Source localization in electromyography using the inverse potential problem
van den Doel, Kees; Ascher, Uri M.; Pai, Dinesh K.
2011-02-01
We describe an efficient method for reconstructing the activity in human muscles from an array of voltage sensors on the skin surface. MRI is used to obtain morphometric data which are segmented into muscle tissue, fat, bone and skin, from which a finite element model for volume conduction is constructed. The inverse problem of finding the current sources in the muscles is solved using a careful regularization technique which adds a priori information, yielding physically reasonable solutions from among those that satisfy the basic potential problem. Several regularization functionals are considered and numerical experiments on a 2D test model are performed to determine which performs best. The resulting scheme leads to numerical difficulties when applied to large-scale 3D problems. We clarify the nature of these difficulties and provide a method to overcome them, which is shown to perform well in the large-scale problem setting.
Zariffa, José; Popovic, Milos R.
2008-06-01
Improving our ability to localize bioelectric sources within a peripheral nerve would help us to monitor the control signals flowing to and from any limb or organ. This technology would provide a useful neuroscience tool, and could perhaps be incorporated into a neuroprosthesis interface. We propose to use measurements from a multi-contact nerve cuff to solve an inverse problem of bioelectric source localization within the peripheral nerve. Before the inverse problem can be addressed, the forward problem is solved using finite element modeling. A fine mesh improves the accuracy of the forward problem solution, but increases the number of variables to be solved for in the inverse problem. To alleviate this problem, variables corresponding to mesh elements that are not distinguishable by the measurement setup are grouped together, thus reducing the dimension of the inverse problem without impacting on the forward problem accuracy. A quantitative criterion for element distinguishability is derived using the columns of the leadfield matrix and information about the uncertainty in the measurements. Our results indicate that the number of variables in the inverse problem can be reduced by more than half using the proposed method, without having a detrimental impact on the quality of the localization.
Localized Geometric Query Problems
Augustine, John; Maheshwari, Anil; Nandy, Subhas C; Roy, Sasanka; Sarvattomananda, Swami
2011-01-01
A new class of geometric query problems are studied in this paper. We are required to preprocess a set of geometric objects $P$ in the plane, so that for any arbitrary query point $q$, the largest circle that contains $q$ but does not contain any member of $P$, can be reported efficiently. The geometric sets that we consider are point sets and boundaries of simple polygons.
Lucka, Felix; Pursiainen, Sampsa; Burger, Martin; Wolters, Carsten H
2012-07-16
The estimation of the activity-related ion currents by measuring the induced electromagnetic fields at the head surface is a challenging and severely ill-posed inverse problem. This is especially true in the recovery of brain networks involving deep-lying sources by means of EEG/MEG recordings which is still a challenging task for any inverse method. Recently, hierarchical Bayesian modeling (HBM) emerged as a unifying framework for current density reconstruction (CDR) approaches comprising most established methods as well as offering promising new methods. Our work examines the performance of fully-Bayesian inference methods for HBM for source configurations consisting of few, focal sources when used with realistic, high-resolution finite element (FE) head models. The main foci of interest are the correct depth localization, a well-known source of systematic error of many CDR methods, and the separation of single sources in multiple-source scenarios. Both aspects are very important in the analysis of neurophysiological data and in clinical applications. For these tasks, HBM provides a promising framework and is able to improve upon established CDR methods such as minimum norm estimation (MNE) or sLORETA in many aspects. For challenging multiple-source scenarios where the established methods show crucial errors, promising results are attained. Additionally, we introduce Wasserstein distances as performance measures for the validation of inverse methods in complex source scenarios.
Chatzipetros, Argyrios Alexandros
1994-01-01
The synthesis of two types of Localized Wave (L W) pulses is considered; these are the 'Focus Wave Model (FWM) pulse and the X Wave pulse. First, we introduce the modified bidirectional representation where one can select new basis functions resulting in different representations for a solution to the scalar wave equation. Through this new representation, we find a new class of focused X Waves which can be extremely localized. The modified bidirectional decomposition is applied...
Bayesian Source Separation and Localization
Knuth, K H
1998-01-01
The problem of mixed signals occurs in many different contexts; one of the most familiar being acoustics. The forward problem in acoustics consists of finding the sound pressure levels at various detectors resulting from sound signals emanating from the active acoustic sources. The inverse problem consists of using the sound recorded by the detectors to separate the signals and recover the original source waveforms. In general, the inverse problem is unsolvable without additional information. This general problem is called source separation, and several techniques have been developed that utilize maximum entropy, minimum mutual information, and maximum likelihood. In previous work, it has been demonstrated that these techniques can be recast in a Bayesian framework. This paper demonstrates the power of the Bayesian approach, which provides a natural means for incorporating prior information into a source model. An algorithm is developed that utilizes information regarding both the statistics of the amplitudes...
A localization model to localize multiple sources using Bayesian inference
Dunham, Joshua Rolv
Accurate localization of a sound source in a room setting is important in both psychoacoustics and architectural acoustics. Binaural models have been proposed to explain how the brain processes and utilizes the interaural time differences (ITDs) and interaural level differences (ILDs) of sound waves arriving at the ears of a listener in determining source location. Recent work shows that applying Bayesian methods to this problem is proving fruitful. In this thesis, pink noise samples are convolved with head-related transfer functions (HRTFs) and compared to combinations of one and two anechoic speech signals convolved with different HRTFs or binaural room impulse responses (BRIRs) to simulate room positions. Through exhaustive calculation of Bayesian posterior probabilities and using a maximal likelihood approach, model selection will determine the number of sources present, and parameter estimation will result in azimuthal direction of the source(s).
Escaping "localisms" in IT sourcing
Mola, L.; Carugati, Andrea
2012-01-01
Organizations are limited in their choices by the institutional environment in which they operate. This is particularly true for IT sourcing decisions that go beyond cost considerations and are constrained by traditions, geographical location, and social networks. This article investigates how...... a company can disentangle itself from the constraints of the institutional environment. We do so drawing on a longitudinal case study of an Italian SME active in the steel industry that successfully changed its institutionally sound, but increasingly inefficient, IT sourcing practice. Our main result......, organizations can strike a balance between the different institutional logics guiding IT sourcing decisions and eventually shift from the dominant logic of localism to a logic of market efficiency. This change does not depend from a choice but rather builds on a process through which IT management competences...
EEG source localization: a neural network approach.
Sclabassi, R J; Sonmez, M; Sun, M
2001-07-01
Functional activity in the brain is associated with the generation of currents and resultant voltages which may be observed on the scalp as the electroencephelogram. The current sources may be modeled as dipoles. The properties of the current dipole sources may be studied by solving either the forward or inverse problems. The forward problem utilizes a volume conductor model for the head, in which the potentials on the conductor surface are computed based on an assumed current dipole at an arbitrary location, orientation, and strength. In the inverse problem, on the other hand, a current dipole, or a group of dipoles, is identified based on the observed EEG. Both the forward and inverse problems are typically solved by numerical procedures, such as a boundary element method and an optimization algorithm. These approaches are highly time-consuming and unsuitable for the rapid evaluation of brain function. In this paper we present a different approach to these problems based on machine learning. We solve both problems using artificial neural networks which are trained off-line using back-propagation techniques to learn the complex source-potential relationships of head volume conduction. Once trained, these networks are able to generalize their knowledge to localize functional activity within the brain in a computationally efficient manner.
Bio-Inspired Odor Source Localization
2011-07-01
1 Distribution A: Approved for Public Release; Distribution Unlimited Bio -Inspired Odor Source Localization Bio -Inspired Odor Source Localization...2011 2. REPORT TYPE N/A 3. DATES COVERED - 4. TITLE AND SUBTITLE Bio -Inspired Odor Source Localization 5a. CONTRACT NUMBER 5b. GRANT...Distribution Unlimited Bio -Inspired Odor Source Localization Why study odor tracking? • Engineer odor tracking systems – Gas leaks – Hazardous waste
Problems of Revenue Generation in Local Government ...
user
2013-07-07
Jul 7, 2013 ... financial problems hindering local governments in Nigeria, most especially .... Borrowing from State Government and financial institutions. f. Local government share of value added tax (VAT). .... Thus, tax evasion ... factors responsible for Local Government poor revenue .... 3 Issue 3 P.54 on internet. Orewa ...
The Locality Problem in Quantum Measurements
Slavnov, D A
2010-01-01
The locality problem of quantum measurements is considered in the framework of the algebraic approach. It is shown that contrary to the currently widespread opinion one can reconcile the mathematical formalism of the quantum theory with the assumption of the existence of a local physical reality determining the results of local measurements. The key quantum experiments: double-slit experiment on electron scattering, Wheeler's delayed-choice experiment, the Einstein-Podolsky-Rosen paradox, and quantum teleportation are discussed from the locality-problem point of view. A clear physical interpretation for these experiments, which does not contradict the classical ideas, is given.
Robust iterative observer for source localization for Poisson equation
Majeed, Muhammad Usman
2017-01-05
Source localization problem for Poisson equation with available noisy boundary data is well known to be highly sensitive to noise. The problem is ill posed and lacks to fulfill Hadamards stability criteria for well posedness. In this work, first a robust iterative observer is presented for boundary estimation problem for Laplace equation, and then this algorithm along with the available noisy boundary data from the Poisson problem is used to localize point sources inside a rectangular domain. The algorithm is inspired from Kalman filter design, however one of the space variables is used as time-like. Numerical implementation along with simulation results is detailed towards the end.
Localization from near-source quasi-static electromagnetic fields
Mosher, J.C.
1993-09-01
A wide range of research has been published on the problem of estimating the parameters of electromagnetic and acoustical sources from measurements of signals measured at an array of sensors. In the quasi-static electromagnetic cases examined here, the signal variation from a point source is relatively slow with respect to the signal propagation and the spacing of the array of sensors. As such, the location of the point sources can only be determined from the spatial diversity of the received signal across the array. The inverse source localization problem is complicated by unknown model order and strong local minima. The nonlinear optimization problem is posed for solving for the parameters of the quasi-static source model. The transient nature of the sources can be exploited to allow subspace approaches to separate out the signal portion of the spatial correlation matrix. Decomposition techniques are examined for improved processing, and an adaptation of MUtiple SIgnal Characterization (MUSIC) is presented for solving the source localization problem. Recent results on calculating the Cramer-Rao error lower bounds are extended to the multidimensional problem here. This thesis focuses on the problem of source localization in magnetoencephalography (MEG), with a secondary application to thunderstorm source localization. Comparisons are also made between MEG and its electrical equivalent, electroencephalography (EEG). The error lower bounds are examined in detail for several MEG and EEG configurations, as well as localizing thunderstorm cells over Cape Canaveral and Kennedy Space Center. Time-eigenspectrum is introduced as a parsing technique for improving the performance of the optimization problem.
Quantum erasure and the locality problem
Slavnov, D. A.
2017-07-01
The problem of locality arising in connection with the quantum-erasure experiments is considered using the algebraic approach. We demonstrate that, contrary to a widespread opinion, the results of these experiments can be reconciled with the existence of a local physical reality determining the results of local measurements. A clear physical interpretation of the quantum-erasure experiments, that is consistent with the classical concepts, is given.
Source localization of rhythmic ictal EEG activity
Beniczky, Sándor; Lantz, Göran; Rosenzweig, Ivana
2013-01-01
Although precise identification of the seizure-onset zone is an essential element of presurgical evaluation, source localization of ictal electroencephalography (EEG) signals has received little attention. The aim of our study was to estimate the accuracy of source localization of rhythmic ictal ...
Localization of Point Sources for Poisson Equation using State Observers
Majeed, M. U.
2016-08-09
A method based On iterative observer design is presented to solve point source localization problem for Poisson equation with riven boundary data. The procedure involves solution of multiple boundary estimation sub problems using the available Dirichlet and Neumann data from different parts of the boundary. A weighted sum of these solution profiles of sub-problems localizes point sources inside the domain. Method to compute these weights is also provided. Numerical results are presented using finite differences in a rectangular domain. (C) 2016, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
Local Relative Transfer Function for Sound Source Localization
Li, Xiaofei; Horaud, Radu; Girin, Laurent; Gannot, Sharon
2015-01-01
International audience; The relative transfer function (RTF), i.e. the ratio of acoustic transfer functions between two sensors, can be used for sound source localization / beamforming based on a microphone array. The RTF is usually defined with respect to a unique reference sensor. Choosing the reference sensor may be a difficult task, especially for dynamic acoustic environment and setup. In this paper we propose to use a locally normalized RTF, in short local-RTF, as an acoustic feature to...
Maximum Likelihood Localization of Radiation Sources with unknown Source Intensity
Baidoo-Williams, Henry E
2016-01-01
In this paper, we consider a novel and robust maximum likelihood approach to localizing radiation sources with unknown statistics of the source signal strength. The result utilizes the smallest number of sensors required theoretically to localize the source. It is shown, that should the source lie in the open convex hull of the sensors, precisely $N+1$ are required in $\\mathbb{R}^N, ~N \\in \\{1,\\cdots,3\\}$. It is further shown that the region of interest, the open convex hull of the sensors, is entirely devoid of false stationary points. An augmented gradient ascent algorithm with random projections should an estimate escape the convex hull is presented.
Note: Localization based on estimated source energy homogeneity
Turkaya, Semih; Toussaint, Renaud; Eriksen, Fredrik Kvalheim; Lengliné, Olivier; Daniel, Guillaume; Flekkøy, Eirik G.; Mâløy, Knut Jørgen
2016-09-01
Acoustic signal localization is a complex problem with a wide range of industrial and academic applications. Herein, we propose a localization method based on energy attenuation and inverted source amplitude comparison (termed estimated source energy homogeneity, or ESEH). This inversion is tested on both synthetic (numerical) data using a Lamb wave propagation model and experimental 2D plate data (recorded with 4 accelerometers sensitive up to 26 kHz). We compare the performance of this technique with classic source localization algorithms: arrival time localization, time reversal localization, and localization based on energy amplitude. Our technique is highly versatile and out-performs the conventional techniques in terms of error minimization and cost (both computational and financial).
Local Search Approaches in Stable Matching Problems
Toby Walsh
2013-10-01
Full Text Available The stable marriage (SM problem has a wide variety of practical applications, ranging from matching resident doctors to hospitals, to matching students to schools or, more generally, to any two-sided market. In the classical formulation, n men and n women express their preferences (via a strict total order over the members of the other sex. Solving an SM problem means finding a stable marriage where stability is an envy-free notion: no man and woman who are not married to each other would both prefer each other to their partners or to being single. We consider both the classical stable marriage problem and one of its useful variations (denoted SMTI (Stable Marriage with Ties and Incomplete lists where the men and women express their preferences in the form of an incomplete preference list with ties over a subset of the members of the other sex. Matchings are permitted only with people who appear in these preference lists, and we try to find a stable matching that marries as many people as possible. Whilst the SM problem is polynomial to solve, the SMTI problem is NP-hard. We propose to tackle both problems via a local search approach, which exploits properties of the problems to reduce the size of the neighborhood and to make local moves efficiently. We empirically evaluate our algorithm for SM problems by measuring its runtime behavior and its ability to sample the lattice of all possible stable marriages. We evaluate our algorithm for SMTI problems in terms of both its runtime behavior and its ability to find a maximum cardinality stable marriage. Experimental results suggest that for SM problems, the number of steps of our algorithm grows only as O(n log(n, and that it samples very well the set of all stable marriages. It is thus a fair and efficient approach to generate stable marriages. Furthermore, our approach for SMTI problems is able to solve large problems, quickly returning stable matchings of large and often optimal size, despite the
The Neuroelectromagnetic Inverse Problem and the Zero Dipole Localization Error
Rolando Grave de Peralta
2009-01-01
Full Text Available A tomography of neural sources could be constructed from EEG/MEG recordings once the neuroelectromagnetic inverse problem (NIP is solved. Unfortunately the NIP lacks a unique solution and therefore additional constraints are needed to achieve uniqueness. Researchers are then confronted with the dilemma of choosing one solution on the basis of the advantages publicized by their authors. This study aims to help researchers to better guide their choices by clarifying what is hidden behind inverse solutions oversold by their apparently optimal properties to localize single sources. Here, we introduce an inverse solution (ANA attaining perfect localization of single sources to illustrate how spurious sources emerge and destroy the reconstruction of simultaneously active sources. Although ANA is probably the simplest and robust alternative for data generated by a single dominant source plus noise, the main contribution of this manuscript is to show that zero localization error of single sources is a trivial and largely uninformative property unable to predict the performance of an inverse solution in presence of simultaneously active sources. We recommend as the most logical strategy for solving the NIP the incorporation of sound additional a priori information about neural generators that supplements the information contained in the data.
Source localization using rational approximation on plane sections
Clerc, M.; Leblond, J.; Marmorat, J.-P.; Papadopoulo, T.
2012-05-01
In functional neuroimaging, a crucial problem is to localize active sources within the brain non-invasively, from knowledge of electromagnetic measurements outside the head. Identification of point sources from boundary measurements is an ill-posed inverse problem. In the case of electroencephalography (EEG), measurements are only available at electrode positions, the number of sources is not known in advance and the medium within the head is inhomogeneous. This paper presents a new method for EEG source localization, based on rational approximation techniques in the complex plane. The method is used in the context of a nested sphere head model, in combination with a cortical mapping procedure. Results on simulated data prove the applicability of the method in the context of realistic measurement configurations.
Robust Source Localization in a Random Shallow Water Channel
Sazontov, Alexander; Matveyev, Alexander
2014-01-01
This paper addresses source localization problem in a random shallow water channel. We present an extension of the generalized MUSIC method to the case, %in which when the signal correlation matrix is imprecisely known. The algorithm is validated by %simulations and its application to the experimental data observed in the Barents Sea. It has been found that the approach proposed demonstrates its excellent performance.
Round-robin multiple-source localization.
Mantzel, William; Romberg, Justin; Sabra, Karim G
2014-01-01
This paper introduces a round-robin approach for multi-source localization based on matched-field processing. Each new source location is estimated from the ambiguity function after nulling from the data vector the current source location estimates using a robust projection matrix. This projection matrix effectively minimizes mean-square energy near current source location estimates subject to a rank constraint that prevents excessive interference with sources outside of these neighborhoods. Numerical simulations are presented for multiple sources transmitting through a fixed (and presumed known) generic Pekeris ocean waveguide in the single-frequency and broadband-coherent cases that illustrate the performance of the proposed approach which compares favorably against other previously published approaches. Furthermore, the efficacy with which randomized back-propagations may also be incorporated for computational advantage is also presented.
Acoustic source localization : Exploring theory and practice
Wind, Jelmer
2009-01-01
Over the past few decades, noise pollution became an important issue in modern society. This has led to an increased effort in the industry to reduce noise. Acoustic source localization methods determine the location and strength of the vibrations which are the cause of sound based onmeasurements of
Entropy Approximation in Lossy Source Coding Problem
Marek Śmieja
2015-05-01
Full Text Available In this paper, we investigate a lossy source coding problem, where an upper limit on the permitted distortion is defined for every dataset element. It can be seen as an alternative approach to rate distortion theory where a bound on the allowed average error is specified. In order to find the entropy, which gives a statistical length of source code compatible with a fixed distortion bound, a corresponding optimization problem has to be solved. First, we show how to simplify this general optimization by reducing the number of coding partitions, which are irrelevant for the entropy calculation. In our main result, we present a fast and feasible for implementation greedy algorithm, which allows one to approximate the entropy within an additive error term of log2 e. The proof is based on the minimum entropy set cover problem, for which a similar bound was obtained.
Robust Source Localization in Shallow Water Based on Vector Optimization
SONG Hai-yan; SHI Jie; LIU Bo-sheng
2013-01-01
Owing to the multipath effect,the source localization in shallow water has been an area of active interest.However,most methods for source localization in shallow water are sensitive to the assumed model of the underwater environment and have poor robustness against the underwater channel uncertainty,which limit their further application in practical engineering.In this paper,a new method of source localization in shallow water,based on vector optimization concept,is described,which is highly robust against environmental factors affecting the localization,such as the channel depth,the bottom reflection coefficients,and so on.Through constructing the uncertainty set of the source vector errors and extracting the multi-path sound rays from the sea surface and bottom,the proposed method can accurately localize one or more sources in shallow water dominated by multipath propagation.It turns out that the natural formulation of our approach involves minimization of two quadratic functions subject to infinitely many nonconvex quadratic constraints.It shows that this problem (originally intractable) can be reformulated in a convex form as the so-called second-order cone program (SOCP) and solved efficiently by using the well-established interior point method,such as the software tool,SeDuMi.Computer simulations show better performance of the proposed method as compared with existing algorithms and establish a theoretical foundation for the practical engineering application.
Robust source localization in shallow water based on vector optimization
Song, Hai-yan; Shi, Jie; Liu, Bo-sheng
2013-06-01
Owing to the multipath effect, the source localization in shallow water has been an area of active interest. However, most methods for source localization in shallow water are sensitive to the assumed model of the underwater environment and have poor robustness against the underwater channel uncertainty, which limit their further application in practical engineering. In this paper, a new method of source localization in shallow water, based on vector optimization concept, is described, which is highly robust against environmental factors affecting the localization, such as the channel depth, the bottom reflection coefficients, and so on. Through constructing the uncertainty set of the source vector errors and extracting the multi-path sound rays from the sea surface and bottom, the proposed method can accurately localize one or more sources in shallow water dominated by multipath propagation. It turns out that the natural formulation of our approach involves minimization of two quadratic functions subject to infinitely many nonconvex quadratic constraints. It shows that this problem (originally intractable) can be reformulated in a convex form as the so-called second-order cone program (SOCP) and solved efficiently by using the well-established interior point method, such as the software tool, SeDuMi. Computer simulations show better performance of the proposed method as compared with existing algorithms and establish a theoretical foundation for the practical engineering application.
INVERSE SCATTERING PROBLEMS BY SINGULAR SOURCE METHODS
无
2005-01-01
The inverse scattering problems are to detect the property of obstacles from the measurements outside the obstacles. One of important research areas in this topic is the recovery of boundary property for impenetrable obstacles. In this paper, we would like to give a brief review about the recently developed singular source methods. There are three different methods in this category, namely, linear sampling method, pointsource method and probe method. We also present some recent new results about the probe method.
Cortical source localization of infant cognition.
Reynolds, Greg D; Richards, John E
2009-01-01
Neuroimaging techniques such as positron emission topography (PET) and functional magnetic resonance imaging (fMRI) have been utilized with older children and adults to identify cortical sources of perceptual and cognitive processes. However, due to practical and ethical concerns, these techniques cannot be routinely applied to infant participants. An alternative to such neuroimaging techniques appropriate for use with infant participants is high-density electroencephalogram (EEG) recording and cortical source localization techniques. The current article provides an overview of a method developed for such analyses. The method consists of four steps: (1) recording high-density (e.g., 128-channel) EEG. (2) Analysis of individual participant raw segmented data with independent component analysis (ICA). (3) Estimation of equivalent current dipoles (ECDs) that represent cortical sources for the observed ICA component clusters. (4) Calculation of component activations in relation to experimental factors. We discuss an example of research applying this technique to investigate the development of visual attention and recognition memory. We also describe the application of "realistic head modeling" to address some of the current limitations of infant cortical source localization.
Relative locality and the soccer ball problem
Amelino-Camelia, Giovanni; Kowalski-Glikman, Jerzy; Smolin, Lee
2011-01-01
We consider the behavior of macroscopic bodies within the framework of relative locality, which is a recent proposal for Planck scale modifications of the relativistic dynamics of particles which are described as arising from deformations in the geometry of momentum space. These lead to the addition of non-linear terms to the energy-momentum relations and conservation laws, which are suppressed by powers of ratio between the energy E of the particles involved and the Planck mass M_P. We consider and resolve a common objection against such proposals, which is that, even if the corrections are small for elementary particles in current experiments, they are huge when applied to composite systems such as soccer balls, planets and stars, with energies E_{macro} much larger than M_P. We show that this "soccer-ball problem" does not arise within the framework of relative locality, because the non-linear effects for the dynamics of a composite system with N elementary particles appear at most of order E_{macro}/ N M_...
Problems of Revenue Generation in Local Government ...
Every local jurisdiction has its unique economic, social and physical ... Therefore, the concept of local government is to bring governance closer to the people ... for Local Governments to be able to perform these functions creditably, they need ...
Distributed Source Localization in Wireless Underground Sensor Networks
Chen, Hongyang; Wang, Chen
2011-01-01
Node localization plays an important role in many practical applications of wireless underground sensor networks (WUSNs), such as finding the locations of earthquake epicenters, underground explosions, and microseismic events in mines. It is more difficult to obtain the time-difference-of-arrival (TDOA) measurements in WUSNs than in terrestrial wireless sensor networks because of the unfavorable channel characteristics in the underground environment. The robust Chinese remainder theorem (RCRT) has been shown to be an effective tool for solving the phase ambiguity problem and frequency estimation problem in wireless sensor networks. In this paper, the RCRT is used to robustly estimate TDOA or range difference in WUSNs and therefore improves the ranging accuracy in such networks. After obtaining the range difference, distributed source localization algorithms based on a diffusion strategy are proposed to decrease the communication cost while satisfying the localization accuracy requirement. Simulation results c...
Sparse cortical source localization using spatio-temporal atoms.
Korats, Gundars; Ranta, Radu; Le Cam, Steven; Louis-Dorr, Valérie
2015-01-01
This paper addresses the problem of sparse localization of cortical sources from scalp EEG recordings. Localization algorithms use propagation model under spatial and/or temporal constraints, but their performance highly depends on the data signal-to-noise ratio (SNR). In this work we propose a dictionary based sparse localization method which uses a data driven spatio-temporal dictionary to reconstruct the measurements using Single Best Replacement (SBR) and Continuation Single Best Replacement (CSBR) algorithms. We tested and compared our methods with the well-known MUSIC and RAP-MUSIC algorithms on simulated realistic data. Tests were carried out for different noise levels. The results show that our method has a strong advantage over MUSIC-type methods in case of synchronized sources.
A Study on Water Pollution Source Localization in Sensor Networks
Jun Yang; Xu Luo
2016-01-01
The water pollution source localization is of great significance to water environment protection. In this paper, a study on water pollution source localization is presented. Firstly, the source detection is discussed. Then, the coarse localization methods and the localization methods based on diffusion models are introduced and analyzed, respectively. In addition, the localization method based on the contour is proposed. The detection and localization methods are compared in experiments final...
Local adaptations to global problems; Lokale tilpasninger til globale problemer
Solberg, Nina
2010-07-01
Information booklet published by KS (The Norwegian Association of Local and Regional Authorities) and show examples from several municipalities in Norway that have completed, or are in the process of adaptation measures. The release of the new information booklet is the first step in a work of KS to push climate change higher up the agenda in local government. (Author)
A LOCAL VIEW OF TEACHER PROBLEMS
Mehmet Kaan DEMİR
2013-03-01
Full Text Available The purpose of this study is to find out the problems encountered by the early childhood educators, classroom teachers and branch teachers serving in the province of Çanakkale. Within this context, 99 teachers out of 220, who were participating in the in-service training activities of the Ministry of Education, were given a scale with 15 recognised problems and asked to specify problems they encounter and decide on the 4 most disturbing ones. Total of 395 problems specified by the teachers. Analyzing frequencies of the specified problems, ‘low income levels’, ‘lowered status in the society’ and ‘rapidly changing curriculums and legislations’ can be counted as the most disturbing issues for teachers. Analyzing frequencies of the least mentioned problems on the other hand, ‘problems of staffing standards’, ‘non-appreciation of performances’ and ‘long working hours’ are the least disturbing issues for teachers.
Data-based matched-mode source localization for a moving source.
Yang, T C
2014-03-01
A data-based matched-mode source localization method is proposed in this paper for a moving source, using mode wavenumbers and depth functions estimated directly from the data, without requiring any environmental acoustic information and assuming any propagation model. The method is in theory free of the environmental mismatch problem because the mode replicas are estimated from the same data used to localize the source. Besides the estimation error due to the approximations made in deriving the data-based algorithms, the method has some inherent drawbacks: (1) It uses a smaller number of modes than theoretically possible because some modes are not resolved in the measurements, and (2) the depth search is limited to the depth covered by the receivers. Using simulated data, it is found that the performance degradation due to the afore-mentioned approximation/limitation is marginal compared with the original matched-mode source localization method. The proposed method has a potential to estimate the source range and depth for real data and be free of the environmental mismatch problem, noting that certain aspects of the (estimation) algorithms have previously been tested against data. The key issues are discussed in this paper.
Review on solving the forward problem in EEG source analysis
Vergult Anneleen
2007-11-01
Full Text Available Abstract Background The aim of electroencephalogram (EEG source localization is to find the brain areas responsible for EEG waves of interest. It consists of solving forward and inverse problems. The forward problem is solved by starting from a given electrical source and calculating the potentials at the electrodes. These evaluations are necessary to solve the inverse problem which is defined as finding brain sources which are responsible for the measured potentials at the EEG electrodes. Methods While other reviews give an extensive summary of the both forward and inverse problem, this review article focuses on different aspects of solving the forward problem and it is intended for newcomers in this research field. Results It starts with focusing on the generators of the EEG: the post-synaptic potentials in the apical dendrites of pyramidal neurons. These cells generate an extracellular current which can be modeled by Poisson's differential equation, and Neumann and Dirichlet boundary conditions. The compartments in which these currents flow can be anisotropic (e.g. skull and white matter. In a three-shell spherical head model an analytical expression exists to solve the forward problem. During the last two decades researchers have tried to solve Poisson's equation in a realistically shaped head model obtained from 3D medical images, which requires numerical methods. The following methods are compared with each other: the boundary element method (BEM, the finite element method (FEM and the finite difference method (FDM. In the last two methods anisotropic conducting compartments can conveniently be introduced. Then the focus will be set on the use of reciprocity in EEG source localization. It is introduced to speed up the forward calculations which are here performed for each electrode position rather than for each dipole position. Solving Poisson's equation utilizing FEM and FDM corresponds to solving a large sparse linear system. Iterative
Sun, Miao; Tang, Yuquan; Yang, Shuang; Li, Jun; Sigrist, Markus W; Dong, Fengzhong
2016-06-06
We propose a method for localizing a fire source using an optical fiber distributed temperature sensor system. A section of two parallel optical fibers employed as the sensing element is installed near the ceiling of a closed room in which the fire source is located. By measuring the temperature of hot air flows, the problem of three-dimensional fire source localization is transformed to two dimensions. The method of the source location is verified with experiments using burning alcohol as fire source, and it is demonstrated that the method represents a robust and reliable technique for localizing a fire source also for long sensing ranges.
Consistency of EEG source localization and connectivity estimates.
Mahjoory, Keyvan; Nikulin, Vadim V; Botrel, Loïc; Linkenkaer-Hansen, Klaus; Fato, Marco M; Haufe, Stefan
2017-05-15
As the EEG inverse problem does not have a unique solution, the sources reconstructed from EEG and their connectivity properties depend on forward and inverse modeling parameters such as the choice of an anatomical template and electrical model, prior assumptions on the sources, and further implementational details. In order to use source connectivity analysis as a reliable research tool, there is a need for stability across a wider range of standard estimation routines. Using resting state EEG recordings of N=65 participants acquired within two studies, we present the first comprehensive assessment of the consistency of EEG source localization and functional/effective connectivity metrics across two anatomical templates (ICBM152 and Colin27), three electrical models (BEM, FEM and spherical harmonics expansions), three inverse methods (WMNE, eLORETA and LCMV), and three software implementations (Brainstorm, Fieldtrip and our own toolbox). Source localizations were found to be more stable across reconstruction pipelines than subsequent estimations of functional connectivity, while effective connectivity estimates where the least consistent. All results were relatively unaffected by the choice of the electrical head model, while the choice of the inverse method and source imaging package induced a considerable variability. In particular, a relatively strong difference was found between LCMV beamformer solutions on one hand and eLORETA/WMNE distributed inverse solutions on the other hand. We also observed a gradual decrease of consistency when results are compared between studies, within individual participants, and between individual participants. In order to provide reliable findings in the face of the observed variability, additional simulations involving interacting brain sources are required. Meanwhile, we encourage verification of the obtained results using more than one source imaging procedure. Copyright © 2017 Elsevier Inc. All rights reserved.
Local search for stable marriage problems
Gelain, M; Rossi, F; Venable, K B; Walsh, T
2010-01-01
The stable marriage (SM) problem has a wide variety of practical applications, ranging from matching resident doctors to hospitals, to matching students to schools, or more generally to any two-sided market. In the classical formulation, n men and n women express their preferences (via a strict total order) over the members of the other sex. Solving a SM problem means finding a stable marriage where stability is an envy-free notion: no man and woman who are not married to each other would both prefer each other to their partners or to being single. We consider both the classical stable marriage problem and one of its useful variations (denoted SMTI) where the men and women express their preferences in the form of an incomplete preference list with ties over a subset of the members of the other sex. Matchings are permitted only with people who appear in these lists, an we try to find a stable matching that marries as many people as possible. Whilst the SM problem is polynomial to solve, the SMTI problem is NP-...
Dark Matter Problem in the Local Supercluster
Makarov, D
2008-01-01
The Local Supercluster is an ideal laboratory to study distribution of luminous and dark matter in the nearby Universe. The 1100 small groups have been selected using algorithm based on assumption that a total energy of physical pair of galaxies must be negative. The properties of the groups have been considered.
Localization of Sound Sources in Underground Parking Lots
Dong Myung Lee; Moo Kyung Jung; Chang Yong Choi; Hongchi Shi
2014-01-01
We present a localization of sound sources algorithm for underground parking lots and a compensation algorithm for enhancing localization of sound sources based on the least-squares method (LSM). The proposed localization of sound sources system is designed for the underground parking lots in apartments. The sound location algorithm is referred to as LOCSS, and the localization algorithm enhanced with the compensation algorithm is referred to as LOCSS+LCALSM. We also present the performance c...
Problems with packaged sources in foreign countries
Abeyta, Cristy L [Los Alamos National Laboratory; Matzke, James L [Los Alamos National Laboratory; Zarling, John [Los Alamos National Laboratory; Tompkin, J. Andrew [Los Alamos National Laboratory
2010-01-01
The Global Threat Reduction Initiative's (GTRI) Off-Site Source Recovery Project (OSRP), which is administered by the Los Alamos National Laboratory (LANL), removes excess, unwanted, abandoned, or orphan radioactive sealed sources that pose a potential threat to national security, public health, and safety. In total, GTRI/OSRP has been able to recover more than 25,000 excess and unwanted sealed sources from over 825 sites. In addition to transuranic sources, the GTRI/OSRP mission now includes recovery of beta/gamma emitting sources, which are of concern to both the U.S. government and the International Atomic Energy Agency (IAEA). This paper provides a synopsis of cooperative efforts in foreign countries to remove excess and unwanted sealed sources by discussing three topical areas: (1) The Regional Partnership with the International Atomic Energy Agency; (2) Challenges in repatriating sealed sources; and (3) Options for repatriating sealed sources.
Review on solving the inverse problem in EEG source analysis
Fabri Simon G
2008-11-01
Full Text Available Abstract In this primer, we give a review of the inverse problem for EEG source localization. This is intended for the researchers new in the field to get insight in the state-of-the-art techniques used to find approximate solutions of the brain sources giving rise to a scalp potential recording. Furthermore, a review of the performance results of the different techniques is provided to compare these different inverse solutions. The authors also include the results of a Monte-Carlo analysis which they performed to compare four non parametric algorithms and hence contribute to what is presently recorded in the literature. An extensive list of references to the work of other researchers is also provided. This paper starts off with a mathematical description of the inverse problem and proceeds to discuss the two main categories of methods which were developed to solve the EEG inverse problem, mainly the non parametric and parametric methods. The main difference between the two is to whether a fixed number of dipoles is assumed a priori or not. Various techniques falling within these categories are described including minimum norm estimates and their generalizations, LORETA, sLORETA, VARETA, S-MAP, ST-MAP, Backus-Gilbert, LAURA, Shrinking LORETA FOCUSS (SLF, SSLOFO and ALF for non parametric methods and beamforming techniques, BESA, subspace techniques such as MUSIC and methods derived from it, FINES, simulated annealing and computational intelligence algorithms for parametric methods. From a review of the performance of these techniques as documented in the literature, one could conclude that in most cases the LORETA solution gives satisfactory results. In situations involving clusters of dipoles, higher resolution algorithms such as MUSIC or FINES are however preferred. Imposing reliable biophysical and psychological constraints, as done by LAURA has given superior results. The Monte-Carlo analysis performed, comparing WMN, LORETA, sLORETA and SLF
Source localization of brain activity using helium-free interferometer
Dammers, Jürgen; Chocholacs, Harald; Eich, Eberhard; Boers, Frank; Faley, Michael; Dunin-Borkowski, Rafal E.; Jon Shah, N.
2014-05-01
To detect extremely small magnetic fields generated by the human brain, currently all commercial magnetoencephalography (MEG) systems are equipped with low-temperature (low-Tc) superconducting quantum interference device (SQUID) sensors that use liquid helium for cooling. The limited and increasingly expensive supply of helium, which has seen dramatic price increases recently, has become a real problem for such systems and the situation shows no signs of abating. MEG research in the long run is now endangered. In this study, we report a MEG source localization utilizing a single, highly sensitive SQUID cooled with liquid nitrogen only. Our findings confirm that localization of neuromagnetic activity is indeed possible using high-Tc SQUIDs. We believe that our findings secure the future of this exquisitely sensitive technique and have major implications for brain research and the developments of cost-effective multi-channel, high-Tc SQUID-based MEG systems.
Source localization of brain activity using helium-free interferometer
Dammers, Jürgen, E-mail: J.Dammers@fz-juelich.de; Chocholacs, Harald; Eich, Eberhard; Boers, Frank [Institute of Neuroscience and Medicine (INM-4), Forschungszentrum Jülich, Jülich (Germany); Faley, Michael; Dunin-Borkowski, Rafal E. [Peter Grünberg Institute (PGI-5), Forschungszentrum Jülich, Jülich (Germany); Jon Shah, N. [Institute of Neuroscience and Medicine (INM-4), Forschungszentrum Jülich, Jülich (Germany); Department of Neurology, RWTH Aachen University, Aachen (Germany); Jülich Aachen Research Alliance (JARA)—Translational Brain Medicine, Jülich (Germany)
2014-05-26
To detect extremely small magnetic fields generated by the human brain, currently all commercial magnetoencephalography (MEG) systems are equipped with low-temperature (low-T{sub c}) superconducting quantum interference device (SQUID) sensors that use liquid helium for cooling. The limited and increasingly expensive supply of helium, which has seen dramatic price increases recently, has become a real problem for such systems and the situation shows no signs of abating. MEG research in the long run is now endangered. In this study, we report a MEG source localization utilizing a single, highly sensitive SQUID cooled with liquid nitrogen only. Our findings confirm that localization of neuromagnetic activity is indeed possible using high-T{sub c} SQUIDs. We believe that our findings secure the future of this exquisitely sensitive technique and have major implications for brain research and the developments of cost-effective multi-channel, high-T{sub c} SQUID-based MEG systems.
Sourcing semiclassical gravity from spontaneously localized quantum matter
Tilloy, Antoine
2015-01-01
The possibility that a classical space-time and quantum matter cohabit at the deepest level, i.e. the possibility of having a fundamental and not phenomenological semiclassical gravity, is often disregarded for lack of a good candidate theory. The standard semiclassical theory suffers from fundamental inconsistencies (e.g.: Schr\\"odinger cat sources, faster-than-light communication and violation of the Born rule) which can only be ignored in simple typical situations. We harness the power of spontaneous localization models, historically constructed to solve the measurement problem in quantum mechanics, to build a consistent theory of (stochastic) semiclassical gravity in the Newtonian limit. Our model makes quantitative and testable predictions: we recover the Newtonian pair potential up to a short distance cut-off and uncover an additional gravitational decoherence term which depends on the specifics of the underlying spontaneous localization model considered. We hint at a possible program to go past the New...
Laplace transform generation theorems and local Cauchy problems
Claus Müller
2004-01-01
Full Text Available We give new criterions to decide if some vector-valued function is a local Laplace transform and apply this to the theory of local Cauchy problems. This leads to an improvement of known results and new Hille-Yosida-type theorems for local convoluted semigroups.
A UNIFIED APPROACH TO CERTAIN PROBLEMS OF BEST LOCAL APPROXIMATION
H.H.Cuenya; M.D.Lorenzo; C.N.Rodriguez
2007-01-01
In this paper we study best local quasi-rational approximation and best local approximation from finite dimensional subspaces of vectorial functions of several variables.Our approach extends and unifies several problems concerning best local multi-point approximation in different norms.
TREASURY EXECUTION OF LOCAL SPENDING BUDGETS: PROBLEMS AND SOLUTIONS
Dema, Dmitry; Feshchenko, Natalya
2014-01-01
The theoretical and practical aspects of using a treasury management system for servicing of local budgets are considered; the role of treasury bodies in routine management of local finances is defined. Current problems of treasury-based execution of local spending budgets are investigated and main deregulating factors affecting the procedure of cash execution of budgets are arranged in a system.Ways to improve budget funds management at the local level are proposed including: improvement of ...
Connecting earthquake source products to local tsunami warning
Melgar, D.; Allen, R. M.
2015-12-01
Issuing warning of a tsunami in advance of its arrival to the coastlines immediately adjacent to large earthquakes remains a challenging problem. The heterogeneous development state of regional geophysical monitoring infrastructure across subduction zones worldwide means that a flexible approach to warning, capable of ingesting multiple data types and earthquake source products, is the most appealing. We will present results from the study of 3 recent large events that have been observed with diverse geophysical measurements; the 2011 Mw9.0 Tohoku-oki, the 2010 Mw8.8 Maule and 2014 Mw8.2 Iquique events. First, we will show that earthquake slip models derived from combination of land (GPS and strong motion) as well as off-shore (tide gauges, ocean-bottom pressure, and GPS buoy) can be coupled to tsunami propagation models to produce simulations that closely match the measured run-up at the local coastlines. Using these models as a baseline for validation we will demonstrate a methodology that takes advantage of simpler, but more readily available earthquake source products such as rapid point-source magnitude estimates from coastal GPS observations and regional moment tensors. We will show that while trading-off precision for speed, these simpler earthquake source models produce inundation forecasts reliable enough to be used for warning within minutes of earthquake onset. Most subduction zones around the world already have some geophysical infrastructure and are producing some form of real-time earthquake source product, our results strongly argue that by coupling these data products to tsunami propagation models local tsunami warning is possible at most subduction zones with already available infrastructure.
Local and Parallel Finite Element Algorithms for Eigenvalue Problems
Jinchao Xu; Aihui Zhou
2002-01-01
Some new local and parallel finite element algorithms are proposed and analyzed in this paper for eigenvalue problems. With these algorithms, the solution of an eigenvalue problem on a fine grid is reduced to the solution of an eigenvalue problem on a relatively coarse grid together with solutions of some linear algebraic systems on fine grid by using some local and parallel procedure. A theoretical tool for analyzing these algorithms is some local error estimate that is also obtained in this paper for finite element approximations of eigenvectors on general shape-regular grids.
Relative local control and the block source algebras
樊恽
1997-01-01
The local control of pointed groups is generalized to the concept of relative local control,and it is proved that there exists a lifting for a covering of a block source algebra if the relative local control holds.As an application,a result is proved on the source algebras of blocks,whose defect groups are direct products of a normal subgroup and a subgroup that gives a relative local control.
Wavelet-based localization of oscillatory sources from magnetoencephalography data.
Lina, J M; Chowdhury, R; Lemay, E; Kobayashi, E; Grova, C
2014-08-01
Transient brain oscillatory activities recorded with Eelectroencephalography (EEG) or magnetoencephalography (MEG) are characteristic features in physiological and pathological processes. This study is aimed at describing, evaluating, and illustrating with clinical data a new method for localizing the sources of oscillatory cortical activity recorded by MEG. The method combines time-frequency representation and an entropic regularization technique in a common framework, assuming that brain activity is sparse in time and space. Spatial sparsity relies on the assumption that brain activity is organized among cortical parcels. Sparsity in time is achieved by transposing the inverse problem in the wavelet representation, for both data and sources. We propose an estimator of the wavelet coefficients of the sources based on the maximum entropy on the mean (MEM) principle. The full dynamics of the sources is obtained from the inverse wavelet transform, and principal component analysis of the reconstructed time courses is applied to extract oscillatory components. This methodology is evaluated using realistic simulations of single-trial signals, combining fast and sudden discharges (spike) along with bursts of oscillating activity. The method is finally illustrated with a clinical application using MEG data acquired on a patient with a right orbitofrontal epilepsy.
Cortical Source Localization of Infant Cognition
Reynolds, GD; Richards, JE
2009-01-01
Neuroimaging techniques such as positron emission topography (PET) and functional magnetic resonance imaging (fMRI) have been utilized with older children and adults to identify cortical sources of perceptual and cognitive processes. However, due to practical and ethical concerns, these techniques cannot be routinely applied to infant participants. An alternative to such neuroimaging techniques appropriate for use with infant participants is high-density EEG recording and cortical source loca...
Directional Hearing and Sound Source Localization in Fishes.
Sisneros, Joseph A; Rogers, Peter H
2016-01-01
Evidence suggests that the capacity for sound source localization is common to mammals, birds, reptiles, and amphibians, but surprisingly it is not known whether fish locate sound sources in the same manner (e.g., combining binaural and monaural cues) or what computational strategies they use for successful source localization. Directional hearing and sound source localization in fishes continues to be important topics in neuroethology and in the hearing sciences, but the empirical and theoretical work on these topics have been contradictory and obscure for decades. This chapter reviews the previous behavioral work on directional hearing and sound source localization in fishes including the most recent experiments on sound source localization by the plainfin midshipman fish (Porichthys notatus), which has proven to be an exceptional species for fish studies of sound localization. In addition, the theoretical models of directional hearing and sound source localization for fishes are reviewed including a new model that uses a time-averaged intensity approach for source localization that has wide applicability with regard to source type, acoustic environment, and time waveform.
Potential Energy Sources Pose Mining Problem
Chemical and Engineering News, 1974
1974-01-01
Summarizes the discussions of a Division of Industrial and Engineering Chemistry symposium on solids handling for synthetic fuels production. Included is a description of technical difficulties with the use of coal seams and deposits of oil shale and oil sand as potential sources of fuel. (CC)
Source localization using acoustic vector sensors: a music approach
Wind, Jelmer; Tijs, Emiel; de Bree, H.E.
2009-01-01
Traditionally, a large array of microphones is used to localize multiple far field sources in acoustics. We present a sound source localization technique that requires far less channels and measurement locations (affecting data channels, setup times and cabling issues). This is achieved by using an
Local regularization of linear inverse problems via variational filtering
Lamm, Patricia K.
2017-08-01
We develop local regularization methods for ill-posed linear inverse problems governed by general Fredholm integral operators. The methods are executed as filtering algorithms which are simple to implement and computationally efficient for a large class of problems. We establish a convergence theory and give convergence rates for such methods, and illustrate their computational speed in numerical tests for inverse problems in geomagnetic exploration and imaging.
Linearized versus non-linear inverse methods for seismic localization of underground sources
Oh, Geok Lian; Jacobsen, Finn
2013-01-01
The problem of localization of underground sources from seismic measurements detected by several geophones located on the ground surface is addressed. Two main approaches to the solution of the problem are considered: a beamforming approach that is derived from the linearized inversion problem...... Difference elastic wave-field numerical method. In this paper, the accuracy and performance of the linear beamformer and nonlinear inverse methods to localize a underground seismic source are checked and compared using computer generated synthetic experimental data. © 2013 Acoustical Society of America....
Solving Information-Based Problems: Evaluating Sources and Information
Brand-Gruwel, Saskia; Stadtler, Marc
2011-01-01
The focus of this special section is on the processes involved when solving information-based problems. Solving these problems requires from people that they are able to define the information problem, search and select usable and reliable sources and information and synthesise information into a coherent body of knowledge. An important aspect…
Solving Information-Based Problems: Evaluating Sources and Information
Brand-Gruwel, Saskia; Stadtler, Marc
2011-01-01
The focus of this special section is on the processes involved when solving information-based problems. Solving these problems requires from people that they are able to define the information problem, search and select usable and reliable sources and information and synthesise information into a coherent body of knowledge. An important aspect…
Crowd sourcing difficult problems in protein science().
Alexander, Nathan S; Palczewski, Krzysztof
2017-08-01
Dedicated computing resources are expensive to develop, maintain, and administrate. Frequently, research groups require bursts of computing power, during which progress is still limited by available computing resources. One way to alleviate this bottleneck would be to use additional computing resources. Today, many computing devices remain idle most of the time. Passive volunteer computing exploits this unemployed reserve of computing power by allowing device-owners to donate computing time on their own devices. Another complementary way to alleviate bottlenecks in computing resources is to use more efficient algorithms. Engaging volunteer computing employs human intuition to help solve challenging problems for which efficient algorithms are difficult to develop or unavailable. Designing engaging volunteer computing projects is challenging but can result in high-quality solutions. Here, we highlight four examples. © 2017 The Protein Society.
Multiresolution processing for source detection and localization
DING Feng; GONG Xianyi
2003-01-01
The conventional BF/MFP (beamforming/matched field processing) or BF/MFPbased on subspace are traditional array signal processing methods for source's detection andlocation, they are all belonging to singe-resolution processing. In fact, the array signal hasmultiresolution structure, which is worthy of exploiture and utilization to enhance the abilityof detection and location, especially to improve the robustness for BF/MFP. The time-spacemultiresolution modeling of multipath transmitted wave and the corresponding multiresolutionfocused processing are investigated, and it is shown from the analysis of actual sea-trial datathat the performance of MFP can be improved.
Sensor selection for received signal strength-based source localization in wireless sensor networks
无
2011-01-01
Generally, localization is a nonlinear problem, while linearization is used to simplify this problem. Reasonable approximations could be achieved when signal-to-noise ratio (SNR) is large enough. Energy is a critical resource in wireless sensor networks, and system lifetime needs to be prolonged through the use of energy efficient strategies during system operation. In this paper, a closed-form solution for received signal strength (RSS)-based source localization in wireless sensor network (WSN) is obtained...
Moving sound source localization based on triangulation method
Miao, Feng; Yang, Diange; Wen, Junjie; Lian, Xiaomin
2016-12-01
This study develops a sound source localization method that extends traditional triangulation to moving sources. First, the possible sound source locating plane is scanned. Secondly, for each hypothetical source location in this possible plane, the Doppler effect is removed through the integration of sound pressure. Taking advantage of the de-Dopplerized signals, the moving time difference of arrival (MTDOA) is calculated, and the sound source is located based on triangulation. Thirdly, the estimated sound source location is compared to the original hypothetical location and the deviations are recorded. Because the real sound source location leads to zero deviation, the sound source can be finally located by minimizing the deviation matrix. Simulations have shown the superiority of MTDOA method over traditional triangulation in case of moving sound sources. The MTDOA method can be used to locate moving sound sources with as high resolution as DAMAS beamforming, as shown in the experiments, offering thus a new method for locating moving sound sources.
Local Optima Networks of the Quadratic Assignment Problem
Daolio, Fabio; Ochoa, Gabriela; Tomassini, Marco
2011-01-01
Using a recently proposed model for combinatorial landscapes, Local Optima Networks (LON), we conduct a thorough analysis of two types of instances of the Quadratic Assignment Problem (QAP). This network model is a reduction of the landscape in which the nodes correspond to the local optima, and the edges account for the notion of adjacency between their basins of attraction. The model was inspired by the notion of 'inherent network' of potential energy surfaces proposed in physical-chemistry. The local optima networks extracted from the so called uniform and real-like QAP instances, show features clearly distinguishing these two types of instances. Apart from a clear confirmation that the search difficulty increases with the problem dimension, the analysis provides new confirming evidence explaining why the real-like instances are easier to solve exactly using heuristic search, while the uniform instances are easier to solve approximately. Although the local optima network model is still under development, w...
Local Hubble Expansion: Current State of the Problem
Dumin, Yurii V
2016-01-01
We present a brief qualitative overview of the current state of the problem of Hubble expansion at the sufficiently small scales (e.g., in planetary systems or local intergalactic volume). The crucial drawbacks of the available theoretical treatments are emphasized, and the possible ways to avoid them are outlined. Attention is drawn to a number of observable astronomical phenomena that could be naturally explained by the local Hubble expansion.
Localization on Fat Branes as the Source of Neutrino Mixing
Gozdz, M
2004-01-01
The localization of fermions in extra dimensions, proposed by Arkani-Hamed and Schmaltz, is discussed as the source of the phenomenon of particle mixing. We work out the example of neutrinos in detail.
novel applications of locally sourced montmorillonite (mmt) clay as a ...
USER
2015-06-01
Jun 1, 2015 ... This work explores the application of a locally sourced raw material, ..... rotation speed of 100 r.p.m., maintaining the ... against time (min) to generate a dissolution rate ... easily be correlated with their high powder porosities.
Rates versus Developer Contributions as Revenue Sources for Local Government
Kate Koutifaris
2012-12-01
Full Text Available Population expansion in many New South Wales (NSW local government areas (LGA has resulted in an increase in demand for local infrastructure and services that has far outstripped sources of local government revenue. This paper looks at two important sources of local government revenue in NSW, municipal rates and Section 94 contributions, as a source of funding increased demand and maintenance of infrastructure. It examines some recent and potentially long-term trends of both these revenues within different economic climates. An analysis and comparison of data over the period from June 2006 through to June 2010 against data collected for the period ending June 1993 forms the basis of this research. The research objective is to compare changes in the relativity of these revenue types and assess their application as a source of local government revenue. Data collected from the Department of Local Government NSW is compared with the findings of an earlier study, conducted by Barnes and Dollery (1996, in determining their relativity. The provision and maintenance of infrastructure by local government is essential for growth in the economy and is a valuable asset to be used by the community. Two types of funding for this infrastructure, among others, is sourced from municipal rates and developer charges levied under Section 94 contributions either by the developer providing the infrastructure, or a contribution towards its funding (Barnes and Dollery 1996.
Rates versus Developer Contributions as Revenue Sources for Local Government
Kate Koutifaris
2012-12-01
Full Text Available Population expansion in many New South Wales (NSW local government areas (LGA has resulted in an increase in demand for local infrastructure and services that has far outstripped sources of local government revenue. This paper looks at two important sources of local government revenue in NSW, municipal rates and Section 94 contributions, as a source of funding increased demand and maintenance of infrastructure. It examines some recent and potentially long-term trends of both these revenues within different economic climates. An analysis and comparison of data over the period from June 2006 through to June 2010 against data collected for the period ending June 1993 forms the basis of this research. The research objective is to compare changes in the relativity of these revenue types and assess their application as a source of local government revenue. Data collected from the Department of Local Government NSW is compared with the findings of an earlier study, conducted by Barnes and Dollery (1996, in determining their relativity. The provision and maintenance of infrastructure by local government is essential for growth in the economy and is a valuable asset to be used by the community. Two types of funding for this infrastructure, among others, is sourced from municipal rates and developer charges levied under Section 94 contributions either by the developer providing the infrastructure, or a contribution towards its funding (Barnes and Dollery 1996.
Locally sourced probiotics, the next opportunity for developing countries?
Sybesma, W.; Kort, R.; Lee, Y.K.
2015-01-01
We describe factors promoting the exploration of locally sourced probiotics, targeting local populations to balance human needs and market opportunities. This would be particularly beneficial for people in developing countries, who generally lack access to affordable probiotics and are often exposed
Locally sourced probiotics, the next opportunity for developing countries?
Sybesma, W.; Kort, R.; Lee, Y.K.
2015-01-01
We describe factors promoting the exploration of locally sourced probiotics, targeting local populations to balance human needs and market opportunities. This would be particularly beneficial for people in developing countries, who generally lack access to affordable probiotics and are often exposed
An Iterated Local Search Algorithm for a Place Scheduling Problem
Shicheng Hu
2013-01-01
Full Text Available We study the place scheduling problem which has many application backgrounds in realities. For the block manufacturing project with special manufacturing platform requirements, we propose a place resource schedule problem. First, the mathematical model for the place resource schedule problem is given. On the basis of resource-constrained project scheduling problem and packing problem, we develop a hybrid heuristic method which combines priority rules and three-dimensional best fit algorithm, in which the priority rules determine the scheduling order and the three-dimensional best fit algorithm solves the placement. After this method is used to get an initial solution, the iterated local search is employed to get an improvement. Finally, we use a set of simulation data to demonstrate the steps of the proposed method and verify its feasibility.
