WorldWideScience

Sample records for local three-nucleon interaction

  1. Chiral Three-Nucleon Interactions in Light Nuclei, Neutron-$\\alpha$ Scattering, and Neutron Matter

    CERN Document Server

    Lynn, J E; Carlson, J; Gandolfi, S; Gezerlis, A; Schmidt, K E; Schwenk, A

    2015-01-01

    We present quantum Monte Carlo calculations of light nuclei, neutron-$\\alpha$ scattering, and neutron matter using local two- and three-nucleon (3N) interactions derived from chiral effective field theory up to next-to-next-to-leading order (N$^2$LO). The two undetermined 3N low-energy couplings are fit to the $^4$He binding energy and, for the first time, to the spin-orbit splitting in the neutron-$\\alpha$ $P$-wave phase shifts. Furthermore, we investigate different choices of local 3N operator structures and find that chiral interactions at N$^2$LO are able to simultaneously reproduce the properties of $A=4,5$ systems and of neutron matter, in contrast to commonly used phenomenological 3N interactions.

  2. Nuclear matter saturation with chiral three-nucleon interactions fitted to light nuclei properties

    Energy Technology Data Exchange (ETDEWEB)

    Logoteta, Domenico [INFN, Sezione di Pisa, Largo Bruno Pontecorvo 3, I-56127 Pisa (Italy); Bombaci, Ignazio, E-mail: ignazio.bombaci@unipi.it [Dipartimento di Fisica, Universitá di Pisa, Largo Bruno Pontecorvo 3, I-56127 Pisa (Italy); INFN, Sezione di Pisa, Largo Bruno Pontecorvo 3, I-56127 Pisa (Italy); European Gravitational Observatory, Via E. Amaldi, I-56021 S. Stefano a Macerata, Cascina (Italy); Kievsky, Alejandro [INFN, Sezione di Pisa, Largo Bruno Pontecorvo 3, I-56127 Pisa (Italy)

    2016-07-10

    The energy per particle of symmetric nuclear matter and pure neutron matter is calculated using the many-body Brueckner–Hartree–Fock approach and employing the Chiral Next-to-next-to-next-to leading order (N3LO) nucleon–nucleon (NN) potential, supplemented with various parametrizations of the Chiral Next-to-next-to leading order (N2LO) three-nucleon interaction. Such combination is able to reproduce several observables of the physics of light nuclei for suitable choices of the parameters entering in the three-nucleon interaction. We find that some of these parametrizations provide a satisfactory saturation point of symmetric nuclear matter and values of the symmetry energy and its slope parameter L in very good agreement with those extracted from various nuclear experimental data. Thus, our results represent a significant step toward a unified description of few- and many-body nuclear systems starting from two- and three-nucleon interactions based on the symmetries of QCD.

  3. Nuclear matter saturation with chiral three-nucleon interactions fitted to light nuclei properties

    Science.gov (United States)

    Logoteta, Domenico; Bombaci, Ignazio; Kievsky, Alejandro

    2016-07-01

    The energy per particle of symmetric nuclear matter and pure neutron matter is calculated using the many-body Brueckner-Hartree-Fock approach and employing the Chiral Next-to-next-to-next-to leading order (N3LO) nucleon-nucleon (NN) potential, supplemented with various parametrizations of the Chiral Next-to-next-to leading order (N2LO) three-nucleon interaction. Such combination is able to reproduce several observables of the physics of light nuclei for suitable choices of the parameters entering in the three-nucleon interaction. We find that some of these parametrizations provide a satisfactory saturation point of symmetric nuclear matter and values of the symmetry energy and its slope parameter L in very good agreement with those extracted from various nuclear experimental data. Thus, our results represent a significant step toward a unified description of few- and many-body nuclear systems starting from two- and three-nucleon interactions based on the symmetries of QCD.

  4. Green's Function Monte Carlo Calculations with Two- and Three-Nucleon Interactions from Chiral Effective Field Theory

    CERN Document Server

    Lynn, J E

    2015-01-01

    I discuss our recent work on Green's function Monte Carlo (GFMC) calculations of light nuclei using local nucleon-nucleon interactions derived from chiral effective field theory (EFT) up to next-to-next-to-leading order (N$^2$LO). I present the natural extension of this work to include the consistent three-nucleon (3N) forces at the same order in the chiral expansion. I discuss our choice of observables to fit the two low-energy constants which enter in the 3N sector at N$^2$LO and present some results for light nuclei.

  5. Green’s Function Monte Carlo Calculations with Two- and Three-Nucleon Interactions from Chiral Effective Field Theory

    Directory of Open Access Journals (Sweden)

    Lynn J. E.

    2016-01-01

    Full Text Available I discuss our recent work on Green’s function Monte Carlo (GFMC calculations of light nuclei using local nucleon-nucleon interactions derived from chiral effective field theory (EFT up to next-to-next-to-leading order (N2LO. I present the natural extension of this work to include the consistent three-nucleon (3N forces at the same order in the chiral expansion. I discuss our choice of observables to fit the two low-energy constants which enter in the 3N sector at N2LO and present some results for light nuclei.

  6. Symbolic computation of the Hartree-Fock energy from a chiral EFT three-nucleon interaction at N 2LO

    Science.gov (United States)

    Gebremariam, B.; Bogner, S. K.; Duguet, T.

    2010-06-01

    We present the first of a two-part Mathematica notebook collection that implements a symbolic approach for the application of the density matrix expansion (DME) to the Hartree-Fock (HF) energy from a chiral effective field theory (EFT) three-nucleon interaction at N 2LO. The final output from the notebooks is a Skyrme-like energy density functional that provides a quasi-local approximation to the non-local HF energy. In this paper, we discuss the derivation of the HF energy and its simplification in terms of the scalar/vector-isoscalar/isovector parts of the one-body density matrix. Furthermore, a set of steps is described and illustrated on how to extend the approach to other three-nucleon interactions. Program summaryProgram title: SymbHFNNN Catalogue identifier: AEGC_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEGC_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 96 666 No. of bytes in distributed program, including test data, etc.: 378 083 Distribution format: tar.gz Programming language: Mathematica 7.1 Computer: Any computer running Mathematica 6.0 and later versions Operating system: Windows Xp, Linux/Unix RAM: 256 Mb Classification: 5, 17.16, 17.22 Nature of problem: The calculation of the HF energy from the chiral EFT three-nucleon interaction at N 2LO involves tremendous spin-isospin algebra. The problem is compounded by the need to eventually obtain a quasi-local approximation to the HF energy, which requires the HF energy to be expressed in terms of scalar/vector-isoscalar/isovector parts of the one-body density matrix. The Mathematica notebooks discussed in this paper solve the latter issue. Solution method: The HF energy from the chiral EFT three-nucleon interaction at N 2LO is cast into a form suitable for an automatic simplification of

  7. Di-nucleon structures in homogeneous nuclear matter based on two- and three-nucleon interactions

    Energy Technology Data Exchange (ETDEWEB)

    Arellano, Hugo F. [University of Chile, Department of Physics - FCFM, Santiago (Chile); CEA, DAM, DIF, Arpajon (France); Isaule, Felipe [University of Chile, Department of Physics - FCFM, Santiago (Chile); Rios, Arnau [University of Surrey, Department of Physics, Faculty of Engineering and Physical Sciences, Guildford (United Kingdom)

    2016-09-15

    We investigate homogeneous nuclear matter within the Brueckner-Hartree-Fock (BHF) approach in the limits of isospin-symmetric nuclear matter (SNM) as well as pure neutron matter at zero temperature. The study is based on realistic representations of the internucleon interaction as given by Argonne v{sub 18}, Paris, Nijmegen I and II potentials, in addition to chiral N{sup 3}LO interactions, including three-nucleon forces up to N{sup 2}LO. Particular attention is paid to the presence of di-nucleon bound states structures in {sup 1}S{sub 0} and {sup 3}SD{sub 1} channels, whose explicit account becomes crucial for the stability of self-consistent solutions at low densities. A characterization of these solutions and associated bound states is discussed. We confirm that coexisting BHF single-particle solutions in SNM, at Fermi momenta in the range 0.13-0.3 fm{sup -1}, is a robust feature under the choice of realistic internucleon potentials. (orig.)

  8. Energy Dependence of the πN Amplitude and the Three-Nucleon Interaction

    Science.gov (United States)

    Saito, T.-Y.; Afnan, I. R.

    1995-08-01

    By calculating the contribution of the ππ three-body force to the three-nucleon binding energy in terms of the πN amplitude using perturbation theory, we are able to determine the importance of the energy dependence and the contribution of the different partial waves of the πN amplitude to the three-nucleon force. A separable representation of the non-pole πN amplitude allows us to write the three-nucleon force in terms of the amplitude for NN → NN*, propagation of the NNN* system, and the amplitude for NN* → NN , with N* being the πN quasi-particle amplitude in a given state. The division of the πN amplitude into a pole and non-pole part gives a procedure for the determination of the πNN form factor within the model. The total contribution of the three-body force to the binding energy of the triton for the separable approximation to the Paris nucleon-nucleon potential (PEST) is found to be very small mainly as a result of the energy dependence of the πN amplitude, the cancellation between the S- and P-wave πN amplitudes, and the soft πNN form factor.

  9. The energy dependence of the $\\pi$N amplitude and the three-nucleon interaction

    CERN Document Server

    Saitô, T; Saito, T Y

    1994-01-01

    By calculating the contribution of the \\pi-\\pi three-body force to the three-nucleon binding energy in terms of the \\pi N amplitude using perturbation theory, we are able to determine the importance of the energy dependence and the contribution of the different partial waves of the \\pi N amplitude to the three-nucleon force. A separable representation of the non-pole \\pi N amplitude allows us to write the three-nucleon force in terms of the amplitude for NN\\rightarrow NN^*, propagation of the NNN^* system, and the amplitude for NN^*\\rightarrow NN, with N^* being the \\pi N quasi-particle amplitude in a given state. The division of the \\pi N amplitude into a pole and non-pole gives a procedure for the determination of the \\pi NN form factor within the model. The total contribution of the three-body force to the binding energy of the triton for the separable approximation to the Paris nucleon-nucleon potential (PEST) is found to be very small mainly as a result of the energy dependence of the \\pi N amplitude, th...

  10. Ground state correlations and mean field in 16O. II. Effects of a three-nucleon interaction

    Science.gov (United States)

    Mihaila, Bogdan; Heisenberg, Jochen H.

    2000-05-01

    We continue the investigations of the 16O ground state using the coupled-cluster expansion [exp(S)] method with realistic nuclear interaction. In this stage of the project, we take into account the three nucleon interaction, and examine in some detail the definition of the internal Hamiltonian, thus trying to correct for the center-of-mass motion. We show that this may result in a better separation of the internal and center-of-mass degrees of freedom in the many-body nuclear wave function. The resulting ground state wave function is used to calculate the ``theoretical'' charge form factor and charge density. Using the ``theoretical'' charge density, we generate the charge form factor in the DWBA picture, which is then compared with the available experimental data. The longitudinal response function in inclusive electron scattering for 16O is also computed.

  11. Further evidence for three-nucleon spin-orbit interaction in isotope shifts of $Z=\\mathrm{magic}$ nuclei

    CERN Document Server

    Nakada, H

    2015-01-01

    We pointed out [Phys. Rev. C \\textbf{91}, 021302(R)] that the isotope shifts of the Pb nuclei, the kink at $N=126$ in particular, can be well described by the Hartree-Fock-Bogolyubov calculations if a density-dependent LS interaction derived from the $3N$ interaction is incorporated. Effects of the density-dependence in the LS channel on the isotope shifts are extensively investigated for the Ca, Ni and Sn isotopes, using the semi-realistic M3Y-P6 interaction and its LS modified variant M3Y-P6a, as in the Pb case. It is found that almost equal charge radii between $^{40}$Ca and $^{48}$Ca are reproduced, as well as the isotope shifts in a long chain of the Sn nuclei, owing to the density-dependence in the LS channel. A kink is predicted at $N=82$ for the isotope shifts of the Sn nuclei, in clear contrast to the interactions without the density-dependence.

  12. Three Nucleons in a Box

    CERN Document Server

    Luu, Thomas

    2008-01-01

    I calculate finite-volume effects for three identical spin-1/2 fermions in a box assuming short-ranged repulsive interactions of `natural size'. This analysis employs standard perturbation theory in powers of 1/L, where L^3 is the volume of the box. I give results for the ground states in the A_1, T_1, and E cubic representations.

  13. Three-nucleon bound states using realistic potential models

    Science.gov (United States)

    Nogga, A.; Kievsky, A.; Kamada, H.; Glöckle, W.; Marcucci, L. E.; Rosati, S.; Viviani, M.

    2003-03-01

    The bound states of 3H and 3He have been calculated by using the Argonne v18 plus the Urbana IX three-nucleon potential. The isospin T=3/2 state have been included in the calculations as well as the n-p mass difference. The 3H-3He mass difference has been evaluated through the charge-dependent terms explicitly included in the two-body potential. The calculations have been performed using two different methods: the solution of the Faddeev equations in momentum space and the expansion on the correlated hyperspherical harmonic basis. The results are in agreement within 0.1% and can be used as benchmark tests. Results for the charge-dependent Bonn interaction in conjunction with the Tucson-Melbourne three-nucleon force are also presented. It is shown that the 3H and 3He binding energy difference can be predicted model independently.

  14. Calculations of three-nucleon reactions with N3LO chiral forces: achievements and challenges

    CERN Document Server

    Witala, Henryk; Skibinski, Roman; Topolnicki, Kacper

    2013-01-01

    We discuss the application of the chiral N3LO forces to three-nucleon reactions and point to the challenges which will have to be addressed. Present approaches to solve three-nucleon Faddeev equations are based on a partial-wave decomposition. A rapid increase of the number of terms contributing to the chiral three-nucleon force when increasing the order of the chiral expansion from N2LO to N3LO forced us to develop a fast and effective method of automatized partial wave decomposition. At low energies of the incoming nucleon below about 20MeV, where only a limited number of partial waves is required, this method allowed us to perform calculations of reactions in the three-nucleon continuum using N3LO two- and three-nucleon forces. It turns out that inclusion of consistent chiral interactions, with relativistic 1/m corrections and short-range 2pi-contact term omitted in the N3LO three-nucleon force, does not explain the long standing low energy Ay-puzzle. We discuss problems arising when chiral forces are appl...

  15. Structure functions for the three-nucleon system

    Science.gov (United States)

    Bissey, F.; Thomas, A. W.; Afnan, I. R.

    2001-08-01

    The spectral functions and light-cone momentum distributions of protons and neutrons in 3He and 3H are given in terms of the three-nucleon wave function for realistic nucleon-nucleon interactions. To reduce computational complexity, separable expansions are employed for the nucleon-nucleon potentials. The results for the light-cone momentum distributions suggest that they are not very sensitive to the details of the two-body interaction, as long as it has reasonable short-range repulsion. The unpolarized and polarized structure functions are examined for both 3He and 3H in order to test the usefulness of 3He as a neutron target. It is found that the measurement of the spin structure function of polarized 3H would provide a very clear test of the predicted change in the polarized parton distributions of a bound proton.

  16. Isospin dependence of the three-nucleon force

    Energy Technology Data Exchange (ETDEWEB)

    Evgeny Epelbaum; Ulf-G. Meissner; Juan Palomar

    2004-07-01

    We classify A--nucleon forces according to their isospin dependence and discuss the most general isospin structure of the three--nucleon force. We derive the leading and subleading isospin--breaking corrections to the three--nucleon force using the framework of chiral effective field theory.

  17. The three-nucleon bound state using realistic potential models

    CERN Document Server

    Nogga, A; Kamada, H; Glöckle, W; Marcucci, L E; Rosati, S; Viviani, M

    2003-01-01

    The bound states of $^3$H and $^3$He have been calculated using the Argonne $v_{18}$ plus the Urbana three-nucleon potential. The isospin $T=3/2$ state have been included in the calculations as well as the $n$-$p$ mass difference. The $^3$H-$^3$He mass difference has been evaluated through the charge dependent terms explicitly included in the two-body potential. The calculations have been performed using two different methods: the solution of the Faddeev equations in momentum space and the expansion on the correlated hyperspherical harmonic basis. The results are in agreement within 0.1% and can be used as benchmark tests. Results for the CD-Bonn interaction are also presented. It is shown that the $^3$H and $^3$He binding energy difference can be predicted model independently.

  18. Three-Nucleon Forces and Triplet Pairing in Neutron Matter

    Science.gov (United States)

    Papakonstantinou, P.; Clark, J. W.

    2017-09-01

    The existence of superfluidity of the neutron component in the core of a neutron star, associated specifically with triplet P- wave pairing, is currently an open question that is central to interpretation of the observed cooling curves and other neutron-star observables. Ab initio theoretical calculations aimed at resolving this issue face unique challenges in the relevant high-density domain, which reaches beyond the saturation density of symmetrical nuclear matter. These issues include uncertainties in the three-nucleon (3N) interaction and in the effects of strong short-range correlations—and more generally of in-medium modification of nucleonic self-energies and interactions. A survey of existing solutions of the gap equations in the triplet channel demonstrates that the net impact on the gap magnitude of 3N forces, coupled channels, and mass renormalization shows extreme variation dependent on specific theoretical inputs, in some cases even pointing to the absence of a triplet gap, thus motivating a detailed analysis of competing effects within a well-controlled model. In the present study, we track the effects of the 3N force and in-medium modifications in the representative case of the ^3P_2 channel, based on the Argonne v_{18} two-nucleon (2N) interaction supplemented by 3N interactions of the Urbana IX family. Sensitivity of the results to the input interaction is clearly demonstrated. We point out consistency issues with respect to the simultaneous treatment of 3N forces and in-medium effects, which warrant further investigation. We consider this pilot study as the first step toward a systematic and comprehensive exploration of coupled-channel ^3P F_2 pairing using a broad range of 2N and 3N interactions from the current generation of refined semi-phenomenological models and models derived from chiral effective field theory.

  19. Delta-excitations and the three-nucleon force

    CERN Document Server

    Epelbaum, E; Meißner, Ulf-G

    2007-01-01

    We study the three-nucleon force in chiral effective field theory with explicit Delta-resonance degrees of freedom. We show that up to next-to-next-to-leading order, the only contribution to the isospin symmetric three-nucleon force involving the spin-3/2 degrees of freedom is given by the two-pion-exchange diagram with an intermediate delta, frequently called the Fujita-Miyazawa force. We also analyze the leading isospin-breaking corrections due to the delta. For that, we give the first analysis of the delta quartet mass splittings in chiral effective field theory. The charge-symmetry breaking three-nucleon force due to an intermediate delta excitation is small, of the order of a few keV.

  20. Spin-isospin selectivity in three-nucleon forces

    Energy Technology Data Exchange (ETDEWEB)

    Mardanpour, H.; Amir-Ahmadi, H.R.; Benard, R. [KVI, University of Groningen, Groningen (Netherlands); Biegun, A. [Institute of Physics, University of Silesia, Katowice (Poland); KVI, University of Groningen, Groningen (Netherlands); Eslami-Kalantari, M. [KVI, University of Groningen, Groningen (Netherlands); Department of Physics, Faculty of Science, Yazd University, Yazd (Iran, Islamic Republic of); Joulaeizadeh, L.; Kalantar-Nayestanaki, N.; Kis, M. [KVI, University of Groningen, Groningen (Netherlands); Kistryn, St. [Institute of Physics, Jagellonian University, Krakow (Poland); Kozela, A. [Institute of Nuclear Physics PAN, Krakow (Poland); Kuboki, H.; Maeda, Y. [Department of Physics, University of Tokyo, Tokyo (Japan); Mahjour-Shafiei, M. [KVI, University of Groningen, Groningen (Netherlands); Department of Physics, University of Tehran, Tehran (Iran, Islamic Republic of); Messchendorp, J.G., E-mail: messchendorp@kvi.n [KVI, University of Groningen, Groningen (Netherlands); Miki, K.; Noji, S. [Department of Physics, University of Tokyo, Tokyo (Japan); Ramazani-Moghaddam-Arani, A. [KVI, University of Groningen, Groningen (Netherlands); Department of Physics, Faculty of Science, University of Kashan, Kashan (Iran, Islamic Republic of); Sakai, H.; Sasano, M. [Department of Physics, University of Tokyo, Tokyo (Japan); Sekiguchi, K. [RIKEN, Tokyo (Japan)

    2010-04-12

    Precision data are presented for the break-up reaction, {sup 2}H(p{sup -}>,pp)n, within the framework of nuclear-force studies. The experiment was carried out at KVI using a polarized-proton beam of 190 MeV impinging on a liquid-deuterium target and by exploiting the detector, BINA. Some of the vector-analyzing powers are presented and compared with state-of-the-art Faddeev calculations including three-nucleon forces effect. Significant discrepancies between the data and theoretical predictions were observed for kinematical configurations which correspond to the {sup 2}H(p{sup -}>,{sup 2}He)n channel. These results are compared to the {sup 2}H(p{sup -}>,d)p reaction to test the isospin sensitivity of the present three-nucleon force models. The current modeling of two and three-nucleon forces is not sufficient to describe consistently polarization data for both isospin states.

  1. Spin-isospin selectivity in three-nucleon forces

    CERN Document Server

    Mardanpour, H; Benard, R; Biegun, A; Eslami-Kalantari, M; Joulaeizadeh, L; Kalantar-Nayestanaki, N; Kiš, M; Kistryn, St; Kozela, A; Kuboki, H; Maeda, Y; Mahjour-Shafiei, M; Messchendorp, J G; Miki, K; Noji, S; Ramazani-Moghaddam-Arani, A; Sakai, H; Sasano, M; Sekiguchi, K; Stephan, E; Sworst, R; Takahashi, Y; Yako, K

    2009-01-01

    Precision data are presented for the break-up reaction, $^2{\\rm H}(\\vec p,pp)n$, within the framework of nuclear-force studies. The experiment was carried out at KVI using a polarized-proton beam of 190 MeV impinging on a liquid-deuterium target and by exploiting the detector, BINA. Some of the vector-analyzing powers are presented and compared with state-of-the-art Faddeev calculations including three-nucleon forces effect. Significant discrepancies between the data and theoretical predictions were observed for kinematical configurations which correspond to the $^2{\\rm H}(\\vec p,^2$He$)n$ channel. These results are compared to the $^2{\\rm H}(\\vec p,d)p$ reaction to test the isospin sensitivity of the present three-nucleon force models. The current modeling of two and three-nucleon forces is not sufficient to describe consistently polarization data for both isospin states.

  2. How important is the three-nucleon force\\?

    Science.gov (United States)

    Saito, T.-Y.; Afnan, I. R.

    1994-12-01

    By calculating the contribution of the π-π three-body force to the three-nucleon binding energy in terms of the πN amplitude using perturbation theory, we are able to determine the contribution of the different πN partial waves to the three-nucleon force. The division of the πN amplitude into a pole and nonpole gives a unique procedure for the determination of the πNN form factor in the model. The total contribution of the three-body force to the binding energy of the triton is found to be very small.

  3. How important is the three-nucleon force

    Energy Technology Data Exchange (ETDEWEB)

    Saito, T.; Afnan, I.R. (School of Physical Sciences, The Flinders University of South Australia, Bedford Park, SA 5042 (Australia))

    1994-12-01

    By calculating the contribution of the [pi]-[pi] three-body force to the three-nucleon binding energy in terms of the [pi][ital N] amplitude using perturbation theory, we are able to determine the contribution of the different [pi][ital N] partial waves to the three-nucleon force. The division of the [pi][ital N] amplitude into a pole and nonpole gives a unique procedure for the determination of the [pi][ital NN] form factor in the model. The total contribution of the three-body force to the binding energy of the triton is found to be very small.

  4. Three-Nucleon Force in the 4He Scattering System

    CERN Document Server

    Hofmann, H M; Hofmann, Hartmut M.; Hale, Gerald M.

    2002-01-01

    We report on a consistent, microscopic calculation of the bound and scattering states in the 4He system employing modern realistic two-nucleon and three-nucleon potentials in the framework of the resonating group model (RGM). We present for comparison with these microscopic RGM calculations the results from a charge-independent, Coulomb-corrected R-matrix analysis of all types of data for reactions in the A=4 system. Comparisons are made for selected examples of phase shifts and measurements from reactions sensitive to three-nucleon force effects.

  5. Microscopic nucleon spectral function for finite nuclei featuring two- and three-nucleon short-range correlations: The model versus ab initio calculations for three-nucleon systems

    Science.gov (United States)

    Ciofi degli Atti, Claudio; Mezzetti, Chiara Benedetta; Morita, Hiko

    2017-04-01

    Background: Two-nucleon (2 N ) short-range correlations (SRC) in nuclei have been recently thoroughly investigated, both theoretically and experimentally and the study of three-nucleon (3 N ) SRC, which could provide important information on short-range hadronic structure, is underway. Novel theoretical ideas concerning 2 N and 3 N SRC are put forward in the present paper. Purpose: The general features of a microscopic one-nucleon spectral function which includes the effects of both 2 N and 3 N SRC and its comparison with ab initio spectral functions of the three-nucleon systems are illustrated. Methods: A microscopic and parameter-free one-nucleon spectral function expressed in terms of a convolution integral involving ab initio relative and center-of-mass (c.m.) momentum distributions of a 2 N pair and aimed at describing two- and three-nucleon short-range correlations, is obtained by using: (i) the two-nucleon momentum distributions obtained within ab initio approaches based upon nucleon-nucleon interactions of the Argonne family; (ii) the exact relation between one- and two-nucleon momentum distributions; (iii) the fundamental property of factorization of the nuclear wave function at short internucleon ranges. Results: The comparison between the ab initio spectral function of 3He and the one based upon the convolution integral shows that when the latter contains only two-nucleon short-range correlations the removal energy location of the peaks and the region around them exhibited by the ab initio spectral function are correctly predicted, unlike the case of the high and low removal energy tails; the inclusion of the effects of three-nucleon correlations brings the convolution model spectral function in much better agreement with the ab initio one; it is also found that whereas the three-nucleon short-range correlations dominate the high energy removal energy tail of the spectral function, their effects on the one-nucleon momentum distribution are almost one

  6. Chiral three-nucleon force at N^4LO II: Intermediate-range contributions

    CERN Document Server

    Krebs, Hermann; Epelbaum, Evgeny

    2013-01-01

    We derive the subleading contributions to the two-pion-one-pion exchange and ring three-nucleon force topologies emerging at next-to-next-to-next-to-next-to-leading order in chiral effective field theory. The resulting expressions do not involve any unknown parameters. To study convergence of the chiral expansion we work out the most general operator structure of a local isospin-invariant three-nucleon force. Using the resulting operator basis with 22 independent structures, we compare the strength of the corresponding potentials in configuration space for individual topologies at various orders in the chiral expansion. As expected, the subleading contributions from the two-pion-one-pion-exchange and ring diagrams are large which can be understood in terms of intermediate excitation of the Delta(1232) isobar.

  7. Role of the total isospin 3/2 component in three-nucleon reactions

    CERN Document Server

    Witala, H; Skibinski, R; Topolnicki, K; Epelbaum, E; Hebeler, K; Kamada, H; Krebs, H; Meissner, U -G; Nogga, A

    2016-01-01

    We discuss the role of the three-nucleon isospin T=3/2 amplitude in elastic neutron-deuteron scattering and in the deuteron breakup reaction. The contribution of this amplitude originates from charge-independence breaking of the nucleon-nucleon potential and is driven by the difference between neutron-neutron (proton-proton) and neutron-proton forces. We study the magnitude of that contribution to the elastic scattering and breakup observables, taking the locally regularized chiral N4LO nucleon-nucleon potential supplemented by the chiral N2LO three-nucleon force. For comparison we employ also the Av18 nucleon-nucleon potential combined with the Urbana IX three-nucleon force. We find that the isospin T=3/2 component is important for the breakup reaction and the proper treatment of charge-independence breaking in this case requires the inclusion of the 1S0 state with isospin T=3/2. For neutron-deuteron elastic scattering the T=3/2 contributions are insignificant and charge-independence breaking can be accounte...

  8. Three-nucleon force at large distances: Insights from chiral effective field theory and the large-N_c expansion

    CERN Document Server

    Epelbaum, E; Krebs, H; Schat, C

    2014-01-01

    We confirm the claim of Ref. [D.R. Phillips, C. Schat, Phys. Rev. C88 (2013) 3, 034002] that 20 operators are sufficient to represent the most general local isospin-invariant three-nucleon force and derive explicit relations between the two sets of operators suggested in Refs. [D.R. Phillips, C. Schat, Phys. Rev. C88 (2013) 3, 034002] and [H. Krebs, A.M. Gasparyan, E. Epelbaum, Phys.Rev. C87 (2013) 5, 054007]. We use the set of 20 operators to discuss the chiral expansion of the long- and intermediate-range parts of the three-nucleon force up to next-to-next-to-next-to-next-to-leading order in the standard formulation without explicit Delta(1232) degrees of freedom. We also address implications of the large-N_c expansion in QCD for the size of the various three-nucleon force contributions.

  9. Three-nucleon forces in exotic open-shell isotopes

    CERN Document Server

    Soma, V; Cipollone, A; Duguet, T; Navratil, P

    2013-01-01

    Advances in the self-consistent Green's function approach to finite nuclei are discussed, including the implementation of three-nucleon forces and the extension to the Gorkov formalism. We report results on binding energies in the nitrogen and fluorine isotopic chains, as well as spectral functions of 22O. The application to medium-mass open-shell systems is illustrated by separation energy spectra of two argon isotopes, which are compared to one-neutron removal experiments.

  10. No-Core Shell Model Calculations in Light Nuclei with Three-Nucleon Forces

    Energy Technology Data Exchange (ETDEWEB)

    Barrett, B R; Vary, J P; Nogga, A; Navratil, P; Ormand, W E

    2004-01-08

    The ab initio No-Core Shell Model (NCSM) has recently been expanded to include nucleon-nucleon (NN) and three-nucleon (3N) interactions at the three-body cluster level. Here it is used to predict binding energies and spectra of p-shell nuclei based on realistic NN and 3N interactions. It is shown that 3N force (3NF) properties can be studied in these nuclear systems. First results show that interactions based on chiral perturbation theory lead to a realistic description of {sup 6}Li.

  11. Chiral two- and three-nucleon forces along medium-mass isotope chains

    Science.gov (United States)

    Somà, V.; Cipollone, A.; Barbieri, C.; Navrátil, P.; Duguet, T.

    2014-06-01

    Ab initio calculations have shown that chiral two- and three-nucleon interactions correctly reproduce binding energy systematics and neutron drip lines of oxygen and nearby isotopes. Exploiting the novel Gorkov-Green's function approach applicable to genuinely open-shell nuclei, we present the first ab initio investigation of Ar, K, Ca, Sc, and Ti isotopic chains. In doing so, stringent tests of internucleon interaction models are provided in the medium-mass region of the nuclear chart. Leading chiral three-nucleon interactions are shown to be mandatory to reproduce the trend of binding energies throughout these chains and to obtain a good description of two-neutron separation energies. At the same time, nuclei in this mass region are systematically overbound by about 40 MeV. While the fundamental N =20 and 28 magic numbers do emerge from basic internucleon interactions, the former is shown to be significantly overestimated, which points to deficiencies of state-of-the-art chiral potentials. The present results demonstrate that ab initio many-body calculations can now access entire medium-mass isotopic chains including degenerate open-shell nuclei and provide a critical testing ground for modern theories of nuclear interactions.

  12. Nuclear matter properties from local chiral interactions with Δ isobar intermediate states

    Science.gov (United States)

    Logoteta, Domenico; Bombaci, Ignazio; Kievsky, Alejandro

    2016-12-01

    Using two-nucleon and three-nucleon interactions derived in the framework of chiral perturbation theory (ChPT) with and without the explicit Δ isobar contributions, we calculate the energy per particle of symmetric nuclear matter and pure neutron matter in the framework of the microscopic Brueckner-Hartree-Fock approach. In particular, we present for the first time nuclear matter calculations using the new fully local in coordinate-space two-nucleon interaction at the next-to-next-to-next-to-leading-order (N3LO) of ChPT with Δ isobar intermediate states (N 3 LO Δ ) recently developed by Piarulli et al. [arXiv:1606.06335]. We find that using this N 3 LO Δ potential, supplemented with a local N2LO three-nucleon interaction with explicit Δ isobar degrees of freedom, it is possible to obtain a satisfactory saturation point of symmetric nuclear matter. For this combination of two- and three-nucleon interactions we also calculate the nuclear symmetry energy and we compare our results with the empirical constraints on this quantity obtained using the excitation energies to isobaric analog states in nuclei and using experimental data on the neutron skin thickness of heavy nuclei, finding a very good agreement in all the considered nucleonic density range. In addition, we find that the explicit inclusion of Δ isobars diminishes the strength of the three-nucleon interactions needed to get a good saturation point of symmetric nuclear matter. We also compare the results of our calculations with those obtained by other research groups using chiral nuclear interactions with different many-body methods, finding in many cases a very satisfactory agreement.

  13. Nuclear matter properties from local chiral interactions with $\\Delta$ isobar intermediate states

    CERN Document Server

    Logoteta, Domenico; Kievsky, Alejandro

    2016-01-01

    Using two-nucleon and three-nucleon interactions derived in the framework of chiral perturbation theory (ChPT) with and without the explicit $\\Delta$ isobar contributions, we calculate the energy per particle of symmetric nuclear matter and pure neutron matter in the framework of the microscopic Brueckner-Hartree-Fock approach. In particular, we present for the first time nuclear matter calculations using the new fully local in coordinate-space two-nucleon interaction at the next-to-next-to-next-to-leading-order (N3LO) of ChPT with $\\Delta$ isobar intermediate states (N3LO$\\Delta$) recently developed by Piarulli et al. [arXiv:1606:06335]. We find that using this N3LO$\\Delta$ potential, supplemented with a local N2LO three-nucleon interaction with explicit $\\Delta$ isobar degrees of freedom, it is possible to obtain a satisfactory saturation point of symmetric nuclear matter. For this combination of two- and three-nucleon interactions we also calculate the nuclear symmetry energy and we compare our results wit...

  14. Neutron matter from chiral two- and three-nucleon calculations up to N$^3$LO

    CERN Document Server

    Drischler, C; Hebeler, K; Schwenk, A

    2016-01-01

    Neutron matter is an ideal laboratory for nuclear interactions derived from chiral effective field theory since all contributions are predicted up to next-to-next-to-next-to-leading order (N$^3$LO) in the chiral expansion. By making use of recent advances in the partial-wave decomposition of three- nucleon (3N) forces, we include for the first time N$^3$LO 3N interactions in many-body perturbation theory (MBPT) up to third order and in self-consistent Green's function theory (SCGF). Using these two complementary many-body frameworks we provide improved predictions for the equation of state of neutron matter at zero temperature and also analyze systematically the many-body convergence for different chiral EFT interactions. Furthermore, we present an extension of the normal-ordering framework to finite temperatures. These developments open the way to improved calculations of neutron-rich matter including estimates of theoretical uncertainties for astrophysical applications.

  15. The πN amplitude and the three-nucleon force

    Science.gov (United States)

    Afnan, I. R.; Saito, T.-Y.

    1995-05-01

    We examine the role of the energy dependence of the πN amplitude on the π-π three-nucleon force. We find that the inclusion of the full energy dependence reduces the magnitude of the three-nucleon force as a result of the cancellation between the S- and P-wave πN contributions.

  16. Three-nucleon force at large distances: Insights from chiral effective field theory and the large-N{sub c} expansion

    Energy Technology Data Exchange (ETDEWEB)

    Epelbaum, E.; Krebs, H. [Ruhr-Universitaet Bochum, Institut fuer Theoretische Physik II, Bochum (Germany); Gasparyan, A.M. [Ruhr-Universitaet Bochum, Institut fuer Theoretische Physik II, Bochum (Germany); Bolshaya Cheremushkinskaya 25, SSC RF ITEP, Moscow (Russian Federation); Schat, C. [Universidad de Buenos Aires and IFIBA, CONICET, Ciudad Universitaria, Departamento de Fisica, FCEyN, Buenos Aires (Argentina)

    2015-03-01

    We confirm the claim of Phillips and Schat (Phys. Rev. C 88, 034002 (2013)) that 20 operators are sufficient to represent the most general local isospin-invariant three-nucleon force and derive explicit relations between the two sets of operators suggested in the above-mentioned work and that by Krebs et al. (Phys. Rev. C 87, 054007 (2013)). We use the set of 20 operators to discuss the chiral expansion of the long- and intermediate-range parts of the three-nucleon force up to next-to-next-to-next-to-next-to-leading order in the standard formulation without explicit Δ(1232) degrees of freedom. We also address implications of the large-N{sub c} expansion in QCD for the size of the various three-nucleon force contributions. (orig.)

  17. The {pi}{ital N} amplitude and the three-nucleon force

    Energy Technology Data Exchange (ETDEWEB)

    Afnan, I.R. [School of Physical Sciences, Flinders University of South Australia, GPO Box 2100, Adelaide 5001 (Australia); Saito, T. [Institute de Physique Nucleaire, Division de Physique Theorique, 91406 Orsay, Cedex (France)

    1995-05-10

    We examine the role of the energy dependence of the {pi}{ital N} amplitude on the {pi}-{pi} three-nucleon force. We find that the inclusion of the full energy dependence reduces the magnitude of the three-nucleon force as a result of the cancellation between the {ital S}- and {ital P}-wave {pi}{ital N} contributions. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  18. Dynamics of Three-Nucleon System Studied in Deuteron-Proton Breakup Experiments

    Science.gov (United States)

    Stephan, E.; Kistryn, St.; Skwira-Chalot, I.; Ciepał, I.; Kłos, B.; Kozela, A.; Parol, W.; Rusnok, A.; Wilczek, A.; Zejma, J.

    2017-03-01

    Systems composed of three nucleons have been a subject of precise experimental studies for many years. Recently, the database of observables for the deuteron breakup in collision with protons has been significantly extended at intermediate energies. In this region the comparison with exact theoretical calculations is possible, while the sensitivity to various aspects of the interaction, in particular to the subtle effects of the dynamics beyond the pairwise nucleon-nucleon force, is significant. The Coulomb interaction and relativistic effects show also their influence on the observables of the breakup reaction. All these effects vary with energy and appear with different strength in certain observables and phase-space regions, which calls for systematic investigations of a possibly rich set of observables determined in a wide range of energies. Moreover, a systematic comparison with theoretical predictions performed in coordinates related to the system dynamics in a possibly direct way is of importance. The examples of existing experimental data for the breakup reaction are briefly presented and the amenability of a set of invariant coordinates for that type of analysis is discussed.

  19. The triton with long-range chiral N3LO three nucleon forces

    CERN Document Server

    Skibinski, R; Topolnicki, K; Witala, H; Epelbaum, E; Gloeckle, W; Krebs, H; Nogga, A; Kamada, H

    2011-01-01

    Long-range contributions to the three-nucleon force that have been recently worked out in chiral effective field theory at next-to-next-to-next-to-leading order are for the first time included in the triton and the doublet nucleon-deuteron scattering length calculations. The strengths of the two short-range terms available at this order in the chiral expansion are determined from the triton binding energy and the neutron-deuteron doublet scattering length. The structure of the resulting three-nucleon force is explored and effects for the two-nucleon correlation function in the triton are investigated. Expectation values of the individual contributions to the three-nucleon force in the triton are found to be in the range from a few 100 keV to about 1 MeV. Our study demonstrates that the very complicated operator structure of the novel chiral three-nucleon forces can be successively implemented in three-nucleon Faddeev calculations.

  20. Chiral three-nucleon force at N^4LO I: Longest-range contributions

    CERN Document Server

    Krebs, Hermann; Epelbaum, Evgeny

    2012-01-01

    We derive the sub-subleading two-pion exchange contributions to the three-nucleon force which appear at next-to-next-to-next-to-next-to-leading order in chiral effective field theory. In order to determine the low-energy constants, a complete analysis of pion-nucleon scattering at the subleading-loop order in the heavy-baryon expansion is carried out utilizing the power counting scheme employed in the derivation of the nuclear forces. We discuss the convergence of the chiral expansion for this particular three-nucleon force topology and give the values of the low-energy constants which provide the most realistic description of the three-nucleon force when the chiral expansion is truncated at next-to-next-to-leading order.

  1. Can the 4He experiments serve as a database for determining the three-nucleon force?

    CERN Document Server

    Hofmann, H M; Hale, Gerald M.; Hofmann, Hartmut M.

    2005-01-01

    We report on microscopic calculations for the 4He compound system in the framework of the resonating group model employing realistic nucleon-nucleon and three nucleon forces. The resulting scattering phase shifts are compared to those of a comprehensive R-matrix analysis of all data in this system, which are available in numerical form. The agreement between calculation and analysis is in most cases very good. Adding three-nucleon forces yields in many cases large effects. For a few cases the new agreement is striking. We relate some differencies between calculation and analysis to specific data and discuss neccessary experiments to clarify the situation. From the results we conclude that the data of the 4He system might be well suited to determine the structure of the three-nucleon force.

  2. Spin observables in nucleon-deuteron scattering and three-nucleon forces

    CERN Document Server

    Ishikawa, S; Iseri, Y

    2002-01-01

    Three-nucleon forces, which compose an up-to-date subject in few-nucleon systems, provide a good account of the triton binding energy and the cross section minimum in proton-deuteron elastic scattering, while do not succeed in explaining spin observables such as the nucleon and deuteron analyzing powers, suggesting serious defects in their spin dependence. We study the spin structure of nucleon-deuteron elastic amplitudes by decomposing them into spin-space tensors and examine effects of three-nucleon forces to each component of the amplitudes obtained by solving the Faddeev equation. Assuming that the spin-scalar amplitudes dominate the others, we derive simple expressions for spin observables in the nucleon-deuteron elastic scattering. The expressions suggest that a particular combination of spin observables in the scattering provides direct information of scalar, vector, or tensor component of the three-nucleon forces. These effects are numerically investigated by the Faddeev calculation.

  3. Three nucleon forces in nuclear matter in QCD sum rules

    Science.gov (United States)

    Drukarev, E. G.; Ryskin, M. G.; Sadovnikova, V. A.

    2017-03-01

    We calculate the single-particle nucleon characteristics in symmetric nuclear matter with inclusion of the 3N interactions. The contributions of the 3N forces to nucleon self energies are expressed in terms of the nonlocal scalar condensate (d = 3) and of the configuration of the four-quark condensates (d = 6) in which two diquark operators act on two different nucleons of the matter. The most important part of the contribution of the four-quark condensate is calculated in a model-independent way. We employed a relativistic quark model of nucleon for calculation of the other parts. The density dependence of the vector and scalar nucleon self energies and of the single-particle potential energy are obtained. Estimations on contributions of the 4N forces to the nucleon self energies are made.

  4. Microscopic coupled-channel calculations of nucleus-nucleus scattering including chiral three-nucleon-force effects

    CERN Document Server

    Minomo, Kosho; Ogata, Kazuyuki

    2015-01-01

    We analyze $^{16}$O-$^{16}$O and $^{12}$C-$^{12}$C scattering with the microscopic coupled-channels method and investigate the coupled-channels and three-nucleon-force (3NF) effects on elastic and inelastic cross sections. In the microscopic coupled-channels calculation, the Melbourne g-matrix interaction modified according to the chiral 3NF effects is used. It is found that the coupled-channels and 3NF effects additively change both the elastic and inelastic cross sections. As a result, the coupled-channels calculation including the 3NF effects significantly improves the agreement between the theoretical results and the experimental data. The incident-energy dependence of the coupled-channels and 3NF effects is also discussed.

  5. Central and tensor components of three-nucleon forces in low-energy proton-deuteron scattering

    CERN Document Server

    Ishikawa, S; Iseri, Y

    2003-01-01

    Contributions of three-nucleon forces (3NF) to proton-deuteron scattering observables at energies below the deuteron breakup threshold are studied by solving the Faddeev equation that includes the Coulomb interaction. At E_p=3.0 MeV, we find that the central part of a two-pion exchange 3NF removes the discrepancy between measured cross sections and the calculated ones by two-nucleon forces, and improves the agreement with T_{22} experimental data. However, the tensor part of the 3NF fails in reproducing data of the analyzing power T_{21} by giving worse agreement between the measured and the calculated. Detailed examinations of scattering amplitudes suggest that a P-wave contribution in spin quartet tensor amplitudes has unsuitable sign for reproducing the T_{21} data.

  6. Local Interaction on Random Graphs

    Directory of Open Access Journals (Sweden)

    Hans Haller

    2010-08-01

    Full Text Available We analyze dynamic local interaction in population games where the local interaction structure (modeled as a graph can change over time: A stochastic process generates a random sequence of graphs. This contrasts with models where the initial interaction structure (represented by a deterministic graph or the realization of a random graph cannot change over time.

  7. A Simple Approach to Study the Isospin Effect in Mass Splitting of Three-Nucleon Systems by Using Hyperspherical Functions

    Science.gov (United States)

    Feizi, H.; A. A., Rajabi; M. R., Shojaei

    2012-07-01

    In this work, the binding energy and wavefunctions of three-nucleon systems are obtained by using hyperspherical harmonic approach. We have used a mathematical modification method to obtain the eigenvalues and eigenfunctions of Schrödinger equation for three-nucleon systems in calculation. Next, we have used a simple approach to obtain the difference between binding energy of 3H and 3He where gives us mass splitting of three-nucleon systems. We have compared our results with the other works and experimental values.

  8. Short-distance repulsion in three-nucleon forces from perturbative quantum chromodynamics

    OpenAIRE

    Aoki, Sinya; Balog, Janos; Weisz, Peter

    2012-01-01

    We investigate the short-distance behavior of three-nucleon forces (3NF) defined through the Nambu–Bethe–Salpeter (NBS) wave functions using the operator product expansion and calculating anomalous dimensions of nine-quark operators in perturbative quantum chromodynamics (QCD). As in the case of NN forces considered previously, we show that 3NF have repulsions at short distance at one-loop, which becomes exact in the short-distance limit thanks to the asymptotic freedom of QCD. Moreover, thes...

  9. Regulator Artifacts in Uniform Matter for Chiral Interactions

    CERN Document Server

    Dyhdalo, A; Hebeler, K; Tews, I

    2016-01-01

    Regulator functions applied to two- and three-nucleon forces are a necessary ingredient in many-body calculations based on chiral effective field theory interactions. These interactions have been developed recently with a variety of different cutoff forms, including regulating both the momentum transfer (local) and the relative momentum (nonlocal). While in principle any regulator that suppresses high momentum modes can be employed, in practice artifacts are inevitable in current power counting schemes. Artifacts from particular regulators may cause significant distortions of the physics or may affect many-body convergence rates, so understanding their nature is important. Here we characterize the differences between cutoff effects using uniform matter at Hartree-Fock and second-order in the interaction as a testbed. This provides a clean laboratory to isolate phase-space effects of various regulators on both two- and three-nucleon interactions. We test the normal-ordering approximation for three-nucleon forc...

  10. Global-local interactions

    DEFF Research Database (Denmark)

    Larsen, Jytte Agergaard; Fold, Niels; Gough, Katherine

    2009-01-01

    Due to their dependence on a single crop, agricultural frontiers are often considered to be formed through phases of 'boom and bust'. These phases are closely related to fluctuations in world market prices of the commodity that constitutes the frontier's economic basis. This paper demonstrates how...... although migration patterns and economic growth are conditioned by world market dynamics, local socioeconomic outcomes within frontier regions are diverse. Frontier formation is far from a homogenous process that slowly incorporates all localities and communities in the same way. Dak Lak Province...... by the state's changing economic, social and political motives. Spontaneous immigration has dominated since the early 1990s when the coffee sector took off and regulations on population mobility were relaxed. This paper shows how household livelihoods differ substantially between four communes in Dak Lak...

  11. Microscopic calculations based on chiral two- and three-nucleon forces for proton- and $^{4}$He-nucleus scattering

    CERN Document Server

    Toyokawa, Masakazu; Matsumoto, Takuma; Minomo, Kosho; Ogata, Kazuyuki; Kohno, Michio

    2015-01-01

    We investigate the effects of chiral three-nucleon force (3NF) on proton scattering at 65 MeV and $^{4}$He scattering at 72 MeV/nucleon from heavier targets, using the standard microscopic framework composed of the Brueckner-Hartree-Fock (BHF) method and the $g$-matrix folding model. For nuclear matter, the $g$ matrix is evaluated from chiral two-nucleon force (2NF) of N$^{3}$LO and chiral 3NF of NNLO by using the BHF method. Since the $g$ matrix thus obtained is numerical and nonlocal, an optimum local form is determined from the on-shell and near-on-shell components of $g$ matrix that are important for elastic scattering. For elastic scattering, the optical potentials are calculated by folding the local chiral $g$ matrix with projectile and target densities. This microscopic framework reproduces the experimental data without introducing any adjustable parameter. Chiral-3NF effects are small for proton scattering, but sizable for $^{4}$He scattering at middle angles where the data are available. Chiral 3NF, ...

  12. The triton and three-nucleon force in nuclear lattice simulations

    CERN Document Server

    Borasoy, B; Lee, D; Meißner, Ulf G

    2006-01-01

    We study the triton and three-nucleon force at lowest chiral order in pionless effective field theory both in the Hamiltonian and Euclidean nuclear lattice formalism. In the case of the Euclidean lattice formalism, we derive the exact few-body worldline amplitudes corresponding to the standard many-body lattice action. This will be useful for setting low-energy coefficients in future nuclear lattice simulations. We work in the Wigner SU(4)-symmetric limit where the S-wave scattering lengths {1}S{0} and {3}S{1} are equal. By comparing with continuum results, we demonstrate for the first time that the nuclear lattice formalism can be used to study few-body nucleon systems.

  13. Relativistic Effects and Three-Nucleon Forces in Nuclear Matter and Nuclei

    CERN Document Server

    Müther, Herbert; Ma, Zhongyu

    2016-01-01

    We review a large body of predictions obtained within the framework of relativistic meson theory together with the Dirac-Brueckner-Hartree-Fock approach to nuclear matter and finite nuclei. The success of this method has been largely related to its ability to take into account important three-body effects. Therefore, the overarching theme of this article is the interpretation of the so-called "Dirac effects" as an effective three-nucleon force. We address the equation of state of isospin symmetric and asymmetric nucleonic matter and related issues, ranging from proton and neutron density distributions to momentum distributions and short-range correlations. A central part of the discussion is devoted to the optical model potential for nucleon-nucleus scattering. We also take the opportunity to explore similarities and differences with predictions based on the increasingly popular chiral effective field theory.

  14. Three-nucleon interaction dynamics studied via the deuteron-proton breakup

    NARCIS (Netherlands)

    Stephan, E.; Kistryn, St.; Kalantar-Nayestanaki, N.; Biegun, A.; Bodek, K.; Ciepal, I.; Deltuva, A.; Epelbaum, E.; Eslami-Kalantari, M.; Fonseca, A. C.; Gloeckle, W.; Golak, J.; Jha, V.; Kamada, H.; Kirillov, Da.; Kirillov, Di.; Kis, M.; Kliczewski, St.; Klos, B.; Kozela, A.; Kravcikova, M.; Kyryanchuk, V. M.; Lesiak, M.; Machner, H.; Magiera, A.; Mahjour-Shafiei, M.; Martinska, G.; Messchendorp, J.; Micherdzinska, A.; Nogga, A.; Piskunov, N.; Protic, D.; Ramazani, A.; Von Rossen, P.; Roy, B. J.; Sakai, H.; Sauer, P. U.; Sekiguchi, K.; Sitnik, I.; Siudak, R.; Skibinski, R.; Sworst, R.; Urban, J.; Witala, H.; Zejma, J.; Zipper, W.

    2009-01-01

    A large set of high precision cross sections, vector A(x), A(y) and tensor A(xx), A(xy), A(yy) analyzing powers for the (1)H((d) over right arrow ,pp)n breakup reaction were measured at 130 MeV beam energy with the detection system covering a large part of the phase space. Results are compared with

  15. THREE-NUCLEON INTERACTION DYNAMICS STUDIED VIA THE DEUTERON-PROTON BREAKUP

    NARCIS (Netherlands)

    Stephan, E.; Kistryn, St; Kalantar-Nayestanaki, N.; Biegun, A.; Bodek, K.; Ciepal, I.; Eslami-Kalantari, M.; Jha, V.; Kirillov, D. A.; Kirillov, D. I.; Kis, M.; Kliczewski, St.; Klos, B.; Kozela, A.; Kravcikova, M.; Kyryanchuk, V. M.; Lesiak, M.; Machner, H.; Magiera, A.; Mahjour-Shafiei, M.; Martinska, G.; Messchendorp, J.; Micherdzinska, A.; Piskunov, N.; Protic, D.; Ramazani, A.; Von Rossen, P.; Roy, B. J.; Sakai, H.; Sekiguchi, K.; Sitnik, I.; Siudak, R.; Sworst, R.; Urban, J.; Zejma, J.; Zipper, W.

    2011-01-01

    Rich sets of high precision cross sections, vector and tensor analyzing powers for the H-1((d) over right arrow, pp)n breakup reaction were measured at 130 and 100 MeV beam energy with the use of detection systems covering large parts of the phase space. The cross section data allowed to establish e

  16. Three-nucleon bound states and the Wigner-SU(4) limit

    CERN Document Server

    Vanasse, Jared

    2016-01-01

    We examine the extent to which the properties of three-nucleon bound states are well-reproduced in the limit that nuclear forces satisfy Wigner's SU(4) (spin-isospin) symmetry. To do this we compute the charge radii up to next-to-leading order (NLO) in an effective field theory (EFT) that is an expansion in powers of $R/a$, with $R$ the range of the nuclear force and $a$ the nucleon-nucleon ($N\\!N$) scattering lengths. In the Wigner-SU(4) limit, the triton and Helium-3 point charge radii are equal. At NLO in the range expansion both are $1.66$ fm. Adding the first-order corrections due to the breaking of Wigner symmetry in the $N\\!N$ scattering lengths gives a ${}^3\\mathrm{H}$ point charge radius of $1.58$ fm, which is remarkably close to the experimental number, $1.5978\\pm0.040$ fm. For the ${}^3\\mathrm{He}$ point charge radius we find $1.70$ fm, about 4% away from the experimental value of $1.77527\\pm0.0054$ fm. We also examine the Faddeev components that enter the tri-nucleon wave function and find that an...

  17. Three-Nucleon Bound States and the Wigner-SU(4) Limit

    Science.gov (United States)

    Vanasse, Jared; Phillips, Daniel R.

    2017-03-01

    We examine the extent to which the properties of three-nucleon bound states are well-reproduced in the limit that nuclear forces satisfy Wigner's SU(4) (spin-isospin) symmetry. To do this we compute the charge radii up to next-to-leading order (NLO) in an effective field theory that is an expansion in powers of R/ a, with R the range of the nuclear force and a the nucleon-nucleon (N N) scattering lengths. In the Wigner-SU(4) limit, the triton and helium-3 point charge radii are equal. At NLO in the range expansion both are 1.66 fm. Adding the first-order corrections due to the breaking of Wigner symmetry in the N N scattering lengths gives a ^3{H} point charge radius of 1.58 fm, which is remarkably close to the experimental number, 1.5978± 0.040 fm (Angeli and Marinova in At Data Nucl Data Tables 99:69-95, 2013). For the ^3{He} point charge radius we find 1.70 fm, about 4% away from the experimental value of 1.77527± 0.0054 fm (Angeli and Marinova 2013). We also examine the Faddeev components that enter the tri-nucleon wave function and find that an expansion of them in powers of the symmetry-breaking parameter converges rapidly. Wigner's SU(4) symmetry is thus a useful starting point for understanding tri-nucleon bound-state properties.

  18. Electromagnetic Structure of Two- and Three-Nucleon Systems: An Effective Field Theory Description

    Science.gov (United States)

    Phillips, Daniel R.

    2016-10-01

    I discuss the use of chiral effective field theory (χEFT) to describe electromagnetic reactions in the two- and three-nucleon systems. I review the results of χEFT power counting for charge and current operators up to [Formula: see text] relative to leading order, before showing that renormalization-group arguments imply that short-distance electromagnetic operators play a larger role than suggested by this standard counting. A detailed examination of χEFT's predictions for the electromagnetic form factors of deuterium and the trinucleons, and for the threshold captures np→dγ and nd→tγ, enables a critical appraisal of the theory's performance in these contexts. Recent χEFT calculations using the [Formula: see text] chiral perturbation theory (χPT) potential yielded both form factors that agree with experimental data for Q2<0.25 GeV2 and an excellent description of the challenging threshold captures. Short-distance M1 operators are essential to this success, and the addition of a short-distance part of the nucleon-nucleon charge operator produces precise predictions of the deuteron charge and quadrupole form factors in this kinematic domain.

  19. Complete Set of Deuteron Analyzing Powers for dp Elastic Scattering at 250 MeV/nucleon and Three Nucleon Forces

    Directory of Open Access Journals (Sweden)

    Shimizu Y.

    2010-04-01

    Full Text Available Measurements of a complete set of deuteron analyzing powers (iT11, T20, T21, T22 for elastic deuteron–proton scattering at 250 MeV/nucleon have been performed with polarized deuteron beams at RIKEN RI Beam Factory. The obtained data are compared with the Faddeev calculations based on the modern nucleon–nucleon forces together with the Tucson-Melbourne’99, and UrbanaIX three nucleon forces.

  20. Efficient calculation of chiral three-nucleon forces up to N3LO for ab initio studies

    CERN Document Server

    Hebeler, K; Epelbaum, E; Golak, J; Skibinski, R

    2015-01-01

    We present a novel framework to decompose three-nucleon forces in a momentum space partial-wave basis. The new approach is computationally much more efficient than previous methods and opens the way to ab initio studies of few-nucleon scattering processes, nuclei and nuclear matter based on higher-order chiral 3N forces. We use the new framework to calculate matrix elements of chiral three-nucleon forces at N2LO and N3LO in large basis spaces and carry out benchmark calculations for neutron matter and symmetric nuclear matter. We also study the size of the individual three-nucleon force contributions for $^3$H. For nonlocal regulators, we find that the sub-leading terms, which have been neglected in most calculations so far, provide important contributions. All matrix elements are calculated and stored in a user-friendly way, such that values of low-energy constants as well as the form of regulator functions can be chosen freely.

  1. Unified description of $^6$Li structure and deuterium-$^4$He dynamics with chiral two- and three-nucleon forces

    CERN Document Server

    Hupin, Guillaume; Navrátil, Petr

    2014-01-01

    Prototype for the study of weakly bound projectiles colliding on stable targets, the scattering of deuterium ($d$) on $^4$He ($\\alpha$) is an important milestone in the search for a fundamental understanding of low-energy reactions. At the same time, it is also important for its role in the Big-bang nucleosynthesis of $^6$Li and applications in the characterization of deuterium impurities in materials. We present the first unified {\\em ab initio} study of the $^6$Li ground state and $d$-$^4$He elastic scattering using two- and three-nucleon forces derived within the framework of chiral effective field theory. The six-nucleon bound-state and scattering observables are calculated by means of the no-core shell model with continuum. %and are compared to available experimental data. We analyze the influence of the dynamic polarization of the deuterium and of the chiral three-nucleon force, and examine the role of the continuum degrees of freedom in shaping the low-lying spectrum of $^6$Li. We find that the adopted...

  2. New precision mass measurements of neutron-rich calcium and potassium isotopes and three-nucleon forces

    CERN Document Server

    Gallant, A T; Brunner, T; Chowdhury, U; Ettenauer, S; Lennarz, A; Robertson, D; Simon, V V; Chaudhuri, A; Holt, J D; Kwiatkowski, A A; Mané, E; Menéndez, J; Schultz, B E; Simon, M C; Andreoiu, C; Delheij, P; Pearson, M R; Savajols, H; Schwenk, A; Dilling, J

    2012-01-01

    We present precision Penning-trap mass measurements of neutron-rich calcium and potassium isotopes in the vicinity of neutron number N=32. Using the TITAN system the mass of $^{51}$K was measured for the first time, and the precision of the $^{51,52}$Ca mass values were improved significantly. The new mass values show a dramatic increase of the binding energy compared to those reported in the atomic mass evaluation. In particular, $^{52}$Ca is more bound by 1.74 MeV, and the behavior with neutron number deviates substantially from the tabulated values. An increased binding was predicted recently based on calculations that include three-nucleon (3N) forces. We present a comparison to improved calculations, which agree remarkably with the evolution of masses with neutron number, making neutron-rich calcium isotopes an exciting region to probe 3N forces at neutron-rich extremes.

  3. The decay characteristic of $^{22}$Si and its ground-state mass significantly affected by three-nucleon forces

    CERN Document Server

    Xu, X X; Sun, L J; Wang, J S; Lam, Y H; Lee, J; Fang, D Q; Li, Z H; Smirnova, N A; Yuan, C X; Yang, L; Wang, Y T; Li, J; Ma, N R; Wang, K; Zang, H L; Wang, H W; Li, C; Liu, M L; Wang, J G; Shi, C Z; Nie, M W; Li, X F; Li, H; Ma, J B; Ma, P; Jin, S L; Huang, M R; Bai, Z; Yang, F; Jia, H M; Liu, Z H; Wang, D X; Yang, Y Y; Zhou, Y J; Ma, W H; Chen, J; Hu, Z G; Zhang, Y H; Ma, X W; Zhou, X H; Ma, Y G; Xu, H S; Xiao, G Q; Zhang, H Q

    2016-01-01

    The decay of the proton-rich nucleus $^{22}$Si was studied by a silicon array coupled with germanium clover detectors. Nine charged-particle groups are observed and most of them are recognized as $\\beta$-delayed proton emission. A charged-particle group at 5600 keV is identified experimentally as $\\beta$-delayed two-proton emission from the isobaric analog state of $^{22}$Al. Another charged-particle emission without any $\\beta$ particle at the low energy less than 300 keV is observed. The half-life of $^{22}$Si is determined as 27.5 (18) ms. The experimental results of $\\beta$-decay of $^{22}$Si are compared and in nice agreement with shell-model calculations. The mass excess of the ground state of $^{22}$Si deduced from the experimental data shows that three-nucleon (3N) forces with repulsive contributions have significant effects on nuclei near the proton drip line.

  4. Re-evaluating low-energy neutron-deuteron elastic scattering using three-nucleon theory

    Energy Technology Data Exchange (ETDEWEB)

    Svenne, J.P. [Manitoba Univ., Dept. of Physics and Astronomy, Winnipeg Institute for Theoretical Phyiscs, Winnipeg, Manitoba (Canada); Canton, L. [Fisica dell' Universita di Padova, Istituto Nazionale di Fisica Nucleare, sezione di Padova e Dipt., Padova (Italy); Kozier, K. [Atomic Energy of Canada Limited, Chalk River Laboratories, Chalk River, ON (Canada); Townsend, L. [Tennessee Univ., Dept. of Nuclear Engineering, TN (United States)

    2008-07-01

    Using a well-established nucleon-nucleon interaction that fits the NN scattering data (Bonn potential), and the AGS form of three-body theory, we perform precise calculations of low-energy neutron-deuteron scattering. There appear to be problems for this system in the Endf/B-VI.8 (Endf/B-VI.5 through VI.8) data library, which persist in the newest version, Endf/B-VII.0. Supporting experimental data in this energy region are rather old (>25 years), sparse and often inconsistent. Our three-body results at low energies, 50 keV to 10 MeV are compared to the Endf/B-VII.0 and JENDL-3.3 evaluated angular distributions. The impact of these results on calculated reactivity for various critical systems involving heavy water is shown.We conclude that, if the Endf/B-VII.0 data for {sup 2}H are flawed, our next preference, based on the lower CVR bias value, are theoretical results from AGS calculations using the Bonn-B NN interaction. Our other main conclusion is that modern nuclear model calculations produce results for practical applications that are noticeably different, and likely better, than those based on older Faddeev calculations with a simple Yamaguchi potential.

  5. Three nucleon forces in nuclear matter in the QCD sum rules

    CERN Document Server

    Drukarev, E G; Sadovnikova, V A

    2016-01-01

    We calculate the single-particle nucleon characteristics in symmetric nuclear matter with inclusion of the 3N interactions. The contribution of the 3N forces to the nucleon self energies are expressed in terms of the nonlocal scalar condensate (d=3) and of the configuration of the two four-quark condensates (d=6) in which two diquark operators act on two different nucleons of the matter. The most important part of the contribution of the four-quark condensate is calculated in a model-independent way. We employed a relativistic quark model of nucleon for calculation of the rest part. The density dependence of the vector and scalar nucleon self energies and of the single-particle potential energy are obtained.

  6. Perceptual interaction of local motion signals.

    Science.gov (United States)

    Nitzany, Eyal I; Loe, Maren E; Palmer, Stephanie E; Victor, Jonathan D

    2016-11-01

    Motion signals are a rich source of information used in many everyday tasks, such as segregation of objects from background and navigation. Motion analysis by biological systems is generally considered to consist of two stages: extraction of local motion signals followed by spatial integration. Studies using synthetic stimuli show that there are many kinds and subtypes of local motion signals. When presented in isolation, these stimuli elicit behavioral and neurophysiological responses in a wide range of species, from insects to mammals. However, these mathematically-distinct varieties of local motion signals typically co-exist in natural scenes. This study focuses on interactions between two kinds of local motion signals: Fourier and glider. Fourier signals are typically associated with translation, while glider signals occur when an object approaches or recedes. Here, using a novel class of synthetic stimuli, we ask how distinct kinds of local motion signals interact and whether context influences sensitivity to Fourier motion. We report that local motion signals of different types interact at the perceptual level, and that this interaction can include subthreshold summation and, in some subjects, subtle context-dependent changes in sensitivity. We discuss the implications of these observations, and the factors that may underlie them.

  7. Three-nucleon force effects in cross section and spin observables of elastic deuteron-proton scattering at 90 MeV/nucleon

    NARCIS (Netherlands)

    Amir-Ahmadi, H. R.; Castelijns, R.; Deltuva, A.; Eslami-Kalantari, M.; van Garderen, E. D.; Harakeh, M. N.; Kalantar-Nayestanaki, N.; Kis, M.; Lohner, H.; Mahjour-Shafiei, M.; Mardanpour, H.; Messchendorp, J. G.; Mukherjee, B.; Savran, D.; Sekiguchi, K.; Shende, S. V.; Witala, H.; Wortche, H. J.

    2007-01-01

    The cross section and several spin-dependent observables have been measured with high precision for the reaction H(d,p)d at 90 MeV/nucleon. Several calculations were performed based either purely on two-nucleon potentials or also including three-nucleon potentials (3NP). The cross sections are consi

  8. User localization during human-robot interaction.

    Science.gov (United States)

    Alonso-Martín, F; Gorostiza, Javi F; Malfaz, María; Salichs, Miguel A

    2012-01-01

    This paper presents a user localization system based on the fusion of visual information and sound source localization, implemented on a social robot called Maggie. One of the main requisites to obtain a natural interaction between human-human and human-robot is an adequate spatial situation between the interlocutors, that is, to be orientated and situated at the right distance during the conversation in order to have a satisfactory communicative process. Our social robot uses a complete multimodal dialog system which manages the user-robot interaction during the communicative process. One of its main components is the presented user localization system. To determine the most suitable allocation of the robot in relation to the user, a proxemic study of the human-robot interaction is required, which is described in this paper. The study has been made with two groups of users: children, aged between 8 and 17, and adults. Finally, at the end of the paper, experimental results with the proposed multimodal dialog system are presented.

  9. User Localization During Human-Robot Interaction

    Directory of Open Access Journals (Sweden)

    Miguel A. Salichs

    2012-07-01

    Full Text Available This paper presents a user localization system based on the fusion of visual information and sound source localization, implemented on a social robot called Maggie. One of the main requisites to obtain a natural interaction between human-human and human-robot is an adequate spatial situation between the interlocutors, that is, to be orientated and situated at the right distance during the conversation in order to have a satisfactory communicative process. Our social robot uses a complete multimodal dialog system which manages the user-robot interaction during the communicative process. One of its main components is the presented user localization system. To determine the most suitable allocation of the robot in relation to the user, a proxemic study of the human-robot interaction is required, which is described in this paper. The study has been made with two groups of users: children, aged between 8 and 17, and adults. Finally, at the end of the paper, experimental results with the proposed multimodal dialog system are presented.

  10. A complete set of total cross sections for imaginary parts of nd forward scattering amplitudes and three-nucleon force effects

    CERN Document Server

    Ishikawa, S; Iseri, Y

    2001-01-01

    In the neutron-deuteron scattering, four total cross sections are shown to form a complete set for the determination of the imaginary parts of the forward amplitudes because of the optical theorem. The amplitudes are decomposed into scalar and tensor ones in the spin space. Contributions of three-nucleon forces (3NF) to these amplitudes are studied, by the Faddeev calculation, which predicts significant tensor effects of the 3NF.

  11. Interactive Fault Localization Using Test Information

    Institute of Scientific and Technical Information of China (English)

    Dan Hao; Lu Zhang; Tao Xie; Hong Mei; Jia-Su Sun

    2009-01-01

    Debugging is a time-consuming task in software development.Although various automated approaches have been proposed,they are not effective enough.On the other hand,in manual debugging,developers have difficulty in choosing breakpoints.To address these problems and help developers locate faults effectively,we propose an interactive fault-localization framework,combining the benefits of automated approaches and manual debugging.Before the fault is found,this framework continuously recommends checking points based on statements'suspicions.which are calculated according to the execution information of test cases and the feedback information from the developer at earlier checking points.Then we propose a naive approach.which is an initial implementation of this framework.However.with this naive approach or manual debugging,developers'wrong estimation of whether the faulty statement is executed before the checking point(breakpoint)may make the debugging process fail.So we propose another robust approach based on this framework,handling cases where developers make mistakes during the fault-localization process.We performed two experimental studies and the results show that the two interactive approaches are quite effective compared with existing fault-localization approaches.Moreover,the robust approach can help developers find faults when they make wrong estimation at some checking points.

  12. Local simulation algorithms for Coulombic interactions

    Indian Academy of Sciences (India)

    L Leverel; F Alet; J Rottler; A C Maggs

    2005-06-01

    We consider a problem in dynamically constrained Monte Carlo dynamics and show that this leads to the generation of long ranged effective interactions. This allows us to construct a local algorithm for the simulation of charged systems without ever having to evaluate pair potentials or solve the Poisson equation. We discuss a simple implementation of a charged lattice gas as well as more elaborate off-lattice versions of the algorithm. There are analogies between our formulation of electrostatics and the bosonic Hubbard model in the phase approximation. Cluster methods developed for this model further improve the efficiency of the electrostatics algorithm.

  13. Three-nucleon force effects in cross section and spin observables of elastic deuteron-proton scattering at 90 MeV/nucleon

    Science.gov (United States)

    Amir-Ahmadi, H. R.; Castelijns, R.; Deltuva, A.; Eslami-Kalantari, M.; Garderen, E. D. Van; Harakeh, M. N.; Kalantar-Nayestanaki, N.; Kiš, M.; Löhner, H.; Mahjour-Shafiei, M.; Mardanpour, H.; Messchendorp, J. G.; Mukherjee, B.; Savran, D.; Sekiguchi, K.; Shende, S. V.; Witała, H.; Wörtche, H. J.

    2007-04-01

    The cross section and several spin-dependent observables have been measured with high precision for the reaction H(d→,p→)d at 90 MeV/nucleon. Several calculations were performed based either purely on two-nucleon potentials or also including three-nucleon potentials (3NP). The cross sections are consistent with all calculations including 3NPs. However, no single calculation reproduces the analyzing powers and spin-transfer coefficients, although some spin observables are reproduced to various degrees by the different calculations. A good understanding of the spin structure of 3NP is still lacking.

  14. Modeling Local Hygrothermal Interaction: Local surface transfer coefficients

    DEFF Research Database (Denmark)

    Steskens, Paul Wilhelmus Maria Hermanus; Janssen, Hans; Rode, Carsten

    2009-01-01

    Current models to predict heat, air and moisture (HAM) conditions in building components assume uniform boundary conditions, both for the temperature and relative humidity of the air in an indoor space as well as for the heat and moisture surface transfer coefficients. In order to obtain a reliable...... prediction of the HAM conditions in a building component, an accurate description of the indoor boundary conditions is required. This paper presents the modelling of the local indoor environmental conditions, using a (sub)zonal airflow model, focussing on the prediction of the local interior surface heat...

  15. Probing Chiral Interactions in Light Nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Nogga, A; Barrett, B R; Meissner, U; Witala, H; Epelbaum, E; Kamada, H; Navratil, P; Glockle, W; Vary, J P

    2004-01-08

    Chiral two- and three-nucleon interactions are studied in a few-nucleon systems. We investigate the cut-off dependence and convergence with respect to the chiral expansion. It is pointed out that the spectra of light nuclei are sensitive to the three-nucleon force structure. As an example, we present calculations of the 1{sup +} and 3{sup +} states of {sup 6}Li using the no-core shell model approach. The results show contributions of the next-to-next-to-leading order terms to the spectra, which are not correlated to the three-nucleon binding energy prediction.

