WorldWideScience

Sample records for localized electronic states

  1. Localized electronic states: the small radius potential approximation

    International Nuclear Information System (INIS)

    Steslicka, M.; Jurczyszyn, L.

    1984-09-01

    Using a quasi three-dimensional crystal model we investigate the localized electronic states, generated by the crystal surface covered by foreign atoms. Two such states are found in the first forbidden energy gap and, because of their localization properties, called the Tamm-like and adsorption-like states. Using the small radius potential approximation, the properties of both types of states were discussed in detail. (author)

  2. Proton-coupled electron transfer versus hydrogen atom transfer: generation of charge-localized diabatic states.

    Science.gov (United States)

    Sirjoosingh, Andrew; Hammes-Schiffer, Sharon

    2011-03-24

    The distinction between proton-coupled electron transfer (PCET) and hydrogen atom transfer (HAT) mechanisms is important for the characterization of many chemical and biological processes. PCET and HAT mechanisms can be differentiated in terms of electronically nonadiabatic and adiabatic proton transfer, respectively. In this paper, quantitative diagnostics to evaluate the degree of electron-proton nonadiabaticity are presented. Moreover, the connection between the degree of electron-proton nonadiabaticity and the physical characteristics distinguishing PCET from HAT, namely, the extent of electronic charge redistribution, is clarified. In addition, a rigorous diabatization scheme for transforming the adiabatic electronic states into charge-localized diabatic states for PCET reactions is presented. These diabatic states are constructed to ensure that the first-order nonadiabatic couplings with respect to the one-dimensional transferring hydrogen coordinate vanish exactly. Application of these approaches to the phenoxyl-phenol and benzyl-toluene systems characterizes the former as PCET and the latter as HAT. The diabatic states generated for the phenoxyl-phenol system possess physically meaningful, localized electronic charge distributions that are relatively invariant along the hydrogen coordinate. These diabatic electronic states can be combined with the associated proton vibrational states to generate the reactant and product electron-proton vibronic states that form the basis of nonadiabatic PCET theories. Furthermore, these vibronic states and the corresponding vibronic couplings may be used to calculate rate constants and kinetic isotope effects of PCET reactions.

  3. An all-silicon laser by coupling between electronic localized states and defect states of photonic crystal

    Energy Technology Data Exchange (ETDEWEB)

    Huang Weiqi, E-mail: WQHuang2001@yahoo.com [Institute of Nanophotonic Physics, Key Laboratory of Photoelectron Technology and Application, Guizhou University, Guiyang 550025 (China); Huang Zhongmei; Miao Xinjiang; Cai Chenlan; Liu Jiaxin; Lue Quan [Institute of Nanophotonic Physics, Key Laboratory of Photoelectron Technology and Application, Guizhou University, Guiyang 550025 (China); Liu Shirong, E-mail: Shirong@yahoo.com [State Key Laboratory of Ore Deposit Geochemistry Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550003 (China); Qin Chaojian [State Key Laboratory of Ore Deposit Geochemistry Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550003 (China)

    2012-01-15

    In a nano-laser of Si quantum dots (QD), the smaller QD fabricated by nanosecond pulse laser can form the pumping level tuned by the quantum confinement (QC) effect. Coupling between the active centers formed by localized states of surface bonds and the two-dimensional (2D) photonic crystal is used to select model in the nano-laser. The experimental demonstration is reported in which the peaks of stimulated emission at about 600 nm and 700 nm were observed on the Si QD prepared in oxygen after annealing which improves the stimulated emission. It is interesting to make a comparison between the localized electronic states in gap due to defect formed by surface bonds and the localized photonic states in gap of photonic band due to defect of 2D photonic crystal.

  4. Electron localization in water clusters

    International Nuclear Information System (INIS)

    Landman, U.; Barnett, R.N.; Cleveland, C.L.; Jortner, J.

    1987-01-01

    Electron attachment to water clusters was explored by the quantum path integral molecular dynamics method, demonstrating that the energetically favored localization mode involves a surface state of the excess electron, rather than the precursor of the hydrated electron. The cluster size dependence, the energetics and the charge distribution of these novel electron-cluster surface states are explored. 20 refs., 2 figs., 1 tab

  5. Electron localization in one-dimensional systems

    International Nuclear Information System (INIS)

    Chao, K.A.

    1984-01-01

    The pure regional localization and the global localization have been investigated via the inverse participation ratio and te moment analysis. If the envelop function of a localized state is more complicated than the simple exponential function e sup(-r/xi), the inverse participation ratio is inadequate to describe the localization properties of an electron. This is the case discovered recently in a stereo-irregular chain fo atoms including the electron-electron interaction and the structure disorder. The localization properties in this system are analysed in terms of the moments. (Author) [pt

  6. How do electron localization functions describe π-electron delocalization?

    Science.gov (United States)

    Steinmann, Stephan N; Mo, Yirong; Corminboeuf, Clemence

    2011-12-14

    Scalar fields provide an intuitive picture of chemical bonding. In particular, the electron localization function (ELF) has proven to be highly valuable in interpreting a broad range of bonding patterns. The discrimination between enhanced or reduced electron (de)localization within cyclic π-conjugated systems remains, however, challenging for ELF. In order to clearly distinguish between the local properties of ten highly and weakly π-(de)localized prototype systems, we compare the ELFs of both the canonical wave functions and electron-localized states (diabatic) with those of two closely related scalar fields: the electron localizability indicator (ELI-D) and the localized orbital locator (LOL). The simplest LOL function distinguishes enhanced from weak π-(de)localization in an insightful and reliable manner. LOL offers the finest contrast between annulenes with 4n/4n + 2 π electrons and their inorganic analogues as well as between hyperconjugated cyclopentadiene derivatives. LOL(π) also gives an appealing and intuitive picture of the π-bond. In contrast, the most popular ELF fails to capture subtle contrasting local electronic properties and suffers from the arbitrariness of the σ/π dissection. The orbital separation of the most recent ELI-D is clear-cut but the interpretations sometime less straightforward in the present context.

  7. Electron localization, polarons and clustered states in manganites

    International Nuclear Information System (INIS)

    Mannella, N.

    2004-01-01

    Full text: A recent multi-spectroscopic study of prototypical colossal magnetoresistance (CMR) compounds La 1-x Sr x MnO 3 (LSMO, x = 0.3, 0.4) using photoemission (PE), x-ray absorption (XAS), x-ray emission (XES) and extended x-ray absorption e structure (EXAFS) has exposed a dramatic change in the electronic structure on crossing the ferromagnetic-to-paramagnetic transition temperature (T C ). In particular, this investigation revealed an increase of the Mn magnetic moment by ca. 1 Bohr magneton and charge transfer to the Mn atom on crossing T C concomitant with the presence of Jahn-Teller distortions, thus providing direct evidence of lattice polaron formation. These results thus challenge the belief of some authors that the LSMO compounds are canonical double-exchange (DE) systems in which polaron formation is unimportant, and thus help to unify the theoretical description of the CMR oxides. The relationship of these data to other recent work suggesting electron localization, polarons and phase separation, along with additional measurements of magnetic susceptibility indicating the formation of ferromagnetic clusters in the metallic paramagnetic state above T C will be discussed

  8. Electron-tunneling observation of local excited states in manganese-doped indium

    International Nuclear Information System (INIS)

    Tsang, J.; Ginsberg, D.M.

    1980-01-01

    We have measured the electron-tunneling characteristics of a dilute indium-manganese alloy. Well-defined structure was observed, corresponding to a band of local excited states within the energy gap. The measurements were made on two samples, and were quantitatively compared with the theory of Shiba and of Rusinov. We obtained good agreement of the tunneling data with the theory by taking into account only s-wave scattering of conduction electrons from the magnetic-impurity atoms. Even better agreement was obtained by including p- and d-wave scattering. Only by including these higher partial waves could we account for the magnitude of the observed depression of the transition temperature. The phase shifts used are in good agreement with band-theory values calculated recently

  9. Wigner-like crystallization of Anderson-localized electron systems with low electron densities

    International Nuclear Information System (INIS)

    Slutskin, A.A.; Kovtun, H.A.; Pepper, M.

    2002-01-01

    We consider an electron system under conditions of strong Anderson localization, taking into account interelectron long-range Coulomb repulsion. We establish that at sufficiently low electron densities and sufficiently low temperatures the Coulomb electron interaction brings about ordering of the Anderson-localized electrons into a structure that is close to an ideal (Wigner) crystal lattice, provided the dimension of the system is > 1. This Anderson-Wigner glass (AWG) is a new macroscopic electron state that, on the one hand, is beyond the conventional Fermi glass concept, and on the other hand, qualitatively differs from the known 'plain' Wigner glass (inherent in self-localized electron systems) in that the random slight electron displacements from the ideal crystal sites essentially depend on the electron density. With increasing electron density the AWG is found to turn into the plain Wigner glass or Fermi glass, depending on the width of the random spread of the electron levels. It is shown that the residual disorder of the AWG is characterized by a multi-valley ground-state degeneracy akin to that in a spin glass. Some general features of the AWG are discussed, and a new conduction mechanism of a creep type is predicted

  10. Wigner-like crystallization of Anderson-localized electron systems with low electron densities

    CERN Document Server

    Slutskin, A A; Pepper, M

    2002-01-01

    We consider an electron system under conditions of strong Anderson localization, taking into account interelectron long-range Coulomb repulsion. We establish that at sufficiently low electron densities and sufficiently low temperatures the Coulomb electron interaction brings about ordering of the Anderson-localized electrons into a structure that is close to an ideal (Wigner) crystal lattice, provided the dimension of the system is > 1. This Anderson-Wigner glass (AWG) is a new macroscopic electron state that, on the one hand, is beyond the conventional Fermi glass concept, and on the other hand, qualitatively differs from the known 'plain' Wigner glass (inherent in self-localized electron systems) in that the random slight electron displacements from the ideal crystal sites essentially depend on the electron density. With increasing electron density the AWG is found to turn into the plain Wigner glass or Fermi glass, depending on the width of the random spread of the electron levels. It is shown that the res...

  11. Localized-to-extended-states transition below the Fermi level

    Science.gov (United States)

    Tito, M. A.; Pusep, Yu. A.

    2018-05-01

    Time-resolved photoluminescence is employed to examine a transition from localized to extended electron states below the Fermi level in multiple narrow quantum well GaAs/AlGaAs heterostructures, where disorder was generated by interface roughness. Such a transition resembles the metal-insulator transition profoundly investigated by electric transport measurements. An important distinction distinguishes the localized-to-extended-states transition studied here: it takes place below the Fermi level in an electron system with a constant concentration, which implies unchanging Coulomb correlations. Moreover, for such a localized-to-extended-states transition the temperature is shown to be irrelevant. In the insulating regime the magnetic field was found to cause an additional momentum relaxation which considerably enhanced the recombination rate. Thus, we propose a method to explore the evolution of the localized electron states in a system with a fixed disorder and Coulomb interaction.

  12. Hydrogen detachment driven by a repulsive 1πσ* state - an electron localization function study of 3-amino-1,2,4-triazole.

    Science.gov (United States)

    Bil, Andrzej; Latajka, Zdzisław; Biczysko, Malgorzata

    2018-02-14

    Electron localization function analysis reveals the details of a charge induced hydrogen detachment mechanism of 3-amino-1,2,4-triazole, identified recently to be responsible for phototautomerization of the molecule. In this process vertical excitation to the 1 πσ* state is followed by the barrier-less migration of a H atom along the N-H bond toward the conical intersection with the S0 ground state. The most striking feature revealed for the 1 πσ* state is partial ejection of σ* electrons outside the molecule, even beyond the NH group, at the Franck-Condon point. Further gradual spatial localization of the electron around the proton moving along the N-H stretching coordinate gives a plausible explanation for the repulsive character of the 1 πσ* potential energy surface with the proton wading through the region of space where some negative charge is accumulated ('a virtual acceptor'), dragging some electron density. This mechanism resembles the one postulated for the hydrogen transfer from a donor molecule (D-H) to an acceptor one (A) in a class of vertically excited molecules with a preexisting inter- or intramolecular D-HA motif, even though the acceptor molecule is absent. The present analysis demonstrates also that the bond evolution and changes in the electron density along the excited state reaction path can be effectively studied with the use of an electron localization function.

  13. Cytochrome b 6 f function and localization, phosphorylation state of thylakoid membrane proteins and consequences on cyclic electron flow.

    Science.gov (United States)

    Dumas, Louis; Chazaux, Marie; Peltier, Gilles; Johnson, Xenie; Alric, Jean

    2016-09-01

    Both the structure and the protein composition of thylakoid membranes have an impact on light harvesting and electron transfer in the photosynthetic chain. Thylakoid membranes form stacks and lamellae where photosystem II and photosystem I localize, respectively. Light-harvesting complexes II can be associated to either PSII or PSI depending on the redox state of the plastoquinone pool, and their distribution is governed by state transitions. Upon state transitions, the thylakoid ultrastructure and lateral distribution of proteins along the membrane are subject to significant rearrangements. In addition, quinone diffusion is limited to membrane microdomains and the cytochrome b 6 f complex localizes either to PSII-containing grana stacks or PSI-containing stroma lamellae. Here, we discuss possible similarities or differences between green algae and C3 plants on the functional consequences of such heterogeneities in the photosynthetic electron transport chain and propose a model in which quinones, accepting electrons either from PSII (linear flow) or NDH/PGR pathways (cyclic flow), represent a crucial control point. Our aim is to give an integrated description of these processes and discuss their potential roles in the balance between linear and cyclic electron flows.

  14. Real-space local polynomial basis for solid-state electronic-structure calculations: A finite-element approach

    International Nuclear Information System (INIS)

    Pask, J.E.; Klein, B.M.; Fong, C.Y.; Sterne, P.A.

    1999-01-01

    We present an approach to solid-state electronic-structure calculations based on the finite-element method. In this method, the basis functions are strictly local, piecewise polynomials. Because the basis is composed of polynomials, the method is completely general and its convergence can be controlled systematically. Because the basis functions are strictly local in real space, the method allows for variable resolution in real space; produces sparse, structured matrices, enabling the effective use of iterative solution methods; and is well suited to parallel implementation. The method thus combines the significant advantages of both real-space-grid and basis-oriented approaches and so promises to be particularly well suited for large, accurate ab initio calculations. We develop the theory of our approach in detail, discuss advantages and disadvantages, and report initial results, including electronic band structures and details of the convergence of the method. copyright 1999 The American Physical Society

  15. A scaling analysis of electronic localization in two-dimensional random media

    International Nuclear Information System (INIS)

    Ye Zhen

    2003-01-01

    By an improved scaling analysis, we suggest that there may appear two possibilities concerning the electronic localization in two-dimensional random media. The first is that all electronic states are localized in two dimensions, as conjectured previously. The second possibility is that electronic behaviors in two- and three-dimensional random systems are similar, in agreement with a recent calculation based on a direct calculation of the conductance with the use of the Kubo formula. In this case, non-localized states are possible in two dimensions, and have some peculiar properties. A few predictions are proposed. Moreover, the present analysis accommodates results from the previous scaling analysis

  16. States of the electron in hydrocarbon liquids

    International Nuclear Information System (INIS)

    Mozumder, A.

    2005-01-01

    Some features of the stationary and dynamic states of the electron are critically examined. Outline of a quantum mechanical description of electron thermalization is attempted qualitatively. The effects of both the mean free path and the reaction inefficiency on electron-ion geminate escape probability are investigated by a recently developed Metropolis method. The trapped state is interpreted in terms of Anderson localization, yielding an approximate number of molecules interacting with the trapped electron

  17. Matrix-product-state method with local basis optimization for nonequilibrium electron-phonon systems

    Science.gov (United States)

    Heidrich-Meisner, Fabian; Brockt, Christoph; Dorfner, Florian; Vidmar, Lev; Jeckelmann, Eric

    We present a method for simulating the time evolution of quasi-one-dimensional correlated systems with strongly fluctuating bosonic degrees of freedom (e.g., phonons) using matrix product states. For this purpose we combine the time-evolving block decimation (TEBD) algorithm with a local basis optimization (LBO) approach. We discuss the performance of our approach in comparison to TEBD with a bare boson basis, exact diagonalization, and diagonalization in a limited functional space. TEBD with LBO can reduce the computational cost by orders of magnitude when boson fluctuations are large and thus it allows one to investigate problems that are out of reach of other approaches. First, we test our method on the non-equilibrium dynamics of a Holstein polaron and show that it allows us to study the regime of strong electron-phonon coupling. Second, the method is applied to the scattering of an electronic wave packet off a region with electron-phonon coupling. Our study reveals a rich physics including transient self-trapping and dissipation. Supported by Deutsche Forschungsgemeinschaft (DFG) via FOR 1807.

  18. Proposed ripplon induced weak localization of electrons over liquid helium

    International Nuclear Information System (INIS)

    Dahm, A.J.

    1997-01-01

    Ripplon induced weak localization is proposed for electrons on a liquid helium surface. Ripplon scattering is quasi-elastic, the ripplon are quasi-static relative to the electron velocity, and the relative change in occupation number of the ripplon state in a scattering event is small. Conditions for the observation of ripplon induced weak localization are calculated

  19. Delocalized and localized states of eg electrons in half-doped manganites.

    Science.gov (United States)

    Winkler, E L; Tovar, M; Causa, M T

    2013-07-24

    We have studied the magnetic behaviour of half-doped manganite Y0.5Ca0.5MnO3 in an extended range of temperatures by means of magnetic susceptibility, χ(T), and electron spin resonance (ESR) experiments. At high temperature the system crystallizes in an orthorhombic structure. The resistivity value, ρ ≃ 0.05 Ω cm at 500 K, indicates a metallic behaviour, while the Curie-Weiss dependence of χ(T) and the thermal evolution of the ESR parameters are very well described by a model that considers a system conformed by localized Mn(4+) cores, [Formula: see text], and itinerant, eg, electrons. The strong coupling between t2g and eg electrons results in an enhanced Curie constant and an FM Curie-Weiss temperature that overcomes the AFM interactions between the [Formula: see text] cores. A transition to a more distorted phase is observed at T ≈ 500 K and signatures of localization of the eg electrons appear in the χ(T) behaviour below 300 K. A new Curie-Weiss regime is observed, where the Curie-constant value is consistent with dimer formation. Based on mean-field calculations, the dimer formation is predicted as a function of the interaction strength between the t2g and eg electrons.

  20. Surface-electronic-state effects in electron emission from the Be(0001) surface

    International Nuclear Information System (INIS)

    Archubi, C. D.; Gravielle, M. S.; Silkin, V. M.

    2011-01-01

    We study the electron emission produced by swift protons impinging grazingly on a Be(0001) surface. The process is described within a collisional formalism using the band-structure-based (BSB) approximation to represent the electron-surface interaction. The BSB model provides an accurate description of the electronic band structure of the solid and the surface-induced potential. Within this approach we derive both bulk and surface electronic states, with these latter characterized by a strong localization at the crystal surface. We found that such surface electronic states play an important role in double-differential energy- and angle-resolved electron emission probabilities, producing noticeable structures in the electron emission spectra.

  1. Surface-electronic-state effects in electron emission from the Be(0001) surface

    Energy Technology Data Exchange (ETDEWEB)

    Archubi, C. D. [Instituto de Astronomia y Fisica del Espacio, casilla de correo 67, sucursal 28, C1428EGA, Buenos Aires (Argentina); Gravielle, M. S. [Instituto de Astronomia y Fisica del Espacio, casilla de correo 67, sucursal 28, C1428EGA, Buenos Aires (Argentina); Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires (Argentina); Silkin, V. M. [Donostia International Physics Center, E-20018 San Sebastian (Spain); Departamento de Fisica de Materiales, Facultad de Ciencias Quimicas, Universidad del Pais Vasco, Apartado 1072, E-20080 San Sebastian (Spain); IKERBASQUE, Basque Foundation for Science, E-48011 Bilbao (Spain)

    2011-07-15

    We study the electron emission produced by swift protons impinging grazingly on a Be(0001) surface. The process is described within a collisional formalism using the band-structure-based (BSB) approximation to represent the electron-surface interaction. The BSB model provides an accurate description of the electronic band structure of the solid and the surface-induced potential. Within this approach we derive both bulk and surface electronic states, with these latter characterized by a strong localization at the crystal surface. We found that such surface electronic states play an important role in double-differential energy- and angle-resolved electron emission probabilities, producing noticeable structures in the electron emission spectra.

  2. All-electron ab initio investigations of the electronic states of the NiC molecule

    DEFF Research Database (Denmark)

    Shim, Irene; Gingerich, Karl. A.

    1999-01-01

    The low-lying electronic states of NiC are investigated by all-electron ab initio multi-configuration self-consistent-field (CASSCF) calculations including relativistic corrections. The electronic structure of NiC is interpreted as perturbed antiferromagnetic couplings of the localized angular...

  3. Analytical local electron-electron interaction model potentials for atoms

    International Nuclear Information System (INIS)

    Neugebauer, Johannes; Reiher, Markus; Hinze, Juergen

    2002-01-01

    Analytical local potentials for modeling the electron-electron interaction in an atom reduce significantly the computational effort in electronic structure calculations. The development of such potentials has a long history, but some promising ideas have not yet been taken into account for further improvements. We determine a local electron-electron interaction potential akin to those suggested by Green et al. [Phys. Rev. 184, 1 (1969)], which are widely used in atom-ion scattering calculations, electron-capture processes, and electronic structure calculations. Generalized Yukawa-type model potentials are introduced. This leads, however, to shell-dependent local potentials, because the origin behavior of such potentials is different for different shells as has been explicated analytically [J. Neugebauer, M. Reiher, and J. Hinze, Phys. Rev. A 65, 032518 (2002)]. It is found that the parameters that characterize these local potentials can be interpolated and extrapolated reliably for different nuclear charges and different numbers of electrons. The analytical behavior of the corresponding localized Hartree-Fock potentials at the origin and at long distances is utilized in order to reduce the number of fit parameters. It turns out that the shell-dependent form of Green's potential, which we also derive, yields results of comparable accuracy using only one shell-dependent parameter

  4. Soft-x-ray emission and the local p-type partial density of electronic states in Y2O3: Experiment and theory

    International Nuclear Information System (INIS)

    Mueller, D.R.; Ederer, D.L.; van Ek, J.; OBrien, W.L.; Dong, Q.Y.; Jia, J.; Callcott, T.A.

    1996-01-01

    Photon-excited yttrium M IV,V , and electron-excited oxygen K x-ray emission spectra for yttrium oxide are presented. It is shown that, as in the case of yttrium metal, the decay of M IV vacancies does not contribute substantially to the oxide M IV,V emission. The valence emission is interpreted in a one-electron picture as a measure of the local p-type partial density of states. The yttrium and oxygen valence emission bands are very similar and strongly resemble published photoelectron spectra. Using local-density approximation electronic structure calculations, we show that the broadening of the Y-4p signal in yttrium oxide relative to Y metal are due to two inequivalent yttrium sites in Y 2 O 3 . Features present in the oxide, but not the metal spectrum, are the result of overlap (hybridization) between the Y-4p wave function and states in the oxygen 2s subband. copyright 1996 The American Physical Society

  5. Magnetic forces and localized resonances in electron transfer through quantum rings.

    Science.gov (United States)

    Poniedziałek, M R; Szafran, B

    2010-11-24

    We study the current flow through semiconductor quantum rings. In high magnetic fields the current is usually injected into the arm of the ring preferred by classical magnetic forces. However, for narrow magnetic field intervals that appear periodically on the magnetic field scale the current is injected into the other arm of the ring. We indicate that the appearance of the anomalous-non-classical-current circulation results from Fano interference involving localized resonant states. The identification of the Fano interference is based on the comparison of the solution of the scattering problem with the results of the stabilization method. The latter employs the bound-state type calculations and allows us to extract both the energy of metastable states localized within the ring and the width of resonances by analysis of the energy spectrum of a finite size system as a function of its length. The Fano resonances involving states of anomalous current circulation become extremely narrow on both the magnetic field and energy scales. This is consistent with the orientation of the Lorentz force that tends to keep the electron within the ring and thus increases the lifetime of the electron localization within the ring. Absence of periodic Fano resonances in electron transfer probability through a quantum ring containing an elastic scatterer is also explained.

  6. Electronic States in Thorium under Pressure

    DEFF Research Database (Denmark)

    Skriver, Hans Lomholt; Jan, J. P.

    1980-01-01

    We have used the local-density formalism and the atomic-sphere approximation to calculate self-consistently the electronic properties of thorium at pressures up to 400 kbar. The derived equation of state agrees very well with static pressure experiments and shock data. Below the Fermi level (EF......) the electronic band structure is formed by 7s and 6d states while the bottom of a relatively broad 5f band is positioned 0.07 Ry above EF. The calculated extremal areas of the Fermi surface and their calculated pressure dependence agree with earlier calculations and with de Haas-van Alphen measurements...

  7. Theoretical studies of π-electron delocalization and localization on intramolecular proton transfer in the ground state

    Science.gov (United States)

    Peng, Hongliang; Huang, Pengru; Yi, Pinggui; Xu, Fen; Sun, Lixian

    2018-02-01

    Proton transfer processes of 15 benzimidazole compounds are studied by density functional theory methods, and natural orbital energy index (NOEI) is introduced. Here, NOEI and nucleus independent chemical shift (NICS) are applied to estimate the π-electron localization and delocalization, respectively. Proton transfer potential energy surfaces are calculated to explore these processes, and the results show that the changes of the π-electron delocalization of the phenyl (pyridyl) is the main factors for the stability of keto form. There is high correlation between the π-electron delocalization and the proton transfer barrier. When the π-electron localization is considered, the regression increases the correlation coefficient, increasing from 0.9663 to 0.9864. NOEI index is sensitive to π-electron localization; it is a beneficial and useful complement to NICS.

  8. Electronic structure and local distortions in epitaxial ScGaN films

    International Nuclear Information System (INIS)

    Knoll, S M; Zhang, S; Rovezzi, M; Joyce, T B; Moram, M A

    2014-01-01

    High energy resolution fluorescence-detected x-ray absorption spectroscopy and density functional theory calculations were used to investigate the local bonding and electronic structure of Sc in epitaxial wurtzite-structure Sc x Ga 1−x N films with x ≤ 0.059. Sc atoms are found to substitute for Ga atoms, accompanied by a local distortion involving an increase in the internal lattice parameter u around the Sc atoms. The local bonding and electronic structure at Sc are not affected strongly by the strain state or the defect microstructure of the films. These data are consistent with theoretical predictions regarding the electronic structure of dilute Sc x Ga 1−x N alloys. (paper)

  9. The degree of 5f electron localization in URu2Si2: electron energy-loss spectroscopy and spin-orbit sum rule analysis

    Energy Technology Data Exchange (ETDEWEB)

    Jeffries, J R; Moore, K T; Butch, N P; Maple, M B

    2010-05-19

    We examine the degree of 5f electron localization in URu{sub 2}Si{sub 2} using spin-orbit sum rule analysis of the U N{sub 4,5} (4d {yields} 5f) edge. When compared to {alpha}-U metal, US, USe, and UTe, which have increasing localization of the 5f states, we find that the 5f states of URu{sub 2}Si{sub 2} are more localized, although not entirely. Spin-orbit analysis shows that intermediate coupling is the correct angular momentum coupling mechanism for URu{sub 2}Si{sub 2} when the 5f electron count is between 2.6 and 2.8. These results have direct ramifications for theoretical assessment of the hidden order state of URu{sub 2}Si{sub 2}, where the degree of localization of the 5f electrons and their contribution to the Fermi surface are critical.

  10. Electron localization and optical absorption of polygonal quantum rings

    Science.gov (United States)

    Sitek, Anna; Serra, Llorenç; Gudmundsson, Vidar; Manolescu, Andrei

    2015-06-01

    We investigate theoretically polygonal quantum rings and focus mostly on the triangular geometry where the corner effects are maximal. Such rings can be seen as short core-shell nanowires, a generation of semiconductor heterostructures with multiple applications. We show how the geometry of the sample determines the electronic energy spectrum, and also the localization of electrons, with effects on the optical absorption. In particular, we show that irrespective of the ring shape low-energy electrons are always attracted by corners and are localized in their vicinity. The absorption spectrum in the presence of a magnetic field shows only two peaks within the corner-localized state domain, each associated with different circular polarization. This picture may be changed by an external electric field which allows previously forbidden transitions, and thus enables the number of corners to be determined. We show that polygonal quantum rings allow absorption of waves from distant ranges of the electromagnetic spectrum within one sample.

  11. DNA Electronic Fingerprints by Local Spectroscopy on Graphene

    Science.gov (United States)

    Balatsky, Alexander

    2013-03-01

    Working and scalable alternatives to the conventional chemical methods of DNA sequencing that are based on electronic/ionic signatures would revolutionize the field of sequencing. The approach of a single molecule imaging and spectroscopy with unprecedented resolution, achieved by Scanning Tunneling Spectroscopy (STS) and nanopore electronics could enable this revolution. We use the data from our group and others in applying this local scanning tunneling microscopy and illustrate possibilities of electronic sequencing of freeze dried deposits on graphene. We will present two types of calculated fingerprints: first in Local Density of States (LDOS) of DNA nucleotide bases (A,C,G,T) deposited on graphene. Significant base-dependent features in the LDOS in an energy range within few eV of the Fermi level were found in our calculations. These features can serve as electronic fingerprints for the identification of individual bases in STS. In the second approach we present calculated base dependent electronic transverse conductance as DNA translocates through the graphene nanopore. Thus we argue that the fingerprints of DNA-graphene hybrid structures may provide an alternative route to DNA sequencing using STS. Work supported by US DOE, NORDITA.

  12. On the electron density localization in elemental cubic ceramic and FCC transition metals by means of a localized electrons detector.

    Science.gov (United States)

    Aray, Yosslen; Paredes, Ricardo; Álvarez, Luis Javier; Martiz, Alejandro

    2017-06-14

    The electron density localization in insulator and semiconductor elemental cubic materials with diamond structure, carbon, silicon, germanium, and tin, and good metallic conductors with face centered cubic structure such as α-Co, Ni, Cu, Rh, Pd, Ag, Ir, Pt, and Au, was studied using a localized electrons detector defined in the local moment representation. Our results clearly show an opposite pattern of the electron density localization for the cubic ceramic and transition metal materials. It was found that, for the elemental ceramic materials, the zone of low electron localization is very small and is mainly localized on the atomic basin edges. On the contrary, for the transition metals, there are low-valued localized electrons detector isocontours defining a zone of highly delocalized electrons that extends throughout the material. We have found that the best conductors are those in which the electron density at this low-value zone is the lowest.

  13. Imaging Localized Energy States in Silicon-doped InGaN Nanowires Using 4D Electron Microscopy

    KAUST Repository

    Bose, Riya; Adhikari, Aniruddha; Burlakov, Victor M; Liu, Guangyu; Haque, Mohammed; Priante, Davide; Hedhili, Mohamed N.; Wehbe, Nimer; Zhao, Chao; Yang, Haoze; Ng, Tien Khee; Goriely, Alain; Bakr, Osman; Wu, Tao; Ooi, Boon S.; Mohammed, Omar F.

    2018-01-01

    Introducing dopants into InGaN NWs is known to significantly improve their device performances through a variety of mechanisms. However, to further optimize device operation under the influence of large specific surfaces, a thorough knowledge of ultrafast dynamical processes at the surface and interface of these NWs is imperative. Here, we describe the development of four-dimensional scanning ultrafast electron microscopy (4D S-UEM) as an extremely surface-sensitive method to directly visualize in space and time the enormous impact of silicon doping on the surface-carrier dynamics of InGaN NWs. Two time regime dynamics are identified for the first time in a 4D S-UEM experiment: an early time behavior (within 200 picoseconds) associated with the deferred evolution of secondary electrons due to the presence of localized trap states that decrease the electron escape rate and a longer timescale behavior (several ns) marked by accelerated charge carrier recombination. The results are further corroborated by conductivity studies carried out in dark and under illumination.

  14. Imaging Localized Energy States in Silicon-doped InGaN Nanowires Using 4D Electron Microscopy

    KAUST Repository

    Bose, Riya

    2018-01-23

    Introducing dopants into InGaN NWs is known to significantly improve their device performances through a variety of mechanisms. However, to further optimize device operation under the influence of large specific surfaces, a thorough knowledge of ultrafast dynamical processes at the surface and interface of these NWs is imperative. Here, we describe the development of four-dimensional scanning ultrafast electron microscopy (4D S-UEM) as an extremely surface-sensitive method to directly visualize in space and time the enormous impact of silicon doping on the surface-carrier dynamics of InGaN NWs. Two time regime dynamics are identified for the first time in a 4D S-UEM experiment: an early time behavior (within 200 picoseconds) associated with the deferred evolution of secondary electrons due to the presence of localized trap states that decrease the electron escape rate and a longer timescale behavior (several ns) marked by accelerated charge carrier recombination. The results are further corroborated by conductivity studies carried out in dark and under illumination.

  15. Does the Higgs mechanism favour electron-electron bound states in Maxwell-Chern-Simons QED3?

    International Nuclear Information System (INIS)

    Belich, Humberto; Helayeel-Neto, Jose Abdalla; Ferreira Junior, Manoel Messias

    2000-01-01

    Full text follows: We show that low-energy electron-electron bound states appear in the Maxwell-Chern-Simons (MCS) planar QED. In spite of the repulsive interaction mediated by the MCS gauge field, a net attractive interaction stems due to the Higgs mechanism through an Yukawa-type interaction. The spontaneous breaking of a local U(1)-symmetry is realized by a γ 6 -type potential. We conclude, by using the Schroedinger equation associated to the net attractive scattering potential, that electron-electron bound states arise in the model. Therefore, the Higgs mechanism overcomes the difficulties found out by Girotti et al. (Phys. Rev. Lett. 69 (1992) 2623) in searching for bound states in the MCS planar QED. (author)

  16. 75 FR 3463 - Cross-Media Electronic Reporting Rule State Authorized Program Revision Approval: State of North...

    Science.gov (United States)

    2010-01-21

    ... consideration of the electronic document receiving systems that the state, tribe, or local government will use... for its Integrated Build Environment for Application Management (IBEAM) electronic document receiving... to assure that electronic documents are as legally dependable as their paper counterparts. Subpart D...

  17. Giant inelastic tunneling in epitaxial graphene mediated by localized states

    NARCIS (Netherlands)

    Cervenka, J.; Ruit, van de K.; Flipse, C.F.J.

    2010-01-01

    Local electronic structures of nanometer-sized patches of epitaxial graphene and its interface layer with SiC(0001) have been studied by atomically resolved scanning tunneling microscopy and spectroscopy. Localized states belonging to the interface layer of a graphene/SiC system show to have

  18. Single electron probes of fractional quantum hall states

    Science.gov (United States)

    Venkatachalam, Vivek

    When electrons are confined to a two dimensional layer with a perpendicular applied magnetic field, such that the ratio of electrons to flux quanta (nu) is a small integer or simple rational value, these electrons condense into remarkable new phases of matter that are strikingly different from the metallic electron gas that exists in the absence of a magnetic field. These phases, called integer or fractional quantum Hall (IQH or FQH) states, appear to be conventional insulators in their bulk, but behave as a dissipationless metal along their edge. Furthermore, electrical measurements of such a system are largely insensitive to the detailed geometry of how the system is contacted or even how large the system is... only the order in which contacts are made appears to matter. This insensitivity to local geometry has since appeared in a number of other two and three dimensional systems, earning them the classification of "topological insulators" and prompting an enormous experimental and theoretical effort to understand their properties and perhaps manipulate these properties to create robust quantum information processors. The focus of this thesis will be two experiments designed to elucidate remarkable properties of the metallic edge and insulating bulk of certain FQH systems. To study such systems, we can use mesoscopic devices known as single electron transistors (SETs). These devices operate by watching single electrons hop into and out of a confining box and into a nearby wire (for measurement). If it is initially unfavorable for an electron to leave the box, it can be made favorable by bringing another charge nearby, modifying the energy of the confined electron and pushing it out of the box and into the nearby wire. In this way, the SET can measure nearby charges. Alternatively, we can heat up the nearby wire to make it easier for electrons to enter and leave the box. In this way, the SET is a sensitive thermometer. First, by operating the SET as an

  19. Interaction between extended and localized electronic states in the region of the metal to insulator transition in semiconductor alloys

    Energy Technology Data Exchange (ETDEWEB)

    Teubert, Joerg

    2008-07-01

    The first part of this work addresses the influence of those isovalent localized states on the electronic properties of (B,Ga,In)As. Most valuable were the measurements under hydrostatic pressure that revealed a pressure induced metal-insulator transition. One of the main ideas in this context is the trapping of carriers in localized B-related cluster states that appear in the bandgap at high pressure. The key conclusion that can be drawn from the experimental results is that boron atoms seem to have the character of isovalent electron traps, rendering boron as the first known isovalent trap induced by cationic substitution. In the second part, thermoelectric properties of (B,Ga,In)As and (Ga,In)(N,As) are studied. It was found that although the electric-field driven electronic transport in n-type (Ga,In)(N,As) and (B,Ga,In)As differs considerably from that of n-type GaAs, the temperature-gradient driven electronic transport is very similar for the three semiconductors, despite distinct differences in the conduction band structure of (Ga,In)(N,As) and (B,Ga,In)As compared to GaAs. The third part addresses the influence of magnetic interactions on the transport properties near the metal-insulator transition (MIT). Here, two scenarios are considered: Firstly the focus is set on ZnMnSe:Cl, a representative of so called dilute magnetic semiconductors (DMS). In this material Mn(2+) ions provide a large magnetic moment due to their half filled inner 3d-shell. It is shown that magnetic interactions in conjunction with disorder effects are responsible for the unusual magnetotransport behavior found in this and other II-Mn-VI semiconductor alloys. In the second scenario, a different magnetic compound, namely InSb:Mn, is of interest. It is a representative of the III-Mn-V DMS, where the magnetic impurity Mn serves both as the source of a large localized magnetic moment and as the source of a loosely bound hole due to its acceptor character. Up to now, little is known about

  20. Interaction between extended and localized electronic states in the region of the metal to insulator transition in semiconductor alloys

    International Nuclear Information System (INIS)

    Teubert, Joerg

    2008-01-01

    The first part of this work addresses the influence of those isovalent localized states on the electronic properties of (B,Ga,In)As. Most valuable were the measurements under hydrostatic pressure that revealed a pressure induced metal-insulator transition. One of the main ideas in this context is the trapping of carriers in localized B-related cluster states that appear in the bandgap at high pressure. The key conclusion that can be drawn from the experimental results is that boron atoms seem to have the character of isovalent electron traps, rendering boron as the first known isovalent trap induced by cationic substitution. In the second part, thermoelectric properties of (B,Ga,In)As and (Ga,In)(N,As) are studied. It was found that although the electric-field driven electronic transport in n-type (Ga,In)(N,As) and (B,Ga,In)As differs considerably from that of n-type GaAs, the temperature-gradient driven electronic transport is very similar for the three semiconductors, despite distinct differences in the conduction band structure of (Ga,In)(N,As) and (B,Ga,In)As compared to GaAs. The third part addresses the influence of magnetic interactions on the transport properties near the metal-insulator transition (MIT). Here, two scenarios are considered: Firstly the focus is set on ZnMnSe:Cl, a representative of so called dilute magnetic semiconductors (DMS). In this material Mn(2+) ions provide a large magnetic moment due to their half filled inner 3d-shell. It is shown that magnetic interactions in conjunction with disorder effects are responsible for the unusual magnetotransport behavior found in this and other II-Mn-VI semiconductor alloys. In the second scenario, a different magnetic compound, namely InSb:Mn, is of interest. It is a representative of the III-Mn-V DMS, where the magnetic impurity Mn serves both as the source of a large localized magnetic moment and as the source of a loosely bound hole due to its acceptor character. Up to now, little is known about

  1. Effect of localized electron states on superconductivity of ultrathin beryllium films

    International Nuclear Information System (INIS)

    Tutov, V.I.; Semenenko, E.E.

    1988-01-01

    A wide spectrum of distortions is induced in ultrathin beryllium films of thickness less than 10 A, which are responsible for the system transition from the strong localization state completely suppressing superconductivity (in this case R □ of the layer reaches 97600 Ohm) to the weak localization stae coexisting with superconductivity at comparatively high T c (5 K). The resistance per square R □ of the films decreases more than by an order of magnitude. The superconductivity with T c =1.7 K occurs at rather strong localization, when R □ of the layer is 34000 Ohm

  2. Amorphization-induced strong localization of electronic states in CsPbBr3 and CsPbCl3 studied by optical absorption measurements

    Science.gov (United States)

    Kondo, S.; Sakai, T.; Tanaka, H.; Saito, T.

    1998-11-01

    Optical absorption spectra of amorphous CsPbX3 films (X=Br,Cl) are characterized by two Gaussian bands near the fundamental edge, with the optical energy gap largely blueshifted and the absorption intensity strongly reduced as compared with the crystalline films. The peak energies of the bands are close to those of the A and C bands of Pb-doped alkali halides. The spectral features are discussed in terms of a molecular orbital theory based on a quasicomplex Pb2+(X-)6 model similar to the complex model for the doped alkali halides. It is shown that not only Pb2+ 6s and 6p extended states near the band edges but also X- p states contributing to upper valence bands are localized by amorphization. The transitions from the localized Pb2+ 6s to 6p states produce the spin-orbit allowed 3P1 and dipole allowed 1P1 states responsible for the two Gaussians. The localized X- p states lie deeper in energy than the localized Pb2+ 6s state and only contribute to higher-energy absorption above the Gaussian bands, giving the reason for the reduced absorption near the fundamental edge. The blueshift of the optical energy gap is attributed to the disappearance of k dispersions for these one-electron states.

  3. Construction of Vibronic Diabatic Hamiltonian for Excited-State Electron and Energy Transfer Processes.

    Science.gov (United States)

    Xie, Yu; Jiang, Shengshi; Zheng, Jie; Lan, Zhenggang

    2017-12-21

    Photoinduced excited-state electron and energy transfer processes are crucial in biological photoharvesting systems and organic photovoltaic devices. We discuss the construction of a diabatic vibronic Hamiltonian for the proper treatment of these processes involving the projection approach acting on both electronic wave functions and vibrational modes. In the electronic part, the wave function projection approach is used to construct the diabatic Hamiltonian in which both local excited states and charge-transfer states are included on the same footing. For the vibrational degrees of freedom, the vibronic couplings in the diabatic Hamiltonian are obtained in the basis of the pseudonormal modes localized on each monomer site by applying delocalized-to-localized mode projection. This systematic approach allows us to construct the vibronic diabatic Hamiltonian in molecular aggregates.

  4. Exact solution of a coupled spin–electron linear chain composed of localized Ising spins and mobile electrons

    International Nuclear Information System (INIS)

    Čisárová, Jana; Strečka, Jozef

    2014-01-01

    Exact solution of a coupled spin–electron linear chain composed of localized Ising spins and mobile electrons is found. The investigated spin–electron model is exactly solvable by the use of a transfer-matrix method after tracing out the degrees of freedom of mobile electrons delocalized over a couple of interstitial (decorating) sites. The exact ground-state phase diagram reveals an existence of five phases with different number of mobile electrons per unit cell, two of which are ferromagnetic, two are paramagnetic and one is antiferromagnetic. We have studied in particular the dependencies of compressibility and specific heat on temperature and electron density. - Highlights: • A coupled spin–electron chain composed of Ising spins and mobile electrons is exactly solved. • Quantum paramagnetic, ferromagnetic and antiferromagnetic ground states are found. • A compressibility shows a non-monotonous dependence on temperature and electron density. • Thermal dependences of specific heat display two distinct peaks

  5. Optimal resource states for local state discrimination

    Science.gov (United States)

    Bandyopadhyay, Somshubhro; Halder, Saronath; Nathanson, Michael

    2018-02-01

    We study the problem of locally distinguishing pure quantum states using shared entanglement as a resource. For a given set of locally indistinguishable states, we define a resource state to be useful if it can enhance local distinguishability and optimal if it can distinguish the states as well as global measurements and is also minimal with respect to a partial ordering defined by entanglement and dimension. We present examples of useful resources and show that an entangled state need not be useful for distinguishing a given set of states. We obtain optimal resources with explicit local protocols to distinguish multipartite Greenberger-Horne-Zeilinger and graph states and also show that a maximally entangled state is an optimal resource under one-way local operations and classical communication to distinguish any bipartite orthonormal basis which contains at least one entangled state of full Schmidt rank.

  6. Communication: Near-locality of exchange and correlation density functionals for 1- and 2-electron systems

    Science.gov (United States)

    Sun, Jianwei; Perdew, John P.; Yang, Zenghui; Peng, Haowei

    2016-05-01

    The uniform electron gas and the hydrogen atom play fundamental roles in condensed matter physics and quantum chemistry. The former has an infinite number of electrons uniformly distributed over the neutralizing positively charged background, and the latter only one electron bound to the proton. The uniform electron gas was used to derive the local spin density approximation to the exchange-correlation functional that undergirds the development of the Kohn-Sham density functional theory. We show here that the ground-state exchange-correlation energies of the hydrogen atom and many other 1- and 2-electron systems are modeled surprisingly well by a different local spin density approximation (LSDA0). LSDA0 is constructed to satisfy exact constraints but agrees surprisingly well with the exact results for a uniform two-electron density in a finite, curved three-dimensional space. We also apply LSDA0 to excited or noded 1-electron densities, where it works less well. Furthermore, we show that the localization of the exact exchange hole for a 1- or 2-electron ground state can be measured by the ratio of the exact exchange energy to its optimal lower bound.

  7. Communication: Near-locality of exchange and correlation density functionals for 1- and 2-electron systems

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Jianwei; Yang, Zenghui; Peng, Haowei [Department of Physics, Temple University, Philadelphia, Pennsylvania 19122 (United States); Perdew, John P. [Department of Physics, Temple University, Philadelphia, Pennsylvania 19122 (United States); Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122 (United States)

    2016-05-21

    The uniform electron gas and the hydrogen atom play fundamental roles in condensed matter physics and quantum chemistry. The former has an infinite number of electrons uniformly distributed over the neutralizing positively charged background, and the latter only one electron bound to the proton. The uniform electron gas was used to derive the local spin density approximation to the exchange-correlation functional that undergirds the development of the Kohn-Sham density functional theory. We show here that the ground-state exchange-correlation energies of the hydrogen atom and many other 1- and 2-electron systems are modeled surprisingly well by a different local spin density approximation (LSDA0). LSDA0 is constructed to satisfy exact constraints but agrees surprisingly well with the exact results for a uniform two-electron density in a finite, curved three-dimensional space. We also apply LSDA0 to excited or noded 1-electron densities, where it works less well. Furthermore, we show that the localization of the exact exchange hole for a 1- or 2-electron ground state can be measured by the ratio of the exact exchange energy to its optimal lower bound.

  8. Communication: Near-locality of exchange and correlation density functionals for 1- and 2-electron systems

    International Nuclear Information System (INIS)

    Sun, Jianwei; Yang, Zenghui; Peng, Haowei; Perdew, John P.

    2016-01-01

    The uniform electron gas and the hydrogen atom play fundamental roles in condensed matter physics and quantum chemistry. The former has an infinite number of electrons uniformly distributed over the neutralizing positively charged background, and the latter only one electron bound to the proton. The uniform electron gas was used to derive the local spin density approximation to the exchange-correlation functional that undergirds the development of the Kohn-Sham density functional theory. We show here that the ground-state exchange-correlation energies of the hydrogen atom and many other 1- and 2-electron systems are modeled surprisingly well by a different local spin density approximation (LSDA0). LSDA0 is constructed to satisfy exact constraints but agrees surprisingly well with the exact results for a uniform two-electron density in a finite, curved three-dimensional space. We also apply LSDA0 to excited or noded 1-electron densities, where it works less well. Furthermore, we show that the localization of the exact exchange hole for a 1- or 2-electron ground state can be measured by the ratio of the exact exchange energy to its optimal lower bound.

  9. A measure of localization properties of one-dimensional single electron lattice systems

    International Nuclear Information System (INIS)

    Gong, Longyan; Li, Wenjia; Zhao, Shengmei; Cheng, Weiwen

    2016-01-01

    We propose a novel quantity to measure the degree of localization properties of various types of one-dimension single electron states. The quantity includes information about the spatial variation of probability density of quantum states. Numerical results show that it can distinguish localized states from delocalized ones, so it can be used as a fruitful index to monitor the localization–delocalization transition. Comparing with existing measures, such as geometric average density of states, inverse participation ratio, and quantum information entropies, our proposed quantity has some advantages over them. - Highlights: • A novel quantity is proposed to measure the degree of localization. • It includes information about the spatial variation of probability density. • It is a fruitful index to monitor the localization–delocalization transition.

  10. Localized electronic states at grain boundaries on the surface of graphene and graphite

    DEFF Research Database (Denmark)

    Luican-Mayer, Adina; Barrios-Vargas, Jose E.; Falkenberg, Jesper Toft

    2016-01-01

    ecent advances in large-scale synthesis of graphene and other 2D materials have underscored the importance of local defects such as dislocations and grain boundaries (GBs), and especially their tendency to alter the electronic properties of the material. Understanding how the polycrystalline morp...

  11. Tunneling processes into localized subgap states in superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Ruby, Michael; Heinrich, Benjamin W.; Franke, Katharina J. [Freie Universitaet Berlin, Arnimallee 14, 14195 Berlin (Germany); Pientka, Falko; Peng, Yang; Oppen, Felix von [Freie Universitaet Berlin, Arnimallee 14, 14195 Berlin (Germany); Dahlem Center for Complex Quantum Systems, Freie Universitaet Berlin, 14195 Berlin (Germany)

    2016-07-01

    The Yu-Shiba-Rusinov states bound by magnetic impurities in conventional s-wave superconductors are a simple model system for probing the competition between superconducting and magnetic correlations. Shiba states can be observed in scanning tunneling spectroscopy (STS) as a pair of resonances at positive and negative bias voltages in the superconducting gap. These resonances have been interpreted in terms of single-electron tunneling into the localized sub-gap states. This requires relaxation mechanisms that depopulate the state after an initial tunneling event. Recently, theory suggests that the current can also be carried by Andreev processes which resonantly transfer a Cooper pair into the superconductor. We performed high-resolution STS experiments on single adatom Shiba states on the superconductor Pb, and provide evidence for the existence of two transport regimes. The single-electron processes dominate at large tip-sample distances and small tunneling currents, whereas Andreev processes become important at stronger tunneling. Our conclusions are based on a careful comparison of experiment and theory.

  12. Imaging quasiperiodic electronic states in a synthetic Penrose tiling

    Science.gov (United States)

    Collins, Laura C.; Witte, Thomas G.; Silverman, Rochelle; Green, David B.; Gomes, Kenjiro K.

    2017-06-01

    Quasicrystals possess long-range order but lack the translational symmetry of crystalline solids. In solid state physics, periodicity is one of the fundamental properties that prescribes the electronic band structure in crystals. In the absence of periodicity and the presence of quasicrystalline order, the ways that electronic states change remain a mystery. Scanning tunnelling microscopy and atomic manipulation can be used to assemble a two-dimensional quasicrystalline structure mapped upon the Penrose tiling. Here, carbon monoxide molecules are arranged on the surface of Cu(111) one at a time to form the potential landscape that mimics the ionic potential of atoms in natural materials by constraining the electrons in the two-dimensional surface state of Cu(111). The real-space images reveal the presence of the quasiperiodic order in the electronic wave functions and the Fourier analysis of our results links the energy of the resonant states to the local vertex structure of the quasicrystal.

  13. First-principles modeling of localized d states with the GW@LDA+U approach

    Science.gov (United States)

    Jiang, Hong; Gomez-Abal, Ricardo I.; Rinke, Patrick; Scheffler, Matthias

    2010-07-01

    First-principles modeling of systems with localized d states is currently a great challenge in condensed-matter physics. Density-functional theory in the standard local-density approximation (LDA) proves to be problematic. This can be partly overcome by including local Hubbard U corrections (LDA+U) but itinerant states are still treated on the LDA level. Many-body perturbation theory in the GW approach offers both a quasiparticle perspective (appropriate for itinerant states) and an exact treatment of exchange (appropriate for localized states), and is therefore promising for these systems. LDA+U has previously been viewed as an approximate GW scheme. We present here a derivation that is simpler and more general, starting from the static Coulomb-hole and screened exchange approximation to the GW self-energy. Following our previous work for f -electron systems [H. Jiang, R. I. Gomez-Abal, P. Rinke, and M. Scheffler, Phys. Rev. Lett. 102, 126403 (2009)10.1103/PhysRevLett.102.126403] we conduct a systematic investigation of the GW method based on LDA+U(GW@LDA+U) , as implemented in our recently developed all-electron GW code FHI-gap (Green’s function with augmented plane waves) for a series of prototypical d -electron systems: (1) ScN with empty d states, (2) ZnS with semicore d states, and (3) late transition-metal oxides (MnO, FeO, CoO, and NiO) with partially occupied d states. We show that for ZnS and ScN, the GW band gaps only weakly depend on U but for the other transition-metal oxides the dependence on U is as strong as in LDA+U . These different trends can be understood in terms of changes in the hybridization and screening. Our work demonstrates that GW@LDA+U with “physical” values of U provides a balanced and accurate description of both localized and itinerant states.

  14. Electron-tunneling observation of localized excited states in superconducting manganese-doped lead

    International Nuclear Information System (INIS)

    Tsang, J.; Ginsberg, D.M.

    1980-01-01

    We have made electron-tunneling measurements on a dilute, superconducting lead-manganese alloy. A well-defined structure was observed in the ac-conductance--voltage curves, indicating excited states within the BCS energy gap. These states were partially accounted for by Shiba theory when spin-dependent s-, p-, and d-wave scattering were included. The phase shifts used in doing that were the results of band calculations. The experimental data also show the existence of a broad background density of states in the energy gap, which cannot be accounted for by the theory

  15. Tuning of tunneling current noise spectra singularities by localized states charging

    OpenAIRE

    Mantsevich, V. N.; Maslova, N. S.

    2008-01-01

    We report the results of theoretical investigations of tunneling current noise spectra in a wide range of applied bias voltage. Localized states of individual impurity atoms play an important role in tunneling current noise formation. It was found that switching "on" and "off" of Coulomb interaction of conduction electrons with two charged localized states results in power law singularity of low-frequency tunneling current noise spectrum ($1/f^{\\alpha}$) and also results on high frequency com...

  16. The effect of electron localization on the electronic structure and migration barrier of oxygen vacancies in rutile.

    Science.gov (United States)

    Zhu, Linggang; Hu, Qing-Miao; Yang, Rui

    2014-02-05

    By applying the on-site Coulomb interaction (Hubbard term U) to the Ti d orbital, the influence of electron localization on the electronic structure as well as the transport of oxygen vacancies (VO) in rutile was investigated. With U = 4.5 eV, the positions of defect states in the bandgap were correctly reproduced. The unbonded electrons generated by taking out one neutral oxygen atom are spin parallel and mainly localized on the Ti atoms near VO, giving rise to a magnetic moment of 2 μB, in agreement with the experimental finding. With regard to the migration barrier of VO, surprisingly, we found that U = 4.5 eV only changed the value of the energy barrier by ±0.15 eV, depending on the diffusion path. The most probable diffusion path (along [110]) is the same as that calculated by using the traditional GGA functional. To validate the GGA + U method itself, a hybrid functional with a smaller supercell was used, and the trend of the more probable diffusion path was not changed. In this regard, the traditional GGA functional might still be reliable in the study of intrinsic-defect transportation in rutile. Analyzing the atomic distortion and density of states of the transition states for different diffusion paths, we found that the anisotropy of the diffusion could be rationalized according to the various atomic relaxations and the different positions of the valence bands relative to the Fermi level of the transition states.

  17. Effect of suprathermal electrons on the impurity ionization state

    International Nuclear Information System (INIS)

    Ochando, M A; Medina, F; Zurro, B; McCarthy, K J; Pedrosa, M A; Baciero, A; Rapisarda, D; Carmona, J M; Jimenez, D

    2006-01-01

    The effect of electron cyclotron resonance heating induced suprathermal electron tails on the ionization of iron impurities in magnetically confined plasmas is investigated. The behaviour of plasma emissivity immediately after injection provides evidence of a spatially localized 'shift' towards higher charge states of the impurity. Bearing in mind that the non-inductive plasma heating methods generate long lasting non-Maxwellian distribution functions, possible implications on the deduced impurity transport coefficients, when fast electrons are present, are discussed

  18. Direct conversion of graphite into diamond through electronic excited states

    CERN Document Server

    Nakayama, H

    2003-01-01

    An ab initio total energy calculation has been performed for electronic excited states in diamond and rhombohedral graphite by the full-potential linearized augmented plane wave method within the framework of the local density approximation (LDA). First, calculations for the core-excited state in diamond have been performed to show that the ab initio calculations based on the LDA describe the wavefunctions in the electronic excited states as well as in the ground state quite well. Fairly good coincidence with both experimental data and theoretical prediction has been obtained for the lattice relaxation of the core exciton state. The results of the core exciton state are compared with nitrogen-doped diamond. Next, the structural stability of rhombohedral graphite has been investigated to examine the possibility of the transition into the diamond structure through electronic excited states. While maintaining the rhombohedral symmetry, rhombohedral graphite can be spontaneously transformed to cubic diamond. Tota...

  19. Local electronic structure at organic–metal interface studied by UPS, MAES, and first-principles calculation

    Energy Technology Data Exchange (ETDEWEB)

    Aoki, M., E-mail: cmaoki@mail.ecc.u-tokyo.ac.jp; Masuda, S.

    2015-10-01

    Understanding and controlling local electronic structures at organic–metal interfaces are crucial for fabricating novel organic-based electronics, as in the case of heterojunctions in semiconductor devices. Here, we report recent studies of valence electronic states at organic–metal interfaces (especially those near the Fermi level of a metal substrate) by the combined analysis of ultraviolet photoemission spectroscopy (UPS), metastable atom electron spectroscopy (MAES), and first-principles calculations. New electronic states in the HOMO (highest occupied molecular orbital)–LUMO (lowest unoccupied molecular orbital) gap formed at an organic–metal interface are classified as a chemisorption-induced gap state (CIGS) and a complex-based gap state (CBGS). The CIGS is further characterized by an asymptotic feature of the metal wave function in the chemisorbed species. The CIGSs in alkanethiolates on Pt(1 1 1) and C{sub 60} on Pt(1 1 1) can be regarded as damping and propagating types, respectively. The CBGSs in K-doped dibenzopentacene (DBP) are composed of DBP-derived MOs and K sp states and distributed over the complex film. No metallic structures were found in the K{sub 1}DBP and K{sub 3}DBP phases, suggesting that they are Mott–Hubbard insulators due to strong electron correlation. The local electronic structures of a pentacene film bridged by Au electrodes under bias voltages were examined by an FET-like specimen. The pentacene-derived bands were steeply shifted at the positively biased electrode, reflecting the p-type character of the film.

  20. Electronic states of graphene nanoribbons and analytical solutions

    Directory of Open Access Journals (Sweden)

    Katsunori Wakabayashi, Ken-ichi Sasaki, Takeshi Nakanishi and Toshiaki Enoki

    2010-01-01

    Full Text Available Graphene is a one-atom-thick layer of graphite, where low-energy electronic states are described by the massless Dirac fermion. The orientation of the graphene edge determines the energy spectrum of π-electrons. For example, zigzag edges possess localized edge states with energies close to the Fermi level. In this review, we investigate nanoscale effects on the physical properties of graphene nanoribbons and clarify the role of edge boundaries. We also provide analytical solutions for electronic dispersion and the corresponding wavefunction in graphene nanoribbons with their detailed derivation using wave mechanics based on the tight-binding model. The energy band structures of armchair nanoribbons can be obtained by making the transverse wavenumber discrete, in accordance with the edge boundary condition, as in the case of carbon nanotubes. However, zigzag nanoribbons are not analogous to carbon nanotubes, because in zigzag nanoribbons the transverse wavenumber depends not only on the ribbon width but also on the longitudinal wavenumber. The quantization rule of electronic conductance as well as the magnetic instability of edge states due to the electron–electron interaction are briefly discussed.

  1. Importance of non-local electron-positron correlations for positron annihilation characteristics in solids

    International Nuclear Information System (INIS)

    Rubaszek, A.

    2001-01-01

    Several methods to describe the electron-positron (e-p) correlation effects are used in calculations of positron annihilation characteristics in solids. The weighted density approximation (WDA), giving rise to the non-local, state-selective e-p correlation functions, is applied to calculate positron annihilation rates and e-p momentum densities in a variety of metals and silicon. The WDA results are compared to the results of other methods such as the independent particle model, local density approximation, generalised gradient approximation, and also to experiments. The importance of non-locality and state-dependence of the e-p correlation functions is discussed. (orig.)

  2. Helical edge states and fractional quantum Hall effect in a graphene electron-hole bilayer.

    Science.gov (United States)

    Sanchez-Yamagishi, Javier D; Luo, Jason Y; Young, Andrea F; Hunt, Benjamin M; Watanabe, Kenji; Taniguchi, Takashi; Ashoori, Raymond C; Jarillo-Herrero, Pablo

    2017-02-01

    Helical 1D electronic systems are a promising route towards realizing circuits of topological quantum states that exhibit non-Abelian statistics. Here, we demonstrate a versatile platform to realize 1D systems made by combining quantum Hall (QH) edge states of opposite chiralities in a graphene electron-hole bilayer at moderate magnetic fields. Using this approach, we engineer helical 1D edge conductors where the counterpropagating modes are localized in separate electron and hole layers by a tunable electric field. These helical conductors exhibit strong non-local transport signals and suppressed backscattering due to the opposite spin polarizations of the counterpropagating modes. Unlike other approaches used for realizing helical states, the graphene electron-hole bilayer can be used to build new 1D systems incorporating fractional edge states. Indeed, we are able to tune the bilayer devices into a regime hosting fractional and integer edge states of opposite chiralities, paving the way towards 1D helical conductors with fractional quantum statistics.