Local Conjecturing Process in the Solving of Pattern Generalization Problem
Sutarto; Nusantara, Toto; Subanji; Sisworo
2016-01-01
This aim of this study is to describe the process of local conjecturing in generalizing patterns based on Action, Process, Object, Schema (APOS) theory. The subjects were 16 grade 8 students from a junior high school. Data collection used Pattern Generalization Problem (PGP) and interviews. In the first stage, students completed PGP; in the second…
Tackling the premature convergence problem in Monte-Carlo localization
Kootstra, G.; de Boer, B.
2009-01-01
Monte-Carlo localization uses particle filtering to estimate the position of the robot. The method is known to suffer from the loss of potential positions when there is ambiguity present in the environment. Since many indoor environments are highly symmetric, this problem of premature convergence is
Nondeterministic Sound Source Localization with Smartphones in Crowdsensing
Kamminga, Jacob Wilhelm; Scholten, Johan; Havinga, Paul J.M.; Le, Viet Duc; Le Viet Duc, L Duc
The proliferation of smartphones nowadays has enabled many crowd assisted applications including audio-based sensing. In such applications, detected sound sources are meaningless without location information. However, it is challenging to localize sound sources accurately in a crowd using only
Nondeterministic sound source localization with smartphones in crowdsensing
Le, Duc V.; Kamminga, Jacob W.; Scholten, Hans; Havinga, Paul J.M.; Le, Viet-Duc
2016-01-01
The proliferation of smartphones nowadays has enabled many crowd assisted applications including audio-based sensing. In such applications, detected sound sources are meaningless without location information. However, it is challenging to localize sound sources accurately in a crowd using only micro
The Inverse Source Problem for Maxwell’s Equations
2006-10-01
of applied biomedical engineering and also as a mathematical problem (see for example [3, 22, 15, 7, 14, 9, 6, 121 where we have emphasized...BLEISTEIN AND J. COHEN, Nonuniqueness in the inverse source problem in acoustics and electromagnetics, Journal of Mathematical Physics, 18 (1977), pp. 194
Inverse problem for in vivo NMR spatial localization
Hasenfeld, A.C.
1985-11-01
The basic physical problem of NMR spatial localization is considered. To study diseased sites, one must solve the problem of adequately localizing the NMR signal. We formulate this as an inverse problem. As the NMR Bloch equations determine the motion of nuclear spins in applied magnetic fields, a theoretical study is undertaken to answer the question of how to design magnetic field configurations to achieve these localized excited spin populations. Because of physical constraints in the production of the relevant radiofrequency fields, the problem factors into a temporal one and a spatial one. We formulate the temporal problem as a nonlinear transformation, called the Bloch Transform, from the rf input to the magnetization response. In trying to invert this transformation, both linear (for the Fourier Transform) and nonlinear (for the Bloch Transform) modes of radiofrequency excitation are constructed. The spatial problem is essentially a statics problem for the Maxwell equations of electromagnetism, as the wavelengths of the radiation considered are on the order of ten meters, and so propagation effects are negligible. In the general case, analytic solutions are unavailable, and so the methods of computer simulation are used to map the rf field spatial profiles. Numerical experiments are also performed to verify the theoretical analysis, and experimental confirmation of the theory is carried out on the 0.5 Tesla IBM/Oxford Imaging Spectrometer at the LBL NMR Medical Imaging Facility. While no explicit inverse is constructed to ''solve'' this problem, the combined theoretical/numerical analysis is validated experimentally, justifying the approximations made. 56 refs., 31 figs.
Localization of coherent sources by simultaneous MEG and EEG beamformer.
Hong, Jun Hee; Ahn, Minkyu; Kim, Kiwoong; Jun, Sung Chan
2013-10-01
Simultaneous magnetoencephalography (MEG) and electroencephalography (EEG) analysis is known generally to yield better localization performance than a single modality only. For simultaneous analysis, MEG and EEG data should be combined to maximize synergistic effects. Recently, beamformer for simultaneous MEG/EEG analysis was proposed to localize both radial and tangential components well, while single modality analyses could not detect them, or had relatively higher location bias. In practice, most interesting brain sources are likely to be activated coherently; however, conventional beamformer may not work properly for such coherent sources. To overcome this difficulty, a linearly constrained minimum variance (LCMV) beamformer may be used with a source suppression strategy. In this work, simultaneous MEG/EEG LCMV beamformer using source suppression was formulated firstly to investigate its capability over various suppression strategies. The localization performance of our proposed approach was examined mainly for coherent sources and compared thoroughly with the conventional simultaneous and single modality approaches, over various suppression strategies. For this purpose, we used numerous simulated data, as well as empirical auditory stimulation data. In addition, some strategic issues of simultaneous MEG/EEG analysis were discussed. Overall, we found that our simultaneous MEG/EEG LCMV beamformer using a source suppression strategy is greatly beneficial in localizing coherent sources.
Control of heat source in a heat conduction problem
Lyashenko, V.; Kobilskaya, E.
2014-11-01
The mathematical model of thermal processes during the heat treatment of a moving axisymmetric environment, for example wire. is considered. The wire is heated by internal constantly or periodically operating heat source. It is presented in the form of initial-boundary value problem for the unsteady heat equation with internal constantly or periodically operating heat source. The purpose of the work is the definition of control parameter of temperature field of a moving area, which is heated by internal heat source. The control parameters are determined by solving a nonlocal problem for the heat equation. The problem of getting an adequate temperature distribution throughout the heating area is considered. Therefore, a problem of heat source control is solved, in particular, control by electric current. Control of the heat source allows to maintain the necessary, from a technological point of view, temperature in the heating area. In this paper, to find additional information about the source of heat. The integral condition is used in the control problem. Integral condition, which is considered in the work, determines the energy balance of the heating zone and connects the desired temperature distribution in the internal points of area with temperatures at the boundaries. Control quality in an extremum formulation of the problem is assessed using the quadratic functional. In function space, from a physical point of view, proposed functional is the absolute difference between the actual emission of energy and absorbed energy in the heating zone. The absorbed energy is calculated by solving of the boundary value problem. Methods of determining the control parameters of temperature field are proposed. The resulting problem is solved by iterative methods. At different physical conditions, numerical calculations are carried out, control parameters of the heat treatment process are obtained.
Determination of Electromagnetic Source Direction as an Eigenvalue Problem
Martínez-Oliveros, Juan C; Bale, Stuart D; Krucker, Säm
2012-01-01
Low-frequency solar and interplanetary radio bursts are generated at frequencies below the ionospheric plasma cutoff and must therefore be measured in space, with deployable antenna systems. The problem of measuring both the general direction and polarization of an electromagnetic source is commonly solved by iterative fitting methods such as linear regression that deal simultaneously with both directional and polarization parameters. We have developed a scheme that separates the problem of deriving the source direction from that of determining the polarization, avoiding iteration in a multi-dimensional manifold. The crux of the method is to first determine the source direction independently of concerns as to its polarization. Once the source direction is known, its direct characterization in terms of Stokes vectors in a single iteration if desired, is relatively simple. This study applies the source-direction determination to radio signatures of flares received by STEREO. We studied two previously analyzed r...
Local Search Algorithms for the Generalized Traveling Salesman Problem
Karapetyan, Daniel
2010-01-01
The Generalized Traveling Salesman Problem (GTSP) is a well-known combinatorial optimization problem with a host of applications. It is an extension of the Traveling Salesman Problem (TSP) where the set of cities is divided into so-called clusters, and the salesman have to visit each cluster exactly once. While GTSP is a very important combinatorial optimization problem and is well-studied in many aspects, researches still did not pay enough attention to GTSP specific local search and mostly use simple TSP heuristics with basic adaptations for GTSP\\@. This paper aims at thorough and deep investigation of the neighborhoods specific for GTSP and algorithms that can explore these neighborhoods quickly. We formalize the procedure of adaptation of a TSP neighborhood for GTSP and propose efficient algorithms to explore the obtained neighborhoods. We also generalize all other existing and some new GTSP neighborhoods. Apart from these theoretical results, we also provide the results of a thorough experimental analysi...
Localization of Vibrating Noise Sources in Nuclear Reactor Cores
Hultqvist, Pontus
2004-09-01
In this thesis the possibility of locating vibrating noise sources in a nuclear reactor core from the neutron noise has been investigated using different localization methods. The influence of the vibrating noise source has been considered to be a small perturbation of the neutron flux inside the reactor. Linear perturbation theory has been used to construct the theoretical framework upon which the localization methods are based. Two different cases have been considered: one where a one-dimensional one-group model has been used and another where a two-dimensional two-energy group noise simulator has been used. In the first case only one localization method is able to determine the position with good accuracy. This localization method is based on finding roots of an equation and is sensitive to other perturbations of the neutron flux. It will therefore work better with the assistance of approximative methods that reconstruct the noise source to determine if the results are reliable or not. In the two-dimensional case the results are more promising. There are several different localization techniques that reproduce both the vibrating noise source position and the direction of vibration with enough precision. The approximate methods that reconstruct the noise source are substantially better and are able to support the root finding method in a more constructive way. By combining the methods, the results will be more reliable.
Network detection of radiation sources using ROSD localization
Wu, Qishi [University of Memphis; Berry, M. L.. [New Jersey Institute of Technology; Grieme, M. [New Jersey Institute of Technology; Rao, Nageswara S [ORNL; Sen, Satyabrata [ORNL; Brooks, Richard R [Clemson University
2015-01-01
We propose a localization-based radiation source detection (RSD) algorithm using the Ratio of Squared Distance (ROSD) method. Compared with the triangulation-based method, the advantages of this ROSD method are multi-fold: i) source location estimates based on four detectors improve their accuracy, ii) ROSD provides closed-form source location estimates and thus eliminates the imaginary-roots issue, and iii) ROSD produces a unique source location estimate as opposed to two real roots (if any) in triangulation, and obviates the need to identify real phantom roots during clustering.
Acoustic source localization in mixed field using spherical microphone arrays
Huang, Qinghua; Wang, Tong
2014-12-01
Spherical microphone arrays have been used for source localization in three-dimensional space recently. In this paper, a two-stage algorithm is developed to localize mixed far-field and near-field acoustic sources in free-field environment. In the first stage, an array signal model is constructed in the spherical harmonics domain. The recurrent relation of spherical harmonics is independent of far-field and near-field mode strengths. Therefore, it is used to develop spherical estimating signal parameter via rotational invariance technique (ESPRIT)-like approach to estimate directions of arrival (DOAs) for both far-field and near-field sources. In the second stage, based on the estimated DOAs, simple one-dimensional MUSIC spectrum is exploited to distinguish far-field and near-field sources and estimate the ranges of near-field sources. The proposed algorithm can avoid multidimensional search and parameter pairing. Simulation results demonstrate the good performance for localizing far-field sources, or near-field ones, or mixed field sources.
The Generalized Thin-Sandwich Problem and its Local Solvability
Giulini, D
1999-01-01
We consider Einstein Gravity coupled to dynamical matter consisting of a gauge field with any compact gauge group and minimally coupled scalar fields. We investigate the conditions under which a free specification of a spatial field configuration for the total system and its derivative with respect to coordinate-time determines a solution to the field equations (generalized thin-sandwich problem). Sufficient conditions for local solvability (in the space of fields) are established.
Novel Local Search Method for the Traveling Salesman Problem
Huang Wenqi; Wang Lei
2005-01-01
A new local search method for the traveling salesman problem based on an original greedy representation of solution space and neighborhood structure is proposed. First, a partial closed route that only consists of three cities is given; then other cities are added to this route by a greedy procedure successively. Implemented on a personal computer, this algorithm finds optimal solutions for 24 out of 27 standard benchmarks, and outperforms the Full Subpath Ejection Algorithm (F-SEC) proposed by Rego in 1998.
Sound source localization using distributed elevated acoustic sensors
Di, Xiao; Wagstaff, Ronald A.; Anderson, John D.; Gilbert, Kenneth E.
2009-05-01
Detecting and localizing impulsive acoustic sources in the daytime using distributed elevated acoustic sensors with large baseline separations has distinct advantages over small ground-based arrays. There are generally two reasons for this: first, during the daytime, because of more direct and less encumbered propagation paths, signal levels are generally larger at altitude than near the ground. Second, larger baselines provide improved localization accuracy. Results are reported from a distributed array of acoustic sensors deployed during an experiment near Bourges, France during June of 2008. The distributed array consisted of microphones and GPS receivers attached to the tether lines of three widely separated aerostats. The sound sources were various impulsive devices. Results from the measurements are presented and discussed. Localization errors (GPS accuracy, propagation calculation, and aerostat motion, etc) are discussed. Possible ways to improve the localization accuracy are suggested.
Localizing Near and Far Field Acoustic Sources with Distributed Microhone Arrays
Hansen, Martin Weiss; Jensen, Jesper Rindom; Christensen, Mads Græsbøll
2014-01-01
In this paper, we consider the problem of acoustic source localization using distributed microphone arrays. Time differences of arrival (TDOAs) are estimated using a recently proposed method based on joint direction of arrival (DOA) and range estimation. The TDOAs are used to estimate the locatio...
Spatial resolution limits for the localization of noise sources using direct sound mapping
Comesana, D. Fernandez; Holland, K. R.; Fernandez Grande, Efren
2016-01-01
One of the main challenges arising from noise and vibration problems is how to identify the areas of a device, machine or structure that produce significant acoustic excitation, i.e. the localization of main noise sources. The direct visualization of sound, in particular sound intensity, has exte...
Sparsity and super-resolution in sound source localization with sensor arrays
Xenaki, Angeliki; Gerstoft, Peter; Mosegaard, Klaus
2014-01-01
Sound source localization with sensor arrays involves the estimation of the direction-of-arrival (DOA) from a limited number of observations. Compressive sensing (CS) is a method for solving such undetermined problems which achieves simultaneously sparsity, thus super-resolution, and computational...
Sparsity and super-resolution in sound source localization with sensor arrays
Xenaki, Angeliki; Gerstoft, Peter; Mosegaard, Klaus
2014-01-01
Sound source localization with sensor arrays involves the estimation of the direction-of-arrival (DOA) from a limited number of observations. Compressive sensing (CS) is a method for solving such undetermined problems which achieves simultaneously sparsity, thus super-resolution, and computational...
Global Existence and Blowup for a Parabolic Equation with a Non-Local Source and Absorption
Ling, Zhi; Lin, Zhigui; Pedersen, Michael
2013-01-01
In this paper we consider a double fronts free boundary problem for a parabolic equation with a non-local source and absorption. The long time behaviors of the solutions are given and the properties of the free boundaries are discussed. Our results show that if the initial value is sufficiently...
Quantum Limits to Optical Point-Source Localization
Tsang, Mankei
2014-01-01
Many superresolution microscopic techniques rely on the accurate localization of optical point sources from far field. To investigate the fundamental limits to their resolution, here I derive measurement-independent quantum lower bounds on the error of locating point sources in free space, taking full account of the quantum, nonparaxial, and vectoral nature of photons. To arrive at analytic results, I focus mainly on the cases of one and two classical monochromatic sources with an initial vacuum optical state. For one source, a lower bound on the root-mean-square position estimation error is on the order of $\\lambda_0/\\sqrt{N}$, where $\\lambda_0$ is the free-space wavelength and $N$ is the average number of radiated photons. For two sources, owing to a nuisance parameter effect, the error bound diverges when their radiated fields overlap significantly. The use of squeezed light to further enhance the accuracy of locating one point source is also discussed.
Optics-less Sensors for Localization of Radiation Sources
Caulfield, H. J.; Yaroslavsky, L. P.; Goerzen, Ch.; Umansky, S.
2008-01-01
A new family of radiation sensors is introduced which do not require any optics. The sensors consist of arrays of elementary sub-sensors with natural cosine-law or similar angular sensitivity supplemented with a signal processing unit that computes optimal statistical estimations of source parameters. We show, both theoretically and by computer simulation, that such sensors are capable of accurate localization and intensity estimation of a given number of radiation sources and of imaging of a...
An alternative subspace approach to EEG dipole source localization
Xu Xiaoliang [KC Science and Technologies Inc., Naperville, IL 60565 (United States); Xu, Bobby [Illinois Mathematics and Science Academy, Aurora, IL 60506 (United States); He Bin [Department of Bioengineering, University of Illinois, Chicago, IL 60607 (United States)
2004-01-21
In the present study, we investigate a new approach to electroencephalography (EEG) three-dimensional (3D) dipole source localization by using a non-recursive subspace algorithm called FINES. In estimating source dipole locations, the present approach employs projections onto a subspace spanned by a small set of particular vectors (FINES vector set) in the estimated noise-only subspace instead of the entire estimated noise-only subspace in the case of classic MUSIC. The subspace spanned by this vector set is, in the sense of principal angle, closest to the subspace spanned by the array manifold associated with a particular brain region. By incorporating knowledge of the array manifold in identifying FINES vector sets in the estimated noise-only subspace for different brain regions, the present approach is able to estimate sources with enhanced accuracy and spatial resolution, thus enhancing the capability of resolving closely spaced sources and reducing estimation errors. The present computer simulations show, in EEG 3D dipole source localization, that compared to classic MUSIC, FINES has (1) better resolvability of two closely spaced dipolar sources and (2) better estimation accuracy of source locations. In comparison with RAP-MUSIC, FINES' performance is also better for the cases studied when the noise level is high and/or correlations among dipole sources exist.
A local search for a graph clustering problem
Navrotskaya, Anna; Il'ev, Victor
2016-10-01
In the clustering problems one has to partition a given set of objects (a data set) into some subsets (called clusters) taking into consideration only similarity of the objects. One of most visual formalizations of clustering is graph clustering, that is grouping the vertices of a graph into clusters taking into consideration the edge structure of the graph whose vertices are objects and edges represent similarities between the objects. In the graph k-clustering problem the number of clusters does not exceed k and the goal is to minimize the number of edges between clusters and the number of missing edges within clusters. This problem is NP-hard for any k ≥ 2. We propose a polynomial time (2k-1)-approximation algorithm for graph k-clustering. Then we apply a local search procedure to the feasible solution found by this algorithm and hold experimental research of obtained heuristics.
Dipole source localization of mouse electroencephalogram using the Fieldtrip toolbox.
Lee, Chungki; Oostenveld, Robert; Lee, Soo Hyun; Kim, Lae Hyun; Sung, Hokun; Choi, Jee Hyun
2013-01-01
The mouse model is an important research tool in neurosciences to examine brain function and diseases with genetic perturbation in different brain regions. However, the limited techniques to map activated brain regions under specific experimental manipulations has been a drawback of the mouse model compared to human functional brain mapping. Here, we present a functional brain mapping method for fast and robust in vivo brain mapping of the mouse brain. The method is based on the acquisition of high density electroencephalography (EEG) with a microarray and EEG source estimation to localize the electrophysiological origins. We adapted the Fieldtrip toolbox for the source estimation, taking advantage of its software openness and flexibility in modeling the EEG volume conduction. Three source estimation techniques were compared: Distribution source modeling with minimum-norm estimation (MNE), scanning with multiple signal classification (MUSIC), and single-dipole fitting. Known sources to evaluate the performance of the localization methods were provided using optogenetic tools. The accuracy was quantified based on the receiver operating characteristic (ROC) analysis. The mean detection accuracy was high, with a false positive rate less than 1.3% and 7% at the sensitivity of 90% plotted with the MNE and MUSIC algorithms, respectively. The mean center-to-center distance was less than 1.2 mm in single dipole fitting algorithm. Mouse microarray EEG source localization using microarray allows a reliable method for functional brain mapping in awake mouse opening an access to cross-species study with human brain.
Dipole source localization of mouse electroencephalogram using the Fieldtrip toolbox.
Chungki Lee
Full Text Available The mouse model is an important research tool in neurosciences to examine brain function and diseases with genetic perturbation in different brain regions. However, the limited techniques to map activated brain regions under specific experimental manipulations has been a drawback of the mouse model compared to human functional brain mapping. Here, we present a functional brain mapping method for fast and robust in vivo brain mapping of the mouse brain. The method is based on the acquisition of high density electroencephalography (EEG with a microarray and EEG source estimation to localize the electrophysiological origins. We adapted the Fieldtrip toolbox for the source estimation, taking advantage of its software openness and flexibility in modeling the EEG volume conduction. Three source estimation techniques were compared: Distribution source modeling with minimum-norm estimation (MNE, scanning with multiple signal classification (MUSIC, and single-dipole fitting. Known sources to evaluate the performance of the localization methods were provided using optogenetic tools. The accuracy was quantified based on the receiver operating characteristic (ROC analysis. The mean detection accuracy was high, with a false positive rate less than 1.3% and 7% at the sensitivity of 90% plotted with the MNE and MUSIC algorithms, respectively. The mean center-to-center distance was less than 1.2 mm in single dipole fitting algorithm. Mouse microarray EEG source localization using microarray allows a reliable method for functional brain mapping in awake mouse opening an access to cross-species study with human brain.
SMALL WATER RESERVOIRS – SOURCES OF WATER OR PROBLEMS?
Ľuboš Jurik; Dušan Húska; Klaudia Halászová; Anna Bandlerová
2015-01-01
The design of small water reservoirs in Slovakia and neighbouring countries has common origins in the middle of the last century. Most of them were an alternative source of water for irrigation of field crops. Nowadays, we have to face new problems, such as the problems with the design of hydrological data and real current discharges, the problems with original and new design of the flood wave for the solution of the safety overflow. All of Q100 flows recorded nowadays are much higher than th...
Sound source localization and segregation with internally coupled ears
Bee, Mark A; Christensen-Dalsgaard, Jakob
2016-01-01
Acoustic signaling plays key roles in mediating many of the reproductive and social behaviors of anurans (frogs and toads). Moreover, acoustic signaling often occurs at night, in structurally complex habitats, such as densely vegetated ponds, and in dense breeding choruses characterized by high...... to their correct sources (sound source segregation). Here, we review anatomical, biophysical, neurophysiological, and behavioral studies aimed at identifying how the internally coupled ears of frogs contribute to sound source localization and segregation. Our review focuses on treefrogs in the genus Hyla...
Solving local problems through local involvement? Experiences from Danish Urban Regeneration
Jensen, Jesper Ole
-down approaches or massive public subsidies, the public regeneration schemes from the last decade have increasingly emphasized the need for involving local actors in the urban regeneration e.g. through partnerships, network building, involvement and participation of local actors and institutions, and financially......Over the last decades, the Danish Urban Regeneration Program has – in line with public well-fare politics in general - increasingly turned towards efforts to generate more local involvement in solving local urban problems. Whereas former periods of urban regeneration have been mainly based on top...... based of voluntary work, local co-financing etc. Based on a number of evaluations and studies of the Danish Urban Regeneration scheme carried out over the last decade, the paper will discuss to which degree the Danish urban regeneration scheme has been successful in this transformation towards a new...
Local Rank Deficiency Caused Problems in Analyzing Chemical Data.
Akbari Lakeh, Mahsa; Rajkó, Róbert; Abdollahi, Hamid
2017-02-21
Multivariate curve resolution (MCR) is a powerful methodology for analyzing chemical data in different application fields such as pharmaceutical analysis, agriculture, food chemistry, environment, and industrial and clinical chemistry. However, MCR results are often complicated by rotational ambiguity, meaning that there is a range of feasible solutions that fulfill the constraints and explain equally well the observed experimental data. Constraints determine the properties of resolved profiles in MCR methods by enforcing different assumptions on data. The applied constraints on chemical data sets should be derived from the physical nature and prior knowledge of the system under study. Therefore, the reliability of the constraints in order to get accurate results is a critical aspect that should be considered by analytical chemists who use MCR methods. Local rank information plays a key role in the curve resolution of multicomponent chemical systems. Applying the local rank constraint can reduce the extent of rotational ambiguity considerably, and in some cases, unique solutions can be achieved. Local rank exploratory methods like Evolving Factor Analysis (EFA) method provide local rank maps in order to obtain the presence pattern of components on the main assumption that the number of components in each window is equal to its rank. It is shown in this work that the local rank is a mathematical concept that may not be in concordance with chemical information. Thus, applying the local rank constraint for restricting the rotational ambiguity in MCR methods can lead to incorrect solutions! This problem is due to "local rank deficiency", which is introduced in this contribution.
MEG source localization using invariance of noise space.
Junpeng Zhang
Full Text Available We propose INvariance of Noise (INN space as a novel method for source localization of magnetoencephalography (MEG data. The method is based on the fact that modulations of source strengths across time change the energy in signal subspace but leave the noise subspace invariant. We compare INN with classical MUSIC, RAP-MUSIC, and beamformer approaches using simulated data while varying signal-to-noise ratios as well as distance and temporal correlation between two sources. We also demonstrate the utility of INN with actual auditory evoked MEG responses in eight subjects. In all cases, INN performed well, especially when the sources were closely spaced, highly correlated, or one source was considerably stronger than the other.
MEG source localization using invariance of noise space.
Zhang, Junpeng; Raij, Tommi; Hämäläinen, Matti; Yao, Dezhong
2013-01-01
We propose INvariance of Noise (INN) space as a novel method for source localization of magnetoencephalography (MEG) data. The method is based on the fact that modulations of source strengths across time change the energy in signal subspace but leave the noise subspace invariant. We compare INN with classical MUSIC, RAP-MUSIC, and beamformer approaches using simulated data while varying signal-to-noise ratios as well as distance and temporal correlation between two sources. We also demonstrate the utility of INN with actual auditory evoked MEG responses in eight subjects. In all cases, INN performed well, especially when the sources were closely spaced, highly correlated, or one source was considerably stronger than the other.
Miller, Erin A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Robinson, Sean M. [Pacific Northwest National Lab. (PNNL), Seattle, WA (United States); Anderson, Kevin K. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); McCall, Jonathon D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Prinke, Amanda M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Webster, Jennifer B. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Seifert, Carolyn E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
2015-01-19
Here we present a novel technique for the localization of radiological sources in urban or rural environments from an aerial platform. The technique is based on a Bayesian approach to localization, in which measured count rates in a time series are compared with predicted count rates from a series of pre-calculated test sources to define likelihood. Furthermore, this technique is expanded by using a localized treatment with a limited field of view (FOV), coupled with a likelihood ratio reevaluation, allowing for real-time computation on commodity hardware for arbitrarily complex detector models and terrain. In particular, detectors with inherent asymmetry of response (such as those employing internal collimation or self-shielding for enhanced directional awareness) are leveraged by this approach to provide improved localization. Our results from the localization technique are shown for simulated flight data using monolithic as well as directionally-aware detector models, and the capability of the methodology to locate radioisotopes is estimated for several test cases. This localization technique is shown to facilitate urban search by allowing quick and adaptive estimates of source location, in many cases from a single flyover near a source. In particular, this method represents a significant advancement from earlier methods like full-field Bayesian likelihood, which is not generally fast enough to allow for broad-field search in real time, and highest-net-counts estimation, which has a localization error that depends strongly on flight path and cannot generally operate without exhaustive search
Miller, Erin A. [Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Robinson, Sean M. [Pacific Northwest National Laboratory, Seattle, WA 98109 (United States); Anderson, Kevin K.; McCall, Jonathon D.; Prinke, Amanda M.; Webster, Jennifer B.; Seifert, Carolyn E. [Pacific Northwest National Laboratory, Richland, WA 99352 (United States)
2015-06-01
We present a novel technique for the localization of radiological sources in urban or rural environments from an aerial platform. The technique is based on a Bayesian approach to localization, in which measured count rates in a time series are compared with predicted count rates from a series of pre-calculated test sources to define likelihood. This technique is expanded by using a localized treatment with a limited field of view (FOV), coupled with a likelihood ratio reevaluation, allowing for real-time computation on commodity hardware for arbitrarily complex detector models and terrain. In particular, detectors with inherent asymmetry of response (such as those employing internal collimation or self-shielding for enhanced directional awareness) are leveraged by this approach to provide improved localization. Results from the localization technique are shown for simulated flight data using monolithic as well as directionally-aware detector models, and the capability of the methodology to locate radioisotopes is estimated for several test cases. This localization technique is shown to facilitate urban search by allowing quick and adaptive estimates of source location, in many cases from a single flyover near a source. In particular, this method represents a significant advancement from earlier methods like full-field Bayesian likelihood, which is not generally fast enough to allow for broad-field search in real time, and highest-net-counts estimation, which has a localization error that depends strongly on flight path and cannot generally operate without exhaustive search.
Local Dynamic Reactive Power for Correction of System Voltage Problems
Kueck, John D [ORNL; Rizy, D Tom [ORNL; Li, Fangxing [ORNL; Xu, Yan [ORNL; Li, Huijuan [University of Tennessee, Knoxville (UTK); Adhikari, Sarina [ORNL; Irminger, Philip [ORNL
2008-12-01
Distribution systems are experiencing outages due to a phenomenon known as local voltage collapse. Local voltage collapse is occurring in part because modern air conditioner compressor motors are much more susceptible to stalling during a voltage dip than older motors. These motors can stall in less than 3 cycles (.05s) when a fault, such as on the sub-transmission system, causes voltage to sag to 70 to 60%. The reasons for this susceptibility are discussed in the report. During the local voltage collapse, voltages are depressed for a period of perhaps one or two minutes. There is a concern that these local events are interacting together over larger areas and may present a challenge to system reliability. An effective method of preventing local voltage collapse is the use of voltage regulation from Distributed Energy Resources (DER) that can supply or absorb reactive power. DER, when properly controlled, can provide a rapid correction to voltage dips and prevent motor stall. This report discusses the phenomenon and causes of local voltage collapse as well as the control methodology we have developed to counter voltage sag. The problem is growing because of the use of low inertia, high efficiency air conditioner (A/C) compressor motors and because the use of electric A/C is growing in use and becoming a larger percentage of system load. A method for local dynamic voltage regulation is discussed which uses reactive power injection or absorption from local DER. This method is independent, rapid, and will not interfere with conventional utility system voltage control. The results of simulations of this method are provided. The method has also been tested at the ORNL s Distributed Energy Communications and Control (DECC) Laboratory using our research inverter and synchronous condenser. These systems at the DECC Lab are interconnected to an actual distribution system, the ORNL distribution system, which is fed from TVA s 161kV sub-transmission backbone. The test results
Distributed Plume Source Localization Using Hierarchical Sensor Networks
KUANG Xing-hong; LIU Yu-qing; WU Yan-xiang; SHAO Hui-he
2009-01-01
A hierarchical wireless sensor networks (WSN) was proposed to estimate the plume source location. Such WSN can be of tremendous help to emergency personnel trying to protect people from terrorist attacks or responding to an accident. The entire surveillant field is divided into several small sub-regions. In each sub-region, the localization algorithm based on the improved particle filter (IPF) was performed to estimate the location. Some improved methods such as weighted centroid, residual resampling were introduced to the IPF algorithm to increase the localization performance. This distributed estimation method elirninates many drawbacks inherent with the traditional centralized optimization method. Simulation results show that localization algorithm is efficient far estimating the plume source location.
Measurement Combination for Acoustic Source Localization in a Room Environment
Pasi Pertilä
2008-07-01
Full Text Available The behavior of time delay estimation (TDE is well understood and therefore attractive to apply in acoustic source localization (ASL. A time delay between microphones maps into a hyperbola. Furthermore, the likelihoods for different time delays are mapped into a set of weighted nonoverlapping hyperbolae in the spatial domain. Combining TDE functions from several microphone pairs results in a spatial likelihood function (SLF which is a combination of sets of weighted hyperbolae. Traditionally, the maximum SLF point is considered as the source location but is corrupted by reverberation and noise. Particle filters utilize past source information to improve localization performance in such environments. However, uncertainty exists on how to combine the TDE functions. Results from simulated dialogues in various conditions favor TDE combination using intersection-based methods over union. The real-data dialogue results agree with the simulations, showing a 45% RMSE reduction when choosing the intersection over union of TDE functions.
Measurement Combination for Acoustic Source Localization in a Room Environment
Pertilä Pasi
2008-01-01
Full Text Available The behavior of time delay estimation (TDE is well understood and therefore attractive to apply in acoustic source localization (ASL. A time delay between microphones maps into a hyperbola. Furthermore, the likelihoods for different time delays are mapped into a set of weighted nonoverlapping hyperbolae in the spatial domain. Combining TDE functions from several microphone pairs results in a spatial likelihood function (SLF which is a combination of sets of weighted hyperbolae. Traditionally, the maximum SLF point is considered as the source location but is corrupted by reverberation and noise. Particle filters utilize past source information to improve localization performance in such environments. However, uncertainty exists on how to combine the TDE functions. Results from simulated dialogues in various conditions favor TDE combination using intersection-based methods over union. The real-data dialogue results agree with the simulations, showing a 45% RMSE reduction when choosing the intersection over union of TDE functions.
Multicompare Tests of the Performance of Different Metaheuristics in EEG Dipole Source Localization
Diana Irazú Escalona-Vargas
2014-01-01
Full Text Available We study the use of nonparametric multicompare statistical tests on the performance of simulated annealing (SA, genetic algorithm (GA, particle swarm optimization (PSO, and differential evolution (DE, when used for electroencephalographic (EEG source localization. Such task can be posed as an optimization problem for which the referred metaheuristic methods are well suited. Hence, we evaluate the localization’s performance in terms of metaheuristics’ operational parameters and for a fixed number of evaluations of the objective function. In this way, we are able to link the efficiency of the metaheuristics with a common measure of computational cost. Our results did not show significant differences in the metaheuristics’ performance for the case of single source localization. In case of localizing two correlated sources, we found that PSO (ring and tree topologies and DE performed the worst, then they should not be considered in large-scale EEG source localization problems. Overall, the multicompare tests allowed to demonstrate the little effect that the selection of a particular metaheuristic and the variations in their operational parameters have in this optimization problem.
A Hybrid Global Minimization Scheme for Accurate Source Localization in Sensor Networks
Aghasi, Hamidreza
2011-01-01
We consider the localization problem of multiple wideband sources by coherently taking into account the attenuation characteristics and the time delays in the reception of the signal. Our proposed method leaves the space for unavailability of an accurate signal attenuation model in the environment by considering the model as an unknown function with reasonable prior assumptions about its functional space. Such approach is capable of enhancing the localization performance compared to only utilizing the signal attenuation information or the time delays. In this paper the localization problem is modelled as a cost function in terms of the source locations and the attenuation model parameters. To globally perform the minimization we propose a hybrid algorithm combining the differential evolution algorithm with the Levenberg-Marquardt algorithm. Beside the proposed combination scheme, supporting technical details such as closed forms of cost function sensitivity matrices are provided. Finally the validity of the p...
A novel approach for the global localization problem
Abraham Sánchez
2012-03-01
Full Text Available Este artículo describe una metodología de planificación, localización y mapeo simultáneos enfocada en el problema de localización global, el robot explora el ambiente eficientemente y también considera los requisitos de un algoritmo de localización y mapeo simultáneos. El método está basado en la generación aleatoria incremental de una estructura de datos llamada árbol aleatorio basado en sensores, la cual representa un mapa de caminos del área explorada con su región segura asociada. Un procedimiento de localización continuo basado encaracterísticas B-splines de la región segura se integró en el esquema.This paper describes a simultaneous planning localization and mapping (SPLAM methodology focussed on the global localization problem, where the robot explores the environment efficiently and also considers the requisites of the simultaneous localization and mapping algorithm. The method is based on the randomized incremental generation of a data structure called Sensor-based Random Tree, which represents a roadmap of the explored area with an associated safe region. A continuous localization procedure based on B-Splines features of the safe region is integrated in the scheme.
Acoustic Source Localization and Beamforming: Theory and Practice
Chen Joe C
2003-01-01
Full Text Available We consider the theoretical and practical aspects of locating acoustic sources using an array of microphones. A maximum-likelihood (ML direct localization is obtained when the sound source is near the array, while in the far-field case, we demonstrate the localization via the cross bearing from several widely separated arrays. In the case of multiple sources, an alternating projection procedure is applied to determine the ML estimate of the DOAs from the observed data. The ML estimator is shown to be effective in locating sound sources of various types, for example, vehicle, music, and even white noise. From the theoretical Cramér-Rao bound analysis, we find that better source location estimates can be obtained for high-frequency signals than low-frequency signals. In addition, large range estimation error results when the source signal is unknown, but such unknown parameter does not have much impact on angle estimation. Much experimentally measured acoustic data was used to verify the proposed algorithms.
SMALL WATER RESERVOIRS – SOURCES OF WATER OR PROBLEMS?
Ľuboš Jurik
2015-09-01
Full Text Available The design of small water reservoirs in Slovakia and neighbouring countries has common origins in the middle of the last century. Most of them were an alternative source of water for irrigation of field crops. Nowadays, we have to face new problems, such as the problems with the design of hydrological data and real current discharges, the problems with original and new design of the flood wave for the solution of the safety overflow. All of Q100 flows recorded nowadays are much higher than those which had been designed and built. The safety overflows no longer answer the purpose of the contemporary flows. The problems with the Framework Directive are also important – small water reservoirs are not resolved in the Directive as the water bodies of stagnant water because they have an area of less than 0.5 km2. The same problem is also with the preservation of continuity of the flow and the fact that they should let the fish pass. Unfortunately, the state, administrators of small dams, operators and nature conservationists have different points of view on the above-mentioned problems. The article elaborates these problems and suggests possible solutions to the problems.
Solution of inverse localization problem associated to multistatic radar system
Boutkhil M.
2016-01-01
Full Text Available This work deals with the problem of inverse localization by a target with the aim to retrieve the position of the target, given the intensity and phase of the electromagnetic waves scattered by this object. Assuming the surface cross section to be known as well as the intensity and phase of the scattered waves, the target position was reconstructed through the echo signals scattered of each bistatic. We develop in the same time a multistatic ambiguity function trough bistatic ambiguity function to investigate several fundamental aspects that determine multistatic radar performance. We used a multistatic radar constructed of two bistatic radars, two transmitters and one receiver.
Discretizing singular point sources in hyperbolic wave propagation problems
Petersson, N. Anders; O'Reilly, Ossian; Sjögreen, Björn; Bydlon, Samuel
2016-09-01
We develop high order accurate source discretizations for hyperbolic wave propagation problems in first order formulation that are discretized by finite difference schemes. By studying the Fourier series expansions of the source discretization and the finite difference operator, we derive sufficient conditions for achieving design accuracy in the numerical solution. Only half of the conditions in Fourier space can be satisfied through moment conditions on the source discretization, and we develop smoothness conditions for satisfying the remaining accuracy conditions. The resulting source discretization has compact support in physical space, and is spread over as many grid points as the number of moment and smoothness conditions. In numerical experiments we demonstrate high order of accuracy in the numerical solution of the 1-D advection equation (both in the interior and near a boundary), the 3-D elastic wave equation, and the 3-D linearized Euler equations.
Yitembe, Bertrand Russel; Crevecoeur, Guillaume; Van Keer, Roger; Dupre, Luc
2011-05-01
The EEG is a neurological diagnostic tool with high temporal resolution. However, when solving the EEG inverse problem, its localization accuracy is limited because of noise in measurements and available uncertainties of the conductivity value in the forward model evaluations. This paper proposes the reduced conductivity dependence (RCD) method for decreasing the localization error in EEG source analysis by limiting the propagation of the uncertain conductivity values to the solutions of the inverse problem. We redefine the traditional EEG cost function, and in contrast to previous approaches, we introduce a selection procedure of the EEG potentials. The selected potentials are, as low as possible, affected by the uncertainties of the conductivity when solving the inverse problem. We validate the methodology on the widely used three-shell spherical head model with a single electrical dipole and multiple dipoles as source model. The proposed RCD method enhances the source localization accuracy with a factor ranging between 2 and 4, dependent on the dipole location and the noise in measurements. © 2011 IEEE
Source localization using recursively applied and projected (RAP) MUSIC
Mosher, J.C. [Los Alamos National Lab., NM (United States); Leahy, R.M. [Univ. of Southern California, Los Angeles, CA (United States). Signal and Image Processing Inst.
1998-03-01
A new method for source localization is described that is based on a modification of the well known multiple signal classification (MUSIC) algorithm. In classical MUSIC, the array manifold vector is projected onto an estimate of the signal subspace, but errors in the estimate can make location of multiple sources difficult. Recursively applied and projected (RAP) MUSIC uses each successively located source to form an intermediate array gain matrix, and projects both the array manifold and the signal subspace estimate into its orthogonal complement. The MUSIC projection is then performed in this reduced subspace. Using the metric of principal angles, the authors describe a general form of the RAP-MUSIC algorithm for the case of diversely polarized sources. Through a uniform linear array simulation, the authors demonstrate the improved Monte Carlo performance of RAP-MUSIC relative to MUSIC and two other sequential subspace methods, S and IES-MUSIC.
Incident signal power comparison for localization of concurrent multiple acoustic sources.
Salvati, Daniele; Canazza, Sergio
2014-01-01
In this paper, a method to solve the localization of concurrent multiple acoustic sources in large open spaces is presented. The problem of the multisource localization in far-field conditions is to correctly associate the direction of arrival (DOA) estimated by a network array system to the same source. The use of systems implementing a Bayesian filter is a traditional approach to address the problem of localization in multisource acoustic scenario. However, in a real noisy open space the acoustic sources are often discontinuous with numerous short-duration events and thus the filtering methods may have difficulty to track the multiple sources. Incident signal power comparison (ISPC) is proposed to compute DOAs association. ISPC is based on identifying the incident signal power (ISP) of the sources on a microphone array using beamforming methods and comparing the ISP between different arrays using spectral distance (SD) measurement techniques. This method solves the ambiguities, due to the presence of simultaneous sources, by identifying sounds through a minimization of an error criterion on SD measures of DOA combinations. The experimental results were conducted in an outdoor real noisy environment and the ISPC performance is reported using different beamforming techniques and SD functions.
Incident Signal Power Comparison for Localization of Concurrent Multiple Acoustic Sources
Daniele Salvati
2014-01-01
Full Text Available In this paper, a method to solve the localization of concurrent multiple acoustic sources in large open spaces is presented. The problem of the multisource localization in far-field conditions is to correctly associate the direction of arrival (DOA estimated by a network array system to the same source. The use of systems implementing a Bayesian filter is a traditional approach to address the problem of localization in multisource acoustic scenario. However, in a real noisy open space the acoustic sources are often discontinuous with numerous short-duration events and thus the filtering methods may have difficulty to track the multiple sources. Incident signal power comparison (ISPC is proposed to compute DOAs association. ISPC is based on identifying the incident signal power (ISP of the sources on a microphone array using beamforming methods and comparing the ISP between different arrays using spectral distance (SD measurement techniques. This method solves the ambiguities, due to the presence of simultaneous sources, by identifying sounds through a minimization of an error criterion on SD measures of DOA combinations. The experimental results were conducted in an outdoor real noisy environment and the ISPC performance is reported using different beamforming techniques and SD functions.
High Power Local Oscillator Sources for 1-2 THz
Mehdi, Imran; Thomas, Bertrand; Lin, Robert; Maestrini, Alain; Ward, John; Schlecht, Erich; Gill, John; Lee, Choonsup; Chattopadhyay, Goutam; Maiwald, Frank
2010-01-01
Recent results from the Heterodyne Instrument for Far-Infrared (HIFI) on the Herschel Space Telescope have confirmed the usefulness of high resolution spectroscopic data for a better understanding of our Universe. This paper will explore the current status of tunable local oscillator sources beyond HIFI and provide demonstration of how power combining of GaAs Schottky diodes can be used to increase both power and upper operating frequency for heterodyne receivers. Availability of power levels greater than 1 watt in the W-band now makes it possible to design a 1900 GHz source with more than 100 microwatts of expected output power.
Radioactive source localization inside pipes using a long-range alpha detector
WU Xue-Mei; TUO Xian-Guo; LI Zhe; LIU Ming-Zhe; ZHANG Jin-Zhao; DONG Xiang-Long; LI Ping-Chuan
2013-01-01
Long-range alpha detectors (LRADs) are attracting much attention in the decommissioning of nuclear facilities because of some problems in obtaining source positions on an interior surface during pipe decommissioning.By utilizing the characteristic that LRAD detects alphas by collecting air-driving ions,this article applies a method to localize the radioactive source by ions' fluid property.By obtaining the ion travel time and the airspeed distribution in the pipe,the source position can be determined.Thus this method overcomes the ion's lack of periodic characteristics.Experimental results indicate that this method can approximately localize the source inside the pipe.The calculation results are in good agreement with the experimental results.
Lin, Juan; Liu, Chenglian; Guo, Yongning
2014-10-01
The estimation of neural active sources from the magnetoencephalography (MEG) data is a very critical issue for both clinical neurology and brain functions research. A widely accepted source-modeling technique for MEG involves calculating a set of equivalent current dipoles (ECDs). Depth in the brain is one of difficulties in MEG source localization. Particle swarm optimization(PSO) is widely used to solve various optimization problems. In this paper we discuss its ability and robustness to find the global optimum in different depths of the brain when using single equivalent current dipole (sECD) model and single time sliced data. The results show that PSO is an effective global optimization to MEG source localization when given one dipole in different depths.
Blind source separation problem in GPS time series
Gualandi, A.; Serpelloni, E.; Belardinelli, M. E.
2016-04-01
A critical point in the analysis of ground displacement time series, as those recorded by space geodetic techniques, is the development of data-driven methods that allow the different sources of deformation to be discerned and characterized in the space and time domains. Multivariate statistic includes several approaches that can be considered as a part of data-driven methods. A widely used technique is the principal component analysis (PCA), which allows us to reduce the dimensionality of the data space while maintaining most of the variance of the dataset explained. However, PCA does not perform well in finding the solution to the so-called blind source separation (BSS) problem, i.e., in recovering and separating the original sources that generate the observed data. This is mainly due to the fact that PCA minimizes the misfit calculated using an L2 norm (χ 2), looking for a new Euclidean space where the projected data are uncorrelated. The independent component analysis (ICA) is a popular technique adopted to approach the BSS problem. However, the independence condition is not easy to impose, and it is often necessary to introduce some approximations. To work around this problem, we test the use of a modified variational Bayesian ICA (vbICA) method to recover the multiple sources of ground deformation even in the presence of missing data. The vbICA method models the probability density function (pdf) of each source signal using a mix of Gaussian distributions, allowing for more flexibility in the description of the pdf of the sources with respect to standard ICA, and giving a more reliable estimate of them. Here we present its application to synthetic global positioning system (GPS) position time series, generated by simulating deformation near an active fault, including inter-seismic, co-seismic, and post-seismic signals, plus seasonal signals and noise, and an additional time-dependent volcanic source. We evaluate the ability of the PCA and ICA decomposition
Using ac dipoles to localize sources of beam coupling impedance
N. Biancacci
2016-05-01
Full Text Available The beam coupling impedance is one of the main sources of beam instabilities and emittance blow up in circular accelerators. A refined machine impedance evaluation is therefore required in order to understand and model intensity dependent effects and instabilities that may limit the machine performance. For this reason, many impedance source localization techniques have been developed. In this work we present the impedance localization technique based on the observation of phase advance versus intensity at the beam position monitors using ac dipoles to force betatron oscillations. We present analytical formulas for the interpretation of measurements together with simulations to benchmark and illustrate the equations. Studies on the method accuracy for different Fourier transform algorithms are presented as well as first exploratory measurements performed in the LHC.
Nela eCicmil
2014-05-01
Full Text Available Magnetoencephalography (MEG allows the physiological recording of human brain activity at high temporal resolution. However, spatial localization of the source of the MEG signal is an ill-posed problem as the signal alone cannot constrain a unique solution and additional prior assumptions must be enforced. An adequate source reconstruction method for investigating the human visual system should place the sources of early visual activity in known locations in the occipital cortex. We localized sources of retinotopic MEG signals from the human brain with contrasting reconstruction approaches (minimum norm, multiple sparse priors, and beamformer and compared these to the visual retinotopic map obtained with fMRI in the same individuals. When reconstructing brain responses to visual stimuli that differed by angular position, we found reliable localization to the appropriate retinotopic visual field quadrant by a minimum norm approach and by beamforming. Retinotopic map eccentricity in accordance with the fMRI map could not consistently be localized using an annular stimulus with any reconstruction method, but confining eccentricity stimuli to one visual field quadrant resulted in significant improvement with the minimum norm. These results inform the application of source analysis approaches for future MEG studies of the visual system, and indicate some current limits on localization accuracy of MEG signals.
Cicmil, Nela; Bridge, Holly; Parker, Andrew J.; Woolrich, Mark W.; Krug, Kristine
2014-01-01
Magnetoencephalography (MEG) allows the physiological recording of human brain activity at high temporal resolution. However, spatial localization of the source of the MEG signal is an ill-posed problem as the signal alone cannot constrain a unique solution and additional prior assumptions must be enforced. An adequate source reconstruction method for investigating the human visual system should place the sources of early visual activity in known locations in the occipital cortex. We localized sources of retinotopic MEG signals from the human brain with contrasting reconstruction approaches (minimum norm, multiple sparse priors, and beamformer) and compared these to the visual retinotopic map obtained with fMRI in the same individuals. When reconstructing brain responses to visual stimuli that differed by angular position, we found reliable localization to the appropriate retinotopic visual field quadrant by a minimum norm approach and by beamforming. Retinotopic map eccentricity in accordance with the fMRI map could not consistently be localized using an annular stimulus with any reconstruction method, but confining eccentricity stimuli to one visual field quadrant resulted in significant improvement with the minimum norm. These results inform the application of source analysis approaches for future MEG studies of the visual system, and indicate some current limits on localization accuracy of MEG signals. PMID:24904268
Hansen, Scott K.; Vesselinov, Velimir V.
2016-10-01
We develop empirically-grounded error envelopes for localization of a point contamination release event in the saturated zone of a previously uncharacterized heterogeneous aquifer into which a number of plume-intercepting wells have been drilled. We assume that flow direction in the aquifer is known exactly and velocity is known to within a factor of two of our best guess from well observations prior to source identification. Other aquifer and source parameters must be estimated by interpretation of well breakthrough data via the advection-dispersion equation. We employ high performance computing to generate numerous random realizations of aquifer parameters and well locations, simulate well breakthrough data, and then employ unsupervised machine optimization techniques to estimate the most likely spatial (or space-time) location of the source. Tabulating the accuracy of these estimates from the multiple realizations, we relate the size of 90% and 95% confidence envelopes to the data quantity (number of wells) and model quality (fidelity of ADE interpretation model to actual concentrations in a heterogeneous aquifer with channelized flow). We find that for purely spatial localization of the contaminant source, increased data quantities can make up for reduced model quality. For space-time localization, we find similar qualitative behavior, but significantly degraded spatial localization reliability and less improvement from extra data collection. Since the space-time source localization problem is much more challenging, we also tried a multiple-initial-guess optimization strategy. This greatly enhanced performance, but gains from additional data collection remained limited.
Problems and Methods of Source Study of Cinema Documents
Grigory N. Lanskoy
2016-03-01
Full Text Available The article is devoted to basic problems of analysis and interpretation of cinema documents in historical studies, with the possibility of shared approach to the study of cinema and paper documents, the using of art studies principles to the analysis of cinema documents and the efficacy of textual approach to the study of cinema documents among them. The forms of applying different scientific methods to the evaluation of cinema documents as historical sources are also discussed in the article.
Bi-Channel Sound Source Localization System for Speaker Detection
S. Khennouf
2015-01-01
This paper deals with the problem of speaker detection using audio signal processing, which consists in localizing the current position of a talking speaker in a smart room [Maganti 2006]. This task represents the first step of automatic speaker tracking, which is the overall goal of our research work. An estimation of the current position of the talking person is obtained by comparing the left and right signals captured with two cardioids microphones that are placed in the left side and righ...
Forward and inverse problems of EEG dipole localization.
Musha, T; Okamoto, Y
1999-01-01
Mathematical procedures are discussed in detail of numerical solutions for obtaining scalp potentials from the electric sources. The finite-element method for an inhomogeneous volume conductor, the boundary-element method for a compartment model, and their hybrid for more general cases are discussed. Construction of the head model and typical estimation of electric conductivity of the compartment model is described, which can reduce errors in estimated dipole location caused by incorrect head geometry. The concept of reciprocity is explained, which is applied to understanding a relation between the electrode configuration and its sensitivity for various source conditions. Typical techniques for solving the inverse problem are reviewed for discrete source models. Methods of estimating accuracy of the dipole location in the presence of noise are discussed, together with some numerical examples. The dipolarity is a goodness-of-fit of the dipole approximation, and lowering of the dipolarity is related to inhomogeneous neuronal activity in the cortex. Finally, a criterion of determining the optimal number of model parameters is given in terms of AIC (Akaike Information Criterion), which is applied to decide the most probable number of equivalent dipoles.
On rational approximation methods for inverse source problems
Rundell, William
2011-02-01
The basis of most imaging methods is to detect hidden obstacles or inclusions within a body when one can only make measurements on an exterior surface. Such is the ubiquity of these problems, the underlying model can lead to a partial differential equation of any of the major types, but here we focus on the case of steady-state electrostatic or thermal imaging and consider boundary value problems for Laplace\\'s equation. Our inclusions are interior forces with compact support and our data consists of a single measurement of (say) voltage/current or temperature/heat flux on the external boundary. We propose an algorithm that under certain assumptions allows for the determination of the support set of these forces by solving a simpler "equivalent point source" problem, and which uses a Newton scheme to improve the corresponding initial approximation. © 2011 American Institute of Mathematical Sciences.
Fiber optic distributed temperature sensing for fire source localization
Sun, Miao; Tang, Yuquan; Yang, Shuang; Sigrist, Markus W.; Li, Jun; Dong, Fengzhong
2017-08-01
A method for localizing a fire source based on a distributed temperature sensor system is proposed. Two sections of optical fibers were placed orthogonally to each other as the sensing elements. A tray of alcohol was lit to act as a fire outbreak in a cabinet with an uneven ceiling to simulate a real scene of fire. Experiments were carried out to demonstrate the feasibility of the method. Rather large fluctuations and systematic errors with respect to predicting the exact room coordinates of the fire source caused by the uneven ceiling were observed. Two mathematical methods (smoothing recorded temperature curves and finding temperature peak positions) to improve the prediction accuracy are presented, and the experimental results indicate that the fluctuation ranges and systematic errors are significantly reduced. The proposed scheme is simple and appears reliable enough to locate a fire source in large spaces.
EEG and MEG source localization using recursively applied (RAP) MUSIC
Mosher, J.C. [Los Alamos National Lab., NM (United States); Leahy, R.M. [University of Southern California, Los Angeles, CA (United States). Signal and Image Processing Inst.
1996-12-31
The multiple signal characterization (MUSIC) algorithm locates multiple asynchronous dipolar sources from electroencephalography (EEG) and magnetoencephalography (MEG) data. A signal subspace is estimated from the data, then the algorithm scans a single dipole model through a three-dimensional head volume and computes projections onto this subspace. To locate the sources, the user must search the head volume for local peaks in the projection metric. Here we describe a novel extension of this approach which we refer to as RAP (Recursively APplied) MUSIC. This new procedure automatically extracts the locations of the sources through a recursive use of subspace projections, which uses the metric of principal correlations as a multidimensional form of correlation analysis between the model subspace and the data subspace. The dipolar orientations, a form of `diverse polarization,` are easily extracted using the associated principal vectors.
DYNAMO: concurrent dynamic multi-model source localization method for EEG and/or MEG.
Antelis, Javier M; Minguez, Javier
2013-01-15
This work presents a new dipolar method to estimate the neural sources from separate or combined EEG and MEG data. The novelty lies in the simultaneous estimation and integration of neural sources from different dynamic models with different parameters, leading to a dynamic multi-model solution for the EEG/MEG source localization problem. The first key aspect of this method is defining the source model as a dipolar dynamic system, which allows for the estimation of the probability distribution of the sources within the Bayesian filter estimation framework. A second important aspect is the consideration of several banks of filters that simultaneously estimate and integrate the neural sources of different models. A third relevant aspect is that the final probability estimate is a result of the probabilistic integration of the neural sources of numerous models. Such characteristics lead to a new approach that does not require a prior definition neither of the number of sources or of the underlying temporal dynamics, allowing for the specification of multiple initial prior estimates. The method was validated by three sensor modalities with simulated data designed to impose difficult estimation situations, and with real EEG data recorded in a feedback error-related potential paradigm. On the basis of these evaluations, the method was able to localize the sources with high accuracy.
