorders and Stroke-Association International pour Ia Recherche et I'Enseignement en Neurosciences vascular dementia diagnostic criteria of post-stroke dementia. 100 patients (99.0%) were KEDP (kidney essence deficiency pattern, shèn jīng kuī xū zhèng, ), 83 patients were AHLYP (ascendant hyperactivity of liver yang pattern, gān yáng shàng kàng zhèng, ), 83 patients were QBDP (qi-blood deficiency pattern, qì xuè kuī xū zhèng, ), 81 patients were SBOCP (static blood obstructing the collaterals pattern, yū xuè zǔ luò zhèng, ), 72 patients were BSTRP (bowels stagnation turbidity retention pattern, fǔ zhì zhuó liú zhèng, ), 50 patients were FHIEP (fire heat interior excess pattern, huǒ rè nèi sheng zhèng, ), and 39 participants (38.6%) were PTOOP (phlegm turbidity obstructing the orifices pattern, tán zhuó zǔ qiào zhèng, ); one to 31 patients have at least 2 CMPs simultaneously. In conclusion, the most CMP is KEDP CMP in the post-stroke dementia patients, and one patient may have one or at least 2 CMPs simultaneously.

  7. Post-stroke rehabilitation in Italy: inconsistencies across regional strategies.

    Science.gov (United States)

    Guidetti, D; Spallazzi, M; Baldereschi, M; Di Carlo, A; Ferro, S; Rota E Morelli, N; Immovilli, P; Toni, D; Polizzi, B M; Inzitari, D

    2014-06-01

    Remarkable differences among European countries have been found in stroke rehabilitation models, owing to the fact that stroke rehabilitation services are embedded in health care systems. Comprehensive data on service utilization by stroke survivors in Italy are lacking, but would be instrumental in improving efficiency and effectiveness of post-acute stroke care, and consequently, in containing costs and improving outcomes. The purpose of the present study was to survey the Italian regional legislations in order to examine the provision of rehabilitation services for stroke survivors in Italy. This is a cross-sectional, observational study. Post-stroke intra- and extra-hospital rehabilitation. All decrees and resolutions as to post-acute stroke rehabilitation were collected from each Italian region. All decrees and resolutions were examined by the means of a check list including quantitative and qualitative characteristics, selected in accordance with national official recommendations. Each completed check list was then sent to each regional reference person, who filled in the section on the implementation of the indications and compliance. The study was carried out from November 2009 to September 2010. The documents were collected from 19 out of the 20 Italian regions. The results of the study indicate that there are many, remarkable regional variations in health policies concerning post-stroke care. Instruments for evaluation and criteria for allocating stroke patients to proper rehabilitation setting vary across regions, but data on the potential impact of these variations on clinical outcomes are still lacking. The study highlights the issue that, in Italy, delivery of post-stroke rehabilitation services is not uniform nation-wide and varies substantially across regions. The lack of a comprehensive post-acute stroke strategy is a major obstacle to service availability. The study results advocate the need for a consistent and comprehensive strategic planning of

  8. Poststroke dysphagia rehabilitation by repetitive transcranial magnetic stimulation: a noncontrolled pilot study.

    Science.gov (United States)

    Verin, E; Leroi, A M

    2009-06-01

    Poststroke dysphagia is frequent and significantly increases patient mortality. In two thirds of cases there is a spontaneous improvement in a few weeks, but in the other third, oropharyngeal dysphagia persists. Repetitive transcranial magnetic stimulation (rTMS) is known to excite or inhibit cortical neurons, depending on stimulation frequency. The aim of this noncontrolled pilot study was to assess the feasibility and the effects of 1-Hz rTMS, known to have an inhibitory effect, on poststroke dysphagia. Seven patients (3 females, age = 65 +/- 10 years), with poststroke dysphagia due to hemispheric or subhemispheric stroke more than 6 months earlier (56 +/- 50 months) diagnosed by videofluoroscopy, participated in the study. rTMS at 1 Hz was applied for 20 min per day every day for 5 days to the healthy hemisphere to decrease transcallosal inhibition. The evaluation was performed using the dysphagia handicap index and videofluoroscopy. The dysphagia handicap index demonstrated that the patients had mild oropharyngeal dysphagia. Initially, the score was 43 +/- 9 of a possible 120 which decreased to 30 +/- 7 (p study demonstrated that rTMS is feasible in poststroke dysphagia and improves swallowing coordination. Our results now need to be confirmed by a randomized controlled study with a larger patient population.

  9. Differential housing and novelty response: Protection and risk from locomotor sensitization.

    Science.gov (United States)

    Garcia, Erik J; Haddon, Tara N; Saucier, Donald A; Cain, Mary E

    2017-03-01

    High novelty seeking increases the risk for drug experimentation and locomotor sensitization. Locomotor sensitization to psychostimulants is thought to reflect neurological adaptations that promote the transition to compulsive drug taking. Rats reared in enrichment (EC) show less locomotor sensitization when compared to rats reared in isolation (IC) or standard conditions (SC). The current research study was designed to test if novelty response contributed locomotor sensitization and more importantly, if the different housing environments could change the novelty response to protect against the development of locomotor sensitization in both adolescence and adulthood. Experiment 1: rats were tested for their response to novelty using the inescapable novelty test (IEN) and pseudorandomly assigned to enriched (EC), isolated (IC), or standard (SC) housing conditions for 30days. After housing, they were tested with IEN. Rats were then administered amphetamine (0.5mg/kg) or saline and locomotor activity was measured followed by a sensitization test 14days later. Experiment 2: rats were tested in the IEN test early adulthood and given five administrations of amphetamine (0.3mg/kg) or saline and then either stayed in or switched housing environments for 30days. Rats were then re-tested in the IEN test in late adulthood and administered five more injections of their respective treatments and tested for locomotor sensitization. Results indicate that IC and SC increased the response to novelty. EC housing decreased locomotor response to amphetamine and saline, and SC housing increased the locomotor response to amphetamine. Mediation results indicated that the late adult novelty response fully mediates the locomotor response to amphetamine and saline, while the early adulthood novelty response did not. Differential housing changes novelty and amphetamine locomotor response. Novelty response is altered into adulthood and provides evidence that enrichment can be used to reduce

  10. Kinematics of the contralateral and ipsilateral shoulder: A possible relationship with post-stroke shoulder pain

    NARCIS (Netherlands)

    Niessen, M.H.M.; Janssen, T.W.J.; Meskers, C.G.M.; Koppe, P.; Konijnenbelt, M.; Veeger, H.E.J.

    2008-01-01

    Objective: Post-stroke shoulder pain is a common phenomenon in hemiplegia and impedes rehabilitation. The aim of this study was to identify a possible relationship between post-stroke shoulder pain, scapula resting position and shoulder motion. Methods: Shoulder kinematics of 27 patients after

  11. Home-based Constraint Induced Movement Therapy Poststroke

    Directory of Open Access Journals (Sweden)

    Stephen Isbel HScD

    2014-10-01

    Full Text Available Background: This study examined the efficacy of a home-based Constraint Induced Movement Therapy (CI Therapy protocol with eight poststroke survivors. Method: Eight ABA, single case experiments were conducted in the homes of poststroke survivors. The intervention comprised restraint of the intact upper limb in a mitt for 21 days combined with a home-based and self-directed daily activity regime. Motor changes were measured using The Wolf Motor Function Test (WMFT and the Motor Activity Log (MAL. Results: Grouped results showed statistically and clinically significant differences on the WMFT (WMFT [timed items]: Mean 7.28 seconds, SEM 1.41, 95% CI 4.40 – 10.18, p = 0.000; WMFT (Functional Ability: z = -4.63, p = 0.000. Seven out of the eight participants exceeded the minimal detectable change on both subscales of the MAL. Conclusion: This study offers positive preliminary data regarding the feasibility of a home-based CI Therapy protocol. This requires further study through an appropriately powered control trial.

  12. Defining Optimal Aerobic Exercise Parameters to Affect Complex Motor and Cognitive Outcomes after Stroke: A Systematic Review and Synthesis

    Directory of Open Access Journals (Sweden)

    S. M. Mahmudul Hasan

    2016-01-01

    Full Text Available Although poststroke aerobic exercise (AE increases markers of neuroplasticity and protects perilesional tissue, the degree to which it enhances complex motor or cognitive outcomes is unknown. Previous research suggests that timing and dosage of exercise may be important. We synthesized data from clinical and animal studies in order to determine optimal AE training parameters and recovery outcomes for future research. Using predefined criteria, we included clinical trials of stroke of any type or duration and animal studies employing any established models of stroke. Of the 5,259 titles returned, 52 articles met our criteria, measuring the effects of AE on balance, lower extremity coordination, upper limb motor skills, learning, processing speed, memory, and executive function. We found that early-initiated low-to-moderate intensity AE improved locomotor coordination in rodents. In clinical trials, AE improved balance and lower limb coordination irrespective of intervention modality or parameter. In contrast, fine upper limb recovery was relatively resistant to AE. In terms of cognitive outcomes, poststroke AE in animals improved memory and learning, except when training was too intense. However, in clinical trials, combined training protocols more consistently improved cognition. We noted a paucity of studies examining the benefits of AE on recovery beyond cessation of the intervention.

  13. Modular diversification of the locomotor system in damselfishes (Pomacentridae).

    Science.gov (United States)

    Aguilar-Medrano, Rosalía; Frédérich, Bruno; Barber, Paul H

    2016-05-01

    As fish move and interact with their aquatic environment by swimming, small morphological variations of the locomotor system can have profound implications on fitness. Damselfishes (Pomacentridae) have inhabited coral reef ecosystems for more than 50 million years. As such, habitat preferences and behavior could significantly constrain the morphology and evolvability of the locomotor system. To test this hypothesis, we used phylogenetic comparative methods on morphometric, ecological and behavioral data. While body elongation represented the primary source of variation in the locomotor system of damselfishes, results also showed a diverse suite of morphological combinations between extreme morphologies. Results show clear associations between behavior, habitat preferences, and morphology, suggesting ecological constraints on shape diversification of the locomotor system. In addition, results indicate that the three modules of the locomotor system are weakly correlated, resulting in versatile and independent characters. These results suggest that Pomacentridae is shape may result from the interaction between (1) integrated parts of morphological variation that maintain overall swimming ability and (2) relatively independent parts of the morphology that facilitate adaptation and diversification. © 2016 Wiley Periodicals, Inc.

  14. Runners maintain locomotor-respiratory coupling following isocapnic voluntary hyperpnea to task failure.

    Science.gov (United States)

    Stickford, Abigail S L; Stickford, Jonathon L; Tanner, David A; Stager, Joel M; Chapman, Robert F

    2015-11-01

    Evidence has long suggested that mammalian ventilatory and locomotor rhythms are linked, yet determinants and implications of locomotor-respiratory coupling (LRC) continue to be investigated. Anecdotally, respiratory muscle fatigue seen at the end of heavy exercise may result in an uncoupling of movement-ventilation rhythms; however, there is no scientific evidence to substantiate this claim. We sought to determine whether or not fatigue of the respiratory muscles alters locomotor-respiratory coupling patterns typically observed in highly trained individuals while running. A related query was to examine the relationship between the potential changes in LRC and measures of running economy. Twelve male distance runners ran at four submaximal workloads (68-89 % VO2peak) on two separate days while LRC was quantified. One LRC trial served as a control (CON), while the other was performed following an isocapnic voluntary hyperpnea to task failure to induce respiratory muscle fatigue (FT+). LRC was assessed as stride-to-breathing frequency ratios (SF/fB) and degree of LRC (percentage of breaths occurring during the same decile of the step cycle). Hyperpnea resulted in significant declines in maximal voluntary inspiratory (MIP) and expiratory (MEP) mouth pressures (ΔMIP = -10 ± 12 cm H2O; ΔMEP = -6 ± 9 cm H2O). There were no differences in minute ventilation between CON and FT+ (CON, all speeds pooled = 104 ± 25 L min(-1); FT+ pooled = 106 ± 23 L min(-1)). Stride frequency was not different between trials; however, breathing frequency was significantly greater during FT+ compared to CON at all speeds (CON pooled = 47 ± 10 br min(-1); FT+ pooled = 52 ± 9 br min(-1)), resulting in smaller corresponding SF/fB. Yet, the degree of LRC was the same during CON and FT+ (CON pooled = 63 ± 15 %; FT+ pooled = 64 ± 18 %). The results indicate that trained runners are able to continue entraining breath and step cycles, despite marked changes in exercise breathing frequency

  15. Locomotor sensitization to ethanol: Contribution of b-Endorphin

    Directory of Open Access Journals (Sweden)

    Stephani eDempsey

    2012-08-01

    Full Text Available Alcohol use disorders, like all drug addictions, involve a constellation of adaptive changes throughout the brain. Neural activity underlying changes in the rewarding properties of alcohol reflect changes in dopamine transmission in mesolimbic and nigrostriatal pathways and these effects are modulated by endogenous opioids such as b-Endorphin. In order to study the role of b-Endorphin in the development of locomotor sensitization to repeated EtOH exposure, we tested transgenic mice that vary in their capacity to synthesize this peptide as a result of constitutive modification of the Pomc gene. Our results indicate that mice deficient in b-Endorphin show attenuated locomotor activation following an acute injection of EtOH (2 g/kg and, in contrast to wildtype mice, fail to demonstrate locomotor sensitization after 12 days of repeated EtOH injections. These data support the idea that b-Endorphin modulates the locomotor effects of EtOH and contributes to the neuroadaptive changes associated with chronic use.

  16. Electromechanical gait training with functional electrical stimulation: case studies in spinal cord injury.

    Science.gov (United States)

    Hesse, S; Werner, C; Bardeleben, A

    2004-06-01

    Single case studies. To describe the technique of intensive locomotor training on an electromechanical gait trainer (GT) combined with functional electrical stimulation (FES). Neurological Rehabilitation Clinic, Berlin, Germany. Four spinal cord-injured (SCI) patients, one tetraparetic, two paraparetic, and one patient with an incomplete cauda syndrome, more than 3 months postinjury, who were unable to walk at all, or with two therapists. They received 25 min of locomotor training on the GT plus FES daily for 5 weeks in addition to the regular therapy. The patients tolerated the programme well, and therapists rated the programme less strenuous compared to manually assisted treadmill training. Gait ability improved in all four patients; three patients could walk independently on the floor with the help of technical aids, and one required the help of one therapist after therapy; gait speed and endurance more than doubled, and the gastrocnemius activity increased in the patients with a central paresis. This combined technique allows intensive locomotor therapy in SCI subjects with reduced effort from the therapists. The patients' improved walking ability confirmed the potential of locomotor therapy in SCI subjects.

  17. Locomotor adaptability in persons with unilateral transtibial amputation.

    Science.gov (United States)

    Darter, Benjamin J; Bastian, Amy J; Wolf, Erik J; Husson, Elizabeth M; Labrecque, Bethany A; Hendershot, Brad D

    2017-01-01

    Locomotor adaptation enables walkers to modify strategies when faced with challenging walking conditions. While a variety of neurological injuries can impair locomotor adaptability, the effect of a lower extremity amputation on adaptability is poorly understood. Determine if locomotor adaptability is impaired in persons with unilateral transtibial amputation (TTA). The locomotor adaptability of 10 persons with a TTA and 8 persons without an amputation was tested while walking on a split-belt treadmill with the parallel belts running at the same (tied) or different (split) speeds. In the split condition, participants walked for 15 minutes with the respective belts moving at 0.5 m/s and 1.5 m/s. Temporal spatial symmetry measures were used to evaluate reactive accommodations to the perturbation, and the adaptive/de-adaptive response. Persons with TTA and the reference group of persons without amputation both demonstrated highly symmetric walking at baseline. During the split adaptation and tied post-adaptation walking both groups responded with the expected reactive accommodations. Likewise, adaptive and de-adaptive responses were observed. The magnitude and rate of change in the adaptive and de-adaptive responses were similar for persons with TTA and those without an amputation. Furthermore, adaptability was no different based on belt assignment for the prosthetic limb during split adaptation walking. Reactive changes and locomotor adaptation in response to a challenging and novel walking condition were similar in persons with TTA to those without an amputation. Results suggest persons with TTA have the capacity to modify locomotor strategies to meet the demands of most walking conditions despite challenges imposed by an amputation and use of a prosthetic limb.

  18. Reliability review of the remote tool delivery system locomotor

    Energy Technology Data Exchange (ETDEWEB)

    Chesser, J.B.

    1999-04-01

    The locomotor being built by RedZone Robotics is designed to serve as a remote tool delivery (RID) system for waste retrieval, tank cleaning, viewing, and inspection inside the high-level waste tanks 8D-1 and 8D-2 at West Valley Nuclear Services (WVNS). The RTD systm is to be deployed through a tank riser. The locomotor portion of the RTD system is designed to be inserted into the tank and is to be capable of moving around the tank by supporting itself and moving on the tank internal structural columns. The locomotor will serve as a mounting platform for a dexterous manipulator arm. The complete RTD system consists of the locomotor, dexterous manipulator arm, cameras, lights, cables, hoses, cable/hose management system, power supply, and operator control station.

  19. Chinese Medicine Patterns in Patients with Post-Stroke Dementia

    Directory of Open Access Journals (Sweden)

    Nou-Ying Tang

    2012-04-01

    Full Text Available A stroke often results in post-stroke dementia, a rapid decline in memory and intelligence causing dysfunctions in daily life. The Chinese medicine doctor uses 4 examinations of inspection, listening, smelling, and feeling to determine the Chinese medicine pattern (CMP. Therefore, the purpose of the present study was to investigate the CMP in patients with post-stroke dementia. A total of 101 stroke patients were examined, consistent with the DSM IV diagnostic criteria of the American Psychiatric Association, as well as the National Institute of Neurological Disorders and Stroke-Association International pour Ia Recherche et I’Enseignement en Neurosciences vascular dementia diagnostic criteria of post-stroke dementia. Results: 100 patients (99.0% were KEDP (kidney essence deficiency pattern, shèn jīng kuī xū zhèng, 腎精虧虛證, 83 patients were AHLYP (ascendant hyperactivity of liver yang pattern, gān yáng shàng kàng zhèng, 肝陽上亢證, 83 patients were QBDP (qi-blood deficiency pattern, qì xuè kuī xū zhèng, 氣血虧虛證, 81 patients were SBOCP (static blood obstructing the collaterals pattern, yū xuè zǔ luò zhèng, 瘀血阻絡證, 72 patients were BSTRP (bowels stagnation turbidity retention pattern, fǔ zhì zhuó liú zhèng, 腑滯濁留證, 50 patients were FHIEP (fire heat interior excess pattern, huǒ rè nèi sheng zhèng, 火熱內盛證, and 39 participants (38.6% were PTOOP (phlegm turbidity obstructing the orifices pattern, tán zhuó zǔ qiào zhèng, 痰濁阻竅證; one to 31 patients have at least 2 CMPs simultaneously. In conclusion, the most CMP is KEDP CMP in the post-stroke dementia patients, and one patient may have one or at least 2 CMPs simultaneously.

  20. Combined Electrical Stimulation and Exercise for Swallow Rehabilitation Post-Stroke: A Pilot Randomized Control Trial

    Science.gov (United States)

    Sproson, Lise; Pownall, Sue; Enderby, Pam; Freeman, Jenny

    2018-01-01

    Background: Dysphagia is common after stroke, affecting up to 50% of patients initially. It can lead to post-stroke pneumonia, which causes 30% of stroke-related deaths, a longer hospital stay and poorer health outcomes. Dysphagia care post-stroke generally focuses on the management of symptoms, via modified oral intake textures and adapted…

  1. Cognitive Evolution by MMSE in Poststroke Patients

    Science.gov (United States)

    da Costa, Fabricia Azevedo

    2010-01-01

    The aim of this study was to investigate the cognitive and clinical evolution of post-acute stroke patients and the evolution of each Mini-Mental State Examination (MMSE) item. A longitudinal study was conducted with 42 poststroke individuals in rehabilitation. The MMSE and the National Institutes of Health Stroke Scale were used to assess…

  2. Factors affecting return to driving post-stroke.

    LENUS (Irish Health Repository)

    Tan, K M

    2012-02-01

    BACKGROUND: Stroke can affect a person\\'s ability to drive, an important means of transportation in the developed world. AIMS: To determine percentage of patients and factors associated with return to driving post-stroke in a service with emphasis on driver assessment. METHODS: Retrospective study of patients discharged from the Stroke Service of our 470-bed teaching hospital from 1998 to 2002. RESULTS: Of 72 drivers pre-stroke, 54% recalled a driving assessment and 68% returned to driving. Younger patients (58.6 +\\/- 12.0 vs. 66.5 +\\/- 10.5, p = 0.008) with lower Modified Rankin Score (median 1 vs. 2, p = 0.0001) and normal cognition (55 vs. 43%, p = 0.45) were more likely to resume driving. More patients who were assessed returned to driving than those who were not (74 vs. 61%, p = 0.31). CONCLUSIONS: A relatively high level of return to driving can be achieved post-stroke with a pro-active approach to driver assessment and rehabilitation. A structured assessment and referral programme should be offered where appropriate.

  3. Plugging the Patient Evidence Gap: What Patients with Swallowing Disorders Post-Stroke Say about Thickened Liquids

    Science.gov (United States)

    McCurtin, Arlene; Healy, Chiara; Kelly, Linda; Murphy, Fiona; Ryan, Jean; Walsh, Joanne

    2018-01-01

    Background: Oropharyngeal dysphagia post-stroke is well known, with its presence increasing the risk of poor outcomes in particular aspiration and aspiration pneumonia. Management to minimize the risk of aspiration and improve swallow safety post-stroke includes the treatment of thickened liquids (TL), an established bolus modification…

  4. Effect of Error Augmentation on Brain Activation and Motor Learning of a Complex Locomotor Task

    Directory of Open Access Journals (Sweden)

    Laura Marchal-Crespo

    2017-09-01

    Full Text Available Up to date, the functional gains obtained after robot-aided gait rehabilitation training are limited. Error augmenting strategies have a great potential to enhance motor learning of simple motor tasks. However, little is known about the effect of these error modulating strategies on complex tasks, such as relearning to walk after a neurologic accident. Additionally, neuroimaging evaluation of brain regions involved in learning processes could provide valuable information on behavioral outcomes. We investigated the effect of robotic training strategies that augment errors—error amplification and random force disturbance—and training without perturbations on brain activation and motor learning of a complex locomotor task. Thirty-four healthy subjects performed the experiment with a robotic stepper (MARCOS in a 1.5 T MR scanner. The task consisted in tracking a Lissajous figure presented on a display by coordinating the legs in a gait-like movement pattern. Behavioral results showed that training without perturbations enhanced motor learning in initially less skilled subjects, while error amplification benefited better-skilled subjects. Training with error amplification, however, hampered transfer of learning. Randomly disturbing forces induced learning and promoted transfer in all subjects, probably because the unexpected forces increased subjects' attention. Functional MRI revealed main effects of training strategy and skill level during training. A main effect of training strategy was seen in brain regions typically associated with motor control and learning, such as, the basal ganglia, cerebellum, intraparietal sulcus, and angular gyrus. Especially, random disturbance and no perturbation lead to stronger brain activation in similar brain regions than error amplification. Skill-level related effects were observed in the IPS, in parts of the superior parietal lobe (SPL, i.e., precuneus, and temporal cortex. These neuroimaging findings

  5. Role of hypothalamic cannabinoid receptors in post-stroke depression in rats.

    Science.gov (United States)

    Wang, Shanshan; Sun, Hong; Liu, Sainan; Wang, Ting; Guan, Jinqun; Jia, Jianjun

    2016-03-01

    One of the most common psychological consequences of stroke is post-stroke depression (PSD). While more than 30 percent of stroke patients eventually develop PSD, the neurobiological mechanisms underlying such a phenomenon have not been well investigated. Given the critical involvement of hypothalamic-pituitary-adrenal axis and endocannabinoid system in response to stressful stimuli, we evaluated the hypothesis that cannabinoid receptors in the hypothalamus are critical for modulation of post-stroke depression-like behaviors in rats. To this end, rats were treated with middle cerebral artery occlusion (MCAO) followed by chronic unpredictable mild stress (CUMS) treatment procedure. We then assessed the expression of CB1 and CB2 receptors in the hypothalamus, and evaluated the effects of pharmacological stimulations of CB1 or CB2 receptors on the expression and development of depression-like behaviors in PSD rats. We found that PSD rats exhibited decreased the expression of CB1 receptor, but not CB2 receptor, in the ventral medial hypothalamus (VMH). Such an effect was not observed in the dorsally adjacent brain regions. Furthermore, intra-VMH injections of CB2 receptor agonist, but not CB1 receptor agonist, attenuated the expression of depression-like behaviors in PSD rats. Finally, repeated intraperitoneal injections of CB1 or CB2 receptor agonists during CUMS treatment inhibited the development of depression-like behaviors in PSD rats. Taken together, these results suggest that decreased CB1 receptor expression is likely associated with the development of post-stroke depression, and CB2 receptor may be a potential therapeutic target for the treatment post-stroke depressive disorders. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Limited interlimb transfer of locomotor adaptations to a velocity-dependent force field during unipedal walking.

    Science.gov (United States)

    Houldin, Adina; Chua, Romeo; Carpenter, Mark G; Lam, Tania

    2012-08-01

    Several studies have demonstrated that motor adaptations to a novel task environment can be transferred between limbs. Such interlimb transfer of motor commands is consistent with the notion of centrally driven strategies that can be generalized across different frames of reference. So far, studies of interlimb transfer of locomotor adaptations have yielded disparate results. Here we sought to determine whether locomotor adaptations in one (trained) leg show transfer to the other (test) leg during a unipedal walking task. We hypothesized that adaptation in the test leg to a velocity-dependent force field previously experienced by the trained leg will be faster, as revealed by faster recovery of kinematic errors and earlier onset of aftereffects. Twenty able-bodied adults walked unipedally in the Lokomat robotic gait orthosis, which applied velocity-dependent resistance to the legs. The amount of resistance was scaled to 10% of each individual's maximum voluntary contraction of the hip flexors. Electromyography and kinematics of the lower limb were recorded. All subjects were right-leg dominant and were tested for transfer of motor adaptations from the right leg to the left leg. Catch trials, consisting of unexpected removal of resistance, were presented after the first step with resistance and after a period of adaptation to test for aftereffects. We found no significant differences in the sizes of the aftereffects between the two legs, except for peak hip flexion during swing, or in the rate at which peak hip flexion adapted during steps against resistance between the two legs. Our results indicate that interlimb transfer of these types of locomotor adaptation is not a robust phenomenon. These findings add to our current understanding of motor adaptations and provide further evidence that generalization of adaptations may be dependent on the movement task.

  7. The influence of applying additional weight to the affected leg on gait patterns during aquatic treadmill walking in people poststroke.

    Science.gov (United States)

    Jung, Taeyou; Lee, Dokyeong; Charalambous, Charalambos; Vrongistinos, Konstantinos

    2010-01-01

    Jung T, Lee D, Charalambous C, Vrongistinos K. The influence of applying additional weight to the affected leg on gait patterns during aquatic treadmill walking in people poststroke. To investigate how the application of additional weights to the affected leg influences gait patterns of people poststroke during aquatic treadmill walking. Comparative gait analysis. University-based aquatic therapy center. Community-dwelling volunteers (n=22) with chronic hemiparesis caused by stroke. Not applicable. Spatiotemporal and kinematic gait parameters. The use of an ankle weight showed an increase in the stance phase percentage of gait cycle (3%, P=.015) when compared with no weight. However, the difference was not significant after a Bonferroni adjustment was applied for a more stringent statistical analysis. No significant differences were found in cadence and stride length. The use of an ankle weight showed a significant decrease of the peak hip flexion (7.9%, P=.001) of the affected limb as compared with no weight condition. This decrease was marked as the reduction of unwanted limb flotation because people poststroke typically show excessive hip flexion of the paretic leg in the late swing phase followed by fluctuating hip movements during aquatic treadmill walking. The frontal and transverse plane hip motions did not show any significant differences but displayed a trend of a decrease in the peak hip abduction during the swing phase with additional weights. The use of additional weight did not alter sagittal plane kinematics of the knee and ankle joints. The use of applied weight on the affected limb can reduce unwanted limb flotation on the paretic side during aquatic treadmill walking. It can also assist the stance stability by increasing the stance phase percentage closer to 60% of gait cycle. Both findings can contribute to the development of more efficient motor patterns in gait training for people poststroke. The use of a cuff weight does not seem to reduce the

  8. Relationships between Lower Limb Muscle Strength and Locomotor Capacity in Children and Adolescents with Cerebral Palsy Who Walk Independently

    Science.gov (United States)

    Ferland, Chantale; Lepage, Celine; Moffet, Helene; Maltais, Desiree B.

    2012-01-01

    This study aimed to quantify relationships between lower limb muscle strength and locomotor capacity for children and adolescents with cerebral palsy (CP) to identify key muscle groups for strength training. Fifty 6- to 16-year-olds with CP (Gross Motor Function Classification System level I or II) participated. Isometric muscle strength of hip…

  9. Distinct sets of locomotor modules control the speed and modes of human locomotion

    Science.gov (United States)

    Yokoyama, Hikaru; Ogawa, Tetsuya; Kawashima, Noritaka; Shinya, Masahiro; Nakazawa, Kimitaka

    2016-01-01

    Although recent vertebrate studies have revealed that different spinal networks are recruited in locomotor mode- and speed-dependent manners, it is unknown whether humans share similar neural mechanisms. Here, we tested whether speed- and mode-dependence in the recruitment of human locomotor networks exists or not by statistically extracting locomotor networks. From electromyographic activity during walking and running over a wide speed range, locomotor modules generating basic patterns of muscle activities were extracted using non-negative matrix factorization. The results showed that the number of modules changed depending on the modes and speeds. Different combinations of modules were extracted during walking and running, and at different speeds even during the same locomotor mode. These results strongly suggest that, in humans, different spinal locomotor networks are recruited while walking and running, and even in the same locomotor mode different networks are probably recruited at different speeds. PMID:27805015

  10. Feasibility and effectiveness of circuit training in acute stroke rehabilitation.

    Science.gov (United States)

    Rose, Dorian; Paris, Trevor; Crews, Erin; Wu, Samuel S; Sun, Anqi; Behrman, Andrea L; Duncan, Pamela

    2011-02-01

    Task-specificity, repetition and progression are key variables in the acquisition of motor skill however they have not been consistently implemented in post-stroke rehabilitation. To evaluate the effectiveness of a stroke rehabilitation plan of care that incorporated task-specific practice, repetition and progression to facilitate functional gain compared to standard physical therapy for individuals admitted to an inpatient stroke unit. Individuals participated in either a circuit training (CTPT) model (n = 72) or a standard (SPT) model (n = 108) of physical therapy, 5 days/week. Each 60 minute circuit training session, delivered according to severity level, consisted of four functional mobility tasks. Daily exercise logs documented both task repetition and progression. The CTPT model was successfully implemented in an acute rehabilitation setting. The CTPT group showed a significantly greater improved change in gait speed from hospital admission to discharge than the SPT group (0.21 ± 0.25 m/sec vs. 0.13 ± 0.22 m/sec; p = 0.03). The difference between groups occurred primarily among those who were ambulatory upon admission. There were no significant differences between the two cohorts at 90 days post-stroke as measured by the FONE-FIM, SF-36 and living location. Therapy focused on systematically progressed functional tasks can be successfully implemented in an inpatient rehabilitation stroke program. This circuit-training model resulted in greater gains in gait velocity over the course of inpatient rehabilitation compared to the standard model of care. Community-based services following hospital discharge to maintain these gains should be included in the continuum of post-stroke care.

  11. Post-stroke depression among stroke survivors attending two ...

    African Journals Online (AJOL)

    Background: The burden of stroke worldwide is increasing rapidly. There is paucity of data on post-stroke depression (PSD) among stroke survivors in Uganda, despite the high prevalence of PSD reported elsewhere. Methods: In a cross-sectional study, we assessed adult participants with confirmed first stroke with a ...

  12. Neuronal control of locomotor handedness in Drosophila.

    Science.gov (United States)

    Buchanan, Sean M; Kain, Jamey S; de Bivort, Benjamin L

    2015-05-26

    Genetically identical individuals display variability in their physiology, morphology, and behaviors, even when reared in essentially identical environments, but there is little mechanistic understanding of the basis of such variation. Here, we investigated whether Drosophila melanogaster displays individual-to-individual variation in locomotor behaviors. We developed a new high-throughout platform capable of measuring the exploratory behavior of hundreds of individual flies simultaneously. With this approach, we find that, during exploratory walking, individual flies exhibit significant bias in their left vs. right locomotor choices, with some flies being strongly left biased or right biased. This idiosyncrasy was present in all genotypes examined, including wild-derived populations and inbred isogenic laboratory strains. The biases of individual flies persist for their lifetime and are nonheritable: i.e., mating two left-biased individuals does not yield left-biased progeny. This locomotor handedness is uncorrelated with other asymmetries, such as the handedness of gut twisting, leg-length asymmetry, and wing-folding preference. Using transgenics and mutants, we find that the magnitude of locomotor handedness is under the control of columnar neurons within the central complex, a brain region implicated in motor planning and execution. When these neurons are silenced, exploratory laterality increases, with more extreme leftiness and rightiness. This observation intriguingly implies that the brain may be able to dynamically regulate behavioral individuality.

  13. Transcranial brain stimulation (TMS and tDCS for post-stroke aphasia rehabilitation: Controversies

    Directory of Open Access Journals (Sweden)

    Lucia Iracema Zanotto de Mendonça

    Full Text Available Transcranial brain stimulation (TS techniques have been investigated for use in the rehabilitation of post-stroke aphasia. According to previous reports, functional recovery by the left hemisphere improves recovery from aphasia, when compared with right hemisphere participation. TS has been applied to stimulate the activity of the left hemisphere or to inhibit homotopic areas in the right hemisphere. Various factors can interfere with the brain's response to TS, including the size and location of the lesion, the time elapsed since the causal event, and individual differences in the hemispheric language dominance pattern. The following questions are discussed in the present article: [a] Is inhibition of the right hemisphere truly beneficial?; [b] Is the transference of the language network to the left hemisphere truly desirable in all patients?; [c] Is the use of TS during the post-stroke subacute phase truly appropriate? Different patterns of neuroplasticity must occur in post-stroke aphasia.

  14. Speed-Dependent Modulation of the Locomotor Behavior in Adult Mice Reveals Attractor and Transitional Gaits.

    Science.gov (United States)

    Lemieux, Maxime; Josset, Nicolas; Roussel, Marie; Couraud, Sébastien; Bretzner, Frédéric

    2016-01-01

    Locomotion results from an interplay between biomechanical constraints of the muscles attached to the skeleton and the neuronal circuits controlling and coordinating muscle activities. Quadrupeds exhibit a wide range of locomotor gaits. Given our advances in the genetic identification of spinal and supraspinal circuits important to locomotion in the mouse, it is now important to get a better understanding of the full repertoire of gaits in the freely walking mouse. To assess this range, young adult C57BL/6J mice were trained to walk and run on a treadmill at different locomotor speeds. Instead of using the classical paradigm defining gaits according to their footfall pattern, we combined the inter-limb coupling and the duty cycle of the stance phase, thus identifying several types of gaits: lateral walk, trot, out-of-phase walk, rotary gallop, transverse gallop, hop, half-bound, and full-bound. Out-of-phase walk, trot, and full-bound were robust and appeared to function as attractor gaits (i.e., a state to which the network flows and stabilizes) at low, intermediate, and high speeds respectively. In contrast, lateral walk, hop, transverse gallop, rotary gallop, and half-bound were more transient and therefore considered transitional gaits (i.e., a labile state of the network from which it flows to the attractor state). Surprisingly, lateral walk was less frequently observed. Using graph analysis, we demonstrated that transitions between gaits were predictable, not random. In summary, the wild-type mouse exhibits a wider repertoire of locomotor gaits than expected. Future locomotor studies should benefit from this paradigm in assessing transgenic mice or wild-type mice with neurotraumatic injury or neurodegenerative disease affecting gait.

  15. Locomotor sequence learning in visually guided walking

    DEFF Research Database (Denmark)

    Choi, Julia T; Jensen, Peter; Nielsen, Jens Bo

    2016-01-01

    walking. In addition, we determined how age (i.e., healthy young adults vs. children) and biomechanical factors (i.e., walking speed) affected the rate and magnitude of locomotor sequence learning. The results showed that healthy young adults (age 24 ± 5 years, N = 20) could learn a specific sequence...... of step lengths over 300 training steps. Younger children (age 6-10 years, N = 8) have lower baseline performance, but their magnitude and rate of sequence learning was the same compared to older children (11-16 years, N = 10) and healthy adults. In addition, learning capacity may be more limited...... to modify step length from one trial to the next. Our sequence learning paradigm is derived from the serial reaction-time (SRT) task that has been used in upper limb studies. Both random and ordered sequences of step lengths were used to measure sequence-specific and sequence non-specific learning during...

  16. Post-stroke depression: Prevalence, associated factors and impact ...

    African Journals Online (AJOL)

    Objectives: To investigate the prevalence of post-stroke depression (PSD), its associated factors and impact on quality of life (QoL) among outpatients in a Nigerian hospital. Methods: This cross-sectional study was carried out among 140 adults made up of 70 stroke survivors and matched controls with stable hypertension.

  17. [Functional neuroimaging of the brain structures associated with language in healthy individuals and patients with post-stroke aphasia].

    Science.gov (United States)

    Alferova, V V; Mayorova, L A; Ivanova, E G; Guekht, A B; Shklovskij, V M

    2017-01-01

    The introduction of non-invasive functional neuroimaging techniques such as functional magnetic resonance imaging (fMRI), in the practice of scientific and clinical research can increase our knowledge about the organization of cognitive processes, including language, in normal and reorganization of these cognitive functions in post-stroke aphasia. The article discusses the results of fMRI studies of functional organization of the cortex of a healthy adult's brain in the processing of various voice information as well as the main types of speech reorganization after post-stroke aphasia in different stroke periods. The concepts of 'effective' and 'ineffective' brain plasticity in post-stroke aphasia were considered. It was concluded that there was an urgent need for further comprehensive studies, including neuropsychological testing and several complementary methods of functional neuroimaging, to develop a phased treatment plan and neurorehabilitation of patients with post-stroke aphasia.

  18. Dynamic control of a moving platform using the CAREN system to optimize walking in virtual reality environments.

    Science.gov (United States)

    Makssoud, Hassan El; Richards, Carol L; Comeau, François

    2009-01-01

    Virtual reality (VR) technology offers the opportunity to expose patients to complex physical environments without physical danger and thus provides a wide range of opportunities for locomotor training or the study of human postural and walking behavior. A VR-based locomotor training system has been developed for gait rehabilitation post-stroke. A clinical study has shown that persons after stroke are able to adapt and benefit from this novel system wherein they walk into virtual environments (VEs) on a self-paced treadmill mounted on a platform with 6 degrees of freedom. This platform is programmed to mimic changes in the terrain encountered in the VEs. While engaging in these VEs, excessive trunk movements and speed alterations have been observed, especially during the pitch perturbations accompanying uphill or downhill terrain changes. An in-depth study of the subject's behavior in relation to the platform movements revealed that the platform rotational axes need to be modified, as previously shown by Barton et al, and in addition did not consider the subject's position on the treadmill. The aim of this study was to determine an optimal solution to simulate walking in real life when engaging in VEs.

  19. Assaying locomotor, learning, and memory deficits in Drosophila models of neurodegeneration.

    Science.gov (United States)

    Ali, Yousuf O; Escala, Wilfredo; Ruan, Kai; Zhai, R Grace

    2011-03-11

    Advances in genetic methods have enabled the study of genes involved in human neurodegenerative diseases using Drosophila as a model system. Most of these diseases, including Alzheimer's, Parkinson's and Huntington's disease are characterized by age-dependent deterioration in learning and memory functions and movement coordination. Here we use behavioral assays, including the negative geotaxis assay and the aversive phototaxic suppression assay (APS assay), to show that some of the behavior characteristics associated with human neurodegeneration can be recapitulated in flies. In the negative geotaxis assay, the natural tendency of flies to move against gravity when agitated is utilized to study genes or conditions that may hinder locomotor capacities. In the APS assay, the learning and memory functions are tested in positively-phototactic flies trained to associate light with aversive bitter taste and hence avoid this otherwise natural tendency to move toward light. Testing these trained flies 6 hours post-training is used to assess memory functions. Using these assays, the contribution of any genetic or environmental factors toward developing neurodegeneration can be easily studied in flies.

  20. Cigarette smoking is an independent risk factor for post-stroke delirium.

    Science.gov (United States)

    Lim, Tae Sung; Lee, Jin Soo; Yoon, Jung Han; Moon, So Young; Joo, In Soo; Huh, Kyoon; Hong, Ji Man

    2017-03-23

    Post-stroke delirium is a common problem in the care of stroke patients, and is associated with longer hospitalization, high short-term mortality, and an increased need for long-term care. Although post-stroke delirium occurs in approximately 10 ~ 30% of patients, little is known about the risk factors for post-stroke delirium in patients who experience acute stroke. A total of 576 consecutive patients who experienced ischemic stroke (mean age, 65.2 years; range, 23-93 years) were screened for delirium over a 2-year period in an acute stroke care unit of a tertiary referral hospital. We screened for delirium using the Confusion Assessment Method. Once delirium was suspected, we evaluated the symptoms using the Korean Version of the Delirium Rating Scale-Revised-98. Neurological deficits were assessed using the National Institutes of Health Stroke Scale at admission and discharge, and functional ability was assessed using the Barthel Index and modified Rankin Scale at discharge and 3 months after discharge. Thirty-eight (6.7%) patients with stroke developed delirium during admission to the acute stroke care unit. Patients with delirium were significantly older (70.6 vs. 64.9 years of age, P = .001) and smoked cigarettes more frequently (40% vs. 24%, P = .033) than patients without delirium. In terms of clinical features, the delirium group experienced a significantly higher rate of major hemispheric stroke (55% vs. 26%, P delirium were older age, history of cigarette smoking, and major hemispheric stroke. Abrupt cessation of cigarette smoking may be a risk factor for post-stroke delirium in ischemic stroke patients. The development of delirium after stroke is associated with worse outcome and longer hospitalization.

  1. Predictive Measures of Locomotor Performance on an Unstable Walking Surface

    Science.gov (United States)

    Bloomberg, J. J.; Peters, B. T.; Mulavara, A. P.; Caldwell, E. E.; Batson, C. D.; De Dios, Y. E.; Gadd, N. E.; Goel, R.; Wood, S. J.; Cohen, H. S.; hide

    2016-01-01

    Locomotion requires integration of visual, vestibular, and somatosensory information to produce the appropriate motor output to control movement. The degree to which these sensory inputs are weighted and reorganized in discordant sensory environments varies by individual and may be predictive of the ability to adapt to novel environments. The goals of this project are to: 1) develop a set of predictive measures capable of identifying individual differences in sensorimotor adaptability, and 2) use this information to inform the design of training countermeasures designed to enhance the ability of astronauts to adapt to gravitational transitions improving balance and locomotor performance after a Mars landing and enhancing egress capability after a landing on Earth.

  2. Development of a novel positive psychology-based intervention for couples post-stroke.

    Science.gov (United States)

    Terrill, Alexandra L; Reblin, Maija; MacKenzie, Justin J; Cardell, Beth; Einerson, Jackie; Berg, Cynthia A; Majersik, Jennifer J; Richards, Lorie

    2018-02-01

    Stroke provides challenges for survivors and partner caregivers. Stroke survivors and caregivers are interconnected in their emotional health, including depression, a common stroke sequelae. The purpose of this study was to develop and test the feasibility of a dyadic positive psychology-based intervention (PPI) for couples coping poststroke. Community-dwelling couples consisted of 1 partner who had a stroke ≥6 months ago and a cohabiting partner caregiver. One or both partner(s) had to report depressive symptoms. The PPI consisted of 1 brief face-to-face training session and an 8-week self-administered intervention in which participants were instructed to engage in at least 2 activities alone and 2 together each week. Two dyads were randomly assigned to a waitlist control to test feasibility of this process. Baseline, postintervention, and 3-month follow-up assessments and post-program feedback were obtained. Descriptive statistics were used to analyze sample characteristics, recruitment and retention rates, adherence, key pre- and postintervention outcomes, and satisfaction with the intervention. Eleven of 20 couples responding to recruitment letters were enrolled in the study. Ten of 11 dyads completed the program. All participants engaged in activities for at least 6 of 8 weeks. Feedback data indicated participant satisfaction with the intervention, and key outcome measures demonstrated adequate variability. The self-administered dyadic PPI is feasible for implementation with couples poststroke. The PPI represents a first step in a novel dyadic approach in this population. Recruitment, enrollment and attrition rates, and feedback will be used to inform a larger randomized trial. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  3. Footwear and locomotor skill performance in preschoolers.

    Science.gov (United States)

    Robinson, Leah E; Rudisill, Mary E; Weimar, Wendi H; Breslin, Casey M; Shroyer, Justin F; Morera, Maria

    2011-10-01

    The effect of footwear on locomotor skill performance was examined. 12 children (4 boys, 8 girls; M age = 56.3 mo., SD = 3.3) served as participants. Participants were randomly assigned to perform the locomotor subscale of Ulrich's Test of Gross Motor Development in two shoe conditions (Condition 1: Stride Rite athletic shoes, and Condition 2: flip flop sandals). Children scored significantly higher when wearing athletic shoes than flip-flop sandals. This finding is relevant for motor performance and safety in physical education and movement programs.

  4. External validity of post-stroke interventional gait rehabilitation studies.

    Science.gov (United States)

    Kafri, Michal; Dickstein, Ruth

    2017-01-01

    Gait rehabilitation is a major component of stroke rehabilitation, and is supported by extensive research. The objective of this review was to examine the external validity of intervention studies aimed at improving gait in individuals post-stroke. To that end, two aspects of these studies were assessed: subjects' exclusion criteria and the ecological validity of the intervention, as manifested by the intervention's technological complexity and delivery setting. Additionally, we examined whether the target population as inferred from the titles/abstracts is broader than the population actually represented by the reported samples. We systematically researched PubMed for intervention studies to improve gait post-stroke, working backwards from the beginning of 2014. Exclusion criteria, the technological complexity of the intervention (defined as either elaborate or simple), setting, and description of the target population in the titles/abstracts were recorded. Fifty-two studies were reviewed. The samples were exclusive, with recurrent stroke, co-morbidities, cognitive status, walking level, and residency being major reasons for exclusion. In one half of the studies, the intervention was elaborate. Descriptions of participants in the title/abstract in almost one half of the studies included only the diagnosis (stroke or comparable terms) and its stage (acute, subacute, and chronic). The external validity of a substantial number of intervention studies about rehabilitation of gait post-stroke appears to be limited by exclusivity of the samples as well as by deficiencies in ecological validity of the interventions. These limitations are not accurately reflected in the titles or abstracts of the studies.

  5. Pre-Stroke Weight Loss is Associated with Post-Stroke Mortality among Men in the Honolulu-Asia Aging Study

    Science.gov (United States)

    Bell, Christina L.; Rantanen, Taina; Chen, Randi; Davis, James; Petrovitch, Helen; Ross, G. Webster; Masaki, Kamal

    2013-01-01

    Objective To examine baseline pre-stroke weight loss and post-stroke mortality among men. Design Longitudinal study of late-life pre-stroke body mass index (BMI), weight loss and BMI change (midlife to late-life), with up to 8-year incident stroke and mortality follow-up. Setting Honolulu Heart Program/Honolulu-Asia Aging Study. Participants 3,581 Japanese-American men aged 71–93 years and stroke-free at baseline. Main Outcome Measure Post-stroke Mortality: 30-day post-stroke, analyzed with stepwise multivariable logistic regression and long-term post-stroke (up to 8-year), analyzed with stepwise multivariable Cox regression. Results Weight loss (10-pound decrements) was associated with increased 30-day post-stroke mortality (aOR=1.48, 95%CI 1.14–1.92), long-term mortality after incident stroke (all types n=225, aHR=1.25, 95%CI=1.09–1.44) and long-term mortality after incident thromboembolic stroke (n=153, aHR 1.19, 95%CI-1.01–1.40). Men with overweight/obese late-life BMI (≥25kg/m2, compared to normal/underweight BMI) had increased long-term mortality after incident hemorrhagic stroke (n=54, aHR=2.27, 95%CI=1.07–4.82). Neither desirable nor excessive BMI reductions (vs. no change/increased BMI) were associated with post-stroke mortality. In the overall sample (n=3,581), nutrition factors associated with increased long-term mortality included 1) weight loss (10-pound decrements, aHR=1.15, 1.09–1.21); 2) underweight BMI (vs. normal BMI, aHR=1.76, 1.40–2.20); and 3) both desirable and excessive BMI reductions (vs. no change or gain, separate model from weight loss and BMI, aHRs=1.36–1.97, pstroke incidence, pre-stroke weight loss was associated with increased post-stroke (all types and thromboembolic) mortality. Overweight/obese late-life BMI was associated with increased post-hemorrhagic stroke mortality. Desirable and excessive BMI reductions were not associated with post-stroke mortality. Weight loss, underweight late-life BMI and any BMI

  6. A multi-center study on low-frequency rTMS combined with intensive occupational therapy for upper limb hemiparesis in post-stroke patients

    Directory of Open Access Journals (Sweden)

    Kakuda Wataru

    2012-01-01

    Full Text Available Abstract Background Both low-frequency repetitive transcranial magnetic stimulation (rTMS and intensive occupational therapy (OT have been recently reported to be clinically beneficial for post-stroke patients with upper limb hemiparesis. Based on these reports, we developed an inpatient combination protocol of these two modalities for the treatment of such patients. The aims of this pilot study were to confirm the safety and feasibility of the protocol in a large number of patients from different institutions, and identify predictors of the clinical response to the treatment. Methods The study subjects were 204 post-stroke patients with upper limb hemiparesis (mean age at admission 58.5 ± 13.4 years, mean time after stroke 5.0 ± 4.5 years, ± SD from five institutions in Japan. During 15-day hospitalization, each patient received 22 treatment sessions of 20-min low-frequency rTMS and 120-min intensive OT daily. Low-frequency rTMS of 1 Hz was applied to the contralesional hemisphere over the primary motor area. The intensive OT, consisting of 60-min one-to-one training and 60-min self-exercise, was provided after the application of low-frequency rTMS. Fugl-Meyer Assessment (FMA and Wolf Motor Function Test (WMFT were performed serially. The physiatrists and occupational therapists involved in this study received training prior to the study to standardize the therapeutic protocol. Results All patients completed the protocol without any adverse effects. The FMA score increased and WMFT log performance time decreased significantly at discharge, relative to the respective values at admission (change in FMA score: median at admission, 47 points; median at discharge, 51 points; p Conclusions The 15-day inpatient rTMS plus OT protocol is a safe, feasible, and clinically useful neurorehabilitative intervention for post-stroke patients with upper limb hemiparesis. The response to the treatment was not influenced by age or time after stroke onset. The

  7. Locomotor activity and discriminative stimulus effects of a novel series of synthetic cathinone analogs in mice and rats.

    Science.gov (United States)

    Gatch, Michael B; Dolan, Sean B; Forster, Michael J

    2017-04-01

    Recent years have seen an increase in the recreational use of novel, synthetic psychoactive substances. There are little or no data on the abuse liability of many of the newer compounds. The current study investigated the discriminative stimulus and locomotor effects of a series of synthetic analogs of cathinone: α-pyrrolidinopropiophenone (α-PPP), α-pyrrolidinohexiophenone (α-PHP), α-pyrrolidinopentiothiophenone (α-PVT), 3,4-methylenedioxybutiophenone (MDPBP), and ethylone. Locomotor activity was assessed in an open-field assay using Swiss-Webster mice. Discriminative stimulus effects were assessed in Sprague-Dawley rats trained to discriminate either cocaine or methamphetamine from vehicle. Each of the compounds produced an inverted-U dose-effect on locomotor activity. Maximal effects were similar among the test compounds, but potencies varied with relative potencies of MDPBP > α-PPP = α-PHP > ethylone > α-PVT. Each of the test compounds substituted fully for the discriminative stimulus effects of methamphetamine. α-PPP, α-PHP, and ethylone fully substituted for cocaine. α-PVT produced a maximum of 50% cocaine-appropriate responding, and MDPBP produced an inverted-U-shaped dose-effect curve with maximum effects of 67%. These data provide initial evidence that these structurally similar, emerging novel psychoactive substances demonstrate potential for abuse and may be utilized for their stimulant-like effects, given their ability to stimulate locomotor activity and their substitution for the discriminative stimulus effects of the classical psychostimulants cocaine and/or methamphetamine.

  8. Cross-education of strength has a positive impact on post-stroke rehabilitation: a systematic literature review.

    Science.gov (United States)

    Ehrensberger, Monika; Simpson, Daniel; Broderick, Patrick; Monaghan, Kenneth

    2016-04-01

    Since its discovery in 1894 cross-education of strength - a bilateral adaptation after unilateral training - has been shown to be effective in the rehabilitation after one-sided orthopedic injuries. Limited knowledge exists on its application within the rehabilitation after stroke. This review examined the evidence regarding the implication of cross-education in the rehabilitation of the post-stroke hemiplegic patient and its role in motor function recovery. Electronic databases were searched by two independent assessors. Studies were included if they described interventions which examined the phenomenon of cross-education of strength from the less-affected to the more-affected side in stroke survivors. Study quality was assessed using the PEDro scale and the Cochrane risk of bias assessment tool. Only two controlled trials met the eligibility criteria. The results of both studies show a clear trend towards cross-educational strength transfer in post-stroke hemiplegic patients with 31.4% and 45.5% strength increase in the untrained, more-affected dorsiflexor muscle. Results also suggest a possible translation of strength gains towards functional task improvements and motor recovery. Based on best evidence synthesis guidelines the combination of the results included in this review suggest at least a moderate level of evidence for the application of cross-education of strength in stroke rehabilitation. Following this review it is recommended that additional high quality randomized controlled trials are conducted to further support the findings.

  9. Efficacy of Cognitive Rehabilitation Therapy on Poststroke Depression among Survivors of First Stroke Attack in Ibadan, Nigeria.

    Science.gov (United States)

    Olukolade, Olugbemi; Osinowo, Helen O

    2017-01-01

    Poststroke depression (PSD) is a common complication after stroke. There is no adequate treatment for PSD. This study examined efficacy of cognitive rehabilitation therapy (CRT) in the treatment of PSD among stroke survivors. An experimental design, 30 participants with poststroke depression were randomly assigned into 3 groups of cognitive rehabilitation therapy (CRT), psychoeducation (PE), and the control group (CG). CRT consisted of nine sessions with three-phased sessions focusing on activity stimulation, negative thoughts, and people contacts, PE consisted of nine sessions focusing on knowledge on stroke and poststroke depression, and the CG group was on the waiting list. The BDI scale was used for assessing PSD at posttest. There was a significant difference in the efficacy of CRT, PE, and the CG on PSD, with CRT-CG mean difference of -9.4 ± 3.11 and PE-CG 1.0 ± 3.83. Furthermore, stress was not a confounding variable on the efficacy of CRT. The type of therapy significantly influenced PSD at posttest, with the CRT having greater mean reduction to CG (-11.1 ± 3.1) than PE to the CG (3.0 ± 3.8). Cognitive rehabilitation therapy significantly reduced poststroke depression. Hence, it should be integrated as an adjunct treatment of poststroke depression.