  3. Temperature dependence of the partially localized state in a 2D molecular nanoporous network

    Energy Technology Data Exchange (ETDEWEB)

    Piquero-Zulaica, Ignacio, E-mail: ipiquerozulaica@gmail.com [Centro de Física de Materiales (CSIC/UPV-EHU)—Materials Physics Center, Manuel Lardizabal 5, 20018 San Sebastián (Spain); Nowakowska, Sylwia [Department of Physics, University of Basel, Klingelbergstrasse 82, 4056 Basel (Switzerland); Ortega, J. Enrique [Centro de Física de Materiales (CSIC/UPV-EHU)—Materials Physics Center, Manuel Lardizabal 5, 20018 San Sebastián (Spain); Donostia International Physics Center (DIPC), Manuel Lardizabal 4, 20018 San Sebastián (Spain); Departamento Física Aplicada I, Universidad del País Vasco, 20018 San Sebastián (Spain); Stöhr, Meike [Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen (Netherlands); Gade, Lutz H. [Anorganisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg (Germany); Jung, Thomas A. [Laboratory for Micro- and Nanotechnology, Paul Scherrer Institute, 5232 Villigen (Switzerland); Lobo-Checa, Jorge, E-mail: jorge.lobo@csic.es [Instituto de Ciencia de Materiales de Aragón (ICMA), CSIC-Universidad de Zaragoza, E-50009 Zaragoza (Spain); Departamento de Física de la Materia Condensada, Universidad de Zaragoza, E-50009 Zaragoza (Spain)

    2017-01-01

    Highlights: • A state of a 2D porous network is demonstrated to originate from the Shockley state. • The temperature evolution of both states is followed by means of ARPES. • Identical energy shifts are observed for both states, proving their common origin. - Abstract: Two-dimensional organic and metal-organic nanoporous networks can scatter surface electrons, leading to their partial localization. Such quantum states are related to intrinsic surface states of the substrate material. We further corroborate this relation by studying the thermally induced energy shifts of the electronic band stemming from coupled quantum states hosted in a metal-organic array formed by a perylene derivative on Cu(111). We observe by angle-resolved photoemission spectroscopy (ARPES), that both, the Shockley and the partially localized states, shift by the same amount to higher binding energies upon decreasing the sample temperature, providing evidence of their common origin. Our experimental approach and results further support the use of surface states for modelling these systems, which are expected to provide new insight into the physics concerning partially confined electronic states: scattering processes, potential barrier strengths, excited state lifetimes or the influence of guest molecules.

  4. Electronic structure of the Fe2 molecule in the local-spin-density approximation

    International Nuclear Information System (INIS)

    Dhar, S.; Kestner, N.R.

    1988-01-01

    Ab initio self-consistent all-electron spin-polarized calculations have been performed for the ground-state properties of the Fe 2 molecule using the local-spin-density approximation. A Gaussian orbital basis is employed and all the two-electron integrals are evaluated analytically. The matrix elements of the exchange-correlation potential are computed numerically. The total energy, the binding energy, the equilibrium distance, vibrational frequency, and the ground-state configurations are reported and compared with other calculations and experimental results

  5. Emergence of localized states in narrow GaAs/AlGaAs nanowire quantum well tubes.

    Science.gov (United States)

    Shi, Teng; Jackson, Howard E; Smith, Leigh M; Jiang, Nian; Gao, Qiang; Tan, H Hoe; Jagadish, Chennupati; Zheng, Changlin; Etheridge, Joanne

    2015-03-11

    We use low-temperature photoluminescence, photoluminescence excitation, and photoluminescence imaging spectroscopy to explore the optical and electronic properties of GaAs/AlGaAs quantum well tube (QWT) heterostructured nanowires (NWs). We find that GaAs QWTs with widths >5 nm have electronic states which are delocalized and continuous along the length of the NW. As the NW QWT width decreases from 5 to 1.5 nm, only a single electron state is bound to the well, and no optical excitations to a confined excited state are present. Simultaneously, narrow emission lines (fwhm points along the length of the NW. We find that these quantum-dot-like states broaden at higher temperatures and quench at temperatures above 80 K. The lifetimes of these localized states are observed to vary from dot to dot from 160 to 400 ps. The presence of delocalized states and then localized states as the QWTs become more confined suggests both opportunities and challenges for possible incorporation into quantum-confined device structures.

  6. Local versus global electronic properties of chalcopyrite alloys: X-ray absorption spectroscopy and ab initio calculations

    Energy Technology Data Exchange (ETDEWEB)

    Sarmiento-Pérez, Rafael; Botti, Silvana, E-mail: silvana.botti@univ-lyon1.fr [Institut Lumière Matière and ETSF, UMR5306 Université Lyon 1-CNRS, Université de Lyon, F-69622 Villeurbanne Cedex (France); Schnohr, Claudia S., E-mail: c.schnohr@uni-jena.de [Institut für Festkörperphysik, Friedrich-Schiller-Universität Jena, Max-Wien-Platz 1, 07743 Jena (Germany); Lauermann, Iver [Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner Platz 1, 14109 Berlin (Germany); Rubio, Angel [Nano-Bio Spectroscopy Group and ETSF Scientific Development Centre, Departamento de Física de Materiales, Centro de Física de Materiales CSIC-MPC and DIPC, Universidad del País Vasco UPV/EHU, Avenida de Tolosa 72, E-20018 San Sebastián (Spain); Fritz Haber Institute, Max Planck Society, Faradayweg 4-6, 14195 Berlin (Germany); Johnson, Benjamin, E-mail: benjamin.johnson@alumni.tu-berlin.de [Fritz Haber Institute, Max Planck Society, Faradayweg 4-6, 14195 Berlin (Germany)

    2014-09-07

    Element-specific unoccupied electronic states of Cu(In, Ga)S{sub 2} were studied as a function of the In/Ga ratio by combining X-ray absorption spectroscopy with density functional theory calculations. The S absorption edge shifts with changing In/Ga ratio as expected from the variation of the band gap. In contrast, the cation edge positions are largely independent of composition despite the changing band gap. This unexpected behavior is well reproduced by our calculations and originates from the dependence of the electronic states on the local atomic environment. The changing band gap arises from a changing spatial average of these localized states with changing alloy composition.

  7. Topological analysis of the electron density and of the electron localization function of pyrene and its radicals

    International Nuclear Information System (INIS)

    Hernandez-Trujillo, Jesus; Garcia-Cruz, Isidoro; Martinez-Magadan, Jose Manuel

    2005-01-01

    The topological properties of the charge distribution of pyrene and the three derived monoradicals in their ground state and of didehydrogenated pyrenes in the lowest singlet and triplet electronic states are discussed in detail by means of the quantum theory of atoms in molecules (TAIM) and by the electron localization function (ELF). The non-equivalence of the fused aromatic rings of pyrene prevents one from anticipating the stability and reactivity of these species from the chemistry of didehydrogenated species derived from benzene only. Whereas some of these didehydrogenated molecules were found to display a diradical character in the singlet ground state, the topological analysis reveals that others correspond to normal closed shells. Using these theoretical tools, the energetic and geometric details of o-, m- and p-benzyne-like pyrene derivatives are explained

  8. The electronic density of states of disordered compounds

    International Nuclear Information System (INIS)

    Geertsma, W.; Dijkstra, J.

    1984-11-01

    Recently, the electronic properties of liquid alkali (Li, Na, K, Rb, Cs)-group IV (Si, Ge, Sn, Pb) alloys have been discussed by the present authors using a tight-binding model. Only anion orbitals (= group IV) are taken into account. Disorder is described by a pseudo lattice, which takes into account local coordination in one of the sublattices (cation or anion) only. In the first part of this paper it is shown that this approximation is consistent with the usual valence rules used by structural chemists for crystalline structures. In the second part of the paper the solutions for the density of states of the tight-binding Hamiltonian are studied for a number of pseudolattices. The infinite set of Green function equations is solved by using the effective transfer method, which replaces the famous Block condition. It is shown that such a model can explain the formation of bandgaps in disordered systems. By choosing the proper smallest cluster(s) of transfer loops to model the real structure by a pseudolattice, a density of states is obtained which represents properly that of the corresponding crystalline structure. Structures reminiscent to those caused by van Hove singularities already appear in the electronic density of states when relatively small cluster(s) of transfer loops are used. The approach outlined in this paper is capable of describing the electronic density of states due to various degrees of local order in a sublattice. Some of the peculiarities occurring in the solution of the density of states of certain pseudolattices, such as poles outside the band, are discussed in an appendix. (author)

  9. Electronic and structural ground state of heavy alkali metals at high pressure

    Science.gov (United States)

    Fabbris, G.; Lim, J.; Veiga, L. S. I.; Haskel, D.; Schilling, J. S.

    2015-02-01

    Alkali metals display unexpected properties at high pressure, including emergence of low-symmetry crystal structures, which appear to occur due to enhanced electronic correlations among the otherwise nearly free conduction electrons. We investigate the high-pressure electronic and structural ground state of K, Rb, and Cs using x-ray absorption spectroscopy and x-ray diffraction measurements together with a b i n i t i o theoretical calculations. The sequence of phase transitions under pressure observed at low temperature is similar in all three heavy alkalis except for the absence of the o C 84 phase in Cs. Both the experimental and theoretical results point to pressure-enhanced localization of the valence electrons characterized by pseudogap formation near the Fermi level and strong s p d hybridization. Although the crystal structures predicted to host magnetic order in K are not observed, the localization process appears to drive these alkalis closer to a strongly correlated electron state.

  10. Radially localized measurements of superthermal electrons using oblique electron cyclotron emission

    International Nuclear Information System (INIS)

    Preische, S.; Efthimion, P.C.; Kaye, S.M.

    1996-05-01

    It is shown that radial localization of optically tin Electron Cyclotron Emission from superthermal electrons can be imposed by observation of emission upshifted from the thermal cyclotron resonance in the horizontal midplane of a tokamak. A new and unique diagnostic has been proposed and operated to make radially localized measurements of superthermal electrons during Lower Hybrid Current Drive on the PBX-M tokamak. The superthermal electron density profile as well as moments of the electron energy distribution as a function of radius are measured during Lower Hybrid Current Drive. The time evolution of these measurements after the Lower Hybrid power is turned off are given and the observed behavior reflects the collisional isotropization of the energy distribution and radial diffusion of the spatial profile

  11. On the ground-state degeneracy and entropy in a double-tetrahedral chain formed by the localized Ising spins and mobile electrons

    Science.gov (United States)

    Gálisová, Lucia

    2018-05-01

    Ground-state properties of a hybrid double-tetrahedral chain, in which the localized Ising spins regularly alternate with triangular plaquettes occupied by a variable number of mobile electrons, are exactly investigated. We demonstrate that the zero-temperature phase diagram of the model involves several non-degenerate, two-fold degenerate and macroscopically degenerate chiral phases. Low-temperature dependencies of the entropy and specific heat are also examined in order to gain a deeper insight into the degeneracy of individual ground-state phases and phase transitions. It is shown that a diversity of the ground-state degeneracy manifests itself in multiple-peak structures of both thermodynamic quantities. A remarkable temperature dependencies of the specific heat with two and three Schottky-type maxima are discussed in detail.

  12. Non-local electron transport through normal and topological ladder-like atomic systems

    Science.gov (United States)

    Kurzyna, Marcin; Kwapiński, Tomasz

    2018-05-01

    We propose a locally protected ladder-like atomic system (nanoconductor) on a substrate that is insensitive to external perturbations. The system corresponds to coupled atomic chains fabricated on different surfaces. Electron transport properties of such conductors are studied theoretically using the model tight-binding Su-Schriffer-Hegger (SSH) Hamiltonian and Green's function formalism. We have found that the conductance of the system is almost insensitive to single adatoms and oscillates as a function of the side chain length with very large periods. Non-local character of the electron transport was observed also for topological SSH chains where nontrivial end states survive in the presence of disturbances as well as for different substrates. We have found that the careful inspection of the density of states or charge waves can provide the information about the atom energy levels and hopping amplitudes. Moreover, the ladder-like geometry allows one to distinguish between normal and topological zero-energy states. It is important that topological chains do not reveal Friedel oscillations which are observed in non-topological chains.

  13. Attractive electron-electron interactions within robust local fitting approximations.

    Science.gov (United States)

    Merlot, Patrick; Kjærgaard, Thomas; Helgaker, Trygve; Lindh, Roland; Aquilante, Francesco; Reine, Simen; Pedersen, Thomas Bondo

    2013-06-30

    An analysis of Dunlap's robust fitting approach reveals that the resulting two-electron integral matrix is not manifestly positive semidefinite when local fitting domains or non-Coulomb fitting metrics are used. We present a highly local approximate method for evaluating four-center two-electron integrals based on the resolution-of-the-identity (RI) approximation and apply it to the construction of the Coulomb and exchange contributions to the Fock matrix. In this pair-atomic resolution-of-the-identity (PARI) approach, atomic-orbital (AO) products are expanded in auxiliary functions centered on the two atoms associated with each product. Numerical tests indicate that in 1% or less of all Hartree-Fock and Kohn-Sham calculations, the indefinite integral matrix causes nonconvergence in the self-consistent-field iterations. In these cases, the two-electron contribution to the total energy becomes negative, meaning that the electronic interaction is effectively attractive, and the total energy is dramatically lower than that obtained with exact integrals. In the vast majority of our test cases, however, the indefiniteness does not interfere with convergence. The total energy accuracy is comparable to that of the standard Coulomb-metric RI method. The speed-up compared with conventional algorithms is similar to the RI method for Coulomb contributions; exchange contributions are accelerated by a factor of up to eight with a triple-zeta quality basis set. A positive semidefinite integral matrix is recovered within PARI by introducing local auxiliary basis functions spanning the full AO product space, as may be achieved by using Cholesky-decomposition techniques. Local completion, however, slows down the algorithm to a level comparable with or below conventional calculations. Copyright © 2013 Wiley Periodicals, Inc.

  14. InN/GaN quantum dot superlattices: Charge-carrier states and surface electronic structure

    Science.gov (United States)

    Kanouni, F.; Brezini, A.; Djenane, M.; Zou, Q.

    2018-03-01

    We have theoretically investigated the electron energy spectra and surface states energy in the three dimensionally ordered quantum dot superlattices (QDSLs) made of InN and GaN semiconductors. The QDSL is assumed in this model to be a matrix of GaN containing cubic dots of InN of the same size and uniformly distributed. For the miniband’s structure calculation, the resolution of the effective mass Schrödinger equation is done by decoupling it in the three directions within the framework of Kronig-Penney model. We found that the electrons minibands in infinite ODSLs are clearly different from those in the conventional quantum-well superlattices. The electrons localization and charge-carrier states are very dependent on the quasicrystallographic directions, the size and the shape of the dots which play a role of the artificial atoms in such QD supracrystal. The energy spectrum of the electron states localized at the surface of InN/GaN QDSL is represented by Kronig-Penney like-model, calculated via direct matching procedure. The calculation results show that the substrate breaks symmetrical shape of QDSL on which some localized electronic surface states can be produced in minigap regions. Furthermore, we have noticed that the surface states degeneracy is achieved in like very thin bands located in the minigaps, identified by different quantum numbers nx, ny, nz. Moreover, the surface energy bands split due to the reduction of the symmetry of the QDSL in z-direction.

  15. Dynamical localization of two electrons in triple-quantum-dot shuttles

    International Nuclear Information System (INIS)

    Qu, Jinxian; Duan, Suqing; Yang, Ning

    2012-01-01

    The dynamical localization phenomena in two-electron quantum-dot shuttles driven by an ac field have been investigated and analyzed by the Floquet theory. The dynamical localization occurs near the anti-crossings in Floquet eigenenergy spectrum. The oscillation of the quantum-dot shuttles may increase the possibility of the dynamical localization. Especially, even if the two electrons are initialized in two neighbor dots, they can be localized there for appropriate intensity of the driven field. The studies may help the understanding of dynamical localization in electron shuttles and expand the application potential of nanoelectromechanical devices. -- Highlights: ► The dynamical localization in electron shuttle is studied by Floquet theory. ► There is a relation between quasi-energy anti-crossings and dynamical localization. ► The oscillation of quantum dot increases the dynamical localization. ► Even the electrons are initialized in different dots, the localization can occur.

  16. Ground-state electronic structure of actinide monocarbides and mononitrides

    DEFF Research Database (Denmark)

    Petit, Leon; Svane, Axel; Szotek, Z.

    2009-01-01

    The self-interaction corrected local spin-density approximation is used to investigate the ground-state valency configuration of the actinide ions in the actinide monocarbides, AC (A=U,Np,Pu,Am,Cm), and the actinide mononitrides, AN. The electronic structure is characterized by a gradually increa...

  17. Creation of paired electron states in the gap of semiconducting carbon nanotubes by correlated hydrogen adsorption

    International Nuclear Information System (INIS)

    Buchs, Gilles; Krasheninnikov, Arkady V; Ruffieux, Pascal; Groening, Pierangelo; Foster, Adam S; Nieminen, Risto M; Groening, Oliver

    2007-01-01

    The specific, local modification of the electronic structure of carbon nanomaterials is as important for novel electronic device fabrication as the doping in the case of silicon-based electronics. Here, we report low temperature scanning tunneling microscopy and spectroscopy study of semiconducting carbon nanotubes subjected to hydrogen-plasma treatment. We show that plasma treatment mostly results in the creation of paired electronic states in the nanotube band gap. Combined with extensive first-principle simulations, our results provide direct evidence that these states originate from correlated chemisorption of hydrogen adatoms on the tube surface. The energy splitting of the paired states is governed by the adatom-adatom interaction, so that controlled hydrogenation can be used for engineering the local electronic structure of nanotubes and other sp 2 -bonded nanocarbon systems

  18. Local energy equation for two-electron atoms and relation between kinetic energy and electron densities

    International Nuclear Information System (INIS)

    March, N.H.

    2002-08-01

    In early work, Dawson and March [J. Chem. Phys. 81, 5850 (1984)] proposed a local energy method for treating both Hartree-Fock and correlated electron theory. Here, an exactly solvable model two-electron atom with pure harmonic interactions is treated in its ground state in the above context. A functional relation between the kinetic energy density t(r) at the origin r=0 and the electron density p(r) at the same point then emerges. The same approach is applied to the Hookean atom; in which the two electrons repel with Coulombic energy e 2 /r 12 , with r 12 the interelectronic separation, but are still harmonically confined. Again the kinetic energy density t(r) is the focal point, but now generalization away from r=0 is also effected. Finally, brief comments are added about He-like atomic ions in the limit of large atomic number. (author)

  19. Optical density of states in ultradilute GaAsN alloy: Coexistence of free excitons and impurity band of localized and delocalized states

    Energy Technology Data Exchange (ETDEWEB)

    Bhuyan, Sumi; Pal, Bipul; Bansal, Bhavtosh, E-mail: bhavtosh@iiserkol.ac.in [Indian Institute of Science Education and Research Kolkata, Mohanpur Campus, Nadia 741252, West Bengal (India); Das, Sanat K.; Dhar, Sunanda [Department of Electronic Science, University of Calcutta, 92 A.P.C. Road, Kolkata 700009 (India)

    2014-07-14

    Optically active states in liquid phase epitaxy-grown ultra-dilute GaAsN are studied. The feature-rich low temperature photoluminescence spectrum has contributions from excitonic band states of the GaAsN alloy, and two types of defect states—localized and extended. The degree of delocalization for extended states both within the conduction and defect bands, characterized by the electron temperature, is found to be similar. The degree of localization in the defect band is analyzed by the strength of the phonon replicas. Stronger emission from these localized states is attributed to their giant oscillator strength.

  20. Local cloning of entangled states

    International Nuclear Information System (INIS)

    Gheorghiu, Vlad; Yu Li; Cohen, Scott M.

    2010-01-01

    We investigate the conditions under which a set S of pure bipartite quantum states on a DxD system can be locally cloned deterministically by separable operations, when at least one of the states is full Schmidt rank. We allow for the possibility of cloning using a resource state that is less than maximally entangled. Our results include that: (i) all states in S must be full Schmidt rank and equally entangled under the G-concurrence measure, and (ii) the set S can be extended to a larger clonable set generated by a finite group G of order |G|=N, the number of states in the larger set. It is then shown that any local cloning apparatus is capable of cloning a number of states that divides D exactly. We provide a complete solution for two central problems in local cloning, giving necessary and sufficient conditions for (i) when a set of maximally entangled states can be locally cloned, valid for all D; and (ii) local cloning of entangled qubit states with nonvanishing entanglement. In both of these cases, we show that a maximally entangled resource is necessary and sufficient, and the states must be related to each other by local unitary 'shift' operations. These shifts are determined by the group structure, so need not be simple cyclic permutations. Assuming this shifted form and partially entangled states, then in D=3 we show that a maximally entangled resource is again necessary and sufficient, while for higher-dimensional systems, we find that the resource state must be strictly more entangled than the states in S. All of our necessary conditions for separable operations are also necessary conditions for local operations and classical communication (LOCC), since the latter is a proper subset of the former. In fact, all our results hold for LOCC, as our sufficient conditions are demonstrated for LOCC, directly.

  1. Spin inelastic electron tunneling spectroscopy on local spin adsorbed on surface.

    Science.gov (United States)

    Fransson, J

    2009-06-01

    The recent experimental conductance measurements taken on magnetic impurities on metallic surfaces, using scanning tunneling microscopy technique and suggesting occurrence of inelastic scattering processes, are theoretically addressed. We argue that the observed conductance signatures are caused by transitions between the spin states that have opened due to, for example, exchange coupling between the local spins and the tunneling electrons, and are directly interpretable in terms of inelastic transitions energies. Feasible measurements using spin-polarized scanning tunneling microscopy that would enable new information about the excitation spectrum of the local spins are discussed.

  2. The role of local tunneling states in superconductivity at disordered interfaces

    International Nuclear Information System (INIS)

    Nguyen, B.D.; Simanek, E.

    1982-01-01

    The origin of the enhancement of the superconducting transition temperature caused by the presence of disordered interfaces is studied. An enhancement mechanism involving the tunneling of the conduction electrons from metal into the local state coupled to the ''two-level state systems'' in the interfaces region, is considered. In this model, the reduction of the tunneling matrix elements by orthogonality blocking can be avoided. (author)

  3. Localized end states in density modulated quantum wires and rings.

    Science.gov (United States)

    Gangadharaiah, Suhas; Trifunovic, Luka; Loss, Daniel

    2012-03-30

    We study finite quantum wires and rings in the presence of a charge-density wave gap induced by a periodic modulation of the chemical potential. We show that the Tamm-Shockley bound states emerging at the ends of the wire are stable against weak disorder and interactions, for discrete open chains and for continuum systems. The low-energy physics can be mapped onto the Jackiw-Rebbi equations describing massive Dirac fermions and bound end states. We treat interactions via the continuum model and show that they increase the charge gap and further localize the end states. The electrons placed in the two localized states on the opposite ends of the wire can interact via exchange interactions and this setup can be used as a double quantum dot hosting spin qubits. The existence of these states could be experimentally detected through the presence of an unusual 4π Aharonov-Bohm periodicity in the spectrum and persistent current as a function of the external flux.

  4. Exact many-electron ground states on diamond and triangle Hubbard chains

    International Nuclear Information System (INIS)

    Gulacsi, Zsolt; Kampf, Arno; Vollhardt, Dieter

    2009-01-01

    We construct exact ground states of interacting electrons on triangle and diamond Hubbard chains. The construction requires (1) a rewriting of the Hamiltonian into positive semidefinite form, (2) the construction of a many-electron ground state of this Hamiltonian, and (3) the proof of the uniqueness of the ground state. This approach works in any dimension, requires no integrability of the model, and only demands sufficiently many microscopic parameters in the Hamiltonian which have to fulfill certain relations. The scheme is first employed to construct exact ground state for the diamond Hubbard chain in a magnetic field. These ground states are found to exhibit a wide range of properties such as flat-band ferromagnetism and correlation induced metallic, half-metallic or insulating behavior, which can be tuned by changing the magnetic flux, local potentials, or electron density. Detailed proofs of the uniqueness of the ground states are presented. By the same technique exact ground states are constructed for triangle Hubbard chains and a one-dimensional periodic Anderson model with nearest-neighbor hybridization. They permit direct comparison with results obtained by variational techniques for f-electron ferromagnetism due to a flat band in CeRh 3 B 2 . (author)

  5. New Theoretical Developments in Exploring Electronically Excited States: Including Localized Configuration Interaction Singles and Application to Large Helium Clusters

    Science.gov (United States)

    Closser, Kristina Danielle

    This thesis presents new developments in excited state electronic structure theory. Contrasted with the ground state, the electronically excited states of atoms and molecules often are unstable and have short lifetimes, exhibit a greater diversity of character and are generally less well understood. The very unusual excited states of helium clusters motivated much of this work. These clusters consist of large numbers of atoms (experimentally 103--109 atoms) and bands of nearly degenerate excited states. For an isolated atom the lowest energy excitation energies are from 1s → 2s and 1s → 2 p transitions, and in clusters describing the lowest energy band minimally requires four states per atom. In the ground state the clusters are weakly bound by van der Waals interactions, however in the excited state they can form well-defined covalent bonds. The computational cost of quantum chemical calculations rapidly becomes prohibitive as the size of the systems increase. Standard excited-state methods such as configuration interaction singles (CIS) and time-dependent density functional theory (TD-DFT) can be used with ≈100 atoms, and are optimized to treat only a few states. Thus, one of our primary aims is to develop a method which can treat these large systems with large numbers of nearly degenerate excited states. Additionally, excited states are generally formed far from their equilibrium structures. Vertical excitations from the ground state induce dynamics in the excited states. Thus, another focus of this work is to explore the results of these forces and the fate of the excited states. Very little was known about helium cluster excited states when this work began, thus we first investigated the excitations in small helium clusters consisting of 7 or 25 atoms using CIS. The character of these excited states was determined using attachment/detachment density analysis and we found that in the n = 2 manifold the excitations could generally be interpreted as

  6. Local versus non-local core potentials in electron scattering from sodium atoms

    International Nuclear Information System (INIS)

    Bartschat, K.; Bray, I.

    1996-01-01

    We have tested the use of a local potential instead of the non-local Hartree-Fock potential to represent exchange effects between the valence or the projectile electron and the core in electron scattering from sodium atoms. For some of the most detailed observables in this collision system, the results of the two approaches are nearly identical, even though the effect of the exchange part is shown to be particularly large. (Author)

  7. Local Electronic Structure of a Single-Layer Porphyrin-Containing Covalent Organic Framework

    KAUST Repository

    Chen, Chen

    2017-12-20

    We have characterized the local electronic structure of a porphyrin-containing single-layer covalent organic framework (COF) exhibiting a square lattice. The COF monolayer was obtained by the deposition of 2,5-dimethoxybenzene-1,4-dicarboxaldehyde (DMA) and 5,10,15,20-tetrakis(4-aminophenyl) porphyrin (TAPP) onto a Au(111) surface in ultrahigh vacuum followed by annealing to facilitate Schiff-base condensations between monomers. Scanning tunneling spectroscopy (STS) experiments conducted on isolated TAPP precursor molecules and the covalently linked COF networks yield similar transport (HOMO-LUMO) gaps of 1.85 ± 0.05 eV and 1.98 ± 0.04 eV, respectively. The COF orbital energy alignment, however, undergoes a significant downward shift compared to isolated TAPP molecules due to the electron-withdrawing nature of the imine bond formed during COF synthesis. Direct imaging of the COF local density of states (LDOS) via dI/dV mapping reveals that the COF HOMO and LUMO states are localized mainly on the porphyrin cores and that the HOMO displays reduced symmetry. DFT calculations reproduce the imine-induced negative shift in orbital energies and reveal that the origin of the reduced COF wave function symmetry is a saddle-like structure adopted by the porphyrin macrocycle due to its interactions with the Au(111) substrate.

  8. Multifractal character of the electronic states in disordered two-dimensional systems

    International Nuclear Information System (INIS)

    Tit, N.; Schreiber, M.

    1994-08-01

    The nature of electronic states in disordered two-dimensional (2D) systems is investigated. To this aim, we present our calculations of both density of states and dc-conductivity for square lattices modelling the Anderson Hamiltonian with on-site energies randomly chosen from a box distribution of width W. For weak disorder (W), the eigenfunctions calculated by means of the Lanczos diagonalization algorithm display spatial fluctuations reflecting their (multi)fractal behaviour. For increasing disorder or energy the observed increase of the curdling of the wavefunction reflects its stronger localization. Our dc-conductivity results suggest a critical fractal dimension d * c =1.48±0.05 to discriminate between the exponentially and the power-law localized states. Consequences of the localization on transport properties are also discussed. (author). 30 refs, 10 figs, 1 tab

  9. Local vs. Non-local core potentials in electron scattering from sodium atoms

    International Nuclear Information System (INIS)

    Bartschat, K.; Bray, I.

    1996-02-01

    We have tested the use of a local potential instead of the non-local Hartree-Fock potential to represent exchange effects between the valence or the projectile electron and the core in electron scattering from sodium atoms For some of the most detailed observables in this collision system/ the results of the two approaches are nearly identical, even though the effect of the exchange part is shown to be particularly large. (authors). 16 refs., 4 figs

  10. Local 3d Electronic Structures of Co-Based Complexes with Medicinal Molecules Probed by Soft X-ray Absorption

    Science.gov (United States)

    Yamagami, Kohei; Fujiwara, Hidenori; Imada, Shin; Kadono, Toshiharu; Yamanaka, Keisuke; Muro, Takayuki; Tanaka, Arata; Itai, Takuma; Yoshinari, Nobuto; Konno, Takumi; Sekiyama, Akira

    2017-07-01

    We have examined the local 3d electronic structures of Co-Au multinuclear complexes with the medicinal molecules d-penicillaminate (d-pen) [Co{Au(PPh3)(d-pen)}2]ClO4 and [Co3{Au3(tdme)(d-pen)3}2] by Co L2,3-edge soft X-ray absorption (XAS) spectroscopy, where PPh3 denotes triphenylphosphine and tdme stands for 1,1,1-tris[(diphenylphosphino)methyl]ethane. The Co L2,3-edge XAS spectra indicate the localized ionic 3d electronic states in both materials. The experimental spectra are well explained by spectral simulation for a localized Co ion under ligand fields with the full multiplet theory, which verifies that the ions are in the low-spin Co3+ state in the former compound and in the high-spin Co2+ state in the latter.

  11. Local Magnetism in Strongly Correlated Electron Systems with Orbital Degrees of Freedom

    Science.gov (United States)

    Ducatman, Samuel Charles

    The central aim of my research is to explain the connection between the macroscopic behavior and the microscopic physics of strongly correlated electron systems with orbital degrees of freedom through the use of effective models. My dissertation focuses on the sub-class of these materials where electrons appear to be localized by interactions, and magnetic ions have well measured magnetic moments. This suggests that we can capture the low-energy physics of the material by employing a minimal model featuring localized spins which interact with each other through exchange couplings. I describe Fe1+y Te and beta-Li2IrO3 with effective models primarily focusing on the spins of the magnetic ions, in this case Fe and Ir, respectively. The goal with both materials is to gain insight and make predictions for experimentalists. In chapter 2, I focus on Fe1+yTe. I describe why we believe the magnetic ground state of this material, with an observed Bragg peak at Q +/- pi/2, pi/2), can be described by a Heisenberg model with 1st, 2nd, and 3rd neighbor interactions. I present two possible ground states of this model in the small J1 limit, the bicollinear and plaquette states. In order to predict which ground state the model prefers, I calculate the spin wave spectrum with 1/S corrections, and I find the model naturally selects the "plaquette state." I give a brief description of the ways this result could be tested using experimental techniques such as polarized neutron scattering. In chapter 3, I extend the model used in chapter 2. This is necessary because the Heisenberg model we employed cannot explain why Fe1+yTe undergoes a phase transition as y is increased. We add an additional elements to our calculation; we assume that electrons in some of the Fe 3D orbitals have selectively localized while others remain itinerant. We write a new Hamiltonian, where localized moments acquire a new long-range RKKY-like interaction from interactions with the itinerant electrons. We are

  12. Localized versus collective behaviour of d-electrons in transition metal oxide systems of perovskite systems

    Energy Technology Data Exchange (ETDEWEB)

    Rao, C N.R. [Indian Inst. of Tech., Kanpur

    1974-12-01

    The behavior of d-electrons in perovskites of the type LnZO/sub 3/ (Z = trivalent transition metal ion and Ln = rare earth or yttrium) depends on the spin configuration of the transition metal ion. LaTiO/sub 3/ and LaNiO/sub 3/ with low-spin transition metal ions (S = 1/2) are metallic while LaCrO/sub 3/, LnMnO/sub 3/ and LnFeO/sub 3/ with high-spin ions are poor semiconductors exhibiting localized behavior of d-electrons. In rare earth cobaltites, the cobalt ions are present mainly in the diamagnetic low-spin Co /sup III/ state at low temperatures. The Co/sup III/ ions transform to high-spin Co/sup 3 +/ ions with increase in temperature. At higher temperatures, there is electron-transfer from Co/sup 3 +/ to Co/sup III/ions producing intermetallic states. Spin-state transitions are seen in these cobaltites in the range 150-870/sup 0/K. At high temperatures, the cobaltites show evidence for localized-itinerant electron transitions. In La/sub 1-x/ Sr/sub x/CoO/sub 3/ there is onset of ferromagnetism at x > 0.125, at which point there is a structural dicontinuity and electrons become itinerant. The composition with x = 0.5 is metallic and T/sub c/ = 230/sup 0/K. The ferromagnetic component in La/sub 1-x/Sr/sub x/ CoO/sub 3/ increases with x in the range 0.125-0.50. Catalytic properties of rare earth cobaltites appear to be related to the spin state equilibria. (auth)

  13. Local structural and electronic properties of V2O3 and ZnV2O4

    International Nuclear Information System (INIS)

    Pfalzer, P.

    2004-01-01

    In this thesis the electronically correlated transition metal oxide compounds V 2 O 3 and ZnV 2 O 4 , which are of basic interest for solid state physics, are investigated using X-ray absorption techniques. Measurements of the fine structure at Vanadium and Oxygen K absorption edges together with a comparison to theoretically calculated spectra show that the local properties of these materials, which under certain conditions deviate drastically from the long-range properties known so far, crucially influence the characteristic behaviour. It is shown that the two insulating phases of V 2 O 3 (the paramagnetic insulating (PI) and the antiferromagnetic insulating (AFI) phase) exhibit very similar local properties which are well distinguished from those of the paramagnetic metallic (PM) phase. In particular, a disagreement is found between the local and the long-range spatial symmetry of the PI phase. It is further shown that at the metal-insulator transition from the PM to the AFI phase structural changes preceed changes of the electronic and magnetic properties. This suggests that the metal-insulator transition is structurally driven. In ZnV 2 O 4 characteristic differences are found between the local properties of single crystalline and powdered samples. These originate either from strain in the single crystals or from anisotropy of the electronic states

  14. Anderson localized state as a predissipative state: irreversible emission of thermalized quanta from a dynamically delocalized state.

    Science.gov (United States)

    Yamada, Hiroaki; Ikeda, Kensuke S

    2002-04-01

    It was shown that localization in one-dimensional disordered (quantum) electronic system is destroyed against coherent harmonic perturbations and the delocalized electron exhibits an unlimited diffusive motion [Yamada and Ikeda, Phys. Rev. E 59, 5214 (1999)]. The appearance of diffusion implies that the system has potential for irreversibility and dissipation. In the present paper, we investigate dissipative property of the dynamically delocalized state, and we show that an irreversible quasistationary energy flow indeed appears in the form of a "heat" flow when we couple the system with another dynamical degree of freedom. In the concrete we numerically investigate dissipative properties of a one-dimensional tight-binding electronic system perturbed by time-dependent harmonic forces, by coupling it with a quantum harmonic oscillator or a quantum anharmonic oscillator. It is demonstrated that if the on-site potential is spatially irregular an irreversible energy transfer from the scattered electron to the test oscillator occurs. Moreover, the test oscillator promptly approaches a thermalized state characterized by a well-defined time-dependent temperature. On the contrary, such a relaxation process cannot be observed at all for periodic potential systems. Our system is one of the minimal quantum systems in which a distinct nonequilibrium statistical behavior is self-induced.

  15. Electronic hole localization in rutile and anatase TiO2 - Self-interaction correction in Delta-SCF DFT

    DEFF Research Database (Denmark)

    Zawadzki, Pawel; Jacobsen, Karsten Wedel; Rossmeisl, Jan

    2011-01-01

    We study electronic hole localization in rutile and anatase titanium dioxide by means of Δ-Self-Consistent Field Density Functional Theory. In order to compare stabilities of the localized and the delocalized hole states we introduce a simple correction to the wrong description of the localizatio...

  16. Visualizing One-Dimensional Electronic States and their Scattering in Semi-conducting Nanowires

    Science.gov (United States)

    Beidenkopf, Haim; Reiner, Jonathan; Norris, Andrew; Nayak, Abhay Kumar; Avraham, Nurit; Shtrikman, Hadas

    One-dimensional electronic systems constitute a fascinating playground for the emergence of exotic electronic effects and phases, within and beyond the Tomonaga-Luttinger liquid paradigm. More recently topological superconductivity and Majorana modes were added to that long list of phenomena. We report scanning tunneling microscopy and spectroscopy measurements conducted on pristine, epitaxialy grown InAs nanowires. We resolve the 1D electronic band structure manifested both via Van-Hove singularities in the local density-of-states, as well as by the quasi-particle interference patterns, induced by scattering from surface impurities. By studying the scattering of the one-dimensional electronic states off various scatterers, including crystallographic defects and the nanowire end, we identify new one-dimensional relaxation regimes and yet unexplored effects of interactions. Some of these may bear implications on the topological superconducting state and Majorana modes therein. The authors acknowledge support from the Israeli Science Foundation (ISF).

  17. Accuracy of the Hartree-Fock and local density approximations for electron densities: a study for light atoms

    International Nuclear Information System (INIS)

    Almbladh, C.-O.; Ekenberg, U.; Pedroza, A.C.

    1983-01-01

    The authors compare the electron densities and Hartree potentials in the local density and the Hartree-Fock approximations to the corresponding quantities obtained from more accurate correlated wavefunctions. The comparison is made for a number of two-electron atoms, Li, and for Be. The Hartree-Fock approximation is more accurate than the local density approximation within the 1s shell and for the spin polarization in Li, while the local density approximation is slightly better than the Hartree-Fock approximation for charge densities in the 2s shell. The inaccuracy of the Hartree-Fock and local density approximations to the Hartree potential is substantially smaller than the inaccuracy of the local density approximation to the ground-state exchange-correlation potential. (Auth.)

  18. Linear independence of localized magnon states

    International Nuclear Information System (INIS)

    Schmidt, Heinz-Juergen; Richter, Johannes; Moessner, Roderich

    2006-01-01

    At the magnetic saturation field, certain frustrated lattices have a class of states known as 'localized multi-magnon states' as exact ground states. The number of these states scales exponentially with the number N of spins and hence they have a finite entropy also in the thermodynamic limit N → ∞ provided they are sufficiently linearly independent. In this paper, we present rigorous results concerning the linear dependence or independence of localized magnon states and investigate special examples. For large classes of spin lattices, including what we call the orthogonal type and the isolated type, as well as the kagome, the checkerboard and the star lattice, we have proven linear independence of all localized multi-magnon states. On the other hand, the pyrochlore lattice provides an example of a spin lattice having localized multi-magnon states with considerable linear dependence

  19. Electron localization in liquid hydrocarbons: The Anderson model

    International Nuclear Information System (INIS)

    Hug, Gordon L.; Mozumder, A.

    2008-01-01

    Anderson's model is applied for initial localization in liquid hydrocarbons (particularly n-alkanes) in conjunction with certain results of scaling theory. Medium connectivity is calculated using experimental X-ray data on liquid structure, from which critical disorder (W/V) c is computed, where W is diagonal disorder and V is the transfer energy. Actual W prevailing in the liquid is computed from anisotropic molecular polarizability. V is estimated by a heuristic procedure originating in scaling theory. These values are used to compute the percentage of initially delocalized states available for low-energy electrons in alkane liquids. This percentage decreases monotonically from methane (100%) to n-pentane and beyond (0%). In ethane and propane, the initial states are highly delocalized (97.6% and 83.9%, respectively). Subsequent trapping changes the situation as evidenced in mobility studies. Butane presents a partially, intermediate delocalized case (53.2%)

  20. Local imaging of high mobility two-dimensional electron systems with virtual scanning tunneling microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Pelliccione, M. [Department of Applied Physics, Stanford University, 348 Via Pueblo Mall, Stanford, California 94305 (United States); Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025 (United States); Department of Physics, University of California, Santa Barbara, Santa Barbara, California 93106 (United States); Bartel, J.; Goldhaber-Gordon, D. [Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025 (United States); Department of Physics, Stanford University, 382 Via Pueblo Mall, Stanford, California 94305 (United States); Sciambi, A. [Department of Applied Physics, Stanford University, 348 Via Pueblo Mall, Stanford, California 94305 (United States); Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025 (United States); Pfeiffer, L. N.; West, K. W. [Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544 (United States)

    2014-11-03

    Correlated electron states in high mobility two-dimensional electron systems (2DESs), including charge density waves and microemulsion phases intermediate between a Fermi liquid and Wigner crystal, are predicted to exhibit complex local charge order. Existing experimental studies, however, have mainly probed these systems at micron to millimeter scales rather than directly mapping spatial organization. Scanning probes should be well-suited to study the spatial structure of these states, but high mobility 2DESs are found at buried semiconductor interfaces, beyond the reach of conventional scanning tunneling microscopy. Scanning techniques based on electrostatic coupling to the 2DES deliver important insights, but generally with resolution limited by the depth of the 2DES. In this letter, we present our progress in developing a technique called “virtual scanning tunneling microscopy” that allows local tunneling into a high mobility 2DES. Using a specially designed bilayer GaAs/AlGaAs heterostructure where the tunnel coupling between two separate 2DESs is tunable via electrostatic gating, combined with a scanning gate, we show that the local tunneling can be controlled with sub-250 nm resolution.

  1. Interplay of hot electrons from localized and propagating plasmons.

    Science.gov (United States)

    Hoang, Chung V; Hayashi, Koki; Ito, Yasuo; Gorai, Naoki; Allison, Giles; Shi, Xu; Sun, Quan; Cheng, Zhenzhou; Ueno, Kosei; Goda, Keisuke; Misawa, Hiroaki

    2017-10-03

    Plasmon-induced hot-electron generation has recently received considerable interest and has been studied to develop novel applications in optoelectronics, photovoltaics and green chemistry. Such hot electrons are typically generated from either localized plasmons in metal nanoparticles or propagating plasmons in patterned metal nanostructures. Here we simultaneously generate these heterogeneous plasmon-induced hot electrons and exploit their cooperative interplay in a single metal-semiconductor device to demonstrate, as an example, wavelength-controlled polarity-switchable photoconductivity. Specifically, the dual-plasmon device produces a net photocurrent whose polarity is determined by the balance in population and directionality between the hot electrons from localized and propagating plasmons. The current responsivity and polarity-switching wavelength of the device can be varied over the entire visible spectrum by tailoring the hot-electron interplay in various ways. This phenomenon may provide flexibility to manipulate the electrical output from light-matter interaction and offer opportunities for biosensors, long-distance communications, and photoconversion applications.Plasmon-induced hot electrons have potential applications spanning photodetection and photocatalysis. Here, Hoang et al. study the interplay between hot electrons generated by localized and propagating plasmons, and demonstrate wavelength-controlled polarity-switchable photoconductivity.

  2. Effect of oxygen deficiency on electronic properties and local structure of amorphous tantalum oxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Denny, Yus Rama [Department of Physics Education, University of Sultan Ageng Tirtayasa, Banten 42435 (Indonesia); Firmansyah, Teguh [Department of Electrical Engineering, University of Sultan Ageng Tirtayasa, Banten 42435 (Indonesia); Oh, Suhk Kun [Department of Physics, Chungbuk National University, Cheongju 28644 (Korea, Republic of); Kang, Hee Jae, E-mail: hjkang@cbu.ac.kr [Department of Physics, Chungbuk National University, Cheongju 28644 (Korea, Republic of); Yang, Dong-Seok [Department of Physics Education, Chungbuk National University, Cheongju 28644 (Korea, Republic of); Heo, Sung; Chung, JaeGwan; Lee, Jae Cheol [Analytical Engineering Center, Samsung Advanced Institute of Technology, Suwon 16678 (Korea, Republic of)

    2016-10-15

    Highlights: • The effect of oxygen flow rate on electronic properties and local structure of tantalum oxide thin films was studied. • The oxygen deficiency induced the nonstoichiometric state a-TaOx. • A small peak at 1.97 eV above the valence band side appeared on nonstoichiometric Ta{sub 2}O{sub 5} thin films. • The oxygen flow rate can change the local electronic structure of tantalum oxide thin films. - Abstract: The dependence of electronic properties and local structure of tantalum oxide thin film on oxygen deficiency have been investigated by means of X-ray photoelectron spectroscopy (XPS), Reflection Electron Energy Loss Spectroscopy (REELS), and X-ray absorption spectroscopy (XAS). The XPS results showed that the oxygen flow rate change results in the appearance of features in the Ta 4f at the binding energies of 23.2 eV, 24.4 eV, 25.8, and 27.3 eV whose peaks are attributed to Ta{sup 1+}, Ta{sup 2+}, Ta{sup 3+}/Ta{sup 4+}, and Ta{sup 5+}, respectively. The presence of nonstoichiometric state from tantalum oxide (TaOx) thin films could be generated by the oxygen vacancies. In addition, XAS spectra manifested both the increase of coordination number of the first Ta-O shell and a considerable reduction of the Ta-O bond distance with the decrease of oxygen deficiency.

  3. Mapping Catalytically Relevant Edge Electronic States of MoS2

    Science.gov (United States)

    2018-01-01

    Molybdenum disulfide (MoS2) is a semiconducting transition metal dichalcogenide that is known to be a catalyst for both the hydrogen evolution reaction (HER) as well as for hydro-desulfurization (HDS) of sulfur-rich hydrocarbon fuels. Specifically, the edges of MoS2 nanostructures are known to be far more catalytically active as compared to unmodified basal planes. However, in the absence of the precise details of the geometric and electronic structure of the active catalytic sites, a rational means of modulating edge reactivity remain to be developed. Here we demonstrate using first-principles calculations, X-ray absorption spectroscopy, as well as scanning transmission X-ray microscopy (STXM) imaging that edge corrugations yield distinctive spectroscopic signatures corresponding to increased localization of hybrid Mo 4d states. Independent spectroscopic signatures of such edge states are identified at both the S L2,3 and S K-edges with distinctive spatial localization of such states observed in S L2,3-edge STXM imaging. The presence of such low-energy hybrid states at the edge of the conduction band is seen to correlate with substantially enhanced electrocatalytic activity in terms of a lower Tafel slope and higher exchange current density. These results elucidate the nature of the edge electronic structure and provide a clear framework for its rational manipulation to enhance catalytic activity. PMID:29721532

  4. Electron spectroscopy of nanodiamond surface states

    Energy Technology Data Exchange (ETDEWEB)

    Belobrov, P.I.; Bursill, L.A.; Maslakov, K.I.; Dementjev, A.P

    2003-06-15

    Electronic states of nanodiamond (ND) were investigated by PEELS, XPS and CKVV Auger spectra. Parallel electron energy loss spectra (PEELS) show that the electrons inside of ND particles are sp{sup 3} hybridized but there is a surface layer containing distinct hybridized states. The CKVV Auger spectra imply that the HOMO of the ND surface has a shift of 2.5 eV from natural diamond levels of {sigma}{sub p} up to the Fermi level. Hydrogen (H) treatment of natural diamond surface produces a chemical state indistinguishable from that of ND surfaces using CKVV. The ND electronic structure forms {sigma}{sub s}{sup 1}{sigma}{sub p}{sup 2}{pi}{sup 1} surface states without overlapping of {pi}-levels. Surface electronic states, including surface plasmons, as well as phonon-related electronic states of the ND surface are also interesting and may also be important for field emission mechanisms from the nanostructured diamond surface.

  5. Probing the Locality of Excited States with Linear Algebra.

    Science.gov (United States)

    Etienne, Thibaud

    2015-04-14

    This article reports a novel theoretical approach related to the analysis of molecular excited states. The strategy introduced here involves gathering two pieces of physical information, coming from Hilbert and direct space operations, into a general, unique quantum mechanical descriptor of electronic transitions' locality. Moreover, the projection of Hilbert and direct space-derived indices in an Argand plane delivers a straightforward way to visually probe the ability of a dye to undergo a long- or short-range charge-transfer. This information can be applied, for instance, to the analysis of the electronic response of families of dyes to light absorption by unveiling the trend of a given push-pull chromophore to increase the electronic cloud polarization magnitude of its main transition with respect to the size extension of its conjugated spacer. We finally demonstrate that all the quantities reported in this article can be reliably approximated by a linear algebraic derivation, based on the contraction of detachment/attachment density matrices from canonical to atomic space. This alternative derivation has the remarkable advantage of a very low computational cost with respect to the previously used numerical integrations, making fast and accurate characterization of large molecular systems' excited states easily affordable.

  6. Multiple electron generation in a sea of electronic states

    Science.gov (United States)

    Witzel, Wayne; Shabaev, Andrew; Efros, Alexander; Hellberg, Carl; Verne, Jacobs

    2009-03-01

    In traditional bulk semiconductor photovoltaics (PVs), each photon may excite a single electron-hole, wasting excess energy beyond the band-gap as heat. In nanocrystals, multiple excitons can be generated from a single photon, enhancing the PV current. Multiple electron generation (MEG) may result from Coulombic interactions of the confined electrons. Previous investigations have been based on incomplete or over-simplified electronic-state representations. We present results of quantum simulations that include hundreds of thousands of configuration states and show how the complex dynamics, even in a closed electronic system, yields a saturated MEG effect on a femtosecond timescale. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  7. State and local safety program

    Energy Technology Data Exchange (ETDEWEB)

    Carlyle Thompson, G D [Utah State Division of Health, Salt Lake City, UT (United States)

    1969-07-01

    This paper will give emphasis to the need for an increasing role of the states, along with the Federal agencies, in the Plowshare Program in order to assure state and local confidence with respect to the safety of their residents as the Federal government seeks new methods to benefit society. First will be stressed the age-old principle of control at the source. Other factors to be discussed are monitoring; standards and their use; control action; public relations; predictions and the need to have certain advance knowledge of tests - even if security clearance is necessary for appropriate state representatives; the state and local government responsibility to their citizens; the isolation of national decision making from state and local concern and responsibility; cost assessments and their responsibility; and research as it relates to the ecological system as well a the direct short- or long-term effects of radioactivity on man. (author)

  8. State and local safety program

    International Nuclear Information System (INIS)

    Carlyle Thompson, G.D.

    1969-01-01

    This paper will give emphasis to the need for an increasing role of the states, along with the Federal agencies, in the Plowshare Program in order to assure state and local confidence with respect to the safety of their residents as the Federal government seeks new methods to benefit society. First will be stressed the age-old principle of control at the source. Other factors to be discussed are monitoring; standards and their use; control action; public relations; predictions and the need to have certain advance knowledge of tests - even if security clearance is necessary for appropriate state representatives; the state and local government responsibility to their citizens; the isolation of national decision making from state and local concern and responsibility; cost assessments and their responsibility; and research as it relates to the ecological system as well a the direct short- or long-term effects of radioactivity on man. (author)

  9. Localized second-order optical potential for electron scattering in terms of imaginary-frequency susceptibilities

    International Nuclear Information System (INIS)

    Valone, S.M.; Truhlar, D.G.; Thirumialai, D.

    1982-01-01

    A local approximation to the second-order optical potential for elastic scattering of low-energy electrons from ground-state atoms is expressed in terms of the imaginary-frequency susceptibilities of the atom due to a point charge and to modified perturbing potentials. This provides a basis for the physically appealing concept of regarding the perturbation due to the projectile as having a position-dependent effective frequency associated with it. The result is extended to higher energies with the use of the concept of a local kinetic energy. With a semiclassical approximation the result reduces to a simple general form that should be useful for model potential studies of electron-atom and electron-molecule scattering. Alternatively, variational functionals for the susceptibilities can be used to calculate the approximate optical potential most rigorously without making effective-frequency, average-kinetic-energy, or semiclassical approximations. Intermediate levels of rigor are also possible

  10. Electronic Structures Localized at the Boron Atom in Amorphous Fe-B and Fe-B-P Alloys

    Science.gov (United States)

    Yasuda, Hidehiro; Nakayama, Hiroshi; Fujita, Hiroshi

    1989-11-01

    The electronic structures localized at the B in amorphous Fe-B and Fe-B-P alloys and their crystallized alloys were studied by Auger valence electron spectroscopy and the states of solute B are discussed based on the change in the degree of covalent bonding and the charge transfer between the Fe and B atoms. In amorphous phases, the charge transfers from Fe to B above 15at%B where B atoms occupy the substitutionallike situations, and from B to Fe below 15at%B where B atoms occupy the interstitiallike situations. Magnetic properties depend on such states of solute B. In crystalline phases, covalent bonding becomes dominant because the electron excitation occurs to the B2p state. Consequently, amorphous phases are more metallic in character than crystalline phases and amorphous structures are stabilized by a mixture of more than two different bonding states.

  11. Electronic structure, local magnetism, and spin-orbit effects of Ir(IV)-, Ir(V)-, and Ir(VI)-based compounds

    Energy Technology Data Exchange (ETDEWEB)

    Laguna-Marco, M. A.; Kayser, P.; Alonso, J. A.; Martínez-Lope, M. J.; van Veenendaal, M.; Choi, Y.; Haskel, D.

    2015-06-01

    Element- and orbital-selective x-ray absorption and magnetic circular dichroism measurements are carried out to probe the electronic structure and magnetism of Ir 5d electronic states in double perovskite Sr2MIrO6 (M = Mg, Ca, Sc, Ti, Ni, Fe, Zn, In) and La2NiIrO6 compounds. All the studied systems present a significant influence of spin-orbit interactions in the electronic ground state. In addition, we find that the Ir 5d local magnetic moment shows different character depending on the oxidation state despite the net magnetization being similar for all the compounds. Ir carries an orbital contribution comparable to the spin contribution for Ir4+ (5d(5)) and Ir5+ (5d(4)) oxides, whereas the orbital contribution is quenched for Ir6+ (5d(3)) samples. Incorporation of a magnetic 3d atom allows getting insight into the magnetic coupling between 5d and 3d transition metals. Together with previous susceptibility and neutron diffractionmeasurements, the results indicate that Ir carries a significant local magnetic moment even in samples without a 3d metal. The size of the (small) net magnetization of these compounds is a result of predominant antiferromagnetic interactions between local moments coupled with structural details of each perovskite structure

  12. Localized Electron Heating by Strong Guide-Field Magnetic Reconnection

    Science.gov (United States)

    Guo, Xuehan; Sugawara, Takumichi; Inomoto, Michiaki; Yamasaki, Kotaro; Ono, Yasushi; UTST Team

    2015-11-01

    Localized electron heating of magnetic reconnection was studied under strong guide-field (typically Bt 15Bp) using two merging spherical tokamak plasmas in Univ. Tokyo Spherical Tokamak (UTST) experiment. Our new slide-type two-dimensional Thomson scattering system documented for the first time the electron heating localized around the X-point. The region of high electron temperature, which is perpendicular to the magnetic field, was found to have a round shape with radius of 2 [cm]. Also, it was localized around the X-point and does not agree with that of energy dissipation term Et .jt . When we include a guide-field effect term Bt / (Bp + αBt) for Et .jt where α =√{ (vin2 +vout2) /v∥2 } , the energy dissipation area becomes localized around the X-point, suggesting that the electrons are accelerated by the reconnection electric field parallel to the magnetic field and thermalized around the X-point. This work was supported by JSPS A3 Foresight Program ``Innovative Tokamak Plasma Startup and Current Drive in Spherical Torus,'' a Grant-in-Aid from the Japan Society for the Promotion of Science (JSPS) Fellows 15J03758.

  13. Electron transfer from electronic excited states to sub-vacuum electron traps in amorphous ice

    International Nuclear Information System (INIS)

    Vichnevetski, E.; Bass, A.D.; Sanche, L.

    2000-01-01

    We investigate the electron stimulated yield of electronically excited argon atoms (Ar * ) from monolayer quantities of Ar deposited onto thin films of amorphous ice. Two peaks of narrow width ( - electron-exciton complex into exciton states, by the transfer of an electron into a sub-vacuum electron state within the ice film. However, the 10.7 eV feature is shifted to lower energy since electron attachment to Ar occurs within small pores of amorphous ice. In this case, the excess electron is transferred into an electron trap below the conduction band of the ice layer

  14. Electronic structure and the mechanism of autoionization for doubly excited states

    International Nuclear Information System (INIS)

    Komninos, Y.; Makri, N.; Nicolaides, C.A.

    1986-01-01

    Apart from pure phenomenology, the rigorous and quantitative study of many-electron autoionizing states presents intriguing questions as regards their structure and dynamics. In this paper we present an analysis of such states within a state specific theory with application to five low-lying doubly excited states (DES) of He. The zeroth order description is multiconfigurational and is obtained numerically at the MCHF level. In this way, major radial and angular correlations are accounted for accurately, and reliable predictions can be made without the requirement of large computations. The additional localized correlation is obtained by optimizing variationally analytic virtual orbitals. (orig./WL)

  15. Localized versus itinerant states created by multiple oxygen vacancies in SrTiO3

    Science.gov (United States)

    Jeschke, Harald O.; Shen, Juan; Valentí, Roser

    2015-02-01

    Oxygen vacancies in strontium titanate surfaces (SrTiO3) have been linked to the presence of a two-dimensional electron gas with unique behavior. We perform a detailed density functional theory study of the lattice and electronic structure of SrTiO3 slabs with multiple oxygen vacancies, with a main focus on two vacancies near a titanium dioxide terminated SrTiO3 surface. We conclude based on total energies that the two vacancies preferably inhabit the first two layers, i.e. they cluster vertically, while in the direction parallel to the surface, the vacancies show a weak tendency towards equal spacing. Analysis of the nonmagnetic electronic structure indicates that oxygen defects in the surface TiO2 layer lead to population of Ti {{t}2g} states and thus itinerancy of the electrons donated by the oxygen vacancy. In contrast, electrons from subsurface oxygen vacancies populate Ti eg states and remain localized on the two Ti ions neighboring the vacancy. We find that both the formation of a bound oxygen-vacancy state composed of hybridized Ti 3eg and 4p states neighboring the oxygen vacancy as well as the elastic deformation after extracting oxygen contribute to the stabilization of the in-gap state.

  16. Ground state of a hydrogen ion molecule immersed in an inhomogeneous electron gas

    International Nuclear Information System (INIS)

    Diaz-Valdes, J.; Gutierrez, F.A.; Matamala, A.R.; Denton, C.D.; Vargas, P.; Valdes, J.E.

    2007-01-01

    In this work we have calculated the ground state energy of the hydrogen molecule, H 2 + , immersed in the highly inhomogeneous electron gas around a metallic surface within the local density approximation. The molecule is perturbed by the electron density of a crystalline surface of Au with the internuclear axis parallel to the surface. The surface spatial electron density is calculated through a linearized band structure method (LMTO-DFT). The ground state of the molecule-ion was calculated using the Born-Oppenheimer approximation for a fixed-ion while the screening effects of the inhomogeneous electron gas are depicted by a Thomas-Fermi like electrostatic potential. We found that within our model the molecular ion dissociates at the critical distance of 2.35a.u. from the first atomic layer of the solid

  17. 40 CFR 403.4 - State or local law.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 28 2010-07-01 2010-07-01 true State or local law. 403.4 Section 403.4... GENERAL PRE-TREAT-MENT REGULATIONS FOR EXIST-ING AND NEW SOURCES OF POLLUTION § 403.4 State or local law... prohibitions, established by State or local law as long as the State or local requirements are not less...

  18. Strong coupling between bi-dimensional electron gas and nitrogen localized states in heavily doped GaAs1-xN x structures

    International Nuclear Information System (INIS)

    Hamdouni, A.; Bousbih, F.; Ben Bouzid, S.; Oueslati, M.; Chtourou, R.; Harmand, J.C.

    2005-01-01

    We report a low-temperature photoluminescence spectra (LTPL) of GaAs 1-x N x layers and two-dimension electron gas (2DEG) GaAs 1-x N x /AlGaAs modulation doped heterostructure grown on GaAs substrates by molecular beam epitaxy (MBE) with low nitrogen content [N] = 2 x 10 18 cm -3 . At low temperature, PL spectra of GaAs 1-x N x layers are governed by several features associate to the excitons bound to nitrogen complexes, these features disappear in (2DEG) GaAs 1-x N x /AlGaAs modulation doped heterostructure and the PL peak energy decrease with the laser power excitation. This effect is explained by the strongly coupling of the (2DEG) fundamental state with the nitrogen localized states. An activated energy of about 55 meV is deduced by photoluminescence measurements in the 10-300 K range for a laser power excitation P = 6 W/cm 2

  19. Observation of electron weak localization and correlation effects in disordered graphene

    Institute of Scientific and Technical Information of China (English)

    TAN ChangLing; TAN ZhenBing; MA Li; QU FanMing; YANG Fan; CHEN Jun; LIU GuangTong; YANG HaiFang; YANG ChangLi; LU Li

    2009-01-01

    We have studied the electron transport properties of a disordered graphene sample,where the disorder was intentionally strengthened by Ga+ ion irradiation.The magneto-conductance of the sample exhibits a typical two-dimensional electron weak localization behavior,with electron-electron interaction as the dominant dephasing mechanism.The absence of electron anti-weak localization in the sample implies strong intersublattice and/or intervalley scattering caused by the disorders.The temperature and bias-voltage dependencies of conductance clearly reveal the suppression of conductance at low ener-gies,indicating opening of a Coulomb gap due to electron-electron interaction in the disordered gra-phene sample.