Time domain localization technique with sparsity constraint for imaging acoustic sources
Padois, Thomas; Doutres, Olivier; Sgard, Franck; Berry, Alain
2017-09-01
This paper addresses source localization technique in time domain for broadband acoustic sources. The objective is to accurately and quickly detect the position and amplitude of noise sources in workplaces in order to propose adequate noise control options and prevent workers hearing loss or safety risk. First, the generalized cross correlation associated with a spherical microphone array is used to generate an initial noise source map. Then a linear inverse problem is defined to improve this initial map. Commonly, the linear inverse problem is solved with an l2 -regularization. In this study, two sparsity constraints are used to solve the inverse problem, the orthogonal matching pursuit and the truncated Newton interior-point method. Synthetic data are used to highlight the performances of the technique. High resolution imaging is achieved for various acoustic sources configurations. Moreover, the amplitudes of the acoustic sources are correctly estimated. A comparison of computation times shows that the technique is compatible with quasi real-time generation of noise source maps. Finally, the technique is tested with real data.
Evaluating the Performance of BSBL Methodology for EEG Source Localization On a Realistic Head Model
Saha, Sajib; Nesterets, Ya I; Tahtali, M; de Hoog, Frank; Gureyev, T E
2015-01-01
Source localization in EEG represents a high dimensional inverse problem, which is severely ill-posed by nature. Fortunately, sparsity constraints have come into rescue as it helps solving the ill-posed problems when the signal is sparse. When the signal has a structure such as block structure, consideration of block sparsity produces better results. Knowing sparse Bayesian learning is an important member in the family of sparse recovery, and a superior choice when the projection matrix is highly coherent (which is typical the case for EEG), in this work we evaluate the performance of block sparse Bayesian learning (BSBL) method for EEG source localization. It is already accepted by the EEG community that a group of dipoles rather than a single dipole are activated during brain activities; thus, block structure is a reasonable choice for EEG. In this work we use two definitions of blocks: Brodmann areas and automated anatomical labelling (AAL), and analyze the reconstruction performance of BSBL methodology fo...
Crowd Sourcing for Challenging Technical Problems and Business Model
Davis, Jeffrey R.; Richard, Elizabeth
2011-01-01
Crowd sourcing may be defined as the act of outsourcing tasks that are traditionally performed by an employee or contractor to an undefined, generally large group of people or community (a crowd) in the form of an open call. The open call may be issued by an organization wishing to find a solution to a particular problem or complete a task, or by an open innovation service provider on behalf of that organization. In 2008, the Space Life Sciences Directorate (SLSD), with the support of Wyle Integrated Science and Engineering, established and implemented pilot projects in open innovation (crowd sourcing) to determine if these new internet-based platforms could indeed find solutions to difficult technical challenges. These unsolved technical problems were converted to problem statements, also called "Challenges" or "Technical Needs" by the various open innovation service providers, and were then posted externally to seek solutions. In addition, an open call was issued internally to NASA employees Agency wide (10 Field Centers and NASA HQ) using an open innovation service provider crowd sourcing platform to post NASA challenges from each Center for the others to propose solutions). From 2008 to 2010, the SLSD issued 34 challenges, 14 externally and 20 internally. The 14 external problems or challenges were posted through three different vendors: InnoCentive, Yet2.com and TopCoder. The 20 internal challenges were conducted using the InnoCentive crowd sourcing platform designed for internal use by an organization. This platform was customized for NASA use and promoted as NASA@Work. The results were significant. Of the seven InnoCentive external challenges, two full and five partial awards were made in complex technical areas such as predicting solar flares and long-duration food packaging. Similarly, the TopCoder challenge yielded an optimization algorithm for designing a lunar medical kit. The Yet2.com challenges yielded many new industry and academic contacts in bone
Localization of chemical sources using e. coli chemotaxis
Davison, Timothy; Nguyen, Hoa; Nickels, Kevin; Frasch, Duncan; Basagaoglu, Hakan
2016-04-01
This paper furthers the application of chemotaxis to small-scale robots by simulating a system that localizes a chemical source in a dynamic fluid environment. This type of system responds to a chemical stimulus by mimicking, for example, the way that E. Coli bacteria move toward attractants (nutrients) and away from repellents. E. Coli use the intracellular signaling pathway to process the temporal change in the chemical concentration to determine if the cells should run or tumble. Previous work has shown that this process can be simulated with robots and used to localize chemical sources based upon a fixed nutrient gradient. Our work furthers this study by simulating the injection of an effluent of chemical at a specified location in an environment and uses computational fluid dynamics to model the interactions of the robot with the fluid while performing chemotaxis. The interactions between the chemical and fluid are also modelled with the advection diffusion equation to determine the concentration gradient. This method allows us to compute, over a lattice, the chemical concentration at all points and feed these results into an existing E. Coli controller for the robot, which results in the robot executing a tumble or a run according to a probabilistic formula. By simulating the robot in this complex environment, our work facilitates refinement of the chemotaxis controller while proving the ability of chemotactic robots to localize specific chemicals in environments that more closely resemble those encountered in the wide-ranging types of locations in which this robotic system might be deployed.
Beracoechea JA
2006-01-01
Full Text Available This paper deals with some of the different problems, strategies, and solutions of building true immersive audio systems oriented to future communication applications. The aim is to build a system where the acoustic field of a chamber is recorded using a microphone array and then is reconstructed or rendered again, in a different chamber using loudspeaker array-based techniques. Our proposal explores the possibility of using recent robust adaptive beamforming techniques for effectively estimating the original sources of the emitting room. A joint audio-video localization method needed in the estimation process as well as in the rendering engine is also presented. The estimated source signal and the source localization information drive a wave field synthesis engine that renders the acoustic field again at the receiving chamber. The system performance is tested using MUSHRA-based subjective tests.
swLORETA: a novel approach to robust source localization and synchronization tomography
Palmero-Soler, Ernesto [Institute for Medicine and Virtual Institute of Neuromodulation, Research Center Juelich, Leo-Brand-Street, 52425 Juelich (Germany); Dolan, Kevin [Institute for Medicine and Virtual Institute of Neuromodulation, Research Center Juelich, Leo-Brand-Street, 52425 Juelich (Germany); Hadamschek, Volker [Institute for Medicine and Virtual Institute of Neuromodulation, Research Center Juelich, Leo-Brand-Street, 52425 Juelich (Germany); Tass, Peter A [Institute for Medicine and Virtual Institute of Neuromodulation, Research Center Juelich, Leo-Brand-Street, 52425 Juelich (Germany)
2007-04-07
Standardized low-resolution brain electromagnetic tomography (sLORETA) is a widely used technique for source localization. However, this technique still has some limitations, especially under realistic noisy conditions and in the case of deep sources. To overcome these problems, we present here swLORETA, an improved version of sLORETA, obtained by incorporating a singular value decomposition-based lead field weighting. We show that the precision of the source localization can further be improved by a tomographic phase synchronization analysis based on swLORETA. The phase synchronization analysis turns out to be superior to a standard linear coherence analysis, since the latter cannot distinguish between real phase locking and signal mixing.
Chemical Source Localization using Mobile Robots in Indoor Arena
Yuli Zhang
2013-07-01
Full Text Available This paper presents a virtual-physics force based control strategy for swarm robotic chemical source localization. The control force includes: structure formation force, goal force, and obstacle avoidant force. For swarm formation, the robots maintain the regular polygon formation and a virtual robot is located at the center of the polygon. The motion of the virtual robot depends on the goal force which obtained from the sensor observations of the robots. Once the virtual robot moved to a new place, the robots would also move as a single body with the structure formation force and obstacle avoidant force. In this paper, we adopted chemotaxis as plume tracing algorithms. Simulation experiments in indoor arena without obstacle and with obstacles using different robot number are carried out respectively, and the results show that the proposed strategy can effectively navigate the mobile robotics swarms to the chemical source once selecting proper number of robots.
An autonomous surveillance system for blind sources localization and separation
Wu, Sean; Kulkarni, Raghavendra; Duraiswamy, Srikanth
2013-05-01
This paper aims at developing a new technology that will enable one to conduct an autonomous and silent surveillance to monitor sound sources stationary or moving in 3D space and a blind separation of target acoustic signals. The underlying principle of this technology is a hybrid approach that uses: 1) passive sonic detection and ranging method that consists of iterative triangulation and redundant checking to locate the Cartesian coordinates of arbitrary sound sources in 3D space, 2) advanced signal processing to sanitizing the measured data and enhance signal to noise ratio, and 3) short-time source localization and separation to extract the target acoustic signals from the directly measured mixed ones. A prototype based on this technology has been developed and its hardware includes six B and K 1/4-in condenser microphones, Type 4935, two 4-channel data acquisition units, Type NI-9234, with a maximum sampling rate of 51.2kS/s per channel, one NI-cDAQ 9174 chassis, a thermometer to measure the air temperature, a camera to view the relative positions of located sources, and a laptop to control data acquisition and post processing. Test results for locating arbitrary sound sources emitting continuous, random, impulsive, and transient signals, and blind separation of signals in various non-ideal environments is presented. This system is invisible to any anti-surveillance device since it uses the acoustic signal emitted by a target source. It can be mounted on a robot or an unmanned vehicle to perform various covert operations, including intelligence gathering in an open or a confined field, or to carry out the rescue mission to search people trapped inside ruins or buried under wreckages.
4D Near-Field Source Localization Using Cumulant
Zhao Feng
2007-01-01
Full Text Available This paper proposes a new cumulant-based algorithm to jointly estimate four-dimensional (4D source parameters of multiple near-field narrowband sources. Firstly, this approach proposes a new cross-array, and constructs five high-dimensional Toeplitz matrices using the fourth-order cumulants of some properly chosen sensor outputs; secondly, it forms a parallel factor (PARAFAC model in the cumulant domain using these matrices, and analyzes the unique low-rank decomposition of this model; thirdly, it jointly estimates the frequency, two-dimensional (2D directions-of-arrival (DOAs, and range of each near-field source from the matrices via the low-rank three-way array (TWA decomposition. In comparison with some available methods, the proposed algorithm, which efficiently makes use of the array aperture, can localize sources using sensors. In addition, it requires neither pairing parameters nor multidimensional search. Simulation results are presented to validate the performance of the proposed method.
4D Near-Field Source Localization Using Cumulant
Junying Zhang
2007-01-01
Full Text Available This paper proposes a new cumulant-based algorithm to jointly estimate four-dimensional (4D source parameters of multiple near-field narrowband sources. Firstly, this approach proposes a new cross-array, and constructs five high-dimensional Toeplitz matrices using the fourth-order cumulants of some properly chosen sensor outputs; secondly, it forms a parallel factor (PARAFAC model in the cumulant domain using these matrices, and analyzes the unique low-rank decomposition of this model; thirdly, it jointly estimates the frequency, two-dimensional (2D directions-of-arrival (DOAs, and range of each near-field source from the matrices via the low-rank three-way array (TWA decomposition. In comparison with some available methods, the proposed algorithm, which efficiently makes use of the array aperture, can localize N−3 sources using N sensors. In addition, it requires neither pairing parameters nor multidimensional search. Simulation results are presented to validate the performance of the proposed method.
Spatial resolution limits for the localization of noise sources using direct sound mapping
Fernandez Comesaña, D.; Holland, K. R.; Fernandez-Grande, E.
2016-08-01
One of the main challenges arising from noise and vibration problems is how to identify the areas of a device, machine or structure that produce significant acoustic excitation, i.e. the localization of main noise sources. The direct visualization of sound, in particular sound intensity, has extensively been used for many years to locate sound sources. However, it is not yet well defined when two sources should be regarded as resolved by means of direct sound mapping. This paper derives the limits of the direct representation of sound pressure, particle velocity and sound intensity by exploring the relationship between spatial resolution, noise level and geometry. The proposed expressions are validated via simulations and experiments. It is shown that particle velocity mapping yields better results for identifying closely spaced sound sources than sound pressure or sound intensity, especially in the acoustic near-field.
Multiple concurrent sources localization based on a two-node distributed acoustic sensor network
Xu, Jiaxin; Zhao, Zhao; Chen, Chunzeng; Xu, Zhiyong
2017-01-01
In this work, we propose a new approach to localize multiple concurrent sources using a distributed acoustic sensor network. Only two node-arrays are required in this sensor network, and each node-array consists of only two widely spaced sensors. Firstly, direction-of-arrivals (DOAs) of multiple sources are estimated at each node-array by utilizing a new pooled angular spectrum proposed in this paper, which can implement the spatial aliasing suppression effectively. Based on minimum variance distortionless response (MVDR) beamforming and the DOA estimates of the sources, the time-frequency spectra containing the corresponding energy distribution features associated with those sources are reconstructed in each node-array. Then, scale invariant feature transform (SIFT) is employed to solve the DOA association problem. Performance evaluation is conducted with field recordings and experimental results prove the effectivity and feasibility of the proposed method.
EEG Resting-State Networks: microstates' source localization.
Custo, Anna; van der Ville, Dimitri; Wells, William M; Tomescu, Ioana M; Michel, Christoph
2017-09-22
Using EEG to elucidate the spontaneous activation of brain resting state networks is non trivial as the signal of interest is of low amplitude and it is difficult to distinguish the underlying neural sources. Using the principles of electric field topographical analysis, it is possible to estimate the meta-stable states of the brain (i.e., the resting state topographies, so-called microstates). We estimated seven resting state topographies explaining the EEG dataset with k-means clustering (N=164, 256 electrodes). Using a method specifically designed to localize the sources of broadband EEG scalp topographies by matching sensor and source space temporal patterns, we demonstrated that we can estimate the EEG resting state networks reliably by measuring the reproducibility of our findings. After subtracting their mean from the seven EEG resting state networks, we identified seven state-specific networks. The mean map includes regions known to be densely anatomically and functionally connected (superior frontal, superior parietal, insula, and anterior cingulate cortices). While the mean map can be interpreted as a "router", cross-linking multiple functional networks, the seven state-specific resting state networks partly resemble and extend previous fMRI-based networks estimated as the hemodynamic correlates of four canonical EEG microstates.
Adaptive Source Localization Based Station Keeping of Autonomous Vehicles
Guler, Samet
2016-10-26
We study the problem of driving a mobile sensory agent to a target whose location is specied only in terms of the distances to a set of sensor stations or beacons. The beacon positions are unknown, but the agent can continuously measure its distances to them as well as its own position. This problem has two particular applications: (1) capturing a target signal source whose distances to the beacons are measured by these beacons and broadcasted to a surveillance agent, (2) merging a single agent to an autonomous multi-agent system so that the new agent is positioned at desired distances from the existing agents. The problem is solved using an adaptive control framework integrating a parameter estimator producing beacon location estimates, and an adaptive motion control law fed by these estimates to steer the agent toward the target. For location estimation, a least-squares adaptive law is used. The motion control law aims to minimize a convex cost function with unique minimizer at the target location, and is further augmented for persistence of excitation. Stability and convergence analysis is provided, as well as simulation results demonstrating performance and transient behavior.
Localization of the human language cortex by magnetic source imaging
孙吉林; 吴杰; 李素敏; 吴育锦; 刘连祥
2003-01-01
Objective To localize the language cortex associated with Chinese word processing by magnetic source imaging (MSI). Methods Eight right-handed and one left-handed healthy native Chinese subjects were examined by magnetoencephalography (MEG) and a 1.5T magnetic resonance imaging (MRI) unit. All subjects were given pure tone stimuli 50 times, 150 pairs of Chinese words (meaning related or unrelated) auditory stimuli, and pure tone stimuli subsequently 50 times. Evoked response fields time locked to the pure tone and Chinese words were recorded using a whole-head neuromagnetometer in real-time. The acquired data were averaged by the acquisition computer according to the response to the pure tone, related pairs of words and unrelated pairs of words. The data obtained by MEG were superimposed on MRI, using a GE Signa 1.5T system. Results MEG, showed there were two obviously higher magnetic waves named M50 and M100, which were localized in the bilateral transverse temporal gyri in all subjects. The responses to the pairs of Chinese words (meaning related or unrelated) were similar in the same hemisphere of the same subjects. There was a higher peak during 300-600 ms in the right hemisphere of one left handed subject, but no peak in the left hemisphere, indicating that the language dominant hemisphere was localized in the right hemisphere. Superimposing the MEG data on MRI, the language area was localized in the Wernicke's areas. A 300-600 ms response peak was obsarved in each hemisphere (the amplitude of the 300-600 ms response peak in each hemisphere was almost the same) in two right-handed subjects, showing that the language area was localized in the 2 hemispheres in the two subjects. There was one peak in each hemisphere (300-600 ms response) in 6 subjects, but the amplitude of the wave in the left hemisphere in the 6 subjects was much higher than that in the right hemisphere. By choosing randomly from the later component (300-600 ms response) several time points and
Acoustic space learning for sound-source separation and localization on binaural manifolds.
Deleforge, Antoine; Forbes, Florence; Horaud, Radu
2015-02-01
In this paper, we address the problems of modeling the acoustic space generated by a full-spectrum sound source and using the learned model for the localization and separation of multiple sources that simultaneously emit sparse-spectrum sounds. We lay theoretical and methodological grounds in order to introduce the binaural manifold paradigm. We perform an in-depth study of the latent low-dimensional structure of the high-dimensional interaural spectral data, based on a corpus recorded with a human-like audiomotor robot head. A nonlinear dimensionality reduction technique is used to show that these data lie on a two-dimensional (2D) smooth manifold parameterized by the motor states of the listener, or equivalently, the sound-source directions. We propose a probabilistic piecewise affine mapping model (PPAM) specifically designed to deal with high-dimensional data exhibiting an intrinsic piecewise linear structure. We derive a closed-form expectation-maximization (EM) procedure for estimating the model parameters, followed by Bayes inversion for obtaining the full posterior density function of a sound-source direction. We extend this solution to deal with missing data and redundancy in real-world spectrograms, and hence for 2D localization of natural sound sources such as speech. We further generalize the model to the challenging case of multiple sound sources and we propose a variational EM framework. The associated algorithm, referred to as variational EM for source separation and localization (VESSL) yields a Bayesian estimation of the 2D locations and time-frequency masks of all the sources. Comparisons of the proposed approach with several existing methods reveal that the combination of acoustic-space learning with Bayesian inference enables our method to outperform state-of-the-art methods.
Modeling Source Water TOC Using Hydroclimate Variables and Local Polynomial Regression.
Samson, Carleigh C; Rajagopalan, Balaji; Summers, R Scott
2016-04-19
To control disinfection byproduct (DBP) formation in drinking water, an understanding of the source water total organic carbon (TOC) concentration variability can be critical. Previously, TOC concentrations in water treatment plant source waters have been modeled using streamflow data. However, the lack of streamflow data or unimpaired flow scenarios makes it difficult to model TOC. In addition, TOC variability under climate change further exacerbates the problem. Here we proposed a modeling approach based on local polynomial regression that uses climate, e.g. temperature, and land surface, e.g., soil moisture, variables as predictors of TOC concentration, obviating the need for streamflow. The local polynomial approach has the ability to capture non-Gaussian and nonlinear features that might be present in the relationships. The utility of the methodology is demonstrated using source water quality and climate data in three case study locations with surface source waters including river and reservoir sources. The models show good predictive skill in general at these locations, with lower skills at locations with the most anthropogenic influences in their streams. Source water TOC predictive models can provide water treatment utilities important information for making treatment decisions for DBP regulation compliance under future climate scenarios.
Localized Galactic sources and their contribution beyond the second knee
De Donato, Cinzia
2009-01-01
The energy range encompassing the ankle of the cosmic ray energy spectrum probably marks the exhaustion of the accelerating sources in our Galaxy, as well as the end of the Galactic confinement. Furthermore, this is the region where the extragalactic flux penetrates the interstellar medium and starts, progressively, to be dominant. Although at lower energies it is likely that an "average" population of supernova remnants can be defined to account for most of the cosmic ray flux, this assumption is increasingly difficult to maintain as higher energies are considered. One possibility is that supernovas are still a main contributor along the first branch of the ankle region, but that the acceleration is now coming from well localized regions with a characteristic interstellar medium, or a sub-population of supernovas exploding in a peculiar circumstellar environment. These possibilities are analyzed in the present work using a two-dimensional diffusion model for cosmic ray propagation. Special emphasis is given ...
Fully dynamic output bounded single source shortest path problem
Frigioni, D. [Universita di L`Aquila, Coppito (Italy); Marchetti-Spaccamela, A.; Nanni, U. [Universita di Roma (Italy)
1996-12-31
We consider the problem of maintaining the distances and the shortest paths from a single source in either a directed or an undirected graph with positive real edge weights, handling insertions, deletions and cost updates of edges. We propose fully dynamic algorithms with optimal space requirements and query time. The cost of update operations depends on the class of the considered graph and on the number of vertices that, due to an edge modification, either change their distance from the source or change their parent in the shortest path tree. In the case of graphs with bounded genus (including planar graphs), bounded degree graphs, bounded treewidth graphs and O-near-planar graphs with bounded {beta}, the update procedures require O(log n) amortized time per vertex update, while for general graphs with n vertices and m edges they require O({radical}m log n) amortized time per vertex update. The solution is based on a dynamization of Dijkstra`s algorithm and requires simple data structures that are suitable for a practical and straightforward implementation.
Properties and Localizations of Acoustic Sources in High Speed Jet
Kan, Pinqing; Lewalle, Jacques; Berger, Zachary; Berry, Matthew; Glauser, Mark; Syracuse University Team
2014-11-01
Jet noise has become one major concern for aircraft engine design in recent decades. The problem is to identify the near-field (NF) structures that produce far-field (FF) noise and develop noise control and reduction strategies. We developed an algorithm to identify the events that are responsible for NF and FF cross-correlations. Two sets of experimental data from Mach 0.6 jets are analyzed. They consist of 10 kHz TRPIV measurement and pressure sampling in both near- and far-field. Several NF diagnostics (velocity, vorticity, Q criterion, etc.) are calculated to represent the 2D velocity fields. The main contributors between these NF diagnostics and FF pressure are extracted as Diagnostic-Microphone (DM) events. The NF localization of DM event clusters will be compared to the NF triangulation of MM events, which were acquired using FF signals alone. In the time-frequency domain, the events are short wave packets, distorted by ambient perturbations. As a result, the matching of DM to MM events at physical lags is particularly difficult. We will report on different algorithms using time, frequency and space information to improve the reliability of the matches. We will also relate the event localization to the NF flow fields that correspond to FF ``loud'' POD modes (Low et al. 2013 and Berger et al. 2014). This work is supported by Spectra Energies LLC, Syracuse University MAE Department and the Glauser group at Syracuse University.
Passive Source Localization Using Compressively Sensed Towed Array
N. Suresh Kumar
2013-12-01
Full Text Available The objective of this work is to estimate the sparse angular power spectrum using a towed acoustic pressure sensor (APS array. In a passive towed array sonar, any reduction in the analog sensor signal conditioning receiver hardware housed inside the array tube, significantly improves the signal integrity and hence the localization performance. In this paper, a novel sparse acoustic pressure sensor (SAPS array architecture is proposed to estimate the direction of arrival (DOA of multiple acoustic sources. Bearing localization is effectively achieved by customizing the Capons spatial filter algorithm to suit the SAPS array architecture. Apart from the Monte Carlo simulations, the acoustic performance of the SAPS array with compressively sensed minimum variance distortionless response (CS-MVDR filter is demonstrated using a real passive towed array data. The proposed sparse towed array architecture promises a significant reduction in the analog signal acquisition receiver hardware, transmission data rate, number of snapshots and software complexity.Defence Science Journal, 2013, 63(6, pp.630-635, DOI:http://dx.doi.org/10.14429/dsj.63.5765
Water defluoridation using Malawi’s locally sourced gypsum
Masamba, W. R. L.; Sajidu, S. M.; Thole, B.; Mwatseteza, J. F.
Free fluoride levels above the WHO guideline maximum value of 1.5 mg/l have been reported in several parts of Malawi. Dental fluorosis has also been observed in the same areas such that search for local defluoridation techniques has become important in the country. The present research intended to determine the potential of using Malawi gypsum in defluoridation, identify the best pre-treatment of the gypsum and optimum conditions under which effective water defluoridation with the gypsum may be obtained. Laboratory experiments were carried out to explore defluoridation of drinking water using locally sourced gypsum and gypsum calcined at high temperatures. A 400 °C calcined phase of gypsum gave the highest defluoridation capacity of 67.80% compared to raw (uncalcined) gypsum, 200, 300 and 500 °C calcined phases. Powder X-ray diffraction (PXRD) pattern of the 400 °C phase revealed existence of less crystalline CaSO 4 that was thought to be responsible for such relatively high defluoridation capacity. The dependence of the fluoride removal by the 400 °C calcined phase on other drinking water quality parameters was assessed by simple correlation analysis. Reaction kinetics and mechanisms of fluoride removal by the materials were also investigated. It was found that ion exchange was the dominant mechanism through which fluoride was removed from water by the materials.
Stolpe, Mathias; Stidsen, Thomas K.
2005-01-01
of minimizing the weight of a structure subject to displacement and local design-dependent stress constraints. The method iteratively solves a sequence of problems of increasing size of the same type as the original problem. The problems are defined on a design mesh which is initially coarse...... from global optimization, which have only recently become available, for solving the problems in the sequence. Numerical examples of topology design problems of continuum structures with local stress and displacement constraints are presented....
Stolpe, Mathias; Stidsen, Thomas K.
2007-01-01
of minimizing the weight of a structure subject to displacement and local design-dependent stress constraints. The method iteratively treats a sequence of problems of increasing size of the same type as the original problem. The problems are defined on a design mesh which is initially coarse...... from global optimization, which have only recently become available, for solving the problems in the sequence. Numerical examples of topology design problems of continuum structures with local stress and displacement constraints are presented....
PADF electromagnetic source localization using extremum seeking control
Al Issa, Huthaifa A.; Ordóñez, Raúl
2014-10-01
Wireless Sensor Networks (WSNs) are a significant technology attracting considerable research interest. Recent advances in wireless communications and electronics have enabled the development of low-cost, low-power and multi-functional sensors that are small in size and communicate over short distances. Most WSN applications require knowing or measuring locations of thousands of sensors accurately. For example, sensing data without knowing the sensor location is often meaningless. Locations of sensor nodes are fundamental to providing location stamps, locating and tracking objects, forming clusters, and facilitating routing. This research focused on the modeling and implementation of distributed, mobile radar sensor networks. In particular, we worked on the problem of Position-Adaptive Direction Finding (PADF), to determine the location of a non- collaborative transmitter, possibly hidden within a structure, by using a team of cooperative intelligent sensor networks. Position-Adaptive radar concepts have been formulated and investigated at the Air Force Research Laboratory (AFRL) within the past few years. In this paper, we present the simulation performance analysis on the application aspect. We apply Extremum Seeking Control (ESC) schemes by using the swarm seeking problem, where the goal is to design a control law for each individual sensor that can minimize the error metric by adapting the sensor positions in real-time, thereby minimizing the unknown estimation error. As a result we achieved source seeking and collision avoidance of the entire group of the sensor positions.
A Multiple-Neighborhood-Based Parallel Composite Local Search Algorithm for Timetable Problem
颜鹤; 郁松年
2004-01-01
This paper presents a parallel composite local search algorithm based on multiple search neighborhoods to solve a special kind of timetable problem. The new algorithm can also effectively solve those problems that can be solved by general local search algorithms. Experimental results show that the new algorithm can generate better solutions than general local search algorithms.
Efficient localization of synchronous EEG source activities using a modified RAP-MUSIC algorithm.
Liu, Hesheng; Schimpf, Paul H
2006-04-01
Synchronization across different brain regions is suggested to be a possible mechanism for functional integration. Noninvasive analysis of the synchronization among cortical areas is possible if the electrical sources can be estimated by solving the electroencephalography inverse problem. Among various inverse algorithms, spatio-temporal dipole fitting methods such as RAP-MUSIC and R-MUSIC have demonstrated superior ability in the localization of a restricted number of independent sources, and also have the ability to reliably reproduce temporal waveforms. However, these algorithms experience difficulty in reconstructing multiple correlated sources. Accurate reconstruction of correlated brain activities is critical in synchronization analysis. In this study, we modified the well-known inverse algorithm RAP-MUSIC to a multistage process which analyzes the correlation of candidate sources and searches for independent topographies (ITs) among precorrelated groups. Comparative studies were carried out on both simulated data and clinical seizure data. The results demonstrated superior performance with the modified algorithm compared to the original RAP-MUSIC in recovering synchronous sources and localizing the epileptiform activity. The modified RAP-MUSIC algorithm, thus, has potential in neurological applications involving significant synchronous brain activities.
local alternative sources for cogeneration combined heat and power system
Agll, Abdulhakim Amer
Global demand for energy continues to grow while countries around the globe race to reduce their reliance on fossil fuels and greenhouse gas emissions by implementing policy measures and advancing technology. Sustainability has become an important issue in transportation and infrastructure development projects. While several agencies are trying to incorporate a range of sustainability measures in their goals and missions, only a few planning agencies have been able to implement these policies and they are far from perfect. The low rate of success in implementing sustainable policies is primarily due to incomplete understanding of the system and the interaction between various elements of the system. The conventional planning efforts focuses mainly on performance measures pertaining to the system and its impact on the environment but seldom on the social and economic impacts. The objective of this study is to use clean and alternative energy can be produced from many sources, and even use existing materials for energy generation. One such pathway is using wastewater, animal and organic waste, or landfills to create biogas for energy production. There are three tasks for this study. In topic one evaluated the energy saving that produced from combined hydrogen, heat, and power and mitigate greenhouse gas emissions by using local sustainable energy at the Missouri S&T campus to reduce energy consumption and fossil fuel usage. Second topic aimed to estimate energy recovery and power generation from alternative energy source by using Rankin steam cycle from municipal solid waste at Benghazi-Libya. And the last task is in progress. The results for topics one and two have been presented.
Jonathan Younker
2013-06-01
Full Text Available Using open source hardware platforms like the Arduino, libraries have the ability to quickly and inexpensively prototype custom hardware solutions to common library problems. The authors present the Arduino environment, what it is, what it does, and how it was used at the James A. Gibson Library at Brock University to create a production portable barcode-scanning utility for in-house use statistics collection as well as a prototype for a service desk statistics tabulation program’s hardware interface.
Shirvany, Yazdan; Rubæk, Tonny; Edelvik, Fredrik
2013-01-01
The aim of this paper is to evaluate the performance of an EEG source localization method that combines a finite element method (FEM) and the reciprocity theorem.The reciprocity method is applied to solve the forward problem in a four-layer spherical head model for a large number of test dipoles...... noise and electrode misplacement.The results show approximately 3% relative error between numerically calculated potentials done by the reciprocity theorem and the analytical solutions. When adding EEG noise with SNR between 5 and 10, the mean localization error is approximately 4.3 mm. For the case...... with 10 mm electrode misplacement the localization error is 4.8 mm. The reciprocity EEG source localization speeds up the solution of the inverse problem with more than three orders of magnitude compared to the state-of-the-art methods.The reciprocity method has high accuracy for modeling the dipole...
Nonlinear simulations of particle source effects on edge localized mode
Huang, J.; Tang, C. J. [College of Physical Science and Technology, Sichuan University, Chengdu 610065 (China); Key Laboratory of High Energy Density Physics and Technology of Ministry of Education, Sichuan University, Chengdu 610064 (China); Chen, S. Y., E-mail: sychen531@163.com [College of Physical Science and Technology, Sichuan University, Chengdu 610065 (China); Key Laboratory of High Energy Density Physics and Technology of Ministry of Education, Sichuan University, Chengdu 610064 (China); Southwestern Institute of Physics, Chengdu 610041 (China); Wang, Z. H. [Southwestern Institute of Physics, Chengdu 610041 (China)
2015-12-15
The effects of particle source (PS) with different intensities and located positions on Edge Localized Mode (ELM) are systematically studied with BOUT++ code. The results show the ELM size strongly decreases with increasing the PS intensity once the PS is located in the middle or bottom of the pedestal. The effects of PS on ELM depend on the located position of PS. When it is located at the top of the pedestal, peeling-ballooning (P-B) modes can extract more free energy from the pressure gradient and grow up to be a large filament at the initial crash phase and the broadening of mode spectrum can be suppressed by PS, which leads to more energy loss. When it is located in the middle or bottom of the pedestal, the extraction of free energy by P-B modes can be suppressed, and a small filament is generated. During the turbulence transport phase, the broader mode spectrum suppresses the turbulence transport when PS is located in the middle, while the zonal flow plays an important role in damping the turbulence transport when PS is located at the bottom.
Vector-Sensor MUSIC for Polarized Seismic Sources Localization
Jérôme I. Mars
2005-01-01
Full Text Available This paper addresses the problem of high-resolution polarized source detection and introduces a new eigenstructure-based algorithm that yields direction of arrival (DOA and polarization estimates using a vector-sensor (or multicomponent-sensor array. This method is based on separation of the observation space into signal and noise subspaces using fourth-order tensor decomposition. In geophysics, in particular for reservoir acquisition and monitoring, a set of Nx-multicomponent sensors is laid on the ground with constant distance ÃŽÂ”x between them. Such a data acquisition scheme has intrinsically three modes: time, distance, and components. The proposed method needs multilinear algebra in order to preserve data structure and avoid reorganization. The data is thus stored in tridimensional arrays rather than matrices. Higher-order eigenvalue decomposition (HOEVD for fourth-order tensors is considered to achieve subspaces estimation and to compute the eigenelements. We propose a tensorial version of the MUSIC algorithm for a vector-sensor array allowing a joint estimation of DOA and signal polarization estimation. Performances of the proposed algorithm are evaluated.
GENERALIZED VECTOR QUASI-EQUILIBRIUM PROBLEMS IN LOCALLY G-CONVEX SPACES
DING Xie-ping
2005-01-01
Some classes of generalized vector quasi-equilibrium problems (in short,GVQEP) are introduced and studied in locally G-convex spaces which includes most of generalized vector equilibrium problems, generalized vector variational inequality problems,quasi-equilibrium problems and quasi-variational inequality problems as special cases. First,an equilibrium existence theorem for one person games is proved in locally G-convex spaces.As applications, some new existence theorems of solutions for the GVQEP are established in noncompact locally G-convex spaces. These results and argument methods are new and completely different from that in recent literature.
Fault Location Identification for Localized Intermittent Connection Problems on CAN Networks
LEI Yong; YUAN Yong; SUN Yichao
2014-01-01
The intermittent connection(IC) of the field-bus in networked manufacturing systems is a common but hard troubleshooting network problem, which may result in system level failures or safety issues. However, there is no online IC location identification method available to detect and locate the position of the problem. To tackle this problem, a novel model based online fault location identification method for localized IC problem is proposed. First, the error event patterns are identified and classified according to different node sources in each error frame. Then generalized zero inflated Poisson process(GZIP) model for each node is established by using time stamped error event sequence. Finally, the location of the IC fault is determined by testing whether the parameters of the fitted stochastic model is statistically significant or not using the confident intervals of the estimated parameters. To illustrate the proposed method, case studies are conducted on a 3-node controller area network(CAN) test-bed, in which IC induced faults are imposed on a network drop cable using computer controlled on-off switches. The experimental results show the parameters of the GZIP model for the problematic node are statistically significant(larger than 0), and the patterns of the confident intervals of the estimated parameters are directly linked to the problematic node, which agrees with the experimental setup. The proposed online IC location identification method can successfully identify the location of the drop cable on which IC faults occurs on the CAN network.
Penny, Robert D., E-mail: robert.d.penny@leidos.com [Leidos Inc., 10260 Campus Point Road, San Diego, CA (United States); Crowley, Tanya M.; Gardner, Barbara M.; Mandell, Myron J.; Guo, Yanlin; Haas, Eric B.; Knize, Duane J.; Kuharski, Robert A.; Ranta, Dale; Shyffer, Ryan [Leidos Inc., 10260 Campus Point Road, San Diego, CA (United States); Labov, Simon; Nelson, Karl; Seilhan, Brandon [Lawrence Livermore National Laboratory, Livermore, CA (United States); Valentine, John D. [Lawrence Berkeley National Laboratory, Berkeley, CA (United States)
2015-06-01
A novel approach and algorithm have been developed to rapidly detect and localize both moving and static radiological/nuclear (R/N) sources from an airborne platform. Current aerial systems with radiological sensors are limited in their ability to compensate for variable naturally occurring radioactive material (NORM) background. The proposed approach suppresses the effects of NORM background by incorporating additional information to segment the survey area into regions over which the background is likely to be uniform. The method produces pixelated Source Activity Maps (SAMs) of both target and background radionuclide activity over the survey area. The task of producing the SAMs requires (1) the development of a forward model which describes the transformation of radionuclide activity to detector measurements and (2) the solution of the associated inverse problem. The inverse problem is ill-posed as there are typically fewer measurements than unknowns. In addition the measurements are subject to Poisson statistical noise. The Maximum-Likelihood Expectation-Maximization (MLEM) algorithm is used to solve the inverse problem as it is well suited for under-determined problems corrupted by Poisson noise. A priori terrain information is incorporated to segment the reconstruction space into regions within which we constrain NORM background activity to be uniform. Descriptions of the algorithm and examples of performance with and without segmentation on simulated data are presented.
A localization property for facility location problems with arbitrary norms
Juel, Henrik; Love, Robert F.
1988-01-01
In an earlier article (1983), the authors showed that, for facilities-location problems characterized by generalized distance norms and any even number of existing facilities, the optimal location of the new facility is at the intersection of the lines joining the pairs of facilities if these lines...... intersect at a single point. In this article the authors extend this concept to show that, for a more general class of problems, the optimal location is one of a set of points which is specified by the existing facilities...
A localization property for facility location problems with arbitrary norms
Juel, Henrik; Love, Robert F.
1988-01-01
In an earlier article (1983), the authors showed that, for facilities-location problems characterized by generalized distance norms and any even number of existing facilities, the optimal location of the new facility is at the intersection of the lines joining the pairs of facilities if these lines...... intersect at a single point. In this article the authors extend this concept to show that, for a more general class of problems, the optimal location is one of a set of points which is specified by the existing facilities...
Problem-Solving Test: Submitochondrial Localization of Proteins
Szeberenyi, Jozsef
2011-01-01
Mitochondria are surrounded by two membranes (outer and inner mitochondrial membrane) that separate two mitochondrial compartments (intermembrane space and matrix). Hundreds of proteins are distributed among these submitochondrial components. A simple biochemical/immunological procedure is described in this test to determine the localization of…
Local discontinuous Galerkin methods for phase transition problems
Tian, Lulu
2015-01-01
In this thesis we develop a local discontinuous Galerkin (LDG) finite element method to solve mathematical models for phase transitions in solids and fluids. The first model we study is called a viscosity-capillarity (VC) system associated with phase transitions in elastic bars and Van der Waals
Problem-Solving Test: Submitochondrial Localization of Proteins
Szeberenyi, Jozsef
2011-01-01
Mitochondria are surrounded by two membranes (outer and inner mitochondrial membrane) that separate two mitochondrial compartments (intermembrane space and matrix). Hundreds of proteins are distributed among these submitochondrial components. A simple biochemical/immunological procedure is described in this test to determine the localization of…
Stationary Source Related Documents for State and Local Transportation
State and Local Transporation Resources is an EPA/OTAQ web page for state and local air quality regulators and transportation planners that offers guidance on how to reduce air pollution from cars, diesel trucks, city and school buses
On Fractional Variational Problems which Admit Local Transformations
Malinowska, Agnieszka B
2012-01-01
We extend the second Noether theorem to fractional variational problems which are invariant under infinitesimal transformations that depend upon $r$ arbitrary functions and their fractional derivatives in the sense of Caputo. Our main result is illustrated using the fractional Lagrangian density of the electromagnetic field.
Guzzo, J.Ch. [Institut National de Veille Sanitaire, Reseau National de Sante Publique, 94 - Saint-Maurice (France)
2000-07-01
This document applies to health professionals who are facing with a problem of risks evaluation relative to a local source of air pollution and envisage to realize an epidemiological study. In this document, only the short term effects are considered and the situations of accidental pollution are not treated. Without being a methodological treatise it can be a tool to better understand the constraints and the limits of epidemiology to answer the difficult question of the impact evaluation on health of populations living near a local source of air pollution. (N.C.)
Asymptotics of Bayesian error probability and source super-localization in three dimensions.
Prasad, S
2014-06-30
We present an asymptotic analysis of the minimum probability of error (MPE) in inferring the correct hypothesis in a Bayesian multi-hypothesis testing (MHT) formalism using many pixels of data that are corrupted by signal dependent shot noise, sensor read noise, and background illumination. We perform our analysis for a variety of combined noise and background statistics, including a pseudo-Gaussian distribution that can be employed to treat approximately the photon-counting statistics of signal and background as well as purely Gaussian sensor read-out noise and more general, exponentially peaked distributions. We subsequently evaluate both the exact and asymptotic MPE expressions for the problem of three-dimensional (3D) point source localization. We focus specifically on a recently proposed rotating-PSF imager and compare, using the MPE metric, its 3D localization performance with that of conventional and astigmatic imagers in the presence of background and sensor-noise fluctuations.
'Informal' learning to support breastfeeding: local problems and opportunities.
Abbott, Stephen; Renfrew, Mary J; McFadden, Alison
2006-10-01
This study explored 'informal' learning opportunities in three health economies, both for National Health Service (NHS) staff and lay people wishing to promote and support breastfeeding and for new mothers wishing to breastfeed. The word 'informal' indicates local learning opportunities that are not part of recognized academic or professional training courses. Semi-structured telephone interviews were conducted with 31 key informants, including health visitors, midwives, infant feeding advisers, Sure Start personnel, voluntary organization representatives, Strategic Health Authority representatives, senior nurses and trainers. The results were analysed thematically. In each site, there were regular training events for NHS staff to acquire or update knowledge and skills. Training was provided by a small number of enthusiasts. Midwives and health visitors were the groups who attend most frequently, although many find it difficult to make time. Although many training events were multidisciplinary, few doctors appeared to attend. Individual staff also used additional learning opportunities, e.g. other courses, conferences, web-based learning, and training by voluntary organizations. Services offered to lay people by the NHS, Sure Start and voluntary organizations included parentcraft, antenatal and post-natal classes, breastfeeding support groups, 'baby cafés' and telephone counselling. Interviewees' organizations did not have a specific breastfeeding strategy, although action groups were trying to take the agenda forward. Local opportunities were over-dependent on individual champions working in relative isolation, and support is needed from local health economies for the facilitation of coordination and networking.
Localization of Narrow-Band Sources in Unknown Spatially Correlated Noise
Salah Bourennane
2010-01-01
Full Text Available In subspace-based method for direction-of-arrival (DOA estimation of signal wavefronts, the additive noise term is often assumed to be spatially white or known to within a multiplicative scalar. When the noise is nonwhite but has a known covariance matrix, we can still handle the problem through prewhitening. However, the problem turns to be complex when the noise field is completely unknown. In this paper, we study the localization of the sources, when the noise covariance matrix is one unknown band matrix. An iterative denoising algorithm based on the noise subspace spanned by the eigenvectors associated with the smallest eigenvalues is developed. The performance of the proposed algorithm is evaluated by computer simulations. We also test the proposed algorithm with some experimental data recorded during an underwater acoustic experiment.
Binge Drinking â Nationwide Problem, Local Solutions
2012-01-03
This podcast is based on the January 2012 CDC Vital Signs report. One in six adults binge drinks about four times a month. It's a problem nationwide but community-based strategies, such as reducing access to alcohol and increasing the price, can prevent binge drinking. Created: 1/3/2012 by Centers for Disease Control and Prevention (CDC). Date Released: 1/3/2012.
Separation of Radio-Frequency Sources and Localization of Partial Discharges in Noisy Environments
Guillermo Robles
2015-04-01
Full Text Available The detection of partial discharges (PD can help in early-warning detection systems to protect critical assets in power systems. The radio-frequency emission of these events can be measured with antennas even when the equipment is in service which reduces dramatically the maintenance costs and favours the implementation of condition-based monitoring systems. The drawback of these type of measurements is the difficulty of having a reference signal to study the events in a classical phase-resolved partial discharge pattern (PRPD. Therefore, in open-air substations and overhead lines where interferences from radio and TV broadcasting and mobile communications are important sources of noise and other pulsed interferences from rectifiers or inverters can be present, it is difficult to identify whether there is partial discharges activity or not. This paper proposes a robust method to separate the events captured with the antennas, identify which of them are partial discharges and localize the piece of equipment that is having problems. The separation is done with power ratio (PR maps based on the spectral characteristics of the signal and the identification of the type of event is done localizing the source with an array of four antennas. Several classical methods to calculate the time differences of arrival (TDOA of the emission to the antennas have been tested, and the localization is done using particle swarm optimization (PSO to minimize a distance function.
Theoretical Foundations of Incorporating Local Boundary Conditions into Nonlocal Problems
Aksoylu, Burak; Beyer, Horst Reinhard; Celiker, Fatih
2017-08-01
We study nonlocal equations from the area of peridynamics on bounded domains. We present four main results. In our recent paper, we have discovered that, on R, the governing operator in peridynamics, which involves a convolution, is a bounded function of the classical (local) governing operator. Building on this, as main result 1, we construct an abstract convolution operator on bounded domains which is a generalization of the standard convolution based on integrals. The abstract convolution operator is a function of the classical operator, defined by a Hilbert basis available due to the purely discrete spectrum of the latter. As governing operator of the nonlocal equation we use a function of the classical operator, this allows us to incorporate local boundary conditions into nonlocal theories. As main result 2, we prove that the solution operator can be uniquely decomposed into a Hilbert-Schmidt operator and a multiple of the identity operator. As main result 3, we prove that Hilbert-Schmidt operators provide a smoothing of the input data in the sense a square integrable function is mapped into a function that is smooth up to boundary of the domain. As main result 4, for the homogeneous nonlocal wave equation, we prove that continuity is preserved by time evolution. Namely, the solution is discontinuous if and only if the initial data is discontinuous. As a consequence, discontinuities remain stationary.
On the Problems and Strategies Addressed to the Development of Local Colleges
闫昭旭
2014-01-01
Local colleges are the main bodies of Chinese higher education. Their proper and sound development will do good to the development of local economy and society. Compared with famous and key universities, their development is in inferior state and there are lots of problems. This article analyses the problems during their development process, then it puts forward relevant strategies so as to provide reference for the development of local colleges.
Chu, Hao; Wu, Chengdong
2016-10-01
The source localization base on wireless sensor network has attracted considerable attention in recent years. However, most of the previous works focus on the accurate measurement or single source localization. The multiple-source localization has extensive application prospect in many fields. The quantized measurement is a low-cost and low energy consumption solution for wireless sensor network. In this paper, we present a novel multiple-source consecutive localization algorithm using the quantized measurement. We first introduce the multiple acoustic sources model and quantized measurement method. Then the maximum likelihood method is used to establish the localization function and the particle swarm optimization is employed to estimate the initial position of the source. Finally the Kalman filter is used to mitigate the random processing noise. Simulation results show that the proposed method owns high localization accuracy.
The Static Ladder Problem with Two Sources of Friction
Bennett, Jonathan; Mauney, Alex
2011-01-01
The problem of a ladder leaning against a wall in static equilibrium is a classic example encountered in introductory mechanics texts. Most discussions of this problem assume that the static frictional force between the ladder and wall can be ignored. A few authors consider the case where the static friction coefficients between ladder/wall…
The Static Ladder Problem with Two Sources of Friction
Bennett, Jonathan; Mauney, Alex
2011-01-01
The problem of a ladder leaning against a wall in static equilibrium is a classic example encountered in introductory mechanics texts. Most discussions of this problem assume that the static frictional force between the ladder and wall can be ignored. A few authors consider the case where the static friction coefficients between ladder/wall…
On the Finite Line Source Problem in Diffusion Theory
Mikkelsen, Torben; Troen, Ib; Larsen, Søren Ejling
1982-01-01
A simple formula for calculating dispersion from a continuous finite line source, placed at right angles to the mean wind direction, is derived on the basis of statistical theory. Comparison is made with the virtual source concept usually used and this is shown to be correct only in the limit where...
Improving the efficiency of deconvolution algorithms for sound source localization
Lylloff, Oliver Ackermann; Fernandez Grande, Efren; Agerkvist, Finn T.
2015-01-01
of the unknown acoustic source distribution and the beamformer's response to a point source, i.e., point-spread function. A significant limitation of deconvolution is, however, an additional computational effort compared to beamforming. In this paper, computationally efficient deconvolution algorithms...
Open Source Communities in Technical Writing: Local Exigence, Global Extensibility
Conner, Trey; Gresham, Morgan; McCracken, Jill
2011-01-01
By offering open-source software (OSS)-based networks as an affordable technology alternative, we partnered with a nonprofit community organization. In this article, we narrate the client-based experiences of this partnership, highlighting the ways in which OSS and open-source culture (OSC) transformed our students' and our own expectations of…
Transported vs. local contributions from secondary and biomass burning sources to PM2.5
Kim, Bong Mann; Seo, Jihoon; Kim, Jin Young; Lee, Ji Yi; Kim, Yumi
2016-11-01
The concentration of fine particulates in Seoul, Korea has been lowered over the past 10 years, as a result of the city's efforts in implementing environmental control measures. Yet, the particulate concentration level in Seoul remains high as compared to other urban areas globally. In order to further improve fine particulate air quality in the Korea region and design a more effective control strategy, enhanced understanding of the sources and contribution of fine particulates along with their chemical compositions is necessary. In turn, relative contributions from local and transported sources on Seoul need to be established, as this city is particularly influenced by sources from upwind geographic areas. In this study, PM2.5 monitoring was conducted in Seoul from October 2012 to September 2013. PM2.5 mass concentrations, ions, metals, organic carbon (OC), elemental carbon (EC), water soluble OC (WSOC), humic-like substances of carbon (HULIS-C), and 85 organic compounds were chemically analyzed. The multivariate receptor model SMP was applied to the PM2.5 data, which then identified nine sources and estimated their source compositions as well as source contributions. Prior studies have identified and quantified the transported and local sources. However, no prior studies have distinguished contributions of an individual source between transported contribution and locally produced contribution. We differentiated transported secondary and biomass burning sources from the locally produced secondary and biomass burning sources, which was supported with potential source contribution function (PSCF) analysis. Of the total secondary source contribution, 32% was attributed to transported secondary sources, and 68% was attributed to locally formed secondary sources. Meanwhile, the contribution from the transported biomass burning source was revealed as 59% of the total biomass burning contribution, which was 1.5 times higher than that of the local biomass burning source
Trocenko O.V.
2010-06-01
Full Text Available Defined information potential source base of the territory of modern Dnipropetrovsk region, outlined the problems of using historical sources in historical and geographical studies at the regional level.
Moussas, G I; Papadopoulou, A G; Christodoulaki, A G; Karkanias, A P
2012-01-01
Cancer may be localized in a variety of areas in the human body. This localization is associated with significant issues concerning not only therapy and prognosis but also psychological and psychiatric problems that the patient may be confronted with. The psychic impact on the patient is determined to a significant degree by the symbolism the affected organ carries. The symbolic significance of a sick body area triggers emotions and sets in motion self-defence mechanisms. In this way, patients deal with the new psychic reality that cancer creates. Therapeutic choices may include interventions, involving mutilation, which cause disfigurement and major consequences in the body image which result in narcissistic injuries. The phenomenology of anxiety and depressive disorders is connected to the affected body area. The appearance of cancer not only in sexual organs but also in other body areas, may disturb sexual function and therefore lead to sexual disorders. Especially, head and neck are connected with vital functions. This area of the body has had a major impact on psychic reality since early life. Complicated psychic functions have developed in relation to organs of the head and neck. Therefore, localization of cancer in this area leads to individual psychological and psychiatric problems, since eating and breathing are harmed, verbal communication becomes difficult and body image alters. Also, increased incidence of alcohol and nicotine abuse in these patients reflects special aspects of psychic structure and personality. Because of severe somatic symptoms and poor prognosis, lung cancer patients feel hopelessness and helplessness. Patients with gynaecological cancer are confronted with a disease that affects organs like breast and internal female sexual organs associated with femininity, attractiveness and fertility. Dietary habits are often a source of guilt for patients who suffer from cancer of the gastrointestinal tract. Additionally, stomas, as colostomy
An Integer Programming-based Local Search for Large-scale Maximal Covering Problems
Junha Hwang
2011-02-01
Full Text Available Maximal covering problem (MCP is classified as a linear integer optimization problem which can be effectively solved by integer programming technique. However, as the problem size grows, integerprogramming requires excessive time to get an optimal solution. This paper suggests a method for applying integer programming-based local search (IPbLS to solve large-scale maximal covering problems. IPbLS, which is a hybrid technique combining integer programming and local search, is a kind of local search using integer programming for neighbor generation. IPbLS itself is very effective for MCP. In addition, we improve the performance of IPbLS for MCP through problem reduction based on the current solution. Experimental results show that the proposed method considerably outperforms any other local search techniques and integer programming.
Direct and inverse source problems for a space fractional advection dispersion equation
Aldoghaither, Abeer
2016-05-15
In this paper, direct and inverse problems for a space fractional advection dispersion equation on a finite domain are studied. The inverse problem consists in determining the source term from final observations. We first derive the analytic solution to the direct problem which we use to prove the uniqueness and the unstability of the inverse source problem using final measurements. Finally, we illustrate the results with a numerical example.
A Local Search Modeling for Constrained Optimum Paths Problems (Extended Abstract
Quang Dung Pham
2009-10-01
Full Text Available Constrained Optimum Path (COP problems appear in many real-life applications, especially on communication networks. Some of these problems have been considered and solved by specific techniques which are usually difficult to extend. In this paper, we introduce a novel local search modeling for solving some COPs by local search. The modeling features the compositionality, modularity, reuse and strengthens the benefits of Constrained-Based Local Search. We also apply the modeling to the edge-disjoint paths problem (EDP. We show that side constraints can easily be added in the model. Computational results show the significance of the approach.
The Use of Reciprocity in Atmospheric Source Inversion Problems
Nitao, J J
2004-10-13
The goal of the Event Reconstruction Project is to find the location and strength of atmospheric release points, both stationary and moving. Source inversion relies on observational data as input. The methodology is sufficiently general to allow various forms of data. In this report, the authors will focus primarily on concentration measurements obtained at point monitoring locations at various times. The algorithms being investigated in the Project are the MCMC (Markov Chain Monte Carlo), SMC (Sequential Monte Carlo) Methods, classical inversion methods, and hybrids of these. They refer the reader to the report by Johannesson et al. (2004) for explanations of these methods. These methods require computing the concentrations at all monitoring locations for a given ''proposed'' source characteristic (locations and strength history). It is anticipated that the largest portion of the CPU time will take place performing this computation. MCMC and SMC will require this computation to be done at least tens of thousands of times. Therefore, an efficient means of computing forward model predictions is important to making the inversion practical. In this report they show how Green's functions and reciprocal Green's functions can significantly accelerate forward model computations. First, instead of computing a plume for each possible source strength history, they can compute plumes from unit impulse sources only. By using linear superposition, they can obtain the response for any strength history. This response is given by the forward Green's function. Second, they may use the law of reciprocity. Suppose that they require the concentration at a single monitoring point x{sub m} due to a potential (unit impulse) source that is located at x{sub s}. instead of computing a plume with source location x{sub s}, they compute a ''reciprocal plume'' whose (unit impulse) source is at the monitoring locations x{sub m}. The
Inversion of Atmospheric Tracer Measurements, Localization of Sources
Issartel, J.-P.; Cabrit, B.; Hourdin, F.; Idelkadi, A.
When abnormal concentrations of a pollutant are observed in the atmosphere, the question of its origin arises immediately. The radioactivity from Tchernobyl was de- tected in Sweden before the accident was announced. This situation emphasizes the psychological, political and medical stakes of a rapid identification of sources. In tech- nical terms, most industrial sources can be modeled as a fixed point at ground level with undetermined duration. The classical method of identification involves the cal- culation of a backtrajectory departing from the detector with an upstream integration of the wind field. We were first involved in such questions as we evaluated the ef- ficiency of the international monitoring network planned in the frame of the Com- prehensive Test Ban Treaty. We propose a new approach of backtracking based upon the use of retroplumes associated to available measurements. Firstly the retroplume is related to inverse transport processes, describing quantitatively how the air in a sam- ple originates from regions that are all the more extended and diffuse as we go back far in the past. Secondly it clarifies the sensibility of the measurement with respect to all potential sources. It is therefore calculated by adjoint equations including of course diffusive processes. Thirdly, the statistical interpretation, valid as far as sin- gle particles are concerned, should not be used to investigate the position and date of a macroscopic source. In that case, the retroplume rather induces a straightforward constraint between the intensity of the source and its position. When more than one measurements are available, including zero valued measurements, the source satisfies the same number of linear relations tightly related to the retroplumes. This system of linear relations can be handled through the simplex algorithm in order to make the above intensity-position correlation more restrictive. This method enables to manage in a quantitative manner the
Solving seismological problems using SGRAPH program: I-source parameters and hypocentral location
Abdelwahed, Mohamed F.