  10. Locomotor training using an overground robotic exoskeleton in long-term manual wheelchair users with a chronic spinal cord injury living in the community: Lessons learned from a feasibility study in terms of recruitment, attendance, learnability, performance and safety.

    Science.gov (United States)

    Gagnon, Dany H; Escalona, Manuel J; Vermette, Martin; Carvalho, Lívia P; Karelis, Antony D; Duclos, Cyril; Aubertin-Leheudre, Mylène

    2018-03-01

    For individuals who sustain a complete motor spinal cord injury (SCI) and rely on a wheelchair as their primary mode of locomotion, overground robotic exoskeletons represent a promising solution to stand and walk again. Although overground robotic exoskeletons have gained tremendous attention over the past decade and are now being transferred from laboratories to clinical settings, their effects remain unclear given the paucity of scientific evidence and the absence of large-scale clinical trials. This study aims to examine the feasibility of a locomotor training program with an overground robotic exoskeleton in terms of recruitment, attendance, and drop-out rates as well as walking performance, learnability, and safety. Individuals with a SCI were invited to participate in a 6 to 8-week locomotor training program with a robotic exoskeleton encompassing 18 sessions. Selected participants underwent a comprehensive screening process and completed two familiarization sessions with the robotic exoskeleton. The outcome measures were the rate of recruitment of potential participants, the rate of attendance at training sessions, the rate of drop-outs, the ability to walk with the exoskeleton, and its progression over the program as well as the adverse events. Out of 49 individuals who expressed their interest in participating in the study, only 14 initiated the program (recruitment rate = 28.6%). Of these, 13 individuals completed the program (drop-out rate = 7.1%) and attended 17.6 ± 1.1 sessions (attendance rate = 97.9%). Their greatest standing time, walking time, and number of steps taken during a session were 64.5 ± 10.2 min, 47.2 ± 11.3 min, and 1843 ± 577 steps, respectively. During the training program, these last three parameters increased by 45.3%, 102.1%, and 248.7%, respectively. At the end of the program, when walking with the exoskeleton, most participants required one therapist (85.7%), needed stand-by or contact

  11. Improving post-stroke dysphagia outcomes through a standardized and multidisciplinary protocol: an exploratory cohort study.

    Science.gov (United States)

    Gandolfi, Marialuisa; Smania, Nicola; Bisoffi, Giulia; Squaquara, Teresa; Zuccher, Paola; Mazzucco, Sara

    2014-12-01

    Stroke is a major cause of dysphagia. Few studies to date have reported on standardized multidisciplinary protocolized approaches to the management of post-stroke dysphagia. The aim of this retrospective cohort study was to evaluate the impact of a standardized multidisciplinary protocol on clinical outcomes in patients with post-stroke dysphagia. We performed retrospective chart reviews of patients with post-stroke dysphagia admitted to the neurological ward of Verona University Hospital from 2004 to 2008. Outcomes after usual treatment for dysphagia (T- group) were compared versus outcomes after treatment under a standardized diagnostic and rehabilitative multidisciplinary protocol (T+ group). Outcome measures were death, pneumonia on X-ray, need for respiratory support, and proportion of patients on tube feeding at discharge. Of the 378 patients admitted with stroke, 84 had dysphagia and were enrolled in the study. A significantly lower risk of in-hospital death (odds ratio [OR] 0.20 [0.53-0.78]), pneumonia (OR 0.33 [0.10-1.03]), need for respiratory support (OR 0.48 [0.14-1.66]), and tube feeding at discharge (OR 0.30 [0.09-0.91]) was recorded for the T+ group (N = 39) as compared to the T- group (N = 45). The adjusted OR showed no difference between the two groups for in-hospital death and tube feeding at discharge. Use of a standardized multidisciplinary protocolized approach to the management of post-stroke dysphagia may significantly reduce rates of aspiration pneumonia, in-hospital mortality, and tube feeding in dysphagic stroke survivors. Consistent with the study's exploratory purposes, our findings suggest that the multidisciplinary protocol applied in this study offers an effective model of management of post-stroke dysphagia.

  12. Chronic post-stroke oropharyngeal dysphagia is associated with impaired cortical activation to pharyngeal sensory inputs.

    Science.gov (United States)

    Cabib, C; Ortega, O; Vilardell, N; Mundet, L; Clavé, P; Rofes, L

    2017-11-01

    The role of afferent sensory pathways in the pathophysiology of post-stroke oropharyngeal dysphagia is not known. We hypothesized that patients with chronic post-stroke dysphagia (PSD) would show impaired sensory cortical activation in the ipsilesional hemisphere. We studied 28 chronic unilateral post-stroke patients [17 PSD and 11 post-stroke non-dysphagic patients (PSnD)] and 11 age-matched healthy volunteers. Event-related sensory-evoked potentials to pharyngeal stimulation (pSEP) and sensory thresholds were assessed. We analyzed pSEP peak latency and amplitude (N1, P1, N2 and P2), and neurotopographic stroke characteristics from brain magnetic resonance imaging. Healthy volunteers presented a highly symmetric bihemispheric cortical pattern of brain activation at centroparietal areas (N1-P1 and N2-P2) to pharyngeal stimuli. In contrast, an asymmetric pattern of reduced ipsilesional activation was found in PSD (N2-P2; P = 0.026) but not in PSnD. PSD presented impaired safety of swallow (penetration-aspiration score: 4.3 ± 1.6), delayed laryngeal vestibule closure (360.0 ± 70.0 ms) and higher National Institute of Health Stroke Scale (7.0 ± 6.2 vs. 1.9 ± 1.4, P = 0.001) and Fazekas scores (3.0 ± 1.4 vs. 2.0 ± 1.1; P dysphagia is associated with stroke severity and degree of leukoaraoisis. Impaired conduction and cortical integration of pharyngeal sensory inputs at stroke site are key features of chronic PSD. These findings highlight the role of sensory pathways in the pathophysiology of post-stroke oropharyngeal dysphagia and offer a potential target for future treatments. © 2017 EAN.

  13. The anatomy and physiology of the locomotor system.

    Science.gov (United States)

    Farley, Alistair; McLafferty, Ella; Hendry, Charles

    Mobilisation is one of the activities of living. The term locomotor system refers to those body tissues and organs responsible for movement. Nurses and healthcare workers should be familiar with the body structures that enable mobilisation to assist those in their care with this activity. This article outlines the structure and function of the locomotor system, including the skeleton, joints, muscles and muscle attachments. Two common bone disorders, osteoporosis and osteoarthritis, are also considered.

  14. Spatial asymmetry of post-stroke hemiparetic gait: assessment and ...

    African Journals Online (AJOL)

    Despite potential benefits, quantitative analysis of gait asymmetry is still not routinely used in many hospitals and rehabilitation institutions in developing countries due to ... Conclusion: Overall, the study demonstrated asymmetry of step length and foot rotation angle during walking of post-stroke hemiparetic individuals and ...

  15. Effects of caffeine on locomotor activity in streptozotocin-induced diabetic rats.

    Science.gov (United States)

    Bădescu, S V; Tătaru, C P; Kobylinska, L; Georgescu, E L; Zahiu, D M; Zăgrean, A M; Zăgrean, L

    2016-01-01

    Diabetes mellitus modifies the expression of adenosine receptors in the brain. Caffeine acts as an antagonist of A1 and A2A adenosine receptors and was shown to have a dose-dependent biphasic effect on locomotion in mice. The present study investigated the link between diabetes and locomotor activity in an animal model of streptozotocin-induced diabetes, and the effects of a low-medium dose of caffeine in this relation. The locomotor activity was investigated by using Open Field Test at 6 weeks after diabetes induction and after 2 more weeks of chronic caffeine administration. Diabetes decreased locomotor activity (total distance moved and mobility time). Chronic caffeine exposure impaired the locomotor activity in control rats, but not in diabetic rats. Our data suggested that the medium doses of caffeine might block the A2A receptors, shown to have an increased density in the brain of diabetic rats, and improve or at least maintain the locomotor activity, offering a neuroprotective support in diabetic rats. Abbreviations : STZ = streptozotocin, OFT = Open Field Test.

  16. Sex differences in the acute locomotor response to methamphetamine in BALB/c mice.

    Science.gov (United States)

    Ohia-Nwoko, Odochi; Haile, Colin N; Kosten, Therese A

    2017-06-01

    Women use methamphetamine more frequently than men and are more vulnerable to its negative psychological effects. Rodent models have been an essential tool for evaluating the sex-dependent effects of psychostimulants; however, evidence of sex differences in the behavioral responses to methamphetamine in mice is lacking. In the present study, we investigated acute methamphetamine-induced (1mg/kg and 4mg/kg) locomotor activation in female and male BALB/c mice. We also evaluated whether basal locomotor activity was associated with the methamphetamine-induced locomotor response. The results indicated that female BALB/c mice displayed enhanced methamphetamine-induced locomotor activity compared to males, while basal locomotor activity was positively correlated with methamphetamine-induced activity in males, but not females. This study is the first to show sex-dependent locomotor effects of methamphetamine in BALB/c mice. Our observations emphasize the importance of considering sex when assessing behavioral responses to methamphetamine. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Limitations to the Generality of Cocaine Locomotor Sensitization

    OpenAIRE

    Marusich, Julie A.; Branch, Marc N.; Dallery, Jesse

    2008-01-01

    Repeated exposure to cocaine often leads to tolerance to effects on operant behavior, whereas sensitization often develops to effects on locomotor activity. The purpose of the present set of experiments was to examine if locomotor sensitization to cocaine would develop in the presence or absence of an operant contingency in rats. In Experiment 1, rats lever pressed on an FR schedule of reinforcement, and were administered chronic cocaine. Tolerance to effects of cocaine on lever pressing deve...

  18. High Throughput Measurement of Locomotor Sensitization to Volatilized Cocaine in Drosophila melanogaster.

    Science.gov (United States)

    Filošević, Ana; Al-Samarai, Sabina; Andretić Waldowski, Rozi

    2018-01-01

    Drosophila melanogaster can be used to identify genes with novel functional roles in neuronal plasticity induced by repeated consumption of addictive drugs. Behavioral sensitization is a relatively simple behavioral output of plastic changes that occur in the brain after repeated exposures to drugs of abuse. The development of screening procedures for genes that control behavioral sensitization has stalled due to a lack of high-throughput behavioral tests that can be used in genetically tractable organism, such as Drosophila . We have developed a new behavioral test, FlyBong, which combines delivery of volatilized cocaine (vCOC) to individually housed flies with objective quantification of their locomotor activity. There are two main advantages of FlyBong: it is high-throughput and it allows for comparisons of locomotor activity of individual flies before and after single or multiple exposures. At the population level, exposure to vCOC leads to transient and concentration-dependent increase in locomotor activity, representing sensitivity to an acute dose. A second exposure leads to further increase in locomotion, representing locomotor sensitization. We validate FlyBong by showing that locomotor sensitization at either the population or individual level is absent in the mutants for circadian genes period (per) , Clock (Clk) , and cycle (cyc) . The locomotor sensitization that is present in timeless (tim) and pigment dispersing factor (pdf) mutant flies is in large part not cocaine specific, but derived from increased sensitivity to warm air. Circadian genes are not only integral part of the neural mechanism that is required for development of locomotor sensitization, but in addition, they modulate the intensity of locomotor sensitization as a function of the time of day. Motor-activating effects of cocaine are sexually dimorphic and require a functional dopaminergic transporter. FlyBong is a new and improved method for inducing and measuring locomotor sensitization

  19. High Throughput Measurement of Locomotor Sensitization to Volatilized Cocaine in Drosophila melanogaster

    Directory of Open Access Journals (Sweden)

    Ana Filošević

    2018-02-01

    Full Text Available Drosophila melanogaster can be used to identify genes with novel functional roles in neuronal plasticity induced by repeated consumption of addictive drugs. Behavioral sensitization is a relatively simple behavioral output of plastic changes that occur in the brain after repeated exposures to drugs of abuse. The development of screening procedures for genes that control behavioral sensitization has stalled due to a lack of high-throughput behavioral tests that can be used in genetically tractable organism, such as Drosophila. We have developed a new behavioral test, FlyBong, which combines delivery of volatilized cocaine (vCOC to individually housed flies with objective quantification of their locomotor activity. There are two main advantages of FlyBong: it is high-throughput and it allows for comparisons of locomotor activity of individual flies before and after single or multiple exposures. At the population level, exposure to vCOC leads to transient and concentration-dependent increase in locomotor activity, representing sensitivity to an acute dose. A second exposure leads to further increase in locomotion, representing locomotor sensitization. We validate FlyBong by showing that locomotor sensitization at either the population or individual level is absent in the mutants for circadian genes period (per, Clock (Clk, and cycle (cyc. The locomotor sensitization that is present in timeless (tim and pigment dispersing factor (pdf mutant flies is in large part not cocaine specific, but derived from increased sensitivity to warm air. Circadian genes are not only integral part of the neural mechanism that is required for development of locomotor sensitization, but in addition, they modulate the intensity of locomotor sensitization as a function of the time of day. Motor-activating effects of cocaine are sexually dimorphic and require a functional dopaminergic transporter. FlyBong is a new and improved method for inducing and measuring locomotor

  20. Learning a locomotor task: with or without errors?

    Science.gov (United States)

    Marchal-Crespo, Laura; Schneider, Jasmin; Jaeger, Lukas; Riener, Robert

    2014-03-04

    Robotic haptic guidance is the most commonly used robotic training strategy to reduce performance errors while training. However, research on motor learning has emphasized that errors are a fundamental neural signal that drive motor adaptation. Thus, researchers have proposed robotic therapy algorithms that amplify movement errors rather than decrease them. However, to date, no study has analyzed with precision which training strategy is the most appropriate to learn an especially simple task. In this study, the impact of robotic training strategies that amplify or reduce errors on muscle activation and motor learning of a simple locomotor task was investigated in twenty two healthy subjects. The experiment was conducted with the MAgnetic Resonance COmpatible Stepper (MARCOS) a special robotic device developed for investigations in the MR scanner. The robot moved the dominant leg passively and the subject was requested to actively synchronize the non-dominant leg to achieve an alternating stepping-like movement. Learning with four different training strategies that reduce or amplify errors was evaluated: (i) Haptic guidance: errors were eliminated by passively moving the limbs, (ii) No guidance: no robot disturbances were presented, (iii) Error amplification: existing errors were amplified with repulsive forces, (iv) Noise disturbance: errors were evoked intentionally with a randomly-varying force disturbance on top of the no guidance strategy. Additionally, the activation of four lower limb muscles was measured by the means of surface electromyography (EMG). Strategies that reduce or do not amplify errors limit muscle activation during training and result in poor learning gains. Adding random disturbing forces during training seems to increase attention, and therefore improve motor learning. Error amplification seems to be the most suitable strategy for initially less skilled subjects, perhaps because subjects could better detect their errors and correct them

  1. Efficacy of an Electromechanical Gait Trainer Poststroke in Singapore: A Randomized Controlled Trial.

    Science.gov (United States)

    Chua, Joyce; Culpan, Jane; Menon, Edward

    2016-05-01

    To evaluate the longer-term effects of electromechanical gait trainers (GTs) combined with conventional physiotherapy on health status, function, and ambulation in people with subacute stroke in comparison with conventional physiotherapy given alone. Randomized controlled trial with intention-to-treat analysis. Community hospital in Singapore. Nonambulant individuals (N=106) recruited approximately 1 month poststroke. Both groups received 45 minutes of physiotherapy 6 times per week for 8 weeks as follows: the GT group received 20 minutes of GT training and 5 minutes of stance/gait training in contrast with 25 minutes of stance/gait training for the control group. Both groups completed 10 minutes of standing and 10 minutes of cycling. The primary outcome was the Functional Ambulation Category (FAC). Secondary outcomes were the Barthel Index (BI), gait speed and endurance, and Stroke Impact Scale (SIS). Measures were taken at baseline and 4, 8, 12, 24, and 48 weeks. Generalized linear model analysis showed significant improvement over time (independent of group) for the FAC, BI, and SIS physical and participation subscales. However, no significant group × time or group differences were observed for any of the outcome variables after generalized linear model analysis. The use of GTs combined with conventional physiotherapy can be as effective as conventional physiotherapy applied alone for people with subacute stroke. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  2. Robot-assisted gait training versus treadmill training in patients with Parkinson's disease: a kinematic evaluation with gait profile score.

    Science.gov (United States)

    Galli, M; Cimolin, V; De Pandis, M F; Le Pera, D; Sova, I; Albertini, G; Stocchi, F; Franceschini, M

    2016-01-01

    The purpose of this study was to quantitatively compare the effects, on walking performance, of end-effector robotic rehabilitation locomotor training versus intensive training with a treadmill in Parkinson's disease (PD). Fifty patients with PD were randomly divided into two groups: 25 were assigned to the robot-assisted therapy group (RG) and 25 to the intensive treadmill therapy group (IG). They were evaluated with clinical examination and 3D quantitative gait analysis [gait profile score (GPS) and its constituent gait variable scores (GVSs) were calculated from gait analysis data] at the beginning (T0) and at the end (T1) of the treatment. In the RG no differences were found in the GPS, but there were significant improvements in some GVSs (Pelvic Obl and Hip Ab-Add). The IG showed no statistically significant changes in either GPS or GVSs. The end-effector robotic rehabilitation locomotor training improved gait kinematics and seems to be effective for rehabilitation in patients with mild PD.

  3. Bobath and traditional approaches in post-stroke gait rehabilitation in adults

    OpenAIRE

    Mikołajewska Emilia

    2017-01-01

    Study aim: The aim of this study was to compare the outcomes of a study of post-stroke gait reeducation using the Bobath neuro‑developmental treatment (NDT-Bobath) method and the traditional approach.

  4. An Integrated Gait and Balance Analysis System to Define Human Locomotor Control

    Science.gov (United States)

    2016-04-29

    test hypotheses they developed about how people walk. An Integrated Gait and Balance Analysis System to define Human Locomotor Control W911NF-14-R-0009...An Integrated Gait and Balance Analysis System to Define Human Locomotor Control Walking is a complicated task that requires the motor coordination...Gait and Balance Analysis System to Define Human Locomotor Control Report Title Walking is a complicated task that requires the motor coordination across

  5. Anatomía del Aparato Locomotor, 2010-11

    OpenAIRE

    Juanes Méndez, Juan Antonio

    2010-01-01

    I. Materiales de clase: 1.Sistema Oseo. Las Articulaciones: definición, clasificaciones; 2.Esqueleto Axial; 3.Esqueleto Apendicular; 4. Organización del sistema nervioso periférico. Inervación del Aparato Locomotor; 5. Sistema muscular. II. Bibliografía y atlas Establecer la correlación morfofuncional del aparato locomotor necesaria para la deducción deficitaria derivada de las alteraciones de la dinámica osteoarticular. Esta asignatura se imparte en el primer curso del Grado en Terapia Oc...

  6. Addressing post-stroke care in rural areas with Peru as a case study. Placing emphasis on evidence-based pragmatism.

    Science.gov (United States)

    Miranda, J Jaime; Moscoso, Miguel G; Yan, Lijing L; Diez-Canseco, Francisco; Málaga, Germán; Garcia, Hector H; Ovbiagele, Bruce

    2017-04-15

    Stroke is a major cause of death and disability, with most of its burden now affecting low- and middle-income countries (LMIC). People in rural areas of LMIC who have a stroke receive very little acute stroke care and local healthcare workers and family caregivers in these regions lack the necessary knowledge to assist them. Intriguingly, a recent rapid growth in cell-phone use and digital technology in rural areas has not yet been appropriately exploited for health care training and delivery purposes. What should be done in rural areas, at the community setting-level, where access to healthcare is limited remains a challenge. We review the evidence on improving post-stroke outcomes including lowering the risks of functional disability, stroke recurrence, and mortality, and propose some approaches, to target post-stroke care and rehabilitation, noting key challenges in designing suitable interventions and emphasizing the advantages mHealth and communication technologies can offer. In the article, we present the prevailing stroke care situation and technological opportunities in rural Peru as a case study. As such, by addressing major limitations in rural healthcare systems, we investigate the potential of task-shifting complemented with technology to utilize and strengthen both community-based informal caregivers and community healthcare workers. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. A stochastic locomotor control model for the nurse shark, Ginglymostoma cirratum.

    Science.gov (United States)

    Gerald, K B; Matis, J H; Kleerekoper, H

    1978-06-12

    The locomotor behavior of the nurse shark (Ginglymostoma cirratum) is characterized by 17 variables (frequency and ratios of left, right, and total turns; their radians; straight paths (steps); distance travelled; and velocity) Within each of these variables there is an internal time dependency the structure of which was elaborated together with an improved statistical model predicting their behavior within 90% confidence limits. The model allows for the sensitive detection of subtle locomotor response to sensory stimulation as values of variables may exceed the established confidence limits within minutes after onset of the stimulus. The locomotor activity is well described by an autoregression time series model and can be predicted by only seven variables. Six of these form two independently operating clusters. The first one consists of: the number of right turns, the distance travelled and the mean velocity; the second one of: the mean size of right turns, of left turns, and of all turns. The same clustering is obtained independently by a cluster analysis of cross-sections of the seven time series. It is apparent that, among a total of 17 locomotor variables, seven behave as individually independent agents, presumably controlled by seven separate and independent centers. The output of each center can only be predicted by its own behavior. In spite of the individual of the seven variables, their internal structure is similar in important aspects which may result from control by a common command center. The shark locomotor model differs in important aspects from the previously constructed for the goldfish. The interdependence of the locomotor variables in both species may be related to the control mechanisms postulated by von Holst for the coordination of rhythmic fin movements in fishes. A locomotor control model for the nurse shark is proposed.

  8. Acetylcholinesterase inhibition and altered locomotor behavior in the carabid beetle pterostichus

    DEFF Research Database (Denmark)

    Jensen, Charlotte S.; Krause-Jensen, Lone; Baatrup, Erik

    1997-01-01

    -aided video tracking, whereupon the whole body AChE activity was measured in the individual beetle. AChE inhibition was strongly correlated with dimethoate dose in both sexes. Alterations in the locomotor behavior were directly correlated with AChE inhibition in male beetles, which responded by reducing...... to locomotor behavior, representing a general effect biomarker at the organismal level. Both sexes of the carabid beetle Pterostichus cupreus were intoxicated with three doses of the organophosphorous insecticide dimethoate. Five elements of their locomotor behavior were measured for 4 h employing computer...... the time in locomotion, average velocity, and path length and by increasing the turning rate and frequency of stops. Females responded similarly at the two highest doses, whereas their locomotor behavior was not significantly different from the control group at the lowest dimethoate dose, suggesting a sex...

  9. Psychological factors are associated with subjective cognitive complaints 2 months post-stroke.

    Science.gov (United States)

    Nijsse, Britta; van Heugten, Caroline M; van Mierlo, Marloes L; Post, Marcel W M; de Kort, Paul L M; Visser-Meily, Johanna M A

    2017-01-01

    The aim of this study was to investigate which psychological factors are related to post-stroke subjective cognitive complaints, taking into account the influence of demographic and stroke-related characteristics, cognitive deficits and emotional problems. In this cross-sectional study, 350 patients were assessed at 2 months post-stroke, using the Checklist for Cognitive and Emotional consequences following stroke (CLCE-24) to identify cognitive complaints. Psychological factors were: proactive coping, passive coping, self-efficacy, optimism, pessimism, extraversion, and neuroticism. Associations between CLCE-24 cognition score and psychological factors, emotional problems (depressive symptoms and anxiety), cognitive deficits, and demographic and stroke characteristics were examined using Spearman correlations and multiple regression analyses. Results showed that 2 months post-stroke, 270 patients (68.4%) reported at least one cognitive complaint. Age, sex, presence of recurrent stroke(s), comorbidity, cognitive deficits, depressive symptoms, anxiety, and all psychological factors were significantly associated with the CLCE-24 cognition score in bivariate analyses. Multiple regression analysis showed that psychological factors explained 34.7% of the variance of cognitive complaints independently, and 8.5% (p psychological factors, proactive coping was independently associated with cognitive complaints (p cognitive complaints. Because cognitive complaints are common after stroke and are associated with psychological factors, it is important to focus on these factors in rehabilitation programmes.

  10. When Does Return of Voluntary Finger Extension Occur Post-Stroke? A Prospective Cohort Study.

    Directory of Open Access Journals (Sweden)

    Caroline Winters

    Full Text Available Patients without voluntary finger extension early post-stroke are suggested to have a poor prognosis for regaining upper limb capacity at 6 months. Despite this poor prognosis, a number of patients do regain upper limb capacity. We aimed to determine the time window for return of voluntary finger extension during motor recovery and identify clinical characteristics of patients who, despite an initially poor prognosis, show upper limb capacity at 6 months post-stroke.Survival analysis was used to assess the time window for return of voluntary finger extension (Fugl-Meyer Assessment hand sub item finger extension≥1. A cut-off of ≥10 points on the Action Research Arm Test was used to define return of some upper limb capacity (i.e. ability to pick up a small object. Probabilities for regaining upper limb capacity at 6 months post-stroke were determined with multivariable logistic regression analysis using patient characteristics.45 of the 100 patients without voluntary finger extension at 8 ± 4 days post-stroke achieved an Action Research Arm Test score of ≥10 points at 6 months. The median time for regaining voluntary finger extension for these recoverers was 4 weeks (lower and upper percentile respectively 2 and 8 weeks. The median time to return of VFE was not reached for the whole group (N = 100. Patients who had moderate to good lower limb function (Motricity Index leg≥35 points, no visuospatial neglect (single-letter cancellation test asymmetry between the contralesional and ipsilesional sides of <2 omissions and sufficient somatosensory function (Erasmus MC modified Nottingham Sensory Assessment≥33 points had a 0.94 probability of regaining upper limb capacity at 6 months post-stroke.We recommend weekly monitoring of voluntary finger extension within the first 4 weeks post-stroke and preferably up to 8 weeks. Patients with paresis mainly restricted to the upper limb, no visuospatial neglect and sufficient somatosensory function are

  11. Oxytocin decreases cocaine taking, cocaine seeking, and locomotor activity in female rats.

    Science.gov (United States)

    Leong, Kah-Chung; Zhou, Luyi; Ghee, Shannon M; See, Ronald E; Reichel, Carmela M

    2016-02-01

    Oxytocin has been shown to decrease cocaine taking and seeking in male rats, suggesting potential treatment efficacy for drug addiction. In the present study, we extended these findings to the assessment of cocaine seeking and taking in female rats. Further, we made direct comparisons of oxytocin's impact on cocaine induced locomotor activity in both males and females. In females, systemic oxytocin (0.3, 1.0, 3.0 mg/kg) attenuated lever pressing for cocaine during self-administration and oxytocin (1.0 mg/kg) attenuated cue-induced cocaine seeking following extinction. Cocaine increased baseline locomotor activity to a greater degree in females relative to males. Oxytocin (0.1, 0.3, 1.0, and 3.0 mg/kg) reduced cocaine-induced locomotor activity in females, but not significantly in males. These data illustrate sex similarities in oxytocin's attenuation of cocaine seeking, but sex differences in cocaine-induced locomotor effects. While reductions in cocaine seeking cannot be attributed to a reduction in locomotor activity in males, attenuation of locomotor function cannot be entirely ruled out as an explanation for a decrease in cocaine seeking in females suggesting that oxytocin's effect on cocaine seeking may be mediated by different mechanisms in male and females. PsycINFO Database Record (c) 2016 APA, all rights reserved.

  12. Plastic changes in spinal synaptic transmission following botulinum toxin A in patients with post-stroke spasticity.

    Science.gov (United States)

    Kerzoncuf, Marjorie; Bensoussan, Laurent; Delarque, Alain; Durand, Jacques; Viton, Jean-Michel; Rossi-Durand, Christiane

    2015-11-01

    The therapeutic effects of intramuscular injections of botulinum toxin-type A on spasticity can largely be explained by its blocking action at the neuromuscular junction. Botulinum toxin-type A is also thought to have a central action on the functional organization of the central nervous system. This study assessed the action of botulinum toxin-type A on spinal motor networks by investigating post-activation depression of the soleus H-reflex in post-stroke patients. Post-activation depression, a presynaptic mechanism controlling the synaptic efficacy of Ia-motoneuron transmission, is involved in the pathophysiology of spasticity. Eight patients with chronic hemiplegia post-stroke presenting with lower limb spasticity and requiring botulinum toxin-type A injection in the ankle extensor muscle. Post-activation depression of soleus H-reflex assessed as frequency-related depression of H-reflex was investigated before and 3, 6 and 12 weeks after botulinum toxin-type A injections in the triceps surae. Post-activation depression was quantified as the ratio between H-reflex amplitude at 0.5 and 0.1 Hz. Post-activation depression of soleus H-reflex, which is reduced on the paretic leg, was affected 3 weeks after botulinum toxin-type A injection. Depending on the residual motor capacity of the post-stroke patients, post-activation depression was either restored in patients with preserved voluntary motor control or further reduced in patients with no residual voluntary control. Botulinum toxin treatment induces synaptic plasticity at the Ia-motoneuron synapse in post-stroke paretic patients, which suggests that the effectiveness of botulinum toxin-type A in post-stroke rehabilitation might be partly due to its central effects.

  13. The Disability Rate of 5-Year Post-Stroke and Its Correlation Factors: A National Survey in China.

    Science.gov (United States)

    Yang, Yang; Shi, Yu-Zhi; Zhang, Ning; Wang, Shuo; Ungvari, Gabor S; Ng, Chee H; Wang, Yi-Long; Zhao, Xing-Quan; Wang, Yong-Jun; Wang, Chun-Xue; Xiang, Yu-Tao

    2016-01-01

    Few studies on long-term functional outcome have been conducted in post-stroke patients in China. The objective of this study was to conduct a nationwide survey in China to investigate the 5-year prevalence of post-stroke disability and its correlation factors. A total of 893 patients with ischemic stroke were included. Demographic, clinical and neuro-imaging information were collected with standardized instruments that assessed stroke severity, depression, cognitive impairment, stroke recurrence and physical disability. Disability was assessed with the modified Ranking Score (mRS), of which a cutoff score ≥2 indicates disability. Statistical analysis included chi-square tests, two independent samples t-tests, Mann-Whitney U test and multiple logistic regression analysis. The frequency of disability in this study population was 45%. Multivariate analyses revealed that older age, lower education level, previous history of stroke, stroke severity at admission, depression, cognitive impairment at 3 months, and stroke recurrence within 5 years follow up were all significantly associated with post-stroke disability. The disability rate in 5-year post-stroke was high in Chinese patients. Treatment of depression, secondary prevention of stroke and rehabilitation may benefit disabled patients with stroke in China.

  14. High-technology augmentative communication for adults with post-stroke aphasia: a systematic review.

    Science.gov (United States)

    Russo, Maria Julieta; Prodan, Valeria; Meda, Natalia Nerina; Carcavallo, Lucila; Muracioli, Anibal; Sabe, Liliana; Bonamico, Lucas; Allegri, Ricardo Francisco; Olmos, Lisandro

    2017-05-01

    Augmentative and alternative communication (AAC) systems were introduced into clinical practice by therapists to help compensate for persistent language deficits in people with aphasia. Although, there is currently a push towards an increased focus on compensatory approaches in an attempt to maximize communication function for social interaction, available studies including AAC systems, especially technologically advanced communication tools and systems, known as 'high-technology AAC', show key issues and obstacles for these tools to become utilized in mainstream clinical practice. Areas covered: The current review synthesizes communication intervention studies that involved the use of high-technology communication devices to enhance linguistic communication skills for adults with post-stroke aphasia. The review focuses on compensatory approaches that emphasized functional communication. It also summarizes recommendations for the report of studies evaluating high-technology devices that may be potentially relevant for other researchers working with adults with post-stroke aphasia. Expert commentary: Taken together with positive results in heterogeneous studies, high-technology devices represent a compensatory strategy to enhance communicative skills in individuals with post-stroke aphasia. Improvements in the design of studies and reporting of results may lead to better interpretation of the already existing scientific results from aphasia management.

  15. Robot-assisted gait training versus treadmill training in patients with Parkinson’s disease: a kinematic evaluation with gait profile score

    Science.gov (United States)

    Galli, Manuela; Cimolin, Veronica; De Pandis, Maria Francesca; Le Pera, Domenica; Sova, Ivan; Albertini, Giorgio; Stocchi, Fabrizio; Franceschini, Marco

    2016-01-01

    Summary The purpose of this study was to quantitatively compare the effects, on walking performance, of end-effector robotic rehabilitation locomotor training versus intensive training with a treadmill in Parkinson’s disease (PD). Fifty patients with PD were randomly divided into two groups: 25 were assigned to the robot-assisted therapy group (RG) and 25 to the intensive treadmill therapy group (IG). They were evaluated with clinical examination and 3D quantitative gait analysis [gait profile score (GPS) and its constituent gait variable scores (GVSs) were calculated from gait analysis data] at the beginning (T0) and at the end (T1) of the treatment. In the RG no differences were found in the GPS, but there were significant improvements in some GVSs (Pelvic Obl and Hip Ab-Add). The IG showed no statistically significant changes in either GPS or GVSs. The end-effector robotic rehabilitation locomotor training improved gait kinematics and seems to be effective for rehabilitation in patients with mild PD. PMID:27678210

  16. Pilates training improves 5-km run performance by changing metabolic cost and muscle activity in trained runners

    Science.gov (United States)

    Finatto, Paula; Silva, Edson Soares Da; Okamura, Alexandre B.; Almada, Bruna P.; Oliveira, Henrique B.

    2018-01-01

    Purpose Strength training improves distance running economy and performance. This finding is based predominantly on maximal and explosive strength programmes applied to locomotor muscles, particularly on the lower limbs. It is not certain whether a minimization of metabolic cost (Cmet) and an improvement in running performance is feasible with strength training of the postural and trunk muscles. Methods Using kinematic, neuromuscular and metabolic measurements of running at two different speeds before and after a 12-week Pilates training programme, we tested the hypothesis that core training might improve the running Cmet and performance of trained runners. Thirty-two individuals were randomly assigned to the control group (CG, n = 16) or the Pilates group (PG, n = 16). Results Confirming our hypothesis, a significant improvement (p<0.05) was observed for running performance in the PG (pre: 25.65±0.4 min; post: 23.23±0.4 min) compared to the CG (pre: 25.33±0.58 min; post: 24.61±0.52 min). Similarly, the PG (4.33±0.07 J.kg-1.m-1) had better responses than the CG (4.71±0.11 J.kg-1.m-1) during post-training for Cmet. These findings were accompanied by decreased electromyographic activity of the postural muscles at submaximal running intensities in the PG. Conclusions Overall, these results provide a rationale for selecting strength training strategies that target adaptations on specific postural and locomotor muscles for trained distance runners. PMID:29561907

  17. Pilates training improves 5-km run performance by changing metabolic cost and muscle activity in trained runners.

    Directory of Open Access Journals (Sweden)

    Paula Finatto

    Full Text Available Strength training improves distance running economy and performance. This finding is based predominantly on maximal and explosive strength programmes applied to locomotor muscles, particularly on the lower limbs. It is not certain whether a minimization of metabolic cost (Cmet and an improvement in running performance is feasible with strength training of the postural and trunk muscles.Using kinematic, neuromuscular and metabolic measurements of running at two different speeds before and after a 12-week Pilates training programme, we tested the hypothesis that core training might improve the running Cmet and performance of trained runners. Thirty-two individuals were randomly assigned to the control group (CG, n = 16 or the Pilates group (PG, n = 16.Confirming our hypothesis, a significant improvement (p<0.05 was observed for running performance in the PG (pre: 25.65±0.4 min; post: 23.23±0.4 min compared to the CG (pre: 25.33±0.58 min; post: 24.61±0.52 min. Similarly, the PG (4.33±0.07 J.kg-1.m-1 had better responses than the CG (4.71±0.11 J.kg-1.m-1 during post-training for Cmet. These findings were accompanied by decreased electromyographic activity of the postural muscles at submaximal running intensities in the PG.Overall, these results provide a rationale for selecting strength training strategies that target adaptations on specific postural and locomotor muscles for trained distance runners.

  18. Modular Diversification of the Locomotor System in Damselfishes (Pomacentridae)

    OpenAIRE

    Aguilar-Medrano, Rosalia; Frederich, Bruno; Barber, Paul H.

    2016-01-01

    As fish move and interact with their aquatic environment by swimming, small morphological variations of the locomotor system can have profound implications on fitness. Damselfishes (Pomacentridae) have inhabited coral reef ecosystems for more than 50 million years. As such, habitat preferences and behavior could significantly constrain the morphology and evolvability of the locomotor system. To test this hypothesis, we used phylogenetic comparative methods on morphometric, ecological and beha...

  19. Stereoselective Effects of Abused “Bath Salt” Constituent 3,4-Methylenedioxypyrovalerone in Mice: Drug Discrimination, Locomotor Activity, and Thermoregulation

    Science.gov (United States)

    Gannon, Brenda M.; Williamson, Adrian; Suzuki, Masaki; Rice, Kenner C.

    2016-01-01

    3,4-Methylenedioxypyrovalerone (MDPV) is a common constituent of illicit “bath salts” products. MDPV is a chiral molecule, but the contribution of each enantiomer to in vivo effects in mice has not been determined. To address this, mice were trained to discriminate 10 mg/kg cocaine from saline, and substitutions with racemic MDPV, S(+)-MDPV, and R(−)-MDPV were performed. Other mice were implanted with telemetry probes to monitor core temperature and locomotor responses elicited by racemic MDPV, S(+)-MDPV, and R(−)-MDPV under a warm (28°C) or cool (20°C) ambient temperature. Mice reliably discriminated the cocaine training dose from saline, and each form of MDPV fully substituted for cocaine, although marked potency differences were observed such that S(+)-MDPV was most potent, racemic MDPV was less potent than the S(+) enantiomer, and R(−)-MDPV was least potent. At both ambient temperatures, locomotor stimulant effects were observed after doses of S(+)-MDPV and racemic MDPV, but R(−)-MDPV did not elicit locomotor stimulant effects at any tested dose. Interestingly, significant increases in maximum core body temperature were only observed after administration of racemic MDPV in the warm ambient environment; neither MDPV enantiomer altered core temperature at any dose tested, at either ambient temperature. These studies suggest that all three forms of MDPV induce biologic effects, but R(−)-MDPV is less potent than S(+)-MDPV and racemic MDPV. Taken together, these data suggest that the S(+)-MDPV enantiomer is likely responsible for the majority of the biologic effects of the racemate and should be targeted in therapeutic efforts against MDPV overdose and abuse. PMID:26769917

  20. Bobath and traditional approaches in post-stroke gait rehabilitation in adults

    Directory of Open Access Journals (Sweden)

    Mikołajewska Emilia

    2017-02-01

    Full Text Available Study aim: The aim of this study was to compare the outcomes of a study of post-stroke gait reeducation using the Bobath neuro‑developmental treatment (NDT-Bobath method and the traditional approach.

  1. Effect of thermal acclimation on locomotor energetics and locomotor performance in a lungless salamander, Desmognathus ochrophaeus.

    Science.gov (United States)

    Feder, M E

    1986-03-01

    To determine the effects of thermal acclimation upon locomotor performance and the rate of oxygen consumption (MO2) during activity, small (less than 3 g), lungless salamanders, Desmognathus ochrophaeus Cope, were acclimated to three temperatures (5, 13 and 21 degrees C) and exercised at various controlled speeds within an exercise wheel while their MO2 was measured. MO2 increased with speed at low speeds (less than 14 cm min-1). Although animals could sustain greater speeds, MO2 did not increase further. These small, exclusively skin-breathing salamanders could increase their MO2 9-11 times during exercise and could sustain nearly half of the oxygen flux expected across a similar surface area of the mammalian lung. However, their maximum aerobic speed was remarkably slow (14 cm min-1) and their net cost of transport remarkably large (15-17 ml O2 g-1 km-1). Thermal acclimation affected MO2 during activity, the maximum sustainable speed and locomotor stamina in different ways. During exercise at 13 degrees C, cold-acclimated animals had a significantly greater MO2 than warm-acclimated animals, but did not differ in stamina or the maximum sustainable speed. During exercise at 21 degrees C, cold acclimation did not affect the MO2 significantly, but it decreased the stamina and increased the rate of lactate accumulation. Thus, these results suggest that thermal acclimation of the MO2 is not tightly coupled to thermal acclimation of locomotor performance in salamanders.

  2. Locomotor Sub-functions for Control of Assistive Wearable Robots

    Directory of Open Access Journals (Sweden)

    Maziar A. Sharbafi

    2017-09-01

    Full Text Available A primary goal of comparative biomechanics is to understand the fundamental physics of locomotion within an evolutionary context. Such an understanding of legged locomotion results in a transition from copying nature to borrowing strategies for interacting with the physical world regarding design and control of bio-inspired legged robots or robotic assistive devices. Inspired from nature, legged locomotion can be composed of three locomotor sub-functions, which are intrinsically interrelated: Stance: redirecting the center of mass by exerting forces on the ground. Swing: cycling the legs between ground contacts. Balance: maintaining body posture. With these three sub-functions, one can understand, design and control legged locomotory systems with formulating them in simpler separated tasks. Coordination between locomotor sub-functions in a harmonized manner appears then as an additional problem when considering legged locomotion. However, biological locomotion shows that appropriate design and control of each sub-function simplifies coordination. It means that only limited exchange of sensory information between the different locomotor sub-function controllers is required enabling the envisioned modular architecture of the locomotion control system. In this paper, we present different studies on implementing different locomotor sub-function controllers on models, robots, and an exoskeleton in addition to demonstrating their abilities in explaining humans' control strategies.

  3. Locomotor Sub-functions for Control of Assistive Wearable Robots.

    Science.gov (United States)

    Sharbafi, Maziar A; Seyfarth, Andre; Zhao, Guoping

    2017-01-01

    A primary goal of comparative biomechanics is to understand the fundamental physics of locomotion within an evolutionary context. Such an understanding of legged locomotion results in a transition from copying nature to borrowing strategies for interacting with the physical world regarding design and control of bio-inspired legged robots or robotic assistive devices. Inspired from nature, legged locomotion can be composed of three locomotor sub-functions, which are intrinsically interrelated: Stance : redirecting the center of mass by exerting forces on the ground. Swing : cycling the legs between ground contacts. Balance : maintaining body posture. With these three sub-functions, one can understand, design and control legged locomotory systems with formulating them in simpler separated tasks. Coordination between locomotor sub-functions in a harmonized manner appears then as an additional problem when considering legged locomotion. However, biological locomotion shows that appropriate design and control of each sub-function simplifies coordination. It means that only limited exchange of sensory information between the different locomotor sub-function controllers is required enabling the envisioned modular architecture of the locomotion control system. In this paper, we present different studies on implementing different locomotor sub-function controllers on models, robots, and an exoskeleton in addition to demonstrating their abilities in explaining humans' control strategies.

  4. New insights into the pathophysiology of post-stroke spasticity

    Directory of Open Access Journals (Sweden)

    Sheng eLi

    2015-04-01

    Full Text Available Spasticity is one of many consequences after stroke. It is characterized by a velocity-dependent increase in resistance during passive stretch, resulting from hyperexcitability of the stretch reflex. The underlying mechanism of the hyperexcitable stretch reflex, however, remains poorly understood. Accumulated experimental evidence has supported supraspinal origins of spasticity, likely from an imbalance between descending inhibitory and facilitatory regulation of spinal stretch reflexes secondary to cortical disinhibition after stroke. The excitability of reticulospinal and vestibulospinal tracts has been assessed in stroke survivors with spasticity using non-invasive indirect measures. There are strong experimental findings that support the reticulospinal hyperexcitability as a prominent underlying mechanism of post-stroke spasticity. This mechanism can at least partly account for clinical features associated with spasticity and provide insightful guidance for clinical assessment and management of spasticity. However, the possible role of VST hyperexcitability can not be ruled out from indirect measures. In vivo measure of individual brainstem nuclei in stroke survivors with spasticity using advanced fMRI techniques in the future is probably able to provide direct evidence of pathogenesis of post-stroke spasticity.

  5. New insights into the pathophysiology of post-stroke spasticity.

    Science.gov (United States)

    Li, Sheng; Francisco, Gerard E

    2015-01-01

    Spasticity is one of many consequences after stroke. It is characterized by a velocity-dependent increase in resistance during passive stretch, resulting from hyperexcitability of the stretch reflex. The underlying mechanism of the hyperexcitable stretch reflex, however, remains poorly understood. Accumulated experimental evidence has supported supraspinal origins of spasticity, likely from an imbalance between descending inhibitory and facilitatory regulation of spinal stretch reflexes secondary to cortical disinhibition after stroke. The excitability of reticulospinal (RST) and vestibulospinal tracts (VSTs) has been assessed in stroke survivors with spasticity using non-invasive indirect measures. There are strong experimental findings that support the RST hyperexcitability as a prominent underlying mechanism of post-stroke spasticity. This mechanism can at least partly account for clinical features associated with spasticity and provide insightful guidance for clinical assessment and management of spasticity. However, the possible role of VST hyperexcitability cannot be ruled out from indirect measures. In vivo measure of individual brainstem nuclei in stroke survivors with spasticity using advanced fMRI techniques in the future is probably able to provide direct evidence of pathogenesis of post-stroke spasticity.

  6. The ventromedial hypothalamus oxytocin induces locomotor behavior regulated by estrogen.

    Science.gov (United States)

    Narita, Kazumi; Murata, Takuya; Matsuoka, Satoshi

    2016-10-01

    Our previous studies demonstrated that excitation of neurons in the rat ventromedial hypothalamus (VMH) induced locomotor activity. An oxytocin receptor (Oxtr) exists in the VMH and plays a role in regulating sexual behavior. However, the role of Oxtr in the VMH in locomotor activity is not clear. In this study we examined the roles of oxytocin in the VMH in running behavior, and also investigated the involvement of estrogen in this behavioral change. Microinjection of oxytocin into the VMH induced a dose-dependent increase in the running behavior in male rats. The oxytocin-induced running activity was inhibited by simultaneous injection of Oxtr-antagonist, (d(CH2)5(1), Try(Me)(2), Orn(8))-oxytocin. Oxytocin injection also induced running behavior in ovariectomized (OVX) female rats. Pretreatment of the OVX rats with estrogen augmented the oxytocin-induced running activity twofold, and increased the Oxtr mRNA in the VMH threefold. During the estrus cycle locomotor activity spontaneously increased in the dark period of proestrus. The Oxtr mRNA was up-regulated in the proestrus afternoon. Blockade of oxytocin neurotransmission by its antagonist before the onset of the dark period of proestrus decreased the following nocturnal locomotor activity. These findings demonstrate that Oxtr in the VMH is involved in the induction of running behavior and that estrogen facilitates this effect by means of Oxtr up-regulation, suggesting the involvement of oxytocin in the locomotor activity of proestrus female rats. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Gait improvement after treadmill training in ischemic stroke survivors: A critical review of functional MRI studies ☆

    OpenAIRE

    Xiao, Xiang; Huang, Dongfeng; O’Young, Bryan

    2012-01-01

    Stroke survivors often present with abnormal gait, movement training can improve the walking performance post-stroke, and functional MRI can objectively evaluate the brain functions before and after movement training. This paper analyzes the functional MRI changes in patients with ischemic stroke after treadmill training with voluntary and passive ankle dorsiflexion. Functional MRI showed that there are some changes in some regions of patients with ischemic stroke including primary sensorimot...

  8. Effects of task-specific and impairment-based training compared with usual care on functional walking ability after inpatient stroke rehabilitation: LEAPS Trial.

    Science.gov (United States)

    Nadeau, Stephen E; Wu, Samuel S; Dobkin, Bruce H; Azen, Stanley P; Rose, Dorian K; Tilson, Julie K; Cen, Steven Y; Duncan, Pamela W

    2013-05-01

    After inpatient stroke rehabilitation, many people still cannot participate in community activities because of limited walking ability. To compare the effectiveness of 2 conceptually different, early physical therapy (PT) interventions to usual care (UC) in improving walking 6 months after stroke. The locomotor experience applied post-stroke (LEAPS) study was a single-blind, randomized controlled trial conducted in 408 adults with disabling hemiparetic stroke. Participants were stratified at baseline (2 months) by impairment in walking speed: severe (exercise at home (home exercise program [HEP], n = 126). LTP participants were 18% more likely to transition to a higher functional walking level: severe to >0.4 m/s and moderate to >0.8 m/s than UC participants (95% confidence interval [CI] = 7%-29%), and HEP participants were 17% more likely to transition (95% CI = 5%-29%). Mean gain in walking speed in LTP participants was 0.13 m/s greater (95% CI = 0.09-0.18) and in HEP participants, 0.10 m/s greater (95% CI = 0.05-0.14) than in UC participants. Progressive PT, using either walking training on a treadmill and overground, conducted in a clinic, or strength and balance exercises conducted at home, was superior to UC in improving walking, regardless of severity of initial impairment.

  9. Comparative limb proportions reveal differential locomotor morphofunctions of alligatoroids and crocodyloids

    Science.gov (United States)

    Iijima, Masaya; Kubo, Tai; Kobayashi, Yoshitsugu

    2018-03-01

    Although two major clades of crocodylians (Alligatoroidea and Crocodyloidea) were split during the Cretaceous period, relatively few morphological and functional differences between them have been known. In addition, interaction of multiple morphofunctional systems that differentiated their ecology has barely been assessed. In this study, we examined the limb proportions of crocodylians to infer the differences of locomotor functions between alligatoroids and crocodyloids, and tested the correlation of locomotor and feeding morphofunctions. Our analyses revealed crocodyloids including Gavialis have longer stylopodia (humerus and femur) than alligatoroids, indicating that two groups may differ in locomotor functions. Fossil evidence suggested that alligatoroids have retained short stylopodia since the early stage of their evolution. Furthermore, rostral shape, an indicator of trophic function, is correlated with limb proportions, where slender-snouted piscivorous taxa have relatively long stylopodia and short overall limbs. In combination, trophic and locomotor functions might differently delimit the ecological opportunity of alligatoroids and crocodyloids in the evolution of crocodylians.

  10. Transvertebral direct current stimulation paired with locomotor training in chronic spinal cord injury: A case study.

    Science.gov (United States)

    Powell, Elizabeth Salmon; Carrico, Cheryl; Raithatha, Ravi; Salyers, Emily; Ward, Andrea; Sawaki, Lumy

    2016-01-01

    This double-blind, sham-controlled, crossover case study combined transvertebral direct current stimulation (tvDCS) and locomotor training on a robot-assisted gait orthosis (LT-RGO). Determine whether cathodal tvDCS paired with LT-RGO leads to greater changes in function and neuroplasticity than sham tvDCS paired with LT-RGO. University of Kentucky (UK) HealthCare Stroke and Spinal Cord Neurorehabilitation Research at HealthSouth Cardinal Hill Hospital. A single subject with motor incomplete spinal cord injury (SCI) participated in 24 sessions of sham tvDCS paired with LT-RGO before crossover to 24 sessions of cathodal tvDCS paired with LT-RGO. Functional outcomes were measured with 10 Meter Walk Test (10MWT), 6 Minute Walk Test (6MWT), Spinal Cord Independence Measure-III (SCIM-III) mobility component, lower extremity manual muscle test (MMT), and Berg Balance Scale (BBS). Corticospinal changes were assessed using transcranial magnetic stimulation. Improvement in 10MWT speed, SCIM-III mobility component, and BBS occurred with both conditions. 6MWT worsened after sham tvDCS and improved after cathodal tvDCS. MMT scores for both lower extremities improved following sham tvDCS but decreased following cathodal tvDCS. Corticospinal excitability increased following cathodal tvDCS but not sham tvDCS. These results suggest that combining cathodal tvDCS and LT-RGO may improve functional outcomes, increase corticospinal excitability, and possibly decrease spasticity. Randomized controlled trials are needed to confirm these conclusions. This publication was supported by the National Center for Research Resources and the National Center for Advancing Translational Sciences, National Institutes of Health, through Grant UL1TR000117, and the HealthSouth Cardinal Hill Stroke and Spinal Cord Endowment (1215375670).

  11. The Interface of Clinical Decision-Making With Study Protocols for Knowledge Translation From a Walking Recovery Trial.

    Science.gov (United States)

    Hershberg, Julie A; Rose, Dorian K; Tilson, Julie K; Brutsch, Bettina; Correa, Anita; Gallichio, Joann; McLeod, Molly; Moore, Craig; Wu, Sam; Duncan, Pamela W; Behrman, Andrea L

    2017-01-01

    Despite efforts to translate knowledge into clinical practice, barriers often arise in adapting the strict protocols of a randomized, controlled trial (RCT) to the individual patient. The Locomotor Experience Applied Post-Stroke (LEAPS) RCT demonstrated equal effectiveness of 2 intervention protocols for walking recovery poststroke; both protocols were more effective than usual care physical therapy. The purpose of this article was to provide knowledge-translation tools to facilitate implementation of the LEAPS RCT protocols into clinical practice. Participants from 2 of the trial's intervention arms: (1) early Locomotor Training Program (LTP) and (2) Home Exercise Program (HEP) were chosen for case presentation. The two cases illustrate how the protocols are used in synergy with individual patient presentations and clinical expertise. Decision algorithms and guidelines for progression represent the interface between implementation of an RCT standardized intervention protocol and clinical decision-making. In each case, the participant presents with a distinct clinical challenge that the therapist addresses by integrating the participant's unique presentation with the therapist's expertise while maintaining fidelity to the LEAPS protocol. Both participants progressed through an increasingly challenging intervention despite their own unique presentation. Decision algorithms and exercise progression for the LTP and HEP protocols facilitate translation of the RCT protocol to the real world of clinical practice. The two case examples to facilitate translation of the LEAPS RCT into clinical practice by enhancing understanding of the protocols, their progression, and their application to individual participants.Video Abstract available for more insights from the authors (see Supplemental Digital Content 1, available at: http://links.lww.com/JNPT/A147).

  12. Muscle Strength and Poststroke Hemiplegia

    DEFF Research Database (Denmark)

    Kristensen, Otto H; Stenager, Egon; Dalgas, Ulrik

    2017-01-01

    undergone peer review; and (4) were available in English or Danish. DATA EXTRACTION: The psychometric properties of isokinetic dynamometry were reviewed with respect to reliability, validity, and responsiveness. Furthermore, comparisons of strength between paretic, nonparetic, and comparable healthy muscles...... isokinetic dynamometry. DATA SOURCES: A systematic literature search of 7 databases was performed. STUDY SELECTION: Included studies (1) enrolled participants with definite poststroke hemiplegia according to defined criteria; (2) assessed muscle strength or power by criterion isokinetic dynamometry; (3) had...... were reviewed. DATA SYNTHESIS: Twenty studies covering 316 PPSH were included. High intraclass correlation coefficient (ICC) inter- and intrasession reliability was reported for isokinetic dynamometry, which was independent of the tested muscle group, contraction mode, and contraction velocity...