  16. Tunable degree of localization in random lasers with controlled interaction

    CERN Document Server

    Leonetti, Marco; Lopez, Cefe

    2012-01-01

    We show that the degree of localization for the modes of a random laser (RL) is affected by the inter mode interaction that is controlled by shaping the spot of the pump laser. By experimentally investigating the spatial properties of the lasing emission we infer that strongly localized modes are activated in the low interacting regime while in the strongly interacting one extended modes are found lasing. Thus we demonstrate that the degree o localization may be finely tuned at the micrometer level.

  17. Localization in disordered systems with interactions

    Indian Academy of Sciences (India)

    Angus MacKinnon

    2008-02-01

    We present an improved numerical approach to the study of disorder and interactions in quasi-1D systems which combines aspects of the transfer matrix method and the density matrix renormalization group which have been successfully applied to disorder and interacting problems respectively. The method is applied to spinless fermions in 1D and a generalization to finite cross-sections is outlined.

  18. Global Histories, Imperial Commodities, Local Interactions

    NARCIS (Netherlands)

    Curry Machado, J.M.

    2013-01-01

    The history of the modern world can be described through the history of the commodities that were produced, traded and consumed, on an increasingly global scale. The papers presented in this book show how in this process borders were transgressed, local agents combined with metropolitan representati

  19. Applying the Density Matrix Expansion with Coordinate-Space Chiral Interactions

    CERN Document Server

    Dyhdalo, A; Furnstahl, R J

    2016-01-01

    We apply the density matrix expansion (DME) at Hartree-Fock level with long-range chiral effective field theory interactions defined in coordinate space up to next-to-next-to-leading order. We consider chiral potentials both with and without explicit Delta isobars. The challenging algebra associated with applying the DME to three-nucleon forces is tamed using a new organization scheme, which will also facilitate generalizations. We include local regulators on the interactions to mitigate the effects of singular potentials on the DME couplings and simplify the optimization of generalized Skyrme-like functionals.

  20. K-CO on Transition Metals: A Local Ionic Interaction.

    Science.gov (United States)

    1987-05-01

    A-Rli8t 342 K-CO ON TRANSITION METALS- A LOCAL IONIC INTERACTION i/i (U) PENNSYLVANIA UNIV PHILADELPHIA DEPT OF PHYSICS C H PATTERSON ET AL MAY 87 TR...CO on Transition Metals: A Local Ionic Interaction by Charles H. Patterson, Peter A. Schultz, and Richard P. Messmer Abstract Submitted for the...administrator. 87 9 1 011 K-CO on Transition Metalss A Local Ionic Interaction Charles H. Patterson and 0 Peter A. Schultz III Department of Physics (a) D

  1. Meaningful Interaction in a Local Context

    DEFF Research Database (Denmark)

    Holck, Ulla

    2006-01-01

    This keynote is based on a Ph.D. thesis on development of socially meaningful interaction in music therapy with children with very poor communication skills (Holck 2002). The aim was to identify some of the conditions, whereby actions can be understood as meaningful - that is, whereby the child a...... Music Therapy Congress, June 16-20, 2004 Jyväskylä, Finland. P. 1094-1110. eBook (PDF) available at MusicTherapyToday.com Vol.6. Issue 4 (November 2005)....

  2. Meaningful Interaction in a Local Context

    DEFF Research Database (Denmark)

    Holck, Ulla

    2006-01-01

    This keynote is based on a Ph.D. thesis on development of socially meaningful interaction in music therapy with children with very poor communication skills (Holck 2002). The aim was to identify some of the conditions, whereby actions can be understood as meaningful - that is, whereby the child a...... Music Therapy Congress, June 16-20, 2004 Jyväskylä, Finland. P. 1094-1110. eBook (PDF) available at MusicTherapyToday.com Vol.6. Issue 4 (November 2005)....

  3. The Effect of Facebook on Parasocial Interaction in Local News

    OpenAIRE

    Farmer, Whitney

    2012-01-01

    News agenciesâ ratings often hinge on the relationships their anchors build with viewers. Strong feelings of parasocial interaction, or these on-sided â relationshipsâ audiences feel with on-screen media figures, have been found to be a strong predictor of media use. Local news stations have long been challenged with ways to encourage these feelings of parasocial interaction. With local news ratings consistently falling, news agencies must consider new ways to gain untapped markets a...

  4. Dimensionality of Local Minimizers of the Interaction Energy

    KAUST Repository

    Balagué, D.

    2013-05-22

    In this work we consider local minimizers (in the topology of transport distances) of the interaction energy associated with a repulsive-attractive potential. We show how the dimensionality of the support of local minimizers is related to the repulsive strength of the potential at the origin. © 2013 Springer-Verlag Berlin Heidelberg.

  5. Many-body localization due to random interactions

    Science.gov (United States)

    Sierant, Piotr; Delande, Dominique; Zakrzewski, Jakub

    2017-02-01

    The possibility of observing many-body localization of ultracold atoms in a one-dimensional optical lattice is discussed for random interactions. In the noninteracting limit, such a system reduces to single-particle physics in the absence of disorder, i.e., to extended states. In effect, the observed localization is inherently due to interactions and is thus a genuine many-body effect. In the system studied, many-body localization manifests itself in a lack of thermalization visible in temporal propagation of a specially prepared initial state, in transport properties, in the logarithmic growth of entanglement entropy, and in statistical properties of energy levels.

  6. Interplay of Anderson localization and strong interaction in disordered systems

    Energy Technology Data Exchange (ETDEWEB)

    Henseler, Peter

    2010-01-15

    We study the interplay of disorder localization and strong local interactions within the Anderson-Hubbard model. Taking into account local Mott-Hubbard physics and static screening of the disorder potential, the system is mapped onto an effective single-particle Anderson model, which is studied within the self-consistent theory of electron localization. For fermions, we find rich nonmonotonic behavior of the localization length {xi}, particularly in two-dimensional systems, including an interaction-induced exponential enhancement of {xi} for small and intermediate disorders and a strong reduction of {xi} due to hopping suppression by strong interactions. In three dimensions, we identify for half filling a Mott-Hubbard-assisted Anderson localized phase existing between the metallic and the Mott-Hubbard-gapped phases. For small U there is re-entrant behavior from the Anderson localized phase to the metallic phase. For bosons, the unrestricted particle occupation number per lattice site yields a monotonic enhancement of {xi} as a function of decreasing interaction, which we assume to persist until the superfluid Bose-Einstein condensate phase is entered. Besides, we study cold atomic gases expanding, by a diffusion process, in a weak random potential. We show that the density-density correlation function of the expanding gas is strongly affected by disorder and we estimate the typical size of a speckle spot, i.e., a region of enhanced or depleted density. Both a Fermi gas and a Bose-Einstein condensate (in a mean-field approach) are considered. (orig.)

  7. Local University Students and Intercultural Interactions: Conceptualising Culture, Seeing Diversity and Experiencing Interactions

    Science.gov (United States)

    Colvin, Cassandra; Volet, Simone; Fozdar, Farida

    2014-01-01

    This paper examines the intercultural interaction experiences of local, first-year students (n?=?25) in their first few weeks at university. The focus on local students complements existing intercultural interaction literature, which has tended to concentrate on the experience of the "cultural other" student. Employing qualitative…

  8. STABLE STATIONARY STATES OF NON-LOCAL INTERACTION EQUATIONS

    KAUST Repository

    FELLNER, KLEMENS

    2010-12-01

    In this paper, we are interested in the large-time behaviour of a solution to a non-local interaction equation, where a density of particles/individuals evolves subject to an interaction potential and an external potential. It is known that for regular interaction potentials, stable stationary states of these equations are generically finite sums of Dirac masses. For a finite sum of Dirac masses, we give (i) a condition to be a stationary state, (ii) two necessary conditions of linear stability w.r.t. shifts and reallocations of individual Dirac masses, and (iii) show that these linear stability conditions imply local non-linear stability. Finally, we show that for regular repulsive interaction potential Wε converging to a singular repulsive interaction potential W, the Dirac-type stationary states ρ̄ ε approximate weakly a unique stationary state ρ̄ ∈ L∞. We illustrate our results with numerical examples. © 2010 World Scientific Publishing Company.

  9. Interactions of some local anesthetics and alcohols with membranes.

    Science.gov (United States)

    Frangopol, P T.; Mihăilescu, D

    2001-09-01

    A review of the results obtained by our group in the last decade regarding the interactions of procaine, lidocaine, dibucaine and tetracaine with membranes is presented in the context of the literature data. The action upon membranes, in first approximation monomolecular film of stearic acid spread at the air/water interface used as a membrane model, the modification of biomembrane structure and function using diffraction methods, lipid phase transition, fluidity of lipids and proteins, membrane expansion and platelet aggregation were studied. The thermodynamic knowledge of membrane-alcohol interactions improved by using highly sensitive calorimetric techniques are briefly reported. One of the main conclusions is that the physical state of a monolayer model membrane was the result of competitive interactions between film-film and film-substrate interactions. It was taken into account that local anesthetics, such as lidocaine, carbisocaine, mesocaine, showed changes in the bilayer structure, reflected in macroscopic mechanical properties. This restructuring of the lipid bilayer has a significant influence on the operation of functional subunits, e.g. ionic channels formed by gramicidin. The results support the concept of non-specific interactions of local anesthetics with lipid bilayers. The theoretical modeling of the interactions of local anesthetics is closely compared with experimental data. Our new theory of relaxation for these interactions is using a non-archimedean formalism based on a process resulting from superpositions of different component processes which take place at different scales of time.

  10. Stochastic Local Interaction (SLI) model: Bridging machine learning and geostatistics

    Science.gov (United States)

    Hristopulos, Dionissios T.

    2015-12-01

    Machine learning and geostatistics are powerful mathematical frameworks for modeling spatial data. Both approaches, however, suffer from poor scaling of the required computational resources for large data applications. We present the Stochastic Local Interaction (SLI) model, which employs a local representation to improve computational efficiency. SLI combines geostatistics and machine learning with ideas from statistical physics and computational geometry. It is based on a joint probability density function defined by an energy functional which involves local interactions implemented by means of kernel functions with adaptive local kernel bandwidths. SLI is expressed in terms of an explicit, typically sparse, precision (inverse covariance) matrix. This representation leads to a semi-analytical expression for interpolation (prediction), which is valid in any number of dimensions and avoids the computationally costly covariance matrix inversion.

  11. Mathematical models and methods of localized interaction theory

    CERN Document Server

    Bunimovich, AI

    1995-01-01

    The interaction of the environment with a moving body is called "localized" if it has been found or assumed that the force or/and thermal influence of the environment on each body surface point is independent and can be determined by the local geometrical and kinematical characteristics of this point as well as by the parameters of the environment and body-environment interactions which are the same for the whole surface of contact.Such models are widespread in aerodynamics and gas dynamics, covering supersonic and hypersonic flows, and rarefied gas flows. They describe the influence of light

  12. Interaction graph mining for protein complexes using local clique merging.

    Science.gov (United States)

    Li, Xiao-Li; Tan, Soon-Heng; Foo, Chuan-Sheng; Ng, See-Kiong

    2005-01-01

    While recent technological advances have made available large datasets of experimentally-detected pairwise protein-protein interactions, there is still a lack of experimentally-determined protein complex data. To make up for this lack of protein complex data, we explore the mining of existing protein interaction graphs for protein complexes. This paper proposes a novel graph mining algorithm to detect the dense neighborhoods (highly connected regions) in an interaction graph which may correspond to protein complexes. Our algorithm first locates local cliques for each graph vertex (protein) and then merge the detected local cliques according to their affinity to form maximal dense regions. We present experimental results with yeast protein interaction data to demonstrate the effectiveness of our proposed method. Compared with other existing techniques, our predicted complexes can match or overlap significantly better with the known protein complexes in the MIPS benchmark database. Novel protein complexes were also predicted to help biologists in their search for new protein complexes.

  13. Localization in Interacting Fermionic Chains with Quasi-Random Disorder

    Science.gov (United States)

    Mastropietro, Vieri

    2017-04-01

    We consider a system of fermions with a quasi-random almost-Mathieu disorder interacting through a many-body short range potential. We establish exponential decay of the zero temperature correlations, indicating localization of the interacting ground state, for weak hopping and interaction and almost everywhere in the frequency and phase; this extends the analysis in Mastropietro (Commun Math Phys 342(1):217-250, 2016) to chemical potentials outside spectral gaps. The proof is based on Renormalization Group and it is inspired by techniques developed to deal with KAM Lindstedt series.

  14. Nonequilibrium localization and the interplay between disorder and interactions

    Science.gov (United States)

    Mascarenhas, Eduardo; Bragança, Helena; Drumond, R.; Aguiar, M. C. O.; França Santos, M.

    2016-05-01

    We study the nonequilibrium interplay between disorder and interactions in a closed quantum system. We base our analysis on the notion of dynamical state-space localization, calculated via the Loschmidt echo. Although real-space and state-space localization are independent concepts in general, we show that both perspectives may be directly connected through a specific choice of initial states, namely, maximally localized states (ML-states). We show numerically that in the noninteracting case the average echo is found to be monotonically increasing with increasing disorder; these results are in agreement with an analytical evaluation in the single particle case in which the echo is found to be inversely proportional to the localization length. We also show that for interacting systems, the length scale under which equilibration may occur is upper bounded and such bound is smaller the greater the average echo of ML-states. When disorder and interactions, both being localization mechanisms, are simultaneously at play the echo features a non-monotonic behaviour indicating a non-trivial interplay of the two processes. This interplay induces delocalization of the dynamics which is accompanied by delocalization in real-space. This non-monotonic behaviour is also present in the effective integrability which we show by evaluating the gap statistics.

  15. Magnetoelectric Effects in Local Light-Matter Interactions

    CERN Document Server

    Bliokh, Konstantin Y; Nori, Franco

    2013-01-01

    We study the generic interaction of a monochromatic electromagnetic field with bi-isotropic nanoparticles. Such an interaction is described by dipole-coupling terms associated with the breaking of dual, P- and T-symmetries, including the chirality and the nonreciprocal magnetoelectric effect. We calculate absorption rates, radiation forces, and radiation torques for the nanoparticles and introduce novel characteristics of the field quantifying the transfer of energy, momentum, and angular-momentum in these interactions. In particular, we put forward the concept of 'magnetoelectric energy density', quantifying the local PT-symmetry of the field. Akin to the 'super-chiral' light suggested recently for sensitive local probing of molecular chirality [Phys. Rev. Lett. 104, 163901 (2010); Science 332, 333 (2011)], here we describe a complex field for sensitive probing of the nonreciprocal magnetoelectric effect in nanoparticles or molecules.

  16. Persistence of locality in systems with power-law interactions

    CERN Document Server

    Gong, Zhe-Xuan; Michalakis, Spyridon; Gorshkov, Alexey V

    2014-01-01

    Motivated by recent experiments with ultra-cold matter, we derive a new bound on the propagation of information in $D$-dimensional lattice models exhibiting $1/r^{\\alpha}$ interactions with $\\alpha>D$. The bound contains two terms: One accounts for the short-ranged part of the interactions, giving rise to a bounded velocity and reflecting the persistence of locality out to intermediate distances, while the other contributes a power-law decay at longer distances. We demonstrate that these two contributions not only bound but $qualitatively~reproduce$ the short- and long-distance dynamical behavior following a local quench in an $XY$ chain and a transverse-field Ising chain. In addition to describing dynamics in numerous intractable long-range interacting lattice models, our results can be experimentally verified in a variety of ultracold-atomic and solid-state systems.

  17. Localization of interacting Fermi gases in quasiperiodic potentials

    Science.gov (United States)

    Pilati, Sebastiano; Varma, Vipin Kerala

    2017-01-01

    We investigate the zero-temperature metal-insulator transition in a one-dimensional two-component Fermi gas in the presence of a quasiperiodic potential resulting from the superposition of two optical lattices of equal intensity but incommensurate periods. A mobility edge separating (low-energy) Anderson localized and (high-energy) extended single-particle states appears in this continuous-space model beyond a critical intensity of the quasiperiodic potential. To discern the metallic phase from the insulating phase in the interacting many-fermion system, we employ unbiased quantum Monte Carlo (QMC) simulations combined with the many-particle localization length familiar from the modern theory of the insulating state. In the noninteracting limit, the critical optical-lattice intensity for the metal-insulator transition predicted by the QMC simulations coincides with the Anderson localization transition of the single-particle eigenstates. We show that weak repulsive interactions induce a shift of this critical point towards larger intensities, meaning that repulsion favors metallic behavior. This shift appears to be linear in the interaction parameter, suggesting that even infinitesimal interactions can affect the position of the critical point.

  18. Self-interaction corrected local spin density calculations of actinides

    DEFF Research Database (Denmark)

    Petit, Leon; Svane, Axel; Szotek, Z

    2010-01-01

    We use the self-interaction corrected local spin-density approximation in order to describe localization-delocalization phenomena in the strongly correlated actinide materials. Based on total energy considerations, the methodology enables us to predict the ground-state valency configuration...... of the actinide ions in these compounds from first principles. Here we review a number of applications, ranging from electronic structure calculations of actinide metals, nitrides and carbides to the behaviour under pressure of intermetallics, and O vacancies in PuO2....

  19. Mathematical Analysis of a Coarsening Model with Local Interactions

    Science.gov (United States)

    Helmers, Michael; Niethammer, Barbara; Velázquez, Juan J. L.

    2016-10-01

    We consider particles on a one-dimensional lattice whose evolution is governed by nearest-neighbor interactions where particles that have reached size zero are removed from the system. Concentrating on configurations with infinitely many particles, we prove existence of solutions under a reasonable density assumption on the initial data and show that the vanishing of particles and the localized interactions can lead to non-uniqueness. Moreover, we provide a rigorous upper coarsening estimate and discuss generic statistical properties as well as some non-generic behavior of the evolution by means of heuristic arguments and numerical observations.

  20. Coupled effects of local movement and global interaction on contagion

    CERN Document Server

    Zhong, Li-Xin; Chen, Rong-Da; Qiu, Tian; Zhong, Chen-Yang

    2014-01-01

    By incorporating segregated spatial domain and individual-based linkage into the SIS (susceptible-infected-susceptible) model, we investigate the coupled effects of random walk and intragroup interaction on contagion. Compared with the situation where only local movement or individual-based linkage exists, the coexistence of them leads to a wider spread of infectious disease. The roles of narrowing segregated spatial domain and reducing mobility in epidemic control are checked, these two measures are found to be conducive to curbing the spread of infectious disease. Considering heterogeneous time scales between local movement and global interaction, a log-log relation between the change in the number of infected individuals and the timescale $\\tau$ is found. A theoretical analysis indicates that the evolutionary dynamics in the present model is related to the encounter probability and the encounter time. A functional relation between the epidemic threshold and the ratio of shortcuts, and a functional relation...

  1. Constructing local bulk observables in interacting AdS/CFT

    CERN Document Server

    Kabat, Daniel; Lowe, David A

    2011-01-01

    Local operators in the bulk of AdS can be represented as smeared operators in the dual CFT. We show how to construct these bulk observables by requiring that the bulk operators commute at spacelike separation. This extends our previous work by taking interactions into account. Large-N factorization plays a key role in the construction. We show diagrammatically how this procedure is related to bulk Feynman diagrams.

  2. Local Volume TiNy Titans: Gaseous Dwarf-Dwarf Interactions in the Local Universe

    CERN Document Server

    Pearson, Sarah; Putman, Mary E; Lutz, Katharina A; Fernandez, Ximena; Stierwalt, Sabrina; Patton, David R; Kim, Jinhyub; Kallivayalil, Nitya; Johnson, Kelsey; Sung, Eon-Chang

    2016-01-01

    In this paper, we introduce the Local Volume TiNy Titans sample (LV-TNT), which is a part of a larger body of work on interacting dwarf galaxies: TNT (Stierwalt et al. 2015). This LV-TNT sample consists of 10 dwarf galaxy pairs in the Local Universe (< 30 Mpc from Milky Way), which span mass ratios of M_(*,1)/M_(*,2) < 20, projected separations < 100 kpc, and pair member masses of log(M_*/M_Sun) < 9.9. All 10 LV-TNT pairs have resolved synthesis maps of their neutral hydrogen, are located in a range of environments and captured at various interaction stages. This enables us to do a comparative study of the diffuse gas in dwarf-dwarf interactions and disentangle the gas lost due to interactions with halos of massive galaxies, from the gas lost due to mutual interaction between the dwarfs. We find that the neutral gas is extended in the interacting pairs when compared to non-paired analogs, indicating that gas is tidally pre-processed. Additionally, we find that the environment can shape the HI dist...

  3. Galaxy interactions and active galactic nuclei in the local universe

    Science.gov (United States)

    Ryan, Christopher J.

    2009-06-01

    It has been suggested that galaxy interactions may be the principal mechanism responsible for triggering non-thermal activity in galactic nuclei. This thesis investigates the possible role of interactions in the local Universe by searching for evidence of a causal relationship between major interactions and the initiation of activity in Seyfert galaxies using high-quality, multiwavelength imaging data. The connection between interacting galaxies and Seyferts is explored by comparing the clustering properties of their environments, as quantified by the spatial cross-correlation function amplitude. If a direct evolutionary relationship exists, the objects should be located in environments that are statistically similar. It was previously demonstrated that Seyferts are found in fields comparable to isolated galaxies. The analysis presented in this work reveals that interacting galaxies are preferentially situated in regions consistent with Abell Richness Classes of 0 to 1. The apparent dissimilarity of their environments provides a strong argument against a link between major interactions and Seyfert galaxies. An examination of the photometric and morphological properties of the interacting systems does not uncover any trends that could be associated with the initiation of nuclear activity. The role of major interactions in triggering low-redshift AGNs is then assessed using near-infrared imagery of a sample of Narrow-Line Seyfert 1 galaxies. It has been postulated that these objects are evolutionarily young AGNs, powered by accretion onto supermassive black holes that are considerably lower in mass than those found in typical broad-line Seyferts. By employing the correlation between black hole mass and host galaxy bulge luminosity, the mean black hole mass, [Special characters omitted.] BH , in solar units for the sample is found to be [left angle bracket]log [Special characters omitted.] ( BH )[right angle bracket] = 7.7 ± 0.1, consistent with typical broad

  4. Antidepressants and local anesthetics: drug interactions of interest to dentistry

    Directory of Open Access Journals (Sweden)

    Lea Rosa Chioca

    2010-10-01

    Full Text Available Introduction: Since there is a vast variety of pharmacological treatments for mental conditions, it has been increasingly more common that patients seeking dentistry treatment are continually using psychoactive drugs as antidepressants. The number of people taking antidepressants is increasing; consequently, dentists should update their knowledge on the interaction between this drug class and those used in dental daily practice, such as local anesthetics and vasoconstrictors. Objective: To conduct a literature review on this subject. Literature review and conclusion: Literature data suggest that sympathomimetic vasoconstrictors (epinephrine, norepinephrine, and phenylephrine associated with local anesthetics may potentiate the side effects of antidepressants, particularly tricyclics and MAO inhibitors, on the cardiovascular system. There are few clinical trials and preclinical studies on this subject, and most of them were carried out between the 60s and 80s. Current studies are needed, since many new antidepressant drugs with different mechanisms of action are currently marketed and being used.

  5. ALTRUISM, EGOISM AND GROUP COHESION IN A LOCAL INTERACTION MODEL

    OpenAIRE

    José A. García Martínez

    2004-01-01

    In this paper we have introduced and parameterized the concept of ?group cohesion? in a model of local interaction with a population divided into groups. This allows us to control the level of ?isolation? of these groups: We thus analyze if the degree of group cohesion is relevant to achieve an efficient behaviour and which level would be the best one for this purpose. We are interested in situations where there is a trade off between efficiency and individual incentives. This trade off is st...

  6. Interactions of incoherent localized beams in a photorefractive medium

    CERN Document Server

    Zhang, Yiqi; Zheng, Huaibin; Chen, Haixia; Li, Changbiao; Xu, Jianeng; Zhang, Yanpeng

    2014-01-01

    We investigate numerically interactions between two bright or dark incoherent localized beams in an strontium barium niobate photorefractive crystal in one dimension, using the coherent density method. For the case of bright beams, if the interacting beams are in-phase, they attract each other during propagation and form bound breathers; if out-of-phase, the beams repel each other and fly away. The bright incoherent beams do not radiate much and form long-lived well-defined breathers or quasi-stable solitons. If the phase difference is $\\pi/2$, the interacting beams may both attract or repel each other, depending on the interval between the two beams, the beam widths, and the degree of coherence. For the case of dark incoherent beams, in addition to the above the interactions also depend on the symmetry of the incident beams. As already known, an even-symmetric incident beam tends to split into a doublet, whereas an odd-symmetric incident beam tends to split into a triplet. When launched in pairs, the dark be...

  7. Detection and localization of single LysM-peptidoglycan interactions.

    Science.gov (United States)

    Andre, Guillaume; Leenhouts, Kees; Hols, Pascal; Dufrêne, Yves F

    2008-11-01

    The lysin motif (LysM) is a ubiquitous protein module that binds peptidoglycan and structurally related molecules. Here, we used single-molecule force spectroscopy (SMFS) to measure and localize individual LysM-peptidoglycan interactions on both model and cellular surfaces. LysM modules of the major autolysin AcmA of Lactococcus lactis were bound to gold-coated atomic force microscopy tips, while peptidoglycan was covalently attached onto model supports. Multiple force curves recorded between the LysM tips and peptidoglycan surfaces yielded a bimodal distribution of binding forces, presumably reflecting the occurrence of one and two LysM-peptidoglycan interactions, respectively. The specificity of the measured interaction was confirmed by performing blocking experiments with free peptidoglycan. Next, the LysM tips were used to map single LysM interactions on the surfaces of L. lactis cells. Strikingly, native cells showed very poor binding, suggesting that peptidoglycan was hindered by other cell wall constituents. Consistent with this notion, treatment of the cells with trichloroacetic acid, which removes peptidoglycan-associated polymers, resulted in substantial and homogeneous binding of the LysM tip. These results provide novel insight into the binding forces of bacterial LysMs and show that SMFS is a promising tool for studying the heterologous display of proteins or peptides on bacterial surfaces.

  8. Kohn's localization in disordered fermionic systems with and without interactions

    Science.gov (United States)

    Kerala Varma, Vipin; Pilati, Sebastiano

    2015-10-01

    Understanding the metal-insulator transition in disordered many-fermion systems, both with and without interactions, is one of the most challenging and consequential problems in condensed matter physics. In this paper, we address this issue from the perspective of the modern theory of the insulating state (MTIS), which has already proven to be effective for band and Mott insulators in clean systems. First, we consider noninteracting systems with different types of aperiodic external potentials: uncorrelated disorder (one-dimensional Anderson model), deterministic disorder (Aubry-André Hamiltonian and its modification including next-nearest-neighbor hopping), and disorder with long-range correlations (self-affine potential). We show how the many-body localization tensor defined within the MTIS may be used as a powerful probe to discriminate the insulating and the metallic phases, and to locate the transition point. Then, we investigate the effect of weak repulsive interactions in the Aubry-André Hamiltonian, a model which describes a recent cold-atoms experiment. By treating the weak interactions within a mean-field approximation we obtain a linear shift of the transition point towards stronger disorder, providing evidence for delocalization induced by interactions.

  9. Localization phenomena in interacting Rydberg lattice gases with position disorder

    CERN Document Server

    Marcuzzi, Matteo; Barredo, Daniel; de Léséleuc, Sylvain; Labuhn, Henning; Lahaye, Thierry; Browaeys, Antoine; Levi, Emanuele; Lesanovsky, Igor

    2016-01-01

    Disordered systems provide paradigmatic instances of ergodicity breaking and localization phenomena. Here we explore the dynamics of excitations in a system of Rydberg atoms held in optical tweezers. The finite temperature produces an intrinsic uncertainty in the atomic positions, which translates into quenched correlated disorder in the interatomic interaction strengths. In a simple approach, the dynamics in the many-body Hilbert space can be understood in terms of a one-dimensional Anderson-like model with disorder on every other site, featuring both localized and delocalized states. We conduct an experiment on an eight-atom chain and observe a clear suppression of excitation transfer. Our experiment accesses a regime which is described by a two-dimensional Anderson model on a "trimmed" square lattice. Our results thus provide a concrete example in which the absence of excitation propagation in a many-body system is directly related to Anderson-like localization in the Hilbert space, which is believed to be...

  10. Higher-order local and non-local correlations for 1D strongly interacting Bose gas

    Science.gov (United States)

    Nandani, EJKP; Römer, Rudolf A.; Tan, Shina; Guan, Xi-Wen

    2016-05-01

    The correlation function is an important quantity in the physics of ultracold quantum gases because it provides information about the quantum many-body wave function beyond the simple density profile. In this paper we first study the M-body local correlation functions, g M , of the one-dimensional (1D) strongly repulsive Bose gas within the Lieb-Liniger model using the analytical method proposed by Gangardt and Shlyapnikov (2003 Phys. Rev. Lett. 90 010401; 2003 New J. Phys. 5 79). In the strong repulsion regime the 1D Bose gas at low temperatures is equivalent to a gas of ideal particles obeying the non-mutual generalized exclusion statistics with a statistical parameter α =1-2/γ , i.e. the quasimomenta of N strongly interacting bosons map to the momenta of N free fermions via {k}i≈ α {k}iF with i=1,\\ldots ,N. Here γ is the dimensionless interaction strength within the Lieb-Liniger model. We rigorously prove that such a statistical parameter α solely determines the sub-leading order contribution to the M-body local correlation function of the gas at strong but finite interaction strengths. We explicitly calculate the correlation functions g M in terms of γ and α at zero, low, and intermediate temperatures. For M = 2 and 3 our results reproduce the known expressions for g 2 and g 3 with sub-leading terms (see for instance (Vadim et al 2006 Phys. Rev. A 73 051604(R); Kormos et al 2009 Phys. Rev. Lett. 103 210404; Wang et al 2013 Phys. Rev. A 87 043634). We also express the leading order of the short distance non-local correlation functions x}1)\\cdots {{{\\Psi }}}\\dagger ({x}M){{\\Psi }}({y}M)\\cdots {{\\Psi }}({y}1)> of the strongly repulsive Bose gas in terms of the wave function of M bosons at zero collision energy and zero total momentum. Here {{\\Psi }}(x) is the boson annihilation operator. These general formulas of the higher-order local and non-local correlation functions of the 1D Bose gas provide new insights into the many-body physics.

  11. Robust chimera states in SQUID metamaterials with local interactions

    Science.gov (United States)

    Hizanidis, J.; Lazarides, N.; Tsironis, G. P.

    2016-09-01

    We report on the emergence of robust multiclustered chimera states in a dissipative-driven system of symmetrically and locally coupled identical superconducting quantum interference device (SQUID) oscillators. The "snakelike" resonance curve of the single SQUID is the key to the formation of the chimera states and is responsible for the extreme multistability exhibited by the coupled system that leads to attractor crowding at the geometrical resonance (inductive-capacitive) frequency. Until now, chimera states were mostly believed to exist for nonlocal coupling. Our findings provide theoretical evidence that nearest-neighbor interactions are indeed capable of supporting such states in a wide parameter range. SQUID metamaterials are the subject of intense experimental investigations, and we are highly confident that the complex dynamics demonstrated in this paper can be confirmed in the laboratory.

  12. Interaction Between Strategic and Local Traffic Flow Controls

    Science.gov (United States)

    Grabbe, Son; Sridhar, Banavar; Mukherjee, Avijit; Morando, Alexander

    2010-01-01

    The loosely coordinated sets of traffic flow management initiatives that are operationally implemented at the national- and local-levels have the potential to under, over, and inconsistently control flights. This study is designed to explore these interactions through fast-time simulations with an emphasis on identifying inequitable situations in which flights receive multiple uncoordinated delays. Two operationally derived scenarios were considered in which flights arriving into the Dallas/Fort Worth International Airport were first controlled at the national-level, either with a Ground Delay Program or a playbook reroute. These flights were subsequently controlled at the local level. The Traffic Management Advisor assigned them arrival scheduling delays. For the Ground Delay Program scenarios, between 51% and 53% of all arrivals experience both pre-departure delays from the Ground Delay Program and arrival scheduling delays from the Traffic Management Advisor. Of the subset of flights that received multiple delays, between 5.7% and 6.4% of the internal departures were first assigned a pre-departure delay by the Ground Delay Program, followed by a second pre-departure delay as a result of the arrival scheduling. For the playbook reroute scenario, Dallas/Fort Worth International Airport arrivals were first assigned pre-departure reroutes based on the MW_2_DALLAS playbook plan, and were subsequently assigned arrival scheduling delays by the Traffic Management Advisor. Since the airport was operating well below capacity when the playbook reroute was in effect, only 7% of the arrivals were observed to receive both rerouting and arrival scheduling delays. Findings from these initial experiments confirm field observations that Ground Delay Programs operated in conjunction with arrival scheduling can result in inequitable situations in which flights receive multiple uncoordinated delays.

  13. local government headquarters and spatial interaction within rivers ...

    African Journals Online (AJOL)

    user

    Department of Geography and Environmental Studies, ... The local government structure as operated in Nigeria is, no doubt, an explicit strategy of ... This should be within the framework of urban-rural regions defined in the context of ... of its local government system in the way it deemed fit since local governments became a.

  14. Loneliness, Parasocial Interaction, and Local Television News Viewing.

    Science.gov (United States)

    Rubin, Alan M.; And Others

    1985-01-01

    Investigating the nature of parasocial interaction (relationship of friendship or intimacy of the television viewer with a remote media personality). Developed a model to measure parasocial interaction and tested news-viewing motives and patterns. (PD)

  15. Role of local and nonlocal interactions in folding and misfolding of globular proteins

    Science.gov (United States)

    Kumar, Adesh; Baruah, Anupaul; Biswas, Parbati

    2017-02-01

    A Monte Carlo simulation based sequence design method is proposed to study the role of the local and the nonlocal interactions with varying secondary structure content in protein folding, misfolding and unfolding. A statistical potential is developed from the compilation of a data set of proteins, which accounts for the respective contribution of local and the nonlocal interactions. Sequences are designed through a combination of positive and negative design by a Monte Carlo simulation in the sequence space. The weights of the local and the nonlocal interactions are tuned appropriately to study the role of the local and the nonlocal interactions in the folding, unfolding and misfolding of the designed sequences. Results suggest that the nonlocal interactions are the primary determinant of protein folding while the local interactions may be required but not always necessary. The nonlocal interactions mainly guide the polypeptide chain to form compact structures but do not differentiate between the native-like conformations, while the local interactions stabilize the target conformation against the native-like competing conformations. The study concludes that the local interactions govern the fold-misfold transition, while the nonlocal interactions regulate the fold-unfold transition of proteins. However, for proteins with predominantly β-sheet content, the nonlocal interactions control both fold-misfold and fold-unfold transitions.

  16. The Interaction of Local Context and Cultural Background

    DEFF Research Database (Denmark)

    Nielsen, Rikke Skovgaard; Holmqvist, Emma; Dhalman, Hanna

    2015-01-01

    Immigrants' housing position is often explained by (lack of) resources or differences in cultural backgrounds. Recent studies have included the importance of local context. The aim of this paper is to examine Somalis' perceptions of their possibilities in four Nordic capitals' housing markets...... and sometimes conflict with each other, but that the negotiation between cultural background and local context was individual. The conclusion is that local context and cultural background are important factors for understanding differences between Somalis on different housing markets, thus emphasising...

  17. The Interaction of Local Context and Cultural Background

    DEFF Research Database (Denmark)

    Nielsen, Rikke Skovgaard; Holmqvist, Emma; Dhalman, Hanna;

    2015-01-01

    : Copenhagen, Helsinki, Oslo and Stockholm. The approach is an interview study based on immigrants' own explanations of what they strive for and how they assess the impact of local conditions and cultural background for their possibilities. We found that local context and cultural background intertwine......Immigrants' housing position is often explained by (lack of) resources or differences in cultural backgrounds. Recent studies have included the importance of local context. The aim of this paper is to examine Somalis' perceptions of their possibilities in four Nordic capitals' housing markets...

  18. Estimating the Local Size and Coverage of Interaction Network Regions

    Science.gov (United States)

    Eagle, Michael; Barnes, Tiffany

    2015-01-01

    Interactive problem solving environments, such as intelligent tutoring systems and educational video games, produce large amounts of transactional data which make it a challenge for both researchers and educators to understand how students work within the environment. Researchers have modeled the student-tutor interactions using complex network…

  19. Descending and Local Network Interactions Control Adaptive Locomotion

    Science.gov (United States)

    2014-12-04

    circuitry in the brain and local control systems. In arthropods, local control resides in the thoracic ganglia while in vertebrates similar circuits...samples). (C) Speeds when the animal was less than 5 cm from the nearest wall (panel A − panel B; n=28464 samples). The blue vertical lines indicate the...mantis stalks and approaches the prey, the population code found in the CX columns increases ultimately triggering a strike. As it feeds

  20. Local interaction of light with periodic photonic structures

    NARCIS (Netherlands)

    Flück, Eliane

    2003-01-01

    Photonic crystals are structures with a strong relation between geometry and op- tical properties. The application of near-field methods is a new and challenging approach to investigate the local optical properties of photonic crystals. The op- tical signals obtained in crystal structures of various

  1. Local Interaction Between the Ovary, Fallopian Tube and Uterus

    Institute of Scientific and Technical Information of China (English)

    N.Einer-Jcnsen

    1992-01-01

    Counter current transfer of prostaglandins, inert gasses, steroid-and peptidehormones has been found between the utero-ovarian veins and the ovarian artery in man and several animal species, The substance transferred will, via the ovarian arterial blood, reach the ovary, tube and, in some speeies, the proximat part of the uterus in theipsifateralside Transfer has also been found.from the caudal uterine vein blood to the ipsilateral uterine artery. Preliminary results further indicate that local transfer cantake place of substances deposit ed in t he vaginal lumen.

  2. Interaction of localized convection cells in the bioconvection of Euglena gracilis

    Science.gov (United States)

    Iima, Makoto; Yamaguchi, Takayuki

    2016-11-01

    Euglena gracilis is a unicellular flagellated photosynthetic alga. The suspension of Euglena has behavioral responses to light, which causes a macroscopic localized bioconvection pattern when illuminated from below. One of the fundamental structures of this is a pair of convection cells, and high cell density region exists in the middle of the pair. Experimental studies show various types of interaction in the localized convection cells; bound state, collision, etc. We performed numerical simulation of a hydrodynamic model of this system, and show results of the interactions. Long-range interaction due to the conservation of cell number and merging process of two localized structures will be discussed. KAKENHI.

  3. Synthetic Dimensions with Magnetic Fields and Local Interactions in Photonic Lattices.

    Science.gov (United States)

    Ozawa, Tomoki; Carusotto, Iacopo

    2017-01-06

    We discuss how one can realize a photonic device that combines synthetic dimensions and synthetic magnetic fields with spatially local interactions. Using an array of ring cavities, the angular coordinate around each cavity spans the synthetic dimension. The synthetic magnetic field arises as the intercavity photon hopping is associated with a change of angular momentum. Photon-photon interactions are local in the periodic angular coordinate around each cavity. Experimentally observable consequences of the synthetic magnetic field and of the local interactions are pointed out.

  4. Synthetic dimensions with magnetic fields and local interactions in photonic lattices

    CERN Document Server

    Ozawa, Tomoki

    2016-01-01

    We discuss how one can realize a photonic device that combines synthetic dimensions and synthetic magnetic fields with spatially local interactions. Using an array of ring resonators, the angular coordinate around each resonator spans the synthetic dimension and the synthetic magnetic field arises as the inter-cavity photon hopping is associated to a change of angular momentum. Photon-photon interactions due to the non-linearity of the cavity material are local in the periodic angular coordinate around each ring resonator. Experimentally observable consequences of the synthetic magnetic field and of the local interactions are pointed out.

  5. Understanding Protein-Protein Interactions Using Local Structural Features

    DEFF Research Database (Denmark)

    Planas-Iglesias, Joan; Bonet, Jaume; García-García, Javier;

    2013-01-01

    Protein-protein interactions (PPIs) play a relevant role among the different functions of a cell. Identifying the PPI network of a given organism (interactome) is useful to shed light on the key molecular mechanisms within a biological system. In this work, we show the role of structural features...... (loops and domains) to comprehend the molecular mechanisms of PPIs. A paradox in protein-protein binding is to explain how the unbound proteins of a binary complex recognize each other among a large population within a cell and how they find their best docking interface in a short timescale. We use...

  6. Anderson localization to enhance light-matter interaction (Conference Presentation)

    Science.gov (United States)

    Garcia, Pedro David

    2016-04-01

    Deliberately introducing disorder in low-dimensional nanostructures like photonic crystal waveguides (PCWs) [1] or photonic crystals (PCs) [2] leads to Anderson localization where light is efficiently trapped by random multiple scattering with the lattice imperfections. These disorder-induced optical modes hace been demonstrated to be very promising for cavity-quantum electrodynamics (QED) experiments where the radiative emission rate of single quantum emitters can be controlled when tuned through resonance with one of these random cavities. Our statistical analysis of the emission dynamics from single quantum dots embeded in disordered PCWs [3] provides detailed insigth about the statistical properties of QED in these complex nanostructures. In addition, using internal light sources reveals new physics in the form of nonuniversal intensity correlations between the different scattered paths within the structure which imprint the local QED properties deep inside the complex structure onto the far-field intensity pattern [2]. Finally, increasing the optical gain in PCWs allows on-chip random nanolasing where the cavity feedback is provided by the intrinsic disorder which enables highly efficient, stable, and broadband tunable lasers with very small mode volumes [4]. The figure of merit of these disorder-induced cavities is their localization length which determines to a large degree the coupling efficiency of a quantum emitter to a disorder-induced cavity as well as the efficiency of random lasing and reveals a strongly dispersive behavior and a non-trivial dependence on disorder in PCWs [5]. [1] L. Sapienza, H. Thyrrestrup, S. Stobbe, P.D. Garcia, S. Smolka, and P. Lodahl, Science 327, 1352 (2010). [2] P. D. García, S. Stobbe, I. Soellner and P. Lodahl, Physical Review Letters 109, 253902 (2012). [3] A. Javadi, S. Maibom, L. Sapienza, H. Thyrrestrup, P.D. Garcia, and P. Lodahl, Opt. Express 22, 30992 (2014). [4] J. Liu, P. D. Garcia, S. Ek, N. Gregersen, T. Suhr, M

  7. Local model for magnet-superconductor mechanical interaction: Experimental verification

    Science.gov (United States)

    Diez-Jimenez, Efren; Perez-Diaz, Jose-Luis; Garcia-Prada, Juan Carlos

    2011-03-01

    Several models exist for calculating superconducting repulsion forces in the Meissner state that are based on the method of images. The method of images, however, is limited to a small number of geometrical configurations that can be solved exactly, and the physical interpretation of the method is under discussion. A general local model based on the London equations and Maxwell's equations has been developed to describe the mechanics of the superconductor-permanent magnet system. Due to its differential form, this expression can be easily implemented in a finite elements analysis and, consequently, is easily applicable to any shape of superconductor in the Meissner state. It can solve both forces and torques. This paper reports different experiments undertaken in order to test the model's validity. The vertical forces and the angle of equilibrium between a magnet and a superconductor were measured, and a positive agreement between the experiments and theoretical calculations was found.

  8. Some locally self-interacting walks on the integers

    CERN Document Server

    Erschler, Anna; Werner, Wendelin

    2010-01-01

    We study certain self-interacting walks on the set of integers, that choose to jump to the right or to the left randomly but influenced by the number of times they have previously jumped along the edges in the finite neighbourhood of their current position (in the present paper, typically, we will discuss the case where one considers the neighbouring edges and the next-to-neighbouring edges). We survey a variety of possible behaviours, including some where the walk is eventually confined to an interval of large length. We also focus on certain "asymmetric" drifts, where we prove that with positive probability, the walks behave deterministically on large scale and move like a constant times the square root of time, or like a constant times the logarithm of time.

  9. The Green-Kubo formula for locally interacting fermionic open systems

    CERN Document Server

    Jaksic, V; Pillet, C A

    2006-01-01

    We consider a model describing finitely many free Fermi gas reservoirs coupled by local interactions and prove the Green-Kubo formulas and the Onsager reciprocity relations for heat and charge fluxes generated by temperature and chemical potential differentials.

  10. Vibronic enhancement of excitation energy transport: Interplay between local and non-local exciton-phonon interactions

    Science.gov (United States)

    Lee, Myeong H.; Troisi, Alessandro

    2017-02-01

    It has been reported in recent years that vibronic resonance between vibrational energy of the intramolecular nuclear mode and excitation-energy difference is crucial to enhance excitation energy transport in light harvesting proteins. Here we investigate how vibronic enhancement induced by vibronic resonance is influenced by the details of local and non-local exciton-phonon interactions. We study a heterodimer model with parameters relevant to the light-harvesting proteins with the surrogate Hamiltonian quantum dynamics method in a vibronic basis. In addition, the impact of field-driven excitation on the efficiency of population transfer is compared with the instantaneous excitation, and the effect of multi-mode vibronic coupling is presented in comparison with the coupling to a single effective vibrational mode. We find that vibronic enhancement of site population transfer is strongly suppressed with the increase of non-local exciton-phonon interaction and increasing the number of strongly coupled high-frequency vibrational modes leads to a further decrease in vibronic enhancement. Our results indicate that vibronic enhancement is present but may be much smaller than previously thought and therefore care needs to be taken when interpreting its role in excitation energy transport. Our results also suggest that non-local exciton-phonon coupling, which is related to the fluctuation of the excitonic coupling, may be as important as local exciton-phonon coupling and should be included in any quantum dynamics model.

  11. A USABILITY OF GRAPHIC DESIGN WITH LOCAL CONTENT IN THE INTERACTIVE MULTIMEDIA DESIGN FOR INDONESIAN STORYTELLING

    OpenAIRE

    Listia Natadjaja

    2004-01-01

    As the computer becomes a trend%2C interactive multimedia design can be one media to communicate the cultural knowledge. A folktale can be a one of the powerful materials to show a countrys culture. The folktale content can be understood effectively by implementing some cultural information background. The main aim of using the local content is to give a vision of the richness culture through graphic design in interactive multimedia technology. By implementing local graphic design based on th...

  12. Coupled effects of local movement and global interaction on contagion

    Science.gov (United States)

    Zhong, Li-Xin; Xu, Wen-Juan; Chen, Rong-Da; Qiu, Tian; Shi, Yong-Dong; Zhong, Chen-Yang

    2015-10-01

    By incorporating segregated spatial domain and individual-based linkage into the SIS (susceptible-infected-susceptible) model, we propose a generalized epidemic model which can change from the territorial epidemic model to the networked epidemic model. The role of the individual-based linkage between different spatial domains is investigated. As we adjust the timescale parameter τ from 0 to unity, which represents the degree of activation of the individual-based linkage, three regions are found. Within the region of 0 region of 0.02 region of 0.5 eye on the first region, the role of activating the individual-based linkage in the present model is similar to the role of the shortcuts in the two-dimensional small world network. Only activating a small number of the individual-based linkage can prompt the outbreak of the epidemic globally. The role of narrowing segregated spatial domain and reducing mobility in epidemic control is checked. These two measures are found to be conducive to curbing the spread of infectious disease only when the global interaction is suppressed. A log-log relation between the change in the number of infected individuals and the timescale τ is found. By calculating the epidemic threshold and the mean first encounter time, we heuristically analyze the microscopic characteristics of the propagation of the epidemic in the present model.

  13. Beyond co-localization: inferring spatial interactions between sub-cellular structures from microscopy images

    Directory of Open Access Journals (Sweden)

    Paul Grégory

    2010-07-01

    Full Text Available Abstract Background Sub-cellular structures interact in numerous direct and indirect ways in order to fulfill cellular functions. While direct molecular interactions crucially depend on spatial proximity, other interactions typically result in spatial correlations between the interacting structures. Such correlations are the target of microscopy-based co-localization analysis, which can provide hints of potential interactions. Two complementary approaches to co-localization analysis can be distinguished: intensity correlation methods capitalize on pattern discovery, whereas object-based methods emphasize detection power. Results We first reinvestigate the classical co-localization measure in the context of spatial point pattern analysis. This allows us to unravel the set of implicit assumptions inherent to this measure and to identify potential confounding factors commonly ignored. We generalize object-based co-localization analysis to a statistical framework involving spatial point processes. In this framework, interactions are understood as position co-dependencies in the observed localization patterns. The framework is based on a model of effective pairwise interaction potentials and the specification of a null hypothesis for the expected pattern in the absence of interaction. Inferred interaction potentials thus reflect all significant effects that are not explained by the null hypothesis. Our model enables the use of a wealth of well-known statistical methods for analyzing experimental data, as demonstrated on synthetic data and in a case study considering virus entry into live cells. We show that the classical co-localization measure typically under-exploits the information contained in our data. Conclusions We establish a connection between co-localization and spatial interaction of sub-cellular structures by formulating the object-based interaction analysis problem in a spatial statistics framework based on nearest-neighbor distance

  14. Conformation and kinetic characteristics of interactions between local anesthetics and aqueous solutions of hydroxypropylmethylcellulose.

    Science.gov (United States)

    Galenko-Yaroshevskii, A P; Varlashkina, I A; Takhchidi, Kh P; Malyugin, B E; Dukhanin, A S

    2007-05-01

    Conformation and kinetic characteristics of the interactions of local anesthetics lidocaine (xycaine), tetracaine (dicaine), bupivacaine, and new RU-1117 compound with proven anesthetic activity with Visiton (1% hydroxypropylmethylcellulose in phosphate buffer) were studied. It was found that complex formation between the local anesthetics and hydroxypropylmethylcellulose is a time-dependent reversible process. The equilibrium is attained within 2.5-8.0 h and depends on the chemical nature of local anesthetic.

  15. Localized Electromagnetic Waves: Interactions with Surfaces and Nanostructures

    Science.gov (United States)

    Anderson, Nicholas R.

    The interaction of electromagnetic waves with nanostructures is an important area of research for signal processing devices, magnetic data storage, biosensors and a variety of other applications. In this work, we present analytic and numerical calculations for oscillating electric and magnetic fields coupling with excitations in magnetic materials as well as metallic and dielectric materials, near their resonance frequencies. One of the problems with the miniaturization of signal processing components is that there is a cutoff frequency associated with the transverse electric (TE) mode in waveguides. However, it is usually the TE mode which is used to achieve nonreciprocity for devices such as isolators. As a first step to circumvent this problem we looked at the absorption of electromagnetic waves in an antiferromagnet and a ferrite when the incident wave is at an arbitrary angle with respect to the magnetization direction. We calculated reflectivity and attenuated total reflectivity and found absorption and nonreciprocity, asymmetric behavior for waves traveling in opposite directions, for a broad range of propagation angles. Subsequently we also performed calculations for a transverse magnetic mode in a waveguide. The wave was allowed to propagate at an arbitrary angle with respect to the magnetization direction of the ferrite in the waveguide. We again found nonreciprocity for a wide range of angles. Our results show that this system could be used as an on-chip isolator with isolation values over 75 dB/cm in the 50 GHz range. We explored another signal processing device operating in the GHz range: a nonlinear phase shifter. Using Fe as the magnetic material allows the phase shifter to operate over a wide frequency and power range. We found a differential phase shift of greater than 50° over 3 cm for this device. The theoretical results compared well with experimental measurements. Finally, we study surface plasmon polaritons propagating along a metallic

  16. Imitation of Cooperation in Prisoner's Dilemma Games with Some Local Interaction

    NARCIS (Netherlands)

    M.C.W. Janssen (Maarten)

    2000-01-01

    textabstractIn this paper I study conditions for the emergence of cooperative behavior in a dynamic model of population interaction. The model has finitely many individuals located on a circle. The pay- off of each individual is partly based on the (local) interaction with neighbors and partly on (u

  17. Imitation of Cooperation in Prisoner's Dilemma Games with Some Local Interaction

    NARCIS (Netherlands)

    M.C.W. Janssen (Maarten)

    2000-01-01

    textabstractIn this paper I study conditions for the emergence of cooperative behavior in a dynamic model of population interaction. The model has finitely many individuals located on a circle. The pay- off of each individual is partly based on the (local) interaction with neighbors and partly on (u

  18. Interaction-Induced Characteristic Length in Strongly Many-Body Localized Systems

    CERN Document Server

    He, Rong-Qiang

    2016-01-01

    We propose a numerical method for explicitly constructing a complete set of local integrals of motion (LIOM) and definitely show the existence of LIOM for strongly many-body localized systems. The method starts with a complete set of maximally localized guessed LIOM, gradually deforms it into a complete set of true LIOM. By using this method we find that for strongly disordered and weakly interacting systems, there are two characteristic lengths in the LIOM. The first one is governed by disorder and is of Anderson-localization nature. The second one is induced by interaction but independent of the strength of interaction, showing a nonperturbative nature. We prove that the entanglement and correlation in any eigenstate extend not longer than twice the second length.

  19. One- and many-electron self-interaction error in local and global hybrid functionals

    Science.gov (United States)

    Schmidt, Tobias; Kümmel, Stephan

    2016-04-01

    Electronic self-interaction poses a fundamental challenge in density-functional theory. It greatly limits, e.g., the physical interpretation of eigenvalues as electron removal energies. We here investigate whether local hybrid functionals that are designed to be free from one-electron self-interaction lead to occupied Kohn-Sham eigenvalues and orbitals that approximate photoemission observables well. We compare the local hybrid results to the ones from global hybrid functionals that only partially counteract the self-interaction, and to the results that are obtained with a Perdew-Zunger-type self-interaction correction. Furthermore, we check whether being nominally free from one-electron self-interaction translates into a reduced many-electron self-interaction error. Our findings show that this is not the case for the local hybrid functionals that we studied: In practice they are similar to global hybrids in many respects, despite being formally superior. This finding indicates that there is a conceptual difference between the Perdew-Zunger way and the local hybrid way of translating the one-electron condition to a many-electron system. We also point out and solve some difficulties that occur when using local hybrid functionals in combination with pseudopotentials.

  20. RNA:RNA interaction can enhance RNA localization in Drosophila oocytes.

    Science.gov (United States)

    Hartswood, Eve; Brodie, Jim; Vendra, Georgia; Davis, Ilan; Finnegan, David J

    2012-04-01

    RNA localization is a key mechanism for targeting proteins to particular subcellular domains. Sequences necessary and sufficient for localization have been identified, but little is known about factors that affect its kinetics. Transcripts of gurken and the I factor, a non-LTR retrotransposon, colocalize at the nucleus in the dorso-antero corner of the Drosophila oocyte directed by localization signals, the GLS and ILS. I factor RNA localizes faster than gurken after injection into oocytes, due to a difference in the intrinsic localization ability of the GLS and ILS. The kinetics of localization of RNA containing the ILS are enhanced by the presence of a stem-loop, the A loop. This acts as an RNA:RNA interaction element in vivo and in vitro, and stimulates localization of RNA containing other localization signals. RNA:RNA interaction may be a general mechanism for modulating RNA localization and could allow an mRNA that lacks a localization signal to hitchhike on another RNA that has one.

  1. Stability of stationary states of non-local equations with singular interaction potentials

    KAUST Repository

    Fellner, Klemens

    2011-04-01

    We study the large-time behaviour of a non-local evolution equation for the density of particles or individuals subject to an external and an interaction potential. In particular, we consider interaction potentials which are singular in the sense that their first derivative is discontinuous at the origin.For locally attractive singular interaction potentials we prove under a linear stability condition local non-linear stability of stationary states consisting of a finite sum of Dirac masses. For singular repulsive interaction potentials we show the stability of stationary states of uniformly bounded solutions under a convexity condition.Finally, we present numerical simulations to illustrate our results. © 2010 Elsevier Ltd.

  2. Equivalent bosonic theory for the massive Thirring model with non-local interaction

    OpenAIRE

    Li, Kang; Naon, Carlos

    1997-01-01

    We study, through path-integral methods, an extension of the massive Thirring model in which the interaction between currents is non-local. By examining the mass-expansion of the partition function we show that this non-local massive Thirring model is equivalent to a certain non-local extension of the sine-Gordon theory. Thus, we establish a non-local generalization of the famous Coleman's equivalence. We also discuss some possible applications of this result in the context of one-dimensional...

  3. Many-body localization in Ising models with random long-range interactions

    Science.gov (United States)

    Li, Haoyuan; Wang, Jia; Liu, Xia-Ji; Hu, Hui

    2016-12-01

    We theoretically investigate the many-body localization phase transition in a one-dimensional Ising spin chain with random long-range spin-spin interactions, Vi j∝|i-j |-α , where the exponent of the interaction range α can be tuned from zero to infinitely large. By using exact diagonalization, we calculate the half-chain entanglement entropy and the energy spectral statistics and use them to characterize the phase transition towards the many-body localization phase at infinite temperature and at sufficiently large disorder strength. We perform finite-size scaling to extract the critical disorder strength and the critical exponent of the divergent localization length. With increasing α , the critical exponent experiences a sharp increase at about αc≃1.2 and then gradually decreases to a value found earlier in a disordered short-ranged interacting spin chain. For α localized and the increase in the disorder strength may drive a transition between two many-body localized phases. In contrast, for α >αc , the transition is from a thermalized phase to the many-body localization phase. Our predictions could be experimentally tested with an ion-trap quantum emulator with programmable random long-range interactions, or with randomly distributed Rydberg atoms or polar molecules in lattices.

  4. Calculation of local pressure tensors in systems with many-body interactions.

    Science.gov (United States)

    Heinz, Hendrik; Paul, Wolfgang; Binder, Kurt

    2005-12-01

    Local pressures are important in the calculation of interface tensions and in analyzing micromechanical behavior. The calculation of local pressures in computer simulations has been limited to systems with pairwise interactions between the particles, which is not sufficient for chemically detailed systems with many-body potentials such as angles and torsions. We introduce a method to calculate local pressures in systems with n-body interactions (n=2,3,4,) based on a micromechanical definition of the pressure tensor. The local pressure consists of a kinetic contribution from the linear momentum of the particles and an internal contribution from dissected many-body interactions by infinitesimal areas. To define dissection by a small area, respective n-body interactions are divided into two geometric centers, effectively reducing them to two-body interactions. Consistency with hydrodynamics-derived formulas for systems with two-body interactions [J. H. Irving and J. G. Kirkwood, J. Chem. Phys. 18, 817 (1950)], for average cross-sectional pressures [B. D. Todd, D. J. Evans, and P. J. Daivis, Phys. Rev. E 52, 1627 (1995)], and for volume averaged pressures (virial formula) is shown. As a simple numerical example, we discuss liquid propane in a cubic box. Local, cross-sectional, and volume-averaged pressures as well as relative contributions from two-body and three-body forces are analyzed with the proposed method, showing full numerical equivalence with the existing approaches. The method allows computing local pressures in the presence of many-body interactions in atomistic simulations of complex materials and biological systems.

  5. Inducible control of subcellular RNA localization using a synthetic protein-RNA aptamer interaction.

    Directory of Open Access Journals (Sweden)

    Brian J Belmont

    Full Text Available Evidence is accumulating in support of the functional importance of subcellular RNA localization in diverse biological contexts. In different cell types, distinct RNA localization patterns are frequently observed, and the available data indicate that this is achieved through a series of highly coordinated events. Classically, cis-elements within the RNA to be localized are recognized by RNA-binding proteins (RBPs, which then direct specific localization of a target RNA. Until now, the precise control of the spatiotemporal parameters inherent to regulating RNA localization has not been experimentally possible. Here, we demonstrate the development and use of a chemically-inducible RNA-protein interaction to regulate subcellular RNA localization. Our system is composed primarily of two parts: (i the Tet Repressor protein (TetR genetically fused to proteins natively involved in localizing endogenous transcripts; and (ii a target transcript containing genetically encoded TetR-binding RNA aptamers. TetR-fusion protein binding to the target RNA and subsequent localization of the latter are directly regulated by doxycycline. Using this platform, we demonstrate that enhanced and controlled subcellular localization of engineered transcripts are achievable. We also analyze rules for forward engineering this RNA localization system in an effort to facilitate its straightforward application to studying RNA localization more generally.

  6. Dynamics of local symmetry correlators for interacting many-particle systems

    Science.gov (United States)

    Schmelcher, P.; Krönke, S.; Diakonos, F. K.

    2017-01-01

    Recently [P. A. Kalozoumis et al. Phys. Rev. Lett. 113, 050403 (2014)] the concept of local symmetries in one-dimensional stationary wave propagation has been shown to lead to a class of invariant two-point currents that allow to generalize the parity and Bloch theorem. In the present work, we establish the theoretical framework of local symmetries for higher-dimensional interacting many-body systems. Based on the Bogoliubov-Born-Green-Kirkwood-Yvon hierarchy, we derive the equations of motion of local symmetry correlators which are off-diagonal elements of the reduced one-body density matrix at symmetry related positions. The natural orbital representation yields equations of motion for the convex sum of the local symmetry correlators of the natural orbitals as well as for the local symmetry correlators of the individual orbitals themselves. An alternative integral representation with a unique interpretation is provided. We discuss special cases, such as the bosonic and fermionic mean field theory, and show in particular that the invariance of two-point currents is recovered in the case of the non-interacting one-dimensional stationary wave propagation. Finally we derive the equations of motion for anomalous local symmetry correlators which indicate the breaking of a global into a local symmetry in the stationary non-interacting case.

  7. Re-visit local coupling correction in the interaction regions of RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Y.; Fischer, W.; Liu, C.; Marusic, A.; Minty, M.; Ptitsyn, V.; Schoefer, V.; Tepikian, S.; Trbojevic, D.; Zimmer, C.

    2011-11-01

    In this article we will re-visit the local coupling correction in the interaction regions (IRs) of the Relativistic Heavy Ion Collider (RHIC). We will review the measurement data of triplet quadrupole rolls, the local coupling correction strengths in the RHIC control system, and the methods for the local coupling correction with local skew quadrupole correctors. Based on the in-turnnel measurement data of triplet roll errors in 2011, we will analytically calculate and simulate IR-bump method to find out the local skew correction strengths and compare them at store and at injection with the Blue and Yellow ring lattices in the 2011 polarized proton (p-p) and Au-Au runs. The vertical dispersion from the triplet roll errors, local and global coupling correction skew quadrupoles, and the vertical dipole correctors are calculated and discussed.

  8. Observation of intracellular interactions between DNA origami and lysosomes by the fluorescence localization method.

    Science.gov (United States)

    Fu, Meifang; Dai, Luru; Jiang, Qiao; Tang, Yunqing; Zhang, Xiaoming; Ding, Baoquan; Li, Junbai

    2016-07-28

    We obtained the fluorescence localization images of tube DNA origami nanostructures in NIH 3T3 cells for the first time. The fluorescence localization images of tube DNA origami nanostructures and TIRF images of lysosomes were combined and they revealed the detailed interactions between the two structures. Quantitative analysis illustrated that the tube origami can be captured as well as degraded by lysosomes with time.

  9. Magnetism and local symmetry breaking in a Mott insulator with strong spin orbit interactions

    Science.gov (United States)

    Lu, L.; Song, M.; Liu, W.; Reyes, A. P.; Kuhns, P.; Lee, H. O.; Fisher, I. R.; Mitrović, V. F.

    2017-01-01

    Study of the combined effects of strong electronic correlations with spin-orbit coupling (SOC) represents a central issue in quantum materials research. Predicting emergent properties represents a huge theoretical problem since the presence of SOC implies that the spin is not a good quantum number. Existing theories propose the emergence of a multitude of exotic quantum phases, distinguishable by either local point symmetry breaking or local spin expectation values, even in materials with simple cubic crystal structure such as Ba2NaOsO6. Experimental tests of these theories by local probes are highly sought for. Our local measurements designed to concurrently probe spin and orbital/lattice degrees of freedom of Ba2NaOsO6 provide such tests. Here we show that a canted ferromagnetic phase which is preceded by local point symmetry breaking is stabilized at low temperatures, as predicted by quantum theories involving multipolar spin interactions. PMID:28181502

  10. Nonparametric Estimates of Gene × Environment Interaction Using Local Structural Equation Modeling

    Science.gov (United States)

    Briley, Daniel A.; Harden, K. Paige; Bates, Timothy C.; Tucker-Drob, Elliot M.

    2017-01-01

    Gene × Environment (G×E) interaction studies test the hypothesis that the strength of genetic influence varies across environmental contexts. Existing latent variable methods for estimating G×E interactions in twin and family data specify parametric (typically linear) functions for the interaction effect. An improper functional form may obscure the underlying shape of the interaction effect and may lead to failures to detect a significant interaction. In this article, we introduce a novel approach to the behavior genetic toolkit, local structural equation modeling (LOSEM). LOSEM is a highly flexible nonparametric approach for estimating latent interaction effects across the range of a measured moderator. This approach opens up the ability to detect and visualize new forms of G×E interaction. We illustrate the approach by using LOSEM to estimate gene × socioeconomic status (SES) interactions for six cognitive phenotypes. Rather than continuously and monotonically varying effects as has been assumed in conventional parametric approaches, LOSEM indicated substantial nonlinear shifts in genetic variance for several phenotypes. The operating characteristics of LOSEM were interrogated through simulation studies where the functional form of the interaction effect was known. LOSEM provides a conservative estimate of G×E interaction with sufficient power to detect statistically significant G×E signal with moderate sample size. We offer recommendations for the application of LOSEM and provide scripts for implementing these biometric models in Mplus and in OpenMx under R. PMID:26318287

  11. Effect of Coulomb Interaction on Dynamical Localization in a Two-Electron Quantum-Dot Molecule

    Institute of Scientific and Technical Information of China (English)

    WANG Li-Min; DUAN Su-Qing; ZHAO Xian-Geng; LIU Cheng-Shi

    2004-01-01

    The combined interaction of Coulomb interaction and ac fields with two electrons in a quantum dot molecule is studied respectively with numerical simulation, perturbation theory and the approximation of driven two-level model. The dynamical localization occurs with the ac field whose ratio of the amplitude to the angular frequency is a root of n-order Bessel functions, where n is determined by the Coulomb interaction energy. Such results are explained with either the driven two-level approximation or the degenerated three-level model and verified by the numerical simulations.

  12. On Local Smooth Solutions for the Vlasov Equation with the Potential of Interactions {\\pm} r^{-2}

    CERN Document Server

    Zhidkov, P E

    2003-01-01

    For the initial value problem for the Vlasov equation with the potential of interactions {\\pm} r^{-2} we prove the existence and uniqueness of a local solution with values in the Schwartz space S of infinitely differentiable functions rapidly decaying at infinity.

  13. Non-Local Propagation of Correlations in Quantum Systems with Long-Range Interactions

    Science.gov (United States)

    2014-07-10

    LETTER doi:10.1038/nature13450 Non-local propagation of correlations in quantum systems with long-range interactions Philip Richerme1, Zhe -Xuan Gong1...2013). 29. James, D. F. V. Quantum dynamics of cold trapped ions with application to quantum computation. Appl. Phys. B 66, 181–190 (1998). 30. Wang

  14. A quantum annealing architecture with all-to-all connectivity from local interactions.

    Science.gov (United States)

    Lechner, Wolfgang; Hauke, Philipp; Zoller, Peter

    2015-10-01

    Quantum annealers are physical devices that aim at solving NP-complete optimization problems by exploiting quantum mechanics. The basic principle of quantum annealing is to encode the optimization problem in Ising interactions between quantum bits (qubits). A fundamental challenge in building a fully programmable quantum annealer is the competing requirements of full controllable all-to-all connectivity and the quasi-locality of the interactions between physical qubits. We present a scalable architecture with full connectivity, which can be implemented with local interactions only. The input of the optimization problem is encoded in local fields acting on an extended set of physical qubits. The output is-in the spirit of topological quantum memories-redundantly encoded in the physical qubits, resulting in an intrinsic fault tolerance. Our model can be understood as a lattice gauge theory, where long-range interactions are mediated by gauge constraints. The architecture can be realized on various platforms with local controllability, including superconducting qubits, NV-centers, quantum dots, and atomic systems.

  15. Chimera regimes in a ring of oscillators with local nonlinear interaction

    Science.gov (United States)

    Shepelev, Igor A.; Zakharova, Anna; Vadivasova, Tatiana E.

    2017-03-01

    One of important problems concerning chimera states is the conditions of their existence and stability. Until now, it was assumed that chimeras could arise only in ensembles with nonlocal character of interactions. However, this assumption is not exactly right. In some special cases chimeras can be realized for local type of coupling [1-3]. We propose a simple model of ensemble with local coupling when chimeras are realized. This model is a ring of linear oscillators with the local nonlinear unidirectional interaction. Chimera structures in the ring are found using computer simulations for wide area of values of parameters. Diagram of the regimes on plane of control parameters is plotted and scenario of chimera destruction are studied when the parameters are changed.

  16. Local shell-to-shell energy transfer via nonlocal interactions in fluid turbulence

    Indian Academy of Sciences (India)

    Mahendra K Verma; Arvind Ayyer; Olivier Debliquy; Shishir Kumar; Amar V Chandra

    2005-08-01

    In this paper we analytically compute the strength of nonlinear interactions in a triad, and the energy exchanges between wave-number shells in incompressible fluid turbulence. The computation has been done using first-order perturbative field theory. In three dimensions, magnitude of triad interactions is large for nonlocal triads, and small for local triads. However, the shell-to-shell energy transfer rate is found to be local and forward. This result is due to the fact that the nonlocal triads occupy much less Fourier space volume than the local ones. The analytical results on three-dimensional shell-to-shell energy transfer match with their numerical counterparts. In two-dimensional turbulence, the energy transfer rates to the nearby shells are forward, but to the distant shells are backward; the cumulative effect is an inverse cascade of energy.

  17. Increasing membrane interactions of local anaesthetics as hypothetic mechanism for their cardiotoxicity enhanced by myocardial ischaemia.

    Science.gov (United States)

    Tsuchiya, Hironori; Mizogami, Maki; Shigemi, Kenji

    2012-11-01

    While myocardial ischaemia enhances the cardiotoxicity of local anaesthetics, the pharmacological background remains unclear. Cardiolipin (CL) localized in mitochondrial membranes is possibly the site of cardiotoxic action of local anaesthetics and peroxynitrite is produced by cardiac ischaemia and reperfusion. We verified the hypothetic mechanism that local anaesthetics may interact with CL-containing biomembranes to change the membrane biophysical property and their membrane interactions may be increased by peroxynitrite. Biomimetic membranes were prepared with different phospholipids and cholesterol of varying compositions. The membrane preparations were reacted with peroxynitrite of pathologically relevant concentrations and local anaesthetics (bupivacaine and lidocaine) of a cardiotoxic concentration separately or in combination. Changes in membrane fluidity were determined by measuring fluorescence polarization. Peroxynitrite decreased the fluidity of biomimetic membranes at 0.1-10 μM with the relative potency being CL>1-stearoyl-2-arachidonoylphosphatidylcholine>1,2-dipalmitoylphosphatidylcholine-constituting membranes, indicating the lipid peroxidation-induced membrane rigidification determined by the unsaturation degree of membrane lipids. When treated with 0.1-10 μM peroxynitrite, biomimetic membranes were more rigid with elevating the CL content from 0% to 30 mol%, suggesting that CL is a primary target of peroxynitrite. Bupivacaine and lidocaine fluidized at 200 μM biomimetic membranes containing 10 mol% CL and their effects were increased by pre-treating the membranes with 0.1 and 1 μM peroxynitrite. Cardiotoxic bupivacaine and lidocaine increasingly interact with CL-containing mitochondria model membranes which are relatively rigidified by peroxynitrite. Such an increasing membrane interaction may be, at least in part, responsible for the local anaesthetic cardiotoxicity enhanced by myocardial ischaemia.

  18. Interaction of Kelvin waves and non-locality of the energy transfer in superfluids

    CERN Document Server

    Laurie, Jason; Nazarenko, Sergey; Rudenko, Oleksii

    2009-01-01

    We argue that the physics of interacting Kelvin Waves (KWs) is highly non-trivial and cannot be understood on the basis of pure dimensional reasoning only. A consistent theory of KWs turbulence in superfluids should be based on explicit knowledge of the details of their interactions. To achieve this, we present a detailed calculation and comprehensive analysis of the interaction coefficients for KWs, thereby fixing previous mistakes stemming from unaccounted contributions. As a first application of this analysis, we show that the previously suggested Kozik-Svistunov energy spectrum of KWs, which has been often used for analysis of experimental and numerical data in superfluid turbulence, is irrelevant, because it is based on an erroneous assumption of the locality of the energy transfer through scales. We also demonstrate weak non-locality of the inverse cascade spectrum with a constant particle-number flux and find resulting logarithmic corrections to this spectrum.