2012-09-01
SGRAPH program [1] is considered one of the seismological programs that maintain seismic data. SGRAPH is considered unique for being able to read a wide range of data formats and manipulate complementary tools in different seismological subjects in a stand-alone Windows-based application. SGRAPH efficiently performs the basic waveform analysis and solves advanced seismological problems. The graphical user interface (GUI) utilities and the Windows facilities such as, dialog boxes, menus, and toolbars simplified the user interaction with data. SGRAPH supported the common data formats like, SAC, SEED, GSE, ASCII, and Nanometrics Y-format, and others. It provides the facilities to solve many seismological problems with the built-in inversion and modeling tools. In this paper, I discuss some of the inversion tools built-in SGRAPH related to source parameters and hypocentral location estimation. Firstly, a description of the SGRAPH program is given discussing some of its features. Secondly, the inversion tools are applied to some selected events of the Dahshour earthquakes as an example of estimating the spectral and source parameters of local earthquakes. In addition, the hypocentral location of these events are estimated using the Hypoinverse 2000 program [2] operated by SGRAPH.
Sources of uncertainty in future changes in local precipitation
Rowell, David P. [Met Office Hadley Centre, Exeter (United Kingdom)
2012-10-15
This study considers the large uncertainty in projected changes in local precipitation. It aims to map, and begin to understand, the relative roles of uncertain modelling and natural variability, using 20-year mean data from four perturbed physics or multi-model ensembles. The largest - 280-member - ensemble illustrates a rich pattern in the varying contribution of modelling uncertainty, with similar features found using a CMIP3 ensemble (despite its limited sample size, which restricts it value in this context). The contribution of modelling uncertainty to the total uncertainty in local precipitation change is found to be highest in the deep tropics, particularly over South America, Africa, the east and central Pacific, and the Atlantic. In the moist maritime tropics, the highly uncertain modelling of sea-surface temperature changes is transmitted to a large uncertain modelling of local rainfall changes. Over tropical land and summer mid-latitude continents (and to a lesser extent, the tropical oceans), uncertain modelling of atmospheric processes, land surface processes and the terrestrial carbon cycle all appear to play an additional substantial role in driving the uncertainty of local rainfall changes. In polar regions, inter-model variability of anomalous sea ice drives an uncertain precipitation response, particularly in winter. In all these regions, there is therefore the potential to reduce the uncertainty of local precipitation changes through targeted model improvements and observational constraints. In contrast, over much of the arid subtropical and mid-latitude oceans, over Australia, and over the Sahara in winter, internal atmospheric variability dominates the uncertainty in projected precipitation changes. Here, model improvements and observational constraints will have little impact on the uncertainty of time means shorter than at least 20 years. Last, a supplementary application of the metric developed here is that it can be interpreted as a measure
Parallel Information Algorithm with Local Tuning for Solving Multidimensional GO Problems
Sergeyev, Yaroslav D
2011-01-01
In this paper we propose a new parallel algorithm for solving global optimization (GO) multidimensional problems. The method unifies two powerful approaches for accelerating the search: parallel computations and local tuning on the behavior of the objective function. We establish convergence conditions for the algorithm and theoretically show that the usage of local information during the global search permits to accelerate solving the problem significantly. Results of numerical experiments executed with 100 test functions are also reported.
Rotating Modulation Imager for the Orphan Source Search Problem
2008-01-01
31 2.2.3.7 Comparison of Universal Field to the Wilmore Far Field Model..... 32 2.2.3.8 RMC Response to Complex Source Geometries...12 2-3. A picture of the 1D transmission function used by Wilmore to describe the fate of a photon incident on a 1D...first model developed by Wilmore was selected because of its straightforward and systematic approach to developing the mask transmission function [Wil70
Learning about Baja California Indians: Sources and Problems
Aschmann, Homer
1986-01-01
For the extinct but by no means forgotten Indians of the southern three-fourths of Baja California, there are three sources of data that can be used to construct a more accurate picture of the cultures that they developed in a difficult arid environment over many millennia. These are: (1) comparative studies of still surviving Indian neighbors to the north and also of hunters and gatherers in dry parts of the greater Southwest; (2) archaeological investigations, not only in the peninsula but ...
Sourcing human embryos for embryonic stem cell lines: Problems & perspectives
Mehta, Rajvi H.
2014-01-01
The ability to successfully derive human embryonic stem cells (hESC) lines from human embryos following in vitro fertilization (IVF) opened up a plethora of potential applications of this technique. These cell lines could have been successfully used to increase our understanding of human developmental biology, transplantation medicine and the emerging science of regenerative medicine. The main source for human embryos has been ′discarded′ or ′spare′ fresh or frozen human embryos following IVF...
Karamehmedovic, Mirza; Sørensen, Mads Peter; Hansen, Poul Erik
2010-01-01
We propose a method of numerical solution of a type of inverse scattering problem that arises in the optical characterisation/quality control of nanostructures. The underlying global, ill-posed, nonlinear optimisation problem is first localised by best-fit matching of library and measured...... the proposed method, we apply it in a concrete quantitative characterisation of a non-periodic, nano-scale grating defect, with numerically simulated measurements. It is shown that the presented procedure can solve the inverse problem with an accuracy usually thought to require rigorous electromagnetic...... diffraction efficiency patterns. The inverse problem is then solved using piecewise linear interpolation between the best far-field matches. Finally, the results are refined, on average, by solving an additional local optimisation problem formulated in terms of the method of auxiliary sources. To illustrate...
Passive Source Localization Using Compressively Sensed Towed Array
N. Suresh Kumar; C. Bhattacharya; Unnikrishnan, A
2013-01-01
The objective of this work is to estimate the sparse angular power spectrum using a towed acoustic pressure sensor (APS) array. In a passive towed array sonar, any reduction in the analog sensor signal conditioning receiver hardware housed inside the array tube, significantly improves the signal integrity and hence the localization performance. In this paper, a novel sparse acoustic pressure sensor (SAPS) array architecture is proposed to estimate the direction of arrival (DOA) of multiple ac...
Localization of non-stationary sources of electromagnetic radiation with the aid of phasometry
Mersov, G. A.
1978-01-01
The possibility of localizing sources of electromagnetic radiation by measurement of the time of passage of the radiation or the measurement of its phase at various points of cosmic space, at which are located satellite observatories is examined. Algorithms are proposed for localization using two, three, and four astronomical observatories. The precision of the localization and several partial results of practical significance are deduced.
A review of recent advances in numerical modelling of local scour problems
Sumer, B. Mutlu
2014-01-01
A review is presented of recent advances in numerical modelling of local scour problems. The review is organized in five sections: Highlights of numerical modelling of local scour; Influence of turbulence on scour; Backfilling of scour holes; Scour around complex structures; and Scour protection ...
Local fractional Euler’s method for the steady heat-conduction problem
Gao Feng
2016-01-01
Full Text Available In this paper, the local fractional Euler’s method is proposed to consider the steady heat-conduction problem for the first time. The numerical solution for the local fractional heat-relaxation equation is presented. The comparison between numerical and exact solutions is discussed.
A non-local non-autonomous diffusion problem: linear and sublinear cases
Figueiredo-Sousa, Tarcyana S.; Morales-Rodrigo, Cristian; Suárez, Antonio
2017-10-01
In this work we investigate an elliptic problem with a non-local non-autonomous diffusion coefficient. Mainly, we use bifurcation arguments to obtain existence of positive solutions. The structure of the set of positive solutions depends strongly on the balance between the non-local and the reaction terms.
Reduced order of the local error of splitting for parabolic problems
Auzinger, Winfried; Hofstätter, Harald; Koch, Othmar; Thalhammer, Mechthild
2017-07-01
We give a theoretical analysis of the local error of splitting methods applied to parabolic initial-boundary value problems under homogeneous Dirichlet or Neumann boundary conditions. For the Lie-Trotter splitting, we provide a theoretical local error analysis that rigorously explains the order reduction observed in numerical experiments.
Locally covariant quantum field theory with external sources
Fewster, Christopher J
2014-01-01
We provide a detailed analysis of the classical and quantized theory of a multiplet of inhomogeneous Klein-Gordon fields, which couple to the spacetime metric and also to an external source term; thus the solutions form an affine space. Following the formulation of affine field theories in terms of presymplectic vector spaces as proposed in [Annales Henri Poincare 15, 171 (2014)], we determine the relative Cauchy evolution induced by metric as well as source term perturbations and compute the automorphism group of natural isomorphisms of the presymplectic vector space functor. Two pathological features of this formulation are revealed: the automorphism group contains elements that cannot be interpreted as global gauge transformations of the theory; moreover, the presymplectic formulation does not respect a natural requirement on composition of subsystems. We therefore propose a systematic strategy to improve the original description of affine field theories at the classical and quantized level, first passing ...
VLF Source Localization with a Freely Drifting Sensor Array
1992-09-01
and the performance of the MFP is degraded and leads to errors in the es- timation of the source location [ Tolstoy , 1989; Feuillade et. al., 1989...EOFs), for measured physical quantities such as temperature, salinity, or sound speed as a function of depth [Davis, 1976; Tolstoy et. al., 19911. In an...4050 EOFCef~ lEO ~ref~lEOF~oef#I Figure 5.13 Joint trajectories of the wave number BOF coefficients for different annealing runs. 113
An inverse source problem of the Poisson equation with Cauchy data
Ji-Chuan Liu
2017-05-01
Full Text Available In this article, we study an inverse source problem of the Poisson equation with Cauchy data. We want to find iterative algorithms to detect the hidden source within a body from measurements on the boundary. Our goal is to reconstruct the location, the size and the shape of the hidden source. This problem is ill-posed, regularization techniques should be employed to obtain the regularized solution. Numerical examples show that our proposed algorithms are valid and effective.
Bosilovich, Michael G.; Atlas, Robert (Technical Monitor)
2002-01-01
Precipitation recycling is defined as the amount of water that evaporates from a region that precipitates within the same region. This is also interpreted as the local source of water for precipitation. In this study, the local and remote sources of water for precipitation have been diagnosed through the use of passive constituent tracers that represent regional evaporative sources along with their transport and precipitation. We will discuss the differences between this method and the simpler bulk diagnostic approach to precipitation recycling. A summer seasonal simulation has been analyzed for the regional sources of the United States Great Plains precipitation. While the tropical Atlantic Ocean (including the Gulf of Mexico) and the local continental sources of precipitation are most dominant, the vertically integrated column of water contains substantial water content originating from the Northern Pacific Ocean, which is not precipitated. The vertical profiles of regional water sources indicate that local Great Plains source of water dominates the lower troposphere, predominantly in the PBL. However, the Pacific Ocean source is dominant over a large portion of the middle to upper troposphere. The influence of the tropical Atlantic Ocean is reasonably uniform throughout the column. While the results are not unexpected given the formulation of the model's convective parameterization, the analysis provides a quantitative assessment of the impact of local evaporation on the occurrence of convective precipitation in the GCM. Further, these results suggest that local source of water is not well mixed throughout the vertical column.
Choi, Young-Chul; Park, Jin-Ho; Choi, Kyoung-Sik
2011-01-01
In a nuclear power plant, a loose part monitoring system (LPMS) provides information on the location and the mass of a loosened or detached metal impacted onto the inner surface of the primary pressure boundary. Typically, accelerometers are mounted on the surface of a reactor vessel to localize the impact location caused by the impact of metallic substances on the reactor system. However, in some cases, the number of accelerometers is not sufficient to estimate the impact location precisely. In such a case, one of useful methods is to utilize other types of sensor that can measure the vibration of the reactor structure. For example, acoustic emission (AE) sensors are installed on the reactor structure to detect leakage or cracks on the primary pressure boundary. However, accelerometers and AE sensors have a different frequency range. The frequency of interest of AE sensors is higher than that of accelerometers. In this paper, we propose a method of impact source localization by using both accelerometer signals and AE signals, simultaneously. The main concept of impact location estimation is based on the arrival time difference of the impact stress wave between different sensor locations. However, it is difficult to find the arrival time difference between sensors, because the primary frequency ranges of accelerometers and AE sensors are different. To overcome the problem, we used phase delays of an envelope of impact signals. This is because the impact signals from the accelerometer and the AE sensor are similar in the whole shape (envelope). To verify the proposed method, we have performed experiments for a reactor mock-up model and a real nuclear power plant. The experimental results demonstrate that we can enhance the reliability and precision of the impact source localization. Therefore, if the proposed method is applied to a nuclear power plant, we can obtain the effect of additional installed sensors.
Burman, Jerry; Hespanha, Joao; Madhow, Upamanyu; Pham, Tien
2011-06-01
A team consisting of Teledyne Scientific Company, the University of California at Santa Barbara and the Army Research Laboratory* is developing technologies in support of automated data exfiltration from heterogeneous battlefield sensor networks to enhance situational awareness for dismounts and command echelons. Unmanned aerial vehicles (UAV) provide an effective means to autonomously collect data from a sparse network of unattended ground sensors (UGSs) that cannot communicate with each other. UAVs are used to reduce the system reaction time by generating autonomous collection routes that are data-driven. Bio-inspired techniques for search provide a novel strategy to detect, capture and fuse data. A fast and accurate method has been developed to localize an event by fusing data from a sparse number of UGSs. This technique uses a bio-inspired algorithm based on chemotaxis or the motion of bacteria seeking nutrients in their environment. A unique acoustic event classification algorithm was also developed based on using swarm optimization. Additional studies addressed the problem of routing multiple UAVs, optimally placing sensors in the field and locating the source of gunfire at helicopters. A field test was conducted in November of 2009 at Camp Roberts, CA. The field test results showed that a system controlled by bio-inspired software algorithms can autonomously detect and locate the source of an acoustic event with very high accuracy and visually verify the event. In nine independent test runs of a UAV, the system autonomously located the position of an explosion nine times with an average accuracy of 3 meters. The time required to perform source localization using the UAV was on the order of a few minutes based on UAV flight times. In June 2011, additional field tests of the system will be performed and will include multiple acoustic events, optimal sensor placement based on acoustic phenomenology and the use of the International Technology Alliance (ITA
The Great Patriotic War: the Problems of Forming the Source Base
Evgeny F. Krinko
2015-07-01
Full Text Available The Great Patriotic War was reflected in the different historical sources. The article is devoted to the formation of the source base of the problem. The author examines the dynamics of the situation in the archives and publication of documents. The main attention is paid to the modern study of the sources of the Great Patriotic War.
On t-local solvability of inverse scattering problems in two-dimensional layered media
Baev, A. V.
2015-06-01
The solvability of two-dimensional inverse scattering problems for the Klein-Gordon equation and the Dirac system in a time-local formulation is analyzed in the framework of the Galerkin method. A necessary and sufficient condition for the unique solvability of these problems is obtained in the form of an energy conservation law. It is shown that the inverse problems are solvable only in the class of potentials for which the stationary Navier-Stokes equation is solvable.
Turbulence generation through intense localized sources of energy
Maqui, Agustin; Donzis, Diego
2015-11-01
Mechanisms to generate turbulence in controlled conditions have been studied for nearly a century. Most common methods include passive and active grids with a focus on incompressible turbulence. However, little attention has been given to compressible flows, and even less to hypersonic flows, where phenomena such as thermal non-equilibrium can be present. Using intense energy from lasers, extreme molecule velocities can be generated from photo-dissociation. This creates strong localized changes in both the hydrodynamics and thermodynamics of the flow, which may perturb the flow in a way similar to an active grid to generate turbulence in hypersonic flows. A large database of direct numerical simulations (DNS) are used to study the feasibility of such an approach. An extensive analysis of single and two point statistics, as well as spectral dynamics is used to characterize the evolution of the flow towards realistic turbulence. Local measures of enstrophy and dissipation are studied to diagnose the main mechanisms for energy exchange. As commonly done in compressible flows, dilatational and solenoidal components are separated to understand the effect of acoustics on the development of turbulence. Further results for cases that assimilate laboratory conditions will be discussed. The authors gratefully acknowledge the support of AFOSR.
The Seeking Solutions Approach: Solving Challenging Business Problems with Local Open Innovation
Christophe Deutsch
2013-03-01
Full Text Available How can small and medium-sized enterprises try open innovation and increase their level of collaboration with local partners? This article describes a possible solution: the Seeking Solutions approach. The Seeking Solutions process consists of four steps: a call for problems, problem selection, problem broadcast, and a collaborative event. This approach has been successfully used for the Quebec Seeks Solutions events in 2010 and 2012 with concrete results and real impacts. By mixing open innovation and collaboration, the Seeking Solutions approach has introduced a new concept: local open innovation.
A global health problem caused by arsenic from natural sources
Ng, J.C.; Wang, J.P.; Shraim, A. [University of Queensland, Brisbane, Qld. (Australia). National Research Center for Environmental Toxicology
2003-09-01
Arsenic is a carcinogen to both humans and animals. Arsenicals have been associated with cancers of the skin, lung, and bladder. Clinical manifestations of chronic arsenic poisoning include non-cancer end point of hyper- and hypo-pigmentation, keratosis, hypertension, cardiovascular diseases and diabetes. Epidemiological evidence indicates that arsenic concentration exceeding 50 {mu}g l{sup -1} in the drinking water is not public health protective. The current WHO recommended guideline value for arsenic in drinking water is 10 {mu}g l{sup -1}, whereas many developing countries are still having a value of 50 {mu}g 1{sup -1}. It has been estimated that tens of millions of people are at risk exposing to excessive levels of arsenic from both contaminated water and arsenic-bearing coal from natural sources. The global health implication and possible intervention strategies were also discussed in this review article.
Cogenerational sources of energies and their allocating problem
Badida Miroslav
1997-12-01
Full Text Available Energy production in industrial communities consume a main part of primary raw materials and it is one of the sources of ecologicall impact. Electric power plants and warm produce plants are mostly important investment consuming establishments with a long time of return, what stress along with the economical, predictional, logistical and environmental decision making aspect of their allocating. Already input of the mentioned aspects along with the price movement after the energy depression motivate a formation of new conception of combinated so-called items, which are able to use the energetic potential of fuels with a higher concurrent efficiency and, on the other hand, can reduce ecologic impacts of fossil combustion.
Hamid, Norhamreeza Abdul; Nawi, Nazri Mohd; Ghazali, Rozaida; Salleh, Mohd Najib Mohd
This paper presents a new method to improve back propagation algorithm from getting stuck with local minima problem and slow convergence speeds which caused by neuron saturation in the hidden layer. In this proposed algorithm, each training pattern has its own activation functions of neurons in the hidden layer that are adjusted by the adaptation of gain parameters together with adaptive momentum and learning rate value during the learning process. The efficiency of the proposed algorithm is compared with the conventional back propagation gradient descent and the current working back propagation gradient descent with adaptive gain by means of simulation on three benchmark problems namely iris, glass and thyroid.
Sourcing human embryos for embryonic stem cell lines: Problems & perspectives
Rajvi H Mehta
2014-01-01
Full Text Available The ability to successfully derive human embryonic stem cells (hESC lines from human embryos following in vitro fertilization (IVF opened up a plethora of potential applications of this technique. These cell lines could have been successfully used to increase our understanding of human developmental biology, transplantation medicine and the emerging science of regenerative medicine. The main source for human embryos has been ′discarded′ or ′spare′ fresh or frozen human embryos following IVF. It is a common practice to stimulate the ovaries of women undergoing any of the assisted reproductive technologies (ART and retrieve multiple oocytes which subsequently lead to multiple embryos. Of these, only two or maximum of three embryos are transferred while the rest are cryopreserved as per the decision of the couple. In case a couple does not desire to ′cryopreserve′ their embryos then all the embryos remaining following embryo transfer can be considered ′spare′ or if a couple is no longer in need of the ′cryopreserved′ embryos then these also can be considered as ′spare′. But, the question raised by the ethicists is, "what about ′slightly′ over-stimulating a woman to get a few extra eggs and embryos? The decision becomes more difficult when it comes to ′discarded′ embryos. As of today, the quality of the embryos is primarily assessed based on morphology and the rate of development mainly judged by single point assessment. Despite many criteria described in the literature, the quality assessment is purely subjective. The question that arises is on the decision of ′discarding′ embryos. What would be the criteria for discarding embryos and the potential ′use′ of ESC derived from the ′abnormal appearing′ embryos? This paper discusses some of the newer methods to procure embryos for the derivation of embryonic stem cell lines which will respect the ethical concerns but still provide the source material.
Sourcing human embryos for embryonic stem cell lines: problems & perspectives.
Mehta, Rajvi H
2014-11-01
The ability to successfully derive human embryonic stem cells (hESC) lines from human embryos following in vitro fertilization (IVF) opened up a plethora of potential applications of this technique. These cell lines could have been successfully used to increase our understanding of human developmental biology, transplantation medicine and the emerging science of regenerative medicine. The main source for human embryos has been 'discarded' or 'spare' fresh or frozen human embryos following IVF. It is a common practice to stimulate the ovaries of women undergoing any of the assisted reproductive technologies (ART) and retrieve multiple oocytes which subsequently lead to multiple embryos. Of these, only two or maximum of three embryos are transferred while the rest are cryopreserved as per the decision of the couple. in case a couple does not desire to 'cryopreserve' their embryos then all the embryos remaining following embryo transfer can be considered 'spare' or if a couple is no longer in need of the 'cryopreserved' embryos then these also can be considered as 'spare'. But, the question raised by the ethicists is, "what about 'slightly' over-stimulating a woman to get a few extra eggs and embryos? The decision becomes more difficult when it comes to 'discarded' embryos. As of today, the quality of the embryos is primarily assessed based on morphology and the rate of development mainly judged by single point assessment. Despite many criteria described in the literature, the quality assessment is purely subjective. The question that arises is on the decision of 'discarding' embryos. What would be the criteria for discarding embryos and the potential 'use' of ESC derived from the 'abnormal appearing' embryos? This paper discusses some of the newer methods to procure embryos for the derivation of embryonic stem cell lines which will respect the ethical concerns but still provide the source material.
Local Search Algorithm with Hybrid Neighborhood and Its Application to Job Shop Scheduling Problem
黄文奇; 曾立平
2004-01-01
A new local search method with hybrid neighborhood for Job shop scheduling problem is developed. The proposed hybrid neighborhood is not only efficient in local search, but also can help overcome entrapments while search procedure get trapped at local optima and carry the search to areas of the feasible set with better prospect. New strategies used for breaking out of entrapments are presented and they are helpful for the procedure to improve local optima. A performance comparison of the proposed method with some best-performing algorithms on all 10-job, 10-machine benchmark problems and the other two problems generated by Fisher and Thompson ( ie. , FT6 and FT20) is made. The experiment results show the better optimal performance of the proposed algorithm.
Soulez, Ferréol; Denis, Loïc; Fournier, Corinne; Thiébaut, Eric; Goepfert, Charles
2007-04-01
We propose a microparticle localization scheme in digital holography. Most conventional digital holography methods are based on Fresnel transform and present several problems such as twin-image noise, border effects, and other effects. To avoid these difficulties, we propose an inverse-problem approach, which yields the optimal particle set that best models the observed hologram image. We resolve this global optimization problem by conventional particle detection followed by a local refinement for each particle. Results for both simulated and real digital holograms show strong improvement in the localization of the particles, particularly along the depth dimension. In our simulations, the position precision is > or =1 microm rms. Our results also show that the localization precision does not deteriorate for particles near the edge of the field of view.
Rapid and reliable sky localization of gravitational wave sources
Cornish, Neil J
2016-01-01
The first detection of gravitational waves by LIGO from the merger of two compact objects has sparked new interest in detecting electromagnetic counterparts to these violent events. For mergers involving neutron stars, it is thought that prompt high-energy emission in gamma rays and x-rays will be followed days to weeks later by an afterglow in visible light, infrared and radio. Rapid sky localization using the data from a network of gravitational wave detectors is essential to maximize the chances of making a joint detection. Here I describe a new technique that is able to produce accurate, fully Bayesian sky maps in seconds or less. The technique can be applied to spin-precessing compact binaries, and can take into account detector calibration and spectral estimation uncertainties.
Nitrogen in the Environment: Sources, Problems, and Management
R.F. Follett
2001-01-01
Full Text Available Nitrogen (N is applied worldwide to produce food. It is in the atmosphere, soil, and water and is essential to all life. N for agriculture includes fertilizer, biologically fixed, manure, recycled crop residue, and soil-mineralized N. Presently, fertilizer N is a major source of N, and animal manure N is inefficiently used. Potential environmental impacts of N excreted by humans are increasing rapidly with increasing world populations. Where needed, N must be efficiently used because N can be transported immense distances and transformed into soluble and/or gaseous forms that pollute water resources and cause greenhouse effects. Unfortunately, increased amounts of gaseous N enter the environment as N2O to cause greenhouse warming and as NH3 to shift ecological balances of natural ecosystems. Large amounts of N are displaced with eroding sediments in surface waters. Soluble N in runoff or leachate water enters streams, rivers, and groundwater. High-nitrate drinking water can cause methemoglobinemia, while nitrosamines are associated with various human cancers. We describe the benefits, but also how N in the wrong form or place results in harmful effects on humans and animals, as well as to ecological and environmental systems.
Coded moderator approach for fast neutron source detection and localization at standoff
Littell, Jennifer; Lukosi, Eric; Hayward, Jason; Milburn, Robert; Rowan, Allen
2015-06-01
Considering the need for directional sensing at standoff for some security applications and scenarios where a neutron source may be shielded by high Z material that nearly eliminates the source gamma flux, this work focuses on investigating the feasibility of using thermal neutron sensitive boron straw detectors for fast neutron source detection and localization. We utilized MCNPX simulations to demonstrate that, through surrounding the boron straw detectors by a HDPE coded moderator, a source-detector orientation-specific response enables potential 1D source localization in a high neutron detection efficiency design. An initial test algorithm has been developed in order to confirm the viability of this detector system's localization capabilities which resulted in identification of a 1 MeV neutron source with a strength equivalent to 8 kg WGPu at 50 m standoff within ±11°.
Lynn, Jerry R.; Gagnard, Alice
A study was conducted to examine message evaluations of selected public service advertisements (PSAs) by a young adult population and to test whether local and nonlocal source attribution would influence those evaluations. In addition, the study investigated the extent to which audience characteristics such as fatalism (the degree to which a…
On the solution of heat conduction problems involving heat sources via boundary-fitted grids
Grandi, G. M.; Ferreri, J. C.
1989-01-01
It is shown that codes employing boundary-fitted grids (BFG) in heat conduction problems involving heat sources must be implemented in strictly numerically conservative form if accurate results are to be obtained. It is demonstrated that, for one-dimensional problems, nonconservative form imply errors originated in grid nonuniformity that cause a spurious increase in the heat source. This in turn leads to significant errors in the computed solution. Therefore, the implementation of BFG codes using nonconservative forms should be avoided. An application to an unsteady, axisymmetric benchmark problem involving a spherical, time-decaying heat source is presented.
A Combinatorial Benders’ Cuts Algorithm for the Local Container Drayage Problem
Zhaojie Xue
2015-01-01
Full Text Available This paper examines the local container drayage problem under a special operation mode in which tractors and trailers can be separated; that is, tractors can be assigned to a new task at another location while trailers with containers are waiting for packing or unpacking. Meanwhile, the strategy of sharing empty containers between different customers is also considered to improve the efficiency and lower the operation cost. The problem is formulated as a vehicle routing and scheduling problem with temporal constraints. We adopt combinatorial benders’ cuts algorithm to solve this problem. Numerical experiments are performed on a group of randomly generated instances to test the performance of the proposed algorithm.
Barnett, C.S.
1978-10-12
Some of the statistical questions associated with problems of detecting random-point-process signals embedded in random-point-process noise are examined. An example of such a problem is that of searching for a lost radioactive source with a moving detection system. The emphasis is on theoretical questions, but some experimental and Monte Carlo results are used to test the theoretical results. Several idealized binary decision problems are treated by starting with simple, specific situations and progressing toward more general problems. This sequence of decision problems culminates in the minimum-cost-expectation rule for deciding between two Poisson processes with arbitrary intensity functions. As an example, this rule is then specialized to the detector-passing-a-point-source decision problem. Finally, Monte Carlo techniques are used to develop and test one estimation procedure: the maximum-likelihood estimation of a parameter in the intensity function of a Poisson process. For the Monte Carlo test this estimation procedure is specialized to the detector-passing-a-point-source case. Introductory material from probability theory is included so as to make the report accessible to those not especially conversant with probabilistic concepts and methods. 16 figures.
Reactive searching and infotaxis in odor source localization.
Voges, Nicole; Chaffiol, Antoine; Lucas, Philippe; Martinez, Dominique
2014-10-01
Male moths aiming to locate pheromone-releasing females rely on stimulus-adapted search maneuvers complicated by a discontinuous distribution of pheromone patches. They alternate sequences of upwind surge when perceiving the pheromone and cross- or downwind casting when the odor is lost. We compare four search strategies: three reactive versus one cognitive. The former consist of pre-programmed movement sequences triggered by pheromone detections while the latter uses Bayesian inference to build spatial probability maps. Based on the analysis of triphasic responses of antennal lobe neurons (On, inhibition, Off), we propose three reactive strategies. One combines upwind surge (representing the On response to a pheromone detection) and spiral casting, only. The other two additionally include crosswind (zigzag) casting representing the Off phase. As cognitive strategy we use the infotaxis algorithm which was developed for searching in a turbulent medium. Detection events in the electroantennogram of a moth attached to a robot indirectly control this cyborg, depending on the strategy in use. The recorded trajectories are analyzed with regard to success rates, efficiency, and other features. In addition, we qualitatively compare our robotic trajectories to behavioral search paths. Reactive searching is more efficient (yielding shorter trajectories) for higher pheromone doses whereas cognitive searching works better for lower doses. With respect to our experimental conditions (2 m from starting position to pheromone source), reactive searching with crosswind zigzag yields the shortest trajectories (for comparable success rates). Assuming that the neuronal Off response represents a short-term memory, zigzagging is an efficient movement to relocate a recently lost pheromone plume. Accordingly, such reactive strategies offer an interesting alternative to complex cognitive searching.
Reactive searching and infotaxis in odor source localization.
Nicole Voges
2014-10-01
Full Text Available Male moths aiming to locate pheromone-releasing females rely on stimulus-adapted search maneuvers complicated by a discontinuous distribution of pheromone patches. They alternate sequences of upwind surge when perceiving the pheromone and cross- or downwind casting when the odor is lost. We compare four search strategies: three reactive versus one cognitive. The former consist of pre-programmed movement sequences triggered by pheromone detections while the latter uses Bayesian inference to build spatial probability maps. Based on the analysis of triphasic responses of antennal lobe neurons (On, inhibition, Off, we propose three reactive strategies. One combines upwind surge (representing the On response to a pheromone detection and spiral casting, only. The other two additionally include crosswind (zigzag casting representing the Off phase. As cognitive strategy we use the infotaxis algorithm which was developed for searching in a turbulent medium. Detection events in the electroantennogram of a moth attached to a robot indirectly control this cyborg, depending on the strategy in use. The recorded trajectories are analyzed with regard to success rates, efficiency, and other features. In addition, we qualitatively compare our robotic trajectories to behavioral search paths. Reactive searching is more efficient (yielding shorter trajectories for higher pheromone doses whereas cognitive searching works better for lower doses. With respect to our experimental conditions (2 m from starting position to pheromone source, reactive searching with crosswind zigzag yields the shortest trajectories (for comparable success rates. Assuming that the neuronal Off response represents a short-term memory, zigzagging is an efficient movement to relocate a recently lost pheromone plume. Accordingly, such reactive strategies offer an interesting alternative to complex cognitive searching.
Source Localization of Brain States Associated with Canonical Neuroimaging Postures.
Lifshitz, Michael; Thibault, Robert T; Roth, Raquel R; Raz, Amir
2017-02-14
Cognitive neuroscientists rarely consider the influence that body position exerts on brain activity; yet, postural variation holds important implications for the acquisition and interpretation of neuroimaging data. Whereas participants in most behavioral and EEG experiments sit upright, many prominent brain imaging techniques (e.g., fMRI) require participants to lie supine. Here we demonstrate that physical comportment profoundly alters baseline brain activity as measured by magnetoencephalography (MEG)-an imaging modality that permits multipostural acquisition. We collected resting-state MEG data from 12 healthy participants in three postures (lying supine, reclining at 45°, and sitting upright). Source-modeling analysis revealed a broadly distributed influence of posture on resting brain function. Sitting upright versus lying supine was associated with greater high-frequency (i.e., beta and gamma) activity in widespread parieto-occipital cortex. Moreover, sitting upright and reclined postures correlated with dampened activity in prefrontal regions across a range of bandwidths (i.e., from alpha to low gamma). The observed effects were large, with a mean Cohen's d of 0.95 (SD = 0.23). In addition to neural activity, physiological parameters such as muscle tension and eye blinks may have contributed to these posture-dependent changes in brain signal. Regardless of the underlying mechanisms, however, the present results have important implications for the acquisition and interpretation of multimodal imaging data (e.g., studies combining fMRI or PET with EEG or MEG). More broadly, our findings indicate that generalizing results-from supine neuroimaging measurements to erect positions typical of ecological human behavior-would call for considering the influence that posture wields on brain dynamics.
On Wyner-Ziv Problem for general sources with average distortion criterion
无
2007-01-01
The Wyner-Ziv Problem for general sources with average distortion under fixed-length coding is investigated in this paper. To solve the problem, an enhanced covering lemma for a Markov chain is first established. Then based on the lemma, a general formula for the rate-distortion function of the problem is derived, where the distortion is only assumed uniformly bounded and may be nonadditive. Finally, it is further pointed out that such methods can be used to establish more general results on multiterminal source coding problems.
"Closing the Loop": Overcoming barriers to locally sourcing food in Fort Collins, Colorado
DeMets, C. M.
2012-12-01
Environmental sustainability has become a focal point for many communities in recent years, and restaurants are seeking creative ways to become more sustainable. As many chefs realize, sourcing food locally is an important step towards sustainability and towards building a healthy, resilient community. Review of literature on sustainability in restaurants and the local food movement revealed that chefs face many barriers to sourcing their food locally, but that there are also many solutions for overcoming these barriers that chefs are in the early stages of exploring. Therefore, the purpose of this research is to identify barriers to local sourcing and investigate how some restaurants are working to overcome those barriers in the city of Fort Collins, Colorado. To do this, interviews were conducted with four subjects who guide purchasing decisions for restaurants in Fort Collins. Two of these restaurants have created successful solutions and are able to source most of their food locally. The other two are interested in and working towards sourcing locally but have not yet been able to overcome barriers, and therefore only source a few local items. Findings show that there are four barriers and nine solutions commonly identified by each of the subjects. The research found differences between those who source most of their food locally and those who have not made as much progress in local sourcing. Based on these results, two solution flowcharts were created, one for primary barriers and one for secondary barriers, for restaurants to assess where they are in the local food chain and how they can more successfully source food locally. As there are few explicit connections between this research question and climate change, it is important to consider the implicit connections that motivate and justify this research. The question of whether or not greenhouse gas emissions are lower for locally sourced food is a topic of much debate, and while there are major developments
Multiple Chemical Sources Localization Using Virtual Physics-Based Robots with Release Strategy
Yuli Zhang
2015-01-01
Full Text Available This paper presents a novel method of simultaneously locating chemical sources by a virtual physics-based multirobot system with a release strategy. The proposed release strategy includes setting forbidden area, releasing the robots from declared sources and escaping from it by a rotary force and goal force. This strategy can avoid the robots relocating the same source which has been located by other robots and leading them to move toward other sources. Various turbulent plume environments are simulated by Fluent and Gambit software, and a set of simulations are performed on different scenarios using a group of six robots or parallel search by multiple groups’ robots to validate the proposed methodology. The experimental results show that release strategy can be successfully used to find multiple chemical sources, even when multiple plumes overlap. It can also extend the operation of many chemical source localization algorithms developed for single source localization.
Using self-location to calibrate the errors of observer positions for source localization
Wanchun Li; Wanyi Zhang; Liping Li
2014-01-01
The uncertainty of observers’ positions can lead to significantly degrading in source localization accuracy. This pa-per proposes a method of using self-location for calibrating the positions of observer stations in source localization to reduce the errors of the observer positions and improve the accuracy of the source localization. The relative distance measurements of the two coordinative observers are used for the linear minimum mean square error (LMMSE) estimator. The results of computer si-mulations prove the feasibility and effectiveness of the proposed method. With the general estimation errors of observers’ positions, the MSE of the source localization with self-location calibration, which is significantly lower than that without self-location calibra-tion, is approximating to the Cramer-Rao lower bound (CRLB).
L1-norm locally linear representation regularization multi-source adaptation learning.
Tao, Jianwen; Wen, Shiting; Hu, Wenjun
2015-09-01
In most supervised domain adaptation learning (DAL) tasks, one has access only to a small number of labeled examples from target domain. Therefore the success of supervised DAL in this "small sample" regime needs the effective utilization of the large amounts of unlabeled data to extract information that is useful for generalization. Toward this end, we here use the geometric intuition of manifold assumption to extend the established frameworks in existing model-based DAL methods for function learning by incorporating additional information about the target geometric structure of the marginal distribution. We would like to ensure that the solution is smooth with respect to both the ambient space and the target marginal distribution. In doing this, we propose a novel L1-norm locally linear representation regularization multi-source adaptation learning framework which exploits the geometry of the probability distribution, which has two techniques. Firstly, an L1-norm locally linear representation method is presented for robust graph construction by replacing the L2-norm reconstruction measure in LLE with L1-norm one, which is termed as L1-LLR for short. Secondly, considering the robust graph regularization, we replace traditional graph Laplacian regularization with our new L1-LLR graph Laplacian regularization and therefore construct new graph-based semi-supervised learning framework with multi-source adaptation constraint, which is coined as L1-MSAL method. Moreover, to deal with the nonlinear learning problem, we also generalize the L1-MSAL method by mapping the input data points from the input space to a high-dimensional reproducing kernel Hilbert space (RKHS) via a nonlinear mapping. Promising experimental results have been obtained on several real-world datasets such as face, visual video and object.
A New Local Search Algorithm for the Job Shop Scheduling Problem
HuangWen-qi; YinAi-hua
2003-01-01
In this paper, the job shop scheduling problem concerned with minimizing make-span is discussed, and a new local search algorithm is proposed for it. This local search method is based on an improved shifting bottleneck procedure and Tabu Search technique. This new local search is different from the previous Tabu Search (TS) proposed by other authors, which is because the improved shifting bottleneck procedure is a new technology that is provided by us for the problem, and two remarkable strategies--intensification and diversification of TS are modified. To demonstrate the performance, our algorithm has been tested on many common problem instances (benchmarks) with various sizes and levels of hardness and compared with other algorithms, especially the latest TS in the literatures.Computational experiments show that this algorithm is effective and efficient.
A New Local Search Algorithm for the Job Shop Scheduling Problem
Huang Wen-qi; Yin Ai-hua
2003-01-01
In this paper, the job shop scheduling problem concerned with minimizing make-span is discussed, and a new local search algorithm is proposed for it. This local search method is based on an improved shifting bottleneck procedure and Tabu Search technique. This new local search is different from the previous Tabu Search (TS) proposed by other authors, which is because the improved shifting bottleneck procedure is a new technology that is provided by us for the problem, and two remarkable strategies--intensification and diversification of TS are modified. To demonstrate the performance, our algorithm has been tested on many common problem instances (benchmarks)with various sizes and levels of hardness and compared with other algorithms, especially the latest TS in the literatures.Computational experiments show that this algorithm is effective and efficient.
3D source localization of interictal spikes in epilepsy patients with MRI lesions
Ding Lei [Department of Biomedical Engineering, University of Minnesota, 7-105 BSBE, 312 Church Street, Minneapolis, MN 55455 (United States); Worrell, Gregory A [Department of Neurology, Mayo Clinic, Rochester, MN (United States); Lagerlund, Terrence D [Department of Neurology, Mayo Clinic, Rochester, MN (United States); He Bin [Department of Biomedical Engineering, University of Minnesota, 7-105 BSBE, 312 Church Street, Minneapolis, MN 55455 (United States)
2006-08-21
The present study aims to accurately localize epileptogenic regions which are responsible for epileptic activities in epilepsy patients by means of a new subspace source localization approach, i.e. first principle vectors (FINE), using scalp EEG recordings. Computer simulations were first performed to assess source localization accuracy of FINE in the clinical electrode set-up. The source localization results from FINE were compared with the results from a classic subspace source localization approach, i.e. MUSIC, and their differences were tested statistically using the paired t-test. Other factors influencing the source localization accuracy were assessed statistically by ANOVA. The interictal epileptiform spike data from three adult epilepsy patients with medically intractable partial epilepsy and well-defined symptomatic MRI lesions were then studied using both FINE and MUSIC. The comparison between the electrical sources estimated by the subspace source localization approaches and MRI lesions was made through the coregistration between the EEG recordings and MRI scans. The accuracy of estimations made by FINE and MUSIC was also evaluated and compared by R{sup 2} statistic, which was used to indicate the goodness-of-fit of the estimated sources to the scalp EEG recordings. The three-concentric-spheres head volume conductor model was built for each patient with three spheres of different radii which takes the individual head size and skull thickness into consideration. The results from computer simulations indicate that the improvement of source spatial resolvability and localization accuracy of FINE as compared with MUSIC is significant when simulated sources are closely spaced, deep, or signal-to-noise ratio is low in a clinical electrode set-up. The interictal electrical generators estimated by FINE and MUSIC are in concordance with the patients' structural abnormality, i.e. MRI lesions, in all three patients. The higher R{sup 2} values achieved by FINE
A Design-Adaptive Local Polynomial Estimator for the Errors-in-Variables Problem
Delaigle, Aurore
2009-03-01
Local polynomial estimators are popular techniques for nonparametric regression estimation and have received great attention in the literature. Their simplest version, the local constant estimator, can be easily extended to the errors-in-variables context by exploiting its similarity with the deconvolution kernel density estimator. The generalization of the higher order versions of the estimator, however, is not straightforward and has remained an open problem for the last 15 years. We propose an innovative local polynomial estimator of any order in the errors-in-variables context, derive its design-adaptive asymptotic properties and study its finite sample performance on simulated examples. We provide not only a solution to a long-standing open problem, but also provide methodological contributions to error-invariable regression, including local polynomial estimation of derivative functions.
Fusion Global-Local-Topology Particle Swarm Optimization for Global Optimization Problems
Zahra Beheshti
2014-01-01
Full Text Available In recent years, particle swarm optimization (PSO has been extensively applied in various optimization problems because of its structural and implementation simplicity. However, the PSO can sometimes find local optima or exhibit slow convergence speed when solving complex multimodal problems. To address these issues, an improved PSO scheme called fusion global-local-topology particle swarm optimization (FGLT-PSO is proposed in this study. The algorithm employs both global and local topologies in PSO to jump out of the local optima. FGLT-PSO is evaluated using twenty (20 unimodal and multimodal nonlinear benchmark functions and its performance is compared with several well-known PSO algorithms. The experimental results showed that the proposed method improves the performance of PSO algorithm in terms of solution accuracy and convergence speed.
Chih-Chiang Lin
2010-01-01
Full Text Available The broadcast scheduling problem (BSP in packet radio networks is a well-known NP-complete combinatorial optimization problem. The broadcast scheduling avoids packet collisions by allowing only one node transmission in each collision domain of a time division multiple access (TDMA network. It also improves the transmission utilization by assigning one transmission time slot to one or more nodes; thus, each node transmits at least once in each time frame. An optimum transmission schedule could minimize the length of a time frame while minimizing the number of idle nodes. In this paper, we propose a new iterated local search (ILS algorithm that consists of two special perturbation and local search operators to solve the BSPs. Computational experiments are applied to benchmark data sets and randomly generated problem instances. The experimental results show that our ILS approach is effective in solving the problems with only a few runtimes, even for very large networks with 2,500 nodes.
The Fractional Fourier Transform and Its Application to Energy Localization Problems
ter Morsche Hennie G
2003-01-01
Full Text Available Applying the fractional Fourier transform (FRFT and the Wigner distribution on a signal in a cascade fashion is equivalent to a rotation of the time and frequency parameters of the Wigner distribution. We presented in ter Morsche and Oonincx, 2002, an integral representation formula that yields affine transformations on the spatial and frequency parameters of the -dimensional Wigner distribution if it is applied on a signal with the Wigner distribution as for the FRFT. In this paper, we show how this representation formula can be used to solve certain energy localization problems in phase space. Examples of such problems are given by means of some classical results. Although the results on localization problems are classical, the application of generalized Fourier transform enlarges the class of problems that can be solved with traditional techniques.
Multiple Objective Fuzzy Sourcing Problem with Multiple Items in Discount Environments
Feyzan Arikan
2015-01-01
The selection of proper supply sources plays a vital role to maintain companies’ competitiveness. In this study a multiple criteria fuzzy sourcing problem with multiple items in discount environment is considered as a multiple objective mixed integer linear programming problem. Fuzzy parameters are demand level and/or aspiration levels of objectives. Three objective functions are minimization of the total production and ordering costs, the total number of rejected units, and the total number ...
Sunil Kumar,
2010-12-01
Full Text Available Wireless sensor network is tremendously being used in different environments to perform various monitoring task such as search, rescue, disaster relief, target tracking and a number of tasks in smart environment. In this paper a unique localization algorithm is proposed that gives the high accuracy in wireless sensor network. We propose amobile beacon algorithm and then merge it with DV- hop algorithm to introduce a unique approach which solves the localization problem in wireless sensor network.
Electromagnetic Time Reversal Algorithms and Source Localization in Lossy Dielectric Media
Abdul Wahab Amer Rasheed Tasawar Hayat Rab Nawaz
2014-01-01
The problem of reconstructing the spatial support of an extended radiating electric current source density in a lossy dielectric medium from transient boundary measurements of the electric fields is studied...
Urban Space as a Primary Source: Local History and Historical Thinking in New York City
Marino, Michael P.
2012-01-01
This article discusses how local history can be used by teachers to help develop historical thinking skills such as source analysis, the collection of data, and the creation of historical arguments. Using New York City as a case study, this article argues that urban spaces and local communities provide historical evidence that can be read and…
On the local wellposedness of 3-D water wave problem with vorticity
2007-01-01
In this article,we first present an equivalent formulation of the free boundary problem to 3-D incompressible Euler equations,then we announce our local wellposedness result concerning the free boundary problem in Sobolev space provided that there is no self-intersection point on the initial surface and under the stability assumption that（?）p/（?）n（ξ）|t=0≤-2c0<0 withξbeing restricted to the initial surface.
ASYMPTOTIC BEHAVIOUR AND EXPONENTIAL STABILITY FOR THERMOELASTIC PROBLEM WITH LOCALIZED DAMPING
GAO Hong-jun; ZHAO Yu-juan
2006-01-01
A semi-linear thermoelastic problem with localized damping is considered,which is one of the most important mathematical models in material science. The existence and decays exponentially to zero of solution of this problem are obtained. Moreover,the existence of absorbing sets is achieved in the non-homogeneous case. The result indicates that the system which we studied here is asymptotic stability.
Uniqueness and local stability for the inverse scattering problem of determining the cavity
FENG; Lixin; MA; Fuming
2005-01-01
Considering a time-harmonic electromagnetic plane wave incident on an arbitrarily shaped open cavity embedded in infinite ground plane, the physical process is modelled by Maxwell's equations. We investigate the inverse problem of determining the shape of the open cavity from the information of the measured scattered field. Results on the uniqueness and the local stability of the inverse problem in the 2-dimensional TM (transverse magnetic) polarization are proved in this paper.
A local search algorithm based on chromatic classes for university course timetabling problem
Velin Kralev; Radoslava Kraleva
2016-01-01
This paper presents a study for a local search algorithm based on chromatic classes for the university course timetabling problem. Several models and approaches to resolving the problem are discussed. The main idea of the approach is through a heuristic algorithm to specify the chromatic classes of a graph in which the events of the timetable correspond to the graph vertices and the set of the edges represents the possible conflicts between events. Then the chromatic classes should be sorted ...
A GPU Implementation of Local Search Operators for Symmetric Travelling Salesman Problem
Juraj Fosin
2013-06-01
Full Text Available The Travelling Salesman Problem (TSP is one of the most studied combinatorial optimization problem which is significant in many practical applications in transportation problems. The TSP problem is NP-hard problem and requires large computation power to be solved by the exact algorithms. In the past few years, fast development of general-purpose Graphics Processing Units (GPUs has brought huge improvement in decreasing the applications’ execution time. In this paper, we implement 2-opt and 3-opt local search operators for solving the TSP on the GPU using CUDA. The novelty presented in this paper is a new parallel iterated local search approach with 2-opt and 3-opt operators for symmetric TSP, optimized for the execution on GPUs. With our implementation large TSP problems (up to 85,900 cities can be solved using the GPU. We will show that our GPU implementation can be up to 20x faster without losing quality for all TSPlib problems as well as for our CRO TSP problem.
James Jaeyoon Jun
Full Text Available In order to survive, animals must quickly and accurately locate prey, predators, and conspecifics using the signals they generate. The signal source location can be estimated using multiple detectors and the inverse relationship between the received signal intensity (RSI and the distance, but difficulty of the source localization increases if there is an additional dependence on the orientation of a signal source. In such cases, the signal source could be approximated as an ideal dipole for simplification. Based on a theoretical model, the RSI can be directly predicted from a known dipole location; but estimating a dipole location from RSIs has no direct analytical solution. Here, we propose an efficient solution to the dipole localization problem by using a lookup table (LUT to store RSIs predicted by our theoretically derived dipole model at many possible dipole positions and orientations. For a given set of RSIs measured at multiple detectors, our algorithm found a dipole location having the closest matching normalized RSIs from the LUT, and further refined the location at higher resolution. Studying the natural behavior of weakly electric fish (WEF requires efficiently computing their location and the temporal pattern of their electric signals over extended periods. Our dipole localization method was successfully applied to track single or multiple freely swimming WEF in shallow water in real-time, as each fish could be closely approximated by an ideal current dipole in two dimensions. Our optimized search algorithm found the animal's positions, orientations, and tail-bending angles quickly and accurately under various conditions, without the need for calibrating individual-specific parameters. Our dipole localization method is directly applicable to studying the role of active sensing during spatial navigation, or social interactions between multiple WEF. Furthermore, our method could be extended to other application areas involving dipole
Sources of evaluation of nuclear and renewable energy contained in the local press
van der Pligt, J.; Spears, R.; Eiser, J.R.
1987-01-01
Examined the sources of evaluative coverage concerning nuclear power and renewable alternatives contained in local UK daily press coverage. 10 categories of source were defined for their relevance to the nuclear debate and energy issues. Out of these, only pronuclear industries and national
Sources of evaluation of nuclear and renewable energy contained in the local press
van der Pligt, J.; Spears, R.; Eiser, J.R.
1987-01-01
Examined the sources of evaluative coverage concerning nuclear power and renewable alternatives contained in local UK daily press coverage. 10 categories of source were defined for their relevance to the nuclear debate and energy issues. Out of these, only pronuclear industries and national governme
An iterated tabu search heuristic for the Single Source Capacitated Facility Location Problem
Ho, Sin C.
2015-01-01
This paper discusses the Single Source Capacitated Facility Location Problem (SSCFLP) where the problem consists in determining a subset of capacitated facilities to be opened in order to satisfy the customers’ demands such that total costs are minimized. The paper presents an iterated tabu search...
Modern Code Reviews in Open-Source Projects: Which Problems Do They Fix?
Beller, M.; Bacchelli, A.; Zaidman, A.E.; Juergens, E.
2014-01-01
Code review is the manual assessment of source code by humans, mainly intended to identify defects and quality problems. Modern Code Review (MCR), a lightweight variant of the code inspections investigated since the 1970s, prevails today both in industry and open-source software (OSS) systems. The
Verdu, G. [Departamento de Ingenieria Quimica Y Nuclear, Universitat Politecnica de Valencia, Cami de Vera, 14, 46022. Valencia (Spain); Capilla, M.; Talavera, C. F.; Ginestar, D. [Dept. of Nuclear Engineering, Departamento de Matematica Aplicada, Universitat Politecnica de Valencia, Cami de Vera, 14, 46022. Valencia (Spain)
2012-07-01
PL equations are classical high order approximations to the transport equations which are based on the expansion of the angular dependence of the angular neutron flux and the nuclear cross sections in terms of spherical harmonics. A nodal collocation method is used to discretize the PL equations associated with a neutron source transport problem. The performance of the method is tested solving two 1D problems with analytical solution for the transport equation and a classical 2D problem. (authors)
Yue Kan
2015-06-01
Full Text Available Accurate acoustic source localization at a low sampling rate (less than 10 kHz is still a challenging problem for small portable systems, especially for a multitasking micro-embedded system. A modification of the generalized cross-correlation (GCC method with the up-sampling (US theory is proposed and defined as the US-GCC method, which can improve the accuracy of the time delay of arrival (TDOA and source location at a low sampling rate. In this work, through the US operation, an input signal with a certain sampling rate can be converted into another signal with a higher frequency. Furthermore, the optimal interpolation factor for the US operation is derived according to localization computation time and the standard deviation (SD of target location estimations. On the one hand, simulation results show that absolute errors of the source locations based on the US-GCC method with an interpolation factor of 15 are approximately from 1/15- to 1/12-times those based on the GCC method, when the initial same sampling rates of both methods are 8 kHz. On the other hand, a simple and small portable passive acoustic source localization platform composed of a five-element cross microphone array has been designed and set up in this paper. The experiments on the established platform, which accurately locates a three-dimensional (3D near-field target at a low sampling rate demonstrate that the proposed method is workable.
Local search heuristics for the probabilistic dial-a-ride problem
Ho, Sin C.; Haugland, Dag
2011-01-01
This paper introduces the probabilistic dial-a-ride problem, and describes an efficient request-relocation neighborhood evaluation procedure for the problem. The running time of the procedure is O(n5), compared to O(n6) for a straightforward approach. For solving the problem we embed the suggested...... evaluation procedure in a pure local search heuristic and in a tabu search heuristic. The quality of the solutions obtained by the two heuristics have been compared experimentally. Computational results confirm that our neighborhood evaluation technique is much faster than the straightforward one...
A MESHLESS LOCAL PETROV-GALERKIN METHOD FOR GEOMETRICALLY NONLINEAR PROBLEMS
Xiong Yuanbo; Long Shuyao; Hu De'an; Li Guangyao
2005-01-01
Nonlinear formulations of the meshless local Petrov-Galerkin (MLPG) method are presented for geometrically nonlinear problems. The method requires no mesh in computation and therefore avoids mesh distortion difficulties in the large deformation analysis. The essential boundary conditions in the present formulation are imposed by a penalty method. An incremental and iterative solution procedure is used to solve geometrically nonlinear problems. Several examples are presented to demonstrate the effectiveness of the method in geometrically nonlinear problems analysis. Numerical results show that the MLPG method is an effective one and that the values of the unknown variable are quite accurate.
Liu, Y.; Arntsen, B.; Wapenaar, C.P.A.; Van der Neut, J.R.
2014-01-01
The virtual source method has been applied successfully to retrieve the impulse response between pairs of receivers in the subsurface. This method is further improved by an updown separation prior to the crosscorrelation to suppress the reflections from the overburden and the free surface. In a reve
Three-dimensional Sound Source Localization Using Inter-channel Time Difference Trajectory
Sangmoon Lee
2015-12-01
Full Text Available Sound source localization is one of the basic and essential techniques for intelligent robots in terms of human-robot interaction and has been utilized in various engineering fields. This paper suggests a new localization method using an inter-channel time difference trajectory, which is a new localization cue for efficient 3-D localization. As one of the ways to realize the proposed cue, a two-channel rotating array is employed. Two microphones are attached on the left and right sides of the spherical head. One microphone is in a circular motion on the right side, while the other is fixed on the left side. According to the rotating motion of the array, the (source direction-dependent characteristics of the trajectories are analysed using the Ray-Tracing formula extended for 3-D models. In simulation, the synthesized signals generated by the fixed and rotating microphone signal models were used as the output signals of the two microphones. The simulation showed that the localization performance is strongly dependent on the azimuthal position of a source, which is caused by the asymmetry of the trajectory amplitude. Additionally, the experimental results of the two experiments carried out in the room environment demonstrated that the proposed system can localize a Gaussian noise source and a voice source in 3-D space.