  13. V3 spinal neurons establish a robust and balanced locomotor rhythm during walking.

    Science.gov (United States)

    Zhang, Ying; Narayan, Sujatha; Geiman, Eric; Lanuza, Guillermo M; Velasquez, Tomoko; Shanks, Bayle; Akay, Turgay; Dyck, Jason; Pearson, Keir; Gosgnach, Simon; Fan, Chen-Ming; Goulding, Martyn

    2008-10-09

    A robust and well-organized rhythm is a key feature of many neuronal networks, including those that regulate essential behaviors such as circadian rhythmogenesis, breathing, and locomotion. Here we show that excitatory V3-derived neurons are necessary for a robust and organized locomotor rhythm during walking. When V3-mediated neurotransmission is selectively blocked by the expression of the tetanus toxin light chain subunit (TeNT), the regularity and robustness of the locomotor rhythm is severely perturbed. A similar degeneration in the locomotor rhythm occurs when the excitability of V3-derived neurons is reduced acutely by ligand-induced activation of the allatostatin receptor. The V3-derived neurons additionally function to balance the locomotor output between both halves of the spinal cord, thereby ensuring a symmetrical pattern of locomotor activity during walking. We propose that the V3 neurons establish a regular and balanced motor rhythm by distributing excitatory drive between both halves of the spinal cord.

  14. Effects of phenobarbital and levetiracetam on PR and QTc intervals in patients with post-stroke seizure.

    Science.gov (United States)

    Siniscalchi, Antonio; Scaglione, Francesco; Sanzaro, Enzo; Iemolo, Francesco; Albertini, Giorgio; Quirino, Gianluca; Manes, Maria Teresa; Gratteri, Santo; Mercuri, Nicola Biagio; De Sarro, Giovambattista; Gallelli, Luca

    2014-12-01

    Sudden unexplained/unexpected death (SUDEP) is related to high mortality in patients with epilepsy. The prolongation of QT interval, involved in cardiac arrhythmia-related SUDEP, may be precipitated by antiepileptic drugs (AEDs). In this study, we evaluated the effects of phenobarbital and levetiracetam on PR-QTc intervals in patients with post-stroke seizures. We performed an open-label, parallel group, prospective, multicenter study between June 2009 and December 2013 in patients older than 18 years of age with a clinical diagnosis of post-stroke seizure and treated with phenobarbital or levetiracetam. In order to exclude a role of cerebral post-stroke injury on modulation of PR and QTc intervals, patients with cerebral post-stroke injury and without seizures were also enrolled as controls. Interictal electrocardiography analysis revealed no significant difference in PR interval between patients treated with an AED (n = 49) and control patients (n = 50) (181.25 ± 12.05 vs. 182.4 ± 10.3 ms; p > 0.05). In contrast, a significantly longer QTc interval was recorded in patients treated with an AED compared with control patients (441.2 ± 56.6 vs. 396.8 ± 49.3 ms; p phenobarbital showed a significantly longer QTc interval than patients treated with levetiracetam (460.0 ± 57.2 vs. 421.5 ± 50.1 ms; p phenobarbital prolonged QTc interval more so than levetiracetam.

  15. Interpreting locomotor biomechanics from the morphology of human footprints.

    Science.gov (United States)

    Hatala, Kevin G; Wunderlich, Roshna E; Dingwall, Heather L; Richmond, Brian G

    2016-01-01

    Fossil hominin footprints offer unique direct windows to the locomotor behaviors of our ancestors. These data could allow a clearer understanding of the evolution of human locomotion by circumventing issues associated with indirect interpretations of habitual locomotor patterns from fossil skeletal material. However, before we can use fossil hominin footprints to understand better the evolution of human locomotion, we must first develop an understanding of how locomotor biomechanics are preserved in, and can be inferred from, footprint morphologies. In this experimental study, 41 habitually barefoot modern humans created footprints under controlled conditions in which variables related to locomotor biomechanics could be quantified. Measurements of regional topography (depth) were taken from 3D models of those footprints, and principal components analysis was used to identify orthogonal axes that described the largest proportions of topographic variance within the human experimental sample. Linear mixed effects models were used to quantify the influences of biomechanical variables on the first five principal axes of footprint topographic variation, thus providing new information on the biomechanical variables most evidently expressed in the morphology of human footprints. The footprint's overall depth was considered as a confounding variable, since biomechanics may be linked to the extent to which a substrate deforms. Three of five axes showed statistically significant relationships with variables related to both locomotor biomechanics and substrate displacement; one axis was influenced only by biomechanics and another only by the overall depth of the footprint. Principal axes of footprint morphological variation were significantly related to gait type (walking or running), kinematics of the hip and ankle joints and the distribution of pressure beneath the foot. These results provide the first quantitative framework for developing hypotheses regarding the

  16. Speech and language therapists' perspectives of therapeutic alliance construction and maintenance in aphasia rehabilitation post-stroke.

    Science.gov (United States)

    Lawton, Michelle; Sage, Karen; Haddock, Gillian; Conroy, Paul; Serrant, Laura

    2018-05-01

    Therapeutic alliance refers to the interactional and relational processes operating during therapeutic interventions. It has been shown to be a strong determinant of treatment efficacy in psychotherapy, and evidence is emerging from a range of healthcare and medical disciplines to suggest that the construct of therapeutic alliance may in fact be a variable component of treatment outcome, engagement and satisfaction. Although this construct appears to be highly relevant to aphasia rehabilitation, no research to date has attempted to explore this phenomenon and thus consider its potential utility as a mechanism for change. To explore speech and language therapists' perceptions and experiences of developing and maintaining therapeutic alliances in aphasia rehabilitation post-stroke. Twenty-two, in-depth, semi-structured interviews were conducted with speech and language therapists working with people with aphasia post-stroke. Qualitative data were analysed using inductive thematic analysis. Analysis resulted in the emergence of three overarching themes: laying the groundwork; augmenting cohesion; and contextual shapers. Recognizing personhood, developing shared expectations of therapy and establishing therapeutic ownership were central to laying the groundwork for therapeutic delivery. Augmenting cohesion was perceived to be dependent on the therapists' responsiveness and ability to resolve both conflict and resistance, as part of an ongoing active process. These processes were further moulded by contextual shapers such as the patient's family, relational continuity and organizational drivers. The findings suggest that therapists used multiple, complex, relational strategies to establish and manage alliances with people with aphasia, which were reliant on a fluid interplay of verbal and non-verbal skills. The data highlight the need for further training to support therapists to forge purposive alliances. Training should develop: therapeutic reflexivity; inclusivity in

  17. Cocaine locomotor activation, sensitization and place preference in six inbred strains of mice

    Science.gov (United States)

    2011-01-01

    Background The expanding set of genomics tools available for inbred mouse strains has renewed interest in phenotyping larger sets of strains. The present study aims to explore phenotypic variability among six commonly-used inbred mouse strains to both the rewarding and locomotor stimulating effects of cocaine in a place conditioning task, including several strains or substrains that have not yet been characterized for some or all of these behaviors. Methods C57BL/6J (B6), BALB/cJ (BALB), C3H/HeJ (C3H), DBA/2J (D2), FVB/NJ (FVB) and 129S1/SvImJ (129) mice were tested for conditioned place preference to 20 mg/kg cocaine. Results Place preference was observed in most strains with the exception of D2 and 129. All strains showed a marked increase in locomotor activity in response to cocaine. In BALB mice, however, locomotor activation was context-dependent. Locomotor sensitization to repeated exposure to cocaine was most significant in 129 and D2 mice but was absent in FVB mice. Conclusions Genetic correlations suggest that no significant correlation between conditioned place preference, acute locomotor activation, and locomotor sensitization exists among these strains indicating that separate mechanisms underlie the psychomotor and rewarding effects of cocaine. PMID:21806802

  18. A Prospective Study on the Prevalence and Risk Factors of Poststroke Depression

    Directory of Open Access Journals (Sweden)

    A. De Ryck

    2013-01-01

    Full Text Available Background and Purpose: Poststroke depression (PSD is common. Early detection of depressive symptoms and identification of patients at risk for PSD are important as PSD negatively affects stroke outcome and costs of medical care. Therefore, the aim of this study was to determine incidence and risk factors for PSD at 3 months after stroke. Methods: We conducted a prospective, longitudinal epidemiological study aiming to determine incidence and risk factors for PSD at 1, 3, 6, 12 and 18 months poststroke. The present data analysis covers the convalescent phase of 3 months poststroke. Participants in this study were inpatients, admitted to a stroke unit with first or recurrent stroke. Demographic data and vascular risk factors were collected and patients were evaluated at baseline and 3 months poststroke for functional and cognitive deficits, stroke characteristics, stroke severity and stroke outcome. Signs and symptoms of depression were quantified by means of the Cornell Scale for Depression (CSD and Montgomery and Åsberg Depression Rating Scale (MADRS. Significantly associated variables from univariate analysis were analyzed by using multiple linear and logistic regression methods. Results: Data analysis was performed in 135 patients who completed follow-up assessments at 3 months poststroke. Depression (CSD score ≥8 was diagnosed in 28.1% of the patients. Patients with PSD were significantly more dependent with regard to activities of daily living (ADL and displayed more severe physical and cognitive impairment than patients without PSD. A higher prevalence of speech and language dysfunction and apraxia were observed in patients with PSD (36.8 and 34.3%, respectively compared to non-depressed stroke patients (19.6 and 12.4%; p = 0.036 and p = 0.004, respectively. Applying multiple linear regressions, cognitive impairment and reduced mobility as part of the Stroke Impact Scale were independently associated with PSD, as scored using CSD and

  19. Clinical feasibility of the Nintendo Wii™ for balance training post-stroke: a phase II randomized controlled trial in an inpatient setting.

    Science.gov (United States)

    Bower, Kelly J; Clark, Ross A; McGinley, Jennifer L; Martin, Clarissa L; Miller, Kimberly J

    2014-09-01

    To investigate the feasibility and potential efficacy of the Nintendo Wii™ for balance rehabilitation after stroke. Phase II, single-blind, randomized controlled trial. Inpatient rehabilitation facility. Thirty adults (mean age 63.6 (14.7) years) undergoing inpatient rehabilitation who were less than three months post-stroke and able to stand unsupported. Participants were allocated to a Balance Group, using the 'Wii Fit Plus' in standing, or Upper Limb Group, using the 'Wii Sports/Sports Resort' in sitting. Both groups undertook three 45 minute sessions per week over two to four weeks in addition to standard care. The primary focus was feasibility, addressed by recruitment, retention, adherence, acceptability and safety. Efficacy was evaluated by balance, mobility and upper limb outcomes. Twenty-one percent of individuals screened were recruited and 86% (n = 30) of eligible people agreed to participate. Study retention and session adherence was 90% and > 99%, respectively, at two weeks; dropping to 70% and 87% at four weeks due to early discharge. All participants reported enjoying the sessions and most felt they were beneficial. No major adverse events occurred. Wii use by the Balance Group was associated with trends for improved balance, with significantly greater improvement in outcomes including the Step Test and Wii Balance Board-derived centre of pressure scores. The Upper Limb Group had larger, non-significant changes in arm function. A Wii-based approach appears feasible and promising for post-stroke balance rehabilitation. A larger randomized controlled trial is recommended to further investigate efficacy. © The Author(s) 2014.

  20. Caregiver burden and emotional problems in partners of stroke patients at two months and one year post-stroke : Determinants and prediction

    NARCIS (Netherlands)

    Kruithof, Willeke J.; Post, Marcel W. M.; van Mierlo, Maria L.; van den Bos, Geertrudis A. M.; de Man-van Ginkel, Janneke M.; Visser-Meily, Johanna M. A.

    2016-01-01

    Objectives: (a) To determine levels of and factors explaining partners' burden, anxiety and depressive symptoms at two months post-stroke, (b) to predict partners' burden, anxiety and depressive symptoms at one year post-stroke based on patient and partner characteristics available at two months

  1. The bilateral movement condition facilitates maximal but not submaximal paretic-limb grip force in people with post-stroke hemiparesis

    Science.gov (United States)

    DeJong, Stacey L.; Lang, Catherine E.

    2012-01-01

    Objectives Although healthy individuals have less force production capacity during bilateral muscle contractions compared to unilateral efforts, emerging evidence suggests that certain aspects of paretic upper limb task performance after stroke may be enhanced by moving bilaterally instead of unilaterally. We investigated whether the bilateral movement condition affects grip force differently on the paretic side of people with post-stroke hemiparesis, compared to their non-paretic side and both sides of healthy young adults. Methods Within a single session, we compared: 1) maximal grip force during unilateral vs. bilateral contractions on each side, and 2) force contributed by each side during a 30% submaximal bilateral contraction. Results Healthy controls produced less grip force in the bilateral condition, regardless of side (- 2.4% difference), and similar findings were observed on the non-paretic side of people with hemiparesis (- 4.5% difference). On the paretic side, however, maximal grip force was increased by the bilateral condition in most participants (+11.3% difference, on average). During submaximal bilateral contractions in each group, the two sides each contributed the same percentage of unilateral maximal force. Conclusions The bilateral condition facilitates paretic limb grip force at maximal, but not submaximal levels. Significance In some people with post-stroke hemiparesis, the paretic limb may benefit from bilateral training with high force requirements. PMID:22248812

  2. Quaternary naltrexone reverses radiogenic and morphine-induced locomotor hyperactivity

    Energy Technology Data Exchange (ETDEWEB)

    Mickley, G.A.; Stevens, K.E.; Galbraith, J.A.; White, G.A.; Gibbs, G.L.

    1984-04-01

    The present study attempted to determine the relative role of the peripheral and central nervous system in the production of morphine-induced or radiation-induced locomotor hyperactivity of the mouse. Toward this end, we used a quaternary derivative of an opiate antagonist (naltrexone methobromide), which presumably does not cross the blood-brain barrier. Quaternary naltrexone was used to challenge the stereotypic locomotor response observed in these mice after either an i.p. injection of morphine or exposure to 1500 rads /sup 60/Co. The quaternary derivative of naltrexone reversed the locomotor hyperactivity normally observed in the C57BL/6J mouse after an injection of morphine. It also significantly attenuated radiation-induced locomotion. The data reported here support the hypothesis of endorphin involvement in radiation-induced and radiogenic behaviors. However, these conclusions are contingent upon further research which more fully evaluates naltrexone methobromide's capacity to cross the blood-brain barrier.

  3. Delineating the Diversity of Spinal Interneurons in Locomotor Circuits.

    Science.gov (United States)

    Gosgnach, Simon; Bikoff, Jay B; Dougherty, Kimberly J; El Manira, Abdeljabbar; Lanuza, Guillermo M; Zhang, Ying

    2017-11-08

    Locomotion is common to all animals and is essential for survival. Neural circuits located in the spinal cord have been shown to be necessary and sufficient for the generation and control of the basic locomotor rhythm by activating muscles on either side of the body in a specific sequence. Activity in these neural circuits determines the speed, gait pattern, and direction of movement, so the specific locomotor pattern generated relies on the diversity of the neurons within spinal locomotor circuits. Here, we review findings demonstrating that developmental genetics can be used to identify populations of neurons that comprise these circuits and focus on recent work indicating that many of these populations can be further subdivided into distinct subtypes, with each likely to play complementary functions during locomotion. Finally, we discuss data describing the manner in which these populations interact with each other to produce efficient, task-dependent locomotion. Copyright © 2017 the authors 0270-6474/17/3710835-07$15.00/0.

  4. Post-stroke dementia: the contribution of thalamus and basal ganglia changes.

    Science.gov (United States)

    Lopes, Marcos Antonio; Firbank, Michael J; Widdrington, Michelle; Blamire, Andrew M; Kalaria, Raj N; O'Brien, John T

    2012-04-01

    The neurobiological basis of increased risk of dementia in stroke patients is unclear, though there are several related pathological changes, including white matter hyperintensities (WMH), and medial temporal atrophy. Subcortical gray matter structures have also been implicated in dementia resulting from vascular pathology, particularly vascular dementia. This study aimed to investigate the contribution of changes in subcortical gray matter structures to post-stroke dementia (PSD). T1- and T2-weighted images and T2-weighted fluid-attenuated inversion recovery (FLAIR) images were obtained on a 3-Tesla magnetic resonance (MR) system, in four groups aged over 75 years: post-stroke with dementia (PSD; 8), post-stroke no dementia (PSnoD; 33), Alzheimer's disease (AD; 26) and controls (30). Automated software was used to measure the volume of thalamus, putamen, caudate nucleus, and hippocampus as well as total WMH volume. The number of subcortical lacunes was also counted. The number of caudate lacunes was higher in the PSnoD group, compared with AD (p = 0.029) and controls (p = 0.019). The putamen volume was smaller in the stroke and AD groups, when compared with controls. In the whole stroke group, putamen lacunes were correlated with impairment in memory (Rey test; ρ = -0.365; p = 0.031), while WMH and hippocampal volume both correlated with global dysfunction. Our findings implicate a variety of neurobiological substrates of dementia, such as small vessel disease and Alzheimer pathology, which develop after stroke in an old older population, with a contribution from subcortical brain structures.

  5. Burden and factors associated with post-stroke depression in East ...

    African Journals Online (AJOL)

    Objective: To determine the burden and factors associated with post-stroke depression in East central Nigeria. Method: We carried out this cross-sectional study of 50 stroke survivors (mean age=54.8 ± 8.8 years), at the physiotherapy Department of the University of Nigeria Teaching Hospital, Enugu. Data were collected ...

  6. Developing the content of a locomotor disability scale for adults in Bangladesh: a qualitative study.

    Science.gov (United States)

    Mahmud, Ilias; Clarke, Lynda; Ploubidis, George B

    2017-01-01

    Bangladesh has an estimated 17 million adults with disabilities. A significant proportion of them are believed to have locomotor disabilities. There are over 300 non-governmental organizations providing different types of rehabilitation services to them. However, there is no locally developed and validated locomotor disability measurement scale in Bangladesh. The purpose of this study was to develop a locomotor disability scale with disability indicators suitable for adults in Bangladesh. Semi-structured interviews were conducted with 25 purposively selected adults with locomotor disabilities to generate scale items. At the second stage, cognitive interviews were conducted with 12 purposively selected adults with locomotor disabilities in order to refine the measurement questions and response categories. Data were analysed using the framework technique- identifying, abstracting, charting and matching themes across the interviews. For a locomotor disability scale, 70 activities (disability indicators) were identified: 37 mobility activities, 9 activities of daily living, 17 work/productivity activities and 7 leisure activities. Cognitive interviews revealed that when asking the respondents to rate their difficulty in performing the activities, instead of just mentioning the activity name, such as taking a bath or shower, a detailed description of the activity and response options were necessary to ensure consistent interpretation of the disability indicators and response options across all respondents. Identifying suitable disability indicators was the first step in developing a locomotor disability scale for adults in Bangladesh. Interviewing adults with locomotor disabilities in Bangladesh ensured that the locomotor disability scale is of relevance to them and consequently it has excellent content validity. Further research is needed to evaluate the psychometric properties of this scale.

  7. Temporal Evolution of Poststroke Cognitive Impairment Using the Montreal Cognitive Assessment

    NARCIS (Netherlands)

    Nijsse, Britta; Visser-Meily, Johanna M A; van Mierlo, Maria L; Post, Marcel W M; de Kort, Paul L M; van Heugten, Caroline M

    BACKGROUND AND PURPOSE: The Montreal Cognitive Assessment (MoCA) is nowadays recommended for the screening of poststroke cognitive impairment. However, little is known about the temporal evolution of MoCA-assessed cognition after stroke. The objective of this study was to examine the temporal

  8. Temporal Evolution of Poststroke Cognitive Impairment Using the Montreal Cognitive Assessment

    NARCIS (Netherlands)

    Nijsse, Britta; Visser-Meily, Johanna M.A.; van Mierlo, Maria L.; Post, Marcel W. M.; de Kort, Paul. L. M.; van Heugten, Caroline M.

    Background and Purpose-The Montreal Cognitive Assessment (MoCA) is nowadays recommended for the screening of poststroke cognitive impairment. However, little is known about the temporal evolution of MoCA-assessed cognition after stroke. The objective of this study was to examine the temporal pattern

  9. ASSESSMENT OF EFFICACY OF SURGICAL CEREBRAL REVASCULARIZATION IN PATIENTS WITH LARGE POST-STROKE CYSTS

    Directory of Open Access Journals (Sweden)

    R. N. Lar'kov

    2015-01-01

    Full Text Available Background: At present, efficacy of carotid endarterectomy for prevention of cerebrovascular accidents has been convincingly proven. Its results in patients with a history of an ischemic stroke depend on multiple factors.Aim: To study results of reconstructive interventions on internal carotid arteries in patients with post-stroke cerebral cysts.Materials and methods: We analyzed data from 210 patients who had undergone an intervention (159 men and 51 women, aged 61 ± 2.7 years with occluding lesions of the internal carotid artery and a history of an ischemic stroke. Depending on the size of a post-stroke lesion, patients were divided into 5 groups: patients from group 1 had a lesion of more than 5 cm in diameter, from group 2, from 2 to 5 cm, from group 3, ≤ 2 cm, patients from group 4 had a lacunar cysts and patients from group 5 had no focal lesions.Results: A clear positive correlation between the size of a post-stroke cyst and the degree of hemodynamic abnormalities in internal carotid arteries was found. The most prominent asymmetry of blood flow in the middle cerebral artery (on average, 34.1% was seen in patients from the group 1. Patients from the group 1 more often had low and critical brain tolerance to ischemia (42.9%. In patients with large post-stroke cysts (group 1 mean Barthell index was 69 ± 8.1, and NIHSS score 8.2 ± 1.6. In patients from other groups neurological deficiency was less pronounced: 80 ± 6.8 and 7.6 ± 1.9 in the group 2, 82 ± 5.7 and 4.1 ± 1.3 in the group 3, 94 ± 4.6 and 3.2 ± 1 in the groups 4 and 5. The differences between groups in the rates of postoperative complications were not statistically significant (p > 0.5. However, signs of hyperperfusion without any clinical manifestations were more often observed in patients from the group 1 (19%. Assessment of changes in neurological status at 1 year after the intervention, depending on the size of post-stroke lesions, showed that in patients with large

  10. Immediate effects of acupuncture on biceps brachii muscle function in healthy and post-stroke subjects

    Directory of Open Access Journals (Sweden)

    Fragoso Ana

    2012-03-01

    Full Text Available Abstract Background The effects of acupuncture on muscle function in healthy subjects are contradictory and cannot be extrapolated to post-stroke patients. This study evaluated the immediate effects of manual acupuncture on myoelectric activity and isometric force in healthy and post-stroke patients. Methods A randomized clinical trial, with parallel groups, single-blinded study design, was conducted with 32 healthy subjects and 15 post-stroke patients with chronic hemiparesis. Surface electromyography from biceps brachii during maximal isometric voluntary tests was performed before and after 20-min intermittent, and manual stimulation of acupoints Quchi (LI11 or Tianquan (PC2. Pattern differentiation was performed by an automated method based on logistic regression equations. Results Healthy subjects showed a decrease in the root mean-squared (RMS values after the stimulation of LI11 (pre: 1.392 ± 0.826 V; post: 0.612 ± 0.0.320 V; P = 0.002 and PC2 (pre: 1.494 ± 0.826 V; post: 0.623 ± 0.320 V; P = 0.001. Elbow flexion maximal isometric voluntary contraction (MIVC was not significantly different after acupuncture stimulation of LI11 (pre: 22.2 ± 10.7 kg; post: 21.7 ± 9.5 kg; P = 0.288 or PC2 (pre: 18.8 ± 4.6 kg; post: 18.7 ± 6.0 kg; P = 0.468. Post-stroke patients did not exhibit any significant decrease in the RMS values after the stimulation of LI11 (pre: 0.627 ± 0.335 V; post: 0.530 ± 0.272 V; P = 0.187 and PC2 (pre: 0.601 ± 0.258 V; post: 0.591 ± 0.326 V; P = 0.398. Also, no significant decrease in the MIVC value was observed after the stimulation of LI11 (pre: 9.6 ± 3.9 kg; post: 9.6 ± 4.7 kg; P = 0.499 or PC2 (pre: 10.7 ± 5.6 kg; post: 10.2 ± 5.3 kg; P = 0.251. Different frequency of patterns was observed among healthy subjects and post-stroke patients groups (χ2 = 9.759; P = 0.021. Conclusion Manual acupuncture provides sufficient neuromuscular stimuli to promote immediate changes in motor unit gross recruitment without

  11. Poststroke aphasia : epidemiology, pathophysiology and treatment.

    Science.gov (United States)

    Berthier, Marcelo L

    2005-01-01

    Aphasia, the loss or impairment of language caused by brain damage, is one of the most devastating cognitive impairments of stroke. Aphasia is present in 21-38% of acute stroke patients and is associated with high short- and long-term morbidity, mortality and expenditure. Recovery from aphasia is possible even in severe cases. While speech-language therapy remains the mainstay treatment of aphasia, the effectiveness of conventional therapies has not been conclusively proved. This has motivated attempts to integrate knowledge from several domains in an effort to plan more rational therapies and to introduce other therapeutic strategies, including the use of intensive language therapy and pharmacological agents. Several placebo-controlled trials suggest that piracetam is effective in recovery from aphasia when started soon after the stroke, but its efficacy vanishes in patients with chronic aphasia. Drugs acting on catecholamine systems (bromocriptine, dexamfetamine) have shown varying degrees of efficacy in case series, open-label studies and placebo-controlled trials. Bromocriptine is useful in acute and chronic aphasias, but its beneficial action appears restricted to nonfluent aphasias with reduced initiation of spontaneous verbal messages. Dexamfetamine improves language function in subacute aphasia and the beneficial effect is maintained in the long term, but its use is restricted to highly selected samples. Pharmacological agents operating on the cholinergic system (e.g. donepezil) have shown promise. Data from single-case studies, case series and an open-label study suggest that donepezil may have beneficial effects on chronic poststroke aphasia. Preliminary evidence suggests that donepezil is well tolerated and its efficacy is maintained in the long term. Randomised controlled trials of donepezil and other cholinergic agents in poststroke aphasia are warranted.

  12. Traditional Japanese medicine daikenchuto improves functional constipation in poststroke patients.

    Science.gov (United States)

    Numata, Takehiro; Takayama, Shin; Tobita, Muneshige; Ishida, Shuichi; Katayose, Dai; Shinkawa, Mitsutoshi; Oikawa, Takashi; Aonuma, Takanori; Kaneko, Soichiro; Tanaka, Junichi; Kanemura, Seiki; Iwasaki, Koh; Ishii, Tadashi; Yaegashi, Nobuo

    2014-01-01

    Poststroke patients with functional constipation, assessed by the Rome III criteria, from 6 hospitals were recruited in a study on the effects of the traditional Japanese medicine Daikenchuto (DKT) on constipation. Thirty-four patients (17 men and 17 women; mean age: 78.1 ± 11.6 years) were randomly assigned to 2 groups; all patients received conventional therapy for constipation, and patients in the DKT group received 15 g/day of DKT for 4 weeks. Constipation scoring system (CSS) points and the gas volume score (GVS) (the measure of the intestinal gas volume calculated from plain abdominal radiographs) were recorded before and after a 4-week observation period. The total score on the CSS improved significantly in the DKT group compared to the control (P DKT group (P DKT group compared to the control (P = 0.03). DKT in addition to conventional therapy is effective in treating functional constipation in poststroke patients. This study was a randomized controlled trial and was registered in the UMIN Clinical Trial Registry (no. UMIN000007393).

  13. Locomotor Training Restores Walking in a Nonambulatory Child With Chronic, Severe, Incomplete Cervical Spinal Cord Injury

    Science.gov (United States)

    Behrman, Andrea L; Nair, Preeti M; Bowden, Mark G; Dauser, Robert C; Herget, Benjamin R; Martin, Jennifer B; Phadke, Chetan P; Reier, Paul J; Senesac, Claudia R; Thompson, Floyd J; Howland, Dena R

    2008-01-01

    Background and Purpose: Locomotor training (LT) enhances walking in adult experimental animals and humans with mild-to-moderate spinal cord injuries (SCIs). The animal literature suggests that the effects of LT may be greater on an immature nervous system than on a mature nervous system. The purpose of this study was to evaluate the effects of LT in a child with chronic, incomplete SCI. Subject: The subject was a nonambulatory 4½-year-old boy with an American Spinal Injury Association Impairment Scale (AIS) C Lower Extremity Motor Score (LEMS) of 4/50 who was deemed permanently wheelchair-dependent and was enrolled in an LT program 16 months after a severe cervical SCI. Methods: A pretest-posttest design was used in the study. Over 16 weeks, the child received 76 LT sessions using both treadmill and over-ground settings in which graded sensory cues were provided. The outcome measures were ASIA Impairment Scale score, gait speed, walking independence, and number of steps. Result: One month into LT, voluntary stepping began, and the child progressed from having no ability to use his legs to community ambulation with a rolling walker. By the end of LT, his walking independence score had increased from 0 to 13/20, despite no change in LEMS. The child's final self-selected gait speed was 0.29 m/s, with an average of 2,488 community-based steps per day and a maximum speed of 0.48 m/s. He then attended kindergarten using a walker full-time. Discussion and Conclusion: A simple, context-dependent stepping pattern sufficient for community ambulation was recovered in the absence of substantial voluntary isolated lower-extremity movement in a child with chronic, severe SCI. These novel data suggest that some children with severe, incomplete SCI may recover community ambulation after undergoing LT and that the LEMS cannot identify this subpopulation. PMID:18326054

  14. Effects of cholestasis on learning and locomotor activity in bile duct ligated rats.

    Science.gov (United States)

    Hosseini, Nasrin; Alaei, Hojjatallah; Nasehi, Mohammad; Radahmadi, Maryam; Mohammad Reza, Zarrindast

    2014-01-01

    Cognitive functions are impaired in patients with liver disease. Bile duct ligation causes cholestasis that impairs liver function. This study investigated the impact of cholestasis progression on the acquisition and retention times in the passive avoidance test and on the locomotor activity of rats. Cholestasis was induced in male Wistar rats by ligating the main bile duct. Locomotor activity, learning and memory were assessed by the passive avoidance learning test at day 7, day 14, and day 21 post-bile duct ligation. The serum levels of bilirubin, alanine aminotransferase, and alkaline phosphatase were measured. The results showed that acquisition time and locomotor activity were not affected at day 7 and day 14, but they were significantly (P locomotor activity were impaired at 21 days after bile duct ligation following the progression of cholestasis.

  15. Exacerbation of Brain Injury by Post-Stroke Exercise Is Contingent Upon Exercise Initiation Timing

    Directory of Open Access Journals (Sweden)

    Fengwu Li

    2017-10-01

    Full Text Available Accumulating evidence has demonstrated that post-stroke physical rehabilitation may reduce morbidity. The effectiveness of post-stroke exercise, however, appears to be contingent upon exercise initiation. This study assessed the hypothesis that very early exercise exacerbates brain injury, induces reactive oxygen species (ROS generation, and promotes energy failure. A total of 230 adult male Sprague-Dawley rats were subjected to middle cerebral artery (MCA occlusion for 2 h, and randomized into eight groups, including two sham injury control groups, three non-exercise and three exercise groups. Exercise was initiated after 6 h, 24 h and 3 days of reperfusion. Twenty-four hours after completion of exercise (and at corresponding time points in non-exercise controls, infarct volumes and apoptotic cell death were examined. Early brain oxidative metabolism was quantified by examining ROS, ATP and NADH levels 0.5 h after completion of exercise. Furthermore, protein expressions of angiogenic growth factors were measured in order to determine whether post-stroke angiogenesis played a role in rehabilitation. As expected, ischemic stroke resulted in brain infarction, apoptotic cell death and ROS generation, and diminished NADH and ATP production. Infarct volumes and apoptotic cell death were enhanced (p < 0.05 by exercise that was initiated after 6 h of reperfusion, but decreased by late exercise (24 h, 3 days. This exacerbated brain injury at 6 h was associated with increased ROS levels (p < 0.05, and decreased (p < 0.05 NADH and ATP levels. In conclusion, very early exercise aggravated brain damage, and early exercise-induced energy failure with ROS generation may underlie the exacerbation of brain injury. These results shed light on the manner in which exercise initiation timing may affect post-stroke rehabilitation.

  16. Woodlouse locomotor behavior in the assessment of clean and contaminated field sites

    Energy Technology Data Exchange (ETDEWEB)

    Bayley, M.; Baatrup, E. [Aarhus Univ. (Denmark). Inst. of Biological Sciences; Bjerregaard, P. [Odense Univ. (Denmark). Inst. of Biology

    1997-11-01

    Specimens of the woodlouse Oniscus asellus were collected at four clean field sites and from a recently closed iron foundry heavily contaminated with zinc, lead, chromium, and nickel. Each of the 30 woodlice per group was housed individually and acclimatized to laboratory conditions for 2 d on a humid plaster of paris substrate. Thereafter, the locomotor behavior of each animal was measured for 4 h employing automated computer-aided video tracking. Linear discriminant analysis of five locomotor parameters revealed average velocity and path length as the principle components separating the polluted site and control animals. Post hoc analysis of the discriminant variable for animals from all five sites showed that the animals from the polluted site where significantly hyperactive when compared to all controls. Further, control animals collected from sites separated by several hundred kilometers were remarkably similar in their locomotor behavior. This preliminary study highlights the potential utility of quantitative analysis of animal locomotor behavior in environmental monitoring.

  17. 1 Spatial asymmetry of post-stroke hemiparetic gait: assessment and ...

    African Journals Online (AJOL)

    of this study was to evaluate the potential of the footprint and Symmetry Index ... asymmetry increase risk of falls and related injuries of patients (Weerdesteyn et al., 2008). ... This limits the opportunities for the assessment of gait pattern in many hospitals and ... duration post-stroke period of at least 6 months; (ii) ability to walk ...

  18. Reliability and validity of a new post-stroke depression scale in Chinese population.

    Science.gov (United States)

    Yue, Yingying; Liu, Rui; Lu, Jian; Wang, Xiaojing; Zhang, Shining; Wu, Aiqin; Wang, Qiao; Yuan, Yonggui

    2015-03-15

    Nowadays there is still a lack of effective method to evaluate post-stroke depression. To distinguish patients with and without depression after stroke reliably, this study proposes a new Post-Stroke Depression Scale (PSDS). PSDS was developed based on various depression scales and clinician experiences. 158 stroke patients who were able to finish PSDS and Hamilton Depression Rating Scale (HDRS) were recruited. Cronbach α, Spearman rank coefficient and Kruskal-Wallis test were respectively used to examine reliability, internal consistency and discriminate validity. Then the Receiver Operating Characteristic (ROC) curve was used to determine the ability of scale and categorized scales to the range of depression. Finally, the factors of the PSDS were classified by average clustering analysis. The Cronbach α of PSDS was 0.797 (95% CI) indicted a good reliability. The Spearman correlation coefficient between PSDS and HDRS was 0.822 (Psize maybe the main limitation, the larger sample used in different fields according sex, age and side-lesion was needed to verity the results. The cut off value calculated by ROC curve maybe react the severity of the disease to some extent, but it is not absolute. PSDS is a valid, reliable and specific tool for evaluating post-stroke depression patients and can be conveniently utilized. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Determining the barriers and facilitators to adopting best practices in the management of poststroke unilateral spatial neglect: results of a qualitative study.

    Science.gov (United States)

    Petzold, Anita; Korner-Bitensky, Nicol; Salbach, Nancy M; Ahmed, Sara; Menon, Anita; Ogourtsova, Tatiana

    2014-01-01

    A gap exists between best and actual management of poststroke unilateral spatial neglect (USN). Given the negative impact of USN on poststroke recovery, knowledge translation efforts are needed to optimize USN management. To date, no study has investigated the specific barriers and facilitators affecting USN management during the acute care process. To identify the facilitators and barriers that affect evidence-based practice use by occupational therapists (the primary discipline managing USN) when treating individuals with acute poststroke USN. Focus group methodology elicited information from 9 acute care occupational therapists. Key barriers identified included lack of basic evidence-based practice skills specific to USN treatment and personal motivation to change current practices and engrained habits. Key facilitators included the presence of a multidisciplinary stroke team, recent graduation, and an environment with access to learning time and resources. Synthesized Web-based learning was also seen as important to uptake of best practices. It is estimated that upwards of 40% of patients experience poststroke USN in the acute phase, and we have evidence of poor early management. This study identified several modifiable factors that prepare the ground for the creation and testing of a multimodal knowledge translation intervention aimed at improving clinicians' best practice management of poststroke USN.

  20. Poststroke Muscle Architectural Parameters of the Tibialis Anterior and the Potential Implications for Rehabilitation of Foot Drop

    Directory of Open Access Journals (Sweden)

    John W. Ramsay

    2014-01-01

    Full Text Available Poststroke dorsiflexor weakness and paretic limb foot drop increase the risk of stumbling and falling and decrease overall functional mobility. It is of interest whether dorsiflexor muscle weakness is primarily neurological in origin or whether morphological differences also contribute to the impairment. Ten poststroke hemiparetic individuals were imaged bilaterally using noninvasive medical imaging techniques. Magnetic resonance imaging was used to identify changes in tibialis anterior muscle volume and muscle belly length. Ultrasonography was used to measure fascicle length and pennation angle in a neutral position. We found no clinically meaningful bilateral differences in any architectural parameter across all subjects, which indicates that these subjects have the muscular capacity to dorsiflex their foot. Therefore, poststroke dorsiflexor weakness is primarily neural in origin and likely due to muscle activation failure or increased spasticity of the plantar flexors. The current finding suggests that electrical stimulation methods or additional neuromuscular retraining may be more beneficial than targeting muscle strength (i.e., increasing muscle mass.

  1. Post-stroke psychosis: how long should we treat?

    Directory of Open Access Journals (Sweden)

    Maria do Céu Ferreira

    2017-06-01

    Full Text Available Abstract Objective: To describe a rare case of a patient who developed psychotic symptoms after a right stroke that disappeared with antipsychotic treatment, but appears to need low-dose maintenance antipsychotic therapy. Case description: A 65-year-old man presented at the psychiatric emergency service with a history of persistent delusional jealousy, visual illusions and agitation with onset about 1 month after a right posterior cerebral artery ischemic stroke. These symptoms only disappeared with therapeutic dosages of an antipsychotic drug (3 mg/day of risperidone. At 2-year follow-up, he no longer had delusional activity and the antipsychotic treatment was gradually discontinued over the following year. However, 1 week after full cessation, the patient once more became agitated and suspicious and was put back on risperidone at 0.25 mg/day, resulting in rapid clinical remission. One year after the return to low-dose risperidone, the patient's psychopathology is still under control and he is free from psychotic symptoms. Comments: Psychosis is a relatively rare complication after stroke. To our knowledge, no cases of post-stroke psychosis that apparently require continuous low-dose antipsychotic treatment have been reported to date. Our case suggests that low-dose maintenance antipsychotic therapy may be needed for certain patients with post-stroke psychosis, especially for those with risk factors and non-acute onset.

  2. Neurorehabilitation strategies for poststroke oropharyngeal dysphagia: from compensation to the recovery of swallowing function.

    Science.gov (United States)

    Cabib, Christopher; Ortega, Omar; Kumru, Hatice; Palomeras, Ernest; Vilardell, Natalia; Alvarez-Berdugo, Daniel; Muriana, Desirée; Rofes, Laia; Terré, Rosa; Mearin, Fermín; Clavé, Pere

    2016-09-01

    Oropharyngeal dysphagia (OD) is very prevalent among poststroke patients, causing severe complications but lacking specific neurorehabilitation treatment. This review covers advances in the pathophysiology, diagnosis, and physiologically based neurorehabilitation strategies for poststroke OD. The pathophysiology of oropharyngeal biomechanics can be assessed by videofluoroscopy, as delayed laryngeal vestibule closure is closely associated with aspiration. Stroke may affect afferent or efferent neuronal circuits participating in deglutition. The integrity of oropharyngeal-cortical afferent pathways can be assessed by electroencephalography through sensory-evoked potentials by pharyngeal electrical stimulation, while corticopharyngeal efferent pathways can be characterized by electromyography through motor-evoked potentials by transcranial magnetic stimulation. Dysfunction in both cortico-mediated evoked responses is associated with delayed swallow response and aspiration. Studies have reported hemispherical asymmetry on motor control of swallowing and the relevance of impaired oropharyngeal sensitivity on aspiration. Advances in treatment include improvements in compensatory strategies but are mainly focused on (1) peripheral stimulation strategies and (2) central, noninvasive stimulation strategies with evidence of their clinical benefits. Characterization of poststroke OD is evolving from the assessment of impaired biomechanics to the sensorimotor integration processes involved in deglutition. Treatment is also changing from compensatory strategies to promoting brain plasticity, both to recover swallow function and to improve brain-related swallowing dysfunction. © 2016 New York Academy of Sciences.

  3. European Stroke Organisation guidelines for the management of post-stroke seizures and epilepsy

    DEFF Research Database (Denmark)

    Holtkamp, Martin; Beghi, Ettore; Benninger, Felix

    2017-01-01

    -based guidelines on the management of post-stroke seizures and epilepsy. Method A writing committee of six clinicians and researchers from five European countries and Israel identified seven questions relating to prevention of (further) post-stroke seizures and epilepsy and to amelioration of functional outcome......Background Following stroke, acute symptomatic seizures (manifestation within seven days) and epilepsy, i.e. occurrence of at least one unprovoked seizure (manifestation after more than seven days), are reported in 3–6% and up to 12% of patients, respectively. Incidence of acute symptomatic...... seizures is higher in intracranial haemorrhage (10–16%) than in ischaemic stroke (2–4%). Acute symptomatic seizures and unprovoked seizure may be associated with unfavourable functional outcome and increased mortality. In view of the clinical relevance, the European Stroke Organisation has issued evidence...

  4. Using a Split-belt Treadmill to Evaluate Generalization of Human Locomotor Adaptation.

    Science.gov (United States)

    Vasudevan, Erin V L; Hamzey, Rami J; Kirk, Eileen M

    2017-08-23

    Understanding the mechanisms underlying locomotor learning helps researchers and clinicians optimize gait retraining as part of motor rehabilitation. However, studying human locomotor learning can be challenging. During infancy and childhood, the neuromuscular system is quite immature, and it is unlikely that locomotor learning during early stages of development is governed by the same mechanisms as in adulthood. By the time humans reach maturity, they are so proficient at walking that it is difficult to come up with a sufficiently novel task to study de novo locomotor learning. The split-belt treadmill, which has two belts that can drive each leg at a different speed, enables the study of both short- (i.e., immediate) and long-term (i.e., over minutes-days; a form of motor learning) gait modifications in response to a novel change in the walking environment. Individuals can easily be screened for previous exposure to the split-belt treadmill, thus ensuring that all experimental participants have no (or equivalent) prior experience. This paper describes a typical split-belt treadmill adaptation protocol that incorporates testing methods to quantify locomotor learning and generalization of this learning to other walking contexts. A discussion of important considerations for designing split-belt treadmill experiments follows, including factors like treadmill belt speeds, rest breaks, and distractors. Additionally, potential but understudied confounding variables (e.g., arm movements, prior experience) are considered in the discussion.

  5. Atomoxetine administration combined with intensive speech therapy for post-stroke aphasia: evaluation by a novel SPECT method.

    Science.gov (United States)

    Yamada, Naoki; Kakuda, Wataru; Yamamoto, Kazuma; Momosaki, Ryo; Abo, Masahiro

    2016-09-01

    We clarified the safety, feasibility, and efficacy of atomoxetine administration combined with intensive speech therapy (ST) for patients with post-stroke aphasia. In addition, we investigated the effect of atomoxetine treatment on neural activity of surrounding lesioned brain areas. Four adult patients with motor-dominant aphasia and a history of left hemispheric stroke were studied. We have registered on the clinical trials database (ID: JMA-IIA00215). Daily atomoxetine administration of 40 mg was initiated two weeks before admission and raised to 80 mg 1 week before admission. During the subsequent 13-day hospitalization, administration of atomoxetine was raised to 120 mg and daily intensive ST (120 min/day, one-on-one training) was provided. Language function was assessed using the Japanese version of The Western Aphasia Battery (WAB) and the Token test two weeks prior to admission, on the day of admission, and at discharge. At two weeks prior to admission and at discharge, each patient's cortical blood flow was measured using (123)I-IMP-single photon emission computed tomography (SPECT). This protocol was successfully completed by all patients without any adverse effects. Four patients showed improved language function with the median of the Token Test increasing from 141 to 149, and the repetition score of WAB increasing from 88 to 99. In addition, cortical blood flow surrounding lesioned brain areas was found to increase following intervention in all patients. Atomoxetine administration and intensive ST were safe and feasible for post-stroke aphasia, suggesting their potential usefulness in the treatment of this patient population.

  6. Knee posture during gait and global functioning post-stroke: a theoretical ICF framework using current measures in stroke rehabilitation

    OpenAIRE

    Neves Rosa, Marlene Cristina; Marques, Alda; Demain, Sara; Metcalf, Cheryl D.

    2015-01-01

    Purpose: To characterise the global functioning post-stroke in patients with normal knee posture (NKP) and abnormal knee posture (AKP) during loading-response. Methods: 35 people, 6 months post-stroke. with NKP and AKP were identified and assessed using clinical measures classified into the corresponding International Classification of Functioning, Disability and Health (ICF) domains: weight function (body mass index); muscle power (knee isometric strength); muscle tone (Modified Ashworth Sca...

  7. Post-stroke Rehabilitation Training with a Motor-Imagery-Based Brain-Computer Interface (BCI-Controlled Hand Exoskeleton: A Randomized Controlled Multicenter Trial

    Directory of Open Access Journals (Sweden)

    Alexander A. Frolov

    2017-07-01

    Full Text Available Repeated use of brain-computer interfaces (BCIs providing contingent sensory feedback of brain activity was recently proposed as a rehabilitation approach to restore motor function after stroke or spinal cord lesions. However, there are only a few clinical studies that investigate feasibility and effectiveness of such an approach. Here we report on a placebo-controlled, multicenter clinical trial that investigated whether stroke survivors with severe upper limb (UL paralysis benefit from 10 BCI training sessions each lasting up to 40 min. A total of 74 patients participated: median time since stroke is 8 months, 25 and 75% quartiles [3.0; 13.0]; median severity of UL paralysis is 4.5 points [0.0; 30.0] as measured by the Action Research Arm Test, ARAT, and 19.5 points [11.0; 40.0] as measured by the Fugl-Meyer Motor Assessment, FMMA. Patients in the BCI group (n = 55 performed motor imagery of opening their affected hand. Motor imagery-related brain electroencephalographic activity was translated into contingent hand exoskeleton-driven opening movements of the affected hand. In a control group (n = 19, hand exoskeleton-driven opening movements of the affected hand were independent of brain electroencephalographic activity. Evaluation of the UL clinical assessments indicated that both groups improved, but only the BCI group showed an improvement in the ARAT's grasp score from 0 [0.0; 14.0] to 3.0 [0.0; 15.0] points (p < 0.01 and pinch scores from 0.0 [0.0; 7.0] to 1.0 [0.0; 12.0] points (p < 0.01. Upon training completion, 21.8% and 36.4% of the patients in the BCI group improved their ARAT and FMMA scores respectively. The corresponding numbers for the control group were 5.1% (ARAT and 15.8% (FMMA. These results suggests that adding BCI control to exoskeleton-assisted physical therapy can improve post-stroke rehabilitation outcomes. Both maximum and mean values of the percentage of successfully decoded imagery-related EEG activity, were higher

  8. The predictive capacity of hypersympathicotonia in post-stroke patients with III stage hypertension

    Directory of Open Access Journals (Sweden)

    I. N. Voloshyna

    2012-12-01

    Full Text Available The evaluation of neuropeptide Y plasma concentration and LF/ HF ratio in post-stroke hypertensive patients has been done. The prognostic significance of sympathetic nervous system activity markers for complications development was established.

  9. Spinal cord injury: overview of experimental approaches used to restore locomotor activity.

    Science.gov (United States)

    Fakhoury, Marc

    2015-01-01

    Spinal cord injury affects more than 2.5 million people worldwide and can lead to paraplegia and quadriplegia. Anatomical discontinuity in the spinal cord results in disruption of the impulse conduction that causes temporary or permanent changes in the cord's normal functions. Although axonal regeneration is limited, damage to the spinal cord is often accompanied by spontaneous plasticity and axon regeneration that help improve sensory and motor skills. The recovery process depends mainly on synaptic plasticity in the preexisting circuits and on the formation of new pathways through collateral sprouting into neighboring denervated territories. However, spontaneous recovery after spinal cord injury can go on for several years, and the degree of recovery is very limited. Therefore, the development of new approaches that could accelerate the gain of motor function is of high priority to patients with damaged spinal cord. Although there are no fully restorative treatments for spinal injury, various rehabilitative approaches have been tested in animal models and have reached clinical trials. In this paper, a closer look will be given at the potential therapies that could facilitate axonal regeneration and improve locomotor recovery after injury to the spinal cord. This article highlights the application of several interventions including locomotor training, molecular and cellular treatments, and spinal cord stimulation in the field of rehabilitation research. Studies investigating therapeutic approaches in both animal models and individuals with injured spinal cords will be presented.

  10. Post-stroke infection: a role for IL-1ra?

    Science.gov (United States)

    Tanzi, Pat; Cain, Kevin; Kalil, Angela; Zierath, Dannielle; Savos, Anna; Gee, J Michael; Shibata, Dean; Hadwin, Jessica; Carter, Kelly; Becker, Kyra

    2011-04-01

    Infection is common following stroke and is independently associated with worse outcome. Clinical studies suggest that infections occur more frequently in those individuals with stroke-induced immunologic dysfunction. This study sought to explore the contribution of immunomodulatory cytokines and hormones to lymphocyte function and infection risk. Patients (N = 112) were enrolled as soon as possible after the onset of ischemic stroke. Blood was drawn to assess plasma cortisol, IL-10, IL-1ra, lymphocyte numbers, and lymphocyte function at 72 h after stroke onset; infections were censored through 21 days after stroke onset. Infection occurred in 25% of patients. Stroke severity was the most important predictor of infection risk. Increased plasma cortisol, IL-10, and IL-1ra, as well as decreased lymphocyte numbers, at 72 h after stroke onset were associated with risk of subsequent infection. After controlling for stroke severity, only IL-1ra was independently associated with infection risk, and the degree of risk was consistent throughout the post-stroke period. Infection, but not IL-1ra itself, was associated with worse outcome at 3 months. In this study cohort, increased plasma IL-1ra was independently associated with the risk of post-stroke infection. Further studies are needed to validate this finding, which could have important implications for stroke therapy.

  11. The Effects of Sex-Ratio and Density on Locomotor Activity in the House Fly, Musca domestica

    Science.gov (United States)

    Bahrndorff, Simon; Kjærsgaard, Anders; Pertoldi, Cino; Loeschcke, Volker; Schou, Toke M.; Skovgård, Henrik; Hald, Birthe

    2012-01-01

    Although locomotor activity is involved in almost all behavioral traits, there is a lack of knowledge on what factors affect it. This study examined the effects of sex—ratio and density on the circadian rhythm of locomotor activity of adult Musca domestica L. (Diptera: Muscidae) using an infra—red light system. Sex—ratio significantly affected locomotor activity, increasing with the percentage of males in the vials. In accordance with other studies, males were more active than females, but the circadian rhythm of the two sexes was not constant over time and changed during the light period. There was also an effect of density on locomotor activity, where males at intermediate densities showed higher activity. Further, the predictability of the locomotor activity, estimated as the degree of autocorrelation of the activity data, increased with the number of males present in the vials both with and without the presence of females. Overall, this study demonstrates that locomotor activity in M. domestica is affected by sex—ratio and density. Furthermore, the predictability of locomotor activity is affected by both sex—ratio, density, and circadian rhythm. These results add to our understanding of the behavioral interactions between houseflies and highlight the importance of these factors when designing behavioral experiments using M. domestica.

  12. Self-Concept, Disposition, and Resilience of Poststroke Filipino Elderly with Residual Paralysis

    Science.gov (United States)

    de Guzman, Allan B.; Tan, Eleanor Lourdes C.; Tan, Ernestine Faye S.; Tan, Justin Ryan L.; Tan, Mervyn C.; Tanciano, Daris Mae M.; Lee Say, Matthew L. Tang

    2012-01-01

    The interplay among self-concept, disposition, and resilience mirrors how the condition affects the emotional status of poststroke Filipino elderly with residual paralysis. Despite healthcare professionals' understanding of these clients' physical conditions, little is known regarding these clients' emotional health status related to stroke.…

  13. Determinants of locomotor disability in people aged 55 years and over: The Rotterdam study

    International Nuclear Information System (INIS)

    Odding, Else; Valkenburg, Hans A.; Stam, Hendrik J.; Hofman, Albert

    2001-01-01

    Locomotor disability, as defined by difficulties in activities of daily living related to lower limb function, can be the consequence of diseases and impairments of the cardiovascular, pulmonary, nervous, sensory and musculoskeletal system. We estimated the associations between specific diseases and impairments and locomotor disability, and the proportion of disability attributable to each condition, controlling for age and comorbidity. The Rotterdam Study is a prospective follow-up study among people aged 55 years and over in the general population. Locomotor disability in 1219 men and 1856 women was assessed with the Stanford Health Assessment Questionnaire. Diseases and impairments were radiological osteoarthritis, pain of the hips and knees, morning stiffness, fractures, hypertension, vascular disease, ischemic heart disease, stroke, heart failure, chronic obstructive pulmonary disease (COPD), depression, Parkinson's disease, osteoporosis, diabetes mellitus, overweight, and low vision. Adjusted odds ratios, etiologic and attributable fractions were calculated for locomotor disability. The occurrence of locomotor disability can partly be ascribed to joint pain, COPD, morning stiffness, diabetes and heart failure in both men and women. In addition in women osteoarthritis, osteoporosis, low vision, fractures, stroke and Parkinson's disease are significant etiologic fractions. In men with morning stiffness, joint pain, heart failure, diabetes mellitus, and COPD a significant proportion of their disability is attributable to this impairment. In women this was the case for Parkinson's disease, morning stiffness, low vision, heart failure, joint pain, diabetes, radiological osteoarthritis, stroke, COPD, osteoporosis, and fractures of the lower limbs, in that order. We conclude that locomotor complaints, heart failure, COPD and diabetes mellitus contribute considerably to locomotor disability in non-institutionalized elderly people

  14. Effectiveness of two home ergonomic programs in reducing pain and enhancing quality of life in informal caregivers of post-stroke patients: A pilot randomized controlled clinical trial.