  20. Observation of electron weak localization and correlation effects in disordered graphene

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    We have studied the electron transport properties of a disordered graphene sample, where the disorder was intentionally strengthened by Ga+ ion irradiation. The magneto-conductance of the sample exhibits a typical two-dimensional electron weak localization behavior, with electron-electron interaction as the dominant dephasing mechanism. The absence of electron anti-weak localization in the sample implies strong intersublattice and/or intervalley scattering caused by the disorders. The temperature and bias-voltage dependencies of conductance clearly reveal the suppression of conductance at low energies, indicating opening of a Coulomb gap due to electron-electron interaction in the disordered graphene sample.

  1. Progress in increasing electronic reporting of laboratory results to public health agencies--United States, 2013.

    Science.gov (United States)

    2013-09-27

    Electronic reporting of laboratory results to public health agencies can improve public health surveillance for reportable diseases and conditions by making reporting more timely and complete. Since 2010, CDC has provided funding to 57 state, local, and territorial health departments through the Epidemiology and Laboratory Capacity for Infectious Diseases cooperative agreement to assist with improving electronic laboratory reporting (ELR) from clinical and public health laboratories to public health agencies. As part of this agreement, CDC and state and large local health departments are collaborating to monitor ELR implementation in the United States by developing data from each jurisdiction regarding total reporting laboratories, laboratories sending ELR by disease category and message format, and the number of ELR laboratory reports compared with the total number of laboratory reports. At the end of July 2013, 54 of the 57 jurisdictions were receiving at least some laboratory reports through ELR, and approximately 62% of 20 million laboratory reports were being received electronically, compared with 54% in 2012. Continued progress will require collaboration between clinical laboratories, laboratory information management system (LIMS) vendors, and public health agencies.

  2. Exploring the electron density localization in single MoS2 monolayers by means of a localize-electrons detector and the quantum theory of atoms in molecules

    Directory of Open Access Journals (Sweden)

    Yosslen Aray

    2017-11-01

    Full Text Available The nature of the electron density localization in a MoS2 monolayer under 0 % to 11% tensile strain has been systematically studied by means of a localized electron detector function and the Quantum Theory of atoms in molecules. At 10% tensile strain, this monolayer become metallic. It was found that for less than 6.5% of applied stress, the same atomic structure of the equilibrium geometry (0% strain is maintained; while over 6.5% strain induces a transformation to a structure where the sulfur atoms placed on the top and bottom layer form S2 groups. The localized electron detector function shows the presence of zones of highly electron delocalization extending throughout the Mo central layer. For less than 10% tensile strain, these zones comprise the BCPs and the remainder CPs in separates regions of the space; while for the structures beyond 10% strain, all the critical points are involved in a region of highly delocalized electrons that extends throughout the material. This dissimilar electron localization pattern is like to that previously reported for semiconductors such as Ge bulk and metallic systems such as transition metals bulk.

  3. Local unitary versus local Clifford equivalence of stabilizer and graph states

    International Nuclear Information System (INIS)

    Zeng, Bei; Chung, Hyeyoun; Cross, Andrew W.; Chuang, Isaac L.

    2007-01-01

    The equivalence of stabilizer states under local transformations is of fundamental interest in understanding properties and uses of entanglement. Two stabilizer states are equivalent under the usual stochastic local operations and classical communication criterion if and only if they are equivalent under local unitary (LU) operations. More surprisingly, under certain conditions, two LU-equivalent stabilizer states are also equivalent under local Clifford (LC) operations, as was shown by Van den Nest et al. [Phys. Rev. A 71, 062323 (2005)]. Here, we broaden the class of stabilizer states for which LU equivalence implies LC equivalence (LU LC) to include all stabilizer states represented by graphs with cycles of length neither 3 nor 4. To compare our result with Van den Nest et al.'s, we show that any stabilizer state of distance δ=2 is beyond their criterion. We then further prove that LU LC holds for a more general class of stabilizer states of δ=2. We also explicitly construct graphs representing δ>2 stabilizer states which are beyond their criterion: we identify all 58 graphs with up to 11 vertices and construct graphs with 2 m -1 (m≥4) vertices using quantum error-correcting codes which have non-Clifford transversal gates

  4. Bound states of Dirac fermions in monolayer gapped graphene in the presence of local perturbations

    International Nuclear Information System (INIS)

    Yarmohammadi, Mohsen; Zareyan, Malek

    2016-01-01

    In graphene, conductance electrons behave as massless relativistic particles and obey an analogue of the Dirac equation in two dimensions with a chiral nature. For this reason, the bounding of electrons in graphene in the form of geometries of quantum dots is impossible. In gapless graphene, due to its unique electronic band structure, there is a minimal conductivity at Dirac points, that is, in the limit of zero doping. This creates a problem for using such a highly motivated new material in electronic devices. One of the ways to overcome this problem is the creation of a band gap in the graphene band structure, which is made by inversion symmetry breaking (symmetry of sublattices). We investigate the confined states of the massless Dirac fermions in an impured graphene by the short-range perturbations for “local chemical potential” and “local gap”. The calculated energy spectrum exhibits quite different features with and without the perturbations. A characteristic equation for bound states (BSs) has been obtained. It is surprisingly found that the relation between the radial functions of sublattices wave functions, i.e., , , and , , can be established by SO (2) group. (paper)

  5. The electron localization as the information content of the conditional pair density

    Energy Technology Data Exchange (ETDEWEB)

    Urbina, Andres S.; Torres, F. Javier [Universidad San Francisco de Quito (USFQ), Grupo de Química Computacional y Teórica (QCT-USFQ), Departamento de Química e Ingeniería Química, Diego de Robles y Via Interoceanica, Quito 17-1200-841 (Ecuador); Universidad San Francisco de Quito (USFQ), Instituto de Simulación Computacional (ISC-USFQ), Diego de Robles y Via Interoceanica, Quito 17-1200-841 (Ecuador); Rincon, Luis, E-mail: lrincon@usfq.edu.ec, E-mail: lrincon@ula.ve [Universidad San Francisco de Quito (USFQ), Grupo de Química Computacional y Teórica (QCT-USFQ), Departamento de Química e Ingeniería Química, Diego de Robles y Via Interoceanica, Quito 17-1200-841 (Ecuador); Universidad San Francisco de Quito (USFQ), Instituto de Simulación Computacional (ISC-USFQ), Diego de Robles y Via Interoceanica, Quito 17-1200-841 (Ecuador); Departamento de Química, Facultad de Ciencias, Universidad de Los Andes (ULA), La Hechicera, Mérida-5101 (Venezuela, Bolivarian Republic of)

    2016-06-28

    In the present work, the information gained by an electron for “knowing” about the position of another electron with the same spin is calculated using the Kullback-Leibler divergence (D{sub KL}) between the same-spin conditional pair probability density and the marginal probability. D{sub KL} is proposed as an electron localization measurement, based on the observation that regions of the space with high information gain can be associated with strong correlated localized electrons. Taking into consideration the scaling of D{sub KL} with the number of σ-spin electrons of a system (N{sup σ}), the quantity χ = (N{sup σ} − 1) D{sub KL}f{sub cut} is introduced as a general descriptor that allows the quantification of the electron localization in the space. f{sub cut} is defined such that it goes smoothly to zero for negligible densities. χ is computed for a selection of atomic and molecular systems in order to test its capability to determine the region in space where electrons are localized. As a general conclusion, χ is able to explain the electron structure of molecules on the basis of chemical grounds with a high degree of success and to produce a clear differentiation of the localization of electrons that can be traced to the fluctuation in the average number of electrons in these regions.

  6. Electronically controllable spoof localized surface plasmons

    Science.gov (United States)

    Zhou, Yong Jin; Zhang, Chao; Yang, Liu; Xun Xiao, Qian

    2017-10-01

    Electronically controllable multipolar spoof localized surface plasmons (LSPs) are experimentally demonstrated in the microwave frequencies. It has been shown that half integer order LSPs modes exist on the corrugated ring loaded with a slit, which actually arise from the Fabry-Perot-like resonances. By mounting active components across the slit in the corrugated rings, electronic switchability and tunability of spoof LSPs modes have been accomplished. Both simulated and measured results demonstrate efficient dynamic control of the spoof LSPs. These elements may form the basis of highly integrated programmable plasmonic circuits in microwave and terahertz regimes.

  7. Weak localization and electron-electron interaction in modulation doped GaAs/AlGaAs heterostructures

    International Nuclear Information System (INIS)

    Taboryski, R.; Lindelof, P.E.

    1990-01-01

    The first heterostructure wafer only had one electronic subband at the GaAs/AlGaAs interface populated. Weak localization magnetoresistance was interpreted by a theory valid to relatively high magnetic fields and also valid for electrons with a long mean free path. The adjustable parameter in fitting the magnetoresistance was in each case the phasebreaking relaxation time, which could then subsequently be plotted as a function of temperature. The temperature dependence of the phasebreaking rate could be interpreted on the basic of existing theories, but the residual relaxation rate at the lowest temperature remains so far unexplained. Already at low magnetic fields the weak localization magnetoresistance saturates, indicating a complete quench of weak localization. We find that the value of saturation (i.e. the total weak localization at the appropriate temperature) was smaller than predicted by the existing theories. At magnetic fields of the order of the inverse electron mobility, a quadratic magnetoresistance show up in our experiments. This quadratic magnetoresistance corresponds to corrections to the conductivity of the order of e 2 /h. Whereas we find that the temperature dependence of this conductivity correction is well in agreement with predicted effects of electron-electron interaction, the dependence on mobility, which we can measure via our ion implantation, is larger than any existing theory predicts, yet still in the ballpark of the conductance quantum. (orig./BHO)

  8. Controlling the layer localization of gapless states in bilayer graphene with a gate voltage

    Science.gov (United States)

    Jaskólski, W.; Pelc, M.; Bryant, Garnett W.; Chico, Leonor; Ayuela, A.

    2018-04-01

    Experiments in gated bilayer graphene with stacking domain walls present topological gapless states protected by no-valley mixing. Here we research these states under gate voltages using atomistic models, which allow us to elucidate their origin. We find that the gate potential controls the layer localization of the two states, which switches non-trivially between layers depending on the applied gate voltage magnitude. We also show how these bilayer gapless states arise from bands of single-layer graphene by analyzing the formation of carbon bonds between layers. Based on this analysis we provide a model Hamiltonian with analytical solutions, which explains the layer localization as a function of the ratio between the applied potential and interlayer hopping. Our results open a route for the manipulation of gapless states in electronic devices, analogous to the proposed writing and reading memories in topological insulators.

  9. Local charge measurement using off-axis electron holography

    DEFF Research Database (Denmark)

    Beleggia, Marco; Gontard, L.C.; Dunin-Borkowski, R.0E.

    2016-01-01

    A model-independent approach based on Gauss’ theorem for measuring the local charge in a specimen from an electron-optical phase image recorded using off-axis electron holography was recently proposed. Here, we show that such a charge measurement is reliable when it is applied to determine the to...

  10. Using the electron localization function to correct for confinement physics in semi-local density functional theory

    International Nuclear Information System (INIS)

    Hao, Feng; Mattsson, Ann E.; Armiento, Rickard

    2014-01-01

    We have previously proposed that further improved functionals for density functional theory can be constructed based on the Armiento-Mattsson subsystem functional scheme if, in addition to the uniform electron gas and surface models used in the Armiento-Mattsson 2005 functional, a model for the strongly confined electron gas is also added. However, of central importance for this scheme is an index that identifies regions in space where the correction provided by the confined electron gas should be applied. The electron localization function (ELF) is a well-known indicator of strongly localized electrons. We use a model of a confined electron gas based on the harmonic oscillator to show that regions with high ELF directly coincide with regions where common exchange energy functionals have large errors. This suggests that the harmonic oscillator model together with an index based on the ELF provides the crucial ingredients for future improved semi-local functionals. For a practical illustration of how the proposed scheme is intended to work for a physical system we discuss monoclinic cupric oxide, CuO. A thorough discussion of this system leads us to promote the cell geometry of CuO as a useful benchmark for future semi-local functionals. Very high ELF values are found in a shell around the O ions, and take its maximum value along the Cu–O directions. An estimate of the exchange functional error from the effect of electron confinement in these regions suggests a magnitude and sign that could account for the error in cell geometry

  11. Local government financial autonomy in Nigeria: The State Joint Local Government Account

    Directory of Open Access Journals (Sweden)

    Jude Okafor

    2010-07-01

    Full Text Available This paper addresses the statutory financial relations and financial autonomy of local government in Nigeria, and the freedom of local government to generate revenue from its assigned sources without external interference. It focuses particularly on a financial instrument called the State Joint Local Government Account (SJLGA and how its operations have positively or negatively affected the financial autonomy of local government councils and the inter-relations between state and local government in Nigeria.

  12. Time-resolved cathodoluminescence microscopy with sub-nanosecond beam blanking for direct evaluation of the local density of states

    NARCIS (Netherlands)

    Moerland, R.J.; Weppelman, I.G.C.; Garming, M.W.H.; Kruit, P.; Hoogenboom, J.P.

    2016-01-01

    We show cathodoluminescence-based time-resolved electron beam spectroscopy in order to directly probe the spontaneous emission decay rate that is modified by the local density of states in a nanoscale environment. In contrast to dedicated laser-triggered electron-microscopy setups, we use commercial

  13. Geometry of the local equivalence of states

    Energy Technology Data Exchange (ETDEWEB)

    Sawicki, A; Kus, M, E-mail: assawi@cft.edu.pl, E-mail: marek.kus@cft.edu.pl [Center for Theoretical Physics, Polish Academy of Sciences, Al Lotnikow 32/46, 02-668 Warszawa (Poland)

    2011-12-09

    We present a description of locally equivalent states in terms of symplectic geometry. Using the moment map between local orbits in the space of states and coadjoint orbits of the local unitary group, we reduce the problem of local unitary equivalence to an easy part consisting of identifying the proper coadjoint orbit and a harder problem of the geometry of fibers of the moment map. We give a detailed analysis of the properties of orbits of 'equally entangled states'. In particular, we show connections between certain symplectic properties of orbits such as their isotropy and coisotropy with effective criteria of local unitary equivalence. (paper)

  14. State and Local Government Partnership

    Energy Technology Data Exchange (ETDEWEB)

    Barton, Alexander; Rinebold, Joel; Aresta, Paul

    2012-03-30

    The State and Local Government Partnership project has built relationships between the Department of Energy (DOE), regional states, and municipalities. CCAT implemented this project using a structure that included leadership by the DOE. Outreach was undertaken through collaborative meetings, workshops, and briefings; the development of technical models and local energy plans; support for state stakeholder groups; and implementation of strategies to facilitate the deployment of hydrogen and fuel cell technologies. The final guidance documents provided to stakeholders consisted of individual strategic state “Roadmaps” to serve as development plans. These “Roadmaps” confirm economic impacts, identify deployment targets, and compare policies and incentives for facility development in each of the regional states. The partnerships developed through this project have improved the exchange of knowledge between state and local government stakeholders and is expected to increase the deployment of hydrogen and fuel cell technologies in early market applications, consistent with the DOE’s market transformation efforts. Technically accurate and objective information was, and continues to be, provided to improve public and stakeholder perceptions regarding the use of hydrogen and fuel cell technologies. Based on the “Roadmaps” and studies conducted for this project, there is the potential to generate approximately 10.75 million megawatt hours (MWh) of electricity annually from hydrogen and fuel cell technologies at potential host sites in the Northeast regional states, through the development of 1,364 to 1,818 megawatts (MW) of fuel cell electric generation capacity. Currently, the region has approximately 1,180 companies that are part of the growing hydrogen and fuel cell industry supply chain in the region. These companies are estimated to have over $1 billion in annual revenue and investment, contribute more than $51 million in annual state and local tax revenue

  15. Local Electronic And Dielectric Properties at Nanosized Interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Bonnell, Dawn A. [Univ. of Pennsylvania, Philadelphia, PA (United States)

    2015-02-23

    operation. The objective of this research was to determine the size and interface atomic structure dependence of the electronic properties of metal/oxide interfaces using model materials systems of noble metals on SrTiO3 surfaces; and to develop experimental techniques to probe spatially localized properties under extreme conditions. The outcomes of this research summarized in more detail below include; Discovery of the presence of multiple size dependent transport mechanisms at nanoscale interfaces and determination of the critical size parameter associated with a transition from one to another; Determination of the effect of interface atomic structure and electronic structure at nanoscale interfaces on electronic transport across the interfaces, in particular the role of states associated with under coordinated cations enabling resonant tunneling and/or band bending; Discovery and characterization of size dependent resistive switching at nanoscale interfaces; These advances required the development of a process to produce nanosized contacts with controlled interface orientation over sizes (diameters) ranging from 20-500nm and the determination of the mechanical and electrical parameters for robust and accurate measurement of frequency dependent properties of nanoscale interfaces; Invention of a chamber that enables in situ scanning probe microscopy and spectroscopy at high temperature and reactive gas environments; and First measurement of interface properties in an operating solid oxide fuel cell, quantifying the local electrical potentials and energies associated with two reaction mechanisms.

  16. Two electron Rydberg states

    International Nuclear Information System (INIS)

    Cooke, W.E.

    1981-01-01

    This paper addresses the study of two-electron Rydberg atoms. With Multichannel Quantum Defect Theory (MQDT), there is a technique for characterizing a spectra in terms of a small number of parameters. A survey of some important effects specific to two-electon Rydberg states, using primarily the alkaline earth atoms for examples, is made. The remainder of the paper deals with a discussion of the electron-electron interaction, including some of the basic points of MQDT. Energy exchange between two electrons is also addressed

  17. 40 CFR 3.1000 - How does a state, tribe, or local government revise or modify its authorized program to allow...

    Science.gov (United States)

    2010-07-01

    ... government revise or modify its authorized program to allow electronic reporting? 3.1000 Section 3.1000... government revise or modify its authorized program to allow electronic reporting? (a) A state, tribe, or local government that receives or plans to begin receiving electronic documents in lieu of paper...

  18. Program For Local-Area-Network Electronic Mail

    Science.gov (United States)

    Weiner, Michael J.

    1989-01-01

    MailRoom is computer program for local-area network (LAN) electronic mail. Enables users of LAN to exchange electronically notes, letters, reminders, or any sort of communication via their computers. Links all users of LAN into communication circle in which messages created, sent, copied, printed, downloaded, uploaded, and deleted through series of menu-driven screens. Includes feature that enables users to determine whether messages sent have been read by receivers. Written in Microsoft QuickBasic.

  19. Local equivalence, surface-code states, and matroids

    International Nuclear Information System (INIS)

    Sarvepalli, Pradeep; Raussendorf, Robert

    2010-01-01

    Recently, Ji et al. disproved the local-unitary-local Clifford (LU-LC) conjecture and showed that the local unitary (LU) and local Clifford (LC) equivalence classes of the stabilizer states are not always the same. Despite the fact that this settles the LU-LC conjecture, a sufficient condition for stabilizer states that violate the LU-LC conjecture is not known. In this paper, we investigate further the properties of stabilizer states with respect to local equivalence. Our first result shows that there exist infinitely many stabilizer states that violate the LU-LC conjecture. In particular, we show that for all numbers of qubits n≥28, there exist distance-two stabilizer states which are counterexamples to the LU-LC conjecture. We prove that, for all odd n≥195, there exist stabilizer states with distance greater than two that are LU equivalent but not LC equivalent. Two important classes of stabilizer states that are of great interest in quantum computation are the cluster states and stabilizer states of the surface codes. We show that, under some minimal restrictions, both these classes of states preclude any counterexamples. In this context, we also show that the associated surface codes do not have any encoded non-Clifford transversal gates. We characterize the Calderbank-Shor-Steane (CSS) surface-code states in terms of a class of minor closed binary matroids. In addition to making a connection to an important open problem in binary matroid theory, this characterization does in some cases provide an efficient test for CSS states that are not counterexamples.

  20. High-sensitivity visualization of localized electric fields using low-energy electron beam deflection

    Science.gov (United States)

    Jeong, Samuel; Ito, Yoshikazu; Edwards, Gary; Fujita, Jun-ichi

    2018-06-01

    The visualization of localized electronic charges on nanocatalysts is expected to yield fundamental information about catalytic reaction mechanisms. We have developed a high-sensitivity detection technique for the visualization of localized charges on a catalyst and their corresponding electric field distribution, using a low-energy beam of 1 to 5 keV electrons and a high-sensitivity scanning transmission electron microscope (STEM) detector. The highest sensitivity for visualizing a localized electric field was ∼0.08 V/µm at a distance of ∼17 µm from a localized charge at 1 keV of the primary electron energy, and a weak local electric field produced by 200 electrons accumulated on the carbon nanotube (CNT) apex can be visualized. We also observed that Au nanoparticles distributed on a CNT forest tended to accumulate a certain amount of charges, about 150 electrons, at a ‑2 V bias.

  1. Electronic processes in organic electronics bridging nanostructure, electronic states and device properties

    CERN Document Server

    Kudo, Kazuhiro; Nakayama, Takashi; Ueno, Nobuo

    2015-01-01

    The book covers a variety of studies of organic semiconductors, from fundamental electronic states to device applications, including theoretical studies. Furthermore, innovative experimental techniques, e.g., ultrahigh sensitivity photoelectron spectroscopy, photoelectron yield spectroscopy, spin-resolved scanning tunneling microscopy (STM), and a material processing method with optical-vortex and polarization-vortex lasers, are introduced. As this book is intended to serve as a textbook for a graduate level course or as reference material for researchers in organic electronics and nanoscience from electronic states, fundamental science that is necessary to understand the research is described. It does not duplicate the books already written on organic electronics, but focuses mainly on electronic properties that arise from the nature of organic semiconductors (molecular solids). The new experimental methods introduced in this book are applicable to various materials (e.g., metals, inorganic and organic mater...

  2. Electron scattering from the ground state of mercury

    International Nuclear Information System (INIS)

    Fursa, D.; Bray, I.

    2000-01-01

    effect by adding a short ranged local potential with parameters chosen to reproduce ground state ionization energy. Singlet-triplet mixing in mercury has been accounted for in the framework of the fine-structure approximation. Theoretical calculation of the 6s6p 1 P state differential cross sections crucially depends on accurate 6s6p 1 P optical oscillator strength. For mercury it was found that core polarization effects are very large. In our calculations these effects are modeled by two-electron polarization potential which reduced optical oscillator strength from 2.12 a.u. to 1.18 a.u. in close agreement with experimental values. We will present comparison between our close-coupling calculations of e-Hg mercury scattering and available experimental data, showing very good agreement with experimental differential cross section data for elastic scattering and excitation of the 6s6p 1 P state

  3. Quantum transport through disordered 1D wires: Conductance via localized and delocalized electrons

    International Nuclear Information System (INIS)

    Gopar, Víctor A.

    2014-01-01

    Coherent electronic transport through disordered systems, like quantum wires, is a topic of fundamental and practical interest. In particular, the exponential localization of electron wave functions-Anderson localization-due to the presence of disorder has been widely studied. In fact, Anderson localization, is not an phenomenon exclusive to electrons but it has been observed in microwave and acoustic experiments, photonic materials, cold atoms, etc. Nowadays, many properties of electronic transport of quantum wires have been successfully described within a scaling approach to Anderson localization. On the other hand, anomalous localization or delocalization is, in relation to the Anderson problem, a less studied phenomenon. Although one can find signatures of anomalous localization in very different systems in nature. In the problem of electronic transport, a source of delocalization may come from symmetries present in the system and particular disorder configurations, like the so-called Lévy-type disorder. We have developed a theoretical model to describe the statistical properties of transport when electron wave functions are delocalized. In particular, we show that only two physical parameters determine the complete conductance distribution

  4. Local cloning of two product states

    International Nuclear Information System (INIS)

    Ji Zhengfeng; Feng Yuan; Ying Mingsheng

    2005-01-01

    Local quantum operations and classical communication (LOCC) put considerable constraints on many quantum information processing tasks such as cloning and discrimination. Surprisingly, however, discrimination of any two pure states survives such constraints in some sense. We show that cloning is not that lucky; namely, probabilistic LOCC cloning of two product states is strictly less efficient than global cloning. We prove our result by giving explicitly the efficiency formula of local cloning of any two product states

  5. Excess-electron energy levels, localization and transport in disordered media

    International Nuclear Information System (INIS)

    Hamill, W.H.

    1980-01-01

    In disordered dielectrics, the fundamental parameters which control the physics and chemistry of excess electrons are time, temperature and energy or mean scattering distance. Viscosity and hardness do not directly affect the electron affinity of media, the optical spectra, or the chemical reactivity of dry or delocalized electrons or of relaxed localized or trapped electrons. Since the mean scattering distance and the transport mechanism, including barrier height, are fundamental, both liquids and glasses (including polymers) are considered in order to cover the range of relevant information. Based on the above described background, transport, localization, dry electron scavenging, trapped electron scavenging and recombination are explained. There are no available data for the energy of excess dry electrons in the media relative to vacuum in glasses, unfortunately, because of the very small yield of separated charge pairs at cryogenic temperature. Thermoplastic glassy solids provide attractive possibility above 250 K, and deserve consideration as the substitutes for cryogenic glasses. The same consideration applies to the measurements of electron drift mobility, which are essential for the adequate description of electron scavenging. (Wakatsuki, Y.)

  6. Applicability of the local field concept for the electron gas

    International Nuclear Information System (INIS)

    Neilson, D.; Sjoelander, A.; Swierkowski, L.

    1990-01-01

    The static exchange-correlation hole surrounding an electron in an electron gas at metallic densities has been a highly successful and useful concept. The properties of the static exchange-correlation hole can be accurately reflected by the construction of a static local field. This field surrounds each electron and modifies it interaction with the other electrons in the system. An important limitation of the local field concept is that it does not handle the time-dependent relaxation of the surrounding electron cloud in a particularly transparent way. At metallic densities this is if no consequence since relaxation effects are only small corrections anyway, but at lower densities and in two-dimensional systems they become increasingly important. Approaches which attempt to address these problems are discussed. (author). 12 refs, 4 figs

  7. Attosecond electron pulse trains and quantum state reconstruction in ultrafast transmission electron microscopy

    Science.gov (United States)

    Priebe, Katharina E.; Rathje, Christopher; Yalunin, Sergey V.; Hohage, Thorsten; Feist, Armin; Schäfer, Sascha; Ropers, Claus

    2017-12-01

    Ultrafast electron and X-ray imaging and spectroscopy are the basis for an ongoing revolution in the understanding of dynamical atomic-scale processes in matter. The underlying technology relies heavily on laser science for the generation and characterization of ever shorter pulses. Recent findings suggest that ultrafast electron microscopy with attosecond-structured wavefunctions may be feasible. However, such future technologies call for means to both prepare and fully analyse the corresponding free-electron quantum states. Here, we introduce a framework for the preparation, coherent manipulation and characterization of free-electron quantum states, experimentally demonstrating attosecond electron pulse trains. Phase-locked optical fields coherently control the electron wavefunction along the beam direction. We establish a new variant of quantum state tomography—`SQUIRRELS'—for free-electron ensembles. The ability to tailor and quantitatively map electron quantum states will promote the nanoscale study of electron-matter entanglement and new forms of ultrafast electron microscopy down to the attosecond regime.

  8. Properties and modification of two-dimensional electronic states on noble metals; Eigenschaften und Modifikation zweidimensionaler Elektronenzustaende auf Edelmetallen

    Energy Technology Data Exchange (ETDEWEB)

    Forster, F.

    2007-07-06

    In this thesis investigations on two-dimensional electronic structures of (111)-noble metal surfaces and the influence of various adsorbates upon them is presented. It chiefly focuses on the surface-localized Shockley states of Cu, Ag and Au and their band dispersion (binding energy, band mass, and spin-orbit splitting) which turns out to be a sensitive probe for surface modifications induced by adsorption processes. Angular resolved photoelectron spectroscopy enables the observation of even subtle changes in the electronic band structure of these two dimensional systems. Different mechanisms taking place at surfaces and the substrate/adsorbate interfaces influence the Shockley state in a different manner and will be analyzed using suitable adsorbate model systems. The experimental results are matched with appropriate theoretical models like the phase accumulation model and the nearly-free electron model and - if possible - with ab initio calculations based on density functional theory. This allows for the integration of the results into a stringent overall picture. The influence of sub-monolayer adsorption of Na upon the surface state regarding the significant change in surface work function is determined. A systematic study of the physisorption of noble gases shows the effect of the repulsive adsorbate-substrate interaction upon the electrons of the surface state. A step-by-step coverage of the Cu and Au(111) surfaces by monolayers of Ag creates a gradual change in the surface potential and causes the surface state to become increasingly Ag-like. For N=7 ML thick and layer-by-layer growing Ag films on Au(111), new two-dimensional electronic structures can be observed, which are attributed to the quantum well states of the Ag adsorbate. The question whether they are localized within the Ag-layer or substantially within the substrate is resolved by the investigation of their energetic and spatial evolution with increasing Ag-film thicknesses N. For this, beside the

  9. Policies Supporting Local Food in the United States

    Directory of Open Access Journals (Sweden)

    Steve W. Martinez

    2016-08-01

    Full Text Available Local food has been the subject of federal, state, and local government policies in recent years throughout the United States as consumer demand has grown. Local foods have been linked to several government priorities—including enhancing the rural economy, the environment, and supporting agricultural producers. This article provides an overview of U.S. Federal, State and regional policies designed to support local food systems. It details the latest economic information on policy, relying on findings from several national surveys and a synthesis of recent literature. Federal policies related to local food systems were greatly expanded by the 2008 Farm Bill, and are further expanded in the Agricultural Act of 2014. United States policies address several barriers to the further expansion of local food markets, including scaling up output of small farms to address the needs of larger commercial outlets, lack of infrastructure for increasing local food sales, ability to trace product source, and producer education regarding local food expansion.

  10. Local correlations of mixed two-qubit states

    International Nuclear Information System (INIS)

    Zhang Fulin; Chen Jingling; Ren Changliang; Shi Mingjun

    2010-01-01

    The quantum probability distribution arising from single-copy von Neumann measurements on an arbitrary two-qubit state is decomposed into the local and nonlocal parts, in the approach of Elitzur, Popescu and Rohrlich [A. Elitzur, S. Popescu, D. Rohrlich, Phys. Lett. A 162 (1992) 25]. A lower bound of the local weight is proved being connected with the concurrence of the state p L max =1-C(ρ). The local probability distributions for two families of mixed states are constructed independently, which accord with the lower bound.

  11. Non-local coupled-channels optical calculation of electron scattering by atomic hydrogen at 54.42 eV

    International Nuclear Information System (INIS)

    Ratnavelu, K.; McCarthy, I.E.

    1990-01-01

    The present study incorporates the non-local optical potentials for the continuum within the coupled-channels optical framework to study electron scattering from atomic hydrogen at 54.42 eV. Nine-state coupled-channels calculations with non-local and local continuum optical potentials were performed. The results for differential, total and ionization cross sections as well as the 2p angular correlation parameters λ and R are comparable with other non-perturbative calculations. There are still discrepancies between theory and experiment, particularly for λ and R at larger angles. (author)

  12. How States Can Promote Local Innovation, Options, and Problem-Solving in Public Education. Linking State and Local School Improvement

    Science.gov (United States)

    Posamentier, Jordan; Lake, Robin; Hill, Paul

    2017-01-01

    State policy plays a critical role in determining whether and how well local education improvement strategies can be implemented. As states rework their education policies under the Every Student Succeeds Act (ESSA), state and local leaders need a way to assess their current policy environment and identify the changes needed to encourage local…

  13. The influence of further-neighbor spin-spin interaction on a ground state of 2D coupled spin-electron model in a magnetic field

    Science.gov (United States)

    Čenčariková, Hana; Strečka, Jozef; Gendiar, Andrej; Tomašovičová, Natália

    2018-05-01

    An exhaustive ground-state analysis of extended two-dimensional (2D) correlated spin-electron model consisting of the Ising spins localized on nodal lattice sites and mobile electrons delocalized over pairs of decorating sites is performed within the framework of rigorous analytical calculations. The investigated model, defined on an arbitrary 2D doubly decorated lattice, takes into account the kinetic energy of mobile electrons, the nearest-neighbor Ising coupling between the localized spins and mobile electrons, the further-neighbor Ising coupling between the localized spins and the Zeeman energy. The ground-state phase diagrams are examined for a wide range of model parameters for both ferromagnetic as well as antiferromagnetic interaction between the nodal Ising spins and non-zero value of external magnetic field. It is found that non-zero values of further-neighbor interaction leads to a formation of new quantum states as a consequence of competition between all considered interaction terms. Moreover, the new quantum states are accompanied with different magnetic features and thus, several kinds of field-driven phase transitions are observed.

  14. Localization of fluorescently labeled structures in frozen-hydrated samples using integrated light electron microscopy.

    Science.gov (United States)

    Faas, F G A; Bárcena, M; Agronskaia, A V; Gerritsen, H C; Moscicka, K B; Diebolder, C A; van Driel, L F; Limpens, R W A L; Bos, E; Ravelli, R B G; Koning, R I; Koster, A J

    2013-03-01

    Correlative light and electron microscopy is an increasingly popular technique to study complex biological systems at various levels of resolution. Fluorescence microscopy can be employed to scan large areas to localize regions of interest which are then analyzed by electron microscopy to obtain morphological and structural information from a selected field of view at nm-scale resolution. Previously, an integrated approach to room temperature correlative microscopy was described. Combined use of light and electron microscopy within one instrument greatly simplifies sample handling, avoids cumbersome experimental overheads, simplifies navigation between the two modalities, and improves the success rate of image correlation. Here, an integrated approach for correlative microscopy under cryogenic conditions is presented. Its advantages over the room temperature approach include safeguarding the native hydrated state of the biological specimen, preservation of the fluorescence signal without risk of quenching due to heavy atom stains, and reduced photo bleaching. The potential of cryo integrated light and electron microscopy is demonstrated for the detection of viable bacteria, the study of in vitro polymerized microtubules, the localization of mitochondria in mouse embryonic fibroblasts, and for a search into virus-induced intracellular membrane modifications within mammalian cells. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Steady State Shift Damage Localization

    DEFF Research Database (Denmark)

    Sekjær, Claus; Bull, Thomas; Markvart, Morten Kusk

    2017-01-01

    The steady state shift damage localization (S3DL) method localizes structural deterioration, manifested as either a mass or stiffness perturbation, by interrogating the damage-induced change in the steady state vibration response with damage patterns cast from a theoretical model. Damage is, thus...... the required accuracy when examining complex structures, an extensive amount of degrees of freedom (DOF) must often be utilized. Since the interrogation matrix for each damage pattern depends on the size of the system matrices constituting the FE-model, the computational time quickly becomes of first......-order importance. The present paper investigates two sub-structuring approaches, in which the idea is to employ Craig-Bampton super-elements to reduce the amount of interrogation distributions while still providing an acceptable localization resolution. The first approach operates on a strict super-element level...

  16. Localized and Extended States in a Disordered Trap

    International Nuclear Information System (INIS)

    Pezze, Luca; Sanchez-Palencia, Laurent

    2011-01-01

    We study Anderson localization in a disordered potential combined with an inhomogeneous trap. We show that the spectrum displays both localized and extended states, which coexist at intermediate energies. In the region of coexistence, we find that the extended states result from confinement by the trap and are weakly affected by the disorder. Conversely, the localized states correspond to eigenstates of the disordered potential, which are only affected by the trap via an inhomogeneous energy shift. These results are relevant to disordered quantum gases and we propose a realistic scheme to observe the coexistence of localized and extended states in these systems.

  17. Non-local electron transport validation using 2D DRACO simulations

    Science.gov (United States)

    Cao, Duc; Chenhall, Jeff; Moll, Eli; Prochaska, Alex; Moses, Gregory; Delettrez, Jacques; Collins, Tim

    2012-10-01

    Comparison of 2D DRACO simulations, using a modified versionfootnotetextprivate communications with M. Marinak and G. Zimmerman, LLNL. of the Schurtz, Nicolai and Busquet (SNB) algorithmfootnotetextSchurtz, Nicolai and Busquet, ``A nonlocal electron conduction model for multidimensional radiation hydrodynamics codes,'' Phys. Plasmas 7, 4238(2000). for non-local electron transport, with direct drive shock timing experimentsfootnotetextT. Boehly, et. al., ``Multiple spherically converging shock waves in liquid deuterium,'' Phys. Plasmas 18, 092706(2011). and with the Goncharov non-local modelfootnotetextV. Goncharov, et. al., ``Early stage of implosion in inertial confinement fusion: Shock timing and perturbation evolution,'' Phys. Plasmas 13, 012702(2006). in 1D LILAC will be presented. Addition of an improved SNB non-local electron transport algorithm in DRACO allows direct drive simulations with no need for an electron conduction flux limiter. Validation with shock timing experiments that mimic the laser pulse profile of direct drive ignition targets gives a higher confidence level in the predictive capability of the DRACO code. This research was supported by the University of Rochester Laboratory for Laser Energetics.

  18. Observing electron localization in a dissociating H2+ molecule in real time.

    Science.gov (United States)

    Xu, H; Li, Zhichao; He, Feng; Wang, X; Atia-Tul-Noor, A; Kielpinski, D; Sang, R T; Litvinyuk, I V

    2017-06-16

    Dissociation of diatomic molecules with odd number of electrons always causes the unpaired electron to localize on one of the two resulting atomic fragments. In the simplest diatomic molecule H 2 + dissociation yields a hydrogen atom and a proton with the sole electron ending up on one of the two nuclei. That is equivalent to breaking of a chemical bond-the most fundamental chemical process. Here we observe such electron localization in real time by performing a pump-probe experiment. We demonstrate that in H 2 + electron localization is complete in just 15 fs when the molecule's internuclear distance reaches 8 atomic units. The measurement is supported by a theoretical simulation based on numerical solution of the time-dependent Schrödinger equation. This observation advances our understanding of detailed dynamics of molecular dissociation.

  19. Determination of localized visibility in off-axis electron holography

    International Nuclear Information System (INIS)

    McLeod, Robert A.; Kupsta, Martin; Malac, Marek

    2014-01-01

    Off-axis electron holography is a wavefront-split interference method for the transmission electron microscope that allows the phase shift and amplitude of the electron wavefront to be separated and quantitatively measured. An additional, third component of the holographic signal is the coherence of the electron wavefront. Historically, wavefront coherence has been evaluated by measurement of the holographic fringe visibility (or contrast) based on the minimum and maximum intensity values. We present a method based on statistical moments is presented that allows allow the visibility to be measured in a deterministic and reproducible fashion suitable for quantitative analysis. We also present an algorithm, based on the Fourier-ratio method, which allows the visibility to be resolved in two-dimensions, which we term the local visibility. The local visibility may be used to evaluate the loss of coherence due to electron scattering within a specimen, or as an aid in image analysis and segmentation. The relationship between amplitude and visibility may be used to evaluate the composition and mass thickness of a specimen by means of a 2-D histogram. Results for a selection of elements (C, Al, Si, Ti, Cr, Cu, Ge, and Au) are provided. All presented visibility metrics are biased at low-dose conditions by the presence of shot-noise, for which we provide methods for empirical normalization to achieve linear response. - Highlights: • Report on a new statistical metric to determine holographic fringe visibility. • Adds new signal to electron holography: measure of electron coherence loss in 2-D. • Provide algorithm to calculate 2-D local visibility map. • Show that amplitude and visibility may be used for compositional analysis and segmentation. • Corrected for data bias such as shot noise

  20. On the local theory of resonant inelastic collisions of slow electrons with carbon dioxide

    International Nuclear Information System (INIS)

    Kazansky, A.K.; Sergeeva, L.Yu.

    1994-01-01

    A method of calculating the cross sections of inelastic vibronic transitions in collisions of slow electrons with polyatomic molecules in the framework of the local theory (the 'boomerang' model) is proposed. The method is based on the study of the time evolution of the initial vibronic wavefunction; the evolution is governed by the (complex valued) Hamiltonian of the intermediate anion state. The method has been applied to the consideration of inelastic electron collisions with the CO 2 molecule in the two-mode approximation (symmetrical stretching and bending). The results obtained demonstrate the importance of the two-mode description for the system which can undergo the Renner transition. (Author)

  1. Approximating local observables on projected entangled pair states

    Science.gov (United States)

    Schwarz, M.; Buerschaper, O.; Eisert, J.

    2017-06-01

    Tensor network states are for good reasons believed to capture ground states of gapped local Hamiltonians arising in the condensed matter context, states which are in turn expected to satisfy an entanglement area law. However, the computational hardness of contracting projected entangled pair states in two- and higher-dimensional systems is often seen as a significant obstacle when devising higher-dimensional variants of the density-matrix renormalization group method. In this work, we show that for those projected entangled pair states that are expected to provide good approximations of such ground states of local Hamiltonians, one can compute local expectation values in quasipolynomial time. We therefore provide a complexity-theoretic justification of why state-of-the-art numerical tools work so well in practice. We finally turn to the computation of local expectation values on quantum computers, providing a meaningful application for a small-scale quantum computer.

  2. Electronic states of zigzag graphene nanoribbons with edges reconstructed with topological defects

    Energy Technology Data Exchange (ETDEWEB)

    Pincak, R., E-mail: pincak@saske.sk [Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 043 53 Kosice (Slovakia); Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, 141980 Dubna, Moscow Region (Russian Federation); Smotlacha, J., E-mail: smota@centrum.cz [Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, 141980 Dubna, Moscow Region (Russian Federation); Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University, Brehova 7, 110 00 Prague (Czech Republic); Osipov, V.A., E-mail: osipov@theor.jinr.ru [Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, 141980 Dubna, Moscow Region (Russian Federation)

    2015-10-15

    The energy spectrum and electronic density of states (DOS) of zigzag graphene nanoribbons with edges reconstructed with topological defects are investigated within the tight-binding method. In case of the Stone–Wales zz(57) edge the low-energy spectrum is markedly changed in comparison to the pristine zz edge. We found that the electronic DOS at the Fermi level is different from zero at any width of graphene nanoribbons. In contrast, for ribbons with heptagons only at one side and pentagons at another one the energy gap at the Fermi level is open and the DOS is equal to zero. The reason is the influence of uncompensated topological charges on the localized edge states, which are topological in nature. This behavior is similar to that found for the structured external electric potentials along the edges.

  3. Can Excited State Electronic Coherence Be Tuned via Molecular Structural Modification? A First-Principles Quantum Electronic Dynamics Study of Pyrazolate-Bridged Pt(II) Dimers

    Energy Technology Data Exchange (ETDEWEB)

    Lingerfelt, David B.; Lestrange, Patrick J.; Radler, Joseph J.; Brown-Xu, Samantha E.; Kim, Pyosang; Castellano, Felix N.; Chen, Lin X.; Li, Xiaosong

    2017-02-24

    Materials and molecular systems exhibiting long-lived electronic coherence can facilitate coherent transport, opening the door to efficient charge and energy transport beyond traditional methods. Recently, signatures of a possible coherent, recurrent electronic motion were identified in femtosecond pump-probe spectroscopy experiments on a binuclear platinum complex, where a persistent periodic beating in the transient absorption signal’s anisotropy was observed. In this study, we investigate the excitonic dynamics that underlie the suspected electronic coherence for a series of binuclear platinum complexes exhibiting a range of interplatinum distances. Results suggest that the long-lived coherence can only result when competitive electronic couplings are in balance. At longer Pt-Pt distances, the electronic couplings between the two halves of the binuclear system weaken, and exciton localization and recombination is favored on short time scales. For short Pt-Pt distances, electronic couplings between the states in the coherent superposition are stronger than the coupling with other excitonic states, leading to long-lived coherence.

  4. Solid-state physics for electronics

    CERN Document Server

    Moliton, Andre

    2009-01-01

    Describing the fundamental physical properties of materials used in electronics, the thorough coverage of this book will facilitate an understanding of the technological processes used in the fabrication of electronic and photonic devices. The book opens with an introduction to the basic applied physics of simple electronic states and energy levels. Silicon and copper, the building blocks for many electronic devices, are used as examples. Next, more advanced theories are developed to better account for the electronic and optical behavior of ordered materials, such as diamond, and disordered ma

  5. Effect of local atomic and electronic structures on thermoelectric properties of chemically substituted CoSi

    Science.gov (United States)

    Hsu, C. C.; Pao, C. W.; Chen, J. L.; Chen, C. L.; Dong, C. L.; Liu, Y. S.; Lee, J. F.; Chan, T. S.; Chang, C. L.; Kuo, Y. K.; Lue, C. S.

    2014-05-01

    We report the effects of Ge partial substitution for Si on local atomic and electronic structures of thermoelectric materials in binary compound cobalt monosilicides (\\text{CoSi}_{1-x}\\text{Ge}_{x}\\text{:}\\ 0 \\le x \\le 0.15 ). Correlations between local atomic/electronic structure and thermoelectric properties are investigated by means of X-ray absorption spectroscopy. The spectroscopic results indicate that as Ge is partially substituted onto Si sites at x \\le 0.05 , Co in CoSi1-xGex gains a certain amount of charge in its 3d orbitals. Contrarily, upon further replacing Si with Ge at x \\ge 0.05 , the Co 3d orbitals start to lose some of their charge. Notably, thermopower is strongly correlated with charge redistribution in the Co 3d orbital, and the observed charge transfer between Ge and Co is responsible for the variation of Co 3d occupancy number. In addition to Seebeck coefficient, which can be modified by tailoring the Co 3d states, local lattice disorder may also be beneficial in enhancing the thermoelectric properties. Extended X-ray absorption fine structure spectrum results further demonstrate that the lattice phonons can be enhanced by Ge doping, which results in the formation of the disordered Co-Co pair. Improvements in the thermoelectric properties are interpreted based on the variation of local atomic and electronic structure induced by lattice distortion through chemical substitution.

  6. Multiple-copy state discrimination: Thinking globally, acting locally

    International Nuclear Information System (INIS)

    Higgins, B. L.; Pryde, G. J.; Wiseman, H. M.; Doherty, A. C.; Bartlett, S. D.

    2011-01-01

    We theoretically investigate schemes to discriminate between two nonorthogonal quantum states given multiple copies. We consider a number of state discrimination schemes as applied to nonorthogonal, mixed states of a qubit. In particular, we examine the difference that local and global optimization of local measurements makes to the probability of obtaining an erroneous result, in the regime of finite numbers of copies N, and in the asymptotic limit as N→∞. Five schemes are considered: optimal collective measurements over all copies, locally optimal local measurements in a fixed single-qubit measurement basis, globally optimal fixed local measurements, locally optimal adaptive local measurements, and globally optimal adaptive local measurements. Here an adaptive measurement is one in which the measurement basis can depend on prior measurement results. For each of these measurement schemes we determine the probability of error (for finite N) and the scaling of this error in the asymptotic limit. In the asymptotic limit, it is known analytically (and we verify numerically) that adaptive schemes have no advantage over the optimal fixed local scheme. Here we show moreover that, in this limit, the most naive scheme (locally optimal fixed local measurements) is as good as any noncollective scheme except for states with less than 2% mixture. For finite N, however, the most sophisticated local scheme (globally optimal adaptive local measurements) is better than any other noncollective scheme for any degree of mixture.

  7. Local density of states in two-dimensional topological superconductors under a magnetic field: Signature of an exterior Majorana bound state

    Science.gov (United States)

    Suzuki, Shu-Ichiro; Kawaguchi, Yuki; Tanaka, Yukio

    2018-04-01

    We study quasiparticle states on a surface of a topological insulator (TI) with proximity-induced superconductivity under an external magnetic field. An applied magnetic field creates two Majorana bound states: a vortex Majorana state localized inside a vortex core and an exterior Majorana state localized along a circle centered at the vortex core. We calculate the spin-resolved local density of states (LDOS) and demonstrate that the shrinking of the radius of the exterior Majorana state, predicted in R. S. Akzyanov et al., Phys. Rev. B 94, 125428 (2016), 10.1103/PhysRevB.94.125428, under a strong magnetic field can be seen in LDOS without smeared out by nonzero-energy states. The spin-resolved LDOS further reveals that the spin of the exterior Majorana state is strongly spin-polarized. Accordingly, the induced odd-frequency spin-triplet pairs are found to be spin-polarized as well. In order to detect the exterior Majorana states, however, the Fermi energy should be closed to the Dirac point to avoid contributions from continuum levels. We also study a different two-dimensional topological-superconducting system where a two-dimensional electron gas with the spin-orbit coupling is sandwiched between an s -wave superconductor and a ferromagnetic insulator. We show that the radius of an exterior Majorana state can be tuned by an applied magnetic field. However, on the contrary to the results at a TI surface, neither the exterior Majorana state nor the induced odd-frequency spin-triplet pairs are spin-polarized. We conclude that the spin polarization of the Majorana state is attributed to the spin-polarized Landau level, which is characteristic for systems with the Dirac-like dispersion.

  8. Electronic structure and electron dynamics at an organic molecule/metal interface: interface states of tetra-tert-butyl-imine/Au(111)

    International Nuclear Information System (INIS)

    Hagen, Sebastian; Wolf, Martin; Tegeder, Petra; Luo Ying; Haag, Rainer

    2010-01-01

    Time- and angle-resolved two-photon photoemission (2PPE) spectroscopies have been used to investigated the electronic structure, electron dynamics and localization at the interface between tetra-tert-butyl imine (TBI) and Au(111). At a TBI coverage of one monolayer (ML), the two highest occupied molecular orbitals, HOMO and HOMO-1, are observed at an energy of -1.9 and -2.6 eV below the Fermi level (E F ), respectively, and coincide with the d-band features of the Au substrate. In the unoccupied electronic structure, the lowest unoccupied molecular orbital (LUMO) has been observed at 1.6 eV with respect to E F . In addition, two delocalized states that arise from the modified image potential at the TBI/metal interface have been identified. Their binding energies depend strongly on the adsorption structure of the TBI adlayer, which is coverage dependent in the submonolayer (≤1 ML) regime. Thus the binding energy of the lower interface state (IS) shifts from 3.5 eV at 1.0 ML to 4.0 eV at 0.5 ML, which is accompanied by a pronounced decrease in its lifetime from 100 fs to below 10 fs. This is a result of differences in the wave function overlap with electronic states of the Au(111) substrate at different binding energies. This study shows that in order to fully understand the electronic structure of organic adsorbates at metal surfaces, not only adsorbate- and substrate-induced electronic states have to be considered but also ISs, which are the result of a potential formed by the interaction between the adsorbate and the substrate.

  9. 40 CFR 3.2 - How does this part provide for electronic reporting?

    Science.gov (United States)

    2010-07-01

    ... electronic document provided that the state, tribe, or local government seeks and obtains revision or... electronic reporting. (2) A state, tribe, or local government that is applying for initial delegation... obligate EPA, states, tribes, or local governments to accept electronic documents. ...

  10. Local and non-local Schroedinger cat states in cavity QED

    International Nuclear Information System (INIS)

    Haroche, S.

    2005-01-01

    Full text: I will review recent experiments performed on mesoscopic state superpositions of field states in cavity QED. Proposals to extend these studies to Schroedinger cat states delocalized in two cavities will be discussed. New versions of Bell's inequality tests will probe the non-local behavior of these cats and study their sensitivity to decoherence. (author)

  11. Introduction to solid state electronics

    CERN Document Server

    Wang, FFY

    1989-01-01

    This textbook is specifically tailored for undergraduate engineering courses offered in the junior year, providing a thorough understanding of solid state electronics without relying on the prerequisites of quantum mechanics. In contrast to most solid state electronics texts currently available, with their generalized treatments of the same topics, this is the first text to focus exclusively and in meaningful detail on introductory material. The original text has already been in use for 10 years. In this new edition, additional problems have been added at the end of most chapters. These proble

  12. Localization/Globalization and the Midwife State: Strategic Dilemmas for State Feminism in Education?

    Science.gov (United States)

    Blackmore, Jill

    1999-01-01

    Explores implications of the globalization/localization process for state feminism, focusing on Australia. Localization is one response to globalization, exemplified by devolution to self-managing schools. However, global/local relations have gendered effects that resonate cross-nationally. Problems will emerge as the state withdraws from its…

  13. Federal Grants to State and Local Governments

    Science.gov (United States)

    Congressional Budget Office, 2013

    2013-01-01

    In fiscal year 2011, the federal government provided $607 billion in grants to state and local governments. Those funds accounted for 17 percent of federal outlays, 4 percent of gross domestic product (GDP), and a quarter of spending by state and local governments that year. Over the past 30 years, those "intergovernmental" grants--financial…

  14. Electron Transfer and Solvent-Mediated Electronic Localization in Molecular Photocatalysis

    DEFF Research Database (Denmark)

    Dohn, Asmus Ougaard; Kjær, Kasper Skov; Harlang, Tobias B.

    2016-01-01

    This work provides a detailed mechanism for electron transfer in a heterodinuclear complex designed as a model system in which to study homogeneous molecular photocatalysis. With efficient Born–Oppenheimer molecular dynamics simulations, we show how intermediate, charge-separated states can mediate...

  15. Rigorous treatment of the non-ohmic d.c. conductivity due to phonon-assisted tunneling from localized to extended states

    International Nuclear Information System (INIS)

    Majernikova, E.

    1984-03-01

    A quantitative treatment of the non-ohmic current response due to delocalization of shallow localized electrons in a model of a disordered solid is given. A phonon-assisted tunneling in electric field from shallow localized to extended states is confirmed as a mechanism leading to the dependence which was experimentally found for chalcogenide glasses. (author)

  16. Localized superconductors

    International Nuclear Information System (INIS)

    Ma, M.; Lee, P.A.

    1985-01-01

    We study the effects of Anderson localization on superconductivity by using a Bardeen-Cooper-Schrieffer (BCS)-type trial wave function which pairs electrons in exact time-reversed eigenstates of the single-particle Hamiltonian. Within this approximation, and neglecting localization effects on the effective Coulomb repulsion and the electron-phonon coupling, we find that superconductivity persists below the mobility edge. In fact, Anderson's theorem is valid in the localized phase as long as rhoΔ 0 L/sup d/ > 1 (rho is the density of states averaged over +- Δ 0 of the Fermi energy, Δ 0 the BCS gap parameter, and L the localization length). Hence the gap order parameter Δ(r) remains uniform in space at the BCS value Δ 0 . The superfluid density and response to electromagnetic perturbations, however, show marked differences from the ''dirty superconductor'' regime. For rhoΔ 0 L/sup d/ < 1, Δ(r) fluctuates spatially and eventually drops to zero. In the limit when states are site localized, the system crosses over into the ''Anderson negative-U glass.'' Considerations beyond the trial wave-function approximation will speed up the destruction of superconductivity. The superconductor formed from localized states has the property that its quasiparticle excitations are also localized. Such excitations can be probed by observing the normal current in a tunneling junction

  17. Local cloning of CAT states

    International Nuclear Information System (INIS)

    Rahaman, Ramij

    2011-01-01

    In this Letter we analyze the (im)possibility of the exact cloning of orthogonal three-qubit CAT states under local operation and classical communication (LOCC) with the help of a restricted entangled state. We also classify the three-qubit CAT states that can (not) be cloned under LOCC restrictions and extend the results to the n-qubit case. -- Highlights: → We analyze the (im)possibility of exact cloning of orthogonal CAT states under LOCC. → We also classify the set of CAT states that can(not) be cloned by LOCC. → No set of orthogonal CAT states can be cloned by LOCC with help of similar CAT state. → Any two orthogonal n-qubit GHZ-states can be cloned by LOCC with help of a GHZ state.

  18. Localized chemical switching of the charge state of nitrogen-vacancy luminescence centers in diamond

    Energy Technology Data Exchange (ETDEWEB)

    Shanley, Toby W.; Martin, Aiden A.; Aharonovich, Igor, E-mail: Igor.Aharonovich@uts.edu.au; Toth, Milos, E-mail: Milos.Toth@uts.edu.au [School of Physics and Advanced Materials, University of Technology, Sydney, P.O. Box 123, Broadway, New South Wales 2007 (Australia)

    2014-08-11

    We present a direct-write chemical technique for controlling the charge state of near-surface nitrogen vacancy centers (NVs) in diamond by surface fluorination. Fluorination of H-terminated diamond is realized by electron beam stimulated desorption of H{sub 2}O in the presence of NF{sub 3} and verified with environmental photoyield spectroscopy (EPYS) and photoluminescence (PL) spectroscopy. PL spectra of shallow NVs in H- and F-terminated nanodiamonds show the expected dependence of the NV charge state on their energetic position with respect to the Fermi-level. EPYS reveals a corresponding difference between the ionization potential of H- and F-terminated diamond. The electron beam fluorination process is highly localized and can be used to fluorinate H-terminated diamond, and to increase the population of negatively charged NV centers.

  19. Fully local orbital-free calculation of electronic structure using pseudopotentials

    NARCIS (Netherlands)

    Pino, R.; Markvoort, Albert. J.; Santen, van R.A.; Hilbers, P.A.J.

    2003-01-01

    An exactly solvable orbital-free technique is applied to the calculation of the electronic structure of polyatomic systems. The Thomas–Fermi kinetic energy, local exchange, local electrostatic energy functionals, and pseudopotentials are used. Given the potential, the cost of the calculation of the

  20. Electronically excited negative ion resonant states in chloroethylenes

    Energy Technology Data Exchange (ETDEWEB)

    Khvostenko, O.G., E-mail: khv@mail.ru; Lukin, V.G.; Tuimedov, G.M.; Khatymova, L.Z.; Kinzyabulatov, R.R.; Tseplin, E.E.

    2015-02-15

    Highlights: • Several novel dissociative negative ion channels were revealed in chloroethylenes. • The electronically excited resonant states were recorded in all chloroethylenes under study. • The states were assigned to the inter-shell types, but not to the core-excited Feshbach one. - Abstract: The negative ion mass spectra of the resonant electron capture by molecules of 1,1-dichloroethylene, 1,2-dichloroethylene-cis, 1,2-dichloroethylene-trans, trichloroethylene and tetrachloroethylene have been recorded in the 0–12 eV range of the captured electron energy using static magnetic sector mass spectrometer modified for operation in the resonant electron capture regime. As a result, several novel low-intensive dissociation channels were revealed in the compounds under study. Additionally, the negative ion resonant states were recorded at approximately 3–12 eV, mostly for the first time. These resonant states were assigned to the electronically excited resonances of the inter-shell type by comparing their energies with those of the parent neutral molecules triplet and singlet electronically excited states known from the energy-loss spectra obtained by previous studies.

  1. Electron spin torque in atoms

    International Nuclear Information System (INIS)

    Hara, Takaaki; Senami, Masato; Tachibana, Akitomo

    2012-01-01

    The spin torque and zeta force, which govern spin dynamics, are studied by using monoatoms in their steady states. We find nonzero local spin torque in transition metal atoms, which is in balance with the counter torque, the zeta force. We show that d-orbital electrons have a crucial effect on these torques. Nonzero local chirality density in transition metal atoms is also found, though the electron mass has the effect to wash out nonzero chirality density. Distribution patterns of the chirality density are the same for Sc–Ni atoms, though the electron density distributions are different. -- Highlights: ► Nonzero local spin torque is found in the steady states of transition metal atoms. ► The spin steady state is realized by the existence of a counter torque, zeta force. ► D-orbital electrons have a crucial effect on the spin torque and zeta force. ► Nonzero local chiral density is found in spite of the washout by the electron mass. ► Chiral density distribution have the same pattern for Sc–Ni atoms.

  2. Enhancement of spin polarization induced by Coulomb on-site repulsion between localized pz electrons in graphene embedded with line defects.

    Science.gov (United States)

    Ren, Ji-Chang; Wang, Zhigang; Zhang, Rui-Qin; Ding, Zejun; Van Hove, Michel A

    2015-11-11

    It is well known that the effect of Coulomb on-site repulsion can significantly alter the physical properties of the systems that contain localized d and/or f electrons. However, little attention has been paid to the Coulomb on-site repulsion between localized p electrons. In this study, we demonstrated that Coulomb on-site repulsion between localized pz electrons also plays an important role in graphene embedded with line defects. It is shown that the magnetism of the system largely depends on the choice of the effective Coulomb on-site parameter Ueff. Ueff at the edges of the defect enhances the exchange splitting, which increases the magnetic moment and stabilizes a ferromagnetic state of the system. In contrast, Ueff at the center of the defect weakens the spin polarization of the system. The behavior of the magnetism is explained with the Stoner criterion and the charge accumulation at the edges of the defect. Based on the linear response approach, we estimate reasonable values of Ueff to be 2.55 eV (2.3 eV) at the center (edges) of the defects. More importantly, using a DFT+U+J method, we find that exchange interactions between localized p electrons also play an important role in the spin polarization of the system. These results imply that Coulomb on-site repulsion is necessary to describe the strong interaction between localized pz electrons of carbon related materials.