  19. Know your neighbor: Microbiota and host epithelial cells interact locally to control intestinal function and physiology.

    Science.gov (United States)

    Sommer, Felix; Bäckhed, Fredrik

    2016-05-01

    Interactions between the host and its associated microbiota differ spatially and the local cross talk determines organ function and physiology. Animals and their organs are not uniform but contain several functional and cellular compartments and gradients. In the intestinal tract, different parts of the gut carry out different functions, tissue structure varies accordingly, epithelial cells are differentially distributed and gradients exist for several physicochemical parameters such as nutrients, pH, or oxygen. Consequently, the microbiota composition also differs along the length of the gut, but also between lumen and mucosa of the same intestinal segment, and even along the crypt-villus axis in the epithelium. Thus, host-microbiota interactions are highly site-specific and the local cross talk determines intestinal function and physiology. Here we review recent advances in our understanding of site-specific host-microbiota interactions and discuss their functional relevance for host physiology.

  20. Helical chirality: a link between local interactions and global topology in DNA.

    Directory of Open Access Journals (Sweden)

    Youri Timsit

    Full Text Available DNA supercoiling plays a major role in many cellular functions. The global DNA conformation is however intimately linked to local DNA-DNA interactions influencing both the physical properties and the biological functions of the supercoiled molecule. Juxtaposition of DNA double helices in ubiquitous crossover arrangements participates in multiple functions such as recombination, gene regulation and DNA packaging. However, little is currently known about how the structure and stability of direct DNA-DNA interactions influence the topological state of DNA. Here, a crystallographic analysis shows that due to the intrinsic helical chirality of DNA, crossovers of opposite handedness exhibit markedly different geometries. While right-handed crossovers are self-fitted by sequence-specific groove-backbone interaction and bridging Mg(2+ sites, left-handed crossovers are juxtaposed by groove-groove interaction. Our previous calculations have shown that the different geometries result in differential stabilisation in solution, in the presence of divalent cations. The present study reveals that the various topological states of the cell are associated with different inter-segmental interactions. While the unstable left-handed crossovers are exclusively formed in negatively supercoiled DNA, stable right-handed crossovers constitute the local signature of an unusual topological state in the cell, such as the positively supercoiled or relaxed DNA. These findings not only provide a simple mechanism for locally sensing the DNA topology but also lead to the prediction that, due to their different tertiary intra-molecular interactions, supercoiled molecules of opposite signs must display markedly different physical properties. Sticky inter-segmental interactions in positively supercoiled or relaxed DNA are expected to greatly slow down the slithering dynamics of DNA. We therefore suggest that the intrinsic helical chirality of DNA may have oriented the early

  1. Identification of Essential Proteins Based on a New Combination of Local Interaction Density and Protein Complexes.

    Directory of Open Access Journals (Sweden)

    Jiawei Luo

    Full Text Available Computational approaches aided by computer science have been used to predict essential proteins and are faster than expensive, time-consuming, laborious experimental approaches. However, the performance of such approaches is still poor, making practical applications of computational approaches difficult in some fields. Hence, the development of more suitable and efficient computing methods is necessary for identification of essential proteins.In this paper, we propose a new method for predicting essential proteins in a protein interaction network, local interaction density combined with protein complexes (LIDC, based on statistical analyses of essential proteins and protein complexes. First, we introduce a new local topological centrality, local interaction density (LID, of the yeast PPI network; second, we discuss a new integration strategy for multiple bioinformatics. The LIDC method was then developed through a combination of LID and protein complex information based on our new integration strategy. The purpose of LIDC is discovery of important features of essential proteins with their neighbors in real protein complexes, thereby improving the efficiency of identification.Experimental results based on three different PPI(protein-protein interaction networks of Saccharomyces cerevisiae and Escherichia coli showed that LIDC outperformed classical topological centrality measures and some recent combinational methods. Moreover, when predicting MIPS datasets, the better improvement of performance obtained by LIDC is over all nine reference methods (i.e., DC, BC, NC, LID, PeC, CoEWC, WDC, ION, and UC.LIDC is more effective for the prediction of essential proteins than other recently developed methods.

  2. Identification of Essential Proteins Based on a New Combination of Local Interaction Density and Protein Complexes

    Science.gov (United States)

    Luo, Jiawei; Qi, Yi

    2015-01-01

    Background Computational approaches aided by computer science have been used to predict essential proteins and are faster than expensive, time-consuming, laborious experimental approaches. However, the performance of such approaches is still poor, making practical applications of computational approaches difficult in some fields. Hence, the development of more suitable and efficient computing methods is necessary for identification of essential proteins. Method In this paper, we propose a new method for predicting essential proteins in a protein interaction network, local interaction density combined with protein complexes (LIDC), based on statistical analyses of essential proteins and protein complexes. First, we introduce a new local topological centrality, local interaction density (LID), of the yeast PPI network; second, we discuss a new integration strategy for multiple bioinformatics. The LIDC method was then developed through a combination of LID and protein complex information based on our new integration strategy. The purpose of LIDC is discovery of important features of essential proteins with their neighbors in real protein complexes, thereby improving the efficiency of identification. Results Experimental results based on three different PPI(protein-protein interaction) networks of Saccharomyces cerevisiae and Escherichia coli showed that LIDC outperformed classical topological centrality measures and some recent combinational methods. Moreover, when predicting MIPS datasets, the better improvement of performance obtained by LIDC is over all nine reference methods (i.e., DC, BC, NC, LID, PeC, CoEWC, WDC, ION, and UC). Conclusions LIDC is more effective for the prediction of essential proteins than other recently developed methods. PMID:26125187

  3. Specific non-local interactions are not necessary for recovering native protein dynamics.

    Directory of Open Access Journals (Sweden)

    Bhaskar Dasgupta

    Full Text Available The elastic network model (ENM is a widely used method to study native protein dynamics by normal mode analysis (NMA. In ENM we need information about all pairwise distances, and the distance between contacting atoms is restrained to the native value. Therefore ENM requires O(N2 information to realize its dynamics for a protein consisting of N amino acid residues. To see if (or to what extent such a large amount of specific structural information is required to realize native protein dynamics, here we introduce a novel model based on only O(N restraints. This model, named the 'contact number diffusion' model (CND, includes specific distance restraints for only local (along the amino acid sequence atom pairs, and semi-specific non-local restraints imposed on each atom, rather than atom pairs. The semi-specific non-local restraints are defined in terms of the non-local contact numbers of atoms. The CND model exhibits the dynamic characteristics comparable to ENM and more correlated with the explicit-solvent molecular dynamics simulation than ENM. Moreover, unrealistic surface fluctuations often observed in ENM were suppressed in CND. On the other hand, in some ligand-bound structures CND showed larger fluctuations of buried protein atoms interacting with the ligand compared to ENM. In addition, fluctuations from CND and ENM show comparable correlations with the experimental B-factor. Although there are some indications of the importance of some specific non-local interactions, the semi-specific non-local interactions are mostly sufficient for reproducing the native protein dynamics.

  4. Specific non-local interactions are not necessary for recovering native protein dynamics.

    Science.gov (United States)

    Dasgupta, Bhaskar; Kasahara, Kota; Kamiya, Narutoshi; Nakamura, Haruki; Kinjo, Akira R

    2014-01-01

    The elastic network model (ENM) is a widely used method to study native protein dynamics by normal mode analysis (NMA). In ENM we need information about all pairwise distances, and the distance between contacting atoms is restrained to the native value. Therefore ENM requires O(N2) information to realize its dynamics for a protein consisting of N amino acid residues. To see if (or to what extent) such a large amount of specific structural information is required to realize native protein dynamics, here we introduce a novel model based on only O(N) restraints. This model, named the 'contact number diffusion' model (CND), includes specific distance restraints for only local (along the amino acid sequence) atom pairs, and semi-specific non-local restraints imposed on each atom, rather than atom pairs. The semi-specific non-local restraints are defined in terms of the non-local contact numbers of atoms. The CND model exhibits the dynamic characteristics comparable to ENM and more correlated with the explicit-solvent molecular dynamics simulation than ENM. Moreover, unrealistic surface fluctuations often observed in ENM were suppressed in CND. On the other hand, in some ligand-bound structures CND showed larger fluctuations of buried protein atoms interacting with the ligand compared to ENM. In addition, fluctuations from CND and ENM show comparable correlations with the experimental B-factor. Although there are some indications of the importance of some specific non-local interactions, the semi-specific non-local interactions are mostly sufficient for reproducing the native protein dynamics.

  5. Correlating Nitrile IR Frequencies to Local Electrostatics Quantifies Noncovalent Interactions of Peptides and Proteins.

    Science.gov (United States)

    Deb, Pranab; Haldar, Tapas; Kashid, Somnath M; Banerjee, Subhrashis; Chakrabarty, Suman; Bagchi, Sayan

    2016-05-05

    Noncovalent interactions, in particular the hydrogen bonds and nonspecific long-range electrostatic interactions are fundamental to biomolecular functions. A molecular understanding of the local electrostatic environment, consistently for both specific (hydrogen-bonding) and nonspecific electrostatic (local polarity) interactions, is essential for a detailed understanding of these processes. Vibrational Stark Effect (VSE) has proven to be an extremely useful method to measure the local electric field using infrared spectroscopy of carbonyl and nitrile based probes. The nitrile chemical group would be an ideal choice because of its absorption in an infrared spectral window transparent to biomolecules, ease of site-specific incorporation into proteins, and common occurrence as a substituent in various drug molecules. However, the inability of VSE to describe the dependence of IR frequency on electric field for hydrogen-bonded nitriles to date has severely limited nitrile's utility to probe the noncovalent interactions. In this work, using infrared spectroscopy and atomistic molecular dynamics simulations, we have reported for the first time a linear correlation between nitrile frequencies and electric fields in a wide range of hydrogen-bonding environments that may bridge the existing gap between VSE and H-bonding interactions. We have demonstrated the robustness of this field-frequency correlation for both aromatic nitriles and sulfur-based nitriles in a wide range of molecules of varying size and compactness, including small molecules in complex solvation environments, an amino acid, disordered peptides, and structured proteins. This correlation, when coupled to VSE, can be used to quantify noncovalent interactions, specific or nonspecific, in a consistent manner.

  6. Localized electromechanical interactions in ferroelectric P(VDF-TrFE nanowires investigated by scanning probe microscopy

    Directory of Open Access Journals (Sweden)

    Yonatan Calahorra

    2016-11-01

    Full Text Available We investigate the electromechanical interactions in individual polyvinylidene fluoride-trifluoroethylene nanowires in response to localized electrical poling via a conducting atomic force microscope tip. Spatially resolved measurements of piezoelectric coefficients and elastic moduli before and after poling reveal a striking dependence on the polarity of the poling field, notably absent in thin films of the same composition. These observations are attributed to the unclamped nature of the nanowires and the inherent asymmetry in their chemical and electrical interactions with the tip and underlying substrate. Our findings provide insights into the mechanism of poling/switching in polymer nanowires critical to ferroelectric device performance.

  7. Non-local separable solutions of two interacting particles in a harmonic trap

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Santander, C., E-mail: cglezsantander@fis.ucm.e [GISC, Departamento de Fisica de Materiales, Universidad Complutense, E-28040 Madrid (Spain); Dominguez-Adame, F. [GISC, Departamento de Fisica de Materiales, Universidad Complutense, E-28040 Madrid (Spain)

    2011-01-17

    We calculate the energy levels of two particles trapped in a harmonic potential. The actual two-body potential, assumed to be spherically symmetric, is replaced by a projective operator (non-local separable potential) to determine the energy levels in a closed form. This approach overcomes the limitations of the regularized Fermi pseudopotential when the characteristic length of the two-body interaction potential is of the order of the size of the harmonic trap. In addition, we recover the results obtained with the Fermi pseudopotential when the length of the interaction is much smaller than the size of the trap.

  8. Theoretical Bases of the Model of Interaction of the Government and Local Government Creation

    Directory of Open Access Journals (Sweden)

    Nikolay I. Churinov

    2015-09-01

    Full Text Available Article is devoted to questions of understanding of a theoretical component: systems of interaction of bodies of different levels of the government. Author researches historical basis of the studied subject by research of foreign and domestic scientific experience in area of the theory of the state and the law. Much attention is paid to the scientific aspect of the question. By empirical approach interpretation of the theory of interaction of public authorities and local government, and also subjective estimated opinion of the author is given.

  9. Metastable and spin-polarized states in electron systems with localized electron-electron interaction

    Science.gov (United States)

    Sablikov, Vladimir A.; Shchamkhalova, Bagun S.

    2014-05-01

    We study the formation of spontaneous spin polarization in inhomogeneous electron systems with pair interaction localized in a small region that is not separated by a barrier from surrounding gas of non-interacting electrons. Such a system is interesting as a minimal model of a quantum point contact in which the electron-electron interaction is strong in a small constriction coupled to electron reservoirs without barriers. Based on the analysis of the grand potential within the self-consistent field approximation, we find that the formation of the polarized state strongly differs from the Bloch or Stoner transition in homogeneous interacting systems. The main difference is that a metastable state appears in the critical point in addition to the globally stable state, so that when the interaction parameter exceeds a critical value, two states coexist. One state has spin polarization and the other is unpolarized. Another feature is that the spin polarization increases continuously with the interaction parameter and has a square-root singularity in the critical point. We study the critical conditions and the grand potentials of the polarized and unpolarized states for one-dimensional and two-dimensional models in the case of extremely small size of the interaction region.

  10. Cognitive Modulation of Local and Callosal Neural Interactions in Decision Making

    Directory of Open Access Journals (Sweden)

    Hugo eMerchant

    2014-08-01

    Full Text Available Traditionally, the neurophysiological mechanisms of cognitive processing have been investigated at the single cell level. Here we show that the dynamic, millisecond-by-millisecond, interactions between neuronal events measured by local field potentials are modulated in an orderly fashion by key task variables of a space categorization task performed by monkeys. These interactions were stronger during periods of higher cognitive load and varied in sign (positive, negative. They were observed both within area 7a of the posterior parietal cortex and between symmetric 7a areas of the two hemispheres. Time lags for maximum interactions were longer for opposite- vs. same-hemisphere recordings, and lags for negative interactions were longer than for positive interactions in both recording sites. These findings underscore the involvement of dynamic neuronal interactions in cognitive processing within and across hemispheres. They also provide accurate estimates of lags in callosal interactions, very comparable to similar estimates of callosal conduction delays based on neuroanatomical measurements (Caminiti et al. 2013.

  11. ‘Initiative-Decision’ Typology of New Product Launching (NPL into Local Market: Toward Interaction Mechanism

    Directory of Open Access Journals (Sweden)

    Firmanzah

    2009-12-01

    Full Text Available New product launching (NPL process in subsidiaries is very complex, expensive and risky. This process is marked by the problem of role partition between headquarter and subsidiaries. This research emphasizes the quality of relation between subsidiaries and headquarter which determines the qualities of NPL process into local market. Typology of initiative-decision during NPL process has been documented. Using cluster analysis, three clusters of ‘initiative-decision’ during NPL are found in this research: ‘headquarters domination’, ‘mix-initiative’ and ‘interaction’. Using ANOVA analysis, this research found that interaction between subsidiary and headquarter managers positively increases the effectiveness of marketing-strategy during NPL process. This finding suggests that interaction mechanism between subsidiary and headquarter is the best solution to launch a new product to the local market.

  12. The Van der Waals interaction of the hydrogen molecule an exact local energy density functional

    CERN Document Server

    Choy, T C

    1999-01-01

    We verify that the van der Waals interaction and hence all dispersion interactions for the hydrogen molecule given by: W''= -{A/R^6}-{B/R^8}-{C/R^10}- ..., in which R is the internuclear separation, are exactly soluble. The constants A=6.4990267..., B=124.3990835 ... and C=1135.2140398... (in Hartree units) first obtained approximately by Pauling and Beach (PB) [1] using a linear variational method, can be shown to be obtainable to any desired accuracy via our exact solution. In addition we shall show that a local energy density functional can be obtained, whose variational solution rederives the exact solution for this problem. This demonstrates explicitly that a static local density functional theory exists for this system. We conclude with remarks about generalising the method to other hydrogenic systems and also to helium.

  13. Understanding the nanoscale local buckling behavior of vertically aligned MWCNT arrays with van der Waals interactions

    Science.gov (United States)

    Li, Yupeng; Kim, Hyung-Ick; Wei, Bingqing; Kang, Junmo; Choi, Jae-Boong; Nam, Jae-Do; Suhr, Jonghwan

    2015-08-01

    The local buckling behavior of vertically aligned carbon nanotubes (VACNTs) has been investigated and interpreted in the view of a collective nanotube response by taking van der Waals interactions into account. To the best of our knowledge, this is the first report on the case of collective VACNT behavior regarding van der Waals force among nanotubes as a lateral support effect during the buckling process. The local buckling propagation and development of VACNTs were experimentally observed and theoretically analyzed by employing finite element modeling with lateral support from van der Waals interactions among nanotubes. Both experimental and theoretical analyses show that VACNTs buckled in the bottom region with many short waves and almost identical wavelengths, indicating a high mode buckling. Furthermore, the propagation and development mechanism of buckling waves follow the wave damping effect.The local buckling behavior of vertically aligned carbon nanotubes (VACNTs) has been investigated and interpreted in the view of a collective nanotube response by taking van der Waals interactions into account. To the best of our knowledge, this is the first report on the case of collective VACNT behavior regarding van der Waals force among nanotubes as a lateral support effect during the buckling process. The local buckling propagation and development of VACNTs were experimentally observed and theoretically analyzed by employing finite element modeling with lateral support from van der Waals interactions among nanotubes. Both experimental and theoretical analyses show that VACNTs buckled in the bottom region with many short waves and almost identical wavelengths, indicating a high mode buckling. Furthermore, the propagation and development mechanism of buckling waves follow the wave damping effect. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr03581c

  14. Local Interaction Simulation Approach for Fault Detection in Medical Ultrasonic Transducers

    Directory of Open Access Journals (Sweden)

    Z. Hashemiyan

    2015-01-01

    Full Text Available A new approach is proposed for modelling medical ultrasonic transducers operating in air. The method is based on finite elements and the local interaction simulation approach. The latter leads to significant reductions of computational costs. Transmission and reception properties of the transducer are analysed using in-air reverberation patterns. The proposed approach can help to provide earlier detection of transducer faults and their identification, reducing the risk of misdiagnosis due to poor image quality.

  15. Local Classical and Quantum Criticality due to Electron-Vibration Interaction

    OpenAIRE

    2009-01-01

    We study the local classical and quantum critical properties of electron-vibration interaction, represented by the Yu-Anderson model. It exhibits an instability, similar to the Wentzel-Bardeen singularity, whose nature resembles to weakly first order quantum phase transitions at low temperatures, and crosses over to Gaussian behaviour with increasing temperature. We determine the dominant energy scale separating the quantum from classical criticality, study the effect of dissipation and analy...

  16. Radiative interactions in molecular gases under local and nonlocal thermodynamic equilibrium conditions

    Science.gov (United States)

    Tiwari, S. N.; Jha, M. K.

    1993-01-01

    Basic formulations, analyses, and numerical procedures are presented to investigate radiative heat interactions in diatomic and polyatomic gases under local and nonlocal thermodynamic equilibrium conditions. Essential governing equations are presented for both gray and nongray gases. Information is provided on absorption models, relaxation times, and transfer equations. Radiative flux equations are developed which are applicable under local and nonlocal thermodynamic equilibrium conditions. The problem is solved for fully developed laminar incompressible flows between two parallel plates under the boundary condition of a uniform surface heat flux. For specific applications, three diatomic and three polyatomic gases are considered. The results are obtained numerically by employing the method of variation of parameters. The results are compared under local and nonlocal thermodynamic equilibrium conditions at different temperature and pressure conditions. Both gray and nongray studies are conducted extensively for all molecular gases considered. The particular gases selected for this investigation are CO, NO, OH, CO2, H2O, and CH4. The temperature and pressure range considered are 300-2000 K and 0.1-10 atmosphere, respectively. In general, results demonstrate that the gray gas approximation overestimates the effect of radiative interaction for all conditions. The conditions of NLTE, however, result in underestimation of radiative interactions. The method developed for this study can be extended to solve complex problems of radiative heat transfer involving nonequilibrium phenomena.

  17. Suppression of Spiral Waves and Spatiotemporal Chaos Under Local Self-adaptive Coupling Interactions

    Institute of Scientific and Technical Information of China (English)

    MA Jun; WU Ning-Jie; YING He-Ping; YUAN Li-Hua

    2006-01-01

    In this paper, a close-loop feedback control is imposed locally on the Fitzhugh-Nagumo (FHN) system to suppress the stable spirals and spatiotemporal chaos according to the principle of self-adaptive coupling interaction. The simulation results show that an expanding target wave is stimulated by the spiral waves under dynamic control period when a local area of 5 x 5 grids is controlled, or the spiral tip is driven to the board of the system. It is adso found that the spatiotemporal chaos can be suppressed to get a stable homogeneous state within 50 time units as two local grids are controlled mutually. The mechanism of the scheme is briefly discussed.

  18. Diego interacts with Prickle and Strabismus/Van Gogh to localize planar cell polarity complexes.

    Science.gov (United States)

    Das, Gishnu; Jenny, Andreas; Klein, Thomas J; Eaton, Suzanne; Mlodzik, Marek

    2004-09-01

    Planar cell polarity (PCP) in the Drosophila eye is established by the distinct fate specifications of photoreceptors R3 and R4, and is regulated by the Frizzled (Fz)/PCP signaling pathway. Before the PCP proteins become asymmetrically localized to opposite poles of the cell in response to Fz/PCP signaling, they are uniformly apically colocalized. Little is known about how the apical localization is maintained. We provide evidence that the PCP protein Diego (Dgo) promotes the maintenance of apical localization of Flamingo (Fmi), an atypical Cadherin-family member, which itself is required for the apical localization of the other PCP factors. This function of Dgo is redundant with Prickle (Pk) and Strabismus (Stbm), and only appreciable in double mutant tissue. We show that the initial membrane association of Dgo depends on Fz, and that Dgo physically interacts with Stbm and Pk through its Ankyrin repeats, providing evidence for a PCP multiprotein complex. These interactions suggest a positive feedback loop initiated by Fz that results in the apical maintenance of other PCP factors through Fmi.

  19. Modeling 4D Human-Object Interactions for Joint Event Segmentation, Recognition, and Object Localization.

    Science.gov (United States)

    Wei, Ping; Zhao, Yibiao; Zheng, Nanning; Zhu, Song-Chun

    2016-06-01

    In this paper, we present a 4D human-object interaction (4DHOI) model for solving three vision tasks jointly: i) event segmentation from a video sequence, ii) event recognition and parsing, and iii) contextual object localization. The 4DHOI model represents the geometric, temporal, and semantic relations in daily events involving human-object interactions. In 3D space, the interactions of human poses and contextual objects are modeled by semantic co-occurrence and geometric compatibility. On the time axis, the interactions are represented as a sequence of atomic event transitions with coherent objects. The 4DHOI model is a hierarchical spatial-temporal graph representation which can be used for inferring scene functionality and object affordance. The graph structures and parameters are learned using an ordered expectation maximization algorithm which mines the spatial-temporal structures of events from RGB-D video samples. Given an input RGB-D video, the inference is performed by a dynamic programming beam search algorithm which simultaneously carries out event segmentation, recognition, and object localization. We collected and released a large multiview RGB-D event dataset which contains 3,815 video sequences and 383,036 RGB-D frames captured by three RGB-D cameras. The experimental results on three challenging datasets demonstrate the strength of the proposed method.

  20. Using Interactive Case Studies to Support Students Understandings of Local Environmental Problems

    Directory of Open Access Journals (Sweden)

    Z. Kostova

    2012-12-01

    Full Text Available The article presents designed and refined an interactive-enhanced curriculum module for 9th grade secondary school students in Bulgaria, based on environmental case studies. In the module activities students from two schools studied the local environments, performed observations and experiments, collected and analyzed data, prepared and presented posters and role plays, made connections between scientific processes and socio-scientific issues and drew conclusions about the global effects of locally created environmental problems. The students’ critical observations of the quality of their surroundings helped them to make a list of local environmental problems, to apply interactive strategies in studying them and to propose rational scientifically based solutions. In the study the attention was directed to the advantages and disadvantages of poster presentations and role playing and to the specific learning difficulties that students had to overcome. Students’ achievements from the two experimental schools were assessed independently in order to give us insights into the details of learning using different interactive strategies and into the acquired performance skills, dependant on students’ interests and personal abilities. The three versions of the module (traditional, dominated by teacher presentation; poster preparation and presentation in which students imitate scientific team research; and role playing in which students not only study the local environmental problems but assume social roles to cope with them demonstrate three levels of students learning independence. Specific assessment tests and check lists were developed for analyzing, evaluating and comparing students’ achievements in each version of the module and in each school. Ecological knowledge assessment tests were based on Bloom’s taxonomy of educational objectives. Poster and role playing preparations and presentations were assessed by specific criteria, shown in the

  1. Local genetic adaptation generates latitude-specific effects of warming on predator-prey interactions.

    Science.gov (United States)

    De Block, Marjan; Pauwels, Kevin; Van Den Broeck, Maarten; De Meester, Luc; Stoks, Robby

    2013-03-01

    Temperature effects on predator-prey interactions are fundamental to better understand the effects of global warming. Previous studies never considered local adaptation of both predators and prey at different latitudes, and ignored the novel population combinations of the same predator-prey species system that may arise because of northward dispersal. We set up a common garden warming experiment to study predator-prey interactions between Ischnura elegans damselfly predators and Daphnia magna zooplankton prey from three source latitudes spanning >1500 km. Damselfly foraging rates showed thermal plasticity and strong latitudinal differences consistent with adaptation to local time constraints. Relative survival was higher at 24 °C than at 20 °C in southern Daphnia and higher at 20 °C than at 24 °C, in northern Daphnia indicating local thermal adaptation of the Daphnia prey. Yet, this thermal advantage disappeared when they were confronted with the damselfly predators of the same latitude, reflecting also a signal of local thermal adaptation in the damselfly predators. Our results further suggest the invasion success of northward moving predators as well as prey to be latitude-specific. We advocate the novel common garden experimental approach using predators and prey obtained from natural temperature gradients spanning the predicted temperature increase in the northern populations as a powerful approach to gain mechanistic insights into how community modules will be affected by global warming. It can be used as a space-for-time substitution to inform how predator-prey interaction may gradually evolve to long-term warming.

  2. CCHCR1 interacts with EDC4, suggesting its localization in P-bodies

    Energy Technology Data Exchange (ETDEWEB)

    Ling, Y.H.; Wong, C.C. [School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong (China); Li, K.W. [Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University, 1081 HV Amsterdam (Netherlands); Chan, K.M. [School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong (China); Boukamp, P. [Division of Genetics of Skin Carcinogenesis, A110 German Cancer Research Center, Im Neuenheimer Feld 280, D-69120 Heidelberg (Germany); Liu, W.K., E-mail: ken-liu@cuhk.edu.hk [School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong (China)

    2014-09-10

    Coiled‐coil alpha‐helical rod protein 1 (CCHCR1) is suggested as a candidate biomarker for psoriasis for more than a decade but its function remains poorly understood because of the inconsistent findings in the literature. CCHCR1 protein is suggested to be localized in the cytoplasm, nucleus, mitochondria, or centrosome and to regulate various cellular functions, including steroidogenesis, proliferation, differentiation, and cytoskeleton organization. In this study, we attempted to find a consensus between these findings by identifying the interaction partners of CCHCR1 using co-immunoprecipiation with a stable cell line expressing EGFP-tagged CCHCR1. Out of more than 100 co-immunoprecipitants identified by liquid chromatography-tandem mass spectrometry (LC-MS/MS), the enhancer of mRNA-decapping protein 4 (EDC4), which is a processing body (P-body) component, was particularly found to be the major interacting partner of CCHCR1. Confocal imaging confirmed the localization of CCHCR1 in P-bodies and its N-terminus is required for this subcellular localization, suggesting that CCHCR1 is a novel P-body component. As P-bodies are the site for mRNA metabolism, our findings provide a molecular basis for the function of CCHCR1, any disruption of which may affect the transcriptome of the cell, and causing abnormal cell functions. - Highlights: • We identified CCHCR1 as a novel P-body component. • We identified EDC4 as the major interacting partner of CCHCR1. • N-terminus of CCHCR1 protein is required for its P-bodies localization.

  3. Intracellular localization and interaction of mRNA binding proteins as detected by FRET

    Directory of Open Access Journals (Sweden)

    Port J

    2010-09-01

    Full Text Available Abstract Background A number of RNA binding proteins (BPs bind to A+U rich elements (AREs, commonly present within 3'UTRs of highly regulated RNAs. Individual RNA-BPs proteins can modulate RNA stability, RNA localization, and/or translational efficiency. Although biochemical studies have demonstrated selectivity of ARE-BPs for individual RNAs, less certain is the in vivo composition of RNA-BP multiprotein complexes and how their composition is affected by signaling events and intracellular localization. Using FRET, we previously demonstrated that two ARE-BPs, HuR and AUF1, form stable homomeric and heteromeric associations in the nucleus and cytoplasm. In the current study, we use immuno-FRET of endogenous proteins to examine the intracellular localization and interactions of HuR and AUF1 as well as KSRP, TIA-1, and Hedls. These results were compared to those obtained with their exogenously expressed, fluorescently labeled counterparts. Results All ARE-BPs examined were found to colocalize and to form stable associations with selected other RNA-BPs in one or more cellular locations variably including the nucleus, cytoplasm (in general, or in stress granules or P bodies. Interestingly, FRET based interaction of the translational suppressor, TIA-1, and the decapping protein, Hedls, was found to occur at the interface of stress granules and P bodies, dynamic sites of intracellular RNA storage and/or turnover. To explore the physical interactions of RNA-BPs with ARE containing RNAs, in vitro transcribed Cy3-labeled RNA was transfected into cells. Interestingly, Cy3-RNA was found to coalesce in P body like punctate structures and, by FRET, was found to interact with the RNA decapping proteins, Hedls and Dcp1. Conclusions Biochemical methodologies, such as co-immunoprecipitation, and cell biological approaches such as standard confocal microscopy are useful in demonstrating the possibility of proteins and/or proteins and RNAs interacting. However, as

  4. Role of interactions in a dissipative many-body localized system

    Science.gov (United States)

    Everest, Benjamin; Lesanovsky, Igor; Garrahan, Juan P.; Levi, Emanuele

    2017-01-01

    Recent experimental and theoretical efforts have focused on the effect of dissipation on quantum many-body systems in their many-body localized (MBL) phase. While in the presence of dephasing noise such systems reach a unique ergodic state, their dynamics is characterized by slow relaxation manifested in nonexponential decay of self-correlations. Here we shed light on a currently much debated issue, namely, the role of interactions for this relaxation dynamics. We focus on the experimentally relevant situation of the evolution from an initial charge density wave in the presence of strong dephasing noise. We find a crossover from a regime dominated by disorder to a regime dominated by interactions, with an accompanying change of time correlators from stretched exponential to compressed exponential form. The strongly interacting regime can be explained in terms of nucleation and growth dynamics of relaxing regions—reminiscent of the kinetics of crystallization in soft matter systems—and should be observable experimentally. This interaction-driven crossover suggests that the competition between interactions and noise gives rise to a much richer structure of the MBL phase than anticipated so far.

  5. Local cell metrics: a novel method for analysis of cell-cell interactions

    Directory of Open Access Journals (Sweden)

    Chen Chien-Chiang

    2009-10-01

    Full Text Available Abstract Background The regulation of many cell functions is inherently linked to cell-cell contact interactions. However, effects of contact interactions among adherent cells can be difficult to detect with global summary statistics due to the localized nature and noise inherent to cell-cell interactions. The lack of informatics approaches specific for detecting cell-cell interactions is a limitation in the analysis of large sets of cell image data, including traditional and combinatorial or high-throughput studies. Here we introduce a novel histogram-based data analysis strategy, termed local cell metrics (LCMs, which addresses this shortcoming. Results The new LCM method is demonstrated via a study of contact inhibition of proliferation of MC3T3-E1 osteoblasts. We describe how LCMs can be used to quantify the local environment of cells and how LCMs are decomposed mathematically into metrics specific to each cell type in a culture, e.g., differently-labelled cells in fluorescence imaging. Using this approach, a quantitative, probabilistic description of the contact inhibition effects in MC3T3-E1 cultures has been achieved. We also show how LCMs are related to the naïve Bayes model. Namely, LCMs are Bayes class-conditional probability functions, suggesting their use for data mining and classification. Conclusion LCMs are successful in robust detection of cell contact inhibition in situations where conventional global statistics fail to do so. The noise due to the random features of cell behavior was suppressed significantly as a result of the focus on local distances, providing sensitive detection of cell-cell contact effects. The methodology can be extended to any quantifiable feature that can be obtained from imaging of cell cultures or tissue samples, including optical, fluorescent, and confocal microscopy. This approach may prove useful in interpreting culture and histological data in fields where cell-cell interactions play a critical

  6. Evolutionarily Conserved Pattern of Interactions in a Protein Revealed by Local Thermal Expansion Properties.

    Science.gov (United States)

    Dellarole, Mariano; Caro, Jose A; Roche, Julien; Fossat, Martin; Barthe, Philippe; García-Moreno E, Bertrand; Royer, Catherine A; Roumestand, Christian

    2015-07-29

    The way in which the network of intramolecular interactions determines the cooperative folding and conformational dynamics of a protein remains poorly understood. High-pressure NMR spectroscopy is uniquely suited to examine this problem because it combines the site-specific resolution of the NMR experiments with the local character of pressure perturbations. Here we report on the temperature dependence of the site-specific volumetric properties of various forms of staphylococcal nuclease (SNase), including three variants with engineered internal cavities, as measured with high-pressure NMR spectroscopy. The strong temperature dependence of pressure-induced unfolding arises from poorly understood differences in thermal expansion between the folded and unfolded states. A significant inverse correlation was observed between the global thermal expansion of the folded proteins and the number of strong intramolecular hydrogen bonds, as determined by the temperature coefficient of the backbone amide chemical shifts. Comparison of the identity of these strong H-bonds with the co-evolution of pairs of residues in the SNase protein family suggests that the architecture of the interactions detected in the NMR experiments could be linked to a functional aspect of the protein. Moreover, the temperature dependence of the residue-specific volume changes of unfolding yielded residue-specific differences in expansivity and revealed how mutations impact intramolecular interaction patterns. These results show that intramolecular interactions in the folded states of proteins impose constraints against thermal expansion and that, hence, knowledge of site-specific thermal expansivity offers insight into the patterns of strong intramolecular interactions and other local determinants of protein stability, cooperativity, and potentially also of function.

  7. Protein-protein interaction network and subcellular localization of the Arabidopsis thaliana ESCRT machinery

    Directory of Open Access Journals (Sweden)

    Lynn eRichardson

    2011-06-01

    Full Text Available The Endosomal Sorting Complex Required for Transport (ESCRT consists of several multi-protein subcomplexes which assemble sequentially at the endosomal surface and function in multivesicular body (MVB biogenesis. While ESCRT has been relatively well characterized in yeasts and mammals, comparably little is known about ESCRT in plants. Here we explored the yeast two-hybrid protein interaction network and subcellular localization of the Arabidopsis thaliana ESCRT machinery. We show that Arabidopsis ESCRT interactome possess a number of protein-protein interactions that are either conserved in yeasts and mammals or distinct to plants. We show also that most of the Arabidopsis ESCRT proteins examined at least partially localize to MVBs in plant cells when ectopically expressed on their own or co-expressed with other interacting ESCRT proteins, and some also induce abnormal MVB phenotypes, consistent with their proposed functional roles in MVB biogenesis. Overall, our results help define the plant ESCRT machinery by highlighting both conserved and unique features when compared to ESCRT in other evolutionarily diverse organisms, providing a foundation for further exploration of ESCRT in plants.

  8. Local modification of intermolecular interactions at a sub-molecule level

    Science.gov (United States)

    Song, Sang Yong; Jeong, Yong Chan; Kim, Youngjae; Kang, Joongoo; Seo, Jungpil

    2016-10-01

    The local modification of intermolecular interactions in nickel-phthalocyanine molecules (NiPCs) is investigated on an Au(111) substrate using scanning tunneling microscopy. When the molecules are physisorbed on the substrate, they repel each other due to induced charge dipole moments. However, when the NiPC is chemisorbed on the substrate through the dehydrogenation of one of its ligands by a bias pulse, we find that a nearby physisorbed NiPC is attracted to the dehydrogenated ligand and trapped. Using our experimental results in combination with density functional theory calculations, we show that the observed attraction can be ascribed to the local charge redistribution around the dehydrogenated ligand of the chemisorbed NiPC. Furthermore, we demonstrate that desorption of the attracted NiPC from the trapped site can be readily controlled by changing the density of NiPCs around the dehydrogenated ligand.

  9. EIT-like transmission by interaction between multiple Bragg scattering and local plasmonic resonances

    CERN Document Server

    Liu, Z Z; Xiao, J J

    2015-01-01

    We study the optical properties associated to both the polariton gap and the Bragg gap in periodic resonator-waveguide coupled system, based on the temporal coupled mode theory and the transfer matrix method. By the complex band and the transmission spectrum, it is feasible to tune the interaction between multiple Bragg scattering and the local resonance, which may give rise to analogous phenomena of electromagnetically induced transparency (EIT). We further design a plasmonic slot waveguide side-coupled with local plasmonic resonator to demonstrate the EIT-like effects in the near-infared band. Numerical calculations show that realistic amount of metal Joule loss may destroy the interference and the total absorption is enhanced in the transparency windwo due to the near zero group velocity of the guiding wave.

  10. Extracting Parts of 2D Shapes Using Local and Global Interactions Simultaneously

    CERN Document Server

    Tari, Sibel

    2011-01-01

    Perception research provides strong evidence in favor of part based representation of shapes in human visual system. Despite considerable differences among different theories in terms of how part boundaries are found, there is substantial agreement on that the process depends on many local and global geometric factors. This poses an important challenge from the computational point of view. In the first part of the chapter, I present a novel decomposition method by taking both local and global interactions within the shape domain into account. At the top of the partitioning hierarchy, the shape gets split into two parts capturing, respectively, the gross structure and the peripheral structure. The gross structure may be conceived as the least deformable part of the shape which remains stable under visual transformations. The peripheral structure includes limbs, protrusions, and boundary texture. Such a separation is in accord with the behavior of the artists who start with a gross shape and enrich it with deta...

  11. Transition, coexistence, and interaction of vector localized waves arising from higher-order effects

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Chong [School of Physics, Northwest University, Xi’an 710069 (China); Yang, Zhan-Ying, E-mail: zyyang@nwu.edu.cn [School of Physics, Northwest University, Xi’an 710069 (China); Zhao, Li-Chen, E-mail: zhaolichen3@163.com [School of Physics, Northwest University, Xi’an 710069 (China); Yang, Wen-Li [Institute of Modern Physics, Northwest University, Xi’an 710069 (China)

    2015-11-15

    We study vector localized waves on continuous wave background with higher-order effects in a two-mode optical fiber. The striking properties of transition, coexistence, and interaction of these localized waves arising from higher-order effects are revealed in combination with corresponding modulation instability (MI) characteristics. It shows that these vector localized wave properties have no analogues in the case without higher-order effects. Specifically, compared to the scalar case, an intriguing transition between bright–dark rogue waves and w-shaped–anti-w-shaped solitons, which occurs as a result of the attenuation of MI growth rate to vanishing in the zero-frequency perturbation region, is exhibited with the relative background frequency. In particular, our results show that the w-shaped–anti-w-shaped solitons can coexist with breathers, coinciding with the MI analysis where the coexistence condition is a mixture of a modulation stability and MI region. It is interesting that their interaction is inelastic and describes a fusion process. In addition, we demonstrate an annihilation phenomenon for the interaction of two w-shaped solitons which is identified essentially as an inelastic collision in this system. -- Highlights: •Vector rogue wave properties induced by higher-order effects are studied. •A transition between vector rogue waves and solitons is obtained. •The link between the transition and modulation instability (MI) is demonstrated. •The coexistence of vector solitons and breathers coincides with the MI features. •An annihilation phenomenon for the vector two w-shaped solitons is presented.

  12. Atomistic formulas for local properties in systems with many-body interactions

    Science.gov (United States)

    Hardy, Robert J.

    2016-11-01

    Atomistic formulas are derived for the local densities and fluxes used in the continuum description of energy and momentum transport. Two general methods for the distribution of potential energy among a system's constituent particles are presented and analyzed. The resulting formulas for the heat flux and stress tensor and the equations for energy and momentum transport are exact consequences of the definitions of the densities and the equations of classical mechanics. The formulas and equations obtained are valid for systems with very general types of many-body interactions.

  13. Rescaled Local Interaction Simulation Approach for Shear Wave Propagation Modelling in Magnetic Resonance Elastography

    Directory of Open Access Journals (Sweden)

    Z. Hashemiyan

    2016-01-01

    Full Text Available Properties of soft biological tissues are increasingly used in medical diagnosis to detect various abnormalities, for example, in liver fibrosis or breast tumors. It is well known that mechanical stiffness of human organs can be obtained from organ responses to shear stress waves through Magnetic Resonance Elastography. The Local Interaction Simulation Approach is proposed for effective modelling of shear wave propagation in soft tissues. The results are validated using experimental data from Magnetic Resonance Elastography. These results show the potential of the method for shear wave propagation modelling in soft tissues. The major advantage of the proposed approach is a significant reduction of computational effort.

  14. Computing Coulomb Interaction in Inhomogeneous Dielectric Media via a Local Electrostatics Lattice Algorithm

    CERN Document Server

    Fahrenberger, Florian

    2013-01-01

    The local approach to computing electrostatic interactions proposed by Maggs and adapted by Pasichnyk for molecular dynamics simulations is extended to situations where the dielectric background medium is inhomogeneous. We furthermore correct a problem of the original algorithm related to the correct treatment of the global dipole moment, provide an error estimate for the accuracy of the algorithm, and suggest a different form of the treatment of the self-energy problem. Our implementation is highly scalable on many cores, and we have validated and compared its performance against theoretical predictions and simulation data obtained by other algorithmic approaches.

  15. Rescaled Local Interaction Simulation Approach for Shear Wave Propagation Modelling in Magnetic Resonance Elastography

    Science.gov (United States)

    Packo, P.; Staszewski, W. J.; Uhl, T.

    2016-01-01

    Properties of soft biological tissues are increasingly used in medical diagnosis to detect various abnormalities, for example, in liver fibrosis or breast tumors. It is well known that mechanical stiffness of human organs can be obtained from organ responses to shear stress waves through Magnetic Resonance Elastography. The Local Interaction Simulation Approach is proposed for effective modelling of shear wave propagation in soft tissues. The results are validated using experimental data from Magnetic Resonance Elastography. These results show the potential of the method for shear wave propagation modelling in soft tissues. The major advantage of the proposed approach is a significant reduction of computational effort. PMID:26884808

  16. Localized spin excitations in an antiferromagnetic spin system with D-M interaction

    Energy Technology Data Exchange (ETDEWEB)

    Evangeline Rebecca, T.; Latha, M. M., E-mail: lathaisaac@yahoo.com [Department of Physics, Women' s Christian College, Nagercoil 629 001 (India)

    2016-06-15

    The existence of localized spin excitations and spin deviations along the site in a one-dimensional antiferromagnet with Dzyaloshinski-Moriya (D-M) interaction has been studied using quasiclassical approximation. By introducing the Holstein-Primakoff bosonic representation of spin operators, the coherent state ansatz, and the time dependent variational principle, a discrete set of coupled nonlinear partial differential equations governing the dynamics is derived. Employing the multiple-scale method, one, two and three solitary wave solutions are constructed and depicted graphically.

  17. Fabrication Localized Surface Plasmon Resonance sensor chip of gold nanoparticles and detection lipase–osmolytes interaction

    Energy Technology Data Exchange (ETDEWEB)

    Ghodselahi, T., E-mail: t_ghodselahi@yahoo.com [Nano Mabna Iranian Inc., PO Box 1676664116, Tehran (Iran, Islamic Republic of); School of Physics, Institute for Research in Fundamental Sciences, PO Box 19395-5531, Tehran (Iran, Islamic Republic of); Hoornam, S. [Nano Mabna Iranian Inc., PO Box 1676664116, Tehran (Iran, Islamic Republic of); School of Physics, Institute for Research in Fundamental Sciences, PO Box 19395-5531, Tehran (Iran, Islamic Republic of); Department of Science, Central Tehran Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Vesaghi, M.A. [Department of Physics, Sharif University of Technology, PO Box 11365-9161, Tehran (Iran, Islamic Republic of); Ranjbar, B.; Azizi, A. [Department of Biophysics, Tarbiat Modares University, Tehran (Iran, Islamic Republic of); Mobasheri, H. [Laboratory of Membrane Biophysics, Institute of Biochemistry and Biophysics, University of Tehran, PO Box 13145-1384, Tehran (Iran, Islamic Republic of); Biomaterials Research Institute (BRC), University of Tehran, Tehran (Iran, Islamic Republic of)

    2014-09-30

    Highlights: • We synthesized localized surface plasmon resonance sensor of gold nanoparticles by RF-sputtering and RF-PECVD. • LSPR sensor was characterized by TEM, XPS, AFM. • LSPR sensor was utilized to detect interaction between sorbitol and trehalose, with Pesudomonace Cepacia Lipase (PCL). • Unlike to trehalose, sorbitol interacts with the PCL. • Refractive index of PCL was obtained by Mie theory modeling. - Abstract: Co-deposition of RF-sputtering and RF-PECVD from acetylene gas and Au target were used to prepare sensor chip of gold nanoparticles (Au NPs). Deposition conditions were optimized to reach a Localized Surface Plasmon Resonance (LSPR) sensor chip of Au NPs with particle size less than 10 nm. The RF power was set at 180 W and the initial gas pressure was set at 0.035 mbar. Transmission Electron Microscopy (TEM) images and Atomic Force Microscopy (AFM) data were used to investigate particles size and surface morphology of LSPR sensor chip. The Au and C content of the LSPR sensor chip of Au NPs was obtained from X-ray photoelectron spectroscopy (XPS). The hydrogenated amorphous carbon (a-C:H) thin film was used as intermediate material to immobilize Au NPs on the SiO{sub 2} substrate. The interaction between two types of osmolytes, i.e. sorbitol and trehalose, with Pseudomonas cepacia lipase (PCL) were detected by the prepared LSPR biosensor chip. The detection mechanism is based on LSPR spectroscopy in which the wavelength of absorption peak is sensitive to the refractive index of the environment of the Au NPs. This mechanism eliminates the use of a probe or immobilization of PCL on the Au NPs of LSPR sensor chip. The interaction between PCL and osmolytes can change refractive index of the mixture or solution. We found that unlike to trehalose, sorbitol interacts with the PCL. This interaction increases refractive index of the PCL and sorbitol mixture. Refractive index of PCL in the presence of different concentration of sorbitol was

  18. Many-body localization transition in random quantum spin chains with long-range interactions

    Science.gov (United States)

    Moure, N.; Haas, S.; Kettemann, S.

    2015-07-01

    While there are well-established methods to study delocalization transitions of single particles in random systems, it remains a challenging problem how to characterize many-body delocalization transitions. Here, we use a generalized real-space renormalization group technique to study the anisotropic Heisenberg model with long-range interactions, decaying with a power α, which are generated by placing spins at random positions along the chain. This method permits a large-scale finite-size scaling analysis. We examine the full distribution function of the excitation energy gap from the ground state and observe a crossover with decreasing α. At αc the full distribution coincides with a critical function. Thereby, we find strong evidence for the existence of a many-body localization transition in disordered antiferromagnetic spin chains with long-range interactions.

  19. Dissipation through localized loss in bosonic systems with long-range interactions

    Science.gov (United States)

    Vidanović, Ivana; Cocks, Daniel; Hofstetter, Walter

    2014-05-01

    In recent years, controlled dissipation has proven to be a useful tool for the probing of a quantum system in an ultracold setup. In this paper we consider the dynamics of bosons induced by a dissipative local defect. We address superfluid and supersolid phases close to half filling that are ground states of an extended Bose-Hubbard Hamiltonian. To this end, we solve the master equation using the Gutzwiller approximation and find that in the superfluid phase repulsive nearest-neighbor interactions can lead to enhanced dissipation processes. On the other hand, our mean-field approach indicates that the effective loss rates are significantly suppressed deep in the supersolid phase where repulsive nearest-neighbor interactions play a dominant role. Our numerical results are explained by analytical arguments and, in particular, in the limit of strong dissipation we recover the quantum Zeno effect.

  20. Global product development interaction between local networks: A study of the Danish food industry

    DEFF Research Database (Denmark)

    Kristensen, Preben Sander

    A study of the Danish foods industry shows that producers of food products largely ignore home marekt demand in their product development activities. They have built up and maintain development of end-user products in interaction with customers in distant sophisticated markets. Concurrently......, the Danish agro-industrial complex has been singled out in other studies as a paradigmatic example of how crucial a sophisticated home demand is for the development of an industrial complex. The apparen contradiction arises from the complex's ability to utilize a complemntarity between companies' equidistant...... view of actors in the global end-user customer market and companies' euclidean view of actors in thelocal business-to-business market. In pr companies combine these two market views by interacting in networks: The global industrial network links various functions which again are each part of a local...

  1. A USABILITY OF GRAPHIC DESIGN WITH LOCAL CONTENT IN THE INTERACTIVE MULTIMEDIA DESIGN FOR INDONESIAN STORYTELLING

    Directory of Open Access Journals (Sweden)

    Listia Natadjaja

    2004-01-01

    Full Text Available As the computer becomes a trend%2C interactive multimedia design can be one media to communicate the cultural knowledge. A folktale can be a one of the powerful materials to show a country’s culture. The folktale content can be understood effectively by implementing some cultural information background. The main aim of using the local content is to give a vision of the richness culture through graphic design in interactive multimedia technology. By implementing local graphic design based on the cultural background%2C user can have different feeling about the graphic style and the Indonesian richness culture. This method can also help the user to understand the interactive multimedia content easily. Finally%2C graphic design with local content is very effective for a transferring the richness culture. In order to make a good interactive multimedia design content based on a cultural background%2C a designer should need to understand about users%2C culture%2C technology and the whole design process. Abstract in Bahasa Indonesia : Seiring dengan berkembangnya penggunaan komputer menjadi suatu trend%2C interaktif multimedia desain dapat menjadi suatu media untuk mengkomunikasikan suatu pengetahuan mengenai suatu kebudayaan. Cerita rakyat%2C dapat merupakan kekuatan untuk menunjukan budaya suatu negara. Isi dari suatu cerita rakyat dapat dimengerti secara efektif dengan implementasi beberapa latar belakang budaya. Tujuan utama dari penggunaan muatan lokal adalah untuk memberikan suatu visi tentang kekayaan budaya melalui desain grafis dalam teknologi interaktif multimedia. .Dengan mengimplementasikan desain grafis lokal berdasar pada latar belakang budaya%2C pengguna multimedia dapat mempunyai perasaan yang berbeda terhadap gaya desain dan kekayaan budaya Indonesia. Metode ini diharapkan juga dapat membantu pengguna untuk mengerti isi suatu interaktif multimedia secara mudah. Pada akhirnya%2C dapat dikatakan bahwa muatan lokal sangatlah bermanfaat

  2. Brain Interaction during Cooperation: Evaluating Local Properties of Multiple-Brain Network.

    Science.gov (United States)

    Sciaraffa, Nicolina; Borghini, Gianluca; Aricò, Pietro; Di Flumeri, Gianluca; Colosimo, Alfredo; Bezerianos, Anastasios; Thakor, Nitish V; Babiloni, Fabio

    2017-07-21

    Subjects' interaction is the core of most human activities. This is the reason why a lack of coordination is often the cause of missing goals, more than individual failure. While there are different subjective and objective measures to assess the level of mental effort required by subjects while facing a situation that is getting harder, that is, mental workload, to define an objective measure based on how and if team members are interacting is not so straightforward. In this study, behavioral, subjective and synchronized electroencephalographic data were collected from couples involved in a cooperative task to describe the relationship between task difficulty and team coordination, in the sense of interaction aimed at cooperatively performing the assignment. Multiple-brain connectivity analysis provided information about the whole interacting system. The results showed that averaged local properties of a brain network were affected by task difficulty. In particular, strength changed significantly with task difficulty and clustering coefficients strongly correlated with the workload itself. In particular, a higher workload corresponded to lower clustering values over the central and parietal brain areas. Such results has been interpreted as less efficient organization of the network when the subjects' activities, due to high workload tendencies, were less coordinated.

  3. Localizing True Brain Interactions from EEG and MEG Data with Subspace Methods and Modified Beamformers

    Directory of Open Access Journals (Sweden)

    Forooz Shahbazi Avarvand

    2012-01-01

    Full Text Available To address the problem of mixing in EEG or MEG connectivity analysis we exploit that noninteracting brain sources do not contribute systematically to the imaginary part of the cross-spectrum. Firstly, we propose to apply the existing subspace method “RAP-MUSIC” to the subspace found from the dominant singular vectors of the imaginary part of the cross-spectrum rather than to the conventionally used covariance matrix. Secondly, to estimate the specific sources interacting with each other, we use a modified LCMV-beamformer approach in which the source direction for each voxel was determined by maximizing the imaginary coherence with respect to a given reference. These two methods are applicable in this form only if the number of interacting sources is even, because odd-dimensional subspaces collapse to even-dimensional ones. Simulations show that (a RAP-MUSIC based on the imaginary part of the cross-spectrum accurately finds the correct source locations, that (b conventional RAP-MUSIC fails to do so since it is highly influenced by noninteracting sources, and that (c the second method correctly identifies those sources which are interacting with the reference. The methods are also applied to real data for a motor paradigm, resulting in the localization of four interacting sources presumably in sensory-motor areas.

  4. Localizing true brain interactions from EEG and MEG data with subspace methods and modified beamformers.

    Science.gov (United States)

    Shahbazi Avarvand, Forooz; Ewald, Arne; Nolte, Guido

    2012-01-01

    To address the problem of mixing in EEG or MEG connectivity analysis we exploit that noninteracting brain sources do not contribute systematically to the imaginary part of the cross-spectrum. Firstly, we propose to apply the existing subspace method "RAP-MUSIC" to the subspace found from the dominant singular vectors of the imaginary part of the cross-spectrum rather than to the conventionally used covariance matrix. Secondly, to estimate the specific sources interacting with each other, we use a modified LCMV-beamformer approach in which the source direction for each voxel was determined by maximizing the imaginary coherence with respect to a given reference. These two methods are applicable in this form only if the number of interacting sources is even, because odd-dimensional subspaces collapse to even-dimensional ones. Simulations show that (a) RAP-MUSIC based on the imaginary part of the cross-spectrum accurately finds the correct source locations, that (b) conventional RAP-MUSIC fails to do so since it is highly influenced by noninteracting sources, and that (c) the second method correctly identifies those sources which are interacting with the reference. The methods are also applied to real data for a motor paradigm, resulting in the localization of four interacting sources presumably in sensory-motor areas.

  5. local

    Directory of Open Access Journals (Sweden)

    Abílio Amiguinho

    2005-01-01

    Full Text Available The process of socio-educational territorialisation in rural contexts is the topic of this text. The theme corresponds to a challenge to address it having as main axis of discussion either the problem of social exclusion or that of local development. The reasons to locate the discussion in this last field of analysis are discussed in the first part of the text. Theoretical and political reasons are there articulated because the question is about projects whose intentions and practices call for the political both in the theoretical debate and in the choices that anticipate intervention. From research conducted for several years, I use contributions that aim at discuss and enlighten how school can be a potential locus of local development. Its identification and recognition as local institution (either because of those that work and live in it or because of those that act in the surrounding context are crucial steps to progressively constitute school as a partner for development. The promotion of the local values and roots, the reconstruction of socio-personal and local identities, the production of sociabilities and the equation and solution of shared problems were the dimensions of a socio-educative intervention, markedly globalising. This scenario, as it is argued, was also, intentionally, one of transformation and of deliberate change of school and of the administration of the educative territoires.

  6. Interactions of Prosthetic and Natural Vision in Animals With Local Retinal Degeneration

    Science.gov (United States)

    Lorach, Henri; Lei, Xin; Galambos, Ludwig; Kamins, Theodore; Mathieson, Keith; Dalal, Roopa; Huie, Philip; Harris, James; Palanker, Daniel

    2015-01-01

    Purpose Prosthetic restoration of partial sensory loss leads to interactions between artificial and natural inputs. Ideally, the rehabilitation should allow perceptual fusion of the two modalities. Here we studied the interactions between normal and prosthetic vision in a rodent model of local retinal degeneration. Methods Implantation of a photovoltaic array in the subretinal space of normally sighted rats induced local degeneration of the photoreceptors above the chip, and the inner retinal neurons in this area were electrically stimulated by the photovoltaic implant powered by near-infrared (NIR) light. We studied prosthetic and natural visually evoked potentials (VEP) in response to simultaneous stimulation by NIR and visible light patterns. Results We demonstrate that electrical and natural VEPs summed linearly in the visual cortex, and both responses decreased under brighter ambient light. Responses to visible light flashes increased over 3 orders of magnitude of contrast (flash/background), while for electrical stimulation the contrast range was limited to 1 order of magnitude. The maximum amplitude of the prosthetic VEP was three times lower than the maximum response to a visible flash over the same area on the retina. Conclusions Ambient light affects prosthetic responses, albeit much less than responses to visible stimuli. Prosthetic representation of contrast in the visual scene can be encoded, to a limited extent, by the appropriately calibrated stimulus intensity, which also depends on the ambient light conditions. Such calibration will be important for patients combining central prosthetic vision with natural peripheral sight, such as in age-related macular degeneration. PMID:26618643

  7. Local Probing of Phase Coherence in a Strongly Interacting 2D Quantum Gas

    Science.gov (United States)

    Luick, Niclas; Siegl, Jonas; Hueck, Klaus; Morgener, Kai; Lompe, Thomas; Weimer, Wolf; Moritz, Henning

    2016-05-01

    The dimensionality of a quantum system has a profound impact on its coherence and superfluid properties. In 3D superfluids, bosonic atoms or Cooper pairs condense into a macroscopic wave function exhibiting long-range phase coherence. Meanwhile, 2D superfluids show a strikingly different behavior: True long-range coherence is precluded by thermal fluctuations, nevertheless Berezinskii-Kosterlitz-Thouless (BKT) theory predicts that 2D systems can still become superfluid. The superfluid state is characterized by an algebraic decay of phase correlations g1(r) ~r - τ / 4 , where the decay exponent τ is directly related to the superfluid density ns according to τ = 4 /(nsλdB2) . I will present local coherence measurements in a strongly interacting 2D gas of diatomic 6 Li molecules. A self-interference technique allows us to locally extract the algebraic decay exponent and to reconstruct the superfluid density. We determine the scaling of the decay exponent with phase space density to provide a benchmark for studies of 2D superfluids in the strongly interacting regime.

  8. Local Interactions and the Emergence of a Twitter Small-World Network

    CERN Document Server

    Ch'ng, Eugene

    2015-01-01

    The small-world phenomenon is found in many self-organising systems. Systems configured in small-world networks spread information more easily than in random or regular lattice-type networks. Whilst it is a known fact that small-world networks have short average path length and high clustering coefficient in self-organising systems, the ego centralities that maintain the cohesiveness of small-world network have not been formally defined. Here we show that instantaneous events such as the release of news items via Twitter, coupled with active community arguments related to the news item form a particular type of small-world network. Analysis of the centralities in the network reveals that community arguments maintain the small-world network whilst actively maintaining the cohesiveness and boundary of the group. The results demonstrate how an active Twitter community unconsciously forms a small-world network whilst interacting locally with a bordering community. Over time, such local interactions brought about ...

  9. Electron transfer mechanism and the locality of the system-bath interaction: a comparison of local, semilocal, and pure dephasing models.

    Science.gov (United States)

    Weiss, Emily A; Katz, Gil; Goldsmith, Randall H; Wasielewski, Michael R; Ratner, Mark A; Kosloff, Ronnie; Nitzan, Abraham

    2006-02-21

    We simulate the effects of two types of dephasing processes, a nonlocal dephasing of system eigenstates and a dephasing of semilocal eigenstates, on the rate and mechanism of electron transfer (eT) through a series of donor-bridge-acceptor systems, D-B(N)-A, where N is the number of identical bridge units. Our analytical and numerical results show that pure dephasing, defined as the perturbation of system eigenstates through the system-bath interaction, does not disrupt coherent eT because it induces no localization; electron transfer may proceed through superexchange in a system undergoing only pure dephasing. A more physically reasonable description may be obtained via a system-bath interaction that reflects the perturbation of more local electronic structure by local nuclear distortions and dipole interactions. The degree of locality of this interaction is guided by the structure of the system Hamiltonian and by the nature of the measurement performed on the system (i.e., the nature of the environment). We compare our result from this "semilocal" model with an even more local phenomenological dephasing model. We calculate electron transfer rate by obtaining nonequilibrium steady-state solutions for the elements of a reduced density matrix; a semigroup formalism is used to write down the dissipative part of the equation of motion.

  10. Localized Modeling of Biochemical and Flow Interactions during Cancer Cell Adhesion.

    Directory of Open Access Journals (Sweden)

    Julie Behr

    Full Text Available This work focuses on one component of a larger research effort to develop a simulation tool to model populations of flowing cells. Specifically, in this study a local model of the biochemical interactions between circulating melanoma tumor cells (TC and substrate adherent polymorphonuclear neutrophils (PMN is developed. This model provides realistic three-dimensional distributions of bond formation and attendant attraction and repulsion forces that are consistent with the time dependent Computational Fluid Dynamics (CFD framework of the full system model which accounts local pressure, shear and repulsion forces. The resulting full dynamics model enables exploration of TC adhesion to adherent PMNs, which is a known participating mechanism in melanoma cell metastasis. The model defines the adhesion molecules present on the TC and PMN cell surfaces, and calculates their interactions as the melanoma cell flows past the PMN. Biochemical rates of reactions between individual molecules are determined based on their local properties. The melanoma cell in the model expresses ICAM-1 molecules on its surface, and the PMN expresses the β-2 integrins LFA-1 and Mac-1. In this work the PMN is fixed to the substrate and is assumed fully rigid and of a prescribed shear-rate dependent shape obtained from micro-PIV experiments. The melanoma cell is transported with full six-degrees-of-freedom dynamics. Adhesion models, which represent the ability of molecules to bond and adhere the cells to each other, and repulsion models, which represent the various physical mechanisms of cellular repulsion, are incorporated with the CFD solver. All models are general enough to allow for future extensions, including arbitrary adhesion molecule types, and the ability to redefine the values of parameters to represent various cell types. The model presented in this study will be part of a clinical tool for development of personalized medical treatment programs.

  11. Quantum Monte Carlo calculations with chiral effective field theory interactions

    Energy Technology Data Exchange (ETDEWEB)

    Tews, Ingo

    2015-10-12

    The neutron-matter equation of state connects several physical systems over a wide density range, from cold atomic gases in the unitary limit at low densities, to neutron-rich nuclei at intermediate densities, up to neutron stars which reach supranuclear densities in their core. An accurate description of the neutron-matter equation of state is therefore crucial to describe these systems. To calculate the neutron-matter equation of state reliably, precise many-body methods in combination with a systematic theory for nuclear forces are needed. Chiral effective field theory (EFT) is such a theory. It provides a systematic framework for the description of low-energy hadronic interactions and enables calculations with controlled theoretical uncertainties. Chiral EFT makes use of a momentum-space expansion of nuclear forces based on the symmetries of Quantum Chromodynamics, which is the fundamental theory of strong interactions. In chiral EFT, the description of nuclear forces can be systematically improved by going to higher orders in the chiral expansion. On the other hand, continuum Quantum Monte Carlo (QMC) methods are among the most precise many-body methods available to study strongly interacting systems at finite densities. They treat the Schroedinger equation as a diffusion equation in imaginary time and project out the ground-state wave function of the system starting from a trial wave function by propagating the system in imaginary time. To perform this propagation, continuum QMC methods require as input local interactions. However, chiral EFT, which is naturally formulated in momentum space, contains several sources of nonlocality. In this Thesis, we show how to construct local chiral two-nucleon (NN) and three-nucleon (3N) interactions and discuss results of first QMC calculations for pure neutron systems. We have performed systematic auxiliary-field diffusion Monte Carlo (AFDMC) calculations for neutron matter using local chiral NN interactions. By

  12. Light nuclei from chiral EFT interactions

    Science.gov (United States)

    Navrátil, P.; Gueorguiev, V. G.; Vary, J. P.; Ormand, W. E.; Nogga, A.; Quaglioni, S.

    2008-12-01

    Recent developments in nuclear theory allow us to make a connection between quantum chromodynamics (QCD) and low-energy nuclear physics. First, chiral effective field theory (χEFT) provides a natural hierarchy to define two-nucleon ( NN), three-nucleon ( NNN), and even four-nucleon interactions. Second, ab-initio methods have been developed capable to test these interactions for light nuclei. In this contribution, we discuss ab-initio no-core shell-model (NCSM) calculations for s-shell and p-shell nuclei with NN and NNN interactions derived within χEFT.

  13. Positive interactions between desert granivores: localized facilitation of harvester ants by kangaroo rats.

    Directory of Open Access Journals (Sweden)

    Andrew J Edelman

    Full Text Available Facilitation, when one species enhances the environment or performance of another species, can be highly localized in space. While facilitation in plant communities has been intensely studied, the role of facilitation in shaping animal communities is less well understood. In the Chihuahuan Desert, both kangaroo rats and harvester ants depend on the abundant seeds of annual plants. Kangaroo rats, however, are hypothesized to facilitate harvester ants through soil disturbance and selective seed predation rather than competing with them. I used a spatially explicit approach to examine whether a positive or negative interaction exists between banner-tailed kangaroo rat (Dipodomys spectabilis mounds and rough harvester ant (Pogonomyrmex rugosus colonies. The presence of a scale-dependent interaction between mounds and colonies was tested by comparing fitted spatial point process models with and without interspecific effects. Also, the effect of proximity to a mound on colony mortality and spatial patterns of surviving colonies was examined. The spatial pattern of kangaroo rat mounds and harvester ant colonies was consistent with a positive interspecific interaction at small scales (<10 m. Mortality risk of vulnerable, recently founded harvester ant colonies was lower when located close to a kangaroo rat mound and proximity to a mound partly predicted the spatial pattern of surviving colonies. My findings support localized facilitation of harvester ants by kangaroo rats, likely mediated through ecosystem engineering and foraging effects on plant cover and composition. The scale-dependent effect of kangaroo rats on abiotic and biotic factors appears to result in greater founding and survivorship of young colonies near mounds. These results suggest that soil disturbance and foraging by rodents can have subtle impacts on the distribution and demography of other species.

  14. Positive interactions between desert granivores: localized facilitation of harvester ants by kangaroo rats.

    Science.gov (United States)

    Edelman, Andrew J

    2012-01-01

    Facilitation, when one species enhances the environment or performance of another species, can be highly localized in space. While facilitation in plant communities has been intensely studied, the role of facilitation in shaping animal communities is less well understood. In the Chihuahuan Desert, both kangaroo rats and harvester ants depend on the abundant seeds of annual plants. Kangaroo rats, however, are hypothesized to facilitate harvester ants through soil disturbance and selective seed predation rather than competing with them. I used a spatially explicit approach to examine whether a positive or negative interaction exists between banner-tailed kangaroo rat (Dipodomys spectabilis) mounds and rough harvester ant (Pogonomyrmex rugosus) colonies. The presence of a scale-dependent interaction between mounds and colonies was tested by comparing fitted spatial point process models with and without interspecific effects. Also, the effect of proximity to a mound on colony mortality and spatial patterns of surviving colonies was examined. The spatial pattern of kangaroo rat mounds and harvester ant colonies was consistent with a positive interspecific interaction at small scales (ant colonies was lower when located close to a kangaroo rat mound and proximity to a mound partly predicted the spatial pattern of surviving colonies. My findings support localized facilitation of harvester ants by kangaroo rats, likely mediated through ecosystem engineering and foraging effects on plant cover and composition. The scale-dependent effect of kangaroo rats on abiotic and biotic factors appears to result in greater founding and survivorship of young colonies near mounds. These results suggest that soil disturbance and foraging by rodents can have subtle impacts on the distribution and demography of other species.

  15. Local electronic structure and ferromagnetic interaction in La(Co,Ni)O3

    Science.gov (United States)

    Huang, Meng-Jie; Nagel, Peter; Fuchs, Dirk; von Loehneysen, Hilbert; Merz, Michael; Schuppler, Stefan

    Perovskite-related transition-metal oxides exhibit a wide range of properties from insulating to superconducting as well as many peculiar magnetic phases, and cobaltites, in particular, have been known for their proximity to spin-state transitions. How this changes with partial substitution by Ni is the topic of the present study. The local electronic structure and the ferromagnetic interaction in La(Co1-xNix) O3 has been studied by x-ray absorption (XAS) and x-ray magnetic circular dichroism (XMCD). XAS clearly indicates a mixed-valence state for both Co and Ni, with both valences changing systematically with Ni content, x. While the gradual spin-state transition of Co3+ from low-spin (LS) to high-spin (HS) is preserved for low x it is suppressed in the high Ni-content samples. Regarding the spin configuration of Ni we find it stabilized in a ``mixed'' spin state, unlike the purely LS state of Ni in LaNiO3. XMCD identifies the element-specific contributions to the magnetic moment and interactions. In particular, we find that it must be the coexistence of the HS state in both Co3+ and Ni3 + that induces t2 g-based ferromagnetic interaction via the double-exchange mechanism.

  16. Modeling of fatigue crack induced nonlinear ultrasonics using a highly parallelized explicit local interaction simulation approach

    Science.gov (United States)

    Shen, Yanfeng; Cesnik, Carlos E. S.

    2016-04-01

    This paper presents a parallelized modeling technique for the efficient simulation of nonlinear ultrasonics introduced by the wave interaction with fatigue cracks. The elastodynamic wave equations with contact effects are formulated using an explicit Local Interaction Simulation Approach (LISA). The LISA formulation is extended to capture the contact-impact phenomena during the wave damage interaction based on the penalty method. A Coulomb friction model is integrated into the computation procedure to capture the stick-slip contact shear motion. The LISA procedure is coded using the Compute Unified Device Architecture (CUDA), which enables the highly parallelized supercomputing on powerful graphic cards. Both the explicit contact formulation and the parallel feature facilitates LISA's superb computational efficiency over the conventional finite element method (FEM). The theoretical formulations based on the penalty method is introduced and a guideline for the proper choice of the contact stiffness is given. The convergence behavior of the solution under various contact stiffness values is examined. A numerical benchmark problem is used to investigate the new LISA formulation and results are compared with a conventional contact finite element solution. Various nonlinear ultrasonic phenomena are successfully captured using this contact LISA formulation, including the generation of nonlinear higher harmonic responses. Nonlinear mode conversion of guided waves at fatigue cracks is also studied.

  17. Fluid-structure interaction of complex bodies in two-phase flows on locally refined grids

    Science.gov (United States)

    Angelidis, Dionysios; Shen, Lian; Sotiropoulos, Fotis

    2016-11-01

    Many real-life flow problems in engineering applications involve fluid-structure interaction (FSI) of arbitrarily complex geometries interacting with free surface flows. Despite the recent significant computational advances, conventional numerical methods are inefficient to resolve the prevailing complex dynamics due to the inherent large disparity of spatial and temporal scales that emerge in the air/water phases of the flow and around rigid bodies. To this end, the new generation 3D, unsteady, unstructured Cartesian incompressible flow solver, developed at the Saint Anthony Falls Laboratory (SAFL), is integrated with a FSI immersed boundary method and is coupled with the level-set formulation. The predictive capabilities of our method to simulate non-linear free surface phenomena, with low computational cost, are significantly improved by locally refining the computational grid in the vicinity of solid boundaries and around the free surface interface. We simulate three-dimensional complex flows involving complex rigid bodies interacting with a free surface both with prescribed body motion and coupled FSI and we investigate breaking wave events. In all the cases, very good agreement with benchmark data is found. This material is based upon work supported by the National Science Foundation (CBET-1509071).