    Science.gov (United States)

    de Araújo Freitas Moreira, Karen Lucia; Ábalos-Medina, Gracia María; Villaverde-Gutiérrez, Carmen; Gomes de Lucena, Neide María; Belmont Correia de Oliveira, Anderson; Pérez-Mármol, José Manuel

    2018-02-13

    Informal caregivers of post-stroke patients usually undergo high levels of pain and stress and have a reduced quality of life. To evaluate the effectiveness of two home ergonomic interventions aimed at reducing pain intensity and perceived stress and enhancing the quality of life in informal caregivers of chronic post-stroke patients. A randomized single-blind controlled clinical trial was conducted, with a sample of 33 informal caregivers of patients with stroke. Three groups were included: one received postural hygiene training and kinesiotherapy, for 12 weeks, two days a week, one hour per session; another received adaptation of the home environment, and the third was a control group. Pain intensity, stress level and general quality of life were evaluated at three-time points: pre-intervention, post-intervention, and after a follow-up period of three months. Neck pain decreased in the two experimental groups, and increased in the control group. Pain in the shoulders and knees was alleviated in the group that received postural hygiene and kinesiotherapy. In addition, regarding quality of life, this group obtained an improvement in the physical health dimension, while the home adaptation group reported improved social relationships. These results suggest that 12 weeks of training in postural hygiene, combined with kinesiotherapy, and home adaptations can reduce pain and improve several aspects of the quality of life of this population. CLINICALTRIALS. NCT03284580. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. LONG-TERM EFFECTS OF TRANSCRANIAL DIRECT CURRENT STIMULATION IN CHRONIC POST-STROKE APHASIA: A PILOT STUDY

    Directory of Open Access Journals (Sweden)

    Lucilla eVestito

    2014-10-01

    Full Text Available Transcranial direct current stimulation (tDCS has been suggested to improve language function in patients with post-stroke aphasia. Most studies on aphasic patients, however, were conducted with a very limited follow-up period, if any. In this pilot, single-blind study on chronic post-stroke aphasic patients, we aimed to verify whether or not tDCS is able to extend its beneficial effects for a longer period of time (21 weeks after the end of stimulation. Three aphasic patients underwent anodal tDCS (A-tDCS, 20 min, 1.5 mA and sham stimulation (S-tDCS over the left frontal (perilesional region, coupled with a simultaneous naming training (on-line tDCS. Ten consecutive sessions (five days per week for two weeks were implemented. In the first five sessions we used a list of 40 figures, while in the subsequent five sessions we utilized a second set of 40 figures differing in word difficulty. At the end of the stimulation period we found a significant beneficial effect of A-tDCS (as compared to baseline and S-tDCS in all our subjects, regardless of word difficulty, although with some inter-individual differences. In the follow-up period, the percentage of correct responses persisted significantly better until the 16th week, when an initial decline in naming performance was observed. Up to the 21st week, the number of correct responses, though no longer significant, was still above the baseline level. These results in a small group of aphasic patients suggest a long-term beneficial effect of on-line A-tDCS.

  16. Assessment of test-retest reliability and internal consistency of the Wisconsin Gait Scale in hemiparetic post-stroke patients

    Directory of Open Access Journals (Sweden)

    Guzik Agnieszka

    2016-09-01

    Full Text Available Introduction: A proper assessment of gait pattern is a significant aspect in planning the process of teaching gait in hemiparetic post-stroke patients. The Wisconsin Gait Scale (WGS is an observational tool for assessing post-stroke patients’ gait. The aim of the study was to assess test-retest reliability and internal consistency of the WGS and examine correlations between gait assessment made with the WGS and gait speed, Brunnström scale, Ashworth’s scale and the Barthel Index.

  17. Effect of thiamethoxam on cockroach locomotor activity is associated with its metabolite clothianidin.

    Science.gov (United States)

    Benzidane, Yassine; Touinsi, Sarra; Motte, Emilie; Jadas-Hécart, Alain; Communal, Pierre-Yves; Leduc, Lionel; Thany, Steeve H

    2010-12-01

    In the present study, the effect of thiamethoxam and clothianidin on the locomotor activity of American cockroach, Periplaneta americana (L.), was evaluated. Because it has been proposed that thiamethoxam is metabolised to clothianidin, high-performance liquid chromatography coupled with mass spectrometry was used to evaluate the amount of clothianidin on thiamethoxam-treated cockroaches. One hour after neonicotinoid treatment, the time spent in the open-field-like apparatus significantly increased, suggesting a decrease in locomotor activity. The percentage of cockroaches displaying locomotor activity was significantly reduced 1 h after haemolymph application of 1 nmol g(-1) neonicotinoid, while no significant effect was found after topical and oral administration. However, at 24 and 48 h, all neonicotinoids were able to reduce locomotor activity, depending on their concentrations and the way they were applied. Interestingly, it was found that thiamethoxam was converted to clothianidin 1 h after application, but the amount of clothianidin did not rise proportionately to thiamethoxam, especially after oral administration. The data suggest that the effect of thiamethoxam on cockroach locomotor activity is due in part to clothianidin action because (1) thiamethoxam levels remained persistent 48 h after application and (2) the amount of clothianidin in cockroach tissues was consistent with the toxicity of thiamethoxam. Copyright © 2010 Society of Chemical Industry.

  18. Locomotor Tests Predict Community Mobility in Children and Youth with Cerebral Palsy

    Science.gov (United States)

    Ferland, Chantale; Moffet, Helene; Maltais, Desiree

    2012-01-01

    Ambulatory children and youth with cerebral palsy have limitations in locomotor capacities and in community mobility. The ability of three locomotor tests to predict community mobility in this population (N = 49, 27 boys, 6-16 years old) was examined. The tests were a level ground walking test, the 6-min-Walk-Test (6MWT), and two tests of advanced…

  19. Correlation between Cognitive Functions and Activity of Daily Living among Post-Stroke Patients

    Directory of Open Access Journals (Sweden)

    Kurniawan Prakoso

    2016-09-01

    Full Text Available Background: Cognitive impairment is one of the most common post-stroke complications; however, neither patients nor health professionals are often aware of this complication. The impact of cognitive impairment on quality of life is reflected through basic activity daily living (bADL and instrumental activity daily living (IADL. Prior studies concerning the correlation between cognitive impairment and activity daily living has shown contradictive results. This study was conducted in order to analyze the correlation between the cognitive functions and activity daily living in post stroke patients at Dr. Hasan Sadikin General Hospital. Methods: This cross-sectional study was carried out to 23 post-stroke patients from September–November 2015. Samples were collected through consecutive sampling at Dr. Hasan Sadikin General Hospital. Mini Mental State Examination (MMSE was used to assess the cognitive functions and Lawton and Brody Scale to assess both bADL and IADL. Spearman correlation was selected to analyze the existing correlation between each cognitive domain and activity daily living. Results: Spearman statistical correlation showed an insignificant correlation between the cognitive functions and bADL (r2=0.181, p=0.408 and a significant correlation with IADL was obtained (r2=0.517, p=0.03. The only cognitive domain positively correlated with IADL was orientation to time and verbal recall. Conclusions: There is a correlation between cognitive functions and IADL among post-stroke patients at Dr. Hasan Sadikin General Hospital.

  20. Development of hand exoskeleton for rehabilitation of post-stroke patient

    Science.gov (United States)

    Zaid, Amran Mohd; Chean, Tee Chu; Sukor, Jumadi Abdul; Hanafi, Dirman

    2017-10-01

    Degenerative muscle diseases characterized by loss of strength in human hand significantly affect the physical of affected individuals. A soft assistive exoskeleton glove is designed to help post-stroke patient with their rehabilitation process. The glove uses soft bending actuator which has a rubber like tender characteristic. Due to its rubber like characteristic, flexion of finger can be achieved easily through pneumatic air without considering other hand motions. The application involves a post-stroke patient to wear the soft exoskeleton glove on his paralyzed hand and control the actuation of the glove by using pneumatic air source. The fabrication of the soft bending actuator involves silicone rubber Mold Star® 15 SLOW which falls within the soft category of shore A hardness scale. The soft bending actuator is controlled by Arduino Mega 2560 as main controller board and relay module is used to trigger the 3/2-way single solenoid valve by switching on the 24VDC power supply. The actuation of the soft bending actuator can be manipulated by setting delay ON and OFF for the relay switching. Thus, the repetition of the bending motion can be customized to fulfil the rehabilitation needs of the patient.

  1. Neuropharmacology of light-induced locomotor activation.

    Science.gov (United States)

    Amato, Davide; Pum, Martin E; Groos, Dominik; Lauber, Andrea C; Huston, Joseph P; Carey, Robert J; de Souza Silva, Maria A; Müller, Christian P

    2015-08-01

    Presentation of non-aversive light stimuli for several seconds was found to reliably induce locomotor activation and exploratory-like activity. Light-induced locomotor activity (LIA) can be considered a convenient simple model to study sensory-motor activation. LIA was previously shown to coincide with serotonergic and dopaminergic activation in specific cortical areas in freely moving and anesthetized animals. In the present study we explore the neuropharmacology of LIA using a receptor antagonist/agonist approach in rats. The non-selective 5-HT2-receptor antagonist ritanserin (1.5-6 mg/kg, i.p.) dose-dependently reduced LIA. Selective antagonism of either the 5-HT2A-receptor by MDL 11,939 (0.1-0.4 mg/kg, i.p.), or the 5-HT2C-receptor by SDZ SER 082 (0.125-0.5 mg/kg, i.p.), alone or in combination, had no significant influence on LIA. Also the selective 5-HT1A-receptor antagonist, WAY 100635 (0.4 mg/kg, i.p.) did not affect LIA. Neither did the preferential dopamine D2-receptor antagonist, haloperidol (0.025-0.1 mg/kg, i.p.) nor the D2/D3-receptor agonist, quinpirole (0.025-0.5 mg/kg, i.p.) affect the expression of LIA. However, blocking the glutamatergic NMDA-receptor with phencyclidine (PCP, 1.5-6 mg/kg, i.p.) dose-dependently reduced LIA. This effect was also observed with ketamine (10 mg/kg, i.p.). These findings suggest that serotonin and dopamine receptors abundantly expressed in the cortex do not mediate light-stimulus triggered locomotor activity. PCP and ketamine effects, however, suggest an important role of NMDA receptors in LIA. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Post-stroke epilepsy in young adults: a long-term follow-up study

    NARCIS (Netherlands)

    Arntz, R.M.; Rutten-Jacobs, L.C.A.; Maaijwee, N.A.M.M.; Schoonderwaldt, H.C.; Dorresteijn, L.D.A.; Dijk, E.J. van; Leeuw, F.E. de

    2013-01-01

    BACKGROUND: Little is known about the incidence and risk of seizures after stroke in young adults. Especially in the young seizures might dramatically influence prognosis and quality of life. We therefore investigated the long-term incidence and risk of post-stroke epilepsy in young adults with a

  3. Gait Adaptability Training Improves Both Postural Stability and Dual-Tasking Ability

    Science.gov (United States)

    Brady, Rachel A.; Batson, Crystal D.; Peters, Brian T.; Ploutz-Snyder, Robert J.; Mulavara, Ajitkumar P.; Bloomberg, Jacob J.

    2010-01-01

    After spaceflight, the process of readapting to Earth's gravity commonly presents crewmembers with a variety of locomotor challenges. Our recent work has shown that the ability to adapt to a novel discordant sensorimotor environment can be increased through preflight training, so one focus of our laboratory has been the development of a gait training countermeasure to expedite the return of normal locomotor function after spaceflight. We used a training system comprising a treadmill mounted on a motion base facing a virtual visual scene that provided a variety of sensory challenges. As part of their participation in a larger retention study, 10 healthy adults completed 3 training sessions during which they walked on a treadmill at 1.1 m/s while receiving discordant support-surface and visual manipulations. After a single training session, subjects stride frequencies improved, and after 2 training sessions their auditory reaction times improved, where improvement was indicated by a return toward baseline values. Interestingly, improvements in reaction time came after stride frequency improvements plateaued. This finding suggests that postural stability was given a higher priority than a competing cognitive task. Further, it demonstrates that improvement in both postural stability and dual-tasking can be achieved with multiple training exposures. We conclude that, with training, individuals become more proficient at walking in discordant sensorimotor conditions and are able to devote more attention to competing tasks.

  4. Robotic devices and brain-machine interfaces for hand rehabilitation post-stroke.

    Science.gov (United States)

    McConnell, Alistair C; Moioli, Renan C; Brasil, Fabricio L; Vallejo, Marta; Corne, David W; Vargas, Patricia A; Stokes, Adam A

    2017-06-28

    To review the state of the art of robotic-aided hand physiotherapy for post-stroke rehabilitation, including the use of brain-machine interfaces. Each patient has a unique clinical history and, in response to personalized treatment needs, research into individualized and at-home treatment options has expanded rapidly in recent years. This has resulted in the development of many devices and design strategies for use in stroke rehabilitation. The development progression of robotic-aided hand physiotherapy devices and brain-machine interface systems is outlined, focussing on those with mechanisms and control strategies designed to improve recovery outcomes of the hand post-stroke. A total of 110 commercial and non-commercial hand and wrist devices, spanning the 2 major core designs: end-effector and exoskeleton are reviewed. The growing body of evidence on the efficacy and relevance of incorporating brain-machine interfaces in stroke rehabilitation is summarized. The challenges involved in integrating robotic rehabilitation into the healthcare system are discussed. This review provides novel insights into the use of robotics in physiotherapy practice, and may help system designers to develop new devices.

  5. [Poststroke cognitive, emotional impairment and sleep quality: efficience of treatment with melaxen].

    Science.gov (United States)

    Kulesh, A A; Shestakov, V V

    2014-01-01

    To study melatonin secretion and its correlations with poststroke cognitive, emotional impairment and sleep quality in the acute period of stroke and to assess treatment efficacy of melaxen. We studied 96 patients with acute stroke. A battery of tests and scales for assessment of neurological deficit, neuropsychological status and emotional impairment was used. The night urinary level of 6-sulfatoxymelatonin was assessed. The relationship between 6-sulfatoxymelatonin and cognitive, emotional status and sleep parameters was analyzed. The level of 6-sulfatoxymelatonin was decreased in the night urine. Patients with dysexecutive poststroke cognitive impairment had higher level of 6-sulfatoxymelatonin and patients with dysmnestic and mixed cognitive impairment had lower level of 6-sulfatoxymelatonin in comparison with patients with normal cognitive functions. Melaxen improved cognitive function and sleep parameters, reduced the level of anxiety in the early recovery period of stroke. A role of chronobiological processes in the development of clinical signs of stroke in the aspect of cognitive impairment is discussed.

  6. Engagement of the Rat Hindlimb Motor Cortex across Natural Locomotor Behaviors

    OpenAIRE

    DiGiovanna, J.; Dominici, N.; Friedli, L.; Rigosa, J.; Duis, S.; Kreider, J.; Beauparlant, J.; van den Brand, R.; Schieppati, M.; Micera, S.; Courtine, G.

    2016-01-01

    Contrary to cats and primates, cortical contribution to hindlimb locomotor movements is not critical in rats. However, the importance of the motor cortex to regain locomotion after neurological disorders in rats suggests that cortical engagement in hindlimb motor control may depend on the behavioral context. To investigate this possibility, we recorded whole-body kinematics, muscle synergies, and hindlimb motor cortex modulation in freely moving rats performing a range of natural locomotor pr...

  7. Training Modalities to Increase Sensorimotor Adaptability

    Science.gov (United States)

    Bloomberg, J. J.; Mulavara, A. P.; Peters, B. T.; Brady, R.; Audas, C.; Cohen, H. S.

    2009-01-01

    During the acute phase of adaptation to novel gravitational environments, sensorimotor disturbances have the potential to disrupt the ability of astronauts to perform required mission tasks. The goal of our current series of studies is develop a sensorimotor adaptability (SA) training program designed to facilitate recovery of functional capabilities when astronauts transition to different gravitational environments. The project has conducted a series of studies investigating the efficacy of treadmill training combined with a variety of sensory challenges (incongruent visual input, support surface instability) designed to increase adaptability. SA training using a treadmill combined with exposure to altered visual input was effective in producing increased adaptability in a more complex over-ground ambulatory task on an obstacle course. This confirms that for a complex task like walking, treadmill training contains enough of the critical features of overground walking to be an effective training modality. SA training can be optimized by using a periodized training schedule. Test sessions that each contain short-duration exposures to multiple perturbation stimuli allows subjects to acquire a greater ability to rapidly reorganize appropriate response strategies when encountering a novel sensory environment. Using a treadmill mounted on top of a six degree-of-freedom motion base platform we investigated locomotor training responses produced by subjects introduced to a dynamic walking surface combined with alterations in visual flow. Subjects who received this training had improved locomotor performance and faster reaction times when exposed to the novel sensory stimuli compared to control subjects. Results also demonstrate that individual sensory biases (i.e. increased visual dependency) can predict adaptive responses to novel sensory environments suggesting that individual training prescription can be developed to enhance adaptability. These data indicate that SA

  8. Effectiveness of technologies in the treatment of post-stroke anomia: A systematic review

    Directory of Open Access Journals (Sweden)

    Monica Lavoie

    2015-04-01

    Procedures and analyses: The PRISMA statement(1 for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions was used as a guideline to conduct the present review. A systematic search of publications on PubMed and PsycInfo was conducted. Experimental studies designed to assess the effectiveness of an intervention delivered by a technology, namely computer, smart tablet or teletreatment, to specifically improve anomia in post-stroke participants were selected, without limitations as to the dates of publication. The main outcomes studied were improvement in naming skills and generalization to untreated items and daily communication. The Downs and Black checklist for randomised and non-randomised studies of health care interventions(2 was used by two reviewers (ML and JM to conduct the methodological quality assessment. Results: A total of 20 studies were included in this review. Up to now, computer is by far the most popular technology, whereas only a few studies aimed at exploring the effectiveness of smart tablet or teletreatment. In some studies, technology was used as a therapy tool in a clinical setting, in the presence of the clinician, while in others, therapy with technology was self-administered at home, without the clinician. All studies confirmed the effectiveness of therapy provided by technology to improve naming of trained items. However, generalization to untrained items is unclear and assessment of generalization to daily communication is scarce. Conclusions: The results of this systematic review confirm that technology is a promising avenue in the management of post-stroke anomia. Self-administered therapies are particularly interesting since they allow increasing significantly the intensity and frequency of therapeutic activities, a factor that has been explicitly recognized as a positive determinant of the efficacy of language treatment(3. In future studies, ecological tasks aiming to evaluate therapy

  9. Clinical and Psychometric Evaluations of the Cerebral Vision Screening Questionnaire in 461 Nonaphasic Individuals Poststroke.

    Science.gov (United States)

    Neumann, Guenter; Schaadt, Anna-Katharina; Reinhart, Stefan; Kerkhoff, Georg

    2016-03-01

    Cerebral vision disorders (CVDs) are frequent after brain damage and impair the patient's outcome. Yet clinically and psychometrically validated procedures for the anamnesis of CVD are lacking. To evaluate the clinical validity and psychometric qualities of the Cerebral Vision Screening Questionnaire (CVSQ) for the anamnesis of CVD in individuals poststroke. Analysis of the patients' subjective visual complaints in the 10-item CVSQ in relation to objective visual perimetry, tests of reading, visual scanning, visual acuity, spatial contrast sensitivity, light/dark adaptation, and visual depth judgments. Psychometric analyses of concurrent validity, specificity, sensitivity, positive/negative predictive value, and interrater reliability were also done. Four hundred sixty-one patients with unilateral (39.5% left, 47.5% right) or bilateral stroke (13.0%) were included. Most patients were assessed in the chronic stage, on average 36.7 (range = 1-620) weeks poststroke. The majority of all patients (96.4%) recognized their visual symptoms within 1 week poststroke when asked for specifically. Mean concurrent validity of the CVSQ with objective tests was 0.64 (0.54-0.79, P reliability was 0.76 for a 1-week interval between both assessments (all P guides the clinician in the selection of necessary assessments and appropriate neurovisual therapies for the patient. © The Author(s) 2015.

  10. Poststroke Fatigue: Emerging Evidence and Approaches to Management: A Scientific Statement for Healthcare Professionals From the American Heart Association.

    Science.gov (United States)

    Hinkle, Janice L; Becker, Kyra J; Kim, Jong S; Choi-Kwon, Smi; Saban, Karen L; McNair, Norma; Mead, Gillian E

    2017-07-01

    At least half of all stroke survivors experience fatigue; thus, it is a common cause of concern for patients, caregivers, and clinicians after stroke. This scientific statement provides an international perspective on the emerging evidence surrounding the incidence, prevalence, quality of life, and complex pathogenesis of poststroke fatigue. Evidence for pharmacological and nonpharmacological interventions for management are reviewed, as well as the effects of poststroke fatigue on both stroke survivors and caregivers. © 2017 American Heart Association, Inc.

  11. Locomotor Muscle Fatigue Does Not Alter Oxygen Uptake Kinetics during High-Intensity Exercise.

    Science.gov (United States)

    Hopker, James G; Caporaso, Giuseppe; Azzalin, Andrea; Carpenter, Roger; Marcora, Samuele M

    2016-01-01

    The [Formula: see text] slow component ([Formula: see text]) that develops during high-intensity aerobic exercise is thought to be strongly associated with locomotor muscle fatigue. We sought to experimentally test this hypothesis by pre-fatiguing the locomotor muscles used during subsequent high-intensity cycling exercise. Over two separate visits, eight healthy male participants were asked to either perform a non-metabolically stressful 100 intermittent drop-jumps protocol (pre-fatigue condition) or rest for 33 min (control condition) according to a random and counterbalanced order. Locomotor muscle fatigue was quantified with 6-s maximal sprints at a fixed pedaling cadence of 90 rev·min -1 . Oxygen kinetics and other responses (heart rate, capillary blood lactate concentration and rating of perceived exertion, RPE) were measured during two subsequent bouts of 6 min cycling exercise at 50% of the delta between the lactate threshold and [Formula: see text] determined during a preliminary incremental exercise test. All tests were performed on the same cycle ergometer. Despite significant locomotor muscle fatigue ( P = 0.03), the [Formula: see text] was not significantly different between the pre-fatigue (464 ± 301 mL·min -1 ) and the control (556 ± 223 mL·min -1 ) condition ( P = 0.50). Blood lactate response was not significantly different between conditions ( P = 0.48) but RPE was significantly higher following the pre-fatiguing exercise protocol compared with the control condition ( P locomotor muscle fatigue does not significantly alter the [Formula: see text] kinetic response to high intensity aerobic exercise, and challenge the hypothesis that the [Formula: see text] is strongly associated with locomotor muscle fatigue.

  12. Locomotor muscle fatigue does not alter oxygen uptake kinetics during high-intensity exercise

    Directory of Open Access Journals (Sweden)

    James Hopker

    2016-10-01

    Full Text Available The slow component (VO2sc that develops during high-intensity aerobic exercise is thought to be strongly associated with locomotor muscle fatigue. We sought to experimentally test this hypothesis by pre-fatiguing the locomotor muscles used during subsequent high-intensity cycling exercise. Over two separate visits, eight healthy male participants were asked to either perform a non-metabolically stressful 100 intermittent drop-jumps protocol (pre fatigue condition or rest for 33 minutes (control condition according to a random and counterbalanced order. Locomotor muscle fatigue was quantified with 6-second maximal sprints at a fixed pedaling cadence of 90 rev·min-1. Oxygen kinetics and other responses (heart rate, capillary blood lactate concentration and rating of perceived exertion, RPE were measured during two subsequent bouts of 6 min cycling exercise at 50% of the delta between the lactate threshold and VO2max determined during a preliminary incremental exercise test. All tests were performed on the same cycle ergometer. Despite significant locomotor muscle fatigue (P = 0.03, the VO2sc was not significantly different between the pre fatigue (464 ± 301 mL·min-1 and the control (556 ± 223 mL·min-1 condition (P = 0.50. Blood lactate response was not significantly different between conditions (P = 0.48 but RPE was significantly higher following the pre-fatiguing exercise protocol compared with the control condition (P < 0.01 suggesting higher muscle recruitment. These results demonstrate experimentally that locomotor muscle fatigue does not significantly alter the VO2 kinetic response to high intensity aerobic exercise, and challenge the hypothesis that the VO2sc is strongly associated with locomotor muscle fatigue.

  13. [Clinical study of post-stroke upper limb spasmodic hemiplegia treated with jingou diaoyu needling technique and Bobath therapy].

    Science.gov (United States)

    Sun, Runjie; Tian, Liang; Fang, Xiaoli; Du, Xiaozheng; Zhu, Bowen; Song, Zhongyang; Xu, Xuan; Qin, Xiaoguang

    2017-04-12

    To compare the difference in the clinical efficacy on post-stroke upper limb spasmodic hemiplegia between the combined therapy of jingou diaoyu needling technique and Bobath technology and simple Bobath technology. Sixty patients were randomized into an observation group and a control group, 30 cases in each one. The usual medication of neurological internal medicine was used in the two groups. In the control group, Bobath facilitation technology was applied to the rehabilitation training. In the observation group, on the basis of the treatment as the control group, jingou diaoyu needling technique was used to stimulate Zhongfu (LU 1), Tianfu (LU 3), Chize (LU 5), Quchi (LI 11), Jianshi (PC 5) and Daling (PC 7). The treatment was given once a day; 5 treatments made one session and totally 4-week treatment was required in the two groups. The modified Ashworth scale, the modified Fugle-Meyer assessment (FMA) and the Barthel index (BI) were adopted to evaluate the muscular tension, the upper limb motor function and the activities of daily living (ADL) before and after treatment in the two groups. The clinical efficacy was compared between the two groups. Compared with those before treatment, the modified Ashworth scale, Fugl-Meyer score and BI score were all improved after treatment in the two groups (all P Bobath therapy achieve the superior efficacy on post-stroke upper limb spasmodic hemiplegia as compared with the simple application Bobath therapy. This combined treatment effectively relieve spasmodic state and improve the upper limb motor function and the activities of daily living.

  14. Feedback and feedforward locomotor adaptations to ankle-foot load in people with incomplete spinal cord injury.

    Science.gov (United States)

    Gordon, Keith E; Wu, Ming; Kahn, Jennifer H; Schmit, Brian D

    2010-09-01

    Humans with spinal cord injury (SCI) modulate locomotor output in response to limb load. Understanding the neural control mechanisms responsible for locomotor adaptation could provide a framework for selecting effective interventions. We quantified feedback and feedforward locomotor adaptations to limb load modulations in people with incomplete SCI. While subjects airstepped (stepping performed with kinematic assistance and 100% bodyweight support), a powered-orthosis created a dorisflexor torque during the "stance phase" of select steps producing highly controlled ankle-load perturbations. When given repetitive, stance phase ankle-load, the increase in hip extension work, 0.27 J/kg above baseline (no ankle-load airstepping), was greater than the response to ankle-load applied during a single step, 0.14 J/kg (P = 0.029). This finding suggests that, at the hip, subjects produced both feedforward and feedback locomotor modulations. We estimate that, at the hip, the locomotor response to repetitive ankle-load was modulated almost equally by ongoing feedback and feedforward adaptations. The majority of subjects also showed after-effects in hip kinetic patterns that lasted 3 min in response to repetitive loading, providing additional evidence of feedforward locomotor adaptations. The magnitude of the after-effect was proportional to the response to repetitive ankle-foot load (R(2) = 0.92). In contrast, increases in soleus EMG amplitude were not different during repetitive and single-step ankle-load exposure, suggesting that ankle locomotor modulations were predominately feedback-based. Although subjects made both feedback and feedforward locomotor adaptations to changes in ankle-load, between-subject variations suggest that walking function may be related to the ability to make feedforward adaptations.

  15. Classifying post-stroke fatigue: Optimal cut-off on the Fatigue Assessment Scale.

    Science.gov (United States)

    Cumming, Toby B; Mead, Gillian

    2017-12-01

    Post-stroke fatigue is common and has debilitating effects on independence and quality of life. The Fatigue Assessment Scale (FAS) is a valid screening tool for fatigue after stroke, but there is no established cut-off. We sought to identify the optimal cut-off for classifying post-stroke fatigue on the FAS. In retrospective analysis of two independent datasets (the '2015' and '2007' studies), we evaluated the predictive validity of FAS score against a case definition of fatigue (the criterion standard). Area under the curve (AUC) and sensitivity and specificity at the optimal cut-off were established in the larger 2015 dataset (n=126), and then independently validated in the 2007 dataset (n=52). In the 2015 dataset, AUC was 0.78 (95% CI 0.70-0.86), with the optimal ≥24 cut-off giving a sensitivity of 0.82 and specificity of 0.66. The 2007 dataset had an AUC of 0.83 (95% CI 0.71-0.94), and applying the ≥24 cut-off gave a sensitivity of 0.84 and specificity of 0.67. Post-hoc analysis of the 2015 dataset revealed that using only the 3 most predictive FAS items together ('FAS-3') also yielded good validity: AUC 0.81 (95% CI 0.73-0.89), with sensitivity of 0.83 and specificity of 0.75 at the optimal ≥8 cut-off. We propose ≥24 as a cut-off for classifying post-stroke fatigue on the FAS. While further validation work is needed, this is a positive step towards a coherent approach to reporting fatigue prevalence using the FAS. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. V1 spinal neurons regulate the speed of vertebrate locomotor outputs

    DEFF Research Database (Denmark)

    Gosgnach, Simon; Lanuza, Guillermo M.; Butt, Simon J B

    2006-01-01

    The neuronal networks that generate vertebrate movements such as walking and swimming are embedded in the spinal cord1-3. These networks, which are referred to as central pattern generators (CPGs), are ideal systems for determining how ensembles of neurons generate simple behavioural outputs...... for inhibition in regulating the frequency of the locomotor CPG rhythm, and also suggest that V1 neurons may have an evolutionarily conserved role in controlling the speed of vertebrate locomotor movements....

  17. Oxidized trilinoleate and tridocosahexaenoate induce pica behavior and change locomotor activity.

    Science.gov (United States)

    Kitamura, Fuki; Watanabe, Hiroyuki; Umeno, Aya; Yoshida, Yasukazu; Kurata, Kenji; Gotoh, Naohiro

    2013-01-01

    Pica behavior, a behavior that is characterized by eating a nonfood material such as kaolin and relates to the degree of discomfort in animals, and the variations of locomotor activity of rats after eating deteriorated fat and oil extracted from instant noodles were examined in our previous study. The result shows that oxidized fat and oil with at least 100 meq/kg in peroxide value (PV) increase pica behavior and decrease locomotor activity. In the present study, the same two behaviors were measured using autoxidized trilinoleate (tri-LA) and tridocosahexaenoate (tri-DHA) as a model of vegetable and fish oil, respectively, to compare fatty acid differences against the induction of two behaviors. The oxidized levels of tri-LA and tri-DHA were analyzed with PV and p-anisidine value (AnV), the method to analyze secondary oxidized products. The oxidation levels of respective triacylglycerol (TAG) samples were carefully adjusted to make them having almost the same PV and AnV. As the results, 600 or more meq/kg in PV of both TAGs significantly increased the consumption of kaolin pellets compared to the control group. Furthermore, 300 or more meq/kg in PV of tri-LA and 200 or more meq/kg in PV of tri-DHA demonstrated significant decrease in locomotor activity compared to control group. These results would indicate that the oxidized TAG having the same PV and/or AnV would induce the same type of pica behavior and locomotor activity. Furthermore, that the structure of oxidized products might not be important and the amount of hydroperoxide group and/or aldehyde group in deteriorated fats and oils might affect the pica behavior and locomotor activity were thought.

  18. The effects of long-term dopaminergic treatment on locomotor behavior in rats.

    Science.gov (United States)

    Oliveira de Almeida, Welinton Alessandro; Maculano Esteves, Andrea; Leite de Almeida-Júnior, Canuto; Lee, Kil Sun; Kannebley Frank, Miriam; Oliveira Mariano, Melise; Frussa-Filho, Roberto; Tufik, Sergio; Tulio de Mello, Marco

    2014-12-01

    Long-term treatments with dopaminergic agents are associated with adverse effects, including augmentation. Augmentation consists of an exacerbation of restless legs syndrome (a sleep-related movement disorder) symptoms during treatment compared to those experienced during the period before therapy was initiated. The objective of this study was to examine locomotor activity in rats after long-term dopaminergic treatment and its relationship with expression of the D2 receptor, in addition to demonstrating possible evidence of augmentation. The rats were divided into control (CTRL) and drug (Pramipexole-PPX) groups that received daily saline vehicle and PPX treatments, respectively, for 71 days. The locomotor behavior of the animals was evaluated weekly in the Open Field test for 71 days. The expression of the dopamine D2 receptor was evaluated by Western Blot analysis. The animals that received the PPX demonstrated a significant reduction in locomotor activity from day 1 to day 57 and a significant increase in immobility time from day 1 to day 64 relative to baseline values, but these values had returned to baseline levels at 71 days. No changes in the expression of the D2 receptor were demonstrated after treatment with a dopaminergic agonist. This study suggests changes in locomotor activity in rats after long-term PPX treatment that include an immediate reduction of locomotion and an increase in immobilization, and after 64 days, these values returned to baseline levels without evidence of augmentation. In addition, it was not possible to demonstrate a relationship between locomotor activity and the expression of D2 receptors under these conditions.

  19. The effects of long-term dopaminergic treatment on locomotor behavior in rats

    Science.gov (United States)

    Oliveira de Almeida, Welinton Alessandro; Maculano Esteves, Andrea; Leite de Almeida-Júnior, Canuto; Lee, Kil Sun; Kannebley Frank, Miriam; Oliveira Mariano, Melise; Frussa-Filho, Roberto; Tufik, Sergio; Tulio de Mello, Marco

    2014-01-01

    Long-term treatments with dopaminergic agents are associated with adverse effects, including augmentation. Augmentation consists of an exacerbation of restless legs syndrome (a sleep-related movement disorder) symptoms during treatment compared to those experienced during the period before therapy was initiated. The objective of this study was to examine locomotor activity in rats after long-term dopaminergic treatment and its relationship with expression of the D2 receptor, in addition to demonstrating possible evidence of augmentation. The rats were divided into control (CTRL) and drug (Pramipexole—PPX) groups that received daily saline vehicle and PPX treatments, respectively, for 71 days. The locomotor behavior of the animals was evaluated weekly in the Open Field test for 71 days. The expression of the dopamine D2 receptor was evaluated by Western Blot analysis. The animals that received the PPX demonstrated a significant reduction in locomotor activity from day 1 to day 57 and a significant increase in immobility time from day 1 to day 64 relative to baseline values, but these values had returned to baseline levels at 71 days. No changes in the expression of the D2 receptor were demonstrated after treatment with a dopaminergic agonist. This study suggests changes in locomotor activity in rats after long-term PPX treatment that include an immediate reduction of locomotion and an increase in immobilization, and after 64 days, these values returned to baseline levels without evidence of augmentation. In addition, it was not possible to demonstrate a relationship between locomotor activity and the expression of D2 receptors under these conditions. PMID:26483930

  20. The effects of long-term dopaminergic treatment on locomotor behavior in rats

    Directory of Open Access Journals (Sweden)

    Welinton Alessandro Oliveira de Almeida

    2014-12-01

    Full Text Available Long-term treatments with dopaminergic agents are associated with adverse effects, including augmentation. Augmentation consists of an exacerbation of restless legs syndrome (a sleep-related movement disorder symptoms during treatment compared to those experienced during the period before therapy was initiated. The objective of this study was to examine locomotor activity in rats after long-term dopaminergic treatment and its relationship with expression of the D2 receptor, in addition to demonstrating possible evidence of augmentation. The rats were divided into control (CTRL and drug (Pramipexole—PPX groups that received daily saline vehicle and PPX treatments, respectively, for 71 days. The locomotor behavior of the animals was evaluated weekly in the Open Field test for 71 days. The expression of the dopamine D2 receptor was evaluated by Western Blot analysis. The animals that received the PPX demonstrated a significant reduction in locomotor activity from day 1 to day 57 and a significant increase in immobility time from day 1 to day 64 relative to baseline values, but these values had returned to baseline levels at 71 days. No changes in the expression of the D2 receptor were demonstrated after treatment with a dopaminergic agonist. This study suggests changes in locomotor activity in rats after long-term PPX treatment that include an immediate reduction of locomotion and an increase in immobilization, and after 64 days, these values returned to baseline levels without evidence of augmentation. In addition, it was not possible to demonstrate a relationship between locomotor activity and the expression of D2 receptors under these conditions.

  1. Post-stroke Rehabilitation Training with a Motor-Imagery-Based Brain-Computer Interface (BCI)-Controlled Hand Exoskeleton: A Randomized Controlled Multicenter Trial.

    Science.gov (United States)

    Frolov, Alexander A; Mokienko, Olesya; Lyukmanov, Roman; Biryukova, Elena; Kotov, Sergey; Turbina, Lydia; Nadareyshvily, Georgy; Bushkova, Yulia

    2017-01-01

    Repeated use of brain-computer interfaces (BCIs) providing contingent sensory feedback of brain activity was recently proposed as a rehabilitation approach to restore motor function after stroke or spinal cord lesions. However, there are only a few clinical studies that investigate feasibility and effectiveness of such an approach. Here we report on a placebo-controlled, multicenter clinical trial that investigated whether stroke survivors with severe upper limb (UL) paralysis benefit from 10 BCI training sessions each lasting up to 40 min. A total of 74 patients participated: median time since stroke is 8 months, 25 and 75% quartiles [3.0; 13.0]; median severity of UL paralysis is 4.5 points [0.0; 30.0] as measured by the Action Research Arm Test, ARAT, and 19.5 points [11.0; 40.0] as measured by the Fugl-Meyer Motor Assessment, FMMA. Patients in the BCI group ( n = 55) performed motor imagery of opening their affected hand. Motor imagery-related brain electroencephalographic activity was translated into contingent hand exoskeleton-driven opening movements of the affected hand. In a control group ( n = 19), hand exoskeleton-driven opening movements of the affected hand were independent of brain electroencephalographic activity. Evaluation of the UL clinical assessments indicated that both groups improved, but only the BCI group showed an improvement in the ARAT's grasp score from 0 [0.0; 14.0] to 3.0 [0.0; 15.0] points ( p exoskeleton-assisted physical therapy can improve post-stroke rehabilitation outcomes. Both maximum and mean values of the percentage of successfully decoded imagery-related EEG activity, were higher than chance level. A correlation between the classification accuracy and the improvement in the upper extremity function was found. An improvement of motor function was found for patients with different duration, severity and location of the stroke.

  2. Time course of training-induced microcirculatory changes and of vegf expression in skeletal muscles of spontaneously hypertensive female rats

    Directory of Open Access Journals (Sweden)

    S.L. Amaral

    2008-05-01

    Full Text Available Exercise-induced vessel changes modulate arterial pressure (AP in male spontaneously hypertensive rats (SHR. Vascular endothelial growth factor (VEGF is important for angiogenesis of skeletal muscle. The present study evaluated the time course of VEGF and angiogenesis after short- and long-term exercise training of female SHR and Wistar Kyoto (WKY rats, 8-9 weeks (200-250 g. Rats were allocated to daily training or remained sedentary for 3 days (N = 23 or 13 weeks (N = 23. After training, the carotid artery was catheterized for AP measurements. Locomotor (tibialis anterior and gracilis and non-locomotor skeletal muscles (temporalis were harvested and prepared for histologic and protein expression analyses. Training increased treadmill performance by all groups (SHR = 28%, WKY = 64%, 3 days and (SHR = 141%, WKY = 122%, 13 weeks. SHR had higher values of AP than WKY (174 ± 4 vs 111 ± 2 mmHg that were not altered by training. Three days of running increased VEGF expression (SHR = 28%, WKY = 36% simultaneously with an increase in capillary-to-fiber ratio in gracilis muscle (SHR = 19%, WKY = 15%. In contrast, 13 weeks of training increased gracilis capillary-to-fiber ratio (SHR = 18%, WKY = 19%, without simultaneous changes in VEGF expression. Training did not change VEGF expression and capillarity of temporalis muscle. We conclude that training stimulates time- and tissue-dependent VEGF protein expression, independent of pressure levels. VEGF triggers angiogenesis in locomotor skeletal muscle shortly after the exercise starts, but is not involved in the maintenance of capillarity after long-term exercise in female rats.

  3. One day of motor training with amphetamine impairs motor recovery following spinal cord injury.

    Science.gov (United States)

    Wong, Jamie K; Steward, Oswald

    2012-02-01

    It has previously been reported that a single dose of amphetamine paired with training on a beam walking task can enhance locomotor recovery following brain injury (Feeney et al., 1982). Here, we investigated whether this same drug/training regimen could enhance functional recovery following either thoracic (T9) or cervical (C5) spinal cord injury. Different groups of female Sprague-Dawley rats were trained on a beam walking task, and in a straight alley for assessment of hindlimb locomotor recovery using the BBB locomotor scale. For rats that received C5 hemisections, forelimb grip strength was assessed using a grip strength meter. Three separate experiments assessed the consequences of training rats on the beam walking task 24 h following a thoracic lateral hemisection with administration of either amphetamine or saline. Beginning 1 h following drug administration, rats either received additional testing/retraining on the beam hourly for 6 h, or they were returned to their home cages without further testing/retraining. Rats with thoracic spinal cord injuries that received amphetamine in conjunction with testing/retraining on the beam at 1 day post injury (DPI) exhibited significantly impaired recovery on the beam walking task and BBB. Rats with cervical spinal cord injuries that received training with amphetamine also exhibited significant impairments in beam walking and locomotion, as well as impairments in gripping and reaching abilities. Even when administered at 14 DPI, the drug/training regimen significantly impaired reaching ability in cervical spinal cord injured rats. Impairments were not seen in rats that received amphetamine without training. Histological analyses revealed that rats that received training with amphetamine had significantly larger lesions than saline controls. These data indicate that an amphetamine/training regimen that improves recovery after cortical injury has the opposite effect of impairing recovery following spinal cord injury

  4. Objective and quantitative equilibriometric evaluation of individual locomotor behaviour in schizophrenia: Translational and clinical implications.

    Science.gov (United States)

    Haralanov, Svetlozar; Haralanova, Evelina; Milushev, Emil; Shkodrova, Diana; Claussen, Claus-Frenz

    2018-04-17

    Psychiatry is the only medical specialty that lacks clinically applicable biomarkers for objective evaluation of the existing pathology at a single-patient level. On the basis of an original translational equilibriometric method for evaluation of movement patterns, we have introduced in the everyday clinical practice of psychiatry an easy-to-perform computerized objective quantification of the individual locomotor behaviour during execution of the Unterberger stepping test. For the last 20 years, we have gradually collected a large database of more than 1000 schizophrenic patients, their relatives, and matched psychiatric, neurological, and healthy controls via cross-sectional and longitudinal investigations. Comparative analyses revealed transdiagnostic locomotor similarities among schizophrenic patients, high-risk schizotaxic individuals, and neurological patients with multiple sclerosis and cerebellar ataxia, thus suggesting common underlying brain mechanisms. In parallel, intradiagnostic dissimilarities were revealed, which allow to separate out subclinical locomotor subgroups within the diagnostic categories. Prototypical qualitative (dysmetric and ataxic) locomotor abnormalities in schizophrenic patients were differentiated from 2 atypical quantitative ones, manifested as either hypolocomotion or hyperlocomotion. Theoretical analyses suggested that these 3 subtypes of locomotor abnormalities could be conceived as objectively measurable biomarkers of 3 schizophrenic subgroups with dissimilar brain mechanisms, which require different treatment strategies. Analogies with the prominent role of locomotor measures in some well-known animal models of mental disorders advocate for a promising objective translational research in the so far over-subjective field of psychiatry. Distinctions among prototypical, atypical, and diagnostic biomarkers, as well as between neuromotor and psychomotor locomotor abnormalities, are discussed. Conclusions are drawn about the

  5. Early-life risperidone enhances locomotor responses to amphetamine during adulthood.

    Science.gov (United States)

    Lee Stubbeman, Bobbie; Brown, Clifford J; Yates, Justin R; Bardgett, Mark E

    2017-10-05

    Antipsychotic drug prescriptions for pediatric populations have increased over the past 20 years, particularly the use of atypical antipsychotic drugs such as risperidone. Most antipsychotic drugs target forebrain dopamine systems, and early-life antipsychotic drug exposure could conceivably reset forebrain neurotransmitter function in a permanent manner that persists into adulthood. This study determined whether chronic risperidone administration during development modified locomotor responses to the dopamine/norepinephrine agonist, D-amphetamine, in adult rats. Thirty-five male Long-Evans rats received an injection of one of four doses of risperidone (vehicle, .3, 1.0, 3.0mg/kg) each day from postnatal day 14 through 42. Locomotor activity was measured for 1h on postnatal days 46 and 47, and then for 24h once a week over the next two weeks. Beginning on postnatal day 75, rats received one of four doses of amphetamine (saline, .3, 1.0, 3.0mg/kg) once a week for four weeks. Locomotor activity was measured for 27h after amphetamine injection. Rats administered risperidone early in life demonstrated increased activity during the 1 and 24h test sessions conducted prior to postnatal day 75. Taking into account baseline group differences, these same rats exhibited significantly more locomotor activity in response to the moderate dose of amphetamine relative to controls. These results suggest that early-life treatment with atypical antipsychotic drugs, like risperidone, permanently alters forebrain catecholamine function and increases sensitivity to drugs that target such function. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Effects of training and weight support on muscle activation in Parkinson's disease.

    Science.gov (United States)

    Rose, Martin H; Løkkegaard, Annemette; Sonne-Holm, Stig; Jensen, Bente R

    2013-12-01

    The aim of this study was to investigate the effect of high-intensity locomotor training on knee extensor and flexor muscle activation and adaptability to increased body-weight (BW) support during walking in patients with Parkinson's disease (PD). Thirteen male patients with idiopathic PD and eight healthy participants were included. The PD patients completed an 8-week training program on a lower-body, positive-pressure treadmill. Knee extensor and flexor muscles activation during steady treadmill walking (3 km/h) were measured before, at the mid-point, and after training. Increasing BW support decreased knee extensor muscle activation (normalization) and increased knee flexor muscle activation (abnormal) in PD patients when compared to healthy participants. Training improved flexor peak muscle activation adaptability to increased (BW) support during walking in PD patients. During walking without BW support shorter knee extensor muscle off-activation time and increased relative peak muscle activation was observed in PD patients and did not improve with 8 weeks of training. In conclusion, patients with PD walked with excessive activation of the knee extensor and flexor muscles when compared to healthy participants. Specialized locomotor training may facilitate adaptive processes related to motor control of walking in PD patients. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Racial and ethnic disparities in stroke outcomes: a scoping review of post-stroke disability assessment tools.

    Science.gov (United States)

    Burns, Suzanne Perea; White, Brandi M; Magwood, Gayenell; Ellis, Charles; Logan, Ayaba; Jones Buie, Joy N; Adams, Robert J

    2018-03-23

    To identify how post-stroke disability outcomes are assessed in studies that examine racial/ethnic disparities and to map the identified assessment content to the International Classification of Functioning, Disability, and Health (ICF) across the time course of stroke recovery. We conducted a scoping review of the literature. Articles published between January 2001 and July 2017 were identified through Scopus, PubMed, CINAHL, and PsycINFO according to predefined inclusion and exclusion criteria. We identified 1791 articles through database and hand-searching strategies. Of the articles, 194 met inclusion criteria for full-text review, and 41 met inclusion criteria for study inclusion. The included studies used a variety of outcome measures encompassing domains within the ICF: body functions, activities, participation, and contextual factors across the time course of stroke recovery. We discovered disproportionate representation among racial/ethnic groups in the post-stroke disability disparities literature. A wide variety of assessments are used to examine disparities in post-stroke disability across the time course of stroke recovery. Several studies have identified disparities through a variety of assessments; however, substantial problems abound from the assessments used including inconsistent use of assessments, lacking evidence on the validity of assessments among racial/ethnic groups, and inadequate representation among all racial/ethnic populations comprising the US. Implications for Rehabilitation An enhanced understanding of racial/ethnic disparities in post-stroke disability outcomes is inherently important among rehabilitation practitioners who frequently engage with racial/ethnic minority populations across the time course of stroke recovery. Clinicians should carefully consider the psychometric properties of assessment tools to counter potential racial bias. Clinicians should be aware that many assessments used in stroke rehabilitation lack cultural

  8. Enhancing trunk stability in acute poststroke subjects using physioball exercise and proprioceptive neuromuscular facilitation technique: A pilot randomized controlled trial

    Directory of Open Access Journals (Sweden)

    Ravichandran Hariharasudhan

    2016-01-01

    Full Text Available Background: Stroke is one of the leading causes of death and disability worldwide. Poststroke, most survivors experience trunk control impairment and instability. Previous works on exercise on an unstable surface to improve trunk stability in nonstroke population had proven effective. Thus, physioball exercises (PBEs in poststroke subjects may be useful in the recovery of trunk stability and thereby reduce disability. We hypothesize that PBE is feasible and effective in enhancing trunk stability. Aims: To test the feasibility and successful implementation of conducting a randomized controlled study to assess the clinical effectiveness of PBE and proprioceptive neuromuscular facilitation (PNF technique to enhance trunk control in poststroke subjects. Methods: This study was conducted in a stroke unit of Global Hospitals and Health City, Chennai, India. Thirty patients with the first onset of stroke within 40 days of stroke duration, lesion to one side, and ability to sit independently with or without arm support for 15 days were recruited. All thirty poststroke subjects were randomized either into PBE group or PNF group, and outcome assessors involved in the trail were blinded to allocation. PBE group performed task-oriented activities on an unstable surface and PNF group were treated with PNF-specific trunk stability exercise program for 4 weeks (30 min/day, 5 times/week. Trunk impairment scale (TIS was used as a main outcome measure. Results: Data were analyzed using Wilcoxon signed rank sum test and Mann–Whitney U-test for intra- and inter-group comparison. The baseline characteristics between both groups were statistically nonsignificant. Within groups, there were significant improvements between baseline and at 4 weeks in the measure of TIS. In addition, PBE group showed a significant increase in trunk control (mean 2.33, 95% confidence interval 1.14-3.52, P = 0.002 than the PNF subject. Conclusion: This pilot randomized controlled trial

  9. EphA4 defines a class of excitatory locomotor-related interneurons

    DEFF Research Database (Denmark)

    Butt, S. J B; Lundfald, Line; Kiehn, Ole

    2005-01-01

    of these interneurons provide direct excitation to ipsilateral motor neurons as determined by spike-triggered averaging of the local ventral root DC trace. Our findings substantiate the role of EphA4-positive interneurons as significant components of the ipsilateral locomotor network and describe a group of putative...... of the role of these cells in the network. One such marker is the EphA4 axon guidance receptor. EphA4-null mice display an abnormal rabbit-like hopping gait that is thought to be the result of synchronization of the normally alternating, bilateral locomotor network via aberrant crossed connections....... In this study, we have performed whole-cell patch clamp on EphA4-positive interneurons in the flexor region (L2) of the locomotor network. We provide evidence that although EphA4 positive interneurons are not entirely a homogeneous population, most of them fire in a rhythmic manner. Moreover, a subset...

  10. Poststroke Epilepsy Is Associated With a High Mortality After a Stroke at Young Age: Follow-Up of Transient Ischemic Attack and Stroke Patients and Unelucidated Risk Factor Evaluation Study.

    Science.gov (United States)

    Arntz, Renate M; Rutten-Jacobs, Loes C A; Maaijwee, Noortje A M; Schoonderwaldt, Hennie C; Dorresteijn, Lucille D A; van Dijk, Ewoud J; de Leeuw, Frank-Erik

    2015-08-01

    Poststroke epilepsy is a common complication after a young stroke. We investigated the association between poststroke epilepsy and mortality. We performed a prospective cohort study among 631 patients with a first-ever transient ischemic attack or ischemic stroke, aged 18 to 50 years. Survival analysis and Cox proportional hazard analysis were used to estimate cumulative mortality and hazard ratios for patients with and without epilepsy. After mean follow-up of 12.5 years (SD 8.6), 76 (12.0%) developed poststroke epilepsy. Case fatality was 27.4% for patients with poststroke epilepsy and 2.1% for those without. Poststroke epilepsy was associated with 30-day mortality (hazard ratio, 4.8; 95% confidence interval, 1.7-14.0) and long-term mortality (hazard ratio, 1.8; 95% confidence interval, 1.2-2.9). Epilepsy is a common problem after a young stroke and is associated with an increased short-term and long-term mortality. © 2015 American Heart Association, Inc.

  11. The provision of feedback through computer-based technology to promote self-managed post-stroke rehabilitation in the home.

    Science.gov (United States)

    Parker, Jack; Mawson, Susan; Mountain, Gail; Nasr, Nasrin; Davies, Richard; Zheng, Huiru

    2014-11-01

    Building on previous research findings, this article describes the development of the feedback interfaces for a Personalised Self-Managed Rehabilitation System (PSMrS) for home-based post-stroke rehabilitation using computer-based technology. Embedded within a realistic evaluative methodological approach, the development of the feedback interfaces for the PSMrS involved the incorporation of existing and emerging theories and a hybrid of health and social sciences research and user-centred design methods. User testing confirmed that extrinsic feedback for home-based post-stroke rehabilitation through computer-based technology needs to be personalisable, accurate, rewarding and measurable. In addition, user testing also confirmed the feasibility of using specific components of the PSMrS. A number of key elements are crucial for the development and potential utilisation of technology in what is an inevitable shift towards the use of innovative methods of delivering post-stroke rehabilitation. This includes the specific elements that are essential for the promotion of self-managed rehabilitation and rehabilitative behaviour change; the impact of the context on the mechanisms; and, importantly, the need for reliability and accuracy of the technology.

  12. THE EVALUATION OF COMPLIANCE TO ANTIHYPERTENSIVE THERAPY IN PATIENTS AFTER STROKE AND POSTSTROKE DEPRESSION DURING ANTIDEPRESSANT THERAPY

    Directory of Open Access Journals (Sweden)

    B. B. Fishman

    2010-01-01

    Full Text Available Aim. To study the effect of the antidepressant paroxetine on the compliance to antihypertensive therapy in patients with arterial hypertension (HT and post-stroke depression.Material and methods. Patients (n=24 aged 55-73 with controlled HT (blood pressure, BP<140/90 mm Hg and with subclinical poststroke depression after rehabilitation course were included into the study. Patients were split into two groups. Patients of group 1 (n=12 received adequate antihypertensive therapy and selective serotonin reuptake inhibitor paroxetine. Patients of group 2 (n=12 received antihypertensive therapy only. The study duration was 16 weeks. Patient compliance to antihypertensive therapy, BP and severity of depressive disorders, motor and intellectual functions was evaluated initially and after 16 weeks.Results. BP>140/80 mmHg after 16 weeks was found in 10 (41.6% patients. Clinical post-stroke depression was found in 7 (30.4% patients, 5 (41.6% of them were from group 2 (OR=0.35, 95% CI 0.12-0.78. High treatment compliance was in 15 (65.2% patients, and 9 (81.8% of them were from group 1. Nine (39.1% patients did not receive an adequate antihypertensive therapy, 5 (41.6% of them were from group 2 and could not explain their refusal from medication. General index of intellectual function was higher in patients of group 1 (p=0.034 than this in group 2; index of motor function did not change significantly (p>0.05.Conclusion. Reduction of compliance to antihypertensive therapy and rehabilitation in hypertensive patients after stroke is associated with unmotivated refusal from treatment because of clinical post-stroke depression.