  3. Entanglement Evolution of Three-Qubit States under Local Decoherence

    International Nuclear Information System (INIS)

    Ma Xiaosan; Liu Gaosheng; Wang Anmin

    2010-01-01

    By using negativity as entanglement measure, we have investigated the effect of local decoherence from a non-Markovian environment on the time evolution of entanglement of three-qubit states including the GHZ state, the W state, and the Werner state. From the results, we find that the entanglement dynamics depends not only on the coupling strengths but also on the specific states of concern. Specifically, the entanglement takes different behaviors under weak or strong coupling and it varies with the quantum states under study. The entanglement of the GHZ state and the Werner state can be destroyed completely by the local decoherence, while the entanglement of the W state can survive through the local decoherence partially. (general)

  4. Electronic structure of the actinide-Rh3 systems and the 5f localization in UPd3

    DEFF Research Database (Denmark)

    Eriksson, Olle; Johansson, Börje; Brooks, M. S. S.

    1989-01-01

    We present electronic-structure calculations for the isostructural (AuCu3-structure) series of intermetallic compounds ARh3 (A=Ac, Th, Pa, U, Np, Pu, Am, and Cm). The calculations were performed using both the scalar relativistic and the fully relativistic linear muffin-tin orbital (LMTO) method........ The localization of the 5f electrons in UPd3 as opposed to the itinerant 5f behavior for the earlier compounds (UMo3, UTc3 , URu3, and URh3) is explained in terms of the variation of the hybridization between 5f and ligand 4d states through the series....

  5. State funding for local public health: observations from six case studies.

    Science.gov (United States)

    Potter, Margaret A; Fitzpatrick, Tiffany

    2007-01-01

    The purpose of this study is to describe state funding of local public health within the context of state public health system types. These types are based on administrative relationships, legal structures, and relative proportion of state funding in local public health budgets. We selected six states representing various types and geographic regions. A case study for each state summarized available information and was validated by state public health officials. An analysis of the case studies reveals that the variability of state public health systems--even within a given type--is matched by variability in approaches to funding local public health. Nevertheless, some meaningful associations appear. For example, higher proportions of state funding occur along with higher levels of state oversight and the existence of local service mandates in state law. These associations suggest topics for future research on public health financing in relation to local accountability, local input to state priority-setting, mandated local services, and the absence of state funds for public health services in some local jurisdictions.

  6. Reversibility and the structure of the local state space

    International Nuclear Information System (INIS)

    Al-Safi, Sabri W; Richens, Jonathan

    2015-01-01

    The richness of quantum theory’s reversible dynamics is one of its unique operational characteristics, with recent results suggesting deep links between the theory’s reversible dynamics, its local state space and the degree of non-locality it permits. We explore the delicate interplay between these features, demonstrating that reversibility places strong constraints on both the local and global state space. Firstly, we show that all reversible dynamics are trivial (composed of local transformations and permutations of subsytems) in maximally non-local theories whose local state spaces satisfy a dichotomy criterion; this applies to a range of operational models that have previously been studied, such as d-dimensional ‘hyperballs’ and almost all regular polytope systems. By separately deriving a similar result for odd-sided polygons, we show that classical systems are the only regular polytope state spaces whose maximally non-local composites allow for non-trivial reversible dynamics. Secondly, we show that non-trivial reversible dynamics do exist in maximally non-local theories whose state spaces are reducible into two or more smaller spaces. We conjecture that this is a necessary condition for the existence of such dynamics, but that reversible entanglement generation remains impossible even in this scenario. (paper)

  7. Guide to state-of-the-art electron devices

    CERN Document Server

    2013-01-01

    Concise, high quality and comparative overview of state-of-the-art electron device development, manufacturing technologies and applications Guide to State-of-the-Art Electron Devices marks the 60th anniversary of the IEEE Electron Devices Committee and the 35th anniversary of the IEEE Electron Devices Society, as such it defines the state-of-the-art of electron devices, as well as future directions across the entire field. Spans full range of electron device types such as photovoltaic devices, semiconductor manufacturing and VLSI technology and circuits, covered by IEEE Electron and Devices Society Contributed by internationally respected members of the electron devices community A timely desk reference with fully-integrated colour and a unique lay-out with sidebars to highlight the key terms Discusses the historical developments and speculates on future trends to give a more rounded picture of the topics covered A valuable resource R&D managers; engineers in the semiconductor industry; applied scientists...

  8. The Role of Localized Compressional Ultra-low Frequency Waves in Energetic Electron Precipitation

    Science.gov (United States)

    Rae, I. Jonathan; Murphy, Kyle R.; Watt, Clare E. J.; Halford, Alexa J.; Mann, Ian R.; Ozeke, Louis G.; Sibeck, David G.; Clilverd, Mark A.; Rodger, Craig J.; Degeling, Alex W.; Forsyth, Colin; Singer, Howard J.

    2018-03-01

    Typically, ultra-low frequency (ULF) waves have historically been invoked for radial diffusive transport leading to acceleration and loss of outer radiation belt electrons. At higher frequencies, very low frequency waves are generally thought to provide a mechanism for localized acceleration and loss through precipitation into the ionosphere of radiation belt electrons. In this study we present a new mechanism for electron loss through precipitation into the ionosphere due to a direct modulation of the loss cone via localized compressional ULF waves. We present a case study of compressional wave activity in tandem with riometer and balloon-borne electron precipitation across keV-MeV energies to demonstrate that the experimental measurements can be explained by our new enhanced loss cone mechanism. Observational evidence is presented demonstrating that modulation of the equatorial loss cone can occur via localized compressional wave activity, which greatly exceeds the change in pitch angle through conservation of the first and second adiabatic invariants. The precipitation response can be a complex interplay between electron energy, the localization of the waves, the shape of the phase space density profile at low pitch angles, ionospheric decay time scales, and the time dependence of the electron source; we show that two pivotal components not usually considered are localized ULF wave fields and ionospheric decay time scales. We conclude that enhanced precipitation driven by compressional ULF wave modulation of the loss cone is a viable candidate for direct precipitation of radiation belt electrons without any additional requirement for gyroresonant wave-particle interaction. Additional mechanisms would be complementary and additive in providing means to precipitate electrons from the radiation belts during storm times.

  9. Conduction mechanism studies on electron transfer of disordered system

    Institute of Scientific and Technical Information of China (English)

    徐慧; 宋祎璞; 李新梅

    2002-01-01

    Using the negative eigenvalue theory and the infinite order perturbation theory, a new method was developed to solve the eigenvectors of disordered systems. The result shows that eigenvectors change from the extended state to the localized state with the increase of the site points and the disordered degree of the system. When electric field is exerted, the electrons transfer from one localized state to another one. The conductivity is induced by the electron transfer. The authors derive the formula of electron conductivity and find the electron hops between localized states whose energies are close to each other, whereas localized positions differ from each other greatly. At low temperature the disordered system has the character of the negative differential dependence of resistivity and temperature.

  10. Theoretical study of the localization of excess electrons at the surface of ice

    International Nuclear Information System (INIS)

    Hermann, A; Schwerdtfeger, P; Schmidt, W G

    2008-01-01

    The localization of excess electrons at the basal plane surface of hexagonal ice Ih is investigated theoretically, combining density functional theory (DFT) with a partial self-interaction correction (SIC) scheme, to account for spurious self-interaction effects that artificially delocalize the excess electrons. Starting from energetically favored surface geometries, we find strong localization of excess electrons at surface dangling bonds, in particular for surface adsorbed water monomers and dimers

  11. D-state Rydberg electrons interacting with ultracold atoms

    Energy Technology Data Exchange (ETDEWEB)

    Krupp, Alexander Thorsten

    2014-10-02

    This thesis was established in the field of ultracold atoms where the interaction of highly excited D-state electrons with rubidium atoms was examined. This work is divided into two main parts: In the first part we study D-state Rydberg molecules resulting from the binding of a D-state Rydberg electron to a ground state rubidium atom. We show that we can address specific rovibrational molecular states by changing our laser detuning and thus create perfectly aligned axial or antialigned toroidal molecules, in good agreement with our theoretical calculations. Furthermore the influence of the electric field on the Rydberg molecules was investigated, creating novel states which show a different angular dependence and alignment. In the second part of this thesis we excite single D-state Rydberg electrons in a Bose-Einstein condensate. We study the lifetime of these Rydberg electrons, the change of the shape of our condensate and the atom losses in the condensate due to this process. Moreover, we observe quadrupolar shape oscillations of the whole condensate created by the consecutive excitation of Rydberg atoms and compare all results to previous S-state measurements. In the outlook we propose a wide range of further experiments including the proposal of imaging a single electron wavefunction by the imprint of its orbit into the Bose-Einstein condensate.

  12. Localized conductive patterning via focused electron beam reduction of graphene oxide

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Songkil; Henry, Mathias [George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States); Kulkarni, Dhaval D.; Zackowski, Paul; Jang, Seung Soon; Tsukruk, Vladimir V. [School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States); Fedorov, Andrei G., E-mail: agf@gatech.edu [George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States); Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States)

    2015-03-30

    We report on a method for “direct-write” conductive patterning via reduction of graphene oxide (GO) sheets using focused electron beam induced deposition (FEBID) of carbon. FEBID treatment of the intrinsically dielectric graphene oxide between two metal terminals opens up the conduction channel, thus enabling a unique capability for nanoscale conductive domain patterning in GO. An increase in FEBID electron dose results in a significant increase of the domain electrical conductivity with improving linearity of drain-source current vs. voltage dependence, indicative of a change of graphene oxide electronic properties from insulating to semiconducting. Density functional theory calculations suggest a possible mechanism underlying this experimentally observed phenomenon, as localized reduction of graphene oxide layers via interactions with highly reactive intermediates of electron-beam-assisted dissociation of surface-adsorbed hydrocarbon molecules. These findings establish an unusual route for using FEBID as nanoscale lithography and patterning technique for engineering carbon-based nanomaterials and devices with locally tailored electronic properties.

  13. Holstein-Primakoff representation and supercoherent states for strongly correlated electron systems

    International Nuclear Information System (INIS)

    Azakov, S.

    1999-09-01

    First we show that the algebra of operators entering the Hamiltonian of the t-J model describing the strongly correlated electron system is graded spl(2.1) algebra. Then after a brief discussion of its atypical representations we construct the Holstein-Primakoff nonlinear realization of these operators which allows to carry out the systematic semiclassical approximation, similarly to the spin-wave theory of localized magnetism. The fact that the t-J model describes the itinerant magnetism is reflected in the presence of the spinless fermions. For the supersymmetric spl(2.1) algebra the supercoherent states are proposed and the partition function of the t-J model is represented as a path integral with the help of these states. (author)

  14. Absorptive Capacities of Local Enterprises from the Electric-Electronics Sector In the State of Tamaulipas, Mexico

    Directory of Open Access Journals (Sweden)

    Francisco García Fernández

    2012-02-01

    Full Text Available The paper analyzes the absorptive capacities of a group of enterprises from the electric-electronics sector in the state of Tamaulipas Mexico. First, the literature on absorptive capabilities is reviewed, adopting an evolutionist approach. Then, an analysis of the sector is carried out in order to verify the recent changes made in various indicators – value of the total products by the selected states, job generation and productivity rates – based on data from the last three economic censuses. Finally, an analysis of the three selected enterprises’ absorptive capacities is addressed from a case study perspective, making our own interpretation of the construct based on the integration of the different analyzed proposals.

  15. Excess electron transport in cryoobjects

    International Nuclear Information System (INIS)

    Eshchenko, D.G.; Storchak, V.G.; Brewer, J.H.; Cottrell, S.P.; Cox, S.F.J.

    2003-01-01

    Experimental results on excess electron transport in solid and liquid phases of Ne, Ar, and solid N 2 -Ar mixture are presented and compared with those for He. Muon spin relaxation technique in frequently switching electric fields was used to study the phenomenon of delayed muonium formation: excess electrons liberated in the μ + ionization track converge upon the positive muons and form Mu (μ + e - ) atoms. This process is shown to be crucially dependent upon the electron's interaction with its environment (i.e., whether it occupies the conduction band or becomes localized in a bubble of tens of angstroms in radius) and upon its mobility in these states. The characteristic lengths involved are 10 -6 -10 -4 cm, the characteristic times range from nanoseconds to tens microseconds. Such a microscopic length scale sometimes enables the electron spend its entire free lifetime in a state which may not be detected by conventional macroscopic techniques. The electron transport processes are compared in: liquid and solid helium (where electron is localized in buble); liquid and solid neon (where electrons are delocalized in solid and the coexistence of localized and delocalized electrons states was found in liquid recently); liquid and solid argon (where electrons are delocalized in both phases); orientational glass systems (solid N 2 -Ar mixtures), where our results suggest that electrons are localized in orientational glass. This scaling from light to heavy rare gases enables us to reveal new features of excess electron localization on microscopic scale. Analysis of the experimental data makes it possible to formulate the following tendency of the muon end-of-track structure in condensed rare gases. The muon-self track interaction changes from the isolated pair (muon plus the nearest track electron) in helium to multi-pair (muon in the vicinity of tens track electrons and positive ions) in argon

  16. State Aid, Voter Power and Local Control in Education.

    Science.gov (United States)

    Zak, Itai; Glasman, Naftaly S.

    1979-01-01

    Not only did voter power contribute meaningfully to local control behavior regardless of the exact shape of the relations between state aid and local control, but the hypothesized inverse relationship between state aid and local control did not receive support. Journal availability: see EA 511 898. (Author/IRT)

  17. 23 CFR 710.507 - State and local contributions.

    Science.gov (United States)

    2010-04-01

    ... 23 Highways 1 2010-04-01 2010-04-01 false State and local contributions. 710.507 Section 710.507 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RIGHT-OF-WAY AND ENVIRONMENT RIGHT-OF-WAY AND REAL ESTATE Property Acquisition Alternatives § 710.507 State and local contributions. (a...

  18. Spin-state blockade in Te6+-substituted electron-doped LaCoO3

    Science.gov (United States)

    Tomiyasu, Keisuke; Koyama, Shun-Ichi; Watahiki, Masanori; Sato, Mika; Nishihara, Kazuki; Onodera, Mitsugi; Iwasa, Kazuaki; Nojima, Tsutomu; Yamasaki, Yuuichi; Nakao, Hironori; Murakami, Youichi

    2015-03-01

    Perovskite-type LaCoO3 (Co3+: d6) is a rare inorganic material with sensitive and characteristic responses among low, intermediate, and high spin states. For example, in insulating nonmagnetic low-spin states below about 20 K, light hole doping (Ni substitution) induces much larger magnetization than expected; over net 10μB/hole (5μB/Ni) for 1μB/hole (1μB/Ni), in which the nearly isolated dopants locally change the surrounding Co low-spin states to magnetic ones and form spin molecules with larger total spin. Further, the former is isotropic, whereas the latter exhibits characteristic anisotropy probably because of Jahn-Teller distortion. In contrast, for electron doping, relatively insensitive spin-state responses were reported, as in LaCo(Ti4+) O3, but are not clarified, and are somewhat controversial. Here, we present macroscopic measurement data of another electron-doped system LaCo(Te6+) O3 and discuss the spin-state responses. This study was financially supported by Grants-in-Aid for Young Scientists (B) (No. 22740209 and 26800174) from the MEXT of Japan.

  19. Non-Local Diffusion of Energetic Electrons during Solar Flares

    Science.gov (United States)

    Bian, N. H.; Emslie, G.; Kontar, E.

    2017-12-01

    The transport of the energy contained in suprathermal electrons in solar flares plays a key role in our understanding of many aspects of flare physics, from the spatial distributions of hard X-ray emission and energy deposition in the ambient atmosphere to global energetics. Historically the transport of these particles has been largely treated through a deterministic approach, in which first-order secular energy loss to electrons in the ambient target is treated as the dominant effect, with second-order diffusive terms (in both energy and angle) generally being either treated as a small correction or even neglected. Here, we critically analyze this approach, and we show that spatial diffusion through pitch-angle scattering necessarily plays a very significant role in the transport of electrons. We further show that a satisfactory treatment of the diffusion process requires consideration of non-local effects, so that the electron flux depends not just on the local gradient of the electron distribution function but on the value of this gradient within an extended region encompassing a significant fraction of a mean free path. Our analysis applies generally to pitch-angle scattering by a variety of mechanisms, from Coulomb collisions to turbulent scattering. We further show that the spatial transport of electrons along the magnetic field of a flaring loop can be modeled as a Continuous Time Random Walk with velocity-dependent probability distribution functions of jump sizes and occurrences, both of which can be expressed in terms of the scattering mean free path.

  20. Excited state electron affinity calculations for aluminum

    Science.gov (United States)

    Hussein, Adnan Yousif

    2017-08-01

    Excited states of negative aluminum ion are reviewed, and calculations of electron affinities of the states (3s^23p^2)^1D and (3s3p^3){^5}{S}° relative to the (3s^23p)^2P° and (3s3p^2)^4P respectively of the neutral aluminum atom are reported in the framework of nonrelativistic configuration interaction (CI) method. A priori selected CI (SCI) with truncation energy error (Bunge in J Chem Phys 125:014107, 2006) and CI by parts (Bunge and Carbó-Dorca in J Chem Phys 125:014108, 2006) are used to approximate the valence nonrelativistic energy. Systematic studies of convergence of electron affinity with respect to the CI excitation level are reported. The calculated value of the electron affinity for ^1D state is 78.675(3) meV. Detailed Calculations on the ^5S°c state reveals that is 1216.8166(3) meV below the ^4P state.

  1. Local texture measurements with the scanning electron microscope

    International Nuclear Information System (INIS)

    Gottstein, G.; Engler, O.

    1993-01-01

    Techniques for convenient measurement of the crystallographic orientation of small volumes in bulk samples by electron diffraction in the SEM are discussed. They make use of Selected Area Electron Channelling Patterns (SAECP) and Electron Back Scattering Patterns (EBSP). The principle of pattern formation as well as measuring and evaluation procedure are introduced. The methods offer a viable procedure for obtaining information on the spatial arrangement of orientations, i.e. on orientation topography. Thus, they provide a new level of information on crystallographic texture. An application of the techniques for local texture measurements is demonstrated by an example, namely for investigation of considering the recrystallization behaviour of binary Al-1.3% Mn with large precipitates. Finally, further developments of the EBSP technique are addressed. (orig.)

  2. Equivalence of quantum states under local unitary transformations

    International Nuclear Information System (INIS)

    Fei Shaoming; Jing Naihuan

    2005-01-01

    In terms of the analysis of fixed point subgroup and tensor decomposability of certain matrices, we study the equivalence of quantum bipartite mixed states under local unitary transformations. For non-degenerate case an operational criterion for the equivalence of two such mixed bipartite states under local unitary transformations is presented

  3. INFLUENCE OF THE SKELETON HIERARCHICAL ORGANIZATION ON ELECTRONIC STATE OF IONS IN BONE MATRIX

    Directory of Open Access Journals (Sweden)

    A. S. Avrunin

    2016-01-01

    Full Text Available The authors suggested the 3D-superlattice (3DSL model to describe the effect of coplanar assembly of the hydroxyapatite (HA nanocrystallites on local electronic state of ions in mineralized bone. This model is based on the main structural and functional relationships between adjacent levels of the hierarchical organization of bone tissue. In the framework of the 3DSL model the authors predicted the distinct assembly-to-crystal red shift of the unoccupied electronic states located near the bottom of the conduction band in HA and dependence of this shift on the ratio of the thickness of the hydrated layer to the crystallite size. To check these predictions the experimental X-ray absorption studies of native bone are performed near the Ca2р1/2,3/2-, P2р1/2,3/2- и O1s edges. Comparison of the measured spectra with the known spectra of the reference compounds has confirmed appearance of the distinct assembly-to-crystal red shift. The observed effect is the ground for development of new diagnostic methods for bone status and imaging changes in the local electronic structure of bone tissue by using ultrasoft X-ray absorption spectroscopy and measuring the assembly-tocrystal shifts. The experimental data analysis proved the applicability of the 3DSL model for better understanding of the hierarchical organization of bone at nanolevel.

  4. Local CC2 response method based on the Laplace transform: Analytic energy gradients for ground and excited states

    Energy Technology Data Exchange (ETDEWEB)

    Ledermüller, Katrin; Schütz, Martin, E-mail: martin.schuetz@chemie.uni-regensburg.de [Institute of Physical and Theoretical Chemistry, University of Regensburg, Universitätsstraße 31, D-93040 Regensburg (Germany)

    2014-04-28

    A multistate local CC2 response method for the calculation of analytic energy gradients with respect to nuclear displacements is presented for ground and electronically excited states. The gradient enables the search for equilibrium geometries of extended molecular systems. Laplace transform is used to partition the eigenvalue problem in order to obtain an effective singles eigenvalue problem and adaptive, state-specific local approximations. This leads to an approximation in the energy Lagrangian, which however is shown (by comparison with the corresponding gradient method without Laplace transform) to be of no concern for geometry optimizations. The accuracy of the local approximation is tested and the efficiency of the new code is demonstrated by application calculations devoted to a photocatalytic decarboxylation process of present interest.

  5. Local CC2 response method based on the Laplace transform: analytic energy gradients for ground and excited states.

    Science.gov (United States)

    Ledermüller, Katrin; Schütz, Martin

    2014-04-28

    A multistate local CC2 response method for the calculation of analytic energy gradients with respect to nuclear displacements is presented for ground and electronically excited states. The gradient enables the search for equilibrium geometries of extended molecular systems. Laplace transform is used to partition the eigenvalue problem in order to obtain an effective singles eigenvalue problem and adaptive, state-specific local approximations. This leads to an approximation in the energy Lagrangian, which however is shown (by comparison with the corresponding gradient method without Laplace transform) to be of no concern for geometry optimizations. The accuracy of the local approximation is tested and the efficiency of the new code is demonstrated by application calculations devoted to a photocatalytic decarboxylation process of present interest.

  6. Local CC2 response method based on the Laplace transform: Analytic energy gradients for ground and excited states

    International Nuclear Information System (INIS)

    Ledermüller, Katrin; Schütz, Martin

    2014-01-01

    A multistate local CC2 response method for the calculation of analytic energy gradients with respect to nuclear displacements is presented for ground and electronically excited states. The gradient enables the search for equilibrium geometries of extended molecular systems. Laplace transform is used to partition the eigenvalue problem in order to obtain an effective singles eigenvalue problem and adaptive, state-specific local approximations. This leads to an approximation in the energy Lagrangian, which however is shown (by comparison with the corresponding gradient method without Laplace transform) to be of no concern for geometry optimizations. The accuracy of the local approximation is tested and the efficiency of the new code is demonstrated by application calculations devoted to a photocatalytic decarboxylation process of present interest

  7. Donors in Semiconductors - are they Understood in Electronic Era?

    International Nuclear Information System (INIS)

    Dmochowski, Janusz E

    2007-01-01

    The physics of semiconductors and contemporary electronics cannot be understood without impurities. The hydrogen-like shallow donor (and acceptor) state of electron (hole) bound by Coulomb electrostatic force of excess charge of impurity is used to control conductivity of semiconductors and construct semiconductor diodes, transistors and numerous types of semiconductor electronic and optoelectronic devices, including lasers. Recently, surprisingly, the physics of impurity donors appeared to be much reacher. Experimental evidence has been provided for universal existence of other types of electronic states of the same donor impurity: i) mysterious, deep, DX-type state resulting in metastability - slow hysteresis phenomena - understood as two-electron, acceptor-like state of donor impurity, formed upon large lattice distortion or rearrangement around impurity and accompanying capture of second electron, resulting in negative electron correlation energy U; ii) deep, localized, fully symmetric, A1, one-electron donor state of substitutional impurity. The latter state can be formed from the 'ordinary' shallow hydrogen-like state in the process of strong localization of electron by short range, local potential of impurity core, preserving full (A 1 ) symmetry of the substitutional impurity in the host lattice. The 'anticrossing' of the two A 1 (shallow hydrogenic and deep localized) energy levels upon transformation is observed. All types of electronic states of impurity can be universally observed for the same donor impurity and mutual transformation between different states occur upon changing experimental conditions. The knowledge about existence and properties of these n ew , molecular type, donor states in semiconductors seems still await general recognition and positive application in contemporary material and device science and engineering

  8. Effect of magnetic field on energy spectrum and localization of electron in CdS/HgS/CdS/HgS/CdS multilayered spherical nanostructure

    Energy Technology Data Exchange (ETDEWEB)

    Holovatsky, V.A., E-mail: ktf@chnu.edu.ua; Bernik, I.B.; Yakhnevych, M. Ya.

    2017-03-01

    The theoretical investigation of magnetic field effect on energy spectrum and localization of the electron and oscillator strengths of intraband quantum transitions in the nanostructure CdS/HgS/CdS/HgS/CdS is performed. The calculations are made in the framework of effective mass approximation and rectangular potential barriers model using the method of the expansion of quasi-particle wave functions over the complete basis of functions obtained as the exact solutions of the Schrodinger equation for the electron in the nanostructure without the magnetic field. It is shown that the magnetic field violates the spherical symmetry of the system and takes off the degeneration of energy spectrum with respect to the magnetic quantum number. The energy of the electron in the states with m≥0 increases when magnetic field enhances; for the states with m<0 these dependences are non-monotonous (decreasing at first and then increasing). Moreover, the ground state of electron is formed alternately by the states with m=0, −1, −2, …. Magnetic field influences on the distribution of quasi-particle density. It is shown that the electron significantly changes its localization in the nanostructure with two potential wells tunneling through the potential barrier under the effect of magnetic field, changing the oscillator strengths of intraband quantum transitions.

  9. Quantum algebraic representation of localization and motion of a Dirac electron

    International Nuclear Information System (INIS)

    Jaekel, Marc-Thierry; Reynaud, Serge

    2001-01-01

    Quantum algebraic observables representing localization in space-time of a Dirac electron are defined. Inertial motion of the electron is represented in the quantum algebra with electron mass acting as the generator of motion. Since transformations to uniformly accelerated frames are naturally included in this conformally invariant description, the quantum algebra is also able to deal with uniformly accelerated motion

  10. Interaction and activity coordination of territorial customs bodies of the State fiscal service of Ukraine with local state administrations and local self-government bodies

    Directory of Open Access Journals (Sweden)

    Олексій Павлович Федотов

    2016-06-01

    Based on the results of the study the author notes that the interaction of the Ukrainian SFS customs offices and local state administrations with local self-government bodies is an inherent quality, link and component of the Ukrainian SFS Customs offices functioning organization, which aims to improve the state customs service implementation standards by the Ukrainian SFS customs houses and to ensure the said implementation efficiency. However, in the course of interaction of the Ukrainian SFS customs with local state administrations and local self-government bodies each of the mentioned organizations specializes in solving their specific tasks in accordance with their subject expertise, and forms a clear organizational system. The complementarity of such kind helps to improve the state customs affairs conductance quality and is realized through the coordination of performance of the Ukrainian SFS customs offices, local state administrations and local self-government bodies as the interaction subjects through normative, informational and analytical provision for the interaction and concretization of the activities of each subject within the planned activities.

  11. Local electron flow to the anode in a magnetically insulated diode

    International Nuclear Information System (INIS)

    Maron, Y.

    1984-01-01

    Local electron flux to the anode of a magnetically insulated diode is monitored. Intense electron burst to the anode and slow variations in the electron flux are observed. Unlike the slow signals the bursts are accompanied by sharp increases in microwave emission and by increases in the ion current density. The electron bursts are not affected by the presence of the anode plasma. Indications suggest that the bursts are initiated by processes in the cathode plasma

  12. Local re-acceleration and a modified thick target model of solar flare electrons

    Science.gov (United States)

    Brown, J. C.; Turkmani, R.; Kontar, E. P.; MacKinnon, A. L.; Vlahos, L.

    2009-12-01

    Context: The collisional thick target model (CTTM) of solar hard X-ray (HXR) bursts has become an almost “standard model” of flare impulsive phase energy transport and radiation. However, it faces various problems in the light of recent data, particularly the high electron beam density and anisotropy it involves. Aims: We consider how photon yield per electron can be increased, and hence fast electron beam intensity requirements reduced, by local re-acceleration of fast electrons throughout the HXR source itself, after injection. Methods: We show parametrically that, if net re-acceleration rates due to e.g. waves or local current sheet electric (E) fields are a significant fraction of collisional loss rates, electron lifetimes, and hence the net radiative HXR output per electron can be substantially increased over the CTTM values. In this local re-acceleration thick target model (LRTTM) fast electron number requirements and anisotropy are thus reduced. One specific possible scenario involving such re-acceleration is discussed, viz, a current sheet cascade (CSC) in a randomly stressed magnetic loop. Results: Combined MHD and test particle simulations show that local E fields in CSCs can efficiently accelerate electrons in the corona and and re-accelerate them after injection into the chromosphere. In this HXR source scenario, rapid synchronisation and variability of impulsive footpoint emissions can still occur since primary electron acceleration is in the high Alfvén speed corona with fast re-acceleration in chromospheric CSCs. It is also consistent with the energy-dependent time-of-flight delays in HXR features. Conclusions: Including electron re-acceleration in the HXR source allows an LRTTM modification of the CTTM in which beam density and anisotropy are much reduced, and alleviates theoretical problems with the CTTM, while making it more compatible with radio and interplanetary electron numbers. The LRTTM is, however, different in some respects such as

  13. Local decoherence-resistant quantum states of large systems

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, Utkarsh; Sen, Aditi; Sen, Ujjwal, E-mail: ujjwal@hri.res.in

    2015-02-06

    We identify an effectively decoherence-free class of quantum states, each of which consists of a “minuscule” and a “large” sector, against local noise. In particular, the content of entanglement and other quantum correlations in the minuscule to large partition is independent of the number of particles in their large sectors, when all the particles suffer passage through local amplitude and phase damping channels. The states of the large sectors are distinct in terms of markedly different amounts of violation of Bell inequality. In case the large sector is macroscopic, such states are akin to the Schrödinger cat. - Highlights: • We identify an effectively decoherence-free class of quantum states of large systems. • We work with local noise models. • Decay of entanglement as well as information-theoretic quantum correlations considered. • The states are of the form of the Schrödinger cats, with minuscule and large sectors. • The states of the large sector are distinguishable by their violation of Bell inequality.

  14. Solid-state electronic devices an introduction

    CERN Document Server

    Papadopoulos, Christo

    2014-01-01

    A modern and concise treatment of the solid state electronic devices that are fundamental to electronic systems and information technology is provided in this book. The main devices that comprise semiconductor integrated circuits are covered in a clear manner accessible to the wide range of scientific and engineering disciplines that are impacted by this technology. Catering to a wider audience is becoming increasingly important as the field of electronic materials and devices becomes more interdisciplinary, with applications in biology, chemistry and electro-mechanical devices (to name a few) becoming more prevalent. Updated and state-of-the-art advancements are included along with emerging trends in electronic devices and their applications. In addition, an appendix containing the relevant physical background will be included to assist readers from different disciplines and provide a review for those more familiar with the area. Readers of this book can expect to derive a solid foundation for understanding ...

  15. A state variable approach to the BESSY II local beam-position-feedback system

    International Nuclear Information System (INIS)

    Gilpatrick, J.D.; Khan, S.; Kraemer, D.

    1996-01-01

    At the BESSY II facility, stability of the electron beam position and angle near insertion devices (IDs) is of utmost importance. Disturbances due to ground motion could result in unwanted broad-bandwidth beam-jitter which decreases the electron (and resultant photon) beam's effective brightness. Therefore, feedback techniques must be used. Operating over a frequency range of 100-Hz, a local feedback system will correct these beam-trajectory errors using the four bumps around IDs. This paper reviews how the state-variable feedback approach can be applied to real-time correction of these beam position and angle errors. A frequency-domain solution showing beam jitter reduction is presented. Finally, this paper reports results of a beam-feedback test at BESSY I

  16. A way for evaluating parameters of electron transport in non-polar molecular liquids derived from analysis of the trapped electron recombination kinetics

    International Nuclear Information System (INIS)

    Lukin, L.V.

    2012-01-01

    The geminate recombination kinetics of electron-ion pairs produced by high energy radiation in liquid hydrocarbons is considered in the two state model of electron transport. The purpose of the study is to relate the trapped electron transient optical absorption, observed in the pulse radiolysis experiments, to fundamental parameters of electron transport in liquid. It is shown that measurements of the half-life time and amplitude of the trapped electron decay curve allow one to find the electron life time in a localized state. - Highlights: ► A two state electron model is applied to geminate charge recombination. ► Time dependence of trapped electrons is computed for liquid isooctane and squalane. ► Electron decay kinetics depends on electron life time in a localized state. ► Key parameters of electron transport are found from the pulse radiolysis studies.

  17. Electron-electron bound states in Maxwell-Chern-Simons-Proca QED3

    International Nuclear Information System (INIS)

    Belich, H.; Helayel-Neto, J.A.; Ferreira, M.M. Jr.; Maranhao Univ., Sao Luis, MA

    2002-10-01

    We start from a parity-breaking MCS QED 3 model with spontaneous breaking of the gauge symmetry as a framework for evaluation of the electron-electron interaction potential and for attainment of numerical values for the e - e - - bound state. Three expressions V eff↓↓ , V eff↓↑ , V eff↓↓ ) are obtained according to the polarization state of the scattered electrons. In an energy scale compatible with condensed matter electronic excitations, these potentials become degenerated. The resulting potential is implemented in the Schroedinger equation and the variational method is applied to carry out the electronic binding energy. The resulting binding energies in the scale of 10-100 meV and a correlation length in the scale of 10 - 30 Angstrom are possible indications that the MCS-QED 3 model adopted may be suitable to address an eventual case of e - e - pairing in the presence of parity-symmetry breakdown. The data analyzed here suggest an energy scale of 10-100 meV to fix the breaking of the U(1)-symmetry. (author)

  18. Localized structures of electromagnetic waves in hot electron-positron plasma

    International Nuclear Information System (INIS)

    Kartal, S.; Tsintsadze, L.N.; Berezhiani, V.I.

    1995-08-01

    The dynamics of relatively strong electromagnetic (EM) wave propagation in hot electron-positron plasma is investigated. The possibility of finding localized stationary structures of EM waves is explored. It it shown that under certain conditions the EM wave forms a stable localized soliton-like structures where plasma is completely expelled from the region of EM field location. (author). 9 refs, 2 figs

  19. Electronic structure of PrBa2Cu3O7: A local-spin-density approximation with on-site Coulomb interaction

    International Nuclear Information System (INIS)

    Biagini, M.; Calandra, C.; Ossicini, S.

    1995-01-01

    Electronic structure calculations based on the local-spin-density approximation (LSDA) fail to reproduce the antiferromagnetic ground state of PrBa 2 Cu 3 O 7 (PBCO). We have performed linear muffin-tin orbital--atomic sphere approximation calculations, based on the local-spin-density approximation with on-site Coulomb correlation applied to Cu(1) and Cu(2) 3d states. We have found that inclusion of the on-site Coulomb interaction modifies qualitatively the electronic structure of PBCO with respect to the LSDA results, and gives Cu spin moments in good agreement with the experimental values. The Cu(2) upper Hubbard band lies about 1 eV above the Fermi energy, indicating a Cu II oxidation state. On the other hand, the Cu(1) upper Hubbard band is located across the Fermi level, which implies an intermediate oxidation state for the Cu(1) ion, between Cu I and Cu II . The metallic character of the CuO chains is preserved, in agreement with optical reflectivity [K. Takenaka et al., Phys. Rev. B 46, 5833 (1992)] and positron annihilation experiments [L. Hoffmann et al., Phys. Rev. Lett. 71, 4047 (1993)]. These results support the view of an extrinsic origin of the insulating character of PrBa 2 Cu 3 O 7

  20. The Politics of States', Local Governments' Creation and Nigeria's ...

    African Journals Online (AJOL)

    Nekky Umera

    federal structure; the demands for the creation of additional states and localities to the ... The second part dwelt on local government creations, using the 1991 population ..... While big states can threaten the corporate existence and stability of ...

  1. Characterizing locally distinguishable orthogonal product states

    OpenAIRE

    Feng, Yuan; Shi, Yaoyun

    2007-01-01

    Bennett et al. \\cite{BDF+99} identified a set of orthogonal {\\em product} states in the $3\\otimes 3$ Hilbert space such that reliably distinguishing those states requires non-local quantum operations. While more examples have been found for this counter-intuitive ``nonlocality without entanglement'' phenomenon, a complete and computationally verifiable characterization for all such sets of states remains unknown. In this Letter, we give such a characterization for the $3\\otimes 3$ space.

  2. Consensus states of local majority rule in stochastic process

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Yu-Pin [Department of Electronic Engineering, National Formosa University, Huwei, 63201, Taiwan (China); Tang, Chia-Wei; Xu, Hong-Yuan [Department of Physics, Chung-Yuan Christian University, Chungli, 32023, Taiwan (China); Wu, Jinn-Wen [Department of Applied Mathematics, Chung-Yuan Christian University, Chungli, 32023, Taiwan (China); Huang, Ming-Chang, E-mail: mchuang@cycu.edu.tw [Center for Theoretical Science and Department of Physics, Chung-Yuan Christian University, Chungli, 32023, Taiwan (China)

    2015-04-03

    A sufficient condition for a network system to reach a consensus state of the local majority rule is shown. The influence of interpersonal environment on the occurrence probability of consensus states for Watts–Strogatz and scale-free networks with random initial states is analyzed by numerical method. We also propose a stochastic local majority rule to study the mean first passage time from a random state to a consensus and the escape rate from a consensus state for systems in a noisy environment. Our numerical results show that there exists a window of fluctuation strengths for which the mean first passage time from a random to a consensus state reduces greatly, and the escape rate of consensus states obeys the Arrhenius equation in the window. - Highlights: • A sufficient condition for reaching a consensus. • The relation between the geometry of networks and the reachability of a consensus. • Stochastic local majority rule. • The mean first-passage time and the escape rate of consensus states.

  3. Consensus states of local majority rule in stochastic process

    International Nuclear Information System (INIS)

    Luo, Yu-Pin; Tang, Chia-Wei; Xu, Hong-Yuan; Wu, Jinn-Wen; Huang, Ming-Chang

    2015-01-01

    A sufficient condition for a network system to reach a consensus state of the local majority rule is shown. The influence of interpersonal environment on the occurrence probability of consensus states for Watts–Strogatz and scale-free networks with random initial states is analyzed by numerical method. We also propose a stochastic local majority rule to study the mean first passage time from a random state to a consensus and the escape rate from a consensus state for systems in a noisy environment. Our numerical results show that there exists a window of fluctuation strengths for which the mean first passage time from a random to a consensus state reduces greatly, and the escape rate of consensus states obeys the Arrhenius equation in the window. - Highlights: • A sufficient condition for reaching a consensus. • The relation between the geometry of networks and the reachability of a consensus. • Stochastic local majority rule. • The mean first-passage time and the escape rate of consensus states

  4. Local Stress States and Microstructural Damage Response Associated with Deformation Twins in Hexagonal Close Packed Metals

    Directory of Open Access Journals (Sweden)

    Indranil Basu

    2017-12-01

    Full Text Available The current work implements a correlative microscopy method utilizing electron back scatter diffraction, focused ion beam and digital image correlation to accurately determine spatially resolved stress profiles in the vicinity of grain/twin boundaries and tensile deformation twin tips in commercially pure titanium. Measured local stress gradients were in good agreement with local misorientation values. The role of dislocation-boundary interactions on the buildup of local stress gradients is elucidated. Stress gradients across the twin-parent interface were compressive in nature with a maximum stress magnitude at the twin boundary. Stress profiles near certain grain boundaries initially display a local stress minimum, followed by a typically observed “one over square root of distance” variation, as was first postulated by Eshelby, Frank and Nabarro. The observed trends allude to local stress relaxation mechanisms very close to the grain boundaries. Stress states in front of twin tips showed tensile stress gradients, whereas the stress state inside the twin underwent a sign reversal. The findings highlight the important role of deformation twins and their corresponding interaction with grain boundaries on damage nucleation in metals.

  5. Local copying of orthogonal entangled quantum states

    International Nuclear Information System (INIS)

    Anselmi, Fabio; Chefles, Anthony; Plenio, Martin B

    2004-01-01

    In classical information theory one can, in principle, produce a perfect copy of any input state. In quantum information theory, the no cloning theorem prohibits exact copying of non-orthogonal states. Moreover, if we wish to copy multiparticle entangled states and can perform only local operations and classical communication (LOCC), then further restrictions apply. We investigate the problem of copying orthogonal, entangled quantum states with an entangled blank state under the restriction to LOCC. Throughout, the subsystems have finite dimension D. We show that if all of the states to be copied are non-maximally entangled, then novel LOCC copying procedures based on entanglement catalysis are possible. We then study in detail the LOCC copying problem where both the blank state and at least one of the states to be copied are maximally entangled. For this to be possible, we find that all the states to be copied must be maximally entangled. We obtain a necessary and sufficient condition for LOCC copying under these conditions. For two orthogonal, maximally entangled states, we provide the general solution to this condition. We use it to show that for D = 2, 3, any pair of orthogonal, maximally entangled states can be locally copied using a maximally entangled blank state. However, we also show that for any D which is not prime, one can construct pairs of such states for which this is impossible

  6. Initial state dependence of nonlinear kinetic equations: The classical electron gas

    International Nuclear Information System (INIS)

    Marchetti, M.C.; Cohen, E.G.D.; Dorfman, J.R.; Kirkpatrick, T.R.

    1985-01-01

    The method of nonequilibrium cluster expansion is used to study the decay to equilibrium of a weakly coupled inhomogeneous electron gas prepared in a local equilibrium state at the initial time, t=0. A nonlinear kinetic equation describing the long time behavior of the one-particle distribution function is obtained. For consistency, initial correlations have to be taken into account. The resulting kinetic equation-differs from that obtained when the initial state of the system is assumed to be factorized in a product of one-particle functions. The question of to what extent correlations in the initial state play an essential role in determining the form of the kinetic equation at long times is discussed. To that end, the present calculations are compared wih results obtained before for hard sphere gases and in general with strong short-range forces. A partial answer is proposed and some open questions are indicated

  7. Dissociative electron attachment to vibrationally excited H2 molecules involving the 2Σg+ resonant Rydberg electronic state

    International Nuclear Information System (INIS)

    Celiberto, R.; Janev, R.K.; Wadehra, J.M.; Tennyson, J.

    2012-01-01

    Graphical abstract: Dissociative electron attachment cross sections as a function of the incident electron energy and for the initial vibration levels v i = 0–5, 10 of the H 2 molecule. Highlights: ► We calculated electron–hydrogen dissociative attachment cross sections and rates coefficients. ► Collision processes occurring through a resonant Rydberg state are considered. ► Cross sections and rates were obtained for vibrationally excited hydrogen molecules. ► The cross sections exhibit pronounced oscillatory structures. ► A comparison with the process involving the electron–hydrogen resonant ground state is discussed. - Abstract: Dissociative electron attachment cross sections (DEA) on vibrationally excited H 2 molecule taking place via the 2 Σ g + Rydberg-excited resonant state are studied using the local complex potential (LCP) model for resonant collisions. The cross sections are calculated for all initial vibrational levels (v i = 0–14) of the neutral molecule. In contrast to the previously noted dramatic increase in the DEA cross sections with increasing v i , when the process proceeds via the X 2 Σ u + shape resonance of H 2 , for the 2 Σ g + Rydberg resonance the cross sections increase only gradually up to v i = 3 and then decrease. Moreover, the cross sections for v i ⩾ 6 exhibit pronounced oscillatory structures. A discussion of the origin of the observed behavior of calculated cross sections is given. The DEA rate coefficients for all v i levels are also calculated in the 0.5–1000 eV temperature range.

  8. Molecular-state close-coupling theory including continuum states. I. Derivation of close-coupled equations

    International Nuclear Information System (INIS)

    Thorson, W.R.; Bandarage, G.

    1988-01-01

    We formulate a close-coupling theory of slow ion-atom collisions based on molecular (adiabatic) electronic states, and including the electronic continuum. The continuum is represented by packet states spanning it locally and constructed explicitly from exact continuum states. Particular attention is given to two fundamental questions: (1) Unbound electrons can escape from the local region spanned by the packet states. We derive close-coupled integral equations correctly including the escape effects; the ''propagator'' generated by these integral equations does not conserve probability within the close-coupled basis. Previous molecular-state formulations including the continuum give no account of escape effects. (2) Nonadiabatic couplings of adiabatic continuum states with the same energy are singular, reflecting the fact that an adiabatic description of continuum behavior is not valid outside a local region. We treat these singularities explicitly and show that an accurate representation of nonadiabatic couplings within the local region spanned by a set of packet states is well behaved. Hence an adiabatic basis-set description can be used to describe close coupling to the continuum in a local ''interaction region,'' provided the effects of escape are included. In principle, the formulation developed here can be extended to a large class of model problems involving many-electron systems and including models for Penning ionization and collisional detachment processes

  9. The effect of the electronic structure, phase transition, and localized dynamics of atoms in the formation of tiny particles of gold

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Mubarak, E-mail: mubarak74@comsats.edu.pk, E-mail: mubarak74@mail.com [COMSATS Institute of Information Technology, Department of Physics (Pakistan); Lin, I-Nan [Tamkang University, Department of Physics (China)

    2017-01-15

    In addition to self-governing properties, tiny-sized particles of metallic colloids are the building blocks of large-sized particles; thus, their study has been the subject of a large number of publications. In the present work, it has been discussed that geometry structure of tiny particle made through atom-to-atom amalgamation depends on attained dynamics of gold atoms along with protruded orientations. The localized process conditions direct two-dimensional structure of a tiny particle at atomically flat air-solution interface while heating locally dynamically approached atoms, thus, negate the role of van der Waals interactions. At electronphoton-solution interface, impinging electrons stretch or deform atoms of tiny particles depending on the mechanism of impingement. In addition, to strike regular grid of electrons ejected on split of atoms not executing excitations and de-excitations of their electrons, atoms of tiny particles also deform or stretch while occupying various sites depending on the process of synergy. Under suitable impinging electron streams, those tiny particles in monolayer two-dimensional structure electron states of their atoms are diffused in the direction of transferred energy, thus, coincide to the next adjacent atoms in each one-dimensional array dealing the same sort of behavior. Instantaneously, photons of adequate energy propagate on the surfaces of such electronic structures and modify those into smooth elements, thus, disregard the phenomenon of localized surface plasmons. This study highlights the fundamental process of formation of tiny particles where the role of localized dynamics of atoms and their electronic structure along with interaction to light are discussed. Such a tool of processing materials, in nonequilibrium pulse-based process, opens a number of possibilities to develop engineered materials with specific chemical, optical, and electronic properties.

  10. Non-local ground-state functional for quantum spin chains with translational broken symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Libero, Valter L.; Penteado, Poliana H.; Veiga, Rodrigo S. [Universidade de Sao Paulo (IFSC/USP), Sao Carlos, SP (Brazil). Inst. de Fisica

    2011-07-01

    Full text. Thanks to the development and use of new materials with special doping, it becomes relevant the study of Heisenberg spin-chains with broken translational symmetry, induced for instance by finite-size effects, bond defects or by impurity spin in the chain. The exact numerical results demands huge computational efforts, due to the size of the Hilbert space involved and the lack of symmetry to exploit. Density Functional Theory (DFT) has been considered a simple alternative to obtain ground-state properties for such systems. Usually, DFT starts with a uniform system to build the correlation energy and after implement a local approximation to construct local functionals. Based on our prove of the Hohenberg-Kohn theorem for Heisenberg models, and in order to describe more realistic models, we have recently developed a non-local exchange functional for the ground-state energy of quantum-spin chains. A alternating-bond chain is used to obtain the correlation energy and a local unit-cell approximation - LUCA, is defined in the context of DFT. The alternating chain is a good starting point to construct functionals since it is intrinsically non-homogeneous, therefore instead of the usual local approximation (like LDA for electronic systems) we need to introduce an approximation based upon a unit cell concept, that renders a non-local functional in the bond exchange interaction. The agreement with exact numerical data (obtained only for small chains, although the functional can be applied for chains with arbitrary size) is significantly better than in our previous local formulation, even for chains with several ferromagnetic or antiferromagnetic bond defects. These results encourage us to extend the concept of LUCA for chains with alternating-spin magnitudes. We also have constructed a non-local functional based on an alternating-spin chain, instead of a local alternating-bond, using spin-wave-theory. Because of its non-local nature, this functional is expected to

  11. Non-local ground-state functional for quantum spin chains with translational broken symmetry

    International Nuclear Information System (INIS)

    Libero, Valter L.; Penteado, Poliana H.; Veiga, Rodrigo S.

    2011-01-01

    Full text. Thanks to the development and use of new materials with special doping, it becomes relevant the study of Heisenberg spin-chains with broken translational symmetry, induced for instance by finite-size effects, bond defects or by impurity spin in the chain. The exact numerical results demands huge computational efforts, due to the size of the Hilbert space involved and the lack of symmetry to exploit. Density Functional Theory (DFT) has been considered a simple alternative to obtain ground-state properties for such systems. Usually, DFT starts with a uniform system to build the correlation energy and after implement a local approximation to construct local functionals. Based on our prove of the Hohenberg-Kohn theorem for Heisenberg models, and in order to describe more realistic models, we have recently developed a non-local exchange functional for the ground-state energy of quantum-spin chains. A alternating-bond chain is used to obtain the correlation energy and a local unit-cell approximation - LUCA, is defined in the context of DFT. The alternating chain is a good starting point to construct functionals since it is intrinsically non-homogeneous, therefore instead of the usual local approximation (like LDA for electronic systems) we need to introduce an approximation based upon a unit cell concept, that renders a non-local functional in the bond exchange interaction. The agreement with exact numerical data (obtained only for small chains, although the functional can be applied for chains with arbitrary size) is significantly better than in our previous local formulation, even for chains with several ferromagnetic or antiferromagnetic bond defects. These results encourage us to extend the concept of LUCA for chains with alternating-spin magnitudes. We also have constructed a non-local functional based on an alternating-spin chain, instead of a local alternating-bond, using spin-wave-theory. Because of its non-local nature, this functional is expected to

  12. Determination of local absolute detection efficiency of a ceratron with 55Fe Auger electrons

    International Nuclear Information System (INIS)

    Mori, C.; Sugiyama, T.; Watanabe, T.

    1983-01-01

    The local absolute detection efficiency of a Ceratron (channel electron multiplier made of ceramics) was determined with collimated Mn K Auger electrons ( 5 keV) emitted from 55 Fe as a function of electron incident position and applied voltage. The local efficiency at the channel inlet did not depend so much on the applied voltage. The efficiency at the funnel increased with the applied voltage, while it was always lower than that at the channel inlet. (orig.)

  13. Local thermal equilibrium and KMS states in curved spacetime

    International Nuclear Information System (INIS)

    Solveen, Christoph

    2012-01-01

    On the example of a free massless and conformally coupled scalar field, it is argued that in quantum field theory in curved spacetimes with the time-like Killing field, the corresponding KMS states (generalized Gibbs ensembles) at parameter β > 0 need not possess a definite temperature in the sense of the zeroth law. In fact, these states, although passive in the sense of the second law, are not always in local thermal equilibrium (LTE). A criterion characterizing LTE states with sharp local temperature is discussed. Moreover, a proposal is made for fixing the renormalization freedom of composite fields which serve as ‘thermal observables’ and a new definition of the thermal energy of LTE states is introduced. Based on these results, a general relation between the local temperature and the parameter β is established for KMS states in (anti) de Sitter spacetime. (paper)

  14. Many-body Green’s function theory for electron-phonon interactions: Ground state properties of the Holstein dimer

    International Nuclear Information System (INIS)

    Säkkinen, Niko; Leeuwen, Robert van; Peng, Yang; Appel, Heiko

    2015-01-01

    We study ground-state properties of a two-site, two-electron Holstein model describing two molecules coupled indirectly via electron-phonon interaction by using both exact diagonalization and self-consistent diagrammatic many-body perturbation theory. The Hartree and self-consistent Born approximations used in the present work are studied at different levels of self-consistency. The governing equations are shown to exhibit multiple solutions when the electron-phonon interaction is sufficiently strong, whereas at smaller interactions, only a single solution is found. The additional solutions at larger electron-phonon couplings correspond to symmetry-broken states with inhomogeneous electron densities. A comparison to exact results indicates that this symmetry breaking is strongly correlated with the formation of a bipolaron state in which the two electrons prefer to reside on the same molecule. The results further show that the Hartree and partially self-consistent Born solutions obtained by enforcing symmetry do not compare well with exact energetics, while the fully self-consistent Born approximation improves the qualitative and quantitative agreement with exact results in the same symmetric case. This together with a presented natural occupation number analysis supports the conclusion that the fully self-consistent approximation describes partially the bipolaron crossover. These results contribute to better understanding how these approximations cope with the strong localizing effect of the electron-phonon interaction

  15. Theoretical study of the interplay of electron-electron interaction and disorder

    International Nuclear Information System (INIS)

    Brezini, A.; Behilil, S.

    1988-10-01

    A disordered Hubbard model with diagonal disorder is used to investigate the electron localization effects associated with both disorder and electron-electron interaction. Extensive results are reported on the ground state properties and compared to other theories. Two regimes have been found: when the electron-electron interaction u is greater than the disorder parameter w and when u < w. (author). 18 refs, 4 figs

  16. Local CC2 response method for triplet states based on Laplace transform: excitation energies and first-order properties.

    Science.gov (United States)

    Freundorfer, Katrin; Kats, Daniel; Korona, Tatiana; Schütz, Martin

    2010-12-28

    A new multistate local CC2 response method for calculating excitation energies and first-order properties of excited triplet states in extended molecular systems is presented. The Laplace transform technique is employed to partition the left/right local CC2 eigenvalue problems as well as the linear equations determining the Lagrange multipliers needed for the properties. The doubles part in the equations can then be inverted on-the-fly and only effective equations for the singles part must be solved iteratively. The local approximation presented here is adaptive and state-specific. The density-fitting method is utilized to approximate the electron-repulsion integrals. The accuracy of the new method is tested by comparison to canonical reference values for a set of 12 test molecules and 62 excited triplet states. As an illustrative application example, the lowest four triplet states of 3-(5-(5-(4-(bis(4-(hexyloxy)phenyl)amino)phenyl)thiophene-2-yl)thiophene-2-yl)-2-cyanoacrylic acid, an organic sensitizer for solar-cell applications, are computed in the present work. No triplet charge-transfer states are detected among these states. This situation contrasts with the singlet states of this molecule, where the lowest singlet state has been recently found to correspond to an excited state with a pronounced charge-transfer character having a large transition strength.

  17. Localized-magnon states in strongly frustrated quantum spin lattices

    International Nuclear Information System (INIS)

    Richter, J.

    2005-01-01

    Recent developments concerning localized-magnon eigenstates in strongly frustrated spin lattices and their effect on the low-temperature physics of these systems in high magnetic fields are reviewed. After illustrating the construction and the properties of localized-magnon states we describe the plateau and the jump in the magnetization process caused by these states. Considering appropriate lattice deformations fitting to the localized magnons we discuss a spin-Peierls instability in high magnetic fields related to these states. Last but not least we consider the degeneracy of the localized-magnon eigenstates and the related thermodynamics in high magnetic fields. In particular, we discuss the low-temperature maximum in the isothermal entropy versus field curve and the resulting enhanced magnetocaloric effect, which allows efficient magnetic cooling from quite large temperatures down to very low ones

  18. Cluster expansion for ground states of local Hamiltonians

    Directory of Open Access Journals (Sweden)

    Alvise Bastianello

    2016-08-01

    Full Text Available A central problem in many-body quantum physics is the determination of the ground state of a thermodynamically large physical system. We construct a cluster expansion for ground states of local Hamiltonians, which naturally incorporates physical requirements inherited by locality as conditions on its cluster amplitudes. Applying a diagrammatic technique we derive the relation of these amplitudes to thermodynamic quantities and local observables. Moreover we derive a set of functional equations that determine the cluster amplitudes for a general Hamiltonian, verify the consistency with perturbation theory and discuss non-perturbative approaches. Lastly we verify the persistence of locality features of the cluster expansion under unitary evolution with a local Hamiltonian and provide applications to out-of-equilibrium problems: a simplified proof of equilibration to the GGE and a cumulant expansion for the statistics of work, for an interacting-to-free quantum quench.

  19. Electron affinity and excited states of methylglyoxal

    Science.gov (United States)

    Dauletyarov, Yerbolat; Dixon, Andrew R.; Wallace, Adam A.; Sanov, Andrei

    2017-07-01

    Using photoelectron imaging spectroscopy, we characterized the anion of methylglyoxal (X2A″ electronic state) and three lowest electronic states of the neutral methylglyoxal molecule: the closed-shell singlet ground state (X1A'), the lowest triplet state (a3A″), and the open-shell singlet state (A1A″). The adiabatic electron affinity (EA) of the ground state, EA(X1A') = 0.87(1) eV, spectroscopically determined for the first time, compares to 1.10(2) eV for unsubstituted glyoxal. The EAs (adiabatic attachment energies) of two excited states of methylglyoxal were also determined: EA(a3A″) = 3.27(2) eV and EA(A1A″) = 3.614(9) eV. The photodetachment of the anion to each of these two states produces the neutral species near the respective structural equilibria; hence, the a3A″ ← X2A″ and A1A″ ← X2A″ photodetachment transitions are dominated by intense peaks at their respective origins. The lowest-energy photodetachment transition, on the other hand, involves significant geometry relaxation in the X1A' state, which corresponds to a 60° internal rotation of the methyl group, compared to the anion structure. Accordingly, the X1A' ← X2A″ transition is characterized as a broad, congested band, whose vertical detachment energy, VDE = 1.20(4) eV, significantly exceeds the adiabatic EA. The experimental results are in excellent agreement with the ab initio predictions using several equation-of-motion methodologies, combined with coupled-cluster theory.

  20. Extending the random-phase approximation for electronic correlation energies: the renormalized adiabatic local density approximation

    DEFF Research Database (Denmark)

    Olsen, Thomas; Thygesen, Kristian S.

    2012-01-01

    The adiabatic connection fluctuation-dissipation theorem with the random phase approximation (RPA) has recently been applied with success to obtain correlation energies of a variety of chemical and solid state systems. The main merit of this approach is the improved description of dispersive forces...... while chemical bond strengths and absolute correlation energies are systematically underestimated. In this work we extend the RPA by including a parameter-free renormalized version of the adiabatic local-density (ALDA) exchange-correlation kernel. The renormalization consists of a (local) truncation...... of the ALDA kernel for wave vectors q > 2kF, which is found to yield excellent results for the homogeneous electron gas. In addition, the kernel significantly improves both the absolute correlation energies and atomization energies of small molecules over RPA and ALDA. The renormalization can...

  1. Electron-nuclear magnetic resonance in the inverted state

    International Nuclear Information System (INIS)

    Ignatchenko, V.A.; Tsifrinovich, V.I.

    1975-01-01

    The paper considers the susceptibility of the electron-nucleus system of a ferromagnet when nuclear magnetization is inverted with respect to the hyperfine field direction. The inverted state is a situation in which nuclear magnetization is turned through π relative to its equilibrium orientation, whereas electron magnetization is in an equilibrium state with respect to an external magnetic field. The consideration is carried out for a thin plate magnetized in its plane. Amplification of a weak radiofrequency signal can be attained under the fulfilment of an additional inequality relating the interaction frequency with electron and nuclear relaxation parameters. The gain may exceed the gain for an inverted nuclear system in magnetically disordered substances. In the range of strong interaction between the frequencies of ferromagnetic (FMR) and nuclear magnetic (NMR) resonances the electron-nuclear magnetic resonance (ENMR) spectrum possesses a fine structure which is inverse to that obtained for the ENMR spectrum in a normal state. The inverted state ENMR line shape is analysed in detail for the case of so weak HF fields that the relaxation conditions may be regarded as stationary. The initial (linear) stages of a forced transient process arising in an electron-nuclear system under the effect of a strong HF field are briefly analysed

  2. Bulk local states and crosscaps in holographic CFT

    Energy Technology Data Exchange (ETDEWEB)

    Nakayama, Yu [Department of Physics, Rikkyo University,Toshima, Tokyo 175-8501 (Japan); Kavli Institute for the Physics and Mathematics of the Universe (WPI), University of Tokyo,Kashiwa, Chiba 277-8583 (Japan); Ooguri, Hirosi [Kavli Institute for the Physics and Mathematics of the Universe (WPI), University of Tokyo,Kashiwa, Chiba 277-8583 (Japan); Walter Burke Institute for Theoretical Physics, California Institute of Technology,Pasadena, CA 91125 (United States); Center for Mathematical Sciences and Applications andCenter for the Fundamental Laws of Nature, Harvard University,Cambridge, MA 02138 (United States)

    2016-10-17

    In a weakly coupled gravity theory in the anti-de Sitter space, local states in the bulk are linear superpositions of Ishibashi states for a crosscap in the dual conformal field theory. The superposition structure can be constrained either by the microscopic causality in the bulk gravity or the bootstrap condition in the boundary conformal field theory. We show, contrary to some expectation, that these two conditions are not compatible to each other in the weak gravity regime. We also present an evidence to show that bulk local states in three dimensions are not organized by the Virasoro symmetry.

  3. 29 CFR 1403.5 - Relations with State and local mediation agencies.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 4 2010-07-01 2010-07-01 false Relations with State and local mediation agencies. 1403.5 Section 1403.5 Labor Regulations Relating to Labor (Continued) FEDERAL MEDIATION AND CONCILIATION SERVICE FUNCTIONS AND DUTIES § 1403.5 Relations with State and local mediation agencies. (a) If under State or local...