  18. Model tests on interaction between soil and geosynthetics subjected to localized subsidence in landfills

    Institute of Scientific and Technical Information of China (English)

    Bin ZHU; Deng GAO; Jun-chao LI; Yun-min CHEN

    2012-01-01

    In a landfill,excessive tensile strains or failure of the liner system due to localized subsidence underneath the geosynthetic liner,is a concern in design and operation of the landfill.The localized subsidence can be commonly withstood by reinforcements such as geogrids.A total of nine model tests were carried out to study the influence of soil arching in overburden sandy soil on the geosynthetics and the interaction between the soil and the geosynthetics.The localized subsidence was modeled by a strip trapdoor under the geosynthetic reinforcements.The reinforcement includes several layers of polyvinylchlorid (PVC) membrane or both PVC membrane and a compacted clay layer.Test results show that the vertical soil pressure acting on the geosynthetics within the subsidence zone is strongly related to the deflection of the geosynthetics.The soil pressure acting on the deflected geosynthetics will decrease to a minimum value with respect to its deflection if the final deflection is large enough,and this minimum value is almost independent of the overburden height.Otherwise,the deflection of geosynthetics cannot result in a full degree of soil arching,and the soil pressure within the subsidence zone increases with the increase of overburden height.Deflections and strains of the geosynthetics obviously decrease with the increase of their tensile stiffness.The presence of a compacted clay layer buffer can therefore reduce both deflections and strains of the geosynthetics.Finally,a composite liner structure is recommended for landfills to withstand the localized subsidences.

  19. Interaction between a plasma membrane-localized ankyrin-repeat protein ITN1 and a nuclear protein RTV1

    Energy Technology Data Exchange (ETDEWEB)

    Sakamoto, Hikaru [Department of Bioproduction, Faculty of Bioindustry, Tokyo University of Agriculture, 196 Yasaka, Abashiri-shi, Hokkaido 093-2422 (Japan); Sakata, Keiko; Kusumi, Kensuke [Department of Biology, Faculty of Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581 (Japan); Kojima, Mikiko; Sakakibara, Hitoshi [RIKEN Plant Science Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045 (Japan); Iba, Koh, E-mail: koibascb@kyushu-u.org [Department of Biology, Faculty of Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581 (Japan)

    2012-06-29

    Highlights: Black-Right-Pointing-Pointer ITN1, a plasma membrane ankyrin protein, interacts with a nuclear DNA-binding protein RTV1. Black-Right-Pointing-Pointer The nuclear transport of RTV1 is partially inhibited by interaction with ITN1. Black-Right-Pointing-Pointer RTV1 can promote the nuclear localization of ITN1. Black-Right-Pointing-Pointer Both overexpression of RTV1 and the lack of ITN1 increase salicylic acids sensitivity in plants. -- Abstract: The increased tolerance to NaCl 1 (ITN1) protein is a plasma membrane (PM)-localized protein involved in responses to NaCl stress in Arabidopsis. The predicted structure of ITN1 is composed of multiple transmembrane regions and an ankyrin-repeat domain that is known to mediate protein-protein interactions. To elucidate the molecular functions of ITN1, we searched for interacting partners using a yeast two-hybrid assay, and a nuclear-localized DNA-binding protein, RTV1, was identified as a candidate. Bimolecular fluorescence complementation analysis revealed that RTV1 interacted with ITN1 at the PM and nuclei in vivo. RTV1 tagged with red fluorescent protein localized to nuclei and ITN1 tagged with green fluorescent protein localized to PM; however, both proteins localized to both nuclei and the PM when co-expressed. These findings suggest that RTV1 and ITN1 regulate the subcellular localization of each other.

  20. A 3D interactive multi-object segmentation tool using local robust statistics driven active contours.

    Science.gov (United States)

    Gao, Yi; Kikinis, Ron; Bouix, Sylvain; Shenton, Martha; Tannenbaum, Allen

    2012-08-01

    Extracting anatomical and functional significant structures renders one of the important tasks for both the theoretical study of the medical image analysis, and the clinical and practical community. In the past, much work has been dedicated only to the algorithmic development. Nevertheless, for clinical end users, a well designed algorithm with an interactive software is necessary for an algorithm to be utilized in their daily work. Furthermore, the software would better be open sourced in order to be used and validated by not only the authors but also the entire community. Therefore, the contribution of the present work is twofolds: first, we propose a new robust statistics based conformal metric and the conformal area driven multiple active contour framework, to simultaneously extract multiple targets from MR and CT medical imagery in 3D. Second, an open source graphically interactive 3D segmentation tool based on the aforementioned contour evolution is implemented and is publicly available for end users on multiple platforms. In using this software for the segmentation task, the process is initiated by the user drawn strokes (seeds) in the target region in the image. Then, the local robust statistics are used to describe the object features, and such features are learned adaptively from the seeds under a non-parametric estimation scheme. Subsequently, several active contours evolve simultaneously with their interactions being motivated by the principles of action and reaction-this not only guarantees mutual exclusiveness among the contours, but also no longer relies upon the assumption that the multiple objects fill the entire image domain, which was tacitly or explicitly assumed in many previous works. In doing so, the contours interact and converge to equilibrium at the desired positions of the desired multiple objects. Furthermore, with the aim of not only validating the algorithm and the software, but also demonstrating how the tool is to be used, we provide

  1. Intercultural Interactions of Mono-Cultural, Mono-Lingual Local Students in Small Group Learning Activities: A Bourdieusian Analysis

    Science.gov (United States)

    Colvin, Cassandra; Fozdar, Farida; Volet, Simone

    2015-01-01

    This research examines the understandings and experiences of mono-cultural, mono-lingual local students in relation to intercultural interactions within small group learning activities at university. Bourdieu's concepts of field, habitus and capital are employed to illuminate a number of barriers to intercultural interaction. Using qualitative…

  2. Intercultural Interactions of Mono-Cultural, Mono-Lingual Local Students in Small Group Learning Activities: A Bourdieusian Analysis

    Science.gov (United States)

    Colvin, Cassandra; Fozdar, Farida; Volet, Simone

    2015-01-01

    This research examines the understandings and experiences of mono-cultural, mono-lingual local students in relation to intercultural interactions within small group learning activities at university. Bourdieu's concepts of field, habitus and capital are employed to illuminate a number of barriers to intercultural interaction. Using qualitative…

  3. Local and Systemic Signaling of Iron Status and Its Interactions with Homeostasis of Other Essential Elements

    Directory of Open Access Journals (Sweden)

    Sheena R. Gayomba

    2015-09-01

    Full Text Available Iron (Fe is essential for plant growth and development. However, alkaline soils, which occupy approximately 30% of the world’s arable lands, are considered Fe-limiting for plant growth because insoluble Fe (III chelates prevail under these conditions. In contrast, high bioavailability of Fe in acidic soils can be toxic to plants due to the ability of Fe ions to promote oxidative stress. Therefore, plants have evolved sophisticated mechanisms to sense and respond to the fluctuation of Fe availability in the immediate environment and to the needs of developing shoot tissues to preclude deficiency while avoiding toxicity. In this review, we focus on recent advances in our understanding of local and systemic signaling of Fe status with emphasis on the contribution of Fe, its interaction with other metals and metal ligands in triggering molecular responses that regulate Fe uptake and partitioning in the plant body.

  4. Stabilization of species coexistence in spatial models through the aggregation-segregation effect generated by local dispersal and nonspecific local interactions.

    Science.gov (United States)

    Detto, Matteo; Muller-Landau, Helene C

    2016-12-01

    Spatial interactions are widely acknowledged to play a significant role in sustaining diversity in ecological communities. However, theoretical work on this topic has focused on how spatial processes affect coexistence of species that differ in their strategies, with less attention to how spatial processes matter when competitors are equivalent. Furthermore, though it is recognized that models with local dispersal and local competition may sustain higher diversities of equivalent competitors than models in which these are not both localized, there is debate as to whether this reflects merely equalizing effects or whether there is also a stabilizing component. In this study, we explore how dispersal limitation and nonspecific local competition influence the outcome of species coexistence in communities driven by stochastic drift. We demonstrate that space alone acts as a stabilizing factor in a continuous space model with local dispersal and competition, as individuals of rare species on average experience lower total neighborhood densities, causing per capita reproductive rates to decrease systematically with increasing abundance. These effects prolong time to extinction in a closed system and enhance species diversity in an open system with constant immigration. Fundamentally, these stabilizing effects are obtained when dispersal limitation interacts with local competition to generate fluctuations in population growth rates. Thus this effect can be considered a fluctuating mechanism similar to spatial or temporal storage effects, but generated purely endogenously without requiring any exogenous environmental variability or species dissimilarities.

  5. Human platelets express CAR with localization at the sites of intercellular interaction

    Directory of Open Access Journals (Sweden)

    Othman Maha

    2011-09-01

    Full Text Available Abstract Adenovirus has a wide tissue tropism. The virus attaches to the surface of cells via the fiber protein knob binding to the Coxsackie and Adenovirus receptor known as CAR. Virus entry inside cells is facilitated by integrins αVβ3 and αVβ5. Mice platelets are shown to be the predominant Ad binding blood cell type and the virus is documented inside platelets. CAR was identified on human platelets in one study yet contradicted in another. The presence of CAR appears to be the most reasonable initial step for virus entry into platelets and is a key to the understanding of platelet adenovirus interaction. This study aimed to re investigate the presence of CAR on human platelets. Platelets were tested by indirect immune-fluorescence using rabbit H-300 polyclonal anti-CAR antibody and goat anti-rabbit IgG F(ab'2 Texas Red antibodies, alongside with CAR positive and negative controls. Platelets were found to express CAR on their surface and in contrast to the previous study only 3.5 ± 1.9% of the tested platelets did express CAR. In addition, CAR was seen within intracellular aggregates localized at the sites of cell-cell contacts indicating that CAR expression might be upregulated in response to platelet stimulation. We confirm the presence of CAR on human platelets, we provide explanation to some of the discrepancies in this regards and we add that this receptor is localized at the sites of intercellular interaction.

  6. Copper plasmonics and catalysis: role of electron-phonon interactions in dephasing localized surface plasmons.

    Science.gov (United States)

    Sun, Qi-C; Ding, Yuchen; Goodman, Samuel M; Funke, Hans H; Nagpal, Prashant

    2014-11-07

    Copper metal can provide an important alternative for the development of efficient, low-cost and low-loss plasmonic nanoparticles, and selective nanocatalysts. However, poor chemical stability and lack of insight into photophysics and plasmon decay mechanisms has impeded study. Here, we use smooth conformal ALD coating on copper nanoparticles to prevent surface oxidation, and study dephasing time for localized surface plasmons on different sized copper nanoparticles. Using dephasing time as a figure of merit, we elucidate the role of electron-electron, electron-phonon, impurity, surface and grain boundary scattering on the decay of localized surface plasmon waves. Using our quantitative analysis and different temperature dependent measurements, we show that electron-phonon interactions dominate over other scattering mechanisms in dephasing plasmon waves. While interband transitions in copper metal contributes substantially to plasmon losses, tuning surface plasmon modes to infrared frequencies leads to a five-fold enhancement in the quality factor. These findings demonstrate that conformal ALD coatings can improve the chemical stability for copper nanoparticles, even at high temperatures (>300 °C) in ambient atmosphere, and nanoscaled copper is a good alternative material for many potential applications in nanophotonics, plasmonics, catalysis and nanoscale electronics.

  7. Scale-free avalanches in disordered systems of localized charges with long-range Coulomb interaction

    Science.gov (United States)

    Palassini, Matteo; Goethe, Martin

    2012-02-01

    We study theoretically and numerically the charge avalanches created by a perturbation in disordered systems of localized charges with unscreened Coulomb interaction (the so-called electron glass model), in two and three dimensions. Starting from a low-lying local energy minimum, we perturb the system by inserting an extra charge or an extra dipole, and let it relax via one-particle hops until a new minimum is reached. We find that the size distribution of the avalanches created in this process displays generically a power-law tail with an exponent close to the mean-field value 3/2 both in 2D and 3D, without requiring any parameter tuning. We provide a qualitative explanation of these results in terms of the density of states of elementary charge and dipole excitations and the associated Coulomb gap, which shows that the power-law tail arises from arbitrarily long hops, without requiring to assume the existence of a glass phase. Finally, we discuss the experimental relevance of these results and compare our picture to similar scale-free avalanches observed in mean field spin glasses, in which they are are associated to a marginal glass phase.

  8. Local storage federation through XRootD architecture for interactive distributed analysis

    Science.gov (United States)

    Colamaria, F.; Colella, D.; Donvito, G.; Elia, D.; Franco, A.; Luparello, G.; Maggi, G.; Miniello, G.; Vallero, S.; Vino, G.

    2015-12-01

    A cloud-based Virtual Analysis Facility (VAF) for the ALICE experiment at the LHC has been deployed in Bari. Similar facilities are currently running in other Italian sites with the aim to create a federation of interoperating farms able to provide their computing resources for interactive distributed analysis. The use of cloud technology, along with elastic provisioning of computing resources as an alternative to the grid for running data intensive analyses, is the main challenge of these facilities. One of the crucial aspects of the user-driven analysis execution is the data access. A local storage facility has the disadvantage that the stored data can be accessed only locally, i.e. from within the single VAF. To overcome such a limitation a federated infrastructure, which provides full access to all the data belonging to the federation independently from the site where they are stored, has been set up. The federation architecture exploits both cloud computing and XRootD technologies, in order to provide a dynamic, easy-to-use and well performing solution for data handling. It should allow the users to store the files and efficiently retrieve the data, since it implements a dynamic distributed cache among many datacenters in Italy connected to one another through the high-bandwidth national network. Details on the preliminary architecture implementation and performance studies are discussed.

  9. Local interaction simulation approach to modelling nonclassical, nonlinear elastic behavior in solids.

    Science.gov (United States)

    Scalerandi, Marco; Agostini, Valentina; Delsanto, Pier Paolo; Van Den Abeele, Koen; Johnson, Paul A

    2003-06-01

    Recent studies show that a broad category of materials share "nonclassical" nonlinear elastic behavior much different from "classical" (Landau-type) nonlinearity. Manifestations of "nonclassical" nonlinearity include stress-strain hysteresis and discrete memory in quasistatic experiments, and specific dependencies of the harmonic amplitudes with respect to the drive amplitude in dynamic wave experiments, which are remarkably different from those predicted by the classical theory. These materials have in common soft "bond" elements, where the elastic nonlinearity originates, contained in hard matter (e.g., a rock sample). The bond system normally comprises a small fraction of the total material volume, and can be localized (e.g., a crack in a solid) or distributed, as in a rock. In this paper a model is presented in which the soft elements are treated as hysteretic or reversible elastic units connected in a one-dimensional lattice to elastic elements (grains), which make up the hard matrix. Calculations are performed in the framework of the local interaction simulation approach (LISA). Experimental observations are well predicted by the model, which is now ready both for basic investigations about the physical origins of nonlinear elasticity and for applications to material damage diagnostics.

  10. Interacting factors and cellular localization of SR protein-specific kinase Dsk1

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Zhaohua, E-mail: ztang@jsd.claremont.edu [W.M. Keck Science Center, The Claremont Colleges, Claremont, CA 91711 (United States); Luca, Maria; Taggart-Murphy, Laura; Portillio, Jessica; Chang, Cathey; Guven, Ayse [W.M. Keck Science Center, The Claremont Colleges, Claremont, CA 91711 (United States); Lin, Ren-Jang [Department of Molecular and Cellular Biology, Beckman Research Institute of the City of Hope, Duarte, CA 91010 (United States); Murray, Johanne; Carr, Antony [Genome Damage and Stability Center, University of Sussex, Falmer, BN1 9RQ (United Kingdom)

    2012-10-01

    Schizosaccharomyces pombe Dsk1 is an SR protein-specific kinase (SRPK), whose homologs have been identified in every eukaryotic organism examined. Although discovered as a mitotic regulator with protein kinase activity toward SR splicing factors, it remains largely unknown about what and how Dsk1 contributes to cell cycle and pre-mRNA splicing. In this study, we investigated the Dsk1 function by determining interacting factors and cellular localization of the kinase. Consistent with its reported functions, we found that pre-mRNA processing and cell cycle factors are prominent among the proteins co-purified with Dsk1. The identification of these factors led us to find Rsd1 as a novel Dsk1 substrate, as well as the involvement of Dsk1 in cellular distribution of poly(A){sup +} RNA. In agreement with its role in nuclear events, we also found that Dsk1 is mainly localized in the nucleus during G{sub 2} phase and at mitosis. Furthermore, we revealed the oscillation of Dsk1 protein in a cell cycle-dependent manner. This paper marks the first comprehensive analysis of in vivo Dsk1-associated proteins in fission yeast. Our results reflect the conserved role of SRPK family in eukaryotic organisms, and provide information about how Dsk1 functions in pre-mRNA processing and cell-division cycle.

  11. Diacylglycerol kinase-zeta localization in skeletal muscle is regulated by phosphorylation and interaction with syntrophins.

    Science.gov (United States)

    Abramovici, Hanan; Hogan, Angela B; Obagi, Christopher; Topham, Matthew K; Gee, Stephen H

    2003-11-01

    Syntrophins are scaffolding proteins that link signaling molecules to dystrophin and the cytoskeleton. We previously reported that syntrophins interact with diacylglycerol kinase-zeta (DGK-zeta), which phosphorylates diacylglycerol to yield phosphatidic acid. Here, we show syntrophins and DGK-zeta form a complex in skeletal muscle whose translocation from the cytosol to the plasma membrane is regulated by protein kinase C-dependent phosphorylation of the DGK-zeta MARCKS domain. DGK-zeta mutants that do not bind syntrophins were mislocalized, and an activated mutant of this sort induced atypical changes in the actin cytoskeleton, indicating syntrophins are important for localizing DGK-zeta and regulating its activity. Consistent with a role in actin organization, DGK-zeta and syntrophins were colocalized with filamentous (F)-actin and Rac in lamellipodia and ruffles. Moreover, extracellular signal-related kinase-dependent phosphorylation of DGK-zeta regulated its association with the cytoskeleton. In adult muscle, DGK-zeta was colocalized with syntrophins on the sarcolemma and was concentrated at neuromuscular junctions (NMJs), whereas in type IIB fibers it was found exclusively at NMJs. DGK-zeta was reduced at the sarcolemma of dystrophin-deficient mdx mouse myofibers but was specifically retained at NMJs, indicating that dystrophin is important for the sarcolemmal but not synaptic localization of DGK-zeta. Together, our findings suggest syntrophins localize DGK-zeta signaling complexes at specialized domains of muscle cells, which may be critical for the proper control of lipid-signaling pathways regulating actin organization. In dystrophic muscle, mislocalized DGK-zeta may cause abnormal cytoskeletal changes that contribute to disease pathogenesis.

  12. Detection of Interactions between Proteins through Rotation Forest and Local Phase Quantization Descriptors

    Directory of Open Access Journals (Sweden)

    Leon Wong

    2015-12-01

    Full Text Available Protein-Protein Interactions (PPIs play a vital role in most cellular processes. Although many efforts have been devoted to detecting protein interactions by high-throughput experiments, these methods are obviously expensive and tedious. Targeting these inevitable disadvantages, this study develops a novel computational method to predict PPIs using information on protein sequences, which is highly efficient and accurate. The improvement mainly comes from the use of the Rotation Forest (RF classifier and the Local Phase Quantization (LPQ descriptor from the Physicochemical Property Response (PR Matrix of protein amino acids. When performed on three PPI datasets including Saccharomyces cerevisiae, Homo sapiens, and Helicobacter pylori, we obtained good results of average accuracies of 93.8%, 97.96%, and 89.47%, which are much better than in previous studies. Extensive validations have also been explored to evaluate the performance of the Rotation Forest ensemble classifier with the state-of-the-art Support Vector Machine classifier. These promising results indicate that the proposed method might play a complementary role for future proteomics research.

  13. Localized control of light-matter interactions by using nanoscale asymmetric TiO2

    Science.gov (United States)

    Zhou, Shifeng; Matsuoka, Tomoyo; Shimotsuma, Yasuhiko; Sakakura, Masaaki; Nishi, Masayuki; Hong, Zhanglian; Qiu, Jianrong; Hirao, Kazuyuki; Miura, Kiyotaka

    2012-11-01

    This paper reports an asymmetry structure-mediated route for highly localized control of light-matter interactions by using tapered TiO2. We demonstrate for the first time that the growth habit of Ag nanostructures on tapered TiO2 can be tuned by controllable photolysis. Site-selective anchoring of Ag nanoparticles or nanowires on tapered TiO2 can be achieved by simply changing the external light. We further show that the obtained tapered TiO2-Ag hetero-nanostructures present excellent light-trapping ability over a wide range of wavelengths which is considered to originate from the unique synergistic effects of graded waveguiding and plasmonic light trapping. This improved photon-management capability renders the prepared substrate a very promising candidate for optical sensing application. For this purpose, an enhanced sensitivity for trace detection is confirmed. These findings open up promising avenues for tailoring of light-matter interactions which are of special interest for studying controllable photolysis activation processes and diverse applications such as nanostructure growth, trace detection, photocatalysis and solar cells.

  14. The Effect of Exogenous Inputs and Defiant Agents on Opinion Dynamics with Local and Global Interactions

    CERN Document Server

    Fotouhi, Babak

    2012-01-01

    Most of the conventional models for opinion dynamics mainly account for a fully local influence, where myopic agents decide their actions after they interact with other agents that are adjacent to them. For example, in the case of social interactions, this includes family, friends, and other strong social ties. The model proposed in this contribution, embodies a global influence as well where, by global, we mean that each node also observes a sample of the average behavior of the entire population (in the social example, people observe other people on the streets, subway, and other social venues). We consider a case where nodes have dichotomous states (examples include elections with two major parties, whether or not to adopt a new technology or product, and any yes/no opinion such as in voting on a referendum). The dynamics of states on a network with arbitrary degree distribution are studied. For a given initial condition, we find the probability to reach consensus on each state and the expected time reach ...

  15. Evidence of local adaptation in plant virus effects on host-vector interactions.

    Science.gov (United States)

    Mauck, K E; De Moraes, C M; Mescher, M C

    2014-07-01

    host and apparently maladaptive with respect to virus transmission (e.g., host plant quality for aphids was significantly improved in this instance, and aphid dispersal was reduced). Taken together, these findings provide evidence of adaption by CMV to local hosts (including reduced infectivity and replication in novel versus native hosts) and further suggest that such adaptation may extend to effects on host-plant traits mediating interactions with aphid vectors. Thus, these results are consistent with the hypothesis that virus effects on host-vector interactions can be adaptive, and they suggest that multi-host pathogens may exhibit adaptation with respect to these and other effects on host phenotypes, perhaps especially in homogeneous monocultures.

  16. Optical bullets in (2+1)D photonic structures and their interaction with localized defects

    Science.gov (United States)

    Dohnal, Tomas

    2005-11-01

    This dissertation studies light propagation in Kerr-nonlinear two dimensional waveguides with a Bragg resonant, periodic structure in the propagation direction. The model describing evolution of the electric field envelopes is the system of 2D Nonlinear Coupled Mode Equations (2D CME). The periodic structure induces a range of frequencies (frequency gap) in which linear waves do not propagate. It is shown that, similarly to the ID case of a fiber grating, the 2D nonlinear system supports localized solitary wave solutions, referred to as 2D gap solitons, which have frequencies inside the linear gap and can travel at, any speed smaller than or equal to the speed of light in the corresponding homogeneous medium. Such solutions are constructed numerically via Newton's iteration. Convergence is obtained only near the upper edge of the gap. Gap solitons with a nonzero velocity are constructed by numerically following a bifurcation curve parameterized by the velocity v. It is shown that gap solitons are saddle points of the corresponding Hamiltonian functional and that no (constrained) local minima of the Hamiltonian exist. The linear stability problem is formulated and reasons for the failure of the standard Hamiltonian PDE approach for determining linear stability are discussed. In the second part of the dissertation interaction of 2D gap solitons with localized defects is studied and trapping of slow enough 2D gap solitons is demonstrated. This study builds on [JOSA B 19, 1635 (2002)], where such trapping of 1D gap solitons is considered. Analogously to this 1D problem trapping in the 2D model is explained as a resonant energy transfer into one or more defect modes existent for the particular defect. For special localized defects exact linear modes are found explicitly via the separation of variables. Numerical computation of linear defect modes is used for more general defects. Corresponding nonlinear modes are then constructed via Newton's iteration by following a

  17. Bond length and local energy density property connections for non-transition-metal oxide-bonded interactions.

    Science.gov (United States)

    Gibbs, G V; Spackman, M A; Jayatilaka, D; Rosso, K M; Cox, D F

    2006-11-01

    For a variety of molecules and earth materials, the theoretical local kinetic energy density, G(r(c)), increases and the local potential energy density, V(r(c)), decreases as the M-O bond lengths (M = first- and second-row metal atoms bonded to O) decrease and the electron density, rho(r(c)), accumulates at the bond critical points, r(c). Despite the claim that the local kinetic energy density per electronic charge, G(r(c))/rho(r(c)), classifies bonded interactions as shared interactions when less than unity and closed-shell when greater, the ratio was found to increase from 0.5 to 2.5 au as the local electronic energy density, H(r(c)) = G(r(c)) + V(r(c)), decreases and becomes progressively more negative. The ratio appears to be a measure of the character of a given M-O bonded interaction, the greater the ratio, the larger the value of rho(r(c)), the smaller the coordination number of the M atom and the more shared the bonded interaction. H(r(c))/rho(r(c)) versus G(r(c))/rho(r(c)) scatter diagrams categorize the M-O bonded interactions into domains with the local electronic energy density per electron charge, H(r(c))/rho(r(c)), tending to decrease as the electronegativity differences for the bonded pairs of atoms decrease. The values of G(r(c)) and V(r(c)), estimated with a gradient-corrected electron gas theory expression and the local virial theorem, are in good agreement with theoretical values, particularly for the bonded interactions involving second-row M atoms. The agreement is poorer for shared C-O and N-O bonded interactions.

  18. Interactive Exhibits Foster Partnership and Engage Diverse Learners at Their Local Libraries

    Science.gov (United States)

    LaConte, K.; Dusenbery, P.; Fitzhugh, G.; Harold, J. B.; Holland, A.

    2016-12-01

    Learners frequently need to access increasingly complex information to help them understand our changing world. More and more libraries are transforming themselves into places where learners not only access STEM information, but interact with professionals and undertake hands-on learning. Libraries are beginning to position themselves as part of learning ecosystems that contribute to a collective impact on the community. Traveling STEM exhibits are catalyzing these partnerships and engaging students, families, and adults in repeat visits through an accessible venue: their public library. The impact of the STAR Library Education Network's (STAR_Net) Discover Earth: A Century of Change exhibit on partnerships, the circulation of STEM resources, and the engagement of learners was studied by an external evaluation team. The STAR_Net project's summative evaluation utilized mixed methods to investigate project implementation and its outcomes. Methods included pre- and post-exhibit surveys administered to staff from each library that hosted the exhibits; interviews with staff from host libraries; patron surveys; exhibit-related circulation records; web metrics regarding the online STAR_Net community of practice; and site visits. A subset of host libraries recruited professionals, who delivered programming that connected Earth systems science, weather, climate, and conservation themes from the exhibit to local issues. Library patrons improved their knowledge about STEM topics presented in the exhibits and associated programming, and patrons viewing the exhibit reflected the demographics of their communities. In a follow-up survey, patrons reported spending an average of 60 minutes looking at the exhibit over their cumulative visits to the library. In contrast, visitors might visit a museum only once to look at a comparably-sized traveling exhibit due to barriers such as cost and distance. Exhibit host libraries reported an increase in the circulation of Earth science

  19. Using a local-interaction model to determine the resistance to penetration of projectiles into sandy soil

    Science.gov (United States)

    Kotov, V. L.; Balandin, V. V.; Bragov, A. M.; Linnik, E. Yu.; Balandin, V. V.

    2013-07-01

    A local-interaction model describing the penetration of axisymmetric projectiles into sandy soil at a constant velocity is studied experimentally and theoretically. Two approaches to the determination of the parameters of the quadratic local-interaction model are considered. The first approach is based on the use of the solution of the problem of spherical-cavity expansion taking into account the dynamic compressibility and shear resistance of soil. In the second approach, model parameters are determined based on the experimental dependence of the resistance to penetration of conical projectiles into a sandy soil on the impact velocity. Good agreement was obtained between the results of experiments, two-dimensional numerical calculations, and calculations for the local interaction model based on the solution of the spherical-cavity expansion problem and used to determine the maximum resistance to penetration of conical and spherical projectiles.

  20. Surface and interfacial interactions of multilayer graphitic structures with local environment

    Energy Technology Data Exchange (ETDEWEB)

    Mazzocco, R. [Department of Physics, Lancaster University, Lancaster LA1 4YB (United Kingdom); Robinson, B.J., E-mail: b.j.robinson@lancaster.ac.uk [Department of Physics, Lancaster University, Lancaster LA1 4YB (United Kingdom); Rabot, C. [CEA-LETI-Minatec Campus, 17 rue des Martyrs, 38054 Grenoble Cedex 09 (France); Delamoreanu, A. [Microelectronics Technology Laboratory (LTM), Joseph Fourier University, French National Research Center (CNRS), 17 Avenue des Martyrs, 38054 Grenoble Cedex 9 (France); Zenasni, A. [CEA-LETI-Minatec Campus, 17 rue des Martyrs, 38054 Grenoble Cedex 09 (France); Dickinson, J.W.; Boxall, C. [Department of Engineering, Lancaster University, Lancaster LA1 4YR (United Kingdom); Kolosov, O.V. [Department of Physics, Lancaster University, Lancaster LA1 4YB (United Kingdom)

    2015-06-30

    In order to exploit the potential of graphene in next-generation devices, such as supercapacitors, rechargeable batteries, displays and ultrathin sensors, it is crucial to understand the solvent interactions with the graphene surface and interlayers, especially where the latter may be in competition with the former, in the medium of application deployment. In this report, we combine quartz crystal microbalance (QCM) and ultrasonic force microscopy methods to investigate the changes in the film–substrate and film–environment interfaces of graphene and graphene oxide films, produced by diverse scalable routes, in both polar (deionised water) and non-polar (dodecane) liquid and vapour environments. In polar liquid environments, we observe nanobubble adsorption/desorption on the graphene film corresponding to a surface coverage of up to 20%. As no comparable behaviour is observed for non-polar environment, we conclude that nanobubble formation is directly due to the hydrophobic nature of graphene with direct consequences for electrode structures immersed in electrolyte solutions. The amount of water adsorbed by the graphene films was found to vary considerably from 0.012 monolayers of water per monolayer of reduced graphene oxide to 0.231 monolayers of water per monolayer of carbon diffusion growth graphene. This is supported by direct nanomechanical mapping of the films immersed in water where an increased variation of local stiffness suggests water propagation within the film and/or between the film and substrate. Transferred film thickness calculations performed for QCM, atomic force microscopy topography and optical transmission measurements, returns results an order of magnitude larger (46 ± 1 layers) than Raman spectroscopy (1 - 2 graphene layers) on pristine pre-transferred films due to contamination during transfer and possible turbostratic structures of large areas. - Highlights: • Exploring interaction of graphene films with polar and nonpolar liquids

  1. New procedure to synthesize silver nanoparticles and their interaction with local anesthetics

    Directory of Open Access Journals (Sweden)

    Mocanu A

    2013-10-01

    Full Text Available Aurora Mocanu,1 Roxana Diana Pasca,1 Gheorghe Tomoaia,2 Corina Garbo,1 Petre T Frangopol,1 Ossi Horovitz,1 Maria Tomoaia-Cotisel11Chemical Engineering Department, Babes-Bolyai University, 2Orthopedic Department, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, RomaniaAbstract: Silver nanoparticles (AgNPs were prepared in aqueous colloid dispersions by the reduction of Ag+ with glucose in alkaline medium. Tetraethyl orthosilicate and l-asparagine were added as stabilizers of NPs. The AgNPs were characterized, and their interaction with three local anesthetics (procaine, dibucaine, or tetracaine was investigated. Optical spectra show the characteristic absorption band of AgNPs, due to surface plasmon resonance. Modifications in the position and shape of this band reflect the self-assembly of metal NPs mediated by anesthetic molecules and the progress in time of the aggregation process. Zeta-potential measuring was applied in order to characterize the electrostatic stability of the NPs. The size and shape of the AgNPs, as well as the features of the assemblies formed by their association in the presence of anesthetics, were evidenced by transmission electron microscopy images. Atomic force microscopy images showed the characteristics of the films of AgNPs deposited on glass support. The effect of the anesthetics could be described in terms of electrostatic forces between the negatively charged AgNPs and the anesthetic molecules, existing also in their cationic form at the working pH. But also hydrophobic and hydrogen bonding interactions between the coated nanoparticles and anesthetics molecular species should be considered.Keywords: self-assembled nanostructures, UV-vis spectra, TEM, AFM, zeta potential

  2. Ab Initio No-Core Shell Model Calculations Using Realistic Two- and Three-Body Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Navratil, P; Ormand, W E; Forssen, C; Caurier, E

    2004-11-30

    There has been significant progress in the ab initio approaches to the structure of light nuclei. One such method is the ab initio no-core shell model (NCSM). Starting from realistic two- and three-nucleon interactions this method can predict low-lying levels in p-shell nuclei. In this contribution, we present a brief overview of the NCSM with examples of recent applications. We highlight our study of the parity inversion in {sup 11}Be, for which calculations were performed in basis spaces up to 9{Dirac_h}{Omega} (dimensions reaching 7 x 10{sup 8}). We also present our latest results for the p-shell nuclei using the Tucson-Melbourne TM three-nucleon interaction with several proposed parameter sets.

  3. A Fast, Locally Adaptive, Interactive Retrieval Algorithm for the Analysis of DIAL Measurements

    Science.gov (United States)

    Samarov, D. V.; Rogers, R.; Hair, J. W.; Douglass, K. O.; Plusquellic, D.

    2010-12-01

    Differential absorption light detection and ranging (DIAL) is a laser-based tool which is used for remote, range-resolved measurement of particular gases in the atmosphere, such as carbon-dioxide and methane. In many instances it is of interest to study how these gases are distributed over a region such as a landfill, factory, or farm. While a single DIAL measurement only tells us about the distribution of a gas along a single path, a sequence of consecutive measurements provides us with information on how that gas is distributed over a region, making DIAL a natural choice for such studies. DIAL measurements present a number of interesting challenges; first, in order to convert the raw data to concentration it is necessary to estimate the derivative along the path of the measurement. Second, as the distribution of gases across a region can be highly heterogeneous it is important that the spatial nature of the measurements be taken into account. Finally, since it is common for the set of collected measurements to be quite large it is important for the method to be computationally efficient. Existing work based on Local Polynomial Regression (LPR) has been developed which addresses the first two issues, but the issue of computational speed remains an open problem. In addition to the latter, another desirable property is to allow user input into the algorithm. In this talk we present a novel method based on LPR which utilizes a variant of the RODEO algorithm to provide a fast, locally adaptive and interactive approach to the analysis of DIAL measurements. This methodology is motivated by and applied to several simulated examples and a study out of NASA Langley Research Center (LaRC) looking at the estimation of aerosol extinction in the atmosphere. A comparison study of our method against several other algorithms is also presented. References Chaudhuri, P., Marron, J.S., Scale-space view of curve estimation, Annals of Statistics 28 (2000) 408-428. Duong, T., Cowling

  4. Retinoic acid as target for local pharmacokinetic interaction with modafinil in neural cells.

    Science.gov (United States)

    Hellmann-Regen, Julian; Gertz, Karen; Uhlemann, Ria; Colla, Michael; Endres, Matthias; Kronenberg, Golo

    2012-12-01

    While the biological importance of the cytochrome P450 system in the liver is well established, much less is known about its role in the brain and drug interactions at the level of brain cells have hardly been investigated. Here, we show that modafinil, a well-known inducer of hepatic CYP enzymes, also increases CYP3A4 expression in human-derived neuron-like SH-SY5Y cells. Upregulation of CYP3A4 by modafinil was associated with increased retinoic acid (RA) degradation, which could be blocked by specific CYP3A4 inhibitor erythromycin. In turn, reduced RA levels in culture medium during modafinil treatment resulted in decreased neuronal differentiation of SH-SY5Y cells as assessed by intracellular neurotransmitter concentrations and proliferative activity. Again, this differentiation-impeding effect of modafinil on SH-SY5Y cells was antagonized by erythromycin. Similarly, modafinil treatment of the murine GL261 glioma cell line resulted in increased proliferative activity. This was associated with upregulation of RA-degrading CYP26A1 in GL261 cells. Taken together, our results indicate that psychopharmacological agents such as modafinil may directly act on CYP enzymes in neural tissue. These kinds of drug effects may become highly relevant especially in the context of biomolecules such as RA whose local metabolism in brain is under tight spatial and temporal control.

  5. Intermolecular Interaction Potentials of CH4-Ne Complex Calculated with Local Density Approximation Methods

    Institute of Scientific and Technical Information of China (English)

    BAI Yu-Lin; CHENG Xiao-Hong; CHEN Xiang-Rong; YANG Xiang-Dong; ZHU Jun

    2004-01-01

    @@ The intermolecular interactions potentials for two configurations of CH4-Ne complex are calculated with local density approximation methods in the frame of density functional theory. It is found that the calculated potentials have two minima when the distance between the carbon atom of CH4 and the Ne atom takes R = 5.80 a.u.and 6.20a. u. for both the two configurations. For the edge configuration, the corresponding depth of the potential is 0.0669536 eV and 0.0671416 eV. For the face configuration, the corresponding depth of the potential is 0.0737956 eV and 0.0645506 eV. The global minimum occurs at R = 5.80 a.u. for the face configuration with a depth of the potential 0.0737956 eV. The depths of our calculation are in better agreement with the experimental data than the quantum chemical calculation approach, while the position of minimum potential for our calculation is underestimated.

  6. Energy decomposition analysis of intermolecular interactions using a block-localized wave function approach

    Science.gov (United States)

    Mo, Yirong; Gao, Jiali; Peyerimhoff, Sigrid D.

    2000-04-01

    An energy decomposition scheme based on the block-localized wave function (BLW) method is proposed. The key of this scheme is the definition and the full optimization of the diabatic state wave function, where the charge transfer among interacting molecules is deactivated. The present energy decomposition (ED), BLW-ED, method is similar to the Morokuma decomposition scheme in definition of the energy terms, but differs in implementation and the computational algorithm. In addition, in the BLW-ED approach, the basis set superposition error is fully taken into account. The application of this scheme to the water dimer and the lithium cation-water clusters reveals that there is minimal charge transfer effect in hydrogen-bonded complexes. At the HF/aug-cc-PVTZ level, the electrostatic, polarization, and charge-transfer effects contribute 65%, 24%, and 11%, respectively, to the total bonding energy (-3.84 kcal/mol) in the water dimer. On the other hand, charge transfer effects are shown to be significant in Lewis acid-base complexes such as H3NSO3 and H3NBH3. In this work, the effect of basis sets used on the energy decomposition analysis is addressed and the results manifest that the present energy decomposition scheme is stable with a modest size of basis functions.

  7. Unravelling the local structure of topological crystalline insulators using hyperfine interactions

    CERN Multimedia

    Phenomena emerging from relativistic electrons in solids have become one the main topical subjects in condensed matter physics. Among a wealth of intriguing new phenomena, several classes of materials have emerged including graphene, topological insulators and Dirac semi-metals. This project is devoted to one such class of materials, in which a subtle distortion of the crystalline lattice drives a material through different topological phases: Z$_{2}$ topological insulator (Z$_{2}$-TI), topological crystalline insulator (TCI), or ferroelectric Rashba semiconductor (FERS). We propose to investigate the local structure of Pb$_{1-x}$Sn$_{x}$Te and Ge$_{1-x}$Sn$_{x}$Te (with $\\textit{x}$ from 0 to 1) using a combination of experimental techniques based on hyperfine interactions: emission Mössbauer spectroscopy (eMS) and perturbed angular correlation spectroscopy (PAC). In particular, we propose to study the effect of composition ($\\textit{x}$ in Pb$_{1-x}$Sn$_{x}$Te and Ge$_{1-x}$Sn$_{x}$Te) on: \\\\ \\\\(1) the mag...

  8. Microstructure, local dynamics, and flow behavior of colloidal suspensions with weak attractive interactions

    Science.gov (United States)

    Weis, Clara; Oelschlaeger, Claude; Dijkstra, Dick; Ranft, Meik; Willenbacher, Norbert

    2016-09-01

    We present a comprehensive micro- and macrorheological study of the effect of weak depletion attraction (Ψdep ≈ 1-10 kBT) on dense colloidal suspensions stabilized by short-range repulsive interactions. We used aqueous polymer dispersions as model system and demonstrated the unique capabilities of multiple particle tracking (MPT) to disclose structural changes in such technically important systems exhibiting many characteristic features of hard sphere systems. Below the hard sphere freezing point ϕc, viscosity increases monotonically with increasing Ψdep due to the transition from a fluid to a fluid/crystalline and finally to a gel state. Above ϕc, increasing attraction strength first results in a viscosity reduction corresponding to the formation of large, permeable crystals and then in a viscosity increase when a network of dense, small crystals forms. The fraction of the fluid and crystal phase, particle concentration in each phase as well as the modulus of the micro-crystals are obtained, the latter decreases with Ψdep. Above the colloidal glass transition strong heterogeneities and different local particle mobility in the repulsive and attractive arrested states are found. Particles are trapped in the cage of neighboring particles rather than in an attractive potential well. The intermediate ergodic state exhibits uniform tracer diffusivity.

  9. Propagation of the state change induced by external forces in local interactions

    Science.gov (United States)

    Lu, Jianjun; Tokinaga, Shozo

    2016-10-01

    This paper analyses the propagation of the state changes of agents that are induced by external forces applied to a plane. In addition, we propose two models for the behavior of the agents placed on a lattice plane, both of which are affected by local interactions. We first assume that agents are allowed to move to another site to maximise their satisfaction. Second, we utilise a model in which the agents choose activities on each site. The results show that the migration (activity) patterns of agents in both models achieve stability without any external forces. However, when we apply an impulsive external force to the state of the agents, we then observe the propagation of the changes in the agents' states. Using simulation studies, we show the conditions for the propagation of the state changes of the agents. We also show the propagation of the state changes of the agents allocated in scale-free networks and discuss the estimation of the agents' decisions in real state changes. Finally, we discuss the estimation of the agents' decisions in real state temporal changes using economic and social data from Japan and the United States.

  10. RKKY interaction and local density of states for a triangular triple quantum dot system

    Science.gov (United States)

    Xiong, Yong-Chen; Wang, Wei-Zhong; Luo, Shi-Jun; Yang, Jun-Tao; Huang, Hai-Ming

    2016-02-01

    By means of the numerical renormalization group technique, we study the local density of states (LDOS) for a triangular triple quantum dot system, with two dots connected in parallel to the conduction leads. We find the location of the Ruderman-Kittel-Kasuya-Yosida (RKKY) peak identified in the LDOS could be illustrated as JRKKY = aΓ2 / U +bt22 / U, with U being the on-site Coulomb repulsion, Γ the dot-lead coupling, and t2 the hopping between the connected dots and the side dot. When the hopping between two connected dots t1 turns on, the spectrum weight of the RKKY peaks decreases due to the competition between the direct and the RKKY interactions. As t1 increases beyond a critical point t1c, two connected dots form a spin singlet, and decouple from both the side dot and the conduction leads, thus the Kondo and RKKY peaks could not be found. For t1 1 ≥t1 c, it drops to zero.

  11. The impact of interactions, bars, bulges, and AGN on star formation efficiency in local massive galaxies

    CERN Document Server

    Saintonge, A; Fabello, S; Wang, J; Catinella, B; Genzel, R; Gracia-Carpio, J; Kramer, C; Moran, S; Heckman, T M; Schiminovich, D; Schuster, K; Wuyts, S

    2012-01-01

    Using observations from the GASS and COLD GASS surveys and complementary data from SDSS and GALEX, we investigate the nature of variations in gas depletion time observed across the local massive galaxy population. The large and unbiased COLD GASS sample allows us to assess the relative importance of galaxy interactions, bar instabilities, morphologies and the presence of AGN in regulating star formation efficiency. Both the H2 mass fraction and depletion time vary as a function of the distance of a galaxy from the main sequence in the SFR-M* plane. The longest gas depletion times are found in below-main sequence bulge-dominated galaxies that are either gas-poor, or else on average less efficient than disk-dominated galaxy at converting into stars any cold gas they may have. We find no link between AGN and these long depletion times. The galaxies undergoing mergers or showing signs of morphological disruptions have the shortest molecular gas depletion times, while those hosting strong stellar bars have only ma...

  12. Subcellular Localization and In Vivo Interactions of the Arabidopsis thaliana Ethylene Receptor Family Members

    Institute of Scientific and Technical Information of China (English)

    Christopher Grefen; Katrin St(a)dele; Kamil R(u)(z)i(c)ka; Petr Obrdlik; Klaus Harter; Jakub Horák

    2008-01-01

    The gaseous phytohormone ethylene regulates many developmental processes and responses to environmental conditions in higher plants.In Arabidopsis thaliana,ethylene perception and initiation of signaling are mediated by a family of five receptors which are related to prokaryotic two-component sensor histidine kinases.The transient expression of fluorescence-tagged receptors in tobacco (Nicotiana benthamiana) epidermal leaf cells demonstrated that all ethylene receptors are targeted to the ER endomembrane network and do not localize to the plasmalemma.In support of in planta overlay studies,the ethylene receptors form homomeric and heteromeric protein complexes at the ER in living plant cells,as shown by membrane recruitment assays.A comparable in vivo interaction pattern was found in the yeast mating-based split-ubiquitin system.The overlapping but distinct expression pattern of the ethylene receptor genes suggests a differential composition of the ethylene receptor complexes in different plant tissues.Our findings may have crucial functional implications on the ethylene receptor-mediated efficiency of hormone perception,induction of signaling,signal attenuation and output.

  13. Palmitoylation controls DLK localization, interactions and activity to ensure effective axonal injury signaling

    Science.gov (United States)

    Holland, Sabrina M.; Collura, Kaitlin M.; Ketschek, Andrea; Noma, Kentaro; Ferguson, Toby A.; Jin, Yishi; Gallo, Gianluca; Thomas, Gareth M.

    2016-01-01

    Dual leucine-zipper kinase (DLK) is critical for axon-to-soma retrograde signaling following nerve injury. However, it is unknown how DLK, a predicted soluble kinase, conveys long-distance signals and why homologous kinases cannot compensate for loss of DLK. Here, we report that DLK, but not homologous kinases, is palmitoylated at a conserved site adjacent to its kinase domain. Using short-hairpin RNA knockdown/rescue, we find that palmitoylation is critical for DLK-dependent retrograde signaling in sensory axons. This functional importance is because of three novel cellular and molecular roles of palmitoylation, which targets DLK to trafficking vesicles, is required to assemble DLK signaling complexes and, unexpectedly, is essential for DLK’s kinase activity. By simultaneously controlling DLK localization, interactions, and activity, palmitoylation ensures that only vesicle-bound DLK is active in neurons. These findings explain how DLK specifically mediates nerve injury responses and reveal a novel cellular mechanism that ensures the specificity of neuronal kinase signaling. PMID:26719418

  14. AltMV TGB1 Nucleolar Localization Requires Homologous Interaction and Correlates with Cell Wall Localization Associated with Cell-to-Cell Movement.

    Science.gov (United States)

    Nam, Jiryun; Nam, Moon; Bae, Hanhong; Lee, Cheolho; Lee, Bong-Chun; Hammond, John; Lim, Hyoun-Sub

    2013-12-01

    The Potexvirus Alternanthera mosaic virus (AltMV) has multifunctional triple gene block (TGB) proteins, among which our studies have focused on the properties of the TGB1 protein. The TGB1 of AltMV has functions including RNA binding, RNA silencing suppression, and cell-to-cell movement, and is known to form homologous interactions. The helicase domains of AltMV TGB1 were separately mutated to identify which regions are involved in homologous TGB1 interactions. The yeast two hybrid system and Bimolecular Fluorescence Complementation (BiFC) in planta were utilized to examine homologous interactions of the mutants. Helicase motif I of AltMV TGB1 was found to be critical to maintain homologous interactions. Mutations in the remaining helicase motifs did not inhibit TGB1 homologous interactions. In the absence of homologous interaction of TGB1, subcellular localization of helicase domain I mutants showed distinctively different patterns from that of WT TGB1. These results provide important information to study viral movement and replication of AltMV.

  15. Shanghai Pudong: urban development in an era of global-local interaction

    NARCIS (Netherlands)

    Chen, Y.

    2007-01-01

    The emerging of large-scale urban (re)development projects presents a complex situation for local urban managers to deal with. They involve various local-global actors, public-private sectors and flow of finance and know-how from far beyond local city boundaries. Developing projects as such can be p

  16. Baryons with open beauty dynamically generated from meson-baryon interaction in the extended local hidden gauge approach

    Science.gov (United States)

    Liang, Wei-Hong; Xiao, C. W.; Oset, E.

    2016-05-01

    In this talk we review the results about the interaction of B ¯N , B ¯Δ, B ¯*N and B ¯*Δ states with beauty B = 1, together with their coupled channels, using the extended local hidden gauge approach. The Λb(5912) and Λb(5920) observed in the experiment are dynamically generated from the meson-baryon interaction, and they couple mostly to B ¯*N , which are degenerate with the Weinberg-Tomozawa interaction. In addition, three more states with I = 0 and eight more states with I = 1 are predicted.

  17. On local smooth solutions for the Vlasov equation with the potential of interactions ±r−2

    OpenAIRE

    Peter Zhidkov

    2004-01-01

    For the initial value problem for the Vlasov equation with the potential of interactions ±r−2, we prove the existence and uniqueness of a local solution with values in the Schwartz space S of infinitely differentiable functions rapidly decaying at infinity.

  18. Mutant analysis, protein-protein interactions and subcellular localization of the Arabidopsis B sister (ABS) protein.

    Science.gov (United States)

    Kaufmann, Kerstin; Anfang, Nicole; Saedler, Heinz; Theissen, Günter

    2005-09-01

    Recently, close relatives of class B floral homeotic genes, termed B(sister) genes, have been identified in both angiosperms and gymnosperms. In contrast to the B genes themselves, B(sister) genes are exclusively expressed in female reproductive organs, especially in the envelopes or integuments surrounding the ovules. This suggests an important ancient function in ovule or seed development for B(sister) genes, which has been conserved for about 300 million years. However, investigation of the first loss-of-function mutant for a B(sister) gene (ABS/TT16 from Arabidopsis) revealed only a weak phenotype affecting endothelium formation. Here, we present an analysis of two additional mutant alleles, which corroborates this weak phenotype. Transgenic plants that ectopically express ABS show changes in the growth and identity of floral organs, suggesting that ABS can interact with floral homeotic proteins. Yeast-two-hybrid and three-hybrid analyses indicated that ABS can form dimers with SEPALLATA (SEP) floral homeotic proteins and multimeric complexes that also include the AGAMOUS-like proteins SEEDSTICK (STK) or SHATTERPROOF1/2 (SHP1, SHP2). These data suggest that the formation of multimeric transcription factor complexes might be a general phenomenon among MIKC-type MADS-domain proteins in angiosperms. Heterodimerization of ABS with SEP3 was confirmed by gel retardation assays. Fusion proteins tagged with CFP (Cyan Fluorescent Protein) and YFP (Yellow Fluorescent Protein) in Arabidopsis protoplasts showed that ABS is localized in the nucleus. Phylogenetic analysis revealed the presence of a structurally deviant, but closely related, paralogue of ABS in the Arabidopsis genome. Thus the evolutionary developmental genetics of B(sister) genes can probably only be understood as part of a complex and redundant gene network that may govern ovule formation in a conserved manner, which has yet to be fully explored.

  19. Local network topology in human protein interaction data predicts functional association.

    Directory of Open Access Journals (Sweden)

    Hua Li

    Full Text Available The use of high-throughput techniques to generate large volumes of protein-protein interaction (PPI data has increased the need for methods that systematically and automatically suggest functional relationships among proteins. In a yeast PPI network, previous work has shown that the local connection topology, particularly for two proteins sharing an unusually large number of neighbors, can predict functional association. In this study we improved the prediction scheme by developing a new algorithm and applied it on a human PPI network to make a genome-wide functional inference. We used the new algorithm to measure and reduce the influence of hub proteins on detecting function-associated protein pairs. We used the annotations of the Gene Ontology (GO and the Kyoto Encyclopedia of Genes and Genomes (KEGG as benchmarks to compare and evaluate the function relevance. The application of our algorithms to human PPI data yielded 4,233 significant functional associations among 1,754 proteins. Further functional comparisons between them allowed us to assign 466 KEGG pathway annotations to 274 proteins and 123 GO annotations to 114 proteins with estimated false discovery rates of <21% for KEGG and <30% for GO. We clustered 1,729 proteins by their functional associations and made functional inferences from detailed analysis on one subcluster highly enriched in the TGF-beta signaling pathway (P<10(-50. Analysis of another four subclusters also suggested potential new players in six signaling pathways worthy of further experimental investigations. Our study gives clear insight into the common neighbor-based prediction scheme and provides a reliable method for large-scale functional annotation in this post-genomic era.

  20. NN Interaction JISP16: Current Status and Prospect

    Directory of Open Access Journals (Sweden)

    Mazur E.A.

    2010-04-01

    Full Text Available We discuss realistic nonlocal NN interactions of a new type — J -matrix Inverse Scattering Potential (JISP. In an ab exitu approach, these interactions are fitted to not only two-nucleon data (NN scattering data and deuteron properties but also to the properties of light nuclei without referring to three-nucleon forces. We discuss recent progress with the ab initio No-core Shell Model (NCSM approach and respective progress in developing ab exitu JISP-type NN -interactions together with plans of their forthcoming improvements.

  1. Similarity-transformed perturbation theory on top of truncated local coupled cluster solutions: Theory and applications to intermolecular interactions

    Energy Technology Data Exchange (ETDEWEB)

    Azar, Richard Julian, E-mail: julianazar2323@berkeley.edu; Head-Gordon, Martin, E-mail: mhg@cchem.berkeley.edu [Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California and Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)

    2015-05-28

    Your correspondents develop and apply fully nonorthogonal, local-reference perturbation theories describing non-covalent interactions. Our formulations are based on a Löwdin partitioning of the similarity-transformed Hamiltonian into a zeroth-order intramonomer piece (taking local CCSD solutions as its zeroth-order eigenfunction) plus a first-order piece coupling the fragments. If considerations are limited to a single molecule, the proposed intermolecular similarity-transformed perturbation theory represents a frozen-orbital variant of the “(2)”-type theories shown to be competitive with CCSD(T) and of similar cost if all terms are retained. Different restrictions on the zeroth- and first-order amplitudes are explored in the context of large-computation tractability and elucidation of non-local effects in the space of singles and doubles. To accurately approximate CCSD intermolecular interaction energies, a quadratically growing number of variables must be included at zeroth-order.

  2. Stability and phase transition of localized modes in Bose–Einstein condensates with both two- and three-body interactions

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Xiao-Dong; Ai, Qing; Zhang, Mei; Xiong, Jun, E-mail: junxiong@bnu.edu.cn; Yang, Guo-Jian; Deng, Fu-Guo

    2015-09-15

    We investigate the stability and phase transition of localized modes in Bose–Einstein Condensates (BECs) in an optical lattice with the discrete nonlinear Schrödinger model by considering both two- and three-body interactions. We find that there are three types of localized modes, bright discrete breather (DB), discrete kink (DK), and multi-breather (MUB). Moreover, both two- and three-body on-site repulsive interactions can stabilize DB, while on-site attractive three-body interactions destabilize it. There is a critical value for the three-body interaction with which both DK and MUB become the most stable ones. We give analytically the energy thresholds for the destabilization of localized states and find that they are unstable (stable) when the total energy of the system is higher (lower) than the thresholds. The stability and dynamics characters of DB and MUB are general for extended lattice systems. Our result is useful for the blocking, filtering, and transfer of the norm in nonlinear lattices for BECs with both two- and three-body interactions.

  3. Wind-Enhanced Interaction of Radiation and Dust (WEIRD) and the Growth and Maintenance of Local Dust Storms on Mars

    CERN Document Server

    Rafkin, Scot C Randell

    2011-01-01

    A radiative-dynamic positive feedback mechanism (Wind Enhanced Interaction of Radiation and Dust: WEIRD) for localized Mars dust disturbances was previously found to operate in highly idealized numerical experiments. Numerical simulations are used to test for the presence and quantitative effect of the radiative-dynamic WEIRD feedback mechanism under more realistic conditions. Comparisons between cases where lifted dust is radiatively active and radiatively passive elucidate the importance of the dust radiative forcing on the thermodynamic and kinematic structure of the atmosphere. The WEIRD feedback mechanism does operate under realistic conditions, although it can be masked and diminished by a variety of other forcing mechanisms. Globally increased dust loading is found to accelerate the local winds while simultaneously diminishing the impact of local physiographical forcing. Local enhancements of dust produce a thermal and dynamical response that resembles many of the essential features seen in the idealiz...

  4. Quasi locality of the GGE in interacting-to-free quenches in relativistic field theories

    Science.gov (United States)

    Bastianello, Alvise; Sotiriadis, Spyros

    2017-02-01

    We study the quench dynamics in continuous relativistic quantum field theory, more specifically the locality properties of the large time stationary state. After a quantum quench in a one-dimensional integrable model, the expectation values of local observables are expected to relax to a generalized Gibbs ensemble (GGE), constructed out of the conserved charges of the model. Quenching to a free bosonic theory, it has been shown that the system indeed relaxes to a GGE described by the momentum mode occupation numbers. We first address the question whether the latter can be written directly in terms of local charges and we find that, in contrast to the lattice case, this is not possible in continuous field theories. We then investigate the less stringent requirement of the existence of a sequence of truncated local GGEs that converges to the correct steady state, in the sense of the expectation values of the local observables. While we show that such a sequence indeed exists, in order to unequivocally determine the so-defined GGE, we find that information about the expectation value of the recently discovered quasi-local charges is in the end necessary, the latter being the suitable generalization of the local charges while passing from the lattice to the continuum. Lastly, we study the locality properties of the GGE and show that the latter is completely determined by the knowledge of the expectation value of a countable set of suitably defined quasi-local charges.

  5. Human Sirtuin 2 Localization, Transient Interactions, and Impact on the Proteome Point to Its Role in Intracellular Trafficking.

    Science.gov (United States)

    Budayeva, Hanna G; Cristea, Ileana M

    2016-10-01

    Human sirtuin 2 (SIRT2) is an NAD(+)-dependent deacetylase that primarily functions in the cytoplasm, where it can regulate α-tubulin acetylation levels. SIRT2 is linked to cancer progression, neurodegeneration, and infection with bacteria or viruses. However, the current knowledge about its interactions and the means through which it exerts its functions has remained limited. Here, we aimed to gain a better understanding of its cellular functions by characterizing SIRT2 subcellular localization, the identity and relative stability of its protein interactions, and its impact on the proteome of primary human fibroblasts. To assess the relative stability of SIRT2 interactions, we used immunoaffinity purification in conjunction with both label-free and metabolic labeling quantitative mass spectrometry. In addition to the expected associations with cytoskeleton proteins, including its known substrate TUBA1A, our results reveal that SIRT2 specifically interacts with proteins functioning in membrane trafficking, secretory processes, and transcriptional regulation. By quantifying their relative stability, we found most interactions to be transient, indicating a dynamic SIRT2 environment. We discover that SIRT2 localizes to the ER-Golgi intermediate compartment (ERGIC), and that this recruitment requires an intact ER-Golgi trafficking pathway. Further expanding these findings, we used microscopy and interaction assays to establish the interaction and coregulation of SIRT2 with liprin-β1 scaffolding protein (PPFiBP1), a protein with roles in focal adhesions disassembly. As SIRT2 functions may be accomplished via interactions, enzymatic activity, and transcriptional regulation, we next assessed the impact of SIRT2 levels on the cellular proteome. SIRT2 knockdown led to changes in the levels of proteins functioning in membrane trafficking, including some of its interaction partners. Altogether, our study expands the knowledge of SIRT2 cytoplasmic functions to define a

  6. Modeling Complex Dynamic Interactions of Nonlinear, Aeroelastic, Multistage, and Localization Phenomena in Turbine Engines

    Science.gov (United States)

    2011-02-25

    Characteristics of Mistuned Blade Assemblies: Mode Localization and Loss of Eigenstructure,” AIAA Jounal , Vol. 30, No. 10, 1992, pp. 2483– 2496. [21] Pierre...C., Smith, T. E., and Murthy, D., “Localization of Aeroelastic Modes in Mistuned High-Energy Turbines,” Jounal of Propulsion and Power , Vol. 10, No

  7. An experimental test of the local fluctuation theorem in chains of weakly interacting Anosov systems

    CERN Document Server

    Gallavotti, G; Gallavotti, Giovanni; Perroni, Fabio

    1999-01-01

    An experimental test of a large fluctuation theorem is performed on a chain of coupled ``cat maps''. Our interest is focused on the behavior of a subsystem of this chain. A local entropy creation rate is defined and we show that the local fluctuation theorem derived in [G1] is experimentally observable already for small subsystems.

  8. Hybrid local FEM/global LISA modeling of guided wave propagation and interaction with damage in composite structures

    Science.gov (United States)

    Shen, Yanfeng; Cesnik, Carlos E. S.

    2015-03-01

    This paper presents a hybrid modeling technique for the efficient simulation of guided wave propagation and interaction with damage in composite structures. This hybrid approach uses a local finite element model (FEM) to compute the excitability of guided waves generated by piezoelectric transducers, while the global domain wave propagation, wave-damage interaction, and boundary reflections are modeled with the local interaction simulation approach (LISA). A small-size multi-physics FEM with non-reflective boundaries (NRB) was built to obtain the excitability information of guided waves generated by the transmitter. Frequency-domain harmonic analysis was carried out to obtain the solution for all the frequencies of interest. Fourier and inverse Fourier transform and frequency domain convolution techniques are used to obtain the time domain 3-D displacement field underneath the transmitter under an arbitrary excitation. This 3-D displacement field is then fed into the highly efficient time domain LISA simulation module to compute guided wave propagation, interaction with damage, and reflections at structural boundaries. The damping effect of composite materials was considered in the modified LISA formulation. The grids for complex structures were generated using commercial FEM preprocessors and converted to LISA connectivity format. Parallelization of the global LISA solution was achieved through Compute Unified Design Architecture (CUDA) running on Graphical Processing Unit (GPU). The multi-physics local FEM can reliably capture the detailed dimensions and local dynamics of the piezoelectric transducers. The global domain LISA can accurately solve the 3-D elastodynamic wave equations in a highly efficient manner. By combining the local FEM with global LISA, the efficient and accurate simulation of guided wave structural health monitoring procedure is achieved. Two numerical case studies are presented: (1) wave propagation in a unidirectional CFRP composite plate

  9. Modulational instability and nano-scale energy localization in ferromagnetic spin chain with higher order dispersive interactions

    Energy Technology Data Exchange (ETDEWEB)

    Kavitha, L., E-mail: louiskavitha@yahoo.co.in [Department of Physics, School of Basic and Applied Sciences, Central University of Tamil Nadu (CUTN), Thiruvarur 610 101, Tamil Nadu (India); Max-Planck Institute for the Physics of Complex Systems, Dresden (Germany); The Abdus Salam International Centre for Theoretical Physics, Trieste (Italy); Mohamadou, A. [Max-Planck Institute for the Physics of Complex Systems, Dresden (Germany); Department of Physics, Faculty of Science, University of Douala, Douala (Cameroon); Parasuraman, E. [Department of Physics, Periyar University, Salem 636 011, Tamil Nadu (India); Center for Nanoscience and Nanotechnology, Periyar University, Salem 636 011, Tamil Nadu (India); Gopi, D. [Center for Nanoscience and Nanotechnology, Periyar University, Salem 636 011, Tamil Nadu (India); Department of Chemistry, Periyar University, Salem 636 011, Tamil Nadu (India); Akila, N.; Prabhu, A. [Department of Physics, Periyar University, Salem 636 011, Tamil Nadu (India)

    2016-04-15

    The nonlinear localization phenomena in ferromagnetic spin lattices have attracted a steadily growing interest and their existence has been predicted in a wide range of physical settings. We investigate the onset of modulational instability of a plane wave in a discrete ferromagnetic spin chain with physically significant higher order dispersive octupole–dipole and dipole–dipole interactions. We derive the discrete nonlinear equation of motion with the aid of Holstein–Primakoff (H–P) transformation combined with Glauber's coherent state representation. We show that the discrete ferromagnetic spin dynamics is governed by an entirely new discrete NLS model with complex coefficients not reported so far. We report the study of modulational instability (MI) of the ferromagnetic chain with long range dispersive interactions both analytically in the frame work of linear stability analysis and numerically by means of molecular dynamics (MD) simulations. Our numerical simulations explore that the analytical predictions correctly describe the onset of instability. It is found that the presence of the various exchange and dispersive higher order interactions systematically favors the local gathering of excitations and thus supports the growth of high amplitude, long-lived discrete breather (DB) excitations. We analytically compute the strongly localized odd and even modes. Further, we employ the Jacobi elliptic function method to solve the nonlinear evolution equation and an exact propagating bubble-soliton solution is explored. - Highlights: • Higher order dispersive interactions plays significant role in ferromagnetic spin chain. • The energy localization is studied both analytically and numerically. • The existence of DBs are studied under the effect of higher order dispersive interaction.

  10. Three-nucleon results for one-boson-exchange potential

    Energy Technology Data Exchange (ETDEWEB)

    Birrell, N.D.; Afnan, I.R.

    1978-01-01

    The binding energy of /sup 3/H, percentage S-, S'-, and D-state probabilities and charge form factor of /sup 3/He are calculated using the Adhikari-Sloan separable expansion to the Holinde and Machleidt one-boson-exchange potential. The results show that the Adhikari-Sloan expansion has good convergence for the binding energy, and the lowest order Adhikari-Sloan expansion considered gives excellent results for the form factor.

  11. Anderson localization in the multi-particle tight-binding model at low energies or with weak interaction

    CERN Document Server

    Ekanga, Trésor

    2012-01-01

    We consider the multi-particle lattice Anderson model with an i.i.d. random external potential and a short-range interaction. Using the multi-particle multiscale analysis (MPMSA) developed by Chulaevsky and Suhov (2009), we prove spectral localization for such Hamiltonians at low energies under the assumption of log-H\\"{o}lder continuity of the marginal probability distribution of the random potential. Under a stronger assumption of H\\"older continuity, Anderson localization for such systems at low energies was established earlier by Aizenman and Warzel (2009) with the help of the multi-particle Fractional-Moment Method.

  12. A Study of Topological Quantum Phase Transition and Majorana Localization Length for the Interacting Helical Liquid System

    Science.gov (United States)

    Dey, Dayasindhu; Saha, Sudip Kumar; Singha Deo, P.; Kumar, Manoranjan; Sarkar, Sujit

    2017-07-01

    We study the topological quantum phase transition and also the nature of this transition using the density matrix renormalization group method. We observe the existence of topological quantum phase transition for repulsive interaction, however this phase is more stable for the attractive interaction. The length scale dependent study shows many new and important results and we show explicitly that the major contribution to the excitation comes from the edge of the system when the system is in the topological state. We also show the dependence of Majorana localization length for various values of chemical potential.

  13. Maintenance of asymmetric cellular localization of an auxin transport protein through interaction with the actin cytoskeleton

    Science.gov (United States)

    Muday, G. K.

    2000-01-01

    In shoots, polar auxin transport is basipetal (that is, from the shoot apex toward the base) and is driven by the basal localization of the auxin efflux carrier complex. The focus of this article is to summarize the experiments that have examined how the asymmetric distribution of this protein complex is controlled and the significance of this polar distribution. Experimental evidence suggests that asymmetries in the auxin efflux carrier may be established through localized secretion of Golgi vesicles, whereas an attachment of a subunit of the efflux carrier to the actin cytoskeleton may maintain this localization. In addition, the idea that this localization of the efflux carrier may control both the polarity of auxin movement and more globally regulate developmental polarity is explored. Finally, evidence indicating that the gravity vector controls auxin transport polarity is summarized and possible mechanisms for the environmentally induced changes in auxin transport polarity are discussed.

  14. Quasi locality of the GGE in interacting-to-free quenches in relativistic field theories

    CERN Document Server

    Bastianello, Alvise

    2016-01-01

    We study the quench dynamics in continuous relativistic quantum field theory, more specifically the locality properties of the large time stationary state. After a quantum quench in a one-dimensional integrable model, the expectation values of local observables are expected to relax to a Generalised Gibbs Ensemble (GGE), constructed out of the conserved charges of the model. Quenching to a free bosonic theory, it has been shown that the system indeed relaxes to a GGE described by the momentum mode occupation numbers. Here we address the question whether the latter can be equivalently described by a GGE constructed with only local charges. We show that, in marked contrast to the lattice case, this is always impossible in continuous field theories and instead the recently discovered quasilocal charges are necessary. In particular we show that the discrepancy between the exact steady state and the local GGE is clearly manifested as a difference in the large distance behaviour of the two point correlation functio...

  15. Excited-state quantum phase transitions in many-body systems with infinite-range interaction: Localization, dynamics, and bifurcation

    Science.gov (United States)

    Santos, Lea F.; Távora, Marco; Pérez-Bernal, Francisco

    2016-07-01

    Excited-state quantum phase transitions (ESQPTs) are generalizations of quantum phase transitions to excited levels. They are associated with local divergences in the density of states. Here, we investigate how the presence of an ESQPT can be detected from the analysis of the structure of the Hamiltonian matrix, the level of localization of the eigenstates, the onset of bifurcation, and the speed of the system evolution. Our findings are illustrated for a Hamiltonian with infinite-range Ising interaction in a transverse field. This is a version of the Lipkin-Meshkov-Glick (LMG) model and the limiting case of the one-dimensional spin-1/2 system with tunable interactions realized with ion traps. From our studies for the dynamics, we uncover similarities between the LMG and the noninteracting XX models.

  16. Intracellular Localization and Cellular Factors Interaction of HTLV-1 and HTLV-2 Tax Proteins: Similarities and Functional Differences

    Directory of Open Access Journals (Sweden)

    Maria Grazia Romanelli

    2011-05-01

    Full Text Available Human T-lymphotropic viruses type 1 (HTLV-1 and type 2 (HTLV-2 present very similar genomic structures but HTLV-1 is more pathogenic than HTLV-2. Is this difference due to their transactivating Tax proteins, Tax-1 and Tax-2, which are responsible for viral and cellular gene activation? Do Tax-1 and Tax-2 differ in their cellular localization and in their interaction pattern with cellular factors? In this review, we summarize Tax-1 and Tax-2 structural and phenotypic properties, their interaction with factors involved in signal transduction and their localization-related behavior within the cell. Special attention will be given to the distinctions between Tax-1 and Tax-2 that likely play an important role in their transactivation activity.

  17. Interaction between Expatriates and Local Vietnamese Managers of MNCs in Vietnam

    DEFF Research Database (Denmark)

    Sørensen, Olav Jull; Dao Thi Thanh, Lam

    2009-01-01

    The aim of the chapter is to present and discuss empirical data on the collaboration of expatriates and local managers: What do they learn from each other and how do they develop a common culture.......The aim of the chapter is to present and discuss empirical data on the collaboration of expatriates and local managers: What do they learn from each other and how do they develop a common culture....

  18. Local and landscape effects in a host-parasitoid interaction network along a forest-cropland gradient.

    Science.gov (United States)

    Osorio, Sergio; Arnan, Xavier; Bassols, Emili; Vicens, Narcís; Bosch, Jordi

    2015-10-01

    Land-use driven habitat modification is a major driver of biodiversity loss and impoverishment of interaction diversity. This may affect ecosystem services such as pollination and biological control. Our objective is to analyze the effects of local (nesting environment: farms vs. tree stands) and landscape (forest-cropland gradient) factors on the structure and composition of a cavity-nesting bee-wasp (CNBW) community, their nests associates (henceforth parasitoids), and their interactions. We set up 24 nest-trapping stations in a fragmented, extensively farmed area of ~100 km². We obtained 2035 nests containing 7572 brood cells representing 17 bee and 18 wasp species, attacked by 20 parasitoid species. Community structure and composition, as well as network structure, were much more dependent on local than on landscape factors. Host abundance and richness were higher in farms. In addition, host abundance was positively correlated to cropland cover. We also found highly significant differences between nesting environments in host community composition. Structure and composition of the parasitoid community were conditioned by the structure and composition of the host community. Network structure was affected by nesting environment but not by landscape factors. Interactions tended to be more diverse in farms. This result was mostly explained by differences in network size (greater in farms). However, generality was significantly higher in farms even after controlling for network size, indicating that differences in species' interaction patterns associated to differences in community composition between the two nesting environments are also affecting network structure. In conclusion, open habitats associated with extensively farmed exploitations favor local CNBW diversity (especially bees) and result in more complex host-parasitoid interaction networks in comparison to forested areas. The conservation value of this kind of open habitat is important in view of the

  19. Vibrational spectroscopic determination of local solvent electric field, solute-solvent electrostatic interaction energy, and their fluctuation amplitudes.