  13. Fluctuation-Driven Neural Dynamics Reproduce Drosophila Locomotor Patterns.

    Directory of Open Access Journals (Sweden)

    Andrea Maesani

    2015-11-01

    Full Text Available The neural mechanisms determining the timing of even simple actions, such as when to walk or rest, are largely mysterious. One intriguing, but untested, hypothesis posits a role for ongoing activity fluctuations in neurons of central action selection circuits that drive animal behavior from moment to moment. To examine how fluctuating activity can contribute to action timing, we paired high-resolution measurements of freely walking Drosophila melanogaster with data-driven neural network modeling and dynamical systems analysis. We generated fluctuation-driven network models whose outputs-locomotor bouts-matched those measured from sensory-deprived Drosophila. From these models, we identified those that could also reproduce a second, unrelated dataset: the complex time-course of odor-evoked walking for genetically diverse Drosophila strains. Dynamical models that best reproduced both Drosophila basal and odor-evoked locomotor patterns exhibited specific characteristics. First, ongoing fluctuations were required. In a stochastic resonance-like manner, these fluctuations allowed neural activity to escape stable equilibria and to exceed a threshold for locomotion. Second, odor-induced shifts of equilibria in these models caused a depression in locomotor frequency following olfactory stimulation. Our models predict that activity fluctuations in action selection circuits cause behavioral output to more closely match sensory drive and may therefore enhance navigation in complex sensory environments. Together these data reveal how simple neural dynamics, when coupled with activity fluctuations, can give rise to complex patterns of animal behavior.

  14. Feedback-Mediated Upper Extremities Exercise: Increasing Patient Motivation in Poststroke Rehabilitation

    Directory of Open Access Journals (Sweden)

    Maša D. Popović

    2014-01-01

    Full Text Available Purpose. This proof-of-concept study investigated whether feedback-mediated exercise (FME of the affected arm of hemiplegic patients increases patient motivation and promotes greater improvement of motor function, compared to no-feedback exercise (NFE. Method. We developed a feedback-mediated treatment that uses gaming scenarios and allows online and offline monitoring of both temporal and spatial characteristics of planar movements. Twenty poststroke hemiplegic inpatients, randomly assigned to the FME and NFE group, received therapy five days a week for three weeks. The outcome measures were evaluated from the following: (1 the modified drawing test (mDT, (2 received therapy time—RTT, and (3 intrinsic motivation inventory—IMI. Results. The FME group patients showed significantly higher improvement in the speed metric (P<0.01, and smoothness metric (P<0.01, as well as higher RTT (P<0.01. Significantly higher patient motivation is observed in the FME group (interest/enjoyment subscale (P<0.01 and perceived competence subscale (P<0.01. Conclusion. Prolonged endurance in training and greater improvement in certain areas of motor function, as well as very high patient motivation and strong positive impressions about the treatment, suggest the positive effects of feedback-mediated treatment and its high level of acceptance by patients.

  15. Wii-based movement therapy to promote improved upper extremity function post-stroke: a pilot study.

    Science.gov (United States)

    Mouawad, Marie R; Doust, Catherine G; Max, Madeleine D; McNulty, Penelope A

    2011-05-01

    Virtual-reality is increasingly used to improve rehabilitation outcomes. The Nintendo Wii offers an in-expensive alternative to more complex systems. To investigate the efficacy of Wii-based therapy for post-stroke rehabilitation. Seven patients (5 men, 2 women, aged 42-83 years; 1-38 months post-stroke, mean 15.3 months) and 5 healthy controls (3 men, 2 women, aged 41-71 years) undertook 1 h of therapy on 10 consecutive weekdays. Patients progressively increased home practice to 3 h per day. Functional ability improved for every patient. The mean performance time significantly decreased per Wolf Motor Function Test task, from 3.2 to 2.8 s, and Fugl-Meyer Assessment scores increased from 42.3 to 47.3. Upper extremity range-of-motion increased by 20.1º and 14.33º for passive and active movements, respectively. Mean Motor Activity Log (Quality of Movement scale) scores increased from 63.2 to 87.5, reflecting a transfer of functional recovery to everyday activities. Balance and dexterity did not improve significantly. No significant change was seen in any of these measures for healthy controls, despite improved skill levels for Wii games. An intensive 2-week protocol resulted in significant and clinically relevant improvements in functional motor ability post-stroke. These gains translated to improvement in activities of daily living.

  16. BDNF genotype interacts with motor-function to influence rehabilitation responsiveness post-stroke

    Directory of Open Access Journals (Sweden)

    Christine T Shiner

    2016-05-01

    Full Text Available Background. Persistent motor impairment is common but highly heterogeneous post-stroke. Genetic polymorphisms, including those identified on the brain derived neurotrophic factor (BDNF and apolipoprotein E (APOE genes, may contribute to this variability by limiting the capacity for use-dependent neuroplasticity, and hence rehabilitation responsiveness.Objective. To determine whether BDNF and APOE genotypes influence motor improvement facilitated by post-stroke upper-limb rehabilitation. Methods. BDNF Val66Met and APOE isoform genotypes were determined using leukocyte DNA for 55 community-dwelling patients 2-123 months post-stroke. All patients completed a dose-matched upper-limb rehabilitation program of either Wii-based Movement Therapy or Constraint-induced Movement Therapy. Upper-limb motor-function was assessed pre- and post-therapy using a suite of functional measures. Results. Motor-function improved for all patients post-therapy, with no difference between therapy groups. In the pooled data, there was no significant effect of BDNF or APOE genotype on motor-function at baseline, or following the intervention. However, a significant interaction between the level of residual motor-function and BDNF genotype was identified (p=0.029, whereby post-therapy improvement was significantly less for Met allele carriers with moderate and high, but not low motor-function. There was no significant association between APOE genotype and therapy outcomes. Conclusions. This study identified a novel interaction between the BDNF Val66Met polymorphism, motor-function status and the magnitude of improvement with rehabilitation in chronic stroke. This polymorphism does not preclude, but may reduce, the magnitude of motor improvement with therapy, particularly for patients with higher but not lower residual motor-function. BDNF genotype should be considered in the design and interpretation of clinical trials.

  17. Low-Frequency Repetitive Transcranial Magnetic Stimulation and Intensive Occupational Therapy for Poststroke Patients with Upper Limb Hemiparesis: Preliminary Study of a 15-Day Protocol

    Science.gov (United States)

    Kakuda, Wataru; Abo, Masahiro; Kobayashi, Kazushige; Momosaki, Ryo; Yokoi, Aki; Fukuda, Akiko; Ishikawa, Atsushi; Ito, Hiroshi; Tominaga, Ayumi

    2010-01-01

    The purpose of the study was to determine the safety and feasibility of a 15-day protocol of low-frequency repetitive transcranial magnetic stimulation (rTMS) combined with intensive occupational therapy (OT) on motor function and spasticity in hemiparetic upper limbs in poststroke patients. Fifteen poststroke patients (age at study entry 55 [plus…

  18. Dissociation of corticotropin-releasing factor receptor subtype involvement in sensitivity to locomotor effects of methamphetamine and cocaine.

    Science.gov (United States)

    Giardino, William J; Mark, Gregory P; Stenzel-Poore, Mary P; Ryabinin, Andrey E

    2012-02-01

    Enhanced sensitivity to the euphoric and locomotor-activating effects of psychostimulants may influence an individual's predisposition to drug abuse and addiction. While drug-induced behaviors are mediated by the actions of several neurotransmitter systems, past research revealed that the corticotropin-releasing factor (CRF) system is important in driving the acute locomotor response to psychostimulants. We previously reported that genetic deletion of the CRF type-2 receptor (CRF-R2), but not the CRF type-1 receptor (CRF-R1) dampened the acute locomotor stimulant response to methamphetamine (1 mg/kg). These results contrasted with previous studies implicating CRF-R1 in the locomotor effects of psychostimulants. Since the majority of previous studies focused on cocaine, rather than methamphetamine, we set out to test the hypothesis that these drugs differentially engage CRF-R1 and CRF-R2. We expanded our earlier findings by first replicating our previous experiments at a higher dose of methamphetamine (2 mg/kg), and by assessing the effects of the CRF-R1-selective antagonist CP-376,395 (10 mg/kg) on methamphetamine-induced locomotor activity. Next, we used both genetic and pharmacological tools to examine the specific components of the CRF system underlying the acute locomotor response to cocaine (5-10 mg/kg). While genetic deletion of CRF-R2 dampened the locomotor response to methamphetamine (but not cocaine), genetic deletion and pharmacological blockade of CRF-R1 dampened the locomotor response to cocaine (but not methamphetamine). These findings highlight the differential involvement of CRF receptors in acute sensitivity to two different stimulant drugs of abuse, providing an intriguing basis for the development of more targeted therapeutics for psychostimulant addiction.

  19. Deficits in motor response to avoid sudden obstacles during gait in functional walkers poststroke

    NARCIS (Netherlands)

    Swigchem, R. van; Duijnhoven, H.J. van; Boer, J. den; Geurts, A.C.H.; Weerdesteijn, V.G.M.

    2013-01-01

    BACKGROUND: . Safe community ambulation requires the capacity to adapt gait to environmental changes on short notice. Reduced adaptability may contribute to an increased risk for falls. OBJECTIVE: . This study investigated gait adaptability in community-dwelling persons poststroke and sought to

  20. Initial locomotor sensitivity to cocaine varies widely among inbred mouse strains.

    Science.gov (United States)

    Wiltshire, T; Ervin, R B; Duan, H; Bogue, M A; Zamboni, W C; Cook, S; Chung, W; Zou, F; Tarantino, L M

    2015-03-01

    Initial sensitivity to psychostimulants can predict subsequent use and abuse in humans. Acute locomotor activation in response to psychostimulants is commonly used as an animal model of initial drug sensitivity and has been shown to have a substantial genetic component. Identifying the specific genetic differences that lead to phenotypic differences in initial drug sensitivity can advance our understanding of the processes that lead to addiction. Phenotyping inbred mouse strain panels are frequently used as a first step for studying the genetic architecture of complex traits. We assessed locomotor activation following a single, acute 20 mg/kg dose of cocaine (COC) in males from 45 inbred mouse strains and observed significant phenotypic variation across strains indicating a substantial genetic component. We also measured levels of COC, the active metabolite, norcocaine and the major inactive metabolite, benzoylecgonine, in plasma and brain in the same set of inbred strains. Pharmacokinetic (PK) and behavioral data were significantly correlated, but at a level that indicates that PK alone does not account for the behavioral differences observed across strains. Phenotypic data from this reference population of inbred strains can be utilized in studies aimed at examining the role of psychostimulant-induced locomotor activation on drug reward and reinforcement and to test theories about addiction processes. Moreover, these data serve as a starting point for identifying genes that alter sensitivity to the locomotor stimulatory effects of COC. © 2015 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  1. Efficacy of Static Magnetic Field for Locomotor Activity of Experimental Osteopenia

    Directory of Open Access Journals (Sweden)

    Norimasa Taniguchi

    2007-01-01

    Full Text Available In order to examine the effectiveness of applying a static magnetic field (SMF for increasing bone mineral density (BMD, we assessed the degree of osteopenia by dual-energy X-ray absorptiometry (DEXA, the metabolism measuring system, and histological examination of bone tissue in an ovariectomized (OVX rat model. Thirty-six female Wistar rats (8 weeks old, 160–180 g were divided into three groups. The rats in the OVX-M group were exposed to SMF for 12 weeks after ovariectomy. The ovariectomized rats in the OVX-D group were not exposed to SMF as a control. The rats in the normal group received neither ovariectomy nor exposure to SMF. Twelve-week exposure to SMF in the OVX-M group inhibited the reduction in BMD that was observed in the OVX-D group. Moreover, in the OVX rats, before exposure to SMF, there was no clear difference in the level of locomotor activity between the active and resting phases, and the pattern of locomotor activity was irregular. After exposure of OVX rats to SMF, the pattern of locomotor activity became diphasic with clear active and resting phases, as was observed in the normal group. In the OVX-M group, the continuity of the trabecular bone was maintained more favorably and bone mass was higher than the respective parameters in the OVX-D group. These results demonstrate that exposure to SMF increased the level of locomotor activity in OVX rats, thereby increasing BMD.

  2. The Effects of Sex-Ratio and Density on Locomotor Activity in the House Fly, Musca domestica

    OpenAIRE

    Bahrndorff, Simon; Kjærsgaard, Anders; Pertoldi, Cino; Loeschcke, Volker; Schou, Toke M.; Skovgård, Henrik; Hald, Birthe

    2012-01-01

    Although locomotor activity is involved in almost all behavioral traits, there is a lack of knowledge on what factors affect it. This study examined the effects of sex-ratio and density on the circadian rhythm of locomotor activity of adult Musca domestica L. (Diptera: Muscidae) using an infra-red light system. Sex-ratio significantly affected locomotor activity, increasing with the percentage of males in the vials. In accordance with other studies, males were more active than females, but th...

  3. Osteological postcranial traits in hylid anurans indicate a morphological continuum between swimming and jumping locomotor modes.

    Science.gov (United States)

    Soliz, Mónica; Tulli, Maria J; Abdala, Virginia

    2017-03-01

    Anurans exhibit a particularly wide range of locomotor modes that result in wide variations in their skeletal structure. This article investigates the possible correlation between morphological aspects of the hylid postcranial skeleton and their different locomotor modes and habitat use. To do so, we analyzed 18 morphometric postcranial variables in 19 different anuran species representative of a variety of locomotor modes (jumper, hopper, walker, and swimmer) and habitat uses (arboreal, bush, terrestrial, and aquatic). Our results show that the evolution of the postcranial hylid skeleton cannot be explained by one single model, as for example, the girdles suggest modular evolution while the vertebral column suggests other evolutionary modules. In conjunction with data from several other studies, we were able to show a relationship between hylid morphology and habitat use; offering further evidence that the jumper/swimmer and walker/hopper locomotor modes exhibit quite similar morphological architecture. This allowed us to infer that new locomotor modalities are, in fact, generated along a morphological continuum. J. Morphol. 278:403-417, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  4. Brain bioelectrical activity changes in patients with poststroke depression and apathy

    Directory of Open Access Journals (Sweden)

    I. V. Kichuk

    2015-01-01

    Full Text Available Objective: to study the specific features of brain bioelectrical activity in patents with poststroke apathy and depressive disorders.Patients and methods. The investigation enrolled 175 patients (84 men and 91 women with new-onset cerebral stroke at different sites. A total of 107 (61% patients of them were observed to have depressive disorders (n=41 (38% and apathy (n=66 (62% within a year after disease onset. A control group included 68 (39% patients without poststroke affective disorders. The mean age of the study group patients was 66±10 years and that of the control patients was 68±11 years. The severity and magnitude of neurological deficit were evaluated using the U.S. National Institutes of Health Stroke Scale (NIHSS. The patients underwent electroencephalography (EEG, brain computed tomography and magnetic resonance imaging. The investigators used diagnostic and statistical manual of mental disorders (DSM-IV criteria to diagnose depression and the Hamilton depression rating scale (HAM-D and the mini-mental status examination (MMSE to evaluate the mental status. The basic rhythmic power indices in the affected and unaffected hemispheres were calculated, as well as anteroposterior alpha rhythm distribution coefficient and interhemispheric asymmetry coefficient. Results and discussion. The computer EEG analysis was shown to identify the hallmark characteristics of brain bioelectric activity in patients with different types of affective disorders in the acute, early and late recovery periods of stroke. The patients with affective disorders were found to have brain bioelectrical activity changes predominantly in the rapid frequency sub-band on EEG, suggesting midbrain structural dysfunction. In the patients with poststroke depression, depressive disorder scale scores were related to the power of bioelectric activity in the slow and alpha frequency bands manly in the acute stroke period whereas those were correlated with the EEG

  5. Determining the Association between Language and Cognitive Tests in Poststroke Aphasia

    Directory of Open Access Journals (Sweden)

    Kylie J. Wall

    2017-05-01

    Full Text Available BackgroundIndividuals with aphasia are often excluded from studies exploring poststroke cognition because so many of the standard cognitive assessments rely on language ability. Our primary objective was to examine the association between performance on cognitive tests and performance on comprehension and naming tests in poststroke aphasia. Second, we aimed to determine the association between language performance and a real-life measure of cognition (Kettle Test. Third, we explored the feasibility of administering cognitive tests in aphasia.MethodsThirty-six participants with poststroke aphasia and 32 controls were assessed on a battery of pen-and-paper cognitive tests recommended in stroke. Auditory comprehension was measured using the Comprehensive Aphasia Test and naming was measured using the Boston Naming Test. Twenty-two community dwelling participants with aphasia and controls were also asked to complete the Kettle Test. Multiple linear regressions were used to explore the relationship between language performance and performance on the cognitive tests. Feasibility was determined by quantifying missing data.ResultsThe cognitive tests with the highest variance accounted for by auditory comprehension and naming were animal fluency (R2 = 0.67, R2 = 0.78 and the Hopkins Verbal Learning Test (recognition discrimination index (R2 = 0.65, R2 = 0.78. All cognitive tests were significantly associated with auditory comprehension and naming, except for the Star Cancellation Test and the Kettle Test. Thirty-three percent of participants with aphasia were unable to complete all the cognitive tests.ConclusionLanguage and non-linguistic cognitive processes are often interrelated. Most pen-and-paper cognitive tests were significantly associated with both auditory comprehension and naming, even in tests that do not require a verbal response. Language performance was not significantly associated with a real-life cognitive performance measure. Task

  6. The impact of patient's weight on post-stroke rehabilitation.

    Science.gov (United States)

    Kalichman, Leonid; Alperovitch-Najenson, Deborah; Treger, Iuly

    2016-08-01

    Purpose To evaluate the influence of patient's weight on rehabilitation outcomes in first-event stroke patients. Design Retrospective, observational comparative study. 102 first-time stroke male and female patients admitted to the 52-bed neurology rehabilitation department in a rehabilitation hospital were included in the study. Body mass index (BMI), Functional Independence Measure (FIM) on admission and at discharge, as well as the delta-FIM (FIM on admission - FIM at discharge) were evaluated. The Kruskal-Wallis test was used to compare the FIM and the NIHSS scores between BMI groups (normal, overweight, moderate and severe obesity). Results A statistically significant negative correlation (rho = -0.20, p = 0.049) was found between FIM change and BMI, that remained significant after adjustments for age, sex and hospitalisation days. No difference was found between groups in FIM or NIHSS change between BMI groups. Conclusions In sub-acute post-stroke patients undergoing rehabilitation in rehabilitation hospital, BMI was negatively associated with the improvement of functional parameters. Patients' BMI should be taken into consideration when predicting rehabilitation outcome for stroke patients. Further investigations are needed to identify the functional parameters affected by the patients' BMI. Implications for Rehabilitation In sub-acute post-stroke patients undergoing rehabilitation in rehabilitation hospital, BMI was negatively associated with the improvement of functional parameters. Patients' BMI should be taken into consideration when predicting rehabilitation outcome for stroke patients. New rehabilitation strategies should be designed to improve the functional outcomes of rehabilitation of obese patients.

  7. CRFR1 in the ventromedial caudate putamen modulates acute stress-enhanced expression of cocaine locomotor sensitization.

    Science.gov (United States)

    Liu, Shuli; Wang, Zhiyan; Li, Yijing; Sun, Xiaowei; Ge, Feifei; Yang, Mingda; Wang, Xinjuan; Wang, Na; Wang, Junkai; Cui, Cailian

    2017-07-15

    Repeated exposure to psychostimulants induces a long-lasting enhancement of locomotor activity called behavioral sensitization, which is often reinforced by stress after drug withdrawal. The mechanisms underlying these phenomena remain elusive. Here we explored the effects of acute stress 3 or 14 days after the cessation of chronic cocaine treatment on the expression of locomotor sensitization induced by a cocaine challenge in rats and the key brain region and molecular mechanism underlying the phenomenon. A single session of forced swimming, as an acute stress (administered 2 days after the cessation of cocaine), significantly enhanced the expression of cocaine locomotor sensitization 14 days after the final cocaine injection (challenge at 12 days after acute stress) but not 3 days after the cessation of cocaine (challenge at 1 day after acute stress). The result indicated that acute stress enhanced the expression of cocaine locomotor sensitization after incubation for 12 days rather than 1 day after the last cocaine injection. Moreover, the enhancement in locomotor sensitization was paralleled by a selective increase in the number of the c-Fos + cells, the level of CRFR1 mRNA in the ventromedial caudate putamen (vmCPu). Furthermore, the enhancement was significantly attenuated by CRFR1 antagonist NBI-27914 into the vmCPu, implying that the up-regulation of CRFR1 in the vmCPu seems to be critical in the acute stress-enhanced expression of cocaine locomotor sensitization. The findings demonstrate that the long-term effect of acute stress on the expression of cocaine locomotor sensitization is partially mediated by CRFR1 in the vmCPu. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. Development and functional organization of spinal locomotor circuits

    DEFF Research Database (Denmark)

    Kiehn, Ole

    2011-01-01

    The coordination and timing of muscle activities during rhythmic movements, like walking and swimming, are generated by intrinsic spinal motor circuits. Such locomotor networks are operational early in development and are found in all vertebrates. This review outlines and compares recent advances...

  9. Motor unit recruitment patterns 1: responses to changes in locomotor velocity and incline.

    Science.gov (United States)

    Hodson-Tole, Emma F; Wakeling, James M

    2008-06-01

    Mammalian skeletal muscles are composed of a mixture of motor unit types, which contribute a range of mechanical and physiological properties to the muscle. For a muscle to effectively contribute to smooth, co-ordinated movement it must activate an appropriate number and combination of motor units to generate the required force over a suitable time period. Much evidence exists indicating that motor units are activated in an orderly fashion, from the slowest through to the fastest. A growing body of evidence, however, indicates that such a recruitment strategy does not always hold true. Here we investigate how motor unit recruitment patterns were influenced by changes in locomotor velocity and incline. Kinematics data and myoelectric signals were collected from three rat ankle extensor muscles during running on a treadmill at nine velocity and incline combinations. Wavelet and principal component analysis were used to simultaneously decompose the signals into time and frequency space. The relative frequency components of the signals were quantified during 20 time windows of a stride from each locomotor condition. Differences in signal frequency components existed between muscles and locomotor conditions. Faster locomotor velocities led to a relative increase in high frequency components, whereas greater inclines led to a relative increase in the low frequency components. These data were interpreted as representing changes in motor unit recruitment patterns in response to changes in the locomotor demand. Motor units were not always recruited in an orderly manner, indicating that recruitment is a multi-factorial phenomenon that is not yet fully understood.

  10. Differences in the locomotor-activating effects of indirect serotonin agonists in habituated and non-habituated rats.

    Science.gov (United States)

    Halberstadt, Adam L; Buell, Mahálah R; Price, Diana L; Geyer, Mark A

    2012-07-01

    The indirect serotonin (5-HT) agonist 3,4-methylenedioxymethamphetamine (MDMA) produces a distinct behavioral profile in rats consisting of locomotor hyperactivity, thigmotaxis, and decreased exploration. The indirect 5-HT agonist α-ethyltryptamine (AET) produces a similar behavioral profile. Using the Behavioral Pattern Monitor (BPM), the present investigation examined whether the effects of MDMA and AET are dependent on the novelty of the testing environment. These experiments were conducted in Sprague-Dawley rats housed on a reversed light cycle and tested during the dark phase of the light/dark cycle. We found that racemic MDMA (RS-MDMA; 3 mg/kg, SC) increased locomotor activity in rats tested in novel BPM chambers, but had no effect on locomotor activity in rats habituated to the BPM chambers immediately prior to testing. Likewise, AET (5 mg/kg, SC) increased locomotor activity in non-habituated animals but not in animals habituated to the test chambers. These results were unexpected because previous reports indicate that MDMA has robust locomotor-activating effects in habituated animals. To further examine the influence of habituation on MDMA-induced locomotor activity, we conducted parametric studies with S-(+)-MDMA (the more active enantiomer) in habituated and non-habituated rats housed on a standard or reversed light cycle. Light cycle was included as a variable due to reported differences in sensitivity to serotonergic ligands during the dark and light phases. In confirmation of our initial studies, rats tested during the dark phase and habituated to the BPM did not show an S-(+)-MDMA (3 mg/kg, SC)-induced increase in locomotor activity, whereas non-habituated rats did. By contrast, in rats tested during the light phase, S-(+)-MDMA increased locomotor activity in both non-habituated and habituated rats, although the response in habituated animals was attenuated. The finding that habituation and light cycle interact to influence MDMA- and AET

  11. Error signals driving locomotor adaptation

    DEFF Research Database (Denmark)

    Choi, Julia T; Jensen, Peter; Nielsen, Jens Bo

    2016-01-01

    Locomotor patterns must be adapted to external forces encountered during daily activities. The contribution of different sensory inputs to detecting perturbations and adapting movements during walking is unclear. Here we examined the role of cutaneous feedback in adapting walking patterns to force...... walking (Choi et al. 2013). Sensory tests were performed to measure cutaneous touch threshold and perceptual threshold of force perturbations. Ankle movement were measured while subjects walked on the treadmill over three periods: baseline (1 min), adaptation (1 min) and post-adaptation (3 min). Subjects...

  12. The evolution of locomotor rhythmicity in tetrapods.

    Science.gov (United States)

    Ross, Callum F; Blob, Richard W; Carrier, David R; Daley, Monica A; Deban, Stephen M; Demes, Brigitte; Gripper, Janaya L; Iriarte-Diaz, Jose; Kilbourne, Brandon M; Landberg, Tobias; Polk, John D; Schilling, Nadja; Vanhooydonck, Bieke

    2013-04-01

    Differences in rhythmicity (relative variance in cycle period) among mammal, fish, and lizard feeding systems have been hypothesized to be associated with differences in their sensorimotor control systems. We tested this hypothesis by examining whether the locomotion of tachymetabolic tetrapods (birds and mammals) is more rhythmic than that of bradymetabolic tetrapods (lizards, alligators, turtles, salamanders). Species averages of intraindividual coefficients of variation in cycle period were compared while controlling for gait and substrate. Variance in locomotor cycle periods is significantly lower in tachymetabolic than in bradymetabolic animals for datasets that include treadmill locomotion, non-treadmill locomotion, or both. When phylogenetic relationships are taken into account the pooled analyses remain significant, whereas the non-treadmill and the treadmill analyses become nonsignificant. The co-occurrence of relatively high rhythmicity in both feeding and locomotor systems of tachymetabolic tetrapods suggests that the anatomical substrate of rhythmicity is in the motor control system, not in the musculoskeletal components. © 2012 The Author(s). Evolution© 2012 The Society for the Study of Evolution.

  13. Manipulation of dopamine metabolism contributes to attenuating innate high locomotor activity in ICR mice.

    Science.gov (United States)

    Yamaguchi, Takeshi; Nagasawa, Mao; Ikeda, Hiromi; Kodaira, Momoko; Minaminaka, Kimie; Chowdhury, Vishwajit S; Yasuo, Shinobu; Furuse, Mitsuhiro

    2017-06-15

    Attention-deficit hyperactivity disorder (ADHD) is defined as attention deficiency, restlessness and distraction. The main characteristics of ADHD are hyperactivity, impulsiveness and carelessness. There is a possibility that these abnormal behaviors, in particular hyperactivity, are derived from abnormal dopamine (DA) neurotransmission. To elucidate the mechanism of high locomotor activity, the relationship between innate activity levels and brain monoamines and amino acids was investigated in this study. Differences in locomotor activity between ICR, C57BL/6J and CBA/N mice were determined using the open field test. Among the three strains, ICR mice showed the greatest amount of locomotor activity. The level of striatal and cerebellar DA was lower in ICR mice than in C57BL/6J mice, while the level of L-tyrosine (L-Tyr), a DA precursor, was higher in ICR mice. These results suggest that the metabolic conversion of L-Tyr to DA is lower in ICR mice than it is in C57BL/6J mice. Next, the effects of intraperitoneal injection of (6R)-5, 6, 7, 8-tetrahydro-l-biopterin dihydrochloride (BH 4 ) (a co-enzyme for tyrosine hydroxylase) and L-3,4-dihydroxyphenylalanine (L-DOPA) on DA metabolism and behavior in ICR mice were investigated. The DA level in the brain was increased by BH 4 administration, but the increased DA did not influence behavior. However, L-DOPA administration drastically lowered locomotor activity and increased DA concentration in several parts of the brain. The reduced locomotor activity may have been a consequence of the overproduction of DA. In conclusion, the high level of locomotor activity in ICR mice may be explained by a strain-specific DA metabolism. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Effects of respiratory muscle work on respiratory and locomotor blood flow during exercise.

    Science.gov (United States)

    Dominelli, Paolo B; Archiza, Bruno; Ramsook, Andrew H; Mitchell, Reid A; Peters, Carli M; Molgat-Seon, Yannick; Henderson, William R; Koehle, Michael S; Boushel, Robert; Sheel, A William

    2017-11-01

    What is the central question of this study? Does manipulation of the work of breathing during high-intensity exercise alter respiratory and locomotor muscle blood flow? What is the main finding and its importance? We found that when the work of breathing was reduced during exercise, respiratory muscle blood flow decreased, while locomotor muscle blood flow increased. Conversely, when the work of breathing was increased, respiratory muscle blood flow increased, while locomotor muscle blood flow decreased. Our findings support the theory of a competitive relationship between locomotor and respiratory muscles during intense exercise. Manipulation of the work of breathing (WOB) during near-maximal exercise influences leg blood flow, but the effects on respiratory muscle blood flow are equivocal. We sought to assess leg and respiratory muscle blood flow simultaneously during intense exercise while manipulating WOB. Our hypotheses were as follows: (i) increasing the WOB would increase respiratory muscle blood flow and decrease leg blood flow; and (ii) decreasing the WOB would decrease respiratory muscle blood flow and increase leg blood flow. Eight healthy subjects (n = 5 men, n = 3 women) performed a maximal cycle test (day 1) and a series of constant-load exercise trials at 90% of peak work rate (day 2). On day 2, WOB was assessed with oesophageal balloon catheters and was increased (via resistors), decreased (via proportional assist ventilation) or unchanged (control) during the trials. Blood flow was assessed using near-infrared spectroscopy optodes placed over quadriceps and the sternocleidomastoid muscles, coupled with a venous Indocyanine Green dye injection. Changes in WOB were significantly and positively related to changes in respiratory muscle blood flow (r = 0.73), whereby increasing the WOB increased blood flow. Conversely, changes in WOB were significantly and inversely related to changes in locomotor blood flow (r = 0.57), whereby decreasing the

  15. Home programs for upper extremity recovery post-stroke: a survey of occupational therapy practitioners.

    Science.gov (United States)

    Donoso Brown, Elena V; Fichter, Renae

    2017-12-01

    Upper extremity hemiparesis is an impairment post-stroke that impacts quality of life. Home programs are an intervention strategy used by many occupational therapists to support continued motor recovery post-stroke, yet little is known about how these programs are designed and implemented. The purpose of this study was to describe how occupational therapy practitioners approach this task and specifically what strategies they use to support adherence and what types of technology are most commonly used. An on-line survey methodology was used. Participants were recruited through multiple sources including state associations and occupational therapy educational program directors. A total of 73 occupational therapy practitioners submitted complete surveys. It was found that majority of occupational therapy practitioners in the sample (n = 53) reported creating home programs focused on upper extremity motor recovery more than 80% of the time. Range of motion and strengthening were reported as being in the top three most commonly used interventions by more than half the sample, however incorporating clients' goals and interests were reported most often as strategies to create meaning in the home program. Respondents also reported limited incorporation of technology and strategies to support adherence. Personal motivation was reported by occupational therapy practitioners to be a key moderator of adherence to a home program. Occupational therapy practitioners often provide home programs for individuals post-stroke focusing on upper extremity function. Future research that aims to understand stakeholders' perspectives on home programs and determine effective strategies for ensuring adherence is needed.

  16. Traditional Japanese Medicine Daikenchuto Improves Functional Constipation in Poststroke Patients

    Directory of Open Access Journals (Sweden)

    Takehiro Numata

    2014-01-01

    Full Text Available Poststroke patients with functional constipation, assessed by the Rome III criteria, from 6 hospitals were recruited in a study on the effects of the traditional Japanese medicine Daikenchuto (DKT on constipation. Thirty-four patients (17 men and 17 women; mean age: 78.1 ± 11.6 years were randomly assigned to 2 groups; all patients received conventional therapy for constipation, and patients in the DKT group received 15 g/day of DKT for 4 weeks. Constipation scoring system (CSS points and the gas volume score (GVS (the measure of the intestinal gas volume calculated from plain abdominal radiographs were recorded before and after a 4-week observation period. The total score on the CSS improved significantly in the DKT group compared to the control (P<0.01. In addition, scores for some CSS subcategories (frequency of bowel movements, feeling of incomplete evacuation, and need for enema/disimpaction significantly improved in the DKT group (P<0.01, P=0.049, and P=0.03, resp.. The GVS was also significantly reduced in the DKT group compared to the control (P=0.03. DKT in addition to conventional therapy is effective in treating functional constipation in poststroke patients. This study was a randomized controlled trial and was registered in the UMIN Clinical Trial Registry (no. UMIN000007393.

  17. Locomotor and Heart Rate Responses of Floaters During Small-Sided Games in Elite Soccer Players: Effect of Pitch Size and Inclusion of Goal Keepers.

    Science.gov (United States)

    Lacome, Mathieu; Simpson, Ben M; Cholley, Yannick; Buchheit, Martin

    2017-09-27

    To (1) compare the locomotor and heart rate responses between floaters and regular players during both small and large small sided games (SSGs) and (2) examine whether the type of game (i.e., game simulation vs possession game) affects the magnitude of the difference between floaters and regular players. Data were collected in 41 players belonging to an elite French football team during three consecutive seasons (2014-2017). 5-Hz GPS were used to collect all training data, with the Athletic Data Innovation analyser (v5.4.1.514, Sydney, Australia) used to derive total distance (m), high-speed distance (> 14.4 km.h -1 , m) and external mechanical load (MechL, a.u). All SSGs included exclusively one floater, and were divided into two main categories, according to the participation of goal-keepers (GK) (game simulation, GS) or not (possession games, PO) and then further divided into small and large (>100 m2/player) SSGs based on the area per player ratio. Locomotor activity and mechanical load performed were likely-to-most likely lower (moderate to large magnitude) in floaters compared with regular players, while differences in HR responses were unclear to possibly higher (small) in floaters. The magnitude of the difference in locomotor activity and MechL between floaters and regular players was substantially greater during GS compared with PO. Compared with regular players, floaters present decreased external load (both locomotor and MechL) despite unclear to possibly slightly higher HR responses during SSGs. Moreover, the responses of floaters compared with regular players are not consistent across different sizes of SSGs, with greater differences during GS than PO.

  18. Reliability of muscle strength assessment in chronic post-stroke hemiparesis: a systematic review and meta-analysis.

    Science.gov (United States)

    Rabelo, Michelle; Nunes, Guilherme S; da Costa Amante, Natália Menezes; de Noronha, Marcos; Fachin-Martins, Emerson

    2016-02-01

    Muscle weakness is the main cause of motor impairment among stroke survivors and is associated with reduced peak muscle torque. To systematically investigate and organize the evidence of the reliability of muscle strength evaluation measures in post-stroke survivors with chronic hemiparesis. Two assessors independently searched four electronic databases in January 2014 (Medline, Scielo, CINAHL, Embase). Inclusion criteria comprised studies on reliability on muscle strength assessment in adult post-stroke patients with chronic hemiparesis. We extracted outcomes from included studies about reliability data, measured by intraclass correlation coefficient (ICC) and/or similar. The meta-analyses were conducted only with isokinetic data. Of 450 articles, eight articles were included for this review. After quality analysis, two studies were considered of high quality. Five different joints were analyzed within the included studies (knee, hip, ankle, shoulder, and elbow). Their reliability results varying from low to very high reliability (ICCs from 0.48 to 0.99). Results of meta-analysis for knee extension varying from high to very high reliability (pooled ICCs from 0.89 to 0.97), for knee flexion varying from high to very high reliability (pooled ICCs from 0.84 to 0.91) and for ankle plantar flexion showed high reliability (pooled ICC = 0.85). Objective muscle strength assessment can be reliably used in lower and upper extremities in post-stroke patients with chronic hemiparesis.

  19. Do post-stroke patients benefit from robotic verticalization? A pilot-study focusing on a novel neurophysiological approach.

    Science.gov (United States)

    Calabrò, Rocco Salvatore; Naro, Antonino; Russo, Margherita; Leo, Antonino; Balletta, Tina; Saccá, Ileana; De Luca, Rosaria; Bramanti, Placido

    2015-01-01

    Tilt-table equipped with the dynamic foot-support (ERIGO) and the functional electric stimulation could be a safe and suitable device for stabilization of vital signs, increasing patient's motivation for further recovery, decreasing the duration of hospitalization, and accelerating the adaptation to vertical posture in bedridden patients with brain-injury. Moreover, it is conceivable that verticalization may improve cognitive functions, and induce plastic changes at sensory motor and vestibular system level that may in turn facilitate motor functional recovery. To test the safety and effectiveness of ERIGO treatment on motor and cognitive functions, cortical plasticity within vestibular and sensory-motor systems in a bedridden post-stroke sample. 20 patients were randomly divided in two groups that performed ERIGO training (30 sessions) (G1) or physiotherapist-assisted verticalization training (same duration) (G2), beyond conventional neurorehabilitation treatment. Motor and cognitive functions as well as sensory-motor and vestibular system plasticity were investigated either before (T0) or after (T1) the rehabilitative protocols. Both the verticalization treatments were well-tolerated. Notably, the G1 patients had a significant improvement in cognitive function (p = 0.03), global motor function (p = 0.006), sensory-motor (p vertical position with a better global function improvement, as also suggested by the sensory-motor and vestibular system plasticity induction.

  20. The value of adding transcutaneous neuromuscular electrical stimulation (VitalStim) to traditional therapy for post-stroke dysphagia: a randomized controlled trial.

    Science.gov (United States)

    Li, L; Li, Y; Huang, R; Yin, J; Shen, Y; Shi, J

    2015-02-01

    Dysphagia is not uncommon after stroke. Dysphagia may delay the functional recovery and substantially affects the quality of life after stroke, mainly if lest untreated. To detect and treat dysphagia as early as possible is critical for patients' recovery after stroke. Electrical stimulation has been reported as a treatment for pharyngeal dysphagia in recent studies, but the therapeutic effects of neuromuscular electrical stimulation (VitalStim®) therapy lacks convincing supporting evidence, needs further clinical investigation. To investigate the effects of neuromuscular electrical stimulation (VitalStim®) and traditional swallowing therapy on recovery of swallowing difficulties after stroke. Randomized controlled trial. University hospital. 135 stroke patients who had a diagnosis of dysphagia at the age between 50-80. 135 subjects were randomly divided into three groups: traditional swallowing therapy (N. = 45), VitalStim® therapy (N. = 45), and VitalStim® therapy plus traditional swallowing therapy (N. = 45). The traditional swallowing therapy included basic training and direct food intake training. Electrical stimulation was applied by an occupational therapist, using a modified hand-held battery-powered electrical stimulator (VitalStim® Dual Channel Unit and electrodes, Chattanooga Group, Hixson, TN, USA). Surface electromyography (sEMG), the Standardized Swallowing Assessment (SSA), Videofluoroscopic Swallowing Study (VFSS) and visual analog scale (VAS) were used to assess swallowing function before and 4 weeks after the treatment. The study included 118 subjects with dysphagia, 40 in the traditional swallowing therapy group and VitalStim® therapy group, 38 in the VitalStim and traditional swallowing therapy group. There were significant differences in sEMG value, SSA and VFSS scores in each group after the treatment (P VitalStim® and traditional swallowing therapy group than the other two groups (P VitalStim® therapy coupled with traditional

  1. Using Tests Designed to Measure Individual Sensorimotor Subsystem Perfomance to Predict Locomotor Adaptability

    Science.gov (United States)

    Peters, B. T.; Caldwell, E. E.; Batson, C. D.; Guined, J. R.; DeDios, Y. E.; Stepanyan, V.; Gadd, N. E.; Szecsy, D. L.; Mulavara, A. P.; Seidler, R. D.; hide

    2014-01-01

    Astronauts experience sensorimotor disturbances during the initial exposure to microgravity and during the readapation phase following a return to a gravitational environment. These alterations may lead to disruption in the ability to perform mission critical functions during and after these gravitational transitions. Astronauts show significant inter-subject variation in adaptive capability following gravitational transitions. The way each individual's brain synthesizes the available visual, vestibular and somatosensory information is likely the basis for much of the variation. Identifying the presence of biases in each person's use of information available from these sensorimotor subsystems and relating it to their ability to adapt to a novel locomotor task will allow us to customize a training program designed to enhance sensorimotor adaptability. Eight tests are being used to measure sensorimotor subsystem performance. Three of these use measures of body sway to characterize balance during varying sensorimotor challenges. The effect of vision is assessed by repeating conditions with eyes open and eyes closed. Standing on foam, or on a support surface that pitches to maintain a constant ankle angle provide somatosensory challenges. Information from the vestibular system is isolated when vision is removed and the support surface is compromised, and it is challenged when the tasks are done while the head is in motion. The integration and dominance of visual information is assessed in three additional tests. The Rod & Frame Test measures the degree to which a subject's perception of the visual vertical is affected by the orientation of a tilted frame in the periphery. Locomotor visual dependence is determined by assessing how much an oscillating virtual visual world affects a treadmill-walking subject. In the third of the visual manipulation tests, subjects walk an obstacle course while wearing up-down reversing prisms. The two remaining tests include direct

  2. A Model of Locomotor-Respiratory Coupling in Quadrupeds

    Science.gov (United States)

    Giuliodori,, Mauricio J.; Lujan, Heidi L.; Briggs, Whitney S.; DiCarlo, Stephen E.

    2009-01-01

    Locomotion and respiration are not independent phenomena in running mammals because locomotion and respiration both rely on cyclic movements of the ribs, sternum, and associated musculature. Thus, constraints are imposed on locomotor and respiratory function by virtue of their linkage. Specifically, locomotion imposes mechanical constraints on…

  3. Locomotor differences in Mongolian gerbils with the effects of ...

    African Journals Online (AJOL)

    Locomotor differences in Mongolian gerbils with the effects of midazolam ... African Health Sciences ... We subjected the gerbils to an adapted “Open Field” to determine the possible effects on central nervous system of midazolam. Gerbils ...

  4. When does return of voluntary finger extension occur post-stroke? A prospective cohort study

    NARCIS (Netherlands)

    Winters, Caroline; Kwakkel, Gert; Nijland, Rinske; Van Wegen, Erwin

    2016-01-01

    Objectives: Patients without voluntary finger extension early post-stroke are suggested to have a poor prognosis for regaining upper limb capacity at 6 months. Despite this poor prognosis, a number of patients do regain upper limb capacity. We aimed to determine the time window for return of

  5. Multi-User Virtual Reality Therapy for Post-Stroke Hand Rehabilitation at Home

    Directory of Open Access Journals (Sweden)

    Daria Tsoupikova

    2016-04-01

    Full Text Available Our paper describes the development of a novel multi-user virtual reality (VR system for post-stroke rehabilitation that can be used independently in the home to improve upper extremity motor function. This is the pre-clinical phase of an ongoing collaborative, interdisciplinary research project at the Rehabilitation Institute of Chicago involving a team of engineers, researchers, occupational therapists and artists. This system was designed for creative collaboration within a virtual environment to increase patients' motivation, further engagement and to alleviate the impact of social isolation following stroke. This is a low-cost system adapted to everyday environments and designed to run on a personal computer that combines three VR environments with audio integration, wireless Kinect tracking and hand motion tracking sensors. Three different game exercises for this system were developed to encourage repetitive task practice, collaboration and competitive interaction. The system is currently being tested with 15 subjects in three settings: a multi-user VR, a single-user VR and at a tabletop with standard exercises to examine the level of engagement and to compare resulting functional performance across methods. We hypothesize that stroke survivors will become more engaged in therapy when training with a multi-user VR system and this will translate into greater gains.

  6. Grip type and task goal modify reach-to-grasp performance in post-stroke hemiparesis

    Science.gov (United States)

    Schaefer, Sydney Y.; DeJong, Stacey L.; Cherry, Kendra M.; Lang, Catherine E.

    2011-01-01

    This study investigated whether grip type and/or task goal influenced reaching and grasping performance in post-stroke hemiparesis. Sixteen adults with post-stroke hemiparesis and twelve healthy adults reached to and grasped a cylindrical object using one of two grip types (3-finger or palmar) to achieve one of two task goals (hold or lift). Performance of the stroke group was characteristic of hemiparetic limb movement during reach-to-grasp, with more curved handpaths and slower velocities compared to the control group. These effects were present regardless of grip type or task goal. Other measures of reaching (reach time and reach velocity at object contact) and grasping (peak thumb-index finger aperture during the reach and peak grip force during the grasp) were differentially affected by grip type, task goal, or both, despite the presence of hemiparesis, providing new evidence that changes in motor patterns after stroke may occur to compensate for stroke-related motor impairment. PMID:22357103

  7. Grip type and task goal modify reach-to-grasp performance in post-stroke hemiparesis.

    Science.gov (United States)

    Schaefer, Sydney Y; DeJong, Stacey L; Cherry, Kendra M; Lang, Catherine E

    2012-04-01

    This study investigated whether grip type and/or task goal influenced reaching and grasping performance in poststroke hemiparesis. Sixteen adults with poststroke hemiparesis and twelve healthy adults reached to and grasped a cylindrical object using one of two grip types (3-finger or palmar) to achieve one of two task goals (hold or lift). Performance of the stroke group was characteristic of hemiparetic limb movement during reach-to-grasp, with more curved handpaths and slower velocities compared with the control group. These effects were present regardless of grip type or task goal. Other measures of reaching (reach time and reach velocity at object contact) and grasping (peak thumb-index finger aperture during the reach and peak grip force during the grasp) were differentially affected by grip type, task goal, or both, despite the presence of hemiparesis, providing new evidence that changes in motor patterns after stroke may occur to compensate for stroke-related motor impairment.

  8. Walking performance and muscle strength in the later stage poststroke: a nonlinear relationship.

    Science.gov (United States)

    Carvalho, Cristiane; Sunnerhagen, Katharina S; Willén, Carin

    2013-05-01

    To evaluate the relation between muscle strength in the lower extremities and walking performance (speed and distance) in subjects in the later stage poststroke and to compare this with normative data. A cross-sectional observational study. University hospital department. Subjects poststroke (n=41; 31 men, 10 women) with a mean age of 59±5.8 years and a time from stroke onset of 52±36 months were evaluated. An urban sample (n=144) of 40- to 79-year-olds (69 men, 75 women) formed the healthy reference group. Not applicable. Muscle strength in the lower extremities was measured with an isokinetic dynamometer and combined into a strength index. Values for the 30-meter walk test for self-selected and maximum speed and the 6-minute walk test were measured. A nonlinear regression model was used. The average strength index was 730±309 in the subjects after stroke compared with 1112±362 in the healthy group. A nonlinear relation between walking performance and muscle strength was evident. The model explained 37% of the variance in self-selected speed in the stroke group and 20% in the healthy group, and 63% and 38%, respectively, in the maximum walking speed. For the 6-minute walk test, the model explained 44% of the variance in the stroke group. Subjects in the later stage poststroke were weaker than the healthy reference group, and their weakness was associated with walking performance. At the same strength index, subjects walked at lower speeds and shorter distances after stroke, indicating that there are multiple impairments that affect walking ability. Treatments focused on increasing muscle strength thus continue to hold promise. Copyright © 2013 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  9. Decrease of GSK3β phosphorylation in the rat nucleus accumbens core enhances cocaine-induced hyper-locomotor activity.

    Science.gov (United States)

    Kim, Wha Y; Jang, Ju K; Lee, Jung W; Jang, Hyunduk; Kim, Jeong-Hoon

    2013-06-01

    Glycogen synthase kinase 3β (GSK3β), which is abundantly present in the brain, is known to contribute to psychomotor stimulant-induced locomotor behaviors. However, most studies have been focused in showing that GSK3β is able to attenuate psychomotor stimulants-induced hyperactivity by increasing its phosphorylation levels in the nucleus accumbens (NAcc). So, here we examined in the opposite direction about the effects of decreased phosphorylation of GSK3β in the NAcc core on both basal and cocaine-induced locomotor activity by a bilateral microinjection into this site of an artificially synthesized peptide, S9 (0.5 or 5.0 μg/μL), which contains sequences around N-terminal serine 9 residue of GSK3β. We found that decreased levels of GSK3β phosphorylation in the NAcc core enhance cocaine-induced hyper-locomotor activity, while leaving basal locomotor activity unchanged. This is the first demonstration, to our knowledge, that the selective decrease of GSK3β phosphorylation levels in the NAcc core may contribute positively to cocaine-induced locomotor activity, while this is not sufficient for the generation of locomotor behavior by itself without cocaine. Taken together, these findings importantly suggest that GSK3β may need other molecular targets which are co-activated (or deactivated) by psychomotor stimulants like cocaine to contribute to generation of locomotor behaviors. © 2013 International Society for Neurochemistry.

  10. Animal Robot Assisted-therapy for Rehabilitation of Patient with Post-Stroke Depression

    Science.gov (United States)

    Zikril Zulkifli, Winal; Shamsuddin, Syamimi; Hwee, Lim Thiam

    2017-06-01

    Recently, the utilization of therapeutic animal robots has expanded. This research aims to explore robotics application for mental healthcare in Malaysia through human-robot interaction (HRI). PARO, the robotic seal PARO was developed to give psychological effects on humans. Major Depressive Disorder (MDD) is a common but severe mood disorder. This study focuses on the interaction protocol between PARO and patients with MDD. Initially, twelve rehabilitation patients gave subjective evaluation on their first interaction with PARO. Next, therapeutic interaction environment was set-up with PARO in it to act as an augmentation strategy with other psychological interventions for post-stroke depression. Patient was exposed to PARO for 20 minutes. The results of behavioural analysis complemented with information from HRI survey question. The analysis also observed that the individual interactors engaged with the robot in diverse ways based on their needs Results show positive reaction toward the acceptance of an animal robot. Next, therapeutic interaction is set-up for PARO to contribute as an augmentation strategy with other psychological interventions for post-stroke depression. The outcome is to reduce the stress level among patients through facilitated therapy session with PARO

  11. Therapeutic Effect of Virtual Reality on Post-Stroke Patients: Randomized Clinical Trial.

    Science.gov (United States)

    Pedreira da Fonseca, Erika; Ribeiro da Silva, Nildo Manoel; Pinto, Elen Beatriz

    2017-01-01

    The study aimed to check the therapeutic effect of virtual reality associated with conventional physiotherapy on gait balance and the occurrence of falls after a stroke. This was a randomized, blinded clinical trial conducted with post-stroke patients, randomized into two groups-treatment group and control group-and subjected to balance assessments by the Dynamic Gait Index and investigation of falls before and after 20 intervention sessions. Statistically significant difference was considered at P < .05. We selected 30 patients, but there were three segment losses, resulting in a total of 13 patients in the control group and 14 in the treatment group. There was an improvement in gait balance and reduced occurrence of falls in both groups. After intervention, the differences in gait balance in the control group (P = .047) and the reduction in the occurrence of falls in the treatment group (P = .049) were significant. However, in intergroup analysis, there was no difference in the two outcomes. Therapy with games was a useful tool for gait balance rehabilitation in post-stroke patients, with repercussions on the reduction of falls. Copyright © 2017 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  12. Shared human-chimpanzee pattern of perinatal femoral shaft morphology and its implications for the evolution of hominin locomotor adaptations.

    Directory of Open Access Journals (Sweden)

    Naoki Morimoto

    Full Text Available Acquisition of bipedality is a hallmark of human evolution. How bipedality evolved from great ape-like locomotor behaviors, however, is still highly debated. This is mainly because it is difficult to infer locomotor function, and even more so locomotor kinematics, from fossil hominin long bones. Structure-function relationships are complex, as long bone morphology reflects phyletic history, developmental programs, and loading history during an individual's lifetime. Here we discriminate between these factors by investigating the morphology of long bones in fetal and neonate great apes and humans, before the onset of locomotion.Comparative morphometric analysis of the femoral diaphysis indicates that its morphology reflects phyletic relationships between hominoid taxa to a greater extent than taxon-specific locomotor adaptations. Diaphyseal morphology in humans and chimpanzees exhibits several shared-derived features, despite substantial differences in locomotor adaptations. Orangutan and gorilla morphologies are largely similar, and likely represent the primitive hominoid state.These findings are compatible with two possible evolutionary scenarios. Diaphyseal morphology may reflect retained adaptive traits of ancestral taxa, hence human-chimpanzee shared-derived features may be indicative of the locomotor behavior of our last common ancestor. Alternatively, diaphyseal morphology might reflect evolution by genetic drift (neutral evolution rather than selection, and might thus be more informative about phyletic relationships between taxa than about locomotor adaptations. Both scenarios are consistent with the hypothesis that knuckle-walking in chimpanzees and gorillas resulted from convergent evolution, and that the evolution of human bipedality is unrelated to extant great ape locomotor specializations.

  13. Robotic devices and brain-machine interfaces for hand rehabilitation post-stroke

    OpenAIRE

    McConnell, Alistair C; Moioli, Renan C; Brasil, Fabricio L; Vallejo, Marta; Corne, David W; Vargas, Patricia A; Stokes, Adam A

    2017-01-01

    OBJECTIVE: To review the state of the art of robotic-aided hand physiotherapy for post-stroke rehabilitation, including the use of brain-machine interfaces. Each patient has a unique clinical history and, in response to personalized treatment needs, research into individualized and at-home treatment options has expanded rapidly in recent years. This has resulted in the development of many devices and design strategies for use in stroke rehabilitation.METHODS: The development progression of ro...

  14. Hesperidin effects on behavior and locomotor activity of diabetic ...

    African Journals Online (AJOL)

    Tuoyo Aghomotsegin

    2016-11-09

    Nov 9, 2016 ... Author(s) agree that this article remains permanently open access under the terms of the Creative ... diabetes in animals and patients with type1 (Northam et ... measured were, locomotor activities, standing position, the time of.

  15. Locomotor performance of cane toads differs between native-range and invasive populations.

    Science.gov (United States)

    Kosmala, Georgia; Christian, Keith; Brown, Gregory; Shine, Richard

    2017-07-01

    Invasive species provide a robust opportunity to evaluate how animals deal with novel environmental challenges. Shifts in locomotor performance-and thus the ability to disperse-(and especially, the degree to which it is constrained by thermal and hydric extremes) are of special importance, because they might affect the rate that an invader can spread. We studied cane toads ( Rhinella marina ) across a broad geographical range: two populations within the species' native range in Brazil, two invasive populations on the island of Hawai'i and eight invasive populations encompassing the eastern, western and southern limits of the toad invasion in Australia. A toad's locomotor performance on a circular raceway was strongly affected by both its temperature and its hydration state, but the nature and magnitude of those constraints differed across populations. In their native range, cane toads exhibited relatively low performance (even under optimal test conditions) and a rapid decrease in performance at lower temperatures and hydration levels. At the other extreme, performance was high in toads from southern Australia, and virtually unaffected by desiccation. Hawai'ian toads broadly resembled their Brazilian conspecifics, plausibly reflecting similar climatic conditions. The invasion of Australia has been accompanied by a dramatic enhancement in the toads' locomotor abilities, and (in some populations) by an ability to maintain locomotor performance even when the animal is cold and/or dehydrated. The geographical divergences in performance among cane toad populations graphically attest to the adaptability of invasive species in the face of novel abiotic challenges.