  4. In-gap corner states in core-shell polygonal quantum rings.

    Science.gov (United States)

    Sitek, Anna; Ţolea, Mugurel; Niţă, Marian; Serra, Llorenç; Gudmundsson, Vidar; Manolescu, Andrei

    2017-01-10

    We study Coulomb interacting electrons confined in polygonal quantum rings. We focus on the interplay of localization at the polygon corners and Coulomb repulsion. Remarkably, the Coulomb repulsion allows the formation of in-gap states, i.e., corner-localized states of electron pairs or clusters shifted to energies that were forbidden for non-interacting electrons, but below the energies of corner-side-localized states. We specify conditions allowing optical excitation to those states.

  5. In-gap corner states in core-shell polygonal quantum rings

    Science.gov (United States)

    Sitek, Anna; Ţolea, Mugurel; Niţă, Marian; Serra, Llorenç; Gudmundsson, Vidar; Manolescu, Andrei

    2017-01-01

    We study Coulomb interacting electrons confined in polygonal quantum rings. We focus on the interplay of localization at the polygon corners and Coulomb repulsion. Remarkably, the Coulomb repulsion allows the formation of in-gap states, i.e., corner-localized states of electron pairs or clusters shifted to energies that were forbidden for non-interacting electrons, but below the energies of corner-side-localized states. We specify conditions allowing optical excitation to those states.

  6. Substituent effects on the redox states of locally functionalized single-walled carbon nanotubes revealed by in situ photoluminescence spectroelectrochemistry.

    Science.gov (United States)

    Shiraishi, Tomonari; Shiraki, Tomohiro; Nakashima, Naotoshi

    2017-11-09

    Single-walled carbon nanotubes (SWNTs) with local chemical modification have been recognized as a novel near infrared (NIR) photoluminescent nanomaterial due to the emergence of a new red-shifted photoluminescence (PL) with enhanced quantum yields. As a characteristic feature of the locally functionalized SWNTs (lf-SWNTs), PL wavelength changes occur with the structural dependence of the substituent structures in the modified aryl groups, showing up to a 60 nm peak shift according to an electronic property difference of the aryl groups. Up to now, however, the structural effect on the electronic states of the lf-SWNTs has been discussed only on the basis of theoretical calculations due to the very limited amount of modifications. Herein, we describe the successfully-determined electronic states of the aryl-modified lf-SWNTs with different substituents (Ar-X SWNTs) using an in situ PL spectroelectrochemical method based on electrochemical quenching of the PL intensities analyzed by the Nernst equation. In particular, we reveal that the local functionalization of (6,5)SWNTs induced potential changes in the energy levels of the HOMO and the LUMO by -23 to -38 meV and +20 to +22 meV, respectively, compared to those of the pristine SWNTs, which generates exciton trapping sites with narrower band gaps. Moreover, the HOMO levels of the Ar-X SWNTs specifically shift in a negative potential direction by 15 meV according to an enhancement of the electron-accepting property of the substituents in the aryl groups that corresponds to an increase in the Hammet substituent constants, suggesting the importance of the dipole effect from the aryl groups on the lf-SWNTs to the level shift of the frontier orbitals. Our method is a promising way to characterize the electronic features of the lf-SWNTs.

  7. Effect of dynamic mixing of collectivized and localized states on the critical temperature of super conductors

    International Nuclear Information System (INIS)

    Kuz'min, E.V.; Ovchinnikov, S.G.

    1975-01-01

    A model of d(f) metals with localized levels immersed in the conduction is considered. When the transition energy Ω between the configurations dsup(n+1) and dsup(n) is close to the Fermi energy μ, the metal becomes unstable with respect to formation of bound states between the conduction electrons and d(f) ions. As a result, a gap 2Δsub(m) appears in the conduction band, and the density of states at the edge of the gap is much greater than the initial density. Consequently, Cooper pairing under such conditions may result in superconductivity with a high transition temprature Tsub(s). The conditions on the electron spectrum parameters are obtained and the region of interaction constants lambdasub(m) and lambdasub(s) is found for which the gap ΔSUb(m) and the superconducting gap Δsub(s) can exist simultaneously

  8. Zn induced in-gap electronic states in La214 probed by uniform magnetic susceptibility: relevance to the suppression of superconducting T c

    Science.gov (United States)

    Islam, R. S.; Naqib, S. H.

    2018-02-01

    Substitution of isovalent non-magnetic defects, such as Zn, in the CuO2 plane strongly modifies the magnetic properties of strongly electron correlated hole doped cuprate superconductors. The reason for enhanced uniform magnetic susceptibility, χ, in Zn substituted cuprates is debatable. Generally the defect induced magnetic behavior has been analyzed mainly in terms of two somewhat contrasting scenarios. The first one is due to independent localized moments appearing in the vicinity of Zn arising because of the strong electronic/magnetic correlations present in the host compound and the second one is due to transfer of quasiparticle (QP) spectral weight and creation of weakly localized low-energy electronic states associated with each Zn atom in place of an in-plane Cu. If the second scenario is correct, one should expect a direct correspondence between Zn induced suppression of the superconducting transition temperature, T c, and the extent of the enhanced magnetic susceptibility at low temperature. In this case, the low-T enhancement of χ would be due to weakly localized QP states at low energy and these electronic states will be precluded from taking part in Cooper pairing. We explore this second possibility by analyzing the χ(T) data for La2-x Sr x Cu1-y Zn y O4 with different hole contents, p (=x), and Zn concentrations (y) in this paper. The results of our analysis support this scenario.

  9. Integral cross sections for electron impact excitation of vibrational and electronic states in phenol

    Energy Technology Data Exchange (ETDEWEB)

    Neves, R. F. C. [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide SA 5001 (Australia); Instituto Federal do Sul de Minas Gerais, Campus Poços de Caldas, Minas Gerais (Brazil); Departamento de Física, Universidade Federal de Juiz de Fora, 36036-330 Juiz de Fora, Minas Gerais (Brazil); Jones, D. B. [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide SA 5001 (Australia); Lopes, M. C. A. [Departamento de Física, Universidade Federal de Juiz de Fora, 36036-330 Juiz de Fora, Minas Gerais (Brazil); Blanco, F. [Departamento de Física Atómica, Molecular y Nuclear, Universidad Complutense de Madrid, 28040 Madrid (Spain); García, G. [Instituto de Física Fundamental, CSIC, Serrano 113-bis, 28006 Madrid (Spain); Ratnavelu, K. [Institute of Mathematical Sciences, University of Malaya, 50603 Kuala Lumpur (Malaysia); Brunger, M. J., E-mail: Michael.Brunger@flinders.edu.au [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide SA 5001 (Australia); Institute of Mathematical Sciences, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2015-05-21

    We report on measurements of integral cross sections (ICSs) for electron impact excitation of a series of composite vibrational modes and electronic-states in phenol, where the energy range of those experiments was 15–250 eV. There are currently no other results against which we can directly compare those measured data. We also report results from our independent atom model with screened additivity rule correction computations, namely, for the inelastic ICS (all discrete electronic states and neutral dissociation) and the total ionisation ICS. In addition, for the relevant dipole-allowed excited electronic states, we also report f-scaled Born-level and energy-corrected and f-scaled Born-level (BEf-scaled) ICS. Where possible, our measured and calculated ICSs are compared against one another with the general level of accord between them being satisfactory to within the measurement uncertainties.

  10. Electron-electron bound states in parity-preserving QED3

    International Nuclear Information System (INIS)

    Belich, H.; Helayel-Neto, J.A.; Centro Brasileiro de Pesquisas Fisicas; Cima, O.M. del; Ferreira Junior, M.M.; Maranhao Univ., Sao Luis, MA

    2002-04-01

    By considering the Higgs mechanism in the framework of a parity-preserving Planar Quantum Electrodynamics, one shows that an attractive electron-electron interaction may dominate. The e - e - interaction potential emerges as the non-relativistic limit of the Moeller scattering amplitude and it results attractive with a suitable choice of parameters. Numerically values of the e - e - binding energy are obtained by solving the two-dimensional Schroedinger equation. The existence of bound states is a strong indicative that this model may be adopted to address the pairing mechanism of high-T c superconductivity. (author)

  11. Correlated electron motion, flux states and superconductivity

    International Nuclear Information System (INIS)

    Lederer, P.; Poilblanc, D.; Rice, T.K.

    1989-01-01

    This paper discusses how, when the on-site correlation is strong, electrons can move by usual hopping only on to empty sites but they can exchange position with their neighbors by a correlated motion. The phase in the former process is fixed and it favors Bloch states. When the concentration of empty sites is small then the latter process dominates and one is free to introduce a phase provided it is chosen to be the same for ↑ and ↓-spin electrons. Since for a partly filled band of non-interacting electrons the introduction of a uniform commensurate flux lowers the energy, the correlated motion can lead to a physical mechanism to generate flux states. These states have a collective gauge variable which is the same for ↑ and ↓-spins and superconducting properties are obtained by expanding around the optimum gauge determined by the usual kinetic energy term. If this latter term has singularities at special fillings then these may affect the superconducting properties

  12. Should states and local governments regulate dietary supplements?

    Science.gov (United States)

    Starr, Ranjani

    2016-01-01

    Federal regulation of dietary supplements in the United States is governed by the Dietary Supplement Health and Education Act of 1994. The law has been criticized as weak and ineffective. Alarming research has emerged demonstrating that supplements may be mislabelled, contaminated, adulterated with dangerous or unknown compounds, or sold at toxic doses. As a result, the health community has raised concerns about the safety and quality of dietary supplements. Increased federal oversight is an important avenue for improving supplement safety; however, states and local governments may also pursue strategies to strengthen the overall regulatory control of dietary supplements. States and local governments have substantial experience in regulating other products that pose a risk to public health, such as tobacco. Additionally, much has been learned about the tactics the tobacco industry has employed to protect its interests. Lessons learned may be applied to new regulatory efforts aimed at improving the safety of dietary supplements at the state and local levels. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  13. Local spin torque induced by electron electric dipole moment in the YbF molecule

    Energy Technology Data Exchange (ETDEWEB)

    Fukuda, Masahiro; Senami, Masato; Ogiso, Yoji; Tachibana, Akitomo [Department of Micro Engineering, Kyoto University, Kyoto 615-8540 (Japan)

    2014-10-06

    In this study, we show the modification of the equation of motion of the electronic spin, which is derived by the quantum electron spin vorticity principle, by the effect of the electron electric dipole moment (EDM). To investigate the new contribution to spin torque by EDM, using first principle calculations, we visualize distributions of the local spin angular momentum density and local spin torque density of the YbF molecule on which the static electric field and magnetic field are applied at t = 0.

  14. Reversibility of magnetic field driven transition from electronic phase separation state to single-phase state in manganites: A microscopic view

    Science.gov (United States)

    Liu, Hao; Lin, Lingfang; Yu, Yang; Lin, Hanxuan; Zhu, Yinyan; Miao, Tian; Bai, Yu; Shi, Qian; Cai, Peng; Kou, Yunfang; Lan, Fanli; Wang, Wenbin; Zhou, Xiaodong; Dong, Shuai; Yin, Lifeng; Shen, Jian

    2017-11-01

    Electronic phase separation (EPS) is a common phenomenon in strongly correlated oxides. For colossal magnetoresistive (CMR) manganites, the EPS is so pronounced that not only does it govern the CMR behavior, but also raises a question whether EPS exists as a ground state for systems or a metastable state. While it has been well known that a magnetic field can drive the transition of the EPS state into a single-phase state in manganites, the reversibility of this transition is not well studied. In this work we use magnetic force microscopy (MFM) to directly visualize the reversibility of the field driven transition between the EPS state and the single-phase state at different temperatures. The MFM images correspond well with the global magnetic and transport property measurements, uncovering the underlying mechanism of the field driven transition between the EPS state and the single-phase state. We argue that EPS state is a consequence of system quenching whose response to an external magnetic field is governed by a local energy landscape.

  15. Dipole-bound states as doorways in (dissociative) electron attachment

    International Nuclear Information System (INIS)

    Sommerfeld, Thomas

    2005-01-01

    This communication starts with a comparison of dissociative recombination and dissociative attachment placing emphasis on the role of resonances as reactive intermediates. The main focus is then the mechanism of electron attachment to polar molecules at very low energies (100 meV). The scheme considered consists of two steps: First, an electron is captured in a diffuse dipole-bound state depositing its energy in the vibrational degrees of freedom, in other words, a vibrational Feshbach resonance is formed. Then, owing to the coupling with a valence state, the electron is transferred into a compact valence orbital, and depending on the electron affinities of the valence state and possible dissociation products, as well as on the details of the intramolecular redistribution of vibrational energy, long-lived anions can be generated or dissociation reactions can be initiated. The key property in this context is the electronic coupling strength between the diffuse dipole-bound and the compact valence states. We describe how the coupling strength can be extracted from ab initio data, and present results for Nitromethane, Uracil and Cyanoacetylene

  16. Localized States in Physics: Solitons and Patterns

    CERN Document Server

    Descalzi, Orazio; Residori, Stefania; Assanto, Gaetano

    2011-01-01

    Systems driven far from thermodynamic equilibrium can create dissipative structures through the spontaneous breaking of symmetries. A particularly fascinating feature of these pattern-forming systems is their tendency to produce spatially confined states. These localized wave packets can exist as propagating entities through space and/or time. Various examples of such systems will be dealt with in this book, including localized states in fluids, chemical reactions on surfaces, neural networks, optical systems, granular systems, population models, and Bose-Einstein condensates.This book should appeal to all physicists, mathematicians and electrical engineers interested in localization in far-from-equilibrium systems. The authors - all recognized experts in their fields - strive to achieve a balance between theoretical and experimental considerations thereby giving an overview of fascinating physical principles, their manifestations in diverse systems, and the novel technical applications on the horizon.

  17. Energy of ground state of laminar electron-hole liquid

    International Nuclear Information System (INIS)

    Andryushin, E.A.

    1976-01-01

    The problem of a possible existence of metal electron-hole liquid in semiconductors is considered. The calculation has been carried out for the following model: two parallel planes are separated with the distance on one of the planes electrons moving, on the other holes doing. Transitions between the planes are forbidden. The density of particles for both planes is the same. The energy of the ground state and correlation functions for such electron-and hole system are calculated. It is shown that the state of a metal liquid is more advantageous against the exciton gas. For the mass ratio of electrons and holes, msub(e)/msub(h) → 0 a smooth rearrangement of the system into a state with ordered heavy particles is observed

  18. Genuine tripartite entangled states with a local hidden-variable model

    International Nuclear Information System (INIS)

    Toth, Geza; Acin, Antonio

    2006-01-01

    We present a family of three-qubit quantum states with a basic local hidden-variable model. Any von Neumann measurement can be described by a local model for these states. We show that some of these states are genuine three-partite entangled and also distillable. The generalization for larger dimensions or higher number of parties is also discussed. As a by-product, we present symmetric extensions of two-qubit Werner states

  19. State Independent Electoral Commissions and local government elections in Nigeria

    Directory of Open Access Journals (Sweden)

    Johnson O. Olaniyi

    2017-11-01

    Full Text Available Many state governments have not been allowing their State Independent Electoral Commissions (SIECs to conduct elections as at when due but rather settle for ‘caretaker committees’. Where elections have been conducted, the party in control of a state apparatus has been known to have cleared the polls. The general objective of this study is to assess the impact of electoral contest at the local government level on the political development of Nigeria. Specific objectives include (1 assessing the role of the political executives of a state in the determination of representation at the local government level in Nigeria; and (2 assessing the activities of SIECs in the management of local government polls. This study adopts comparative cum case study approach to analysing local government polls in Nigeria. This is discussed on a geopolitical basis. Some of the findings of the study include: (1 local government election in Nigeria is not given premium position by many state governments in the political landscape of their state because of the fear of playing into the hands of their political rivals; and (2 SIECs are only independent in name and not in practice. The study recommends, among others, that (1 the country should adopt the arrangement in the aborted Third Republic where the country’s EMB was empowered to conduct all elections at all levels of government and (2 local government elections in Nigeria should key into the electoral process of the country in all ramifications.

  20. Electron transport in radiotherapy using local-to-global Monte Carlo

    International Nuclear Information System (INIS)

    Svatos, M.M.; Chandler, W.P.; Siantar, C.L.H.; Rathkopf, J.A.; Ballinger, C.T.

    1994-09-01

    Local-to-Global (L-G) Monte Carlo methods are a way to make three-dimensional electron transport both fast and accurate relative to other Monte Carlo methods. This is achieved by breaking the simulation into two stages: a local calculation done over small geometries having the size and shape of the ''steps'' to be taken through the mesh; and a global calculation which relies on a stepping code that samples the stored results of the local calculation. The increase in speed results from taking fewer steps in the global calculation than required by ordinary Monte Carlo codes and by speeding up the calculation per step. The potential for accuracy comes from the ability to use long runs of detailed codes to compile probability distribution functions (PDFs) in the local calculation. Specific examples of successful Local-to-Global algorithms are given

  1. All electron ab initio investigations of the electronic states of the FeC molecule

    DEFF Research Database (Denmark)

    Shim, Irene; Gingerich, Karl A.

    1999-01-01

    The low lying electronic states of the molecule FeC have been investigated by performing all electron ab initio multi-configuration self-consistent-field (CASSCF) and multi reference configuration interaction (MRCI) calculations. The relativistic corrections for the one electron Darwin contact term...

  2. All Electron ab initio Investigations of the Electronic States of the MoN Molecule

    DEFF Research Database (Denmark)

    Shim, Irene; Gingerich, Karl A.

    1999-01-01

    The low lying electronic states of the molecule MoN have been investigated by performing all electron ab initio multi-configuration self-consistent-field (CASSCF) calculations. The relativistic corrections for the one electron Darwin contact term and the relativistic mass-velocity correction have...

  3. 29 CFR 451.5 - “State or local central body.”

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 2 2010-07-01 2010-07-01 false âState or local central body.â 451.5 Section 451.5 Labor....5 “State or local central body.” (a) The definition of “labor organization” in section 3(i) and the...) both except from the term “labor organization” a “State or local central body.” As used in these two...

  4. Electron-electron bound states in Maxwell-Chern-Simons-Proca QED{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Belich, H.; Helayel-Neto, J.A. [Grupo de Fisica Teorica Jose Leite Lopes, Petropolis, RJ (Brazil)]|[Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil). Coordenacao de Teoria de Campos e Particulas]. E-mail: belich@cbpf.br; helayel@gft.ucp.br; Del Cima, O.M. [Grupo de Fisica Teorica Jose Leite Lopes, Petropolis, RJ (Brazil)]. E-mail: delcima@gft.ucp.br; Ferreira, M.M. Jr. [Grupo de Fisica Teorica Jose Leite Lopes, Petropolis, RJ (Brazil)]|[Maranhao Univ., Sao Luis, MA (Brazil). Dept. de Fisica]. E-mail: manojr@cbpf.br

    2002-10-01

    We start from a parity-breaking MCS QED{sub 3} model with spontaneous breaking of the gauge symmetry as a framework for evaluation of the electron-electron interaction potential and for attainment of numerical values for the e{sup -}e{sup -} - bound state. Three expressions (V{sub eff{down_arrow}}{sub {down_arrow}}, V{sub eff{down_arrow}}{sub {up_arrow}}, V{sub eff{down_arrow}}{sub {down_arrow}}) are obtained according to the polarization state of the scattered electrons. In an energy scale compatible with condensed matter electronic excitations, these potentials become degenerated. The resulting potential is implemented in the Schroedinger equation and the variational method is applied to carry out the electronic binding energy. The resulting binding energies in the scale of 10-100 meV and a correlation length in the scale of 10 - 30 Angstrom are possible indications that the MCS-QED{sub 3} model adopted may be suitable to address an eventual case of e{sup -}e{sup -} pairing in the presence of parity-symmetry breakdown. The data analyzed here suggest an energy scale of 10-100 meV to fix the breaking of the U(1)-symmetry. (author)

  5. Challenges of Local Government Administration in Edo State of ...

    African Journals Online (AJOL)

    This paper examined the fundamental problems that envelope local government administration in Edo State, and discovered that the challenges are constitutional issues. It also identified problems of graft, poor revenue generation by local authorities, and poor revenue allocation cum fiscal transfer to local governments.

  6. Electron capture to autoionizing states of multiply charged ions

    International Nuclear Information System (INIS)

    Mack, E.M.

    1987-01-01

    The present thesis investigates electron capture reactions resulting from slow collisions (V q+ ) and neutral gas targets (B). The energy spectra of the emitted electrons are measured; detection angle is 50 0 . Mainly, autoionizing double capture resulting from collisions with two-electron targets (He, H 2 ) is studied; then, the emitted electrons stem from doubly excited projectile states. The projectiles used are bare C 6+ , the H-like and He-like ions of C, N and O, He-like Ne 8+ and Ne-like Ar 8+ . Excited metastable projectiles used are C 5+ (2s), He-like projectiles A q+ (1s2s 3 S) and Ar 8+ (...2p 5 3s). Comparison is made with the predictions of a recently proposed extended classical barrier model, that was developed in connection with the work. This model assumes sequential capture of the electrons ('two-step' process); it predicts the realized binding enegies of the captured electrons - which may be directly determined from the autoionization spectra using only the projectile charge, the ionization potentials of the target and the collision velocity as parameters. No adjustable parameter enters into the calculations. The term energies and decay modes of the highly excited product ions themselves are studied. Generally, the autoionizing decay of these states is found to proceed preferentially to the directly adjacent lower singly excited state. Experimental evidence is presented, that triply excited states decay by successive emission of two electrons, whenever this is energetically possible. Finally, the L-MM decay in few-electron systems is considered. 314 refs.; 96 figs.; 29 tabs

  7. Anomalous Ground State of the Electrons in Nano-confined Water

    Science.gov (United States)

    2016-06-13

    Anomalous ground state of the electrons in nano -confined water G. F. Reiter1*, Aniruddha Deb2*, Y. Sakurai3, M. Itou3, V. G. Krishnan4, S. J...electronic ground state of nano -confined water must be responsible for these anomalies but has so far not been investigated. We show here for the first time...using x-ray Compton scattering and a computational model, that the ground state configuration of the valence electrons in a particular nano

  8. Localization of holes near charged defects in orbitally degenerate, doped Mott insulators

    Science.gov (United States)

    Avella, Adolfo; Oleś, Andrzej M.; Horsch, Peter

    2018-05-01

    We study the role of charged defects, disorder and electron-electron (e-e) interactions in a multiband model for t2g electrons in vanadium perovskites R1-xCaxVO3 (R = La,…,Y). By means of unrestricted Hartree-Fock calculations, we find that the atomic multiplet structure persists up to 50% Ca doping. Using the inverse participation number, we explore the degree of localization and its doping dependence for all electronic states. The observation of strongly localized wave functions is consistent with our conjecture that doped holes form spin-orbital polarons that are strongly bound to the charged Ca2+ defects. Interestingly, the long-range e-e interactions lead to a discontinuity in the wave function size across the chemical potential, where the electron removal states are more localized than the addition states.

  9. A theory of local and global processes which affect solar wind electrons. 2. Experimental support

    International Nuclear Information System (INIS)

    Scudder, J.D.; Olbert, S.

    1979-05-01

    The microscopic characteristics of the Coulomb cross section show that there are three natural subpopulations for plasma electrons: the subthermals; the transthermals; and the extrathermals. Data from three experimental groups on three different spacecraft in the interplanetary medium over a radial range are presented to support the five interrelations projected between solar wind electron properties and changes in the interplanetary medium: (1) subthermals respond primarily to local changes (compression and rarefactions) in stream dynamics; (2) the extrathermal fraction of the ambient electron density should be anti-correlated with the asymptotic bulk speed; (3) the extrathermal 'temperature' should be anti-correlated with the local wind speed at 1 AU; (4) the heat flux carried by electrons should be anti-correlated with the local bulk speed; and (5) the extrathermal differential 'temperature' should be nearly independent of radius within 1 AU

  10. Elucidation of the electronic states in polyethylene glycol by attenuated Total reflectance spectroscopy in the far-ultraviolet region

    Science.gov (United States)

    Ueno, Nami; Wakabayashi, Tomonari; Morisawa, Yusuke

    2018-05-01

    We measured the attenuated total reflectance-far ultraviolet (ATR-FUV) spectra of poly(ethylene glycol) (PEG; average molecular weights of 200, 300, and 400) and related materials in the liquid state in the 145-200-nm wavelength region. For appropriately assigning the absorption bands, we also performed theoretical simulation of the unit-number dependent electronic spectra. The FUV spectra of PEGs contain three bands, which are assigned to the transitions between n(CH2OCH2)-3s Rydberg state (176 nm), n(CH2OCH2)-3p Rydberg state (163 nm), and n(OH)-3p Rydberg state (153 nm). Since the contribution of n(OH) decreases compared to n(CH2OCH2) with increase in the number of units, the ratios of the molar absorption coefficients, ε, at 153 nm relative to 163 nm, decrease. On the other hand, the ratio of ε at 176 nm to that at 163 nm increases with increase in the number of units, because of the difference in the number of unoccupied orbitals in the transitions. The calculated results suggest that n orbitals form two electronic bands. In the upper band, the electrons expand over the ether chain, whereas in the lower band, the electrons are localized in the terminal OH in the PEGs.

  11. Single-electron states near a current-carrying core

    International Nuclear Information System (INIS)

    Masale, M.

    2004-01-01

    The energy spectrum of an electron confined near a current-carrying core is obtained as a function of the azimuthal applied magnetic field within the effective-mass approximation. The double degeneracy of the non-zero electron's axial wave number (k z ) states is lifted by the current-induced magnetic field while that of the non-zero azimuthal quantum number (m) states is preserved. A further analysis is the evaluations of the oscillator strengths for optical transitions involving the lowest-order pair of the electron's energy subbands within the dipole approximation. The radiation field is taken as that of elliptically polarized light incident along the core axis. In this polarization and within the dipole approximation, the allowed transitions are only those governed by the following specific selection rules. The azimuthal quantum numbers of the initial and final states must differ by unity while the electron's axial wave number is conserved. The azimuthal magnetic field is also found to lift the multiple degeneracies of the k z ≠0 interaction integrals as well as those of the oscillator strengths for optical transitions

  12. Electronic structure of MnSi : The role of electron-electron interactions

    NARCIS (Netherlands)

    Carbone, F; Zangrando, M; Brinkman, A; Nicolaou, A; Bondino, F; Magnano, E; Nugroho, A. A.; Parmigiani, F; Jarlborg, T; van der Marel, D

    We present an experimental study of the electronic structure of MnSi. Using x-ray absorption spectroscopy (XAS), x-ray photoemission, and x-ray fluorescence, we provide experimental evidence that MnSi has a mixed valence ground state. We show that self-consistent local density approximation

  13. Electronic structure of MnSi: The role of electron-electron interactions

    NARCIS (Netherlands)

    Carbone, F.; Zangrando, M.; Brinkman, Alexander; Nicolaou, A.; Bondino, F.; Magnano, E.; Nugroho, A.A.; Parmigiani, F.; Jarlborg, Th.; van der Marel, D.

    2006-01-01

    We present an experimental study of the electronic structure of MnSi. Using x-ray absorption spectroscopy (XAS), x-ray photoemission, and x-ray fluorescence, we provide experimental evidence that MnSi has a mixed valence ground state. We show that self-consistent local density approximation

  14. Electron impact excitation of xenon from the metastable state to the excited states

    Energy Technology Data Exchange (ETDEWEB)

    Jiang Jun; Dong Chenzhong; Xie Luyou; Zhou Xiaoxin [College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070 (China); Wang Jianguo [Institute of Applied Physics and Computational Mathematic, Beijing 100088 (China)], E-mail: dongcz@nwnu.edu.cn

    2008-12-28

    The electron impact excitation cross sections from the lowest metastable state 5p{sup 5}6sJ = 2 to the six lowest excited states of the 5p{sup 5}6p configuration of xenon are calculated systematically by using the fully relativistic distorted wave method. In order to discuss the effects of target state descriptions on the electron impact excitation cross sections, two correlation models are used to describe the target states based on the multiconfiguration Dirac-Fock (MCDF) method. It is found that the correlation effects play a very important role in low energy impact. For high energy impact, however, the cross sections are not sensitive to the description of the target states, but many more partial waves must be included.

  15. Enhancing the entanglement of a teleported state by local collective noises

    Energy Technology Data Exchange (ETDEWEB)

    Hu Xueyuan; Gu Ying; Gong Qihuang; Guo Guangcan, E-mail: ygu@pku.edu.cn [State Key Laboratory for Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871 (China)

    2011-04-14

    We show that the entanglement of the two-qubit teleported state via a class of four-qubit entangled channel states can be increased by collective amplitude damping locally acting on one part of the channel state. Specifically, we compare the entanglement contained in the output state of teleportation before and after the action of the collective amplitude damping on the channel state, and show that for a wide range of input entangled two-qubit states, the local decoherence can result in an increase in the output entanglement. In this process, the average fidelity of the teleportation is also increased. Our result reveals that some quantum properties of the four-qubit channel state are definitely improved in the process of enhancing the fidelity by local noise.

  16. Theory of local and global processes which affect solar wind electrons. 2. Experimental support

    International Nuclear Information System (INIS)

    Scudder, J.D.; Olbert, S.

    1979-01-01

    We have extended the theoretical considerations of Scudder and Olbert (1979) (hereafter called paper 1) to show from the microscopic characteristics of the Coulomb cross section that there are three natural subpopulations for plasma electrons: the subthermals with local kinetic energy E 7kT/sub c/. We present experimental support from three experimental groups on three different spacecraft over a radial range in the interplanetary medium for the five interrelations projected in paper 1 between solar wind electron properties and changes in the interplanetary medium: (1) subthermals respond primarily to local changes (compressions and rarefactions) in stream dynamics: (2) the extrathermal fraction of the ambient electron density should be anticorrelated with the asymptotic bulk speed; (3) the extrathermal 'temperature' should be anticorrelated with the local wind speed at 1 AU; (4) the heat flux carried by electrons should be anticorrelated with the local bulk speed; and (5) the extrathermal differential 'temperature' should be nearly independent of radius within 1 Au. From first principles and the spatial inhomogeneity of the plasma we show that the velocity dependence of Coulomb collisions in the solar wind plasmaproduces a bifurcation in the solar wind electron distribution function at a transition energy E*. This energy is theoretically shown to scale with the local thermal temperature as E*(r) approx. =GAMMAkT/sub c/(r). This scaling is observationally supported over the radial range from 0.45 to 0.9 AU and at 1 AU. The extrathermals, defined on the basis of Coulomb collisions, are synonymous with the subpopulation previously labeled in the literature as the 'halo' or 'hot' component

  17. Electron and Nucleon Localization Functions of Oganesson: Approaching the Thomas-Fermi Limit

    Science.gov (United States)

    Jerabek, Paul; Schuetrumpf, Bastian; Schwerdtfeger, Peter; Nazarewicz, Witold

    2018-02-01

    Fermion localization functions are used to discuss electronic and nucleonic shell structure effects in the superheavy element oganesson, the heaviest element discovered to date. Spin-orbit splitting in the 7 p electronic shell becomes so large (˜10 eV ) that Og is expected to show uniform-gas-like behavior in the valence region with a rather large dipole polarizability compared to the lighter rare gas elements. The nucleon localization in Og is also predicted to undergo a transition to the Thomas-Fermi gas behavior in the valence region. This effect, particularly strong for neutrons, is due to the high density of single-particle orbitals.

  18. Crossover in tunneling hops in systems of strongly localized electrons

    International Nuclear Information System (INIS)

    Lien Nguyen, V.; Gamietea, A.D.

    1995-11-01

    Accurate Monte-Carlo simulation data show a consistent crossover in different characters of tunneling hops in two-dimensional systems of strongly localized electrons in the presence of scattering and quantum interference of hopping paths. The results also suggest a negative answer to the question whether there is a two-dimensional sign phase transition. The fractal behaviour observed in the direction perpendicular to the hopping direction is found to be similar to that for eigenstates in one-dimensional localized systems. (author). 16 refs, 6 figs

  19. Maximum and minimum entropy states yielding local continuity bounds

    Science.gov (United States)

    Hanson, Eric P.; Datta, Nilanjana

    2018-04-01

    Given an arbitrary quantum state (σ), we obtain an explicit construction of a state ρɛ * ( σ ) [respectively, ρ * , ɛ ( σ ) ] which has the maximum (respectively, minimum) entropy among all states which lie in a specified neighborhood (ɛ-ball) of σ. Computing the entropy of these states leads to a local strengthening of the continuity bound of the von Neumann entropy, i.e., the Audenaert-Fannes inequality. Our bound is local in the sense that it depends on the spectrum of σ. The states ρɛ * ( σ ) and ρ * , ɛ (σ) depend only on the geometry of the ɛ-ball and are in fact optimizers for a larger class of entropies. These include the Rényi entropy and the minimum- and maximum-entropies, providing explicit formulas for certain smoothed quantities. This allows us to obtain local continuity bounds for these quantities as well. In obtaining this bound, we first derive a more general result which may be of independent interest, namely, a necessary and sufficient condition under which a state maximizes a concave and Gâteaux-differentiable function in an ɛ-ball around a given state σ. Examples of such a function include the von Neumann entropy and the conditional entropy of bipartite states. Our proofs employ tools from the theory of convex optimization under non-differentiable constraints, in particular Fermat's rule, and majorization theory.

  20. Tunable Electron-Electron Interactions in LaAlO_{3}/SrTiO_{3} Nanostructures

    Directory of Open Access Journals (Sweden)

    Guanglei Cheng

    2016-12-01

    Full Text Available The interface between the two complex oxides LaAlO_{3} and SrTiO_{3} has remarkable properties that can be locally reconfigured between conducting and insulating states using a conductive atomic force microscope. Prior investigations of “sketched” quantum dot devices revealed a phase in which electrons form pairs, implying a strongly attractive electron-electron interaction. Here, we show that these devices with strong electron-electron interactions can exhibit a gate-tunable transition from a pair-tunneling regime to a single-electron (Andreev bound state tunneling regime where the interactions become repulsive. The electron-electron interaction sign change is associated with a Lifshitz transition where the d_{xz} and d_{yz} bands start to become occupied. This electronically tunable electron-electron interaction, combined with the nanoscale reconfigurability of this system, provides an interesting starting point towards solid-state quantum simulation.

  1. Communication: Electronic flux induced by crossing the transition state

    Science.gov (United States)

    Jia, Dongming; Manz, Jörn; Yang, Yonggang

    2018-01-01

    We present a new effect of chemical reactions, e.g., isomerizations, that occurs when the reactants pass along the transition state, on the way to products. It is based on the well-known fact that at the transition state, the electronic structure of one isomer changes to the other. We discover that this switch of electronic structure causes a strong electronic flux that is well distinguishable from the usual flux of electrons that travel with the nuclei. As a simple but clear example, the effect is demonstrated here for bond length isomerization of Na2 (21Σu+), with adiabatic crossing the barrier between the inner and outer wells of the double minimum potential that support different "Rydberg" and "ionic" type electronic structures, respectively.

  2. Kinetic and electron-electron energies for convex sums of ground state densities with degeneracies and fractional electron number

    Energy Technology Data Exchange (ETDEWEB)

    Levy, Mel, E-mail: ayers@mcmaster.ca, E-mail: mlevy@tulane.edu [Department of Chemistry, Duke University, Durham, North Carolina 27708 (United States); Department of Physics, North Carolina A and T State University, Greensboro, North Carolina 27411 (United States); Department of Chemistry, Tulane University, New Orleans, Louisiana 70118 (United States); Anderson, James S. M.; Zadeh, Farnaz Heidar; Ayers, Paul W., E-mail: ayers@mcmaster.ca, E-mail: mlevy@tulane.edu [Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario (Canada)

    2014-05-14

    Properties of exact density functionals provide useful constraints for the development of new approximate functionals. This paper focuses on convex sums of ground-level densities. It is observed that the electronic kinetic energy of a convex sum of degenerate ground-level densities is equal to the convex sum of the kinetic energies of the individual degenerate densities. (The same type of relationship holds also for the electron-electron repulsion energy.) This extends a known property of the Levy-Valone Ensemble Constrained-Search and the Lieb Legendre-Transform refomulations of the Hohenberg-Kohn functional to the individual components of the functional. Moreover, we observe that the kinetic and electron-repulsion results also apply to densities with fractional electron number (even if there are no degeneracies), and we close with an analogous point-wise property involving the external potential. Examples where different degenerate states have different kinetic energy and electron-nuclear attraction energy are given; consequently, individual components of the ground state electronic energy can change abruptly when the molecular geometry changes. These discontinuities are predicted to be ubiquitous at conical intersections, complicating the development of universally applicable density-functional approximations.

  3. Findings from case studies of state and local immunization programs.

    Science.gov (United States)

    Fairbrother, G; Kuttner, H; Miller, W; Hogan, R; McPhillips, H; Johnson, K A; Alexander, E R

    2000-10-01

    As part of its examination of federal support for immunization services during the past decade, the Institute of Medicine (IOM) Committee on Immunization Finance Policies and Practices (IFPP) commissioned eight case studies of the states of Alabama, Maine, Michigan, New Jersey, North Carolina, Texas, and Washington; and a two-county study of Los Angeles and San Diego in California. Specifically, the IOM Committee and these studies reviewed the use of Section 317 grants by the states. Section 317 is a discretionary grant program that supports vaccine purchase and other immunization-related program activities. These studies afforded the Committee an in-depth look at local policy choices, the performance of immunization programs, and federal and state spending for immunization during the past decade. The case-study reports were developed through interviews with state and local health department officials, including immunization program directors, Medicaid agency staff, budget analysts, and Centers for Disease Control and Prevention public health advisors to the jurisdiction. Other sources included state and federal administrative records and secondary sources on background factors and state-level trends. The case studies were supplemented by site visits to Detroit, Houston, Los Angeles, Newark, and San Diego. The nature of immunization "infrastructure" supported by the Section 317 program is shifting from primarily service delivery to a broader set of roles that puts the public effort at the head of a broad immunization partnership among public health, health financing, and other entities in both the public and private sectors. The rate and intensity of transition vary across the case-study areas. In the emerging pattern, service delivery increasingly takes place in the private sector and is related to managed care. "Infrastructure" is moving beyond supporting a core state staff and local health department service delivery to include such activities as immunization

  4. 7 CFR 360.400 - Preemption of State and local laws.

    Science.gov (United States)

    2010-01-01

    ... local laws. (a) Under section 436 of the Plant Protection Act (7 U.S.C. 7756), a State or political... of the Plant Protection Act, the regulations in this part preempt all State and local laws and... 360.400 Agriculture Regulations of the Department of Agriculture (Continued) ANIMAL AND PLANT HEALTH...

  5. Adsorbates in a Box: Titration of Substrate Electronic States

    Science.gov (United States)

    Cheng, Zhihai; Wyrick, Jonathan; Luo, Miaomiao; Sun, Dezheng; Kim, Daeho; Zhu, Yeming; Lu, Wenhao; Kim, Kwangmoo; Einstein, T. L.; Bartels, Ludwig

    2010-08-01

    Nanoscale confinement of adsorbed CO molecules in an anthraquinone network on Cu(111) with a pore size of ≈4nm arranges the CO molecules in a shell structure that coincides with the distribution of substrate confined electronic states. Molecules occupy the states approximately in the sequence of rising electron energy. Despite the sixfold symmetry of the pore boundary itself, the adsorbate distribution adopts the threefold symmetry of the network-substrate system, highlighting the importance of the substrate even for such quasi-free-electron systems.

  6. Quantum entanglement of localized excited states at finite temperature

    Energy Technology Data Exchange (ETDEWEB)

    Caputa, Paweł [Yukawa Institute for Theoretical Physics (YITP), Kyoto University,Kyoto 606-8502 (Japan); Nordita, KTH Royal Institute of Technology and Stockholm University,Roslagstullsbacken 23, SE-106 91 Stockholm (Sweden); Simón, Joan; Štikonas, Andrius [School of Mathematics and Maxwell Institute for Mathematical Sciences,University of Edinburgh,King’s Buildings, Edinburgh EH9 3FD (United Kingdom); Takayanagi, Tadashi [Yukawa Institute for Theoretical Physics (YITP), Kyoto University,Kyoto 606-8502 (Japan); Kavli Institute for the Physics and Mathematics of the Universe (Kavli IPMU),University of Tokyo,Kashiwa, Chiba 277-8582 (Japan)

    2015-01-20

    In this work we study the time evolutions of (Renyi) entanglement entropy of locally excited states in two dimensional conformal field theories (CFTs) at finite temperature. We consider excited states created by acting with local operators on thermal states and give both field theoretic and holographic calculations. In free field CFTs, we find that the growth of Renyi entanglement entropy at finite temperature is reduced compared to the zero temperature result by a small quantity proportional to the width of the localized excitations. On the other hand, in finite temperature CFTs with classical gravity duals, we find that the entanglement entropy approaches a characteristic value at late time. This behaviour does not occur at zero temperature. We also study the mutual information between the two CFTs in the thermofield double (TFD) formulation and give physical interpretations of our results.

  7. Electron-phonon coupling at metal surfaces

    International Nuclear Information System (INIS)

    Hellsing, B.; Eiguren, A.; Chulkov, E.V.

    2002-01-01

    Chemical reactions at metal surfaces are influenced by inherent dissipative processes which involve energy transfer between the conduction electrons and the nuclear motion. We shall discuss how it is possible to model this electron-phonon coupling in order to estimate its importance. A relevant quantity for this investigation is the lifetime of surface-localized electron states. A surface state, quantum well state or surface image state is located in a surface-projected bandgap and becomes relatively sharp in energy. This makes a comparison between calculations and experimental data most attractive, with a possibility of resolving the origin of the lifetime broadening of electron states. To achieve more than an order of magnitude estimate we point out the importance of taking into account the phonon spectrum, electron surface state wavefunctions and screening of the electron-ion potential. (author)

  8. Local conditions for the Pauli potential in order to yield self-consistent electron densities exhibiting proper atomic shell structure

    Energy Technology Data Exchange (ETDEWEB)

    Finzel, Kati, E-mail: kati.finzel@liu.se [Linköpings University, IFM Department of Physics, 58183 Linköping (Sweden)

    2016-01-21

    The local conditions for the Pauli potential that are necessary in order to yield self-consistent electron densities from orbital-free calculations are investigated for approximations that are expressed with the help of a local position variable. It is shown that those local conditions also apply when the Pauli potential is given in terms of the electron density. An explicit formula for the Ne atom is given, preserving the local conditions during the iterative procedure. The resulting orbital-free electron density exhibits proper shell structure behavior and is in close agreement with the Kohn-Sham electron density. This study demonstrates that it is possible to obtain self-consistent orbital-free electron densities with proper atomic shell structure from simple one-point approximations for the Pauli potential at local density level.

  9. Electronic Document Imaging and Optical Storage Systems for Local Governments: An Introduction. Local Government Records Technical Information Series. Number 21.

    Science.gov (United States)

    Schwartz, Stanley F.

    This publication introduces electronic document imaging systems and provides guidance for local governments in New York in deciding whether such systems should be adopted for their own records and information management purposes. It advises local governments on how to develop plans for using such technology by discussing its advantages and…

  10. Excitation of lowest electronic states of thymine by slow electrons

    Science.gov (United States)

    Chernyshova, I. V.; Kontros, E. J.; Markush, P. P.; Shpenik, O. B.

    2013-11-01

    Excitation of lowest electronic states of the thymine molecules in the gas phase is studied by elec- tron energy loss spectroscopy. In addition to dipole-allowed transitions to singlet states, transitions to the lowest triplet states were observed. The low-energy features of the spectrum at 3.66 and 4.61 eV are identified with the excitation of the first triplet states 13 A' (π → π*) and 13 A″ ( n → π*). The higher-lying features at 4.96, 5.75, 6.17, and 7.35 eV are assigned mainly to the excitation of the π → π* transitions to the singlet states of the molecule. The excitation dynamics of the lowest states is studied. It is found that the first triplet state 13 A'(π → π*) is most efficiently excited at a residual energy close to zero, while the singlet 21 A'(π → π*) state is excited with almost identical efficiency at different residual energies.

  11. Investigation of the nature of the unpaired electron states in the organic semiconductor N-methyl-N-ethylmorpholinium-tetracyanoquinodimethane

    DEFF Research Database (Denmark)

    Rice, M. J.; Yartsev, V. M.; Jacobsen, Claus Schelde

    1980-01-01

    The nature of the unpaired electron states in the dimerized phase of the crystalline organic semiconductor N-methyl-N-ethylmorpholinium-tetracyanoquinodimethane [MEM(TCNQ)2] is investigated by the combined means of polarized-optical-reflectance measurements and microscopic theoretical analysis....... It is found that each unpaired electron is localized on a dimeric TCNQ unit, and it is demonstrated that the two-site molecular orbital (MO) which accommodates the unpaired electron involves internal molecular distortion of the dimeric unit. Experimental values are deduced for the intradimer π MO hopping...... integral, the TCNQ monomer ag molecular-vibration frequencies and linear-electron-molecular-vibration coupling constants, and the difference in energy of the slightly nonequivalent TCNQ monomer π MO's. The dimer charge oscillation associated with the extremely weak coupling of the unpaired electron...

  12. Impacts of NRC programs on state and local governments

    International Nuclear Information System (INIS)

    Nussbaumer, D.A.; Lubenau, J.O.

    1983-12-01

    This document reports the results of an NRC staff examination of the impacts of NRC regulatory programs on State and local governments. Twenty NRC programs are identified. For each, the source of the program (e.g., statutory requirement) and NRC funding availability are described and the impacts upon State and local governments are assessed. Recommendations for NRC monitoring and assessing impacts and for enhancing NRC staff awareness of the impacts are offered

  13. Photoemission electronic states of epitaxially grown magnetite films

    International Nuclear Information System (INIS)

    Zalecki, R.; Kolodziejczyk, A.; Korecki, J.; Spiridis, N.; Zajac, M.; Kozlowski, A.; Kakol, Z.; Antolak, D.

    2007-01-01

    The valence band photoemission spectra of epitaxially grown 300 A single crystalline magnetite films were measured by the angle-resolved ultraviolet photoemission spectroscopy (ARUPS) at 300 K. The samples were grown either on MgO(0 0 1) (B termination) or on (0 0 1) Fe (iron-rich A termination), thus intentionally presenting different surface stoichiometry, i.e. also different surface electronic states. Four main features of the electron photoemission at about -1.0, -3.0, -5.5 and -10.0 eV below a chemical potential show systematic differences for two terminations; this difference depends on the electron outgoing angle. Our studies confirm sensitivity of angle resolved PES technique on subtleties of surface states

  14. Electronic states on the clean and oxygen-covered molybdenum (110) surface measured using time-of-flight momentum microscopy

    International Nuclear Information System (INIS)

    Chernov, Sergii

    2016-01-01

    Recent experiments discovered a new class of materials called topological insulators and started an extensive investigation in order to find more materials of such type and to understand and explore the opening perspectives in fundamental science and application. These materials exhibit a Dirac-type (massless) electronic state, bridging the fundamental band gap. Surprisingly, a strongly spin-polarized surface state with linear dispersion resembling that of Dirac type was found on the already well-investigated W(110) surface. This rose the question of the existence of the same non-trivial electron state on other metal surfaces. The present work describes the investigation of surface electronic states on the Mo(110) surface, their dispersion and transformation upon surface oxidation. This system is isoelectronic to the case of W(110) but due to the lower atomic number the spin-orbit interaction responsible for local band gap formation is substantially decreased by a factor of 5. The Mo(110) surface was shown to exhibit a linearly dispersing state quite similar to the one on W(110), but within a smaller energy range of 120 meV, with the Dirac point lying in the center of a local band gap in k-space. The experimental investigations were performed with the help of momentum microscopy, using a Ti:sapphire laser in the lab and synchrotron radiation at BESSY II, Berlin. The results show good agreement with theoretical calculations of the band structure and photoemission patterns for clean Mo(110). The fully parallel 3D acquisition scheme allowed to visualize the full surface Brillouin zone of the sample up to few eV binding energy within a single exposure of typically less than 30 min. This opens the door to future time-resolved experiments with maximum detection efficiency.

  15. Electronic states on the clean and oxygen-covered molybdenum (110) surface measured using time-of-flight momentum microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Chernov, Sergii

    2016-04-20

    Recent experiments discovered a new class of materials called topological insulators and started an extensive investigation in order to find more materials of such type and to understand and explore the opening perspectives in fundamental science and application. These materials exhibit a Dirac-type (massless) electronic state, bridging the fundamental band gap. Surprisingly, a strongly spin-polarized surface state with linear dispersion resembling that of Dirac type was found on the already well-investigated W(110) surface. This rose the question of the existence of the same non-trivial electron state on other metal surfaces. The present work describes the investigation of surface electronic states on the Mo(110) surface, their dispersion and transformation upon surface oxidation. This system is isoelectronic to the case of W(110) but due to the lower atomic number the spin-orbit interaction responsible for local band gap formation is substantially decreased by a factor of 5. The Mo(110) surface was shown to exhibit a linearly dispersing state quite similar to the one on W(110), but within a smaller energy range of 120 meV, with the Dirac point lying in the center of a local band gap in k-space. The experimental investigations were performed with the help of momentum microscopy, using a Ti:sapphire laser in the lab and synchrotron radiation at BESSY II, Berlin. The results show good agreement with theoretical calculations of the band structure and photoemission patterns for clean Mo(110). The fully parallel 3D acquisition scheme allowed to visualize the full surface Brillouin zone of the sample up to few eV binding energy within a single exposure of typically less than 30 min. This opens the door to future time-resolved experiments with maximum detection efficiency.

  16. Local electronic and geometric structures of silicon atoms implanted in graphite

    International Nuclear Information System (INIS)

    Baba, Yuji; Sekiguchi, Tetsuhiro; Shimoyama, Iwao

    2002-01-01

    Low-energy Si + ions were implanted in highly oriented pyrolitic graphite (HOPG) up to 1% of surface atomic concentration, and the local electronic and geometric structures around the silicon atoms were in situ investigated by means of the Si K-edge X-ray absorption near-edge structure (XANES) and X-ray photoelectron spectroscopy using linearly polarized synchrotron radiation. The resonance peak appeared at 1839.5 eV in the Si K-edge XANES spectra for Si + -implanted HOPG. This energy is lower than those of the Si 1s→σ * resonance peaks in any other Si-containing materials. The intensity of the resonance peak showed strong polarization dependence, which suggests that the final state orbitals around the implanted Si atoms have π * -like character. It is concluded that the σ-type Si-C bonds produced by the Si + -ion implantation are nearly parallel to the graphite plane, and Si x C phase forms two-dimensionally spread graphite-like layer with sp 2 bonds

  17. Curvature-induced electron localization in developable Moebius-like nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Korte, A P; Van der Heijden, G H M, E-mail: a.korte@ucl.ac.u, E-mail: g.heijden@ucl.ac.u [Centre for Nonlinear Dynamics, University College London, Chadwick Building, Gower Street, London WC1E 6BT (United Kingdom)

    2009-12-02

    We study curvature effects and localization of non-interacting electrons confined to developable one-sided elastic sheets motivated by recent nanostructured origami techniques for creating and folding extremely thin membrane structures. The most famous one-sided sheet is the Moebius strip but the theory we develop allows for arbitrary linking number. Unlike previous work in the literature we do not assume a shape for the elastic structures. Rather, we find the shape by minimizing the elastic energy, i.e., solving the Euler-Lagrange equations for the bending energy functional. This shape varies with the aspect ratio of the sheet and affects the potential experienced by the particles. Depending on the link there is a number of singular points on the edge of the structure where the bending energy density goes to infinity, leading to deep potential wells. The inverse participation ratio is used to show that electrons are increasingly localized to the higher-curvature regions of the higher-width structures, where sharp creases radiating out from the singular points could form channels for particle transport. Our geometric formulation could be used to study transport properties of Moebius strips and other components in nanoscale devices.

  18. Curvature-induced electron localization in developable Moebius-like nanostructures

    International Nuclear Information System (INIS)

    Korte, A P; Van der Heijden, G H M

    2009-01-01

    We study curvature effects and localization of non-interacting electrons confined to developable one-sided elastic sheets motivated by recent nanostructured origami techniques for creating and folding extremely thin membrane structures. The most famous one-sided sheet is the Moebius strip but the theory we develop allows for arbitrary linking number. Unlike previous work in the literature we do not assume a shape for the elastic structures. Rather, we find the shape by minimizing the elastic energy, i.e., solving the Euler-Lagrange equations for the bending energy functional. This shape varies with the aspect ratio of the sheet and affects the potential experienced by the particles. Depending on the link there is a number of singular points on the edge of the structure where the bending energy density goes to infinity, leading to deep potential wells. The inverse participation ratio is used to show that electrons are increasingly localized to the higher-curvature regions of the higher-width structures, where sharp creases radiating out from the singular points could form channels for particle transport. Our geometric formulation could be used to study transport properties of Moebius strips and other components in nanoscale devices.

  19. A practical approach to temperature effects in dissociative electron attachment cross sections using local complex potential theory

    International Nuclear Information System (INIS)

    Sugioka, Yuji; Takayanagi, Toshiyuki

    2012-01-01

    Highlights: ► Dissociative electron attachment cross sections for polyatomic molecules are calculated by a simple theoretical approach. ► Temperature effects can be reasonably reproduced with the present model. ► All the degrees-of-freedom are taken into account in the present dynamics approach. -- Abstract: We propose a practical computational scheme to obtain temperature dependence of dissociative electron attachment cross sections to polyatomic molecules within a local complex potential theory formalism. First we perform quantum path-integral molecular dynamics simulations on the potential energy surface for the neutral molecule in order to sample initial nuclear configurations as well as momenta. Classical trajectories are subsequently integrated on the potential energy surface for the anionic state and survival probabilities are simultaneously calculated along the obtained trajectories. We have applied this simple scheme to dissociative electron attachment processes to H 2 O and CF 3 Cl, for which several previous studies are available from both the experimental and theoretical sides.

  20. A practical approach to temperature effects in dissociative electron attachment cross sections using local complex potential theory

    Energy Technology Data Exchange (ETDEWEB)

    Sugioka, Yuji [Department of Chemistry, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama City, Saitama 338-8570 (Japan); Takayanagi, Toshiyuki, E-mail: tako@mail.saitama-u.ac.jp [Department of Chemistry, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama City, Saitama 338-8570 (Japan)

    2012-09-11

    Highlights: Black-Right-Pointing-Pointer Dissociative electron attachment cross sections for polyatomic molecules are calculated by a simple theoretical approach. Black-Right-Pointing-Pointer Temperature effects can be reasonably reproduced with the present model. Black-Right-Pointing-Pointer All the degrees-of-freedom are taken into account in the present dynamics approach. -- Abstract: We propose a practical computational scheme to obtain temperature dependence of dissociative electron attachment cross sections to polyatomic molecules within a local complex potential theory formalism. First we perform quantum path-integral molecular dynamics simulations on the potential energy surface for the neutral molecule in order to sample initial nuclear configurations as well as momenta. Classical trajectories are subsequently integrated on the potential energy surface for the anionic state and survival probabilities are simultaneously calculated along the obtained trajectories. We have applied this simple scheme to dissociative electron attachment processes to H{sub 2}O and CF{sub 3}Cl, for which several previous studies are available from both the experimental and theoretical sides.

  1. Limits on nonlocal correlations from the structure of the local state space

    International Nuclear Information System (INIS)

    Janotta, Peter; Gogolin, Christian; Barrett, Jonathan; Brunner, Nicolas

    2011-01-01

    The outcomes of measurements on entangled quantum systems can be nonlocally correlated. However, while it is easy to write down toy theories allowing arbitrary nonlocal correlations, those allowed in quantum mechanics are limited. Quantum correlations cannot, for example, violate a principle known as macroscopic locality, which implies that they cannot violate Tsirelson's bound. This paper shows that there is a connection between the strength of nonlocal correlations in a physical theory and the structure of the state spaces of individual systems. This is illustrated by a family of models in which local state spaces are regular polygons, where a natural analogue of a maximally entangled state of two systems exists. We characterize the nonlocal correlations obtainable from such states. The family allows us to study the transition between classical, quantum and super-quantum correlations by varying only the local state space. We show that the strength of nonlocal correlations - in particular whether the maximally entangled state violates Tsirelson's bound or not-depends crucially on a simple geometric property of the local state space, known as strong self-duality. This result is seen to be a special case of a general theorem, which states that a broad class of entangled states in probabilistic theories-including, by extension, all bipartite classical and quantum states-cannot violate macroscopic locality. Finally, our results show that models exist that are locally almost indistinguishable from quantum mechanics, but can nevertheless generate maximally nonlocal correlations.

  2. Electrons on the surface of liquid helium

    International Nuclear Information System (INIS)

    Lambert, D.K.

    1979-05-01

    Spectroscopic techniques were used to study transitions of electrons between bound states in the potential well near a helium surface. The charge density distribution of electrons on the surface was independently obtained from electrical measurements. From the measurements, information was obtained both about the interaction of the bound state electrons with the surface of liquid helium and about local disorder in the positions of electrons on the surface

  3. Symmetric mixed states of n qubits: Local unitary stabilizers and entanglement classes

    Energy Technology Data Exchange (ETDEWEB)

    Lyons, David W.; Walck, Scott N. [Lebanon Valley College, Annville, Pennsylvania 17003 (United States)

    2011-10-15

    We classify, up to local unitary equivalence, local unitary stabilizer Lie algebras for symmetric mixed states of n qubits into six classes. These include the stabilizer types of the Werner states, the Greenberger-Horne-Zeilinger state and its generalizations, and Dicke states. For all but the zero algebra, we classify entanglement types (local unitary equivalence classes) of symmetric mixed states that have those stabilizers. We make use of the identification of symmetric density matrices with polynomials in three variables with real coefficients and apply the representation theory of SO(3) on this space of polynomials.

  4. Finite-size effects on electronic structure and local properties in passivated AA -stacked bilayer armchair-edge graphene nanoribbons

    International Nuclear Information System (INIS)

    Chen, Xiongwen; Shi, Zhengang; Xiang, Shaohua; Song, Kehui; Zhou, Guanghui

    2017-01-01

    Based on the tight-binding model and dual-probe scanning tunneling microscopy technology, we theoretically investigate the electronic structure and local property in the passivated AA -stacked bilayer armchair-edge graphene nanoribbons (AABLAGNRs). We show that they are highly sensitive to the size of the ribbons, which is evidently different from the single-layer armchair-edge graphene nanoribbons. The ‘3 p ’ rule only applies to the narrow AABLGNRs. Namely, in the passivated 3 p - and (3 p   +  1)-AABLGNRs, the narrow ribbons are semiconducting while the medium and wide ribbons are metallic. Although the passivated (3 p   +  2)-AABLGNRs are metallic, the ‘3 j ’ rule only applies to the narrow and medium ribbons. Namely, electrons are in the semiconducting states at sites of line 3 j while they are in the metallic states at other sites. This induces a series of parallel and discrete metallic channels, consisting of lines 3 j   −  1 and 3 j   −  2, for the low-energy electronic transports. In the passivated wide (3 p   +  2)-AABLGNRs, all electrons are in the metallic states. Additionally, the ‘3 p ’ and ‘3 j ’ rules are controllable to disappear and reappear by applying an external perpendicular electric field. Resultantly, an electric filed-driven current switch can be realized in the passivated narrow and medium (3 p   +  2)-AABLGNRs. (paper)

  5. Experimental EPR-steering using Bell-local states

    Science.gov (United States)

    Saunders, D. J.; Jones, S. J.; Wiseman, H. M.; Pryde, G. J.

    2010-11-01

    The concept of `steering' was introduced in 1935 by Schrödinger as a generalization of the EPR (Einstein-Podolsky-Rosen) paradox. It has recently been formalized as a quantum-information task with arbitrary bipartite states and measurements, for which the existence of entanglement is necessary but not sufficient. Previous experiments in this area have been restricted to an approach that followed the original EPR argument in considering only two different measurement settings per side. Here we demonstrate experimentally that EPR-steering occurs for mixed entangled states that are Bell local (that is, that cannot possibly demonstrate Bell non-locality). Unlike the case of Bell inequalities, increasing the number of measurement settings beyond two-we use up to six-significantly increases the robustness of the EPR-steering phenomenon to noise.

  6. Sharp Contradiction for Local-Hidden-State Model in Quantum Steering

    Science.gov (United States)

    Chen, Jing-Ling; Su, Hong-Yi; Xu, Zhen-Peng; Pati, Arun Kumar

    2016-08-01

    In quantum theory, no-go theorems are important as they rule out the existence of a particular physical model under consideration. For instance, the Greenberger-Horne-Zeilinger (GHZ) theorem serves as a no-go theorem for the nonexistence of local hidden variable models by presenting a full contradiction for the multipartite GHZ states. However, the elegant GHZ argument for Bell’s nonlocality does not go through for bipartite Einstein-Podolsky-Rosen (EPR) state. Recent study on quantum nonlocality has shown that the more precise description of EPR’s original scenario is “steering”, i.e., the nonexistence of local hidden state models. Here, we present a simple GHZ-like contradiction for any bipartite pure entangled state, thus proving a no-go theorem for the nonexistence of local hidden state models in the EPR paradox. This also indicates that the very simple steering paradox presented here is indeed the closest form to the original spirit of the EPR paradox.

  7. STABLE STATIONARY STATES OF NON-LOCAL INTERACTION EQUATIONS

    KAUST Repository

    FELLNER, KLEMENS

    2010-12-01

    In this paper, we are interested in the large-time behaviour of a solution to a non-local interaction equation, where a density of particles/individuals evolves subject to an interaction potential and an external potential. It is known that for regular interaction potentials, stable stationary states of these equations are generically finite sums of Dirac masses. For a finite sum of Dirac masses, we give (i) a condition to be a stationary state, (ii) two necessary conditions of linear stability w.r.t. shifts and reallocations of individual Dirac masses, and (iii) show that these linear stability conditions imply local non-linear stability. Finally, we show that for regular repulsive interaction potential Wε converging to a singular repulsive interaction potential W, the Dirac-type stationary states ρ̄ ε approximate weakly a unique stationary state ρ̄ ∈ L∞. We illustrate our results with numerical examples. © 2010 World Scientific Publishing Company.