    Science.gov (United States)

    Lee, Hochan; Lee, Gayeon; Jeon, Jonggu; Cho, Minhaeng

    2012-01-12

    IR probes have been extensively used to monitor local electrostatic and solvation dynamics. Particularly, their vibrational frequencies are highly sensitive to local solvent electric field around an IR probe. Here, we show that the experimentally measured vibrational frequency shifts can be inversely used to determine local electric potential distribution and solute-solvent electrostatic interaction energy. In addition, the upper limits of their fluctuation amplitudes are estimated by using the vibrational bandwidths. Applying this method to fully deuterated N-methylacetamide (NMA) in D(2)O and examining the solvatochromic effects on the amide I' and II' mode frequencies, we found that the solvent electric potential difference between O(═C) and D(-N) atoms of the peptide bond is about 5.4 V, and thus, the approximate solvent electric field produced by surrounding water molecules on the NMA is 172 MV/cm on average if the molecular geometry is taken into account. The solute-solvent electrostatic interaction energy is estimated to be -137 kJ/mol, by considering electric dipole-electric field interaction. Furthermore, their root-mean-square fluctuation amplitudes are as large as 1.6 V, 52 MV/cm, and 41 kJ/mol, respectively. We found that the water electric potential on a peptide bond is spatially nonhomogeneous and that the fluctuation in the electrostatic peptide-water interaction energy is about 10 times larger than the thermal energy at room temperature. This indicates that the peptide-solvent interactions are indeed important for the activation of chemical reactions in aqueous solution.

  20. Effect of Two Interacting Localized Defects on the Critical Load for Thin Cylindrical Shells Under Axial Compression

    Directory of Open Access Journals (Sweden)

    Abdellatif Khamlichi

    2010-01-01

    Full Text Available Problem statement: Many modern structures are made from thin shells. Design of these elements depends to a large extent on their buckling behavior which is hugely affected by the initial geometric imperfections. Approach: For axially compressed isotropic circular cylindrical shells, axisymmetric localized geometric imperfections were found to reduce severely the buckling strength. Among various axisymmetric shapes of localized defects that were investigated, the entering triangular form was recognized to yield the most adverse case. Since multiple localized defects may be present in the same shell structure and interact, studying their mutual effect on the buckling load is of great importance for shell design. Results: In this study, the effect of two interacting entering triangular localized axisymmetric initial geometric imperfections on shell buckling strength under uniform axial compression was modeled by means of the finite element method. A special software package which was dedicated to buckling analysis of quasi axisymmetric shells was used in order to compute the buckling load either via the linear Euler buckling analysis or through the full non linear iterative procedure. A set of five factors including shell aspect ratios, defect characteristics and the distance separating the localized initial geometric imperfections had been found to govern the buckling problem. A statistical approach based on the Taguchi method was used then to study their relative influence on the buckling load reduction. It was shown by comparison with the single imperfection case that further diminution of the critical load was obtained. Conclusion/Recommendations: In the range of investigated parameters, the distance separating the localized geometric imperfections and imperfection wavelength were found to yield major influences on the critical load. Further studies must be performed in order to assess shell buckling strength in the presence of more than two

  1. Effect of coulomb interaction on Anderson localization; Effet de l'interaction coulombienne sur la localisation d'Anderson dans des systemes de basses dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Waintal, X

    1999-09-10

    We study the quantum mechanics of interacting particles in a disordered system, and in particular, what happens to Anderson localisation when interaction is taken into account. In the first part,one looks at the excited states of two particles in one dimension. For this model, it has been shown (Shepelyansky 1994) that a local repulsive interaction can partially destroy Anderson localisation. Here, we show that this model has similarities with the three-dimensional Anderson model at the metal-insulator transition. In particular, the maximum of rigidity obtained in the spectral statistics correspond to some intermediary statistics that cannot be described by random matrix theory neither by a Poisson statistics. The wave functions show a multifractal behaviour and the spreading of the center of mass of a wave packet is logarithmic in time. The second part deals with the ground state of a finite density of spinless fermions in two dimensions. After the scaling theory of localisation, it was commonly accepted that there was no metal in two dimensions. This idea has been challenged by the observation of a metal-insulator transition in low density electron gas (Kravchenko et al. 1994). We propose a scenario in which a metallic phase occurs between the Anderson insulator and the pinned Wigner crystal. This intermediate phase is characterized by an alignment of the local currents flowing in the system. (author)

  2. Inquiry in interaction: How local adaptations of curricula shape classroom communities

    Science.gov (United States)

    Enyedy, Noel; Goldberg, Jennifer

    2004-11-01

    In this study, we seek a better understanding of how individuals and their daily interactions shape and reshape social structures that constitute a classroom community. Moreover, we provide insight into how discourse and classroom interactions shape the nature of a learning community, as well as which aspects of the classroom culture may be consequential for learning. The participants in this study include two teachers who are implementing a new environmental science program, Global Learning through Observation to Benefit the Environment (GLOBE), and interacting with 54 children in an urban middle school. Both qualitative and quantitative data are analyzed and presented. To gain a better understanding of the inquiry teaching within classroom communities, we compare and contrast the discourse and interactions of the two teachers during three parallel environmental science lessons. The focus of our analysis includes (1) how the community identifies the object or goal of its activity; and (2) how the rights, rules, and roles for members are established and inhabited in interaction. Quantitative analyses of student pre- and posttests suggest greater learning for students in one classroom over the other, providing support for the influence of the classroom community and interactional choices of the teacher on student learning. Implications of the findings from this study are discussed in the context of curricular design, professional development, and educational reform. ? 2004 Wiley Periodicals, Inc. J Res Sci Teach 41: 905-935, 2004.

  3. SIMMER-III Analyses of Local Fuel-Coolant Interactions in a Simulated Molten Fuel Pool: Effect of Coolant Quantity

    Directory of Open Access Journals (Sweden)

    Songbai Cheng

    2015-01-01

    Full Text Available Studies on local fuel-coolant interactions (FCI in a molten pool are important for the analyses of severe accidents that could occur for sodium-cooled fast reactors (SFRs. To clarify the mechanisms underlying this interaction, in recent years, several experimental tests, with comparatively larger difference in coolant volumes, were conducted at the Japan Atomic Energy Agency by delivering a given quantity of water into a molten pool formed with a low-melting-point alloy. In this study, to further understand this interaction, interaction characteristics including the pressure buildup as well as mechanical energy release and its conversion efficiency are investigated using the SIMMER-III, an advanced fast reactor safety analysis code. It is found that the SIMMER-III code not only reasonably simulates the transient pressure and temperature variations during local FCIs, but also supports the limited tendency of pressurization and resultant mechanical energy release as observed from experiments when the volume of water delivered into the pool increases. The performed analyses also suggest that the most probable reason leading to such limited tendency should be primarily due to an isolation effect of vapor bubbles generated at the water-melt interface.

  4. Nuclear localization and interaction with COP1 are required for STO/BBX24 function during photomorphogenesis.

    Science.gov (United States)

    Yan, Huili; Marquardt, Katrin; Indorf, Martin; Jutt, Dominic; Kircher, Stefan; Neuhaus, Gunther; Rodríguez-Franco, Marta

    2011-08-01

    Arabidopsis (Arabidopsis thaliana) SALT TOLERANCE/B-BOX ZINC FINGER PROTEIN24 (STO/BBX24) is a negative regulator of the light signal transduction that localizes to the nucleus of plant cells and interacts with CONSTITUTIVE PHOTOMORPHOGENIC1 (COP1) in the yeast (Saccharomyces cerevisiae) two-hybrid system. The protein contains two B-box zinc-finger motives at the N terminus and a conserved motif at the C-terminal part required for the interaction with COP1. BBX24 accumulates during deetiolation of young seedlings in the first hours of exposure to light. However, this accumulation is transient and decreases after prolonged light irradiation. Here, we identified the amino acidic residues necessary for the nuclear import of the protein. In addition, we created mutated forms of the protein, and analyzed them by overexpression in the bbx24-1 mutant background. Our results indicate that the degradation of BBX24 occurs, or at least is initiated in the nucleus, and this nuclear localization is a prerequisite to fulfill its function in light signaling. Moreover, mutations in the region responsible for the interaction with COP1 revealed that a physical interaction of the proteins is also required for degradation of BBX24 in the light and for normal photomorphogenesis.

  5. New periodic wave solutions, localized excitations and their interaction for (2+1)-dimensional Burgers equation

    Institute of Scientific and Technical Information of China (English)

    Ma Hong-Cai; Ge Dong-Jie; Yu Yao-Dong

    2008-01-01

    Based on the B(a)cklund method and the multilinear variable separation approach (MLVSA), this paper finds a general solution including two arbitrary functions for the (2+1)-dimensional Burgers equations. Then a class of new doubly periodic wave solutions for (2+1)-dimensional Burgers equations is obtained by introducing appropriate Jacobi elliptic functions, Weierstrass elliptic functions and their combination in the general solutions (which contains two arbitrary functions). Two types of limit cases are considered. Firstly, taking one of the moduli to be unity and the other zero, it obtains particular wave (called semi-localized) patterns, which is periodic in one direction, but localized in the other direction. Secondly, if both moduli are tending to 1 as a limit, it derives some novel localized excitations (two-dromion solution).

  6. Localization and interaction of hydroxyflavones with lipid bilayer model membranes: a study using DSC and multinuclear NMR.

    Science.gov (United States)

    Sinha, Ragini; Joshi, Akshada; Joshi, Urmila J; Srivastava, Sudha; Govil, Girjesh

    2014-06-10

    The localization and interaction of six naturally occurring flavones (FLV, 5HF, 6HF, 7HF, CHY and BLN) in DPPC bilayers were studied using DSC and multi-nuclear NMR. DSC results indicate that FLV and 6HF interact with alkyl chains. The (1)H NMR shows interaction of flavones with the sn-glycero region. Ring current induced chemical shifts indicate that 6HF and BLN acquire parallel orientation in bilayers. 2D NOESY spectra indicate partitioning of the B-ring into the alkyl chain region. The DSC, NMR and binding studies indicate that 5HF and 7HF are located near head group region, while 6HF, CHY and BLN are located in the vicinity of sn-glycero region, and FLV is inserted deepest in the membrane.

  7. Visual capture of a stereo sound: Interactions between cue reliability, sound localization variability, and cross-modal bias.

    Science.gov (United States)

    Montagne, Christopher; Zhou, Yi

    2016-07-01

    Multisensory interactions involve coordination and sometimes competition between multiple senses. Vision usually dominates audition in spatial judgments when light and sound stimuli are presented from two different physical locations. This study investigated the influence of vision on the perceived location of a phantom sound source placed in a stereo sound field using a pair of loudspeakers emitting identical signals that were delayed or attenuated relative to each other. Results show that although a similar horizontal range (+/-45°) was reported for timing-modulated and level-modulated signals, listeners' localization performance showed greater variability for the timing signals. When visual stimuli were presented simultaneously with the auditory stimuli, listeners showed stronger visual bias for timing-modulated signals than level-modulated and single-speaker control signals. Trial-to-trial errors remained relatively stable over time, suggesting that sound localization uncertainty has an immediate and long-lasting effect on the across-modal bias. Binaural signal analyses further reveal that interaural differences of time and intensity-the two primary cues for sound localization in the azimuthal plane-are inherently more ambiguous for signals placed using timing. These results suggest that binaural ambiguity is intrinsically linked with localization variability and the strength of cross-modal bias in sound localization.

  8. Interactive effects of landscape context constrain the effectiveness of local agri-environmental management

    NARCIS (Netherlands)

    Concepción, E.D.; Díaz, M.; Kleijn, D.; Báldi, A.; Batáry, P.; Clough, Y.; Gabriel, D.; Herzog, F.; Holzschuh, A.; Knop, E.; Marshall, J.P.; Tscharntke, T.; Verhulst, J.

    2012-01-01

    summary 1. Ecological theory predicts that the effectiveness of local agri-environmental management to enhance species richness at field scales will be the highest at intermediate levels of landscape complexity because of nonlinear effects of landscape context on field-scale diversity. 2. We

  9. Localized excitations in discrete nonlinear Schrodinger systems: Effects of nonlocal dispersive interactions and noise

    DEFF Research Database (Denmark)

    Rasmussen, Kim; Christiansen, Peter Leth; Johansson, Magnus

    1998-01-01

    A one-dimensional discrete nonlinear Schrodinger (DNLS) model with the power dependence, r(-s) on the distance r, of dispersive interactions is proposed. The stationary states of the system are studied both analytically and numerically. Two kinds of trial functions, exp-like and sech-like are exp......A one-dimensional discrete nonlinear Schrodinger (DNLS) model with the power dependence, r(-s) on the distance r, of dispersive interactions is proposed. The stationary states of the system are studied both analytically and numerically. Two kinds of trial functions, exp-like and sech...

  10. Spinor-Helicity Three-Point Amplitudes from Local Cubic Interactions

    CERN Document Server

    Conde, Eduardo; Mkrtchyan, Karapet

    2016-01-01

    We make an explicit link between the cubic interactions of off-shell fields and the on-shell three-point amplitudes in four dimensions. Both the cubic interactions and the on-shell three-point amplitudes had been independently classified in the literature, but their relation has not been made explicit. The aim of this note is to provide such a relation and discuss similarities and differences of their constructions. For the completeness of our analysis, we also derive the covariant form of all parity-odd massless vertices.

  11. Phase precession through acceleration of local theta rhythm: a biophysical model for the interaction between place cells and local inhibitory neurons.

    Science.gov (United States)

    Castro, Luísa; Aguiar, Paulo

    2012-08-01

    Phase precession is one of the most well known examples within the temporal coding hypothesis. Here we present a biophysical spiking model for phase precession in hippocampal CA1 which focuses on the interaction between place cells and local inhibitory interneurons. The model's functional block is composed of a place cell (PC) connected with a local inhibitory cell (IC) which is modulated by the population theta rhythm. Both cells receive excitatory inputs from the entorhinal cortex (EC). These inputs are both theta modulated and space modulated. The dynamics of the two neuron types are described by integrate-and-fire models with conductance synapses, and the EC inputs are described using non-homogeneous Poisson processes. Phase precession in our model is caused by increased drive to specific PC/IC pairs when the animal is in their place field. The excitation increases the IC's firing rate, and this modulates the PC's firing rate such that both cells precess relative to theta. Our model implies that phase coding in place cells may not be independent from rate coding. The absence of restrictive connectivity constraints in this model predicts the generation of phase precession in any network with similar architecture and subject to a clocking rhythm, independently of the involvement in spatial tasks.

  12. Nuclear localization of the transcriptional regulator MIER1α requires interaction with HDAC1/2 in breast cancer cells.

    Directory of Open Access Journals (Sweden)

    Shengnan Li

    Full Text Available MIER1α is a transcriptional regulator that functions in gene repression through its ability to interact with various chromatin modifiers and transcription factors. We have also shown that MIER1α interacts with ERα and inhibits estrogen-stimulated growth. While MIER1α is localized in the nucleus of MCF7 cells, previous studies have shown that it does not contain a nuclear localization signal. In this report, we investigate the mechanism involved in transporting MIER1α into the nucleus. We explored the possibility that MIER1α is transported into the nucleus through a 'piggyback' mechanism. One obvious choice is via interaction with ERα, however we demonstrate that nuclear targeting of MIER1α does not require ERα. Knockdown of ERα reduced protein expression to 22% of control, but did not alter the percentage of cells with nuclear MIER1α (98% nuclear with scrambled shRNA vs. 95% with ERα shRNA. Further evidence was obtained using two stable transfectants derived from the ER-negative MDA231 cell line: MC2 (ERα+ and VC5 (ERα-. Confocal analysis showed no difference in MIER1α localization (86% nuclear in MC2 vs. 89% in VC5. These data demonstrate that ERα is not involved in nuclear localization of MIER1α. To identify the critical MIER1α sequence, we performed a deletion analysis and determined that the ELM2 domain was necessary and sufficient for nuclear localization. This domain binds HDAC1 & 2, therefore we investigated their role. Confocal analysis of an MIER1α containing an ELM2 point mutation previously shown to abolish HDAC binding revealed that this mutation results in almost complete loss of nuclear targeting: 10% nuclear vs. 97% with WT-MIER1α. Moreover, double knockdown of HDAC1 and 2 caused a reduction in percent nuclear from 86% to 44%. The results of this study demonstrate that nuclear targeting of MIER1α requires an intact ELM2 domain and is dependent on interaction with HDAC1/2.

  13. Intermolecular interactions in linear and nonlinear susceptibilities : beyond the local-field approximation

    NARCIS (Netherlands)

    Knoester, Jasper; Mukamel, Shaul

    1989-01-01

    Reduced equations of motion for material and radiation field variables in a molecular crystal are presented that allow us to calculate linear- and nonlinear-optical susceptibilities, accounting in a systematic way for intermolecular interactions. These equations are derived starting from the multipo

  14. Multimodal Interaction in Ambient Intelligence Environments Using Speech, Localization and Robotics

    Science.gov (United States)

    Galatas, Georgios

    2013-01-01

    An Ambient Intelligence Environment is meant to sense and respond to the presence of people, using its embedded technology. In order to effectively sense the activities and intentions of its inhabitants, such an environment needs to utilize information captured from multiple sensors and modalities. By doing so, the interaction becomes more natural…

  15. Localization of Virtual Objects in the Near Visual Field (Operator Interaction with Simple Virtual Objects)

    Science.gov (United States)

    Ellis, Stephen R.; Menges, Brian M.

    1998-01-01

    Errors in the localization of nearby virtual objects presented via see-through, helmet mounted displays are examined as a function of viewing conditions and scene content in four experiments using a total of 38 subjects. Monocular, biocular or stereoscopic presentation of the virtual objects, accommodation (required focus), subjects' age, and the position of physical surfaces are examined. Nearby physical surfaces are found to introduce localization errors that differ depending upon the other experimental factors. These errors apparently arise from the occlusion of the physical background by the optically superimposed virtual objects. But they are modified by subjects' accommodative competence and specific viewing conditions. The apparent physical size and transparency of the virtual objects and physical surfaces respectively are influenced by their relative position when superimposed. The design implications of the findings are discussed in a concluding section.

  16. Local ecological knowledge and the interaction of porpoises with fishing on the coast of the state of Para, Brazil

    Directory of Open Access Journals (Sweden)

    Tiago Pereira Brito

    2012-11-01

    Full Text Available Fishing has a great importance to the socioeconomic development of the Amazonian riparian communities, which have a local knowledge on the environment, its fauna and flora. This knowledge is of paramount importance for the management and conservation of fish stocks and species that interact with the fishing activity, such as the populations of gray porpoises (Sotalia sp. and pink porpoises (Inia geoffrensis. Therefore, to register local ecological knowledge and the interaction of porpoises with fishing on the coast of the state of Para, Brazil, 82 semi-structured interviews were carried out in 3 different colonies of fishermen: colony Z-1 (Soure, colony Z-7 (Maracana, and colony Z-23 (Colares. The species Sotalia sp. had a strong social structure, it can be observed in the region both during the dry and rainy seasons, while the species I. geoffrensis didn’t present a social structure, it’s observed in the region especially during the rainy season. The pink porpoise showed a larger interaction with fishing than the gray porpoise, however, this interaction was particularly detrimental to the activity, while the gray porpoise showed both a beneficial and a harmful interaction with fishing. The incidental capture of porpoises primarily occurred through nets and trawls, harming their populations. Captured animals were mostly released, however, there were records of consumption for food, use as bait, and selling of the animal’s eyes. This information will constitute the basis for further studies on the biology, ecology, and estimate of the mortality of porpoises on the Amazon coast. Management measures should be adopted, along with the communities studied, for the conservation of these animals in the region.

  17. A model of motion transparency processing with local center-surround interactions and feedback.

    Science.gov (United States)

    Raudies, Florian; Mingolla, Ennio; Neumann, Heiko

    2011-11-01

    Motion transparency occurs when multiple coherent motions are perceived in one spatial location. Imagine, for instance, looking out of the window of a bus on a bright day, where the world outside the window is passing by and movements of passengers inside the bus are reflected in the window. The overlay of both motions at the window leads to motion transparency, which is challenging to process. Noisy and ambiguous motion signals can be reduced using a competition mechanism for all encoded motions in one spatial location. Such a competition, however, leads to the suppression of multiple peak responses that encode different motions, as only the strongest response tends to survive. As a solution, we suggest a local center-surround competition for population-encoded motion directions and speeds. Similar motions are supported, and dissimilar ones are separated, by representing them as multiple activations, which occurs in the case of motion transparency. Psychophysical findings, such as motion attraction and repulsion for motion transparency displays, can be explained by this local competition. Besides this local competition mechanism, we show that feedback signals improve the processing of motion transparency. A discrimination task for transparent versus opaque motion is simulated, where motion transparency is generated by superimposing large field motion patterns of either varying size or varying coherence of motion. The model's perceptual thresholds with and without feedback are calculated. We demonstrate that initially weak peak responses can be enhanced and stabilized through modulatory feedback signals from higher stages of processing.

  18. Localized shear deformation during shear band propagation in titanium considering interactions among microstructures

    Institute of Scientific and Technical Information of China (English)

    王学滨; 杨梅; 于海军; 海龙; 潘一山

    2004-01-01

    Closed-form analytical solutions of plastic shear strain and relative plastic shear displacement during shear band propagation are proposed under dynamic loadings based on gradient-dependent plasticity considering the effect of microstructures due to heterogeneous texture of Ti. According to the differences in shear stress levels, Ti specimen is divided into three regions. residual region, strain-softening region and elastic region. Well-developed shear band is formed in the residual region and the relative plastic shear displacement no longer increases. In the normal and tangential directions, the plastic strain and the displacement are nonuniform in the strain-softening region.At the tip of shear band, the shear stress acting on the band is increased to shear strength from the elastic state and the shear localization just occurs. Prior to the tip, Ti remains elastic. At higher strain rates, the extent of plastic strain concentration is greater than that under static loading. Higher strain rate increases the relative plastic shear displacement. The present analytical solution for evolution or propagation of shear localization under nonuniform shear stress can better reproduce the observed localized characteristics for many kinds of ductile metals.

  19. The effect of interacting dark energy on local measurements of the Hubble constant

    Science.gov (United States)

    Odderskov, Io; Baldi, Marco; Amendola, Luca

    2016-05-01

    In the current state of cosmology, where cosmological parameters are being measured to percent accuracy, it is essential to understand all sources of error to high precision. In this paper we present the results of a study of the local variations in the Hubble constant measured at the distance scale of the Coma Cluster, and test the validity of correcting for the peculiar velocities predicted by gravitational instability theory. The study is based on N-body simulations, and includes models featuring a coupling between dark energy and dark matter, as well as two ΛCDM simulations with different values of σ8. It is found that the variance in the local flows is significantly larger in the coupled models, which increases the uncertainty in the local measurements of the Hubble constant in these scenarios. By comparing the results from the different simulations, it is found that most of the effect is caused by the higher value of σ8 in the coupled cosmologies, though this cannot account for all of the additional variance. Given the discrepancy between different estimates of the Hubble constant in the universe today, cosmological models causing a greater cosmic variance is something that we should be aware of.

  20. The effect of interacting dark energy on local measurements of the Hubble constant

    CERN Document Server

    Odderskov, Io; Amendola, Luca

    2015-01-01

    In the current state of cosmology, where cosmological parameters are being measured to percent accuracy, it is essential to understand all sources of error to high precision. In this paper we present the results of a study of the local variations in the Hubble constant measured at the distance scale of the Coma Cluster, and test the validity of correcting for the peculiar velocities predicted by gravitational instability theory. The study is based on N-body simulations, and includes models featuring a coupling between dark energy and dark matter, as well as two $\\Lambda$CDM simulations with different values of $\\sigma_8$. It is found that the variance in the local flows is significantly larger in the coupled models, which increases the uncertainty in the local measurements of the Hubble constant in these scenarios. By comparing the results from the different simulations, it is found that most of the effect is caused by the higher value of $\\sigma_8$ in the coupled cosmologies, though this cannot account for a...

  1. Genotype-by-Environment Interactions and Adaptation to Local Temperature Affect Immunity and Fecundity in Drosophila melanogaster

    Science.gov (United States)

    Lazzaro, Brian P.; Flores, Heather A.; Lorigan, James G.; Yourth, Christopher P.

    2008-01-01

    Natural populations of most organisms harbor substantial genetic variation for resistance to infection. The continued existence of such variation is unexpected under simple evolutionary models that either posit direct and continuous natural selection on the immune system or an evolved life history “balance” between immunity and other fitness traits in a constant environment. However, both local adaptation to heterogeneous environments and genotype-by-environment interactions can maintain genetic variation in a species. In this study, we test Drosophila melanogaster genotypes sampled from tropical Africa, temperate northeastern North America, and semi-tropical southeastern North America for resistance to bacterial infection and fecundity at three different environmental temperatures. Environmental temperature had absolute effects on all traits, but there were also marked genotype-by-environment interactions that may limit the global efficiency of natural selection on both traits. African flies performed more poorly than North American flies in both immunity and fecundity at the lowest temperature, but not at the higher temperatures, suggesting that the African population is maladapted to low temperature. In contrast, there was no evidence for clinal variation driven by thermal adaptation within North America for either trait. Resistance to infection and reproductive success were generally uncorrelated across genotypes, so this study finds no evidence for a fitness tradeoff between immunity and fecundity under the conditions tested. Both local adaptation to geographically heterogeneous environments and genotype-by-environment interactions may explain the persistence of genetic variation for resistance to infection in natural populations. PMID:18369474

  2. Local Environment and Interactions of Liquid and Solid Interfaces Revealed by Spectral Line Shape of Surface Selective Nonlinear Vibrational Probe

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Shun-Li; Fu, Li; Chase, Zizwe A.; Gan, Wei; Wang, Hong-Fei

    2016-11-10

    Vibrational spectral lineshape contains important detailed information of molecular vibration and reports its specific interactions and couplings to its local environment. In this work, recently developed sub-1 cm-1 high-resolution broadband sum frequency generation vibrational spectroscopy (HR-BB-SFG-VS) was used to measure the -C≡N stretch vibration in the 4-n-octyl-4’-cyanobiphenyl (8CB) Langmuir or Langmuir-Blodgett (LB) monolayer as a unique vibrational probe, and the spectral lineshape analysis revealed the local environment and interactions at the air/water, air/glass, air/calcium fluoride and air/-quartz interfaces for the first time. The 8CB Langmuir or LB film is uniform and the vibrational spectral lineshape of its -C≡N group has been well characterized, making it a good choice as the surface vibrational probe. Lineshape analysis of the 8CB -C≡N stretch SFG vibrational spectra suggests the coherent vibrational dynamics and the structural and dynamic inhomogeneity of the -C≡N group at each interface are uniquely different. In addition, it is also found that there are significantly different roles for water molecules in the LB films on different substrate surfaces. These results demonstrated the novel capabilities of the surface nonlinear spectroscopy in characterization and in understanding the specific structures and chemical interactions at the liquid and solid interfaces in general.

  3. Interaction of nucleosome assembly proteins abolishes nuclear localization of DGK{zeta} by attenuating its association with importins

    Energy Technology Data Exchange (ETDEWEB)

    Okada, Masashi; Hozumi, Yasukazu [Department of Anatomy and Cell Biology, Yamagata University School of Medicine, Yamagata 990-9585 (Japan); Ichimura, Tohru [Department of Chemistry, Graduate School of Sciences and Engineering, Tokyo Metropolitan University, Hachioji 192-0397 (Japan); Tanaka, Toshiaki; Hasegawa, Hiroshi; Yamamoto, Masakazu; Takahashi, Nobuya [Department of Anatomy and Cell Biology, Yamagata University School of Medicine, Yamagata 990-9585 (Japan); Iseki, Ken [Department of Emergency and Critical Care Medicine, Yamagata University School of Medicine, Yamagata 990-9585 (Japan); Yagisawa, Hitoshi [Laboratory of Biological Signaling, Graduate School of Life Science, University of Hyogo, Hyogo 678-1297 (Japan); Shinkawa, Takashi; Isobe, Toshiaki [Department of Chemistry, Graduate School of Sciences and Engineering, Tokyo Metropolitan University, Hachioji 192-0397 (Japan); Goto, Kaoru, E-mail: kgoto@med.id.yamagata-u.ac.jp [Department of Anatomy and Cell Biology, Yamagata University School of Medicine, Yamagata 990-9585 (Japan)

    2011-12-10

    Diacylglycerol kinase (DGK) is involved in the regulation of lipid-mediated signal transduction through the metabolism of a second messenger diacylglycerol. Of the DGK family, DGK{zeta}, which contains a nuclear localization signal, localizes mainly to the nucleus but translocates to the cytoplasm under pathological conditions. However, the detailed mechanism of translocation and its functional significance remain unclear. To elucidate these issues, we used a proteomic approach to search for protein targets that interact with DGK{zeta}. Results show that nucleosome assembly protein (NAP) 1-like 1 (NAP1L1) and NAP1-like 4 (NAP1L4) are identified as novel DGK{zeta} binding partners. NAP1Ls constitutively shuttle between the nucleus and the cytoplasm in transfected HEK293 cells. The molecular interaction of DGK{zeta} and NAP1Ls prohibits nuclear import of DGK{zeta} because binding of NAP1Ls to DGK{zeta} blocks import carrier proteins, Qip1 and NPI1, to interact with DGK{zeta}, leading to cytoplasmic tethering of DGK{zeta}. In addition, overexpression of NAP1Ls exerts a protective effect against doxorubicin-induced cytotoxicity. These findings suggest that NAP1Ls are involved in a novel molecular basis for the regulation of nucleocytoplasmic shuttling of DGK{zeta} and provide a clue to examine functional significance of its translocation under pathological conditions.

  4. Accurate and efficient calculation of van der Waals interactions within density functional theory by local atomic potential approach.

    Science.gov (United States)

    Sun, Y Y; Kim, Yong-Hyun; Lee, Kyuho; Zhang, S B

    2008-10-21

    Density functional theory (DFT) in the commonly used local density or generalized gradient approximation fails to describe van der Waals (vdW) interactions that are vital to organic, biological, and other molecular systems. Here, we propose a simple, efficient, yet accurate local atomic potential (LAP) approach, named DFT+LAP, for including vdW interactions in the framework of DFT. The LAPs for H, C, N, and O are generated by fitting the DFT+LAP potential energy curves of small molecule dimers to those obtained from coupled cluster calculations with single, double, and perturbatively treated triple excitations, CCSD(T). Excellent transferability of the LAPs is demonstrated by remarkable agreement with the JSCH-2005 benchmark database [P. Jurecka et al. Phys. Chem. Chem. Phys. 8, 1985 (2006)], which provides the interaction energies of CCSD(T) quality for 165 vdW and hydrogen-bonded complexes. For over 100 vdW dominant complexes in this database, our DFT+LAP calculations give a mean absolute deviation from the benchmark results less than 0.5 kcal/mol. The DFT+LAP approach involves no extra computational cost other than standard DFT calculations and no modification of existing DFT codes, which enables straightforward quantum simulations, such as ab initio molecular dynamics, on biomolecular systems, as well as on other organic systems.

  5. Interaction of local and general anaesthetics with liposomal membrane models: a QCM-D and DSC study.

    Science.gov (United States)

    Paiva, José Gabriel; Paradiso, Patrizia; Serro, Ana Paula; Fernandes, Anabela; Saramago, Benilde

    2012-06-15

    The behaviour of four local anaesthetics (lidocaine, levobupivacaine, ropivacaine and tetracaine) and one general anaesthetic (propofol) is compared when interacting with two types of model membranes: supported layers of liposomes and liposomes in solution. Several liposomal compositions were tested: dimyristoylphosphatidylcholine (DMPC), binary mixtures of DMPC with cholesterol (CHOL), and ternary mixtures of dipalmitoylphosphatidylcholine (DPPC), DMPC, and CHOL. A quartz crystal microbalance with dissipation, QCM-D, was used to assess changes in the properties of supported layers of liposomes. The effect of the anaesthetics on the phase behaviour of the liposomes in suspension was determined by differential scanning calorimetry. Both techniques show that all anaesthetics have a fluidizing effect on the model membranes but, apparently, the solid supported liposomes are less affected by the anaesthetics than the liposomes in solution. Although the different anaesthetics were compared at different concentrations, tetracaine and propofol seem to induce the strongest perturbation on the liposome membrane. The resistance of the liposomes to the anaesthetic action was found to increase with the presence of cholesterol, while adding DPPC to the binary mixture DMPC+CHOL does not change its behaviour. The novelty of the present work resides upon three points: (1) the use of supported layers of liposomes as model membranes to study interactions with anaesthetics; (2) application of QCM-D to assess changes of the adsorbed liposomes; (3) a comparison of the effect of local and general anaesthetics interacting with various model membranes in similar experimental conditions.

  6. Self-Consistent MUSIC: An approach to the localization of true brain interactions from EEG/MEG data.

    Science.gov (United States)

    Shahbazi, Forooz; Ewald, Arne; Nolte, Guido

    2015-05-15

    MUltiple SIgnal Classification (MUSIC) is a standard localization method which is based on the idea of dividing the vector space of the data into two subspaces: signal subspace and noise subspace. The brain, divided into several grid points, is scanned entirely and the grid point with the maximum consistency with the signal subspace is considered as the source location. In one of the MUSIC variants called Recursively Applied and Projected MUSIC (RAP-MUSIC), multiple iterations are proposed in order to decrease the location estimation uncertainties introduced by subspace estimation errors. In this paper, we suggest a new method called Self-Consistent MUSIC (SC-MUSIC) which extends RAP-MUSIC to a self-consistent algorithm. This method, SC-MUSIC, is based on the idea that the presence of several sources has a bias on the localization of each source. This bias can be reduced by projecting out all other sources mutually rather than iteratively. While the new method is applicable in all situations when MUSIC is applicable we will study here the localization of interacting sources using the imaginary part of the cross-spectrum due to the robustness of this measure to the artifacts of volume conduction. For an odd number of sources this matrix is rank deficient similar to covariance matrices of fully correlated sources. In such cases MUSIC and RAP-MUSIC fail completely while the new method accurately localizes all sources. We present results of the method using simulations of odd and even number of interacting sources in the presence of different noise levels. We compare the method with three other source localization methods: RAP-MUSIC, dipole fit and MOCA (combined with minimum norm estimate) through simulations. SC-MUSIC shows substantial improvement in the localization accuracy compared to these methods. We also show results for real MEG data of a single subject in the resting state. Four sources are localized in the sensorimotor area at f=11Hz which is the expected

  7. A 3D interactive multi-object segmentation tool using local robust statistics driven active contours

    OpenAIRE

    Gao, Yi; Kikinis, Ron; Bouix, Sylvain; Shenton, Martha Elizabeth; Tannenbaum, Allen

    2012-01-01

    Extracting anatomical and functional significant structures renders one of the important tasks for both the theoretical study of the medical image analysis, and the clinical and practical community. In the past, much work has been dedicated only to the algorithmic development. Nevertheless, for clinical end users, a well designed algorithm with an interactive software is necessary for an algorithm to be utilized in their daily work. Furthermore, the software would better be open sourced in or...

  8. Interaction of retinal guanylate cyclase with the alpha subunit of transducin: potential role in transducin localization.

    Science.gov (United States)

    Rosenzweig, Derek H; Nair, K Saidas; Levay, Konstantin; Peshenko, Igor V; Crabb, John W; Dizhoor, Alexander M; Slepak, Vladlen Z

    2009-02-01

    Vertebrate phototransduction is mediated by cGMP, which is generated by retGC (retinal guanylate cyclase) and degraded by cGMP phosphodiesterase. Light stimulates cGMP hydrolysis via the G-protein transducin, which directly binds to and activates phosphodiesterase. Bright light also causes relocalization of transducin from the OS (outer segments) of the rod cells to the inner compartments. In the present study, we show experimental evidence for a previously unknown interaction between G(alphat) (the transducin alpha subunit) and retGC. G(alphat) co-immunoprecipitates with retGC from the retina or from co-transfected COS-7 cells. The retGC-G(alphat) complex is also present in cones. The interaction also occurs in mice lacking RGS9 (regulator of G-protein signalling 9), a protein previously shown to associate with both G(alphat) and retGC. The G(alphat)-retGC interaction is mediated primarily by the kinase homology domain of retGC, which binds GDP-bound G(alphat) stronger than the GTP[S] (GTPgammaS; guanosine 5'-[gamma-thio]triphosphate) form. Neither G(alphat) nor G(betagamma) affect retGC-mediated cGMP synthesis, regardless of the presence of GCAP (guanylate cyclase activating protein) and Ca2+. The rate of light-dependent transducin redistribution from the OS to the inner segments is markedly accelerated in the retGC-1-knockout mice, while the migration of transducin to the OS after the onset of darkness is delayed. Supplementation of permeabilized photoreceptors with cGMP does not affect transducin translocation. Taken together, these results suggest that the protein-protein interaction between G(alphat) and retGC represents a novel mechanism regulating light-dependent translocation of transducin in rod photoreceptors.

  9. Weak antilocalization and interaction-induced localization of Dirac and Weyl Fermions in topological insulators and semimetals

    Science.gov (United States)

    Lu, Hai-Zhou; Shen, Shun-Qing

    2016-11-01

    Weak localization and antilocalization are quantum transport phenomena that arise from the quantum interference in disordered metals. At low temperatures, they can give distinct temperature and magnetic field dependences in conductivity, allowing the symmetry of the system to be explored. In the past few years, they have also been observed in newly emergent topological materials, including topological insulators and topological semimetals. In contrast from the conventional electrons, in these new materials the quasiparticles are described as Dirac or Weyl fermions. In this article, we review our recent efforts on the theories of weak antilocalization and interaction-induced localization for Dirac and Weyl fermions in topological insulators and topological semimetals. Project supported by the National Key R & D Program, China (Grant No. 2016YFA0301700), the Research Grant Council, University Grants Committee, Hong Kong, China (Grant No. 17303714), the National Natural Science Foundation of China (Grant No. 11574127), and the National Thousand-Young-Talents Program of China.

  10. Interactions of localized wave structures and dynamics in the defocusing coupled nonlinear Schrödinger equations

    Science.gov (United States)

    Zhang, Guoqiang; Yan, Zhenya; Wen, Xiao-Yong; Chen, Yong

    2017-04-01

    We investigate the defocusing coupled nonlinear Schrödinger equations from a 3 ×3 Lax pair. The Darboux transformations with the nonzero plane-wave solutions are presented to derive the newly localized wave solutions including dark-dark and bright-dark solitons, breather-breather solutions, and different types of new vector rogue wave solutions, as well as interactions between distinct types of localized wave solutions. Moreover, we analyze these solutions by means of parameters modulation. Finally, the perturbed wave propagations of some obtained solutions are explored by means of systematic simulations, which demonstrates that nearly stable and strongly unstable solutions. Our research results could constitute a significant contribution to explore the distinct nonlinear waves (e.g., dark solitons, breather solutions, and rogue wave solutions) dynamics of the coupled system in related fields such as nonlinear optics, plasma physics, oceanography, and Bose-Einstein condensates.

  11. An Amphiphysin-Like Domain in Fus2p Is Required for Rvs161p Interaction and Cortical Localization

    Directory of Open Access Journals (Sweden)

    Richard A. Stein

    2016-02-01

    Full Text Available Cell–cell fusion fulfils essential roles in fertilization, development and tissue repair. In the budding yeast, Saccharomyces cerevisiae, fusion between two haploid cells of opposite mating type generates the diploid zygote. Fus2p is a pheromone-induced protein that regulates cell wall removal during mating. Fus2p shuttles from the nucleus to localize at the shmoo tip, bound to Rvs161p, an amphiphysin. However, Rvs161p independently binds a second amphiphysin, Rvs167p, playing an essential role in endocytosis. To understand the basis of the Fus2p–Rvs161p interaction, we analyzed Fus2p structural domains. A previously described N-terminal domain (NTD is necessary and sufficient to regulate nuclear/cytoplasmic trafficking of Fus2p. The Dbl homology domain (DBH binds GTP-bound Cdc42p; binding is required for cell fusion, but not localization. We identified an approximately 200 amino acid region of Fus2p that is both necessary and sufficient for Rvs161p binding. The Rvs161p binding domain (RBD contains three predicted alpha-helices; structural modeling suggests that the RBD adopts an amphiphysin-like structure. The RBD contains a 13-amino-acid region, conserved with Rvs161p and other amphiphysins, which is essential for binding. Mutations in the RBD, predicted to affect membrane binding, abolish cell fusion without affecting Rvs161p binding. We propose that Fus2p/Rvs161p form a novel heterodimeric amphiphysin required for cell fusion. Rvs161p binding is required but not sufficient for Fus2p localization. Mutations in the C-terminal domain (CTD of Fus2p block localization, but not Rvs161p binding, causing a significant defect in cell fusion. We conclude that the Fus2p CTD mediates an additional, Rvs161p-independent interaction at the shmoo tip.

  12. Non-Markovian Dynamics for a Two-Atom-Coupled System Interacting with Local Reservoir at Finite Temperature

    Science.gov (United States)

    Jiang, Li; Zhang, Guo-Feng

    2017-03-01

    By using the effective non-Markovian measure (Breuer et al., Phys. Rev. Lett. 103, 210401 2009) we investigate non-Markovian dynamics of a pair of two-level atoms (TLAs) system, each of which interacting with a local reservoir. We show that subsystem dynamics can be controlled by manipulating the coupling between TLAs, temperature and relaxation rate of the atoms. Moreover, the correlation between non-Markovianity of subsystem and entanglement between the subsystem and the structured bath is investigated, the results show that the emergence of non-Markovianity has a negative effect on the entanglement.

  13. Complex Orbitals, Multiple Local Minima, and Symmetry Breaking in Perdew-Zunger Self-Interaction Corrected Density Functional Theory Calculations.

    Science.gov (United States)

    Lehtola, Susi; Head-Gordon, Martin; Jónsson, Hannes

    2016-07-12

    Implentation of seminumerical stability analysis for calculations using the Perdew-Zunger self-interaction correction is described. It is shown that real-valued solutions of the Perdew-Zunger equations for gas phase atoms are unstable with respect to imaginary orbital rotations, confirming that a proper implementation of the correction requires complex-valued orbitals. The orbital density dependence of the self-interaction corrected functional is found to lead to multiple local minima in the case of the acrylic acid, H6, and benzene molecules. In the case of benzene, symmetry breaking that results in incorrect ground state geometry is found to occur, erroneously leading to alternating bond lengths in the molecule.

  14. Protein kinase TTK interacts and co-localizes with CENP-E to the kinetochore of human cells

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Spindle checkpoint is an important biochemical signaling cascade during mitosis which monitors the fidelity of chromosome segregation, and is mediated by protein kinases Mps1 and Bub1/BubR1. Our recent studies show that kinesin-related motor protein CENP-E interacts with BubR1 and participates in spindle checkpoint signaling. To elucidate the molecular mechanisms underlying spindle checkpoint signaling, we carried out proteomic dissection of human cell kinetochore and revealed protein kinase TTK, human homologue of yeast Mps1. Our studies show that TTK is localized to the kinetochore of human cells, and interacts with CENP-E, suggesting that TTK may play an important role in chromosome segregation during mitosis.

  15. Nuclear structure with unitarily transformed two-body plus phenomenological three-body interactions

    Energy Technology Data Exchange (ETDEWEB)

    Guenther, Anneke

    2011-02-02

    The importance of three-nucleon forces for a variety of nuclear structure phenomena is apparent in various investigations. This thesis provides a first step towards the inclusion of realistic three-nucleon forces by studying simple phenomenological threebody interactions. The Unitary Correlation Operator Method (UCOM) and the Similarity Renormalization Group (SRG) provide two different approaches to derive soft phase-shift equivalent nucleon-nucleon (NN) interactions via unitary transformations. Although their motivations are quite different the NN interactions obtained with the two methods exhibit some similarities. The application of the UCOM- or SRG-transformed Argonne V18 potential in the Hartree-Fock (HF) approximation and including the second-order energy corrections emerging from many-body perturbation theory (MBPT) reveals that the systematics of experimental ground-state energies can be reproduced by some of the interactions considering a series of closed-shell nuclei across the whole nuclear chart. However, charge radii are systematically underestimated, especially for intermediate and heavy nuclei. This discrepancy to experimental data is expected to result from neglected three-nucleon interactions. As first ansatz for a three-nucleon force, we consider a finite-range three-body interaction of Gaussian shape. Its influence on ground-state energies and charge radii is discussed in detail on the basis of HF plus MBPT calculations and shows a significant improvement in the description of experimental data. As the handling of the Gaussian three-body interaction is time-extensive, we show that it can be replaced by a regularized three-body contact interaction exhibiting a very similar behavior. An extensive study characterizes its properties in detail and confirms the improvements with respect to nuclear properties. To take into account information of an exact numerical solution of the nuclear eigenvalue problem, the No-Core Shell Model is applied to

  16. Delocalized and localized donating-accepting Mn-C interactions in half-sandwich cyclopentadienyl and pentadienyl complexes.

    Science.gov (United States)

    Solís-Huitrón, Josué; Zúñiga-Villarreal, Noé; Martínez-Otero, Diego; Barquera-Lozada, José Enrique

    2017-05-30

    The widely used cyclopentadienyl (Cp) ligand and the pentadienyl (Pdl) ligand have very similar molecular orbitals (MOs) but they have significantly different chemical behavior. The extensively mixing of the MOs in the Pdl ligand has prevented a quantitative explanation of the observed differences between these two ligands. In a series of synthesized close/open half sandwich manganese phosphine carbonyls, the quantum theory of atoms in molecules and the interacting quantum atom model allow us to quantify the accepting-donating capacities of both ligands and to break down the M-dienyl bond into individual atomic interactions. The Mn-Pdl bond is stronger, more localized and has a larger backbonding contribution than the Mn-Cp bond. All carbon atoms in the Cp ring interact similarly with the Mn center, whereas the Pdl's terminal carbon atoms exhibit a strong donor and a moderate acceptor character, and C2 and C4 have an acceptor character and C3 a donor character. Contrarily to the constrained five-membered Cp ring, the stronger Mn-Pdl interaction can barely compensate for the large destabilizing distortion of the backbone of the nonaromatic Pdl ligand.

  17. CONAN—The cruncher of local exchange coefficients for strongly interacting confined systems in one dimension

    DEFF Research Database (Denmark)

    Loft, Niels Jakob Søe; Kristensen, Lasse Bjørn; Thomsen, Anders

    2016-01-01

    We consider a one-dimensional system of particles with strong zero-range interactions. This system can be mapped onto a spin chain of the Heisenberg type with exchange coefficients that depend on the external trap. In this paper, we present an algorithm that can be used to compute these exchange...... trap and a box trap with a superimposed asymmetric tilted potential. For these examples, the computation time typically scales with the number of particles as O(N3.5±0.4). Computation times are around 10 s for N=10 particles and less than 10 min for N=20 particles....

  18. Local flow characteristics in a MHD induction machine duct at large parameters of electromagnetic interaction

    Energy Technology Data Exchange (ETDEWEB)

    Valdmane, R.A.; Krishberg, R.R.; Lielpeter, Ya.Ya.; Mikryukov, Ch.K.; Ulmanis, L.Ya.

    1977-07-01

    A study is made of the velocity distribution along the duct width of an induction MHD machine with a traveling magnetic field under pump, generator and damping conditions. The computed velocity profiles were compared to those obtained on a sodium circuit under pump and damping conditions. The parameter values for electromagnetic interaction E in the experiments and in the computations changed from 2 to 4.5. Agreement was obtained between the measured velocity distribution and the compared ones at values E > 1. 6 references, 7 figures.

  19. Arabinogalactan Glycosyltransferases: Enzyme Assay, Protein-Protein Interaction, Subcellular Localization, and Perspectives for Application

    Directory of Open Access Journals (Sweden)

    Naomi Geshi

    2014-01-01

    Full Text Available Arabinogalactan proteins (AGPs are abundant extracellular proteoglycans that are found in most plant species and involved in many cellular processes, such as cell proliferation and survival, pattern formation, and growth, and in plant microbe interaction. AGPs are synthesized by posttranslational O-glycosylation of proteins and attached glycan part often constitutes greater than 90% of the molecule. Subtle altered glycan structures during development have been considered to function as developmental markers on the cell surface, but little is known concerning the molecular mechanisms. My group has been working on glycosylation enzymes (glycosyltransferases of AGPs to investigate glycan function of the molecule. This review summarizes the recent findings from my group as for AtGalT31A, AtGlcAT14A-C, and AtGalT29A of Arabidopsis thaliana with a specific focus on the (i biochemical enzyme activities; (ii subcellular compartments targeted by the glycosyltransferases; and (iii protein-protein interactions. I also discuss application aspect of glycosyltransferase in improving AGP-based product used in industry, for example, gum arabic.

  20. Culture and Local Development: the Interaction of Cultural Heritage and Creative Industries

    Directory of Open Access Journals (Sweden)

    Valery Gordin

    2011-10-01

    Full Text Available The aim of the study is to examine the various forms of interaction between cultural heritage and creative industries to support the development of various types of cultural clusters in St. Petersburg. The study was based on a model, which provides several types of partnership cultural heritage (CH could have with the creative industries (CI: CH as a “decoration” for the CI, as “content”, as a “brand”, as the creator of the needs. Authors’ classification of cultural clusters in St. Petersburg is described, including clusters of cultural heritage, ethnic cultural clusters, the mass-cultural (consumer-oriented cultural clusters, art - incubators. One of the main findings is the low willingness of many public cultural institutions to have any form of interaction with the creative industries. The second group of findings concerned the ability to attract creative industries to provide services for residents of St. Petersburg in cooperation with public institutions of culture. 

  1. Localized surface plasmon and exciton interaction in silver-coated cadmium sulphide quantum dots

    Science.gov (United States)

    Ghosh, P.; Rustagi, K. C.; Vasa, P.; Singh, B. P.

    2015-05-01

    Localized surface plasmon and exciton coupling has been investigated on colloidal solutions of silver-coated CdS nanoparticles (NPs), synthesized by gamma irradiation. Two broad photoluminescence (PL) bands (blue/red) corresponding to band to band and defect state transitions have been observed for the bare and coated samples. In case of bare CdS NPs, the intensity of the red PL peak is about ten times higher than the blue PL peak intensity. However, on coating the CdS NPs with silver, the peak intensity of the blue PL band gets enhanced and becomes equal to that of the red PL band. High-resolution transmission electron microscopic (HRTEM) images adequately demonstrate size distribution of these metal/semiconductor nanocomposites. UV-Vis absorption studies show quantum confinement effect in these semiconductor quantum dot (SQD) systems. Absorption spectrum of silver-coated SQDs shows signature of surface plasmon-exciton coupling which has been theoretically verified.

  2. Localized surface plasmon and exciton interaction in silver-coated cadmium sulphide quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, P.; Rustagi, K. C.; Vasa, P.; Singh, B. P., E-mail: bhanuprs@gmail.com [Department of Physics, Indian Institute of Technology Bombay, Mumbai- 400076 (India)

    2015-05-15

    Localized surface plasmon and exciton coupling has been investigated on colloidal solutions of silver-coated CdS nanoparticles (NPs), synthesized by gamma irradiation. Two broad photoluminescence (PL) bands (blue/red) corresponding to band to band and defect state transitions have been observed for the bare and coated samples. In case of bare CdS NPs, the intensity of the red PL peak is about ten times higher than the blue PL peak intensity. However, on coating the CdS NPs with silver, the peak intensity of the blue PL band gets enhanced and becomes equal to that of the red PL band. High-resolution transmission electron microscopic (HRTEM) images adequately demonstrate size distribution of these metal/semiconductor nanocomposites. UV-Vis absorption studies show quantum confinement effect in these semiconductor quantum dot (SQD) systems. Absorption spectrum of silver-coated SQDs shows signature of surface plasmon-exciton coupling which has been theoretically verified.

  3. Equilibration of a strongly interacting plasma: holographic analysis of local and nonlocal probes

    CERN Document Server

    Bellantuono, Loredana

    2016-01-01

    The relaxation of a strongly coupled plasma towards the hydrodynamic regime is studied by analyzing the evolution of local and nonlocal observables in the holographic approach. The system is driven in an initial anisotropic and far-from equilibrium state through an impulsive time-dependent deformation (quench) of the boundary spacetime geometry. Effective temperature and entropy density are related to the position and area of a black hole horizon, which has formed as a consequence of the distortion. The behavior of stress-energy tensor, equal-time correlation functions and Wilson loops of different shapes is examined, and a hierarchy among their thermalization times emerges: probes involving shorter length scales thermalize faster.

  4. Equilibration of a strongly interacting plasma: holographic analysis of local and nonlocal probes

    Directory of Open Access Journals (Sweden)

    Bellantuono Loredana

    2016-01-01

    Full Text Available The relaxation of a strongly coupled plasma towards the hydrodynamic regime is studied by analyzing the evolution of local and nonlocal observables in the holographic approach. The system is driven in an initial anisotropic and far-from equilibrium state through an impulsive time-dependent deformation (quench of the boundary spacetime geometry. Effective temperature and entropy density are related to the position and area of a black hole horizon, which has formed as a consequence of the distortion. The behavior of stress-energy tensor, equal-time correlation functions and Wilson loops of different shapes is examined, and a hierarchy among their thermalization times emerges: probes involving shorter length scales thermalize faster.

  5. Phonon-Plasmon Interaction in Metal-Insulator-Metal Localized Surface Plasmon Systems

    CERN Document Server

    Mrabti, Abdelali; Nicolas, Rana; Maurer, Thomas; Adam, Pierre-Michel; Akjouj, Abdellatif; Pennec, Yan; Djafari-Rouhani, Bahram

    2016-01-01

    We investigate theoretically and numerically the coupling between elastic and localized surface plasmon modes in a system of gold nanocylinders separated from a thin gold film by a dielectric spacer of few nanometers thickness. That system supports plasmon modes confined in between the bottom of the nanocylinder and the top of the gold film, which arise from the formation of interference patterns by short-wavelength metal-insulator-metal propagating plasmon. First we present the plasmonic properties of the system though computer-simulated extinction spectra and field maps associated to the different optical modes. Next a simple analytical model is introduced, which allows to correctly reproduce the shape and wavelengths of the plasmon modes. This model is used to investigate the efficiency of the coupling between an elastic deformation and the plasmonic modes. In the last part of the paper, we present the full numerical simulations of the phononic properties of the system, and then compute the acousto-plasmon...

  6. Discovering the cellular-localized functional modules and modular interactions in response to liver cancer

    Institute of Scientific and Technical Information of China (English)

    Zhu Jing; Guo Zheng; Yang Da; Zhang Min; Wang Jing; Wang Chenguang

    2008-01-01

    In this paper, we firstly identify the functional modules enriched with differentially expressed genes (DEGs) and characterized by biological processes in specific cellular locations, based on gene ontology (GO) and microarray data. Then, we further define and filter disease relevant signature modules according to the ranking of the disease discriminating abilities of the pre-selected functional modules. At last, we analyze the potential way by which they cooperate towards human disease. Application of the proposed method to the analysis of a liver cancer dataset shows that, using the same false discovery rate (FDR) threshold, we can find more biologically meaningful and detailed processes by using the cellular localization information. Some biological evidences support the relevancy of our biological modules to the disease mechanism.

  7. The International, Regional and Local Interaction in the Promotion of Cultural Tourism in Mozambique

    Directory of Open Access Journals (Sweden)

    Elisa Magnani

    2017-03-01

    Full Text Available This paper discusses the tourist promotion of the cultural and natural heritage in Mozambique, one of Africa’s poorest countries, whose strategy for the reduction of poverty highlights the role of tourism in supporting territorial development and implementing the Millennium/Sustainable Development Goals, the United Nation plan to end poverty, protect the planet and ensure prosperity for all. The country has produced a national strategy for the development of tourism that is based on the integration at the national level of international and regional policies implemented through the territorial action of several subjects working at the local level. Among them, regional and international Ngos, that play an important role in promoting actions aimed at capacity-building, advocacy, empowerment. This strategy makes of Mozambique a very interesting example of the rescaling process in tourism development that guides the political agenda of both the international tourist organizations and the national governments.

  8. Localization of CD9 Molecule on Bull Spermatozoa: Its Involvement in the Sperm-Egg Interaction.

    Science.gov (United States)

    Antalíková, J; Jankovičová, J; Simon, M; Cupperová, P; Michalková, K; Horovská, Ľ

    2015-06-01

    Tetraspanin CD9 is one of the egg membrane proteins known to be essential in fertilization process. The presence and localization of CD9 molecule in spermatozoa and its possible function in reproduction are still unclear. In our study, we describe the localization of CD9 on bull spermatozoa. In the immunofluorescence assay, the positive signal has been observed in the high proportion of sperm cells as a fine grains either on the apical part or through the entire anterior region of sperm head. CD9 recognized by monoclonal antibody IVA-50 was detected on freshly ejaculated (83.4 ± 3.7%) and frozen-thawed (84.3 ± 2.3%) sperm. The same reaction pattern was observed on sperm capacitated for 1 h, 2 h, 3 h and 4 h (83.6 ± 2.0%; 84.0 ± 1.5%; 85.7 ± 0.8%; 77.5 ± 10.8%). The presence of CD9 exclusively on plasma membrane of the bovine sperm has been detected by Western blot analysis of the protein fractions after the discontinuous sucrose gradient fractionation of the bull sperm. Moreover, probable role of the sperm CD9 molecule in fertilization process of cattle has been suggested as sperm treatment with anti-CD9 antibody significantly reduced (by 25%, p ≤ 0.001) the number of fertilized oocytes compared to control group in fertilization assay in vitro.

  9. The FACT complex interacts with the E3 ubiquitin ligase Psh1 to prevent ectopic localization of CENP-A.

    Science.gov (United States)

    Deyter, Gary M R; Biggins, Sue

    2014-08-15

    Centromere identity and its epigenetic maintenance require the incorporation of a histone H3 variant called CENP-A at centromeres. CENP-A mislocalization to ectopic sites may disrupt chromatin-based processes and chromosome segregation, so it is important to uncover the mechanisms by which this variant is exclusively localized to centromeres. Here, we identify a role for the conserved chromatin-modifying complex FACT (facilitates chromatin transcription/transactions) in preventing budding yeast CENP-A(Cse4) mislocalization to euchromatin by mediating its proteolysis. The Spt16 subunit of the FACT complex binds to Psh1 (Pob3/Spt16/histone), an E3 ubiquitin ligase that targets CENP-A(Cse4) for degradation. The interaction between Psh1 and Spt16 is critical for both CENP-A(Cse4) ubiquitylation and its exclusion from euchromatin. We found that Psh1 cannot efficiently ubiquitylate CENP-A(Cse4) nucleosomes in vitro, suggesting that additional factors must facilitate CENP-A(Cse4) removal from chromatin in vivo. Consistent with this, a Psh1 mutant that cannot associate with FACT has a reduced interaction with CENP-A(Cse4) in vivo. Together, our data identify a previously unknown mechanism to maintain centromere identity and genomic stability through the FACT-mediated degradation of ectopically localized CENP-A(Cse4). © 2014 Deyter and Biggins; Published by Cold Spring Harbor Laboratory Press.

  10. Kinematic classifications of local interacting galaxies: implications for the merger/disk classifications at high-z

    CERN Document Server

    Hung, Chao-Ling; Yuan, Tiantian; Larson, Kirsten L; Casey, Caitlin M; Smith, Howard A; Sanders, D B; Kewley, Lisa J; Hayward, Christopher C

    2015-01-01

    The classification of galaxy mergers and isolated disks is key for understanding the relative importance of galaxy interactions and secular evolution during the assembly of galaxies. The kinematic properties of galaxies as traced by emission lines have been used to suggest the existence of a significant population of high-z star-forming galaxies consistent with isolated rotating disks. However, recent studies have cautioned that post-coalescence mergers may also display disk-like kinematics. To further investigate the robustness of merger/disk classifications based on kinematic properties, we carry out a systematic classification of 24 local (U)LIRGs spanning a range of galaxy morphologies: from isolated spiral galaxies, ongoing interacting systems, to fully merged remnants. We artificially redshift the WiFeS observations of these local (U)LIRGs to z=1.5 to make a realistic comparison with observations at high-z, and also to ensure that all galaxies have the same spatial sampling of ~900 pc. Using both kineme...

  11. Viral RNase3 Co-Localizes and Interacts with the Antiviral Defense Protein SGS3 in Plant Cells.

    Directory of Open Access Journals (Sweden)

    Isabel Weinheimer

    Full Text Available Sweet potato chlorotic stunt virus (SPCSV; family Closteroviridae encodes a Class 1 RNase III endoribonuclease (RNase3 that suppresses post-transcriptional RNA interference (RNAi and eliminates antiviral defense in sweetpotato plants (Ipomoea batatas. For RNAi suppression, RNase3 cleaves double-stranded small interfering RNAs (ds-siRNA and long dsRNA to fragments that are too short to be utilized in RNAi. However, RNase3 can suppress only RNAi induced by sense RNA. Sense-mediated RNAi involves host suppressor of gene silencing 3 (SGS3 and RNA-dependent RNA polymerase 6 (RDR6. In this study, subcellular localization and host interactions of RNase3 were studied in plant cells. RNase3 was found to interact with SGS3 of sweetpotato and Arabidopsis thaliana when expressed in leaves, and it localized to SGS3/RDR6 bodies in the cytoplasm of leaf cells and protoplasts. RNase3 was also detected in the nucleus. Co-expression of RNase3 and SGS3 in leaf tissue enhanced the suppression of RNAi, as compared with expression of RNase3 alone. These results suggest additional mechanisms needed for efficient RNase3-mediated suppression of RNAi and provide new information about the subcellular context and phase of the RNAi pathway in which RNase3 realizes RNAi suppression.

  12. Resolving protein interactions and organization downstream the T cell antigen receptor using single-molecule localization microscopy: a review

    Science.gov (United States)

    Sherman, Eilon

    2016-06-01

    Signal transduction is mediated by heterogeneous and dynamic protein complexes. Such complexes play a critical role in diverse cell functions, with the important example of T cell activation. Biochemical studies of signalling complexes and their imaging by diffraction limited microscopy have resulted in an intricate network of interactions downstream the T cell antigen receptor (TCR). However, in spite of their crucial roles in T cell activation, much remains to be learned about these signalling complexes, including their heterogeneous contents and size distribution, their complex arrangements in the PM, and the molecular requirements for their formation. Here, we review how recent advancements in single molecule localization microscopy have helped to shed new light on the organization of signalling complexes in single molecule detail in intact T cells. From these studies emerges a picture where cells extensively employ hierarchical and dynamic patterns of nano-scale organization to control the local concentration of interacting molecular species. These patterns are suggested to play a critical role in cell decision making. The combination of SMLM with more traditional techniques is expected to continue and critically contribute to our understanding of multimolecular protein complexes and their significance to cell function.

  13. Numerical study on interaction of local air cooler with stratified hydrogen cloud in a large vessel

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Z. [Atomic Energy of Canada Limited, Chalk River Laboratories, ON K0J 1J0 (Canada); Andreani, M. [Laboratory for Thermal-Hydraulics, Paul Scherrer Institut, 5232 Villigen (Switzerland)

    2012-07-01

    Within the framework of the ERCOSAM project, planning calculations are performed to examine sensitivity parameters that can affect the break-up (erosion) of a helium layer by mitigation devices (i.e., cooler, spray, or Passive Autocatalytic Recombiner - PAR). This paper reports the GOTHIC analysis results for the cooler tests to be performed in the PANDA facility. The cooler elevation and geometry, helium layer thickness, steam distribution in the vessel, and the vessel geometry (inter-connected multi-compartments versus a single volume) on the erosion process as well as the cooling capacity are studied. This analysis is valuable because only a limited number of conditions will be examined in the planned experiments. The study provides a useful understanding of the interaction of a cooler with a stratified atmosphere. (authors)

  14. Vacuum ultraviolet detection of the VLISM-heliosphere interaction. [very local interstellar medium

    Science.gov (United States)

    Judge, D. L.; Gangopadhyay, P.; Ogawa, H. S.; Blum, P.

    1992-01-01

    As the neutral components of the interstellar gas flow through the heliosphere their spatial distribution is modified by charge exchange with the solar plasma, photoionization, and radiation pressure. The deep space probes Pioneers 10/11 and Voyagers 1/2 have provided an opportunity to investigate this distribution through VUV observations of the heliospheric glow. Since the interactions of the inflowing neutrals with the heliosphere depend on both space and time it is particularly useful to have multiple spacecraft observations. Pioneer 10 is in the downstream region of the inflowing interstellar breeze at 50 AU while Pioneer 11 and Voyager 2 are upstream at about 30 AU. Voyager 1 is also upstream at about 40 AU but at a heliographic latitude of + 30 deg. Both temporal and spatial effects are expected to be quite different for the upstream and downstream regions. Some of the recent VUV data and its implications with respect to the heliospheric structure will be presented.

  15. Making a Bad Situation Worse: An Invasive Species Altering the Balance of Interactions between Local Species

    Science.gov (United States)

    2016-01-01

    Biological invasions pose a significant threat to biodiversity, especially on oceanic islands. One of the primary explanations for the success of plant invaders is direct suppression of competitors. However, indirect interactions can also be important, although they are often overlooked in studies on biological invasion. The shrub Leucaena leucocephala is a widespread island invader with putative allelopathic effects on the germination and growth of other species. We quantified the impact of Leucaena on plant communities richness on an oceanic Brazilian island and, through nursery experiments, investigated the potential for allelopathic effects on the germination of Erythrina velutina, a native species that is often absent from stands of Leucaena. Additionally, in a manipulative field experiment, we examined the direct and indirect effects (mediated by the native species Capparis flexuosa) of the invader on the development of Erythrina. The species richness in invaded sites was lower than in uninvaded sites, and Capparis was the only native species that was frequently present in invaded sites. In the nursery experiments, we found no evidence that Leucaena affects the germination of Erythrina. In the field experiments, the odds of Erythrina germination were lower in the presence of Leucaena litter, but higher in the presence of Leucaena trees. However, the survival and growth of Erythrina were considerably inhibited by the presence of Leucaena trees. The isolated effect of native Capparis on the germination and growth of Erythrina varied from positive to neutral. However, when Capparis and Leucaena were both present, their combined negative effects on Erythrina were worse than the effect of Leucaena alone, which may be attributed to indirect effects. This study provides the first empirical evidence that the balance of the interactions between native species can shift from neutral/positive to negative in the presence of an exotic species. PMID:27010846

  16. Making a Bad Situation Worse: An Invasive Species Altering the Balance of Interactions between Local Species.

    Science.gov (United States)

    Mello, Thayná Jeremias; Oliveira, Alexandre Adalardo de

    2016-01-01

    Biological invasions pose a significant threat to biodiversity, especially on oceanic islands. One of the primary explanations for the success of plant invaders is direct suppression of competitors. However, indirect interactions can also be important, although they are often overlooked in studies on biological invasion. The shrub Leucaena leucocephala is a widespread island invader with putative allelopathic effects on the germination and growth of other species. We quantified the impact of Leucaena on plant communities richness on an oceanic Brazilian island and, through nursery experiments, investigated the potential for allelopathic effects on the germination of Erythrina velutina, a native species that is often absent from stands of Leucaena. Additionally, in a manipulative field experiment, we examined the direct and indirect effects (mediated by the native species Capparis flexuosa) of the invader on the development of Erythrina. The species richness in invaded sites was lower than in uninvaded sites, and Capparis was the only native species that was frequently present in invaded sites. In the nursery experiments, we found no evidence that Leucaena affects the germination of Erythrina. In the field experiments, the odds of Erythrina germination were lower in the presence of Leucaena litter, but higher in the presence of Leucaena trees. However, the survival and growth of Erythrina were considerably inhibited by the presence of Leucaena trees. The isolated effect of native Capparis on the germination and growth of Erythrina varied from positive to neutral. However, when Capparis and Leucaena were both present, their combined negative effects on Erythrina were worse than the effect of Leucaena alone, which may be attributed to indirect effects. This study provides the first empirical evidence that the balance of the interactions between native species can shift from neutral/positive to negative in the presence of an exotic species.

  17. Human selenophosphate synthetase 1 has five splice variants with unique interactions, subcellular localizations and expression patterns

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jin Young [Laboratory of Molecular Genetics and Genomics, School of Biological Sciences, Institute of Molecular Biology and Genetics, Seoul National University, Seoul 151-742 (Korea, Republic of); Lee, Kwang Hee [Laboratory of Molecular Genetics and Genomics, School of Biological Sciences, Institute of Molecular Biology and Genetics, Seoul National University, Seoul 151-742 (Korea, Republic of); Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul National University, Seoul 151-742 (Korea, Republic of); Shim, Myoung Sup; Shin, Hyein [Laboratory of Molecular Genetics and Genomics, School of Biological Sciences, Institute of Molecular Biology and Genetics, Seoul National University, Seoul 151-742 (Korea, Republic of); Xu, Xue-Ming; Carlson, Bradley A.; Hatfield, Dolph L. [Laboratory of Cancer Prevention, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 (United States); Lee, Byeong Jae, E-mail: imbglmg@snu.ac.kr [Laboratory of Molecular Genetics and Genomics, School of Biological Sciences, Institute of Molecular Biology and Genetics, Seoul National University, Seoul 151-742 (Korea, Republic of); Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul National University, Seoul 151-742 (Korea, Republic of)

    2010-06-18

    Selenophosphate synthetase 1 (SPS1) is an essential cellular gene in higher eukaryotes. Five alternative splice variants of human SPS1 (major type, {Delta}E2, {Delta}E8, +E9, +E9a) were identified wherein +E9 and +E9a make the same protein. The major type was localized in both the nuclear and plasma membranes, and the others in the cytoplasm. All variants form homodimers, and in addition, the major type forms a heterodimer with {Delta}E2, and {Delta}E8 with +E9. The level of expression of each splice variant was different in various cell lines. The expression of each alternative splice variant was regulated during the cell cycle. The levels of the major type and {Delta}E8 were gradually increased until G2/M phase and then gradually decreased. {Delta}E2 expression peaked at mid-S phase and then gradually decreased. However, +E9/+E9a expression decreased gradually after cell cycle arrest. The possible involvement of SPS1 splice variants in cell cycle regulation is discussed.

  18. Land Use and Wildfire: A Review of Local Interactions and Teleconnections

    Directory of Open Access Journals (Sweden)

    Van Butsic

    2015-02-01

    Full Text Available Fire is a naturally occurring process of most terrestrial ecosystems as well as a tool for changing land use. Since the beginning of history humans have used fire as a mechanism for creating areas suitable for agriculture and settlement. As fires threaten human dominated landscapes, fire risk itself has become a driver of landscape change, impacting landscapes through land use regulations and fire management. Land use changes also influence fire ignition frequency and fuel loads and hence alters fire regimes. The impact of these changes is often exacerbated as new land users demand alternative fire management strategies, which can impact land cover and management far from where land use change has actually occurred. This creates nuanced land use teleconnections between source areas for fires and economic cores, which demand and fund fire protection. Here we will review the role of fire and fire risk as a driver of land use change, the ways land use changes impact drivers of fire, and suggest that the integration of land use teleconnections into the fire/land use discussion can help us better understand and manage the complex interactions between fire and land use.

  19. Asymptotic Near Nucleus Structure of the Electron-Interaction Potential in Local Effective Potential Theories

    Science.gov (United States)

    Sahni, Viraht; Qian, Zhixin

    2007-03-01

    In previous work, it has been shown that for spherically symmetric or sphericalized systems, the asymptotic near nucleus structure of the electron-interaction potential is vee(r) = vee(0) + βr + γr^2. In this paper we prove via time-independent Quantal Density Functional Theory[1](Q-DFT): (i) correlations due to the Pauli exclusion principle and Coulomb repulsion do not contribute to the linear structure;(ii) these Pauli and Coulomb correlations contribute quadratically; (iii) the linear structure is solely due to Correlation-Kinetic effects, the coefficient β being determined analytically. By application of adiabatic coupling constant perturbation theory via QDFT we further prove: (iv) the Kohn-Sham (KS-DFT) `exchange' potential vx(r) approaches the nucleus linearly, this structure being due solely to lowest- order Correlation-Kinetic effects: (v) the KS-DFT `correlation' potential vc(r) also approaches the nucleus linearly, being solely due to higher-order Correlation-Kinetic contributions. The above conclusions are equally valid for system of arbitrary symmetry, provided spherical averages of the properties are employed. 1 Quantal Density Functional Theory, V. Sahni (Springer-Verlag 2004)

  20. Local ecological knowledge of artisanal fishermen in southern Bahia, Brazil, about trophic interactions of sharks

    Directory of Open Access Journals (Sweden)

    Márcio Luiz Vargas Barbosa Filho

    2016-09-01

    Full Text Available Despite the serious threats that affect shark species living along the central coast of Brazil, knowledge about the life history of these animals is still scarce. The present study describes the knowledge and perceptions of fishermen from southern Bahia, Brazil, on the trophic interactions of sharks. The objective of this work was to generate information that contributes to a better understanding of the life history of sharks from this poorly known region. In 2012, semi-structured interviews were conducted with 65 fishermen, with over 15 years of experience, about fisheries and aspects of shark feeding behavior. The study found that the participants have comprehensive ethno-ecological knowledge about shark feeding habits, describing 39 types of items as components of the diets of these animals. They are also able to recognize the favored items in the diet of each ethnospecies of shark. Similar studies about shark feeding habits along the Brazilian coast should be developed. This will generate more detailed knowledge and/or new scientific hypotheses about the interspecific relationships of these predators and their prey.