Shallow water source localization using a mobile shor t horizontal array
Dexin Zhao; Woojae Seong; Keunhwa Lee; Zhiping Huang
2013-01-01
This paper presents an approach to the chal enging is-sue of passive source localization in shal ow water using a mobile short horizontal linear array with length less than ten meters. The short array can be conveniently placed on autonomous underwa-ter vehicles and deployed for adaptive spatial sampling. However, the use of such smal aperture passive sonar systems makes it difficult to acquire sufficient spatial gain for localizing long-range sources. To meet the requirement, a localization approach that employs matched-field based techniques that enable the short ho-rizontal linear array is used to passively localize acoustic sources in shal ow water. Furthermore, the broadband processing and inter-position processing provide robustness against ocean en-vironmental mismatch and enhance the stability of the estima-tion process. The proposed approach’s ability to localize acoustic sources in shal ow water at different signal-to-noise ratios is exa-mined through the synthetic test cases where the sources are lo-cated at the endfire and some other bearing of the mobile short horizontal linear array. The presented results demonstrate that the positional parameters of the estimated source build up over time as the array moves at a low speed along a straight line at a con-stant depth.
Acoustic Source Localization via Subspace Based Method Using Small Aperture MEMS Arrays
Xin Zhang
2014-01-01
Full Text Available Small aperture microphone arrays provide many advantages for portable devices and hearing aid equipment. In this paper, a subspace based localization method is proposed for acoustic source using small aperture arrays. The effects of array aperture on localization are analyzed by using array response (array manifold. Besides array aperture, the frequency of acoustic source and the variance of signal power are simulated to demonstrate how to optimize localization performance, which is carried out by introducing frequency error with the proposed method. The proposed method for 5 mm array aperture is validated by simulations and experiments with MEMS microphone arrays. Different types of acoustic sources can be localized with the highest precision of 6 degrees even in the presence of wind noise and other noises. Furthermore, the proposed method reduces the computational complexity compared with other methods.
Local search for stable marriage problems with ties and incomplete lists
Gelain, Mirco; RossI, Francesca; Venable, Kristen Brent; Walsh, Toby
2010-01-01
The stable marriage problem has a wide variety of practical applications, ranging from matching resident doctors to hospitals, to matching students to schools, or more generally to any two-sided market. We consider a useful variation of the stable marriage problem, where the men and women express their preferences using a preference list with ties over a subset of the members of the other sex. Matchings are permitted only with people who appear in these preference lists. In this setting, we study the problem of finding a stable matching that marries as many people as possible. Stability is an envy-free notion: no man and woman who are not married to each other would both prefer each other to their partners or to being single. This problem is NP-hard. We tackle this problem using local search, exploiting properties of the problem to reduce the size of the neighborhood and to make local moves efficiently. Experimental results show that this approach is able to solve large problems, quickly returning stable matc...
Sequential and parallel local search for the time-constrained travelling salesman problem
G.A.P. Kindervater (Gerard); J.K. Lenstra; M.W.P. Savelsbergh (Martin)
1990-01-01
textabstractLocal search has proven to be an effective solution approach for the traveling salesman problem. We consider variants of the TSP in which each city is to be visited within one or more given time windows. The travel times are symmetric and satisfy the triangle inequality; therobjective is
Characteristic equation method for fractal heat-transfer problem via local fractional calculus
Liu Geng-Yuan
2016-01-01
Full Text Available In this paper the fractal heat-transfer problem described by the theory of local fractional calculus is considered. The non-differentiable-type solution of the heat-transfer equation is obtained. The characteristic equation method is proposed as a powerful technology to illustrate the analytical solution of the partial differential equation in fractal heat transfer.
Dovrolis, Konstantinos [Georgia Tech
2014-04-15
We present the development of a middleware service, called Pythia, that is able to detect, localize, and diagnose performance problems in the network paths that interconnect research sites that are of interest to DOE. The proposed service can analyze perfSONAR data collected from all participating sites.
Constraint Programming based Local Search for the Vehicle Routing Problem with Time Windows
Sala Reixach, Joan
2012-01-01
El projecte es centra en el "Vehicle Routing Problem with Time Windows". Explora i testeja un mètode basat en una formulació del problema en termes de programació de restriccions. Implementa un mètode de cerca local amb la capacitat de fer grans moviments anomenat "Large Neighbourhood Search".
Tsoubaris, Dimitris; Georgopoulos, Aleksandros
2013-01-01
The objective of this qualitative research work is to detect the needs, aspirations and feelings of pupils experiencing local environmental problems and elaborate them through the prism of a socially critical educational approach. Semi-structured focus group interviews are used as a research method applied to four primary schools located near…
Three-dimensional localization of low activity gamma-ray sources in real-time scenarios
Sharma, Manish K., E-mail: mksrkf@mst.edu; Alajo, Ayodeji B.; Lee, Hyoung K.
2016-03-21
Radioactive source localization plays an important role in tracking radiation threats in homeland security tasks. Its real-time application requires computationally efficient and reasonably accurate algorithms even with limited data to support detection with minimum uncertainty. This paper describes a statistic-based grid-refinement method for backtracing the position of a gamma-ray source in a three-dimensional domain in real-time. The developed algorithm used measurements from various known detector positions to localize the source. This algorithm is based on an inverse-square relationship between source intensity at a detector and the distance from the source to the detector. The domain discretization was developed and implemented in MATLAB. The algorithm was tested and verified from simulation results of an ideal case of a point source in non-attenuating medium. Subsequently, an experimental validation of the algorithm was performed to determine the suitability of deploying this scheme in real-time scenarios. Using the measurements from five known detector positions and for a measurement time of 3 min, the source position was estimated with an accuracy of approximately 53 cm. The accuracy improved and stabilized to approximately 25 cm for higher measurement times. It was concluded that the error in source localization was primarily due to detection uncertainties. In verification and experimental validation of the algorithm, the distance between {sup 137}Cs source and any detector position was between 0.84 m and 1.77 m. The results were also compared with the least squares method. Since the discretization algorithm was validated with a weak source, it is expected that it can localize the source of higher activity in real-time. It is believed that for the same physical placement of source and detectors, a source of approximate activity 0.61–0.92 mCi can be localized in real-time with 1 s of measurement time and same accuracy. The accuracy and computational
Multiscale finite element methods for high-contrast problems using local spectral basis functions
Efendiev, Yalchin
2011-02-01
In this paper we study multiscale finite element methods (MsFEMs) using spectral multiscale basis functions that are designed for high-contrast problems. Multiscale basis functions are constructed using eigenvectors of a carefully selected local spectral problem. This local spectral problem strongly depends on the choice of initial partition of unity functions. The resulting space enriches the initial multiscale space using eigenvectors of local spectral problem. The eigenvectors corresponding to small, asymptotically vanishing, eigenvalues detect important features of the solutions that are not captured by initial multiscale basis functions. Multiscale basis functions are constructed such that they span these eigenfunctions that correspond to small, asymptotically vanishing, eigenvalues. We present a convergence study that shows that the convergence rate (in energy norm) is proportional to (H/Λ*)1/2, where Λ* is proportional to the minimum of the eigenvalues that the corresponding eigenvectors are not included in the coarse space. Thus, we would like to reach to a larger eigenvalue with a smaller coarse space. This is accomplished with a careful choice of initial multiscale basis functions and the setup of the eigenvalue problems. Numerical results are presented to back-up our theoretical results and to show higher accuracy of MsFEMs with spectral multiscale basis functions. We also present a hierarchical construction of the eigenvectors that provides CPU savings. © 2010.
On the Vertical Distribution of Local and Remote Sources of Water for Precipitation
Bosilovich, Michael G.
2001-01-01
The vertical distribution of local and remote sources of water for precipitation and total column water over the United States are evaluated in a general circulation model simulation. The Goddard Earth Observing System (GEOS) general circulation model (GCM) includes passive constituent tracers to determine the geographical sources of the water in the column. Results show that the local percentage of precipitable water and local percentage of precipitation can be very different. The transport of water vapor from remote oceanic sources at mid and upper levels is important to the total water in the column over the central United States, while the access of locally evaporated water in convective precipitation processes is important to the local precipitation ratio. This result resembles the conceptual formulation of the convective parameterization. However, the formulations of simple models of precipitation recycling include the assumption that the ratio of the local water in the column is equal to the ratio of the local precipitation. The present results demonstrate the uncertainty in that assumption, as locally evaporated water is more concentrated near the surface.
Yang Xiu-Li; Dai Bao-Dong; Zhang Wei-Wei
2012-01-01
Based on the complex variable moving least-square (CVMLS) approximation and a local symmetric weak form,the complex variable meshless local Petrov-Galerkin (CVMLPG) method of solving two-dimensional potential problems is presented in this paper.In the present formulation,the trial function of a two-dimensional problem is formed with a one-dimensional basis function.The number of unknown coefficients in the trial function of the CVMLS approximation is less than that in the trial function of the moving least-square (MLS) approximation.The essential boundary conditions are imposed by the penalty method.The main advantage of this approach over the conventional meshless local PetrovGalerkin (MLPG) method is its computational efficiency.Several numerical examples are presented to illustrate the implementation and performance of the present CVMLPG method.
A 4-Node Coverage Approach to the Localization Problem in UWSNs
Mohamed K. Watfa
2012-10-01
Full Text Available Wireless sensor networks have emerged as a fast-growing technology that has enabled us to monitor physical and environmental states. As of yet these valuable sensor networks have been bound to terrestrial terrains; however, seventy percent of the Earth’s surface is covered by enormous bodies of water: oceans, seas and rivers. Most of this territory remains unchartered, and this primarily gave a rise to the implementation of these sensor networks underwater. In this paper, we present a new technique for localizing an event of interest in an underwater environment monitored by an underwater sensor network. We reduce the localization problem to the problem of finding 4-Node Coverage, in which we form a subset of nodes such that every node in the original set is covered by four nodes belonging to this special subset. Whenever a node detects an event, it is reactively localized using the anchor nodes, and the sink is supplied with the necessary information.
Gas source localization and gas distribution mapping with a micro-drone
Neumann, Patrick P.
2013-07-01
The objective of this Ph.D. thesis is the development and validation of a VTOL-based (Vertical Take Off and Landing) micro-drone for the measurement of gas concentrations, to locate gas emission sources, and to build gas distribution maps. Gas distribution mapping and localization of a static gas source are complex tasks due to the turbulent nature of gas transport under natural conditions and becomes even more challenging when airborne. This is especially so, when using a VTOL-based micro-drone that induces disturbances through its rotors, which heavily affects gas distribution. Besides the adaptation of a micro-drone for gas concentration measurements, a novel method for the determination of the wind vector in real-time is presented. The on-board sensors for the flight control of the micro-drone provide a basis for the wind vector calculation. Furthermore, robot operating software for controlling the micro-drone autonomously is developed and used to validate the algorithms developed within this Ph.D. thesis in simulations and real-world experiments. Three biologically inspired algorithms for locating gas sources are adapted and developed for use with the micro-drone: the surge-cast algorithm (a variant of the silkworm moth algorithm), the zigzag / dung beetle algorithm, and a newly developed algorithm called ''pseudo gradient algorithm''. The latter extracts from two spatially separated measuring positions the information necessary (concentration gradient and mean wind direction) to follow a gas plume to its emission source. The performance of the algorithms is evaluated in simulations and real-world experiments. The distance overhead and the gas source localization success rate are used as main performance criteria for comparing the algorithms. Next, a new method for gas source localization (GSL) based on a particle filter (PF) is presented. Each particle represents a weighted hypothesis of the gas source position. As a first step, the PF
Gas source localization and gas distribution mapping with a micro-drone
Neumann, Patrick P.
2013-07-01
The objective of this Ph.D. thesis is the development and validation of a VTOL-based (Vertical Take Off and Landing) micro-drone for the measurement of gas concentrations, to locate gas emission sources, and to build gas distribution maps. Gas distribution mapping and localization of a static gas source are complex tasks due to the turbulent nature of gas transport under natural conditions and becomes even more challenging when airborne. This is especially so, when using a VTOL-based micro-drone that induces disturbances through its rotors, which heavily affects gas distribution. Besides the adaptation of a micro-drone for gas concentration measurements, a novel method for the determination of the wind vector in real-time is presented. The on-board sensors for the flight control of the micro-drone provide a basis for the wind vector calculation. Furthermore, robot operating software for controlling the micro-drone autonomously is developed and used to validate the algorithms developed within this Ph.D. thesis in simulations and real-world experiments. Three biologically inspired algorithms for locating gas sources are adapted and developed for use with the micro-drone: the surge-cast algorithm (a variant of the silkworm moth algorithm), the zigzag / dung beetle algorithm, and a newly developed algorithm called ''pseudo gradient algorithm''. The latter extracts from two spatially separated measuring positions the information necessary (concentration gradient and mean wind direction) to follow a gas plume to its emission source. The performance of the algorithms is evaluated in simulations and real-world experiments. The distance overhead and the gas source localization success rate are used as main performance criteria for comparing the algorithms. Next, a new method for gas source localization (GSL) based on a particle filter (PF) is presented. Each particle represents a weighted hypothesis of the gas source position. As a first step, the PF
Iterated local search and record-to-record travel applied to the fixed charge transportation problem
Andersen, Jeanne; Klose, Andreas
, transportation costs do, however, include a fixed charge. Iterated local search and record-to-record travel are both simple local search based meta-heuristics that, to our knowledge, not yet have been applied to the FCTP. In this paper, we apply both types of search strategies and combine them into a single......The fixed charge transportation problem (FCTP) is a well-known and difficult optimization problem with lots of applications in logistics. It consists in finding a minimum cost network flow from a set of suppliers to a set of customers. Beside costs proportional to quantities transported...... heuristic search procedure for the FCTP. The hybrid approach results in a relatively efficient heuristic method, capable to improve the currently best known heuristics for the FCTP on some of the test problem instances usually considered in the literature....
Shuang Ping TAO; Shang Bin CUI
2005-01-01
This paper is devoted to studying the initial value problem of the modified nonlinear Kawahara equation ()u/()t+ a u2()u/()m + β()3u/()x3 + γ()5u-()x5 = 0, (x, t) ∈ We first establish several Strichartz type estimates for the fundamental solution of the corresponding linear problem. Then we apply such estimates to prove local and global existence of solutions for the initial value problem of the modified nonlinear Karahara equation. The results show that a local solution exists if the initial function u0(x) ∈ Hs(R) with s ≥ 1/4, and a global solution exists if s ≥ 2.
Elitist Ant System with 2-opt Local Search for the Traveling Salesman Problem
MARTINOVIC, G.
2012-02-01
Full Text Available The Traveling Salesman Problem is one of the most famous problems in combinatorial optimization. The paper presents an algorithm based upon the elitist ant system for solving the traveling salesman problem. 2-opt local search is incorporated in the elitist ant system, and it is used for improvement of a given number of solutions previously constructed by artificial ants. A simple mechanism for avoiding a too early stagnation of the search is also proposed. The aforementioned is based on depositing strong pheromones on solution edges of randomly selected ants called random elitist ants. The aim is to encourage exploration in a greater area of the solution space. Experimental analysis shows how high-quality solutions can be achieved by using the considered algorithm instead of the usual elitist ant system with incorporated 2-opt local search.
Heegard-Berger and Cascade Source Coding Problems with Common Reconstruction Constraints
Ahmadi, Behzad; Simeone, Osvaldo; Poor, H Vincent
2011-01-01
For the HB problem with the CR constraint, the rate-distortion function is derived under the assumption that the side information sequences are (stochastically) degraded. The rate-distortion function is also calculated explicitly for three examples, namely Gaussian source and side information with quadratic distortion metric, and binary source and side information with erasure and Hamming distortion metrics. The rate-distortion function is then characterized for the HB problem with cooperating decoders and (physically) degraded side information. For the cascade problem with the CR constraint, the rate-distortion region is obtained under the assumption that side information at the final node is physically degraded with respect to that at the intermediate node. For the latter two cases, it is worth emphasizing that the corresponding problem without the CR constraint is still open. Outer and inner bounds on the rate-distortion region are also obtained for the cascade problem under the assumption that the side in...
Groundwater seepage landscapes from distant and local sources in experiments and on Mars
Marra, W. A.; McLelland, S. J.; Parsons, D. R.; Murphy, B. J.; Hauber, E.; Kleinhans, M. G.
2015-08-01
Valleys with theater-shaped heads can form due to the seepage of groundwater and as a result of knickpoint (waterfall) erosion generated by overland flow. This ambiguity in the mechanism of formation hampers the interpretation of such valleys on Mars, particularly since there is limited knowledge of material properties. Moreover, the hydrological implications of a groundwater or surface water origin are important for our understanding of the evolution of surface features on Mars, and a quantification of valley morphologies at the landscape scale may provide diagnostic insights on the formative hydrological conditions. However, flow patterns and the resulting landscapes produced by different sources of groundwater are poorly understood. We aim to improve the understanding of the formation of entire valley landscapes through seepage processes from different groundwater sources that will provide a framework of landscape metrics for the interpretation of such systems. We study groundwater seepage from a distant source of groundwater and from infiltration of local precipitation in a series of sandbox experiments and combine our results with previous experiments and observations of the Martian surface. Key results are that groundwater flow piracy acts on valleys fed by a distant groundwater source and results in a sparsely dissected landscape of many small and a few large valleys. In contrast, valleys fed by a local groundwater source, i.e., nearby infiltration, result in a densely dissected landscape. In addition, valleys fed by a distant groundwater source grow towards that source, while valleys with a local source grow in a broad range of directions and have a strong tendency to bifurcate, particularly on flatter surfaces. We consider these results with respect to two Martian cases: Louros Valles shows properties of seepage by a local source of groundwater and Nirgal Vallis shows evidence of a distant source, which we interpret as groundwater flow from Tharsis.
Rasheda Arman Chowdhury
Full Text Available Localizing the generators of epileptic activity in the brain using Electro-EncephaloGraphy (EEG or Magneto-EncephaloGraphy (MEG signals is of particular interest during the pre-surgical investigation of epilepsy. Epileptic discharges can be detectable from background brain activity, provided they are associated with spatially extended generators. Using realistic simulations of epileptic activity, this study evaluates the ability of distributed source localization methods to accurately estimate the location of the generators and their sensitivity to the spatial extent of such generators when using MEG data. Source localization methods based on two types of realistic models have been investigated: (i brain activity may be modeled using cortical parcels and (ii brain activity is assumed to be locally smooth within each parcel. A Data Driven Parcellization (DDP method was used to segment the cortical surface into non-overlapping parcels and diffusion-based spatial priors were used to model local spatial smoothness within parcels. These models were implemented within the Maximum Entropy on the Mean (MEM and the Hierarchical Bayesian (HB source localization frameworks. We proposed new methods in this context and compared them with other standard ones using Monte Carlo simulations of realistic MEG data involving sources of several spatial extents and depths. Detection accuracy of each method was quantified using Receiver Operating Characteristic (ROC analysis and localization error metrics. Our results showed that methods implemented within the MEM framework were sensitive to all spatial extents of the sources ranging from 3 cm(2 to 30 cm(2, whatever were the number and size of the parcels defining the model. To reach a similar level of accuracy within the HB framework, a model using parcels larger than the size of the sources should be considered.
Joint Inversion of Earthquake Source Parameters with local and teleseismic body waves
Chen, W.; Ni, S.; Wang, Z.
2011-12-01
In the classical source parameter inversion algorithm of CAP (Cut and Paste method, by Zhao and Helmberger), waveform data at near distances (typically less than 500km) are partitioned into Pnl and surface waves to account for uncertainties in the crustal models and different amplitude weight of body and surface waves. The classical CAP algorithms have proven effective for resolving source parameters (focal mechanisms, depth and moment) for earthquakes well recorded on relatively dense seismic network. However for regions covered with sparse stations, it is challenging to achieve precise source parameters . In this case, a moderate earthquake of ~M6 is usually recorded on only one or two local stations with epicentral distances less than 500 km. Fortunately, an earthquake of ~M6 can be well recorded on global seismic networks. Since the ray paths for teleseismic and local body waves sample different portions of the focal sphere, combination of teleseismic and local body wave data helps constrain source parameters better. Here we present a new CAP mothod (CAPjoint), which emploits both teleseismic body waveforms (P and SH waves) and local waveforms (Pnl, Rayleigh and Love waves) to determine source parameters. For an earthquake in Nevada that is well recorded with dense local network (USArray stations), we compare the results from CAPjoint with those from the traditional CAP method involving only of local waveforms , and explore the efficiency with bootstraping statistics to prove the results derived by CAPjoint are stable and reliable. Even with one local station included in joint inversion, accuracy of source parameters such as moment and strike can be much better improved.
Underwater Broadband Source Localization Based on Modal Filtering and Features Extraction
Cristol Xavier
2010-01-01
Full Text Available Passive source localization is a crucial issue in underwater acoustics. In this paper, we focus on shallow water environment (0 to 400 m and broadband Ultra-Low Frequency acoustic sources (1 to 100 Hz. In this configuration and at a long range, the acoustic propagation can be described by normal mode theory. The propagating signal breaks up into a series of depth-dependent modes. These modes carry information about the source position. Mode excitation factors and mode phases analysis allow, respectively, localization in depth and distance. We propose two different approaches to achieve the localization: multidimensional approach (using a horizontal array of hydrophones based on frequency-wavenumber transform ( method and monodimensional approach (using a single hydrophone based on adapted spectral representation ( method. For both approaches, we propose first complete tools for modal filtering, and then depth and distance estimators. We show that adding mode sign and source spectrum informations improves considerably the localization performance in depth. The reference acoustic field needed for depth localization is simulated with the new realistic propagation modelMoctesuma. The feasibility of both approaches, and , are validated on data simulated in shallow water for different configurations. The performance of localization, in depth and distance, is very satisfactory.
Application of local Lyapunov exponents to maneuver design and navigation in the three-body problem
Anderson, Rodney L.; Lo, Martin W.; Born, George H.
2003-01-01
Dynamical systems theory has recently been employed to design trajectories within the three-body problem for several missions. This research has applied one stability technique, the calculation of local Lyapunov exponents, to such trajectories. Local Lyapunov exponents give an indication of the effects that perturbations or maneuvers will have on trajectories over a specified time. A numerical comparison of local Lyapunov exponents was first made with the distance random perturbations traveled from a nominal trajectory, and the local Lyapunov exponents were found to correspond well with the perturbations that caused the greatest deviation from the nominal. This would allow them to be used as an indicator of the points where it would be important to reduce navigation uncertainties.
Application of local Lyapunov exponents to maneuver design and navigation in the three-body problem
Anderson, Rodney L.; Lo, Martin W.; Born, George H.
2003-01-01
Dynamical systems theory has recently been employed to design trajectories within the three-body problem for several missions. This research has applied one stability technique, the calculation of local Lyapunov exponents, to such trajectories. Local Lyapunov exponents give an indication of the effects that perturbations or maneuvers will have on trajectories over a specified time. A numerical comparison of local Lyapunov exponents was first made with the distance random perturbations traveled from a nominal trajectory, and the local Lyapunov exponents were found to correspond well with the perturbations that caused the greatest deviation from the nominal. This would allow them to be used as an indicator of the points where it would be important to reduce navigation uncertainties.
Zazen meditation and no-task resting EEG compared with LORETA intracortical source localization.
Faber, Pascal L; Lehmann, Dietrich; Gianotti, Lorena R R; Milz, Patricia; Pascual-Marqui, Roberto D; Held, Marlene; Kochi, Kieko
2015-02-01
Meditation is a self-induced and willfully initiated practice that alters the state of consciousness. The meditation practice of Zazen, like many other meditation practices, aims at disregarding intrusive thoughts while controlling body posture. It is an open monitoring meditation characterized by detached moment-to-moment awareness and reduced conceptual thinking and self-reference. Which brain areas differ in electric activity during Zazen compared to task-free resting? Since scalp electroencephalography (EEG) waveforms are reference-dependent, conclusions about the localization of active brain areas are ambiguous. Computing intracerebral source models from the scalp EEG data solves this problem. In the present study, we applied source modeling using low resolution brain electromagnetic tomography (LORETA) to 58-channel scalp EEG data recorded from 15 experienced Zen meditators during Zazen and no-task resting. Zazen compared to no-task resting showed increased alpha-1 and alpha-2 frequency activity in an exclusively right-lateralized cluster extending from prefrontal areas including the insula to parts of the somatosensory and motor cortices and temporal areas. Zazen also showed decreased alpha and beta-2 activity in the left angular gyrus and decreased beta-1 and beta-2 activity in a large bilateral posterior cluster comprising the visual cortex, the posterior cingulate cortex and the parietal cortex. The results include parts of the default mode network and suggest enhanced automatic memory and emotion processing, reduced conceptual thinking and self-reference on a less judgmental, i.e., more detached moment-to-moment basis during Zazen compared to no-task resting.
R. Rajakumar
2017-01-01
Full Text Available Seyedali Mirjalili et al. (2014 introduced a completely unique metaheuristic technique particularly grey wolf optimization (GWO. This algorithm mimics the social behavior of grey wolves whereas it follows the leadership hierarchy and attacking strategy. The rising issue in wireless sensor network (WSN is localization problem. The objective of this problem is to search out the geographical position of unknown nodes with the help of anchor nodes in WSN. In this work, GWO algorithm is incorporated to spot the correct position of unknown nodes, so as to handle the node localization problem. The proposed work is implemented using MATLAB 8.2 whereas nodes are deployed in a random location within the desired network area. The parameters like computation time, percentage of localized node, and minimum localization error measures are utilized to analyse the potency of GWO rule with other variants of metaheuristics algorithms such as particle swarm optimization (PSO and modified bat algorithm (MBA. The observed results convey that the GWO provides promising results compared to the PSO and MBA in terms of the quick convergence rate and success rate.
Preservation of local linearity by neighborhood subspace scaling for solving the pre-image problem
Sheng-kai YANG; Jian-yi MENG; Hai-bin SHEN
2014-01-01
An important issue involved in kernel methods is the pre-image problem. However, it is an ill-posed problem, as the solution is usually nonexistent or not unique. In contrast to direct methods aimed at minimizing the distance in feature space, indirect methods aimed at constructing approximate equivalent models have shown outstanding performance. In this paper, an indirect method for solving the pre-image problem is proposed. In the proposed algorithm, an inverse mapping process is constructed based on a novel framework that preserves local linearity. In this framework, a local nonlinear transformation is implicitly conducted by neighborhood subspace scaling transformation to preserve the local linearity between feature space and input space. By extending the inverse mapping process to test samples, we can obtain pre-images in input space. The proposed method is non-iterative, and can be used for any kernel functions. Experimental results based on image denoising using kernel principal component analysis (PCA) show that the proposed method outperforms the state-of-the-art methods for solving the pre-image problem.
2008-01-01
In this article, we consider the existence of local and global solution to the Cauchy problem of a doubly nonlinear equation. By introducing the norms |||f|||h and
Meshless Local Discontinuous Petrov-Galerkin Method with Application to Blasting Problems
QIANG Hongfu; GAO Weiran
2008-01-01
A meshless local discontinuous Petrov-Galerkin (MLDPG)method based on the local symmetric weak form(LSWF)is presented with the application to blasting problems.The derivation is similar to that of mesh-based Runge-Kutta Discontinuous Galerkin(RKDG)method.The solutions are reproduced in a set of overlapped spherical sub-domains.and the test functions are employed from a partition of unlty of the lpeal basis functions.There is no need of any traditional nonoverlapping mesh either for lpeal approximation purpose or for Galerkin integration purpose in the presented method.The resulting MLDPG method is a meshless.stable.high-order accurate and highly parallelizable scheme which inherits both the advantages of RKDG and meshless method (MM),and it can handle the problems with extremely complicated physics and geometries easily.Three numerical exampies of the one-dimensional Sod shock-tube problem.the blast-wave problem and the Woodward-Cpiella interacting shock wave problem are given.All the numerical results are in good agreement with the closed solutions.The higher-order MLDPG schemes can reproduce more accurate solution than the lower-order schemes.
Ant colony system (ACS with hybrid local search to solve vehicle routing problems
Suphan Sodsoon
2016-02-01
Full Text Available This research applied an Ant Colony System algorithm with a Hybrid Local Search to solve Vehicle Routing Problems (VRP from a single depot when the customers’ requirements are known. VRP is an NP-hard optimization problem and has usually been successfully solved optimum by heuristics. A fleet of vehicles of a specific capacity are used to serve a number of customers at minimum cost, without violating the constraints of vehicle capacity. There are meta-heuristic approaches to solve these problems, such as Simulated Annealing, Genetic Algorithm, Tabu Search and the Ant Colony System algorithm. In this case a hybrid local search was used (Cross-Exchange, Or-Opt and 2-Opt algorithm with an Ant Colony System algorithm. The Experimental Design was tested on 7 various problems from the data set online in the OR-Library. There are five different problems in which customers are randomly distributed with the depot in an approximately central location. The customers were grouped into clusters. The results are evaluated in terms of optimal routes using optimal distances. The experimental results are compared with those obtained from meta-heuristics and they show that the proposed method outperforms six meta-heuristics in the literature.
A novel moving mesh method based on the domain decomposition for traveling singular sources problems
Zhou, Xiaoyan; Liang, Keiwei
2012-01-01
This paper studies the numerical solution of traveling singular sources problems. A big challenge is the sources move with different speeds. Our work focus on a moving mesh method based on the domain decomposition. A predictor-corrector algorithm is derived to simulate the position of singular sources, which are described by some ordinary differential equations. The whole domain is splitted into several subdomains according to the positions of the sources. The endpoints of each subdomain are two adjacent sources. In each subdomain, moving mesh method is respectively applied. Moreover, the computation of jump $[\\dot{u}]$ is avoided and there are only two different cases discussed in the discretization of the PDE. Furthermore, the new method has a desired second-order of the spacial convergence. Numerical examples are presented to illustrate the convergence rates and the efficiency of the method. Blow-up phenomenon is also investigated for various motions of the sources.
A Rule-Based Local Search Algorithm for General Shift Design Problems in Airport Ground Handling
Clausen, Tommy
We consider a generalized version of the shift design problem where shifts are created to cover a multiskilled demand and fit the parameters of the workforce. We present a collection of constraints and objectives for the generalized shift design problem. A local search solution framework with mul...... with multiple neighborhoods and a loosely coupled rule engine based on simulated annealing is presented. Computational experiments on real-life data from various airport ground handling organization show the performance and flexibility of the proposed algorithm....
Evidence for a neural source of the precedence effect in sound localization
Brown, Andrew D.; Jones, Heath G.; Kan, Alan; Thakkar, Tanvi; Stecker, G. Christopher; Goupell, Matthew J.; Litovsky, Ruth Y.
2015-01-01
Normal-hearing human listeners and a variety of studied animal species localize sound sources accurately in reverberant environments by responding to the directional cues carried by the first-arriving sound rather than spurious cues carried by later-arriving reflections, which are not perceived discretely. This phenomenon is known as the precedence effect (PE) in sound localization. Despite decades of study, the biological basis of the PE remains unclear. Though the PE was once widely attribu...
A biomimetic coupled circuit based microphone array for sound source localization.
Xu, Huping; Xu, Xiangyuan; Jia, Han; Guan, Luyang; Bao, Ming
2015-09-01
An equivalent analog circuit is designed to mimic the coupled ears of the fly Ormia ochracea for sound source localization. This coupled circuit receives two signals with tiny phase difference from a space closed two-microphone array, and produces two signals with obvious intensity difference. The response sensitivity can be adjusted through the coupled circuit parameters. The directional characteristics of the coupled circuit have been demonstrated in the experiment. The miniature microphone array can localize the sound source with low computational burden by using the intensity difference. This system has significant advantages in various applications where the array size is limited.
3D Source Localization and Polarimetry using High Numerical Aperture Imaging with Rotating PSF
Yu, Zhixian
2014-01-01
Rotating-PSF imaging via spiral phase engineering can localize point sources over large focal depths in a snapshot mode. This letter presents a full vector-field analysis of the rotating-PSF imager that quantifies the PSF signature of the polarization state of the imaging light. For sufficiently high image-space numerical apertures, there can be significant wave-polarization dependent contributions to the overall PSF, which would allow one to jointly localize and sense the polarization state of light emitted by point sources in a 3D field.
Abílio Amiguinho
2005-01-01
Full Text Available The process of socio-educational territorialisation in rural contexts is the topic of this text. The theme corresponds to a challenge to address it having as main axis of discussion either the problem of social exclusion or that of local development. The reasons to locate the discussion in this last field of analysis are discussed in the first part of the text. Theoretical and political reasons are there articulated because the question is about projects whose intentions and practices call for the political both in the theoretical debate and in the choices that anticipate intervention. From research conducted for several years, I use contributions that aim at discuss and enlighten how school can be a potential locus of local development. Its identification and recognition as local institution (either because of those that work and live in it or because of those that act in the surrounding context are crucial steps to progressively constitute school as a partner for development. The promotion of the local values and roots, the reconstruction of socio-personal and local identities, the production of sociabilities and the equation and solution of shared problems were the dimensions of a socio-educative intervention, markedly globalising. This scenario, as it is argued, was also, intentionally, one of transformation and of deliberate change of school and of the administration of the educative territoires.
Hosseinali Salemi
2016-04-01
Full Text Available Facility location models are observed in many diverse areas such as communication networks, transportation, and distribution systems planning. They play significant role in supply chain and operations management and are one of the main well-known topics in strategic agenda of contemporary manufacturing and service companies accompanied by long-lasting effects. We define a new approach for solving stochastic single source capacitated facility location problem (SSSCFLP. Customers with stochastic demand are assigned to set of capacitated facilities that are selected to serve them. It is demonstrated that problem can be transformed to deterministic Single Source Capacitated Facility Location Problem (SSCFLP for Poisson demand distribution. A hybrid algorithm which combines Lagrangian heuristic with adjusted mixture of Ant colony and Genetic optimization is proposed to find lower and upper bounds for this problem. Computational results of various instances with distinct properties indicate that proposed solving approach is efficient.
On the EEG/MEG forward problem solution for distributed cortical sources.
von Ellenrieder, Nicolás; Valdés-Hernández, Pedro A; Muravchik, Carlos H
2009-10-01
In studies of EEG/MEG problems involving cortical sources, the cortex may be modeled by a 2-D manifold inside the brain. In such cases the primary or impressed current density over this manifold is usually approximated by a set of dipolar sources located at the vertices of the cortical surface tessellation. In this study, we analyze the different errors induced by this approximation on the EEG/MEG forward problem. Our results show that in order to obtain more accurate solutions of the forward problems with the multiple dipoles approximation, the moments of the dipoles should be weighted by the area of the surrounding triangles, or using an alternative approximation of the primary current as a constant or linearly varying current density over plane triangular elements of the cortical surface tessellation. This should be taken into account when computing the lead field matrix for solving the EEG/MEG inverse problem in brain imaging methods.
Mustapha Gimba Kumshe
2013-04-01
Full Text Available The main objective of this paper was to focus on the elements, objectives, goals and importance of cash management; and also to examine the sources of revenue and cost effective collections for local governments. The elements of cash management are identified as establishing bank relations, preparing cash flow statements, estimating collection receipts and analyzing cash flow and preparing a budget. Amongst the objectives of cash management is to ensure availability of cash resources at all times for efficient and unconstrained implementation of the annual budget. The primary goals of a good cash management system are to maintain adequate cash at hand to meet the daily cash requirements of the local government while maximizing the amount available for investment and to obtain the maximum earnings on invested funds while ensuring their safety. The local governments obtain their revenue through internal and external sources, the external sources of revenue includes federal statutory allocations and loans obtained from financial institutions and other agencies; while among the internal sources are revenue from market fees, fees collected from motor parks, street hawking fees, shop fees and other miscellaneous sources. Some of the cost effective methods of revenue collections are contracting out of revenue collections to private collection agency, designating collection points for convenience, application of e-collection method where the local governments device a means of allowing tax payers to pay their taxes online. It is recommended that proper management of funds, efficient accounting and auditing system is necessary for proper cash management.
Sources of evaluation of nuclear and renewable energy contained in the local press
1987-01-01
Examined the sources of evaluative coverage concerning nuclear power and renewable alternatives contained in local UK daily press coverage. 10 categories of source were defined for their relevance to the nuclear debate and energy issues. Out of these, only pronuclear industries and national government produced more positive than negative appraisals of nuclear power. However, detractors of nuclear power were more varied, the most prolific category being the general public. Alternative technolo...
Ebrahimkhanlou, Arvin; Salamone, Salvatore
2017-09-01
Tracking edge-reflected acoustic emission (AE) waves can allow the localization of their sources. Specifically, in bounded isotropic plate structures, only one sensor may be used to perform these source localizations. The primary goal of this paper is to develop a three-step probabilistic framework to quantify the uncertainties associated with such single-sensor localizations. According to this framework, a probabilistic approach is first used to estimate the direct distances between AE sources and the sensor. Then, an analytical model is used to reconstruct the envelope of edge-reflected AE signals based on the source-to-sensor distance estimations and their first arrivals. Finally, the correlation between the probabilistically reconstructed envelopes and recorded AE signals are used to estimate confidence contours for the location of AE sources. To validate the proposed framework, Hsu-Nielsen pencil lead break (PLB) tests were performed on the surface as well as the edges of an aluminum plate. The localization results show that the estimated confidence contours surround the actual source locations. In addition, the performance of the framework was tested in a noisy environment simulated by two dummy transducers and an arbitrary wave generator. The results show that in low-noise environments, the shape and size of the confidence contours depend on the sources and their locations. However, at highly noisy environments, the size of the confidence contours monotonically increases with the noise floor. Such probabilistic results suggest that the proposed probabilistic framework could thus provide more comprehensive information regarding the location of AE sources.
NEAR-FIELD SOURCE LOCALIZATION METHOD AND APPLICATION USING THE TIME REVERSAL MIRROR TECHNIQUE
Fu Yongqing; Jiang Yulei; Liu Zhanya
2011-01-01
In order to develop the acoustic keyboard for Personal Computer (PC),it is necessary to seek high-precision near-field source localization algorithm for identifying the keyboard characters.First of all,the focusing property of Time Reversal Mirror (TRM) is introduced,and then a mathematical model of microphone array receiving typing sound is established according to the realization of acoustic keyboard from which the TRM localization algorithm is carried out.The results through computer simulation show that the localization Root Mean Square Error (RMSE) performance of the algorithm can reach 10-3,which demonstrates that the algorithm possesses a high accuracy for the actual near-field acoustic source localization,with potential of developing the computer acoustic keyboard.Furthermore,for the purpose of testing its effect on actual near-field source localization,we organize three experiments for acoustic keyboard characters localization.The experiment results show that the positioning error of TRM algorithm is less than 1 cm within a provided acoustic keyboard region.This will provide theoretical guidance for the further research of computer acoustic keyboard.
Influence of head models on neuromagnetic fields and inverse source localizations
Schimpf Paul H
2006-10-01
Full Text Available Abstract Background The magnetoencephalograms (MEGs are mainly due to the source currents. However, there is a significant contribution to MEGs from the volume currents. The structure of the anatomical surfaces, e.g., gray and white matter, could severely influence the flow of volume currents in a head model. This, in turn, will also influence the MEGs and the inverse source localizations. This was examined in detail with three different human head models. Methods Three finite element head models constructed from segmented MR images of an adult male subject were used for this study. These models were: (1 Model 1: full model with eleven tissues that included detailed structure of the scalp, hard and soft skull bone, CSF, gray and white matter and other prominent tissues, (2 the Model 2 was derived from the Model 1 in which the conductivity of gray matter was set equal to the white matter, i.e., a ten tissuetype model, (3 the Model 3 consisted of scalp, hard skull bone, CSF, gray and white matter, i.e., a five tissue-type model. The lead fields and MEGs due to dipolar sources in the motor cortex were computed for all three models. The dipolar sources were oriented normal to the cortical surface and had a dipole moment of 100 μA meter. The inverse source localizations were performed with an exhaustive search pattern in the motor cortex area. A set of 100 trial inverse runs was made covering the 3 cm cube motor cortex area in a random fashion. The Model 1 was used as a reference model. Results The reference model (Model 1, as expected, performed best in localizing the sources in the motor cortex area. The Model 3 performed the worst. The mean source localization errors (MLEs of the Model 3 were larger than the Model 1 or 2. The contour plots of the magnetic fields on top of the head were also different for all three models. The magnetic fields due to source currents were larger in magnitude as compared to the magnetic fields of volume currents
Stoneham, Melissa; Dodds, James
2014-08-01
The Western Australian (WA) Public Health Bill will replace the antiquated Health Act 1911. One of the proposed clauses of the Bill requires all WA local governments to develop a Public Health Plan. The Bill states that Public Health Plans should be based on evidence from all levels, including national and statewide priorities, community needs, local statistical evidence, and stakeholder data. This exploratory study, which targeted 533 WA local government officers, aimed to identify the sources of evidence used to generate the list of public health risks to be included in local government Public Health Plans. The top four sources identified for informing local policy were: observation of the consequences of the risks in the local community (24.5%), statewide evidence (17.6%), local evidence (17.6%) and coverage in local media (16.2%). This study confirms that both hard and soft data are used to inform policy decisions at the local level. Therefore, the challenge that this study has highlighted is in the definition or constitution of evidence. SO WHAT? Evidence is critical to the process of sound policy development. This study highlights issues associated with what actually constitutes evidence in the policy development process at the local government level. With the exception of those who work in an extremely narrow field, it is difficult for local government officers, whose role includes policymaking, to read the vast amount of information that has been published in their area of expertise. For those who are committed to the notion of evidence-based policymaking, as advocated within the WA Public Health Bill, this presents a considerable challenge.
Local Unit Invariance, Back-Reacting Tractors and the Cosmological Constant Problem
Bonezzi, Roberto; Waldron, Andrew
2010-01-01
When physics is expressed in a way that is independent of local choices of unit systems, Riemannian geometry is replaced by conformal geometry. Moreover masses become geometric, appearing as Weyl weights of tractors (conformal multiplets of fields necessary to keep local unit invariance manifest). The relationship between these weights and masses is through the scalar curvature. As a consequence mass terms are spacetime dependent for off-shell gravitational backgrounds, but happily constant for physical, Einstein manifolds. Unfortunately this introduces a naturalness problem because the scalar curvature is proportional to the cosmological constant. By writing down tractor stress tensors (multiplets built from the standard stress tensor and its first and second derivatives), we show how back-reaction solves this naturalness problem. We also show that classical back-reaction generates an interesting potential for scalar fields. We speculate that a proper description of how physical systems couple to scale, coul...
A local search algorithm based on chromatic classes for university course timetabling problem
Velin Kralev
2016-12-01
Full Text Available This paper presents a study for a local search algorithm based on chromatic classes for the university course timetabling problem. Several models and approaches to resolving the problem are discussed. The main idea of the approach is through a heuristic algorithm to specify the chromatic classes of a graph in which the events of the timetable correspond to the graph vertices and the set of the edges represents the possible conflicts between events. Then the chromatic classes should be sorted according to specific sort criteria (a total weight or a total count of events in each class, and finally the local search algorithm starts. The aim of the experiments is to determine the best criterion to sort chromatic classes. The results showed that the algorithm generates better solutions when the chromatic classes are sorted in a total weight criterion.
A Library of Local Search Heuristics for the Vehicle Routing Problem
Groer, Christopher S [ORNL; Golden, Bruce [University of Maryland; Edward, Wasil [American University
2010-01-01
The vehicle routing problem (VRP) is a difficult and well-studied combinatorial optimization problem. Real-world instances of the VRP can contain hundreds and even thousands of customer locations and can involve many complicating constraints, necessitating the use of heuristic methods. We present a software library of local search heuristics that allow one to quickly generate good solutions to VRP instances. The code has a logical, object-oriented design and uses efficient data structures to store and modify solutions. The core of the library is the implementation of seven local search operators that share a similar interface and are designed to be extended to handle additional options with minimal code change. The code is well-documented, is straightforward to compile, and is freely available for download at http://sites.google.com/site/vrphlibrary/ . The distribution of the code contains several applications that can be used to generate solutions to instances of the capacitated VRP.
Paired MEG data set source localization using recursively applied and projected (RAP) MUSIC.
Ermer, J J; Mosher, J C; Huang, M; Leahy, R M
2000-09-01
An important class of experiments in functional brain mapping involves collecting pairs of data corresponding to separate "Task" and "Control" conditions. The data are then analyzed to determine what activity occurs during the Task experiment but not in the Control. Here we describe a new method for processing paired magnetoencephalographic (MEG) data sets using our recursively applied and projected multiple signal classification (RAP-MUSIC) algorithm. In this method the signal subspace of the Task data is projected against the orthogonal complement of the Control data signal subspace to obtain a subspace which describes spatial activity unique to the Task. A RAP-MUSIC localization search is then performed on this projected data to localize the sources which are active in the Task but not in the Control data. In addition to dipolar sources, effective blocking of more complex sources, e.g., multiple synchronously activated dipoles or synchronously activated distributed source activity, is possible since these topographies are well-described by the Control data signal subspace. Unlike previously published methods, the proposed method is shown to be effective in situations where the time series associated with Control and Task activity possess significant cross correlation. The method also allows for straightforward determination of the estimated time series of the localized target sources. A multiepoch MEG simulation and a phantom experiment are presented to demonstrate the ability of this method to successfully identify sources and their time series in the Task data.
ON TRANSMISSION PROBLEM FOR VISCOELASTIC WAVE EQUATION WITH A LOCALIZED A NONLINEAR DISSIPATION
Jeong Ja BAE; Seong Sik KIM
2013-01-01
In this article,we consider the global existence and decay rates of solutions for the transmission problem of Kirchhoff type wave equations consisting of two physically different types of materials,one component being a Kirchhoff type wave equation with time dependent localized dissipation which is effective only on a neighborhood of certain part of boundary,while the other being a Kirchhoff type viscoelastic wave equation with nonlinear memory.
Jeong Ja Bae
2012-01-01
In this article,we consider the global existence and decay rates of solutions for the transmission problem of Kirchhoff type wave equations consisting of two physically different types of materials,one component is a Kirchhoff type wave equation with nonlinear time dependent localized dissipation which is effective only on a neighborhood of certain part of the boundary,while the other is a Kirchhoff type wave equation with nonlinear memory.
New insights into classical solutions of the local instability of the sandwich panels problem
Pozorska, Jolanta; Pozorski, Zbigniew
2016-06-01
The paper concerns the problem of local instability of thin facings of a sandwich panel. The classic analytical solutions are compared and examined. The Airy stress function is applied in the case of the state of plane stress and the state of plane strain. Wrinkling stress values are presented. The differences between the results obtained using the differential equations method and energy method are discussed. The relations between core strain energies are presented.
Localization of the gamma-radiation sources using the gamma-visor
Ivanov Kirill E.
2008-01-01
Full Text Available The search of the main gamma-radiation sources at the site of the temporary storage of solid radioactive wastes was carried out. The relative absorbed dose rates were measured for some of the gamma-sources before and after the rehabilitation procedures. The effectiveness of the rehabilitation procedures in the years 2006-2007 was evaluated qualitatively and quantitatively. The decrease of radiation background at the site of the temporary storage of the solid radioactive wastes after the rehabilitation procedures allowed localizing the new gamma-source.
LIU Xiao; WANG Cheng-en
2005-01-01
This paper addresses a single item dynamic lot-sizing model with inventory capacity and out-sourcing. The goal is to minimize the total costs of production, setup, inventory holding and out-sourcing. Two versions of an out-sourcing model with time-varying costs are considered: stock out case and conservation case. Zero Inventory Order property has been found and some new properties are obtained in an optimal solution. Dynamic programming algorithms are developed to solve the problem in strongly polynomial time respectively. Furthermore, some numerical results demonstrate that the approach proposed is efficient and applicable.
A complex variable meshless local Petrov-Galerkin method for transient heat conduction problems
Wang Qi-Fang; Dai Bao-Dong; Li Zhen-Feng
2013-01-01
On the basis of the complex variable moving least-square (CVMLS) approximation,a complex variable meshless local Petrov-Galerkin (CVMLPG) method is presented for transient heat conduction problems.The method is developed based on the CVMLS approximation for constructing shape functions at scattered points,and the Heaviside step function is used as a test function in each sub-domain to avoid the need for a domain integral in symmetric weak form.In the construction of the well-performed shape function,the trial function of a two-dimensional (2D) problem is formed with a one-dimensional (1 D) basis function,thus improving computational efficiency.The numerical results are compared with the exact solutions of the problems and the finite element method (FEM).This comparison illustrates the accuracy as well as the capability of the CVMLPG method.
A generalized multi-depot vehicle routing problem with replenishment based on LocalSolver
Ying Zhang
2015-01-01
Full Text Available In this paper, we consider the multi depot heterogeneous vehicle routing problem with time windows in which vehicles may be replenished along their trips. Using the modeling technique in a new-generation solver, we construct a novel formulation considering a rich series of constraint conditions and objective functions. Computation results are tested on an example comes from the real-world application and some cases obtained from the benchmark problems. The results show the good performance of local search method in the efficiency of replenishment system and generalization ability. The variants can be used to almost all kinds of vehicle routing problems, without much modification, demonstrating its possibility of practical use.
Iterated local search algorithm for solving the orienteering problem with soft time windows.
Aghezzaf, Brahim; Fahim, Hassan El
2016-01-01
In this paper we study the orienteering problem with time windows (OPTW) and the impact of relaxing the time windows on the profit collected by the vehicle. The way of relaxing time windows adopted in the orienteering problem with soft time windows (OPSTW) that we study in this research is a late service relaxation that allows linearly penalized late services to customers. We solve this problem heuristically by considering a hybrid iterated local search. The results of the computational study show that the proposed approach is able to achieve promising solutions on the OPTW test instances available in the literature, one new best solution is found. On the newly generated test instances of the OPSTW, the results show that the profit collected by the OPSTW is better than the profit collected by the OPTW.
Local search-based heuristics for the multiobjective multidimensional knapsack problem
Dalessandro Soares Vianna
2012-01-01
Full Text Available In real optimization problems it is generally desirable to optimize more than one performance criterion (or objective at the same time. The goal of the multiobjective combinatorial optimization (MOCO is to optimize simultaneously r > 1 objectives. As in the single-objective case, the use of heuristic/metaheuristic techniques seems to be the most promising approach to MOCO problems because of their efficiency, generality and relative simplicity of implementation. In this work, we develop algorithms based on Greedy Randomized Adaptive Search Procedure (GRASP and Iterated Local Search (ILS metaheuristics for the multiobjective knapsack problem. Computational experiments on benchmark instances show that the proposed algorithms are very robust and outperform other heuristics in terms of solution quality and running times.
Frequency-Difference Source Localization and Blind Deconvolution in Shallow Ocean Environments
2014-09-30
1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Frequency-Difference Source Localization and Blind ... blind deconvolution technique to dynamic multipath environments, and (ii) determining the utility of the frequency difference concept within matched...successful, the STR work might make underwater acoustic communications more efficient and reliable since sound-channel calibration would not be
An Intelligent Robot based on Sound Source Localization and Ultrasound Distance Detection
Charlie Shucheng ZHU; Mickey Zhen WANG; Tina Wei ZHUO; 朱书成
2008-01-01
In both industrial and research areas of electronic engineering, Sound Source Localization for robot control has always been an interesting subject to be further studied. Under some dangerous situation, especially when a special driver is required to implement a particular task, the device should be able to combine robotics control technology with Sound Source Localization, and take actions according to the different response patterns. In this research project, a multifunc-tional robot, named "Mobile Island", has been designed and built up by integrating the Emulator 8051 micro-controller, Intel 8255 interfaces, some components and other necessary devices. The intelligent Mobile Island implemented by C language programs can operate under three control modes. In the sound control Mode 1, the robot can detect and track a target by Sound Source Localization and then turn and move toward the destination. In the keypad control Mode 2, it can be controlled by a manual keypad. In the free run Mode 3, Mobile Island can move and turn by itself. When finding an object in front, it will turn away before moving forward again, so that it can avoid crashing on the obstacle.Ketwords: circuit; interface; driver; motor control; sound source localization; ultrasound detection
Acoustic eyes: a novel sound source localization and monitoring technique with 3D sound probes
Basten, T.G.H.; Bree, H.E. de; Sadasivan, S.
2008-01-01
In this paper the most recent advances are discussed on a new acoustic far field sound source localization technique using (at least) two three dimensional sound probes. The compact and broadband probes are based upon three orthogonally placed acoustic particle velocity sensors (Microflowns) and a s
Lewis, Michael A., Robert L. Quarles, Darrin D. Dantin and James C. Moore. 2004. Evaluation of a Coastal Golf Complex as a Local and Watershed Source of Bioavailable Contaminants. Mar. Pollut. Bull. 48(3-4):254-262. (ERL,GB 1183). Contaminant fate in coastal areas impacte...
An improved cut-and-solve algorithm for the single-source capacitated facility location problem
Gadegaard, Sune Lauth; Klose, Andreas; Nielsen, Lars Relund
2017-01-01
In this paper, we present an improved cut-and-solve algorithm for the single-source capacitated facility location problem. The algorithm consists of three phases. The first phase strengthens the integer program by a cutting plane algorithm to obtain a tight lower bound. The second phase uses a two...
Javier Macias-Guarasa
2012-10-01
Full Text Available This paper presents a novel approach for indoor acoustic source localization using sensor arrays. The proposed solution starts by defining a generative model, designed to explain the acoustic power maps obtained by Steered Response Power (SRP strategies. An optimization approach is then proposed to fit the model to real input SRP data and estimate the position of the acoustic source. Adequately fitting the model to real SRP data, where noise and other unmodelled effects distort the ideal signal, is the core contribution of the paper. Two basic strategies in the optimization are proposed. First, sparse constraints in the parameters of the model are included, enforcing the number of simultaneous active sources to be limited. Second, subspace analysis is used to filter out portions of the input signal that cannot be explained by the model. Experimental results on a realistic speech database show statistically significant localization error reductions of up to 30% when compared with the SRP-PHAT strategies.
Uniqueness theorem for the non-local ionization source in glow discharge and hollow cathode
Gorin, Vladimir V
2012-01-01
The paper is devoted to the proof of the uniqueness theorem for solution of the equation for the non-local ionization source in a glow discharge and a hollow cathode in general 3D geometry. The theorem is applied to wide class of electric field configurations, and to the walls of discharge volume, which have a property of incomplete absorption of the electrons. Cathode is regarded as interior singular source, which is placed arbitrarily close to the wall. The existence of solution is considered also. During the proof of the theorem many of useful structure formulae are obtained. Elements of the proof structure, which have arisen, are found to have physical sense. It makes clear physical construction of non-local electron avalanche, which builds a source of ionization in glow discharge at low pressures. Last has decisive significance to understand the hollow cathode discharge configuration and the hollow cathode effect.
Patterson, James J.; Smith, Carl; Bellamy, Jennifer
2015-02-01
Enabling and enacting `practical action' (i.e., purposeful and concerted collective action) in catchments is a key challenge in responding to a wide range of pressing catchment and natural resource management (NRM) issues. It is particularly a challenge in responding to `wicked problems,' where generating action is not straightforward and cannot be brought about solely by any single actor, policy or intervention. This paper responds to the critical need to better understand how practical action can be generated in catchments, by conducting an in-depth empirical case study of efforts to manage nonpoint source (NPS) pollution in South East Queensland (SEQ), Australia. SEQ has seen substantial concerted efforts to manage waterway and catchment issues over two decades, yet NPS pollution remains a major problem for waterway health. A novel framework was applied to empirically analyze practical action in three local catchment cases embedded within the broader SEQ region. The analysis focuses on `enabling capacities' underpinning practical action in catchments. Findings reveal that capacities manifested in different ways in different cases, yet many commonalities also occurred across cases. Interplay between capacities was critical to the emergence of adaptive and contextual forms of practical action in all cases. These findings imply that in order to enable and enact practical action in catchments, it is vital to recognize and support a diversity of enabling capacities across both local and regional levels of decision making and action. This is likely to have relevance for other `wicked' catchment and NRM problems requiring local responses within broader multiscalar regional problem situations.