  8. Copper plasmonics and catalysis: role of electron-phonon interactions in dephasing localized surface plasmons

    Science.gov (United States)

    Sun, Qi-C.; Ding, Yuchen; Goodman, Samuel M.; H. Funke, Hans; Nagpal, Prashant

    2014-10-01

    Copper metal can provide an important alternative for the development of efficient, low-cost and low-loss plasmonic nanoparticles, and selective nanocatalysts. However, poor chemical stability and lack of insight into photophysics and plasmon decay mechanisms has impeded study. Here, we use smooth conformal ALD coating on copper nanoparticles to prevent surface oxidation, and study dephasing time for localized surface plasmons on different sized copper nanoparticles. Using dephasing time as a figure of merit, we elucidate the role of electron-electron, electron-phonon, impurity, surface and grain boundary scattering on the decay of localized surface plasmon waves. Using our quantitative analysis and different temperature dependent measurements, we show that electron-phonon interactions dominate over other scattering mechanisms in dephasing plasmon waves. While interband transitions in copper metal contributes substantially to plasmon losses, tuning surface plasmon modes to infrared frequencies leads to a five-fold enhancement in the quality factor. These findings demonstrate that conformal ALD coatings can improve the chemical stability for copper nanoparticles, even at high temperatures (>300 °C) in ambient atmosphere, and nanoscaled copper is a good alternative material for many potential applications in nanophotonics, plasmonics, catalysis and nanoscale electronics.Copper metal can provide an important alternative for the development of efficient, low-cost and low-loss plasmonic nanoparticles, and selective nanocatalysts. However, poor chemical stability and lack of insight into photophysics and plasmon decay mechanisms has impeded study. Here, we use smooth conformal ALD coating on copper nanoparticles to prevent surface oxidation, and study dephasing time for localized surface plasmons on different sized copper nanoparticles. Using dephasing time as a figure of merit, we elucidate the role of electron-electron, electron-phonon, impurity, surface and grain

  9. State and local governments cashing in

    International Nuclear Information System (INIS)

    Nedrelid, Ola N.

    2006-01-01

    The power companies biannual turnover and the continuing high prices this autumn are two trends pointing towards a record high profit for the power industry. This also means a solid profit for the Norwegian state and many local governments on county or municipality level. Charts illustrate the governments' share of the increased profit

  10. Photoionization of furan from the ground and excited electronic states.

    Science.gov (United States)

    Ponzi, Aurora; Sapunar, Marin; Angeli, Celestino; Cimiraglia, Renzo; Došlić, Nađa; Decleva, Piero

    2016-02-28

    Here we present a comparative computational study of the photoionization of furan from the ground and the two lowest-lying excited electronic states. The study aims to assess the quality of the computational methods currently employed for treating bound and continuum states in photoionization. For the ionization from the ground electronic state, we show that the Dyson orbital approach combined with an accurate solution of the continuum one particle wave functions in a multicenter B-spline basis, at the density functional theory (DFT) level, provides cross sections and asymmetry parameters in excellent agreement with experimental data. On the contrary, when the Dyson orbitals approach is combined with the Coulomb and orthogonalized Coulomb treatments of the continuum, the results are qualitatively different. In excited electronic states, three electronic structure methods, TDDFT, ADC(2), and CASSCF, have been used for the computation of the Dyson orbitals, while the continuum was treated at the B-spline/DFT level. We show that photoionization observables are sensitive probes of the nature of the excited states as well as of the quality of excited state wave functions. This paves the way for applications in more complex situations such as time resolved photoionization spectroscopy.

  11. Plutonium disproportionation. Hydrolysis and local oxidation-state maxima

    International Nuclear Information System (INIS)

    Silver, G.L.

    2014-01-01

    Local maxima in the fractions of the trivalent and hexavalent oxidation states are inherent in the algebra of Pu disproportionation reactions. A new method predicts the pH and the oxidation-state fractions at maximum. Tabulated results illustrate the effects of the Pu oxidation number and Pu(IV) hydrolysis on the maxima. This method suggests a new laboratory approach for discovering Pu oxidation-state maxima. (author)

  12. Electron and hole transport in ambipolar, thin film pentacene transistors

    International Nuclear Information System (INIS)

    Saudari, Sangameshwar R.; Kagan, Cherie R.

    2015-01-01

    Solution-processed, ambipolar, thin-film pentacene field-effect transistors were employed to study both electron and hole transport simultaneously in a single, organic solid-state device. Electron and hole mobilities were extracted from the respective unipolar saturation regimes and show thermally activated behavior and gate voltage dependence. We fit the gate voltage dependent saturation mobility to a power law to extract the characteristic Meyer-Neldel (MN) energy, a measure of the width of the exponential distribution of localized states extending into the energy gap of the organic semiconductor. The MN energy is ∼78 and ∼28 meV for electrons and holes, respectively, which reflects a greater density of localized tail states for electrons than holes. This is consistent with the lower measured electron than hole mobility. For holes, the well-behaved linear regime allows for four-point probe measurement of the contact resistance independent mobility and separate characterization of the width of the localized density of states, yielding a consistent MN energy of 28 meV

  13. Electron and hole transport in ambipolar, thin film pentacene transistors

    Energy Technology Data Exchange (ETDEWEB)

    Saudari, Sangameshwar R. [Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104 (United States); Kagan, Cherie R. [Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104 (United States); Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104 (United States); Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104 (United States)

    2015-01-21

    Solution-processed, ambipolar, thin-film pentacene field-effect transistors were employed to study both electron and hole transport simultaneously in a single, organic solid-state device. Electron and hole mobilities were extracted from the respective unipolar saturation regimes and show thermally activated behavior and gate voltage dependence. We fit the gate voltage dependent saturation mobility to a power law to extract the characteristic Meyer-Neldel (MN) energy, a measure of the width of the exponential distribution of localized states extending into the energy gap of the organic semiconductor. The MN energy is ∼78 and ∼28 meV for electrons and holes, respectively, which reflects a greater density of localized tail states for electrons than holes. This is consistent with the lower measured electron than hole mobility. For holes, the well-behaved linear regime allows for four-point probe measurement of the contact resistance independent mobility and separate characterization of the width of the localized density of states, yielding a consistent MN energy of 28 meV.

  14. Sociodemographic Disparities in Local Smoke-Free Law Coverage in 10 States.

    Science.gov (United States)

    Huang, Jidong; King, Brian A; Babb, Stephen D; Xu, Xin; Hallett, Cynthia; Hopkins, Maggie

    2015-09-01

    We assessed sociodemographic disparities in local 100% smoke-free laws prohibiting smoking in all indoor areas of nonhospitality worksites, restaurants, and bars in 10 states. We obtained data on local 100% smoke-free laws (US Tobacco Control Laws Database) and subcounty characteristics (2006-2010 American Community Survey) for Alabama, Alaska, Indiana, Kentucky, Mississippi, Missouri, North Dakota, South Carolina, Texas, and West Virginia. Outcomes included (1) 100% smoke-free law covering restaurants, bars, and workplaces; (2) 100% smoke-free law covering restaurants, bars, or workplaces; and (3) number of venue types covered by 100% smoke-free laws (0-3). Sociodemographics included total population, urban status, percentage racial/ethnic minority, per capita income, percentage with high-school diploma, percentage with blue-collar jobs, and percentage of workers who live and work in the same locality. Across states, localities with less-educated residents, smaller proportions of workers living and working in the same locality, or both generally had lower odds of being covered by 100% smoke-free laws. Coverage varied across states for other sociodemographics. Disparities exist in local smoke-free law coverage. Identifying patterns in coverage can inform state efforts to address related disparities.

  15. On the importance of local orbitals using second energy derivatives for d and f electrons

    Science.gov (United States)

    Karsai, Ferenc; Tran, Fabien; Blaha, Peter

    2017-11-01

    The all-electron linearized augmented plane wave (LAPW) methods are among the most accurate to solve the Kohn-Sham equations of density functional theory for periodic solids. In the LAPW methods, the unit cell is partitioned into spheres surrounding the atoms, inside which the wave functions are expanded into spherical harmonics, and the interstitial region, where the wave functions are expanded in Fourier series. Recently, Michalicek et al. (2013) reported an analysis of the so-called linearization error, which is inherent to the basis functions inside the spheres, and advocated the use of local orbital basis functions involving the second energy derivative of the radial part (HDLO). In the present work, we report the implementation of such basis functions into the WIEN2k code, and discuss in detail the improvement in terms of accuracy. From our tests, which involve atoms from the whole periodic table, it is concluded that for ground-state properties (e.g., equilibrium volume) the use of HDLO is necessary only for atoms with d or f electrons in the valence and large atomic spheres. For unoccupied states which are not too high above the Fermi energy, HDLO systematically improve the band structure, which may be of importance for the calculation of optical properties.

  16. Quantum corral effects on competing orders and electronic states in chiral d + id or f-wave superconductors.

    Science.gov (United States)

    Zuo, Xian-Jun

    2018-03-07

    Self-consistent calculations are performed to characterize the quantum corral effects on the electronic states of chiral d + id or f-wave superconductors in this paper. A variety of spatial structures of competing orders are revealed in the presence of ferromagnetic nano-corrals, and superconducting islands are found to be absent in the case of small corrals while being seen for large corrals. Compared with the local suppression of superconductivity by a magnetic impurity inside the corral, surprisingly, an additional remarkable feature, i.e., obvious oscillations or enhancement of superconductivity around a non-magnetic impurity, is observed inside the magnetic corral. This is important in view of applications, especially in view of the demand for devices to locally produce strong superconductivity. Meanwhile, the charge density displays obvious modulations due to quantum confinement but in contrast, the spin density pattern exhibits its robustness against the corral effect. Furthermore, we explore the local density of states so as to be directly checked by experiments. We demonstrate that a magnetic corral can suppress the formation of quasi-particle bound states induced by an impurity inside the corral in the chiral d + id state while the f-wave case shows different behaviors. These results also propose a new route to make a distinction between the two competing pairing states in triangular-lattice superconductors.

  17. Electron-electron bound states in parity-preserving QED{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Belich, H.; Helayel-Neto, J.A. [Universidade Catolica do Petropolis, RJ (Brazil). Grupo de Fisica Teorica]|[Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil). Coordenacao de Teoria de Campos e Particulas; Cima, O.M. del [Universidade Catolica do Petropolis, RJ (Brazil). Grupo de Fisica Teorica; Ferreira Junior, M.M. [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil). Coordenacao de Teoria de Campos e Particulas]|[Maranhao Univ., Sao Luis, MA (Brazil). Dept. de Fisica

    2002-04-01

    By considering the Higgs mechanism in the framework of a parity-preserving Planar Quantum Electrodynamics, one shows that an attractive electron-electron interaction may dominate. The e{sup -}e{sup -} interaction potential emerges as the non-relativistic limit of the Moeller scattering amplitude and it results attractive with a suitable choice of parameters. Numerically values of the e{sup -}e{sup -} binding energy are obtained by solving the two-dimensional Schroedinger equation. The existence of bound states is a strong indicative that this model may be adopted to address the pairing mechanism of high-T{sub c} superconductivity. (author)

  18. Athermal electron distribution probed by femtosecond multiphoton photoemission from image potential states

    International Nuclear Information System (INIS)

    Ferrini, Gabriele; Giannetti, Claudio; Pagliara, Stefania; Banfi, Francesco; Galimberti, Gianluca; Parmigiani, Fulvio

    2005-01-01

    Image potential states are populated through indirect, scattering-mediated multiphoton absorption induced by femtosecond laser pulses and revealed by single-photon photoemission. The measured effective mass is significantly different from that obtained with direct, resonant population. These features reveal a strong coupling of the electrons residing in the image potential state, outside the solid, with the underlying hot electron population created by the laser pulse. The coupling is mediated by a many-body scattering interaction between the image potential state electrons and bulk electrons in highly excited states

  19. Method for local temperature measurement in a nanoreactor for in situ high-resolution electron microscopy.

    Science.gov (United States)

    Vendelbo, S B; Kooyman, P J; Creemer, J F; Morana, B; Mele, L; Dona, P; Nelissen, B J; Helveg, S

    2013-10-01

    In situ high-resolution transmission electron microscopy (TEM) of solids under reactive gas conditions can be facilitated by microelectromechanical system devices called nanoreactors. These nanoreactors are windowed cells containing nanoliter volumes of gas at ambient pressures and elevated temperatures. However, due to the high spatial confinement of the reaction environment, traditional methods for measuring process parameters, such as the local temperature, are difficult to apply. To address this issue, we devise an electron energy loss spectroscopy (EELS) method that probes the local temperature of the reaction volume under inspection by the electron beam. The local gas density, as measured using quantitative EELS, is combined with the inherent relation between gas density and temperature, as described by the ideal gas law, to obtain the local temperature. Using this method we determined the temperature gradient in a nanoreactor in situ, while the average, global temperature was monitored by a traditional measurement of the electrical resistivity of the heater. The local gas temperatures had a maximum of 56 °C deviation from the global heater values under the applied conditions. The local temperatures, obtained with the proposed method, are in good agreement with predictions from an analytical model. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Evaluation of macromolecular electron-density map quality using the correlation of local r.m.s. density

    International Nuclear Information System (INIS)

    Terwilliger, Thomas C.; Berendzen, Joel

    1999-01-01

    The correlation of local r.m.s. density is shown to be a good measure of the presence of distinct solvent and macromolecule regions in macromolecular electron-density maps. It has recently been shown that the standard deviation of local r.m.s. electron density is a good indicator of the presence of distinct regions of solvent and protein in macromolecular electron-density maps [Terwilliger & Berendzen (1999 ▶). Acta Cryst. D55, 501–505]. Here, it is demonstrated that a complementary measure, the correlation of local r.m.s. density in adjacent regions on the unit cell, is also a good measure of the presence of distinct solvent and protein regions. The correlation of local r.m.s. density is essentially a measure of how contiguous the solvent (and protein) regions are in the electron-density map. This statistic can be calculated in real space or in reciprocal space and has potential uses in evaluation of heavy-atom solutions in the MIR and MAD methods as well as for evaluation of trial phase sets in ab initio phasing procedures

  1. The relation between the (N) and (N-1) electrons atomic ground state

    International Nuclear Information System (INIS)

    Briet, P.

    1984-05-01

    The relation between the ground state of an N and (N-1) electrons atomic system are studied. We show that in some directions of the configuration space, the ratio of the N electrons atomic ground state to the one particle density is asymptotically equivalent to the (N-1) electrons atomic ground state

  2. Standard forms and entanglement engineering of multimode Gaussian states under local operations

    International Nuclear Information System (INIS)

    Serafini, Alessio; Adesso, Gerardo

    2007-01-01

    We investigate the action of local unitary operations on multimode (pure or mixed) Gaussian states and single out the minimal number of locally invariant parameters which completely characterize the covariance matrix of such states. For pure Gaussian states, central resources for continuous-variable quantum information, we investigate separately the parameter reduction due to the additional constraint of global purity, and the one following by the local-unitary freedom. Counting arguments and insights from the phase-space Schmidt decomposition and in general from the framework of symplectic analysis, accompany our description of the standard form of pure n-mode Gaussian states. In particular, we clarify why only in pure states with n ≤ 3 modes all the direct correlations between position and momentum operators can be set to zero by local unitary operations. For any n, the emerging minimal set of parameters contains complete information about all forms of entanglement in the corresponding states. An efficient state engineering scheme (able to encode direct correlations between position and momentum operators as well) is proposed to produce entangled multimode Gaussian resources, its number of optical elements matching the minimal number of locally invariant degrees of freedom of general pure n-mode Gaussian states. Finally, we demonstrate that so-called 'block-diagonal' Gaussian states, without direct correlations between position and momentum, are systematically less entangled, on average, than arbitrary pure Gaussian states

  3. Local moment formation in Dirac electrons

    International Nuclear Information System (INIS)

    Mashkoori, M; Mahyaeh, I; Jafari, S A

    2015-01-01

    Elemental bismuth and its compounds host strong spin-orbit interaction which is at the heart of topologically non-trivial alloys based on bismuth. These class of materials are described in terms of 4x4 matrices at each v point where spin and orbital labels of the underlying electrons are mixed. In this work we investigate the single impurity Anderson model (SIAM) within a mean field approximation to address the nature of local magnetic moment formation in a generic Dirac Hamiltonian. Despite the spin-mixing in the Hamiltonian, within the Hartree approximation it turns out that the impuritys Green function is diagonal in spin label. In the three dimensional Dirac materials defined over a bandwidth D and spin-orbit parameter γ, that hybridizes with impurity through V, a natural dimensionless parameter V 2 D/2πγ 3 emerges. So neither the hybridization strength, V, nor the spin-orbit coupling γ, but a combination thereof governs the phase diagram. By tuning chemical potential and the impurity level, we present phase diagram for various values of Hubbard U. Numerical results suggest that strong spin-orbit coupling enhances the local moment formation both in terms of its strength and the area of the local moment region. In the case that we tune the chemical potential in a similar way as normal metal we find that magnetic region is confined to μ ≥ ε 0 , in sharp contrast to 2D Dirac fermions. If one fixes the chemical potential and tunes the impurity level, phase diagram has two magnetic regions which corresponds to hybridization of impurity level with lower and upper bands. (paper)

  4. Electron structure of amorphous semi-conductor states

    International Nuclear Information System (INIS)

    Wiid, D.H.; Lemmer, R.H.

    1975-01-01

    The electrical properties of amorphous materials are determined by their electron states. Since the electrons are much lighter than the massive ions, the energy levels of the electrons are extremely sensitive to changes in the states of the ions, e.g. a change in their positions. A method has been developed to approximate the positional disorder inthe crystal by a compositional disorder, i.e. the substitution, in a pure crystal, of ions by impurities. The advantage of this lies in the retention of the periodicity of the lattice. This model is linked with an investigation at present under way, in which the mobility, electrical resistance, etc. of a silicon crystal is determined as a function of its amorphous state. It is for instance possible to control the degree of disorder in the crystal, and the problem is to characterise the disorder by a specific parameter. For theoretical calculations such a parameter is essential and it is therefore also the biggest shortcoming in all the theories that, as far as is known, have been developed. It is possible to set up a general phenomenological theory for, for example, electrical resistance, but in view of its complex nature only rough approximations can be made [af

  5. Attention to state, local taxes can save producers money

    International Nuclear Information System (INIS)

    Eggett, R.K.

    1997-01-01

    A constant challenge for independent oil and gas producers in the US is taxes. While the federal income tax code undergoes periodic revision, with much sound and fury attached to congressional and presidential action, state and local taxes are constantly being revised with little fanfare and little publicity. As an independent producer, one should pay close attention to these taxes because, in the aggregate, businesses pay considerably more to state and local jurisdictions in income, sales and use, and property taxes than they pay to the federal government in income tax. More than 85,000 taxing jurisdictions in the US impose a variety of taxes in a variety of ways, and your company's operations may span a number of them. The goal is to lower one's overall effective rate--the percentage of income one is paying to state and local governments. This article will explore some of the issues raised by the major taxes for which one is responsible

  6. Electronic properties of polycrystalline graphene under large local strain

    International Nuclear Information System (INIS)

    He, Xin; Tang, Ning; Duan, Junxi; Mei, Fuhong; Meng, Hu; Lu, Fangchao; Xu, Fujun; Yang, Xuelin; Gao, Li; Wang, Xinqiang; Shen, Bo; Ge, Weikun

    2014-01-01

    To explore the transport properties of polycrystalline graphene under large tensile strain, a strain device has been fabricated using piezocrystal to load local strain onto graphene, up to 22.5%. Ionic liquid gate whose capability of tuning carrier density being much higher than that of a solid gate is used to survey the transfer characteristics of the deformed graphene. The conductance of the Dirac point and field effect mobility of electrons and holes is found to decrease with increasing strain, which is attributed to the scattering of the graphene grain boundaries, the strain induced change of band structure, and defects. However, the transport gap is still not opened. Our study is helpful to evaluate the application of graphene in stretchable electronics.

  7. Coherent electron - hole state and femtosecond cooperative emission in bulk GaAs

    International Nuclear Information System (INIS)

    Vasil'ev, Petr P; Kan, H; Ohta, H; Hiruma, T

    2002-01-01

    The conditions for obtaining a collective coherent electron - hole state in semiconductors are discussed. The results of the experimental study of the regime of cooperative recombination of high-density electrons and holes (more than 3 x 10 18 cm -3 ) in bulk GaAs at room temperature are presented. It is shown that the collective pairing of electrons and holes and their condensation cause the formation of a short-living coherent electron - hole BCS-like state, which exhibits radiative recombination in the form of high-power femtosecond optical pulses. It is experimentally demonstrated that almost all of the electrons and holes available are condensed at the very bottoms of the bands and are at the cooperative state. The average lifetime of this state is measured to be of about 300 fs. The dependences of the order parameter (the energy gap of the spectrum of electrons and holes) and the Fermi energy of the coherent BCS state on the electron - hole concentration are obtained. (special issue devoted to the 80th anniversary of academician n g basov's birth)

  8. Atomistic spectrometrics of local bond-electron-energy pertaining to Na and K clusters

    Energy Technology Data Exchange (ETDEWEB)

    Bo, Maolin [Key Laboratory of Low-Dimensional Materials and Application Technologies, Ministry of Education, Xiangtan University, Hunan 411105 (China); Wang, Yan, E-mail: YWang8@hnust.edu.cn [School of Information and Electronic Engineering, Hunan University of Science and Technology, Hunan 411201 (China); Huang, Yongli; Liu, Yonghui [Key Laboratory of Low-Dimensional Materials and Application Technologies, Ministry of Education, Xiangtan University, Hunan 411105 (China); Li, Can [Center for Coordination Bond Engineering, School of Materials Science and Engineering, China Jiliang University, Hangzhou 330018 (China); Sun, Chang Q., E-mail: ecqsun@ntu.edu.sg [NOVITAS, School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798 (Singapore)

    2015-01-15

    Graphical abstract: - Highlights: • Coordination environment resolves electron binding-energy shift of Na and K clusters. • Cohesive energy of the representative bond determines the core-level shift. • XPS derives the energy level of an isolated atom and its bulk shift. • XPS derives the local bond length, bond energy, binding energy density. - Abstract: Consistency between density functional theory calculations and photoelectron spectroscopy measurements confirmed our predications on the undercoordination-induced local bond relaxation and core level shift of Na and K clusters. It is clarified that the shorter and stronger bonds between under-coordinated atoms cause local densification and local potential well depression and shift the electron binding-energy accordingly. Numerical consistency turns out the energy levels for an isolated Na (E{sub 2p} = 31.167 eV) and K (E{sub 3p} = 18.034 eV) atoms and their respective bulk shifts of 2.401 eV and 2.754 eV, which is beyond the scope of conventional approaches. This strategy has also resulted in quantification of the local bond length, bond energy, binding energy density, and atomic cohesive energy associated with the undercoordinated atoms.

  9. Unconventional scaling of the anomalous Hall effect accompanying electron localization correction in the dirty regime

    KAUST Repository

    Lu, Y. M.

    2013-03-05

    Scaling of the anomalous Hall conductivity to longitudinal conductivity σAH∝σ2xx has been observed in the dirty regime of two-dimensional weak and strong localization regions in ultrathin, polycrystalline, chemically disordered, ferromagnetic FePt films. The relationship between electron transport and temperature reveals a quantitatively insignificant Coulomb interaction in these films, while the temperature dependent anomalous Hall conductivity experiences quantum correction from electron localization. At the onset of this correction, the low-temperature anomalous Hall resistivity begins to be saturated when the thickness of the FePt film is reduced, and the corresponding Hall conductivity scaling exponent becomes 2, which is above the recent unified theory of 1.6 (σAH∝σ1.6xx). Our results strongly suggest that the correction of the electron localization modulates the scaling exponent of the anomalous Hall effect.

  10. Effects of weak localization in quasi-one-dimensional electronic system over liquid helium

    CERN Document Server

    Kovdrya, Y Z; Gladchenko, S P

    2001-01-01

    One measured rho sub x sub x magnetoresistance of a quasi-one-dimensional electronic system over liquid helium within gas scattering range (1.3-2.0 K temperature range). It is shown that with increase of magnetic field the magnetoresistance is reduced at first and them upon passing over minimum it begins to increase from rho sub x sub x approx B sup 2 law. One anticipated that the negative magnetoresistance detected in the course of experiments resulted from the effects of weak localization. The experiment results are in qualitative conformity with the theoretical model describing processes of weak localization in single-dimensional nondegenerate electronic systems

  11. Experimental evidence for electron localization on Au upon photo-activation of Au/anatase catalysts

    NARCIS (Netherlands)

    Carneiro, J.T.; Carneiro, Joana T.; Savenije, Tom J.; Mul, Guido

    2009-01-01

    Time resolved microwave conductivity (TRMC) measurements show that the presence of Au on anatase Hombikat UV100 significantly reduces the lifetime of mobile electrons formed by photo-excitation of this photocatalyst at 300 nm, providing evidence for the widely acclaimed electron localization effect

  12. Localization of fluorescently labeled structures in frozen-hydrated samples using integrated light electron microscopy

    NARCIS (Netherlands)

    Faas, F.G.A.; Bárcena, M.A.; Agronskaia, A.V.; Gerritsen, H.C.; Moscicka, K.B.; Diebolder, C.A.; Driel, L.F.; Limpens, R.W.A.L.; Bos, E.; Ravelli, R.B.G.; Koning, R.I.; Koster, A.J.

    2013-01-01

    Correlative light and electron microscopy is an increasingly popular technique to study complex biological systems at various levels of resolution. Fluorescence microscopy can be employed to scan large areas to localize regions of interest which are then analyzed by electron microscopy to obtain

  13. Adoption of Enriched Local Complementary Food in Osun State ...

    African Journals Online (AJOL)

    Locally processed complementary foods, appropriately enriched can complement breast milk and traditional foods during the nutritionally vulnerable periods of a child life. The study therefore examines the adoption of enriched local complementary foods in Osun State Nigeria. Structured interview schedule was used to ...

  14. Model of electron capture in low-temperature glasses

    International Nuclear Information System (INIS)

    Bartczak, W.M.; Swiatla, D.; Kroh, J.

    1983-01-01

    The new model of electron capture by a statistical variety of traps in glassy matrices is proposed. The electron capture is interpreted as the radiationless transition (assisted by multiphonon emission) of the mobile electron to the localized state in the trap. The conception of 'unfair' and 'fair' traps is introduced. The 'unfair' trap captures the mobile electron by the shallow excited state. In contrast, the 'fair' trap captures the electron by the ground state. The model calculations of the statistical distributions of the occupied electron traps are presented and discussed with respect to experimental results. (author)

  15. Electronic structure of the amorphous oxide semiconductor a-InGaZnO4-x: Tauc-Lorentz optical model and origins of subgap states

    International Nuclear Information System (INIS)

    Kamiya, Toshio; Nomura, Kenji; Hosono, Hideo

    2009-01-01

    This paper discusses an optical model and subgap electronic states for a representative amorphous oxide semiconductor, InGaZnO 4 (a-IGZO). Parameterized optical models were developed based on the Tauc-Lorentz model combined with a Lorentz-type oscillator. The measured optical absorption spectra exhibit nearly linear dependences on photon energy (E) between 3 eV 0,TL ) being around 4 eV. The optimized parameters for the fixed E 0,TL of 3.7 eV are provided for four different a-IGZO films with root-mean-square errors less than 1%. Formation energies of crystalline IGZO, stoichiometric a-IGZO, oxygen deficient a-IGZO and their constituent oxides were calculated by the density functional theory using the local density approximation (LDA) and generalized gradient approximation with PBE96 functionals (PBE). PBE gives larger unit cell volumes at the ground states and better agreement in the formation energies than LDA does. The formation energies of an oxygen deficiency in a-IGZO were calculated to be 3.2-3.5 eV. The calculated electronic structures of stoichiometric a-IGZO models exhibit somewhat large dispersions for conduction bands (CB), which are not largely affected by the disordered structure in a-IGZO, while the dispersions of the valence bands (VBs) are very small, unlike the crystalline IGZO, showing that a-IGZO have strongly localized states at the VB maximums (VBMs). Oxygen-deficient a-IGZO models showed that oxygen deficiencies form both a deep localized state at 0.4-1 eV above VBM and a shallow donor state depending on local atomic configurations. An oxygen deficiency that forms a deep state breaks the dispersion of the CB, which could be an origin of the subgap states observed near CB. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  16. Entanglement between electronic states in silicene and photons

    Energy Technology Data Exchange (ETDEWEB)

    Rastgoo, S. [Physics Department, College of Sciences, Shiraz University, Shiraz 71454 (Iran, Islamic Republic of); Shirkani, H. [Physics Department, Persian Gulf University, Bushehr 75169 (Iran, Islamic Republic of); Golshan, M.M., E-mail: golshan@susc.ac.ir [Physics Department, College of Sciences, Shiraz University, Shiraz 71454 (Iran, Islamic Republic of)

    2015-06-12

    Temporal behavior of entanglement between electrons in silicene and single mode radiations is reported. We show that the corresponding total Hamiltonian and time evolution operators are block diagonal. Initial states are divided into two categories for which buckling and the intrinsic spin–orbit effects are either of opposite or the same signs. Negativity shows that π-electrons and photons periodically become entangled for both categories. The entanglement spontaneously shows abrupt variations when buckling and the spin–orbit effects are equal but opposite in sign, leading to quantum phase transitions. As photonic excitations increase, the entanglement exhibits plateaus of constant durations for such initial states. - Highlights: • Time evolution of entanglement between π-electrons and photons in silicene is reported. • Intrinsic spin–orbit coupling (ISOC) and buckling effect (BE) are taken into account. • Initial states with ISOC and BE of opposite signs show quantum phase transitions. • Quantum phase transitions spontaneously occur when ISOC is equal to BE. • Periodic plateaus of maximal entanglement are observed for high photonic excitations.

  17. Quantum tunneling of electron snake states in an inhomogeneous magnetic field

    Science.gov (United States)

    Hoodbhoy, Pervez

    2018-05-01

    In a two dimensional free electron gas subjected to a perpendicular spatially varying magnetic field, the classical paths of electrons are snake-like trajectories that weave along the line where the field crosses zero. But quantum mechanically this system is described by a symmetric double well potential which, for low excitations, leads to very different electron behavior. We compute the spectrum, as well as the wavefunctions, for states of definite parity in the limit of nearly degenerate states, i.e. for electrons sufficiently far from the B z   =  0 line. Transitions between the states are shown to give rise to a tunneling current. If the well is made asymmetrical by a time-dependent parity breaking perturbation then Rabi-like oscillations between parity states occur. Resonances can be excited and used to stimulate the transfer of electrons from one side of the potential barrier to the other through quantum tunneling.

  18. Quantum tunneling of electron snake states in an inhomogeneous magnetic field.

    Science.gov (United States)

    Hoodbhoy, Pervez

    2018-05-10

    In a two dimensional free electron gas subjected to a perpendicular spatially varying magnetic field, the classical paths of electrons are snake-like trajectories that weave along the line where the field crosses zero. But quantum mechanically this system is described by a symmetric double well potential which, for low excitations, leads to very different electron behavior. We compute the spectrum, as well as the wavefunctions, for states of definite parity in the limit of nearly degenerate states, i.e. for electrons sufficiently far from the B z   =  0 line. Transitions between the states are shown to give rise to a tunneling current. If the well is made asymmetrical by a time-dependent parity breaking perturbation then Rabi-like oscillations between parity states occur. Resonances can be excited and used to stimulate the transfer of electrons from one side of the potential barrier to the other through quantum tunneling.

  19. 48 CFR 29.305 - State and local tax exemptions.

    Science.gov (United States)

    2010-10-01

    ... invoices, or similar documents that identify an agency or instrumentality of the United States as the buyer. (3) A U.S. Tax Exemption Form (SF 1094). (4) A State or local form indicating that the supplies or...

  20. Electron beam charge state amplifier (EBQA)--a conceptual evaluation

    International Nuclear Information System (INIS)

    Dooling, J. C.

    1998-01-01

    A concept is presented for stripping low-energy, radioactive ions from 1+ to higher charge states. Referred to as an Electron Beam Charge State Amplifier (EBQA), this device accepts a continuous beam of singly-charged, radioactive ions and passes them through a high-density electron beam confined by a solenoidal magnetic field. Singly-charged ions may be extracted from standard Isotope-Separator-Online (ISOL) sources. An EBQA is potentially useful for increasing the charge state of ions prior to injection into post-acceleration stages at ISOL radioactive beam facilities. The stripping efficiency from q=1+ to 2+ (η 12 ) is evaluated as a function of electron beam radius at constant current with solenoid field, injected ion energy, and ion beam emittance used as parameters. Assuming a 5 keV, 1 A electron beam, η 12 = 0.38 for 0.1 keV, 132 Xe ions passing through an 8 Tesla solenoid, 1 m in length. Multi-pass configurations to achieve 3+ or 4+ charge states are also conceivable. The calculated efficiencies depend inversely on the initial ion beam emittances. The use of a helium-buffer-gas, ion-guide stage to improve the brightness of the 1+ beams [1] may enhance the performance of an EBQA

  1. Chirality-Assisted Electronic Cloaking of Confined States in Bilayer Graphene

    Science.gov (United States)

    Gu, Nan; Rudner, Mark; Levitov, Leonid

    2011-10-01

    We show that the strong coupling of pseudospin orientation and charge carrier motion in bilayer graphene has a drastic effect on transport properties of ballistic p-n-p junctions. Electronic states with zero momentum parallel to the barrier are confined under it for one pseudospin orientation, whereas states with the opposite pseudospin tunnel through the junction totally uninfluenced by the presence of confined states. We demonstrate that the junction acts as a cloak for confined states, making them nearly invisible to electrons in the outer regions over a range of incidence angles. This behavior is manifested in the two-terminal conductance as transmission resonances with non-Lorentzian, singular peak shapes. The response of these phenomena to a weak magnetic field or electric-field-induced interlayer gap can serve as an experimental fingerprint of electronic cloaking.

  2. Electronic Entanglement Concentration for the Concatenated Greenberger-Horne-Zeilinger State

    Science.gov (United States)

    Ding, Shang-Ping; Zhou, Lan; Gu, Shi-Pu; Wang, Xing-Fu; Sheng, Yu-Bo

    2017-06-01

    Concatenated Greenberger-Horne-Zeilinger (C-GHZ) state, which encodes many physical qubits in a logic qubit will have important applications in both quantum communication and computation. In this paper, we will describe an entanglement concentration protocol (ECP) for electronic C-GHZ state, by exploiting the electronic polarization beam splitters (PBSs) and charge detection. This protocol has several advantages. First, the parties do not need to know the exact coefficients of the initial less-entangled C-GHZ state, which makes this protocol feasible. Second, with the help of charge detection, the distilled maximally entangled C-GHZ state can be remained for future application. Third, this protocol can be repeated to obtain a higher success probability. We hope that this protocol can be useful in future quantum computation based on electrons.

  3. Electron-electron attractive interaction in Maxwell-Chern-Simons QED3 at zero temperature

    International Nuclear Information System (INIS)

    Belich, H.; Ferreira Junior, M.M.; Helayel-Neto, J.A.; Ferreira Junior, M.M.

    2001-04-01

    One discusses the issue of low-energy electron-electron bound states in the Maxwell-Chern-Simons model coupled to QED 3 with spontaneous breaking of a local U(1)-symmetry. The scattering potential, in the non-relativistic limit, steaming from the electron-electron Moeller scattering, mediated by the Maxwell-Chern-Simons-Proca gauge field and the Higgs scalar, might be attractive by fine-tuning properly the physical parameters of the model. (author)

  4. Two dimensional electron systems for solid state quantum computation

    Science.gov (United States)

    Mondal, Sumit

    Two dimensional electron systems based on GaAs/AlGaAs heterostructures are extremely useful in various scientific investigations of recent times including the search for quantum computational schemes. Although significant strides have been made over the past few years to realize solid state qubits on GaAs/AlGaAs 2DEGs, there are numerous factors limiting the progress. We attempt to identify factors that have material and design-specific origin and develop ways to overcome them. The thesis is divided in two broad segments. In the first segment we describe the realization of a new field-effect induced two dimensional electron system on GaAs/AlGaAs heterostructure where the novel device-design is expected to suppress the level of charge noise present in the device. Modulation-doped GaAs/AlGaAs heterostructures are utilized extensively in the study of quantum transport in nanostructures, but charge fluctuations associated with remote ionized dopants often produce deleterious effects. Electric field-induced carrier systems offer an attractive alternative if certain challenges can be overcome. We demonstrate a field-effect transistor in which the active channel is locally devoid of modulation-doping, but silicon dopant atoms are retained in the ohmic contact region to facilitate low-resistance contacts. A high quality two-dimensional electron gas is induced by a field-effect that is tunable over a density range of 6.5x10 10cm-2 to 2.6x1011cm-2 . Device design, fabrication, and low temperature (T=0.3K) characterization results are discussed. The demonstrated device-design overcomes several existing limitations in the fabrication of field-induced 2DEGs and might find utility in hosting nanostructures required for making spin qubits. The second broad segment describes our effort to correlate transport parameters measured at T=0.3K to the strength of the fractional quantum Hall state observed at nu=5/2 in the second Landau level of high-mobility GaAs/AlGaAs two dimensional

  5. Antiscreening mode of projectile-electron loss

    International Nuclear Information System (INIS)

    Montanari, C.C.; Miraglia, J.E.; Arista, N.R.

    2003-01-01

    The inelastic contribution of target electrons to different electronic processes in the projectile is obtained by employing the local-density approximation as usually applied in the dielectric formalism. Projectile-electron-loss cross sections due to the electron-electron interaction are calculated and compared with those obtained by using atomic antiscreening theories. We also calculate ionization cross sections and stopping power for bare ions impinging on different gases. The good agreement with the experimental data and the simplicity of the local-density approximation make it an efficient method for describing inelastic processes of gaseous target electrons. It is expected to be useful for targets with large atomic number. In this case, the number of possible final states to be considered by the traditional atomic methods makes it a tough task to be tackled. On the contrary, the more electrons the target has, the better the local plasma approximation is expected to be

  6. HIV Services Provided by STD Programs in State and Local Health Departments - United States, 2013-2014.

    Science.gov (United States)

    Cuffe, Kendra M; Esie, Precious; Leichliter, Jami S; Gift, Thomas L

    2017-04-07

    The incidence of human immunodeficiency virus (HIV) infection in the United States is higher among persons with other sexually transmitted diseases (STDs), and the incidence of other STDs is increased among persons with HIV infection (1). Because infection with an STD increases the risk for HIV acquisition and transmission (1-4), successfully treating STDs might help reduce the spread of HIV among persons at high risk (1-4). Because health department STD programs provide services to populations who are at risk for HIV, ensuring service integration and coordination could potentially reduce the incidence of STDs and HIV. Program integration refers to the combining of STD and HIV prevention programs through structural, service, or policy-related changes such as combining funding streams, performing STD and HIV case matching, or integrating staff members (5). Some STD programs in U.S. health departments are partially or fully integrated with an HIV program (STD/HIV program), whereas other STD programs are completely separate. To assess the extent of provision of HIV services by state and local health department STD programs, CDC analyzed data from a sample of 311 local health departments and 56 state and directly funded city health departments derived from a national survey of STD programs. CDC found variation in the provision of HIV services by STD programs at the state and local levels. Overall, 73.1% of state health departments and 16.1% of local health departments matched STD case report data with HIV data to analyze possible syndemics (co-occurring epidemics that exacerbate the negative health effects of any of the diseases) and overlaps. Similarly, 94.1% of state health departments and 46.7% of local health departments performed site visits to HIV care providers to provide STD information or public health updates. One fourth of state health departments and 39.4% of local health departments provided HIV testing in nonclinical settings (field testing) for STD

  7. Accuracy of local exchange in the calculation of continuum wavefunctions

    International Nuclear Information System (INIS)

    Biava, D A; Bartschat, K; Saha, H P; Madison, D H

    2002-01-01

    It is well known that electron exchange can play an important role in electron-impact elastic, inelastic and ionization scattering from atoms and molecules. The proper theoretical treatment of exchange yields an inhomogeneous differential equation with a non-local exchange operator. To simplify the calculation, a local approximation is often made for this non-local operator. In this paper, we examine the accuracy of this approximation for the calculation of elastic scattering continuum waves in the presence of an argon ion with a single vacancy in the p-shell. It is found that one can reliably use the local exchange approximation for ionization leading to s-state vacancies but not p-state vacancies

  8. Local commutativity versus Bell inequality violation for entangled states and versus non-violation for separable states

    International Nuclear Information System (INIS)

    Seevinck, Michael; Uffink, Jos

    2007-01-01

    By introducing a quantitative 'degree of commutativity' in terms of the angle between spin observables we present two tight quantitative trade-off relations in the case of two qubits. First, for entangled states, between the degree of commutativity of local observables and the maximal amount of violation of the Bell inequality: if both local angles increase from zero to π/2 (i.e., the degree of local commutativity decreases), the maximum violation of the Bell inequality increases. Secondly, a converse trade-off relation holds for separable states: if both local angles approach π/2 the maximal value obtainable for the correlations in the Bell inequality decreases and thus the non-violation increases. As expected, the extremes of these relations are found in the case of anticommuting local observables where, respectively, the bounds of 2√(2) and √(2) hold for the expectation value of the Bell operator. The trade-off relations show that noncommmutativity gives ''a more than classical result'' for entangled states, whereas ''a less than classical result'' is obtained for separable states. The experimental relevance of the trade-off relation for separable states is that it provides an experimental test for two qubit entanglement. Its advantages are twofold: in comparison to violations of Bell inequalities it is a stronger criterion and in comparison to entanglement witnesses it needs to make less strong assumptions about the observables implemented in the experiment

  9. All Electron ab initio Investigations of the Three Lowest Lying Electronic States of the RuC Molecule

    DEFF Research Database (Denmark)

    Shim, Irene; Gingerich, K. A.

    2000-01-01

    The three lowest-lying electronic states of RuC, (1)Sigma(+), (3)Delta, and (1)Delta, have been investigated by performing all-electron ab initio multi-configuration self-consistent-field (CASSCF) and multi-reference configuration interaction (MRCI) calculations including relativistic corrections....... The electronic ground state is derived as (1)Sigma(+) with the spectroscopic constants r(e) = 1.616 Angstrom and omega(e) = 1085 cm(-1). The lowest-lying excited state, (3)Delta, has r(e) = 1.632 Angstrom, omega(e) = 1063 cm(-1), and T-e = 912 cm(-1). These results are consistent with recent spectroscopic values....... The chemical bonds in all three lowest-lying states are triple bonds composed of one sigma and two pi bonds. (C) 2000 Elsevier Science B.V. All rights reserved....

  10. Thermal conductivity of electron-doped CaMnO3 perovskites: Local lattice distortions and optical phonon thermal excitation

    International Nuclear Information System (INIS)

    Wang Yang; Sui Yu; Wang Xianjie; Su Wenhui; Liu Xiaoyang; Fan, Hong Jin

    2010-01-01

    The thermal transport properties of a series of electron-doped CaMnO 3 perovskites have been investigated. Throughout the temperature range 5-300 K, phonon thermal conductivity is dominant, and both electron and spin wave contributions are negligible. The short phonon mean free paths in this system result in the relatively low thermal conductivities. The strong phonon scatterings stem from the A-site mismatch and bond-length fluctuations induced by local distortions of MnO 6 octahedra. The thermal conductivity in the magnetically ordered state is enhanced as a result of the decrease in spin-phonon scattering. The results also indicate that above the magnetic ordering temperature, observable thermal excitation of optical phonons occurs. The contribution of optical phonons to thermal conductivity becomes non-negligible and is proposed to play an important role in the glass-like thermal transport behavior (i.e. positive temperature dependence of the thermal conductivity) in the paramagnetic state. These features can be understood in terms of an expression of thermal conductivity that includes both acoustic and optical phonon terms.

  11. The Non-Equilibrium Statistical Distribution Function for Electrons and Holes in Semiconductor Heterostructures in Steady-State Conditions

    Directory of Open Access Journals (Sweden)

    Krzysztof Jόzwikowska

    2015-06-01

    Full Text Available The main goal of this work is to determine a statistical non-equilibrium distribution function for the electron and holes in semiconductor heterostructures in steady-state conditions. Based on the postulates of local equilibrium, as well as on the integral form of the weighted Gyarmati’s variational principle in the force representation, using an alternative method, we have derived general expressions, which have the form of the Fermi–Dirac distribution function with four additional components. The physical interpretation of these components has been carried out in this paper. Some numerical results of a non-equilibrium distribution function for an electron in HgCdTe structures are also presented.

  12. Origin of localized states in zinc-blende ZnCdSe thin films and the influence on carrier relaxation of self-assembled ZnTe/ZnCdSe quantum dots

    International Nuclear Information System (INIS)

    Lee, Ling; Dai, Yue-Ru; Yang, Chu-Shou; Fan, Wen-Chung; Chou, Wu-Ching

    2015-01-01

    Highlights: • The localized emission in zinc-blende ZnCdSe is induced by excess selenium. • An optimized growth is demonstrated as the VI/II ratio approaches unity. • Size-independent lifetimes are observed in ZnTe/ZnCdSe quantum dots. • Localized electrons in the capping layer dominate size-independent lifetimes. - Abstract: This study discovered the origin of deep level emission in zinc-blende ZnCdSe thin films grown by molecular beam epitaxy, in which a localization behavior was noticed. Pronounced deep level emission observed in films grown under a VI/II ratio of 1.74 (Se-accumulated regime) could be suppressed by a lower VI/II ratio of 1.04 (intermediate regime) and 0.74 (metal-rich regime). Hence the localized states could be correlated to excess selenium accumulated at the growth surface. The localized states also influence the carrier relaxation process of self-assembled ZnTe quantum dots embedded in a ZnCdSe matrix. Once quantum dots surmount the wetting layer, localized electrons in the capping layer dominate the type-II transition and exhibit size-independent lifetimes

  13. Localized solid-state amorphization at grain boundaries in a nanocrystalline Al solid solution subjected to surface mechanical attrition

    Energy Technology Data Exchange (ETDEWEB)

    Wu, X [State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100080 (China); Tao, N [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Hong, Y [State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100080 (China); Lu, J [LASMIS, University of Technology of Troyes, 10000, Troyes (France); Lu, K [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China)

    2005-11-21

    Using high-resolution electron microscopy, localized solid-state amorphization (SSA) was observed in a nanocrystalline (NC) Al solid solution (weight per cent 4.2 Cu, 0.3 Mn, the rest being Al) subjected to a surface mechanical attrition treatment. It was found that the deformation-induced SSA may occur at the grain boundary (GB) where either the high density dislocations or dislocation complexes are present. It is suggested that lattice instability due to elastic distortion within the dislocation core region plays a significant role in the initiation of the localized SSA at defective sites. Meanwhile, the GB of severely deformed NC grains exhibits a continuously varying atomic structure in such a way that while most of the GB is ordered but reveals corrugated configurations, localized amorphization may occur along the same GB.

  14. Localization of lead in rat peripheral nerve by electron microscopy

    International Nuclear Information System (INIS)

    Windebank, A.J.; Dyck, P.J.

    1985-01-01

    Lead intoxication in rats reliably produces segmental demyelination. Following a single intravenous injection of radioactive lead, localization of tracer was observed sequentially by quantitative electron microscopical autoradiography. The animals injected had been on a lead-containing diet for 70 days; as a result, the blood-nerve barrier was broken down and demyelination was proceeding. Six hours after a single dose, the lead was localized to the endoneurial space of the peroneal nerve, and 72 hours later, to the myelin membrane. Lead may exert a direct effect on the membrane and alter its stability both by altering the lipid content of the membrane and by directly interfering with the lamellar structure

  15. Deconvolution of overlapping features in electron energy-loss spectra: the determination of absolute differential cross sections for electron-impact excitation of electronic states of molecules

    International Nuclear Information System (INIS)

    Campbell, L.; Brunger, M.J.; Teubner, O.J.P.; Mojarrabi, B.

    1996-06-01

    A set of three computer programs is reported which allow for the deconvolution of overlapping molecular electronic state structure in electron energy-loss spectra, even in highly perturbed systems. This procedure enables extraction of absolute differential cross sections for electron-impact excitation of electronic states of diatomic molecules from electron energy-loss spectra. The first code in the sequence uses the Rydberg-Klein-Rees procedure to generate potential energy curves from spectroscopic constants, while the second calculates Franck-Condon factors by numerical solution of the Schroedinger equation, given the potential energy curves. The third, given these Franck-Condon factors, the previously calculated relevant energies for the vibrational levels of the respective electronic states and the experimental energy-loss spectra, extracts the differential cross sections for each state. Each program can be run independently, or the three can run in sequence to determine these cross sections from the spectroscopic constants and the experimental energy-loss spectra. The application of these programs to the specific case of electron scattering from nitric oxide (NO) is demonstrated. 25 refs., 2 tabs., 2 figs

  16. State preemption of local smoke-free laws in government work sites, private work sites, and restaurants - United States, 2005-2009.

    Science.gov (United States)

    2010-02-05

    Smoke-free policies (i.e., policies that completely eliminate smoking in indoor workplaces and public places) result in health benefits, including preventing heart attacks. Preemptive legislation at the state level prohibits localities from enacting laws that vary from state law or are more stringent. A Healthy People 2010 objective (27-19) is to eliminate state laws that preempt stronger local tobacco control laws. A 2005 CDC review found that little progress was being made toward reducing the number of state laws preempting local smoking restrictions in three indoor settings: government work sites, private-sector work sites, and restaurants. These three settings were selected for analysis because they are settings that often are addressed by state and local smoking restrictions and because they are major settings where nonsmoking workers and patrons are exposed to secondhand smoke. This report updates the previous analysis and summarizes changes that occurred from December 31, 2004, to December 31, 2009, in state laws that preempt local smoke-free laws for the same three settings. During that period, the number of states preempting local smoking restrictions in at least one of these three settings decreased from 19 to 12. In contrast with the 2005 findings, this decrease indicates progress toward achieving the goal of eliminating state laws preempting local smoking restrictions. Further progress could result in additional reductions in secondhand smoke exposure.

  17. Communication: Recovering the flat-plane condition in electronic structure theory at semi-local DFT cost

    Science.gov (United States)

    Bajaj, Akash; Janet, Jon Paul; Kulik, Heather J.

    2017-11-01

    The flat-plane condition is the union of two exact constraints in electronic structure theory: (i) energetic piecewise linearity with fractional electron removal or addition and (ii) invariant energetics with change in electron spin in a half filled orbital. Semi-local density functional theory (DFT) fails to recover the flat plane, exhibiting convex fractional charge errors (FCE) and concave fractional spin errors (FSE) that are related to delocalization and static correlation errors. We previously showed that DFT+U eliminates FCE but now demonstrate that, like other widely employed corrections (i.e., Hartree-Fock exchange), it worsens FSE. To find an alternative strategy, we examine the shape of semi-local DFT deviations from the exact flat plane and we find this shape to be remarkably consistent across ions and molecules. We introduce the judiciously modified DFT (jmDFT) approach, wherein corrections are constructed from few-parameter, low-order functional forms that fit the shape of semi-local DFT errors. We select one such physically intuitive form and incorporate it self-consistently to correct semi-local DFT. We demonstrate on model systems that jmDFT represents the first easy-to-implement, no-overhead approach to recovering the flat plane from semi-local DFT.

  18. Quantum ballistic transport by interacting two-electron states in quasi-one-dimensional channels

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Danhong [Air Force Research Laboratory, Space Vehicles Directorate, Kirtland Air Force Base, New Mexico 87117 (United States); Center for High Technology Materials, University of New Mexico, 1313 Goddard St SE, Albuquerque, New Mexico 87106 (United States); Gumbs, Godfrey [Center for High Technology Materials, University of New Mexico, 1313 Goddard St SE, Albuquerque, New Mexico 87106 (United States); Abranyos, Yonatan [Department of Physics and Astronomy, Hunter College of the City University of New York, 695 Park Avenue, New York, New York 10065 (United States); Pepper, Michael; Kumar, Sanjeev [Department of Electronic and Electrical Engineering, University College London, London, WC1E 7JE (United Kingdom); London Centre for Nanotechnology, 17-19 Gordon Street, London, WC1H 0AH (United Kingdom)

    2015-11-15

    For quantum ballistic transport of electrons through a short conduction channel, the role of Coulomb interaction may significantly modify the energy levels of two-electron states at low temperatures as the channel becomes wide. In this regime, the Coulomb effect on the two-electron states is calculated and found to lead to four split energy levels, including two anticrossing-level and two crossing-level states. Moreover, due to the interplay of anticrossing and crossing effects, our calculations reveal that the ground two-electron state will switch from one anticrossing state (strong confinement) to a crossing state (intermediate confinement) as the channel width gradually increases and then back to the original anticrossing state (weak confinement) as the channel width becomes larger than a threshold value. This switching behavior leaves a footprint in the ballistic conductance as well as in the diffusion thermoelectric power of electrons. Such a switching is related to the triple spin degeneracy as well as to the Coulomb repulsion in the central region of the channel, which separates two electrons away and pushes them to different channel edges. The conductance reoccurrence region expands from the weak to the intermediate confinement regime with increasing electron density.

  19. Photo- and radiation chemical studies of intermediates involved in excited-state electron-transfer reactions

    International Nuclear Information System (INIS)

    Hoffman, M.Z.

    1985-01-01

    Excited-state inter- and intramolecular electron-transfer reactions lie at the heart of the most photochemical solar energy conversion schemes. The authors research, which has utilized the techniques of continuous and pulsed photolysis and radiolysis, has focused on three general aspects of these reactions involving transition metal coordination complexes and electron donor-acceptor complexes: i) the effect of solution medium on the properties and quenching of the excited states; ii) the control of the quantum yields of formation of redox products; iii) the mechanism by which reduced species interact with water to yield H 2 homogeneously and heterogeneously. EDTA is among the most popular sacrificial electron donors used in model systems. Its role is to scavenge the oxidized form of the photosensitizer in order to prevent its rapid reaction with the reduced form of the electron relay species that results from the electron-transfer quenching of the excited photosensitizer. In systems involving MV 2+ , the radicals resulting from the oxidation of EDTA can eventually lead to the generation of a second equivalent of MV + ; the reducing agent is believed to be a radical localized on the carbon atom alpha to the carboxylate group. The reaction of radiolytically-generated OH/H with EDTA produces this radical directly via H-abstraction or indirectly via deprotonation of the carbon atom adjacent to the nitrogen radical site in the oxidized amine moiety; it reduces MV 2+ with rate constants of 2.8 x 10 9 , 7.6 x 10 9 , and 8.5 x 10 6 M -1 s -1 at pH 12.5, 8.3, and 4.7, respectively. Degradative decarboxylation of EDTA-radicals and their back electron-transfer reactions are enhanced in acidic solution causing the yield of MV + to be severely diminished

  20. Effective exchange potentials for electronically inelastic scattering

    International Nuclear Information System (INIS)

    Schwenke, D.W.; Staszewska, G.; Truhlar, D.G.

    1983-01-01

    We propose new methods for solving the electron scattering close coupling equations employing equivalent local exchange potentials in place of the continuum-multiconfiguration-Hartree--Fock-type exchange kernels. The local exchange potentials are Hermitian. They have the correct symmetry for any symmetries of excited electronic states included in the close coupling expansion, and they have the same limit at very high energy as previously employed exchange potentials. Comparison of numerical calculations employing the new exchange potentials with the results obtained with the standard nonlocal exchange kernels shows that the new exchange potentials are more accurate than the local exchange approximations previously available for electronically inelastic scattering. We anticipate that the new approximations will be most useful for intermediate-energy electronically inelastic electron--molecule scattering

  1. Local temperature in quantum thermal states

    International Nuclear Information System (INIS)

    Garcia-Saez, Artur; Ferraro, Alessandro; Acin, Antonio

    2009-01-01

    We consider blocks of quantum spins in a chain at thermal equilibrium, focusing on their properties from a thermodynamical perspective. In a classical system the temperature behaves as an intensive magnitude, above a certain block size, regardless of the actual value of the temperature itself. However, a deviation from this behavior is expected in quantum systems. In particular, we see that under some conditions the description of the blocks as thermal states with the same global temperature as the whole chain fails. We analyze this issue by employing the quantum fidelity as a figure of merit, singling out in detail the departure from the classical behavior. As it may be expected, we see that quantum features are more prominent at low temperatures and are affected by the presence of zero-temperature quantum phase transitions. Interestingly, we show that the blocks can be considered indeed as thermal states with a high fidelity, provided an effective local temperature is properly identified. Such a result may originate from typical properties of reduced subsystems of energy-constrained Hilbert spaces. Finally, the relation between local and global temperatures is analyzed as a function of the size of the blocks and the system parameters.

  2. Low electron density of states at the boron site of TMB{sub 2} (TM = Ti, Zr, Hf, and Nb): a {sup 11}B NMR study

    Energy Technology Data Exchange (ETDEWEB)

    Paluch, S.; Zogal, O.J.; Peshev, P

    2004-11-30

    The local density of states at the boron site in TMB{sub 2} (TM=Ti, Zr, Hf, and Nb) has been examined using the solid-state {sup 11}B NMR technique. The magic angle spinning (MAS) NMR spectra at room temperature and the spin-lattice relaxation rates have been measured as functions of temperature (30-293 K). The resonance line shifts are small and become more negative in the direction from 3d- to 5d-elements. The relaxation rates follow a linear law characteristic of hyperfine magnetic interaction with conduction electrons. With borides of IV group metals the data can be understood in terms of a very low s-electron density of states and absence of a p-character of the conduction electron wave function at the Fermi level while in the case of NbB{sub 2} a small partial p-electron density of states is assumed. Then, the results are in good agreement with the earlier theoretical prediction.

  3. Local Electronic Structure of a Single-Layer Porphyrin-Containing Covalent Organic Framework

    KAUST Repository

    Chen, Chen; Joshi, Trinity; Li, Huifang; Chavez, Anton D.; Pedramrazi, Zahra; Liu, Pei-Nian; Li, Hong; Dichtel, William R.; Bredas, Jean-Luc; Crommie, Michael F.

    2017-01-01

    We have characterized the local electronic structure of a porphyrin-containing single-layer covalent organic framework (COF) exhibiting a square lattice. The COF monolayer was obtained by the deposition of 2,5-dimethoxybenzene-1,4-dicarboxaldehyde

  4. Electron momentum spectroscopy of aniline taking account of nuclear dynamics in the initial electronic ground state

    International Nuclear Information System (INIS)

    Farasat, M; Golzan, M M; Shojaei, S H R; Morini, F; Deleuze, M S

    2016-01-01

    The electronic structure, electron binding energy spectrum and (e, 2e) momentum distributions of aniline have been theoretically predicted at an electron impact energy of 1.500 keV on the basis of Born–Oppenheimer molecular dynamical simulations, in order to account for thermally induced nuclear motions in the initial electronic ground state. Most computed momentum profiles are rather insensitive to thermally induced alterations of the molecular structure, with the exception of the profiles corresponding to two ionization bands at electron binding energies comprised between ∼10.0 and ∼12.0 eV (band C) and between ∼16.5 and ∼20.0 eV (band G). These profiles are found to be strongly influenced by nuclear dynamics in the electronic ground state, especially in the low momentum region. The obtained results show that thermal averaging smears out most generally the spectral fingerprints that are induced by nitrogen inversion. (paper)

  5. Electronic states in a quantum lens

    International Nuclear Information System (INIS)

    Rodriguez, Arezky H.; Trallero-Giner, C.; Ulloa, S. E.; Marin-Antuna, J.

    2001-01-01

    We present a model to find analytically the electronic states in self-assembled quantum dots with a truncated spherical cap (''lens'') geometry. A conformal analytical image is designed to map the quantum dot boundary into a dot with semispherical shape. The Hamiltonian for a carrier confined in the quantum lens is correspondingly mapped into an equivalent operator and its eigenvalues and eigenfunctions for the corresponding Dirichlet problem are analyzed. A modified Rayleigh-Schro''dinger perturbation theory is presented to obtain analytical expressions for the energy levels and wave functions as a function of the spherical cap height b and radius a of the circular cross section. Calculations for a hard wall confinement potential are presented, and the effect of decreasing symmetry on the energy values and eigenfunctions of the lens-shape quantum dot is studied. As the degeneracies of a semicircular geometry are broken for b≠a, our perturbation approach allows tracking of the split states. Energy states and electronic wave functions with m=0 present the most pronounced influence on the reduction of the lens height. The method and expressions presented here can be straightforwardly extended to deal with more general Hamiltonians, including strains and valence-band coupling effects in Group III--V and Group II--VI self-assembled quantum dots

  6. Direct Visualization of Local Electromagnetic Field Structures by Scanning Transmission Electron Microscopy.

    Science.gov (United States)

    Shibata, Naoya; Findlay, Scott D; Matsumoto, Takao; Kohno, Yuji; Seki, Takehito; Sánchez-Santolino, Gabriel; Ikuhara, Yuichi

    2017-07-18

    The functional properties of materials and devices are critically determined by the electromagnetic field structures formed inside them, especially at nanointerface and surface regions, because such structures are strongly associated with the dynamics of electrons, holes and ions. To understand the fundamental origin of many exotic properties in modern materials and devices, it is essential to directly characterize local electromagnetic field structures at such defect regions, even down to atomic dimensions. In recent years, rapid progress in the development of high-speed area detectors for aberration-corrected scanning transmission electron microscopy (STEM) with sub-angstrom spatial resolution has opened new possibilities to directly image such electromagnetic field structures at very high-resolution. In this Account, we give an overview of our recent development of differential phase contrast (DPC) microscopy for aberration-corrected STEM and its application to many materials problems. In recent years, we have developed segmented-type STEM detectors which divide the detector plane into 16 segments and enable simultaneous imaging of 16 STEM images which are sensitive to the positions and angles of transmitted/scattered electrons on the detector plane. These detectors also have atomic-resolution imaging capability. Using these segmented-type STEM detectors, we show DPC STEM imaging to be a very powerful tool for directly imaging local electromagnetic field structures in materials and devices in real space. For example, DPC STEM can clearly visualize the local electric field variation due to the abrupt potential change across a p-n junction in a GaAs semiconductor, which cannot be observed by normal in-focus bright-field or annular type dark-field STEM imaging modes. DPC STEM is also very effective for imaging magnetic field structures in magnetic materials, such as magnetic domains and skyrmions. Moreover, real-time imaging of electromagnetic field structures can

  7. Electron beam melting state-of-the-art 1984

    International Nuclear Information System (INIS)

    Bakish, R.