  1. Characterization of L1 ORF1p self-interaction and cellular localization using a mammalian two-hybrid system.

    Directory of Open Access Journals (Sweden)

    Mark Sokolowski

    Full Text Available Long INterspersed Element-1 (LINE-1, L1 is an active retrotransposon that mobilizes using a ribonucleoprotein particle (RNP intermediate composed of the full-length bicistronic L1 mRNA and the two proteins (ORF1p and ORF2p encoded by that mRNA. ORF1p and ORF2p demonstrate cis-preference for their encoding mRNA. Previous studies of ORF1p, purified from bacterial and insect cells demonstrated that this protein forms trimers in vitro. While valuable for understanding ORF1p function, these in vitro approaches do not provide any information on ORF1p self-interaction in the context of mammalian cells. We used a mammalian two-hybrid (M2H system in order to study L1 ORF1p self-interaction in human and mouse cells. We demonstrate that the M2H system successfully detects human and mouse ORF1p self-interactions in transiently transfected mammalian cells. We also generated mouse and human ORF1p-specific antibodies to characterize the expression of ORF1p fusion proteins used in the M2H system. Using these antibodies, we demonstrate that ORF1p interaction in trans leads to the formation of heterodimers that are expected to produce a positive signal in the M2H system. Although the role for L1 ORF1p cis-preference in L1 mobilization is established, the impact of ability of ORF1pto interact in trans on the L1 replication cycle is not known. Furthermore, western blot analysis of ORF1p generated by a full-length L1, wild type ORF1, or a codon-optimized ORF1 expression vector is detected in the nucleus. In contrast, the addition of a tag to the N-terminus of the mouse and human ORF1 proteins can significantly alter the subcellular localization in a tag-specific manner. These data support that nuclear localization of ORF1p may contribute to L1 (and potentially the SINE Alu RNP nuclear access in the host cell.

  2. Non-local interaction via diffusible resource prevents coexistence of cooperators and cheaters in a lattice model.

    Directory of Open Access Journals (Sweden)

    David Bruce Borenstein

    Full Text Available Many cellular populations cooperate through the secretion of diffusible extracellular resources, such as digestive enzymes or virulence factors. Diffusion of these resources leads to long-range intercellular interactions, creating the possibility of cooperation but also the risk of exploitation by non-producing neighbors. In the past, considerable attention has been given to game-theoretic lattice models of intercellular cooperation. In these models, coexistence is commonly observed between cooperators (corresponding to resource producers and cheaters (corresponding to nonproducers. However, these models consider only interactions between direct competitors. We find that when individuals are allowed to interact non-locally through the diffusion of a shared resource coexistence between cooperators and cheaters is lost. Instead, we find population dynamics similar to simple competition, either neutral or biased, with no balancing selection that would favor coexistence. Our results highlight the importance of an accurate treatment of diffusion of shared resources and argue against the generality of the conclusions of game-theoretic lattice models.

  3. Bromo volcano area as human-environment system: interaction of volcanic eruption, local knowledge, risk perception and adaptation strategy

    Science.gov (United States)

    Bachri, Syamsul; Stötter, Johann; Sartohadi, Junun

    2013-04-01

    People in the Bromo area (located within Tengger Caldera) have learn to live with the threat of volcanic hazard since this volcano is categorized as an active volcano in Indonesia. During 2010, the eruption intensity increased yielding heavy ash fall and glowing rock fragments. A significant risk is also presented by mass movement which reaches areas up to 25 km from the crater. As a result of the 2010 eruption, 12 houses were destroyed, 25 houses collapsed and there were severe also effects on agriculture and the livestock sector. This paper focuses on understanding the interaction of Bromo volcanic eruption processes and their social responses. The specific aims are to 1) identify the 2010 eruption of Bromo 2) examine the human-volcano relationship within Bromo area in general, and 3) investigate the local knowledge related to hazard, risk perception and their adaptation strategies in specific. In-depth interviews with 33 informants from four districts nearest to the crater included local people and authorities were carried out. The survey focused on farmers, key persons (dukun), students and teachers in order to understand how people respond to Bromo eruption. The results show that the eruption in 2010 was unusual as it took continued for nine months, the longest period in Bromo history. The type of eruption was phreatomagmatic producing material dominated by ash to fine sand. This kind of sediment typically belongs to Tengger mountain eruptions which had produced vast explosions in the past. Furthermore, two years after the eruption, the interviewed people explained that local knowledge and their experiences with volcanic activity do not influence their risk perception. Dealing with this eruption, people in the Bromo area applied 'lumbung desa' (traditional saving systems) and mutual aid activity for surviving the volcanic eruption. Keywords: Human-environment system, local knowledge, risk perception, adaptation strategies, Bromo Volcano Indonesia

  4. Enhancing teen pregnancy prevention in local communities: capacity building using the interactive systems framework.

    Science.gov (United States)

    Duffy, Jennifer L; Prince, Mary Severson; Johnson, Erin E; Alton, Forrest L; Flynn, Shannon; Faye, Amy Mattison; Padgett, Polly Edwards; Rollison, Chris; Becker, Dana; Hinzey, Angela L

    2012-12-01

    Getting To Outcomes (GTO), an innovative framework for planning, implementing, evaluating, and sustaining interventions has been shown to be effective in helping community-based organizations (CBOs) introduce science-based approaches into their prevention work. However, the Interactive Systems Framework (ISF) suggests that adopting innovations like GTO requires a significant amount of capacity building through training and technical assistance (T/TA). In this study, 11 CBOs and three schools in South Carolina entered into a 3 year program of intense and proactive T/TA based on the ISF to learn how to apply an adaptation of GTO (Promoting Science-Based Approaches-Getting To Outcomes, PSBA-GTO) to their teen pregnancy prevention programs. Using semi-structured interviews, the partnering organizations were assessed at three points in time, pre-T/TA, 12 months, and post T/TA (30 months) for their performance of the steps of GTO in their work. The seven organizations which participated in T/TA until the end of the project received an average of 76 h of TA and 112 h of training per organization. Interview results showed increased performance of all 10 steps of PSBA-GTO by these organizations when conducting their teen pregnancy programs. These results suggest targeted and proactive T/TA can successfully bridge the gap between research and practice by using a three part delivery system, as prescribed in the ISF, which relies on an intermediary prevention support system to ensure accurate and effective translation of research to the everyday work of community-based practitioners.

  5. Posttranslational modifications, localization, and protein interactions of optineurin, the product of a glaucoma gene.

    Directory of Open Access Journals (Sweden)

    Hongyu Ying

    Full Text Available BACKGROUND: Glaucoma is a major blinding disease. The most common form of this disease, primary open angle glaucoma (POAG, is genetically heterogeneous. One of the candidate genes, optineurin, is linked principally to normal tension glaucoma, a subtype of POAG. The present study was undertaken to illustrate the basic characteristics of optineurin. METHODOLOGY/PRINCIPAL FINDINGS: Lysates from rat retinal ganglion RGC5 cells were subjected to N- or O-deglycosylation or membrane protein extraction. The phosphorylation status was evaluated after immunoprecipitation. It was found that while phosphorylated, optineurin was neither N- nor O-glycosylated, and was by itself not a membrane protein. RGC5 and human retinal pigment epithelial cells were double stained with anti-optineurin and anti-GM130. The endogenous optineurin exhibited a diffuse, cytoplasmic distribution, but a population of the protein was associated with the Golgi apparatus. Turnover experiments showed that the endogenous optineurin was relatively short-lived, with a half-life of approximately 8 hours. Native blue gel electrophoresis revealed that the endogenous optineurin formed homohexamers. Optineurin also interacted with molecules including Rab8, myosin VI, and transferrin receptor to assemble into supermolecular complexes. When overexpressed, optineurin-green fluorescence protein (GFP fusion protein formed punctate structures termed "foci" in the perinuclear region. Treatment of nocadazole resulted in dispersion of the optineurin foci. In addition, tetracycline-regulated optineurin-GFPs expressing RGC5 stable cell lines were established for the first time. CONCLUSIONS/SIGNIFICANCE: The present study provides new information regarding basic characteristics of optineurin that are important for future efforts in defining precisely how optineurin functions normally and how mutations may result in pathology. The inducible optineurin-GFP-expressing cell lines are also anticipated to

  6. Local and regional interactions between air quality and climate in New Delhi- A sector based analysis

    Science.gov (United States)

    Marrapu, Pallavi

    Deteriorating air quality is one of the major problems faced worldwide and in particular in Asia. The world's most polluted megacities are located in Asia highlighting the urgent need for efforts to improve the air quality. New Delhi (India), one of the world's most polluted cities, was the host of the Common Wealth Games during the period of 4-14 October 2010. This high profile event provided a good opportunity to accelerate efforts to improve air quality. Computational advances now allow air quality forecast models to fully couple the meteorology with chemical constituents within a unified modeling system that allows two-way interactions. The WRF-Chem model is used to simulate air quality in New Delhi. The thesis focuses on evaluating air quality and meteorology feedbacks. Four nested domains ranging from South Asia, Northern India, NCR Delhi and Delhi city at 45km, 15km, 5km and 1.67km resolution for a period of 20 day (26th Sep--15th Oct, 2010) are used in the study. The predicted mean surface concentrations of various pollutants show similar spatial distributions with peak values in the middle of the domain reflecting the traffic and population patterns in the city. Along with these activities, construction dust and industrial emissions contribute to high levels of criteria pollutants. The study evaluates the WRF-Chem capabilities using a new emission inventory developed over Delhi at a fine resolution of 1.67km and evaluating the results with observational data from 11 monitoring sties placed at various Game venues. The contribution of emission sectors including transportation, power, industry, and domestic to pollutant concentrations at targeted regions are studied and the results show that transportation and domestic sector are the major contributors to the pollution levels in Delhi, followed by industry. Apart from these sectors, emissions outside of Delhi contribute 20-50% to surface concentrations depending on the species. This indicates that pollution

  7. Properties and temperature evolution of the spectrum of localized quasi-particles interacting with polarization phonons in two models

    Directory of Open Access Journals (Sweden)

    M.V. Tkach

    2016-12-01

    Full Text Available Using the Feynman-Pines diagram technique, the energy spectrum of localized quasi-particles interacting with polarization phonons is calculated and analyzed in the wide range of energies at the finite temperature of the system. It is established that the general model of the system, besides the bound states known from the simplified model with an additional condition for the operator of quasi-particles number, contains the new bound states even for the systems with weak coupling. The contribution of multi-phonon processes into the formation of renormalized spectrum of the system is analyzed. The reasons of the appearance, behaviour and disappearance of separate pairs of bound states depending on the coupling constant and temperature are revealed.

  8. Prickle2 is localized in the postsynaptic density and interacts with PSD-95 and NMDA receptors in the brain.

    Science.gov (United States)

    Hida, Yamato; Fukaya, Masahiro; Hagiwara, Akari; Deguchi-Tawarada, Maki; Yoshioka, Toshinori; Kitajima, Isao; Inoue, Eiji; Watanabe, Masahiko; Ohtsuka, Toshihisa

    2011-06-01

    The planar cell polarity (PCP) protein, Prickle (Pk), is conserved in invertebrates and vertebrates, and regulates cellular morphogenesis and movement. Vertebrate Pk consists of at least two family members, Pk1 and Pk2, both of which are expressed in the brain; however, their localization and function at synapses remain elusive. Here, we show that Pk2 is expressed mainly in the adult brain and is tightly associated with the postsynaptic density (PSD) fraction obtained by subcellular fractionation. In primary cultured rat hippocampal neurons, Pk2 is colocalized with PSD-95 and synaptophysin at synapses. Moreover, immunoelectron microcopy shows that Pk2 is localized at the PSD of asymmetric synapses in the hippocampal CA1 region. Biochemical assays identified that Pk2 forms a complex with PSD proteins including PSD-95 and NMDA receptor subunits via the direct binding to the C-terminal guanylate kinase domain of PSD-95. These results indicate that Pk2 is a novel PSD protein that interacts with PSD-95 and NMDA receptors through complex formations in the brain.

  9. Identifying interactions in the time and frequency domains in local and global networks - A Granger Causality Approach

    Directory of Open Access Journals (Sweden)

    Guo Shuixia

    2010-06-01

    Full Text Available Abstract Background Reverse-engineering approaches such as Bayesian network inference, ordinary differential equations (ODEs and information theory are widely applied to deriving causal relationships among different elements such as genes, proteins, metabolites, neurons, brain areas and so on, based upon multi-dimensional spatial and temporal data. There are several well-established reverse-engineering approaches to explore causal relationships in a dynamic network, such as ordinary differential equations (ODE, Bayesian networks, information theory and Granger Causality. Results Here we focused on Granger causality both in the time and frequency domain and in local and global networks, and applied our approach to experimental data (genes and proteins. For a small gene network, Granger causality outperformed all the other three approaches mentioned above. A global protein network of 812 proteins was reconstructed, using a novel approach. The obtained results fitted well with known experimental findings and predicted many experimentally testable results. In addition to interactions in the time domain, interactions in the frequency domain were also recovered. Conclusions The results on the proteomic data and gene data confirm that Granger causality is a simple and accurate approach to recover the network structure. Our approach is general and can be easily applied to other types of temporal data.

  10. Localization and interaction effects of epitaxial Bi2Se3 bulk states in two-dimensional limit

    Science.gov (United States)

    Dey, Rik; Roy, Anupam; Pramanik, Tanmoy; Guchhait, Samaresh; Sonde, Sushant; Rai, Amritesh; Register, Leonard F.; Banerjee, Sanjay K.

    2016-10-01

    Quantum interference effects and electron-electron interactions are found to play an important role in two-dimensional (2D) bulk transport of topological insulator (TI) thin films, which were previously considered as 2D electron gas (2DEG) and explained on basis of Hikami-Larkin-Nagaoka formula and Lee-Ramakrishnan theory. The distinct massive Dirac-type band structure of the TI bulk state gives rise to quantum corrections to conductivity due to interference and interaction effects, which are quite different from that of a 2DEG. We interpret the experimental findings employing Lu-Shen theory particularly derived for the TI system in the 2D limit. The surface and the bulk conductions are identified based on slopes of logarithmic temperature-dependent conductivities with magnetic fields. The perpendicular field magnetoresistance is analyzed considering suppression of weak antilocalization/localization of the surface/bulk electrons by the applied field. We propose corresponding theoretical models to explain the parallel and tilted field magnetoresistance. The effect of the band structure is found to be crucial for an accurate explanation of the magnetotransport results in the TI thin film.

  11. Differential localization of LTA synthesis proteins and their interaction with the cell division machinery in Staphylococcus aureus.

    Science.gov (United States)

    Reichmann, Nathalie T; Piçarra Cassona, Carolina; Monteiro, João M; Bottomley, Amy L; Corrigan, Rebecca M; Foster, Simon J; Pinho, Mariana G; Gründling, Angelika

    2014-04-01

    Lipoteichoic acid (LTA) is an important cell wall component of Gram-positive bacteria. In Staphylococcus aureus it consists of a polyglycerolphosphate-chain that is retained within the membrane via a glycolipid. Using an immunofluorescence approach, we show here that the LTA polymer is not surface exposed in S. aureus, as it can only be detected after digestion of the peptidoglycan layer. S. aureus mutants lacking LTA are enlarged and show aberrant positioning of septa, suggesting a link between LTA synthesis and the cell division process. Using a bacterial two-hybrid approach, we show that the three key LTA synthesis proteins, YpfP and LtaA, involved in glycolipid production, and LtaS, required for LTA backbone synthesis, interact with one another. All three proteins also interacted with numerous cell division and peptidoglycan synthesis proteins, suggesting the formation of a multi-enzyme complex and providing further evidence for the co-ordination of these processes. When assessed by fluorescence microscopy, YpfP and LtaA fluorescent protein fusions localized to the membrane while the LtaS enzyme accumulated at the cell division site. These data support a model whereby LTA backbone synthesis proceeds in S. aureus at the division site in co-ordination with cell division, while glycolipid synthesis takes place throughout the membrane. © 2014 The Authors. Molecular Microbiology published by John Wiley & Sons Ltd.

  12. Ultracold bosons with cavity-mediated long-range interactions: A local mean-field analysis of the phase diagram

    Science.gov (United States)

    Niederle, Astrid E.; Morigi, Giovanna; Rieger, Heiko

    2016-09-01

    Ultracold bosonic atoms in optical lattices self-organize into a variety of structural and quantum phases when placed into a single-mode cavity and pumped by a laser. Cavity optomechanical effects induce an atom density modulation at the cavity-mode wavelength that competes with the optical lattice arrangement. Simultaneously short-range interactions via particle hopping promote superfluid order such that a variety of structural and quantum coherent phases can occur. We analyze the emerging phase diagram in two dimensions by means of an extended Bose-Hubbard model using a local mean-field approach combined with a superfluid cluster analysis. For commensurate ratios of the cavity and external lattice wavelengths, the Mott insulator-superfluid transition is modified by the appearance of charge density wave and supersolid phases, at which the atomic density supports the buildup of a cavity field. For incommensurate ratios, the optomechanical forces induce the formation of Bose-glass and superglass phases, namely, nonsuperfluid and superfluid phases, respectively, displaying quasiperiodic density modulations, which in addition can exhibit structural and superfluid stripe formation. The onset of such structures is constrained by the on-site interaction and is favorable at fractional densities. Experimental observables are identified and discussed.

  13. New locality record for Haplorchoides mehrai and possible interactions with Opisthorchis viverrini metacercariae in cyprinid fishes in Northeast Thailand.

    Science.gov (United States)

    Manpratum, Yupin; Kaewkes, Wanlop; Echaubard, Pierre; Sripa, Banchob; Kaewkes, Sasithorn

    2017-02-01

    Metacercariae of Opisthorchis viverrini, a carcinogenic liver fluke, and Haplorchoides sp., a trematode maturing in catfish, are commonly found in cyprinid fish, the second intermediate hosts of both flukes. However, the specific identity of Haplorchoides sp. in Thailand and a precise assessment of the effects of co-infections with O. viverrini have never been clarified. Therefore, we aimed to identify the species of Haplorchoides and to investigate possible interactions of the two trematode species in cyprinid fishes. Based on the morphology and morphometry of the cercaria, metacercaria, and adult stages, the Haplorchoides species found was identified as Haplorchoides mehrai Pande and Shukla 1976. Thailand is formally recorded as a new locality for H. mehrai, where naturally infected hosts include the snail Melanoides tuberculata (first intermediate host), the cyprinid fishes Hampala dispar, Cyclocheilichthys apogon, Puntius leiacanthus, Labiobarbus burmanicus, and Cirrhina jullieni (second intermediate hosts), and a catfish, Mystus nemurus (definitive host). The co-infection rates of O. viverrini and H. mehrai were significantly associated with fish species and fish body region (P < 0.001), with an overall significantly higher average intensity of H. mehrai (126.26 metacercariae/fish) than that of O. viverrini (18.02 metacercariae/fish). Further work is required to demonstrate the extent and mechanisms of possible interactions between these trematode species in the fish host. These data may provide a better understanding of O. viverrini transmission dynamics, and help design integrated control interventions.

  14. Centrobin-centrosomal protein 4.1-associated protein (CPAP) interaction promotes CPAP localization to the centrioles during centriole duplication.

    Science.gov (United States)

    Gudi, Radhika; Zou, Chaozhong; Dhar, Jayeeta; Gao, Qingshen; Vasu, Chenthamarakshan

    2014-05-30

    Centriole duplication is the process by which two new daughter centrioles are generated from the proximal end of preexisting mother centrioles. Accurate centriole duplication is important for many cellular and physiological events, including cell division and ciliogenesis. Centrosomal protein 4.1-associated protein (CPAP), centrosomal protein of 152 kDa (CEP152), and centrobin are known to be essential for centriole duplication. However, the precise mechanism by which they contribute to centriole duplication is not known. In this study, we show that centrobin interacts with CEP152 and CPAP, and the centrobin-CPAP interaction is critical for centriole duplication. Although depletion of centrobin from cells did not have an effect on the centriolar levels of CEP152, it caused the disappearance of CPAP from both the preexisting and newly formed centrioles. Moreover, exogenous expression of the CPAP-binding fragment of centrobin also caused the disappearance of CPAP from both the preexisting and newly synthesized centrioles, possibly in a dominant negative manner, thereby inhibiting centriole duplication and the PLK4 overexpression-mediated centrosome amplification. Interestingly, exogenous overexpression of CPAP in the centrobin-depleted cells did not restore CPAP localization to the centrioles. However, restoration of centrobin expression in the centrobin-depleted cells led to the reappearance of centriolar CPAP. Hence, we conclude that centrobin-CPAP interaction is critical for the recruitment of CPAP to procentrioles to promote the elongation of daughter centrioles and for the persistence of CPAP on preexisting mother centrioles. Our study indicates that regulation of CPAP levels on the centrioles by centrobin is critical for preserving the normal size, shape, and number of centrioles in the cell.

  15. Interaction between extended and localized electronic states in the region of the metal to insulator transition in semiconductor alloys

    Energy Technology Data Exchange (ETDEWEB)

    Teubert, Joerg

    2008-07-01

    The first part of this work addresses the influence of those isovalent localized states on the electronic properties of (B,Ga,In)As. Most valuable were the measurements under hydrostatic pressure that revealed a pressure induced metal-insulator transition. One of the main ideas in this context is the trapping of carriers in localized B-related cluster states that appear in the bandgap at high pressure. The key conclusion that can be drawn from the experimental results is that boron atoms seem to have the character of isovalent electron traps, rendering boron as the first known isovalent trap induced by cationic substitution. In the second part, thermoelectric properties of (B,Ga,In)As and (Ga,In)(N,As) are studied. It was found that although the electric-field driven electronic transport in n-type (Ga,In)(N,As) and (B,Ga,In)As differs considerably from that of n-type GaAs, the temperature-gradient driven electronic transport is very similar for the three semiconductors, despite distinct differences in the conduction band structure of (Ga,In)(N,As) and (B,Ga,In)As compared to GaAs. The third part addresses the influence of magnetic interactions on the transport properties near the metal-insulator transition (MIT). Here, two scenarios are considered: Firstly the focus is set on ZnMnSe:Cl, a representative of so called dilute magnetic semiconductors (DMS). In this material Mn(2+) ions provide a large magnetic moment due to their half filled inner 3d-shell. It is shown that magnetic interactions in conjunction with disorder effects are responsible for the unusual magnetotransport behavior found in this and other II-Mn-VI semiconductor alloys. In the second scenario, a different magnetic compound, namely InSb:Mn, is of interest. It is a representative of the III-Mn-V DMS, where the magnetic impurity Mn serves both as the source of a large localized magnetic moment and as the source of a loosely bound hole due to its acceptor character. Up to now, little is known about

  16. Achieving NHAS 90/90/80 Objectives by 2020: An Interactive Tool Modeling Local HIV Prevalence Projections

    Science.gov (United States)

    Kelly, Scott D.; Wortley, Pascale M.; Drenzek, Cherie L.

    2016-01-01

    Background Tools using local HIV data to help jurisdictions estimate future demand for medical and support services are needed. We present an interactive prevalence projection model using data obtainable from jurisdictional HIV surveillance and publically available data. Methods Using viral load data from Georgia’s enhanced HIV/AIDS Reporting System, state level death rates for people living with HIV and the general population, and published estimates for HIV transmission rates, we developed a model for projecting future HIV prevalence. Keeping death rates and HIV transmission rates for undiagnosed, in care/viral load >200, in care/viral load<200, and out of care (no viral load for 12 months) constant, we describe results from simulations with varying inputs projecting HIV incidence and prevalence from 2014 to 2024. Results In this model, maintaining Georgia’s 2014 rates for diagnosis, transitions in care, viral suppression (VS), and mortality by sub-group through 2020, resulted in 85% diagnosed, 59% in care, and 44% VS among diagnosed (85%/58%/44%) with a total of 67 815 PLWH, 33 953 in care, and more than 1000 new cases per year by 2020. Neither doubling the diagnosis rate nor tripling rates of re-engaging out of care PLWH into care alone were adequate to reach 90/90/80 by 2020. We demonstrate a multicomponent scenario that achieved NHAS goals and resulted in 63 989 PLWH, 57 546 in care, and continued annual prevalence increase through 2024. Conclusions Jurisdictions can use this HIV prevalence prediction tool, accessible at https://dph.georgia.gov/hiv-prevalence-projections to assess local capacity to meet future HIV care and social services needs. In this model, achieving 90/90/80 by 2020 in Georgia slowed but did not reverse increases in HIV prevalence, and the number of HIV-infected persons needing care and support services more than doubled. Improving the HIV care infrastructure is imperative. PMID:27459717

  17. Interaction of local anesthetics with a peptide encompassing the IV/S4-S5 linker of the Na+ channel.

    Science.gov (United States)

    Fraceto, Leonardo F; Oyama, Sérgio; Nakaie, Clóvis R; Spisni, Alberto; de Paula, Eneida; Pertinhez, Thelma A

    2006-08-20

    The peptide pIV/S4-S5 encompasses the cytoplasmic linker between helices S4-S5 in domain IV of the voltage-gated Na+ channel, residues 1644-1664. The interaction of two local anesthetics (LA), lidocaine and benzocaine, with pIV/S4-S5 has been studied by DOSY, heteronuclear NMR 1H-15N-HSQC spectroscopy and computational methods. DOSY indicates that benzocaine, a neutral ester, exhibits stronger interaction with pIV/S4-S5 than lidocaine, a charged amine-amide. Weighted average chemical shifts, Deltadelta(1H-15N), show that benzocaine affects residues L1653, M1655 and S1656 while lidocaine slightly perturbs residues I1646, L1649 and A1659, L1660, near the N- and C-terminus, respectively. Computational methods confirmed the stability of the benzocaine binding and the existence of two binding sites for lidocaine. Even considering that the approach of studying the peptide in the presence of a co-solvent (TFE/H2O, 30%/70% v/v) has an inherently limited implication, our data strongly support the existence of multiple LA binding sites in the IV/S4-S5 linker, as suggested in the literature. In addition, we consider that LA can bind to the S4-S5 linker with diverse binding modes and strength since this linker is part of the receptor for the "inactivation gate particle". Conditions for devising new functional studies, aiming to better understand Na+ channel functionality as well as the various facets of LA pharmacological activity are proposed in this work.

  18. Localization of protein-protein interactions among three fluorescent proteins in a single living cell: three-color FRET microscopy

    Science.gov (United States)

    Sun, Yuansheng; Booker, Cynthia F.; Day, Richard N.; Periasamy, Ammasi

    2009-02-01

    Förster resonance energy transfer (FRET) methodology has been used for over 30 years to localize protein-protein interactions in living specimens. The cloning and modification of various visible fluorescent proteins (FPs) has generated a variety of new probes that can be used as FRET pairs to investigate the protein associations in living cells. However, the spectral cross-talk between FRET donor and acceptor channels has been a major limitation to FRET microscopy. Many investigators have developed different ways to eliminate the bleedthrough signals in the FRET channel for one donor and one acceptor. We developed a novel FRET microscopy method for studying interactions among three chromophores: three-color FRET microscopy. We generated a genetic construct that directly links the three FPs - monomeric teal FP (mTFP), Venus and tandem dimer Tomato (tdTomato), and demonstrated the occurrence of mutually dependent energy transfers among the three FPs. When expressed in cells and excited with the 458 nm laser line, the mTFP-Venus-tdTomato fusion proteins yielded parallel (mTFP to Venus and mTFP to tdTomato) and sequential (mTFP to Venus and then to tdTomato) energy transfer signals. To quantify the FRET signals in the three-FP system in a single living cell, we developed an algorithm to remove all the spectral cross-talk components and also to separate different FRET signals at a same emission channel using the laser scanning spectral imaging and linear unmixing techniques on the Zeiss510 META system. Our results were confirmed with fluorescence lifetime measurements and using acceptor photobleaching FRET microscopy.

  19. Radiation-induced effects on murine kidney tumor cells: role in the interaction of local irradiation and immunotherapy.

    Science.gov (United States)

    Younes, E; Haas, G P; Dezso, B; Ali, E; Maughan, R L; Montecillo, E; Pontes, J E; Hillman, G G

    1995-06-01

    Local tumor irradiation enhances the effect of interleukin-2 (IL-2) therapy in the Renca murine renal adenocarcinoma model. To investigate the mechanism(s) of this interaction, we studied the in vitro and in vivo effects of irradiation on the tumor cells. Tumor cells from in situ irradiated renal tumors had diminished proliferation in vitro. A similar growth inhibition was noted following injection of irradiated Renca cells into naive mice, but this effect could be overcome by injecting more cells. Histologic evaluation of tumors derived from irradiated cells revealed a decrease in mitosis and an increase in multinucleated giant cells, apoptosis and micronecrosis. The presence of irradiated tumor reduced the growth of nonirradiated tumor cells when both were injected into separate flanks of the same animal, suggesting that irradiated tumor cells may trigger a systemic antitumor response. Interleukin-2 therapy given after injection of irradiated tumor cells caused a significant increase in leukocytic infiltrates and micronecrosis. Our findings indicate that radiation directly affects tumor growth and induces a systemic mechanism which could be enhanced by IL-2.

  20. Local-field approach to the interaction of an ultracold dense Bose gas with a light field

    CERN Document Server

    Krutitsky, K V; Audretsch, J

    1999-01-01

    The propagation of the electromagnetic field of a laser through a dense Bose gas is examined and nonlinear operator equations for the motion of the center of mass of the atoms are derived. The goal is to present a self-consistent set of coupled Maxwell-Bloch equations for atomic and electromagnetic fields generalized to include the atomic center-of-mass motion. Two effects are considered: The ultracold gas forms a medium for the Maxwell field which modifies its propagation properties. Combined herewith is the influence of the dipole-dipole interaction between atoms which leads to a density dependent shift of the atomic transition frequency. It is expressed in a position dependent detuning and is the reason for the nonlinearity. This results in a direct and physically transparent way from the quantum field theoretical version of the local-field approach to electrodynamics in quantum media. The equations for the matter fields are general. Previously published nonlinear equations are obtained as limiting cases. ...

  1. Key role of local regulation in chemosensing revealed by a new molecular interaction-based modeling method.

    Directory of Open Access Journals (Sweden)

    Martin Meier-Schellersheim

    2006-07-01

    Full Text Available The signaling network underlying eukaryotic chemosensing is a complex combination of receptor-mediated transmembrane signals, lipid modifications, protein translocations, and differential activation/deactivation of membrane-bound and cytosolic components. As such, it provides particularly interesting challenges for a combined computational and experimental analysis. We developed a novel detailed molecular signaling model that, when used to simulate the response to the attractant cyclic adenosine monophosphate (cAMP, made nontrivial predictions about Dictyostelium chemosensing. These predictions, including the unexpected existence of spatially asymmetrical, multiphasic, cyclic adenosine monophosphate-induced PTEN translocation and phosphatidylinositol-(3,4,5P3 generation, were experimentally verified by quantitative single-cell microscopy leading us to propose significant modifications to the current standard model for chemoattractant-induced biochemical polarization in this organism. Key to this successful modeling effort was the use of "Simmune," a new software package that supports the facile development and testing of detailed computational representations of cellular behavior. An intuitive interface allows user definition of complex signaling networks based on the definition of specific molecular binding site interactions and the subcellular localization of molecules. It automatically translates such inputs into spatially resolved simulations and dynamic graphical representations of the resulting signaling network that can be explored in a manner that closely parallels wet lab experimental procedures. These features of Simmune were critical to the model development and analysis presented here and are likely to be useful in the computational investigation of many aspects of cell biology.

  2. An Interactive Way with Local Characteristics%乡土特色的家园互动途径

    Institute of Scientific and Technical Information of China (English)

    徐小宏

    2014-01-01

    家园合作是幼儿园工作的重要组成部分,做好家长工作是幼儿园的重要职责,提高幼儿园的办园质量和教育目标,要靠幼儿园与家庭相互配合。要因地制宜,循序渐进地进行家园合作,通过恰当的方式让家长了解科学的育儿知识,参与幼儿教育,搭建家园联系的桥梁,共同促进幼儿全面发展。%Cooperation between family and kindergarten is an important part of the kindergarten work. Do parents work is an important responsibility for kindergarten. Improving the quality of kindergarten education depends on the interaction of kindergarten and family. To adjust measures to local conditions,and do cooperation between family and kindergarten step by step. Make parents learn scientific parenting knowledge,participation in children’s education,and build a bridge between them through appropriate ways,so as to promote the comprehensive development of young children.

  3. Systematic analysis of protein subcellular localization and interaction using high-throughput transient transformation of Arabidopsis seedlings.

    Science.gov (United States)

    Marion, Jessica; Bach, Lien; Bellec, Yannick; Meyer, Christian; Gissot, Lionel; Faure, Jean-Denis

    2008-10-01

    The functional genomics approach requires systematic analysis of protein subcellular distribution and interaction networks, preferably by optimizing experimental simplicity and physiological significance. Here, we present an efficient in planta transient transformation system that allows single or multiple expression of constructs containing various fluorescent protein tags in Arabidopsis cotyledons. The optimized protocol is based on vacuum infiltration of agrobacteria directly into young Arabidopsis seedlings. We demonstrate that Arabidopsis epidermal cells show a subcellular distribution of reference markers similar to that in tobacco epidermal cells, and can be used for co-localization or bi-molecular fluorescent complementation studies. We then used this new system to investigate the subcellular distribution of enzymes involved in sphingolipid metabolism. In contrast to transformation systems using tobacco epidermal cells or cultured Arabidopsis cells, our system provides the opportunity to take advantage of the extensive collections of mutant and transgenic lines available in Arabidopsis. The fact that this assay uses conventional binary vectors and a conventional Agrobacterium strain, and is compatible with a large variety of fluorescent tags, makes it a versatile tool for construct screening and characterization before stable transformation. Transient expression in Arabidopsis seedlings is thus a fast and simple method that requires minimum handling and potentially allows medium- to high-throughput analyses of fusion proteins harboring fluorescent tags in a whole-plant cellular context.

  4. Area per lipid and cholesterol interactions in membranes from separated local-field (13)C NMR spectroscopy.

    Science.gov (United States)

    Leftin, Avigdor; Molugu, Trivikram R; Job, Constantin; Beyer, Klaus; Brown, Michael F

    2014-11-18

    Investigations of lipid membranes using NMR spectroscopy generally require isotopic labeling, often precluding structural studies of complex lipid systems. Solid-state (13)C magic-angle spinning NMR spectroscopy at natural isotopic abundance gives site-specific structural information that can aid in the characterization of complex biomembranes. Using the separated local-field experiment DROSS, we resolved (13)C-(1)H residual dipolar couplings that were interpreted with a statistical mean-torque model. Liquid-disordered and liquid-ordered phases were characterized according to membrane thickness and average cross-sectional area per lipid. Knowledge of such structural parameters is vital for molecular dynamics simulations, and provides information about the balance of forces in membrane lipid bilayers. Experiments were conducted with both phosphatidylcholine (dimyristoylphosphatidylcholine (DMPC) and palmitoyloleoylphosphatidylcholine (POPC)) and egg-yolk sphingomyelin (EYSM) lipids, and allowed us to extract segmental order parameters from the (13)C-(1)H residual dipolar couplings. Order parameters were used to calculate membrane structural quantities, including the area per lipid and bilayer thickness. Relative to POPC, EYSM is more ordered in the ld phase and experiences less structural perturbation upon adding 50% cholesterol to form the lo phase. The loss of configurational entropy is smaller for EYSM than for POPC, thus favoring its interaction with cholesterol in raftlike lipid systems. Our studies show that solid-state (13)C NMR spectroscopy is applicable to investigations of complex lipids and makes it possible to obtain structural parameters for biomembrane systems where isotope labeling may be prohibitive.

  5. THE IMPACT OF INTERACTIONS, BARS, BULGES, AND ACTIVE GALACTIC NUCLEI ON STAR FORMATION EFFICIENCY IN LOCAL MASSIVE GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Saintonge, Amelie; Fabello, Silvia; Wang Jing; Catinella, Barbara [Max-Planck Institut fuer Astrophysik, D-85741 Garching (Germany); Tacconi, Linda J.; Genzel, Reinhard; Gracia-Carpio, Javier; Wuyts, Stijn [Max-Planck Institut fuer extraterrestrische Physik, D-85741 Garching (Germany); Kramer, Carsten [Instituto Radioastronomia Milimetrica, Av. Divina Pastora 7, Nucleo Central, E-18012 Granada (Spain); Moran, Sean; Heckman, Timothy M. [Department of Physics and Astronomy, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218 (United States); Schiminovich, David [Department of Astronomy, Columbia University, New York, NY 10027 (United States); Schuster, Karl [Institut de Radioastronomie Millimetrique, 300 Rue de la piscine, F-38406 St Martin d' Heres (France)

    2012-10-20

    Using atomic and molecular gas observations from the GASS and COLD GASS surveys and complementary optical/UV data from the Sloan Digital Sky Survey and the Galaxy Evolution Explorer, we investigate the nature of the variations in the molecular gas depletion time observed across the local massive galaxy population. The large and unbiased COLD GASS sample allows us for the first time to statistically assess the relative importance of galaxy interactions, bar instabilities, morphologies, and the presence of active galactic nuclei (AGNs) in regulating star formation efficiency. We find that both the H{sub 2} mass fraction and depletion time vary as a function of the distance of a galaxy from the main sequence traced by star-forming galaxies in the SFR-M {sub *} plane. The longest gas depletion times are found in below-main-sequence bulge-dominated galaxies ({mu}{sub *} >5 Multiplication-Sign 10{sup 8} M {sub Sun} kpc{sup -2}, C > 2.6) that are either gas-poor (M{sub H{sub 2}}/M {sub *} <1.5%) or else on average less efficient by a factor of {approx}2 than disk-dominated galaxies at converting into stars any cold gas they may have. We find no link between the presence of AGNs and these long depletion times. In the regime where galaxies are disk-dominated and gas-rich, the galaxies undergoing mergers or showing signs of morphological disruptions have the shortest molecular gas depletion times, while those hosting strong stellar bars have only marginally higher global star formation efficiencies as compared to matched control samples. Our interpretation is that the molecular gas depletion time variations are caused by changes in the ratio between the gas mass traced by the CO(1-0) observations and the gas mass in high-density star-forming cores (as traced by observations of, e.g., HCN(1-0)). While interactions, mergers, and bar instabilities can locally increase pressure and raise the ratio of efficiently star-forming gas to CO-detected gas (therefore lowering the CO

  6. Computation of local exchange coefficients in strongly interacting one-dimensional few-body systems: local density approximation and exact results

    DEFF Research Database (Denmark)

    Marchukov, O. V.; Eriksen, E. H.; Midtgaard, J. M.

    2016-01-01

    -trivial geometric factors that depend solely on the geometry of the confinement through the single-particle eigenstates of the external potential. To obtain accurate effective Hamiltonians to describe such systems one needs to be able to compute these geometric factors with high precision which is difficult due...... to the computational complexity of the high-dimensional integrals involved. An approach using the local density approximation would therefore be a most welcome approximation due to its simplicity. Here we assess the accuracy of the local density approximation by going beyond the simple harmonic oscillator that has...

  7. Identification of a novel nuclear localization signal and speckle-targeting sequence of tuftelin-interacting protein 11, a splicing factor involved in spliceosome disassembly

    Energy Technology Data Exchange (ETDEWEB)

    Tannukit, Sissada [Center for Craniofacial Molecular Biology, University of Southern California, 2250 Alcazar Street, CSA Rm103, Los Angeles, CA 90033-1004 (United States); Crabb, Tara L.; Hertel, Klemens J. [Department of Microbiology and Molecular Genetics, University of California Irvine, Irvine, CA 92697-4025 (United States); Wen, Xin [Center for Craniofacial Molecular Biology, University of Southern California, 2250 Alcazar Street, CSA Rm103, Los Angeles, CA 90033-1004 (United States); Jans, David A. [Department of Biochemistry and Molecular Biology, Nuclear Signalling Laboratory, Monash University, Clayton, Victoria 3800 (Australia); Paine, Michael L., E-mail: paine@usc.edu [Center for Craniofacial Molecular Biology, University of Southern California, 2250 Alcazar Street, CSA Rm103, Los Angeles, CA 90033-1004 (United States)

    2009-12-18

    Tuftelin-interacting protein 11 (TFIP11) is a protein component of the spliceosome complex that promotes the release of the lariat-intron during late-stage splicing through a direct recruitment and interaction with DHX15/PRP43. Expression of TFIP11 is essential for cell and organismal survival. TFIP11 contains a G-patch domain, a signature motif of RNA-processing proteins that is responsible for TFIP11-DHX15 interactions. No other functional domains within TFIP11 have been described. TFIP11 is localized to distinct speckled regions within the cell nucleus, although excluded from the nucleolus. In this study sequential C-terminal deletions and mutational analyses have identified two novel protein elements in mouse TFIP11. The first domain covers amino acids 701-706 (VKDKFN) and is an atypical nuclear localization signal (NLS). The second domain is contained within amino acids 711-735 and defines TFIP11's distinct speckled nuclear localization. The identification of a novel TFIP11 nuclear speckle-targeting sequence (TFIP11-STS) suggests that this domain directly interacts with additional spliceosomal components. These data help define the mechanism of nuclear/nuclear speckle localization of the splicing factor TFIP11, with implications for it's function.

  8. Interaction of the Local Interstellar Medium with the Heliosphere: Role of the Interior and Exterior Magnetic Fields

    Science.gov (United States)

    Barnes, Aaron; DeVincenzi, Donald (Technical Monitor)

    2000-01-01

    A complete model of the global interaction between the solar wind and the local interstellar medium must take account of interstellar neutral atoms, interstellar ionized gas, solar and galactic magnetic fields, galactic and anomalous cosmic rays. For now, however, in view of the many uncertainties about conditions in the interstellar medium, etc., all models must be regarded as highly idealized and incomplete. In the present review I concentrate on the role of magnetic fields of solar and interstellar origin. The former, the interior field, has negligible influence on the unshocked solar wind; the immediate post-shock solar wind is probably low-beta, so that the interior magnetic field is still unimportant, but this situation changes as the plasma flows through the heliosheath, and a ridge of strong magnetic field may form to separate materials of polar and equatorial origin. The exterior (interstellar) field is likely to play an important role in determining the global morphology of the system outside the termination shock. If the exterior field is strong enough, it can compress the heliosphere (although exterior neutral and/or ionized hydrogen may play the dominant role). Even if the interstellar magnetic field does not provide the dominant pressure, its orientation can substantially affect the configuration of the heliosphere, especially the location and orientation of the heliospheric discontinuities. The configurations can be quite different for the situations in which the field and flow are (a) aligned or (b) transverse. Obliquity of the field produces asymmetry in the geometry of the system; in particular the noses of heliopause and interstellar bow shock are shifted away from the interstellar flow direction, and in opposite directions, due to the asymmetric draping of the magnetic field.

  9. Interaction between the Dauki and the Indo-Burman convergence boundaries from teleseismic and locally recorded earthquake data

    Science.gov (United States)

    Howe, M.; Moulik, P.; Seeber, L.; Kim, W.; Steckler, M. S.

    2012-12-01

    The Himalayan and the Burma Arcs converge onto the Indian plate from opposite sides near their syntaxial juncture and have reduced it to a sliver. Both geology and seismicity point to recent internal deformation and high seismogenic potential within this sliver. Large historical earthquakes, including the Great Indian earthquake of 1897 (Mw ~8.1), along with the recent seismicity, suggest that the cratonic blocks in the region are bounded by active faults. The most prominent is the E-W trending Dauki Fault, a deeply-rooted, north-dipping thrust fault, situated between the Shillong massif to the north and the Sylhet Basin to the south. Along the Burma Arc, the subducted seismogenic slab of the Indian plate is continuous north to the syntaxis. Yet the Naga and Tripura segments of the accretionary fold belt, respectively north and south of the easterly extrapolation of the Dauki fault, are distinct. Accretion has advanced far westward into the foredeep of the Dauki structure along the front of the Tripura segment, while it has remained stunted facing the uplifted Shillong massif along the Naga segment. Moreover, the Dauki topographic front can be traced eastwards across the Burma Arc separating the two segments. Recent earthquakes support the hypothesis that the Dauki convergence structure continues below the Burma accretionary belt. Using teleseismic and regional data from the deployment of a local network, we explore the interaction of the Dauki thrust fault with the Burma Arc subduction zone. Preliminary observations include: While seismicity is concentrated in the slab at the eastward extrapolation of the Dauki fault, shallow seismicity is diffuse and does not illuminate the Dauki fault itself. P-axes in moment-tensor solutions of earthquakes within the Indian plate tend to be directed N-S and are locally parallel to the India-Burma boundary, particularly in the slab. T-axes tend to be oriented E-W with a strong tendency to follow the slab down dip. This pattern

  10. INTERACT

    DEFF Research Database (Denmark)

    Jochum, Elizabeth; Borggreen, Gunhild; Murphey, TD

    This paper considers the impact of visual art and performance on robotics and human-computer interaction and outlines a research project that combines puppetry and live performance with robotics. Kinesics—communication through movement—is the foundation of many theatre and performance traditions...... interaction between a human operator and an artificial actor or agent. We can apply insights from puppetry to develop culturally-aware robots. Here we describe the development of a robotic marionette theatre wherein robotic controllers assume the role of human puppeteers. The system has been built, tested...

  11. Direct interaction of the Golgi V-ATPase a-subunit isoform with PI(4)P drives localization of Golgi V-ATPases in yeast.

    Science.gov (United States)

    Banerjee, Subhrajit; Kane, Patricia M

    2017-07-18

    Luminal pH and phosphoinositide content are fundamental features of organelle identity. V-ATPases drive organelle acidification in all eukaryotes, and membrane-bound a-subunit isoforms of the V-ATPase are implicated in organelle-specific targeting and regulation. Earlier work demonstrated that the endo-lysosomal lipid PI(3,5)P2 activates V-ATPases containing the vacuolar a-subunit isoform in S. cerevisiae Here we demonstrate that PI4P, the predominant Golgi PI species, directly interacts with the cytosolic amino terminal (NT) domain of the yeast Golgi V-ATPase a-isoform, Stv1. Lysine 84 of Stv1NT is essential for interaction with PI4P in vitro and in vivo, and interaction with PI4P is required for efficient localization of Stv1-containing V-ATPases. The cytosolic NT domain of the human V-ATPase a2 isoform specifically interacts with PI4P in vitro, consistent with its Golgi localization and function. We propose that NT domains of Vo a-subunit isoforms interact specifically with PI lipids in their organelles of residence. These interactions can transmit organelle-specific targeting or regulation information to V-ATPases. © 2017 by The American Society for Cell Biology.

  12. Nuclear Localization of the Autism Candidate Gene Neurobeachin and Functional Interaction with the NOTCH1 Intracellular Domain Indicate a Role in Regulating Transcription.

    Directory of Open Access Journals (Sweden)

    Krizia Tuand

    Full Text Available Neurobeachin (NBEA is an autism spectrum disorders (ASD candidate gene. NBEA deficiency affects regulated secretion, receptor trafficking, synaptic architecture and protein kinase A (PKA-mediated phosphorylation. NBEA is a large multidomain scaffolding protein. From N- to C-terminus, NBEA has a concanavalin A-like lectin domain flanked by armadillo repeats (ACA, an A-kinase anchoring protein domain that can bind to PKA, a domain of unknown function (DUF1088 and a BEACH domain, preceded by a pleckstrin homology-like domain and followed by WD40 repeats (PBW. Although most of these domains mediate protein-protein interactions, no interaction screen has yet been performed.Yeast two-hybrid screens with the ACA and PBW domain modules of NBEA gave a list of interaction partners, which were analyzed for Gene Ontology (GO enrichment. Neuro-2a cells were used for confocal microscopy and nuclear extraction analysis. NOTCH-mediated transcription was studied with luciferase reporter assays and qRT-PCR, combined with NBEA knockdown or overexpression.Both domain modules showed a GO enrichment for the nucleus. PBW almost exclusively interacted with transcription regulators, while ACA interacted with a number of PKA substrates. NBEA was partially localized in the nucleus of Neuro-2a cells, albeit much less than in the cytoplasm. A nuclear localization signal was found in the DUF1088 domain, which was shown to contribute to the nuclear localization of an EGFP-DPBW fusion protein. Yeast two-hybrid identified the Notch1 intracellular domain as a physical interactor of the PBW domain and a role for NBEA as a negative regulator in Notch-mediated transcription was demonstrated.Defining novel interaction partners of conserved NBEA domain modules identified a role for NBEA as transcriptional regulator in the nucleus. The physical interaction of NBEA with NOTCH1 is most relevant for ASD pathogenesis because NOTCH signaling is essential for neural development.

  13. Nuclear matter from effective quark-quark interaction.

    Science.gov (United States)

    Baldo, M; Fukukawa, K

    2014-12-12

    We study neutron matter and symmetric nuclear matter with the quark-meson model for the two-nucleon interaction. The Bethe-Bruckner-Goldstone many-body theory is used to describe the correlations up to the three hole-line approximation with no extra parameters. At variance with other nonrelativistic realistic interactions, the three hole-line contribution turns out to be non-negligible and to have a substantial saturation effect. The saturation point of nuclear matter, the compressibility, the symmetry energy, and its slope are within the phenomenological constraints. Since the interaction also reproduces fairly well the properties of the three-nucleon system, these results indicate that the explicit introduction of the quark degrees of freedom within the considered constituent quark model is expected to reduce the role of three-body forces.

  14. Thermal and tactile interactions in the perception of local skin wetness at rest and during exercise in thermo-neutral and warm environments.

    Science.gov (United States)

    Filingeri, D; Redortier, B; Hodder, S; Havenith, G

    2014-01-31

    The central integration of thermal (i.e. cold) and mechanical (i.e. pressure) sensory afferents is suggested as to underpin the perception of skin wetness. However, the role of temperature and mechanical inputs, and their interaction, is still unclear. Also, it is unknown whether this intra-sensory interaction changes according to the activity performed or the environmental conditions. Hence, we investigated the role of peripheral cold afferents, and their interaction with tactile afferents, in the perception of local skin wetness during rest and exercise in thermo-neutral and warm environments. Six cold-dry stimuli, characterized by decreasing temperatures [i.e. -4, -8 and -15 °C below the local skin temperature (T(sk))] and by different mechanical pressures [i.e. low pressure (LP): 7 kPa; high pressure (HP): 10 kPa], were applied on the back of 8 female participants (age 21 ± 1 years), while they were resting or cycling in 22 or 33 °C ambient temperature. Mean and local Tsk, thermal and wetness perceptions were recorded during the tests. Cold-dry stimuli produced drops in Tsk with cooling rates in a range of 0.06-0.4 °C/s. Colder stimuli resulted in increasing coldness and in stimuli being significantly more often perceived as wet, particularly when producing skin cooling rates of 0.18 °C/s and 0.35 °C/s. However, when stimuli were applied with HP, local wetness perceptions were significantly attenuated. Wetter perceptions were recorded during exercise in the warm environment. We conclude that thermal inputs from peripheral cutaneous afferents are critical in characterizing the perception of local skin wetness. However, the role of these inputs might be modulated by an intra-sensory interaction with the tactile afferents. These findings indicate that human sensory integration is remarkably multimodal.

  15. The LSD1-Type Zinc Finger Motifs of Pisum sativa LSD1 Are a Novel Nuclear Localization Signal and Interact with Importin Alpha

    OpenAIRE

    Shanping He; Kuowei Huang; Xu Zhang; Xiangchun Yu; Ping Huang; Chengcai An

    2011-01-01

    BACKGROUND: Genetic studies of the Arabidopsis mutant lsd1 highlight the important role of LSD1 in the negative regulation of plant programmed cell death (PCD). Arabidopsis thaliana LSD1 (AtLSD1) contains three LSD1-type zinc finger motifs, which are involved in the protein-protein interaction. METHODOLOGY/PRINCIPAL FINDINGS: To further understand the function of LSD1, we have analyzed cellular localization and functional localization domains of Pisum sativa LSD1 (PsLSD1), which is a homolog ...

  16. Interactions

    DEFF Research Database (Denmark)

    The main theme of this anthology is the unique interaction between mathematics, physics and philosophy during the beginning of the 20th century. Seminal theories of modern physics and new fundamental mathematical structures were discovered or formed in this period. Significant physicists...... such as Lorentz and Einstein as well as mathematicians such as Poincare, Minkowski, Hilbert and Weyl contributed to this development. They created the new physical theories and the mathematical disciplines that play such paramount roles in their mathematical formulations. These physicists and mathematicians were...

  17. Network models provide insights into how oriens–lacunosum-moleculare and bistratified cell interactions influence the power of local hippocampal CA1 theta oscillations

    Directory of Open Access Journals (Sweden)

    Katie A Ferguson

    2015-08-01

    Full Text Available Hippocampal theta is a 4-12 Hz rhythm associated with episodic memory, and although it has been studied extensively, the cellular mechanisms underlying its generation are unclear. The complex interactions between different interneuron types, such as those between oriens--lacunosum-moleculare (OLM interneurons and bistratified cells (BiCs, make their contribution to network rhythms difficult to determine experimentally. We created network models that are tied to experimental work at both cellular and network levels to explore how these interneuron interactions affect the power of local oscillations. Our cellular models were constrained with properties from patch clamp recordings in the CA1 region of an intact hippocampus preparation in vitro. Our network models are composed of three different types of interneurons: parvalbumin-positive (PV+ basket and axo-axonic cells (BC/AACs, PV+ BiCs, and somatostatin-positive OLM cells. Also included is a spatially extended pyramidal cell model to allow for a simplified local field potential representation, as well as experimentally-constrained, theta frequency synaptic inputs to the interneurons. The network size, connectivity, and synaptic properties were constrained with experimental data. To determine how the interactions between OLM cells and BiCs could affect local theta power, we explored a number of OLM-BiC connections and connection strengths.We found that our models operate in regimes in which OLM cells minimally or strongly affected the power of network theta oscillations due to balances that, respectively, allow compensatory effects or not. Inactivation of OLM cells could result in no change or even an increase in theta power. We predict that the dis-inhibitory effect of OLM cells to BiCs to pyramidal cell interactions plays a critical role in the power of network theta oscillations. Our network models reveal a dynamic interplay between different classes of interneurons in influencing local theta

  18. Complete genome sequence and integrated protein localization and interaction map for alfalfa dwarf virus, which combines properties of both cytoplasmic and nuclear plant rhabdoviruses

    Energy Technology Data Exchange (ETDEWEB)

    Bejerman, Nicolás, E-mail: n.bejerman@uq.edu.au [Instituto de Patología Vegetal (IPAVE), Centro de Investigaciones Agropecuarias (CIAP), Instituto Nacional de Tecnología Agropecuaria INTA, Camino a 60 Cuadras k 5,5, Córdoba X5020ICA (Argentina); Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD 4072 (Australia); Giolitti, Fabián; Breuil, Soledad de; Trucco, Verónica; Nome, Claudia; Lenardon, Sergio [Instituto de Patología Vegetal (IPAVE), Centro de Investigaciones Agropecuarias (CIAP), Instituto Nacional de Tecnología Agropecuaria INTA, Camino a 60 Cuadras k 5,5, Córdoba X5020ICA (Argentina); Dietzgen, Ralf G. [Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD 4072 (Australia)

    2015-09-15

    Summary: We have determined the full-length 14,491-nucleotide genome sequence of a new plant rhabdovirus, alfalfa dwarf virus (ADV). Seven open reading frames (ORFs) were identified in the antigenomic orientation of the negative-sense, single-stranded viral RNA, in the order 3′-N-P-P3-M-G-P6-L-5′. The ORFs are separated by conserved intergenic regions and the genome coding region is flanked by complementary 3′ leader and 5′ trailer sequences. Phylogenetic analysis of the nucleoprotein amino acid sequence indicated that this alfalfa-infecting rhabdovirus is related to viruses in the genus Cytorhabdovirus. When transiently expressed as GFP fusions in Nicotiana benthamiana leaves, most ADV proteins accumulated in the cell periphery, but unexpectedly P protein was localized exclusively in the nucleus. ADV P protein was shown to have a homotypic, and heterotypic nuclear interactions with N, P3 and M proteins by bimolecular fluorescence complementation. ADV appears unique in that it combines properties of both cytoplasmic and nuclear plant rhabdoviruses. - Highlights: • The complete genome of alfalfa dwarf virus is obtained. • An integrated localization and interaction map for ADV is determined. • ADV has a genome sequence similarity and evolutionary links with cytorhabdoviruses. • ADV protein localization and interaction data show an association with the nucleus. • ADV combines properties of both cytoplasmic and nuclear plant rhabdoviruses.

  19. Theoretical Electron Density Distributions for Fe- and Cu-Sulfide Earth Materials: A Connection between Bond Length, Bond Critical Point Properties, Local Energy Densities, and Bonded Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Gibbs, Gerald V.; Cox, David F.; Rosso, Kevin M.; Ross, Nancy L.; Downs, R. T.; Spackman, M. A.

    2007-03-01

    Bond critical point and local energy density properties together with net atomic charges were calculated for theoretical electron density distributions, F(r), generated for a variety of Fe and Cu metal-sulfide materials with high- and low-spin Fe atoms in octahedral coordination and high-spin Fe atoms in tetrahedral coordination. The electron density, F(rc), the Laplacian, 32F(rc), the local kinetic energy, G(rc), and the oxidation state of Fe increase as the local potential energy density, V(rc), the Fe-S bond lengths, and the coordination numbers of the Fe atoms decrease. The properties of the bonded interactions for the octahedrally coordinated low-spin Fe atoms for pyrite and marcasite are distinct from those for high-spin Fe atoms for troilite, smythite, and greigite. The Fe-S bond lengths are shorter and the values of F(rc) and 32F(rc) are larger for pyrite and marcasite, indicating that the accumulation and local concentration of F(r) in the internuclear region are greater than those involving the longer, high-spin Fe-S bonded interactions. The net atomic charges and the bonded radii calculated for the Fe and S atoms in pyrite and marcasite are also smaller than those for sulfides with high-spin octahedrally coordinated Fe atoms. Collectively, the Fe-S interactions are indicated to be intermediate in character with the low-spin Fe-S interactions having greater shared character than the highspin interactions. The bond lengths observed for chalcopyrite together with the calculated bond critical point properties are consistent with the formula Cu+Fe3+S2. The bond length is shorter and the F(rc) value is larger for the FeS4 tetrahedron displayed by metastable greigite than those displayed by chalcopyrite and cubanite, consistent with a proposal that the Fe atom in greigite is tetravalent. S-S bond paths exist between each of the surface S atoms of adjacent slabs of FeS6 octahedra comprising the layer sulfide smythite, suggesting that the neutral Fe3S4 slabs are

  20. PH Domain-Arf G Protein Interactions Localize the Arf-GEF Steppke for Cleavage Furrow Regulation in Drosophila.

    Directory of Open Access Journals (Sweden)

    Donghoon M Lee

    Full Text Available The recruitment of GDP/GTP exchange factors (GEFs to specific subcellular sites dictates where they activate small G proteins for the regulation of various cellular processes. Cytohesins are a conserved family of plasma membrane GEFs for Arf small G proteins that regulate endocytosis. Analyses of mammalian cytohesins have identified a number of recruitment mechanisms for these multi-domain proteins, but the conservation and developmental roles for these mechanisms are unclear. Here, we report how the pleckstrin homology (PH domain of the Drosophila cytohesin Steppke affects its localization and activity at cleavage furrows of the early embryo. We found that the PH domain is necessary for Steppke furrow localization, and for it to regulate furrow structure. However, the PH domain was not sufficient for the localization. Next, we examined the role of conserved PH domain amino acid residues that are required for mammalian cytohesins to bind PIP3 or GTP-bound Arf G proteins. We confirmed that the Steppke PH domain preferentially binds PIP3 in vitro through a conserved mechanism. However, disruption of residues for PIP3 binding had no apparent effect on GFP-Steppke localization and effects. Rather, residues for binding to GTP-bound Arf G proteins made major contributions to this Steppke localization and activity. By analyzing GFP-tagged Arf and Arf-like small G proteins, we found that Arf1-GFP, Arf6-GFP and Arl4-GFP, but not Arf4-GFP, localized to furrows. However, analyses of embryos depleted of Arf1, Arf6 or Arl4 revealed either earlier defects than occur in embryos depleted of Steppke, or no detectable furrow defects, possibly because of redundancies, and thus it was difficult to assess how individual Arf small G proteins affect Steppke. Nonetheless, our data show that the Steppke PH domain and its conserved residues for binding to GTP-bound Arf G proteins have substantial effects on Steppke localization and activity in early Drosophila embryos.

  1. PH Domain-Arf G Protein Interactions Localize the Arf-GEF Steppke for Cleavage Furrow Regulation in Drosophila.

    Science.gov (United States)

    Lee, Donghoon M; Rodrigues, Francisco F; Yu, Cao Guo; Swan, Michael; Harris, Tony J C

    2015-01-01

    The recruitment of GDP/GTP exchange factors (GEFs) to specific subcellular sites dictates where they activate small G proteins for the regulation of various cellular processes. Cytohesins are a conserved family of plasma membrane GEFs for Arf small G proteins that regulate endocytosis. Analyses of mammalian cytohesins have identified a number of recruitment mechanisms for these multi-domain proteins, but the conservation and developmental roles for these mechanisms are unclear. Here, we report how the pleckstrin homology (PH) domain of the Drosophila cytohesin Steppke affects its localization and activity at cleavage furrows of the early embryo. We found that the PH domain is necessary for Steppke furrow localization, and for it to regulate furrow structure. However, the PH domain was not sufficient for the localization. Next, we examined the role of conserved PH domain amino acid residues that are required for mammalian cytohesins to bind PIP3 or GTP-bound Arf G proteins. We confirmed that the Steppke PH domain preferentially binds PIP3 in vitro through a conserved mechanism. However, disruption of residues for PIP3 binding had no apparent effect on GFP-Steppke localization and effects. Rather, residues for binding to GTP-bound Arf G proteins made major contributions to this Steppke localization and activity. By analyzing GFP-tagged Arf and Arf-like small G proteins, we found that Arf1-GFP, Arf6-GFP and Arl4-GFP, but not Arf4-GFP, localized to furrows. However, analyses of embryos depleted of Arf1, Arf6 or Arl4 revealed either earlier defects than occur in embryos depleted of Steppke, or no detectable furrow defects, possibly because of redundancies, and thus it was difficult to assess how individual Arf small G proteins affect Steppke. Nonetheless, our data show that the Steppke PH domain and its conserved residues for binding to GTP-bound Arf G proteins have substantial effects on Steppke localization and activity in early Drosophila embryos.

  2. Energy dependence of localization with interactions and disorder: The generalized inverse participation ratio of an ensemble of two-site Anderson-Hubbard systems

    Science.gov (United States)

    Perera, J.; Wortis, R.

    2015-08-01

    After Anderson's prediction of disorder-induced insulating behavior, extensive work found no singularities in the density of states of localized systems. However, Johri and Bhatt [Phys. Rev. Lett. 109, 076402 (2012), 10.1103/PhysRevLett.109.076402 and Phys. Rev. B 86, 125140 (2012), 10.1103/PhysRevB.86.125140] recently uncovered the existence of a nonanalyticity in the density of states near the band edge of noninteracting systems with bounded disorder, in an energy range outside that captured by previous work. Moreover, this feature marks the boundary of an energy range in which the localization is sharply suppressed. Given strong current interest in the effect of interactions on disordered systems, we explore here the effect of a Hubbard U interaction on this behavior. We find that in ensembles of small systems a cusp in the density of states persists and continues to be associated with a sharp suppression of the localization. We explore the origins of this behavior and discuss its connection with many-body localization.

  3. Local interactions influence the fibrillation kinetics, structure and dynamics of Aβ(1-40) but leave the general fibril structure unchanged.

    Science.gov (United States)

    Adler, Juliane; Scheidt, Holger A; Krüger, Martin; Thomas, Lars; Huster, Daniel

    2014-04-28

    A series of peptide mutants was studied to understand the influence of local physical interactions on the fibril formation mechanism of amyloid β (Aβ)(1-40). In the peptide variants, the well-known hydrophobic contact between residues phenylalanine 19 and leucine 34 was rationally modified. In single site mutations, residue phenylalanine 19 was replaced by amino acids that introduce higher structural flexibility by a glycine mutation or restrict the backbone flexibility by introduction of proline. Next, the aromatic phenylalanine was replaced by tyrosine or tryptophan, respectively, to probe the influence of additional hydrogen bond forming capacity in the fibril interior. Furthermore, negatively charged glutamate or positively charged lysine was introduced to probe the influence of electrostatics. In double mutants, the hydrophobic contact was replaced by a putative salt bridge (glutamate and lysine) or two electrostatically repelling lysine residues. The influence of these mutations on the fibrillation kinetics and morphology, cross-β structure as well as the local structure and dynamics was probed using fluorescence, transmission electron microscopy, X-ray diffraction, and solid-state NMR spectroscopy. While the fibrillation kinetics and the local structure and dynamics of the peptide variants were influenced by the introduction of these local fields, the overall morphology and cross-β structure of the fibrils remained very robust against all the probed interactions. Overall, 7 out of the 8 mutated peptides formed fibrils of very similar morphology compared to the wildtype. However, characteristic local structural and dynamical changes indicate that amyloid fibrils show an astonishing ability to respond to local perturbations but overall show a very homogenous mesoscopic organization.

  4. A DGTD method for the numerical modeling of the interaction of light with nanometer scale metallic structures taking into account non-local dispersion effects

    Science.gov (United States)

    Schmitt, Nikolai; Scheid, Claire; Lanteri, Stéphane; Moreau, Antoine; Viquerat, Jonathan

    2016-07-01

    The interaction of light with metallic nanostructures is increasingly attracting interest because of numerous potential applications. Sub-wavelength metallic structures, when illuminated with a frequency close to the plasma frequency of the metal, present resonances that cause extreme local field enhancements. Exploiting the latter in applications of interest requires a detailed knowledge about the occurring fields which can actually not be obtained analytically. For the latter mentioned reason, numerical tools are thus an absolute necessity. The insight they provide is very often the only way to get a deep enough understanding of the very rich physics at play. For the numerical modeling of light-structure interaction on the nanoscale, the choice of an appropriate material model is a crucial point. Approaches that are adopted in a first instance are based on local (i.e. with no interaction between electrons) dispersive models, e.g. Drude or Drude-Lorentz models. From the mathematical point of view, when a time-domain modeling is considered, these models lead to an additional system of ordinary differential equations coupled to Maxwell's equations. However, recent experiments have shown that the repulsive interaction between electrons inside the metal makes the response of metals intrinsically non-local and that this effect cannot generally be overlooked. Technological achievements have enabled the consideration of metallic structures in a regime where such non-localities have a significant influence on the structures' optical response. This leads to an additional, in general non-linear, system of partial differential equations which is, when coupled to Maxwell's equations, significantly more difficult to treat. Nevertheless, dealing with a linearized non-local dispersion model already opens the route to numerous practical applications of plasmonics. In this work, we present a Discontinuous Galerkin Time-Domain (DGTD) method able to solve the system of Maxwell

  5. A DGTD method for the numerical modeling of the interaction of light with nanometer scale metallic structures taking into account non-local dispersion effects

    Energy Technology Data Exchange (ETDEWEB)

    Schmitt, Nikolai [Inria, 2004 Route des Lucioles, BP 93, 06902 Sophia Antipolis Cedex (France); Technische Universitaet Darmstadt, Institut fuer Theorie Elektromagnetischer Felder (TEMF), Schlossgartenstr. 8, 64289 Darmstadt (Germany); Scheid, Claire [Inria, 2004 Route des Lucioles, BP 93, 06902 Sophia Antipolis Cedex (France); University of Nice – Sophia Antipolis, Mathematics laboratory, Parc Valrose, 06108 Nice, Cedex 02 (France); Lanteri, Stéphane, E-mail: Stephane.Lanteri@inria.fr [Inria, 2004 Route des Lucioles, BP 93, 06902 Sophia Antipolis Cedex (France); Moreau, Antoine [Institut Pascal, Université Blaise Pascal, 24, avenue des Landais, 63171 Aubière Cedex (France); Viquerat, Jonathan [Inria, 2004 Route des Lucioles, BP 93, 06902 Sophia Antipolis Cedex (France)

    2016-07-01

    The interaction of light with metallic nanostructures is increasingly attracting interest because of numerous potential applications. Sub-wavelength metallic structures, when illuminated with a frequency close to the plasma frequency of the metal, present resonances that cause extreme local field enhancements. Exploiting the latter in applications of interest requires a detailed knowledge about the occurring fields which can actually not be obtained analytically. For the latter mentioned reason, numerical tools are thus an absolute necessity. The insight they provide is very often the only way to get a deep enough understanding of the very rich physics at play. For the numerical modeling of light-structure interaction on the nanoscale, the choice of an appropriate material model is a crucial point. Approaches that are adopted in a first instance are based on local (i.e. with no interaction between electrons) dispersive models, e.g. Drude or Drude–Lorentz models. From the mathematical point of view, when a time-domain modeling is considered, these models lead to an additional system of ordinary differential equations coupled to Maxwell's equations. However, recent experiments have shown that the repulsive interaction between electrons inside the metal makes the response of metals intrinsically non-local and that this effect cannot generally be overlooked. Technological achievements have enabled the consideration of metallic structures in a regime where such non-localities have a significant influence on the structures' optical response. This leads to an additional, in general non-linear, system of partial differential equations which is, when coupled to Maxwell's equations, significantly more difficult to treat. Nevertheless, dealing with a linearized non-local dispersion model already opens the route to numerous practical applications of plasmonics. In this work, we present a Discontinuous Galerkin Time-Domain (DGTD) method able to solve the system

  6. Nickel and Manganese Accumulation, Interaction and Localization in Leaves of the Ni Hyperaccumulators Alyssum murale and Alyssum corsicum

    Science.gov (United States)

    The genus Alyssum contains >50 Ni hyperaccumulator species; many can achieve 3% Ni in dry leaf. In soils with normal Mn levels, Alyssum trichome bases were observed previously to accumulate Ni and Mn to high levels. Here we report concentration and localization patterns in A. murale and A. corsicum...

  7. Palmitoylcarnitine affects localization of growth associated protein GAP-43 in plasma membrane subdomains and its interaction with Gα(o) in neuroblastoma NB-2a cells.

    Science.gov (United States)

    Tułodziecka, Karolina; Czeredys, Magdalena; Nałęcz, Katarzyna A

    2013-03-01

    Palmitoylcarnitine was observed previously to promote differentiation of neuroblastoma NB-2a cells, and to affect protein kinase C (PKC). Palmitoylcarnitine was also observed to increase palmitoylation of several proteins, including a PKC substrate, whose expression augments during differentiation of neural cells-a growth associated protein GAP-43, known to bind phosphatidylinositol 4,5-bisphosphate [PI(4,5)P(2)]. Since palmitoylated proteins are preferentially localized in sphingolipid- and cholesterol-rich microdomains of plasma membrane, the present study has been focused on a possible effect of palmitoylcarnitine on GAP-43 localization in these microdomains. Palmitoylcarnitine treatment resulted in GAP-43 appearance in floating fractions (rafts) in sucrose gradient and increased co-localization with cholesterol and with PI(4,5)P(2), although co-localization of both lipids decreased. GAP-43 disappeared from raft fraction upon treatment with 2-bromopalmitate (an inhibitor of palmitoylating enzymes) and after treatment with etomoxir (carnitine palmitoyltransferase I inhibitor). Raft localization of GAP-43 was completely abolished by treatment with methyl-β-cyclodextrin, a cholesterol binding agent, while there was no change upon sequestration of PI(4,5)P(2) with neomycin. GAP-43 co-precipitated with a monomeric form of Gα(o), a phenomenon diminished after palmitoylcarnitine treatment and paralleled by a decrease of Gα(o) in the raft fraction. These observations point to palmitoylation of GAP-43 as a mechanism leading to an increased localization of this protein in microdomains of plasma membrane rich in cholesterol, in majority different, however, from microdomains in which PI(4,5)P(2) is present. This localization correlates with decreased interaction with Gα(o) and suppression of its activity-an important step regulating neural cell differentiation.

  8. Interaction of macroparticles localized in Wigner-Seitz cells of various types of cubic lattices in an equilibrium plasma

    Science.gov (United States)

    Filippov, A. V.