  16. Versatile robotic interface to evaluate, enable and train locomotion and balance after neuromotor disorders

    NARCIS (Netherlands)

    Dominici, Nadia; Keller, Urs; Vallery, Heike; Friedli, Lucia; van den Brand, Rubia; Starkey, Michelle L; Musienko, Pavel; Riener, Robert; Courtine, Grégoire

    Central nervous system (CNS) disorders distinctly impair locomotor pattern generation and balance, but technical limitations prevent independent assessment and rehabilitation of these subfunctions. Here we introduce a versatile robotic interface to evaluate, enable and train pattern generation and

  17. Chronic Fluoxetine Induces Activity Changes in Recovery From Poststroke Anxiety, Depression, and Cognitive Impairment.

    Science.gov (United States)

    Vahid-Ansari, Faranak; Albert, Paul R

    2018-01-01

    Poststroke depression (PSD) is a common outcome of stroke that limits recovery and is only partially responsive to chronic antidepressant treatment. In order to elucidate changes in the cortical-limbic circuitry associated with PSD and its treatment, we examined a novel mouse model of persistent PSD. Focal endothelin-1-induced ischemia of the left medial prefrontal cortex (mPFC) in male C57BL6 mice resulted in a chronic anxiety and depression phenotype. Here, we show severe cognitive impairment in spatial learning and memory in the stroke mice. The behavioral and cognitive phenotypes were reversed by chronic (4-week) treatment with fluoxetine, alone or with voluntary exercise (free-running wheel), but not by exercise alone. To assess chronic cellular activation, FosB + cells were co-labeled for markers of glutamate/pyramidal (VGluT1-3/CaMKIIα), γ-aminobutyric acid (GAD67), and serotonin (TPH). At 6 weeks poststroke versus sham (or 4 days poststroke), left mPFC stroke induced widespread FosB activation, more on the right (contralesional) than on the left side. Stroke activated glutamate cells of the mPFC, nucleus accumbens, amygdala, hippocampus, and raphe serotonin neurons. Chronic fluoxetine balanced bilateral neuronal activity, reducing total FosB and FosB/CamKII + cells (mPFC, nucleus accumbens), and unlike exercise, increasing FosB/GAD67 + cells (septum, amygdala) or both (hippocampus, raphe). In summary, chronic antidepressant but not exercise mediates recovery in this unilateral ischemic PSD model that is associated with region-specific reversal of stroke-induced pyramidal cell hyperactivity and increase in γ-aminobutyric acidergic activity. Targeted brain stimulation to restore brain activity could provide a rational approach for treating clinical PSD.

  18. GABAB Receptor Stimulation Accentuates the Locomotor Effects of Morphine in Mice Bred for Extreme Sensitivity to the Stimulant Effects of Ethanol

    OpenAIRE

    Holstein, Sarah E.; Phillips, Tamara J.

    2006-01-01

    Mice selectively bred for divergent sensitivity to the locomotor stimulant effects of ethanol (FAST and SLOW) also differ in their locomotor response to morphine. The GABAB receptor has been implicated in the mediation of locomotor stimulation to both ethanol and morphine, and a reduction in ethanol-induced stimulation has been found with the GABAB receptor agonist baclofen in FAST mice. We hypothesized that GABAB receptor activation would also attenuate the locomotor stimulant responses to m...

  19. Organization of left-right coordination in the mammalian locomotor network

    DEFF Research Database (Denmark)

    Butt, S. J B; Lebret, James M.; Kiehn, Ole

    2002-01-01

    in the spinal cords of a number of aquatic vertebrates including the Xenopus tadpole and the lamprey. However, their function in left-right coordination of limb movements in mammals is poorly understood. In this review we describe the present understanding of commissural pathways in the functioning of spinal......Neuronal circuits involved in left-right coordination are a fundamental feature of rhythmic locomotor movements. These circuits necessarily include commissural interneurons (CINs) that have axons crossing the midline of the spinal cord. The properties of CINs have been described in some detail....... Spinal CINs play an important role in the generation of locomotor output. Increased knowledge as to their function in producing locomotion is likely to provide valuable insights into the spinal networks required for postural control and walking....

  20. Descending propriospinal neurons mediate restoration of locomotor function following spinal cord injury

    Science.gov (United States)

    Benthall, Katelyn N.; Hough, Ryan A.

    2016-01-01

    Following spinal cord injury (SCI) in the lamprey, there is virtually complete recovery of locomotion within a few weeks, but interestingly, axonal regeneration of reticulospinal (RS) neurons is mostly limited to short distances caudal to the injury site. To explain this situation, we hypothesize that descending propriospinal (PS) neurons relay descending drive from RS neurons to indirectly activate spinal central pattern generators (CPGs). In the present study, the contributions of PS neurons to locomotor recovery were tested in the lamprey following SCI. First, long RS neuron projections were interrupted by staggered spinal hemitransections on the right side at 10% body length (BL; normalized from the tip of the oral hood) and on the left side at 30% BL. For acute recovery conditions (≤1 wk) and before axonal regeneration, swimming muscle burst activity was relatively normal, but with some deficits in coordination. Second, lampreys received two spaced complete spinal transections, one at 10% BL and one at 30% BL, to interrupt long-axon RS neuron projections. At short recovery times (3–5 wk), RS and PS neurons will have regenerated their axons for short distances and potentially established a polysynaptic descending command pathway. At these short recovery times, swimming muscle burst activity had only minor coordination deficits. A computer model that incorporated either of the two spinal lesions could mimic many aspects of the experimental data. In conclusion, descending PS neurons are a viable mechanism for indirect activation of spinal locomotor CPGs, although there can be coordination deficits of locomotor activity. NEW & NOTEWORTHY In the lamprey following spinal lesion-mediated interruption of long axonal projections of reticulospinal (RS) neurons, sensory stimulation still elicited relatively normal locomotor muscle burst activity, but with some coordination deficits. Computer models incorporating the spinal lesions could mimic many aspects of the

  1. Descending propriospinal neurons mediate restoration of locomotor function following spinal cord injury.

    Science.gov (United States)

    Benthall, Katelyn N; Hough, Ryan A; McClellan, Andrew D

    2017-01-01

    Following spinal cord injury (SCI) in the lamprey, there is virtually complete recovery of locomotion within a few weeks, but interestingly, axonal regeneration of reticulospinal (RS) neurons is mostly limited to short distances caudal to the injury site. To explain this situation, we hypothesize that descending propriospinal (PS) neurons relay descending drive from RS neurons to indirectly activate spinal central pattern generators (CPGs). In the present study, the contributions of PS neurons to locomotor recovery were tested in the lamprey following SCI. First, long RS neuron projections were interrupted by staggered spinal hemitransections on the right side at 10% body length (BL; normalized from the tip of the oral hood) and on the left side at 30% BL. For acute recovery conditions (≤1 wk) and before axonal regeneration, swimming muscle burst activity was relatively normal, but with some deficits in coordination. Second, lampreys received two spaced complete spinal transections, one at 10% BL and one at 30% BL, to interrupt long-axon RS neuron projections. At short recovery times (3-5 wk), RS and PS neurons will have regenerated their axons for short distances and potentially established a polysynaptic descending command pathway. At these short recovery times, swimming muscle burst activity had only minor coordination deficits. A computer model that incorporated either of the two spinal lesions could mimic many aspects of the experimental data. In conclusion, descending PS neurons are a viable mechanism for indirect activation of spinal locomotor CPGs, although there can be coordination deficits of locomotor activity. In the lamprey following spinal lesion-mediated interruption of long axonal projections of reticulospinal (RS) neurons, sensory stimulation still elicited relatively normal locomotor muscle burst activity, but with some coordination deficits. Computer models incorporating the spinal lesions could mimic many aspects of the experimental results

  2. Flexibility in the patterning and control of axial locomotor networks in lamprey.

    Science.gov (United States)

    Buchanan, James T

    2011-12-01

    In lower vertebrates, locomotor burst generators for axial muscles generally produce unitary bursts that alternate between the two sides of the body. In lamprey, a lower vertebrate, locomotor activity in the axial ventral roots of the isolated spinal cord can exhibit flexibility in the timings of bursts to dorsally-located myotomal muscle fibers versus ventrally-located myotomal muscle fibers. These episodes of decreased synchrony can occur spontaneously, especially in the rostral spinal cord where the propagating body waves of swimming originate. Application of serotonin, an endogenous spinal neurotransmitter known to presynaptically inhibit excitatory synapses in lamprey, can promote decreased synchrony of dorsal-ventral bursting. These observations suggest the possible existence of dorsal and ventral locomotor networks with modifiable coupling strength between them. Intracellular recordings of motoneurons during locomotor activity provide some support for this model. Pairs of motoneurons innervating myotomal muscle fibers of similar ipsilateral dorsoventral location tend to have higher correlations of fast synaptic activity during fictive locomotion than do pairs of motoneurons innervating myotomes of different ipsilateral dorsoventral locations, suggesting their control by different populations of premotor interneurons. Further, these different motoneuron pools receive different patterns of excitatory and inhibitory inputs from individual reticulospinal neurons, conveyed in part by different sets of premotor interneurons. Perhaps, then, the locomotor network of the lamprey is not simply a unitary burst generator on each side of the spinal cord that activates all ipsilateral body muscles simultaneously. Instead, the burst generator on each side may comprise at least two coupled burst generators, one controlling motoneurons innervating dorsal body muscles and one controlling motoneurons innervating ventral body muscles. The coupling strength between these two

  3. A single exercise bout and locomotor learning after stroke: physiological, behavioural, and computational outcomes.

    Science.gov (United States)

    Charalambous, Charalambos C; Alcantara, Carolina C; French, Margaret A; Li, Xin; Matt, Kathleen S; Kim, Hyosub E; Morton, Susanne M; Reisman, Darcy S

    2018-05-15

    Previous work demonstrated an effect of a single high-intensity exercise bout coupled with motor practice on the retention of a newly acquired skilled arm movement, in both neurologically intact and impaired adults. In the present study, using behavioural and computational analyses we demonstrated that a single exercise bout, regardless of its intensity and timing, did not increase the retention of a novel locomotor task after stroke. Considering both present and previous work, we postulate that the benefits of exercise effect may depend on the type of motor learning (e.g. skill learning, sensorimotor adaptation) and/or task (e.g. arm accuracy-tracking task, walking). Acute high-intensity exercise coupled with motor practice improves the retention of motor learning in neurologically intact adults. However, whether exercise could improve the retention of locomotor learning after stroke is still unknown. Here, we investigated the effect of exercise intensity and timing on the retention of a novel locomotor learning task (i.e. split-belt treadmill walking) after stroke. Thirty-seven people post stroke participated in two sessions, 24 h apart, and were allocated to active control (CON), treadmill walking (TMW), or total body exercise on a cycle ergometer (TBE). In session 1, all groups exercised for a short bout (∼5 min) at low (CON) or high (TMW and TBE) intensity and before (CON and TMW) or after (TBE) the locomotor learning task. In both sessions, the locomotor learning task was to walk on a split-belt treadmill in a 2:1 speed ratio (100% and 50% fast-comfortable walking speed) for 15 min. To test the effect of exercise on 24 h retention, we applied behavioural and computational analyses. Behavioural data showed that neither high-intensity group showed greater 24 h retention compared to CON, and computational data showed that 24 h retention was attributable to a slow learning process for sensorimotor adaptation. Our findings demonstrated that acute exercise

  4. A new methodology based on functional principal component analysis to study postural stability post-stroke.

    Science.gov (United States)

    Sánchez-Sánchez, M Luz; Belda-Lois, Juan-Manuel; Mena-Del Horno, Silvia; Viosca-Herrero, Enrique; Igual-Camacho, Celedonia; Gisbert-Morant, Beatriz

    2018-05-05

    A major goal in stroke rehabilitation is the establishment of more effective physical therapy techniques to recover postural stability. Functional Principal Component Analysis provides greater insight into recovery trends. However, when missing values exist, obtaining functional data presents some difficulties. The purpose of this study was to reveal an alternative technique for obtaining the Functional Principal Components without requiring the conversion to functional data beforehand and to investigate this methodology to determine the effect of specific physical therapy techniques in balance recovery trends in elderly subjects with hemiplegia post-stroke. A randomized controlled pilot trial was developed. Thirty inpatients post-stroke were included. Control and target groups were treated with the same conventional physical therapy protocol based on functional criteria, but specific techniques were added to the target group depending on the subjects' functional level. Postural stability during standing was quantified by posturography. The assessments were performed once a month from the moment the participants were able to stand up to six months post-stroke. The target group showed a significant improvement in postural control recovery trend six months after stroke that was not present in the control group. Some of the assessed parameters revealed significant differences between treatment groups (P Functional Principal Component Analysis to be performed when data is scarce. Moreover, it allowed the dynamics of recovery of two different treatment groups to be determined, showing that the techniques added in the target group increased postural stability compared to the base protocol. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. The possible interaction of dopamine system in nucleus accumbens shell and glutamate system of prelimbic region on locomotor activity in rat

    Directory of Open Access Journals (Sweden)

    Hatam Ahmadi

    2013-06-01

    Full Text Available Background: Nucleus accumbens (NAc and prefrontal cortex (PFC dopaminergic and glutamatergic systems are involved in regulating of locomotor activity behaviors. This study has investigated the interaction of NAc shell dopaminergic system and prelimbic glutamatergic systems in regulating locomotor activity and related parameters. Methods: The aim of this study was the effect the drugs injection interaction in the brain of male Wistar rats on locomotor activity and related parameters, in the order of this purpose, open field apparatus that automatically recorded locomotor activity was employed. Unilateral intra-cerebral injection of drugs was done. Results: Unilateral intra-prelimbic injection of D-AP7 (N-methyl-D-aspartic acid= NMDA receptor antagonist; 0.25, 0.5 and 1μg/μl did not alter locomotor activity behaviors. However, infusion of NMDA (0.9μg/μl in this region increased locomotor activity (P<0.01, whereas decreased rearing (P<0.01 and grooming (P<0.01 which was blocked by D-AP7 (0.25μg/μl (P<0.01. Moreover, unilateral infusion of SCH23390 (dopamine D1 receptor antagonist; 0.25, 0.5 and 1μg/μl into the left NAc shell did not alter locomotor activity. However, injection of SKF38393 (dopamine D1 receptor agonist; 4μg/μl into the left NAc shell increased locomotor activity (P<0.05 which was blocked by SCH23390 (0.25μg/μl (P<0.01. Furthermore, the subthreshold dose infusion of SCH23390 (0.25μg/μl into the left NAc shell reduced the effect of intra- prelimbic NMDA on locomotor activity (P<0.01. In addition, intra-NAc shell administration of the subthreshold dose of SKF38393 (1μg/μl potentiated the middle dose (P<0.05, whereas decreased the higher dose of intra-left prelimbic NMDA response (P<0.05 on locomotor activity. Conclusion: The results suggested a modulatory effect of the NAc shell dopaminergic system on increased locomotor activity by activating glutamate system in prelimbic.

  6. Effect of adjuvant acupuncture therapy on serum cytokines and neurotransmitters in patients with post-stroke depression

    Directory of Open Access Journals (Sweden)

    Wan Feng

    2017-07-01

    Full Text Available Objective: To study the effect of adjuvant acupuncture therapy on serum cytokines and neurotransmitters in patients with post-stroke depression. Methods: Patients with poststroke depression who were treated in Traditional Chinese Medicine Hospital of Yuyang District Yulin City between May 2014 and February 2017 were selected as the research subjects and divided into two groups by random number table, control group of patients received neurotrophy, rehabilitation exercise, antidepressant drugs and other symptomatic treatment, and the acupuncture group received auxiliary acupuncture treatment on the basis of symptomatic treatment. The serum levels of nerve cytokines, inflammatory cytokines and neurotransmitters were detected before treatment as well as 2 weeks and 4 weeks after treatment. Results: 2 weeks and 4 weeks after treatment, serum BDNF, NGF, IGF-1, FGF-2, NE, DA and 5-HT levels of both groups of patients were higher than those before treatment while HCY, IL- 1β, IL-2, sIL-2R, TNF-α levels were lower than those before treatment, and serum BDNF, NGF, IGF-1, FGF-2, NE, DA and 5-HT levels of acupuncture group were higher than those of control group while HCY, IL-1β, IL-2, sIL-2R, TNF-α levels were lower than those of control group. Conclusion: Adjuvant acupuncture therapy for post-stroke depression can increase the secretion of nerve cytokines, reduce the secretion of inflammatory cytokines and regulate the function of monoamine neurotransmitters.

  7. Feasibility of the adaptive and automatic presentation of tasks (ADAPT system for rehabilitation of upper extremity function post-stroke

    Directory of Open Access Journals (Sweden)

    Choi Younggeun

    2011-08-01

    Full Text Available Abstract Background Current guidelines for rehabilitation of arm and hand function after stroke recommend that motor training focus on realistic tasks that require reaching and manipulation and engage the patient intensively, actively, and adaptively. Here, we investigated the feasibility of a novel robotic task-practice system, ADAPT, designed in accordance with such guidelines. At each trial, ADAPT selects a functional task according to a training schedule and with difficulty based on previous performance. Once the task is selected, the robot picks up and presents the corresponding tool, simulates the dynamics of the tasks, and the patient interacts with the tool to perform the task. Methods Five participants with chronic stroke with mild to moderate impairments (> 9 months post-stroke; Fugl-Meyer arm score 49.2 ± 5.6 practiced four functional tasks (selected out of six in a pre-test with ADAPT for about one and half hour and 144 trials in a pseudo-random schedule of 3-trial blocks per task. Results No adverse events occurred and ADAPT successfully presented the six functional tasks without human intervention for a total of 900 trials. Qualitative analysis of trajectories showed that ADAPT simulated the desired task dynamics adequately, and participants reported good, although not excellent, task fidelity. During training, the adaptive difficulty algorithm progressively increased task difficulty leading towards an optimal challenge point based on performance; difficulty was then continuously adjusted to keep performance around the challenge point. Furthermore, the time to complete all trained tasks decreased significantly from pretest to one-hour post-test. Finally, post-training questionnaires demonstrated positive patient acceptance of ADAPT. Conclusions ADAPT successfully provided adaptive progressive training for multiple functional tasks based on participant's performance. Our encouraging results establish the feasibility of ADAPT; its

  8. Poststroke Epilepsy Is Associated With a High Mortality After a Stroke at Young Age: Follow-Up of Transient Ischemic Attack and Stroke Patients and Unelucidated Risk Factor Evaluation Study

    NARCIS (Netherlands)

    Arntz, R.M.; Rutten-Jacobs, L.C.A.; Maaijwee, N.A.M.M.; Schoonderwaldt, H.C.; Dorresteijn, L.D.; Dijk, E.J. van; Leeuw, F.E. de

    2015-01-01

    BACKGROUND AND PURPOSE: Poststroke epilepsy is a common complication after a young stroke. We investigated the association between poststroke epilepsy and mortality. METHODS: We performed a prospective cohort study among 631 patients with a first-ever transient ischemic attack or ischemic stroke,

  9. Modeling spatial navigation in the presence of dynamic obstacles: a differential games approach.

    Science.gov (United States)

    Darekar, Anuja; Goussev, Valery; McFadyen, Bradford J; Lamontagne, Anouk; Fung, Joyce

    2018-03-01

    Obstacle circumvention strategies can be shaped by the dynamic interaction of an individual (evader) and an obstacle (pursuer). We have developed a mathematical model with predictive and emergent components, using experimental data from seven healthy young adults walking toward a target while avoiding collision with a stationary or moving obstacle (approaching head-on, or diagonally 30° left or right) in a virtual environment. Two linear properties from the predictive component enable the evader to predict the minimum distance between itself and the obstacle at all times, including the future intersection of trajectories. The emergent component uses the classical differential games model to solve for an optimal circumvention while reaching the target, wherein the locomotor strategy is influenced by the obstacle, target, and the evader velocity. Both model components were fitted to a different set of experimental data obtained from five poststroke and healthy participants to derive the minimum predicted distance (predictive component) and obstacle influence dimensions (emergent component) during circumvention. Minimum predicted distance between evader and pursuer was kept constant when the evader was closest to the obstacle in all participants. Obstacle influence dimensions varied depending on obstacle approach condition and preferred side of circumvention, reflecting differences in locomotor strategies between poststroke and healthy individuals. Additionally, important associations between model outputs and observed experimental outcomes were found. The model, supported by experimental data, suggests that both predictive and emergent processes can shape obstacle circumvention strategies in healthy and poststroke individuals. NEW & NOTEWORTHY Obstacle circumvention during goal-directed locomotion is modeled with a new mathematical approach comprising both predictive and emergent elements. The major novelty is using differential games solutions to illustrate the

  10. Results of clinical and radiologic mass-screening tests of the locomotor system of miners in Hungary

    Energy Technology Data Exchange (ETDEWEB)

    Bene, E.; Temesvary, P.; Szilagyi, M.; Pera, F.

    Clinical and radiological screening tests on the locomotor system of 250 workers being active in mines were accomplished by the authors. The test results of 125 miners working underground were compared with those of a control group consisting of equally 125 workers of the same age category, but engaged in open mining. As a result of the investigation it could be stated that miners working in underground mines were affected by diseases of the organs of motion at a very early stage, and in a greater proportion. The most serious deformations were observed with development irregularities and development variations. The development of degenerative locomotor diseases is promoted in Hungary by the working conditions prevailing underground. The completion of the examination procedure of fitness for work by clinical and radiological examinations of the locomotor system is important and highly recommended. The investigation carried out by the authors may serve as a model for the screening tests to be made on the locomotor system of industrial workers.

  11. Effect of Environmental Conditions and Toxic Compounds on the Locomotor Activity of Pediculus humanus capitis (Phthiraptera: Pediculidae).

    Science.gov (United States)

    Ortega-Insaurralde, I; Toloza, A C; Gonzalez-Audino, P; Mougabure-Cueto, G A; Alvarez-Costa, A; Roca-Acevedo, G; Picollo, M I

    2015-09-01

    In this work, we evaluated the effect of environmental variables such as temperature, humidity, and light on the locomotor activity of Pediculus humanus capitis. In addition, we used selected conditions of temperature, humidity, and light to study the effects of cypermethrin and N,N-diethyl-3-methylbenzamide (DEET) on the locomotor activity of head lice. Head lice increased their locomotor activity in an arena at 30°C compared with activity at 20°C. When we tested the influence of the humidity level, the locomotor activity of head lice showed no significant differences related to humidity level, both at 30°C and 20°C. Concerning light influence, we observed that the higher the intensity of light, the slower the movement of head lice. We also demonstrated that sublethal doses of toxics may alter locomotor activity in adults of head lice. Sublethal doses of cypermethrin induced hyperactivated responses in adult head lice. Sublethal doses of DEET evocated hypoactivated responses in head lice. The observation of stereotyped behavior in head lice elicited by toxic compounds proved that measuring locomotor activity in an experimental set-up where environmental conditions are controlled would be appropriate to evaluate compounds of biological importance, such as molecules involved in the host-parasite interaction and intraspecific relationships. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. From rehabilitation to recovery: protocol for a randomised controlled trial evaluating a goal-based intervention to reduce depression and facilitate participation post-stroke

    Directory of Open Access Journals (Sweden)

    Hill Keith

    2011-06-01

    Full Text Available Abstract Background There is much discourse in healthcare about the importance of client-centred rehabilitation, however in the realm of community-based therapy post-stroke there has been little investigation into the efficacy of goal-directed practice that reflects patients' valued activities. In addition, the effect of active involvement of carers in such a rehabilitation process and their subsequent contribution to functional and emotional recovery post-stroke is unclear. In community based rehabilitation, interventions based on patients' perceived needs may be more likely to alter such outcomes. In this paper, we describe the methodology of a randomised controlled trial of an integrated approach to facilitating patient goal achievement in the first year post-stroke. The effectiveness of this intervention in reducing the severity of post-stroke depression, improving participation status and health-related quality of life is examined. The impact on carers is also examined. Methods/Design Patients (and their primary carers, if available are randomly allocated to an intervention or control arm of the study. The intervention is multimodal and aims to screen for adverse stroke sequelae and address ways to enhance participation in patient-valued activities. Intervention methods include: telephone contacts, written information provision, home visitation, and contact with treating health professionals, with further relevant health service referrals as required. The control involves treatment as usual, as determined by inpatient and community rehabilitation treating teams. Formal blinded assessments are conducted at discharge from inpatient rehabilitation, and at six and twelve months post-stroke. The primary outcome is depression. Secondary outcome measures include participation and activity status, health-related quality of life, and self-efficacy. Discussion The results of this trial will assist with the development of a model for community

  13. From rehabilitation to recovery: protocol for a randomised controlled trial evaluating a goal-based intervention to reduce depression and facilitate participation post-stroke.

    Science.gov (United States)

    Graven, Christine; Brock, Kim; Hill, Keith; Ames, David; Cotton, Susan; Joubert, Lynette

    2011-06-18

    There is much discourse in healthcare about the importance of client-centred rehabilitation, however in the realm of community-based therapy post-stroke there has been little investigation into the efficacy of goal-directed practice that reflects patients' valued activities. In addition, the effect of active involvement of carers in such a rehabilitation process and their subsequent contribution to functional and emotional recovery post-stroke is unclear. In community based rehabilitation, interventions based on patients' perceived needs may be more likely to alter such outcomes. In this paper, we describe the methodology of a randomised controlled trial of an integrated approach to facilitating patient goal achievement in the first year post-stroke. The effectiveness of this intervention in reducing the severity of post-stroke depression, improving participation status and health-related quality of life is examined. The impact on carers is also examined. Patients (and their primary carers, if available) are randomly allocated to an intervention or control arm of the study. The intervention is multimodal and aims to screen for adverse stroke sequelae and address ways to enhance participation in patient-valued activities. Intervention methods include: telephone contacts, written information provision, home visitation, and contact with treating health professionals, with further relevant health service referrals as required. The control involves treatment as usual, as determined by inpatient and community rehabilitation treating teams. Formal blinded assessments are conducted at discharge from inpatient rehabilitation, and at six and twelve months post-stroke. The primary outcome is depression. Secondary outcome measures include participation and activity status, health-related quality of life, and self-efficacy. The results of this trial will assist with the development of a model for community-based rehabilitation management for stroke patients and their carers

  14. Integrated Locomotor Function Tests for Countermeasure Evaluation

    Science.gov (United States)

    Bloomberg, J. J.; Mulavara, A. P.; Peters, B. T.; Cohen, H. S.; Landsness, E. C.; Black, F. O.

    2005-01-01

    Following spaceflight crewmembers experience locomotor dysfunction due to inflight adaptive alterations in sensorimotor function. Countermeasures designed to mitigate these postflight gait alterations need to be assessed with a new generation of tests that evaluate the interaction of various sensorimotor sub-systems central to locomotor control. The goal of the present study was to develop new functional tests of locomotor control that could be used to test the efficacy of countermeasures. These tests were designed to simultaneously examine the function of multiple sensorimotor systems underlying the control of locomotion and be operationally relevant to the astronaut population. Traditionally, gaze stabilization has been studied almost exclusively in seated subjects performing target acquisition tasks requiring only the involvement of coordinated eye-head movements. However, activities like walking involve full-body movement and require coordination between lower limbs and the eye-head-trunk complex to achieve stabilized gaze during locomotion. Therefore the first goal of this study was to determine how the multiple, interdependent, full-body sensorimotor gaze stabilization subsystems are functionally coordinated during locomotion. In an earlier study we investigated how alteration in gaze tasking changes full-body locomotor control strategies. Subjects walked on a treadmill and either focused on a central point target or read numeral characters. We measured: temporal parameters of gait, full body sagittal plane segmental kinematics of the head, trunk, thigh, shank and foot, accelerations along the vertical axis at the head and the shank, and the vertical forces acting on the support surface. In comparison to the point target fixation condition, the results of the number reading task showed that compensatory head pitch movements increased, peak head acceleration was reduced and knee flexion at heel-strike was increased. In a more recent study we investigated the

  15. Effects of action observation therapy on hand dexterity and EEG-based cortical activation patterns in patients with post-stroke hemiparesis.

    Science.gov (United States)

    Kuk, Eun-Ju; Kim, Jong-Man; Oh, Duck-Won; Hwang, Han-Jeong

    2016-10-01

    Previous reports have suggested that action observation training (AOT) is beneficial in enhancing the early learning of new motor tasks; however, EEG-based investigation has received little attention for AOT. The purpose of this study was to illustrate the effects of AOT on hand dexterity and cortical activation in patients with post-stroke hemiparesis. Twenty patients with post-stroke hemiparesis were randomly divided into either the experimental group (EG) or control group (CG), with 10 patients in each group. Prior to the execution of motor tasks (carrying wooden blocks from one box to another), subjects in the EG and CG observed a video clip displaying the execution of the same motor task and pictures showing landscapes, respectively. Outcome measures included the box and block test (BBT) to evaluate hand dexterity and EEG-based brain mapping to detect changes in cortical activation. The BBT scores (EG: 20.50 ± 6.62 at pre-test and 24.40 ± 5.42 at post-test; CG: 20.20 ± 6.12 at pre-test and 20.60 ± 7.17 at post-test) revealed significant main effects for the time and group and significant time-by-group interactions (p < 0.05). For the subjects in the EG, topographical representations obtained with the EEG-based brain mapping system were different in each session of the AOT and remarkable changes occurred from the 2nd session of AOT. Furthermore, the middle frontal gyrus was less active at post-test than at pre-test. These findings support that AOT may be beneficial in altering cortical activation patterns and hand dexterity.

  16. Effect of human-robot interaction on muscular synergies on healthy people and post-stroke chronic patients.

    Science.gov (United States)

    Scano, A; Chiavenna, A; Caimmi, M; Malosio, M; Tosatti, L M; Molteni, F

    2017-07-01

    Robot-assisted training is a widely used technique to promote motor re-learning on post-stroke patients that suffer from motor impairment. While it is commonly accepted that robot-based therapies are potentially helpful, strong insights about their efficacy are still lacking. The motor re-learning process may act on muscular synergies, which are groups of co-activating muscles that, being controlled as a synergic group, allow simplifying the problem of motor control. In fact, by coordinating a reduced amount of neural signals, complex motor patterns can be elicited. This paper aims at analyzing the effects of robot assistance during 3D-reaching movements in the framework of muscular synergies. 5 healthy people and 3 neurological patients performed free and robot-assisted reaching movements at 2 different speeds (slow and quasi-physiological). EMG recordings were used to extract muscular synergies. Results indicate that the interaction with the robot very slightly alters healthy people patterns but, on the contrary, it may promote the emergency of physiological-like synergies on neurological patients.

  17. Effects of Speech Therapy in Hospitalized Patients with Post-Stroke Dysphagia: A Systematic Review of Observational Studies

    Directory of Open Access Journals (Sweden)

    Joice Santos Andrade

    2017-12-01

    Conclusion: Speech therapy in hospital bed in post-stroke hospitalized patients with dysphagia seems to bring satisfactory results in the short-term, revealing the importance of diagnosis and early intervention in these cases.

  18. Classification of rhythmic locomotor patterns in electromyographic signals using fuzzy sets

    Directory of Open Access Journals (Sweden)

    Thrasher Timothy A

    2011-12-01

    Full Text Available Abstract Background Locomotor control is accomplished by a complex integration of neural mechanisms including a central pattern generator, spinal reflexes and supraspinal control centres. Patterns of muscle activation during walking exhibit an underlying structure in which groups of muscles seem to activate in united bursts. Presented here is a statistical approach for analyzing Surface Electromyography (SEMG data with the goal of classifying rhythmic "burst" patterns that are consistent with a central pattern generator model of locomotor control. Methods A fuzzy model of rhythmic locomotor patterns was optimized and evaluated using SEMG data from a convenience sample of four able-bodied individuals. As well, two subjects with pathological gait participated: one with Parkinson's Disease, and one with incomplete spinal cord injury. Subjects walked overground and on a treadmill while SEMG was recorded from major muscles of the lower extremities. The model was fit to half of the recorded data using non-linear optimization and validated against the other half of the data. The coefficient of determination, R2, was used to interpret the model's goodness of fit. Results Using four fuzzy burst patterns, the model was able to explain approximately 70-83% of the variance in muscle activation during treadmill gait and 74% during overground gait. When five burst functions were used, one function was found to be redundant. The model explained 81-83% of the variance in the Parkinsonian gait, and only 46-59% of the variance in spinal cord injured gait. Conclusions The analytical approach proposed in this article is a novel way to interpret multichannel SEMG signals by reducing the data into basic rhythmic patterns. This can help us better understand the role of rhythmic patterns in locomotor control.

  19. Mephedrone interactions with cocaine: prior exposure to the 'bath salt' constituent enhances cocaine-induced locomotor activation in rats.

    Science.gov (United States)

    Gregg, Ryan A; Tallarida, Christopher S; Reitz, Allen B; Rawls, Scott M

    2013-12-01

    Concurrent use of mephedrone (4-methylmethcathinone; MEPH) and established drugs of abuse is now commonplace, but knowledge about interactions between these drugs is sparse. The present study was designed to test the hypothesis that prior MEPH exposure enhances the locomotor-stimulant effects of cocaine and methamphetamine (METH). For cocaine experiments, rats pretreated with saline, cocaine (15 mg/kg), or MEPH (15 mg/kg) for 5 days were injected with cocaine after 10 days of drug absence. For METH experiments, rats pretreated with saline, METH (2 mg/kg), or MEPH (15 mg/kg) were injected with METH after 10 days of drug absence. Cocaine challenge produced greater locomotor activity after pretreatment with cocaine or MEPH than after pretreatment with saline. METH challenge produced greater locomotor activity after METH pretreatment than after saline pretreatment; however, locomotor activity in rats pretreated with MEPH or saline and then challenged with METH was not significantly different. The locomotor response to MEPH (15 mg/kg) was not significantly affected by pretreatment with cocaine (15 mg/kg) or METH (0.5, 2 mg/kg). The present demonstration that cocaine-induced locomotor activation is enhanced by prior MEPH exposure suggests that MEPH cross-sensitizes to cocaine and increases cocaine efficacy. Interestingly, MEPH cross-sensitization was not bidirectional and did not extend to METH, suggesting that the phenomenon is sensitive to specific psychostimulants.

  20. Flex Sensor Based Biofeedback Monitoring for Post-Stroke Fingers Myopathy Patients

    Science.gov (United States)

    Garda, Y. R.; Caesarendra, W.; Tjahjowidodo, T.; Turnip, A.; Wahyudati, S.; Nurhasanah, L.; Sutopo, D.

    2018-04-01

    Hands are one of the crucial parts of the human body in carrying out daily activities. Accidents on the hands decreasing in motor skills of the hand so that therapy is necessary to restore motor function of the hand. In addition to accidents, hand disabilities can be caused by certain diseases, e.g. stroke. Stroke is a partial destruction of the brain. It occurs if the arteries that drain blood to the brain are blocked, or if torn or leak. The purpose of this study to make biofeedback monitoring equipment for post-stroke hands myopathy patients. Biofeedback is an alternative method of treatment that involves measuring body functions measured subjects such as skin temperature, sweat activity, blood pressure, heart rate and hand paralysis due to stroke. In this study, the sensor used for biofeedback monitoring tool is flex sensor. Flex sensor is a passive resistive device that changes its resistance as the sensor is bent. Flex sensor converts the magnitude of the bend into electrical resistance, the greater the bend the greater the resistance value. The monitoring used in this biofeedback monitoring tool uses Graphical User Interface (GUI) in C# programming language. The motivation of the study is to monitor and record the progressive improvement of the hand therapy. Patients who experienced post-stroke can see the therapy progress quantitatively.

  1. The effects of music listening interventions on cognition and mood post-stroke: a systematic review.

    Science.gov (United States)

    Baylan, Satu; Swann-Price, Rhiannon; Peryer, Guy; Quinn, Terry

    2016-11-01

    Music listening may have beneficial psychological effects but there has been no comprehensive synthesis of the available data describing efficacy of music listening in stroke. Areas covered: We performed a systematic review examining the effects of music listening interventions on cognition and mood post-stroke. We found five published trials (n = 169 participants) and four ongoing trials. All studies demonstrated benefits of music listening on at least one measure of cognition or mood. Heterogeneity precluded meta-analysis and all included studies had potential risk of bias. Common reporting or methodological issues including lack of blinding, lack of detail on the intervention and safety reporting. Expert commentary: It is too early to recommend music listening as routine treatment post-stroke, available studies have been under-powered and at risk of bias. Accepting these caveats, music listening may have beneficial effects on both mood and cognition and we await the results of ongoing controlled studies.

  2. Usability evaluation of a locomotor therapy device considering different strategies

    Directory of Open Access Journals (Sweden)

    Langthaler Sonja

    2016-09-01

    Full Text Available Usability of medical devices is one of the main determining factors in preventing use errors in treatment and strongly correlates to patient safety and quality of treatment. This thesis demonstrates the usability testing and evaluation of a prototype for locomotor therapy of infants. Therefore, based on the normative requirements of the EN 62366, a concept combined of evaluation procedures and assessing methods was created to enable extensive testing and analysis of the different aspects of usability. On the basis of gathered information weak points were identified and appropriate measures were presented to increase the usability and operating safety of the locomotor prototype. The overall outcome showed an usability value of 77.4% and an evaluation score of 6.99, which can be interpreted as “satisfactory”.

  3. Induction of neuroplasticity and recovery in post-stroke aphasia by non-invasive brain stimulation

    Directory of Open Access Journals (Sweden)

    Priyanka eShah

    2013-12-01

    Full Text Available Stroke victims tend to prioritize speaking, writing and walking as the three most important rehabilitation goals. Of note is that two of these goals involve communication. This underscores the significance of developing successful approaches to aphasia treatment for the several hundred thousand new aphasia patients each year and over 1 million stroke survivors with chronic aphasia in the U.S. alone. After several years of growth as a research tool, noninvasive brain stimulation (NBS is gradually entering the arena of clinical aphasiology. In this review, we first examine the current state of knowledge of post-stroke language recovery including the contributions from the dominant and non-dominant hemispheres. Next, we briefly discuss the methods and the physiologic basis of the use of inhibitory and excitatory repetitive transcranial magnetic stimulation (rTMS and transcranial direct current stimulation (tDCS as research tools in patients who experience post-stroke aphasia. Finally, we provide a critical review of the most influential evidence behind the potential use of these two brain stimulation methods as clinical rehabilitative tools.

  4. Induction of neuroplasticity and recovery in post-stroke aphasia by non-invasive brain stimulation.

    Science.gov (United States)

    Shah, Priyanka P; Szaflarski, Jerzy P; Allendorfer, Jane; Hamilton, Roy H

    2013-12-24

    Stroke victims tend to prioritize speaking, writing, and walking as the three most important rehabilitation goals. Of note is that two of these goals involve communication. This underscores the significance of developing successful approaches to aphasia treatment for the several hundred thousand new aphasia patients each year and over 1 million stroke survivors with chronic aphasia in the U.S. alone. After several years of growth as a research tool, non-invasive brain stimulation (NBS) is gradually entering the arena of clinical aphasiology. In this review, we first examine the current state of knowledge of post-stroke language recovery including the contributions from the dominant and non-dominant hemispheres. Next, we briefly discuss the methods and the physiologic basis of the use of inhibitory and excitatory repetitive transcranial magnetic stimulation (rTMS) and transcranial direct current stimulation (tDCS) as research tools in patients who experience post-stroke aphasia. Finally, we provide a critical review of the most influential evidence behind the potential use of these two brain stimulation methods as clinical rehabilitative tools.

  5. [Disorders of locomotor system and effectiveness of physiotherapy in coal miners].

    Science.gov (United States)

    Bilski, Bartosz; Bednarek, Agata

    2003-01-01

    The aim of the survey was to analyze the efficacy of physiotherapy applied in coal miners as well as to assess their locomotor system load and the effects of working conditions in mines. The questionnaire survey covered a group of 51 miners, aged 28-76 years (mean, 54 years), undergoing physiotherapeutic procedures in the mine out-patient clinic during the first quarter of 2003. The survey revealed that lumbosacral disorders were the most frequent locomotor system complaints reported by miners, especially those who work in a bending down position. According to the clinical data, spondylosis and allied disorders were the main reasons for pain in this part of the body. Having analyzed the relationship between age and occurrence of back pains, the majority of complaints were found in the 46-55 age group (two complaints per one respondent). The analysis of the association between back pains and duration of employment revealed that the complaints for the locomotor system occurred already after a five-year employment. The survey showed that the application of physiotherapeutic procedures diminished the back pain in the study group by 2.83 on average on the 0-10 scale. It was also found that magnetotherapy proved to be the most effective method in treating the spinal degenerative changes.

  6. Cocaine-induced locomotor activity in rats selectively bred for low and high voluntary running behavior.

    Science.gov (United States)

    Brown, Jacob D; Green, Caroline L; Arthur, Ian M; Booth, Frank W; Miller, Dennis K

    2015-02-01

    The rewarding effects of physical activity and abused drugs are caused by stimulation of similar brain pathways. Low (LVR) and high (HVR) voluntary running lines were developed by selectively breeding Wistar rats on running distance performance on postnatal days 28-34. We hypothesized that LVR rats would be more sensitive to the locomotor-activating effects of cocaine than HVR rats due to their lower motivation for wheel running. We investigated how selection for LVR or HVR behavior affects inherited activity responses: (a) open field activity levels, (b) habituation to an open field environment, and (c) the locomotor response to cocaine. Open field activity was measured for 80 min on three successive days (days 1-3). Data from the first 20 min were analyzed to determine novelty-induced locomotor activity (day 1) and the habituation to the environment (days 1-3). On day 3, rats were acclimated to the chamber for 20 min and then received saline or cocaine (10, 20, or 30 mg/kg) injection. Dopamine transporter (DAT) protein in the nucleus accumbens was measured via Western blot. Selecting for low and high voluntary running behavior co-selects for differences in inherent (HVR > LVR) and cocaine-induced (LVR > HVR) locomotor activity levels. The differences in the selected behavioral measures do not appear to correlate with DAT protein levels. LVR and HVR rats are an intriguing physical activity model for studying the interactions between genes related to the motivation to run, to use drugs of abuse, and to exhibit locomotor activity.

  7. Locomotor-Respiratory Coupling in Wheelchair Racing Athletes: A Pilot Study.

    Science.gov (United States)

    Perret, Claudio; Wenger, Martin; Leicht, Christof A; Goosey-Tolfrey, Victoria L

    2016-01-01

    In wheelchair racing, respiratory muscles of the rib cage are concomitantly involved in non-ventilatory functions during wheelchair propulsion. However, the relationship between locomotor-respiratory coupling (LRC: the ratio between push and breathing frequency), respiratory parameters and work efficiency is unknown. Therefore, the aim of the present study was to investigate the LRC in wheelchair racers over different race distances. Eight trained and experienced wheelchair racers completed three time-trials over the distances of 400, 800, and 5000 m on a training roller in randomized order. During the time trials, ventilatory and gas exchange variables as well as push frequency were continuously registered to determine possible LRC strategies. Four different coupling ratios were identified, namely 1:1; 2:1, 3:1 as well as a 1:1/2:1 alternating type, respectively. The 2:1 coupling was the most dominant type. The 1:1/2:1 alternating coupling type was found predominantly during the 400 m time-trial. Longer race distances tended to result in an increased coupling ratio (e.g., from 1:1 toward 2:1), and an increase in coupling ratio toward a more efficient respiration was found over the 5000 m distance. A significant correlation (r = 0.80, p respiratory frequency and the respiratory equivalent for oxygen was found for the 400 m and the 800 m time-trials. These findings suggest that a higher coupling ratio indicates enhanced breathing work efficiency with a concomitant deeper and slower respiration during wheelchair racing. Thus, the selection of an appropriate LRC strategy may help to optimize wheelchair racing performance.

  8. Evidence for a role of orexin/hypocretin system in vestibular lesion-induced locomotor abnormalities in rats

    Directory of Open Access Journals (Sweden)

    Leilei Pan

    2016-07-01

    Full Text Available Vestibular damage can induce locomotor abnormalities in both animals and humans. Rodents with bilateral vestibular loss showed vestibular deficits syndrome such as circling, opisthotonus as well as locomotor and exploratory hyperactivity. Previous studies have investigated the changes in the dopamine system after vestibular loss, but the results are inconsistent and inconclusive. Numerous evidences indicate that the orexin system is implicated in central motor control. We hypothesized that orexin may be potentially involved in vestibular loss-induced motor disorders. In this study, we examined the effects of arsanilate- or 3, 3′-iminodipropionitrile (IDPN-induced vestibular lesion (AVL or IVL on the orexin-A (OXA labeling in rat hypothalamus using immunohistochemistry. The vestibular lesion-induced locomotor abnormalities were recorded and verified using a histamine H4 receptor antagonist JNJ7777120 (20 mg/kg, i.p.. The effects of the orexin receptor type 1 antagonist SB334867 (16 μg, i.c.v. on these behavior responses were also investigated. At 72 h post-AVL and IVL, animals exhibited vestibular deficit syndrome and locomotor hyperactivity in the home cages. These responses were significantly alleviated by JNJ7777120 which also eliminated AVL-induced increases in exploratory behavior in an open field. The numbers of OXA-labeled neurons in the hypothalamus were significantly increased in the AVL animals at 72 h post-AVL and in the IVL animals at 24, 48 and 72 h post-IVL. SB334867 significantly attenuated the vestibular deficit syndrome and locomotor hyperactivity at 72 h post-AVL and IVL. It also decreased exploratory behavior in the AVL animals. These results suggested that the alteration of OXA expression might contribute to locomotor abnormalities after acute vestibular lesion. The orexin receptors might be the potential therapeutic targets for vestibular disorders.

  9. An overview of robotic/mechanical devices for post-stroke thumb rehabilitation.

    Science.gov (United States)

    Suarez-Escobar, Marian; Rendon-Velez, Elizabeth

    2018-01-15

    This article aims to clarify the current state-of-the-art of robotic/mechanical devices for post-stroke thumb rehabilitation as well as the anatomical characteristics and motions of the thumb that are crucial for the development of any device that aims to support its motion. A systematic literature search was conducted to identify robotic/mechanical devices for post-stroke thumb rehabilitation. Specific electronic databases and well-defined search terms and inclusion/exclusion criteria were used for such purpose. A reasoning model was devised to support the structured abstraction of relevant data from the literature of interest. Following the main search and after removing duplicated and other non-relevant studies, 68 articles (corresponding to 32 devices) were left for further examination. These articles were analyzed to extract data relative to (i) the motions assisted/permitted - either actively or passively - by the device per anatomical joint of the thumb and (ii) mechanical-related aspects (i.e., architecture, connections to thumb, other fingers supported, adjustability to different hand sizes, actuators - type, quantity, location, power transmission and motion trajectory). Most articles describe preliminary design and testing of prototypes, rather than the thorough evaluation of commercially ready devices. Defining appropriate kinematic models of the thumb upon which to design such devices still remains a challenging and unresolved task. Further research is needed before these devices can actually be implemented in clinical environments to serve their intended purpose of complementing the labour of therapists by facilitating intensive treatment with precise and repeatable exercises. Implications for Rehabilitation Post-stroke functional disability of the hand, and particularly of the thumb, significantly affects the capability to perform activities of daily living, threatening the independence and quality of life of the stroke survivors. The latest studies

  10. Effects of scallop shell extract on scopolamine-induced memory impairment and MK801-induced locomotor activity.

    Science.gov (United States)

    Hasegawa, Yasushi; Inoue, Tatsuro; Kawaminami, Satoshi; Fujita, Miho

    2016-07-01

    To evaluate the neuroprotective effects of the organic components of scallop shells (scallop shell extract) on memory impairment and locomotor activity induced by scopolamine or 5-methyl-10,11-dihydro-5H-dibenzo (a,d) cyclohepten-5,10-imine (MK801). Effect of the scallop shell extract on memory impairment and locomotor activity was investigated using the Y-maze test, the Morris water maze test, and the open field test. Scallop shell extract significantly reduced scopolamine-induced short-term memory impairment and partially reduced scopolamine-induced spatial memory impairment in the Morris water maze test. Scallop shell extract suppressed scopolamine-induced elevation of acetylcholine esterase activity in the cerebral cortex. Treatment with scallop shell extract reversed the increase in locomotor activity induced by scopolamine. Scallop shell extract also suppressed the increase in locomotor activity induced by MK801. Our results provide initial evidence that scallop shell extract reduces scopolamine-induced memory impairment and suppresses MK-801-induced hyperlocomotion. Copyright © 2016 Hainan Medical College. Production and hosting by Elsevier B.V. All rights reserved.

  11. Effects of sex pheromones and sexual maturation on locomotor activity in female sea lamprey (Petromyzon marinus)

    Science.gov (United States)

    Walaszczyk, Erin J.; Johnson, Nicholas S.; Steibel, Juan Pedro; Li, Weiming

    2013-01-01

    Synchronization of male and female locomotor rhythmicity can play a vital role in ensuring reproductive success. Several physiological and environmental factors alter these locomotor rhythms. As sea lamprey, Petromyzon marinus, progress through their life cycle, their locomotor activity rhythm changes multiple times. The goal of this study was to elucidate the activity patterns of adult female sea lamprey during the sexual maturation process and discern the interactions of these patterns with exposure to male pheromones. During these stages, preovulated and ovulated adult females are exposed to sex pheromone compounds, which are released by spermiated males and attract ovulated females to the nest for spawning. The locomotor behavior of adult females was monitored in a natural stream with a passive integrated tag responder system as they matured, and they were exposed to a sex pheromone treatment (spermiated male washings) or a control (prespermiated male washings). Results showed that, dependent on the hour of day, male sex pheromone compounds reduce total activity (p reproductive synchrony of mature adults, thus increasing reproductive success in this species.

  12. Is There Evidence That Active Videogames Increase Energy Expenditure and Exercise Intensity for People Poststroke and with Cerebral Palsy?

    Science.gov (United States)

    Deutsch, Judith E; Guarrera-Bowlby, Phyllis; Myslinski, Mary Jane; Kafri, Michal

    2015-02-01

    This article asked and answered the question of whether there was evidence to support the use of videogames for promotion of wellness and fitness for people poststroke and those with cerebral palsy (CP). A literature search of PubMed, CINAHL, and PEDro using a population, intervention, and outcome (PIO) approach and the key words "stroke (or CP) AND video games (and synonyms) AND energy expenditure (EE) (and synonyms)" was conducted. It yielded two relevant references for people poststroke and five references for people with CP. The literature extraction and synthesis by the categories of the PIO indicated that most studies used only the population of interest, except two that compared the EE with that of healthy controls. The main finding is that both people poststroke (moderate severity) and people with CP (mild severity) can achieve moderate EE playing Wii(™) (Nintendo, Kyoto, Japan), PlayStation(®) (Sony, Tokyo, Japan), and Kinect(™) (Microsoft, Redmond, WA) games. Adults with CP of mild severity played the videogames at vigorous levels, whereas those with severe CP played them at low levels. There appears to be an interaction between development and severity that influences the exercise intensity measured by EE. The findings suggests that videogames are a gateway for wellness promotion.

  13. Glutamatergic mechanisms for speed control and network operation in the rodent locomotor CPG

    DEFF Research Database (Denmark)

    Talpalar, Adolfo E.; Kiehn, Ole

    2010-01-01

    in mammals have produced conflicting results regarding the necessity and role of the different ionotropic glutamate receptors (GluRs) in the CPG function. Here, we use electrophysiological and pharmacological techniques in the in vitro neonatal mouse lumbar spinal cord to investigate the role of a broad...... mechanisms acting at various network levels. AMPA and kainate receptors are necessary for generating the highest locomotor frequencies. For coordination, NMDARs are more important than non-NMDARs for conveying the rhythmic signal from the network to the motor neurons during long-lasting and steady locomotor...

  14. Plasticity of spinal centers in spinal cord injury patients: new concepts for gait evaluation and training.

    Science.gov (United States)

    Scivoletto, Giorgio; Ivanenko, Yuri; Morganti, Barbara; Grasso, Renato; Zago, Mirka; Lacquaniti, Francesco; Ditunno, John; Molinari, Marco

    2007-01-01

    Recent data on spinal cord plasticity after spinal cord injury (SCI) were reviewed to analyze the influence of training on the neurophysiological organization of locomotor spinal circuits in SCI patients. In particular, the authors studied the relationship between central pattern generators (CPGs) and motor neuron pool activation during gait. An analysis of the relations between locomotor recovery and compensatory mechanisms focuses on the hierarchical organization of gait parameters and allows characterizing kinematic parameters that are highly stable during different gait conditions and in recovered gait after SCI. The importance of training characteristics and the use of robotic/automated devices in gait recovery is analyzed and discussed. The role of CPG in defining kinematic gait parameters is summarized, and spatio-temporal maps of EMG activity during gait are used to clarify the role of CPG plasticity in sustaining gait recovery.

  15. The effects of sex-ratio and density on locomotor activity in the house fly, Musca domestica

    DEFF Research Database (Denmark)

    Bahrndorff, Simon; Kjaersgaard, Anders; Pertoldi, Cino

    2012-01-01

    Although locomotor activity is involved in almost all behavioral traits, there is a lack of knowledge on what factors affect it. This study examined the effects of sex-ratio and density on the circadian rhythm of locomotor activity of adult Musca domestica L. (Diptera: Muscidae) using an infra......-red light system. Sex-ratio significantly affected locomotor activity, increasing with the percentage of males in the vials. In accordance with other studies, males were more active than females, but the circadian rhythm of the two sexes was not constant over time and changed during the light period...... of the behavioral interactions between houseflies and highlight the importance of these factors when designing behavioral experiments using M. domestica....

  16. Virtual Reality Training with Cognitive Load Improves Walking Function in Chronic Stroke Patients.

    Science.gov (United States)

    Cho, Ki Hun; Kim, Min Kyu; Lee, Hwang-Jae; Lee, Wan Hee

    2015-08-01

    Virtual reality training is considered as an effective intervention method of stroke patients, and the virtual reality system for therapeutic rehabilitation has emphasized the cognitive factors to improve walking function. The purpose of current study was to investigate the effect of virtual reality training with cognitive load (VRTCL) on walking function of chronic stroke. Chronic stroke patients were randomly assigned to the VRTCL group (11 patients, including 5 men; mean age, 60.0 years; post-stroke duration, 273.9 days) or control group (11 patients, including 2 men; mean age, 58.6 years; post-stroke duration, 263.9 days). All subjects participated in the standard rehabilitation program that consisted of physical and occupational therapies. In addition, VRTCL group participated in the VRTCL for 4 weeks (30 min per day and five times a week), while those in the control group participated in virtual reality treadmill training. Walking function under single (walking alone) and dual task (walking with cognitive tasks) conditions was assessed using an electrical walkway system. After the 4-week intervention, under both single and dual task conditions, significant improvement on walking function was observed in VRTCL and control groups (P < 0.05). In addition, in the dual task condition, greater improvement on walking function was observed in the VRTCL group, compared with the control group (P < 0.05). These findings demonstrated the efficacy of VRTCL on the walking function under the dual task condition. Therefore, we suggest that VRTCL may be an effective method for the achievement of independent walking in chronic stroke patients.

  17. Drosophila Clock Is Required in Brain Pacemaker Neurons to Prevent Premature Locomotor Aging Independently of Its Circadian Function.