    1984-01-01

    In 1984 electron beam melting and refining appear poised for an important new growth phase. The driving force for this phase is improved production economics made possible by technological advances. There is also a new and exciting growth application for electron beam melting: its use for surface properties beneficiation. This article is based in part on the content of the Conference on Electron Beam Melting and Refining, The State-of-the-Art 1983, held in November 1983 in Reno, Nevada

  8. Emotional state and local versus global spatial memory.

    Science.gov (United States)

    Brunyé, Tad T; Mahoney, Caroline R; Augustyn, Jason S; Taylor, Holly A

    2009-02-01

    The present work investigated the effects of participant emotional state on global versus local memory for map-based information. Participants were placed into one of four emotion induction groups, crossing high and low arousal with positive and negative valence, or a control group. They then studied a university campus map and completed two memory tests, free recall and spatial statement verification. Converging evidence from these two tasks demonstrated that arousal amplifies symbolic distance effects and leads to a globally-focused spatial mental representation, partially at the expense of local knowledge. These results were found for both positively- and negatively-valenced affective states. The present study is the first investigation of emotional effects on spatial memory, and has implications for theories of emotion and spatial cognition.

  9. Anisotropic light emission of single CdSe/CdS tetrapods due to asymmetric electron localization

    Energy Technology Data Exchange (ETDEWEB)

    Limmer, Thomas; Mauser, Christian; Como, Enrico da; Rogach, Andrey; Feldmann, Jochen [Photonics and Optoelectronics Group, Physics Department and CeNS, Ludwig-Maximilians-Universitaet Muenchen, Munich (Germany); Talapin, Dmitri V. [Department of Chemistry, University of Chicago, Chicago, IL (United States)

    2008-07-01

    We have recently reported on highly luminescent CdSe/CdS tetrapod heterostructures, where wurtzite CdS arms were grown on CdSe zinc-blend nuclei. Due to the peculiar energy band alignment the holes remain trapped in the CdSe core, whereas electrons in ideal tetrapods are expected to delocalize symmetrically into the four CdS arms. However, polarization dependent photoluminescence experiments on single tetrapods show asymmetric localization effects for electrons. Whereas in optical excitation nearly no polarization anisotropy is observed, high polarization degrees are present in the emission process. Calculations based on the effective mass approximation show that the electron wavefunction confinement is very sensitive to changes in the shape of the tetrapods. Breaking the symmetry by increasing the thickness of one arm gives rise to a strongly asymmetric localization of the electron and leads to high polarization degrees in emission. The related decrease in electron-hole wavefunction overlap results in a correlation between emission intensity and polarization anisotropy in agreement with our experimental findings.

  10. Application of local vacuum slide sealing electron beam welding procedure

    International Nuclear Information System (INIS)

    Sato, Shozo; Takano, Genta; Minami, Masaharu; Enami, Koji; Uchikawa, Takashi; Kuri, Shuhei

    1982-01-01

    Electron beam welding process is efficient and is superior in workmanship and its application to the welding of large plate structures is eagerly awaited. However, since electron beam welding is generally performed with the object of welding entirely put in a vacuum chamber, high welding cost becomes a problem. In response to this demand, two kinds of local vacuum slide sealing type electron beam welding machines have been developed. These welding machines are designed to perform welding with only the neighborhood of the weld line put in vacuum, one of which is for longitudinal joints and the other for circumferential joints. The welding machine for circumferential joints has been put to practical use for the welding of nucear fusion reactor vacuum vessels (outside diameter 3.5 m, inside diameter 1.7 m), showing that it is applicable to the welding of large structures. (author)

  11. Electron-electron attractive interaction in Maxwell-Chern-Simons QED{sub 3} at zero temperature

    Energy Technology Data Exchange (ETDEWEB)

    Belich, H.; Ferreira Junior, M.M.; Helayel-Neto, J.A. [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil). E-mail: belich@cbpf.br; manojr@cbpf.br; helayel@gft.ucp.br; Ferreira Junior, M.M. [Universidade Catolica de Petropolis, RJ (Brazil). Grupo de Fisica Teorica. E-mail: delcima@gft.ucp.br

    2001-04-01

    One discusses the issue of low-energy electron-electron bound states in the Maxwell-Chern-Simons model coupled to QED{sub 3} with spontaneous breaking of a local U(1)-symmetry. The scattering potential, in the non-relativistic limit, steaming from the electron-electron Moeller scattering, mediated by the Maxwell-Chern-Simons-Proca gauge field and the Higgs scalar, might be attractive by fine-tuning properly the physical parameters of the model. (author)

  12. Ripple-modulated electronic structure of a 3D topological insulator.

    Science.gov (United States)

    Okada, Yoshinori; Zhou, Wenwen; Walkup, D; Dhital, Chetan; Wilson, Stephen D; Madhavan, V

    2012-01-01

    Three-dimensional topological insulators host linearly dispersing states with unique properties and a strong potential for applications. An important ingredient in realizing some of the more exotic states in topological insulators is the ability to manipulate local electronic properties. Direct analogy to the Dirac material graphene suggests that a possible avenue for controlling local properties is via a controlled structural deformation such as the formation of ripples. However, the influence of such ripples on topological insulators is yet to be explored. Here we use scanning tunnelling microscopy to determine the effects of one-dimensional buckling on the electronic properties of Bi(2)Te(3.) By tracking spatial variations of the interference patterns generated by the Dirac electrons we show that buckling imposes a periodic potential, which locally modulates the surface-state dispersion. This suggests that forming one- and two-dimensional ripples is a viable method for creating nanoscale potential landscapes that can be used to control the properties of Dirac electrons in topological insulators.

  13. 29 CFR 1601.13 - Filing; deferrals to State and local agencies.

    Science.gov (United States)

    2010-07-01

    ...; deferrals to State and local agencies. (a) Initial presentation of a charge to the Commission. (1) Charges... give full weight to the policy of section 706(c) of title VII, which affords State and local fair... date of the alleged violation. (b) Initial presentation of a charge to a FEP agency. (1) When a charge...

  14. Electronic Transport Properties of One Dimensional Zno Nanowires Studied Using Maximally-Localized Wannier Functions

    Science.gov (United States)

    Sun, Xu; Gu, Yousong; Wang, Xueqiang

    2012-08-01

    One dimensional ZnO NWs with different diameters and lengths have been investigated using density functional theory (DFT) and Maximally Localized Wannier Functions (MLWFs). It is found that ZnO NWs are direct band gap semiconductors and there exist a turn on voltage for observable current. ZnO nanowires with different diameters and lengths show distinctive turn-on voltage thresholds in I-V characteristics curves. The diameters of ZnO NWs are greatly influent the transport properties of ZnO NWs. For the ZnO NW with large diameter that has more states and higher transmission coefficients leads to narrow band gap and low turn on voltage. In the case of thinner diameters, the length of ZnO NW can effects the electron tunneling and longer supercell lead to higher turn on voltage.

  15. Electron energy transfer effect in Au NS/CH3NH3PbI3-xClx heterostructures via localized surface plasmon resonance coupling.

    Science.gov (United States)

    Cai, Chunfeng; Zhai, Jizhi; Bi, Gang; Wu, Huizhen

    2016-09-15

    Localized surface plasmon resonance coupling effects (LSPR) have attracted much attention due to their interesting properties. This Letter demonstrates significant photoluminescence (PL) enhancement in the Au NS/CH3NH3PbI3-xClx heterostructures via the LSPR coupling. The observed PL emission enhancement is mainly attributed to the hot electron energy transfer effect related to the LSPR coupling. For the energy transfer effect, photo-generated electrons will be directly extracted into Au SPs, rather than relaxed into exciton states. This energy transfer process is much faster than the diffusion and relaxation time of free electrons, and may provide new ideas on the design of high-efficiency solar cells and ultrafast response photodetectors.

  16. Electron states and electron Raman scattering in semiconductor double cylindrical quantum well wire

    International Nuclear Information System (INIS)

    Munguía-Rodríguez, M; Riera, R; Betancourt-Riera, Ri; Betancourt-Riera, Re; Nieto Jalil, J M

    2016-01-01

    The differential cross section for an electron Raman scattering process in a semiconductor GaAs/AlGaAs double quantum well wire is calculated, and expressions for the electronic states are presented. The system is modeled by considering T = 0 K and also with a single parabolic conduction band, which is split into a subband system due to the confinement. The gain and differential cross-section for an electron Raman scattering process are obtained. In addition, the emission spectra for several scattering configurations are discussed, and interpretations of the singularities found in the spectra are given. The electron Raman scattering studied here can be used to provide direct information about the efficiency of the lasers. (paper)

  17. Stability of the antiferromagnetic state in the electron doped iridates

    Science.gov (United States)

    Bhowal, Sayantika; Moradi Kurdestany, Jamshid; Satpathy, Sashi

    2018-06-01

    Iridates such as Sr2IrO4 are of considerable interest owing to the formation of the Mott insulating state driven by a large spin–orbit coupling. However, in contrast to the expectation from the Nagaoka theorem that a single doped hole or electron destroys the anti-ferromagnetic (AFM) state of the half-filled Hubbard model in the large U limit, the anti-ferromagnetism persists in the doped Iridates for a large dopant concentration beyond half-filling. With a tight-binding description of the relevant states by the third-neighbor (t 1, t 2, t 3, U) Hubbard model on the square lattice, we examine the stability of the AFM state to the formation of a spin spiral state in the strong coupling limit. The third-neighbor interaction t 3 is important for the description of the Fermi surface of the electron doped system. A phase diagram in the parameter space is obtained for the regions of stability of the AFM state. Our results qualitatively explain the robustness of the AFM state in the electron doped iridate (such as Sr2‑x La x IrO4), observed in many experiments, where the AFM state continues to be stable until a critical dopant concentration.

  18. Acoustic and electronic properties of one-dimensional quasicrystals

    International Nuclear Information System (INIS)

    Nori, F.; Rodriguez, J.P.

    1986-01-01

    We study the acoustic and electronic properties of one-dimensional quasicrystals. Both numerical (nonperturbative) and analytical (perturbative) results are shown. The phonon and electronic spectra exhibit a self-similar hierarchy of gaps and many localized states in the gaps. We study quasiperiodic structures with any number of layers and several types of boundary conditions. We discuss the connection between our phonon model and recent experiments on quasiperiodic GaAs-AlAs superlattices. We predict the existence of many gap states localized at the surfaces

  19. Chimera states in two-dimensional networks of locally coupled oscillators

    Science.gov (United States)

    Kundu, Srilena; Majhi, Soumen; Bera, Bidesh K.; Ghosh, Dibakar; Lakshmanan, M.

    2018-02-01

    Chimera state is defined as a mixed type of collective state in which synchronized and desynchronized subpopulations of a network of coupled oscillators coexist and the appearance of such anomalous behavior has strong connection to diverse neuronal developments. Most of the previous studies on chimera states are not extensively done in two-dimensional ensembles of coupled oscillators by taking neuronal systems with nonlinear coupling function into account while such ensembles of oscillators are more realistic from a neurobiological point of view. In this paper, we report the emergence and existence of chimera states by considering locally coupled two-dimensional networks of identical oscillators where each node is interacting through nonlinear coupling function. This is in contrast with the existence of chimera states in two-dimensional nonlocally coupled oscillators with rectangular kernel in the coupling function. We find that the presence of nonlinearity in the coupling function plays a key role to produce chimera states in two-dimensional locally coupled oscillators. We analytically verify explicitly in the case of a network of coupled Stuart-Landau oscillators in two dimensions that the obtained results using Ott-Antonsen approach and our analytical finding very well matches with the numerical results. Next, we consider another type of important nonlinear coupling function which exists in neuronal systems, namely chemical synaptic function, through which the nearest-neighbor (locally coupled) neurons interact with each other. It is shown that such synaptic interacting function promotes the emergence of chimera states in two-dimensional lattices of locally coupled neuronal oscillators. In numerical simulations, we consider two paradigmatic neuronal oscillators, namely Hindmarsh-Rose neuron model and Rulkov map for each node which exhibit bursting dynamics. By associating various spatiotemporal behaviors and snapshots at particular times, we study the chimera

  20. 78 FR 75376 - State, Local, Tribal, and Private Sector Policy Advisory Committee (SLTP-PAC)

    Science.gov (United States)

    2013-12-11

    ...] State, Local, Tribal, and Private Sector Policy Advisory Committee (SLTP-PAC) AGENCY: National Archives... (NARA) announces a meeting of the State, Local, Tribal, and Private Sector Policy Advisory Committee... Information Program for State, Local, Tribal, and Private Sector Entities. The meeting will be open to the...

  1. Grants and Funding for State and Local Transportation

    Science.gov (United States)

    State and Local Transportation resources are for air quality and transportation government and community leaders. Guidance, strategies and links to grant opportunities are offered for reducing vehicle air pollution, including ozone or smog.

  2. 75 FR 80082 - State, Local, Tribal, and Private Sector Policy Advisory Committee

    Science.gov (United States)

    2010-12-21

    ... NATIONAL ARCHIVES AND RECORDS ADMINISTRATION State, Local, Tribal, and Private Sector Policy Advisory Committee AGENCY: National Archives and Records Administration. ACTION: Notice of Establishment of... that the establishment of the State, Local, Tribal, and Private Sector Policy Advisory Committee is...

  3. Local and nonlocal contents in N-qubit generalized Greenberger-Horne-Zeilinger states

    International Nuclear Information System (INIS)

    Ren, Chang-Liang; Choi, Mahn-Soo

    2010-01-01

    We investigate local contents in N-qubit generalized Greenberger-Horne-Zeilinger (GHZ) states. We suggest a decomposition for correlations in the GHZ states into a nonlocal and fully local part, and find a lower and upper bound on the local content. Our lower bound reproduces the previous result for N=2[V. Scarani, Phys. Rev. A 77, 042112 (2008)] and decreases rapidly with N.

  4. Local density of states and order parameter configurations in layered ferromagnet-superconductor structures

    Energy Technology Data Exchange (ETDEWEB)

    Halterman, Klaus [Physics and Computational Sciences, Research and Engineering Sciences Department, Naval Air Warfare Center, China Lake, CA 93555 (United States)]. E-mail: klaus.halterman@navy.mil; Valls, Oriol T. [School of Physics and Astronomy and Minnesota Supercomputer Institute, University of Minnesota, Minneapolis, MN 55455 (United States)]. E-mail: otvalls@umn.edu

    2005-04-01

    We analyze the local density of states (LDOS) of heterostructures consisting of alternating ferromagnet, F, and superconductor, S, layers. We consider structures of the SFS and SFSFSFS type, with thin nanometer scale F and S layers, within the ballistic regime. The spin-splitting effects of the ferromagnet and the mutual coupling between the S regions, yield several nontrivial stable and metastable pair amplitude configurations, and we find that the details of the spatial behavior of the pair amplitude govern the calculated electronic spectra. These are reflected in discernible signatures of the LDOS. The roles that the magnetic exchange energy, interface scattering strength, and the Fermi wavevector mismatch each have on the LDOS for the different allowed junction configurations, are systematically investigated.

  5. Local density of states and order parameter configurations in layered ferromagnet-superconductor structures

    International Nuclear Information System (INIS)

    Halterman, Klaus; Valls, Oriol T.

    2005-01-01

    We analyze the local density of states (LDOS) of heterostructures consisting of alternating ferromagnet, F, and superconductor, S, layers. We consider structures of the SFS and SFSFSFS type, with thin nanometer scale F and S layers, within the ballistic regime. The spin-splitting effects of the ferromagnet and the mutual coupling between the S regions, yield several nontrivial stable and metastable pair amplitude configurations, and we find that the details of the spatial behavior of the pair amplitude govern the calculated electronic spectra. These are reflected in discernible signatures of the LDOS. The roles that the magnetic exchange energy, interface scattering strength, and the Fermi wavevector mismatch each have on the LDOS for the different allowed junction configurations, are systematically investigated

  6. Extreme Violation of Local Realism in Quantum Hypergraph States.

    Science.gov (United States)

    Gachechiladze, Mariami; Budroni, Costantino; Gühne, Otfried

    2016-02-19

    Hypergraph states form a family of multiparticle quantum states that generalizes the well-known concept of Greenberger-Horne-Zeilinger states, cluster states, and more broadly graph states. We study the nonlocal properties of quantum hypergraph states. We demonstrate that the correlations in hypergraph states can be used to derive various types of nonlocality proofs, including Hardy-type arguments and Bell inequalities for genuine multiparticle nonlocality. Moreover, we show that hypergraph states allow for an exponentially increasing violation of local realism which is robust against loss of particles. Our results suggest that certain classes of hypergraph states are novel resources for quantum metrology and measurement-based quantum computation.

  7. Observation of weak superconductivity in electrons localized on a film surface

    International Nuclear Information System (INIS)

    Fogel', N.Y.; Kolin'ko, A.E.

    1984-01-01

    We have observed anomalous abrupt resistance changes in thick vanadium films [d>>xi(T)]. We have also observed a number of anomalies in the H--T phase diagrams for these films; these anomalies are most clearly seen when the field is parallel to, or at low angles of incidence with respect to, the film surface. We explain our results by assuming that there are two different electron systems present in the film. One of them is composed of electrons localized near a natural planar defect, the film surface. This subsystem is characterized by extremely small values of the critical current

  8. St. Cloud State University's Impact on the Local Economy.

    Science.gov (United States)

    Lange, Mark D.

    The economic impact of St. Cloud State University, Minnesota, on the local economy was studied. Using models developed by the American Council on Education, estimates were made of the dollar outlays by the local economic sectors that are associated with or influenced by the university. The focus is the measurable impacts, in dollar terms, of the…

  9. Localization in f-shell metals

    International Nuclear Information System (INIS)

    Harrison, W.A.

    1984-01-01

    Anderson's theory of local moments is applied to the f-shell metals with the use of parameters for the electronic structure given earlier. A criterion for localization (abrupt in this theory) of Z/sub f/ levels per atom is that the resonance width be less than 2U sin 2 (πZ/sub f//14), with U the intra-atomic repulsion associated with s-f transfer. Americium and the heavier actinides satisfy this criterion, as do all the rare earths except cerium; plutonium is borderline. The traditional term ''localized state'' is used here though ''correlated state'' would be more appropriate. For the cases considered the localized states are found to have net spin (or moment) but that is not a necessary condition. They are found to contribute to the f-band pressure on the crystal, but reduced by a factor of about W/sub f//3U, equal to 0.09 for americium, where W/sub f/ is the itinerant f-band width. The localized f levels may themselves be thought to form bands, but with reduced width, and they may even have Fermi surface, though that was not found for the systems considered. A comparison of this state with band ferromagnetism is made. An approximate calculation of the total energy of the localized and delocalized states as a function of volume correctly predicted the large volume and localization for americium

  10. Electronic correlation studies. III. Self-correlated field method. Application to 2S ground state and 2P excited state of three-electron atomic systems

    International Nuclear Information System (INIS)

    Lissillour, R.; Guerillot, C.R.

    1975-01-01

    The self-correlated field method is based on the insertion in the group product wave function of pair functions built upon a set of correlated ''local'' functions and of ''nonlocal'' functions. This work is an application to three-electron systems. The effects of the outer electron on the inner pair are studied. The total electronic energy and some intermediary results such as pair energies, Coulomb and exchange ''correlated'' integrals, are given. The results are always better than those given by conventional SCF computations and reach the same level of accuracy as those given by more laborious methods used in correlation studies. (auth)

  11. Localization of Cold Atoms in State-Dependent Optical Lattices via a Rabi Pulse

    International Nuclear Information System (INIS)

    Horstmann, Birger; Duerr, Stephan; Roscilde, Tommaso

    2010-01-01

    We propose a novel realization of Anderson localization in nonequilibrium states of ultracold atoms in an optical lattice. A Rabi pulse transfers part of the population to a different internal state with infinite effective mass. These frozen atoms create a quantum superposition of different disorder potentials, localizing the mobile atoms. For weakly interacting mobile atoms, Anderson localization is obtained. The localization length increases with increasing disorder and decreasing interaction strength, contrary to the expectation for equilibrium localization.

  12. Modeling the high-energy electronic state manifold of adenine: Calibration for nonlinear electronic spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Nenov, Artur, E-mail: Artur.Nenov@unibo.it; Giussani, Angelo; Segarra-Martí, Javier; Jaiswal, Vishal K. [Dipartimento di Chimica “G. Ciamician,” Università di Bologna, Via Selmi 2, IT-40126 Bologna (Italy); Rivalta, Ivan [Université de Lyon, CNRS, Institut de Chimie de Lyon, École Normale Supérieure de Lyon, 46 Allée d’Italie, F-69364 Lyon Cedex 07 (France); Cerullo, Giulio [Dipartimento di Fisica, Politecnico di Milano, IFN-CNR, Piazza Leonardo Da Vinci 32, IT-20133 Milano (Italy); Mukamel, Shaul [Department of Chemistry, University of California, Irvine, California 92697-2025 (United States); Garavelli, Marco, E-mail: marco.garavelli@unibo.it, E-mail: marco.garavelli@ens-lyon.fr [Dipartimento di Chimica “G. Ciamician,” Università di Bologna, Via Selmi 2, IT-40126 Bologna (Italy); Université de Lyon, CNRS, Institut de Chimie de Lyon, École Normale Supérieure de Lyon, 46 Allée d’Italie, F-69364 Lyon Cedex 07 (France)

    2015-06-07

    Pump-probe electronic spectroscopy using femtosecond laser pulses has evolved into a standard tool for tracking ultrafast excited state dynamics. Its two-dimensional (2D) counterpart is becoming an increasingly available and promising technique for resolving many of the limitations of pump-probe caused by spectral congestion. The ability to simulate pump-probe and 2D spectra from ab initio computations would allow one to link mechanistic observables like molecular motions and the making/breaking of chemical bonds to experimental observables like excited state lifetimes and quantum yields. From a theoretical standpoint, the characterization of the electronic transitions in the visible (Vis)/ultraviolet (UV), which are excited via the interaction of a molecular system with the incoming pump/probe pulses, translates into the determination of a computationally challenging number of excited states (going over 100) even for small/medium sized systems. A protocol is therefore required to evaluate the fluctuations of spectral properties like transition energies and dipole moments as a function of the computational parameters and to estimate the effect of these fluctuations on the transient spectral appearance. In the present contribution such a protocol is presented within the framework of complete and restricted active space self-consistent field theory and its second-order perturbation theory extensions. The electronic excited states of adenine have been carefully characterized through a previously presented computational recipe [Nenov et al., Comput. Theor. Chem. 1040–1041, 295-303 (2014)]. A wise reduction of the level of theory has then been performed in order to obtain a computationally less demanding approach that is still able to reproduce the characteristic features of the reference data. Foreseeing the potentiality of 2D electronic spectroscopy to track polynucleotide ground and excited state dynamics, and in particular its expected ability to provide

  13. Numerical evidence for two types of localized states in a two-dimensional disordered lattice

    International Nuclear Information System (INIS)

    Tit, N.; Kumar, N.

    1992-06-01

    We report results of our numerical calculations, based on the equation of motion method, of dc-electrical conductivity and of density of states up to 40x40 two-dimensional square lattices modelling a right-binding Hamiltonian for a binary (AB) compound, disordered by randomly distributed B vacancies up to 10%. Our results indicate strongly localized states away from band centers separated from the relatively weakly localized states toward midband. This is in qualitative agreement with the idea of a ''mobility edge'' separating exponentially localized states from the power-law localized states as suggested by the two-parameter scaling theory of Kaevh in two dimensions. (author). 7 refs, 4 figs

  14. Forest management in India. Local versus state control of forest resources

    Energy Technology Data Exchange (ETDEWEB)

    Wilk, J

    1998-12-31

    Degradation and substantial losses to India`s forests have prompted a change in existing forestry management strategy. The new approach includes recognition of local participation in forestry management schemes but state control over most decisions is still dominant. Seen in terms of a common property resource system, India`s forests lack many of the factors usually considered inherent to successful management programs. Though India`s latest Forest Act affords more local involvement in forestry management, there continues to be an apparent lack of rights for local management groups over decision-making and the resource itself. Can this system enable the required balance between state and local management of India`s forests? 24 refs, 1 tab

  15. Forest management in India. Local versus state control of forest resources

    Energy Technology Data Exchange (ETDEWEB)

    Wilk, J.

    1997-12-31

    Degradation and substantial losses to India`s forests have prompted a change in existing forestry management strategy. The new approach includes recognition of local participation in forestry management schemes but state control over most decisions is still dominant. Seen in terms of a common property resource system, India`s forests lack many of the factors usually considered inherent to successful management programs. Though India`s latest Forest Act affords more local involvement in forestry management, there continues to be an apparent lack of rights for local management groups over decision-making and the resource itself. Can this system enable the required balance between state and local management of India`s forests? 24 refs, 1 tab

  16. Molecular electronics with single molecules in solid-state devices.

    Science.gov (United States)

    Moth-Poulsen, Kasper; Bjørnholm, Thomas

    2009-09-01

    The ultimate aim of molecular electronics is to understand and master single-molecule devices. Based on the latest results on electron transport in single molecules in solid-state devices, we focus here on new insights into the influence of metal electrodes on the energy spectrum of the molecule, and on how the electron transport properties of the molecule depend on the strength of the electronic coupling between it and the electrodes. A variety of phenomena are observed depending on whether this coupling is weak, intermediate or strong.

  17. Observation of Zero-Dimensional States in a One-Dimensional Electron Interferometer

    NARCIS (Netherlands)

    Wees, B.J. van; Kouwenhoven, L.P.; Harmans, C.J.P.M.; Williamson, J.G.; Timmering, C.E.; Broekaart, M.E.I.; Foxon, C.T.; Harris, J.J.

    1989-01-01

    We have studied the electron transport in a one-dimensional electron interferometer. It consists of a disk-shaped two-dimensional electron gas, to which quantum point contacts are attached. Discrete zero-dimensional states are formed due to constructive interference of electron waves traveling along

  18. Detecting aroma changes of local flavored green tea (Camellia sinensis) using electronic nose

    Science.gov (United States)

    Ralisnawati, D.; Sukartiko, A. C.; Suryandono, A.; Triyana, K.

    2018-03-01

    Indonesia is currently the sixth largest tea producer in the world. However, consumption of the product in the country was considered low. Besides tea, the country also has various local flavor ingredients that are potential to be developed. The addition of local flavored ingredients such as ginger, lemon grass, and lime leaves on green tea products is gaining acceptance from consumers and producers. The aroma of local flavored green tea was suspected to changes during storage, while its sensory testing has some limitations. Therefore, the study aimed to detect aroma changes of local flavors added in green tea using electronic nose (e-nose), an instrument developed to mimic the function of the human nose. The test was performed on a four-gram sample. The data was collected with 120 seconds of sensing time and 60 seconds of blowing time. Principal Component Analysis (PCA) was used to find out the aroma changes of local flavored green tea during storage. We observed that electronic nose could detect aroma changes of ginger flavored green tea from day 0 to day 6 with variance percentage 99.6%. Variance proportion of aroma changes of lemon grass flavored green tea from day 0 to day 6 was 99.3%. Variance proportion of aroma changes of lime leaves flavored green tea from day 0 to day 6 was 99.4%.

  19. Local radiolytic effectiveness of Auger electrons of iodine-125 in benzene-iodine solutions

    International Nuclear Information System (INIS)

    Uenak, P.; Uenak, T.

    1987-01-01

    High radiotoxicity of iodine-125 has been mainly attributed to the local radiolytic effects of Auger electrons on biological systems. In the present study, experimental and theoretical results are compared. The agreement between the experimental and theoretical results explains that the energy absorption of iodine aggregates has an important role in the radiolytic effectiveness of Auger electrons and iodine-125 in benzene-iodine solutions. (author) 18 refs.; 3 figs

  20. ADMINISTRATIVE SUPERVISION OF LOCAL SELF-GOVERNMENT IN THE BALTIC STATES: A COMPARATIVE VIEW

    Directory of Open Access Journals (Sweden)

    VIOLETA KIURIENÉ

    2015-12-01

    Full Text Available The article analyses models of administrative supervision of local self-government in the Baltic States (Latvia, Lithuania, Estonia highlighting the advantages and disadvantages of these models. The research done in this article defines the theoretical concept of administrative supervision of local self-government; gives an overview of the legislative framework underpining the key administrative supervision bodies of local self-government in the Baltic States; discusses the issue of legal regulation and the present state of administrative supervision over local self-government units in the Baltic States; gives some theoretical and practical suggestions to develop this field in the Baltic States.The research methods employed in preparation of this article are theoretical methods of analysis of scientific literature and sources, legal acts and documents as well as comparative and logical analysis, induction and generalisation. Three Baltic States similar in their area, number of inhabitants, and governmental peculiarities have been chosen for the analysis.

  1. Infrared absorption spectra of various doping states in cuprate superconductors

    International Nuclear Information System (INIS)

    Yonemitsu, K.; Bishop, A.R.; Lorenzana, J.

    1992-01-01

    Doping states in a two-dimensional three-band extended Peierls-Hubbard model was investigated within inhomogeneous Hartree-Fock and random phase approximation. They are very sensitive to small changes of interaction parameters and their distinct vibrational and optical absorption spectra can be used to identify different doping states. For electronic parameters relevant to cuprate superconductors, as intersite electron-phonon interaction strength increases, the doping state changes from a Zhang-Rice state to a covalent molecular singlet state accompanied by local quenching of the Cu magnetic moment and large local lattice distortion in an otherwise undistorted antiferromagnetic background. In a region where both intersite electron-phonon interaction and on-site electron-electron repulsion are large, we obtain new stable global phases including a bond-order-wave state and a mixed state of spin-Peierls bonds and antiferromagnetic Cu spins, as well as many metastable states. Doping in the bond-order-wave region induces separation of spin and charge. 9 refs

  2. Characterization of short necklace states in the logarithmic transmission spectra of localized systems.

    Science.gov (United States)

    Chen, Liang; Jiang, Xunya

    2013-05-01

    High transmission plateaus exist widely in the logarithmic transmission spectra of localized systems. Their physical origins are short chains of coupled localized states embedded inside the localized system, which are dubbed as 'short necklace states'. In this work, we define the essential quantities and then, based on these quantities, we investigate the properties of the short necklace states statistically and quantitatively. Two different approaches are utilized and their results agree very well. In the first approach, the typical plateau-width and the typical order of short necklace states are obtained from the correlation function of the logarithmic transmission. In the second approach, we investigate the statistical distribution of the peak/plateau-width measured in the logarithmic transmission spectra. A novel distribution is found, which can be exactly fitted by the summation of two Gaussian distributions. These two distributions are the results of sharp peaks of localized states and the high plateaus of short necklace states. The center of the second distribution also tells us the typical plateau-width of short necklace states. With increasing system length, the scaling property of the typical plateau-width is very special since it hardly decreases. The methods and quantities defined in this work can be widely used in Anderson localization studies.

  3. Electron energy distribution function control in gas discharge plasmas

    International Nuclear Information System (INIS)

    Godyak, V. A.

    2013-01-01

    The formation of the electron energy distribution function (EEDF) and electron temperature in low temperature gas discharge plasmas is analyzed in frames of local and non-local electron kinetics. It is shown, that contrary to the local case, typical for plasma in uniform electric field, there is the possibility for EEDF modification, at the condition of non-local electron kinetics in strongly non-uniform electric fields. Such conditions “naturally” occur in some self-organized steady state dc and rf discharge plasmas, and they suggest the variety of artificial methods for EEDF modification. EEDF modification and electron temperature control in non-equilibrium conditions occurring naturally and those stimulated by different kinds of plasma disturbances are illustrated with numerous experiments. The necessary conditions for EEDF modification in gas discharge plasmas are formulated

  4. Molecular electronics with single molecules in solid-state devices

    DEFF Research Database (Denmark)

    Moth-Poulsen, Kasper; Bjørnholm, Thomas

    2009-01-01

    The ultimate aim of molecular electronics is to understand and master single-molecule devices. Based on the latest results on electron transport in single molecules in solid-state devices, we focus here on new insights into the influence of metal electrodes on the energy spectrum of the molecule...

  5. State-selective electron capture

    International Nuclear Information System (INIS)

    Dunford, R.W.; Liu, C.J.; Berry, H.G.; Pardo, R.C.; Raphaelian, M.L.A.

    1988-01-01

    We report results from a new atomic physics program using the Argonne PII ECR ion source which is being built as part of the upgrade of the Argonne Tandem-Linear Accelerator (ATLAS). Our initial experiments have been aimed at studying state-selective electron capture in ion-atom collisions using the technique of Photon Emission Spectroscopy. We are extending existing cross section measurements at low energy ( 6+ and O 7+ on He and H 2 targets in the energy range from 1-105 keV/amu. We also present uv spectra obtained in collisions of O 6+ , O 5+ and N 5+ on a sodium target. 4 refs., 2 figs., 1 tab

  6. Annihilation of positrons with localized electrons in oxides and YBa2Cu3O7-x ceramics

    International Nuclear Information System (INIS)

    Nishchenko, M.M.; Likhtorovich, S.P.

    1997-01-01

    The angular correlation of annihilation photons (ACAP) has been studied in CuO, Cu 2 O,BaO,Y 2 O 3 and YBa 2 Cu 3 O 7-x oxides. Localization radius of the electron wave function is found to be about 0,8 A. It is also shown that with the more localization of the electron its probability of annihilation with positrons is less

  7. Experimental efforts at NIST towards one-electron ions in circular Rydberg states

    International Nuclear Information System (INIS)

    Tan, Joseph N; Guise, Nicholas D; Brewer, Samuel M

    2011-01-01

    Experimental effort is underway at NIST to enable tests of theory with one-electron ions synthesized in circular Rydberg states from captured bare nuclei. Problematic effects that limit the accuracy of predicted energy levels for low-lying states are vanishingly small for high-angular-momentum (high-L) states; in particular, the nuclear size correction for high-L states is completely negligible for any foreseeable improvement of measurement precision. As an initial step towards realizing such states, highly charged ions are extracted from the NIST electron beam ion trap (EBIT) and steered through the electrodes of a Penning trap. The goal is to capture bare nuclei in the Penning trap for experiments to make one-electron atoms in circular Rydberg states with dipole (E1) transitions in the optical domain accessible to a frequency comb.

  8. Plutonium Elastic Moduli, Electron Localization, and Temperature

    International Nuclear Information System (INIS)

    Migliori, Albert; Mihut-Stroe, Izabella; Betts, Jon B.

    2008-01-01

    In almost all materials, compression is accompanied naturally by stiffening. Even in materials with zero or negative thermal expansion, where warming is accompanied by volume contraction it is the volume change that primarily controls elastic stiffness. Not so in the metal plutonium. In plutonium, alloying with gallium can change the sign of thermal expansion, but for the positive thermal- expansion monoclinic phase as well as the face-centered-cubic phase with either sign of thermal expansion, and the orthorhombic phase, recent measurements of elastic moduli show soften on warming by an order of magnitude more than expected, the shear and compressional moduli track, and volume seems irrelevant. These effects point toward a novel mechanism for electron localization, and have important implication for the pressure dependence of the bulk compressibility. (authors)

  9. News Release: USDA Joins Fair Food Network, State and Local Partners to

    Science.gov (United States)

    vitamin C, calcium, and iron. The Food Bank of Eastern Michigan in Flint is distributing those USDA Foods Joins Fair Food Network, State and Local Partners to Promote Nutrition Resources for Lead-Affected Flint Residents News Release: USDA Joins Fair Food Network, State and Local Partners to Promote Nutrition

  10. 20 CFR 638.812 - State and local taxation of Job Corps deliverers.

    Science.gov (United States)

    2010-04-01

    ... 20 Employees' Benefits 3 2010-04-01 2010-04-01 false State and local taxation of Job Corps deliverers. 638.812 Section 638.812 Employees' Benefits EMPLOYMENT AND TRAINING ADMINISTRATION, DEPARTMENT OF... § 638.812 State and local taxation of Job Corps deliverers. The Act provides that transactions conducted...

  11. The effects of local correlations on the electronic structure of FeSe

    Science.gov (United States)

    Watson, Matthew; Kim, Timur; Haghighirad, Amir; Coldea, Amalia

    FeSe is structurally the simplest of Fe-based superconductors, but its complex and unique properties pose important theoretical questions. One important aspect of the physics of FeSe is the understanding of the strength and effects of electronic correlations. In order to explore this, we have performed angle-resolved photo-emission spectroscopy (ARPES) measurements on high quality bulk single crystals of FeSe over a wide range of binding energies, in different scattering geometries and with varying incident photon energies, analysing the quasiparticle renormalisations, scattering rates and degree of coherence. We find that FeSe exhibits moderately strong, orbital-dependent correlation effects which are understood to arise primarily due to local electron-electron interactions on the Fe sites. We conclude that electronic correlations constitute a key ingredient in understanding the electronic structure of FeSe. Part of this work was supported by EPSRC, UK (EP/I004475/1, EP/I017836/1). We thank Diamond Light Source for access to Beamline I05.

  12. United States Local Government Reform: The Emergence of the City Manager

    Directory of Open Access Journals (Sweden)

    Robert McEVOY

    2002-06-01

    Full Text Available City Managers came into being in the early 1900.s because of the corruption, waste, and lack of responsiveness of local governments in the United States. Business leaders in large cities had begun to recognise that major changes in their local governments were desperately needed for their businesses to grow and prosper. Andrew Carnegie, a founder of United States Steel, had indicated that business needed a stable society to prosper. Local government had to become responsive to the changing needs of the poor, abused and neglected children, the mentally ill and the elderly, to cite a few examples.

  13. Electronic structure and optical properties of twisted bilayer graphene calculated via time evolution of states in real space

    Science.gov (United States)

    Le, H. Anh; Do, V. Nam

    2018-03-01

    We investigate the electronic and optical properties of twisted bilayer graphene with arbitrary twist angles θ . Our results are based on a method of evolving in time quantum states in lattice space. We propose an efficient scheme of sampling lattice nodes that helps to reduce significantly computational cost, particularly for tiny twist angles. We demonstrate the continuous variation of the density of states and the optical conductivity with respect to the twist angle. It indicates that the commensurability between the two graphene layers does not play an essential role in governing the electronic and optical properties. We point out that, for the twist angles roughly in the range 0 .1∘energy exhibits the typical W shape with a small peak locating at the Fermi energy. This peak is formed as the merging of two van Hove peaks and reflects the appearance of states strongly localized in the AA-like region of moiré zones. When decreasing the twist angle to zero, the W shape is gradually transformed to the U shape, which is seen as the behavior of the density of states in the limit of θ →0∘ .

  14. Chimera states and the interplay between initial conditions and non-local coupling

    Science.gov (United States)

    Kalle, Peter; Sawicki, Jakub; Zakharova, Anna; Schöll, Eckehard

    2017-03-01

    Chimera states are complex spatio-temporal patterns that consist of coexisting domains of coherent and incoherent dynamics. We study chimera states in a network of non-locally coupled Stuart-Landau oscillators. We investigate the impact of initial conditions in combination with non-local coupling. Based on an analytical argument, we show how the coupling phase and the coupling strength are linked to the occurrence of chimera states, flipped profiles of the mean phase velocity, and the transition from a phase- to an amplitude-mediated chimera state.

  15. Bound entangled states violate a nonsymmetric local uncertainty relation

    International Nuclear Information System (INIS)

    Hofmann, Holger F.

    2003-01-01

    As a consequence of having a positive partial transpose, bound entangled states lack many of the properties otherwise associated with entanglement. It is therefore interesting to identify properties that distinguish bound entangled states from separable states. In this paper, it is shown that some bound entangled states violate a nonsymmetric class of local uncertainty relations [H. F. Hofmann and S. Takeuchi, Phys. Rev. A 68, 032103 (2003)]. This result indicates that the asymmetry of nonclassical correlations may be a characteristic feature of bound entanglement

  16. State and Local Initiatives: Your Bridge to Renewable Energy and Energy Efficiency Resources (Brochure)

    International Nuclear Information System (INIS)

    Epstein, K.

    2001-01-01

    A brochure for local and state policymakers, informing them about the State and Local Initiatives team at the National Renewable Energy Laboratory. The brochure outlines the benefits of using renewables and energy efficiency, the benefits of using the State and Local Initiatives team as a liaison to the wealth of information at NREL, and some of the services and resources available

  17. The electronic structure of core states under extreme compressions

    International Nuclear Information System (INIS)

    Straub, G.K.

    1992-01-01

    At normal density and for modest compressions, the electronic structure of a metal can be accurately described by treating the conduction electrons and their interactions with the usual methods of band theory. The core electrons remain essentially the same as for an isolated free atom and do not participate in the bonding forces responsible for creating a condensed phase. As the density increases, the core electrons begin to ''see'' one another as the overlap of the tails of wave functions can no longer be neglected. The electronic structure of the core electrons is responsible for an effective repulsive interaction that eventually becomes free-electron-like at very high compressions. The electronic structure of the interacting core electrons may be treated in a simple manner using the Atomic Surface Method (ASM). The ASM is a first-principles treatment of the electronic structure involving a rigorous integration of the Schroedinger equation within the atomic-sphere approximation. Solid phase wave functions are constructed from isolated atom wave functions and the band width W l and the center of gravity of the band C l are obtained from simple formulas. The ASM can also utilize analytic forms of the atomic wave functions and thus provide direct functional dependence of various aspects of the electronic structure. Of particular use in understanding the behavior of the core electrons, the ASM provides the ability to analytically determine the density dependence of the band widths and positions. The process whereby core states interact with one another is best viewed as the formation of narrow electron bands formed from atomic states. As the core-core overlap increases, the bands increase in width and mean energy. In Sec.3 this picture is further developed and from the ASM one obtains the analytic dependence on density of the relative motion of the different bands. Also in Sec. 3 is a discussion of the transition to free electron bands

  18. 7 CFR 247.23 - State provision of administrative funds to local agencies.

    Science.gov (United States)

    2010-01-01

    ... funds will be used to achieve program objectives. (Approved by the Office of Management and Budget under... 7 Agriculture 4 2010-01-01 2010-01-01 false State provision of administrative funds to local... PROGRAM § 247.23 State provision of administrative funds to local agencies. (a) How much of the...

  19. Electronic properties of iron impurity in hcp metals from Moessbauer studies

    International Nuclear Information System (INIS)

    Janot, C.; Delcroix, P.

    1975-01-01

    Moessbauer spectroscopy was used in quantitative investigating the electronic properties of iron impurities in hexagonal close-packed metals. Beryllium of the highest commercially obtainable purity containing about 300 ppm residual impurities was used as a host element. Experimental evidence is given for the existence of localized electronic states which have non-spherical distribution and obviously contribute especially to the electric field gradient. Iron impurity seems to retain the same electronic behaviour as long as the host hcp metal is a normal one (Mg, Cd, Zn), but the localized electronic states seem to disappear when the host is a transition hcp metal (Co, Ti, Sc, Zr, etc.). (Z.S.)

  20. Self-Attractive Hartree Decomposition: Partitioning Electron Density into Smooth Localized Fragments.

    Science.gov (United States)

    Zhu, Tianyu; de Silva, Piotr; Van Voorhis, Troy

    2018-01-09

    Chemical bonding plays a central role in the description and understanding of chemistry. Many methods have been proposed to extract information about bonding from quantum chemical calculations, the majority of them resorting to molecular orbitals as basic descriptors. Here, we present a method called self-attractive Hartree (SAH) decomposition to unravel pairs of electrons directly from the electron density, which unlike molecular orbitals is a well-defined observable that can be accessed experimentally. The key idea is to partition the density into a sum of one-electron fragments that simultaneously maximize the self-repulsion and maintain regular shapes. This leads to a set of rather unusual equations in which every electron experiences self-attractive Hartree potential in addition to an external potential common for all the electrons. The resulting symmetry breaking and localization are surprisingly consistent with chemical intuition. SAH decomposition is also shown to be effective in visualization of single/multiple bonds, lone pairs, and unusual bonds due to the smooth nature of fragment densities. Furthermore, we demonstrate that it can be used to identify specific chemical bonds in molecular complexes and provides a simple and accurate electrostatic model of hydrogen bonding.

  1. Two-Electron Transfer Pathways.

    Science.gov (United States)

    Lin, Jiaxing; Balamurugan, D; Zhang, Peng; Skourtis, Spiros S; Beratan, David N

    2015-06-18

    The frontiers of electron-transfer chemistry demand that we develop theoretical frameworks to describe the delivery of multiple electrons, atoms, and ions in molecular systems. When electrons move over long distances through high barriers, where the probability for thermal population of oxidized or reduced bridge-localized states is very small, the electrons will tunnel from the donor (D) to acceptor (A), facilitated by bridge-mediated superexchange interactions. If the stable donor and acceptor redox states on D and A differ by two electrons, it is possible that the electrons will propagate coherently from D to A. While structure-function relations for single-electron superexchange in molecules are well established, strategies to manipulate the coherent flow of multiple electrons are largely unknown. In contrast to one-electron superexchange, two-electron superexchange involves both one- and two-electron virtual intermediate states, the number of virtual intermediates increases very rapidly with system size, and multiple classes of pathways interfere with one another. In the study described here, we developed simple superexchange models for two-electron transfer. We explored how the bridge structure and energetics influence multielectron superexchange, and we compared two-electron superexchange interactions to single-electron superexchange. Multielectron superexchange introduces interference between singly and doubly oxidized (or reduced) bridge virtual states, so that even simple linear donor-bridge-acceptor systems have pathway topologies that resemble those seen for one-electron superexchange through bridges with multiple parallel pathways. The simple model systems studied here exhibit a richness that is amenable to experimental exploration by manipulating the multiple pathways, pathway crosstalk, and changes in the number of donor and acceptor species. The features that emerge from these studies may assist in developing new strategies to deliver multiple

  2. Local electronic and electrical properties of functionalized graphene nano flakes

    International Nuclear Information System (INIS)

    Chutia, Arunabhiram; Sahnoun, Riadh; Deka, Ramesh C.; Zhu, Zhigang; Tsuboi, Hideyuki; Takaba, Hiromitsu; Miyamoto, Akira

    2011-01-01

    Based on experimental findings models of amorphous graphene related carbon materials were generated using graphene nano flakes. On the optimized structures detailed local electronic properties were investigated using density functional theory. The electrical conductivities of all these models were also estimated using an in-house program based on tight-binding method. The calculated electrical conductivity values of all the models agreed well with the trend of calculated energy gap and graphitic character.

  3. Coherent states of an electron in a quantized electromagnetic wave

    International Nuclear Information System (INIS)

    Bagrov, V.G.; Bukhbinder, I.L.; Gitman, D.M.; Lavrov, P.M.

    1977-01-01

    Coherent states for interacting electrons and photons in a plane elecmagnetic wave are found. Trajectories of the electron and the characteristics of the electromagnetic field are investigated. Limiting transition to the given external field is studied

  4. Integral elastic, electronic-state, ionization, and total cross sections for electron scattering with furfural

    Science.gov (United States)

    Jones, D. B.; da Costa, R. F.; Varella, M. T. do N.; Bettega, M. H. F.; Lima, M. A. P.; Blanco, F.; García, G.; Brunger, M. J.

    2016-04-01

    We report absolute experimental integral cross sections (ICSs) for electron impact excitation of bands of electronic-states in furfural, for incident electron energies in the range 20-250 eV. Wherever possible, those results are compared to corresponding excitation cross sections in the structurally similar species furan, as previously reported by da Costa et al. [Phys. Rev. A 85, 062706 (2012)] and Regeta and Allan [Phys. Rev. A 91, 012707 (2015)]. Generally, very good agreement is found. In addition, ICSs calculated with our independent atom model (IAM) with screening corrected additivity rule (SCAR) formalism, extended to account for interference (I) terms that arise due to the multi-centre nature of the scattering problem, are also reported. The sum of those ICSs gives the IAM-SCAR+I total cross section for electron-furfural scattering. Where possible, those calculated IAM-SCAR+I ICS results are compared against corresponding results from the present measurements with an acceptable level of accord being obtained. Similarly, but only for the band I and band II excited electronic states, we also present results from our Schwinger multichannel method with pseudopotentials calculations. Those results are found to be in good qualitative accord with the present experimental ICSs. Finally, with a view to assembling a complete cross section data base for furfural, some binary-encounter-Bethe-level total ionization cross sections for this collision system are presented.

  5. Substate federalism and fracking policies: does state regulatory authority trump local land use autonomy?

    Science.gov (United States)

    Davis, Charles

    2014-01-01

    State officials responsible for the regulation of hydraulic fracturing (fracking) operations used in the production of oil and gas resources will inevitably confront a key policy issue; that is, to what extent can statewide regulations be developed without reducing land use autonomy typically exercised by local officials? Most state regulators have historically recognized the economic importance of industry jobs and favor the adoption of uniform regulatory requirements even if these rules preempt local policymaking authority. Conversely, many local officials seek to preserve land use autonomy to provide a greater measure of protection for public health and environmental quality goals. This paper examines how public officials in three states-Colorado, Pennsylvania, and Texas-address the question of state control versus local autonomy through their efforts to shape fracking policy decisions. While local officials within Texas have succeeded in developing fracking ordinances with relatively little interference from state regulators, Colorado and Pennsylvania have adopted a tougher policy stance favoring the retention of preemptive oil and gas statutes. Key factors that account for between state differences in fracking policy decisions include the strength of home rule provisions, gubernatorial involvement, and the degree of local experience with industrial economic activities.

  6. Magnetic response of localized spins coupled to itinerant electrons in an inhomogeneous crystal field

    International Nuclear Information System (INIS)

    Iannarella, L.; Guimaraes, A.P.; Silva, X.A. da.

    1990-01-01

    The magnetic behavior at T = O K of a system consisting of conduction electrons coupled to localized electrons, the latter submitted to an inhomogeneous crystal field distribution, is studied. The study implies that the inhomogeneity of the crystal field attenuates the quenching effects. The model is interesting to the study of disordered rare-earth intermetallic compounds. (A.C.A.S.) [pt

  7. To what extent can charge localization influence electron injection efficiency at graphene-porphyrin interfaces?

    KAUST Repository

    Parida, Manas R.

    2015-04-28

    Controlling the electron transfer process at donor- acceptor interfaces is a research direction that has not yet seen much progress. Here, with careful control of the charge localization on the porphyrin macrocycle using β -Cyclodextrin as an external cage, we are able to improve the electron injection efficiency from cationic porphyrin to graphene carboxylate by 120% . The detailed reaction mechanism is also discussed.

  8. Approximate Dynamic Programming: Combining Regional and Local State Following Approximations.

    Science.gov (United States)

    Deptula, Patryk; Rosenfeld, Joel A; Kamalapurkar, Rushikesh; Dixon, Warren E

    2018-06-01

    An infinite-horizon optimal regulation problem for a control-affine deterministic system is solved online using a local state following (StaF) kernel and a regional model-based reinforcement learning (R-MBRL) method to approximate the value function. Unlike traditional methods such as R-MBRL that aim to approximate the value function over a large compact set, the StaF kernel approach aims to approximate the value function in a local neighborhood of the state that travels within a compact set. In this paper, the value function is approximated using a state-dependent convex combination of the StaF-based and the R-MBRL-based approximations. As the state enters a neighborhood containing the origin, the value function transitions from being approximated by the StaF approach to the R-MBRL approach. Semiglobal uniformly ultimately bounded (SGUUB) convergence of the system states to the origin is established using a Lyapunov-based analysis. Simulation results are provided for two, three, six, and ten-state dynamical systems to demonstrate the scalability and performance of the developed method.

  9. Anderson localization and its ramifications disorder, phase coherence and electron correlations

    CERN Document Server

    Kettemann, S

    2003-01-01

    The phenomenon of localization of the electronic wave function in a random medium can be regarded as the key manifestation of quantum coherence in a condensed matter system. As one of the most remarkable phenomena in condensed matter physics discovered in the 20th century, the localization problem is an indispensable part of the theory of the quantum Hall effects and rivals superconductivity in its significance as a manifestation of quantum coherence at a macroscopic scale. The present volume, written by some of the leading experts in the field, is intended to highlight some of the recent progress in the field of localization, with particular emphasis on the effect of interactions on quantum coherence. The chapters are written in textbook style and should serve as a reliable and thorough introduction for advanced students or researchers already working in the field of mesoscopic physics.

  10. Electron-stimulated desorption from condensed branched alkanes

    International Nuclear Information System (INIS)

    Kelber, J.A.; Knotek, M.L.

    1982-01-01

    Desorption of H + , CH 3+ , H 2+ , and D + have been measured as a function of electron excitation energy for solid neopentane, tetramethylsilane and two deuterated isomers of isobutane. The evidence shows that C-C (or Si-C) and C-H bonds are broken by electronic excitations localized on methyl groups, in contrast to CH 3+ production in gas-phase neopentane, and that these excitations are the final states of decay processes initiated by creation of a hole in the C2s level, or, in tetramethylsilane, the C2s/Si3s level. This is in accord with other evidence which shows that localized multi-valence hole states result in C-H, C-C, Si-C and Si-H dissociation, and that such states may be excited either directly or by shakeup, by decay from a C2s hole, or by decay for a C1s core hole. It is apparent then, that dissociation and desorption of ions from covalent materials is a multi (electron) hole mechanism, and that the means of localizing the excitation energy in such systems involves multi-hole correlation

  11. Electronic structure and ionicity of actinide oxides from first principles

    DEFF Research Database (Denmark)

    Petit, Leon; Svane, Axel; Szotek, Z.

    2010-01-01

    The ground-state electronic structures of the actinide oxides AO, A2O3, and AO2 (A=U, Np, Pu, Am, Cm, Bk, and Cf) are determined from first-principles calculations, using the self-interaction corrected local spin-density approximation. Emphasis is put on the degree of f-electron localization, whi...

  12. Superconductivity in narrow-band systems with local nonretarded attractive interactions

    International Nuclear Information System (INIS)

    Micnas, R.; Ranninger, J.; Robaszkiewicz, S.

    1990-01-01

    In narrow-band systems electrons can interact with each other via a short-range nonretarded attractive potential. The origin of such an effective local attraction can be polaronic or it can be due to a coupling between electrons and excitons or plasmons. It can also result from purely chemical (electronic) mechanisms, especially in compounds with elements favoring disproportionation of valent states. These mechanisms are discussed and an exhaustive list of materials in which such local electron pairing occurs is given. The authors review the thermodynamic and electromagnetic properties of such systems in several limiting scenarios: (i) Systems with on-site pairing which can be described by the extended negative-U Hubbard model. The strong-attraction limit of this model, at which it reduces to a system of tightly bound electron pairs (bipolarons) on a lattice, is extensively discussed. These electron pairs behaving as hard-core charged bosons can exhibit a superconducting state analogous to that of superfluid 4 He II. The changeover from weak-attraction BCS-like superconductivity to the superfluidity of charged hard-core bosons is examined. (ii) Systems with intersite pairing described by an extended Hubbard model with U>0 and nearest-neighbor attraction and/or nearest-neighbor spin exchange as well as correlated hopping. (iii) A mixture of local pairs and itinerant electrons interacting via a charge-exchange mechanism giving rise to a mutually induced superconductivity in both subsystems. The authors discuss to what extent the picture of local pairing, and in particular superfluidity of hard-core charged bosons on a lattice, can be an explanation for the superconducting and normal-state properties of the high-T c oxides: doped BaBiO 3 and the cuprates

  13. Electromagnetic local density of states in graphene-covered porous silicon carbide

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Ting [Department of Physics, Nanchang University, Nanchang 330031 (China); Wang, Tong-Biao, E-mail: tbwang@ncu.edu.cn [Department of Physics, Nanchang University, Nanchang 330031 (China); Liao, Qing-Hua; Liu, Jiang-Tao; Yu, Tian-Bao [Department of Physics, Nanchang University, Nanchang 330031 (China); Liu, Nian-Hua [Institute for Advanced Study, Nanchang University, Nanchang 330031 (China)

    2017-06-21

    Surface phonon polariton supported by silicon carbide (SiC) can be strongly coupled with graphene plasmon in the graphene-covered SiC bulk. The spectrum of the electromagnetic local density of states exhibits two peaks whose positions can be tuned by the chemical potential of graphene. In this work, we study the electromagnetic local density of states in the proximity of a graphene-covered SiC with periodic hole arrays. The well-known peak from the coupling of surface polariton supported by SiC and graphene plasmon splits into two. With increased volume ratio of holes, one of the split peak shifts towards high frequencies, whereas the other moves towards low frequencies. The dependence of split-peak positions on the chemical potential and permittivity of filling materials in the holes are also investigated. This study offers another method of modulating the electromagnetic local density of states. - Highlights: • The electromagnetic local density of states in the proximity of graphene-covered anisotropic SiC is firstly studied. • The peak from resonance of surface phonon polaritons in the EM-LDOS spectrum can be split into two. • The split peaks can be tuned by chemical potential, filling factor, and filling materials. • Our results provide a new method to modulate the EM-LDOS.

  14. Electronic Raman scattering with excitation between localized states observed in the zinc M{sub 2,3} soft x-ray spectra of ZnS

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, L.; Callcott, T.A.; Jia, J.J. [Univ. of Tennessee, Knoxville, TN (United States)] [and others

    1997-04-01

    Zn M{sub 2,3} soft x-ray fluorescence (SXF) spectra of ZnS and ZnS{sub .5}Se{sub .5} excited near threshold show strong inelastic scattering effects that can be explained using a simple model and an inelastic scattering theory based on second order perturbation theory. This scattering is often called electronic resonance Raman scattering. Tulkki and Aberg have developed this theory in detail for atomic systems, but their treatment can be applied to solid systems by utilizing electronic states characteristic of solids rather than of atomic systems.

  15. Electron-electron interaction in strong electromagnetic fields The two-electron contribution to the ground-state energy in He-like uranium

    CERN Document Server

    Gumberidze, A; Barnás, D; Beckert, Karl; Beller, Peter; Beyer, H F; Bosch, F; Cai, X; Stöhlker, T; Hagmann, S; Kozhuharov, C; Liesen, D; Nolden, F; Ma, X; Mokler, P H; Orsic-Muthig, A; Steck, Markus; Sierpowski, D; Tashenov, S; Warczak, A; Zou, Y

    2004-01-01

    Radiative recombination transitions into the ground state of cooled bare and hydrogen-like uranium ions were measured at the storage ring ESR. By comparing the corresponding x-ray centroid energies, this technique allows for a direct measurement of the electron-electron contribution to the ionization potential in the heaviest He-like ions. For the two-electron contribution to the ionization potential of He-like uranium we obtain a value of 2248 ± 9 eV. This represents the most accurate determination of two-electron effects in the domain of high-Z He-like ions and the accuracy reaches already the size of the specific two-electron radiative QED corrections.

  16. Characterization of electron states in dense plasmas and its use in atomic kinetics modeling

    International Nuclear Information System (INIS)

    Fisher, D.V.; Maron, Y.

    2003-01-01

    We describe a self-consistent statistical approach to account for plasma density effects in collisional-radiative kinetics. The approach is based on the characterization of three distinct types of electron states, namely, bound, collectivized, and free, and on the formalism of the effective statistical weights (ESW) of the bound states. The present approach accounts for individual and collective effects of the surrounding electrons and ions on atomic (ionic) electron states. High-accuracy expressions for the ESWs of bound states have been derived. The notions of ionization stage population, free electron density, and rate coefficient are redefined in accordance with the present characterization scheme. The modified expressions for the probabilities of electron-impact induced transitions as well as spontaneous and induced radiative transitions are then obtained. The influence of collectivized states on a dense plasma ionization composition is demonstrated to be strong. Examples of calculated ESWs and populations of ionic quantum states for steady state and transient plasmas are given

  17. Group-theoretical and topological analysis of localized rotation-vibration states

    International Nuclear Information System (INIS)

    Sadovskii, D.A.; Zhilinskii, B.I.

    1993-01-01

    A general scheme of qualitative analysis is applied to molecular rovibrational problems. The classical-quantum correspondence provides a description of different classes of localized quantum rotation-vibration states associated with localized classical motion. A description of qualitative features, such as localized motion, and of qualitative changes, such as localization phenomena, is based on the concept of the simplest Hamiltonian. It uses only the topological properties of the compact reduced phase space and the action of the symmetry group on this space. The qualitative changes of the simplest Hamiltonian are analyzed as bifurcations caused by rotational or vibrational excitation. The relation between the stationary points of the classical Hamiltonian function on the reduced phase space and the principal periodic trajectories in the coordinate space is analyzed for vibrational Hamiltonians. In particular, the relation between the nonlinear normal modes, proposed by Montaldi, Roberts, and Stewart [Philos. Trans. R. Soc. London, Ser. A 325, 237 (1988)], and normal- and local-mode models widely used in molecular physics is discussed. Along with a general consideration of localized rotational and vibrational states a more detailed analysis of the vibrational dynamics of an X 3 molecule with the D 3h symmetry, such as the H 3 + molecular ion, is given

  18. Below regulatory concern standards: The limits of state and local authority

    International Nuclear Information System (INIS)

    Silverman, D.J.