    2016-10-01

    The interaction of two charged point macroparticles located in Wigner-Seitz cells of simple cubic (SC), body-centered cubic (BCC), or face-centered cubic (FCC) lattices in an equilibrium plasma has been studied within the Debye approximation or, more specifically, based on the linearized Poisson-Boltzmann model. The shape of the outer boundary is shown to exert a strong influence on the pattern of electrostatic interaction between the two macroparticles, which transforms from repulsion at small interparticle distances to attraction as the interparticle distance approaches half the length of the computational cell. The macroparticle pair interaction potential in an equilibrium plasma is shown to be nevertheless the Debye one and purely repulsive for likely charged macroparticles.

  9. Local versus systemic anti-tumour necrosis factor-α effects of adalimumab in rheumatoid arthritis: pharmacokinetic modelling analysis of interaction between a soluble target and a drug.

    Science.gov (United States)

    Stepensky, David

    2012-07-01

    The pharmacokinetic models that are applied to describe the disposition of therapeutic antibodies assume that the interaction between an antibody and its target takes place in the central compartment. However, an increasing number of therapeutic antibodies are directed towards soluble/mobile targets. A flawed conclusion can be reached if the pharmacokinetic and pharmacodynamic analysis assumes that the interaction between the therapeutic antibody and its target takes place in the central compartment. The objective of this study was to assess the relative importance of local versus systemic interactions between adalimumab and tumour necrosis factor (TNF)-α in rheumatoid arthritis (RA), identify localization of the site of adalimumab action and assess the efficacy of local (intra-articular) versus systemic adalimumab administration for treatment of RA. The clinical and preclinical data on adalimumab and TNFα disposition were analysed using a pharmacokinetic modelling and simulation approach. The disposition of adalimumab and TNFα and the interaction between them at the individual compartments (the synovial fluid of the affected joints, central and peripheral compartments) following different routes of adalimumab administration were studied. Outcomes of modelling and simulation using the pharmacokinetic model developed indicate that adalimumab can efficiently permeate from the diseased joints to the central circulation in RA patients. Permeability of TNFα, which is excessively secreted in the joints, is even higher than that of adalimumab. As a result, subcutaneous, intravenous and intra-articular administration of the clinically used dose of adalimumab (40 mg) exert similar effects on the time course of TNFα concentrations at different locations in the body and efficiently deplete the TNFα in all of the compartments for a prolonged period of time (8-10 weeks). At this dose, adalimumab exhibits predominantly systemic anti-TNFα effects at the central and

  10. Interactions between the introduced Pacific oyster Crassostrea gigas and the indigenous blue mussel Mytilus edulis. Local-scale food competition

    NARCIS (Netherlands)

    Hans, I.W.

    2004-01-01

    The aim of this study was to determine if food competition between mussels and oysters occurs, and how mussel and oyster growth is affected by this interaction. This was done by relating mussel growth to oyster density relating oyster growth to oyster biomass and perform a field control, by inventor

  11. Interactive effects of soil-dwelling ants, ant mounds and simulated grazing on local plant community composition

    NARCIS (Netherlands)

    Veen, G.F.; Olff, H.

    2011-01-01

    Interactions between aboveground vertebrate herbivores and subterranean yellow meadow ants (Lasius flavus) can drive plant community patterns in grassland ecosystems. Here, we study the relative importance of the presence of ants (L. flavus) and ant mounds under different simulated grazing regimes

  12. Exploring the multiplicity of soil-human interactions: organic carbon content, agro-forest landscapes and the Italian local communities.

    Science.gov (United States)

    Salvati, Luca; Barone, Pier Matteo; Ferrara, Carlotta

    2015-05-01

    Topsoil organic carbon (TOC) and soil organic carbon (SOC) are fundamental in the carbon cycle influencing soil functions and attributes. Many factors have effects on soil carbon content such as climate, parent material, land topography and the human action including agriculture, which sometimes caused a severe loss in soil carbon content. This has resulted in a significant differentiation in TOC or SOC at the continental scale due to the different territorial and socioeconomic conditions. The present study proposes an exploratory data analysis assessing the relationship between the spatial distribution of soil organic carbon and selected socioeconomic attributes at the local scale in Italy with the aim to provide differentiated responses for a more sustainable use of land. A strengths, weaknesses, opportunities and threats (SWOT) analysis contributed to understand the effectiveness of local communities responses for an adequate comprehension of the role of soil as carbon sink.

  13. High-T C superconductivity in Cs3C60 compounds governed by local Cs-C60 Coulomb interactions

    Science.gov (United States)

    Harshman, Dale R.; Fiory, Anthony T.

    2017-04-01

    Unique among alkali-doped A 3C60 fullerene compounds, the A15 and fcc forms of Cs3C60 exhibit superconducting states varying under hydrostatic pressure with highest transition temperatures at T\\text{C}\\text{meas}   =  38.3 and 35.2 K, respectively. Herein it is argued that these two compounds under pressure represent the optimal materials of the A 3C60 family, and that the C60-associated superconductivity is mediated through Coulombic interactions with charges on the alkalis. A derivation of the interlayer Coulombic pairing model of high-T C superconductivity employing non-planar geometry is introduced, generalizing the picture of two interacting layers to an interaction between charge reservoirs located on the C60 and alkali ions. The optimal transition temperature follows the algebraic expression, T C0  =  (12.474 nm2 K)/ℓζ, where ℓ relates to the mean spacing between interacting surface charges on the C60 and ζ is the average radial distance between the C60 surface and the neighboring Cs ions. Values of T C0 for the measured cation stoichiometries of Cs3-x C60 with x  ≈  0 are found to be 38.19 and 36.88 K for the A15 and fcc forms, respectively, with the dichotomy in transition temperature reflecting the larger ζ and structural disorder in the fcc form. In the A15 form, modeled interacting charges and Coulomb potential e2/ζ are shown to agree quantitatively with findings from nuclear-spin relaxation and mid-infrared optical conductivity. In the fcc form, suppression of T\\text{C}\\text{meas} below T C0 is ascribed to native structural disorder. Phononic effects in conjunction with Coulombic pairing are discussed.

  14. TCP1 complex proteins interact with phosphorothioate oligonucleotides and can co-localize in oligonucleotide-induced nuclear bodies in mammalian cells.

    Science.gov (United States)

    Liang, Xue-hai; Shen, Wen; Sun, Hong; Prakash, Thazha P; Crooke, Stanley T

    2014-07-01

    Phosphorothioate (PS) antisense oligonucleotides (ASOs) have been successfully developed as drugs to reduce the expression of disease-causing genes. PS-ASOs can be designed to induce degradation of complementary RNAs via the RNase H pathway and much is understood about that process. However, interactions of PS-ASOs with other cellular proteins are not well characterized. Here we report that in cells transfected with PS-ASOs, the chaperonin T-complex 1 (TCP1) proteins interact with PS-ASOs and enhance antisense activity. The TCP1-β subunit co-localizes with PS-ASOs in distinct nuclear structures, termed phosphorothioate bodies or PS-bodies. Upon Ras-related nuclear protein (RAN) depletion, cytoplasmic PS-body-like structures were observed and nuclear concentrations of PS-ASOs were reduced, suggesting that TCP1-β can interact with PS-ASOs in the cytoplasm and that the nuclear import of PS-ASOs is at least partially through the RAN-mediated pathway. Upon free uptake, PS-ASOs co-localize with TCP1 proteins in cytoplasmic foci related to endosomes/lysosomes. Together, our results indicate that the TCP1 complex binds oligonucleotides with TCP1-β subunit being a nuclear PS-body component and suggest that the TCP1 complex may facilitate PS-ASO uptake and/or release from the endocytosis pathway. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  15. Is the manifestation of the local dynamics in the spin-lattice NMR relaxation in dendrimers sensitive to excluded volume interactions?

    Science.gov (United States)

    Shavykin, Oleg V; Neelov, Igor M; Darinskii, Anatolii A

    2016-09-21

    The effect of excluded volume (EV) interactions on the manifestation of the local dynamics in the spin-lattice NMR relaxation in dendrimers has been studied by using Brownian dynamics simulations. The study was motivated by the theory developed by Markelov et al., [J. Chem. Phys., 2014, 140, 244904] for a Gaussian dendrimer model without EV interactions. The theory connects the experimentally observed dependence of the spin-lattice relaxation rate 1/T(1)H on the location of NMR active groups with the restricted flexibility (semiflexibility) of dendrimers. Semiflexibility was introduced through the correlations between the orientations of different segments. However, these correlations exist even in flexible dendrimer models with EV interactions. We have simulated coarse-grained flexible and semiflexible dendrimer models with and without EV interactions. Every dendrimer segment consisted of two rigid bonds. Semiflexibility was introduced through a potential which restricts the fluctuations of angles between neighboring bonds but does not change orientational correlations in the EV model as compared to the flexible case. The frequency dependence of the reduced 1/T(1)H(ωH) for segments and bonds belonging to different dendrimer shells was calculated. It was shown that the main effect of EV interactions consists of a much stronger contribution of the overall dendrimer rotation to the dynamics of dendrimer segments as compared to phantom models. After the exclusion of this contribution the manifestation of internal dynamics in spin-lattice NMR relaxation appears to be practically insensitive to EV interactions. For the flexible models, the position ωmax of the peak of the modified 1/T(1)H(ωH) does not depend on the shell number. For semiflexible models, the maximum of 1/T(1)H(ωH) for internal segments or bonds shifts to lower frequencies as compared to outer ones. The dependence of ωmax on the number of dendrimer shells appears to be universal for segments and

  16. Calcium-Dependent Protein Kinase in Ginger Binds with Importin-α through Its Junction Domain for Nuclear Localization, and Further Interacts with NAC Transcription Factor

    Science.gov (United States)

    Vivek, Padmanabhan Jayanthi; Resmi, Mohankumar Saraladevi; Sreekumar, Sweda; Sivakumar, K. C.; Tuteja, Narendra; Soniya, Eppurathu Vasudevan

    2017-01-01

    Calcium-dependent protein kinases (CDPKs) are important sensors of Ca2+ elevations in plant cells regulating the gene expression linked with various cellular processes like stress response, growth and development, metabolism, and cytoskeleton dynamics. Ginger is an extensively used spice due to its unique flavor and immense medicinal value. The two major threats that interfere with the large scale production of ginger are the salinity and drought stress. ZoCDPK1 (Zingiber officinale Calcium-dependent protein kinase 1) is a salinity and drought-inducible CDPK gene isolated from ginger and undergoes dynamic subcellular localization during stress conditions. ZoCDPK1, with signature features of a typical Ca2+ regulated kinase, also possesses a bipartite nuclear localization sequence (NLS) in its junction domain (JD). A striking feature in ZoCDPK1 is the rare occurrence of a coupling between the NLS in JD and consensus sequences in regulatory domain. Here, we further identified its nature of nuclear localization and its interaction partners. In the homology model generated for ZoCDPK1, the regulatory domain mimics the crystal structure of the regulatory domain in Arabidopsis CDPK1. Molecular docking simulation of importin (ZoIMPα), an important protein involved in nuclear translocation, into the NLS of ZoCDPK1 was well-visualized. Furthermore, the direct interaction of ZoCDPK1 and ZoIMPα proteins was studied by the yeast 2-hybrid (Y2H) system, which confirmed that junction domain (JD) is an important interaction module required for ZoCDPK1 and ZoIMPα binding. The probable interacting partners of ZoCDPK1 were also identified using Y2H experiment. Of the 10 different stress-related interacting partners identified for ZoCDPK1, NAC transcription factor (TF) needs special mention, especially in the context of ZoCDPK1 function. The interaction between ZoCDPK1 and NAC TF, in fact, corroborate with the results of gene expression and over-expression studies of ZoCDPK1. Hence

  17. A synopsis on different homologous series of fomocaine derivatives. In vitro interactions with the cytochrome P450 system, toxicity, and local anaesthetic effects in rats--Part 1.

    Science.gov (United States)

    Lupp, Amelie; Karge, Elke; Dahse, Thomas; Glassl, Peter; Jung, Beate; Listing, Monika; Seeling, Andreas; Wange, Johannes; Wennek-Klose, Janett; Oelschläger, Herbert; Fleck, Christian

    2007-01-01

    Fomocaine (CAS 56583-43-6) is a basic ether-type local anaesthetic used in dermatological practice for surface anaesthesia. For many years, modifications of the fomocaine molecule have been pursued, e.g. to improve its physicochemical properties and also in view of possible new (systemic) applications, e.g. in the treatment of migraine or as antiarrhythmic. The present paper provides a survey of the investigations undertaken with all the different series of fomocaine derivatives synthesized so far with respect to their in vitro interaction capacity at the cytochrome P450 system, in vivo toxicity (LD50; paresis of the N. ischiadicus) and local anaesthetic effects (conduction anaesthesia at the N. ischiadicus; surface anaesthesia of the cornea) in rats. The main objective of this systematic comparison of the effects of all these substances was to assess possible basic structure-activity relationships.

  18. An exponentially local spectral flow for possibly non-self-adjoint perturbations of non-interacting quantum spins, inspired by KAM theory

    Science.gov (United States)

    Roeck, Wojciech De; Schütz, Marius

    2016-11-01

    Since its introduction by Hastings (Phys Rev B 69:104431, 2004), the technique of quasi-adiabatic continuation has become a central tool in the discussion and classification of ground-state phases. It connects the ground states of self-adjoint Hamiltonians in the same phase by a unitary quasi-local transformation. This paper takes a step towards extending this result to non-self-adjoint perturbations, though, for technical reason, we restrict ourselves here to weak perturbations of non-interacting spins. The extension to non-self-adjoint perturbation is important for potential applications to Glauber dynamics (and its quantum analogues). In contrast to the standard quasi-adiabatic transformation, the transformation constructed here is exponentially local. Our scheme is inspired by KAM theory, with frustration-free operators playing the role of integrable Hamiltonians.

  19. A self-interaction-free local hybrid functional: Accurate binding energies vis-\\`a-vis accurate ionization potentials from Kohn-Sham eigenvalues

    CERN Document Server

    Schmidt, Tobias; Makmal, Adi; Kronik, Leeor; Kümmel, Stephan

    2014-01-01

    We present and test a new approximation for the exchange-correlation (xc) energy of Kohn-Sham density functional theory. It combines exact exchange with a compatible non-local correlation functional. The functional is by construction free of one-electron self-interaction, respects constraints derived from uniform coordinate scaling, and has the correct asymptotic behavior of the xc energy density. It contains one parameter that is not determined ab initio. We investigate whether it is possible to construct a functional that yields accurate binding energies and affords other advantages, specifically Kohn-Sham eigenvalues that reliably reflect ionization potentials. Tests for a set of atoms and small molecules show that within our local-hybrid form accurate binding energies can be achieved by proper optimization of the free parameter in our functional, along with an improvement in dissociation energy curves and in Kohn-Sham eigenvalues. However, the correspondence of the latter to experimental ionization potent...

  20. Angelman syndrome protein UBE3A interacts with primary microcephaly protein ASPM, localizes to centrosomes and regulates chromosome segregation.

    Directory of Open Access Journals (Sweden)

    Pooja Singhmar

    Full Text Available Many proteins associated with the phenotype microcephaly have been localized to the centrosome or linked to it functionally. All the seven autosomal recessive primary microcephaly (MCPH proteins localize at the centrosome. Microcephalic osteodysplastic primordial dwarfism type II protein PCNT and Seckel syndrome (also characterized by severe microcephaly protein ATR are also centrosomal proteins. All of the above findings show the importance of centrosomal proteins as the key players in neurogenesis and brain development. However, the exact mechanism as to how the loss-of-function of these proteins leads to microcephaly remains to be elucidated. To gain insight into the function of the most commonly mutated MCPH gene ASPM, we used the yeast two-hybrid technique to screen a human fetal brain cDNA library with an ASPM bait. The analysis identified Angelman syndrome gene product UBE3A as an ASPM interactor. Like ASPM, UBE3A also localizes to the centrosome. The identification of UBE3A as an ASPM interactor is not surprising as more than 80% of Angelman syndrome patients have microcephaly. However, unlike in MCPH, microcephaly is postnatal in Angelman syndrome patients. Our results show that UBE3A is a cell cycle regulated protein and its level peaks in mitosis. The shRNA knockdown of UBE3A in HEK293 cells led to many mitotic abnormalities including chromosome missegregation, abnormal cytokinesis and apoptosis. Thus our study links Angelman syndrome protein UBE3A to ASPM, centrosome and mitosis for the first time. We suggest that a defective chromosome segregation mechanism is responsible for the development of microcephaly in Angelman syndrome.

  1. Angelman syndrome protein UBE3A interacts with primary microcephaly protein ASPM, localizes to centrosomes and regulates chromosome segregation.

    Science.gov (United States)

    Singhmar, Pooja; Kumar, Arun

    2011-01-01

    Many proteins associated with the phenotype microcephaly have been localized to the centrosome or linked to it functionally. All the seven autosomal recessive primary microcephaly (MCPH) proteins localize at the centrosome. Microcephalic osteodysplastic primordial dwarfism type II protein PCNT and Seckel syndrome (also characterized by severe microcephaly) protein ATR are also centrosomal proteins. All of the above findings show the importance of centrosomal proteins as the key players in neurogenesis and brain development. However, the exact mechanism as to how the loss-of-function of these proteins leads to microcephaly remains to be elucidated. To gain insight into the function of the most commonly mutated MCPH gene ASPM, we used the yeast two-hybrid technique to screen a human fetal brain cDNA library with an ASPM bait. The analysis identified Angelman syndrome gene product UBE3A as an ASPM interactor. Like ASPM, UBE3A also localizes to the centrosome. The identification of UBE3A as an ASPM interactor is not surprising as more than 80% of Angelman syndrome patients have microcephaly. However, unlike in MCPH, microcephaly is postnatal in Angelman syndrome patients. Our results show that UBE3A is a cell cycle regulated protein and its level peaks in mitosis. The shRNA knockdown of UBE3A in HEK293 cells led to many mitotic abnormalities including chromosome missegregation, abnormal cytokinesis and apoptosis. Thus our study links Angelman syndrome protein UBE3A to ASPM, centrosome and mitosis for the first time. We suggest that a defective chromosome segregation mechanism is responsible for the development of microcephaly in Angelman syndrome.

  2. Myosin heavy chain-like localizes at cell contact sites during Drosophila myoblast fusion and interacts in vitro with Rolling pebbles 7

    Energy Technology Data Exchange (ETDEWEB)

    Bonn, Bettina R.; Rudolf, Anja; Hornbruch-Freitag, Christina; Daum, Gabor; Kuckwa, Jessica; Kastl, Lena; Buttgereit, Detlev [Developmental Biology, Department of Biology, Philipps-Universität Marburg, Karl-von-Frisch-Strasse 8, 35037 Marburg (Germany); Renkawitz-Pohl, Renate, E-mail: renkawit@biologie.uni-marburg.de [Developmental Biology, Department of Biology, Philipps-Universität Marburg, Karl-von-Frisch-Strasse 8, 35037 Marburg (Germany)

    2013-02-15

    Besides representing the sarcomeric thick filaments, myosins are involved in many cellular transport and motility processes. Myosin heavy chains are grouped into 18 classes. Here we show that in Drosophila, the unconventional group XVIII myosin heavy chain-like (Mhcl) is transcribed in the mesoderm of embryos, most prominently in founder cells (FCs). An ectopically expressed GFP-tagged Mhcl localizes in the growing muscle at cell–cell contacts towards the attached fusion competent myoblast (FCM). We further show that Mhcl interacts in vitro with the essential fusion protein Rolling pebbles 7 (Rols7), which is part of a protein complex established at cell contact sites (Fusion-restricted Myogenic-Adhesive Structure or FuRMAS). Here, branched F-actin is likely needed to widen the fusion pore and to integrate the myoblast into the growing muscle. We show that the localization of Mhcl is dependent on the presence of Rols7, and we postulate that Mhcl acts at the FuRMAS as an actin motor protein. We further show that Mhcl deficient embryos develop a wild-type musculature. We thus propose that Mhcl functions redundantly to other myosin heavy chains in myoblasts. Lastly, we found that the protein is detectable adjacent to the sarcomeric Z-discs, suggesting an additional function in mature muscles. - Highlights: ► The class XVIII myosin encoding gene Mhcl is transcribed in the mesoderm. ► Mhcl localization at contact sites of fusing myoblasts depends on Rols7. ► Mhcl interacts in vitro with Rols7 which is essential for myogenesis. ► Functional redundancy with other myosins is likely as mutants show no muscle defects. ► Mhcl localizes adjacent to Z-discs of sarcomeres and might support muscle integrity.

  3. Absence of exchange interaction between localized magnetic moments and conduction-electrons in diluted Er{sup 3+} gold-nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Lesseux, G. G., E-mail: lesseux@ifi.unicamp.br; Urbano, R. R. [Instituto de Física “Gleb Wataghin,” UNICAMP, 13083-859 Campinas, São Paulo (Brazil); Iwamoto, W. [Instituto de Física “Gleb Wataghin,” UNICAMP, 13083-859 Campinas, São Paulo (Brazil); Instituto de Física, UFU, 38400-902 Uberlândia, Minas Gerais (Brazil); García-Flores, A. F. [Centro de Ciências Naturais e Humanas, UFABC, 09210-971 Santo André, São Paulo (Brazil); Rettori, C. [Instituto de Física “Gleb Wataghin,” UNICAMP, 13083-859 Campinas, São Paulo (Brazil); Centro de Ciências Naturais e Humanas, UFABC, 09210-971 Santo André, São Paulo (Brazil)

    2014-05-07

    The Electron Spin Resonance (ESR) of diluted Er{sup 3+} magnetic ions in Au nanoparticles (NPs) is reported. The NPs were synthesized by reducing chloro triphenyl-phosphine gold(I) and erbium(III) trifluoroacetate. The Er{sup 3+} g-value along with the observed hyperfine splitting indicate that the Er{sup 3+} impurities are in a local cubic symmetry. Furthermore, the Er{sup 3+} ESR spectra show that the exchange interaction between the 4f and the conduction electrons (ce) is absent or negligible in Au{sub 1–x}Er{sub x} NPs, in contrast to the ESR results in bulk Au{sub 1–x}Er{sub x}. Therefore, the nature of this interaction needs to be reexamined at the nano scale range.

  4. Conceptual aspects of fiscal interactions between local governments and federally-owned, high-level radioactive waste-isolation facilities

    Energy Technology Data Exchange (ETDEWEB)

    Bjornstad, D.J.; Johnson, K.E.

    1981-01-01

    This paper examines a number of ways to transfer revenues between a federally-owned high level radioactive waste isolation facility (hereafter simply, facility) and local governments. Such payments could be used to lessen fiscal disincentives or to provide fiscal incentives for communities to host waste isolation facilities. Two facility characteristics which necessitate these actions are singled out for attention. First, because the facility is federally owned, it is not liable for state and local taxes and may be viewed by communities as a fiscal liability. Several types of payment plans to correct this deficiency are examined. The major conclusion is that while removal of disincentives or creation of incentives is possible, plans based on cost compensation that fail to consider opportunity costs cannot create incentives and are likely to create disincentives. Second, communities other than that in which the facility is sited may experience costs due to the siting and may, therefore, oppose it. These costs (which also accrue to the host community) arise due to the element of risk which the public generally associates with proximity to the transport and storage of radioactive materials. It is concluded that under certain circumstances compensatory payments are possible, but that measuring these costs will pose difficulty.

  5. LMKB/MARF1 localizes to mRNA processing bodies, interacts with Ge-1, and regulates IFI44L gene expression.

    Directory of Open Access Journals (Sweden)

    Donald B Bloch

    Full Text Available The mRNA processing body (P-body is a cellular structure that regulates the stability of cytoplasmic mRNA. MARF1 is a murine oocyte RNA-binding protein that is associated with maintenance of mRNA homeostasis and genomic stability. In this study, autoantibodies were used to identify Limkain B (LMKB, the human orthologue of MARF1, as a P-body component. Indirect immunofluorescence demonstrated that Ge-1 (a central component of the mammalian core-decapping complex co-localized with LMKB in P-bodies. Two-hybrid and co-immunoprecipitation assays were used to demonstrate interaction between Ge-1 and LMKB. The C-terminal 120 amino acids of LMKB mediated interaction with Ge-1 and the N-terminal 1094 amino acids of Ge-1 were required for interaction with LMKB. LMKB is the first protein identified to date that interacts with this portion of Ge-1. LMKB was expressed in human B and T lymphocyte cell lines; depletion of LMKB increased expression of IFI44L, a gene that has been implicated in the cellular response to Type I interferons. The interaction between LMKB/MARF1, a protein that contains RNA-binding domains, and Ge-1, which interacts with core-decapping proteins, suggests that LMKB has a role in the regulation of mRNA stability. LMKB appears to have different functions in different cell types: maintenance of genomic stability in developing oocytes and possible dampening of the inflammatory response in B and T cells.

  6. Accurate nuclear radii and binding energies from a chiral interaction

    CERN Document Server

    Ekstrom, A; Wendt, K A; Hagen, G; Papenbrock, T; Carlsson, B D; Forssen, C; Hjorth-Jensen, M; Navratil, P; Nazarewicz, W

    2015-01-01

    The accurate reproduction of nuclear radii and binding energies is a long-standing challenge in nuclear theory. To address this problem two-nucleon and three-nucleon forces from chiral effective field theory are optimized simultaneously to low-energy nucleon-nucleon scattering data, as well as binding energies and radii of few-nucleon systems and selected isotopes of carbon and oxygen. Coupled-cluster calculations based on this interaction, named NNLOsat, yield accurate binding energies and radii of nuclei up to 40Ca, and are consistent with the empirical saturation point of symmetric nuclear matter. In addition, the low-lying collective 3- states in 16O and 40Ca are described accurately, while spectra for selected p- and sd-shell nuclei are in reasonable agreement with experiment.

  7. Enhancing non-local correlations in the bipartite partitions of two qubit-system with non-mutual interaction

    Energy Technology Data Exchange (ETDEWEB)

    Mohamed, A.-B.A., E-mail: abdelbastm@yahoo.com [College of Sciences and Humanities, Prince Sattam Bin Abdulaziz University, Al-Aflaj (Saudi Arabia); Faculty of Science, Assiut University, Assiut (Egypt); Joshi, A., E-mail: mcbamji@gmail.com [Physics Department, Adelphi University Garden City, NY 11530 (United States); Department of Physics and Optical Engineering, RHIT, Terra Haute IN 47803 (United States); Hassan, S.S., E-mail: shoukryhassan@hotmail.com [Department of Mathematics, College of Science, University of Bahrain, P.O. Box 32038 (Bahrain)

    2016-03-15

    Several quantum-mechanical correlations, notably, quantum entanglement, measurement-induced nonlocality and Bell nonlocality are studied for a two qubit-system having no mutual interaction. Analytical expressions for the measures of these quantum-mechanical correlations of different bipartite partitions of the system are obtained, for initially two entangled qubits and the two photons are in their vacuum states. It is found that the qubits-fields interaction leads to the loss and gain of the initial quantum correlations. The lost initial quantum correlations transfer from the qubits to the cavity fields. It is found that the maximal violation of Bell’s inequality is occurring when the quantum correlations of both the logarithmic negativity and measurement-induced nonlocality reach particular values. The maximal violation of Bell’s inequality occurs only for certain bipartite partitions of the system. The frequency detuning leads to quick oscillations of the quantum correlations and inhibits their transfer from the qubits to the cavity modes. It is also found that the dynamical behavior of the quantum correlation clearly depends on the qubit distribution angle.

  8. Localization of sites for ionic interaction with lipid in the C-terminal third of the bovine myelin basic protein.

    Science.gov (United States)

    Jones, A J; Rumsby, M G

    1977-12-01

    The myelin basic protein from bovine brain tissue was purified and the two peptides obtained by cleavage of the polypeptide chain at the single tryptophan residue were isolated. The interaction of these peptides and the intact basic protein with complex lipids was investigated by following the solubilization of lipid-protein complexes into chloroform in a biphasic solvent system. The C-terminal peptide fragment (residues 117-170) and the intact basic protein both formed chloroform-soluble complexes with acidic lipids, but not with neutral complex lipids. The N-terminal fragment (residues 1-115) did not form chloroform-soluble complexes with either acidic or neutral complex lipids. The molar ratio of lipid to protein that caused a 50% loss of protein from the upper phase to the lower chloroform phase was the same for the intact basic protein as for the smaller C-terminal peptide fragment. Phosphatidylserine and phosphatidylinositol were approximately twice as efficient as sulphatide at causing protein redistribution to the chloroform phase. The results are interpreted as indicating that the sites for ionic interactions between lipid and charged groups on the basic protein of myelin are located in the C-terminal region of the protein molecule.

  9. Highly charged ions from laser-cluster interactions: local-field-enhanced impact ionization and frustrated electron-ion recombination.

    Science.gov (United States)

    Fennel, Thomas; Ramunno, Lora; Brabec, Thomas

    2007-12-07

    Our molecular dynamics analysis of Xe_{147-5083} clusters identifies two mechanisms that contribute to the yet unexplained observation of extremely highly charged ions in intense laser cluster experiments. First, electron impact ionization is enhanced by the local cluster electric field, increasing the highest charge states by up to 40%; a corresponding theoretical method is developed. Second, electron-ion recombination after the laser pulse is frustrated by acceleration electric fields typically used in ion detectors. This increases the highest charge states by up to 90%, as compared to the usual assumption of total recombination of all cluster-bound electrons. Both effects together augment the highest charge states by up to 120%, in reasonable agreement with experiments.

  10. Ground-satellite measurement of Direct Normal Irradiance in South Portugal and its interaction with local atmospheric effects

    Science.gov (United States)

    Cavaco, Afonso; Canhoto, Paulo; Gonçalves da Silva, Hugo; Collares Pereira, Manuel

    2016-04-01

    Direct Normal Irradiance (DNI) is of crucial importance for the performance of Solar Thermal Plants (STP) and their use of solar concentrators. This has triggered a worldwide interest in the evaluation of this resource that started around 40 years ago (Collares-Pereira and Rabl, 1979). This is especially relevant in regions that have exceptional good solar resources, as it is the case of the South of Portugal (Cavaco et al, 2016). For that reason a network of seven meteorological stations measuring Direct (DNI), Global and Diffuse Solar Irradiance has been installed in this region, one year ago. This study presents the first results from that initial effort. First, this network will be used in correlating ground-based measurements with satellite data, in order to improve data calibration of remote acquisition. This will allow the extension of the results to other locations. The long-term validity of the present time-series will be secured by statistical correlation with previous local Global and Diffuse Solar Irradiance data. Second, new insights are expected to emerge on the complex relation between DNI and local meteorological variables (namely, relative humidity, optical thickness, and atmospheric turbidity), in order to improve the selection of possible locations for STP. These relations will be connected to the calibration of satellite data and to the statistical weighting of the various atmospheric elements in the TMY algorithm, thus giving a physical meaning to those different weights. Collares-Pereira, M. and Rabl, A. (1979). The average distribution of solar radiation correlations between Diffuse and hemispherical and between daily and hourly insolation values. Solar Energy 22(2), 155-164. Cavaco, A., Canhoto, P., Costa, M.J., and Collares-Pereira, M. (2016). DNI measurements in the South of Portugal: Long term results through direct comparison with global and diffuse radiation measurements and existing time series. Energy Procedia (in press).

  11. Varying herbivore population structure correlates with lack of local adaptation in a geographic variable plant-herbivore interaction.

    Directory of Open Access Journals (Sweden)

    Rodrigo Cogni

    Full Text Available Local adaptation of parasites to their hosts due to coevolution is a central prediction of many theories in evolutionary biology. However, empirical studies looking for parasite local adaptation show great variation in outcomes, and the reasons for such variation are largely unknown. In a previous study, we showed adaptive differentiation in the arctiid moth Utetheisa ornatrix to its host plant, the pyrrolizidine alkaloid-bearing legume Crotalaria pallida, at the continental scale, but found no differentiation at the regional scale. In the present study, we sampled the same sites to investigate factors that may contribute to the lack of differentiation at the regional scale. We performed field observations that show that specialist and non-specialist polyphagous herbivore incidence varies among populations at both scales. With a series of common-garden experiments we show that some plant traits that may affect herbivory (pyrrolizidine alkaloids and extrafloral nectaries vary at the regional scale, while other traits (trichomes and nitrogen content just vary at the continental scale. These results, combined with our previous evidence for plant population differentiation based on larval performance on fresh fruits, suggest that U. ornatrix is subjected to divergent selection even at the regional scale. Finally, with a microsatellite study we investigated population structure of U. ornatrix. We found that population structure is not stable over time: we found population differentiation at the regional scale in the first year of sampling, but not in the second year. Unstable population structure of the herbivore is the most likely cause of the lack of regional adaptation.

  12. Relationship of dayside main layer ionosphere height to local solar time on Mars and implications for solar wind interaction influence

    Science.gov (United States)

    Zhang, Zhenfei; Orosei, Roberto; Huang, Qian; Zhang, Jie

    2015-08-01

    To understand the influence of solar wind on the daytime main layer ionosphere of Mars, we investigated the local solar time (LST) variations of three characteristic heights of the ionosphere, namely, the heights of the 1 MHz and 1.5 MHz reflection points (i.e., 1.24 × 1010 m-3 and 2.79 × 1010 m-3 isodensity contours, respectively) and the density peak. We used a total of 19,996 Mars Advanced Radar for Subsurface and Ionosphere Sounding observations distributed on the northern hemisphere, with solar zenith angle ≤80°, acquired from June 2005 to October 2013. We exploited the kernel partial least squares regression method to extract the nonlinear relationships of the heights to LST and a few other variables. The average height of the 1 MHz reflection point decreased from ~218 km at 10:00 A.M. to ~206 km at 16:00 P.M. local time; the height of the 1.5 MHz reflection point decreased simultaneously from ~190 km to ~181 km. These decreasing trends are in contrast to the LST variation of the density peak height, which increased from ~128 km to ~137 km over the same LST interval. Based on these findings and previous results, we suggest that the solar wind may penetrate the Martian ionosphere down to altitudes of about 50 km above the main density peak and may, in conjunction with the asymmetric draping of the interplanetary magnetic field, compress the upper part of the main ionosphere layer on the P.M. side ~10 km more than on the A.M. side.

  13. Varying Herbivore Population Structure Correlates with Lack of Local Adaptation in a Geographic Variable Plant-Herbivore Interaction

    Science.gov (United States)

    Cogni, Rodrigo; Trigo, José R.; Futuyma, Douglas J.

    2011-01-01

    Local adaptation of parasites to their hosts due to coevolution is a central prediction of many theories in evolutionary biology. However, empirical studies looking for parasite local adaptation show great variation in outcomes, and the reasons for such variation are largely unknown. In a previous study, we showed adaptive differentiation in the arctiid moth Utetheisa ornatrix to its host plant, the pyrrolizidine alkaloid-bearing legume Crotalaria pallida, at the continental scale, but found no differentiation at the regional scale. In the present study, we sampled the same sites to investigate factors that may contribute to the lack of differentiation at the regional scale. We performed field observations that show that specialist and non-specialist polyphagous herbivore incidence varies among populations at both scales. With a series of common-garden experiments we show that some plant traits that may affect herbivory (pyrrolizidine alkaloids and extrafloral nectaries) vary at the regional scale, while other traits (trichomes and nitrogen content) just vary at the continental scale. These results, combined with our previous evidence for plant population differentiation based on larval performance on fresh fruits, suggest that U. ornatrix is subjected to divergent selection even at the regional scale. Finally, with a microsatellite study we investigated population structure of U. ornatrix. We found that population structure is not stable over time: we found population differentiation at the regional scale in the first year of sampling, but not in the second year. Unstable population structure of the herbivore is the most likely cause of the lack of regional adaptation. PMID:22220208

  14. Thermodynamic Stability and Structure of Oxidized Cu(110) Surfaces: The Critical Role of non-Local Interactions

    Science.gov (United States)

    Bamidele, Joseph; Brndiar, Jan; Stich, Ivan; Kantorovitch, Lev

    2013-03-01

    Thermodynamic stability of oxidized Cu(110) surface is studied using DFT techniques. At high oxygen exposures standard techniques predict more phases to be quasi-isoenergetic, whereas experiments observe only the c(6 × 2) phase at high oxygen exposures clearly indicating this phase to be the ground-state separated by considerable energy differences from other candidates. We show that this surface system is stabilized by a delicate coexistence and balance of chemi- and physi-sorption. Agreement with experiments is only achieved if the van der Waals interaction between the surface templates is accounted for in DFT thermodynamics. Moreover, van der Waals stabilization of the surface structure is anticipated to be a general feature present also in the cases of other related surfaces.

  15. PL-PatchSurfer: A Novel Molecular Local Surface-Based Method for Exploring Protein-Ligand Interactions

    Directory of Open Access Journals (Sweden)

    Bingjie Hu

    2014-08-01

    Full Text Available Structure-based computational methods have been widely used in exploring protein-ligand interactions, including predicting the binding ligands of a given protein based on their structural complementarity. Compared to other protein and ligand representations, the advantages of a surface representation include reduced sensitivity to subtle changes in the pocket and ligand conformation and fast search speed. Here we developed a novel method named PL-PatchSurfer (Protein-Ligand PatchSurfer. PL-PatchSurfer represents the protein binding pocket and the ligand molecular surface as a combination of segmented surface patches. Each patch is characterized by its geometrical shape and the electrostatic potential, which are represented using the 3D Zernike descriptor (3DZD. We first tested PL-PatchSurfer on binding ligand prediction and found it outperformed the pocket-similarity based ligand prediction program. We then optimized the search algorithm of PL-PatchSurfer using the PDBbind dataset. Finally, we explored the utility of applying PL-PatchSurfer to a larger and more diverse dataset and showed that PL-PatchSurfer was able to provide a high early enrichment for most of the targets. To the best of our knowledge, PL-PatchSurfer is the first surface patch-based method that treats ligand complementarity at protein binding sites. We believe that using a surface patch approach to better understand protein-ligand interactions has the potential to significantly enhance the design of new ligands for a wide array of drug-targets.

  16. The local dynamics of unfolded versus folded tRNA in comparison to synthetic polyelectrolytes and the role of electrostatic interactions

    Science.gov (United States)

    Roh, Joon Ho; Tyagi, Madhu; Briber, Robert M.; Woodson, Sarah A.; Sokolov, Alexei

    2012-02-01

    The local dynamics of RNA is strongly coupled to biological functions such as ligand recognition and catalysis. We have used quasielastic neutron scattering spectroscopy to follow the local motion of RNA and a synthetic polyelectrolyte as a function of Mg2+ concentration. We have observed that increasing Mg+2 concentration increases the picosecond to nanosecond dynamics of hydrated tRNA while stabilizing the tRNA folded structure. Analyses of the atomic mean-squared displacement, relaxation time, persistence length, and fraction of mobile atoms showed that unfolded tRNA is more rigid than in the folded state. This same behavior was observed for sulfonated polystyrene indicating that the increased dynamics in arises from charge screening of the polyelectrolyte rather than specific interactions. These results are opposite to what is observed for proteins for the relationship between the unfolded/folded states and the internal dynamics where the folded state is observed to be more rigid than the unfolded state. We conclude that the local dynamics for both bio- and synthetic polymers are strongly influenced by the electrostatic environment.

  17. Phospholipase D2 specifically regulates TREK potassium channels via direct interaction and local production of phosphatidic acid.

    Science.gov (United States)

    Comoglio, Yannick; Levitz, Joshua; Kienzler, Michael A; Lesage, Florian; Isacoff, Ehud Y; Sandoz, Guillaume

    2014-09-16

    Membrane lipids serve as second messengers and docking sites for proteins and play central roles in cell signaling. A major question about lipid signaling is whether diffusible lipids can selectively target specific proteins. One family of lipid-regulated membrane proteins is the TWIK-related K channel (TREK) subfamily of K2P channels: TREK1, TREK2, and TWIK-related arachdonic acid stimulated K(+) channel (TRAAK). We investigated the regulation of TREK channels by phosphatidic acid (PA), which is generated by phospholipase D (PLD) via hydrolysis of phosphatidylcholine. Even though all three of the channels are sensitive to PA, we found that only TREK1 and TREK2 are potentiated by PLD2 and that none of these channels is modulated by PLD1, indicating surprising selectivity. We found that PLD2, but not PLD1, directly binds to the C terminus of TREK1 and TREK2, but not to TRAAK. The results have led to a model for selective lipid regulation by localization of phospholipid enzymes to specific effector proteins. Finally, we show that regulation of TREK channels by PLD2 occurs natively in hippocampal neurons.

  18. Local coupling (LoCo) vs. large-scale coupled (LsCo) land-atmosphere interactions in idealized experiments

    Science.gov (United States)

    Gentine, P.; Lintner, B. R.; Findell, K. L.; Rochetin, N.; Sobel, A. H.; Anber, U. M.

    2014-12-01

    We will present two idealized epxeriments/methodologies to investigate local (LoCo) and large-scale (LsCo) coupling between the surface and the atmsophere: the contiental Radiative-Convective Equilibrium (RCE) and the continental Weak Temperature Gradient (WTG). The RCE defines an equilibrium state of coupling between the surafce and the atmosphere isolated from any large-scale dependence, which were investigated within the single column model of the Laboratoire de Meteorologie Dynamique (LMD) coupled to a simple bucket land model. This studies emphasizes the role of low-level cloud and the diurnal cylce of the boundary layer on the final state of the system. In the WTG we investigate the coupling between the surface and the atmosphere during the dry and wet season of the Amazon with the WRF model coupled to the NOAH land-surface model. Large-scale coupling is obtained with the WTG. The dry and wet season demonstrate very fundamental behavior: in the dry season deep convection is generated by radiative cooling in the higher troposhere and is disconnected from the surface. In the wet season the coupling between the surface and the atmosphere is much tighter. We suggest that the WTG is a powerful tool to investigate the coupling between the surface and the atmosphere, which solves two major issues: the limited resolution of convection in GCMs and the lack of large-scale coupling in CRM. Later investigation will look at the effect of deforestation, water table and distance from the ocean.

  19. Predicting protein-protein interactions from primary protein sequences using a novel multi-scale local feature representation scheme and the random forest.

    Directory of Open Access Journals (Sweden)

    Zhu-Hong You

    Full Text Available The study of protein-protein interactions (PPIs can be very important for the understanding of biological cellular functions. However, detecting PPIs in the laboratories are both time-consuming and expensive. For this reason, there has been much recent effort to develop techniques for computational prediction of PPIs as this can complement laboratory procedures and provide an inexpensive way of predicting the most likely set of interactions at the entire proteome scale. Although much progress has already been achieved in this direction, the problem is still far from being solved. More effective approaches are still required to overcome the limitations of the current ones. In this study, a novel Multi-scale Local Descriptor (MLD feature representation scheme is proposed to extract features from a protein sequence. This scheme can capture multi-scale local information by varying the length of protein-sequence segments. Based on the MLD, an ensemble learning method, the Random Forest (RF method, is used as classifier. The MLD feature representation scheme facilitates the mining of interaction information from multi-scale continuous amino acid segments, making it easier to capture multiple overlapping continuous binding patterns within a protein sequence. When the proposed method is tested with the PPI data of Saccharomyces cerevisiae, it achieves a prediction accuracy of 94.72% with 94.34% sensitivity at the precision of 98.91%. Extensive experiments are performed to compare our method with existing sequence-based method. Experimental results show that the performance of our predictor is better than several other state-of-the-art predictors also with the H. pylori dataset. The reason why such good results are achieved can largely be credited to the learning capabilities of the RF model and the novel MLD feature representation scheme. The experiment results show that the proposed approach can be very promising for predicting PPIs and can be a useful

  20. A new route for local probing of inner interactions within a layered double hydroxide/benzene derivative hybrid material.

    Science.gov (United States)

    Fleutot, S; Dupin, J C; Baraille, I; Forano, C; Renaudin, G; Leroux, F; Gonbeau, D; Martinez, H

    2009-05-14

    This paper presents the preparation and characterization of hybrid hydrotalcite-type layered double hydroxides (Zn1-xAlx(OH)2HBSx.nH2O, with x=0.33) where HBS is the 4-phenol sulfonate, with a detailed analysis of the grafting process of this organic entity onto the host lattice. As a set of the usual techniques (XRD, TG-DT/MS, FTIR and 27Al MAS NMR) was used to characterize the hybrid materials, this work focuses on a joint study by X-ray photoelectron spectroscopy and some quantum-calculation modeling in order to highlight the nature of the interactions between the organic and the mineral sub-systems. For the as-prepared hybrid material, the main results lead to a quasi-vertical orientation of the organic molecules within the mineral sheets via H-bond stabilization. By heating the hybrid material up to 200 degrees C, the structure shrinks with the condensation of the organics; the different theoretical modeling done gives an energy-stable situation when a direct attachment of the HBS sulfonate group sets up with the mineral layers, in agreement with the recorded XPS experimental data.

  1. Interactions of local climatic, biotic and hydrogeochemical processes facilitate phosphorus dynamics along an Everglades forest-marsh gradient

    Directory of Open Access Journals (Sweden)

    T. G. Troxler

    2013-06-01

    Full Text Available Ecosystem nutrient cycling is often complex because nutrient dynamics within and between systems are mediated by the interaction of biological and geochemical conditions operating at different temporal and spatial scales. Vegetated patches in semiarid and wetland landscapes have been shown to exemplify some of these patterns and processes. We investigated biological and geochemical factors suggested to contribute to phosphorus (P movement and availability along a forest-marsh gradient in an Everglades tree island. Our study illustrated processes that are consistent with the chemohydrodynamic nutrient (CHNT hypothesis and the trigger-transfer, pulse-reserve (TTPR model developed for semiarid systems. Comparison with the TTRP model was constructive as it elaborated several significant patterns and processes of the tree island ecosystem including: (1 concentration of the limiting resource (P in the source patch [High Head which constitutes the reserve] compared with the resource-poor landscape, (2 soil zone calcite precipitation requiring strong seasonality for evapotranspiration to promote conditions for secondary soil development and calcium phosphate reprecipitation, (3 rewetting of previously dry soils by early wet season precipitation events, and (4 antecedent conditions of the source patch including landscape position that modulated the effect of the precipitation trigger. Thus, our study showed how water availability drives soil water P dynamics and potentially stability of mineral soil P in this tree island ecosystem. In landscapes with extensive water management, these processes can be asynchronous with the seasonality of hydrologic dynamics, tipping the balance between a sink and source of a limiting nutrient.

  2. Fermi LAT Observation of Diffuse Gamma-Rays Produced through Interactions Between Local Interstellar Matter and High Energy Cosmic Rays

    Energy Technology Data Exchange (ETDEWEB)

    Abdo, A.A.; /Naval Research Lab, Wash., D.C. /Federal City Coll.; Ackermann, M.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Ajello, M.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Atwood, W.B.; /UC, Santa Cruz; Axelsson, M.; /Stockholm U. /Stockholm U., OKC; Baldini, L.; /INFN, Pisa; Ballet, J.; /DAPNIA, Saclay; Barbiellini, G.; /INFN, Trieste /Trieste U.; Bastieri, D.; /INFN, Padua /Padua U.; Baughman, B.M.; /Ohio State U.; Bechtol, K.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bellazzini, R.; /INFN, Pisa; Berenji, B.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bloom, E.D.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bonamente, E.; /INFN, Perugia /Perugia U.; Borgland, A.W.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bregeon, J.; /INFN, Pisa; Brez, A.; /INFN, Pisa; Brigida, M.; /Bari U. /INFN, Bari; Bruel, P.; /Ecole Polytechnique; Burnett, T.H.; /Washington U., Seattle /Bari U. /INFN, Bari /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /IASF, Milan /Milan Polytechnic /Royal Inst. Tech., Stockholm /Stockholm U., OKC /DAPNIA, Saclay /INFN, Perugia /Perugia U. /NASA, Goddard /Naval Research Lab, Wash., D.C. /George Mason U. /NASA, Goddard /INFN, Perugia /Perugia U. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Montpellier U. /Stockholm U. /Stockholm U., OKC /Royal Inst. Tech., Stockholm /ASDC, Frascati /Naval Research Lab, Wash., D.C. /INFN, Trieste /Bari U. /INFN, Bari /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /CENBG, Gradignan /CENBG, Gradignan /Montpellier U. /Bari U. /INFN, Bari /Ecole Polytechnique /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /INFN, Trieste /Hiroshima U. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Bari U. /INFN, Bari /INFN, Bari; /more authors..

    2012-03-30

    Observations by the Large Area Telescope (LAT) on the Fermi mission of diffuse {gamma}-rays in a mid-latitude region in the third quadrant (Galactic longitude l from 200{sup o} to 260{sup o} and latitude |b| from 22{sup o} to 60{sup o}) are reported. The region contains no known large molecular cloud and most of the atomic hydrogen is within 1 kpc of the solar system. The contributions of {gamma}-ray point sources and inverse Compton scattering are estimated and subtracted. The residual {gamma}-ray intensity exhibits a linear correlation with the atomic gas column density in energy from 100 MeV to 10 GeV. The measured integrated {gamma}-ray emissivity is (1.63 {+-} 0.05) x 10{sup -26} photons s{sup -1}sr{sup -1} H-atom{sup -1} and (0.66 {+-} 0.02) x 10{sup -26} photons s{sup -1}sr{sup -1} H-atom{sup -1} above 100 MeV and above 300 MeV, respectively, with an additional systematic error of {approx}10%. The differential emissivity from 100 MeV to 10 GeV agrees with calculations based on cosmic ray spectra consistent with those directly measured, at the 10% level. The results obtained indicate that cosmic ray nuclei spectra within 1 kpc from the solar system in regions studied are close to the local interstellar spectra inferred from direct measurements at the Earth within {approx}10%.

  3. Endothelial directed collective migration depends on substrate stiffness via localized myosin contractility and cell-matrix interactions.

    Science.gov (United States)

    Canver, Adam Charles; Ngo, Olivia; Urbano, Rebecca Lownes; Clyne, Alisa Morss

    2016-05-24

    Macrovascular endothelial injury, which may be caused by percutaneous intervention, requires endothelial cell directed collective migration to restore an intact endothelial monolayer. While interventions are often performed in arteries stiffened by cardiovascular disease, the effect of substrate stiffness on endothelial cell collective migration has not been examined. We studied porcine aortic endothelial cell directed collective migration using a modified cage assay on 4, 14, and 50kPa collagen-coated polyacrylamide gels. Total cell migration distance was measured over time, as were nuclear alignment and nuclear:total β-catenin as measures of cell directedness and cell-cell junction integrity, respectively. In addition, fibronectin fibers were examined as a measure of extracellular matrix deposition and remodeling. We now show that endothelial cells collectively migrate farther on stiffer substrates by 24h. Cells were more directed in the migration direction on intermediate stiffness substrates from 12 to 24h, with an alignment peak 400-700µm back from the migratory interface. However, cells on the softest substrates had the highest cell-cell junction integrity. Cells on all substrates deposited fibronectin, however fibronectin fibers were most linear and aligned on the stiffer substrates. When Rho kinase (ROCK) was inhibited with Y27632, cells on soft substrates migrated farther and cells on both soft and stiff substrates were more directed. When α5 integrin was knocked down with siRNA, cells on stiffer substrates did not migrate as far and were less directed. These data suggest that ROCK-mediated myosin contractility inhibits endothelial cell collective migration on soft substrates, while cell-matrix interactions are critical to endothelial cell collective migration on stiff substrates.

  4. Arsenophonus GroEL interacts with CLCuV and is localized in midgut and salivary gland of whitefly B. tabaci.

    Directory of Open Access Journals (Sweden)

    Vipin Singh Rana

    Full Text Available Cotton leaf curl virus (CLCuV (Gemininiviridae: Begomovirus is the causative agent of leaf curl disease in cotton plants (Gossypium hirsutum. CLCuV is exclusively transmitted by the whitefly species B. tabaci (Gennadius (Hemiptera: Alerodidae. B. tabaci contains several biotypes which harbor dissimilar bacterial endo-symbiotic community. It is reported that these bacterial endosymbionts produce a 63 kDa chaperon GroEL protein which binds to geminivirus particles and protects them from rapid degradation in gut and haemolymph. In biotype B, GroEL protein of Hamiltonella has been shown to interact with Tomato yellow leaf curl virus (TYLCV. The present study was initiated to find out whether endosymbionts of B. tabaci are similarly involved in CLCuV transmission in Sriganganagar (Rajasthan, an area endemic with cotton leaf curl disease. Biotype and endosymbiont diversity of B. tabaci were identified using MtCO1 and 16S rDNA genes respectively. Analysis of our results indicated that the collected B. tabaci population belong to AsiaII genetic group and harbor the primary endosymbiont Portiera and the secondary endosymbiont Arsenophonus. The GroEL proteins of Portiera and Arsenophonus were purified and in-vitro interaction studies were carried out using pull down and co-immunoprecipitation assays. In-vivo interaction was confirmed using yeast two hybrid system. In both in-vitro and in-vivo studies, the GroEL protein of Arsenophonus was found to be interacting with the CLCuV coat protein. Further, we also localized the presence of Arsenophonus in the salivary glands and the midgut of B. tabaci besides the already reported bacteriocytes. These results suggest the involvement of Arsenophonus in the transmission of CLCuV in AsiaII genetic group of B. tabaci.

  5. Arsenophonus GroEL interacts with CLCuV and is localized in midgut and salivary gland of whitefly B. tabaci.

    Science.gov (United States)

    Rana, Vipin Singh; Singh, Shalini Thakur; Priya, Natarajan Gayatri; Kumar, Jitendra; Rajagopal, Raman

    2012-01-01

    Cotton leaf curl virus (CLCuV) (Gemininiviridae: Begomovirus) is the causative agent of leaf curl disease in cotton plants (Gossypium hirsutum). CLCuV is exclusively transmitted by the whitefly species B. tabaci (Gennadius) (Hemiptera: Alerodidae). B. tabaci contains several biotypes which harbor dissimilar bacterial endo-symbiotic community. It is reported that these bacterial endosymbionts produce a 63 kDa chaperon GroEL protein which binds to geminivirus particles and protects them from rapid degradation in gut and haemolymph. In biotype B, GroEL protein of Hamiltonella has been shown to interact with Tomato yellow leaf curl virus (TYLCV). The present study was initiated to find out whether endosymbionts of B. tabaci are similarly involved in CLCuV transmission in Sriganganagar (Rajasthan), an area endemic with cotton leaf curl disease. Biotype and endosymbiont diversity of B. tabaci were identified using MtCO1 and 16S rDNA genes respectively. Analysis of our results indicated that the collected B. tabaci population belong to AsiaII genetic group and harbor the primary endosymbiont Portiera and the secondary endosymbiont Arsenophonus. The GroEL proteins of Portiera and Arsenophonus were purified and in-vitro interaction studies were carried out using pull down and co-immunoprecipitation assays. In-vivo interaction was confirmed using yeast two hybrid system. In both in-vitro and in-vivo studies, the GroEL protein of Arsenophonus was found to be interacting with the CLCuV coat protein. Further, we also localized the presence of Arsenophonus in the salivary glands and the midgut of B. tabaci besides the already reported bacteriocytes. These results suggest the involvement of Arsenophonus in the transmission of CLCuV in AsiaII genetic group of B. tabaci.

  6. The processed isoform of the translation termination factor eRF3 localizes to the nucleus to interact with the ARF tumor suppressor

    Energy Technology Data Exchange (ETDEWEB)

    Hashimoto, Yoshifumi; Kumagai, Naomichi; Hosoda, Nao; Hoshino, Shin-ichi, E-mail: hoshino@phar.nagoya-cu.ac.jp

    2014-03-14

    Highlights: • So far, eRF3 has been thought to function exclusively in the cytoplasm. • eRF3 is a nucleo-cutoplasmic shuttling protein. • eRF3 has a leptomycin-sensitive nuclear export signal (NES). • Removal of NES by proteolytic cleavage allows eRF3 to translocate to the nucleus. • The processed eRF3 (p-eRF3) interacts with a nuclear tumor suppressor ARF. - Abstract: The eukaryotic releasing factor eRF3 is a multifunctional protein that plays pivotal roles in translation termination as well as the initiation of mRNA decay. eRF3 also functions in the regulation of apoptosis; eRF3 is cleaved at Ala73 by an as yet unidentified protease into processed isoform of eRF3 (p-eRF3), which interacts with the inhibitors of apoptosis proteins (IAPs). The binding of p-eRF3 with IAPs leads to the release of active caspases from IAPs, which promotes apoptosis. Although full-length eRF3 is localized exclusively in the cytoplasm, p-eRF3 localizes in the nucleus as well as the cytoplasm. We here focused on the role of p-eRF3 in the nucleus. We identified leptomycin-sensitive nuclear export signal (NES) at amino acid residues 61–71 immediately upstream of the cleavage site Ala73. Thus, the proteolytic cleavage of eRF3 into p-eRF3 leads to release an amino-terminal fragment containing NES to allow the relocalization of eRF3 into the nucleus. Consistent with this, p-eRF3 more strongly interacted with the nuclear ARF tumor suppressor than full-length eRF3. These results suggest that while p-eRF3 interacts with IAPs to promote apoptosis in the cytoplasm, p-eRF3 also has some roles in regulating cell death in the nucleus.

  7. TRAIL protein localization in human primary T cells by 3D microscopy using 3D interactive surface plot: a new method to visualize plasma membrane.

    Science.gov (United States)

    Gras, Christophe; Smith, Nikaïa; Sengmanivong, Lucie; Gandini, Mariana; Kubelka, Claire Fernandes; Herbeuval, Jean-Philippe

    2013-01-31

    The apoptotic ligand TNF-related apoptosis ligand (TRAIL) is expressed on the membrane of immune cells during HIV infection. The intracellular stockade of TRAIL in human primary CD4(+) T cells is not known. Here we investigated whether primary CD4(+) T cells expressed TRAIL in their intracellular compartment and whether TRAIL is relocalized on the plasma membrane under HIV activation. We found that TRAIL protein was stocked in intracellular compartment in non activated CD4(+) T cells and that the total level of TRAIL protein was not increased under HIV-1 stimulation. However, TRAIL was massively relocalized on plasma membrane when cells were cultured with HIV. Using three dimensional (3D) microscopy we localized TRAIL protein in human T cells and developed a new method to visualize plasma membrane without the need of a membrane marker. This method used the 3D interactive surface plot and bright light acquired images.

  8. High order finite volume methods on wavelet-adapted grids with local time-stepping on multicore architectures for the simulation of shock-bubble interactions

    Science.gov (United States)

    Hejazialhosseini, Babak; Rossinelli, Diego; Bergdorf, Michael; Koumoutsakos, Petros

    2010-11-01

    We present a space-time adaptive solver for single- and multi-phase compressible flows that couples average interpolating wavelets with high-order finite volume schemes. The solver introduces the concept of wavelet blocks, handles large jumps in resolution and employs local time-stepping for efficient time integration. We demonstrate that the inherently sequential wavelet-based adaptivity can be implemented efficiently in multicore computer architectures using task-based parallelism and introducing the concept of wavelet blocks. We validate our computational method on a number of benchmark problems and we present simulations of shock-bubble interaction at different Mach numbers, demonstrating the accuracy and computational performance of the method.

  9. Better band gaps for wide-gap semiconductors from a locally corrected exchange-correlation potential that nearly eliminates self-interaction errors

    Science.gov (United States)

    Singh, Prashant; Harbola, Manoj K.; Johnson, Duane D.

    2017-10-01

    This work constitutes a comprehensive and improved account of electronic-structure and mechanical properties of silicon-nitride (Si3 N4 ) polymorphs via van Leeuwen and Baerends (LB) exchange-corrected local density approximation (LDA) that enforces the exact exchange potential asymptotic behavior. The calculated lattice constant, bulk modulus, and electronic band structure of Si3 N4 polymorphs are in good agreement with experimental results. We also show that, for a single electron in a hydrogen atom, spherical well, or harmonic oscillator, the LB-corrected LDA reduces the (self-interaction) error to exact total energy to  ∼10%, a factor of three to four lower than standard LDA, due to a dramatically improved representation of the exchange-potential.

  10. Ageing, exposure to pollution, and interactions between climate change and local seasons as oxidant conditions predicting incident hematologic malignancy at KINSHASA University clinics, Democratic Republic of CONGO (DRC).

    Science.gov (United States)

    Nkanga, Mireille Solange Nganga; Longo-Mbenza, Benjamin; Adeniyi, Oladele Vincent; Ngwidiwo, Jacques Bikaula; Katawandja, Antoine Lufimbo; Kazadi, Paul Roger Beia; Nzonzila, Alain Nganga

    2017-08-23

    The global burden of hematologic malignancy (HM) is rapidly rising with aging, exposure to polluted environments, and global and local climate variability all being well-established conditions of oxidative stress. However, there is currently no information on the extent and predictors of HM at Kinshasa University Clinics (KUC), DR Congo (DRC). This study evaluated the impact of bio-clinical factors, exposure to polluted environments, and interactions between global climate changes (EL Nino and La Nina) and local climate (dry and rainy seasons) on the incidence of HM. This hospital-based prospective cohort study was conducted at Kinshasa University Clinics in DR Congo. A total of 105 black African adult patients with anaemia between 2009 and 2016 were included. HM was confirmed by morphological typing according to the French-American-British (FAB) Classification System. Gender, age, exposure to traffic pollution and garages/stations, global climate variability (El Nino and La Nina), and local climate (dry and rainy seasons) were potential independent variables to predict incident HM using Cox regression analysis and Kaplan Meier curves. Out of the total 105 patients, 63 experienced incident HM, with an incidence rate of 60%. After adjusting for gender, HIV/AIDS, and other bio-clinical factors, the most significant independent predictors of HM were age ≥ 55 years (HR = 2.4; 95% CI 1.4-4.3; P = 0.003), exposure to pollution and garages or stations (HR = 4.9; 95% CI 2-12.1; P types included acute myeloid leukaemia (28.6% n = 18), multiple myeloma (22.2% n = 14), myelodysplastic syndromes (15.9% n = 10), chronic myeloid leukaemia (15.9% n = 10), chronic lymphoid leukaemia (9.5% n = 6), and acute lymphoid leukaemia (7.9% n = 5). After adjusting for confounders using Cox regression analysis, age ≥ 55 years, exposure to pollution, combined local dry season + La Nina and combined local dry season + El Nino were the most significant predictors of

  11. Local descriptors of protein structure: a systematic analysis of the sequence-structure relationship in proteins using short- and long-range interactions.

    Science.gov (United States)

    Hvidsten, Torgeir R; Kryshtafovych, Andriy; Fidelis, Krzysztof

    2009-06-01

    Local protein structure representations that incorporate long-range contacts between residues are often considered in protein structure comparison but have found relatively little use in structure prediction where assembly from single backbone fragments dominates. Here, we introduce the concept of local descriptors of protein structure to characterize local neighborhoods of amino acids including short- and long-range interactions. We build a library of recurring local descriptors and show that this library is general enough to allow assembly of unseen protein structures. The library could on average re-assemble 83% of 119 unseen structures, and showed little or no performance decrease between homologous targets and targets with folds not represented among domains used to build it. We then systematically evaluate the descriptor library to establish the level of the sequence signal in sets of protein fragments of similar geometrical conformation. In particular, we test whether that signal is strong enough to facilitate correct assignment and alignment of these local geometries to new sequences. We use the signal to assign descriptors to a test set of 479 sequences with less than 40% sequence identity to any domain used to build the library, and show that on average more than 50% of the backbone fragments constituting descriptors can be correctly aligned. We also use the assigned descriptors to infer SCOP folds, and show that correct predictions can be made in many of the 151 cases where PSI-BLAST was unable to detect significant sequence similarity to proteins in the library. Although the combinatorial problem of simultaneously aligning several fragments to sequence is a major bottleneck compared with single fragment methods, the advantage of the current approach is that correct alignments imply correct long range distance constraints. The lack of these constraints is most likely the major reason why structure prediction methods fail to consistently produce adequate

  12. Subcellular localization of SREBP1 depends on its interaction with the C-terminal region of wild-type and disease related A-type lamins

    Energy Technology Data Exchange (ETDEWEB)

    Duband-Goulet, Isabelle; Woerner, Stephanie [Laboratoire du Stress et Pathologies du Cytosquelette, Universite Paris Diderot-Paris 7, CNRS, Institut de Biologie Fonctionnelle et Adaptative, 4 rue M.A. Lagroua Weill Halle, 75205 Paris cedex 13 (France); Gasparini, Sylvaine [Laboratoire de Biologie Structurale et Radiobiologie, URA CNRS 2096, Commissariat a l' Energie Atomique Saclay, 91190 Gif-sur-Yvette (France); Attanda, Wikayatou [Laboratoire du Stress et Pathologies du Cytosquelette, Universite Paris Diderot-Paris 7, CNRS, Institut de Biologie Fonctionnelle et Adaptative, 4 rue M.A. Lagroua Weill Halle, 75205 Paris cedex 13 (France); Konde, Emilie; Tellier-Lebegue, Carine [Laboratoire de Biologie Structurale et Radiobiologie, URA CNRS 2096, Commissariat a l' Energie Atomique Saclay, 91190 Gif-sur-Yvette (France); Craescu, Constantin T. [INSERM U759, Institut Curie/Universite de Paris-Sud, 91405 Orsay Cedex (France); Gombault, Aurelie [Laboratoire du Stress et Pathologies du Cytosquelette, Universite Paris Diderot-Paris 7, CNRS, Institut de Biologie Fonctionnelle et Adaptative, 4 rue M.A. Lagroua Weill Halle, 75205 Paris cedex 13 (France); Roussel, Pascal [Institut Jacques Monod, UMR 7592, Universite Paris Diderot-Paris 7, CNRS, 15 rue Helene Brion, 75205 Paris (France); Vadrot, Nathalie; Vicart, Patrick [Laboratoire du Stress et Pathologies du Cytosquelette, Universite Paris Diderot-Paris 7, CNRS, Institut de Biologie Fonctionnelle et Adaptative, 4 rue M.A. Lagroua Weill Halle, 75205 Paris cedex 13 (France); Oestlund, Cecilia; Worman, Howard J. [Department of Medicine and Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY (United States); and others

    2011-12-10

    Lamins A and C are nuclear intermediate filament proteins expressed in most differentiated somatic cells. Previous data suggested that prelamin A, the lamin A precursor, accumulates in some lipodystrophy syndromes caused by mutations in the lamin A/C gene, and binds and inactivates the sterol regulatory element binding protein 1 (SREBP1). Here we show that, in vitro, the tail regions of prelamin A, lamin A and lamin C bind a polypeptide of SREBP1. Such interactions also occur in HeLa cells, since expression of lamin tail regions impedes nucleolar accumulation of the SREBP1 polypeptide fused to a nucleolar localization signal sequence. In addition, the tail regions of A-type lamin variants that occur in Dunnigan-type familial partial lipodystrophy of (R482W) and Hutchison Gilford progeria syndrome ( Increment 607-656) bind to the SREBP1 polypeptide in vitro, and the corresponding FLAG-tagged full-length lamin variants co-immunoprecipitate the SREBP1 polypeptide in cells. Overexpression of wild-type A-type lamins and variants favors SREBP1 polypeptide localization at the intranuclear periphery, suggesting its sequestration. Our data support the hypothesis that variation of A-type lamin protein level and spatial organization, in particular due to disease-linked mutations, influences the sequestration of SREBP1 at the nuclear envelope and thus contributes to the regulation of SREBP1 function.

  13. Subcellular localization of SREBP1 depends on its interaction with the C-terminal region of wild-type and disease related A-type lamins

    Science.gov (United States)

    Duband-Goulet, Isabelle; Woerner, Stephanie; Gasparini, Sylvaine; Attanda, Wikayatou; Kondé, Emilie; Tellier-Lebègue, Carine; Craescu, Constantin T.; Gombault, Aurélie; Roussel, Pascal; Vadrot, Nathalie; Vicart, Patrick; Östlund, Cecilia; Worman, Howard J.; Zinn-Justin, Sophie; Buendia, Brigitte

    2011-01-01

    Lamins A and C are nuclear intermediate filament proteins expressed in most differentiated somatic cells. Previous data suggested that prelamin A, the lamin A precursor, accumulates in some lipodystrophy syndromes caused by mutations in the lamin A/C gene, and binds and inactivates the sterol regulatory element binding protein 1 (SREBP1). Here we show that, in vitro, the tail regions of prelamin A, lamin A and lamin C bind a polypeptide of SREBP1. Such interactions also occur in HeLa cells, since expression of lamin tail regions impedes nucleolar accumulation of the SREBP1 polypeptide fused to a nucleolar localization signal sequence. In addition, the tail regions of A-type lamin variants that occur in Dunnigan-type familial partial lipodystrophy of (R482W) and Hutchison Gilford progeria syndrome (Δ607–656) bind to the SREBP1 polypeptide in vitro, and the corresponding FLAG-tagged full-length lamin variants co-immunoprecipitate the SREBP1 polypeptide in cells. Overexpression of wild-type A-type lamins and variants favors SREBP1 polypeptide localization at the intranuclear periphery, suggesting its sequestration. Our data support the hypothesis that variation of A-type lamin protein level and spatial organization, in particular due to disease-linked mutations, influences the sequestration of SREBP1 at the nuclear envelope and thus contributes to the regulation of SREBP1 function. PMID:21993218

  14. Reticulomics: Protein-Protein Interaction Studies with Two Plasmodesmata-Localized Reticulon Family Proteins Identify Binding Partners Enriched at Plasmodesmata, Endoplasmic Reticulum, and the Plasma Membrane.

    Science.gov (United States)

    Kriechbaumer, Verena; Botchway, Stanley W; Slade, Susan E; Knox, Kirsten; Frigerio, Lorenzo; Oparka, Karl; Hawes, Chris

    2015-11-01

    The endoplasmic reticulum (ER) is a ubiquitous organelle that plays roles in secretory protein production, folding, quality control, and lipid biosynthesis. The cortical ER in plants is pleomorphic and structured as a tubular network capable of morphing into flat cisternae, mainly at three-way junctions, and back to tubules. Plant reticulon family proteins (RTNLB) tubulate the ER by dimerization and oligomerization, creating localized ER membrane tensions that result in membrane curvature. Some RTNLB ER-shaping proteins are present in the plasmodesmata (PD) proteome and may contribute to the formation of the desmotubule, the axial ER-derived structure that traverses primary PD. Here, we investigate the binding partners of two PD-resident reticulon proteins, RTNLB3 and RTNLB6, that are located in primary PD at cytokinesis in tobacco (Nicotiana tabacum). Coimmunoprecipitation of green fluorescent protein-tagged RTNLB3 and RTNLB6 followed by mass spectrometry detected a high percentage of known PD-localized proteins as well as plasma membrane proteins with putative membrane-anchoring roles. Förster resonance energy transfer by fluorescence lifetime imaging microscopy assays revealed a highly significant interaction of the detected PD proteins with the bait RTNLB proteins. Our data suggest that RTNLB proteins, in addition to a role in ER modeling, may play important roles in linking the cortical ER to the plasma membrane.