Patterson, James J; Smith, Carl; Bellamy, Jennifer
2015-02-01
Enabling and enacting 'practical action' (i.e., purposeful and concerted collective action) in catchments is a key challenge in responding to a wide range of pressing catchment and natural resource management (NRM) issues. It is particularly a challenge in responding to 'wicked problems,' where generating action is not straightforward and cannot be brought about solely by any single actor, policy or intervention. This paper responds to the critical need to better understand how practical action can be generated in catchments, by conducting an in-depth empirical case study of efforts to manage nonpoint source (NPS) pollution in South East Queensland (SEQ), Australia. SEQ has seen substantial concerted efforts to manage waterway and catchment issues over two decades, yet NPS pollution remains a major problem for waterway health. A novel framework was applied to empirically analyze practical action in three local catchment cases embedded within the broader SEQ region. The analysis focuses on 'enabling capacities' underpinning practical action in catchments. Findings reveal that capacities manifested in different ways in different cases, yet many commonalities also occurred across cases. Interplay between capacities was critical to the emergence of adaptive and contextual forms of practical action in all cases. These findings imply that in order to enable and enact practical action in catchments, it is vital to recognize and support a diversity of enabling capacities across both local and regional levels of decision making and action. This is likely to have relevance for other 'wicked' catchment and NRM problems requiring local responses within broader multiscalar regional problem situations.
Using Interactive Case Studies to Support Students Understandings of Local Environmental Problems
Z. Kostova
2012-12-01
Full Text Available The article presents designed and refined an interactive-enhanced curriculum module for 9th grade secondary school students in Bulgaria, based on environmental case studies. In the module activities students from two schools studied the local environments, performed observations and experiments, collected and analyzed data, prepared and presented posters and role plays, made connections between scientific processes and socio-scientific issues and drew conclusions about the global effects of locally created environmental problems. The students’ critical observations of the quality of their surroundings helped them to make a list of local environmental problems, to apply interactive strategies in studying them and to propose rational scientifically based solutions. In the study the attention was directed to the advantages and disadvantages of poster presentations and role playing and to the specific learning difficulties that students had to overcome. Students’ achievements from the two experimental schools were assessed independently in order to give us insights into the details of learning using different interactive strategies and into the acquired performance skills, dependant on students’ interests and personal abilities. The three versions of the module (traditional, dominated by teacher presentation; poster preparation and presentation in which students imitate scientific team research; and role playing in which students not only study the local environmental problems but assume social roles to cope with them demonstrate three levels of students learning independence. Specific assessment tests and check lists were developed for analyzing, evaluating and comparing students’ achievements in each version of the module and in each school. Ecological knowledge assessment tests were based on Bloom’s taxonomy of educational objectives. Poster and role playing preparations and presentations were assessed by specific criteria, shown in the
Essam R. El-Zahar
2016-01-01
Full Text Available A reliable algorithm is presented to develop piecewise approximate analytical solutions of third- and fourth-order convection diffusion singular perturbation problems with a discontinuous source term. The algorithm is based on an asymptotic expansion approximation and Differential Transform Method (DTM. First, the original problem is transformed into a weakly coupled system of ODEs and a zero-order asymptotic expansion of the solution is constructed. Then a piecewise smooth solution of the terminal value reduced system is obtained by using DTM and imposing the continuity and smoothness conditions. The error estimate of the method is presented. The results show that the method is a reliable and convenient asymptotic semianalytical numerical method for treating high-order singular perturbation problems with a discontinuous source term.
iElectrodes: A Comprehensive Open-Source Toolbox for Depth and Subdural Grid Electrode Localization
Blenkmann, Alejandro O.; Phillips, Holly N.; Princich, Juan P.; Rowe, James B.; Bekinschtein, Tristan A.; Muravchik, Carlos H.; Kochen, Silvia
2017-01-01
The localization of intracranial electrodes is a fundamental step in the analysis of invasive electroencephalography (EEG) recordings in research and clinical practice. The conclusions reached from the analysis of these recordings rely on the accuracy of electrode localization in relationship to brain anatomy. However, currently available techniques for localizing electrodes from magnetic resonance (MR) and/or computerized tomography (CT) images are time consuming and/or limited to particular electrode types or shapes. Here we present iElectrodes, an open-source toolbox that provides robust and accurate semi-automatic localization of both subdural grids and depth electrodes. Using pre- and post-implantation images, the method takes 2–3 min to localize the coordinates in each electrode array and automatically number the electrodes. The proposed pre-processing pipeline allows one to work in a normalized space and to automatically obtain anatomical labels of the localized electrodes without neuroimaging experts. We validated the method with data from 22 patients implanted with a total of 1,242 electrodes. We show that localization distances were within 0.56 mm of those achieved by experienced manual evaluators. iElectrodes provided additional advantages in terms of robustness (even with severe perioperative cerebral distortions), speed (less than half the operator time compared to expert manual localization), simplicity, utility across multiple electrode types (surface and depth electrodes) and all brain regions. PMID:28303098
Stein, Simon Christoph; Thiart, Jan
2016-11-25
Super-resolution localization microscopy and single particle tracking are important tools for fluorescence microscopy. Both rely on detecting, and tracking, a large number of fluorescent markers using increasingly sophisticated computer algorithms. However, this rise in complexity makes it difficult to fine-tune parameters and detect inconsistencies, improve existing routines, or develop new approaches founded on established principles. We present an open-source MATLAB framework for single molecule localization, tracking and super-resolution applications. The purpose of this software is to facilitate the development, distribution, and comparison of methods in the community by providing a unique, easily extendable plugin-based system and combining it with a novel visualization system. This graphical interface incorporates possibilities for quick inspection of localization and tracking results, giving direct feedback of the quality achieved with the chosen algorithms and parameter values, as well as possible sources for errors. This is of great importance in practical applications and even more so when developing new techniques. The plugin system greatly simplifies the development of new methods as well as adapting and tailoring routines towards any research problem's individual requirements. We demonstrate its high speed and accuracy with plugins implementing state-of-the-art algorithms and show two biological applications.
Bai, Mingsian R; Yao, Yueh Hua; Lai, Chang-Sheng; Lo, Yi-Yang
2016-03-01
In this paper, four delay-and-sum (DAS) beamformers formulated in the modal domain and the space domain for open and solid spherical apertures are examined through numerical simulations. The resulting beampatterns reveal that the mainlobe of the solid spherical DAS array is only slightly narrower than that of the open array, whereas the sidelobes of the modal domain array are more significant than those of the space domain array due to the discrete approximation of continuous spherical Fourier transformation. To verify the theory experimentally, a three-dimensionally printed spherical array on which 32 micro-electro-mechanical system microphones are mounted is utilized for localization and separation of sound sources. To overcome the basis mismatch problem in signal separation, source localization is first carried out using minimum variance distortionless response beamformer. Next, Tikhonov regularization (TIKR) and compressive sensing (CS) are employed to extract the source signal amplitudes. Simulations and experiments are conducted to validate the proposed spherical array system. Objective perceptual evaluation of speech quality test and a subjective listening test are undertaken in performance evaluation. The experimental results demonstrate better separation quality achieved by the CS approach than by the TIKR approach at the cost of computational complexity.
Comparison of Phase-Based 3D Near-Field Source Localization Techniques for UHF RFID.
Parr, Andreas; Miesen, Robert; Vossiek, Martin
2016-06-25
In this paper, we present multiple techniques for phase-based narrowband backscatter tag localization in three-dimensional space with planar antenna arrays or synthetic apertures. Beamformer and MUSIC localization algorithms, known from near-field source localization and direction-of-arrival estimation, are applied to the 3D backscatter scenario and their performance in terms of localization accuracy is evaluated. We discuss the impact of different transceiver modes known from the literature, which evaluate different send and receive antenna path combinations for a single localization, as in multiple input multiple output (MIMO) systems. Furthermore, we propose a new Singledimensional-MIMO (S-MIMO) transceiver mode, which is especially suited for use with mobile robot systems. Monte-Carlo simulations based on a realistic multipath error model ensure spatial correlation of the simulated signals, and serve to critically appraise the accuracies of the different localization approaches. A synthetic uniform rectangular array created by a robotic arm is used to evaluate selected localization techniques. We use an Ultra High Frequency (UHF) Radiofrequency Identification (RFID) setup to compare measurements with the theory and simulation. The results show how a mean localization accuracy of less than 30 cm can be reached in an indoor environment. Further simulations demonstrate how the distance between aperture and tag affects the localization accuracy and how the size and grid spacing of the rectangular array need to be adapted to improve the localization accuracy down to orders of magnitude in the centimeter range, and to maximize array efficiency in terms of localization accuracy per number of elements.
Comparison of Phase-Based 3D Near-Field Source Localization Techniques for UHF RFID
Andreas Parr
2016-06-01
Full Text Available In this paper, we present multiple techniques for phase-based narrowband backscatter tag localization in three-dimensional space with planar antenna arrays or synthetic apertures. Beamformer and MUSIC localization algorithms, known from near-field source localization and direction-of-arrival estimation, are applied to the 3D backscatter scenario and their performance in terms of localization accuracy is evaluated. We discuss the impact of different transceiver modes known from the literature, which evaluate different send and receive antenna path combinations for a single localization, as in multiple input multiple output (MIMO systems. Furthermore, we propose a new Singledimensional-MIMO (S-MIMO transceiver mode, which is especially suited for use with mobile robot systems. Monte-Carlo simulations based on a realistic multipath error model ensure spatial correlation of the simulated signals, and serve to critically appraise the accuracies of the different localization approaches. A synthetic uniform rectangular array created by a robotic arm is used to evaluate selected localization techniques. We use an Ultra High Frequency (UHF Radiofrequency Identification (RFID setup to compare measurements with the theory and simulation. The results show how a mean localization accuracy of less than 30 cm can be reached in an indoor environment. Further simulations demonstrate how the distance between aperture and tag affects the localization accuracy and how the size and grid spacing of the rectangular array need to be adapted to improve the localization accuracy down to orders of magnitude in the centimeter range, and to maximize array efficiency in terms of localization accuracy per number of elements.
Cosmopolitan Utilitarianism and the Problem of Local Inaction in a Globalized World
Fausto Corvino
2015-10-01
Full Text Available This article explores the problem of the public acceptability of political inaction as an extreme consequence of cosmopolitan utilitarianism. The case of political inaction as the utility-maximizing public policy option emerges more clearly in the globalized world, because of a misalignment between the electoral body and the persons that the government ought to consider while evaluating the consequences of a given policy. In this context, a situation can easily occur in which the only way to maximize utility in a global context is by renouncing action at the national or local level. However, the problem of inaction should not be interpreted simply as a by-product of globalization. Its origins can be traced to the basic structure of utilitarianism as a normative consequentialist theory. This drawback can even present itself at the local level in a less visible form. One example is that in which the performance of a supererogatory act in the exercise of public office leads to a reduction in overall utility. The aim of the article is to demonstrate that cosmopolitan utilitarianism can bind the decision maker to a series of inactions at the global and local levels that contradict his own mandate, generating a dangerous moral confusion in the implementation of public policies. This can seriously threaten the universal applicability of cosmopolitan utilitarianism as a normative political theory, especially in the age of globalization.
Ligang Cui
2013-01-01
Full Text Available The capacitated vehicle routing problem (CVRP is the most classical vehicle routing problem (VRP; many solution techniques are proposed to find its better answer. In this paper, a new improved quantum evolution algorithm (IQEA with a mixed local search procedure is proposed for solving CVRPs. First, an IQEA with a double chain quantum chromosome, new quantum rotation schemes, and self-adaptive quantum Not gate is constructed to initialize and generate feasible solutions. Then, to further strengthen IQEA's searching ability, three local search procedures 1-1 exchange, 1-0 exchange, and 2-OPT, are adopted. Experiments on a small case have been conducted to analyze the sensitivity of main parameters and compare the performances of the IQEA with different local search strategies. Together with results from the testing of CVRP benchmarks, the superiorities of the proposed algorithm over the PSO, SR-1, and SR-2 have been demonstrated. At last, a profound analysis of the experimental results is presented and some suggestions on future researches are given.
Improved locality-sensitive hashing method for the approximate nearest neighbor problem
Lu, Ying-Hua; Ma, Ting-Huai; Zhong, Shui-Ming; Cao, Jie; Wang, Xin; Abdullah, Al-Dhelaan
2014-08-01
In recent years, the nearest neighbor search (NNS) problem has been widely used in various interesting applications. Locality-sensitive hashing (LSH), a popular algorithm for the approximate nearest neighbor problem, is proved to be an efficient method to solve the NNS problem in the high-dimensional and large-scale databases. Based on the scheme of p-stable LSH, this paper introduces a novel improvement algorithm called randomness-based locality-sensitive hashing (RLSH) based on p-stable LSH. Our proposed algorithm modifies the query strategy that it randomly selects a certain hash table to project the query point instead of mapping the query point into all hash tables in the period of the nearest neighbor query and reconstructs the candidate points for finding the nearest neighbors. This improvement strategy ensures that RLSH spends less time searching for the nearest neighbors than the p-stable LSH algorithm to keep a high recall. Besides, this strategy is proved to promote the diversity of the candidate points even with fewer hash tables. Experiments are executed on the synthetic dataset and open dataset. The results show that our method can cost less time consumption and less space requirements than the p-stable LSH while balancing the same recall.
Local unit invariance, back-reacting tractors and the cosmological constant problem
Bonezzi, R.; Corradini, O.; Waldron, A.
2012-02-01
When physics is expressed in a way that is independent of local choices of unit systems, Riemannian geometry is replaced by conformal geometry. Moreover masses become geometric, appearing as Weyl weights of tractors (conformal multiplets of fields necessary to keep local unit invariance manifest). The relationship between these weights and masses is through the scalar curvature. As a consequence mass terms are spacetime dependent for off-shell gravitational backgrounds, but happily constant for physical, Einstein manifolds. Unfortunately this introduces a naturalness problem because the scalar curvature is proportional to the cosmological constant. By writing down tractor stress tensors (multiplets built from the standard stress tensor and its first and second derivatives), we show how back-reaction solves this naturalness problem. We also show that classical back-reaction generates an interesting potential for scalar fields. We speculate that a proper description of how physical systems couple to scale, could improve our understanding of naturalness problems caused by the disparity between the particle physics and observed, cosmological constants. We further give some ideas how an ambient description of tractor calculus could lead to a Ricci-flat/CFT correspondence which generalizes the AdS side of Maldacena's duality to a Ricci-flat space of one higher dimension.
Shuang Ping TAO; Shang Bin CUI
2005-01-01
This paper is devoted to studying the initial value problems of the nonlinear KaupKupershmidt equations (e)u/(e)t + α1u(e)2u/(e)x2+β(e)3u/(e)x3+γ(e)5u/( )x5= 0, (x, t) ∈ R2, and (e)u/(e)t+α2 (e)u/(e)x (e)2u/(e)x2+β(e)3u/(e)x3+γ(e)5u/(e)x5 = 0, (x, t) ∈R2. Several important Strichartz type estimates for the fundamental solution of the corresponding linear problem are established. Then we apply such estimates to prove the local and global existence of solutions for the initial value problems of the nonlinear Kaup-Kupershmidt equations. The results show that a local solution exists if the initial function u0(x) ∈ Hs(R), and s ≥ 5/4 for the first equation and s ≥ 301/108 for the second equation.
Local Attitudes towards Bear Management after Illegal Feeding and Problem Bear Activity
David Fraser
2013-09-01
Full Text Available The “pot bears” received international media attention in 2010 after police discovered the intentional feeding of over 20 black bears during the investigation of an alleged marijuana-growing operation in Christina Lake, British Columbia, Canada. A two-phase random digit dialing survey of the community was conducted in 2011 to understand local perspectives on bear policy and management, before and after a summer of problem bear activity and government interventions. Of the 159 households surveyed in February 2011, most had neutral or positive attitudes towards bears in general, and supported the initial decision to feed the food-conditioned bears until the autumn hibernation. In contrast to wildlife experts however, most participants supported relocating the problem bears, or allowing them to remain in the area, ahead of killing; in part this arose from notions of fairness despite the acknowledged problems of relocation. Most locals were aware of the years of feeding but did not report it, evidently failing to see it as a serious form of harm, even after many bears had been killed. This underscores the importance of preventive action on wildlife feeding and the need to narrow the gap between public and expert opinion on the likely effects of relocation versus killing.
Luca Tacconi; Frank Jotzo; R. Quentin Grafton
2006-01-01
Lack of action on cross-border environmental problems in developing countries is often ascribed to gaps in local capacity and resources, failure of regional cooperation, and lack of financial support from rich countries. Using the case of the Southeast Asian Haze pollution from forest and peat fires in Indonesia, we explore the challenges posed by environmental problems whose causes are closely linked to local development and livelihood strategies, and whose impacts are local, regional (haze)...
Evaluation of multiple-sphere head models for MEG source localization
Lalancette, M; Cheyne, D [Department of Diagnostic Imaging, The Hospital for Sick Children, 555 University Ave., Toronto, Ontario M5G 1X8 (Canada); Quraan, M, E-mail: marc.lalancette@sickkids.ca, E-mail: douglas.cheyne@utoronto.ca [Krembil Neuroscience Centre, Toronto Western Research Institute, University Health Network, Toronto, Ontario M5T 2S8 (Canada)
2011-09-07
Magnetoencephalography (MEG) source analysis has largely relied on spherical conductor models of the head to simplify forward calculations of the brain's magnetic field. Multiple- (or overlapping, local) sphere models, where an optimal sphere is selected for each sensor, are considered an improvement over single-sphere models and are computationally simpler than realistic models. However, there is limited information available regarding the different methods used to generate these models and their relative accuracy. We describe a variety of single- and multiple-sphere fitting approaches, including a novel method that attempts to minimize the field error. An accurate boundary element method simulation was used to evaluate the relative field measurement error (12% on average) and dipole fit localization bias (3.5 mm) of each model over the entire brain. All spherical models can contribute in the order of 1 cm to the localization bias in regions of the head that depart significantly from a sphere (inferior frontal and temporal). These spherical approximation errors can give rise to larger localization differences when all modeling effects are taken into account and with more complex source configurations or other inverse techniques, as shown with a beamformer example. Results differed noticeably depending on the source location, making it difficult to recommend a fitting method that performs best in general. Given these limitations, it may be advisable to expand the use of realistic head models.
Source localization using a non-cocentered orthogonal loop and dipole (NCOLD) array
Liu Zhaoting; Xu Tongyang
2013-01-01
A uniform array of scalar-sensors with intersensor spacings over a large aperture size generally offers enhanced resolution and source localization accuracy, but it may also lead to cyclic ambiguity. By exploiting the polarization information of impinging waves, an electromagnetic vec-tor-sensor array outperforms the unpolarized scalar-sensor array in resolving this cyclic ambiguity. However, the electromagnetic vector-sensor array usually consists of cocentered orthogonal loops and dipoles (COLD), which is easily subjected to mutual coupling across these cocentered dipoles/loops. As a result, the source localization performance of the COLD array may substantially degrade rather than being improved. This paper proposes a new source localization method with a non-cocentered orthogonal loop and dipole (NCOLD) array. The NCOLD array contains only one dipole or loop on each array grid, and the intersensor spacings are larger than a half-wave-length. Therefore, unlike the COLD array, these well separated dipoles/loops minimize the mutual coupling effects and extend the spatial aperture as well. With the NCOLD array, the proposed method can efficiently exploit the polarization information to offer high localization precision.
Evaluation of multiple-sphere head models for MEG source localization.
Lalancette, M; Quraan, M; Cheyne, D
2011-09-07
Magnetoencephalography (MEG) source analysis has largely relied on spherical conductor models of the head to simplify forward calculations of the brain's magnetic field. Multiple- (or overlapping, local) sphere models, where an optimal sphere is selected for each sensor, are considered an improvement over single-sphere models and are computationally simpler than realistic models. However, there is limited information available regarding the different methods used to generate these models and their relative accuracy. We describe a variety of single- and multiple-sphere fitting approaches, including a novel method that attempts to minimize the field error. An accurate boundary element method simulation was used to evaluate the relative field measurement error (12% on average) and dipole fit localization bias (3.5 mm) of each model over the entire brain. All spherical models can contribute in the order of 1 cm to the localization bias in regions of the head that depart significantly from a sphere (inferior frontal and temporal). These spherical approximation errors can give rise to larger localization differences when all modeling effects are taken into account and with more complex source configurations or other inverse techniques, as shown with a beamformer example. Results differed noticeably depending on the source location, making it difficult to recommend a fitting method that performs best in general. Given these limitations, it may be advisable to expand the use of realistic head models.
A Bayesian Approach for Localization of Acoustic Emission Source in Plate-Like Structures
Gang Yan
2015-01-01
Full Text Available This paper presents a Bayesian approach for localizing acoustic emission (AE source in plate-like structures with consideration of uncertainties from modeling error and measurement noise. A PZT sensor network is deployed to monitor and acquire AE wave signals released by possible damage. By using continuous wavelet transform (CWT, the time-of-flight (TOF information of the AE wave signals is extracted and measured. With a theoretical TOF model, a Bayesian parameter identification procedure is developed to obtain the AE source location and the wave velocity at a specific frequency simultaneously and meanwhile quantify their uncertainties. It is based on Bayes’ theorem that the posterior distributions of the parameters about the AE source location and the wave velocity are obtained by relating their priors and the likelihood of the measured time difference data. A Markov chain Monte Carlo (MCMC algorithm is employed to draw samples to approximate the posteriors. Also, a data fusion scheme is performed to fuse results identified at multiple frequencies to increase accuracy and reduce uncertainty of the final localization results. Experimental studies on a stiffened aluminum panel with simulated AE events by pensile lead breaks (PLBs are conducted to validate the proposed Bayesian AE source localization approach.
Interpretation of the MEG-MUSIC scan in biomagnetic source localization
Mosher, J.C.; Lewis, P.S. [Los Alamos National Lab., NM (United States); Leahy, R.M. [University of Southern California, Los Angeles, CA (United States). Signal and Image Processing Inst.
1993-09-01
MEG-Music is a new approach to MEG source localization. MEG-Music is based on a spatio-temporal source model in which the observed biomagnetic fields are generated by a small number of current dipole sources with fixed positions/orientations and varying strengths. From the spatial covariance matrix of the observed fields, a signal subspace can be identified. The rank of this subspace is equal to the number of elemental sources present. This signal sub-space is used in a projection metric that scans the three dimensional head volume. Given a perfect signal subspace estimate and a perfect forward model, the metric will peak at unity at each dipole location. In practice, the signal subspace estimate is contaminated by noise, which in turn yields MUSIC peaks which are less than unity. Previously we examined the lower bounds on localization error, independent of the choice of localization procedure. In this paper, we analyzed the effects of noise and temporal coherence on the signal subspace estimate and the resulting effects on the MEG-MUSIC peaks.
A cortical source localization analysis of resting EEG data after remifentanil infusion
Khodayari-Rostamabad, Ahmad; Graversen, Carina; Malver, Lasse P;
2015-01-01
OBJECTIVE: To explore changes in current source density locations after remifentanil infusion in healthy volunteers using source localization of the electroencephalography (EEG). METHODS: EEG data was collected from 21 males using a 62-electrode system. Additionally, cognitive performance.......1-18Hz), and beta2 (18.1-30Hz) frequency bands. RESULTS: Pre-treatment recordings demonstrated reproducible source characteristics. The alterations (i.e., pre- versus post-treatment) due to remifentanil were significantly and robustly different from placebo infusions. The results indicated that neurons...... in several brain areas including inferior frontal gyrus and insula at frontal lobe oscillated more strongly after remifentanil infusion compared to placebo. Furthermore, the source activity at delta band was correlated with continuous reaction time index. CONCLUSIONS: These results indicate that alterations...
On an inverse source problem for enhanced oil recovery by wave motion maximization in reservoirs
Karve, Pranav M.
2014-12-28
© 2014, Springer International Publishing Switzerland. We discuss an optimization methodology for focusing wave energy to subterranean formations using strong motion actuators placed on the ground surface. The motivation stems from the desire to increase the mobility of otherwise entrapped oil. The goal is to arrive at the spatial and temporal description of surface sources that are capable of maximizing mobility in the target reservoir. The focusing problem is posed as an inverse source problem. The underlying wave propagation problems are abstracted in two spatial dimensions, and the semi-infinite extent of the physical domain is negotiated by a buffer of perfectly-matched-layers (PMLs) placed at the domain’s truncation boundary. We discuss two possible numerical implementations: Their utility for deciding the tempo-spatial characteristics of optimal wave sources is shown via numerical experiments. Overall, the simulations demonstrate the inverse source method’s ability to simultaneously optimize load locations and time signals leading to the maximization of energy delivery to a target formation.
Local wisdom of Ngata Toro community in utilizing forest resources as a learning source of biology
Yuliana, Sriyati, Siti; Sanjaya, Yayan
2017-08-01
Indonesian society is a pluralistic society with different cultures and local potencies that exist in each region. Some of local community still adherethe tradition from generation to generation in managing natural resources wisely. The application of the values of local wisdom is necessary to teach back to student to be more respect the culture and local potentials in the region. There are many ways developing student character by exploring local wisdom and implementing them as a learning resources. This study aims at revealing the values of local wisdom Ngata Toro indigenous people of Central Sulawesi Province in managing forest as a source of learning biology. This research was conducted by in-depth interviews, participant non-observation, documentation studies, and field notes. The data were analyzed with triangulation techniques by using a qualitative interaction analysis that is data collection, data reduction, and data display. Ngata Toro local community manage forest by dividing the forest into several zones, those arewana ngkiki, wana, pangale, pahawa pongko, oma, and balingkea accompanied by rules in the management of result-based forest conservation and sustainable utilization. By identifying the purpose of zonation and regulation of the forest, such values as the value of environmental conservation, balance value, sustainable value, and the value of mutual cooperation. These values are implemented as a biological learning resource which derived from the competences standard of analyze the utilization and conservation of the environment.
Nunez, P L; Wingeier, B M; Silberstein, R B
2001-07-01
A theoretical framework supporting experimental measures of dynamic properties of human EEG is proposed with emphasis on distinct alpha rhythms. Robust relationships between measured dynamics and cognitive or behavioral conditions are reviewed, and proposed physiological bases for EEG at cellular levels are considered. Classical EEG data are interpreted in the context of a conceptual framework that distinguishes between locally and globally dominated dynamic processes, as estimated with coherence or other measures of phase synchronization. Macroscopic (scalp) potentials generated by cortical current sources are described at three spatial scales, taking advantage of the columnar structure of neocortex. New EEG data demonstrate that both globally coherent and locally dominated behavior can occur within the alpha band, depending on narrow band frequency, spatial measurement scale, and brain state. Quasi-stable alpha phase structures consistent with global standing waves are observed. At the same time, alpha and theta phase locking between cortical regions during mental calculations is demonstrated, consistent with neural network formation. The brain-binding problem is considered in the context of EEG dynamic behavior that generally exhibits both of these local and global aspects. But specific experimental designs and data analysis methods may severely bias physiological interpretations in either local or global directions.
Shen, Hui-min; Lee, Kok-Meng; Hu, Liang; Foong, Shaohui; Fu, Xin
2016-01-01
Localization of active neural source (ANS) from measurements on head surface is vital in magnetoencephalography. As neuron-generated magnetic fields are extremely weak, significant uncertainties caused by stochastic measurement interference complicate its localization. This paper presents a novel computational method based on reconstructed magnetic field from sparse noisy measurements for enhanced ANS localization by suppressing effects of unrelated noise. In this approach, the magnetic flux density (MFD) in the nearby current-free space outside the head is reconstructed from measurements through formulating the infinite series solution of the Laplace's equation, where boundary condition (BC) integrals over the entire measurements provide "smooth" reconstructed MFD with the decrease in unrelated noise. Using a gradient-based method, reconstructed MFDs with good fidelity are selected for enhanced ANS localization. The reconstruction model, spatial interpolation of BC, parametric equivalent current dipole-based inverse estimation algorithm using reconstruction, and gradient-based selection are detailed and validated. The influences of various source depths and measurement signal-to-noise ratio levels on the estimated ANS location are analyzed numerically and compared with a traditional method (where measurements are directly used), and it was demonstrated that gradient-selected high-fidelity reconstructed data can effectively improve the accuracy of ANS localization.
Chorus source region localization in the Earth's outer magnetosphere using THEMIS measurements
O. Agapitov
2010-06-01
Full Text Available Discrete ELF/VLF chorus emissions, the most intense electromagnetic plasma waves observed in the Earth's radiation belts and outer magnetosphere, are thought to propagate roughly along magnetic field lines from a localized source region near the magnetic equator towards the magnetic poles. THEMIS project Electric Field Instrument (EFI and Search Coil Magnetometer (SCM measurements were used to determine the spatial scale of the chorus source localization region on the day side of the Earth's outer magnetosphere. We present simultaneous observations of the same chorus elements registered onboard several THEMIS spacecraft in 2007 when all the spacecraft were in the same orbit. Discrete chorus elements were observed at 0.15–0.25 of the local electron gyrofrequency, which is typical for the outer magnetosphere. We evaluated the Poynting flux and wave vector distribution and obtained chorus wave packet quasi-parallel propagation to the local magnetic field. Amplitude and phase correlation data analysis allowed us to estimate the characteristic spatial correlation scale transverse to the local magnetic field to be in the 2800–3200 km range.
A New Spectral Local Linearization Method for Nonlinear Boundary Layer Flow Problems
S. S. Motsa
2013-01-01
Full Text Available We propose a simple and efficient method for solving highly nonlinear systems of boundary layer flow problems with exponentially decaying profiles. The algorithm of the proposed method is based on an innovative idea of linearizing and decoupling the governing systems of equations and reducing them into a sequence of subsystems of differential equations which are solved using spectral collocation methods. The applicability of the proposed method, hereinafter referred to as the spectral local linearization method (SLLM, is tested on some well-known boundary layer flow equations. The numerical results presented in this investigation indicate that the proposed method, despite being easy to develop and numerically implement, is very robust in that it converges rapidly to yield accurate results and is more efficient in solving very large systems of nonlinear boundary value problems of the similarity variable boundary layer type. The accuracy and numerical stability of the SLLM can further be improved by using successive overrelaxation techniques.
SOCIAL INNOVATION – MODERN INSTRUMENT FOR SOLVING THE PROBLEMS OF LOCAL COMUNITIES
Stanciu Pavel
2008-05-01
Full Text Available In present there is a certain perception along free time of the young. Messenger, internet and television are the new recreation and amusement ways that favourises sedentary life, in the detriment of tourism and fresh air walks. The counteract of the phenomenon can be materialized through social innovation principles, concepts that suppose a new vision upon sustainable development of local communities. The elaboration of Suceava city development strategy has to take into account the potential problems of the community. The green spaces that are insufficient and the complete detach of the young from nature can be the strategic points of the new strategy. This work wants to offer possible solutions regarding sedentary life problems of the „Messenger Generation” and the lack of green entertainment areas.
A Constraint-directed Local Search Approach to Nurse Rostering Problems
He, Fang
2009-01-01
In this paper, we investigate the hybridization of constraint programming and local search techniques within a large neighbourhood search scheme for solving highly constrained nurse rostering problems. As identified by the research, a crucial part of the large neighbourhood search is the selection of the fragment (neighbourhood, i.e. the set of variables), to be relaxed and re-optimized iteratively. The success of the large neighbourhood search depends on the adequacy of this identified neighbourhood with regard to the problematic part of the solution assignment and the choice of the neighbourhood size. We investigate three strategies to choose the fragment of different sizes within the large neighbourhood search scheme. The first two strategies are tailored concerning the problem properties. The third strategy is more general, using the information of the cost from the soft constraint violations and their propagation as the indicator to choose the variables added into the fragment. The three strategies are a...
Rubio Gerardo
2011-03-01
Full Text Available We consider the Cauchy problem in ℝd for a class of semilinear parabolic partial differential equations that arises in some stochastic control problems. We assume that the coefficients are unbounded and locally Lipschitz, not necessarily differentiable, with continuous data and local uniform ellipticity. We construct a classical solution by approximation with linear parabolic equations. The linear equations involved can not be solved with the traditional results. Therefore, we construct a classical solution to the linear Cauchy problem under the same hypotheses on the coefficients for the semilinear equation. Our approach is using stochastic differential equations and parabolic differential equations in bounded domains. Finally, we apply the results to a stochastic optimal consumption problem. Nous considérons le problème de Cauchy dans ℝd pour une classe d’équations aux dérivées partielles paraboliques semi linéaires qui se pose dans certains problèmes de contrôle stochastique. Nous supposons que les coefficients ne sont pas bornés et sont localement Lipschitziennes, pas nécessairement différentiables, avec des données continues et ellipticité local uniforme. Nous construisons une solution classique par approximation avec les équations paraboliques linéaires. Les équations linéaires impliquées ne peuvent être résolues avec les résultats traditionnels. Par conséquent, nous construisons une solution classique au problème de Cauchy linéaire sous les mêmes hypothèses sur les coefficients pour l’équation semi-linéaire. Notre approche utilise les équations différentielles stochastiques et les équations différentielles paraboliques dans les domaines bornés. Enfin, nous appliquons les résultats à un problème stochastique de consommation optimale.
Capacitive coupled RF discharge: modelling at the local statement of the problem
Badriev, I. B.; Chebakova, V. Yu; Zheltukhin, V. S.
2017-01-01
In this paper a mathematical model of capacitively coupled RF discharge at atmospheric pressure is constructed, a method of numerical realization of the model is developed, and the numerical calculations are carried out. Comparison of the results of the numerical experiments with the data of other authors, in particular, with the experimental data, is demonstrated as well a model adequacy as effectiveness of the numerical method. A results of calculations of the model problem at pressure of 760 Torr, frequency of generator of 13.76 MHz and interelectrode distance of 20mm, in local approximation are presented.
Heirloom tomato cultivars and local populations as sources of genetic variability for breeding
Glogovac Svetlana
2010-01-01
Full Text Available Five local tomato populations and fourteen heirloom cultivars were analyzed in this study. The analyzed genotypes represent a part of tomato collection of Institute of Field and Vegetable Crops in Novi Sad. The following fruit and plant traits were analyzed: growth type, fruit color, fruit shape index, fruit weight, number of locules and dry matter content. Cluster analysis was performed so as to group the analyzed genotypes by homology and divergence. The aim of this article was to determine the importance of heirloom cultivars and local populations as sources of genetic variability in tomato breeding process.
Mertsch, Philipp; Rameez, Mohamed; Tamborra, Irene
2017-03-01
Constraints on the number and luminosity of the sources of the cosmic neutrinos detected by IceCube have been set by targeted searches for point sources. We set complementary constraints by using the 2MASS Redshift Survey (2MRS) catalogue, which maps the matter distribution of the local Universe. Assuming that the distribution of the neutrino sources follows that of matter, we look for correlations between ``warm'' spots on the IceCube skymap and the 2MRS matter distribution. Through Monte Carlo simulations of the expected number of neutrino multiplets and careful modelling of the detector performance (including that of IceCube-Gen2), we demonstrate that sources with local density exceeding 10‑6 Mpc‑3 and neutrino luminosity Lν lesssim 1042 erg s‑1 (1041 erg s‑1) will be efficiently revealed by our method using IceCube (IceCube-Gen2). At low luminosities such as will be probed by IceCube-Gen2, the sensitivity of this analysis is superior to requiring statistically significant direct observation of a point source.
Nonlinear Kalman Filtering for acoustic emission source localization in anisotropic panels.
Dehghan Niri, E; Farhidzadeh, A; Salamone, S
2014-02-01
Nonlinear Kalman Filtering is an established field in applied probability and control systems, which plays an important role in many practical applications from target tracking to weather and climate prediction. However, its application for acoustic emission (AE) source localization has been very limited. In this paper, two well-known nonlinear Kalman Filtering algorithms are presented to estimate the location of AE sources in anisotropic panels: the Extended Kalman Filter (EKF) and Unscented Kalman Filter (UKF). These algorithms are applied to two cases: velocity profile known (CASE I) and velocity profile unknown (CASE II). The algorithms are compared with a more traditional nonlinear least squares method. Experimental tests are carried out on a carbon-fiber reinforced polymer (CFRP) composite panel instrumented with a sparse array of piezoelectric transducers to validate the proposed approaches. AE sources are simulated using an instrumented miniature impulse hammer. In order to evaluate the performance of the algorithms, two metrics are used: (1) accuracy of the AE source localization and (2) computational cost. Furthermore, it is shown that both EKF and UKF can provide a confidence interval of the estimated AE source location and can account for uncertainty in time of flight measurements.
The optical theorem for local source excitation of a particle near a plane interface
Eremin, Yuri; Wriedt, Thomas
2015-11-01
Based on classic Maxwell's theory and the Gauss Theorem we extended the Optical Theorem to the case of a penetrable particle excited by a local source deposited near a plane interface. We demonstrate that the derived Extinction Cross-Section involves the total point source radiating cross-section and some definite integrals responsible for the scattering by the interface. The derived extinction cross-section can be employed to estimate the quantum yield and the optical antenna efficiency without computation of the absorption cross-section.
An Adaptive Observer-Based Algorithm for Solving Inverse Source Problem for the Wave Equation
Asiri, Sharefa M.
2015-08-31
Observers are well known in control theory. Originally designed to estimate the hidden states of dynamical systems given some measurements, the observers scope has been recently extended to the estimation of some unknowns, for systems governed by partial differential equations. In this paper, observers are used to solve inverse source problem for a one-dimensional wave equation. An adaptive observer is designed to estimate the state and source components for a fully discretized system. The effectiveness of the algorithm is emphasized in noise-free and noisy cases and an insight on the impact of measurements’ size and location is provided.
NUMERICAL STUDY OF TRANSIENT THREE-DIMENSIONAL HEAT CONDUCTION PROBLEM WITH A MOVING HEAT SOURCE
Marko V Miloš
2011-01-01
Full Text Available A numerical study of transient three-dimensional heat conduction problem with a moving source is presented. For numerical solution Douglas-Gunn alternating direction implicit method is applied and for the moving heat source flux distribution Gaussian function is used. An influence on numerical solution of input parameters figuring in flux boundary conditions is examined. This include parameters appearing in Gaussian function and heat transfer coefficient from free convection boundaries. Sensitivity of cooling time from 800 to 500 °C with respect to input parameters is also tested.
The Chandra Local Volume Survey: The X-ray Point Source Catalog of NGC 300
Binder, Breanna; Eracleous, Michael; Gaetz, Terrance J; Plucinsky, Paul P; Skillman, Evan D; Dalcanton, Julianne J; Anderson, Scott F; Weisz, Daniel R; Kong, Albert K H
2012-01-01
We present the source catalog of a new Chandra ACIS-I observation of NGC 300 obtained as part of the Chandra Local Volume Survey. Our 63 ks exposure covers ~88% of the D25 isophote (R~6.3 kpc) and yields a catalog of 95 X-ray point sources detected at high significance to a limiting unabsorbed 0.35-8 keV luminosity of ~10^36 erg s^-1. Sources were cross-correlated with a previous XMM-Newton catalog, and we find 75 "X-ray transient candidate" sources that were detected by one observatory, but not the other. We derive an X-ray scale length of 1.7+/-0.2 kpc and a recent star formation rate of 0.12 Msun yr^-1, in excellent agreement with optical observations. Deep, multi-color imaging from the Hubble Space Telescope, covering ~32% of our Chandra field, was used to search for optical counterparts to the X-ray sources, and we have developed a new source classification scheme to determine which sources are likely X-ray binaries, supernova remnants, and background AGN candidates. Finally, we present the X-ray luminos...
THE CHANDRA LOCAL VOLUME SURVEY: THE X-RAY POINT-SOURCE CATALOG OF NGC 300
Binder, B.; Williams, B. F.; Dalcanton, J. J.; Anderson, S. F.; Weisz, D. R. [Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195 (United States); Eracleous, M. [Department of Astronomy and Astrophysics, Pennsylvania State University, 525 Davey Laboratory, University Park, PA 16802 (United States); Gaetz, T. J.; Plucinsky, P. P. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street Cambridge, MA 02138 (United States); Skillman, E. D. [Astronomy Department, University of Minnesota, 116 Church St. SE, Minneapolis, MN 55455 (United States); Kong, A. K. H. [Institute of Astronomy and Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan (China)
2012-10-10
We present the source catalog of a new Chandra ACIS-I observation of NGC 300 obtained as part of the Chandra Local Volume Survey. Our 63 ks exposure covers {approx}88% of the D{sub 25} isophote (R Almost-Equal-To 6.3 kpc) and yields a catalog of 95 X-ray point sources detected at high significance to a limiting unabsorbed 0.35-8 keV luminosity of {approx}10{sup 36} erg s{sup -1}. Sources were cross-correlated with a previous XMM-Newton catalog, and we find 75 'X-ray transient candidate' sources that were detected by one observatory, but not the other. We derive an X-ray scale length of 1.7 {+-} 0.2 kpc and a recent star formation rate of 0.12 M{sub Sun} yr{sup -1} in excellent agreement with optical observations. Deep, multi-color imaging from the Hubble Space Telescope, covering {approx}32% of our Chandra field, was used to search for optical counterparts to the X-ray sources, and we have developed a new source classification scheme to determine which sources are likely X-ray binaries, supernova remnants, and background active galactic nucleus candidates. Finally, we present the X-ray luminosity functions (XLFs) at different X-ray energies, and we find the total NGC 300 X-ray point-source population to be consistent with other late-type galaxies hosting young stellar populations ({approx}< 50 Myr). We find that XLF of sources associated with older stellar populations has a steeper slope than the XLF of X-ray sources coinciding with young stellar populations, consistent with theoretical predictions.
The TeV-scale cosmic ray proton and helium spectra: Contributions from the local sources
Yong-Yeon Keum; Pierre Salati
2016-02-01
Recent measurements of cosmic ray proton and helium spectra show a hardening above a few hundreds of GeV. This excess is hard to understand in the framework of the conventional models of galactic cosmic ray production and propagation. Here, we propose to explain this anomaly by the presence of local sources. Cosmic ray propagation is described as a diffusion process taking place inside a two-zone magnetic halo. We calculate the proton and helium fluxes at the Earth between 50 GeV and 100 TeV. Improving over a similar analysis, we consistently derive these fluxes by taking into account both local and remote sources for which a unique injection rate is assumed. We find cosmic ray propagation parameters for which the proton and helium spectra remarkably agree with the PAMELA and CREAM measurements over four decades in energy.
An Inverse Source Problem for a One-dimensional Wave Equation: An Observer-Based Approach
Asiri, Sharefa M.
2013-05-25
Observers are well known in the theory of dynamical systems. They are used to estimate the states of a system from some measurements. However, recently observers have also been developed to estimate some unknowns for systems governed by Partial differential equations. Our aim is to design an observer to solve inverse source problem for a one dimensional wave equation. Firstly, the problem is discretized in both space and time and then an adaptive observer based on partial field measurements (i.e measurements taken form the solution of the wave equation) is applied to estimate both the states and the source. We see the effectiveness of this observer in both noise-free and noisy cases. In each case, numerical simulations are provided to illustrate the effectiveness of this approach. Finally, we compare the performance of the observer approach with Tikhonov regularization approach.
The enhanced volume source boundary point method for the calculation of acoustic radiation problem
WANG Xiufeng; CHEN Xinzhao; WANG Youcheng
2003-01-01
The Volume Source Boundary Point Method (VSBPM) is greatly improved so that it will speed up the VSBPM's solution of the acoustic radiation problem caused by the vibrating body. The fundamental solution provided by Helmholtz equation is enforced in a weighted residual sense over a tetrahedron located on the normal line of the boundary node to replace the coefficient matrices of the system equation. Through the enhanced volume source boundary point analysis of various examples and the sound field of a vibrating rectangular box in a semi-anechoic chamber, it has revealed that the calculating speed of the EVSBPM is more than 10 times faster than that of the VSBPM while it works on the aspects of its calculating precision and stability, adaptation to geometric shape of vibrating body as well as its ability to overcome the non-uniqueness problem.
Evaluation of Some Local Egyptian Plants as a Source of Chlorophyll Pigments
Hammouda, F. M. [فايزة محمود حمودة; Ismail, S I; Hussiney, H. A.; A. A. Hussein
1994-01-01
Four plant materials viz. Spinacia oleracae Linn, (spinach), Beta vulgaris Limm (chard), Medicago sativa Linn, (alfalfa) and Petroselinum sativum Hoff. (parsely) were studied as local sources for the preparation of chlorophyll pigments as natural green colour additives. Processing of the plant materials were carried out under different conditions viz. blanching, non-blanching followed by drying in air or electrical oven or in solar dehydrating oven. The qualitative and quantitative evaluation...
魚橋, 哲夫
2006-01-01
The authors studied the localization of P300 magnetic sources using the multiple signal classification (MUSIC) algorithm. Six healthy subjects (aged 24–34 years old) were investigated with 148-channel whole-head type magnetencephalography using an auditory oddball paradigm in passive mode. The authors also compared six stimulus combinations in order to find the optimal stimulus parameters for P300 magnetic field (P300m) in passive mode. Bilateral MUSIC peaks were located on the mesial tempora...
Mouthaan, Brian E; Rados, Matea; Barsi, Péter; Boon, Paul; Carmichael, David W; Carrette, Evelien; Craiu, Dana; Cross, J Helen; Diehl, Beate; Dimova, Petia; Fabo, Daniel; Francione, Stefano; Gaskin, Vladislav; Gil-Nagel, Antonio; Grigoreva, Elena; Guekht, Alla; Hirsch, Edouard; Hecimovic, Hrvoje; Helmstaedter, Christoph; Jung, Julien; Kalviainen, Reetta; Kelemen, Anna; Kimiskidis, Vasilios; Kobulashvili, Teia; Krsek, Pavel; Kuchukhidze, Giorgi; Larsson, Pål G; Leitinger, Markus; Lossius, Morten I; Luzin, Roman; Malmgren, Kristina; Mameniskiene, Ruta; Marusic, Petr; Metin, Baris; Özkara, Cigdem; Pecina, Hrvoje; Quesada, Carlos M; Rugg-Gunn, Fergus; Rydenhag, Bertil; Ryvlin, Philippe; Scholly, Julia; Seeck, Margitta; Staack, Anke M; Steinhoff, Bernhard J; Stepanov, Valentin; Tarta-Arsene, Oana; Trinka, Eugen; Uzan, Mustafa; Vogt, Viola L; Vos, Sjoerd B; Vulliémoz, Serge; Huiskamp, Geertjan; Leijten, Frans S S; Van Eijsden, Pieter; Braun, Kees P J
2016-05-01
In 2014 the European Union-funded E-PILEPSY project was launched to improve awareness of, and accessibility to, epilepsy surgery across Europe. We aimed to investigate the current use of neuroimaging, electromagnetic source localization, and imaging postprocessing procedures in participating centers. A survey on the clinical use of imaging, electromagnetic source localization, and postprocessing methods in epilepsy surgery candidates was distributed among the 25 centers of the consortium. A descriptive analysis was performed, and results were compared to existing guidelines and recommendations. Response rate was 96%. Standard epilepsy magnetic resonance imaging (MRI) protocols are acquired at 3 Tesla by 15 centers and at 1.5 Tesla by 9 centers. Three centers perform 3T MRI only if indicated. Twenty-six different MRI sequences were reported. Six centers follow all guideline-recommended MRI sequences with the proposed slice orientation and slice thickness or voxel size. Additional sequences are used by 22 centers. MRI postprocessing methods are used in 16 centers. Interictal positron emission tomography (PET) is available in 22 centers; all using 18F-fluorodeoxyglucose (FDG). Seventeen centers perform PET postprocessing. Single-photon emission computed tomography (SPECT) is used by 19 centers, of which 15 perform postprocessing. Four centers perform neither PET nor SPECT in children. Seven centers apply magnetoencephalography (MEG) source localization, and nine apply electroencephalography (EEG) source localization. Fourteen combinations of inverse methods and volume conduction models are used. We report a large variation in the presurgical diagnostic workup among epilepsy surgery centers across Europe. This diversity underscores the need for high-quality systematic reviews, evidence-based recommendations, and harmonization of available diagnostic presurgical methods. Wiley Periodicals, Inc. © 2016 International League Against Epilepsy.
Valent, Tullio
1988-01-01
In this book I present, in a systematic form, some local theorems on existence, uniqueness, and analytic dependence on the load, which I have recently obtained for some types of boundary value problems of finite elasticity. Actually, these results concern an n-dimensional (n ~ 1) formal generalization of three-dimensional elasticity. Such a generalization, be sides being quite spontaneous, allows us to consider a great many inter esting mathematical situations, and sometimes allows us to clarify certain aspects of the three-dimensional case. Part of the matter presented is unpublished; other arguments have been only partially published and in lesser generality. Note that I concentrate on simultaneous local existence and uniqueness; thus, I do not deal with the more general theory of exis tence. Moreover, I restrict my discussion to compressible elastic bodies and I do not treat unilateral problems. The clever use of the inverse function theorem in finite elasticity made by STOPPELLI [1954, 1957a, 1957b]...
Acoustic Source Localization via Distributed Sensor Networks using Tera-scale Optical-Core Devices
Imam, Neena [ORNL; Barhen, Jacob [ORNL; Wardlaw, Michael [Office of Naval Research
2008-01-01
For real-time acoustic source localization applications, one of the primary challenges is the considerable growth in computational complexity associated with the emergence of ever larger, active or passive, distributed sensor networks. The complexity of the calculations needed to achieve accurate source localization increases dramatically with the size of sensor arrays, resulting in substantial growth of computational requirements that cannot be met with standard hardware. One option to meet this challenge builds upon the emergence of digital optical-core devices. The objective of this work was to explore the implementation of key building block algorithms used in underwater source localization on an optical-core digital processing platform recently introduced by Lenslet Inc. They investigate key concepts of threat-detection algorithms such as Time Difference Of Arrival (TDOA) estimation via sensor data correlation in the time domain with the purpose of implementation on the optical-core processor. they illustrate their results with the aid of numerical simulation and actual optical hardware runs. The major accomplishments of this research, in terms of computational speedup and numerical accurcy achieved via the deployment of optical processing technology, should be of substantial interest to the acoustic signal processing community.
Multiple Objective Fuzzy Sourcing Problem with Multiple Items in Discount Environments
Feyzan Arikan
2015-01-01
Full Text Available The selection of proper supply sources plays a vital role to maintain companies’ competitiveness. In this study a multiple criteria fuzzy sourcing problem with multiple items in discount environment is considered as a multiple objective mixed integer linear programming problem. Fuzzy parameters are demand level and/or aspiration levels of objectives. Three objective functions are minimization of the total production and ordering costs, the total number of rejected units, and the total number of late delivered units, respectively. The model is developed for the all-units discount scheme. For the incremental discount and volume discount environment, modification requirements of the model are mentioned. The previously proposed interactive fuzzy approach combined with three fuzzy mathematical models is employed to obtain most satisfactory solution which is also a nondominated one. This study provides a realistic mathematical model and promising solution strategy to multiple item-single period sourcing problem in discount environment. Consideration of fuzziness makes the obtained nondominated solution implementable for the real cases.
Botond Molnár
Full Text Available There has been a long history of using neural networks for combinatorial optimization and constraint satisfaction problems. Symmetric Hopfield networks and similar approaches use steepest descent dynamics, and they always converge to the closest local minimum of the energy landscape. For finding global minima additional parameter-sensitive techniques are used, such as classical simulated annealing or the so-called chaotic simulated annealing, which induces chaotic dynamics by addition of extra terms to the energy landscape. Here we show that asymmetric continuous-time neural networks can solve constraint satisfaction problems without getting trapped in non-solution attractors. We concentrate on a model solving Boolean satisfiability (k-SAT, which is a quintessential NP-complete problem. There is a one-to-one correspondence between the stable fixed points of the neural network and the k-SAT solutions and we present numerical evidence that limit cycles may also be avoided by appropriately choosing the parameters of the model. This optimal parameter region is fairly independent of the size and hardness of instances, this way parameters can be chosen independently of the properties of problems and no tuning is required during the dynamical process. The model is similar to cellular neural networks already used in CNN computers. On an analog device solving a SAT problem would take a single operation: the connection weights are determined by the k-SAT instance and starting from any initial condition the system searches until finding a solution. In this new approach transient chaotic behavior appears as a natural consequence of optimization hardness and not as an externally induced effect.
fMRI activation patterns in an analytic reasoning task: consistency with EEG source localization
Li, Bian; Vasanta, Kalyana C.; O'Boyle, Michael; Baker, Mary C.; Nutter, Brian; Mitra, Sunanda
2010-03-01
Functional magnetic resonance imaging (fMRI) is used to model brain activation patterns associated with various perceptual and cognitive processes as reflected by the hemodynamic (BOLD) response. While many sensory and motor tasks are associated with relatively simple activation patterns in localized regions, higher-order cognitive tasks may produce activity in many different brain areas involving complex neural circuitry. We applied a recently proposed probabilistic independent component analysis technique (PICA) to determine the true dimensionality of the fMRI data and used EEG localization to identify the common activated patterns (mapped as Brodmann areas) associated with a complex cognitive task like analytic reasoning. Our preliminary study suggests that a hybrid GLM/PICA analysis may reveal additional regions of activation (beyond simple GLM) that are consistent with electroencephalography (EEG) source localization patterns.
Omar Mabrok Bouzid
2015-01-01
Full Text Available Structural health monitoring (SHM is important for reducing the maintenance and operation cost of safety-critical components and systems in offshore wind turbines. This paper proposes an in situ wireless SHM system based on an acoustic emission (AE technique. By using this technique a number of challenges are introduced due to high sampling rate requirements, limitations in the communication bandwidth, memory space, and power resources. To overcome these challenges, this paper focused on two elements: (1 the use of an in situ wireless SHM technique in conjunction with the utilization of low sampling rates; (2 localization of acoustic sources which could emulate impact damage or audible cracks caused by different objects, such as tools, bird strikes, or strong hail, all of which represent abrupt AE events and could affect the structural health of a monitored wind turbine blade. The localization process is performed using features extracted from aliased AE signals based on a developed constraint localization model. To validate the performance of these elements, the proposed system was tested by testing the localization of the emulated AE sources acquired in the field.
Data-driven and calibration-free Lamb wave source localization with sparse sensor arrays.
Harley, Joel B; Moura, José M F
2015-08-01
Most Lamb wave localization techniques require that we know the wave's velocity characteristics; yet, in many practical scenarios, velocity estimates can be challenging to acquire, are unavailable, or are unreliable because of the complexity of Lamb waves. As a result, there is a significant need for new methods that can reduce a system's reliance on a priori velocity information. This paper addresses this challenge through two novel source localization methods designed for sparse sensor arrays in isotropic media. Both methods exploit the fundamental sparse structure of a Lamb wave's frequency-wavenumber representation. The first method uses sparse recovery techniques to extract velocities from calibration data. The second method uses kurtosis and the support earth mover's distance to measure the sparseness of a Lamb wave's approximate frequency-wavenumber representation. These measures are then used to locate acoustic sources with no prior calibration data. We experimentally study each method with a collection of acoustic emission data measured from a 1.22 m by 1.22 m isotropic aluminum plate. We show that both methods can achieve less than 1 cm localization error and have less systematic error than traditional time-of-arrival localization methods.
Nwidembia
2015-08-01
Full Text Available Lack of good drinking water due to contamination by chemicals has been a global menace. It is one of the most serious environmental problems that have greatly impacted human health. Basic quality parameters of domestic water sources in Ebonyi Local Government Area were studied in the months of September 2014 and October 2014. Samples were randomly collected from common water sources well stream borehole and pond across four communities in the Local Government Area. The physicochemical characteristics of the collected water samples were investigated using standard procedures. The results showed mean pH values of 7.3 7.8 6.8 and 7.0 for well stream borehole and pond water samples respectively. The colour examination showed 13 HU 11 HU 13 HU and 16 HU for well stream borehole and pond water samples respectively. The turbidity were recorded as 103 NTU well 90 NTU stream 0.8 NTU borehole and 92 NTU pond. Total dissolved solids TDS showed a record of 595 mgL 386mgL 76 mgL and 563 mgL for well stream borehole and pond respectively. Well water recorded 78 mgL stream 112 mgL borehole 42 mgL and pond 795 mgL for Total Suspended Solids respectively. Also the total hardness showed 525 mgL 779 mgL 44 mgL and 837 mgL for well stream borehole and pond water samples respectively. The results show that most of the common sources of water in the studied areas are not good for drinking since the physicochemical variables evaluated mostly exceeded WHO permissible limits. We therefore recommend that water treatment should be paramount as alternative sources of drinking water in the communities should be considered.
Localizing nearby sound sources in a classroom: Binaural room impulse responses
Shinn-Cunningham, Barbara G.; Kopco, Norbert; Martin, Tara J.