    Directory of Open Access Journals (Sweden)

    Alexandra Vaccaro

    2017-01-01

    Full Text Available Circadian clocks control many self-sustained rhythms in physiology and behavior with approximately 24-hour periodicity. In many organisms, oxidative stress and aging negatively impact the circadian system and sleep. Conversely, loss of the clock decreases resistance to oxidative stress, and may reduce lifespan and speed up brain aging and neurodegeneration. Here we examined the effects of clock disruptions on locomotor aging and longevity in Drosophila. We found that lifespan was similarly reduced in three arrhythmic mutants (ClkAR, cyc0 and tim0 and in wild-type flies under constant light, which stops the clock. In contrast, ClkAR mutants showed significantly faster age-related locomotor deficits (as monitored by startle-induced climbing than cyc0 and tim0, or than control flies under constant light. Reactive oxygen species accumulated more with age in ClkAR mutant brains, but this did not appear to contribute to the accelerated locomotor decline of the mutant. Clk, but not Cyc, inactivation by RNA interference in the pigment-dispersing factor (PDF-expressing central pacemaker neurons led to similar loss of climbing performance as ClkAR. Conversely, restoring Clk function in these cells was sufficient to rescue the ClkAR locomotor phenotype, independently of behavioral rhythmicity. Accelerated locomotor decline of the ClkAR mutant required expression of the PDF receptor and correlated to an apparent loss of dopaminergic neurons in the posterior protocerebral lateral 1 (PPL1 clusters. This neuronal loss was rescued when the ClkAR mutation was placed in an apoptosis-deficient background. Impairing dopamine synthesis in a single pair of PPL1 neurons that innervate the mushroom bodies accelerated locomotor decline in otherwise wild-type flies. Our results therefore reveal a novel circadian-independent requirement for Clk in brain circadian neurons to maintain a subset of dopaminergic cells and avoid premature locomotor aging in Drosophila.

  18. Predictive and Reactive Locomotor Adaptability in Healthy Elderly: A Systematic Review and Meta-Analysis.

    Science.gov (United States)

    Bohm, Sebastian; Mademli, Lida; Mersmann, Falk; Arampatzis, Adamantios

    2015-12-01

    Locomotor adaptability is based on the implementation of error-feedback information from previous perturbations to predictively adapt to expected perturbations (feedforward) and to facilitate reactive responses in recurring unexpected perturbations ('savings'). The effect of aging on predictive and reactive adaptability is yet unclear. However, such understanding is fundamental for the design and application of effective interventions targeting fall prevention. We systematically searched the Web of Science, MEDLINE, Embase and Science Direct databases as well as the reference lists of the eligible articles. A study was included if it addressed an investigation of the locomotor adaptability in response to repeated mechanical movement perturbations of healthy older adults (≥60 years). The weighted average effect size (WAES) of the general adaptability (adaptive motor responses to repeated perturbations) as well as predictive (after-effects) and reactive adaptation (feedback responses to a recurring unexpected perturbation) was calculated and tested for an overall effect. A subgroup analysis was performed regarding the factor age group [i.e., young (≤35 years) vs. older adults]. Furthermore, the methodological study quality was assessed. The review process yielded 18 studies [1009 participants, 613 older adults (70 ± 4 years)], which used various kinds of locomotor tasks and perturbations. The WAES for the general locomotor adaptability was 1.21 [95% confidence interval (CI) 0.68-1.74, n = 11] for the older and 1.39 (95% CI 0.90-1.89, n = 10) for the young adults with a significant (p locomotor adaptability in general and predictive and reactive adaptation in particular remain highly effective in the elderly, showing only minor, not statistically significant age-related deficits. Consequently, interventions which use adaptation and learning paradigms including the application of the mechanisms responsible for an effective predictive and reactive dynamic stability

  19. Locomotor therapy with extended-release crystalline glucocorticoids

    Directory of Open Access Journals (Sweden)

    Vladimir Vasilyevich Badokin

    2013-01-01

    Full Text Available Topical glucocorticoid (GC therapy for locomotor diseases is an extremely important component of a comprehensive program to treat inflammatory and, to a lesser extent, degenerative diseases. It reduces the time of hospitalization by 5—10 days in this category of patients, has a prompt and potent anti-inflammatory effect, and shows predictable efficiency. This therapy shows good tolerability and high safety and prevents serious adverse reactions to GC treatment.

  20. Post-stroke disposition from a geriatric-rehabilitative stroke care area: an Italian experience

    Directory of Open Access Journals (Sweden)

    Marco Masina

    2014-02-01

    Full Text Available A large number of stroke patients cannot be discharged at home. Studies on post stroke disposition have low validity outside the country in which they are carried out because healthcare systems offer different rehabilitative and long-term facilities. Moreover absolute selection criteria for admission to rehabilitation are not available yet. Few studies on post-stroke disposition from Italian stroke units are available. Authors evaluated data of a 18-month period from a geriatric managed stroke care area where comprehensive multi-professional assessment and discharge planning are routinely carried out. Only patients discharged with diagnosis related to acute stroke were considered. Baseline characteristics, clinical, neurological and functional conditions according to the structured multidimensional assessment were prospectively collected in the stroke unit registry. Univariate and multinomial logistic regression were performed to identify independent variables associated with three discharge settings: home, rehabilitation and skilled long-term ward. Out of 188 patients evaluated, 56.4% were discharged home, 18.6% to rehabilitation and 25.0% to long-term ward. Data showed an efficient disposition to intermediate settings with a shorter length of stay compared to other international studies. Factors associated with post-stroke disposition were age, dysphagia, neurological impairment on admission (NIH-SS≥6, after stroke functional status (mRankin≥3, poor pre-stroke functional level (mRankin≥3 and hemorrhagic stroke. Dysphagia, severe neurological impairment and post-stroke disability were associated with discharge to rehabilitation and long term ward. These two settings differed in age and pre-stroke functional condition. Patients discharged to long-term wards were about 10 years older than those admitted to rehabilitative ward. Only 5% of patients discharged to rehabilitation had a pre-stroke mRankin score ≥3. Disposition to a skilled

  1. Functional reorganization of the locomotor network in Parkinson patients with freezing of gait.

    Directory of Open Access Journals (Sweden)

    Brett W Fling

    Full Text Available Freezing of gait (FoG is a transient inability to initiate or maintain stepping that often accompanies advanced Parkinson's disease (PD and significantly impairs mobility. The current study uses a multimodal neuroimaging approach to assess differences in the functional and structural locomotor neural network in PD patients with and without FoG and relates these findings to measures of FoG severity. Twenty-six PD patients and fifteen age-matched controls underwent resting-state functional magnetic resonance imaging and diffusion tensor imaging along with self-reported and clinical assessments of FoG. After stringent movement correction, fifteen PD patients and fourteen control participants were available for analysis. We assessed functional connectivity strength between the supplementary motor area (SMA and the following locomotor hubs: 1 subthalamic nucleus (STN, 2 mesencephalic and 3 cerebellar locomotor region (MLR and CLR, respectively within each hemisphere. Additionally, we quantified structural connectivity strength between locomotor hubs and assessed relationships with metrics of FoG. FoG+ patients showed greater functional connectivity between the SMA and bilateral MLR and between the SMA and left CLR compared to both FoG- and controls. Importantly, greater functional connectivity between the SMA and MLR was positively correlated with i clinical, ii self-reported and iii objective ratings of freezing severity in FoG+, potentially reflecting a maladaptive neural compensation. The current findings demonstrate a re-organization of functional communication within the locomotor network in FoG+ patients whereby the higher-order motor cortex (SMA responsible for gait initiation communicates with the MLR and CLR to a greater extent than in FoG- patients and controls. The observed pattern of altered connectivity in FoG+ may indicate a failed attempt by the CNS to compensate for the loss of connectivity between the STN and SMA and may reflect a

  2. Sound stabilizes locomotor-respiratory coupling and reduces energy cost.

    Directory of Open Access Journals (Sweden)

    Charles P Hoffmann

    Full Text Available A natural synchronization between locomotor and respiratory systems is known to exist for various species and various forms of locomotion. This Locomotor-Respiratory Coupling (LRC is fundamental for the energy transfer between the two subsystems during long duration exercise and originates from mechanical and neurological interactions. Different methodologies have been used to compute LRC, giving rise to various and often diverging results in terms of synchronization, (de-stabilization via information, and associated energy cost. In this article, the theory of nonlinear-coupled oscillators was adopted to characterize LRC, through the model of the sine circle map, and tested it in the context of cycling. Our specific focus was the sound-induced stabilization of LRC and its associated change in energy consumption. In our experimental study, participants were instructed during a cycling exercise to synchronize either their respiration or their pedaling rate with an external auditory stimulus whose rhythm corresponded to their individual preferential breathing or cycling frequencies. Results showed a significant reduction in energy expenditure with auditory stimulation, accompanied by a stabilization of LRC. The sound-induced effect was asymmetrical, with a better stabilizing influence of the metronome on the locomotor system than on the respiratory system. A modification of the respiratory frequency was indeed observed when participants cycled in synchrony with the tone, leading to a transition toward more stable frequency ratios as predicted by the sine circle map. In addition to the classical mechanical and neurological origins of LRC, here we demonstrated using the sine circle map model that information plays an important modulatory role of the synchronization, and has global energetic consequences.

  3. Activity of Renshaw cells during locomotor-like rhythmic activity in the isolated spinal cord of neonatal mice

    DEFF Research Database (Denmark)

    Nishimaru, Hiroshi; Restrepo, Carlos E.; Kiehn, Ole

    2006-01-01

    % of the recorded RCs fired in-phase with the ipsilateral L2 flexor-related rhythm, whereas the rest fired in the extensor phase. Each population of RCs fired throughout the corresponding locomotor phase. All RCs received both excitatory and inhibitory synaptic inputs during the locomotor-like rhythmic activity...

  4. Exploring barriers and facilitators to the clinical use of virtual reality for post-stroke unilateral spatial neglect assessment.

    Science.gov (United States)

    Ogourtsova, Tatiana; Archambault, Philippe S; Lamontagne, Anouk

    2017-11-07

    Hemineglect, defined as a failure to attend to the contralesional side of space, is a prevalent and disabling post-stroke deficit. Conventional hemineglect assessments lack sensitivity as they contain mainly non-functional tasks performed in near-extrapersonal space, using static, two-dimensional methods. This is of concern given that hemineglect is a strong predictor for functional deterioration, limited post-stroke recovery, and difficulty in community reintegration. With the emerging field of virtual reality, several virtual tools have been proposed and have reported better sensitivity in neglect-related deficits detection than conventional methods. However, these and future virtual reality-based tools are yet to be implemented in clinical practice. The present study aimed to explore the barriers/facilitators perceived by clinicians in the use of virtual reality for hemineglect assessment; and to identify features of an optimal virtual assessment. A qualitative descriptive process, in the form of focus groups, self-administered questionnaire and individual interviews was used. Two focus groups (n = 11 clinicians) were conducted and experts in the field (n = 3) were individually interviewed. Several barriers and facilitators, including personal, institutional, client suitability, and equipment factors, were identified. Clinicians and experts in the field reported numerous features for the virtual tool optimization. Factors identified through this study lay the foundation for the development of a knowledge translation initiative towards an implementation of a virtual assessment for hemineglect. Addressing the identified barriers/facilitators during implementation and incorporating the optimal features in the design of the virtual assessment could assist and promote its eventual adoption in clinical settings. Implications for rehabilitation A multimodal and active knowledge translation intervention built on the presently identified modifiable factors is

  5. Comparison of locomotor behaviour between white-headed langurs Trachypithecus leucocephalus and François’ langurs T. françoisi in Fusui, China

    OpenAIRE

    Jinrong XIONG; Shihua GONG; Chenggang QIU; Zhaoyuan LI

    2009-01-01

    We studied the locomotor behaviour of white-headed langurs Trachypithecus leucocephalus and François’ langurs T.françoisi to test two hypotheses: (1) these monkeys have evolved locomotor ability to support their activities on limestone hills, and (2) François’ langurs have evolved more diverse locomotor skills than white-headed langurs. Data were collected from 1996–1998 and in 2005 in Fusui Nature Reserve, Guangxi, and showed that the two species had similar locomotor types, but François’ l...

  6. Optimizing a Treadmill Ramp Protocol to Evaluate Aerobic Capacity of Hemiparetic Poststroke Patients.

    Science.gov (United States)

    Bernardes, Wendell L; Montenegro, Rafael A; Monteiro, Walace D; de Almeida Freire, Raul; Massaferri, Renato; Farinatti, Paulo

    2018-03-01

    Bernardes, WL, Montenegro, RA, Monteiro, WD, de Almeida Freire, R, Massaferri, R, and Farinatti, P. Optimizing a treadmill ramp protocol to evaluate aerobic capacity of hemiparetic poststroke patients. J Strength Cond Res 32(3): 876-884, 2018-A correct assessment of cardiopulmonary capacity is important for aerobic training within motor rehabilitation of poststroke hemiparetic patients (PSHPs). However, specific cardiopulmonary exercise testing (CPET) for these patients are scarce. We proposed adaptations in a protocol originally developed for PSHPs by Ovando et al. (CPET1). We hypothesized that our adapted protocol (CPET2) would improve the original test, by preventing early fatigue and increasing patients' peak performance. Eleven PSHPs (52 ± 14 years, 10 men) performed both protocols. CPET2 integrated changes in final speed (100-120% vs. 140% maximal speed in 10-m walking test), treadmill inclination (final inclination of 5 vs. 10%), and estimated test duration (10 vs. 8 minutes) to smooth the rate of workload increment of CPET1. Peak oxygen uptake (V[Combining Dot Above]O2peak) (20.3 ± 6.1 vs. 18.6 ± 5.0 ml·kg·min; p = 0.04), V[Combining Dot Above]O2 at gas exchange transition (V[Combining Dot Above]O2-GET) (11.5 ± 2.9 vs. 9.8 ± 2.0 ml·kg·min; p = 0.04), and time to exhaustion (10 ± 3 vs. 6 ± 2 minutes; p higher in CPET2 than in CPET1. Slopes and intercepts of regressions describing relationships between V[Combining Dot Above]O2 vs. workload, heart rate vs. workload, and V[Combining Dot Above]O2 vs. heart rate were similar between CPETs. However, standard errors of estimates obtained for regressions between heart rate vs. workload (3.0 ± 1.3 vs. 3.8 ± 1.0 b·min; p = 0.004) and V[Combining Dot Above]O2 vs. heart rate (6.0 ± 2.1 vs. 4.8 ± 2.4 ml·kg·min; p = 0.05) were lower in CPET2 than in CPET1. In conclusion, the present adaptations in Ovando's CPET protocol increased exercise tolerance of PSHPs, eliciting higher V[Combining Dot Above]O2peak

  7. Muscle Synergies Control during Hand-Reaching Tasks in Multiple Directions Post-stroke

    Directory of Open Access Journals (Sweden)

    Sharon Israely

    2018-02-01

    Full Text Available Purpose: A muscle synergies model was suggested to represent a simplifying motor control mechanism by the brainstem and spinal cord. The aim of the study was to investigate the feasibility of such control mechanisms in the rehabilitation of post-stroke individuals during the execution of hand-reaching movements in multiple directions, compared to non-stroke individuals.Methods: Twelve non-stroke and 13 post-stroke individuals participated in the study. Muscle synergies were extracted from EMG data that was recorded during hand reaching tasks, using the NMF algorithm. The optimal number of synergies was evaluated in both groups using the Variance Accounted For (VAF and the Mean Squared Error (MSE. A cross validation procedure was carried out to define a representative set of synergies. The similarity index and the K-means algorithm were applied to validate the existence of such a set of synergies, but also to compare the modulation properties of synergies for different movement directions between groups. The similarity index and hierarchical cluster analysis were also applied to compare between group synergies.Results: Four synergies were chosen to optimally capture the variances in the EMG data, with mean VAF of 0.917 ± 0.034 and 0.883 ± 0.046 of the data variances, with respective MSE of 0.007 and 0.016, in the control and study groups, respectively. The representative set of synergies was set to be extracted from movement to the center of the reaching space. Two synergies had different muscle activation balance between groups. Seven and 17 clusters partitioned the muscle synergies of the control and study groups. The control group exhibited a gradual change in the activation in the amplitude in the time domain (modulation of synergies, as reflected by the similarity index, whereas the study group exhibited consistently significant differences between all movement directions and the representative set of synergies. The study findings support

  8. Noninvasive brain stimulation for treatment of right- and left-handed poststroke aphasics.

    Science.gov (United States)

    Heiss, Wolf-Dieter; Hartmann, Alexander; Rubi-Fessen, Ilona; Anglade, Carole; Kracht, Lutz; Kessler, Josef; Weiduschat, Nora; Rommel, Thomas; Thiel, Alexander

    2013-01-01

    Accumulating evidence from single case studies, small case series and randomized controlled trials seems to suggest that inhibitory noninvasive brain stimulation (NIBS) over the contralesional inferior frontal gyrus (IFG) of right-handers in conjunction with speech and language therapy (SLT) improves recovery from poststroke aphasia. Application of inhibitory NIBS to improve recovery in left-handed patients has not yet been reported. A total of 29 right-handed subacute poststroke aphasics were randomized to receive either 10 sessions of SLT following 20 min of inhibitory repetitive transcranial magnetic stimulation (rTMS) over the contralesional IFG or 10 sessions of SLT following sham stimulation; 2 left-handers were treated according to the same protocol with real rTMS. Language activation patterns were assessed with positron emission tomography prior to and after the treatment; 95% confidence intervals for changes in language performance scores and the activated brain volumes in both hemispheres were derived from TMS- and sham-treated right-handed patients and compared to the same parameters in left-handers. Right-handed patients treated with rTMS showed better recovery of language function in global aphasia test scores (t test, p right-handers. In treated right-handers, a shift of activation to the ipsilesional hemisphere was observed, while sham-treated patients consolidated network activity in the contralesional hemisphere (repeated-measures ANOVA, p = 0.009). Both left-handed patients also improved, with 1 patient within the confidence limits of TMS-treated right-handers (23 points, 15.9-28.9) and the other patient within the limits of sham-treated subjects (8 points, 2.8-14.5). Both patients exhibited only a very small interhemispheric shift, much less than expected in TMS-treated right-handers, and more or less consolidated initially active networks in both hemispheres. Inhibitory rTMS over the nondominant IFG appears to be a safe and effective treatment

  9. Efffects of vigabatrin on spontaneous locomotor activity of rats

    NARCIS (Netherlands)

    Bouwman, B.M.; Rijn, C.M. van; Willems-van Bree, P.C.M.; Coenen, A.M.L.

    2003-01-01

    Effects of vigibatrin (saline, 125, 250, or 500 mg/kg i.p.) on spontaneous locomotor activity in Wistar rats were investigated. There was a dose dependent decrease in amount of locomotion for doses up to 250 mg/kg. This decrease was measurable 2-4 hours after injection and still became more

  10. Haptic Systems for Post-Stroke Rehabilitation: from Virtual Reality to Remote Rehabilitation

    OpenAIRE

    Daud, Omar Andres

    2011-01-01

    Haptic devices are becoming a common and significant tool in the perspective of robotic neurorehabilitation for motor learning, particularly in post-stroke patients. As a standard approach, this kind of devices are used in a local environment, where the patient interacts with a virtual environment recreated in the computer's screen. In this sense, a general framework for virtual reality based rehabilitation was developed. All the features of the framework, such as the control loop and the ext...

  11. Effect of temporal organization of the visuo-locomotor coupling on the predictive steering

    Directory of Open Access Journals (Sweden)

    Yves Philippe Rybarczyk

    2012-07-01

    Full Text Available Studies on the direction of a driver’s gaze while taking a bend show that the individual looks towards the tangent-point of the inside curve. Mathematically, the direction of this point in relation to the car enables the driver to predict the curvature of the road. In the same way, when a person walking in the street makes a turn at the corner, his/her gaze anticipates the rotation of the body. A current explanation for the visuo-motor anticipation over the locomotion would be that the brain, involved in a steering behaviour, executes an internal model of the trajectory that anticipates the path completion, and not the contrary. This paper proposes to test this hypothesis by studying the effect of an artificial manipulation of the visuo-locomotor coupling on the trajectory prediction. In this experiment, subjects remotely control a mobile robot with a pan-tilt camera. This experimental paradigm is chosen to easily and precisely manipulate the temporal organization of the visuo-locomotor coupling. Results show that only the visuo-locomotor coupling organized from the visual sensor to the locomotor organs enables i a significant smoothness of the trajectory and ii a velocity-curvature relationship that follows the 2/3 Power Law. These findings are consistent with the theory of an anticipatory construction of an internal model of the trajectory. This mental representation used by the brain as a forward prediction of the path formation seems conditioned by the motor program. The overall results are discussed in terms of the sensorimotor scheme bases of the predictive coding.

  12. Analysis on risk factors for post-stroke emotional incontinence

    Directory of Open Access Journals (Sweden)

    Xiao-chun ZHANG

    2018-01-01

    Full Text Available Objective To investigate the occurrence rate and related risk factors for post-stroke emotional incontinence (PSEI. Methods The clinical data [sex, age, body mass index (BMI, education, marital status, medical history (hypertension, heart disease, diabetes, hyperlipemia, smoking and drinking and family history of stroke] of 162 stroke patients were recorded. Serum homocysteine (Hcy level was examined. Head CT and/or MRI were used to indicate stroke subtype, site of lesion and number of lesion. Diagnostic and Statistical Manual of Mental Disorders Fifth Edition (DSM-Ⅴ Chinese version and Hamilton Depression Rating Scale-17 Items (HAMD-17 were used to evaluate the degree of depression. House diagnostic standard was used to diagnose PSEI. Univariate and multivariate backward Logistic regression analysis was used to screen related risk factor for PSEI. Spearman rank correlation analysis was used to discuss the correlation between PSEI and post-stroke depression (PSD. Results Among 162 stroke patients, 12 cases were diagnosed as PSEI (7.41% . The ratio of age < 60 years in PSEI group was significantly higher than non-PSEI group (P = 0.045. The ratio of smoking in PSEI group was significantly lower than non-PSEI group (P = 0.036. Univariate and multivariate backward Logistic regression analysis showed age < 60 years was independent risk factor for PSEI (OR = 4.000, 95%CI: 1.149-13.924; P = 0.029. Ten cases were combined with PSD in 12 PSEI patients, and the co-morbidity rate of PSEI and PSD was83.33%. Spearman rank correlation analysis showed PSEI was positively related to PSD (rs = 0.305, P = 0.000. Conclusions PSEI is common affective disorder in stroke patients, which easily happens in patients under 60 years of age. DOI: 10.3969/j.issn.1672-6731.2017.12.010

  13. Post-exercise hypotensive responses following an acute bout of aquatic and overground treadmill walking in people post-stroke: a pilot study.

    Science.gov (United States)

    Lai, Byron; Jeng, Brenda; Vrongistinos, Konstantinos; Jung, Taeyou

    2015-06-01

    The purpose of this study is to investigate the effects of a single-bout of aquatic treadmill walking (ATW) and overground treadmill walking (OTW) on the magnitude and duration of post-exercise ambulatory blood pressure (BP) in people post-stroke. Seven people post-stroke participated in a cross-sectional comparative study. BP was monitored for up to 9 hours after a 15-minute bout of ATW and OTW at approximately 70% of maximal oxygen consumption (VO2max), performed on separate days. Mean systolic and diastolic BP values were compared between both exercise conditions and a day without exercise (control). Three hours after OTW, mean SBP increased by 9% from pre-exercise baseline compared to a 3% decrease during the control day (P stroke can sustain sufficient walking intensities necessary to reduce BP following cardiovascular exercise. Also, these data suggest that ATW can elicit clinically meaningful reductions in DBP and night-time SBP. Thus, it is recommended for clinicians to consider ATW as a non-pharmaceutical means to regulate DBP and promote nighttime dipping of SBP in people post-stroke. However, caution is advised during the immediate hours after exercise, a period of possible BP inflation.

  14. Anxiolytics may promote locomotor function recovery in spinal cord injury patients

    Directory of Open Access Journals (Sweden)

    Pierre A Guertin

    2008-09-01

    Full Text Available Pierre A GuertinNeuroscience Unit, Laval University Medical Center (CHUL, Quebec City, CanadaAbstract: Recent findings in animal models of paraplegia suggest that specific nonbenzodiazepine anxiolytics may temporarily restore locomotor functions after spinal cord injury (SCI. Experiments using in vitro models have revealed, indeed, that selective serotonin receptor (5-HTR ligands such as 5-HTR1A agonists, known as relatively safe anxiolytics, can acutely elicit episodes of rhythmic neuronal activity refered to as fictive locomotion in isolated spinal cord preparations. Along the same line, in vivo studies have recently shown that this subclass of anxiolytics can induce, shortly after systemic administration (eg, orally or subcutaneously, some locomotor-like hindlimb movements during 45–60 minutes in completely spinal cord-transected (Tx rodents. Using ‘knock-out’ mice (eg, 5-HTR7-/- and selective antagonists, it has been clearly established that both 5-HTR1A and 5-HTR7 were critically involved in mediating the pro-locomotor effects induced by 8-OH-DPAT (typically referred to as a 5-HTR1A agonist in Tx animals. Taken together, these in vitro and in vivo data strongly support the idea that 5-HTR1A agonists may eventually become constitutive elements of a novel first-in-class combinatorial treatment aimed at periodically inducing short episodes of treadmill stepping in SCI patients.Keywords: 5-HT agonists, anxiolytics, locomotion, SCI

  15. Versatile robotic interface to evaluate, enable and train locomotion and balance after neuromotor disorders.

    Science.gov (United States)

    Dominici, Nadia; Keller, Urs; Vallery, Heike; Friedli, Lucia; van den Brand, Rubia; Starkey, Michelle L; Musienko, Pavel; Riener, Robert; Courtine, Grégoire

    2012-07-01

    Central nervous system (CNS) disorders distinctly impair locomotor pattern generation and balance, but technical limitations prevent independent assessment and rehabilitation of these subfunctions. Here we introduce a versatile robotic interface to evaluate, enable and train pattern generation and balance independently during natural walking behaviors in rats. In evaluation mode, the robotic interface affords detailed assessments of pattern generation and dynamic equilibrium after spinal cord injury (SCI) and stroke. In enabling mode,the robot acts as a propulsive or postural neuroprosthesis that instantly promotes unexpected locomotor capacities including overground walking after complete SCI, stair climbing following partial SCI and precise paw placement shortly after stroke. In training mode, robot-enabled rehabilitation, epidural electrical stimulation and monoamine agonists reestablish weight-supported locomotion, coordinated steering and balance in rats with a paralyzing SCI. This new robotic technology and associated concepts have broad implications for both assessing and restoring motor functions after CNS disorders, both in animals and in humans.

  16. Upper Limb Immobilisation: A Neural Plasticity Model with Relevance to Poststroke Motor Rehabilitation

    OpenAIRE

    Furlan, Leonardo; Conforto, Adriana Bastos; Cohen, Leonardo G.; Sterr, Annette

    2016-01-01

    Advances in our understanding of the neural plasticity that occurs after hemiparetic stroke have contributed to the formulation of theories of poststroke motor recovery. These theories, in turn, have underpinned contemporary motor rehabilitation strategies for treating motor deficits after stroke, such as upper limb hemiparesis. However, a relative drawback has been that, in general, these strategies are most compatible with the recovery profiles of relatively high-functioning stroke survivor...

  17. Effects of virtual reality-based bilateral upper-extremity training on brain activity in post-stroke patients.

    Science.gov (United States)

    Lee, Su-Hyun; Kim, Yu-Mi; Lee, Byoung-Hee

    2015-07-01

    [Purpose] This study investigated the therapeutic effects of virtual reality-based bilateral upper-extremity training on brain activity in patients with stroke. [Subjects and Methods] Eighteen chronic stroke patients were divided into two groups: the virtual reality-based bilateral upper-extremity training group (n = 10) and the bilateral upper-limb training group (n = 8). The virtual reality-based bilateral upper-extremity training group performed bilateral upper-extremity exercises in a virtual reality environment, while the bilateral upper-limb training group performed only bilateral upper-extremity exercise. All training was conducted 30 minutes per day, three times per week for six weeks, followed by brain activity evaluation. [Results] Electroencephalography showed significant increases in concentration in the frontopolar 2 and frontal 4 areas, and significant increases in brain activity in the frontopolar 1 and frontal 3 areas in the virtual reality-based bilateral upper-extremity training group. [Conclusion] Virtual reality-based bilateral upper-extremity training can improve the brain activity of stroke patients. Thus, virtual reality-based bilateral upper-extremity training is feasible and beneficial for improving brain activation in stroke patients.

  18. Olanzapine affects locomotor activity and meal size in male rats

    NARCIS (Netherlands)

    van der Zwaal, Esther M.; Luijendijk, Mieneke C. M.; Evers, Simon S.; la Fleur, Susanne E.; Adan, Roger A. H.

    2010-01-01

    Olanzapine is an antipsychotic drug that frequently induces weight gain accompanied by increased fat deposition as a side effect. To investigate how olanzapine affects different aspects of energy balance, we used male rats to determine effects on meal patterns, food preference, locomotor activity

  19. Effect of physical exercise prelabyrinthectomy on locomotor balance compensation in the squirrel monkey

    Science.gov (United States)

    Igarashi, M.; Ohashi, K.; Yoshihara, T.; MacDonald, S.

    1989-01-01

    This study examines the effectiveness of physical exercise, during a prepathology state, on locomotor balance compensation after subsequent unilateral labyrinthectomy in squirrel monkeys. An experimental group underwent 3 hr. of daily running exercise on a treadmill for 3 mo. prior to the surgery, whereas a control group was not exercised. Postoperatively, the locomotor balance function of both groups was tested for 3 mo. There was no significant difference in gait deviation counts in the acute phase of compensation. However, in the chronic compensation maintenance phase, the number of gait deviation counts was fewer in the exercise group, which showed significantly better performance stability.

  20. Post-stroke angiotensin II type 2 receptor activation provides long-term neuroprotection in aged rats.

    Directory of Open Access Journals (Sweden)

    Douglas M Bennion

    Full Text Available Activation of the angiotensin II type 2 receptor (AT2R by administration of Compound 21 (C21, a selective AT2R agonist, induces neuroprotection in models of ischemic stroke in young adult animals. The mechanisms of this neuroprotective action are varied, and may include direct and indirect effects of AT2R activation. Our objectives were to assess the long-term protective effects of post-stroke C21 treatments in a clinically-relevant model of stroke in aged rats and to characterize the cellular localization of AT2Rs in the mouse brain of transgenic reporter mice following stroke. Intraperitoneal injections of C21 (0.03mg/kg after ischemic stroke induced by transient monofilament middle cerebral artery occlusion resulted in protective effects that were sustained for up to at least 3-weeks post-stroke. These included improved neurological function across multiple assessments and a significant reduction in infarct volume as assessed by magnetic resonance imaging. We also found AT2R expression to be on neurons, not astrocytes or microglia, in normal female and male mouse brains. Stroke did not induce altered cellular localization of AT2R when assessed at 7 and 14 days post-stroke. These findings demonstrate that the neuroprotection previously characterized only during earlier time points using stroke models in young animals is sustained long-term in aged rats, implying even greater clinical relevance for the study of AT2R agonists for the acute treatment of ischemic stroke in human disease. Further, it appears that this sustained neuroprotection is likely due to a mix of both direct and indirect effects stemming from selective activation of AT2Rs on neurons or other cells besides astrocytes and microglia.

  1. A Comparative Study Between Modified Starch and Xanthan Gum Thickeners in Post-Stroke Oropharyngeal Dysphagia.

    Science.gov (United States)

    Vilardell, N; Rofes, L; Arreola, V; Speyer, R; Clavé, P

    2016-04-01

    Thickeners are used in post-stroke oropharyngeal dysphagia (OD) as a compensatory therapeutic strategy against aspirations. To compare the therapeutic effects of modified starch (MS) and xanthan gum (XG) thickeners on swallow safety and efficacy in chronic post-stroke OD patients using clinical and videofluoroscopic (VFS) assessment. Patients were studied by clinical assessment (volume-viscosity swallow test, V-VST) and VFS using 3 volumes (5, 10, 20 mL) and 3 viscosities (liquid, nectar and spoon thick), comparing MS and XG. We studied 122 patients (46MS, 76XG). (A) V-VST showed that both thickeners similarly improved safety of swallow. Prevalence of safe swallowing significantly increased with enhanced viscosity (P < 0.001 vs liquid), MS: 47.83 % at liquid, 84.93 % at nectar and 92.96 % at spoon thick; XG: 55.31 % at liquid, 77.78 % at nectar and 97.84 % at spoon thick. Patients on MS reported higher prevalence of pharyngeal residue at spoon-thick viscosities. (B) VFS: increasing bolus viscosity with either thickener increased prevalence of safe swallows (P < 0.001 vs liquid), MS: 30.25 % liquid, 61.07 % nectar and 92.64 % spoon thick; XG: 29.12 % liquid, 71.30 % nectar and 89.91 % spoon thick. Penetration-aspiration scale score was significantly reduced with increased viscosity with both thickeners. MS increased oral and pharyngeal residues at nectar and spoon-thick viscosities but XG did not. Timing of airway protection mechanisms and bolus velocity were not affected by either thickener. Increasing bolus viscosity with MS and XG thickeners strongly and similarly improved safety of swallow in chronic post-stroke OD by a compensatory mechanism; in contrast only MS thickeners increased oropharyngeal residue.

  2. Post-stroke angiotensin II type 2 receptor activation provides long-term neuroprotection in aged rats.

    Science.gov (United States)

    Bennion, Douglas M; Isenberg, Jacob D; Harmel, Allison T; DeMars, Kelly; Dang, Alex N; Jones, Chad H; Pignataro, Megan E; Graham, Justin T; Steckelings, U Muscha; Alexander, Jon C; Febo, Marcelo; Krause, Eric G; de Kloet, Annette D; Candelario-Jalil, Eduardo; Sumners, Colin

    2017-01-01

    Activation of the angiotensin II type 2 receptor (AT2R) by administration of Compound 21 (C21), a selective AT2R agonist, induces neuroprotection in models of ischemic stroke in young adult animals. The mechanisms of this neuroprotective action are varied, and may include direct and indirect effects of AT2R activation. Our objectives were to assess the long-term protective effects of post-stroke C21 treatments in a clinically-relevant model of stroke in aged rats and to characterize the cellular localization of AT2Rs in the mouse brain of transgenic reporter mice following stroke. Intraperitoneal injections of C21 (0.03mg/kg) after ischemic stroke induced by transient monofilament middle cerebral artery occlusion resulted in protective effects that were sustained for up to at least 3-weeks post-stroke. These included improved neurological function across multiple assessments and a significant reduction in infarct volume as assessed by magnetic resonance imaging. We also found AT2R expression to be on neurons, not astrocytes or microglia, in normal female and male mouse brains. Stroke did not induce altered cellular localization of AT2R when assessed at 7 and 14 days post-stroke. These findings demonstrate that the neuroprotection previously characterized only during earlier time points using stroke models in young animals is sustained long-term in aged rats, implying even greater clinical relevance for the study of AT2R agonists for the acute treatment of ischemic stroke in human disease. Further, it appears that this sustained neuroprotection is likely due to a mix of both direct and indirect effects stemming from selective activation of AT2Rs on neurons or other cells besides astrocytes and microglia.

  3. Poststroke delusions: What about the neuroanatomical and neurofunctional basis?

    Science.gov (United States)

    Torrisi, Michele; De Luca, Rosaria; Pollicino, Patrizia; Leonardi, Simona; Marino, Silvia; Maresca, Giuseppa; Maggio, Maria Grazia; Piccolo, Adriana; Bramanti, Placido; Calabrò, Rocco Salvatore

    2018-01-19

    Delusion is a belief about yourself, people, or events that has no accordance with reality. Although it is known that stroke could cause various psychiatric and psychological effects, including depression, anxiety, and aggressiveness, psychotic symptoms, especially delusions, are rather uncommon. The most investigated poststroke delusions are paranoid type, nihilistic, and Fregoli syndrome. We will describe two patients showing delusion symptoms (Cotard-like and erotomanic ones) that occurred after a stroke involving the right temporal lobe, the basal ganglia and insular region, persisting for a long period after the stroke onset. We have, therefore, supposed that the simultaneous involvement of these brain areas could be involved in the neuroanatomical basis of delusions, as also demonstrated by the neurofunctional evaluation.

  4. Muscle weakness and lack of reflex gain adaptation predominate during post-stroke posture control of the wrist

    NARCIS (Netherlands)

    Meskers, C.G.M.; Schouten, A.C.; De Groot, J.H.; De Vlugt, E.; Van Hilten, B.J.J.; Van der Helm, F.C.T.; Arendzen, H.J.H.

    2009-01-01

    Background Instead of hyper-reflexia as sole paradigm, post-stroke movement disorders are currently considered the result of a complex interplay between neuronal and muscular properties, modified by level of activity. We used a closed loop system identification technique to quantify individual

  5. Changes in skeletal muscle perfusion and spasticity in patients with poststroke hemiparesis treated by robotic assistance (Gloreha) of the hand.

    Science.gov (United States)

    Bissolotti, Luciano; Villafañe, Jorge Hugo; Gaffurini, Paolo; Orizio, Claudio; Valdes, Kristin; Negrini, Stefano

    2016-03-01

    [Purpose] The purpose of this case series was to determine the effects of robot-assisted hand rehabilitation with a Gloreha device on skeletal muscle perfusion, spasticity, and motor function in subjects with poststroke hemiparesis. [Subjects and Methods] Seven patients, 2 women and 5 men (mean ± SD age: 60.5 ±6.3 years), with hemiparesis (>6 months poststroke), received passive mobilization of the hand with a Gloreha (Idrogenet, Italy), device (30 min per day; 3 sessions a week for 3 weeks). The outcome measures were the total hemoglobin profiles and tissue oxygenation index (TOI) in the muscle tissue evaluated through near-infrared spectroscopy. The Motricity Index and modified Ashworth Scale for upper limb muscles were used to assess mobility of the upper extremity. [Results] Robotic assistance reduced spasticity after the intervention by 68.6% in the upper limb. The Motricity Index was unchanged in these patients after treatment. Regarding changes in muscle perfusion, significant improvements were found in total hemoglobin. There were significant differences between the pre- and posttreatment modified Ashworth scale. [Conclusion] The present work provides novel evidence that robotic assistance of the hand induced changes in local muscle blood flow and oxygen supply, diminished spasticity, and decreased subject-reported symptoms of heaviness and stiffness in subjects with post-stroke hemiparesis.

  6. Does Core Stability Training Affect Fundamental Movement Skills in Low Proficiency Children? Evaluation of Performance Process

    OpenAIRE

    Abbas Bahram; Moslem Bahmani; Farhad Ghadiri

    2016-01-01

    The present study investigated the effects of 8-weeks of core stability training on fundamental movement skills in children with low proficiency in both locomotor and object control skills. By using a semi-experimental research design. 30 elementary boy students (means age= 8.89 years, SD= 1.06) were recruited and organized in training (n= 15) and control group (n=15). Fundamental movement skills were measured before and after the training period using the test of gross motor development &nda...

  7. Reducing depressive or anxiety symptoms in post-stroke patients: Pilot trial of a constructive integrative psychosocial intervention

    Science.gov (United States)

    Fang, Yihong; Mpofu, Elias; Athanasou, James

    2017-01-01

    Background: About 30% of stroke survivors clinically have depressive symptoms at some point following stroke and anxiety prevalence is around 20-25%. Objective: The purpose of this brief report is to evaluate a pilot trial of a constructive integrative psychosocial intervention (CIPI) over standard care in post-stroke depression or anxiety. Methods: Patients were randomly assigned to either CIPI (n = 23) or standard care (n = 19). Patients were assessed using the Hospital Anxiety and Depression Scale at the 1st, 3rd, and 6th months to monitor changes of mood. Results: A Wilcoxon signed-rank test indicated that compared to admission baseline, patients with the intervention had significantly normal post-stroke depression symptom levels at the 1st, 3rd, and 6th months (P < 0.005). Conclusion: CIPI appears to be of incremental value in treating depression as well as anxiety in subacute care. PMID:29085269

  8. Contralateral acupuncture versus ipsilateral acupuncture in the rehabilitation of post-stroke hemiplegic patients: a systematic review

    Directory of Open Access Journals (Sweden)

    Lee Hyangsook

    2010-07-01

    Full Text Available Abstract Background Contralateral acupuncture (CAT involves inserting needles in the meridian on the side opposite the disease location and is often used in post-stroke rehabilitation. The aim of this systematic review is to summarize and critically evaluate the evidence for and against the effectiveness of CAT for post-stroke rehabilitation as compared to ipsilateral acupuncture (IAT. Methods Seventeen databases were searched from their inceptions through June 2010. Prospective clinical trials were included if CAT was tested as the sole treatment or as an adjunct to other treatments for post-stroke rehabilitation and compared to IAT. Results Eight randomized clinical trials (RCTs met our inclusion criteria. Four of them reported favorable effects of CAT compared to IAT for at least one outcome. A meta-analysis showed superior effects of CAT compared to IAT on recovery rate (n = 361; risk ratio (RR, 1.12; 95% confidence intervals (CIs, 1.04 to 1.22, P = 0.005. Subgroup analysis also showed favorable effects of using CAT on patients with cerebral infarction (n = 261; RR, 1.15; 95% CIs, 1.04 to 1.27, P = 0.006. Further analysis including patients with cerebral infarction and intracranial hemorrhage, however, failed to show these advantages (n = 100; RR, 1.11; 95% CIs, 0.85 to 1.46, P = 0.43. Conclusion The results of our systematic review and meta-analysis suggest that there is limited evidence for CAT being superior to IAT in the treatment of cerebral infarction. The total number of RCTs included in our analysis was low, however, and the RCTs included had a high risk of bias. Future RCTs appear to be warranted.

  9. Locomotor skills and balance strategies in adolescents idiopathic scoliosis.

    Science.gov (United States)

    Mallau, Sophie; Bollini, Gérard; Jouve, Jean-Luc; Assaiante, Christine

    2007-01-01

    Locomotor balance control assessment was performed to study the effect of idiopathic scoliosis on head-trunk coordination in 17 patients with adolescent idiopathic scoliosis (AIS) and 16 control subjects. The aim of this study was to explore the functional effects of structural spinal deformations like idiopathic scoliosis on the balance strategies used during locomotion. Up to now, the repercussion of the idiopathic scoliosis on head-trunk coordination and balance strategies during locomotion is relatively unknown. Seventeen patients with AIS (mean age 14 years 3 months, 10 degrees 30 degrees) and 16 control subjects (mean age 14 years 1 month) were tested during various locomotor tasks: walking on the ground, walking on a line, and walking on a beam. Balance control was examined in terms of rotation about the vertical axis (yaw) and on a frontal plane (roll). Kinematics of foot, pelvis, trunk, shoulder, and head rotations were measured with an automatic optical TV image processor in order to calculate angular dispersions and segmental stabilizations. Decreasing the walking speed is the main adaptive strategy used in response to balance problems in control subjects as well as patients with AIS. However, patients with AIS performed walking tasks more slowly than normal subjects (around 15%). Moreover, the pelvic stabilization is preserved, despite the structural changes affecting the spine. Lastly, the biomechanical defect resulting from idiopathic scoliosis mainly affects the yaw head stabilization during locomotion. Patients with AIS show substantial similarities with control subjects in adaptive strategies relative to locomotor velocity as well as balance control based on segmental stabilization. In contrast, the loss of the yaw head stabilization strategies, mainly based on the use of vestibular information, probably reflects the presence of vestibular deficits in the patients with AIS.

  10. Design and evaluation of NEUROBike: a neurorehabilitative platform for bedridden post-stroke patients.

    Science.gov (United States)

    Monaco, Vito; Galardi, Giuseppe; Coscia, Martina; Martelli, Dario; Micera, Silvestro

    2012-11-01

    Over the past decades, a large number of robotic platforms have been developed which provide rehabilitative treatments aimed at recovering walking abilities in post-stroke patients. Unfortunately, they do not significantly influence patients' performance after three months from the accident. One of the main reasons underlying this result seems to be related to the time of intervention. Specifically, although experimental evidences suggest that early (i.e., first days after the injury) and intense neuro-rehabilitative treatments can significantly favor the functional recovery of post-stroke patients, robots require patients to be verticalized. Consequently, this does not allow them to be treated immediately after the trauma. This paper introduces a new robotic platform, named NEUROBike, designed to provide neuro-rehabilitative treatments to bedridden patients. It was designed to provide an early and well-addressed rehabilitation therapy, in terms of kinesiology, efforts, and fatigue, accounting for exercises functionally related to daily motor tasks. For this purpose, kinematic models of leg-joint angular excursions during both walking and sit-to-stand were developed and implemented in control algorithms leading both passive and active exercises. Finally, a set of pilot tests was carried out to evaluate the performance of the robotic platform on healthy subjects.

  11. Upper Limb Immobilisation: A Neural Plasticity Model with Relevance to Poststroke Motor Rehabilitation

    Directory of Open Access Journals (Sweden)

    Leonardo Furlan

    2016-01-01

    Full Text Available Advances in our understanding of the neural plasticity that occurs after hemiparetic stroke have contributed to the formulation of theories of poststroke motor recovery. These theories, in turn, have underpinned contemporary motor rehabilitation strategies for treating motor deficits after stroke, such as upper limb hemiparesis. However, a relative drawback has been that, in general, these strategies are most compatible with the recovery profiles of relatively high-functioning stroke survivors and therefore do not easily translate into benefit to those individuals sustaining low-functioning upper limb hemiparesis, who otherwise have poorer residual function. For these individuals, alternative motor rehabilitation strategies are currently needed. In this paper, we will review upper limb immobilisation studies that have been conducted with healthy adult humans and animals. Then, we will discuss how the findings from these studies could inspire the creation of a neural plasticity model that is likely to be of particular relevance to the context of motor rehabilitation after stroke. For instance, as will be elaborated, such model could contribute to the development of alternative motor rehabilitation strategies for treating poststroke upper limb hemiparesis. The implications of the findings from those immobilisation studies for contemporary motor rehabilitation strategies will also be discussed and perspectives for future research in this arena will be provided as well.

  12. S-phenylpiracetam, a selective DAT inhibitor, reduces body weight gain without influencing locomotor activity.

    Science.gov (United States)

    Zvejniece, Liga; Svalbe, Baiba; Vavers, Edijs; Makrecka-Kuka, Marina; Makarova, Elina; Liepins, Vilnis; Kalvinsh, Ivars; Liepinsh, Edgars; Dambrova, Maija

    2017-09-01

    S-phenylpiracetam is an optical isomer of phenotropil, which is a clinically used nootropic drug that improves physical condition and cognition. Recently, it was shown that S-phenylpiracetam is a selective dopamine transporter (DAT) inhibitor that does not influence norepinephrine (NE) or serotonin (5-HT) receptors. The aim of the present study was to study the effects of S-phenylpiracetam treatment on body weight gain, blood glucose and leptin levels, and locomotor activity. Western diet (WD)-fed mice and obese Zucker rats were treated daily with peroral administration of S-phenylpiracetam for 8 and 12weeks, respectively. Weight gain and plasma metabolites reflecting glucose metabolism were measured. Locomotor activity was detected in an open-field test. S-phenylpiracetam treatment significantly decreased body weight gain and fat mass increase in the obese Zucker rats and in the WD-fed mice. In addition, S-phenylpiracetam reduced the plasma glucose and leptin concentration and lowered hyperglycemia in a glucose tolerance test in both the mice and the rats. S-phenylpiracetam did not influence locomotor activity in the obese Zucker rats or in the WD-fed mice. The results demonstrate that S-phenylpiracetam reduces body weight gain and improves adaptation to hyperglycemia without stimulating locomotor activity. Our findings suggest that selective DAT inhibitors, such as S-phenylpiracetam, could be potentially useful for treating obesity in patients with metabolic syndrome with fewer adverse health consequences compared to other anorectic agents. Copyright © 2017. Published by Elsevier Inc.

  13. Selective brain lesions reduce morphine- and radiation-induced locomotor hyperactivity of the C57BL/6J mouse

    International Nuclear Information System (INIS)

    Mickley, G.A.; Stevens, K.E.; White, G.A.; Gibbs, G.L.

    1984-01-01

    The apparent resemblance between the stereotypic locomotor hyperactivity observed after either an injection of morphine or irradiation of the C57BL/6J mouse has suggested the possibility of similar biochemical and neuroanatomical substrates of these behaviors. In this study the authors made selective brain lesions in an attempt to reverse the locomotor response observed after morphine (30 mg/kg) or radiation (1500 rads /sup 60/Co) treatments. Lesions impinging on both the dorso-medial caudate and lateral septal nuclei caused a significant decrease in morphine-induced and radiogenic locomotion. Lesions of the individual brain areas did not significantly alter the opiate locomotor response. This reduction in locomotion could not be attributed to a generalized post-surgical lethargy since other brain lesions of similar size did not significantly suppress these behaviors. These data suggest the possibility of some common central nervous system mechanisms which may support the stereotypic locomotor hyperactivity observed in the C57BL/6J mouse after either morphine or radiation treatment

  14. Olanzapine affects locomotor activity and meal size in male rats

    NARCIS (Netherlands)

    van der Zwaal, Esther M.; Luijendijk, Mieneke C. M.; Evers, Simon S.; la Fleur, Susanne E.; Adan, Roger A. H.

    2010-01-01

    Olanzapine is an antipsychotic drug that frequently induces weight gain accompanied by increased fat deposition as a side effect To investigate how olanzapine affects different aspects of energy balance we used male rats to determine effects on meal patterns food preference locomotor activity and

  15. Cognitive Performance and Locomotor Adaptation in Persons With Anterior Cruciate Ligament Reconstruction.

    Science.gov (United States)

    Stone, Amanda E; Roper, Jaimie A; Herman, Daniel C; Hass, Chris J

    2018-05-01

    Persons with anterior cruciate ligament reconstruction (ACLR) show deficits in gait and neuromuscular control following rehabilitation. This altered behavior extends to locomotor adaptation and learning, however the contributing factors to this observed behavior have yet to be investigated. The purpose of this study was to assess differences in locomotor adaptation and learning between ACLR and controls, and identify underlying contributors to motor adaptation in these individuals. Twenty ACLR individuals and 20 healthy controls (CON) agreed to participate in this study. Participants performed four cognitive and dexterity tasks (local version of Trail Making Test, reaction time test, electronic pursuit rotor test, and the Purdue pegboard). Three-dimensional kinematics were also collected while participants walked on a split-belt treadmill. ACLR individuals completed the local versions of Trails A and Trails B significantly faster than CON. During split-belt walking, ACLR individuals demonstrated smaller step length asymmetry during EARLY and LATE adaptation, smaller double support asymmetry during MID adaptation, and larger stance time asymmetry during DE-ADAPT compared with CON. ACLR individuals performed better during tasks that required visual attention and task switching and were less perturbed during split-belt walking compared to controls. Persons with ACLR may use different strategies than controls, cognitive or otherwise, to adapt locomotor patterns.

  16. Constraint-Induced Aphasia Therapy for Treatment of Chronic Post-Stroke Aphasia: A Randomized, Blinded, Controlled Pilot Trial.

    Science.gov (United States)

    Szaflarski, Jerzy P; Ball, Angel L; Vannest, Jennifer; Dietz, Aimee R; Allendorfer, Jane B; Martin, Amber N; Hart, Kimberly; Lindsell, Christopher J

    2015-09-24

    To provide a preliminary estimate of efficacy of constraint-induced aphasia therapy (CIAT) when compared to no-intervention in patients with chronic (>1 year) post-stroke aphasia in order to plan an appropriately powered randomized controlled trial (RCT). We conducted a pilot single-blinded RCT. 24 patients were randomized: 14 to CIAT and 10 to no-intervention. CIAT groups received up to 4 hours/day of intervention for 10 consecutive business days (40 hours or therapy). Outcomes were assessed within 1 week of intervention and at 1 and 12 weeks after intervention and included several linguistic measures and a measure of overall subjective communication abilities (mini-Communicative Abilities Log (mini-CAL)). Clinicians treating patients (CIAT group) did not communicate with other team members to maintain blinding and the testing team members were blinded to treatment group assignment. Overall, the results of this pilot RCT support the results of previous observational studies that CIAT may lead to improvements in linguistic abilities. At 12 weeks, the treatment group reported better subjective communication abilities (mini-CAL) than the no-intervention group (p=0.019). Other measures trended towards better performance in the CIAT group. In this pilot RCT intensive language therapy led to an improvement in subjective language abilities. The effects demonstrated allow the design of a definitive trial of CIAT in patients with a variety of post-stroke aphasia types. In addition, our experiences have identified important considerations for designing subsequent trial(s) of CIAT or other interventions for post-stroke aphasia.

  17. [Clinical research of post-stroke insomnia treated with low-frequency electric stimulation at acupoints in the patients].

    Science.gov (United States)

    Tang, Lei; You, Fei; Ma, Chao-Yang

    2014-08-01

    To compare the difference in the clinical efficacy on post-stroke insomnia between the low-frequency electric stimulation at the acupoints and the conventional western medication. One hundred and twenty patients of post-stroke insomnia were randomized into a low-frequency electric stimulation group, a medication group and a placebo group, 40 cases in each one. In the low-frequency electric stimulation group, the low-frequency electric-pulsing apparatus was used at Dazhui (GV 14) and Shenshu (BL 23), once a day; the treatment of 15 days made one session and 2 sessions were required. In the medication group, estazolam was taken orally, 1 mg each time. In the placebo group, starch capsules were taken orally, 1 capsule each time. All the drugs were taken before sleep every night, continuously for 15 days as one session, and 2 sessions were required. PSQI changes and clinical efficacy were observed before and after treatment in each group. Pitlsburgh sleep quality index (PSQI) score was reduced in every group after treatment (all P low-frequency electric stimulation group and medication group, the score was reduced much more significantly as compared with the placebo group (both P low-frequency electric stimulation group, medication group and placebo group separately. The efficacy in the low-frequency electric stimulation group and medication group was better apparently than that in the placebo group (both P low-frequency electric stimulation at the acupoints effectively and safely treats post-stroke insomnia and the efficacy of it is similar to that of estazolam.

  18. Impact of trichostatin A and sodium valproate treatment on post-stroke neurogenesis and behavioral outcomes in immature mice

    Directory of Open Access Journals (Sweden)

    Shanu eGeorge

    2013-08-01

    Full Text Available Stroke in the neonatal brain frequently results in neurologic impairments including cognitive disability. We investigated the effect of long-term sodium valproate (valproate and Trichostatin A (TSA treatment upon post-stroke neurogenesis in the dentate gyrus (DG of stroke-injured immature mice. Decreased or abnormal integration of newborn DG neurons into hippocampal circuits can result in impaired visual-spatial function, abnormal modulation of mood-related behaviors, and the development of post-stroke epilepsy. Unilateral carotid ligation of P12 CD1 mice was followed by treatment with valproate, TSA, or vehicle for 2 weeks, BrdU administration for measurement of neurogenesis, and perfusion at P42 or P60. Behavior testing was conducted from P38-42. No detrimental effects on behavior testing were noted with TSA treatment, but mildly impaired cognitive function was noted with valproate-treated injured animals compared to normal animals. Significant increases in DG neurogenesis with both TSA and valproate treatment were noted with later administration of BrdU. Increased mortality and impaired weight gain was noted in the valproate-treated ligated animals, but not in the TSA-treated animals. In summary, the impact of HDAC inhibition upon post-stroke SGZ neurogenesis is likely to depend on the age of the animal at the time point when neurogenesis is assessed, duration of HDAC inhibition before BrdU labeling, and/or the stage in the evolution of the injury.