    1990-01-01

    The paper discusses: (1) the scope of the Nuclear Regulatory Commission's authority to develop and implement below regulatory concern or BRC standards; and (2) the limitations on the legal authority of states and local governments to create impediments to full implementation of such standards. The paper demonstrates that the NRC is acting well within its statutory authority in developing BRC regulations and guidelines, and that the ability of state and local governments to impede generators' use of those regulations and guidelines on the basis of legal or regulatory initiatives is substantially circumscribed. While some generators may be reluctant, as a result of political factors, to utilize BRC standards, the decision whether or not to use such standards should not be made without careful consideration of the applicable legal and regulatory limitations on state and local authority

  19. The effects of 5f localization on the electronic and magnetic properties of the hexagonal U{sub 3}ZrSb{sub 5}

    Energy Technology Data Exchange (ETDEWEB)

    Merabiha, O.; Seddik, T. [Laboratoire de Physique Quantique et de Modélisation Mathématique, Université de Mascara, Mascara 29000 (Algeria); Khenata, R., E-mail: khenata_rabah@yahoo.fr [Laboratoire de Physique Quantique et de Modélisation Mathématique, Université de Mascara, Mascara 29000 (Algeria); Murtaza, G., E-mail: murtaza@icp.edu.pk [Materials Modeling Lab, Department of Physics, Islamia College University, Peshawar (Pakistan); Bouhemadou, A. [Laboratory for Developing New Materials and their Characterization, Department of Physics, Faculty of Science, University of Setif, 19000 Setif (Algeria); Takagiwa, Y. [Department of Advanced Materials Science, The University of Tokyo (Japan); Bin Omran, S. [Department of Physics and Astronomy, King Saud University, P.O. Box 2455, Riyadh 11451 (Saudi Arabia); Rached, D. [Magnetic Materials Laboratory, Department of Physics, Faculty of Sciences, University of Sidi Bel-Abbes, 22000 Sidi Bel-Abbes (Algeria)

    2014-02-15

    Highlights: • The calculated structural parameters of hexagonal U{sub 3}ZrSb{sub 5} are found in good agreement with the experimental data. • U{sub 3}ZrSb{sub 5} is found to be ferromagnetic material. • Evident effects of the Hubbard U parameter in the uranium “5f” states are noted. • Our band structure calculation show the metallic behavior of this ferromagnetic compound. • The thermodynamic properties are predicted through the quasi-harmonic Debye model. -- Abstract: Structural, magnetic, electronic and thermodynamic properties of the hexagonal U{sub 3}ZrSb{sub 5} are theoretically investigated by using the full potential linearized augmented plane wave plus local orbital’s (FP-LAPW + lo) method. The exchange–correlation potential was treated with the generalized gradient approximation GGA of Wu and Cohen. Moreover, the GGA + U approximation (where U is the Hubbard correlation terms) is employed to treat the f electrons properly. The calculated structural parameters are in good agreement with the experimental data. The magnetic study reveals that U{sub 3}ZrSb{sub 5} is a ferromagnetic material. Furthermore, we present a comparative study between the band structures, electronic structures, total and partial densities of states and local moments calculated within both GGA and GGA + U schemes. Our band structure calculations show the metallic behavior of this ferromagnetic compound. The thermodynamic properties are predicted through the quasi-harmonic Debye model, in which the lattice vibrations are taken into account. The variation of relative change in volume, heat capacities and the Debye temperature with temperature and pressure are successfully achieved.

  20. Local Convertibility and the Quantum Simulation of Edge States in Many-Body Systems

    Directory of Open Access Journals (Sweden)

    Fabio Franchini

    2014-11-01

    Full Text Available In some many-body systems, certain ground-state entanglement (Rényi entropies increase even as the correlation length decreases. This entanglement nonmonotonicity is a potential indicator of nonclassicality. In this work, we demonstrate that such a phenomenon, known as lack of local convertibility, is due to the edge-state (deconstruction occurring in the system. To this end, we employ the example of the Ising chain, displaying an order-disorder quantum phase transition. Employing both analytical and numerical methods, we compute entanglement entropies for various system bipartitions (A|B and consider ground states with and without Majorana edge states. We find that the thermal ground states, enjoying the Hamiltonian symmetries, show lack of local convertibility if either A or B is smaller than, or of the order of, the correlation length. In contrast, the ordered (symmetry-breaking ground state is always locally convertible. The edge-state behavior explains all these results and could disclose a paradigm to understand local convertibility in other quantum phases of matter. The connection we establish between convertibility and nonlocal, quantum correlations provides a clear criterion of which features a universal quantum simulator should possess to outperform a classical machine.

  1. One-dimensional versus two-dimensional electronic states in vicinal surfaces

    International Nuclear Information System (INIS)

    Ortega, J E; Ruiz-Oses, M; Cordon, J; Mugarza, A; Kuntze, J; Schiller, F

    2005-01-01

    Vicinal surfaces with periodic arrays of steps are among the simplest lateral nanostructures. In particular, noble metal surfaces vicinal to the (1 1 1) plane are excellent test systems to explore the basic electronic properties in one-dimensional superlattices by means of angular photoemission. These surfaces are characterized by strong emissions from free-electron-like surface states that scatter at step edges. Thereby, the two-dimensional surface state displays superlattice band folding and, depending on the step lattice constant d, it splits into one-dimensional quantum well levels. Here we use high-resolution, angle-resolved photoemission to analyse surface states in a variety of samples, in trying to illustrate the changes in surface state bands as a function of d

  2. Two-electron states in double quantum dot in direct electric field

    International Nuclear Information System (INIS)

    Burdov, V.A.

    2001-01-01

    One determined analytically the wave functions of stationary states and the spectrum of two-electron system in symmetric binary quantum point. It is shown that in the normal state at the absence of external electric field the electrons due to the Coulomb blockade can not be collectively in one quantum point. In the external electric field the situation changes. When a certain critical value of field intensity is reached the probability of detection of both electrons in one quantum point by a jump increases from zero up to 1 [ru

  3. On the locally stable states of the Sherrington-Kirkpatrick model

    International Nuclear Information System (INIS)

    Parga, N.; Parisi, G.

    1985-07-01

    By using a steepest descent algorithm we calculate the attraction basin of locally stable states of the Sherrington-Kirkpatrick model of spin glasses. Looking for correlations among these states we show the existence of clusters of spins and construct a cluster Hamiltonian. (author)

  4. Trapped electronic states in YAG crystal excited by femtosecond radiation

    Energy Technology Data Exchange (ETDEWEB)

    Zavedeev, E.V.; Kononenko, V.V.; Konov, V.I. [General Physics Institute of RAS, Moscow (Russian Federation); National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow (Russian Federation)

    2017-07-15

    The excitation of an electronic subsystem of an yttrium aluminum garnet by 800 nm femtosecond radiation was studied theoretically and experimentally. The spatio-temporal dynamics of the refractive index (n) inside the beam waist was explored by means of the pump-probe interferometric technique with a submicron resolution. The observed increase in n indicated the formation of bound electronic states relaxed for ∝ 150 ps. We showed that the experimental data agreed with the computational simulation based on the numerical solution of the nonlinear Schroedinger equation only if these transient states were considered to arise from a direct light-induced process but not from the decay of radiatively generated free-electron-hole pairs. (orig.)

  5. Time scales of tunneling decay of a localized state

    International Nuclear Information System (INIS)

    Ban, Yue; Muga, J. G.; Sherman, E. Ya.; Buettiker, M.

    2010-01-01

    Motivated by recent time-domain experiments on ultrafast atom ionization, we analyze the transients and time scales that characterize, aside from the relatively long lifetime, the decay of a localized state by tunneling. While the tunneling starts immediately, some time is required for the outgoing flux to develop. This short-term behavior depends strongly on the initial state. For the initial state, tightly localized so that the initial transients are dominated by over-the-barrier motion, the time scale for flux propagation through the barrier is close to the Buettiker-Landauer traversal time. Then a quasistationary, slow-decay process follows, which sets ideal conditions for observing diffraction in time at longer times and distances. To define operationally a tunneling time at the barrier edge, we extrapolate backward the propagation of the wave packet that escaped from the potential. This extrapolated time is considerably longer than the time scale of the flux and density buildup at the barrier edge.

  6. Local-scaling density-functional method: Intraorbit and interorbit density optimizations

    International Nuclear Information System (INIS)

    Koga, T.; Yamamoto, Y.; Ludena, E.V.

    1991-01-01

    The recently proposed local-scaling density-functional theory provides us with a practical method for the direct variational determination of the electron density function ρ(r). The structure of ''orbits,'' which ensures the one-to-one correspondence between the electron density ρ(r) and the N-electron wave function Ψ({r k }), is studied in detail. For the realization of the local-scaling density-functional calculations, procedures for intraorbit and interorbit optimizations of the electron density function are proposed. These procedures are numerically illustrated for the helium atom in its ground state at the beyond-Hartree-Fock level

  7. 48 CFR 42.705-4 - State and local governments.

    Science.gov (United States)

    2010-10-01

    ... CONTRACT MANAGEMENT CONTRACT ADMINISTRATION AND AUDIT SERVICES Indirect Cost Rates 42.705-4 State and local....6) establishes the cognizant agency concept and procedures for determining a cognizant agency for...

  8. Spin eigen-states of Dirac equation for quasi-two-dimensional electrons

    Energy Technology Data Exchange (ETDEWEB)

    Eremko, Alexander, E-mail: eremko@bitp.kiev.ua [Bogolyubov Institute for Theoretical Physics, Metrologichna Sttr., 14-b, Kyiv, 03680 (Ukraine); Brizhik, Larissa, E-mail: brizhik@bitp.kiev.ua [Bogolyubov Institute for Theoretical Physics, Metrologichna Sttr., 14-b, Kyiv, 03680 (Ukraine); Loktev, Vadim, E-mail: vloktev@bitp.kiev.ua [Bogolyubov Institute for Theoretical Physics, Metrologichna Sttr., 14-b, Kyiv, 03680 (Ukraine); National Technical University of Ukraine “KPI”, Peremohy av., 37, Kyiv, 03056 (Ukraine)

    2015-10-15

    Dirac equation for electrons in a potential created by quantum well is solved and the three sets of the eigen-functions are obtained. In each set the wavefunction is at the same time the eigen-function of one of the three spin operators, which do not commute with each other, but do commute with the Dirac Hamiltonian. This means that the eigen-functions of Dirac equation describe three independent spin eigen-states. The energy spectrum of electrons confined by the rectangular quantum well is calculated for each of these spin states at the values of energies relevant for solid state physics. It is shown that the standard Rashba spin splitting takes place in one of such states only. In another one, 2D electron subbands remain spin degenerate, and for the third one the spin splitting is anisotropic for different directions of 2D wave vector.

  9. A geometric initial guess for localized electronic orbitals in modular biological systems

    Energy Technology Data Exchange (ETDEWEB)

    Beckman, P. G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Univ. of Chicago, IL (United States); Fattebert, J. L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Lau, E. Y. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Osei-Kuffuor, D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-09-11

    Recent first-principles molecular dynamics algorithms using localized electronic orbitals have achieved O(N) complexity and controlled accuracy in simulating systems with finite band gaps. However, accurately deter- mining the centers of these localized orbitals during simulation setup may require O(N3) operations, which is computationally infeasible for many biological systems. We present an O(N) approach for approximating orbital centers in proteins, DNA, and RNA which uses non-localized solutions for a set of fixed-size subproblems to create a set of geometric maps applicable to larger systems. This scalable approach, used as an initial guess in the O(N) first-principles molecular dynamics code MGmol, facilitates first-principles simulations in biological systems of sizes which were previously impossible.

  10. Sustainable Development and African Local Government: Can Electronic Training Help Build Capacities?

    Science.gov (United States)

    Johnson, Hazel; Thomas, Alan

    2007-01-01

    A recent study carried out by European and African organizations into the potential for electronic distance training (EDT) on sustainability in African local governments concluded that EDT was both "useful and feasible". This article reflects on some of the theoretical and practical implications of that study. It focuses on the…

  11. Charge transport through image charged stabilized states in a single molecule single electron transistor device

    International Nuclear Information System (INIS)

    Hedegard, Per; Bjornholm, Thomas

    2005-01-01

    The present paper gives an elaborate theoretical description of a new molecular charge transport mechanism applying to a single molecule trapped between two macroscopic electrodes in a solid state device. It is shown by a Hubbard type model of the electronic and electrostatic interactions, that the close proximity of metal electrodes may allow electrons to tunnel from the electrode directly into very localized image charge stabilized states on the molecule. Due to this mechanism, an exceptionally large number of redox states may be visited within an energy scale which would normally not allow the molecular HOMO-LUMO gap to be transversed. With a reasonable set of parameters, a good fit to recent experimental values may be obtained. The theoretical model is furthermore used to search for the physical boundaries of this effect, and it is found that a rather narrow geometrical space is available for the new mechanism to work: in the specific case of oligophenylenevinylene molecules recently explored in such devices several atoms in the terminal benzene rings need to be at van der Waal's distance to the electrode in order for the mechanism to work. The model predicts, that chemisorption of the terminal benzene rings too gold electrodes will impede the image charge effect very significantly because the molecule is pushed away from the electrode by the covalent thiol-gold bond

  12. Relation between molecular electronic structure and nuclear spin-induced circular dichroism

    DEFF Research Database (Denmark)

    Štěpánek, Petr; Coriani, Sonia; Sundholm, Dage

    2017-01-01

    with spatially localized, high-resolution information. To survey the factors relating the molecular and electronic structure to the NSCD signal, we theoretically investigate NSCD of twenty structures of the four most common nucleic acid bases (adenine, guanine, thymine, cytosine). The NSCD signal correlates...... with the spatial distribution of the excited states and couplings between them, reflecting changes in molecular structure and conformation. This constitutes a marked difference to the nuclear magnetic resonance (NMR) chemical shift, which only reflects the local molecular structure in the ground electronic state....... The calculated NSCD spectra are rationalized by means of changes in the electronic density and by a sum-over-states approach, which allows to identify the contributions of the individual excited states. Two separate contributions to NSCD are identified and their physical origins and relative magnitudes...

  13. Ultrafast electronic relaxation of excited state vitamin B12 in the gas phase

    International Nuclear Information System (INIS)

    Shafizadeh, Niloufar; Poisson, Lionel; Soep, Benoit

    2008-01-01

    The time evolution of electronically excited vitamin B 12 (cyanocobalamin) has been observed for the first time in the gas phase. It reveals an ultrafast decay to a state corresponding to metal excitation. This decay is interpreted as resulting from a ring to metal electron transfer. This opens the observation of the excited state of other complex biomimetic systems in the gas phase, the key to the characterisation of their complex evolution through excited electronic states

  14. One-electron theory of metals

    International Nuclear Information System (INIS)

    Skriver, H.L.

    1984-12-01

    The work described in the report and the 16 accompanying publications is based upon a one-electron theory obtained within the local approximation to density-functional theory, and deals with the ground state of metals as obtained from self-consistent electronic-structure calculations performed by means of the Linear Muffin-Tin Orbital (LMTO) method. It has been the goal of the work to establish how well this one-electron approach describes physical properties such as the crystal structures of the transition metals, the structural phase transitions in the alkali, alkaline earth, and rare earth metals, and the localization of 3d, 4f, and 5f electrons in the 3d metal monoxides, the light lanthanides, and the actinides, respectively, as well as the cohesive properties of metals in general. (orig.)

  15. Differential cross sections for intermediate-energy electron scattering from α-tetrahydrofurfuryl alcohol: Excitation of electronic-states

    Energy Technology Data Exchange (ETDEWEB)

    Chiari, L.; Jones, D. B.; Thorn, P. A.; Pettifer, Z. [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide, SA 5001 (Australia); Duque, H. V. [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide, SA 5001 (Australia); Departamento de Física, Universidade Federal de Juiz de Fora, Juiz de Fora, MG (Brazil); Silva, G. B. da [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide, SA 5001 (Australia); Universidade Federal de Mato Grosso, Barra do Garças, Mato Grosso (Brazil); Limão-Vieira, P. [Laboratório de Colisões Atómicas e Moleculares, CEFITEC, Departamento de Física, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Duflot, D. [Laboratoire de Physique des Lasers, Atomes et Molécules, UMR CNRS 8523, Université Lille, F-59655 Villeneuve d’Ascq Cedex (France); Hubin-Franskin, M.-J.; Delwiche, J. [Départment de Chimie, Université de Liège, Institut de Chimie-Bât. B6C, B-4000 Liège 1 (Belgium); Blanco, F. [Departamento de Física Atómica, Molecular y Nuclear, Universidad Complutense de Madrid, Madrid E-28040 (Spain); García, G. [Instituto de Física Fundamental, CSIC, Madrid E-28006 (Spain); and others

    2014-07-14

    We report on measurements of differential cross sections (DCSs) for electron impact excitation of a series of Rydberg electronic-states in α-tetrahydrofurfuryl alcohol (THFA). The energy range of these experiments was 20–50 eV, while the scattered electron was detected in the 10°–90° angular range. There are currently no other experimental data or theoretical computations against which we can directly compare the present measured results. Nonetheless, we are able to compare our THFA DCSs with earlier cross section measurements for Rydberg-state electronic excitation for tetrahydrofuran, a similar cyclic ether, from Do et al. [J. Chem. Phys. 134, 144302 (2011)]. In addition, “rotationally averaged” elastic DCSs, calculated using our independent atom model with screened additivity rule correction approach are also reported. Those latter results give integral cross sections consistent with the optical theorem, and supercede those from the only previous study of Milosavljević et al. [Eur. Phys. J. D 40, 107 (2006)].

  16. Chemical modulation of electronic structure at the excited state

    Science.gov (United States)

    Li, F.; Song, C.; Gu, Y. D.; Saleem, M. S.; Pan, F.

    2017-12-01

    Spin-polarized electronic structures are the cornerstone of spintronics, and have thus attracted a significant amount of interest; in particular, researchers are looking into how to modulate the electronic structure to enable multifunctional spintronics applications, especially in half-metallic systems. However, the control of the spin polarization has only been predicted in limited two-dimensional systems with spin-polarized Dirac structures and is difficult to achieve experimentally. Here, we report the modulation of the electronic structure in the light-induced excited state in a typical half-metal, L a1 /2S r1 /2Mn O3 -δ . According to the spin-transport measurements, there appears a light-induced increase in magnetoresistance due to the enhanced spin scattering, which is closely associated with the excited spin polarization. Strikingly, the light-induced variation can be enhanced via alcohol processing and reduced by oxygen annealing. X-ray photoelectron spectroscopy measurements show that in the chemical process, a redox reaction occurs with a change in the valence of Mn. Furthermore, first-principles calculations reveal that the change in the valence of Mn alters the electronic structure and consequently modulates the spin polarization in the excited state. Our findings thus report a chemically tunable electronic structure, demonstrating interesting physics and the potential for multifunctional applications and ultrafast spintronics.

  17. State-specific transport properties of electronically excited Ar and C

    Science.gov (United States)

    Istomin, V. A.; Kustova, E. V.

    2018-05-01

    In the present study, a theoretical model of state-resolved transport properties in electronically excited atomic species developed earlier is applied to argon and carbon atomic species. It is shown that for Ar and C, similarly to the case of atomic nitrogen and oxygen, the Slater-like models can be applied to calculate diameters of electronically excited atoms. Using the Slater-like model it is shown that for half-filled N (2 px1py1pz1) and full-filled Ar (3 px2py2pz2) electronic shells the growth of atomic radius goes slowly compared to C (2 px1py1) and O (2 px2py1pz1). The effect of collision diameters on the transport properties of Ar and C is evaluated. The influence of accounted number of electronic levels on the transport coefficients is examined for the case of Boltzmann distributions over electronic energy levels. It is emphasized that in the temperature range 1000-14000 K, for Boltzmann-like distributions over electronic states the number of accounted electronic levels do not influence the transport coefficients. Contrary to this, for higher temperatures T > 14000 K this effect becomes of importance, especially for argon.

  18. Study of localized corrosion in AA2024 aluminium alloy using electron tomography

    International Nuclear Information System (INIS)

    Zhou, X.; Luo, C.; Hashimoto, T.; Hughes, A.E.; Thompson, G.E.

    2012-01-01

    Highlights: ► SEM tomography of localized corrosion has been achieved. ► Nanotomography provides evidence that links microstructure and corrosion propagation path. ► IGC stemmed from localized corrosion associated with buried clusters of intermetallics. ► IGC started beneath the alloy surface and may emerge on the alloy surface. - Abstract: SEM based tomography of localized corrosion has been achieved using selective detection of backscattered electrons. The high resolution tomography provides direct evidence that links the surface appearance of corroded alloy, the alloy microstructure and the corrosion propagation path. Stable localized corrosion of AA2024-T351 aluminium alloy was initiated at locations where large clusters of S phase particles were buried beneath the surface. Propagating away from the initiation sites, corrosion developed preferentially along the grain boundary network. The grain boundary attack started beneath the alloy surface, proceeded along preferred grain boundaries and may emerge at the alloy surface.

  19. Nonclassicality by Local Gaussian Unitary Operations for Gaussian States

    Directory of Open Access Journals (Sweden)

    Yangyang Wang

    2018-04-01

    Full Text Available A measure of nonclassicality N in terms of local Gaussian unitary operations for bipartite Gaussian states is introduced. N is a faithful quantum correlation measure for Gaussian states as product states have no such correlation and every non product Gaussian state contains it. For any bipartite Gaussian state ρ A B , we always have 0 ≤ N ( ρ A B < 1 , where the upper bound 1 is sharp. An explicit formula of N for ( 1 + 1 -mode Gaussian states and an estimate of N for ( n + m -mode Gaussian states are presented. A criterion of entanglement is established in terms of this correlation. The quantum correlation N is also compared with entanglement, Gaussian discord and Gaussian geometric discord.

  20. Total-energy global optimizations using nonorthogonal localized orbitals

    International Nuclear Information System (INIS)

    Kim, J.; Mauri, F.; Galli, G.

    1995-01-01

    An energy functional for orbital-based O(N) calculations is proposed, which depends on a number of nonorthogonal, localized orbitals larger than the number of occupied states in the system, and on a parameter, the electronic chemical potential, determining the number of electrons. We show that the minimization of the functional with respect to overlapping localized orbitals can be performed so as to attain directly the ground-state energy, without being trapped at local minima. The present approach overcomes the multiple-minima problem present within the original formulation of orbital-based O(N) methods; it therefore makes it possible to perform O(N) calculations for an arbitrary system, without including any information about the system bonding properties in the construction of the input wave functions. Furthermore, while retaining the same computational cost as the original approach, our formulation allows one to improve the variational estimate of the ground-state energy, and the energy conservation during a molecular dynamics run. Several numerical examples for surfaces, bulk systems, and clusters are presented and discussed

  1. Critic: a new program for the topological analysis of solid-state electron densities

    Science.gov (United States)

    Otero-de-la-Roza, A.; Blanco, M. A.; Pendás, A. Martín; Luaña, Víctor

    2009-01-01

    In this paper we introduce CRITIC, a new program for the topological analysis of the electron densities of crystalline solids. Two different versions of the code are provided, one adapted to the LAPW (Linear Augmented Plane Wave) density calculated by the WIEN2K package and the other to the ab initio Perturbed Ion ( aiPI) density calculated with the PI7 code. Using the converged ground state densities, CRITIC can locate their critical points, determine atomic basins and integrate properties within them, and generate several graphical representations which include topological atomic basins and primary bundles, contour maps of ρ and ∇ρ, vector maps of ∇ρ, chemical graphs, etc. Program summaryProgram title: CRITIC Catalogue identifier: AECB_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AECB_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GPL, version 3 No. of lines in distributed program, including test data, etc.: 1 206 843 No. of bytes in distributed program, including test data, etc.: 12 648 065 Distribution format: tar.gz Programming language: FORTRAN 77 and 90 Computer: Any computer capable of compiling Fortran Operating system: Unix, GNU/Linux Classification: 7.3 Nature of problem: Topological analysis of the electron density in periodic solids. Solution method: The automatic localization of the electron density critical points is based on a recursive partitioning of the Wigner-Seitz cell into tetrahedra followed by a Newton search from significant points on each tetrahedra. Plotting of and integration on the atomic basins is currently based on a new implementation of Keith's promega algorithm. Running time: Variable, depending on the task. From seconds to a few minutes for the localization of critical points. Hours to days for the determination of the atomic basins shape and properties. Times correspond to a typical 2007 PC.

  2. Self-Localized Quasi-Particle Excitation in Quantum Electrodynamics and Its Physical Interpretation

    Directory of Open Access Journals (Sweden)

    Ilya D. Feranchuk

    2007-12-01

    Full Text Available The self-localized quasi-particle excitation of the electron-positron field (EPF is found for the first time in the framework of a standard form of the quantum electrodynamics. This state is interpreted as the ''physical'' electron (positron and it allows one to solve the following problems: i to express the ''primary'' charge $e_0$ and the mass $m_0$ of the ''bare'' electron in terms of the observed values of $e$ and $m$ of the ''physical'' electron without any infinite parameters and by essentially nonperturbative way; ii to consider $mu$-meson as another self-localized EPF state and to estimate the ratio $m_mu/m$; iii to prove that the self-localized state is Lorentz-invariant and its energy spectrum corresponds to the relativistic free particle with the observed mass $m$; iv to show that the expansion in a power of the observed charge $e ll 1$ corresponds to the strong coupling expansion in a power of the ''primary'' charge $e^{-1}_0 sim e$ when the interaction between the ''physical'' electron and the transverse electromagnetic field is considered by means of the perturbation theory and all terms of this series are free from the ultraviolet divergence.

  3. Benzonitrile: Electron affinity, excited states, and anion solvation

    Science.gov (United States)

    Dixon, Andrew R.; Khuseynov, Dmitry; Sanov, Andrei

    2015-10-01

    We report a negative-ion photoelectron imaging study of benzonitrile and several of its hydrated, oxygenated, and homo-molecularly solvated cluster anions. The photodetachment from the unsolvated benzonitrile anion to the X ˜ 1 A 1 state of the neutral peaks at 58 ± 5 meV. This value is assigned as the vertical detachment energy (VDE) of the valence anion and the upper bound of adiabatic electron affinity (EA) of benzonitrile. The EA of the lowest excited electronic state of benzonitrile, a ˜ 3 A 1 , is determined as 3.41 ± 0.01 eV, corresponding to a 3.35 eV lower bound for the singlet-triplet splitting. The next excited state, the open-shell singlet A ˜ 1 A 1 , is found about an electron-volt above the triplet, with a VDE of 4.45 ± 0.01 eV. These results are in good agreement with ab initio calculations for neutral benzonitrile and its valence anion but do not preclude the existence of a dipole-bound state of similar energy and geometry. The step-wise and cumulative solvation energies of benzonitrile anions by several types of species were determined, including homo-molecular solvation by benzonitrile, hydration by 1-3 waters, oxygenation by 1-3 oxygen molecules, and mixed solvation by various combinations of O2, H2O, and benzonitrile. The plausible structures of the dimer anion of benzonitrile were examined using density functional theory and compared to the experimental observations. It is predicted that the dimer anion favors a stacked geometry capitalizing on the π-π interactions between the two partially charged benzonitrile moieties.

  4. Quantification of entanglement entropies for doubly excited resonance states in two-electron atomic systems

    International Nuclear Information System (INIS)

    Ho, Yew Kam; Lin, Chien-Hao

    2015-01-01

    In this work, we study the quantum entanglement for doubly excited resonance states in two-electron atomic systems such as the H - and Ps - ions and the He atom by using highly correlated Hylleraas type functions The resonance states are determined by calculation of density of resonance states with the stabilization method. The spatial (electron-electron orbital) entanglement entropies (linear and von Neumann) for the low-lying doubly excited states are quantified using the Schmidt-Slater decomposition method. (paper)

  5. Local Trigger Electronics for the CMS Drift Tubes Muon detector

    CERN Document Server

    Travaglini, R

    2003-01-01

    In the CMS detector in preparation for the CERN LHC collider, the Drift Tubes Muon Chambers are equipped with mini-crates hosting custom electronics for fast data processing and local trigger generation. In particular the Trigger Server of a DTC consists of Track Sorter Slave ASICs and a Track Sorter Master system. The trigger electronics boards are in production, to be ready for the muon detector installation in the CMS barrel starting at the end of 2003.In this work, the performance of the Trigger Server will be discussed, on the basis both of high-statistics tests with predefined patterns and of test beam data collected at CERN, where a DTC was exposed to a muon beam having an LHC-like bunch structure. Finally, some system performance expectations, concerning radiation tolerance and signal transmission issues during LHC running, will be also discussed.

  6. Orientation-dependent imaging of electronically excited quantum dots

    Science.gov (United States)

    Nguyen, Duc; Goings, Joshua J.; Nguyen, Huy A.; Lyding, Joseph; Li, Xiaosong; Gruebele, Martin

    2018-02-01

    We previously demonstrated that we can image electronic excitations of quantum dots by single-molecule absorption scanning tunneling microscopy (SMA-STM). With this technique, a modulated laser beam periodically saturates an electronic transition of a single nanoparticle, and the resulting tunneling current modulation ΔI(x0, y0) maps out the SMA-STM image. In this paper, we first derive the basic theory to calculate ΔI(x0, y0) in the one-electron approximation. For near-resonant tunneling through an empty orbital "i" of the nanostructure, the SMA-STM signal is approximately proportional to the electron density |φi) (x0,y0)|nudge quantum dots on the surface and roll them, thus imaging excited state electronic structure of a single quantum dot at different orientations. We use density functional theory to model ODMs at various orientations, for qualitative comparison with the SMA-STM experiment. The model demonstrates that our experimentally observed signal monitors excited states, localized by defects near the surface of an individual quantum dot. The sub-nanometer super-resolution imaging technique demonstrated here could become useful for mapping out the three-dimensional structure of excited states localized by defects within nanomaterials.

  7. Electron spin resonance in YbRh2Si2: local-moment, unlike-spin and quasiparticle descriptions.

    Science.gov (United States)

    Huber, D L

    2012-06-06

    Electron spin resonance (ESR) in the Kondo lattice compound YbRh(2)Si(2) has stimulated discussion as to whether the low-field resonance outside the Fermi liquid regime in this material is more appropriately characterized as a local-moment phenomenon or one that requires a Landau quasiparticle interpretation. In earlier work, we outlined a collective mode approach to the ESR that involves only the local 4f moments. In this paper, we extend the collective mode approach to a situation where there are two subsystems of unlike spins: the pseudospins of the ground multiplet of the Yb ions and the spins of the itinerant conduction electrons. We assume a weakly anisotropic exchange interaction between the two subsystems. With suitable approximations our expression for the g-factor also reproduces that found in recent unlike-spin quasiparticle calculations. It is pointed out that the success of the local-moment approach in describing the resonance is due to the fact that the susceptibility of the Yb subsystem dominates that of the conduction electrons with the consequence that the relative shift in the resonance frequency predicted by the unlike-spin models (and absent in the local-moment models) is ≪ 1. The connection with theoretical studies of a two-component model with like spins is also discussed.

  8. Strongly Localized Image States of Spherical Graphitic Particles

    Directory of Open Access Journals (Sweden)

    Godfrey Gumbs

    2014-01-01

    Full Text Available We investigate the localization of charged particles by the image potential of spherical shells, such as fullerene buckyballs. These spherical image states exist within surface potentials formed by the competition between the attractive image potential and the repulsive centripetal force arising from the angular motion. The image potential has a power law rather than a logarithmic behavior. This leads to fundamental differences in the nature of the effective potential for the two geometries. Our calculations have shown that the captured charge is more strongly localized closest to the surface for fullerenes than for cylindrical nanotube.

  9. Enabling Collaborative Analysis: State Evaluation Groups, the Electronic State File, and Collaborative Analysis Tools

    International Nuclear Information System (INIS)

    Eldridge, C.; Gagne, D.; Wilson, B.; Murray, J.; Gazze, C.; Feldman, Y.; Rorif, F.

    2015-01-01

    The timely collection and analysis of all safeguards relevant information is the key to drawing and maintaining soundly-based safeguards conclusions. In this regard, the IAEA has made multidisciplinary State Evaluation Groups (SEGs) central to this process. To date, SEGs have been established for all States and tasked with developing State-level approaches (including the identification of technical objectives), drafting annual implementation plans specifying the field and headquarters activities necessary to meet technical objectives, updating the State evaluation on an ongoing basis to incorporate new information, preparing an annual evaluation summary, and recommending a safeguards conclusion to IAEA senior management. To accomplish these tasks, SEGs need to be staffed with relevant expertise and empowered with tools that allow for collaborative access to, and analysis of, disparate information sets. To ensure SEGs have the requisite expertise, members are drawn from across the Department of Safeguards based on their knowledge of relevant data sets (e.g., nuclear material accountancy, material balance evaluation, environmental sampling, satellite imagery, open source information, etc.) or their relevant technical (e.g., fuel cycle) expertise. SEG members also require access to all available safeguards relevant data on the State. To facilitate this, the IAEA is also developing a common, secure platform where all safeguards information can be electronically stored and made available for analysis (an electronic State file). The structure of this SharePoint-based system supports IAEA information collection processes, enables collaborative analysis by SEGs, and provides for management insight and review. In addition to this common platform, the Agency is developing, deploying, and/or testing sophisticated data analysis tools that can synthesize information from diverse information sources, analyze diverse datasets from multiple viewpoints (e.g., temporal, geospatial

  10. Plasma Wind Tunnel Testing of Electron Transpiration Cooling Concept

    Science.gov (United States)

    2017-02-28

    Colorado State University ETC Electron Transpiration Cooling LHTS Local Heat Transfer Simulation LTE Local Thermodynamic Equilibrium RCC Reinforced...ceramic electric material testing in plasma environment (not performed), 4. measurements and analysis of the Electron Transpiration Cooling (Sec. 4.2). 2...VKI 1D boundary layer code for computation of enthalpy and boundary layer parameters: a) iterate on ’virtually measured ’ heat flux, b) once enthalpy

  11. Theoretical study of the lowest-lying electronic states of Aluminium monoiodide

    International Nuclear Information System (INIS)

    Taher, F.; Kabbani, A.; Ani-El Houte, W.

    2004-01-01

    Full text.The spectroscopic study of Aluminium monohalides, especially the Aluminium monoiodide, is important for monitoring such species in high temperature fast-flow reactors. Theoretical calculations of AlI are not available, whereas several studies have been done for the other aluminium monohalides. In this work, CAS-SCF/MRCI calculations are performed for the lowest-lying electronic states of AlI in a range of internuclear distance between 2.30 A and 2.80 A. Ab-initio calculations have been effectuated by using the computational chemistry program Molpro. The basis set used in this study for aluminium atom is that used by Langhoff for aluminium monohalides, of contractions using atomic natural orbitals and a pseudopotential is used for iode. Accurate theoretical spectroscopic constants and potential curves are obtained for the ground state X 1 Σ + and the first excited states a 3 Π and A 1 Π. The calculated values of Te, ωe, ωexe and re of these states are compatible with the experimental results. An ordering of states is represented for the lowest five predicted singlet and lowest five predicted triplet states. These results provide a big support to determine the analogy in the ordering of the electronic states in AlF, AlBr and AlI respectively at lower energies. These theoretical results identify a set of electronic singlet and triplet states unobserved experimentally

  12. Theoretical Ideas of Local Government and State Government Development

    Directory of Open Access Journals (Sweden)

    Nikolay I. Churinov

    2016-03-01

    Full Text Available In this article the characteristic of a theoretical component of model of interaction of local government bodies with the central government, and also development of scientific base in the course of history is given. Relevance to this subject in the conditions of the Russian reality is added by federalism of a state system of Russia, namely a thin side in questions of competences between bodies of one hierarchy. This article, will be useful to those who deal with issues in the field of the theory of the state and the right and the municipal right. Historic facts in the form of the regulatory legal acts adopted earlier which subsequently, were a source for development of theoretical ideas of local self-government and the government are given in article.

  13. Optimum launching of electron-cyclotron power for localized current drive in a hot tokamak

    International Nuclear Information System (INIS)

    Smith, G.R.

    1989-05-01

    Optimum launch parameters are determined for localized electron-cyclotron current drive near the magnetic axis and the q=2 surface by solving several minimization problems. For central current drive, equatorial and bottom launch are compared. Localized current drive near q=2 is studied for equatorial launch and for an alternative outside launch geometry that may be better for suppressing tearing modes and controlling disruptions. 6 refs., 2 figs

  14. 42 CFR 1002.230 - Notification of State or local convictions of crimes against Medicaid.

    Science.gov (United States)

    2010-10-01

    ... crimes against Medicaid. 1002.230 Section 1002.230 Public Health OFFICE OF INSPECTOR GENERAL-HEALTH CARE... MEDICAID Notification to OIG of State or Local Convictions of Crimes Against Medicaid § 1002.230 Notification of State or local convictions of crimes against Medicaid. (a) The State agency must notify the OIG...

  15. 48 CFR 29.302 - Application of State and local taxes to the Government.

    Science.gov (United States)

    2010-10-01

    ... Government are immune from State and local taxation. Whether any specific purchase or lease is immune, however, is a legal question requiring advice and assistance of the agency-designated counsel. (b) When it... from State and local taxation that may be available. If appropriate, the contracting officer shall...

  16. The geometrically averaged density of states calculated from the local Green's function as a measure of localization

    International Nuclear Information System (INIS)

    Wortis, R.; Song Yun; Atkinson, W.A.

    2008-01-01

    With the goal of measuring localization in disordered interacting systems, we examine the finite-size scaling of the geometrically averaged density of states calculated from the local Green's function with finite energy resolution. Our results show that, unlike in a simple energy binning procedure, there is no limit in which the finite energy resolution is irrelevant

  17. State and local policies related to sexual orientation in the United States.

    Science.gov (United States)

    Cramer, Ryan; Hexem, Sarah; LaPollo, Archana; Cuffe, Kendra M; Chesson, Harrell W; Leichliter, Jami S

    2017-02-01

    Poorer health suffered by lesbian, gay, and bisexual (LGB) populations may be associated with public policies. We collected the laws that in 2013 prohibited discrimination based on sexual orientation from 50 United States (US) states, the District of Columbia (Washington, DC or DC), and the 30 most populous US metropolitan areas. To facilitate future research, we coded certain aspects of these laws to create a dataset. We generated descriptive statistics by jurisdiction type and tested for regional differences in state law using Chi-square tests. Sixteen (31.4 per cent) states prohibited discrimination by all employers based on sexual orientation, 25 states (49.0 per cent) in public employment, 18 states (35.3 per cent) in government contracting, and 21 states (41.2 per cent) in private employment. Twenty-one states prohibited discrimination (41.2 per cent) in housing practices (selling and renting), and 17 (33.3 per cent) in public accommodations. Local (county/city) laws prohibiting discrimination were less common. State laws differed significantly by US census region - West, Midwest, Northeast, and South. Future analyses of these data could examine the impact of these laws on various outcomes, including health among LGB populations.

  18. 75 FR 66054 - Nondiscrimination on the Basis of Disability in State and Local Government Services, Public...

    Science.gov (United States)

    2010-10-27

    ... Nondiscrimination on the Basis of Disability in State and Local Government Services, Public Accommodations and in... of Disability; Accessibility of Web Information and Services of State and Local Government Entities and Public Accommodations; Nondiscrimination on the Basis of Disability in State and Local Government...

  19. Two-state model of excess electron relaxation and geminate recombination in water and aqueous solutions

    International Nuclear Information System (INIS)

    Fedorenko, S.G.

    2010-01-01

    Graphical abstract: After photo-induced ionization a free electron suffers a quick conversion to a solvated state, and then recombines with the parent atom or ion. However, high mobility and reactivity of a free electron can allow the electron to delocalize and recombine in the free state. The theory of two channel processes of geminate electron recombination is developed and applied to the experiment of three-pulse generation of excess electrons in water. - Abstract: After photo-induced ionization a free electron suffers a quick conversion to a solvated state, and then can recombine with the parent atom or ion. However, high mobility and reactivity of a free electron can allow the electron to delocalize and recombine in the free state. The theory of two channel processes of geminate electron recombination is developed here for the general type of the Markovian motion of reactants. A contact model is used for analytical solution of the problem of geminate recombination of neutral and charged reactants. The theory is applied to the experiment of three-pulse generation of excess electrons in water.

  20. Electronic structure and transport properties of hydrogenated graphene and graphene nanoribbons

    Energy Technology Data Exchange (ETDEWEB)

    Choe, D H; Bang, Junhyeok; Chang, K J, E-mail: kchang@kaist.ac.kr [Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon 305-701 (Korea, Republic of)

    2010-12-15

    The band gap opening is one of the important issues in applications of graphene and graphene nanoribbons (GNRs) to nanoscale electronic devices. As hydrogen strongly interacts with graphene and creates short-range disorder, the electronic structure is significantly modified by hydrogenation. Based on first-principles and tight-binding calculations, we investigate the electronic and transport properties of hydrogenated graphene and GNRs. In disordered graphene with low doses of H adsorbates, the low-energy states near the neutrality point are localized, and the degree of localization extends to high-energy states with increasing adsorbate density. To characterize the localization of eigenstates, we examine the inverse participation ratio and find that the localization is greatly enhanced for the defect levels, which are accumulated around the neutrality point. Our calculations support the previous result that even with a low dose of H adsorbates, graphene undergoes a metal-insulator transition. In GNRs, relaxations of the edge C atoms play a role in determining the edge structure and the hydrocarbon conformation at low and high H concentrations, respectively. In disordered nanoribbons, we find that the energy states near the neutrality point are localized and conductances through low-energy channels decay exponentially with sample size, similar to disordered graphene. For a given channel energy, the localization length tends to decrease as the adsorbate density increases. Moreover, the energy range of localization exceeds the intrinsic band gap.

  1. Quantum localization and bound-state formation in Bose-Einstein condensates

    International Nuclear Information System (INIS)

    Franzosi, Roberto; Giampaolo, Salvatore M.; Illuminati, Fabrizio

    2010-01-01

    We discuss the possibility of exponential quantum localization in systems of ultracold bosonic atoms with repulsive interactions in open optical lattices without disorder. We show that exponential localization occurs in the maximally excited state of the lowest energy band. We establish the conditions under which the presence of the upper energy bands can be neglected, determine the successive stages and the quantum phase boundaries at which localization occurs, and discuss schemes to detect it experimentally by visibility measurements. The discussed mechanism is a particular type of quantum localization that is intuitively understood in terms of the interplay between nonlinearity and a bounded energy spectrum.

  2. Integral elastic, electronic-state, ionization, and total cross sections for electron scattering with furfural

    Energy Technology Data Exchange (ETDEWEB)

    Jones, D. B. [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide, South Australia 5001 (Australia); Costa, R. F. da [Instituto de Física “Gleb Wataghin,” Universidade Estadual de Campinas, Campinas, 13083-859 São Paulo (Brazil); Departamento de Física, Universidade Federal do Espírito Santo, 29075-910, Vitória, Espírito Santo (Brazil); Varella, M. T. do N. [Instituto de Física, Universidade de São Paulo, CP 66318, 05315-970 São Paulo (Brazil); Bettega, M. H. F. [Departamento de Física, Universidade Federal do Paraná, CP 19044, 81531-990 Curitiba, Paraná (Brazil); Lima, M. A. P. [Instituto de Física “Gleb Wataghin,” Universidade Estadual de Campinas, Campinas, 13083-859 São Paulo (Brazil); Blanco, F. [Departamento de Física Atómica, Molecular y Nuclear, Universidad Complutense de Madrid, Madrid E-28040 (Spain); García, G. [Instituto de Física Fundamental, CSIC, Serrano 113-bis, 28006 Madrid (Spain); Brunger, M. J., E-mail: Michael.Brunger@flinders.edu.au [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide, South Australia 5001 (Australia); Institute of Mathematical Sciences, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2016-04-14

    We report absolute experimental integral cross sections (ICSs) for electron impact excitation of bands of electronic-states in furfural, for incident electron energies in the range 20–250 eV. Wherever possible, those results are compared to corresponding excitation cross sections in the structurally similar species furan, as previously reported by da Costa et al. [Phys. Rev. A 85, 062706 (2012)] and Regeta and Allan [Phys. Rev. A 91, 012707 (2015)]. Generally, very good agreement is found. In addition, ICSs calculated with our independent atom model (IAM) with screening corrected additivity rule (SCAR) formalism, extended to account for interference (I) terms that arise due to the multi-centre nature of the scattering problem, are also reported. The sum of those ICSs gives the IAM-SCAR+I total cross section for electron–furfural scattering. Where possible, those calculated IAM-SCAR+I ICS results are compared against corresponding results from the present measurements with an acceptable level of accord being obtained. Similarly, but only for the band I and band II excited electronic states, we also present results from our Schwinger multichannel method with pseudopotentials calculations. Those results are found to be in good qualitative accord with the present experimental ICSs. Finally, with a view to assembling a complete cross section data base for furfural, some binary-encounter-Bethe-level total ionization cross sections for this collision system are presented.

  3. Integral elastic, electronic-state, ionization, and total cross sections for electron scattering with furfural

    International Nuclear Information System (INIS)

    Jones, D. B.; Costa, R. F. da; Varella, M. T. do N.; Bettega, M. H. F.; Lima, M. A. P.; Blanco, F.; García, G.; Brunger, M. J.

    2016-01-01

    We report absolute experimental integral cross sections (ICSs) for electron impact excitation of bands of electronic-states in furfural, for incident electron energies in the range 20–250 eV. Wherever possible, those results are compared to corresponding excitation cross sections in the structurally similar species furan, as previously reported by da Costa et al. [Phys. Rev. A 85, 062706 (2012)] and Regeta and Allan [Phys. Rev. A 91, 012707 (2015)]. Generally, very good agreement is found. In addition, ICSs calculated with our independent atom model (IAM) with screening corrected additivity rule (SCAR) formalism, extended to account for interference (I) terms that arise due to the multi-centre nature of the scattering problem, are also reported. The sum of those ICSs gives the IAM-SCAR+I total cross section for electron–furfural scattering. Where possible, those calculated IAM-SCAR+I ICS results are compared against corresponding results from the present measurements with an acceptable level of accord being obtained. Similarly, but only for the band I and band II excited electronic states, we also present results from our Schwinger multichannel method with pseudopotentials calculations. Those results are found to be in good qualitative accord with the present experimental ICSs. Finally, with a view to assembling a complete cross section data base for furfural, some binary-encounter-Bethe-level total ionization cross sections for this collision system are presented.

  4. State and Local Preparedness for Terrorism: Selected Policy Issues

    National Research Council Canada - National Science Library

    Canada, Ben

    2002-01-01

    While the federal government has resources at hand for responding to terrorist attacks, the proximity of state and local first responders insures they will almost always be the first to arrive at the site of an attack...

  5. State, Local and Tribal Resources for Creating Healthy Schools

    Science.gov (United States)

    This page will be a combination of three current pages on resources - ‘Resources for Healthier Schools’, ‘Schools: Student Curricula for Healthier School’ and ‘Schools: Regional, Tribal, State and Local Resources for Healthier Schools’ pages

  6. Quasi 2D electronic states with high spin-polarization in centrosymmetric MoS2 bulk crystals

    Science.gov (United States)

    Gehlmann, Mathias; Aguilera, Irene; Bihlmayer, Gustav; Młyńczak, Ewa; Eschbach, Markus; Döring, Sven; Gospodarič, Pika; Cramm, Stefan; Kardynał, Beata; Plucinski, Lukasz; Blügel, Stefan; Schneider, Claus M.

    2016-06-01

    Time reversal dictates that nonmagnetic, centrosymmetric crystals cannot be spin-polarized as a whole. However, it has been recently shown that the electronic structure in these crystals can in fact show regions of high spin-polarization, as long as it is probed locally in real and in reciprocal space. In this article we present the first observation of this type of compensated polarization in MoS2 bulk crystals. Using spin- and angle-resolved photoemission spectroscopy (ARPES), we directly observed a spin-polarization of more than 65% for distinct valleys in the electronic band structure. By additionally evaluating the probing depth of our method, we find that these valence band states at the point in the Brillouin zone are close to fully polarized for the individual atomic trilayers of MoS2, which is confirmed by our density functional theory calculations. Furthermore, we show that this spin-layer locking leads to the observation of highly spin-polarized bands in ARPES since these states are almost completely confined within two dimensions. Our findings prove that these highly desired properties of MoS2 can be accessed without thinning it down to the monolayer limit.

  7. 42 CFR 54.11 - Effects on State and local funds.

    Science.gov (United States)

    2010-10-01

    ... AND/OR PROJECTS FOR ASSISTANCE IN TRANSITION FROM HOMELESSNESS GRANTS § 54.11 Effects on State and... 42 Public Health 1 2010-10-01 2010-10-01 false Effects on State and local funds. 54.11 Section 54.11 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES GRANTS CHARITABLE...

  8. Antiferroic electronic structure in the nonmagnetic superconducting state of the iron-based superconductors.

    Science.gov (United States)

    Shimojima, Takahiro; Malaeb, Walid; Nakamura, Asuka; Kondo, Takeshi; Kihou, Kunihiro; Lee, Chul-Ho; Iyo, Akira; Eisaki, Hiroshi; Ishida, Shigeyuki; Nakajima, Masamichi; Uchida, Shin-Ichi; Ohgushi, Kenya; Ishizaka, Kyoko; Shin, Shik

    2017-08-01

    A major problem in the field of high-transition temperature ( T c ) superconductivity is the identification of the electronic instabilities near superconductivity. It is known that the iron-based superconductors exhibit antiferromagnetic order, which competes with the superconductivity. However, in the nonmagnetic state, there are many aspects of the electronic instabilities that remain unclarified, as represented by the orbital instability and several in-plane anisotropic physical properties. We report a new aspect of the electronic state of the optimally doped iron-based superconductors by using high-energy resolution angle-resolved photoemission spectroscopy. We find spectral evidence for the folded electronic structure suggestive of an antiferroic electronic instability, coexisting with the superconductivity in the nonmagnetic state of Ba 1- x K x Fe 2 As 2 . We further establish a phase diagram showing that the antiferroic electronic structure persists in a large portion of the nonmagnetic phase covering the superconducting dome. These results motivate consideration of a key unknown electronic instability, which is necessary for the achievement of high- T c superconductivity in the iron-based superconductors.

  9. Theoretical study of the localization-delocalization transition in amorphous molybdenum-germanium alloys

    International Nuclear Information System (INIS)

    Ding, K.; Andersen, H.C.

    1987-01-01

    Electronic structure calculations were performed for amorphous germanium and amorphous alloys of molybdenum and germanium. The calculations used Harrison's universal linear-combination-of-atomic-orbitals parameters to generate one-electron Hamiltonians for structural configurations obtained from molecular-dynamics simulations. The density of states calculated for a model of a-Ge showed a distinct pseudogap, although with an appreciable density of states at the minimum. The states in the pseudogap are localized. As the concentration of Mo atoms increases, the pseudogap of the density of states is gradually filled up. The density of states at the Fermi energy calculated for our model of the alloys agrees quite well with that experimentally determined by Yoshizumi, Geballe, and co-workers. The localization index for the states at the Fermi energy is a decreasing function of Mo concentration in the range of 2--14 at. % Mo and the localization length is an increasing function of molybdenum concentration. These results are consistent with the experimental observation of an insulator-metal transition at about 10 at. % Mo

  10. Variation Process of Radiation Belt Electron Fluxes due to Interaction With Chorus and EMIC Rising-tone Emissions Localized in Longitude

    Science.gov (United States)

    Kubota, Y.; Omura, Y.

    2017-12-01

    Using results of test particle simulations of a large number of electrons interacting with a pair of chorus emissions, we create Green's functions to model the electron distribution function after all of the possible interactions with the waves [Omura et al., 2015]. Assuming that the waves are generated in a localized range of longitudes in the dawn side, we repeat taking the convolution integral of the Green's function with the distribution function of the electrons injected into the generation region of the localized waves. From numerical and theoretical analyses, we find that electron acceleration process only takes place efficiently below 4 MeV. Because extremely relativistic electrons go through the wave generation region rapidly due to grad-B0 and curvature drift, they don't have enough interaction time to be accelerated. In setting up the electrons after all interaction with chorus emissions as initial electron distribution function, we also compute the loss process of radiation belt electron fluxes due to interaction with EMIC rising-tone emissions generated in a localized range of longitudes in the dusk side [Kubota and Omura,2017]. References: (1) Omura, Y., Y. Miyashita, M. Yoshikawa, D. Summers, M. Hikishima, Y. Ebihara, and Y. Kubota (2015), Formation process of relativistic electron flux through interaction with chorus emissions in the Earth's inner magnetosphere, J. Geophys. Res. Space Physics, 120, 9545-9562, doi:10.1002/2015JA021563. (2) Kubota, Y., and Y. Omura (2017), Rapid precipitation of radiation belt electrons induced by EMIC rising tone emissions localized in longitude inside and outside the plasmapause, J. Geophys. Res. Space Physics, 122, 293-309, doi:10.1002/2016JA023267.

  11. Disorder-induced localization in crystalline phase-change materials.

    Science.gov (United States)

    Siegrist, T; Jost, P; Volker, H; Woda, M; Merkelbach, P; Schlockermann, C; Wuttig, M

    2011-03-01

    Localization of charge carriers in crystalline solids has been the subject of numerous investigations over more than half a century. Materials that show a metal-insulator transition without a structural change are therefore of interest. Mechanisms leading to metal-insulator transition include electron correlation (Mott transition) or disorder (Anderson localization), but a clear distinction is difficult. Here we report on a metal-insulator transition on increasing annealing temperature for a group of crystalline phase-change materials, where the metal-insulator transition is due to strong disorder usually associated only with amorphous solids. With pronounced disorder but weak electron correlation, these phase-change materials form an unparalleled quantum state of matter. Their universal electronic behaviour seems to be at the origin of the remarkable reproducibility of the resistance switching that is crucial to their applications in non-volatile-memory devices. Controlling the degree of disorder in crystalline phase-change materials might enable multilevel resistance states in upcoming storage devices.

  12. Towards native-state imaging in biological context in the electron microscope

    Science.gov (United States)

    Weston, Anne E.; Armer, Hannah E. J.

    2009-01-01

    Modern cell biology is reliant on light and fluorescence microscopy for analysis of cells, tissues and protein localisation. However, these powerful techniques are ultimately limited in resolution by the wavelength of light. Electron microscopes offer much greater resolution due to the shorter effective wavelength of electrons, allowing direct imaging of sub-cellular architecture. The harsh environment of the electron microscope chamber and the properties of the electron beam have led to complex chemical and mechanical preparation techniques, which distance biological samples from their native state and complicate data interpretation. Here we describe recent advances in sample preparation and instrumentation, which push the boundaries of high-resolution imaging. Cryopreparation, cryoelectron microscopy and environmental scanning electron microscopy strive to image samples in near native state. Advances in correlative microscopy and markers enable high-resolution localisation of proteins. Innovation in microscope design has pushed the boundaries of resolution to atomic scale, whilst automatic acquisition of high-resolution electron microscopy data through large volumes is finally able to place ultrastructure in biological context. PMID:19916039

  13. Electronic states and nature of bonding of the molecule PdGe by all electron ab initio HF–CI calculations and mass spectrometric equilibrium experiments

    DEFF Research Database (Denmark)

    Shim, Irene; Kingcade, Joseph E. , Jr.; Gingerich, Karl A.

    1986-01-01

    In the present work we present all-electron ab initio Hartree–Fock (HF) and configuration interaction (CI) calculations of six electronic states of the PdGe molecule. The molecule is predicted to have a 3Pi ground state and two low-lying excited states 3Sigma− and 1Sigma+. The electronic structure...

  14. Local hypothesis testing between a pure bipartite state and the white noise state

    OpenAIRE

    Owari, Masaki; Hayashi, Masahito

    2010-01-01

    In this paper, we treat a local discrimination problem in the framework of asymmetric hypothesis testing. We choose a known bipartite pure state $\\ket{\\Psi}$ as an alternative hypothesis, and the completely mixed state as a null hypothesis. As a result, we analytically derive an optimal type 2 error and an optimal POVM for one-way LOCC POVM and Separable POVM. For two-way LOCC POVM, we study a family of simple three-step LOCC protocols, and show that the best protocol in this family has stric...

  15. The electron-furfural scattering dynamics for 63 energetically open electronic states

    Science.gov (United States)

    da Costa, Romarly F.; do N. Varella, Márcio T.; Bettega, Márcio H. F.; Neves, Rafael F. C.; Lopes, Maria Cristina A.; Blanco, Francisco; García, Gustavo; Jones, Darryl B.; Brunger, Michael J.; Lima, Marco A. P.

    2016-03-01

    We report on integral-, momentum transfer- and differential cross sections for elastic and electronically inelastic electron collisions with furfural (C5H4O2). The calculations were performed with two different theoretical methodologies, the Schwinger multichannel method with pseudopotentials (SMCPP) and the independent atom method with screening corrected additivity rule (IAM-SCAR) that now incorporates a further interference (I) term. The SMCPP with N energetically open electronic states (Nopen) at either the static-exchange (Nopen ch-SE) or the static-exchange-plus-polarisation (Nopen ch-SEP) approximation was employed to calculate the scattering amplitudes at impact energies lying between 5 eV and 50 eV, using a channel coupling scheme that ranges from the 1ch-SEP up to the 63ch-SE level of approximation depending on the energy considered. For elastic scattering, we found very good overall agreement at higher energies among our SMCPP cross sections, our IAM-SCAR+I cross sections and the experimental data for furan (a molecule that differs from furfural only by the substitution of a hydrogen atom in furan with an aldehyde functional group). This is a good indication that our elastic cross sections are converged with respect to the multichannel coupling effect for most of the investigated intermediate energies. However, although the present application represents the most sophisticated calculation performed with the SMCPP method thus far, the inelastic cross sections, even for the low lying energy states, are still not completely converged for intermediate and higher energies. We discuss possible reasons leading to this discrepancy and point out what further steps need to be undertaken in order to improve the agreement between the calculated and measured cross sections.

  16. Liberia: local politics, state building and reintegration of populations

    OpenAIRE

    Jairo Munive

    2013-01-01

    Interventions aiming to assist IDPs and refugees returning homein fragile states would do well to take note of the local political and economic contexts in the aftermath of war, because these deeplyaffect the reintegration of war-affected populations.

  17. Cyclic electron flow is redox-controlled but independent of state transition.

    Science.gov (United States)

    Takahashi, Hiroko; Clowez, Sophie; Wollman, Francis-André; Vallon, Olivier; Rappaport, Fabrice

    2013-01-01

    Photosynthesis is the biological process that feeds the biosphere with reduced carbon. The assimilation of CO2 requires the fine tuning of two co-existing functional modes: linear electron flow, which provides NADPH and ATP, and cyclic electron flow, which only sustains ATP synthesis. Although the importance of this fine tuning is appreciated, its mechanism remains equivocal. Here we show that cyclic electron flow as well as formation of supercomplexes, thought to contribute to the enhancement of cyclic electron flow, are promoted in reducing conditions with no correlation with the reorganization of the thylakoid membranes associated with the migration of antenna proteins towards Photosystems I or II, a process known as state transition. We show that cyclic electron flow is tuned by the redox power and this provides a mechanistic model applying to the entire green lineage including the vast majority of the cases in which state transition only involves a moderate fraction of the antenna.

  18. Surface/state correspondence and bulk local operators in pp-wave holography

    Directory of Open Access Journals (Sweden)

    Nakwoo Kim

    2015-12-01

    Full Text Available We apply the surface/state correspondence proposal of Miyaji et al. to IIB pp-waves and propose that the bulk local operators should be instantonic D-branes. In line with ordinary AdS/CFT correspondence, the bulk local operators in pp-waves also create a hole, or a boundary, in the dual gauge theory as pointed out by H. Verlinde, and by Y. Nakayama and H. Ooguri. We also present simple calculations which illustrate how to extract the spacetime metric of pp-waves from instantonic D-branes in boundary state formalism.

  19. Foucault's Pendulum, Analog for an Electron Spin State

    Science.gov (United States)

    Linck, Rebecca

    2012-11-01

    The classical Lagrangian that describes the coupled oscillations of Foucault's pendulum presents an interesting analog to an electron's spin state in an external magnetic field. With a simple modification, this classical Lagrangian yields equations of motion that directly map onto the Schrodinger-Pauli Equation. This analog goes well beyond the geometric phase, reproducing a broad range of behavior from Zeeman-like frequency splitting to precession of the spin state. By demonstrating that unmeasured spin states can be fully described in classical terms, this research opens the door to using the tools of classical physics to examine an inherently quantum phenomenon.

  20. Speed of quantum evolution of entangled two qubits states: Local vs. global evolution

    International Nuclear Information System (INIS)

    Curilef, S; Zander, C; Plastino, A R

    2008-01-01

    There is a lower bound for the 'speed' of quantum evolution as measured by the time needed to reach an orthogonal state. We show that, for two-qubits systems, states saturating the quantum speed limit tend to exhibit a small amount of local evolution, as measured by the fidelity between the initial and final single qubit states after the time τ required by the composite system to reach an orthogonal state. Consequently, a trade-off between the speed of global evolution and the amount of local evolution seems to be at work.