2005-05-01
Binaural room impulse responses (BRIRs) were measured in a classroom for sources at different azimuths and distances (up to 1 m) relative to a manikin located in four positions in a classroom. When the listener is far from all walls, reverberant energy distorts signal magnitude and phase independently at each frequency, altering monaural spectral cues, interaural phase differences, and interaural level differences. For the tested conditions, systematic distortion (comb-filtering) from an early intense reflection is only evident when a listener is very close to a wall, and then only in the ear facing the wall. Especially for a nearby source, interaural cues grow less reliable with increasing source laterality and monaural spectral cues are less reliable in the ear farther from the sound source. Reverberation reduces the magnitude of interaural level differences at all frequencies; however, the direct-sound interaural time difference can still be recovered from the BRIRs measured in these experiments. Results suggest that bias and variability in sound localization behavior may vary systematically with listener location in a room as well as source location relative to the listener, even for nearby sources where there is relatively little reverberant energy. .
An inverse-source problem for maximization of pore-fluid oscillation within poroelastic formations
Jeong, C.
2016-07-04
This paper discusses a mathematical and numerical modeling approach for identification of an unknown optimal loading time signal of a wave source, atop the ground surface, that can maximize the relative wave motion of a single-phase pore fluid within fluid-saturated porous permeable (poroelastic) rock formations, surrounded by non-permeable semi-infinite elastic solid rock formations, in a one-dimensional setting. The motivation stems from a set of field observations, following seismic events and vibrational tests, suggesting that shaking an oil reservoir is likely to improve oil production rates. This maximization problem is cast into an inverse-source problem, seeking an optimal loading signal that minimizes an objective functional – the reciprocal of kinetic energy in terms of relative pore-fluid wave motion within target poroelastic layers. We use the finite element method to obtain the solution of the governing wave physics of a multi-layered system, where the wave equations for the target poroelastic layers and the elastic wave equation for the surrounding non-permeable layers are coupled with each other. We use a partial-differential-equation-constrained-optimization framework (a state-adjoint-control problem approach) to tackle the minimization problem. The numerical results show that the numerical optimizer recovers optimal loading signals, whose dominant frequencies correspond to amplification frequencies, which can also be obtained by a frequency sweep, leading to larger amplitudes of relative pore-fluid wave motion within the target hydrocarbon formation than other signals.
Social problems as sources of opportunity – antecedents of social entrepreneurship opportunities
Agnieszka Żur
2016-02-01
Full Text Available Objective: Based on extensive literature review, this paper aims to establish if, why and how, in given environmental and market contexts, social entrepreneurship (SE opportunities are discovered and exploited. It positions social problems as sources of entrepreneurial opportunity. The article presents an integrated process-based view of SE opportunity antecedents and concludes with a dynamic model of SE opportunity. Research Design & Methods: To fulfil its goal, the paper establishes opportunity as unit of research and explores the dynamics of opportunity recognition. To identify the components of SE opportunity through a process-based view, the study follows the steps of critical literature review method. The literature review follows with logical reasoning and inference, which results in the formulation of a model proposition of social entrepreneurship opportunity. Findings: The paper presents a holistic perspective on opportunity antecedents in SE context and introduces social problems, information, social awareness and entrepreneurial mindset as fundamental components of social entrepreneurship opportunity equation. Implications & Recommendations: It is necessary to remember for policy makers, investors and partners involved within the social sector, that social problems can be the source of entrepreneurial opportunity. Training, assisting and engaging socially aware entrepreneurs is a promising line of development for all communities. Contribution & Value Added: The major contribution of this study lies in extending the existing body of social entrepreneurship research by providing a new perspective, placing social problem as opportunity in the centre of the discussion.
The Problems and Challenges of Managing Crowd Sourced Audio-Visual Evidence
Harjinder Singh Lallie
2014-04-01
Full Text Available A number of recent incidents, such as the Stanley Cup Riots, the uprisings in the Middle East and the London riots have demonstrated the value of crowd sourced audio-visual evidence wherein citizens submit audio-visual footage captured on mobile phones and other devices to aid governmental institutions, responder agencies and law enforcement authorities to confirm the authenticity of incidents and, in the case of criminal activity, to identify perpetrators. The use of such evidence can present a significant logistical challenge to investigators, particularly because of the potential size of data gathered through such mechanisms and the added problems of time-lining disparate sources of evidence and, subsequently, investigating the incident(s. In this paper we explore this problem and, in particular, outline the pressure points for an investigator. We identify and explore a number of particular problems related to the secure receipt of the evidence, imaging, tagging and then time-lining the evidence, and the problem of identifying duplicate and near duplicate items of audio-visual evidence.
Yan Rui; Jiang Changsheng; Shao Zhigang; Zhou Longquan; Li Yingchun
2011-01-01
As the basic problems in seismology, fluid, heat and energy distribution near earthquake sources during earthquake generation have been the leading subjects of concern to seismologists. Currently, more and more research shows fluid around earthquake source areas, which plays an important role in the process of earthquake preparation and generation. However, there is considerable controversy over the source of fluid in the deep crust. As for the problem of heat around earthquake source areas, different models have been proposed to explain the stress heat flow paradox. Among them, the dynamic weakening model has been thought to be the key to solving the heat flow paradox issue. After large earthquakes, energy distribution is directly related to friction heat. It is of timely and important practical significance to immediately implement deep drilling in-site surveying to gain understanding of fluid, friction heat and energy distribution during earthquake generation. The latest international progress in fluid, heat and energy distribution research has been reviewed in this paper which will bring important inspiration for the understanding of earthquake preparation and occurrence.
Dipole anisotropy in cosmic electrons and positrons: inspection on local sources
Manconi, Silvia; Donato, Fiorenza
2016-01-01
The cosmic electrons and positrons have been measured with unprecedented statistics up to several hundreds GeV, thus permitting to explore the role that close single sources can have in shaping the flux at different energies. In the present analysis, we consider electrons and positrons in cosmic rays to be produced by spallations of hadron fluxes with the interstellar medium, by a smooth Supernova Remnant (SNR) population, by all the ATNF catalog pulsars, and by few discrete, local SNRs. We test several source models on the $e^++e^-$ and $e^+$ AMS-02 flux data. For the configurations compatible with the data, we compute the dipole anisotropy in $e^++e^-$, $e^+$, $e^+/e^-$ from single sources. Our study includes a dedicated analysis to the Vela SNR. We show that Fermi-LAT present data on dipole anisotropy of $e^++e^-$ start to explore some of the models for the Vela SNR selected by AMS-02 flux data. We also investigate how the observed anisotropy could result from a combination of local sources. Our analysis s...
Real-time realizations of the Bayesian Infrasonic Source Localization Method
Pinsky, V.; Arrowsmith, S.; Hofstetter, A.; Nippress, A.
2015-12-01
The Bayesian Infrasonic Source Localization method (BISL), introduced by Mordak et al. (2010) and upgraded by Marcillo et al. (2014) is destined for the accurate estimation of the atmospheric event origin at local, regional and global scales by the seismic and infrasonic networks and arrays. The BISL is based on probabilistic models of the source-station infrasonic signal propagation time, picking time and azimuth estimate merged with a prior knowledge about celerity distribution. It requires at each hypothetical source location, integration of the product of the corresponding source-station likelihood functions multiplied by a prior probability density function of celerity over the multivariate parameter space. The present BISL realization is generally time-consuming procedure based on numerical integration. The computational scheme proposed simplifies the target function so that integrals are taken exactly and are represented via standard functions. This makes the procedure much faster and realizable in real-time without practical loss of accuracy. The procedure executed as PYTHON-FORTRAN code demonstrates high performance on a set of the model and real data.
Rajabioun, Mehdi; Nasrabadi, Ali Motie; Shamsollahi, Mohammad Bagher
2017-08-29
Effective connectivity is one of the most important considerations in brain functional mapping via EEG. It demonstrates the effects of a particular active brain region on others. In this paper, a new method is proposed which is based on dual Kalman filter. In this method, firstly by using a brain active localization method (standardized low resolution brain electromagnetic tomography) and applying it to EEG signal, active regions are extracted, and appropriate time model (multivariate autoregressive model) is fitted to extracted brain active sources for evaluating the activity and time dependence between sources. Then, dual Kalman filter is used to estimate model parameters or effective connectivity between active regions. The advantage of this method is the estimation of different brain parts activity simultaneously with the calculation of effective connectivity between active regions. By combining dual Kalman filter with brain source localization methods, in addition to the connectivity estimation between parts, source activity is updated during the time. The proposed method performance has been evaluated firstly by applying it to simulated EEG signals with interacting connectivity simulation between active parts. Noisy simulated signals with different signal to noise ratios are used for evaluating method sensitivity to noise and comparing proposed method performance with other methods. Then the method is applied to real signals and the estimation error during a sweeping window is calculated. By comparing proposed method results in different simulation (simulated and real signals), proposed method gives acceptable results with least mean square error in noisy or real conditions.
Multi-agent search for source localization in a turbulent medium
Hajieghrary, Hadi; Hsieh, M. Ani; Schwartz, Ira B.
2016-04-01
We extend the gradient-less search strategy referred to as "infotaxis" to a distributed multi-agent system. "Infotaxis" is a search strategy that uses sporadic sensor measurements to determine the source location of materials dispersed in a turbulent medium. In this work, we leverage the spatio-temporal sensing capabilities of a mobile sensing agents to optimize the time spent finding and localizing the position of the source using a multi-agent collaborative search strategy. Our results suggest that the proposed multi-agent collaborative search strategy leverages the team's ability to obtain simultaneous measurements at different locations to speed up the search process. We present a multi-agent collaborative "infotaxis" strategy that uses the relative entropy of the system to synthesize a suitable search strategy for the team. The result is a collaborative information theoretic search strategy that results in control actions that maximize the information gained by the team, and improves estimates of the source position.
A novel method for direct localized sound speed measurement using the virtual source paradigm
Byram, Brett; Trahey, Gregg E.; Jensen, Jørgen Arendt
2007-01-01
registered virtual detector. Between a pair of registered virtual detectors a spherical wave is propagated. By beamforming the received data the time of flight between the two virtual sources can be calculated. From this information the local sound speed can be estimated. Validation of the estimator used...... both phantom and simulation results. The phantom consisted of two wire targets located near the transducer's axis at depths of 17 and 28 mm. Using this phantom the sound speed between the wires was measured for a homogeneous (water) medium and for two inhomogeneous (DB-grade castor oil and water......) mediums. The inhomogeneous mediums were arranged as an oil layer, one 6 mm thick and the other 11 mm thick, on top of a water layer. To complement the phantom studies, sources of error for spatial registration of virtual detectors were simulated. The sources of error presented here are multiple sound...
Zhang Min
2014-04-01
Full Text Available Due to the deficiencies in the conventional multiple-receiver localization systems based on direction of arrival (DOA such as system complexity of interferometer or array and amplitude/phase unbalance between multiple receiving channels and constraint on antenna configuration, a new radiated source localization method using the changing rate of phase difference (CRPD measured by a long baseline interferometer (LBI only is studied. To solve the strictly nonlinear problem, a two-stage closed-form solution is proposed. In the first stage, the DOA and its changing rate are estimated from the CRPD of each observer by the pseudolinear least square (PLS method, and then in the second stage, the source position and velocity are found by another PLS minimization. The bias of the algorithm caused by the correlation between the measurement matrix and the noise in the second stage is analyzed. To reduce this bias, an instrumental variable (IV method is derived. A weighted IV estimator is given in order to reduce the estimation variance. The proposed method does not need any initial guess and the computation is small. The Cramer–Rao lower bound (CRLB and mean square error (MSE are also analyzed. Simulation results show that the proposed method can be close to the CRLB with moderate Gaussian measurement noise.
Groundwater seepage landscapes with local or distal sources in experiments and on Mars
Kleinhans, Maarten; Marra, Wouter A.; Hauber, Ernst; McLelland, Stuart; Murphy, Brendan; Parsons, Daniel
2015-04-01
Groundwater has probably played an important role in shaping the surface of Mars. However, the hydrological origin of many typical Martian groundwater features is hampered by the lack of coupling between subsurface processes and surface morphology. Here we focus on the formation of theater-headed valleys. The basic morphology of such valleys can form by erosion through groundwater seepage (sapping), but similar valley morphology can also be the result of overland flow with waterfall-enhanced erosion. This morphological ambiguity complicates the interpretation of such valleys on Mars, but their climatic implications are quite different. Instead of the ambiguous single-valley morphology, metrics of the entire landscape may provide a diagnostic insight into the formative hydrological conditions. We aim to increase our understanding of the formation of entire landscapes by sapping processes and their hydrological implications by providing a framework for morphological metrics of different types of sapping systems. We study sapping from different groundwater sources using large-scale sandbox experiments in the Total Environmental Simulator at the University of Hull and combine our results with previous experiments. Importantly, flow patterns and the resulting landscapes are significantly different for the different sources of groundwater. The main differences are between sapping that results from either local or distal sources. Key results of our study are that groundwater piracy acts on distally-fed valleys, which results in a sparsely dissected landscape of many small and a few large valleys, while locally-fed valleys result in a densely dissected landscape. In addition, distally-fed valleys grow towards the direction of the groundwater source while locally-fed channels grow in a broad range of directions and have strong tendency to bifurcate, particularly on flat horizontal surfaces. To exemplify these differences, we apply the results to aid the interpretation of
Crevecoeur, Guillaume; Yitembe, Bertrand; Dupre, Luc; Van Keer, Roger
2013-01-01
This paper proposes a modification of the subspace correlation cost function and the Recursively Applied and Projected Multiple Signal Classification (RAP-MUSIC) method for electroencephalography (EEG) source analysis in epilepsy. This enables to reconstruct neural source locations and orientations that are less degraded due to the uncertain knowledge of the head conductivity values. An extended linear forward model is used in the subspace correlation cost function that incorporates the sensitivity of the EEG potentials to the uncertain conductivity value parameter. More specifically, the principal vector of the subspace correlation function is used to provide relevant information for solving the EEG inverse problems. A simulation study is carried out on a simplified spherical head model with uncertain skull to soft tissue conductivity ratio. Results show an improvement in the reconstruction accuracy of source parameters compared to traditional methodology, when using conductivity ratio values that are different from the actual conductivity ratio.
Vergallo, P; Lay-Ekuakille, A
2013-08-01
Brain activity can be recorded by means of EEG (Electroencephalogram) electrodes placed on the scalp of the patient. The EEG reflects the activity of groups of neurons located in the head, and the fundamental problem in neurophysiology is the identification of the sources responsible of brain activity, especially if a seizure occurs and in this case it is important to identify it. The studies conducted in order to formalize the relationship between the electromagnetic activity in the head and the recording of the generated external field allow to know pattern of brain activity. The inverse problem, that is given the sampling field at different electrodes the underlying asset must be determined, is more difficult because the problem may not have a unique solution, or the search for the solution is made difficult by a low spatial resolution which may not allow to distinguish between activities involving sources close to each other. Thus, sources of interest may be obscured or not detected and known method in source localization problem as MUSIC (MUltiple SIgnal Classification) could fail. Many advanced source localization techniques achieve a best resolution by exploiting sparsity: if the number of sources is small as a result, the neural power vs. location is sparse. In this work a solution based on the spatial sparsity of the field signal is presented and analyzed to improve MUSIC method. For this purpose, it is necessary to set a priori information of the sparsity in the signal. The problem is formulated and solved using a regularization method as Tikhonov, which calculates a solution that is the better compromise between two cost functions to minimize, one related to the fitting of the data, and another concerning the maintenance of the sparsity of the signal. At the first, the method is tested on simulated EEG signals obtained by the solution of the forward problem. Relatively to the model considered for the head and brain sources, the result obtained allows to
The Self-Force Problem: Local Behaviour of the Detweiler-Whiting Singular Field
Heffernan, Anna
2014-01-01
The growing reality of gravitational wave astronomy is giving age-old problems a new lease of life; one such problem is that of the self-force. A charged or massive particle moving in a curved background space-time produces a field that affects its motion, pushing it off its expected geodesic. This self-field gives rise to a so-called self-force acting on the particle. In modelling this motion, the self-force approach uses a perturbative expansion in the mass ratio. One of the most interesting sources of gravitational waves are extreme mass ratio inspirals - systems perfectly suited to self-force modelling. One of the key problems within the self-force model is the divergence of the field at the particle. To resolve this, the field is split into a singular component and a smooth regular field. This regular-singular split, introduced by Detweiler and Whiting, is used in most modern self-force calculations. In this thesis, we derive high-order expansions of the Detweiler-Whiting singular field, and use these to...
Novakova T.
2013-04-01
Full Text Available Regional contamination of southern Moravia (SE part of the Czech Republic by heavy metals and magnetic particles during the 20th century was quantified in fluvial sediments of the Morava River. The influence of local sources to the regional contamination of the river sediments and impact of sampling sites heterogeneity were studied in profiles with different sedimentology (facies and lithology. For this purpose, hundreds of samples were obtained from regulated channel banks and naturally inundated floodplains and proxy elementary analyses have been carried out by X-ray fluorescence spectroscopy (ED XRF, further calibrated by ICP MS. Magnetic susceptibility as a proxy of industrial contamination was determined and the age model has been obtained by 210Pb dating method. After establishing the lithological background from floodplain profiles, assessment of heavy metal contamination was done by using enrichment factors (EFs of heavy metals (Pb, Zn, Cu, Cr and magnetic susceptibility. Floodplain sedimentary profiles were found to be realiable for assessment of contamination and reconstruction of large scale, i.e. a really averaged regional contamination, while regulated channel banks are suitable for obtaining of more or less qualitative information of influence of local point sources in the area because sediments from regulated river banks qualitatively reflect the actual local contamination of the river system. It allowed us to distinguish the influence of local sources of contamination by comparing with more spatially averaged contamination signal from more distal floodplain profiles. The study area is rather weakly contaminated (EF ∼ 1-2, while individual sediment strata from regulated channel banks contains several times larger concentrations of heavy metals.
Local auxin sources orient the apical-basal axis in Arabidopsis embryos.
Robert, Hélène S; Grones, Peter; Stepanova, Anna N; Robles, Linda M; Lokerse, Annemarie S; Alonso, Jose M; Weijers, Dolf; Friml, Jiří
2013-12-16
Establishment of the embryonic axis foreshadows the main body axis of adults both in plants and in animals, but underlying mechanisms are considered distinct. Plants utilize directional, cell-to-cell transport of the growth hormone auxin to generate an asymmetric auxin response that specifies the embryonic apical-basal axis. The auxin flow directionality depends on the polarized subcellular localization of PIN-FORMED (PIN) auxin transporters. It remains unknown which mechanisms and spatial cues guide cell polarization and axis orientation in early embryos. Herein, we provide conceptually novel insights into the formation of embryonic axis in Arabidopsis by identifying a crucial role of localized tryptophan-dependent auxin biosynthesis. Local auxin production at the base of young embryos and the accompanying PIN7-mediated auxin flow toward the proembryo are required for the apical auxin response maximum and the specification of apical embryonic structures. Later in embryogenesis, the precisely timed onset of localized apical auxin biosynthesis mediates PIN1 polarization, basal auxin response maximum, and specification of the root pole. Thus, the tight spatiotemporal control of distinct local auxin sources provides a necessary, non-cell-autonomous trigger for the coordinated cell polarization and subsequent apical-basal axis orientation during embryogenesis and, presumably, also for other polarization events during postembryonic plant life.
Guillaume eAndeol
2015-01-01
Full Text Available Human sound localization abilities rely on binaural and spectral cues. Spectral cues arise from interactions between the sound wave and the listener’s body (head related transfer function, HRTF. Large individual differences were reported in localization abilities, even in young normal-hearing adults. Several studies have attempted to determine whether localization abilities depend mostly on acoustic cues or on perceptual processes involved in the analysis of these cues. These studies have yielded inconsistent findings, which could result from methodological issues. Here, we measured sound localization performance with normal and modified acoustic cues (i.e., with individual and non-individual HRTFs, respectively in 20 naïve listeners. Test conditions were chosen to address most methodological issues from past studies. Procedural training was provided prior to sound localization tests. The results showed no direct relationship between behavioral results and an acoustical metric (spectral-shape prominence of individual HRTFs. Despite uncertainties due to technical issues with the normalization of the HRTFs, large acoustic differences between individual and non-individual HRTFs seemed to be needed to produce behavioral effects. A subset of 15 listeners then trained in the sound localization task with individual HRTFs. Training included either visual correct-answer feedback (for the test group or no feedback (for the control group, and was assumed to elicit perceptual learning for the test group only. Few listeners from the control group, but most listeners from the test group, showed significant training-induced learning. For the test group, learning was related to pre-training performance (the poorer the pre-training performance, the greater the learning amount and was retained after one month.The results are interpreted as being in favor of a larger contribution of perceptual factors than of acoustic factors to sound localization abilities
Carlà, Michele; Benedetti, Gabriele; Günzel, Thomas; Iriso, Ubaldo; Martí, Zeus
2016-12-01
Transverse beam coupling impedance is a source of beam instabilities that limits the machine performance in circular accelerators. Several beam based techniques have been used to measure the transverse impedance of an accelerator, usually based on the optics distortion produced by the impedance source itself. Beam position monitor turn-by-turn analysis for impedance characterization has been usually employed in large circumference machines, while synchrotron light sources have mainly used slow orbit based techniques. Instead, the work presented in this paper uses for the first time turn-by-turn data at ALBA to advance the measurement technique into the range of the typically small impedance values of modern light sources. We have measured local impedance contributions through the observation of phase advance versus bunch charge using the betatron oscillations excited with a fast dipole kicker. The ALBA beam position monitor system and the precision of the turn-by-turn analysis allowed to characterize the main sources of transverse impedance, in good agreement with the model values, including the impedance of an in-vacuum undulator.
Michele Carlà
2016-12-01
Full Text Available Transverse beam coupling impedance is a source of beam instabilities that limits the machine performance in circular accelerators. Several beam based techniques have been used to measure the transverse impedance of an accelerator, usually based on the optics distortion produced by the impedance source itself. Beam position monitor turn-by-turn analysis for impedance characterization has been usually employed in large circumference machines, while synchrotron light sources have mainly used slow orbit based techniques. Instead, the work presented in this paper uses for the first time turn-by-turn data at ALBA to advance the measurement technique into the range of the typically small impedance values of modern light sources. We have measured local impedance contributions through the observation of phase advance versus bunch charge using the betatron oscillations excited with a fast dipole kicker. The ALBA beam position monitor system and the precision of the turn-by-turn analysis allowed to characterize the main sources of transverse impedance, in good agreement with the model values, including the impedance of an in-vacuum undulator.
Vatta, F.; Meneghini, F.; Esposito, F.; Mininel, S.; Di Salle, F.
2009-01-01
Neural source localization techniques based on electroencephalography (EEG) use scalp potential data to infer the location of underlying neural activity. This procedure entails modeling the sources of EEG activity and modeling the head volume conduction process to link the modeled sources to the EEG
Grabowski, Krzysztof; Gawronski, Mateusz; Baran, Ireneusz; Spychalski, Wojciech; Staszewski, Wieslaw J; Uhl, Tadeusz; Kundu, Tribikram; Packo, Pawel
2016-05-01
Acoustic Emission used in Non-Destructive Testing is focused on analysis of elastic waves propagating in mechanical structures. Then any information carried by generated acoustic waves, further recorded by a set of transducers, allow to determine integrity of these structures. It is clear that material properties and geometry strongly impacts the result. In this paper a method for Acoustic Emission source localization in thin plates is presented. The approach is based on the Time-Distance Domain Transform, that is a wavenumber-frequency mapping technique for precise event localization. The major advantage of the technique is dispersion compensation through a phase-shifting of investigated waveforms in order to acquire the most accurate output, allowing for source-sensor distance estimation using a single transducer. The accuracy and robustness of the above process are also investigated. This includes the study of Young's modulus value and numerical parameters influence on damage detection. By merging the Time-Distance Domain Transform with an optimal distance selection technique, an identification-localization algorithm is achieved. The method is investigated analytically, numerically and experimentally. The latter involves both laboratory and large scale industrial tests.
Blom, Philip S.; Marcillo, Omar
2016-12-01
A method is developed to apply acoustic tomography methods to a localized network of infrasound arrays with intention of monitoring the atmosphere state in the region around the network using non-local sources without requiring knowledge of the precise source location or non-local atmosphere state. Closely spaced arrays provide a means to estimate phase velocities of signals that can provide limiting bounds on certain characteristics of the atmosphere. Larger spacing between such clusters provide a means to estimate celerity from propagation times along multiple unique stratospherically or thermospherically ducted propagation paths and compute more precise estimates of the atmosphere state. In order to avoid the commonly encountered complex, multi-modal distributions for parametric atmosphere descriptions and to maximize the computational efficiency of the method, an optimal parameterization framework is constructed. This framework identifies the ideal combination of parameters for tomography studies in specific regions of the atmosphere and statistical model selection analysis shows that high quality corrections to the middle atmosphere winds can be obtained using as few as three parameters. Comparison of the resulting estimates for synthetic datasets shows qualitative agreement between the middle atmosphere winds and those estimated from infrasonic travel time observations.
Blom, Philip S.; Marcillo, Omar E.
2017-03-01
A method is developed to apply acoustic tomography methods to a localized network of infrasound arrays with intention of monitoring the atmosphere state in the region around the network using non-local sources without requiring knowledge of the precise source location or non-local atmosphere state. Closely spaced arrays provide a means to estimate phase velocities of signals that can provide limiting bounds on certain characteristics of the atmosphere. Larger spacing between such clusters provide a means to estimate celerity from propagation times along multiple unique stratospherically or thermospherically ducted propagation paths and compute more precise estimates of the atmosphere state. In order to avoid the commonly encountered complex, multimodal distributions for parametric atmosphere descriptions and to maximize the computational efficiency of the method, an optimal parametrization framework is constructed. This framework identifies the ideal combination of parameters for tomography studies in specific regions of the atmosphere and statistical model selection analysis shows that high quality corrections to the middle atmosphere winds can be obtained using as few as three parameters. Comparison of the resulting estimates for synthetic data sets shows qualitative agreement between the middle atmosphere winds and those estimated from infrasonic traveltime observations.
Singh, S. K.; Kumar, P.; Turbelin, G.; Issartel, J. P.; Feiz, A. A.; Ngae, P.; Bekka, N.
2016-12-01
In accidental release scenarios, a reliable prediction of origin and strength of unknown releases is attentive for emergency response authorities in order to ensure safety and security towards human health and environment. The accidental scenarios might involve one or more simultaneous releases emitting the same contaminant. In this case, the field of plumes may overlap significantly and the sampled concentrations may become the mixture of the concentrations originating from all the releases. The study addresses an inverse modelling procedure for identifying the origin and strength of known number of simultaneous releases from the sampled mixture of concentrations. A two-step inversion algorithm is developed in conjunction with an adjoint representation of source-receptor relationship. The computational efficiency is increased by deriving the distributed source information observable from the given monitoring design and number of measurements. The technique leads to an exact retrieval of the true release parameters when measurements are noise free and exactly described by the dispersion model. The inversion algorithm is evaluated using the real data from Fusion Field Trials, involving multiple (two, three and four sources) release experiments emitting Propylene, in September 2007 at Dugway Proving Ground, Utah, USA. The release locations are retrieved, on average, within 45 m to the true sources. The analysis of posterior uncertainties shows that the variations in location error and retrieved strength are within 10 m and 0.07%, respectively. Further, the inverse modelling is tested using 4-16 measurements in retrieval of four releases and found to be working reasonably well (within 146±79 m). The sensitivity studies highlight that the covariance statistics, model representativeness errors, source-receptor distance, distance between localized sources, monitoring design and number of measurements plays an important role in multiple source estimation.
Three hybridization models based on local search scheme for job shop scheduling problem
Balbi Fraga, Tatiana
2015-05-01
This work presents three different hybridization models based on the general schema of Local Search Heuristics, named Hybrid Successive Application, Hybrid Neighborhood, and Hybrid Improved Neighborhood. Despite similar approaches might have already been presented in the literature in other contexts, in this work these models are applied to analyzes the solution of the job shop scheduling problem, with the heuristics Taboo Search and Particle Swarm Optimization. Besides, we investigate some aspects that must be considered in order to achieve better solutions than those obtained by the original heuristics. The results demonstrate that the algorithms derived from these three hybrid models are more robust than the original algorithms and able to get better results than those found by the single Taboo Search.
FEM × DEM: a new efficient multi-scale approach for geotechnical problems with strain localization
Nguyen Trung Kien
2017-01-01
Full Text Available The paper presents a multi-scale modeling of Boundary Value Problem (BVP approach involving cohesive-frictional granular materials in the FEM × DEM multi-scale framework. On the DEM side, a 3D model is defined based on the interactions of spherical particles. This DEM model is built through a numerical homogenization process applied to a Volume Element (VE. It is then paired with a Finite Element code. Using this numerical tool that combines two scales within the same framework, we conducted simulations of biaxial and pressuremeter tests on a cohesive-frictional granular medium. In these cases, it is known that strain localization does occur at the macroscopic level, but since FEMs suffer from severe mesh dependency as soon as shear band starts to develop, the second gradient regularization technique has been used. As a consequence, the objectivity of the computation with respect to mesh dependency is restored.
Intelligent Iterated Local Search Methods for Solving Vehicle Routing Problem with Different Fleets
无
2007-01-01
To solve vehicle routing problem with different fleets, two methodologies are developed. The first methodology adopts twophase strategy. In the first phase, the improved savings method is used to assign customers to appropriate vehicles. In the second phase, the iterated dynasearch algorithm is adopted to route each selected vehicle with the assigned customers. The iterated dynasearch algorithm combines dynasearch algorithm with iterated local search algorithm based on random kicks. The second methodplogy adopts the idea of cyclic transfer which is performed by using dynamic programming algorithm, and the iterated dynasearch algorithm is also embedded in it. The test results show that both methodologies generate better solutions than the traditional method, and the second methodology is superior to the first one.
A finite volume method for cylindrical heat conduction problems based on local analytical solution
Li, Wang
2012-10-01
A new finite volume method for cylindrical heat conduction problems based on local analytical solution is proposed in this paper with detailed derivation. The calculation results of this new method are compared with the traditional second-order finite volume method. The newly proposed method is more accurate than conventional ones, even though the discretized expression of this proposed method is slightly more complex than the second-order central finite volume method, making it cost more calculation time on the same grids. Numerical result shows that the total CPU time of the new method is significantly less than conventional methods for achieving the same level of accuracy. © 2012 Elsevier Ltd. All rights reserved.
Local Projection-Based Stabilized Mixed Finite Element Methods for Kirchhoff Plate Bending Problems
Xuehai Huang
2013-01-01
Full Text Available Based on stress-deflection variational formulation, we propose a family of local projection-based stabilized mixed finite element methods for Kirchhoff plate bending problems. According to the error equations, we obtain the error estimates of the approximation to stress tensor in energy norm. And by duality argument, error estimates of the approximation to deflection in H1-norm are achieved. Then we design an a posteriori error estimator which is closely related to the equilibrium equation, constitutive equation, and nonconformity of the finite element spaces. With the help of Zienkiewicz-Guzmán-Neilan element spaces, we prove the reliability of the a posteriori error estimator. And the efficiency of the a posteriori error estimator is proved by standard bubble function argument.
Prechtl, J C; Bullock, T H; Kleinfeld, D
2000-01-18
Visual stimuli induce oscillations in the membrane potential of neurons in cortices of several species. In turtle, these oscillations take the form of linear and circular traveling waves. Such waves may be a consequence of a pacemaker that emits periodic pulses of excitation that propagate across a network of excitable neuronal tissue or may result from continuous and possibly reconfigurable phase shifts along a network with multiple weakly coupled neuronal oscillators. As a means to resolve the origin of wave propagation in turtle visual cortex, we performed simultaneous measurements of the local field potential at a series of depths throughout this cortex. Measurements along a single radial penetration revealed the presence of broadband current sources, with a center frequency near 20 Hz (gamma band), that were activated by visual stimulation. The spectral coherence between sources at two well-separated loci along a rostral-caudal axis revealed the presence of systematic timing differences between localized cortical oscillators. These multiple oscillating current sources and their timing differences in a tangential plane are interpreted as the neuronal activity that underlies the wave motion revealed in previous imaging studies. The present data provide direct evidence for the inference from imaging of bidirectional wave motion that the stimulus-induced electrical waves in turtle visual cortex correspond to phase shifts in a network of coupled neuronal oscillators.
Shao, H.; Huang, Y.; Kolditz, O.
2015-12-01
Multiphase flow problems are numerically difficult to solve, as it often contains nonlinear Phase transition phenomena A conventional technique is to introduce the complementarity constraints where fluid properties such as liquid saturations are confined within a physically reasonable range. Based on such constraints, the mathematical model can be reformulated into a system of nonlinear partial differential equations coupled with variational inequalities. They can be then numerically handled by optimization algorithms. In this work, two different approaches utilizing the complementarity constraints based on persistent primary variables formulation[4] are implemented and investigated. The first approach proposed by Marchand et.al[1] is using "local complementary constraints", i.e. coupling the constraints with the local constitutive equations. The second approach[2],[3] , namely the "global complementary constrains", applies the constraints globally with the mass conservation equation. We will discuss how these two approaches are applied to solve non-isothermal componential multiphase flow problem with the phase change phenomenon. Several benchmarks will be presented for investigating the overall numerical performance of different approaches. The advantages and disadvantages of different models will also be concluded. References[1] E.Marchand, T.Mueller and P.Knabner. Fully coupled generalized hybrid-mixed finite element approximation of two-phase two-component flow in porous media. Part I: formulation and properties of the mathematical model, Computational Geosciences 17(2): 431-442, (2013). [2] A. Lauser, C. Hager, R. Helmig, B. Wohlmuth. A new approach for phase transitions in miscible multi-phase flow in porous media. Water Resour., 34,(2011), 957-966. [3] J. Jaffré, and A. Sboui. Henry's Law and Gas Phase Disappearance. Transp. Porous Media. 82, (2010), 521-526. [4] A. Bourgeat, M. Jurak and F. Smaï. Two-phase partially miscible flow and transport modeling in
Masson, Yder; Romanowicz, Barbara
2016-11-01
We derive a fast discrete solution to the scattering problem. This solution allows us to compute accurate synthetic seismograms or waveforms for arbitrary locations of sources and receivers within a medium containing localized perturbations. The key to efficiency is that wave propagation modeling does not need to be carried out in the entire volume that encompasses the sources and the receivers but only within the sub-volume containing the perturbations or scatterers. The proposed solution has important applications, for example, it permits the imaging of remote targets located in regions where no sources or receivers are present. Our solution relies on domain decomposition: within a small volume that contains the scatterers, wave propagation is modeled numerically, while in the surrounding volume, where the medium isn't perturbed, the response is obtained through wavefield extrapolation. The originality of this work is the derivation of discrete formulas for representation theorems and Kirchhoff-Helmholtz integrals that naturally adapt to the numerical scheme employed for modeling wave propagation. Our solution applies, for example, to finite difference methods or finite/spectral elements methods. The synthetic seismograms obtained with our solution can be considered "exact" as the total numerical error is comparable to that of the method employed for modeling wave propagation. We detail a basic implementation of our solution in the acoustic case using the finite difference method and present numerical examples that demonstrate the accuracy of the method. We show that ignoring some terms accounting for higher order scattering effects in our solution has a limited effect on the computed seismograms and significantly reduces the computational effort. Finally, we show that our solution can be used to compute localised sensitivity kernels and we discuss applications to target oriented imaging. Extension to the elastic case is straightforward and summarised in a
Qun Li; Yiheng Chen
2009-01-01
The present investigation of the crack problem in piezoelectric materials is performed based on the non-local theory. After some manipulations, the impermeable crack,the permeable crack (the crack gap is full of NaCI solution),and the semi-permeable crack (the crack gap is full of air or silicon oil) are reduced to a uniform formulation by assuming the normal electric displacement on the crack surfaces to be an unknown variable. Thus, a triple integral equation with the unknown normal electric displacement is established. By using the Newton iterative method and solving the triple integral equation, it is found that the normal electric displacement on the crack surfaces is no longer a constant as determined by previous studies, rather, it depends upon the remote combined electromechanical loadings. Numerical results of the stresses and electric displacement fields show that there are no singularities at the crack tips so that the stresses remain finite. It is of great significance that the concrete electric boundary condition on the crack surfaces exerts significant influence on the near-tip fields and in this way plays an important role in evaluating the crack stability in the non-local piezoelectric materials. More specifically, the impermeable crack model always overestimates the finite stresses at the crack tips, whereas the permeable crack model always underestimates them.
Hoekstra, A.Y.
2006-01-01
Where water problems extend beyond the borders of local communities, the catchment area or river basin is generally seen as the most appropriate unit for analysis, planning and institutional arrangements. In this paper it is argued that addressing water problems at the river basin level is not alway
Hoekstra, Arjen Ysbert
2006-01-01
Where water problems extend beyond the borders of local communities, the catchment area or river basin is generally seen as the most appropriate unit for analysis, planning and institutional arrangements. In this paper it is argued that addressing water problems at the river basin level is not
A Comparison of Local Search Methods for the Multicriteria Police Districting Problem on Graph
F. Liberatore
2016-01-01
Full Text Available In the current economic climate, law enforcement agencies are facing resource shortages. The effective and efficient use of scarce resources is therefore of the utmost importance to provide a high standard public safety service. Optimization models specifically tailored to the necessity of police agencies can help to ameliorate their use. The Multicriteria Police Districting Problem (MC-PDP on a graph concerns the definition of sound patrolling sectors in a police district. The objective of this problem is to partition a graph into convex and continuous subsets, while ensuring efficiency and workload balance among the subsets. The model was originally formulated in collaboration with the Spanish National Police Corps. We propose for its solution three local search algorithms: a Simple Hill Climbing, a Steepest Descent Hill Climbing, and a Tabu Search. To improve their diversification capabilities, all the algorithms implement a multistart procedure, initialized by randomized greedy solutions. The algorithms are empirically tested on a case study on the Central District of Madrid. Our experiments show that the solutions identified by the novel Tabu Search outperform the other algorithms. Finally, research guidelines for future developments on the MC-PDP are given.
Chen, Hua Yun
2009-12-01
Theory on semiparametric efficient estimation in missing data problems has been systematically developed by Robins and his coauthors. Except in relatively simple problems, semiparametric efficient scores cannot be expressed in closed forms. Instead, the efficient scores are often expressed as solutions to integral equations. Neumann series was proposed in the form of successive approximation to the efficient scores in those situations. Statistical properties of the estimator based on the Neumann series approximation are difficult to obtain and as a result, have not been clearly studied. In this paper, we reformulate the successive approximation in a simple iterative form and study the statistical properties of the estimator based on the reformulation. We show that a doubly-robust locally-efficient estimator can be obtained following the algorithm in robustifying the likelihood score. The results can be applied to, among others, the parametric regression, the marginal regression, and the Cox regression when data are subject to missing values and the missing data are missing at random. A simulation study is conducted to evaluate the performance of the approach and a real data example is analyzed to demonstrate the use of the approach.
Pawel Felis
2014-10-01
Full Text Available The current system of funding local governments in Poland requires changes; within tax revenues the changes should concern the system of property taxes. The reformed property tax should be a potential source of considerable additional commune revenues. The article is aimed at the analysis of how communes can affect the volume of revenues from property owned by other entities. The analyses concerning the role and place of property taxes in the system of revenues of Polish communes and the application of tax authority tools indicate that local authorities can develop to a slight degree the structure of property taxes to affect the volume of their revenues and the course of social and economic processes.
Biomass burning sources and their contributions to the local air quality in Hong Kong.
Chan, K L
2017-10-15
In this paper, we present a quantitative estimation of the impacts of biomass burning emissions from different source regions to the local air quality in Hong Kong in 2014 using global chemistry transport model simulations, sun photometer measurements, satellite observations and local monitoring network data. This study focuses on two major biomass burning pollutants, black carbon aerosols and carbon monoxide (CO). The model simulations of atmospheric black carbon and CO show excellent agreement with sun photometer aerosol optical depth (AOD) measurements, satellite CO columns observations and local monitoring stations data. From the model simulation results, we estimated that biomass burning contributes 12% of total black carbon and 16% of atmospheric CO in Hong Kong on annual average. South East Asia shows the largest influence to the black carbon and CO levels in Hong Kong, accounts for 11% of the total atmospheric black carbon and 8% of CO. Biomass burning in North East Asia and Africa also show significant impacts to Hong Kong. Elevated levels of atmospheric black carbon aerosols and CO were observed during springtime (March and April) which is mainly due to the enhancement of biomass burning contributions. Black carbon and CO originating from biomass burning sources are estimated to contribute 40% of atmospheric black carbon and 28% of CO in Hong Kong during March 2014. An investigation focusing on the biomass burning pollution episode during springtime suggests the intensified biomass burning activities in the Indochinese Peninsula are the major sources of black carbon and CO in Hong Kong during the time. Copyright © 2017 Elsevier B.V. All rights reserved.
Blahut-Arimoto algorithm and code design for action-dependent source coding problems
Trillingsgaard, Kasper Fløe; Simeone, Osvaldo; Popovski, Petar
2013-01-01
The source coding problem with action-dependent side information at the decoder has recently been introduced to model data acquisition in resource-constrained systems. In this paper, an efficient Blahut-Arimoto-type algorithm for the numerical computation of the rate-distortion-cost function...... for this problem is proposed. Moreover, a simplified two-stage code structure based on multiplexing is put forth, whereby the first stage encodes the actions and the second stage is composed of an array of classical Wyner-Ziv codes, one for each action. Leveraging this structure, specific coding/decoding...... strategies are designed based on LDGM codes and message passing. Through numerical examples, the proposed code design is shown to achieve performance close to the rate-distortion-cost function....
Prograph Based Analysis of Single Source Shortest Path Problem with Few Distinct Positive Lengths
B. Bhowmik
2011-08-01
Full Text Available In this paper we propose an experimental study model S3P2 of a fast fully dynamic programming algorithm design technique in finite directed graphs with few distinct nonnegative real edge weights. The Bellman-Ford’s approach for shortest path problems has come out in various implementations. In this paper the approach once again is re-investigated with adjacency matrix selection in associate least running time. The model tests proposed algorithm against arbitrarily but positive valued weighted digraphs introducing notion of Prograph that speeds up finding the shortest path over previous implementations. Our experiments have established abstract results with the intention that the proposed algorithm can consistently dominate other existing algorithms for Single Source Shortest Path Problems. A comparison study is also shown among Dijkstra’s algorithm, Bellman-Ford algorithm, and our algorithm.
Local administrative sources on population movements after the Messina earthquake of 1908
G. Restifo
1995-06-01
Full Text Available Contrary to what one might expect, we have only a rough idea of the movements of the population of Messina after the 1908 earthquake. The exact figures regarding the number of dead are lacking; the fugitives were registered in difficult conditions; the numbers of immigrants can only be estimated. The two censuses of 1901 and 1911 are the only general source of comparison. To date nobody has examined the forms filled in by the families, from which it is possible to deduce the origins of the inhabitants of Messina. The analysis of local sources such as marriage registers and church records can provide information to fill this gap. An overall survey of the available documentation allows us to reconstruct the vertiginous movement of population caused by the earthquake.
Adaptive Sparse Representation for Source Localization with Gain/Phase Errors
Huadong Meng
2011-05-01
Full Text Available Sparse representation (SR algorithms can be implemented for high-resolution direction of arrival (DOA estimation. Additionally, SR can effectively separate the coherent signal sources because the spectrum estimation is based on the optimization technique, such as the L1 norm minimization, but not on subspace orthogonality. However, in the actual source localization scenario, an unknown gain/phase error between the array sensors is inevitable. Due to this nonideal factor, the predefined overcomplete basis mismatches the actual array manifold so that the estimation performance is degraded in SR. In this paper, an adaptive SR algorithm is proposed to improve the robustness with respect to the gain/phase error, where the overcomplete basis is dynamically adjusted using multiple snapshots and the sparse solution is adaptively acquired to match with the actual scenario. The simulation results demonstrate the estimation robustness to the gain/phase error using the proposed method.
Beamforming with a circular microphone array for localization of environmental sources of noise
Tiana Roig, Elisabet; Jacobsen, Finn; Fernandez Grande, Efren
2010-01-01
It is often enough to localize environmental sources of noise from different directions in a plane. This can be accomplished with a circular microphone array, which can be designed to have practically the same resolution over 360. The microphones can be suspended in free space or they can...... be mounted on a solid cylinder. This investigation examines and compares two techniques based on such arrays, the classical delay-and-sum beamforming and an alternative method called circular harmonics beamforming. The latter is based on decomposing the sound field into a series of circular harmonics...
Beamforming with a circular microphone array for localization of environmental noise sources
Tiana Roig, Elisabet; Jacobsen, Finn; Fernandez Grande, Efren
2010-01-01
It is often enough to localize environmental sources of noise from different directions in a plane. This can be accomplished with a circular microphone array, which can be designed to have practically the same resolution over 360. The microphones can be suspended in free space or they can...... be mounted on a solid cylinder. This investigation examines and compares two techniques based on such arrays, the classical delay-and-sum beamforming and an alternative method called circular harmonics beamforming. The latter is based on decomposing the sound field into a series of circular harmonics...
[Interpersonal relations as a source of risk of mobbing in the local police].
Segurado Torres, Almudena; Agulló Tomás, Esteban; Rodríguez Suárez, Julio; Agulló Tomás, Ma Silveria; Boada i Grau, Joan; Medina Centeno, Raúl
2008-11-01
Social relations in the workplace are one of the main sources of risk for the onset of mobbing. In this work, we analyzed, through the perceived social climate, the influence of interpersonal relations on the characterization of the processes of mobbing, in a sample of local police (N = 235). In particular, the policemen and women's opinions of the quality of the personal relations among the group members and the treatment they receive from the command posts were assessed. The results of the study show that the development of guidelines of social interaction based on discrimination and abuse of authority are predicting variables of mobbing in this group.
THE ALL-SOURCE GREEN’S FUNCTION AND ITS APPLICATIONS TO TSUNAMI PROBLEMS
ZHIGANG XU
2007-01-01
Full Text Available The classical Green’s function provides the global linear response to impulse forcing at a particular source location. It is a type of one-source-all-receiver Green’s function. This paper presents a new type of Green’s function, referred to as the all-source-one-receiver, or for short the all-source Green’s function (ASGF, in which the solution at a point of interest (POI can be written in terms of global forcing without requiring the solution at other locations. The ASGF is particularly applicable to tsunami problems. The response to forcing anywhere in the global ocean can be determined within a few seconds on an ordinary personal computer or on a web server. The ASGF also brings in two new types of tsunami charts, one for the arrival time and the second for the gain, without assuming the location of the epicenter or reversibility of the tsunami travel path. Thus it provides a useful tool for tsunami hazard preparedness and to rapidly calculate the real-time responses at selected POIs for a tsunami generated anywhere in the world’s oceans.
The Chandra Local Volume Survey: The X-ray Point Source Population of NGC 404
Binder, B; Eracleous, M; Gaetz, T J; Kong, A K H; Skillman, E D; Weisz, D R
2012-01-01
We present a comprehensive X-ray point source catalog of NGC 404 obtained as part of the Chandra Local Volume Survey. A new, 97 ks Chandra ACIS-S observation of NGC 404 was combined with archival observations for a total exposure of ~123 ks. Our survey yields 74 highly significant X-ray point sources and is sensitive to a limiting unabsorbed luminosity of ~6x10^35 erg s^-1 in the 0.35-8 keV band. To constrain the nature of each X-ray source, cross-correlations with multi-wavelength data were generated. We searched overlapping HST observations for optical counterparts to our X-ray detections, but find only two X-ray sources with candidate optical counterparts. We find 21 likely low mass X-ray binaries (LMXBs), although this number is a lower limit due to the difficulties in separating LMXBs from background AGN. The X-ray luminosity functions (XLFs) in both the soft and hard energy bands are presented. The XLFs in the soft band (0.5-2 keV) and the hard band (2-8 keV) have a limiting luminosity at the 90% comple...
On the dominant uncertainty source of climate change projections at the local scale
Fatichi, Simone; Ivanov, Valeriy; Paschalis, Athanasios; Molnar, Peter; Rimkus, Stefan; Kim, Jongho; Peleg, Nadav; Burlando, Paolo; Caporali, Enrica
2016-04-01
Decision makers and stakeholders are usually concerned about climate change projections at local spatial scales and fine temporal resolutions. This contrasts with the reliability of climate models, which is typically higher at the global and regional scales, Therefore, there is a demand for advanced methodologies that offer the capability of transferring predictions of climate models and relative uncertainty to scales commensurate with practical applications and for higher order statistics (e.g., few square kilometres and sub-daily scale). A stochastic downscaling technique that makes use of an hourly weather generator (AWE-GEN) and of a Bayesian methodology to weight realizations from different climate models is used to generate local scale meteorological time series of plausible "futures". We computed factors of change from realizations of 32 climate models used in the Coupled Model Intercomparison Project Phase 5 (CMIP5) and for different emission scenarios (RCP 4.5 and RCP 8.5). Future climate projections for several meteorological variables (precipitation, air temperature, relative humidity, shortwave radiation) are simulated at three locations characterized by remarkably different climates, Zurich (Switzlerand), Miami and San Francisco (USA). The methodology is designed to partition three main sources of uncertainty: uncertainty due to climate models (model epistemic uncertainty), anthropogenic forcings (scenario uncertainty), and internal climate variability (stochastic uncertainty). The three types of uncertainty sources are considered as dependent, implicitly accounting for possible co-variances among the sources. For air temperature, the magnitude of the different uncertainty sources is comparable for mid-of-the-century projections, while scenario uncertainty dominates at large lead-times. The dominant source of uncertainty for changes in precipitation mean and extremes is internal climate variability, which is accounting for more than 80% of the total
A local search heuristic for the Multi-Commodity k-splittable Maximum Flow Problem
Gamst, Mette
2014-01-01
The Multi-Commodity k-splittable Maximum Flow Problem consists of maximizing the amount of flow routed through a network such that each commodity uses at most k paths and such that edge capacities are satisfied. The problem is NP -hard and has application in a.o. telecommunications. In this paper......, a local search heuristic for solving the problem is proposed. The heuristic is an iterative shortest path procedure on a reduced graph combined with a local search procedure to modify certain path flows and prioritize the different commodities. The heuristic is tested on benchmark instances from...
Oh, Geok Lian
This PhD study examines the use of seismic technology for the problem of detecting underground facilities, whereby a seismic source such as a sledgehammer is used to generate seismic waves through the ground, sensed by an array of seismic sensors on the ground surface, and recorded by the digital...... device. The concept is similar to the techniques used in exploration seismology, in which explosions (that occur at or below the surface) or vibration wave-fronts generated at the surface reflect and refract off structures at the ground depth, so as to generate the ground profile of the elastic material...
Local source impacts on primary and secondary aerosols in the Midwestern United States
Jayarathne, Thilina; Rathnayake, Chathurika M.; Stone, Elizabeth A.
2016-04-01
biogenic SOA were not well-represented by a single site and demonstrated local influences. For isoprene SOA, product distributions indicated a larger role for the high-NOx pathway at the urban site. These local sources are largely responsible for differences in population exposures to outdoor PM in the study domain located within the Midwestern US.
Localization of the Reflection Sources of Stimulus-Frequency Otoacoustic Emissions.
Moleti, A; Sisto, R
2016-10-01
The generation of stimulus-frequency otoacoustic emission (SFOAE) residuals in humans is analyzed both theoretically and experimentally to investigate the relation between the frequency difference between the probe and the suppressor tone and the localization of the residual source. Experimental measurements of the SFOAE residual were performed using suppressors of increasing frequency to separate the otoacoustic response from the probe stimulus. From the response to the probe alone, the SFOAE response was also estimated, using spectral smoothing, and compared with the residuals obtained for different frequency suppressors. A nonlinear delayed-stiffness active cochlear model was used to compute the spatial distribution of the residual sources according to a recent model of the local reflectivity from roughness, as a function of the suppressor frequency. The simulations clarified the role of high-frequency suppressors, showing that in humans, with increasing suppressor frequency, the generation region of the residual is only slightly basally shifted with respect to the case of a near-frequency suppressor, near the basal edge of the peak of the resonant basilar membrane response. As a consequence, the hierarchy among different-delay components correspondingly changes, gradually favoring short-delay components, with increasing suppressor frequency. Good agreement between the experimental and theoretical dependence of the level of otoacoustic components of different delay on the frequency shift between probe and suppressor confirms the validity of this interpretation.
THE CHANDRA LOCAL VOLUME SURVEY: THE X-RAY POINT-SOURCE POPULATION OF NGC 404
Binder, B.; Williams, B. F.; Weisz, D. R. [University of Washington, Department of Astronomy, Box 351580, Seattle, WA 98195 (United States); Eracleous, M. [Department of Astronomy and Astrophysics and Center for Gravitational Wave Physics, The Pennsylvania State University, 525 Davey Lab, University Park, PA 16802 (United States); Gaetz, T. J. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street Cambridge, MA 02138 (United States); Kong, A. K. H. [Institute of Astronomy and Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Skillman, E. D. [University of Minnesota, Astronomy Department, 116 Church St. SE, Minneapolis, MN 55455 (United States)
2013-02-15
We present a comprehensive X-ray point-source catalog of NGC 404 obtained as part of the Chandra Local Volume Survey. A new 97 ks Chandra ACIS-S observation of NGC 404 was combined with archival observations for a total exposure of {approx}123 ks. Our survey yields 74 highly significant X-ray point sources and is sensitive to a limiting unabsorbed luminosity of {approx}6 Multiplication-Sign 10{sup 35} erg s{sup -1} in the 0.35-8 keV band. To constrain the nature of each X-ray source, cross-correlations with multi-wavelength data were generated. We searched overlapping Hubble Space Telescope observations for optical counterparts to our X-ray detections, but find only two X-ray sources with candidate optical counterparts. We find 21 likely low-mass X-ray binaries (LMXBs), although this number is a lower limit due to the difficulties in separating LMXBs from background active galactic nuclei. The X-ray luminosity functions (XLFs) in both the soft and hard energy bands are presented. The XLFs in the soft band (0.5-2 keV) and the hard band (2-8 keV) have a limiting luminosity at the 90% completeness limit of 10{sup 35} erg s{sup -1} and 10{sup 36} erg s{sup -1}, respectively, significantly lower than previous X-ray studies of NGC 404. We find the XLFs to be consistent with those of other X-ray populations dominated by LMXBs. However, the number of luminous (>10{sup 37} erg s{sup -1}) X-ray sources per unit stellar mass in NGC 404 is lower than is observed for other galaxies. The relative lack of luminous XRBs may be due to a population of LMXBs with main-sequence companions formed during an epoch of elevated star formation {approx}0.5 Gyr ago.
Evaluation of the influence of uncertain forward models on the EEG source reconstruction problem
Stahlhut, Carsten; Mørup, Morten; Winther, Ole
2009-01-01
Introduction Electro-encephalography (EEG) holds great promise for functional brain imaging, due to its high temporal resolution, low cost equipment and the possibility of performing the experiments under much more realistic conditions as compared to functional magnetic resonance imaging and posi......Introduction Electro-encephalography (EEG) holds great promise for functional brain imaging, due to its high temporal resolution, low cost equipment and the possibility of performing the experiments under much more realistic conditions as compared to functional magnetic resonance imaging...... and positron emission tomography. Today's EEG brain imaging methods operate with the assumption that the forward model is known when the source estimation is performed. Many sources of uncertainty are involved in the formulation of the forward model like tissue segmentation, tissue conductivities......, and electrode locations. In this contribution we investigate how forward model uncertainty influences source localization. Methods The analysis were based on 3-spheres models, where a high-resolution reference head model denoted as the ‘true forward model’ were compared with lower resolution forward models...