  19. The Role of the Two-Pore Domain Potassium Channel TREK-1 in the Therapeutic Effects of Escitalopram in a Rat Model of Poststroke Depression.

    Science.gov (United States)

    Lin, Dai-Hua; Zhang, Xiang-Rong; Ye, Dong-Qing; Xi, Guang-Jun; Hui, Jiao-Jie; Liu, Shan-Shan; Li, Lin-Jiang; Zhang, Zhi-Jun

    2015-06-01

    Poststroke depression (PSD) is one of the most common neuropsychiatric complications after stroke. TREK-1, a two-pore-domain potassium channel, has been implicated in the pathogenesis of stroke and depression. The aim of this study was to investigate whether TREK-1 plays a role in the therapeutic effects of the selective serotonin reuptake inhibitor (SSRI) escitalopram in a rat PSD model. The whole-cell patch-clamp technique was performed to assess the effect of escitalopram on recombinant TREK-1 currents in HEK293 cells. The expression of TREK-1 mRNA and protein was measured in the hippocampus and prefrontal cortex (PFC), and neural stem cell (NSC) proliferation was detected in the hippocampal dentate gyrus (DG) in PSD rats after 3 weeks of escitalopram administration. Escitalopram reversibly inhibited TREK-1 currents in a concentration-dependent manner. Chronic treatment with escitalopram significantly reversed the reductions in weight gain, locomotor activity, and sucrose preference in PSD rats. The expressions of TREK-1 mRNA and protein were significantly increased in hippocampal CA1, CA3, DG, and PFC in PSD rats, with the exception of TREK-1 mRNA in hippocampal CA1. NSC proliferation was significantly decreased in hippocampal DG of PSD rats. Escitalopram significantly reversed the regional increases of TREK-1 expression and the reduction of hippocampal NSC proliferation in PSD rats. TREK-1 plays an important role in the therapeutic effects of the SSRI escitalopram in PSD model, making TREK-1 an attractive candidate molecule for further understanding the pathophysiology and treatment of PSD. © 2015 John Wiley & Sons Ltd.

  20. Effects of noradrenaline on locomotor rhythm-generating networks in the isolated neonatal rat spinal cord

    DEFF Research Database (Denmark)

    Kiehn, O; Sillar, K T; Kjaerulff, O

    1999-01-01

    locomotor-like rhythm, in which activity alternated between the left and right sides, and between rostral and caudal roots on the same side. As shown previously, stable locomotor activity could be induced by bath application of N-methyl-D-aspartate (NMDA; 4-8.5 microM) and/or serotonin (5-HT; 4-20 micro......M). NA modulated this activity by decreasing the cycle frequency and increasing the ventral root burst duration. These effects were dose dependent in the concentration range 1-5 microM. In contrast, at no concentration tested did NA have consistent effects on burst amplitudes or on the background...... activity of the ongoing rhythm. Moreover, NA did not obviously affect the left/right and rostrocaudal alternation of the NMDA/5-HT rhythm. The NMDA/5-HT locomotor rhythm sometimes displayed a time-dependent breakdown in coordination, ultimately resulting in tonic ventral root activity. However...

  1. Sleep pattern and locomotor activity are impaired by doxorubicin in non-tumor-bearing rats.

    Science.gov (United States)

    Lira, Fabio Santos; Esteves, Andrea Maculano; Pimentel, Gustavo Duarte; Rosa, José Cesar; Frank, Miriam Kannebley; Mariano, Melise Oliveira; Budni, Josiane; Quevedo, João; Santos, Ronaldo Vagner Dos; de Mello, Marco Túlio

    2016-01-01

    We sought explore the effects of doxorubicin on sleep patterns and locomotor activity. To investigate these effects, two groups were formed: a control group and a Doxorubicin (DOXO) group. Sixteen rats were randomly assigned to either the control or DOXO groups. The sleep patterns were examined by polysomnographic recording and locomotor activity was evaluated in an open-field test. In the light period, the total sleep time and slow wave sleep were decreased, while the wake after sleep onset and arousal were increased in the DOXO group compared with the control group (plocomotor activity.

  2. Asymmetric operation of the locomotor central pattern generator in the neonatal mouse spinal cord

    DEFF Research Database (Denmark)

    Endo, Toshiaki; Kiehn, Ole

    2008-01-01

    The rhythmic voltage oscillations in motor neurons (MNs) during locomotor movements reflect the operation of the pre-MN central pattern generator (CPG) network. Recordings from MNs can thus be used as a method to deduct the organization of CPGs. Here, we use continuous conductance measurements...... of locomotor CPG. The extracted excitatory and inhibitory synaptic conductances varied between 2 and 56% of the mean total conductance. Analysis of the phase tuning of the extracted synaptic conductances in flexor and extensor MNs in the rostral lumbar cord showed that the flexor-phase-related synaptic...

  3. A Randomized Trial Comparing Two Tongue-Pressure Resistance Training Protocols for Post-Stroke Dysphagia.

    Science.gov (United States)

    Steele, Catriona M; Bayley, Mark T; Peladeau-Pigeon, Melanie; Nagy, Ahmed; Namasivayam, Ashwini M; Stokely, Shauna L; Wolkin, Talia

    2016-06-01

    The objective of this study was to compare the outcomes of two tongue resistance training protocols. One protocol ("tongue-pressure profile training") emphasized the pressure-timing patterns that are typically seen in healthy swallows by focusing on gradual pressure release and saliva swallowing tasks. The second protocol ("tongue-pressure strength and accuracy training") emphasized strength and accuracy in tongue-palate pressure generation and did not include swallowing tasks. A prospective, randomized, parallel allocation trial was conducted. Of 26 participants who were screened for eligibility, 14 received up to 24 sessions of treatment. Outcome measures of posterior tongue strength, oral bolus control, penetration-aspiration and vallecular residue were made based on videofluoroscopy analysis by blinded raters. Complete data were available for 11 participants. Significant improvements were seen in tongue strength and post-swallow vallecular residue with thin liquids, regardless of treatment condition. Stage transition duration (a measure of the duration of the bolus presence in the pharynx prior to swallow initiation, which had been chosen to capture impairments in oral bolus control) showed no significant differences. Similarly, significant improvements were not seen in median scores on the penetration-aspiration scale. This trial suggests that tongue strength can be improved with resistance training for individuals with tongue weakness following stroke. We conclude that improved penetration-aspiration does not necessarily accompany improvements in tongue strength; however, tongue-pressure resistance training does appear to be effective for reducing thin liquid vallecular residue.

  4. Voxel-based analysis of fractional anisotropy in post-stroke apathy.

    Directory of Open Access Journals (Sweden)

    Song-ran Yang

    Full Text Available To explore the structural basis of post-stroke apathy by using voxel-based analysis (VBA of fractional anisotropy (FA maps.We enrolled 54 consecutive patients with ischemic stroke during convalescence, and divided them into apathy (n = 31 and non-apathy (n = 23 groups. We obtained magnetic resonance images of their brains, including T1, T2 and DTI sequences. Age, sex, education level, Hamilton Depression Scale (HAMD scores, Mini-Mental State Examination (MMSE scores, National Institutes of Health Stroke Scale (NIHSS scores, and infarct locations for the two groups were compared. Finally, to investigate the structural basis of post-stroke apathy, VBA of FA maps was performed in which we included the variables that a univariate analysis determined had P-values less than 0.20 as covariates.HAMD (P = 0.01 and MMSE (P<0.01 scores differed significantly between the apathy and non-apathy groups. After controlling for age, education level, HAMD scores, and MMSE scores, significant FA reduction was detected in four clusters with peak voxels at the genu of the corpus callosum (X = -16, Y = 30, Z = 8, left anterior corona radiata (-22, 30, 10, splenium of the corpus callosum (-24, -56, 18, and right inferior frontal gyrus white matter (52, 24, 18, after family-wise error correction for multiple comparisons.Post-stroke apathy is related to depression and cognitive decline. Damage to the genu of the corpus callosum, left anterior corona radiata, splenium of the corpus callosum, and white matter in the right inferior frontal gyrus may lead to apathy after ischemic stroke.

  5. A Survey of Speech-Language Therapy Provision for People with Post-Stroke Dysarthria in the UK

    Science.gov (United States)

    Miller, Nick; Bloch, Steven

    2017-01-01

    Background: A large number of people who experience a stroke are affected by dysarthria. This may be in isolation or in association with aphasia and/or dysphagia. Despite evidence highlighting the psychological and social impact of having post-stroke dysarthria and a number of clinical guidelines that make recommendations for appropriate…

  6. MRT of the locomotor system. 4. rev. and enl. ed.

    International Nuclear Information System (INIS)

    Vahlensieck, Martin; Reiser, Maximilian

    2015-01-01

    The book on MRT of the locomotor system covers the following topics: relevant NMT imaging techniques, spinal cord, shoulder, elbows, wrist and fingers, hip region, knee, lower leg - ankle - foot, temporomandibular joint, skeletal muscles, bone marrow, bone and soft tissue tumors, osteoporosis, sacroiliac joint, jaw and periodontium.

  7. Dynamic locomotor capabilities revealed by early dinosaur trackmakers from southern Africa.

    Directory of Open Access Journals (Sweden)

    Jeffrey A Wilson

    Full Text Available BACKGROUND: A new investigation of the sedimentology and ichnology of the Early Jurassic Moyeni tracksite in Lesotho, southern Africa has yielded new insights into the behavior and locomotor dynamics of early dinosaurs. METHODOLOGY/PRINCIPAL FINDINGS: The tracksite is an ancient point bar preserving a heterogeneous substrate of varied consistency and inclination that includes a ripple-marked riverbed, a bar slope, and a stable algal-matted bar top surface. Several basal ornithischian dinosaurs and a single theropod dinosaur crossed its surface within days or perhaps weeks of one another, but responded to substrate heterogeneity differently. Whereas the theropod trackmaker accommodated sloping and slippery surfaces by gripping the substrate with its pedal claws, the basal ornithischian trackmakers adjusted to the terrain by changing between quadrupedal and bipedal stance, wide and narrow gauge limb support (abduction range = 31 degrees , and plantigrade and digitigrade foot posture. CONCLUSIONS/SIGNIFICANCE: The locomotor adjustments coincide with changes in substrate consistency along the trackway and appear to reflect 'real time' responses to a complex terrain. It is proposed that these responses foreshadow important locomotor transformations characterizing the later evolution of the two main dinosaur lineages. Ornithischians, which shifted from bipedal to quadrupedal posture at least three times in their evolutionary history, are shown to have been capable of adopting both postures early in their evolutionary history. The substrate-gripping behavior demonstrated by the early theropod, in turn, is consistent with the hypothesized function of pedal claws in bird ancestors.

  8. Local field potentials in the ventral tegmental area during cocaine-induced locomotor activation: Measurements in freely moving rats.

    Science.gov (United States)

    Harris Bozer, Amber L; Li, Ai-Ling; Sibi, Jiny E; Bobzean, Samara A M; Peng, Yuan B; Perrotti, Linda I

    2016-03-01

    The ventral tegmental area (VTA) has been established as a critical nucleus for processing behavioral changes that occur during psychostimulant use. Although it is known that cocaine induced locomotor activity is initiated in the VTA, not much is known about the electrical activity in real time. The use of our custom-designed wireless module for recording local field potential (LFP) activity provides an opportunity to confirm and identify changes in neuronal activity within the VTA of freely moving rats. The purpose of this study was to investigate the changes in VTA LFP activity in real time that underlie cocaine induced changes in locomotor behavior. Recording electrodes were implanted in the VTA of rats. Locomotor behavior and LFP activity were simultaneously recorded at baseline, and after saline and cocaine injections. Results indicate that cocaine treatment caused increases in both locomotor behavior and LFP activity in the VTA. Specifically, LFP activity was highest during the first 30 min following the cocaine injection and was most robust in Delta and Theta frequency bands; indicating the role of low frequency VTA activity in the initiation of acute stimulant-induced locomotor behavior. Our results suggest that LFP recording in freely moving animals can be used in the future to provide valuable information pertaining to drug induced changes in neural activity. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Poststroke Depression: Social Workers' Role in Addressing an Underrecognized Psychological Problem for Couples Who Have Experienced Stroke

    Science.gov (United States)

    McCarthy, Michael J.; Powers, Laurie E.; Lyons, Karen S.

    2011-01-01

    Depression is the most common psychological challenge faced by many individuals and families following stroke. Fortunately, poststroke depression is treatable, and even preventable, if social work and other rehabilitation practitioners understand the most common risk factors and become familiar with measures for assessing for depression among…

  10. Inbreeding affects locomotor activity in Drosophila melanogaster at different ages

    DEFF Research Database (Denmark)

    Manenti, Tommaso; Pertoldi, Cino; Nasiri Moghadam, Neda

    2015-01-01

    The ability to move is essential for many behavioural traits closely related to fitness. Here we studied the effect of inbreeding on locomotor activity (LA) of Drosophila melanogaster at different ages under both dark and light regimes. We expected to find a decreased LA in inbred lines compared...

  11. Prescription and predictors of post-stroke antidepressant treatment: A population-based study

    DEFF Research Database (Denmark)

    Mortensen, Janne Kærgård; Johnsen, Søren Paaske; Andersen, Grethe

    2018-01-01

    OBJECTIVES: Post-stroke depression and pathological crying are common and potentially serious complications after stroke and should be diagnosed and treated accordingly. Diagnosis and treatment probably rely on clinical experience and may pose certain challenges. We aimed to examine prescription...... corresponding to 48.1% (95% CI: 45.8-50.5) of all treated patients, and the most widely prescribed group of antidepressants was selective serotonin reuptake inhibitors (86%). Increasing stroke severity was associated with higher odds of initiating treatment. CONCLUSION: Antidepressant treatment in this real...

  12. Do post-stroke patients benefit from robotic verticalization? A pilot-study focusing on a novel neurophysiological approach

    Science.gov (United States)

    Calabrò, Rocco Salvatore; Naro, Antonino; Russo, Margherita; Leo, Antonino; Balletta, Tina; Saccá, Ileana; De Luca, Rosaria; Bramanti, Placido

    2015-01-01

    Abstract Background: Tilt-table equipped with the dynamic foot-support (ERIGO) and the functional electric stimulation could be a safe and suitable device for stabilization of vital signs, increasing patient’s motivation for further recovery, decreasing the duration of hospitalization, and accelerating the adaptation to vertical posture in bedridden patients with brain-injury. Moreover, it is conceivable that verticalization may improve cognitive functions, and induce plastic changes at sensory motor and vestibular system level that may in turn facilitate motor functional recovery. Objective: To test the safety and effectiveness of ERIGO treatment on motor and cognitive functions, cortical plasticity within vestibular and sensory-motor systems in a bedridden post-stroke sample. Methods: 20 patients were randomly divided in two groups that performed ERIGO training (30 sessions) (G1) or physiotherapist-assisted verticalization training (same duration) (G2), beyond conventional neurorehabilitation treatment. Motor and cognitive functions as well as sensory-motor and vestibular system plasticity were investigated either before (T0) or after (T1) the rehabilitative protocols. Results: Both the verticalization treatments were well-tolerated. Notably, the G1 patients had a significant improvement in cognitive function (p = 0.03), global motor function (p = 0.006), sensory-motor (p vertical position with a better global function improvement, as also suggested by the sensory-motor and vestibular system plasticity induction. PMID:26410207

  13. Functional rehabilitation of upper limb apraxia in poststroke patients: study protocol for a randomized controlled trial.

    Science.gov (United States)

    Pérez-Mármol, Jose Manuel; García-Ríos, M Carmen; Barrero-Hernandez, Francisco J; Molina-Torres, Guadalupe; Brown, Ted; Aguilar-Ferrándiz, María Encarnación

    2015-11-05

    Upper limb apraxia is a common disorder associated with stroke that can reduce patients' independence levels in activities of daily living and increase levels of disability. Traditional rehabilitation programs designed to promote the recovery of upper limb function have mainly focused on restorative or compensatory approaches. However, no previous studies have been completed that evaluate a combined intervention method approach, where patients concurrently receive cognitive training and learn compensatory strategies for enhancing daily living activities. This study will use a two-arm, assessor-blinded, parallel, randomized controlled trial design, involving 40 patients who present a left- or right-sided unilateral vascular lesion poststroke and a clinical diagnosis of upper limb apraxia. Participants will be randomized to either a combined functional rehabilitation or a traditional health education group. The experimental group will receive an 8-week combined functional program at home, including physical and occupational therapy focused on restorative and compensatory techniques for upper limb apraxia, 3 days per week in 30-min intervention periods. The control group will receive a conventional health education program once a month over 8 weeks, based on improving awareness of physical and functional limitations and facilitating the adaptation of patients to the home. Study outcomes will be assessed immediately postintervention and at the 2-month follow-up. The primary outcome measure will be basic activities of daily living skills as assessed with the Barthel Index. Secondary outcome measures will include the following: 1) the Lawton and Brody Instrumental Activities of Daily Living Scale, 2) the Observation and Scoring of ADL-Activities, 3) the De Renzi Test for Ideational Apraxia, 4) the De Renzi Test for Ideomotor Apraxia, 5) Recognition of Gestures, 6) the Test of Upper Limb Apraxia (TULIA), and 7) the Quality of Life Scale For Stroke (ECVI-38). This trial is

  14. Perceptual-motor regulation in locomotor pointing while approaching a curb.

    Science.gov (United States)

    Andel, Steven van; Cole, Michael H; Pepping, Gert-Jan

    2018-02-01

    Locomotor pointing is a task that has been the focus of research in the context of sport (e.g. long jumping and cricket) as well as normal walking. Collectively, these studies have produced a broad understanding of locomotor pointing, but generalizability has been limited to laboratory type tasks and/or tasks with high spatial demands. The current study aimed to generalize previous findings in locomotor pointing to the common daily task of approaching and stepping on to a curb. Sixteen people completed 33 repetitions of a task that required them to walk up to and step onto a curb. Information about their foot placement was collected using a combination of measures derived from a pressure-sensitive walkway and video data. Variables related to perceptual-motor regulation were analyzed on an inter-trial, intra-step and inter-step level. Similar to previous studies, analysis of the foot placements showed that, variability in foot placement decreased as the participants drew closer to the curb. Regulation seemed to be initiated earlier in this study compared to previous studies, as shown by a decreasing variability in foot placement as early as eight steps before reaching the curb. Furthermore, it was shown that when walking up to the curb, most people regulated their walk in a way so as to achieve minimal variability in the foot placement on top of the curb, rather than a placement in front of the curb. Combined, these results showed a strong perceptual-motor coupling in the task of approaching and stepping up a curb, rendering this task a suitable test for perceptual-motor regulation in walking. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Locomotor Activity and Body Temperature Patterns over a Temperature Gradient in the Highveld Mole-Rat (Cryptomys hottentotus pretoriae).

    Science.gov (United States)

    Haupt, Meghan; Bennett, Nigel C; Oosthuizen, Maria K

    2017-01-01

    African mole-rats are strictly subterranean mammals that live in extensive burrow systems. High humidity levels in the burrows prevent mole-rats from thermoregulating using evaporative cooling. However, the relatively stable environment of the burrows promotes moderate temperatures and small daily temperature fluctuations. Mole-rats therefore display a relatively wide range of thermoregulation abilities. Some species cannot maintain their body temperatures at a constant level, whereas others employ behavioural thermoregulation. Here we test the effect of ambient temperature on locomotor activity and body temperature, and the relationship between the two parameters, in the highveld mole-rat. We exposed mole-rats to a 12L:12D and a DD light cycle at ambient temperatures of 30°C, 25°C and 20°C while locomotor activity and body temperature were measured simultaneously. In addition, we investigated the endogenous rhythms of locomotor activity and body temperature at different ambient temperatures. Mole-rats displayed nocturnal activity at all three ambient temperatures and were most active at 20°C, but least active at 30°C. Body temperature was highest at 30°C and lowest at 20°C, and the daily cycle was highly correlated with locomotor activity. We show that the mole-rats have endogenous rhythms for both locomotor activity and body temperature. However, the endogenous body temperature rhythm appears to be less robust compared to the locomotor activity rhythm. Female mole-rats appear to be more sensitive to temperature changes than males, increased heterothermy is evident at lower ambient temperatures, whilst males show smaller variation in their body temperatures with changing ambient temperatures. Mole-rats may rely more heavily on behavioural thermoregulation as it is more energy efficient in an already challenging environment.

  16. Virtual rehabilitation via Nintendo Wii® and conventional physical therapy effectively treat post-stroke hemiparetic patients.

    Science.gov (United States)

    da Silva Ribeiro, Nildo Manoel; Ferraz, Daniel Dominguez; Pedreira, Érika; Pinheiro, Ígor; da Silva Pinto, Ana Cláudia; Neto, Mansueto Gomes; Dos Santos, Luan Rafael Aguiar; Pozzato, Michele Gea Guimarães; Pinho, Ricardo Silva; Masruha, Marcelo Rodrigues

    2015-08-01

    The Nintendo® Wii is a simple and affordable virtual therapy alternative. It may be used at home, and it is a motivating recreational activity that provides continuous feedback. However, studies comparing the use of the Nintendo® Wii to conventional physical therapy are needed. To compare the effect of a rehabilitation treatment using the Nintendo® Wii (NW) with conventional physical therapy (CPT) to improve the sensorimotor function and quality of life for post-stroke hemiparetic patients. The present study applied a randomized, blind, and controlled clinical trial. In total, 30 patients with post-stroke hemiparesis were evaluated. A total of 15 patients were randomly assigned to each group. The SF-36 quality of life and Fugl-Meyer scales were used to evaluate the patients. After treatment, the only variable that differed between the groups was the physical functioning domain of the SF-36 in the group that received conventional physical therapy. A significant difference was observed between both groups before and after treatment in terms of the following Fugl-Meyer scale items: passive movement and pain, motor function of the upper limbs (ULs), and balance. The CPT group also showed a significant difference with regard to their UL and lower limb (LL) coordination. The SF-36 scale analysis revealed a significant difference within both groups with regard to the following domains: physical functioning, role limitation due to physical aspects, vitality, and role limitation due to emotional aspects. The NW group also exhibited a significant difference in the mental health domain. The results indicate that both approaches improved the patients' performance in a similar manner. Virtual rehabilitation using the Nintendo Wii® and CPT both effectively treat post-stroke hemiparetic patients by improving passive movement and pain scores, motor function of the upper limb, balance, physical functioning, vitality, and the physical and emotional aspects of role functioning.

  17. Poststroke anxiety disorders in a Nigerian hospital: Prevalence, associated factors, and impacts on quality of life

    Directory of Open Access Journals (Sweden)

    Osunwale Dahunsi Oni

    2017-01-01

    Full Text Available Background and Purpose: Anxiety disorders impact negatively on morbidity and mortality poststroke. Few studies have, however, been done on poststroke anxiety disorders (PSAD, particularly in Africa. The study aims to determine the prevalence, associated clinicodemographic factors, and impact of PSAD on quality of life (QoL among outpatients at a tertiary hospital in Nigeria. Methods: Seventy stroke survivors attending Outpatient Clinics at Lagos University Teaching Hospital, Nigeria, were recruited into the study. Participants were assessed using sociodemographic/clinical questionnaire, the modified Mini–Mental State Examination, the Modified Rankin Scale, the Schedule for Clinical Assessment in Neuropsychiatry, and the World Health Organization-QoL-Bref. Data collection took 5 months and analyzed using the Statistical Package for the Social Sciences (SPSS® software version 17.0. Results: The mean age of respondents was 57.43 (±9.67 years and 38 respondents (54% were male. Majority of the stroke survivors had infarctive stroke 55 (78.6%, right hemispheric lesions 37 (52.9%, and significant poststroke disabilities 57 (81.4%. The prevalence of PSAD was 10% and agoraphobia with panic attacks was elicited in 42.8% of those diagnosed with PSAD. Participants with PSAD were significantly more likely to be unemployed (P = 0.01 and pay more than ₦10,000 ($62.50 at December 2013 monthly for health care. The mean QoL scores were lower in participants with PSAD across all QoL spheres, and significantly so for overall health (P = 0.04, health satisfaction (P = 0.02, and physical health (P = 0.01 domains. Conclusion: PSAD, especially agoraphobia in association with unemployment and high health-care costs correlated with poor well-being among stroke survivors. Proactive measures to ensure prompt identification and management may potentially improve outcome and QoL after stroke.

  18. Effects of nutmeg consumption on the open field locomotor activities ...

    African Journals Online (AJOL)

    ... was a steady significant difference (p < 0.05) in the behaviours of line crossing and walling. There was no much significant changes (P<0.05) in the behaviours of hinding, grooming and defeacation between the Treatments and Control groups of animals. Keywords: Nutmeg, Wistar rats, Open field, Locomotor activities ...

  19. Enhanced persistency of resting and active periods of locomotor activity in schizophrenia.

    Directory of Open Access Journals (Sweden)

    Wataru Sano

    Full Text Available Patients with schizophrenia frequently exhibit behavioral abnormalities associated with its pathological symptoms. Therefore, a quantitative evaluation of behavioral dynamics could contribute to objective diagnoses of schizophrenia. However, such an approach has not been fully established because of the absence of quantitative biobehavioral measures. Recently, we studied the dynamical properties of locomotor activity, specifically how resting and active periods are interwoven in daily life. We discovered universal statistical laws ("behavioral organization" and their alterations in patients with major depressive disorder. In this study, we evaluated behavioral organization of schizophrenic patients (n = 19 and healthy subjects (n = 11 using locomotor activity data, acquired by actigraphy, to investigate whether the laws could provide objective and quantitative measures for a possible diagnosis and assessment of symptoms. Specifically, we evaluated the cumulative distributions of resting and active periods, defined as the periods with physical activity counts successively below and above a predefined threshold, respectively. Here we report alterations in the laws governing resting and active periods; resting periods obeyed a power-law cumulative distribution with significantly lower parameter values (power-law scaling exponents, whereas active periods followed a stretched exponential distribution with significantly lower parameter values (stretching exponents, in patients. Our findings indicate enhanced persistency of both lower and higher locomotor activity periods in patients with schizophrenia, probably reflecting schizophrenic pathophysiology.

  20. Selection towards different adaptive optima drove the early diversification of locomotor phenotypes in the radiation of Neotropical geophagine cichlids.

    Science.gov (United States)

    Astudillo-Clavijo, Viviana; Arbour, Jessica H; López-Fernández, Hernán

    2015-05-01

    Simpson envisaged a conceptual model of adaptive radiation in which lineages diversify into "adaptive zones" within a macroevolutionary adaptive landscape. However, only a handful of studies have empirically investigated this adaptive landscape and its consequences for our interpretation of the underlying mechanisms of phenotypic evolution. In fish radiations the evolution of locomotor phenotypes may represent an important dimension of ecomorphological diversification given the implications of locomotion for feeding and habitat use. Neotropical geophagine cichlids represent a newly identified adaptive radiation and provide a useful system for studying patterns of locomotor diversification and the implications of selective constraints on phenotypic divergence in general. We use multivariate ordination, models of phenotypic evolution and posterior predictive approaches to investigate the macroevolutionary adaptive landscape and test for evidence of early divergence of locomotor phenotypes in Geophagini. The evolution of locomotor phenotypes was characterized by selection towards at least two distinct adaptive peaks and the early divergence of modern morphological disparity. One adaptive peak included the benthic and epibenthic invertivores and was characterized by fishes with deep, laterally compressed bodies that optimize precise, slow-swimming manoeuvres. The second adaptive peak resulted from a shift in adaptive optima in the species-rich ram-feeding/rheophilic Crenicichla-Teleocichla clade and was characterized by species with streamlined bodies that optimize fast starts and rapid manoeuvres. Evolutionary models and posterior predictive approaches favoured an early shift to a new adaptive peak over decreasing rates of evolution as the underlying process driving the early divergence of locomotor phenotypes. The influence of multiple adaptive peaks on the divergence of locomotor phenotypes in Geophagini is compatible with the expectations of an ecologically driven

  1. More symmetrical gait after split-belt treadmill walking does not modify dynamic and postural balance in individuals post-stroke.

    Science.gov (United States)

    Miéville, Carole; Lauzière, Séléna; Betschart, Martina; Nadeau, Sylvie; Duclos, Cyril

    2018-04-24

    Spontaneous gait is often asymmetrical in individuals post-stroke, despite their ability to walk more symmetrically on demand. Given the sensorimotor deficits in the paretic limb, this asymmetrical gait may facilitate balance maintenance. We used a split-belt walking protocol to alter gait asymmetry and determine the effects on dynamic and postural balance. Twenty individuals post-stroke walked on a split-belt treadmill. In two separate periods, the effects of walking with the non-paretic leg, and then the paretic one, on the faster belt on spatio-temporal symmetry and balance were compared before and after these perturbation periods. Kinematic and kinetic data were collected using a motion analysis system and an instrumented treadmill to determine symmetry ratios of spatiotemporal parameters and dynamic and postural balance. Balance, quantified by the concepts of stabilizing and destabilizing forces, was compared before and after split-belt walking for subgroups of participants who improved and worsened their symmetry. The side on the slow belt during split-belt walking, but not the changes in asymmetry, affected balance. Difficulty in maintaining balance was higher during stance phase of the leg that was on the slow belt and lower on the contralateral side after split-belt walking, mostly because the center of pressure was closer (higher difficulty) or further (lower difficulty) from the limit of the base of support, respectively. Changes in spatiotemporal parameters may be sought without additional alteration of balance during gait post-stroke. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. In-Home Synchronous Telespeech Therapy to Improve Functional Communication in Chronic Poststroke Aphasia: Results from a Quasi-Experimental Study.

    Science.gov (United States)

    Macoir, Joël; Sauvageau, Vincent Martel; Boissy, Patrick; Tousignant, Marilyn; Tousignant, Michel

    2017-08-01

    Although the use of telepractice in speech-language therapy for assessment purposes is well documented, its effectiveness and potential for rehabilitation in poststroke aphasia remain largely unknown. The purpose of this study was to investigate the effectiveness of a remotely delivered synchronous pragmatic telespeech language therapy for improving functional communication in aphasia. A pre-/post-test design was chosen in which each participant was his or her own control. Using a telerehabilitation platform and software (Oralys TeleTherapy) based on the Promoting Aphasics' Communicative Effectiveness (PACE) approach, 20 participants with chronic poststroke aphasia received 9 speech therapy sessions over a 3-week period. Teletreatment with the PACE pragmatic rehabilitation approach led to improvements in functional communication, marked by (a) an increase in communication effectiveness, reflecting significantly improved autonomy in functional communication; (b) a decrease in communication exchange duration, meaning that the treatment made communication faster and more efficient; (c) a decrease in the number of communication acts, meaning that, after treatment, less information was needed to be efficiently understood by the communication partner; and (d) an increase in the number of different communication strategies used, meaning that the treatment fostered the use of a variety of alternative communication modes. This study provides additional arguments about the benefits of telerehabilitation for poststroke patients with aphasia. It showed that multimodal language therapy delivered through synchronous telerehabilitation had positive effects on functional communication in chronic aphasia.

  3. Locomotor Performance During Rehabilitation of People With Lower Limb Amputation and Prosthetic Nonuse 12 Months After Discharge.

    Science.gov (United States)

    Roffman, Caroline E; Buchanan, John; Allison, Garry T

    2016-07-01

    It is recognized that multifactorial assessments are needed to evaluate balance and locomotor function in people with lower limb amputation. There is no consensus on whether a single screening tool could be used to identify future issues with locomotion or prosthetic use. The purpose of this study was to determine whether different tests of locomotor performance during rehabilitation were associated with significantly greater risk of prosthetic abandonment at 12 months postdischarge. This was a retrospective cohort study. Data for descriptive variables and locomotor tests (ie, 10-Meter Walk Test [10MWT], Timed "Up & Go" Test [TUGT], Six-Minute Walk Test [6MWT], and Four Square Step Test [FSST]) were abstracted from the medical records of 201 consecutive participants with lower limb amputation. Participants were interviewed and classified as prosthetic users or nonusers at 12 months postdischarge. The Mann-Whitney U test was used to analyze whether there were differences in locomotor performance. Receiver operating characteristic curves were generated to determine performance thresholds, and relative risk (RR) was calculated for nonuse. At 12 months postdischarge, 18% (n=36) of the participants had become prosthetic nonusers. Performance thresholds, area under the curve (AUC), and RR of nonuse (95% confidence intervals [CI]) were: for the 10MWT, if walking speed was ≤0.44 ms(-1) (AUC=0.743), RR of nonuse=2.76 (95% CI=1.83, 3.79; PLocomotor performance during rehabilitation may predict future risk of prosthetic nonuse. It may be implied that the 10MWT has the greatest clinical utility as a single screening tool for prosthetic nonuse, given the highest proportion of participants were able to perform this test early in rehabilitation. However, as locomotor skills improve, other tests (in particular, the 6MWT) have specific clinical utility. To fully enable implementation of these locomotor criteria for prosthetic nonuse into clinical practice, validation is warranted

  4. Effects of cocaine on norepinephrine stimulated phosphoinositide hydrolysis and locomotor activity in rat

    International Nuclear Information System (INIS)

    Mosaddeghi, M.

    1989-01-01

    The function of α 1 -adrenoceptors was determined by stimulating cortical tissue slices, which were pre-labeled with [ 3 H]inositol, with norepinephrine (NE) in the presence of 8 mM LiCl. Results of in vitro studies showed that cocaine 10 μM potentiated maximal NE-stimulated PI hydrolysis by 30%. In addition, the EC 50 was decreased from 3.93 ± 0.42 to 1.91 ± 0.31 μM NE. Concentrations of 0.1-100 μM and 0.1-10 μM cocaine enhanced PI hydrolysis stimulated by 0.3 and 3 μM NE, respectively. The concentration-effect curves for NE-stimulated PI hydrolysis were shifted to the right 100-fold in the presence of 0.1 μM prazosin. Cocaine (10 μM) did not potentiate NE-stimulated PI hydrolysis in the presence of 0.1 μM prazosin. [ 3 H]Prazosin saturation and NE [ 3 H]prazosin competition binding studies using crude membrane preparations showed that 10 μM cocaine did not alter binding parameters B max , K d , Hill slope, and IC 50 . Together, these results implied that cocaine in vitro potentiated NE-stimulated PI hydrolysis by blocking NE reuptake. For in vivo studies, the locomotor activity was determined after an acute or chronic injections of either cocaine or saline. Cocaine or saline-treated rats were killed after measurement of the locomotor activity, and NE-stimulated PI hydrolysis was measured. Acute administration of cocaine 3.2-42 mg/kg (i.p.) produced an inverted U shaped dose-response curve on locomotor activity. The peak increase in locomotor activity was at 32 mg/kg cocaine. A dose of 42 mg/kg cocaine produced a significant depression of maximal NE-stimulated PI hydrolysis

  5. Rapid recovery and altered neurochemical dependence of locomotor central pattern generation following lumbar neonatal spinal cord injury.

    Science.gov (United States)

    Züchner, Mark; Kondratskaya, Elena; Sylte, Camilla B; Glover, Joel C; Boulland, Jean-Luc

    2018-01-15

    Spinal compression injury targeted to the neonatal upper lumbar spinal cord, the region of highest hindlimb locomotor rhythmogenicity, leads to an initial paralysis of the hindlimbs. Behavioural recovery is evident within a few days and approaches normal function within about 3 weeks. Fictive locomotion in the isolated injured spinal cord cannot be elicited by a neurochemical cocktail containing NMDA, dopamine and serotonin 1 day post-injury, but can 3 days post-injury as readily as in the uninjured spinal cord. Low frequency coordinated rhythmic activity can be elicited in the isolated uninjured spinal cord by NMDA + dopamine (without serotonin), but not in the isolated injured spinal cord. In both the injured and uninjured spinal cord, eliciting bona fide fictive locomotion requires the additional presence of serotonin. Following incomplete compression injury in the thoracic spinal cord of neonatal mice 1 day after birth (P1), we previously reported that virtually normal hindlimb locomotor function is recovered within about 3 weeks despite substantial permanent thoracic tissue loss. Here, we asked whether similar recovery occurs following lumbar injury that impacts more directly on the locomotor central pattern generator (CPG). As in thoracic injuries, lumbar injuries caused about 90% neuronal loss at the injury site and increased serotonergic innervation below the injury. Motor recovery was slower after lumbar than thoracic injury, but virtually normal function was attained by P25 in both cases. Locomotor CPG status was tested by eliciting fictive locomotion in isolated spinal cords using a widely used neurochemical cocktail (NMDA, dopamine, serotonin). No fictive locomotion could be elicited 1 day post-injury, but could within 3 days post-injury as readily as in age-matched uninjured control spinal cords. Burst patterning and coordination were largely similar in injured and control spinal cords but there were differences. Notably, in both groups there

  6. Body weight-supported treadmill training vs. overground walking training for persons with chronic stroke: a pilot randomized controlled trial.

    Science.gov (United States)

    Combs-Miller, Stephanie A; Kalpathi Parameswaran, Anu; Colburn, Dawn; Ertel, Tara; Harmeyer, Amanda; Tucker, Lindsay; Schmid, Arlene A

    2014-09-01

    To compare the effects of body weight-supported treadmill training and overground walking training when matched for task and dose (duration/frequency/intensity) on improving walking function, activity, and participation after stroke. Single-blind, pilot randomized controlled trial with three-month follow-up. University and community settings. A convenience sample of participants (N = 20) at least six months post-stroke and able to walk independently were recruited. Thirty-minute walking interventions (body weight-supported treadmill training or overground walking training) were administered five times a week for two weeks. Intensity was monitored with the Borg Rating of Perceived Exertion Scale at five-minute increments to maintain a moderate training intensity. Walking speed (comfortable/fast 10-meter walk), walking endurance (6-minute walk), spatiotemporal symmetry, and the ICF Measure of Participation and ACTivity were assessed before, immediately after, and three months following the intervention. The overground walking training group demonstrated significantly greater improvements in comfortable walking speed compared with the body weight-supported treadmill training group immediately (change of 0.11 m/s vs. 0.06 m/s, respectively; p = 0.047) and three months (change of 0.14 m/s vs. 0.08 m/s, respectively; p = 0.029) after training. Only the overground walking training group significantly improved comfortable walking speed (p = 0.001), aspects of gait symmetry (p = 0.032), and activity (p = 0.003) immediately after training. Gains were maintained at the three-month follow-up (p training was more beneficial than body weight-supported treadmill training at improving self-selected walking speed for the participants in this study. © The Author(s) 2014.

  7. Volumetric changes in the aging rat brain and its impact on cognitive and locomotor functions.

    Science.gov (United States)

    Hamezah, Hamizah Shahirah; Durani, Lina Wati; Ibrahim, Nor Faeizah; Yanagisawa, Daijiro; Kato, Tomoko; Shiino, Akihiko; Tanaka, Sachiko; Damanhuri, Hanafi Ahmad; Ngah, Wan Zurinah Wan; Tooyama, Ikuo

    2017-12-01

    Impairments in cognitive and locomotor functions usually occur with advanced age, as do changes in brain volume. This study was conducted to assess changes in brain volume, cognitive and locomotor functions, and oxidative stress levels in middle- to late-aged rats. Forty-four male Sprague-Dawley rats were divided into four groups: 14, 18, 23, and 27months of age. 1 H magnetic resonance imaging (MRI) was performed using a 7.0-Tesla MR scanner system. The volumes of the lateral ventricles, medial prefrontal cortex (mPFC), hippocampus, striatum, cerebellum, and whole brain were measured. Open field, object recognition, and Morris water maze tests were conducted to assess cognitive and locomotor functions. Blood was taken for measurements of malondialdehyde (MDA), protein carbonyl content, and antioxidant enzyme activity. The lateral ventricle volumes were larger, whereas the mPFC, hippocampus, and striatum volumes were smaller in 27-month-old rats than in 14-month-old rats. In behavioral tasks, the 27-month-old rats showed less exploratory activity and poorer spatial learning and memory than did the 14-month-old rats. Biochemical measurements likewise showed increased MDA and lower glutathione peroxidase (GPx) activity in the 27-month-old rats. In conclusion, age-related increases in oxidative stress, impairment in cognitive and locomotor functions, and changes in brain volume were observed, with the most marked impairments observed in later age. Copyright © 2017. Published by Elsevier Inc.

  8. Effects of scallop shell extract on scopolamine-induced memory impairment and MK801-induced locomotor activity

    OpenAIRE

    HASEGAWA, Yasushi; INOUE, Tatsuro; KAWAMINAMI, Satoshi; FUJITA, Miho

    2016-01-01

    ObjectiveTo evaluate the neuroprotective effects of the organic components of scallop shells (scallop shell extract) on memory impairment and locomotor activity induced by scopolamine or 5-methyl-10,11-dihydro-5H-dibenzo (a,d) cyclohepten-5,10-imine (MK801).MethodsEffect of the scallop shell extract on memory impairment and locomotor activity was investigated using the Y-maze test, the Morris water maze test, and the open field test.ResultsScallop shell extract significantly reduced scopolami...

  9. Early post-stroke cognition in stroke rehabilitation patients predicts functional outcome at 13 months.

    Science.gov (United States)

    Wagle, Jørgen; Farner, Lasse; Flekkøy, Kjell; Bruun Wyller, Torgeir; Sandvik, Leiv; Fure, Brynjar; Stensrød, Brynhild; Engedal, Knut

    2011-01-01

    To identify prognostic factors associated with functional outcome at 13 months in a sample of stroke rehabilitation patients. Specifically, we hypothesized that cognitive functioning early after stroke would predict long-term functional outcome independently of other factors. 163 stroke rehabilitation patients underwent a structured neuropsychological examination 2-3 weeks after hospital admittance, and their functional status was subsequently evaluated 13 months later with the modified Rankin Scale (mRS) as outcome measure. Three predictive models were built using linear regression analyses: a biological model (sociodemographics, apolipoprotein E genotype, prestroke vascular factors, lesion characteristics and neurological stroke-related impairment); a functional model (pre- and early post-stroke cognitive functioning, personal and instrumental activities of daily living, ADL, and depressive symptoms), and a combined model (including significant variables, with p value Stroke Scale; β = 0.402, p stroke cognitive functioning (Repeatable Battery of Neuropsychological Status, RBANS; β = -0.248, p = 0.001) and prestroke personal ADL (Barthel Index; β = -0.217, p = 0.002). Further linear regression analyses of which RBANS indexes and subtests best predicted long-term functional outcome showed that Coding (β = -0.484, p stroke cognitive functioning as measured by the RBANS is a significant and independent predictor of long-term functional post-stroke outcome. Copyright © 2011 S. Karger AG, Basel.

  10. The thermal dependency of locomotor performance evolves rapidly within an invasive species.

    Science.gov (United States)

    Kosmala, Georgia K; Brown, Gregory P; Christian, Keith A; Hudson, Cameron M; Shine, Richard

    2018-05-01

    Biological invasions can stimulate rapid shifts in organismal performance, via both plasticity and adaptation. We can distinguish between these two proximate mechanisms by rearing offspring from populations under identical conditions and measuring their locomotor abilities in standardized trials. We collected adult cane toads ( Rhinella marina ) from invasive populations that inhabit regions of Australia with different climatic conditions. We bred those toads and raised their offspring under common-garden conditions before testing their locomotor performance. At high (but not low) temperatures, offspring of individuals from a hotter location (northwestern Australia) outperformed offspring of conspecifics from a cooler location (northeastern Australia). This disparity indicates that, within less than 100 years, thermal performance in cane toads has adapted to the novel abiotic challenges that cane toads have encountered during their invasion of tropical Australia.

  11. Effects of opioid drugs on dopamine mediated locomotor activity in rats

    Energy Technology Data Exchange (ETDEWEB)

    Leathern, L L

    1986-01-01

    Opioid drugs influence various behavioural parameters including locomotor activity in experimental animals. The interaction between the opioid and dopaminergic systems is one possible explanation for the effect of opioid drugs on locomotor activity. In this study behavioural and biochemical assays were done to investigate the interaction between the opioid and dopaminergic systems. Behavioural studies were done by measurement of locomotor activity (LA) of rats after acute or chronic pretreatment with opioid andor dopaminergic drugs. Biochemical studies were in the form of radioligand binding assays, the effect on the number (Bmax) and affinity (K/sub D/) of receptors was measured after chronic pretreatment with opioid andor dopaminergic drugs. The opioid drugs used are morphine, nalbuphine and naloxone. Dopaminergic drugs used included: agonists-apomorphine and piribedil; antagonists-pimozide, haloperidol, chlorpromazine. In the acute situation increased LA was obtained with morphine and the DA agonists. A correlation between the behavioural and biochemical assays was found. Chronic pretreatment with morphine enhanced apomorphine induced LA, this supersensitivity was also measured as an increased receptor density (Bmax) of D2 receptors in the striatum. Chronic morphine pretreatment caused a decrease in morphine induced LA, while this subsensitivity was not apparent in the ligand binding assays - where no change in receptor number was observed. Chronic naloxone pretreatment enhanced morphine induced LA, as well as increased the Bmax of opioid receptors in the whole brain. It is concluded that an interaction between the opioid and dopaminergic systems does exist, and may account for the mechanism of action of the opioids.

  12. Stimulation of the mesencephalic locomotor region for gait recovery after stroke.

    Science.gov (United States)

    Fluri, Felix; Malzahn, Uwe; Homola, György A; Schuhmann, Michael K; Kleinschnitz, Christoph; Volkmann, Jens

    2017-11-01

    One-third of all stroke survivors are unable to walk, even after intensive physiotherapy. Thus, other concepts to restore walking are needed. Because electrical stimulation of the mesencephalic locomotor region (MLR) is known to elicit gait movements, this area might be a promising target for restorative neurostimulation in stroke patients with gait disability. The present study aims to delineate the effect of high-frequency stimulation of the MLR (MLR-HFS) on gait impairment in a rodent stroke model. Male Wistar rats underwent photothrombotic stroke of the right sensorimotor cortex and chronic implantation of a stimulating electrode into the right MLR. Gait was assessed using clinical scoring of the beam-walking test and video-kinematic analysis (CatWalk) at baseline and on days 3 and 4 after experimental stroke with and without MLR-HFS. Kinematic analysis revealed significant changes in several dynamic and static gait parameters resulting in overall reduced gait velocity. All rats exhibited major coordination deficits during the beam-walking challenge and were unable to cross the beam. Simultaneous to the onset of MLR-HFS, a significantly higher walking speed and improvements in several dynamic gait parameters were detected by the CatWalk system. Rats regained the ability to cross the beam unassisted, showing a reduced number of paw slips and misses. MLR-HFS can improve disordered locomotor function in a rodent stroke model. It may act by shielding brainstem and spinal locomotor centers from abnormal cortical input after stroke, thus allowing for compensatory and independent action of these circuits. Ann Neurol 2017;82:828-840. © 2017 American Neurological Association.

  13. Exploring the impact of visual and movement based priming on a motor intervention in the acute phase post-stroke in persons with severe hemiparesis of the upper extremity

    Science.gov (United States)

    Patel, Jigna; Qiu, Qinyin; Yarossi, Mathew; Merians, Alma; Massood, Supriya; Tunik, Eugene; Adamovich, Sergei; Fluet, Gerard

    2016-01-01

    Purpose Explore the potential benefits of using priming methods prior to an active hand task in the acute phase post-stroke in persons with severe upper extremity hemiparesis. Methods Five individuals were trained using priming techniques including virtual reality (VR) based visual mirror feedback and contralaterally controlled passive movement strategies prior to training with an active pinch force modulation task. Clinical, kinetic, and neurophysiological measurements were taken pre and post the training period. Clinical measures were taken at six months post training. Results The two priming simulations and active training were well tolerated early after stroke. Priming effects were suggested by increased maximal pinch force immediately after visual and movement based priming. Despite having no clinically observable movement distally, the subjects were able to volitionally coordinate isometric force and muscle activity (EMG) in a pinch tracing task. The Root Mean Square Error (RMSE) of force during the pinch trace task gradually decreased over the training period suggesting learning may have occurred. Changes in motor cortical neurophysiology were seen in the unaffected hemisphere using Transcranial Magnetic Stimulation (TMS) mapping. Significant improvements in motor recovery as measured by the Action Research Arm Test (ARAT) and the Upper Extremity Fugl Meyer Assessment (UEFMA) were demonstrated at six months post training by three of the five subjects. Conclusion This study suggests that an early hand-based intervention using visual and movement based priming activities and a scaled motor task allows participation by persons without the motor control required for traditionally presented rehabilitation and testing. PMID:27636200

  14. Contralesional Hemisphere Regulation of Transcranial Magnetic Stimulation-Induced Kinetic Coupling in the Poststroke Lower Limb

    OpenAIRE

    Tan, Andrew Q.; Dhaher, Yasin Y.

    2017-01-01

    Background The neural constraints underlying hemiparetic gait dysfunction are associated with abnormal kinetic outflow and altered muscle synergy structure. Recent evidence from our lab implicates the lesioned hemisphere in mediating the expression of abnormally coupled hip adduction and knee extension synergy, suggesting a role of cortical networks in the regulation of lower limb motor outflow poststroke. The potential contribution of contralesional hemisphere (CON-H) in regulating pareti...

  15. Mechanisms of Left-Right Coordination in Mammalian Locomotor Pattern Generation Circuits: A Mathematical Modeling View

    Science.gov (United States)

    Talpalar, Adolfo E.; Rybak, Ilya A.

    2015-01-01

    The locomotor gait in limbed animals is defined by the left-right leg coordination and locomotor speed. Coordination between left and right neural activities in the spinal cord controlling left and right legs is provided by commissural interneurons (CINs). Several CIN types have been genetically identified, including the excitatory V3 and excitatory and inhibitory V0 types. Recent studies demonstrated that genetic elimination of all V0 CINs caused switching from a normal left-right alternating activity to a left-right synchronized “hopping” pattern. Furthermore, ablation of only the inhibitory V0 CINs (V0D subtype) resulted in a lack of left-right alternation at low locomotor frequencies and retaining this alternation at high frequencies, whereas selective ablation of the excitatory V0 neurons (V0V subtype) maintained the left–right alternation at low frequencies and switched to a hopping pattern at high frequencies. To analyze these findings, we developed a simplified mathematical model of neural circuits consisting of four pacemaker neurons representing left and right, flexor and extensor rhythm-generating centers interacting via commissural pathways representing V3, V0D, and V0V CINs. The locomotor frequency was controlled by a parameter defining the excitation of neurons and commissural pathways mimicking the effects of N-methyl-D-aspartate on locomotor frequency in isolated rodent spinal cord preparations. The model demonstrated a typical left-right alternating pattern under control conditions, switching to a hopping activity at any frequency after removing both V0 connections, a synchronized pattern at low frequencies with alternation at high frequencies after removing only V0D connections, and an alternating pattern at low frequencies with hopping at high frequencies after removing only V0V connections. We used bifurcation theory and fast-slow decomposition methods to analyze network behavior in the above regimes and transitions between them. The model

  16. Severity of Post-stroke Aphasia According to Aphasia Type and Lesion Location in Koreans

    OpenAIRE

    Kang, Eun Kyoung; Sohn, Hae Min; Han, Moon-Ku; Kim, Won; Han, Tai Ryoon; Paik, Nam-Jong

    2009-01-01

    To determine the relations between post-stroke aphasia severity and aphasia type and lesion location, a retrospective review was undertaken using the medical records of 97 Korean patients, treated within 90 days of onset, for aphasia caused by unilateral left hemispheric stroke. Types of aphasia were classified according to the validated Korean version of the Western Aphasia Battery (K-WAB), and severities of aphasia were quantified using WAB Aphasia Quotients (AQ). Lesion locations were clas...

  17. Fractional-Order Information in the Visual Control of Lateral Locomotor Interception

    NARCIS (Netherlands)

    Bootsma, Reinoud J.; Ledouit, Simon; Casanova, Remy; Zaal, Frank T. J. M.

    Previous work on locomotor interception of a target moving in the transverse plane has suggested that interception is achieved by maintaining the target's bearing angle (often inadvertently confused and/or confounded with the target heading angle) at a constant value. However, dynamics-based model

  18. Plateau properties in mammalian spinal interneurons during transmitter-induced locomotor activity

    DEFF Research Database (Denmark)

    Kiehn, O.; Johnson, B. R.; Raastad, M.

    1996-01-01

    We examined the organization of spinal networks controlling locomotion in the isolated spinal cord of the neonatal rat, and in this study we provide the first demonstration of plateau and bursting mechanisms in mammalian interneurons that show locomotor-related activity. Using tight-seal whole...

  19. Engagement of the Rat Hindlimb Motor Cortex across Natural Locomotor Behaviors

    NARCIS (Netherlands)

    DiGiovanna, J.; Dominici, N.; Friedli, L.; Rigosa, J.; Duis, S.; Kreider, J.; Beauparlant, J.; van den Brand, R.; Schieppati, M.; Micera, S.; Courtine, G.

    2016-01-01

    Contrary to cats and primates, cortical contribution to hindlimb locomotor movements is not critical in rats. However, the importance of the motor cortex to regain locomotion after neurological disorders in rats suggests that cortical engagement in hindlimb motor control may depend on the behavioral

  20. Low dose radiation enhances the Locomotor activity of D. melanogaster

    Energy Technology Data Exchange (ETDEWEB)

    Seong, Ki Moon; Lee, Buyng Sub; Nam Seon Young; Kim, Ji Young; Yang, Kwang Hee; Choi, Tae In; Kim, Cha Soon [Radiation Effect Research Team, Radiation Health Research Institute, Korea Hydro and Nuclear Power Co., Ltd., Gyeongju (Korea, Republic of)

    2013-04-15

    Mild stresses at low level including radiation can induce the beneficial effects in many vertebrate and invertebrate species. However, a large amount of studies in radiation biology have focused on the detrimental effects of high dose radiation (HDR) such as the increased incidence of cancers and developmental diseases. Low dose radiation (LDR) induces biologically favorable effects in diverse fields, for example, cancer development, genomic instability, immune response, and longevity. Our previous data indicated that LDR promotes cells proliferation of which degree is not much but significant, and microarray data explained that LDR irradiated fruit flies showing the augmented immunity significantly changed the program for gene expression of many genes in Gene Ontology (GO) categories related to metabolic process. Metabolic process in development one of major contributors in organism growth, interbreeding, motility, and aging. Therefore, it is valuable to examine whether LDR change the physiological parameters related to metabolism, and how LDR regulates the metabolism in D. melanogaster. In this study, to investigate that LDR influences change of the metabolism, a representative parameter, locomotor activity. In addition, the activation of several cellular signal molecules was determined to investigate the specific molecular mechanism of LDR effects on the metabolism. We explored whether ionizing radiation affects the motility activity. We performed the RING assays to evaluate the locomotor activity, a representative parameter presenting motility of fruit flies. HDR dramatically decreased the motor activity of irradiated flies. Surprisingly, the irradiated flies at low dose radiation in both acute and chronic showed the significantly increased locomotor activity, compared to non-irradiated flies. Irradiation would induce change of the several signal pathways for flies to respond to it. The activation of some proteins involved in the cells proliferation and stress