Anishchenko, V.S., E-mail: wadim@info.sgu.ru; Boev, Ya.I., E-mail: boev.yaroslav@gmail.com; Semenova, N.I., E-mail: harbour2006@mail.ru; Strelkova, G.I., E-mail: strelkovagi@info.sgu.ru
2015-07-26
We review rigorous and numerical results on the statistics of Poincaré recurrences which are related to the modern development of the Poincaré recurrence problem. We analyze and describe the rigorous results which are achieved both in the classical (local) approach and in the recently developed global approach. These results are illustrated by numerical simulation data for simple chaotic and ergodic systems. It is shown that the basic theoretical laws can be applied to noisy systems if the probability measure is ergodic and stationary. Poincaré recurrences are studied numerically in nonautonomous systems. Statistical characteristics of recurrences are analyzed in the framework of the global approach for the cases of positive and zero topological entropy. We show that for the positive entropy, there is a relationship between the Afraimovich–Pesin dimension, Lyapunov exponents and the Kolmogorov–Sinai entropy either without and in the presence of external noise. The case of zero topological entropy is exemplified by numerical results for the Poincare recurrence statistics in the circle map. We show and prove that the dependence of minimal recurrence times on the return region size demonstrates universal properties for the golden and the silver ratio. The behavior of Poincaré recurrences is analyzed at the critical point of Feigenbaum attractor birth. We explore Poincaré recurrences for an ergodic set which is generated in the stroboscopic section of a nonautonomous oscillator and is similar to a circle shift. Based on the obtained results we show how the Poincaré recurrence statistics can be applied for solving a number of nonlinear dynamics issues. We propose and illustrate alternative methods for diagnosing effects of external and mutual synchronization of chaotic systems in the context of the local and global approaches. The properties of the recurrence time probability density can be used to detect the stochastic resonance phenomenon. We also discuss
Evidence for a neural source of the precedence effect in sound localization.
Brown, Andrew D; Jones, Heath G; Kan, Alan; Thakkar, Tanvi; Stecker, G Christopher; Goupell, Matthew J; Litovsky, Ruth Y
2015-11-01
Normal-hearing human listeners and a variety of studied animal species localize sound sources accurately in reverberant environments by responding to the directional cues carried by the first-arriving sound rather than spurious cues carried by later-arriving reflections, which are not perceived discretely. This phenomenon is known as the precedence effect (PE) in sound localization. Despite decades of study, the biological basis of the PE remains unclear. Though the PE was once widely attributed to central processes such as synaptic inhibition in the auditory midbrain, a more recent hypothesis holds that the PE may arise essentially as a by-product of normal cochlear function. Here we evaluated the PE in a unique human patient population with demonstrated sensitivity to binaural information but without functional cochleae. Users of bilateral cochlear implants (CIs) were tested in a psychophysical task that assessed the number and location(s) of auditory images perceived for simulated source-echo (lead-lag) stimuli. A parallel experiment was conducted in a group of normal-hearing (NH) listeners. Key findings were as follows: 1) Subjects in both groups exhibited lead-lag fusion. 2) Fusion was marginally weaker in CI users than in NH listeners but could be augmented by systematically attenuating the amplitude of the lag stimulus to coarsely simulate adaptation observed in acoustically stimulated auditory nerve fibers. 3) Dominance of the lead in localization varied substantially among both NH and CI subjects but was evident in both groups. Taken together, data suggest that aspects of the PE can be elicited in CI users, who lack functional cochleae, thus suggesting that neural mechanisms are sufficient to produce the PE.
An Israeli haboob: Sea breeze activating local anthropogenic dust sources in the Negev loess
Crouvi, Onn; Dayan, Uri; Amit, Rivka; Enzel, Yehouda
2017-02-01
Meso-scale weather systems, such as convective haboobs, are considered to be an important dust generation mechanism. In Israel, however, rather than of meso-scale weather systems, most dust storms are generated by synoptic-scale systems, originating from Sahara and Arabia. Consequently, only distal sources of suspended and deposited dust in Israel are currently reported. Here we report the first detailed study on the merging of synoptic- and meso-scale weather systems leading to a prominent dust outbreak over the Negev, Israel. During the afternoon of May 2nd, 2007, a massive dust storm covered the northern Negev, forming a one kilometer high wall of dust. The haboob was associated with PM10 concentrations of 1000-1500 μg m-3 that advanced at a speed of 10-15 m s-1 and caused temporary closure of local airports. In contrast to most reported haboobs, this one was generated by a sea breeze front acting as a weak cold front enhanced by a cold core cyclone positioned over Libya and Egypt. The sea breeze that brought cold and moist marine air acted as a gravity current with strong surface winds. The sources for the haboob were the loessial soils of the northwestern Negev, especially agricultural fields that were highly disturbed in late spring to early summer. Such surface disturbance is caused by agricultural and/or intensive grazing practices. Our study emphasizes the importance of local dust sources in the Negev and stresses loess recycling as an important process in contemporary dust storms over Israel.
Mu Zhou
2015-01-01
Full Text Available Due to the increasing requirements of the seamless and round-the-clock Location-based services (LBSs, a growing interest in Wi-Fi network aided location tracking is witnessed in the past decade. One of the significant problems of the conventional Wi-Fi location tracking approaches based on received signal strength (RSS fingerprinting is the time-consuming and labor intensive work involved in location fingerprint calibration. To solve this problem, a novel unlabeled Wi-Fi simultaneous localization and mapping (SLAM approach is developed to avoid the location fingerprinting and additional inertial or vision sensors. In this approach, an unlabeled mobility map of the coverage area is first constructed by using the crowd-sourcing from a batch of sporadically recorded Wi-Fi RSS sequences based on the spectral cluster assembling. Then, the sequence alignment algorithm is applied to conduct location tracking and mobility map updating. Finally, the effectiveness of this approach is verified by the extensive experiments carried out in a campus-wide area.
Finite water depth effect on wave-body problems solved by Rankine source method
Feng, Aichun; Tang, Peng; You, Yunxiang; Liu, Kaizhou
2017-04-01
Finite water depth effect for wave-body problems are studied by continuous Rankine source method and non- desingularized technique. Free surface and seabed surface profiles are represented by continuous panels rather than a discretization by isolated points. These panels are positioned exactly on the fluid boundary surfaces and therefore no desingularization technique is required. Space increment method is applied for both free surface source and seabed source arrangements to reduce computational cost and improve numerical efficiency. Fourth order Runge-Kutta iteration scheme is adopted on the free surface updating at every time step. The finite water depth effect is studied quantitatively for a series of cylinders with different B/T ratios. The accuracy and efficiency of the proposed model are validated by comparison with published numerical results and experimental data. Numerical results show that hydrodynamic coefficients vary for cylinder bodies with different ratios of B/T. For certain set of B/T ratios the effect of finite water depth increases quickly with the increase of motion frequency and becomes stable when frequency is relatively large. It also shows that water depths have larger hydrodynamic effects on cylinder with larger breadth to draft ratios. Both the heave added mass and damping coefficients increase across the frequency range with the water depths decrease for forced heave motion. The water depths have smaller effects on sway motion response than on heave motion response.
Gregor Strobbe
2016-01-01
Full Text Available Electrical source imaging of interictal spikes observed in EEG recordings of patients with refractory epilepsy provides useful information to localize the epileptogenic focus during the presurgical evaluation. However, the selection of the time points or time epochs of the spikes in order to estimate the origin of the activity remains a challenge. In this study, we consider a Bayesian EEG source imaging technique for distributed sources, i.e. the multiple volumetric sparse priors (MSVP approach. The approach allows to estimate the time courses of the intensity of the sources corresponding with a specific time epoch of the spike. Based on presurgical averaged interictal spikes in six patients who were successfully treated with surgery, we estimated the time courses of the source intensities for three different time epochs: (i an epoch starting 50 ms before the spike peak and ending at 50% of the spike peak during the rising phase of the spike, (ii an epoch starting 50 ms before the spike peak and ending at the spike peak and (iii an epoch containing the full spike time period starting 50 ms before the spike peak and ending 230 ms after the spike peak. To identify the primary source of the spike activity, the source with the maximum energy from 50 ms before the spike peak till 50% of the spike peak was subsequently selected for each of the time windows. For comparison, the activity at the spike peaks and at 50% of the peaks was localized using the LORETA inversion technique and an ECD approach. Both patient-specific spherical forward models and patient-specific 5-layered finite difference models were considered to evaluate the influence of the forward model. Based on the resected zones in each of the patients, extracted from post-operative MR images, we compared the distances to the resection border of the estimated activity. Using the spherical models, the distances to the resection border for the MSVP approach and each of the different time
Noise source localization using Matched Field Processing: wind turbines, mofettes and geysirs.
Umlauft, Josefine; Flores Estrella, Hortencia; Christin Obermann, Anne; Korn, Michael
2017-04-01
The Matched Field Processing (MFP) is a beamforming method, derived from ocean acoustics, that serves as a noise source localization and exploration tool in applied geophysics. Here, we present three case studies to explore the applicability of MFP in the presence of different source types, and using sensor arrays with different aperture and density. First, we show the localization of a single wind turbine (Saxony, Eastern Germany), which acts as a point source at the surface generating continuous vibrations due to the rotation of their blades. Using 30 vertical sensors (Reftek Texans) randomly distributed within an area of approximately 50 x 50 m2 around the wind turbine, we identified the turbine as the dominant noise source within the array. Therefore we verified that the MFP procedure gives useful results. The second test was performed in Hartouŝov (NW Bohemia, Czech Republic). This area is characterized by several natural degassing areas of mantle-originating fluids and CO2 (mofettes). Mofettes either appear as little sinks filled with bubbling groundwater or more extensive as vegetation anomalies. We located these mofettes, using the collapsing water bubbles as seismic noise source, and compared our results with CO2 flux values of the same field measured by Nickschick et al. (2015). The array consisted of 130 stations in total (30 Reftek Texans, 50 Omnirecs Data-Cubes3 and 50 Summit X-One channels) and covered an area of about 500 x 1000 m2. Additionally to MFP, we perfomed a polarization analysis of surface waves to characterize the wave field generated by the the degassing process. The last example is a geysering system in NE Java (Indonesia) which is called LUSI (Lumpur Sidoarjo). The geysir was surrounded by 5 stations (Trillium Compacts) arranged in a circle with about 1.5 km diameter. Here, we could successfully locate the surface position of the geysir as well as image its feeding channel to a depth of 100 m. This example shows the suitability of MFP
Dimitriou, Konstantinos; Kassomenos, Pavlos
2013-11-01
Particulate air pollution is associated with adverse health effects to the population exposed. The aim of this paper is the identification of local and regional sources, affecting PM10 and PM2.5 levels in four large cities of southern Europe, namely: Lisbon, Madrid, Marseille, and Rome. Air pollution data from seven sampling sites of the European Union network were used. These stations were selected due to their ability of monitoring PM2.5 concentrations and providing reliable series of data. Each station's background was also taken into account. Pearson correlation coefficients and primal component analysis components were extracted separately for cold and warm periods in order to define the relationships among particle matters (PMs) and gaseous pollutants (CO, NO2, SO2, and O3) and evaluate the contributions of local sources. Possible seasonal variations of PM2.5/PM10 ratio daily values were also used as markers of PM sources, influencing particulate size distribution. Particle emissions were primarily attributed to traffic and secondarily to natural sources. Minimum daily values of PM2.5/PM10 ratio were observed during warm periods, particularly at suburban stations with rural background, due to dust resuspension and also due to the increase of biogenic coarse PM (pollen, dust, etc.). Hybrid Single-Particle Lagrangian Integrated Trajectory Model trajectory model was used in order to compute the 4-day backward trajectories of the air masses that affected the four cities which are under study during days with recorded PM10 exceedances, within a 5-year period (2003-2007), at 300, 750, and 1,500 m above ground level (AGL). The trajectories were then divided to clusters with a K-means analysis. In all four cities, the influence of slow-moving air masses was associated with a large fraction of PM10 exceedances and with high average and maximum daily mean PM10 concentrations, principally at the 300 m AGL analysis. As far the issue of the increased PM10 concentrations
Dimitriou, Konstantinos; Kassomenos, Pavlos
2014-05-01
The aim of this study was to identify local and exogenous sources affecting particulate matter (PM) levels in five major cities of Northern Europe namely: London, Paris, Hamburg, Copenhagen and Stockholm. Besides local emissions, PM profile at urban and suburban areas of the European Union (EU) is also influenced by regional PM sources due to atmospheric transport, thus geographical city distribution is of a great importance. At each city, PM10, PM2.5, NO2, SO2, CO and O3 air pollution data from two air pollution monitoring stations of the EU network were used. Different background characteristics of the selected two sampling sites at each city facilitated comparisons, providing a more exact analysis of PM sources. Four source apportionment methods: Pearson correlations among the levels of particulates and gaseous pollutants, characterisation of primal component analysis components, long-range transport analysis and extrapolation of PM size distribution ratios were applied. In general, fine (PM2.5) and coarse (PM10) particles were highly correlated, thus common sources are suggested. Combustion-originated gaseous pollutants (CO, NO2, SO2) were strongly associated to PM10 and PM2.5, primarily at areas severely affected by traffic. On the contrary, at background stations neighbouring important natural sources of particles or situated in suburban areas with rural background, natural emissions of aerosols were indicated. Series of daily PM2.5/PM10 ratios showed that minimum fraction values were detected during warm periods, due to higher volumes of airborne biogenic PM coarse, mainly at stations with important natural sources of particles in their vicinity. Hybrid single-particle Lagrangian integrated trajectory model was used, in order to extract 4-day backward air mass trajectories that arrived in the five cities which are under study during days with recorded PM10 exceedances. At all five cities, a significantly large fraction of those trajectories were classified
Phased Array Noise Source Localization Measurements Made on a Williams International FJ44 Engine
Podboy, Gary G.; Horvath, Csaba
2010-01-01
A 48-microphone planar phased array system was used to acquire noise source localization data on a full-scale Williams International FJ44 turbofan engine. Data were acquired with the array at three different locations relative to the engine, two on the side and one in front of the engine. At the two side locations the planar microphone array was parallel to the engine centerline; at the front location the array was perpendicular to the engine centerline. At each of the three locations, data were acquired at eleven different engine operating conditions ranging from engine idle to maximum (take off) speed. Data obtained with the array off to the side of the engine were spatially filtered to separate the inlet and nozzle noise. Tones occurring in the inlet and nozzle spectra were traced to the low and high speed spools within the engine. The phased array data indicate that the Inflow Control Device (ICD) used during this test was not acoustically transparent; instead, some of the noise emanating from the inlet reflected off of the inlet lip of the ICD. This reflection is a source of error for far field noise measurements made during the test. The data also indicate that a total temperature rake in the inlet of the engine is a source of fan noise.
Miller, John M; Kalra, Vikas; Das, Mithilesh K; Jain, Rahul; Garlie, Jason B; Brewster, Jordan A; Dandamudi, Gopi
2017-03-14
Mounting evidence shows that localized sources maintain atrial fibrillation (AF). However, it is unclear in unselected "real-world" patients if sources drive persistent atrial fibrillation (PeAF), long-standing persistent atrial fibrillation (LPeAF), or paroxysmal atrial fibrillation (PAF); if right atrial sites are important; and what the long-term success of source ablation is. The aim of this study was to analyze the role of rotors and focal sources in a large academic registry of consecutive patients undergoing source mapping for AF. One hundred seventy consecutive patients (mean age 59 ± 12 years, 79% men) with PAF (37%), PeAF (31%), or LPeAF (32%). Of these, 73 (43%) had undergone at least 1 prior ablation attempt (mean 1.9 ± 0.8; range: 1 to 4). Focal impulse and rotor modulation (FIRM) with an endocardial basket catheter was used in all cases. FIRM analysis revealed sources in the right atrium in 85% of patients (1.8 ± 1.3) and in the left atrium in 90% of patients (2.0 ± 1.3). FIRM ablation terminated AF to sinus rhythm or atrial flutter or tachycardia in 59% (PAF), 37% (PeAF), and 19% (LPeAF) of patients, with 15 of 67 terminations due to right atrial ablation. On follow-up, freedom from AF after a single FIRM procedure for the entire series was 95% (PAF), 83% (PeAF), and 82% (LPeAF) at 1 year and freedom from all atrial arrhythmias was 77% (PAF), 75% (PeAF), and 57% (LPeAF). In the Indiana University FIRM registry, FIRM-guided ablation produced high single-procedure success, mostly in patients with nonparoxysmal AF. Data from mapping, acute terminations, and outcomes strongly support the mechanistic role of biatrial rotors and focal sources in maintaining AF in diverse populations. Randomized trials of FIRM-guided ablation and mechanistic studies to determine how rotors form, progress, and regress are needed. Copyright © 2017 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
Local Management as a Proposal for the Solution of Urban Planning Common Problems in Latin America
Verónica Sánchez García
2015-09-01
Full Text Available The scene of the majority of Latin American cities is hopeless due the crisis faced by this part of the world. The decisive factor was globalization because it forced an economical restructuring and the implementation of new ways of production. Cities had to reorganize to deal with and adapt to this system through “global cities.” This way, it was possible to strengthen certain groups or population areas while ignoring others. This generated and emphasized poverty, which, at the same time, created social and environmental segregation, insecurity, mobility, lack of housing and utilities, overspend, waste of materials and human resources, as well as other institutional difficulties. These were a constant and limited the equitable access to social opportunities.For this reason, every urban planning and prediction system should take into account realistic circumstances that foster solidarity, participation, consensus, and sustainability as the central concept of the strategy to implement. This is known as “local management.” To manage a city implies working together with public, private, and social sectors in order to solve everyday problems efficiently and wisely. This way, it is possible to prevent and solve the difficulties faced by the community while searching for a common good and the recovery of its citizenship.
Chun-Liang Lu
2014-12-01
Full Text Available Differential evolution (DE is a simple, powerful optimization algorithm, which has been widely used in many areas. However, the choices of the best mutation and search strategies are difficult for the specific issues. To alleviate these drawbacks and enhance the performance of DE, in this paper, the hybrid framework based on the adaptive mutation and Wrapper Local Search (WLS schemes, is proposed to improve searching ability to efficiently guide the evolution of the population toward the global optimum. Furthermore, the effective particle encoding representation named Particle Segment Operation-Machine Assignment (PSOMA that we previously published is applied to always produce feasible candidate solutions for solving the Flexible Job-shop Scheduling Problem (FJSP. Experiments were conducted on comprehensive set of complex benchmarks including the unimodal, multimodal and hybrid composition function, to validate performance of the proposed method and to compare with other state-of-the art DE variants such as jDE, JADE, MDE_pBX etc. Meanwhile, the hybrid DE model incorporating PSOMA is used to solve different representative instances based on practical data for multi-objective FJSP verifications. Simulation results indicate that the proposed method performs better for the majority of the single-objective scalable benchmark functions in terms of the solution accuracy and convergence rate. In addition, the wide range of Pareto-optimal solutions and more Gantt chart decision-makings can be provided for the multi-objective FJSP combinatorial optimizations.
Estimate of main local sources to ambient ultrafine particle number concentrations in an urban area
Rahman, Md Mahmudur; Mazaheri, Mandana; Clifford, Sam; Morawska, Lidia
2017-09-01
Quantifying and apportioning the contribution of a range of sources to ultrafine particles (UFPs, D statistical modelling and other exploratory tools. The Bayesian model was trained on the PNC data on days where NP formations were known to have not occurred, hourly traffic counts, solar radiation data, and smooth daily trend. The model was applied to apportion and quantify the contribution of NP formations and local traffic and non-traffic sources to UFPs. The data analysis incorporated long-term measured time-series of total PNC (D ≥ 6 nm), particle number size distributions (PSD, D = 8 to 400 nm), PM2.5, PM10, NOx, CO, meteorological parameters and traffic counts at a stationary monitoring site. The developed Bayesian model showed reliable predictive performances in quantifying the contribution of NP formation events to UFPs (up to 4 × 104 particles cm- 3), with a significant day to day variability. The model identified potential NP formation and no-formations days based on PNC data and quantified the sources contribution to UFPs. Exploratory statistical analyses show that total mean PNC during the middle of the day was up to 32% higher than during peak morning and evening traffic periods, which were associated with NP formation events. The majority of UFPs measured during the peak traffic and NP formation periods were between 30-100 nm and smaller than 30 nm, respectively. To date, this is the first application of Bayesian model to apportion different sources contribution to UFPs, and therefore the importance of this study is not only in its modelling outcomes but in demonstrating the applicability and advantages of this statistical approach to air pollution studies.
Bakken, M. R.; Burke, M. G.; Fonck, R. J.; Lewicki, B. T.; Rhodes, A. T.; Winz, G. R.
2016-10-01
A new diagnostic measuring local E-> (r , t) fluctuations is being developed for plasma turbulence studies in tokamaks. This is accomplished by measuring fluctuations in the separation of the π components in the Hα motional Stark spectrum. Fluctuations in this separation are expected to be Ẽ / ẼEMSE 10-3EMSE 10-3 . In addition to a high throughput, high speed spectrometer, the project requires a low divergence (Ω 0 .5°) , 80 keV, 2.5 A H0 beam and a target plasma test stand. The beam employs a washer-stack arc ion source to achieve a high species fraction at full energy. Laboratory tests of the ion source demonstrate repeatable plasmas with Te 10 eV and ne 1.6 ×1017 m-3, sufficient for the beam ion optics requirements. Te and ne scalings of the ion source plasma are presented with respect to operational parameters. A novel three-phase resonant converter power supply will provide 6 mA/cm2 of 80 keV H0 at the focal plane for pulse lengths up to 15 ms, with low ripple δV / 80 keV 0.05 % at 280 kHz. Diagnostic development and validation tests will be performed on a magnetized plasma test stand with 0.5 T field. The test chamber will utilize a washer-stack arc source to produce a target plasma comparable to edge tokamak plasmas. A bias-plate with programmable power supply will be used to impose Ẽ within the target plasma. Work supported by US DOE Grant DE-FG02-89ER53296.
Gross, Lutz; Altinay, Cihan; Fenwick, Joel; Smith, Troy
2014-05-01
The program package escript has been designed for solving mathematical modeling problems using python, see Gross et al. (2013). Its development and maintenance has been funded by the Australian Commonwealth to provide open source software infrastructure for the Australian Earth Science community (recent funding by the Australian Geophysical Observing System EIF (AGOS) and the AuScope Collaborative Research Infrastructure Scheme (CRIS)). The key concepts of escript are based on the terminology of spatial functions and partial differential equations (PDEs) - an approach providing abstraction from the underlying spatial discretization method (i.e. the finite element method (FEM)). This feature presents a programming environment to the user which is easy to use even for complex models. Due to the fact that implementations are independent from data structures simulations are easily portable across desktop computers and scalable compute clusters without modifications to the program code. escript has been successfully applied in a variety of applications including modeling mantel convection, melting processes, volcanic flow, earthquakes, faulting, multi-phase flow, block caving and mineralization (see Poulet et al. 2013). The recent escript release (see Gross et al. (2013)) provides an open framework for solving joint inversion problems for geophysical data sets (potential field, seismic and electro-magnetic). The strategy bases on the idea to formulate the inversion problem as an optimization problem with PDE constraints where the cost function is defined by the data defect and the regularization term for the rock properties, see Gross & Kemp (2013). This approach of first-optimize-then-discretize avoids the assemblage of the - in general- dense sensitivity matrix as used in conventional approaches where discrete programming techniques are applied to the discretized problem (first-discretize-then-optimize). In this paper we will discuss the mathematical framework for
Dynamical Stability of an Ion in a Linear Trap as a Solid-State Problem of Electron Localization
Berman, G P; James, D F V; Hughes, R J; Kamenev, D I
2000-01-01
When an ion confined in a linear ion trap interacts with a coherent laser field, the internal degrees of freedom, related to the electron transitions, couple to the vibrational degree of freedom of the ion. As a result of this interaction, quantum dynamics of the vibrational degree of freedom becomes complicated, and in some ranges of parameters even chaotic. We analyze the vibrational ion dynamics using a formal analogy with the solid-state problem of electron localization. In particular, we show how the resonant approximation used in analysis of the ion dynamics, leads to a transition from a two-dimensional (2D) to a one-dimensional problem (1D) of electron localization. The localization length in the solid-state problem is estimated in cases of weak and strong interaction between the cites of the 2D cell by using the methods of resonance perturbation theory, common in analysis of 1D time-dependent dynamical systems.
Denisov, A. M.
2016-10-01
An initial-boundary value problem for the two-dimensional heat equation with a source is considered. The source is the sum of two unknown functions of spatial variables multiplied by exponentially decaying functions of time. The inverse problem is stated of determining two unknown functions of spatial variables from additional information on the solution of the initial-boundary value problem, which is a function of time and one of the spatial variables. It is shown that, in the general case, this inverse problem has an infinite set of solutions. It is proved that the solution of the inverse problem is unique in the class of sufficiently smooth compactly supported functions such that the supports of the unknown functions do not intersect. This result is extended to the case of a source involving an arbitrary finite number of unknown functions of spatial variables multiplied by exponentially decaying functions of time.
Coda Q Attenuation and Source Parameters Analysis in North East India Using Local Earthquakes
Mohapatra, A. K.; Mohanty, W. K.; Earthquake Seismology
2010-12-01
Alok Kumar Mohapatra1* and William Kumar Mohanty1 *Corresponding author: alokgpiitkgp@gmail.com 1Department of Geology and Geophysics, Indian Institute of Technology, Kharagpur, West Bengal, India. Pin-721302 ABSTRACT In the present study, the quality factor of coda waves (Qc) and the source parameters has been estimated for the Northeastern India, using the digital data of ten local earthquakes from April 2001 to November 2002. Earthquakes with magnitude range from 3.8 to 4.9 have been taken into account. The time domain coda decay method of a single back scattering model is used to calculate frequency dependent values of Coda Q (Qc) where as, the source parameters like seismic moment(Mo), stress drop, source radius(r), radiant energy(Wo),and strain drop are estimated using displacement amplitude spectrum of body wave using Brune's model. The earthquakes with magnitude range 3.8 to 4.9 have been used for estimation Qc at six central frequencies 1.5 Hz, 3.0 Hz, 6.0 Hz, 9.0 Hz, 12.0 Hz, and 18.0 Hz. In the present work, the Qc value of local earthquakes are estimated to understand the attenuation characteristic, source parameters and tectonic activity of the region. Based on a criteria of homogeneity in the geological characteristics and the constrains imposed by the distribution of available events the study region has been classified into three zones such as the Tibetan Plateau Zone (TPZ), Bengal Alluvium and Arakan-Yuma Zone (BAZ), Shillong Plateau Zone (SPZ). It follows the power law Qc= Qo (f/fo)n where, Qo is the quality factor at the reference frequency (1Hz) fo and n is the frequency parameter which varies from region to region. The mean values of Qc reveals a dependence on frequency, varying from 292.9 at 1.5 Hz to 4880.1 at 18 Hz. Average frequency dependent relationship Qc values obtained of the Northeastern India is 198 f 1.035, while this relationship varies from the region to region such as, Tibetan Plateau Zone (TPZ): Qc= 226 f 1.11, Bengal Alluvium
J.R.F. Arruda
1998-01-01
Full Text Available This paper presents an experimental method especially adapted for the computation of structural power flow using spatially dense vibration data measured with scanning laser Doppler vibrometers. In the proposed method, the operational deflection shapes measured over the surface of the structure are curve-fitted using a two-dimensional discrete Fourier series approximation that minimizes the effects of spatial leakage. From the wavenumber-frequency domain data thus obtained, the spatial derivatives that are necessary to determine the structural power flow are easily computed. Divergence plots are then obtained from the computed intensity fields. An example consisting of a rectangular aluminum plate supported by rubber mounts and excited by a point force is used to appraise the proposed method. The proposed method is compared with more traditional finite difference methods. The proposed method was the only to allow the localization of the energy source and sinks from the experimental divergence plots.
DBSproc: An open source process for DBS electrode localization and tractographic analysis.
Lauro, Peter M; Vanegas-Arroyave, Nora; Huang, Ling; Taylor, Paul A; Zaghloul, Kareem A; Lungu, Codrin; Saad, Ziad S; Horovitz, Silvina G
2016-01-01
Deep brain stimulation (DBS) is an effective surgical treatment for movement disorders. Although stimulation sites for movement disorders such as Parkinson's disease are established, the therapeutic mechanisms of DBS remain controversial. Recent research suggests that specific white-matter tract and circuit activation mediates symptom relief. To investigate these questions, we have developed a patient-specific open-source software pipeline called 'DBSproc' for (1) localizing DBS electrodes and contacts from postoperative CT images, (2) processing structural and diffusion MRI data, (3) registering all images to a common space, (4) estimating DBS activation volume from patient-specific voltage and impedance, and (5) understanding the DBS contact-brain connectivity through probabilistic tractography. In this paper, we explain our methodology and provide validation with anatomical and tractographic data. This method can be used to help investigate mechanisms of action of DBS, inform surgical and clinical assessments, and define new therapeutic targets.
Local Fruit Wastes as a Potential Source of Natural Antioxidant: An Overview
Ibrahim, U. K.; Kamarrudin, N.; Suzihaque, M. U. H.; Hashib, S. Abd
2017-06-01
Food industry in Malaysia which used fruits as one of the raw material such as the production of fruit juices, concentrates, jams and dried fruits, the main wastes of the production are the peel and the seed of the fruit. Nowadays, people have shown the interests to study the antioxidant content in the fruit wastes. All kind of fruits are believed to contain high amount of natural antioxidant properties such as vitamins, phenol, flavonoid and carotenoid. Thus, this paper presented the work done by researcher on antioxidant activity in the peel especially on local fruit such as mango peel, watermelon rind, banana peel and mangosteen pericarp. The review shows that the peel of the fruit is a good source of antioxidant and other bioactive compounds which have many benefits especially towards human health.
Katri Kilpeläinen
2016-02-01
Full Text Available Background: Finland has a long tradition of gathering information about the health and welfare of the adult population. Design: Surveys and administrative registers form the basis for national and local health monitoring in Finland. Results: Different data sources are used in Finland to develop key indicators, which can be used to evaluate how the national health policy targets have been met in different parts of the country and in different population subgroups. Progress has been shown in chronic disease risk factors, such as smoking reduction. However, some health policy targets have not been met. Socioeconomic health differences, for example, have remained large compared with other European countries. Conclusion: Although data availability for key health indicators is good in Finland, there is a need for wider and more comprehensive use of this information by political decision-makers and healthcare professionals.
Imaging of local temperature distributions in mesas of high-Tc superconducting terahertz sources
Tsujimoto, M.; Kambara, H.; Maeda, Y.; Yoshioka, Y.; Nakagawa, Y.; Kakeya, I.
2014-12-01
Stacks of intrinsic Josephson junctions in high-Tc superconductors are a promising source of intense, continuous, and monochromatic terahertz waves. In this paer, we establish a fluorescence-based temperature imaging system to directly image the surface temperature on a Bi2Sr2CaCu2O8+δ mesa sample. Intense terahertz emissions are observed in both high- and low-bias regimes, where the mesa voltage satisfies the cavity resonance condition. In the high- bias regime, the temperature distributions are shown to be inhomogeneous with a considerable temperature rise. In contrast, in the low-bias regime, the distributions are rather uniform and the local temperature is close to the bath temperature over the entire sample.
Sub-sampling-based 2D localization of an impulsive acoustic source in reverberant environments
Omer, Muhammad
2014-07-01
This paper presents a robust method for two-dimensional (2D) impulsive acoustic source localization in a room environment using low sampling rates. The proposed method finds the time delay from the room impulse response (RIR) which makes it robust against room reverberations. We consider the RIR as a sparse phenomenon and apply a recently proposed sparse signal reconstruction technique called orthogonal clustering (OC) for its estimation from the sub-sampled received signal. The arrival time of the direct path signal at a pair of microphones is identified from the estimated RIR, and their difference yields the desired time delay estimate (TDE). Low sampling rates reduces the hardware and computational complexity and decreases the communication between the microphones and the centralized location. Simulation and experimental results of an actual hardware setup are presented to demonstrate the performance of the proposed technique.
Orhan TÜRKBEY
2002-02-01
Full Text Available Memetic algorithms, which use local search techniques, are hybrid structured algorithms like genetic algorithms among evolutionary algorithms. In this study, for Quadratic Assignment Problem (QAP, a memetic structured algorithm using a local search heuristic like 2-opt is developed. Developed in the algorithm, a crossover operator that has not been used before for QAP is applied whereas, Eshelman procedure is used in order to increase thesolution variability. The developed memetic algorithm is applied on test problems taken from QAP-LIB, the results are compared with the present techniques in the literature.
Yu Jiang
2012-01-01
Full Text Available A new finite element variational multiscale (VMS method based on two local Gauss integrations is proposed and analyzed for the stationary conduction-convection problems. The valuable feature of our method is that the action of stabilization operators can be performed locally at the element level with minimal additional cost. The theory analysis shows that our method is stable and has a good precision. Finally, the numerical test agrees completely with the theoretical expectations and the “ exact solution,” which show that our method is highly efficient for the stationary conduction-convection problems.
Migliorelli, Carolina; Alonso, Joan F.; Romero, Sergio; Mañanas, Miguel A.; Nowak, Rafał; Russi, Antonio
2016-04-01
Objective. Medical intractable epilepsy is a common condition that affects 40% of epileptic patients that generally have to undergo resective surgery. Magnetoencephalography (MEG) has been increasingly used to identify the epileptogenic foci through equivalent current dipole (ECD) modeling, one of the most accepted methods to obtain an accurate localization of interictal epileptiform discharges (IEDs). Modeling requires that MEG signals are adequately preprocessed to reduce interferences, a task that has been greatly improved by the use of blind source separation (BSS) methods. MEG recordings are highly sensitive to metallic interferences originated inside the head by implanted intracranial electrodes, dental prosthesis, etc and also coming from external sources such as pacemakers or vagal stimulators. To reduce these artifacts, a BSS-based fully automatic procedure was recently developed and validated, showing an effective reduction of metallic artifacts in simulated and real signals (Migliorelli et al 2015 J. Neural Eng. 12 046001). The main objective of this study was to evaluate its effects in the detection of IEDs and ECD modeling of patients with focal epilepsy and metallic interference. Approach. A comparison between the resulting positions of ECDs was performed: without removing metallic interference; rejecting only channels with large metallic artifacts; and after BSS-based reduction. Measures of dispersion and distance of ECDs were defined to analyze the results. Main results. The relationship between the artifact-to-signal ratio and ECD fitting showed that higher values of metallic interference produced highly scattered dipoles. Results revealed a significant reduction on dispersion using the BSS-based reduction procedure, yielding feasible locations of ECDs in contrast to the other two approaches. Significance. The automatic BSS-based method can be applied to MEG datasets affected by metallic artifacts as a processing step to improve the localization of
Mahmoudi, Reza; Hafezalkotob, Ashkan; Makui, Ahmad
2014-06-01
Pollution and environmental protection in the present century are extremely significant global problems. Power plants as the largest pollution emitting industry have been the cause of a great deal of scientific researches. The fuel or source type used to generate electricity by the power plants plays an important role in the amount of pollution produced. Governments should take visible actions to promote green fuel. These actions are often called the governmental financial interventions that include legislations such as green subsidiaries and taxes. In this paper, by considering the government role in the competition of two power plants, we propose a game theoretical model that will help the government to determine the optimal taxes and subsidies. The numerical examples demonstrate how government could intervene in a competitive market of electricity to achieve the environmental objectives and how power plants maximize their utilities in each energy source. The results also reveal that the government's taxes and subsidiaries effectively influence the selected fuel types of power plants in the competitive market.
Sim, Jaeheon
2015-05-12
Droplet evaporation by a localized heat source under microgravity conditions was numerically investigated in an attempt to understand the mechanism of the fuel vapor jet ejection, which was observed experimentally during the flame spread through a droplet array. An Eulerian-Lagrangian method was implemented with a temperature-dependent surface tension model and a local phase change model in order to effectively capture the interfacial dynamics between liquid droplet and surrounding air. It was found that the surface tension gradient caused by the temperature variation within the droplet creates a thermo-capillary effect, known as the Marangoni effect, creating an internal flow circulation and outer shear flow which drives the fuel vapor into a tail jet. A parametric study demonstrated that the Marangoni effect is indeed significant at realistic droplet combustion conditions, resulting in a higher evaporation constant. A modified Marangoni number was derived in order to represent the surface force characteristics. The results at different pressure conditions indicated that the nonmonotonic response of the evaporation rate to pressure may also be attributed to the Marangoni effect.
Problems of correlation of global and local monitoring of air pollution.
Berlyand, M E; Volberg, N S; Lavrinenko, R F; Rusina, E N
1982-12-01
(1) The Air Polluttion Monitoring System has got a significant development of late, which is in direct relation with a considerable extention and improvement of the observation network in cities and industrial areas, with creation of a new network for assessing regional and global background of the atmosphere pollution, as well as with the wide involvement of meteorologists to monitoring organization. (2) While developing a new global monitoring system, it is necessary to take into account its relationship with the local monitoring within the region of air pollution sources, i.e. at the \\lsimpact\\rs level. The need in such an account is dictated first of all by the physics of pollutant spreading that states: changes in air pollution over large territories must be in a certain agreement with greater changes in the vicinity of emission sources. Methods applied in the global and local monitoring have also a number of common peculiarities. White organizing regional network for observations of the background pollution of the atmosphere twin stations (one of the pair of stations located outside the city boundaries in a small community, and the other, in the nearest city with the population of 200-400 thousand inhabitants) were established in the U.S.S.R. and in a number of socialist countries in Europe. (3) Implementation of the twin-station principles in the U.S.S.R. has contributed to data interpretation and representativity assessment as well as to correction of the station location. Observation results from the Soviet background stations and those abroad have been compared by now according to a number of indices. (4) The correlation of monitoring systems of various scales tells positively both on mutual improvement and completion of observational methods. The methods of obtaining integral characteristics of air pollution were used for the global monitoring, in particular spectral actinometric observations and chemical analysis of the precipitation composition. Now
Previous degassing of coal beds in the Jiu Valley coalfield - energy source for local community
Lupu, C.; Jurca, L. [National Institute for Safety in Mine and Explosion Protection, Petrosani (Romania)
2001-07-01
The restructuring process of the Romanian mining industry required by transition to the market economy aims at raising of the labour productivity in a safe environment. This paper presents the systems and methods for degassing the coal beds employed in the coalfield of the Jiu Valley, in accordance with the specific geological conditions and the used mining methods. Researches were carried out aiming to determine the fissuring amplitude and permeability of the neighbouring rock mass, and the coal beds. These researches showed raises of methane emissions when the rocks in the roof or in the floor of the coal beds were sandstones or sandstone marls. A previous degassing of the coal beds is put into practice in the coalfield of the Jiu Valley. This process is accomplished both in a 'central' system with equipment placed outside the mine and in a 'local' system, using ejectors to catch methane. These ejectors are placed at the level of the underground mining works. The caught methane is discharged either into air when the aspiration equipment are placed outside the mine or trough discharge air flows of the polluted air from underground when underground ejectors are used. The caught methane amounts the values between 4.5 and 6 m{sub 3}/min, for the aspiration equipment placed outside the mine and 0.8-1.5 m{sub 3}/min, when the 'local' degassing system is employed. Taking into account the fact that methane caught in underground is an energy source and the greenhouse effect is increased when methane is discharged into the fresh air, there has been considered to be a good thing both for the needs of the producing units and for the local community that methane should be submitted to an industrial exploitation. 10 refs., 1 fig.
Siauve, N; Nicolas, L; Vollaire, C; Marchal, C
2004-12-01
This article describes an optimization process specially designed for local and regional hyperthermia in order to achieve the desired specific absorption rate in the patient. It is based on a genetic algorithm coupled to a finite element formulation. The optimization method is applied to real human organs meshes assembled from computerized tomography scans. A 3D finite element formulation is used to calculate the electromagnetic field in the patient, achieved by radiofrequency or microwave sources. Space discretization is performed using incomplete first order edge elements. The sparse complex symmetric matrix equation is solved using a conjugate gradient solver with potential projection pre-conditionning. The formulation is validated by comparison of calculated specific absorption rate distributions in a phantom to temperature measurements. A genetic algorithm is used to optimize the specific absorption rate distribution to predict the phases and amplitudes of the sources leading to the best focalization. The objective function is defined as the specific absorption rate ratio in the tumour and healthy tissues. Several constraints, regarding the specific absorption rate in tumour and the total power in the patient, may be prescribed. Results obtained with two types of applicators (waveguides and annular phased array) are presented and show the faculties of the developed optimization process.
Maize local landraces as sources for improved mineral elements availability from grain
Kravić Natalija
2014-01-01
Full Text Available The aim of this study was to investigate thirteen maize local landraces from Maize Research Institute (MRIZP Gene Bank drought tolerant mini-core collection in respect to Fe, Mn and Zn content in grain. In addition, phytate (Phy and β-carotene contents were determined. According to the results obtained, the highest Fe content was found in grain of LL3, whereas LL1and LL13 were the genotypes with the highest Mn, i.e. Zn content, respectively. However, due to the lowest level of Pphy, along with relatively higher level of Fe, Mn and Zn contents in grain, LL2 could be considered as valuable source in further breeding programs for improved mineral nutrient contents, particularly for Fe. Possible availability of investigated mineral elements was determined according to molar ratio between phytate as inhibiting factor and β-carotene as promoting factor for their absorption. Accordingly, genotype LL2, being with the lowest Pphy content, and genotype LL3, being with the highest β-carotene content (25.63 μg g-1 and the lowest phytate/β-carotene ratio, could be considered as potential sources of favorable genes for further breeding programs for improved nutritional quality, such as enhanced availability of investigated mineral elements.
Hydrocarbon status of soils under atmospheric pollution from a local industrial source
Gennadiev, A. N.; Zhidkin, A. P.; Pikovskii, Yu. I.; Kovach, R. G.; Koshovskii, T. S.; Khlynina, N. I.
2016-09-01
Contents and compositions of bitumoids, polycyclic aromatic hydrocarbons (PAHs), and free and retained hydrocarbon gases in soils along a transect at different distances from the local industrial source of atmospheric pollution with soot emissions have been studied. The reserves of PAHs progressively decrease when the distance from the source increases. Among the individual PAHs, the most significant decrease is observed for benzo[ a]pyrene, tetraphene, pyrene, chrysene, and anthracene. On plowlands, the share of heavy PAHs—benzo[ ghi]perylene, benzo[ a]pyrene, perylene, etc.—is lower than in the forest soils. In automorphic soils of the park zone adjacent to the industrial zone, the penetration depth of four-, five-, and sixring PAHs from the atmosphere is no more than 25 cm. In soils under natural forest vegetation, heavy PAHs do not penetrate deeper than 5 cm; in tilled soils, their penetration depth coincides with the lower boundary of plow horizons. Analysis of free gases in the soil air revealed hydrocarbons only under forest. From the quantitative and qualitative parameters of the content, reserves, and compositions of different hydrocarbons, the following modification types of hydrocarbon status in the studied soils were revealed: injection, atmosedimentation-injection, atmosedimentation-impact, atmosedimentation-distant, and biogeochemical types.
Impact of external industrial sources on the regional and local air quality of Mexico Megacity
V. H. Almanza
2013-10-01
from technological changes in the existing refinery is briefly discussed. These changes are due to the upcoming construction of a new refinery in Tula. The combination of emission reductions in the power plant, the refinery and in local sources in the MCMA could result in higher reductions on the average SO2 concentration. Reductions in external sources tend to affect more the northern part of the basin (−16.35% to −45.58%, whilst reductions of urban sources in the megacity tend to diminish SO2 levels substantially in the central, southwest, and southeast regions (−30.71% to −49.75%.
Source localization of turboshaft engine broadband noise using a three-sensor coherence method
Blacodon, Daniel; Lewy, Serge
2015-03-01
Turboshaft engines can become the main source of helicopter noise at takeoff. Inlet radiation mainly comes from the compressor tones, but aft radiation is more intricate: turbine tones usually are above the audible frequency range and do not contribute to the weighted sound levels; jet is secondary and radiates low noise levels. A broadband component is the most annoying but its sources are not well known (it is called internal or core noise). Present study was made in the framework of the European project TEENI (Turboshaft Engine Exhaust Noise Identification). Its main objective was to localize the broadband sources in order to better reduce them. Several diagnostic techniques were implemented by the various TEENI partners. As regards ONERA, a first attempt at separating sources was made in the past with Turbomeca using a three-signal coherence method (TSM) to reject background non-acoustic noise. The main difficulty when using TSM is the assessment of the frequency range where the results are valid. This drawback has been circumvented in the TSM implemented in TEENI. Measurements were made on a highly instrumented Ardiden turboshaft engine in the Turbomeca open-air test bench. Two engine powers (approach and takeoff) were selected to apply TSM. Two internal pressure probes were located in various cross-sections, either behind the combustion chamber (CC), the high-pressure turbine (HPT), the free-turbine first stage (TL), or in four nozzle sections. The third transducer was a far-field microphone located around the maximum of radiation, at 120° from the intake centerline. The key result is that coherence increases from CC to HPT and TL, then decreases in the nozzle up to the exit. Pressure fluctuations from HPT and TL are very coherent with the far-field acoustic spectra up to 700 Hz. They are thus the main acoustic source and can be attributed to indirect combustion noise (accuracy decreases above 700 Hz because coherence is lower, but far-field sound spectra
Determination of source parameters for local and regional earthquakes in Israel
Ataeva, G.; Shapira, A.; Hofstetter, A.
2015-04-01
We have investigated earthquake source parameters and seismic moment-magnitude relations from 103 regional and local earthquakes with moment magnitude 2.6 to 7.2, which occurred in a distance range from 4.5 to 550 km during 1995-2012 by applying Brune's seismic source model (J Geophys Res 75:4997-5009, 1970, J Geophys Res 76:5002, 1971) for P- and S/Lg-wave displacement spectra. Considering P- and S-wave data separately, we first studied the empirical dependence of the Fourier spectral amplitudes Ω due to the geometrical spreading and the inelastic attenuation and of the corner frequency, f 0, with the epicentral distances, R. We found the distance correction parameters, Re 0.0042 R and R 0.8333 e 0.00365 R for the low-frequency spectral amplitudes and f 0 = f {0/'} e 0.00043 R and f 0 = f {0/'} e 0.00044 R for the corner frequency at the source, f 0, and observed at the station, f {0/'}, from P-wave and S-wave spectra, respectively. Applying the distance correction procedure, we determined the source displacement spectrum of P and S waves for each earthquake to estimate the seismic moment, M 0; the moment magnitude, M W; the source radius, r; and the stress drop, Δσ. The seismic moments range from 1.06 × 1013 to 7.67 × 1019 N m, and their corresponding moment magnitudes are in the range of 2.6-7.2. Values of stress drop Δσ vary from 0.1 to 44 MPa. It was found that the stress drop increases with the increasing seismic moment in the range of 1013-1016 N m and possibly becomes constant at higher magnitudes, reaching a maximum value of about 40-45 MPa. We demonstrate that the values of the M 0 and M W estimated from P-wave and S-wave analysis are consistent and confirmed by the results of waveform inversions, i.e., centroid moment tensor (CMT) solution.
Hu, Jin; Tian, Jie; Pan, Xiaohong; Liu, Jiangang
2007-03-01
The purpose of this paper is to compare between EEG source localization and fMRI during emotional processing. 108 pictures for EEG (categorized as positive, negative and neutral) and 72 pictures for fMRI were presented to 24 healthy, right-handed subjects. The fMRI data were analyzed using statistical parametric mapping with SPM2. LORETA was applied to grand averaged ERP data to localize intracranial sources. Statistical analysis was implemented to compare spatiotemporal activation of fMRI and EEG. The fMRI results are in accordance with EEG source localization to some extent, while part of mismatch in localization between the two methods was also observed. In the future we should apply the method for simultaneous recording of EEG and fMRI to our study.
Kim, Yusung, E-mail: yusung-kim@uiowa.edu [Department of Radiation Oncology, The University of Iowa, Iowa City, Iowa (United States); Seol, Dong Rim [Department of Orthopaedic Surgery, The University of Iowa, Iowa City, Iowa (United States); Mohapatra, Sucheta [Department of Biomedical Engineering, The University of Iowa, Iowa City, Iowa (United States); Sunderland, John J. [Department of Radiology, The University of Iowa, Iowa City, Iowa (United States); Schultz, Michael K. [Department of Radiation Oncology, The University of Iowa, Iowa City, Iowa (United States); Department of Radiology, The University of Iowa, Iowa City, Iowa (United States); Domann, Frederick E. [Department of Radiation Oncology, The University of Iowa, Iowa City, Iowa (United States); Department of Surgery, The University of Iowa, Iowa City, Iowa (United States); Lim, Tae-Hong [Department of Biomedical Engineering, The University of Iowa, Iowa City, Iowa (United States)
2014-04-01
Purpose: To propose a novel radiation therapy (RT) delivery modality: locally targeted delivery of micron-size RT sources by using temperature-sensitive hydrogel (RT-GEL) as an injectable vehicle. Methods and Materials: Hydrogel is a water-like liquid at room temperature but gels at body temperature. Two US Food and Drug Administration-approved polymers were synthesized. Indium-111 (In-111) was used as the radioactive RT-GEL source. The release characteristics of In-111 from polymerized RT-GEL were evaluated. The injectability and efficacy of RT-GEL delivery to human breast tumor were tested using animal models with control datasets of RT-saline injection. As proof-of-concept studies, a total of 6 nude mice were tested by injecting 4 million tumor cells into their upper backs after a week of acclimatization. Three mice were injected with RT-GEL and 3 with RT-saline. Single-photon emission computed tomography (SPECT) and CT scans were performed on each mouse at 0, 24, and 48 h after injection. The efficacy of RT-GEL was determined by comparison with that of the control datasets by measuring kidney In-111 accumulation (mean nCi/cc), representing the distant diffusion of In-111. Results: RT-GEL was successfully injected into the tumor by using a 30-gauge needle. No difficulties due to polymerization of hydrogel during injection and intratumoral pressure were observed during RT-GEL injection. No back flow occurred for either RT-GEL or RT-saline. The residual tumor activities of In-111 were 49% at 24 h (44% at 48 h, respectively) for RT-GEL and 29% (22%, respectively) for RT-saline. Fused SPECT-CT images of RT-saline showed considerable kidney accumulation of In-111 (2886%, 261%, and 262% of RT-GEL at 0, 24, and 48 h, respectively). Conclusions: RT-GEL was successfully injected and showed much higher residual tumor activity: 170% (200%, respectively), than that of RT-saline at 24 h (48 h, respectively) after injection with a minimal accumulation of In-111 to the
Effect of land uses and wind direction on the contribution of local sources to airborne pollen
Rojo, Jesús; Rapp, Ana; Lara, Beatriz; Fernández-González, Federico; Pérez-Badia, Rosa
2015-12-15
The interpretation of airborne pollen levels in cities based on the contribution of the surrounding flora and vegetation is a useful tool to estimate airborne allergen concentrations and, consequently, to determine the allergy risk for local residents. This study examined the pollen spectrum in a city in central Spain (Guadalajara) and analysed the vegetation landscape and land uses within a radius of 20 km in an attempt to identify and locate the origin of airborne pollen and to determine the effect of meteorological variables on pollen emission and dispersal. The results showed that local wind direction was largely responsible for changes in the concentrations of different airborne pollen types. The land uses contributing most to airborne pollen counts were urban green spaces, though only 0.1% of the total surface area studied, and broadleaved forest which covered 5% of the study area. These two types of land use together accounted for 70% of the airborne pollen. Crops, scrubland and pastureland, though covering 80% of the total surface area, contributed only 18.6% to the total pollen count, and this contribution mainly consisted of pollen from Olea and herbaceous plants, including Poaceae, Urticaceae and Chenopodiaceae–Amaranthaceae. Pollen from ornamental species were mainly associated with easterly (Platanus), southerly (Cupressaceae) and westerly (Cupressaceae and Platanus) winds from the areas where the city's largest parks and gardens are located. Quercus pollen was mostly transported by winds blowing in from holm-oak stands on the eastern edge of the city. The highest Populus pollen counts were associated with easterly and westerly winds blowing in from areas containing rivers and streams. The airborne pollen counts generally rose with increasing temperature, solar radiation and hours of sunlight, all of which favour pollen release. In contrast, pollen counts declined with increased relative humidity and rainfall, which hinder airborne pollen
George, J.S.; Schmidt, D.M.; Wood, C.C.
1999-02-01
We have developed a Bayesian approach to the analysis of neural electromagnetic (MEG/EEG) data that can incorporate or fuse information from other imaging modalities and addresses the ill-posed inverse problem by sarnpliig the many different solutions which could have produced the given data. From these samples one can draw probabilistic inferences about regions of activation. Our source model assumes a variable number of variable size cortical regions of stimulus-correlated activity. An active region consists of locations on the cortical surf ace, within a sphere centered on some location in cortex. The number and radi of active regions can vary to defined maximum values. The goal of the analysis is to determine the posterior probability distribution for the set of parameters that govern the number, location, and extent of active regions. Markov Chain Monte Carlo is used to generate a large sample of sets of parameters distributed according to the posterior distribution. This sample is representative of the many different source distributions that could account for given data, and allows identification of probable (i.e. consistent) features across solutions. Examples of the use of this analysis technique with both simulated and empirical MEG data are presented.
Higher order non-local (n-1,1) conjugate type boundary value problems
Webb, J. R. L.
2009-05-01
We show how some recent work of Webb and Infante, which gave a unified method of tackling many nonlocal boundary value problems, can be applied to some higher order boundary value problems with more general nonlocal boundary conditions than previously studied. This improves some recent work on problems with conjugate type boundary conditions.
Zeitler, Daniel M; Dorman, Michael F; Natale, Sarah J; Loiselle, Louise; Yost, William A; Gifford, Rene H
2015-09-01
To assess improvements in sound source localization and speech understanding in complex listening environments after unilateral cochlear implantation for single-sided deafness (SSD). Nonrandomized, open, prospective case series. Tertiary referral center. Nine subjects with a unilateral cochlear implant (CI) for SSD (SSD-CI) were tested. Reference groups for the task of sound source localization included young (n = 45) and older (n = 12) normal-hearing (NH) subjects and 27 bilateral CI (BCI) subjects. Unilateral cochlear implantation. Sound source localization was tested with 13 loudspeakers in a 180 arc in front of the subject. Speech understanding was tested with the subject seated in an 8-loudspeaker sound system arrayed in a 360-degree pattern. Directionally appropriate noise, originally recorded in a restaurant, was played from each loudspeaker. Speech understanding in noise was tested using the Azbio sentence test and sound source localization quantified using root mean square error. All CI subjects showed poorer-than-normal sound source localization. SSD-CI subjects showed a bimodal distribution of scores: six subjects had scores near the mean of those obtained by BCI subjects, whereas three had scores just outside the 95th percentile of NH listeners. Speech understanding improved significantly in the restaurant environment when the signal was presented to the side of the CI. Cochlear implantation for SSD can offer improved speech understanding in complex listening environments and improved sound source localization in both children and adults. On tasks of sound source localization, SSD-CI patients typically perform as well as BCI patients and, in some cases, achieve scores at the upper boundary of normal performance.
Valtierra, Robert Daniel
Passive acoustic localization has benefited from many major developments and has become an increasingly important focus point in marine mammal research. Several challenges still remain. This work seeks to address several of these challenges such as tracking the calling depths of baleen whales. In this work, data from an array of widely spaced Marine Acoustic Recording Units (MARUs) was used to achieve three dimensional localization by combining the methods Time Difference of Arrival (TDOA) and Direct-Reflected Time Difference of Arrival (DRTD) along with a newly developed autocorrelation technique. TDOA was applied to data for two dimensional (latitude and longitude) localization and depth was resolved using DRTD. Previously, DRTD had been limited to pulsed broadband signals, such as sperm whale or dolphin echolocation, where individual direct and reflected signals are separated in time. Due to the length of typical baleen whale vocalizations, individual multipath signal arrivals can overlap making time differences of arrival difficult to resolve. This problem can be solved using an autocorrelation, which can extract reflection information from overlapping signals. To establish this technique, a derivation was made to model the autocorrelation of a direct signal and its overlapping reflection. The model was exploited to derive performance limits allowing for prediction of the minimum resolvable direct-reflected time difference for a known signal type. The dependence on signal parameters (sweep rate, call duration) was also investigated. The model was then verified using both recorded and simulated data from two analysis cases for North Atlantic right whales (NARWs, Eubalaena glacialis) and humpback whales (Megaptera noveaengliae). The newly developed autocorrelation technique was then combined with DRTD and tested using data from playback transmissions to localize an acoustic transducer at a known depth and location. The combined DRTD-autocorrelation methods
Yee, Helen M. C.; Kotov, D. V.; Wang, Wei; Shu, Chi-Wang
2013-01-01
. The present investigation for three very different stiff system cases confirms some of the findings of Lafon & Yee (1996) and LeVeque & Yee (1990) for a model scalar PDE. The findings might shed some light on the reported difficulties in numerical combustion and problems with stiff nonlinear (homogeneous) source terms and discontinuities in general.