  15. Diacylglycerol Acyltransferase-1 Localizes Hepatitis C Virus NS5A Protein to Lipid Droplets and Enhances NS5A Interaction with the Viral Capsid Core*

    Science.gov (United States)

    Camus, Gregory; Herker, Eva; Modi, Ankit A.; Haas, Joel T.; Ramage, Holly R.; Farese, Robert V.; Ott, Melanie

    2013-01-01

    The triglyceride-synthesizing enzyme acyl CoA:diacylglycerol acyltransferase 1 (DGAT1) plays a critical role in hepatitis C virus (HCV) infection by recruiting the HCV capsid protein core onto the surface of cellular lipid droplets (LDs). Here we find a new interaction between the non-structural protein NS5A and DGAT1 and show that the trafficking of NS5A to LDs depends on DGAT1 activity. DGAT1 forms a complex with NS5A and core and facilitates the interaction between both viral proteins. A catalytically inactive mutant of DGAT1 (H426A) blocks the localization of NS5A, but not core, to LDs in a dominant-negative manner and impairs the release of infectious viral particles, underscoring the importance of DGAT1-mediated translocation of NS5A to LDs in viral particle production. We propose a model whereby DGAT1 serves as a cellular hub for HCV core and NS5A proteins, guiding both onto the surface of the same subset of LDs, those generated by DGAT1. These results highlight the critical role of DGAT1 as a host factor for HCV infection and as a potential drug target for antiviral therapy. PMID:23420847

  16. LC8 dynein light chain (DYNLL1) binds to the C-terminal domain of ATM-interacting protein (ATMIN/ASCIZ) and regulates its subcellular localization

    Energy Technology Data Exchange (ETDEWEB)

    Rapali, Peter [Dept. Biochemistry, Eoetvoes Lorand University, Budapest (Hungary); Garcia-Mayoral, Maria Flor [Dept. Biological Physical Chemistry, IQFR, CSIC, Madrid (Spain); Martinez-Moreno, Monica [Dept. Biochemistry and Molecular Biology I, Universidad Complutense, Madrid (Spain); Tarnok, Krisztian; Schlett, Katalin [Dept. Physiology and Neurobiology, Eoetvoes Lorand University, Budapest (Hungary); Albar, Juan Pablo [Proteomics Facility, CNB, CSIC, Madrid (Spain); Bruix, Marta [Dept. Biological Physical Chemistry, IQFR, CSIC, Madrid (Spain); Nyitray, Laszlo, E-mail: nyitray@elte.hu [Dept. Biochemistry, Eoetvoes Lorand University, Budapest (Hungary); Rodriguez-Crespo, Ignacio, E-mail: nacho@bbm1.ucm.es [Dept. Biochemistry and Molecular Biology I, Universidad Complutense, Madrid (Spain)

    2011-10-28

    Highlights: Black-Right-Pointing-Pointer We have screened a human library with dynein light chain DYNLL1 (DLC8) as bait. Black-Right-Pointing-Pointer Dynein light chain DYNLL1 binds to ATM-kinase interacting protein (ATMIN). Black-Right-Pointing-Pointer ATMIN has 17 SQ/TQ motifs, a motif frequently found in DYNLL1-binding partners. Black-Right-Pointing-Pointer The two proteins interact in vitro, with ATMIN displaying at least five binding sites. Black-Right-Pointing-Pointer The interaction of ATMIN and DYNNL1 in transfected cells can also be observed. -- Abstract: LC8 dynein light chain (now termed DYNLL1 and DYNLL2 in mammals), a dimeric 89 amino acid protein, is a component of the dynein multi-protein complex. However a substantial amount of DYNLL1 is not associated to microtubules and it can thus interact with dozens of cellular and viral proteins that display well-defined, short linear motifs. Using DYNLL1 as bait in a yeast two-hybrid screen of a human heart library we identified ATMIN, an ATM kinase-interacting protein, as a DYNLL1-binding partner. Interestingly, ATMIN displays at least 18 SQ/TQ motifs in its sequence and DYNLL1 is known to bind to proteins with KXTQT motifs. Using pepscan and yeast two-hybrid techniques we show that DYNLL1 binds to multiple SQ/TQ motifs present in the carboxy-terminal domain of ATMIN. Recombinant expression and purification of the DYNLL1-binding region of ATMIN allowed us to obtain a polypeptide with an apparent molecular mass in gel filtration close to 400 kDa that could bind to DYNLL1 in vitro. The NMR data-driven modelled complexes of DYNLL1 with two selected ATMIN peptides revealed a similar mode of binding to that observed between DYNLL1 and other peptide targets. Remarkably, co-expression of mCherry-DYNLL1 and GFP-ATMIN mutually affected intracellular protein localization. In GFP-ATMIN expressing-cells DNA damage induced efficiently nuclear foci formation, which was partly impeded by the presence of mCherry-DYNLL1

  17. The Efimov effect with finite range interactions

    Science.gov (United States)

    Platter, Lucas

    2017-01-01

    Systems of strongly interacting atoms are receiving a lot of attention because of their interesting features in the few- and many-body sector. Strong interactions are frequently obtained in experiment by using a Feshbach resonance to tune the scattering to large values. A striking feature of three-body systems with a large scattering is the emergence of a discrete scaling symmetry that is also known as the Efimov effect. The Efimov effect has been observed through the measurement of loss rates in experiments with ultracold atoms. It is, however, also relevant to nuclear physics where the three-nucleon bound state and some halo nuclei are considered to be examples of Efimov states. Such systems can be modeled conveniently with the zero-range limit, however, in many of such experiments the finite range of the interaction leads to significant corrections that need to be taken into account. I will discuss how a finite effective range can be included in calculations for three-body systems that display the Efimov effect and how this leads to novel universal relations. Applications to experiments with homonuclear and heteronuclear ultracold atomic gases are discussed. National Science Foundation PHY-1516077, PHY-1555030.

  18. Immunohistochemical localization of integrin alpha V beta 3 and osteopontin suggests that they do not interact during embryo implantation in ruminants

    Directory of Open Access Journals (Sweden)

    MacLaren Leslie A

    2004-04-01

    Full Text Available Abstract Background It has been suggested that trophoblast attachment requires co-expression of integrin alpha V beta 3 and its ligand osteopontin at the fetal-maternal interface. Until now the expression patterns of integrin alpha V beta 3 and osteopontin in the pregnant bovine uterus were unknown. The objectives of this study were to localize integrin alpha V beta 3 and osteopontin in bovine and sheep endometrium during the periimplantation period and to compare the distribution patterns using antibodies that had not yet been tested in sheep. Methods Cell compartments within endometrial tissue sections were scored for immunohistochemical staining intensity and data were analyzed to determine the effects of day of pregnancy or cycle. Results In pregnant bovine endometrium, integrin alpha V beta 3 was detected in luminal epithelium, stroma, myometrium and smooth muscle. A strong band of immunoreactivity was observed in the subepithelial stroma of intercaruncular regions, but there was reduced reactivity in the caruncles and glands. Bovine trophoblast did not express integrin alpha V beta 3 at any stage of pregnancy. In ovine endometrium a different pattern of staining for integrin alpha V beta 3 was observed. Reactivity was not present in the luminal epithelium or trophoblast. There was strong staining of the deep glands and no reactivity in the superficial glands. Osteopontin distribution was similar for sheep and cattle. For both species, apical staining was present on the luminal epithelium and glands and on embryonic tissues. Conclusion In ruminants, integrin alpha V beta 3 and osteopontin do not co-localize at the fetal-maternal interface indicating that these proteins could not interact to facilitate embryo attachment as has been proposed in other species.

  19. 基于邻域跟随的群集系统分群控制算法%Fission control algorithm for swarm based on local following interaction

    Institute of Scientific and Technical Information of China (English)

    雷小康; 刘明雍; 杨盼盼

    2013-01-01

    Traditionally, the motion cooperative algorithms for swarm base on the interaction rules of attraction, repulsion and alignment have the properties of group cohesion and velocity consensus, which prevent the splitting of the group under multiple external stimulus. Therefore, a distributed motion cooperative algorithm is proposed by integrating a following interaction with the behaviors of long-range attraction, short-range repulsion and consensus-based alignment, where the following behavior is applied locally to one of the proximity neighbors with the fastest change of inter-individuals distance and vanished after a short acting time. Then, the swarm can split autonomously into multiple sub-groups when multiple stimulus are introduced. Finally, simulation results show the feasibility and effectiveness of the proposed algorithm for the fission control.%  传统基于避撞、组队和聚集规则的个体运动协同算法具有内聚和速度一致趋势,群体在外部信息刺激下难以自发实施分群。为此,提出一种融合了邻域跟随行为的分布式协同控制算法。该算法在短距排斥、长距吸引和速度一致行为的基础上,引入个体对于其感知域内间距变化最快的邻居的跟随运动,并通过对跟随目标的动态更新,实现了外部信息作用下群体的自组织分群行为。仿真实验验证了算法的可行性和分群有效性。

  20. Permanent Electric Dipole Moments of Single-, Two-, and Three-Nucleon Systems

    CERN Document Server

    Wirzba, Andreas; Nogga, Andreas

    2016-01-01

    A nonzero electric dipole moment (EDM) of the neutron, proton, deuteron or helion, in fact, of any finite system necessarily involves the breaking of a symmetry, either by the presence of external fields (i.e. electric fields leading to the case of induced EDMs) or explicitly by the breaking of the discrete parity and time-reflection symmetries in the case of permanent EDMs. We discuss two theorems describing these phenomena and report about the cosmological motivation for an existence of CP breaking beyond what is generated by the Kobayashi-Maskawa mechanism in the Standard Model and what this might imply for the permanent electric dipole moments of the nucleon and light nuclei by estimating a window of opportunity for physics beyond what is currently known. Recent - and in the case of the deuteron even unpublished - results for the relevant matrix elements of nuclear EDM operators are presented and the relevance for disentangling underlying New Physics sources are discussed.

  1. Three-nucleon potential effects in spin observables of elastic deuteron-proton scattering

    NARCIS (Netherlands)

    Amir-Ahmadi, Hamid Reza

    2006-01-01

    One of the main scientific challenges is to understand the variety of fundamental forces in nature and their features. There are four fundamental forces known; i.e. Gravity, Electromagnetic Weak and Strong. In nuclear physics, one desire to understand the nuclear force which basically is product of

  2. Comparison of the unitary pole and Adhikari-Sloan expansions in the three-nucleon system

    Energy Technology Data Exchange (ETDEWEB)

    Afnan, I.R.; Birrell, N.D.

    1977-08-01

    The binding energy of /sup 3/H, the percentage S-, S'-, and D-state probability, and the charge form factor of /sup 3/He are calculated using the unitary pole and Adhikari-Sloan separable expansions to the Reid soft core potential. Comparison of the results for the two separable expansions show that the expansion of Adhikari and Sloan has the better convergence property, and the lowest rank expansion considered (equivalent to the unitary pole approximation) gives a good approximation to the binding energy of /sup 3/H and the charge form factor of /sup 3/He, even at large momentum transfer (K/sup 2/ < 20 fm/sup -2/).

  3. Covariant spectator theory for the electromagnetic three-nucleon form factors: Complete impulse approximation

    CERN Document Server

    Pinto, Sérgio Alexandre; Gross, Franz

    2009-01-01

    We present the first calculations of the electromagnetic form factors of $^3$He and $^3$H within the framework of the Covariant Spectator Theory (CST). This first exploratory study concentrates on the sensitivity of the form factors to the strength of the scalar meson-nucleon off-shell coupling, known from previous studies to have a strong influence on the three-body binding energy. Results presented here were obtained using the complete impulse approximation (CIA), which includes contributions of relativistic origin that appear as two-body corrections in a non-relativistic framework, such as "Z-graphs", but omits other two and three-body currents. We compare our results to non-relativistic calculations augmented by relativistic corrections of ${\\cal O}(v/c)^2$.

  4. Measurement of Two- and Three-Nucleon Short-Range Correlation Probabilities in Nuclei

    Energy Technology Data Exchange (ETDEWEB)

    K. S. Egiyan; N. B. Dashyan; M. M. Sargsian; M. I. Strikman; L. B. Weinstein; G. Adams; P. Ambrozewicz; M. Anghinolfi; B. Asavapibhop; G. Asryan; H. Avakian; H. Baghdasaryan; N. Baillie; J. P. Ball; N. A. Baltzell; V. Batourine; M. Battaglieri; I. Bedlinskiy; M. Bektasoglu; M. Bellis; N. Benmouna; A. S. Biselli; B. E. Bonner; S. Bouchigny; S. Boiarinov; R. Bradford; D. Branford; W. K. Brooks; S. Bültmann; V. D. Burkert; C. Bultuceanu; J. R. Calarco; S. L. Careccia; D. S. Carman; B. Carnahan; S. Chen; P. L. Cole; P. Coltharp; P. Corvisiero; D. Crabb; H. Crannell; J. P. Cummings; E. De Sanctis; R. DeVita; P. V. Degtyarenko; H. Denizli; L. Dennis; K. V. Dharmawardane; C. Djalali; G. E. Dodge; J. Donnelly; D. Doughty; P. Dragovitsch; M. Dugger; S. Dytman; O. P. Dzyubak; H. Egiyan; L. Elouadrhiri; A. Empl; P. Eugenio; R. Fatemi; G. Fedotov; R. J. Feuerbach; T. A. Forest; H. Funsten; G. Gavalian; N. G. Gevorgyan; G. P. Gilfoyle; K. L. Giovanetti; F. X. Girod; J. T. Goetz; E. Golovatch; R. W. Gothe; K. A. Griffioen; M. Guidal; M. Guillo; N. Guler; L. Guo; V. Gyurjyan; C. Hadjidakis; J. Hardie; F. W. Hersman; K. Hicks; I. Hleiqawi; M. Holtrop; J. Hu; M. Huertas; C. E. Hyde-Wright; Y. Ilieva; D. G. Ireland; B. S. Ishkhanov; M. M. Ito; D. Jenkins; H. S. Jo; K. Joo; H. G. Juengst; J. D. Kellie; M. Khandaker; K. Y. Kim; K. Kim; W. Kim; A. Klein; F. J. Klein; A. Klimenko; M. Klusman; L. H. Kramer; V. Kubarovsky; J. Kuhn; S. E. Kuhn; S. Kuleshov; J. Lachniet; J. M. Laget; J. Langheinrich; D. Lawrence; T. Lee; K. Livingston; L. C. Maximon; S. McAleer; B. McKinnon; J. W. C. McNabb; B. A. Mecking; M. D. Mestayer; C. A. Meyer; T. Mibe; K. Mikhailov; R. Minehart; M. Mirazita; R. Miskimen; V. Mokeev; S. A. Morrow; J. Mueller; G. S. Mutchler; P. Nadel-Turonski; J. Napolitano; R. Nasseripour; S. Niccolai; G. Niculescu; I. Niculescu; B. B. Niczyporuk; R. A. Niyazov; G. V. O' Rielly; M. Osipenko; A. I. Ostrovidov; K. Park; E. Pasyuk; C. Peterson; J. Pierce; N. Pivnyuk; D. Pocanic; O. Pogorelko; E. Polli; S. Pozdniakov; B. M. Preedom; J. W. Price; Y. Prok; D. Protopopescu; L. M. Qin; B. A. Raue; G. Riccardi; G. Ricco; M. Ripani; B. G. Ritchie; F. Ronchetti; G. Rosner; P. Rossi; D. Rowntree; P. D. Rubin; F. Sabatié; C. Salgado; J. P. Santoro; V. Sapunenko; R. A. Schumacher; V. S. Serov; Y. G. Sharabian; J. Shaw; E. S. Smith; L. C. Smith; D. I. Sober; A. Stavinsky; S. Stepanyan; B. E. Stokes; P. Stoler; S. Strauch; R. Suleiman; M. Taiuti; S. Taylor; D. J. Tedeschi; R. Thompson; A. Tkabladze; S. Tkachenko; L. Todor; C. Tur; M. Ungaro; M. F. Vineyard; A. V. Vlassov; D. P. Weygand; M. Williams; E. Wolin; M. H. Wood; A. Yegneswaran; J. Yun; L. Zana; and J. Zhang

    2006-03-01

    The ratios of inclusive electron scattering cross sections of 4He, 12C, and 56Fe to 3He have been measured at 11.4 GeV2, the ratios exhibit two separate plateaus, at 1.52.25. This pattern is predicted by models that include 2- and 3-nucleon short-range correlations (SRC). Relative to A=3, the per-nucleon probabilities of 3-nucleon SRC are 2.3, 3.1, and 4.4 times larger for A=4, 12, and 56. This is the first measurement of 3-nucleon SRC probabilities in nuclei.

  5. Systematic Studies of the Three-nucleon System Dynamics in the Deutron–Proton Breakup Reaction

    NARCIS (Netherlands)

    Klos, B.; Ciepal, I.; Kistryn, St.; Stephan, E.; Biegun, A.; Bodek, K.; Deltuva, A.; Epelbaum, E.; Eslami-Kalantari, M.; Fonseca, A. C.; Golak, J.; Jamroz, B.; Jha, V.; Kalantar-Nayestanaki, N.; Kamada, H.; Khatri, G.; Kirillov, Da.; Kirillov, Di.; Kliczewski, St.; Kozela, A.; Kravcikova, M.; Machner, H.; Magiera, A.; Martinska, G.; Messchendorp, J.; Nogga, A.; Parol, W.; Ramazani-Moghaddam-Arani, A.; Roy, B. J.; Sakai, H.; Sekiguchi, K.; Sitnik, I.; Siudak, R.; Skibinski, R.; Sworst, R.; Urban, J.; Witala, H.; Wronska, A.; Zejma, J.

    2013-01-01

    Precise and large sets of data for cross section, vector and tensor analyzing powers for the H-1((d) over right arrow ,pp)n breakup reaction were obtained in experiments carried out at KVI Groningen and FZ-Julich at deuteron beam energies of 100 MeV, 13 MeV and 160 MeV (cross sections only). These p

  6. Covariant spectator theory for the electromagnetic three-nucleon form factors: Complete impulse approximation

    Energy Technology Data Exchange (ETDEWEB)

    Pinto, Sérgio Alexandre; Stadler, Alfred; Gross, Franz

    2009-05-01

    We present the first calculations of the electromagnetic form factors of 3He and 3H within the framework of the Covariant Spectator Theory (CST). This first exploratory study concentrates on the sensitivity of the form factors to the strength of the scalar meson-nucleon off-shell coupling, known from previous studies to have a strong influence on the three-body binding energy. Results presented here were obtained using the complete impulse approximation (CIA), which includes contributions of relativistic origin that appear as two-body corrections in a non-relativistic framework, such as "Z-graphs," but omits other two and three-body currents. Finally, we compare our results to non-relativistic calculations augmented by relativistic corrections of O(v/c)2.

  7. Yet1p-Yet3p interacts with Scs2p-Opi1p to regulate ER localization of the Opi1p repressor.

    Science.gov (United States)

    Wilson, Joshua D; Thompson, Sarah L; Barlowe, Charles

    2011-05-01

    Lipid sensing mechanisms at the endoplasmic reticulum (ER) coordinate an array of biosynthetic pathways. A major phospholipid regulatory circuit in yeast is controlled by Scs2p, an ER membrane protein that binds the transcriptional repressor protein Opi1p. Cells grown in the absence of inositol sequester Scs2p-Opi1p at the ER and derepress target genes including INO1. We recently reported that Yet1p and Yet3p, the yeast homologues of BAP29 and BAP31, are required for normal growth in the absence of inositol. Here we show that the Yet1p-Yet3p complex acts in derepression of INO1 through physical association with Scs2p-Opi1p. Yet complex binding to Scs2p-Opi1p was enhanced by inositol starvation, although the interaction between Scs2p and Opi1p was not influenced by YET1 or YET3 deletion. Interestingly, live-cell imaging analysis indicated that Opi1p does not efficiently relocalize to the ER during inositol starvation in yet3Δ cells. Together our data demonstrate that a physical association between the Yet complex and Scs2p-Opi1p is required for proper localization of the Opi1p repressor to ER membranes and subsequent INO1 derepression.

  8. Coat proteins of Rice tungro bacilliform virus and Mungbean yellow mosaic virus contain multiple nuclear-localization signals and interact with importin alpha.

    Science.gov (United States)

    Guerra-Peraza, O; Kirk, D; Seltzer, V; Veluthambi, K; Schmit, A C; Hohn, T; Herzog, E

    2005-06-01

    Transport of the viral genome into the nucleus is an obligatory step in the replication cycle of plant pararetro- and geminiviruses. In both these virus types, the multifunctional coat protein (CP) is thought to be involved in this process. Here, a green fluorescent protein tagging approach was used to demonstrate nuclear import of the CPs of Rice tungro bacilliform virus (RTBV) and Mungbean yellow mosaic virus--Vigna (MYMV) in Nicotiana plumbaginifolia protoplasts. In both cases, at least two nuclear localization signals (NLSs) were identified and characterized. The NLSs of RTBV CP are located within both N- and C-terminal regions (residues 479KRPK/497KRK and 744KRK/758RRK), and those of MYMV CP within the N-terminal part (residues 3KR and 41KRRR). The MYMV and RTBV CP NLSs resemble classic mono- and bipartite NLSs, respectively. However, the N-terminal MYMV CP NLS and both RTBV CP NLSs show peculiarities in the number and position of basic residues. In vitro pull-down assays revealed interaction of RTBV and MYMV CPs with the nuclear import factor importin alpha, suggesting that both CPs are imported into the nucleus via an importin alpha-dependent pathway. The possibility that this pathway could serve for docking of virions to the nucleus is discussed.

  9. «Cross-border Environmental Peace» as the Interaction of Regional Norms and Local Power: Lessons from Cross-Regional Analysis of Water Security Debates

    Directory of Open Access Journals (Sweden)

    Harlan Koff

    2017-01-01

    Full Text Available This article contends that notions of «peace» and «justice» in cross-border water management vary in different world regions. Moreover, it argues that «peace» and «justice» can be explained by analyzing the interaction between «regional» interpretations and implementation of water security norms and local cross-border power structures. «Regional water security» is defined as the normative commitment to provide necessary water resources to communities within world regions. «Power,» which is defined traditionally as «the ability of actors to obtain their objectives despite opposition» is viewed as a function of political entrepreneurialism and opportunity structures. This article derives from a review of the pertinent literatures on «water security» and «water justice,» the two elements of «water peace» as well as scholarship on cross-border water management in different world regions. It discusses water governance within the framework of cross-border politics and comparative regional integration. It also includes analysis of the policy documents and websites of seventeen regional organizations as well as interviews with key actors and local experts on water management in specific cross-border case studies. The article is divided into five sections. Following this introduction, part two examines «water security» and «water justice» in international affairs. Part III then discusses «power» in cross-border water governance debates and addresses the transnational face of water security discussions. Part IV presents a comparative examination of cross-border «water justice» in selected world regions which is followed by theoretical considerations that are addressed in part V, the conclusion. In general, the article emphasizes the need to promote comparative cross-regional research on cross-border water governance in order to examine how «peace,» «security» and «justice» are framed in debates over water resources. 

  10. Molecular dynamics and information on possible sites of interaction of intramyocellular metabolites in vivo from resolved dipolar couplings in localized 1H NMR spectra

    Science.gov (United States)

    Schröder, Leif; Schmitz, Christian; Bachert, Peter

    2004-12-01

    Proton NMR resonances of the endogenous metabolites creatine and phosphocreatine ((P)Cr), taurine (Tau), and carnosine (Cs, β-alanyl- L-histidine) were studied with regard to residual dipolar couplings and molecular mobility. We present an analysis of the direct 1H- 1H interaction that provides information on motional reorientation of subgroups in these molecules in vivo. For this purpose, localized 1H NMR experiments were performed on m. gastrocnemius of healthy volunteers using a 1.5-T clinical whole-body MR scanner. We evaluated the observable dipolar coupling strength SD0 ( S = order parameter) of the (P)Cr-methyl triplet and the Tau-methylene doublet by means of the apparent line splitting. These were compared to the dipolar coupling strength of the (P)Cr-methylene doublet. In contrast to the aliphatic protons of (P)Cr and Tau, the aromatic H2 ( δ = 8 ppm) and H4 ( δ = 7 ppm) protons of the imidazole ring of Cs exhibit second-order spectra at 1.5 T. This effect is the consequence of incomplete transition from Zeeman to Paschen-Back regime and allows a determination of SD0 from H2 and H4 of Cs as an alternative to evaluating the multiplet splitting which can be measured directly in high-resolution 1H NMR spectra. Experimental data showed striking differences in the mobility of the metabolites when the dipolar coupling constant D0 (calculated with the internuclear distance known from molecular geometry in the case of complete absence of molecular dynamics and motion) is used for comparison. The aliphatic signals involve very small order parameters S ≈ (1.4 - 3) × 10 -4 indicating rapid reorientation of the corresponding subgroups in these metabolites. In contrast, analysis of the Cs resonances yielded S ≈ (113 - 137) × 10 -4. Thus, the immobilization of the Cs imidazole ring owing to an anisotropic cellular substructure in human m. gastrocnemius is much more effective than for (P)Cr and Tau subgroups. Furthermore, 1H NMR experiments on aqueous model

  11. The monofunctional glycosyltransferase of Escherichia coli localizes to the cell division site and interacts with the penicillin-binding protein 3 (PBP3), FtsW and FtsN

    NARCIS (Netherlands)

    Derouaux, Adeline; Wolf, Benoît; Fraipont, Claudine; Breukink, E.J.; Nguyen-Distèche, Martine; Terrak, Mohammed

    2008-01-01

    The monofunctional peptidoglycan glycosyltransferase (MtgA) catalyzes glycan chain elongation of the bacterial cell wall. Here we show that MtgA localizes at the division site of Escherichia coli cells that are deficient in PBP1b and produce a thermosensitive PBP1a and is able to interact with three

  12. Ab initio self-consistent Gorkov-Green's function calculations of semimagic nuclei: Formalism at second order with a two-nucleon interaction

    Science.gov (United States)

    Somà, V.; Duguet, T.; Barbieri, C.

    2011-12-01

    An ab initio calculation scheme for finite nuclei based on self-consistent Green's functions in the Gorkov formalism is developed. It aims at describing properties of doubly magic and semimagic nuclei employing state-of-the-art microscopic nuclear interactions and explicitly treating pairing correlations through the breaking of U(1) symmetry associated with particle number conservation. The present paper introduces the formalism necessary to undertake applications at (self-consistent) second order using two-nucleon interactions in a detailed and self-contained fashion. First applications of such a scheme will be reported soon in a forthcoming publication. Future works will extend the present scheme to include three-nucleon interactions and implement more advanced truncation schemes.

  13. Ab-initio self-consistent Gorkov-Green's function calculations of semi-magic nuclei - I. Formalism at second order with a two-nucleon interaction

    CERN Document Server

    Soma, V; Barbieri, C

    2011-01-01

    An ab-initio calculation scheme for finite nuclei based on self-consistent Green's functions in the Gorkov formalism is developed. It aims at describing properties of doubly-magic and semi-magic nuclei employing state-of-the-art microscopic nuclear interactions and explicitly treating pairing correlations through the breaking of U(1) symmetry associated with particle number conservation. The present paper introduces the formalism, necessary to undertake applications at (self-consistent) second-order using two-nucleon interactions, in a detailed and self-contained fashion. First applications of such a scheme will be reported soon in a forthcoming publication. Future works will extend the present scheme to include three-nucleon interactions and implement more advanced truncation schemes.

  14. Local and systemic renin-angiotensin system participates in cardiopulmonary-renal interactions in monocrotaline-induced pulmonary hypertension in the rat.

    Science.gov (United States)

    Malikova, Eva; Galkova, Kristina; Vavrinec, Peter; Vavrincova-Yaghi, Diana; Kmecova, Zuzana; Krenek, Peter; Klimas, Jan

    2016-07-01

    Renin-angiotensin system (RAS) is one of the pathophysiological mechanisms in heart failure. Recently, involvement of the kidney in the disease progression has been proposed in patients with pulmonary arterial hypertension (PAH). We hypothesized that local and systemic RAS could be the central regulators of cardiopulmonary-renal interactions in experimental monocrotaline-induced pulmonary hypertension (PH) in rats. Male 12-week-old Wistar rats were injected subcutaneously with monocrotaline (60 mg/kg). The experiment was terminated 4 weeks after monocrotaline administration. Using RT-PCR, we measured the expression of RAS-related genes in right and left ventricles, lungs and kidneys, together with indicators of renal dysfunction and damage. We observed a significantly elevated expression of angiotensin-converting enzyme (ACE) in both left and right ventricles and kidneys (P < 0.05), but a significantly decreased ACE in the lungs (P < 0.05). Kidneys showed a significant 2.5-fold increase in renin mRNA (P < 0.05) along with erythropoietin, TGFβ1, COX-2, NOS-1 and nephrin. Expression of erythropoietin correlated inversely with hemoglobin oxygen saturation and positively with renin expression. In conclusion, monocrotaline-induced PH exhibited similar alterations of ACE expression in the left and right ventricles, and in the kidney, in contrast to the lungs. Increased renal renin was likely a consequence of renal hypoxia/hypoperfusion, as was increased renal erythropoietin expression. Alterations in RAS in the monocrotaline model are probably a result of hypoxic state, and while they could serve as a compensatory mechanism at a late stage of the disease, they could be viewed also as an indicator of multiorgan failure in PAH.

  15. Chlamydia trachomatis protein CT009 is a structural and functional homolog to the key morphogenesis component RodZ and interacts with division septal plane localized MreB

    Science.gov (United States)

    Kemege, Kyle E.; Hickey, John M.; Barta, Michael L.; Wickstrum, Jason; Balwalli, Namita; Lovell, Scott; Battaile, Kevin P.; Hefty, P. Scott

    2015-01-01

    Summary Cell division in Chlamydiae is poorly understood as apparent homologs to most conserved bacterial cell division proteins are lacking and presence of elongation (rod shape) associated proteins indicate non-canonical mechanisms may be employed. The rod-shape determining protein MreB has been proposed as playing a unique role in chlamydial cell division. In other organisms, MreB is part of an elongation complex that requires RodZ for proper function. A recent study reported that the protein encoded by ORF CT009 interacts with MreB despite low sequence similarity to RodZ. The studies herein expand on those observations through protein structure, mutagenesis, and cellular localization analyses. Structural analysis indicated that CT009 shares high level of structural similarity to RodZ, revealing the conserved orientation of two residues critical for MreB interaction. Substitutions eliminated MreB protein interaction and partial complementation provided by CT009 in RodZ deficient E. coli. Cellular localization analysis of CT009 showed uniform membrane staining in Chlamydia. This was in contrast to the localization of MreB, which was restricted to predicted septal planes. MreB localization to septal planes provides direct experimental observation for the role of MreB in cell division and supports the hypothesis that it serves as a functional replacement for FtsZ in Chlamydia. PMID:25382739

  16. Building Capabilities for Multi-Stakeholder Interactions at Global and Local Levels: An Executive Interview with Jan Kees Vis, Berton Torn and Anniek Mauser

    NARCIS (Netherlands)

    Dentoni, D.; Veldhuizen, M.G.

    2012-01-01

    Managers of Unilever discuss the processes that led the company to develop and implement a corporate sustainability strategy working with multiple stakeholders. Major learning points include: 1) interactions with stakeholders are crucial to secure strategic resources in developing countries; 2)

  17. The testis-specific VAD1.3/AEP1 interacts with {beta}-actin and syntaxin 1 and directs peri-nuclear/Golgi expression with bipartite nucleus localization (BNL) sequence

    Energy Technology Data Exchange (ETDEWEB)

    Zuo, Yan; Gao, Jing [Department of Obstetrics and Gynaecology, The University of Hong Kong, Pokfulam (Hong Kong); Yeung, William S.B. [Department of Obstetrics and Gynaecology, The University of Hong Kong, Pokfulam (Hong Kong); Centre for Reproduction, Development and Growth, Hong Kong Jockey Club Clinical Research Centre, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam (Hong Kong); Lee, Kai-Fai, E-mail: ckflee@hkucc.hku.hk [Department of Obstetrics and Gynaecology, The University of Hong Kong, Pokfulam (Hong Kong); Centre for Reproduction, Development and Growth, Hong Kong Jockey Club Clinical Research Centre, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam (Hong Kong)

    2010-10-15

    Research highlights: {yields} VAD1.3 interacts {beta}-actin and syntaxin 1. {yields} VAD1.3 colocalizes {beta}-actin in spermatids. {yields} The bipartite nucleus localization (BNL) signal is important for peri-nuclear/Golgi expression in transfected cells. {yields} The C-terminal region of VAD1.3 direct nuclei localization. -- Abstract: VAD1.3 (AEP1), a novel testis-specific gene, was first isolated from the testis of a retinol-treated vitamin-A-deficient (VAD) rat model. It is expressed at the acrosomal region of spermatids from postnatal day 25. VAD1.3 immunoreactivity is present in rat, human, monkey and porcine spermatids and spermatozoa, suggesting that VAD1.3 may play a role in acrosome formation. However, direct evidence on the detailed sub-cellular localization of the VAD1.3 protein in the acrosome and how VAD1.3 is involved in acrosome formation remains largely unknown. Here, we isolated and identified VAD1.3 interacting proteins by immunoprecipitation followed by mass spectrometry, and determined the functional motifs of VAD1.3 that were important for its specific sub-cellular location in vitro. We found that VAD1.3 bound to syntaxin 1 and {beta}-actin proteins in vitro. Immunogold electron microscopic study localized VAD1.3 immunoreactivity to the acrosome membranes and matrix, and colocalized it with the {beta}-actin protein. The full-length GFP-VAD (1-3601) and GFP-VAD (1-730) fusion proteins that contain the bipartite nucleus localization (BNL) signal were located in the peri-nucleus/Golgi of the transfected cells. In addition, the GFP signal colocalized with the endoplasmic reticulum marker and the syntaxin 1 protein in the transfected HeLa and GC-2spd cells. The C-terminal GFP-VAD (1770-3601) was expressed in the nucleus. Taken together, VAD1.3 interacts with {beta}-actin and syntaxin 1 in vitro. The BNL signal may mediate the peri-nuclei localization of the protein that may interact with syntaxin 1 and {beta}-actin for acrosome formation in

  18. Calcium in pollen-pistil interaction in `Petunia hybrida Hor`. Pt. 1. Localization of Ca{sup 2+} ions in mature pollen grain using pyroantimonate and autoradiographic methods

    Energy Technology Data Exchange (ETDEWEB)

    Bednarska, E.; Butowt, R. [Uniwersytet Mikolaja Kopernika, Torun (Poland)

    1994-12-31

    The localization of Ca{sup 2+} in the mature pollen grain and the flow of these ions the somatic tissues of the anther to the pollen grains has been studied using pyroantimonate and autoradiographic methods. In the pollen grain, Ca{sup 2+} ions have been localized in the sporoderm in the cytoplasmic vesicles of probably dictyosomal origin. Calcium ions were transported into the sporoderm together with the compounds of degenerating tapetum. The material of degenerating tapetum forms pollen coat surrounding the mature pollen grains. (author). 18 refs, 9 figs.

  19. Arabidopsis group le formins localize to specific cell membrane domains, interact with actin-binding proteins and cause defects in cell expansion upon aberrant expression

    NARCIS (Netherlands)

    Deeks, M.J.; Cvrcková, F.; Machesky, L.M.; Mikitová, V.; Ketelaar, T.; Zársky, V.; Davies, B.; Hussey, P.J.

    2005-01-01

    ¿ The closely related proteins AtFH4 and AtFH8 represent the group Ie clade of Arabidopsis formin homologues. The subcellular localization of these proteins and their ability to affect the actin cytoskeleton were examined. ¿ AtFH4 protein activity was identified using fluorimetric techniques. Intera

  20. Co-evolution in relation to small cars and sustainability in China : interactions between central and local governments, and with business

    NARCIS (Netherlands)

    Kolk, A.; Tsang, S.

    2017-01-01

    This article explores how the institutional context, including central and local governments, has co-evolved with business in relation to small cars and sustainability. This is a very relevant issue for business and society in view of the environmental implications of the rapidly growing vehicle

  1. Interaction type influences ecological network structure more than local abiotic conditions: evidence from endophytic and endolichenic fungi at a continental scale.

    Science.gov (United States)

    Chagnon, Pierre-Luc; U'Ren, Jana M; Miadlikowska, Jolanta; Lutzoni, François; Arnold, A Elizabeth

    2016-01-01

    Understanding the factors that shape community assembly remains one of the most enduring and important questions in modern ecology. Network theory can reveal rules of community assembly within and across study systems and suggest novel hypotheses regarding the formation and stability of communities. However, such studies generally face the challenge of disentangling the relative influence of factors such as interaction type and environmental conditions on shaping communities and associated networks. Endophytic and endolichenic symbioses, characterized by microbial species that occur within healthy plants and lichen thalli, represent some of the most ubiquitous interactions in nature. Fungi that engage in these symbioses are hyperdiverse, often horizontally transmitted, and functionally beneficial in many cases, and they represent the diversification of multiple phylogenetic groups. We evaluated six measures of ecological network structure for >4100 isolates of endophytic and endolichenic fungi collected systematically from five sites across North America. Our comparison of these co-occurring interactions in biomes ranging from tundra to subtropical forest showed that the type of interactions (i.e., endophytic vs. endolichenic) had a much more pronounced influence on network structure than did environmental conditions. In particular, endophytic networks were less nested, less connected, and more modular than endolichenic networks in all sites. The consistency of the network structure within each interaction type, independent of site, is encouraging for current efforts devoted to gathering metadata on ecological network structure at a global scale. We discuss several mechanisms potentially responsible for such patterns and draw attention to knowledge gaps in our understanding of networks for diverse interaction types.

  2. A mutation deleting sequences encoding the amino terminus of human cytomegalovirus UL84 impairs interaction with UL44 and capsid localization.

    Science.gov (United States)

    Strang, Blair L; Bender, Brian J; Sharma, Mayuri; Pesola, Jean M; Sanders, Rebecca L; Spector, Deborah H; Coen, Donald M

    2012-10-01

    Protein-protein interactions are required for many biological functions. Previous work has demonstrated an interaction between the human cytomegalovirus DNA polymerase subunit UL44 and the viral replication factor UL84. In this study, glutathione S-transferase pulldown assays indicated that residues 1 to 68 of UL84 are both necessary and sufficient for efficient interaction of UL84 with UL44 in vitro. We created a mutant virus in which sequences encoding these residues were deleted. This mutant displayed decreased virus replication compared to wild-type virus. Immunoprecipitation assays showed that the mutation decreased but did not abrogate association of UL84 with UL44 in infected cell lysate, suggesting that the association in the infected cell can involve other protein-protein interactions. Further immunoprecipitation assays indicated that IRS1, TRS1, and nucleolin are candidates for such interactions in infected cells. Quantitative real-time PCR analysis of viral DNA indicated that the absence of the UL84 amino terminus does not notably affect viral DNA synthesis. Western blotting experiments and pulse labeling of infected cells with [(35)S]methionine demonstrated a rather modest downregulation of levels of multiple proteins and particularly decreased levels of the minor capsid protein UL85. Electron microscopy demonstrated that viral capsids assemble but are mislocalized in nuclei of cells infected with the mutant virus, with fewer cytoplasmic capsids detected. In sum, deletion of the sequences encoding the amino terminus of UL84 affects interaction with UL44 and virus replication unexpectedly, not viral DNA synthesis. Mislocalization of viral capsids in infected cell nuclei likely contributes to the observed decrease in virus replication.

  3. Structural information from OH-stretching vibrations—XIV. The influence of local interactions on the OH-stretching frequency in alcohols with an α-triple bond

    NARCIS (Netherlands)

    Visser, T.; Maas, J.H. van der

    1984-01-01

    The effect on the OH-stretching vibration of changes in the π-character of alcohols with an α-triple bond has been studied by means of the i.r. absorption band. It is demonstrated that in the investigated alcohols the OH … π interaction causes an increase of the OH-frequency as a result of the posit

  4. Local anesthetic interaction with human ether-a-go-go-related gene (HERG) channels: role of aromatic amino acids Y652 and F656

    DEFF Research Database (Denmark)

    Siebrands, Cornelia C; Schmitt, Nicole; Friederich, Patrick

    2005-01-01

    was to determine the effect of the mutations Y652A and F656A in the putative drug binding region of HERG on the inhibition by bupivacaine, ropivacaine, and mepivacaine. METHODS: The authors examined the inhibition of wild-type and mutant HERG channels, transiently expressed in Chinese hamster ovary cells...... by bupivacaine, ropivacaine, and mepivacaine. Whole cell patch clamp recordings were performed at room temperature. RESULTS: Inhibition of HERG wild-type and mutant channels by the different local anesthetics was concentration dependent, stereoselective, and reversible. The sensitivity decreased in the order...... bupivacaine > ropivacaine > mepivacaine for wild-type and mutant channels. The mutant channels were approximately 4-30 times less sensitive to the inhibitory action of the different local anesthetics than the wild-type channel. The concentration-response data were described by Hill functions (bupivacaine...

  5. Interactive Workspaces

    DEFF Research Database (Denmark)

    Mogensen, Preben Holst

    augmented reality, interactive building elements, and mobile devices to support new ways of working in a diversity of application domains with work situations ranging from individual work, through local collaboration, to distributed collaboration. The work situations may take place in offices/project rooms...... or in the field. The types of tasks may range from adhoc to more planned forms of interaction. We involve users from specific application domains and use settings continuously in our research following a participatory design approach....

  6. Inmunoterapia local Local immunotherapy

    Directory of Open Access Journals (Sweden)

    E. Lasa

    2003-01-01

    Full Text Available La inmunoterapia específica, junto con la evitación del alergeno y el tratamiento sintomático, forma parte del tratamiento de la patología alérgica. La modalidad más antigua, más conocida y mejor estudiada es la inmunoterapia subcutánea (ITSC, cuya eficacia tanto a corto como a largo plazo, ha sido ampliamente demostrada en numerosos estudios. Sin embargo, a pesar de haberse demostrado segura, no está exenta de efectos adversos y precisa ser administrada bajo supervisión de personal médico. Esto ha animado a buscar nuevas vías de administración de eficacia similar, con un buen perfil de seguridad, y de buena cumplimentación por parte del paciente. De las distintas alternativas estudiadas la más relevante es la inmunoterapia sublingual (ITSL. En ésta, se administra el antígeno en forma de gotas debajo de la lengua. Existen diferentes pautas de administración en función del alergeno implicado. La dosis óptima de tratamiento está aún sin determinar, hallándose en este momento en un rango amplio de dosis respecto a la inmunoterapia subcutánea. Su mecanismo de acción es poco conocido aunque en diversos estudios se han observado cambios inmunológicos. La ITSL ha mostrado un buen perfil de seguridad con escasos efectos secundarios, habitualmente de carácter local. Asimismo se han realizado distintos ensayos clínicos en los que se ha demostrado su eficacia en el tratamiento de la alergia respiratoria tanto en niños como en adultos. Por ello, aunque aún existen datos sin resolver respecto a esta vía de administración de inmunoterapia, ha sido propuesta por la OMS como una alternativa válida a la ITSC.Specific immunotherapy, together with avoidance of the allergen and symptomatic treatment, forms part of the treatment of allergic pathology. The oldest, best known and most studied form is subcutaneous immunotherapy (SCIT, whose efficacy, both in the short and the long term, has been widely demonstrated in numerous studies

  7. Documenting localities

    CERN Document Server

    Cox, Richard J

    1996-01-01

    Now in paperback! Documenting Localities is the first effort to summarize the past decade of renewed discussion about archival appraisal theory and methodology and to provide a practical guide for the documentation of localities.This book discusses the continuing importance of the locality in American historical research and archival practice, traditional methods archivists have used to document localities, and case studies in documenting localities. These chapters draw on a wide range of writings from archivists, historians, material culture specialists, historic preservationists

  8. Localization and interaction of the cis-acting elements for abscisic acid, VIVIPAROUS1, and light activation of the C1 gene of maize.

    Science.gov (United States)

    Kao, C Y; Cocciolone, S M; Vasil, I K; McCarty, D R

    1996-07-01

    The C1 regulatory gene of the maize anthocyanin pathway is regulated by a combination of developmental and environmental signals that include the Viviparous1 (Vp1) gene, abscisic acid (ABA), and light. Using protoplast electroporation and particle bombardment assays, we have defined c/s-acting elements that are necessary and sufficient for the activation of C1 by ABA, VP1, and light, respectively. The sequence from positions -142 to -132 (CGTCCATGCAT) is essential for VP1 activation, whereas a larger overlapping element from -147 to -132 (CGTGTCGTCCATGCAT) is necessary and sufficient for activation by ABA. A separate light (blue and red)-responsive c/s element is located between positions -116 and -59. Light interacts synergistically with the ABA and VP1 responses in transient expression assays, suggesting that combinatorial interaction between modules plays a role in integrating these signals in the developing seed.

  9. Iron Metabolism Regulates p53 Signaling through Direct Heme-p53 Interaction and Modulation of p53 Localization, Stability, and Function

    OpenAIRE

    2014-01-01

    SUMMARY Iron excess is closely associated with tumorigenesis in multiple types of human cancers, with underlying mechanisms yet unclear. Recently, iron deprivation has emerged as a major strategy for chemotherapy, but it exerts tumor suppression only on select human malignancies. Here, we report that the tumor suppressor protein p53 is downregulated during iron excess. Strikingly, the iron polyporphyrin heme binds to p53 protein, interferes with p53-DNA interactions, and triggers both nuclear...

  10. The LAR transmembrane protein tyrosine phosphatase and a coiled-coil LAR-interacting protein co-localize at focal adhesions.

    OpenAIRE

    1995-01-01

    Focal adhesions are sites of cell-extracellular matrix interactions that function in anchoring stress fibers to the plasma membrane and in adhesion-mediated signal transduction. Both focal adhesion structure and signaling ability involve protein tyrosine phosphorylation. LAR is a broadly expressed transmembrane protein tyrosine phosphatase comprised of a cell adhesion-like ectodomain and two intracellular protein tyrosine phosphatase domains. We have identified a novel cytoplasmic 160 kDa pho...

  11. Calcium in pollen-pistil interaction in `Petunia hybrida Hat`. Pt. 3. Localization of Ca{sup 2+} ions and Ca{sup 2+}-ATPase in pollinated pistil

    Energy Technology Data Exchange (ETDEWEB)

    Bednarska, E.; Butowt, R. [Uniwersytet Mikolaja Kopernika, Torun (Poland)

    1995-12-31

    Studies were carried out of Ca{sup 2+} and Ca{sup 2+}-ATPase localization in pollinated (6 and 48 h after pollination) pistils of `Petunia hybrida`. The results were confronted with Ca{sup 2+} localization in mature pollen grain and in unpollinated pistil. It has been found that after pollination the number of Ca{sup 2+} sequestered in the stigmal exudate and in the sporoderm of the pollen grain gets lower. That phenomenon was associated with the appearance of a large number of Sb/Ca precipitates in the submembrane cytoplasm of the germinating pollen. In the vacuolized pollen grain, i.e. grown into a pollen tube, there were only a few precipitates. In the pollen tube, Ca{sup 2+} were found in the organelles of the tip cytoplasm and in the external pectin cell wall. Studies with the use of {sup 45}Ca{sup 2+} have revealed that the source of calcium ions incorporated into the pollen tube tip and its pectin wall is the transmitting tract of the style. In the transmitting tract overgrown with pollen tubes, Ca{sup 2+} were localized in the intercellular matrix and in the transmitting cell. Sb/Ca precipitates occurred in the nuclei, around the secretary vesicles and on the plasmalemma in the transverse walls region. Elevated Ca{sup 2+} level was found in degenerating cells (inhibited pollen tubes, transmitting cells, nucellar cells). The progressing degeneration process of the cells of the transmitting tract of the pollinated pistil was associated with a decrease in the activity of plasmalemma Ca{sup 2+}-ATPase. (author). 30 refs, 19 figs.

  12. Tuning the interaction between propagating and localized surface plasmons for surface enhanced Raman scattering in water for biomedical and environmental applications

    Energy Technology Data Exchange (ETDEWEB)

    Shioi, Masahiko, E-mail: shioi.masahiko@jp.panasonic.com [Device Solutions Center, Panasonic Corporation, 3-4, Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-0237 (Japan); Department of Electric and Electronic Engineering, Graduate School of Engineering, Kobe University, Rokkodai, Nada, Kobe 657-8501 (Japan); Jans, Hilde [Interuniversity Microelectronics Center VZW., Kapeldreef 75, 3001 Leuven (Belgium); Lodewijks, Kristof [Interuniversity Microelectronics Center VZW., Kapeldreef 75, 3001 Leuven (Belgium); Department of Electrical Engineering, Katholieke Universiteit Leuven, Celestijnenlaan 200 D, B-3001 Leuven (Belgium); Van Dorpe, Pol; Lagae, Liesbet [Interuniversity Microelectronics Center VZW., Kapeldreef 75, 3001 Leuven (Belgium); Department of Physics, Katholieke Universiteit Leuven, Celestijnenlaan 200 D, B-3001 Leuven (Belgium); Kawamura, Tatsuro [Device Solutions Center, Panasonic Corporation, 3-4, Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-0237 (Japan)

    2014-06-16

    With a view to biomedical and environmental applications, we investigate the plasmonic properties of a rectangular gold nanodisk array in water to boost surface enhanced Raman scattering (SERS) effects. To control the resonance wavelengths of the surface plasmon polariton and the localized surface plasmon, their dependence on the array period and diameter in water is studied in detail using a finite difference time domain method. A good agreement is obtained between calculated resonant wavelengths and those of gold nanodisk arrays fabricated using electron beam lithography. For the optimized structure, a SERS enhancement factor of 7.8 × 10{sup 7} is achieved in water experimentally.

  13. Influenza NA and PB1 Gene Segments Interact during the Formation of Viral Progeny: Localization of the Binding Region within the PB1 Gene

    Directory of Open Access Journals (Sweden)

    Brad Gilbertson

    2016-08-01

    Full Text Available The influenza A virus genome comprises eight negative-sense viral RNAs (vRNAs that form individual ribonucleoprotein (RNP complexes. In order to incorporate a complete set of each of these vRNAs, the virus uses a selective packaging mechanism that facilitates co-packaging of specific gene segments but whose molecular basis is still not fully understood. Recently, we used a competitive transfection model where plasmids encoding the A/Puerto Rico/8/34 (PR8 and A/Udorn/307/72 (Udorn PB1 gene segments were competed to show that the Udorn PB1 gene segment is preferentially co-packaged into progeny virions with the Udorn NA gene segment. Here we created chimeric PB1 genes combining both Udorn and PR8 PB1 sequences to further define the location within the Udorn PB1 gene that drives co-segregation of these genes and show that nucleotides 1776–2070 of the PB1 gene are crucial for preferential selection. In vitro assays examining specific interactions between Udorn NA vRNA and purified vRNAs transcribed from chimeric PB1 genes also supported the importance of this region in the PB1-NA interaction. Hence, this work identifies an association between viral genes that are co-selected during packaging. It also reveals a region potentially important in the RNP-RNP interactions within the supramolecular complex that is predicted to form prior to budding to allow one of each segment to be packaged in the viral progeny. Our study lays the foundation to understand the co-selection of specific genes, which may be critical to the emergence of new viruses with pandemic potential.

  14. Subcellular localization of SREBP1 depends on its interaction with the C-terminal region of wild-type and disease related A-type lamins

    OpenAIRE

    Duband-Goulet, Isabelle; WOERNER, STEPHANIE; Gasparini, Sylvaine; Attanda, Wikayatou; Kondé, Emilie; Tellier-Lebègue, Carine; Craescu, Constantin T.; Gombault, Aurélie; Roussel, Pascal; Vadrot, Nathalie; Vicart, Patrick; Östlund, Cecilia; Howard J Worman; Zinn-Justin, Sophie; Buendia, Brigitte

    2011-01-01

    Lamins A and C are nuclear intermediate filament proteins expressed in most differentiated somatic cells. Previous data suggested that prelamin A, the lamin A precursor, accumulates in some lipodystrophy syndromes caused by mutations in the lamin A/C gene, and binds and inactivates the sterol regulatory element binding protein 1 (SREBP1). Here we show that, in vitro, the tail regions of prelamin A, lamin A and lamin C bind a polypeptide of SREBP1. Such interactions also occur in HeLa cells, s...

  15. Local perturbations perturb—exponentially–locally

    Energy Technology Data Exchange (ETDEWEB)

    De Roeck, W., E-mail: wojciech.deroeck@fys.kuleuven.be; Schütz, M., E-mail: marius.schutz@fys.kuleuven.be [Instituut voor Theoretische Fysica, K. U. Leuven, Celestijnenlaan 200D, B-3001 Heverlee (Belgium)

    2015-06-15

    We elaborate on the principle that for gapped quantum spin systems with local interaction, “local perturbations [in the Hamiltonian] perturb locally [the groundstate].” This principle was established by Bachmann et al. [Commun. Math. Phys. 309, 835–871 (2012)], relying on the “spectral flow technique” or “quasi-adiabatic continuation” [M. B. Hastings, Phys. Rev. B 69, 104431 (2004)] to obtain locality estimates with sub-exponential decay in the distance to the spatial support of the perturbation. We use ideas of Hamza et al. [J. Math. Phys. 50, 095213 (2009)] to obtain similarly a transformation between gapped eigenvectors and their perturbations that is local with exponential decay. This allows to improve locality bounds on the effect of perturbations on the low lying states in certain gapped models with a unique “bulk ground state” or “topological quantum order.” We also give some estimate on the exponential decay of correlations in models with impurities where some relevant correlations decay faster than one would naively infer from the global gap of the system, as one also expects in disordered systems with a localized groundstate.

  16. Enhanced localized energetic ion losses resulting from first-orbit linear and non-linear interactions with Alfvén eigenmodes in DIII-D

    Energy Technology Data Exchange (ETDEWEB)

    Chen, X. [University of California-Irvine, Irvine, California 92697 (United States); General Atomics, P.O. Box 85608, San Diego, California 92186 (United States); Heidbrink, W. W. [University of California-Irvine, Irvine, California 92697 (United States); Kramer, G. J.; Nazikian, R.; Grierson, B. A.; Podesta, M. [Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, New Jersey 08543 (United States); Van Zeeland, M. A.; Pace, D. C.; Petty, C. C.; Fisher, R. K. [General Atomics, P.O. Box 85608, San Diego, California 92186 (United States); Zeng, L. [University of California, Los Angeles 90095, California (United States); Austin, M. E. [University of Texas-Austin, Austin, Texas 78712 (United States)

    2014-08-15

    Two key insights into interactions between Alfvén eigenmodes (AEs) and energetic particles in the plasma core are gained from measurements and modeling of first-orbit beam-ion loss in DIII-D. First, the neutral beam-ion first-orbit losses are enhanced by AEs and a single AE can cause large fast-ion displacement. The coherent losses are from born trapped full energy beam-ions being non-resonantly scattered by AEs onto loss orbits within their first poloidal transit. The loss amplitudes scale linearly with the mode amplitude but the slope is different for different modes. The radial displacement of fast-ions by individual AEs can be directly inferred from the measurements. Second, oscillations in the beam-ion first-orbit losses are observed at the sum, difference, and harmonic frequencies of two independent AEs. These oscillations are not plasma modes and are absent in magnetic, density, and temperature fluctuations. The origin of the non-linearity as a wave-particle coupling is confirmed through bi-coherence analysis, which is clearly observed because the coherences are preserved by the first-orbit loss mechanism. An analytic model and full orbit simulations show that the non-linear features seen in the loss signal can be explained by a non-linear interaction between the fast ions and the two independent AEs.

  17. TRAPPC4-ERK2 interaction activates ERK1/2, modulates its nuclear localization and regulates proliferation and apoptosis of colorectal cancer cells.

    Directory of Open Access Journals (Sweden)

    Shu-Liang Zhao

    Full Text Available The trafficking protein particle complex 4 (TRAPPC4 is implicated in vesicle-mediated transport, but its association with disease has rarely been reported. We explored its potential interaction with ERK2, part of the ERK1/2 complex in the Extracellular Signal-regulated Kinase/ Mitogen-activated Protein Kinase (ERK-MAPK pathway, by a yeast two-hybrid screen and confirmed by co-immunoprecipitation (Co-IP and glutathione S-transferase (GST pull-down. Further investigation found that when TRAPPC4 was depleted, activated ERK1/2 specifically decreased in the nucleus, which was accompanied with cell growth suppression and apoptosis in colorectal cancer (CRC cells. Overexpression of TRAPPC4 promoted cell viability and caused activated ERK1/2 to increase overall, but especially in the nucleus. TRAPPC4 was expressed more highly in the nucleus of CRC cells than in normal colonic epithelium or adenoma which corresponded with nuclear staining of pERK1/2. We demonstrate here that TRAPPC4 may regulate cell proliferation and apoptosis in CRC by interaction with ERK2 and subsequently phosphorylating ERK1/2 as well as modulating the subcellular location of pERK1/2 to activate the relevant signaling pathway.

  18. ATM Localization and Heterochromatin Repair Depend on Direct Interaction of the 53BP1-BRCT2 Domain with γH2AX.

    Science.gov (United States)

    Baldock, Robert A; Day, Matthew; Wilkinson, Oliver J; Cloney, Ross; Jeggo, Penelope A; Oliver, Antony W; Watts, Felicity Z; Pearl, Laurence H

    2015-12-15

    53BP1 plays multiple roles in mammalian DNA damage repair, mediating pathway choice and facilitating DNA double-strand break repair in heterochromatin. Although it possesses a C-terminal BRCT2 domain, commonly involved in phospho-peptide binding in other proteins, initial recruitment of 53BP1 to sites of DNA damage depends on interaction with histone post-translational modifications--H4K20me2 and H2AK13/K15ub--downstream of the early γH2AX phosphorylation mark of DNA damage. We now show that, contrary to current models, the 53BP1-BRCT2 domain binds γH2AX directly, providing a third post-translational mark regulating 53BP1 function. We find that the interaction of 53BP1 with γH2AX is required for sustaining the 53BP1-dependent focal concentration of activated ATM that facilitates repair of DNA double-strand breaks in heterochromatin in G1.

  19. ATM Localization and Heterochromatin Repair Depend on Direct Interaction of the 53BP1-BRCT2 Domain with γH2AX

    Directory of Open Access Journals (Sweden)

    Robert A. Baldock

    2015-12-01

    Full Text Available 53BP1 plays multiple roles in mammalian DNA damage repair, mediating pathway choice and facilitating DNA double-strand break repair in heterochromatin. Although it possesses a C-terminal BRCT2 domain, commonly involved in phospho-peptide binding in other proteins, initial recruitment of 53BP1 to sites of DNA damage depends on interaction with histone post-translational modifications—H4K20me2 and H2AK13/K15ub—downstream of the early γH2AX phosphorylation mark of DNA damage. We now show that, contrary to current models, the 53BP1-BRCT2 domain binds γH2AX directly, providing a third post-translational mark regulating 53BP1 function. We find that the interaction of 53BP1 with γH2AX is required for sustaining the 53BP1-dependent focal concentration of activated ATM that facilitates repair of DNA double-strand breaks in heterochromatin in G1.

  20. Interaction and Localization of Centrobin and BRCA2 in Centrosome%Centrobin与BRCA2蛋白间相互作用及其细胞定位

    Institute of Scientific and Technical Information of China (English)

    薛丽; 杨芳; 张贺龙; 赵锦荣; 张文红; 白玉杰

    2009-01-01

    To investigate the protein-protein interactions and cellular spatial location between breast cancer susceptibility gene 2 ( BRCA2) and centromal BRCA2 interacting protein (centrobin) , as well as their functional association, the mammalian two-hybrid assay was performed to determine the binding in vivo and BRCA2 potent binding domain; the co-immunoprecipitation and GST-pulldown methods were used to confirm this binding in vitro and in vivo . The cellular location of BRCA2 and dynamic distribution of centrobin have been observed with immunohistochemistry staining. The results showed that the binding in vivo and in vitro between BRCA2 and centrobin was mediated via binding region (2 393 ~ 2 952 amino acid residues) of BRCA2. In both exogenous BRCA2 and mitotic phase centrobin were overlap expressed tn an overlapping way in centrosome. These results indicated that the direct interaction of BRCA2 and centrobin occurs in both in vivo and in vitro, BRCA2 may regulate centrosome duplication and mitosis, probably through its interacting proteins such as centrobin.%为分析乳腺癌易感基因2(breast cancer snsceptibility gene 2,BRCA2)蛋白与中心体BRCA2相互作用蛋白(centromal BRCA2 interacting protein,centrobin)间相互作用及其细胞定位的关系,探讨二者功能上的联系,本研究采用哺乳细胞双杂交实验检测体内结合并初步判定BRCA2分子上的结合区域;免疫共沉淀实验进一步验证其体内结合活性,GST-pulldown法检测其体外结合活性,免疫组织化学染色观测BRCA2蛋白的细胞定位及在有丝分裂各期centrobin的细胞定位.结果显示,BRCA2与centrobin间存在体内和体外结合,且BRCA2分子的结合区域主要位于2 393~2 952氨基酸残基处;外源表达BRCA2定位于中心体,在有丝分裂各时相centrobin均定位于中心体.BRCA2与centrobin在体内形成复合物,并存在直接物理结合作用,二者存在细胞空间定位的一致性.该结果为进一步研究BRCA2

  1. Local architecture

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Local architecture refers to structures built in the countryside,such as temples,memorial halls,residences, stores,pavilions, bridges,decorated archways, and wells. Because these structures were all built by focal craftsmen and villagers in the traditional local style, they are generally called local architecture.

  2. On the local relaxation of solid neon upon Rydberg excitation of a NO impurity: the role of the NO(A)-Ne interaction potential and zero-point quantum delocalization.

    Science.gov (United States)

    Pajón-Suárez, Pedro; Rojas-Lorenzo, Germán A; Rubayo-Soneira, Jesús; Hernández-Lamoneda, Ramón; Larrégaray, Pascal

    2009-12-31

    The local relaxation of solid neon subsequent to the impulsive excitation of the NO chromophore to its A(3s sigma) Ryberg state is investigated using molecular dynamics simulations. This study makes use of empirical NO(X,A)-Ne isotropic pair potentials as well as a recently developed ab initio triatomic potential energy surface for the excited state. The role of these interaction potentials is analyzed, including many-body effects. In particular, empirical potentials, designed to reproduce correctly both the NO X-A steady-state absorption and emission bands, are shown to lead to a good description of the subpicosecond relaxation dynamics. The 600 fs expansion of the electronic bubble fairly agrees with experimental data. This relatively long time scale with respect to solid Argon, which was previously attributed to the range of the NO(A)-Ne interaction, is presumably related to the quantum nature of the medium. The time-resolved local relaxation of the Ne solid is understandably intermediate between that of classical solids (e.g., Ar) and that of quantum solids (e.g., H(2)).

  3. Iron Metabolism Regulates p53 Signaling through Direct Heme-p53 Interaction and Modulation of p53 Localization, Stability, and Function

    Directory of Open Access Journals (Sweden)

    Jia Shen

    2014-04-01

    Full Text Available Iron excess is closely associated with tumorigenesis in multiple types of human cancers, with underlying mechanisms yet unclear. Recently, iron deprivation has emerged as a major strategy for chemotherapy, but it exerts tumor suppression only on select human malignancies. Here, we report that the tumor suppressor protein p53 is downregulated during iron excess. Strikingly, the iron polyporphyrin heme binds to p53 protein, interferes with p53-DNA interactions, and triggers both nuclear export and cytosolic degradation of p53. Moreover, in a tumorigenicity assay, iron deprivation suppressed wild-type p53-dependent tumor growth, suggesting that upregulation of wild-type p53 signaling underlies the selective efficacy of iron deprivation. Our findings thus identify a direct link between iron/heme homeostasis and the regulation of p53 signaling, which not only provides mechanistic insights into iron-excess-associated tumorigenesis but may also help predict and improve outcomes in iron-deprivation-based chemotherapy.

  4. The DEAD-box RNA helicase DDX3 interacts with DDX5, co-localizes with it in the cytoplasm during the G2/M phase of the cycle, and affects its shuttling during mRNP export.

    Science.gov (United States)

    Choi, Yeo-Jin; Lee, Seong-Gene

    2012-03-01

    DDX3 is involved in RNA transport, translational control, proliferation of RNA viruses, and cancer progression. From yeast two-hybrid screening using the C-terminal region of DDX3 as a bait, the DEAD-box RNA helicase DDX5 was cloned. In immunofluorescence analysis, DDX3 and DDX5 were mainly co-localized in the cytoplasm. Interestingly, cytoplasmic levels of DDX5 increased in the G(2) /M phase and consequently protein-protein interaction also increased in the cytoplasmic fraction. DDX3 was highly phosphorylated at its serine, threonine, and tyrosine residues in the steady state, but not phosphorylated at the serine residue(s) in the G(2) /M phase. DDX5 was less phosphorylated in the G(1) /S phase; however, it was highly phosphorylated at serine, threonine, and tyrosine residues in the G(2) /M phase. PP2A treatment of the cytoplasmic lysate from G(2) /M phase cells positively affected the interaction between DDX3 and DDX5, whereas, PTP1B treatment did not. In an analysis involving recombinant His-DDX3 and His-DDX5, PP2A pretreatment of His-DDX5 increased the interaction with endogenous DDX3, and vice versa. Furthermore, the results of GST pull-down experiments support the conclusion that dephosphorylation of serine and/or threonine residues in both proteins enhanced protein-protein interactions. UV cross-linking experiments showed that DDX3 and DDX5 are involved in mRNP export. Additionally, DDX3 knockdown blocked the shuttling of DDX5 to the nucleus. These data demonstrate a novel interaction between DDX3 and DDX5 through the phosphorylation of both proteins, especially in the G(2) /M phase, and suggest a novel combined mechanism of action, involving RNP remodeling and splicing, for DEAD-box RNA helicases involved in mRNP export.

  5. The Properties of the local Interstellar Medium and the Interaction of the Stellar Winds of epsilon Indi and lambda Andromedae with the Interstellar Environment

    Science.gov (United States)

    Wood, Brian E.; Alexander, William R.; Linsky, Jeffrey L.

    1996-01-01

    We present new observations of the Ly alpha lines of Epsilon Indi (K5 5) and A Andromedae (G8 4-3 + ?) These data were obtained by the Goddard High Resolution Spectrograph (GHRS) on the Hubble Space Telescope. Analysis of the interstellar H 1 and D 1 absorption lines reveals that the velocities and temperatures inferred from the H 1 lines are inconsistent with the parameters inferred from the D 1 lines, unless the H 1 absorption is assumed to be produced by two absorption components. One absorption component is produced by interstellar material. For both lines of sight observed, the velocity of this component is consistent with the velocity predicted by the local flow vector. For the Epsilon Indi data, the large velocity separation between the stellar emission and the interstellar absorption allows us to measure the H 1 column density independent of the shape of the intrinsic stellar Ly alpha profile. This approach permits us to quote an accurate column density and to assess its uncertainty with far more confidence than in previous analyses, for which the errors were dominated by uncertainties in the assumed stellar profiles.

  6. High potassium promotes mutual interaction between (pro)renin receptor and the local renin-angiotensin-aldosterone system in rat inner medullary collecting duct cells.

    Science.gov (United States)

    Xu, Chuanming; Fang, Hui; Zhou, Li; Lu, Aihua; Yang, Tianxin

    2016-10-01

    (Pro)renin receptor (PRR) is predominantly expressed in the collecting duct (CD) with unclear functional implication. It is not known whether CD PRR is regulated by high potassium (HK). Here, we aimed to investigate the effect of HK on PRR expression and its role in regulation of aldosterone synthesis and release in the CD. In primary rat inner medullary CD cells, HK augmented PRR expression and soluble PPR (sPRR) release in a time- and dose-dependent manner, which was attenuated by PRR small interfering RNA (siRNA), eplerenone, and losartan. HK upregulated aldosterone release in parallel with an increase of CYP11B2 (cytochrome P-450, family 11, subfamily B, polypeptide 2) protein expression and upregulation of medium renin activity, both of which were attenuated by a PRR antagonist PRO20, PRR siRNA, eplerenone, and losartan. Similarly, prorenin upregulated aldosterone release and CYP11B2 expression, both of which were attenuated by PRR siRNA. Interestingly, a recombinant sPRR (sPRR-His) also stimulated aldosterone release and CYP11B2 expression. Taken together, we conclude that HK enhances a local renin-angiotensin-aldosterone system (RAAS), leading to increased PRR expression, which in turn amplifies the response of the RAAS, ultimately contributing to heightened aldosterone release.

  7. Plant viral nanoparticles-based HER2 vaccine: Immune response influenced by differential transport, localization and cellular interactions of particulate carriers.

    Science.gov (United States)

    Shukla, Sourabh; Myers, Jay T; Woods, Sarah E; Gong, Xingjian; Czapar, Anna E; Commandeur, Ulrich; Huang, Alex Y; Levine, Alan D; Steinmetz, Nicole F

    2017-03-01

    Cancer vaccines are designed to elicit an endogenous adaptive immune response that can successfully recognize and eliminate residual or recurring tumors. Such approaches can potentially overcome shortcomings of passive immunotherapies by generating long-lived therapeutic effects and immune memory while limiting systemic toxicities. A critical determinant of vaccine efficacy is efficient transport and delivery of tumor-associated antigens to professional antigen presenting cells (APCs). Plant viral nanoparticles (VNPs) with natural tropism for APCs and a high payload carrying capacity may be particularly effective vaccine carriers. The applicability of VNP platform technologies is governed by stringent structure-function relationships. We compare two distinct VNP platforms: icosahedral cowpea mosaic virus (CPMV) and filamentous potato virus X (PVX). Specifically, we evaluate in vivo capabilities of engineered VNPs delivering human epidermal growth factor receptor 2 (HER2) epitopes for therapy and prophylaxis of HER2(+) malignancies. Our results corroborate the structure-function relationship where icosahedral CPMV particles showed significantly enhanced lymph node transport and retention, and greater uptake by/activation of APCs compared to filamentous PVX particles. These enhanced immune cell interactions and transport properties resulted in elevated HER2-specific antibody titers raised by CPMV- vs. PVX-based peptide vaccine. The 'synthetic virology' field is rapidly expanding with numerous platforms undergoing development and preclinical testing; our studies highlight the need for systematic studies to define rules guiding the design and rational choice of platform, in the context of peptide-vaccine display technologies.

  8. On the existence of Lloró (the rainiest locality on Earth): Enhanced ocean-land-atmosphere interaction by a low-level jet

    Science.gov (United States)

    Poveda, Germán; Mesa, Oscar J.

    2000-06-01

    The department of Chocó, on the Colombian Pacific coast experiences 8,000 to 13,000 mm of average annual precipitation. Lloró (5°30‧N, 76°32‧W, 120m) has received above 12,700 mm (1952-1960). Using the NCEP/NCAR Reanalysis data, we show that the ocean-land-atmosphere interaction over the easternmost fringe of the tropical Pacific, enhanced by the dynamics of a low-level westerly jet (“CHOCO”), contributes to explain the existence of such record-breaking hydrological region. Deep convection develops from low-level moisture convergence by the CHOCO jet, combined with high-level easterly trade winds, orographic lifting on the western Andes, low surface pressures and warm air. Precipitation is organized in mesoscale convective complexes, in turn dynamically linked to the jet. The strength of the CHOCO jet (centered at 5°N) is associated with the gradient of surface air temperatures between western Colombia and the Niño 1+2 region, thereby exhibiting strong annual and interannual variability, which contributes to explaining Colombia's hydro-climatology and its anomalies during ENSO.

  9. 跨国公司与东道国企业技术创新的三维互动举证%The three-dimensional Interaction of the Corporate Technical Innovation Between the MNCs and Local Firms

    Institute of Scientific and Technical Information of China (English)

    李钧

    2011-01-01

    供应链关系中,作为制造商的跨国公司与作为供应商的东道国本土企业之间存在技术创新互动关系,这种互动关系的本质与微观基础就是双方的知识转移互动。互动模式有单向传递、双向输出和联合创新三种,而知识传授方特性、知识接收方特性、知识特性和关系特性都会影响互动效果。%TUnder supply chain relationships, there is a nature of technology innovation interaction between the MNCs and local firms, which is the knowledge transfer interaction. Interactive mode includes one-way transmission, two-way output and joint innovation. A

  10. Functional interaction between herpes simplex virus type 2 gD and HVEM transiently dampens local chemokine production after murine mucosal infection.

    Directory of Open Access Journals (Sweden)

    Miri Yoon

    Full Text Available Herpes virus entry mediator (HVEM is one of two principal receptors mediating herpes simplex virus (HSV entry into murine and human cells. It functions naturally as an immune signaling co-receptor, and may participate in enhancing or repressing immune responses depending on the natural ligand used. To investigate whether engagement of HVEM by HSV affects the in vivo response to HSV infection, we generated recombinants of HSV-2(333 that expressed wild-type gD (HSV-2/gD or mutant gD able to bind to nectin-1 (the other principal entry receptor but not HVEM. Replication kinetics and yields of the recombinant strains on Vero cells were indistinguishable from those of wild-type HSV-2(333. After intravaginal inoculation with mutant or wild-type virus, adult female C57BL/6 mice developed vaginal lesions and mortality in similar proportions, and mucosal viral titers were similar or lower for mutant strains at different times. Relative to HSV-2/gD, percentages of HSV-specific CD8(+ T-cells were similar or only slightly reduced after infection with the mutant strain HSV-2/gD-Δ7-15, in all tissues up to 9 days after infection. Levels of HSV-specific CD4(+ T-cells five days after infection also did not differ after infection with either strain. Levels of the cytokine IL-6 and of the chemokines CXCL9, CXCL10, and CCL4 were significantly lower in vaginal washes one day after infection with HSV-2/gD compared with HSV-2/gD-Δ7-15. We conclude that the interaction of HSV gD with HVEM may alter early innate events in the murine immune response to infection, without significantly affecting acute mortality, morbidity, or initial T-cell responses after lethal challenge.

  11. Research on Strategic Interaction Pattern of Local Government Expenditure from the Perspective of Spatial Externality%空间外部性视角下的地方政府支出策略互动模式

    Institute of Scientific and Technical Information of China (English)

    郭玉清; 姜磊; 李永宁

    2012-01-01

    运用空间面板计量方法研究了分税制改革以来中国地方政府支出的策略互动模式。结果表明,基本建设、文教科卫和预算外支出具有显著的空间自相关性,表现出策略互补,行政管理支出则由于地方财力情况的差异形成策略替代,效益外溢性、财政竞争机制和标尺效应在其中交替发挥了主导作用。财政收支分权对支出策略互动模式的影响效果并不一致,扩张支出分权将加剧以基建支出为主的地方政府竞争。财政分权的改革方向是使地方政府在一定程度上拥有收入自主权,中央适当上收具有强烈区域外溢性的公共品供给责任,降低地方非正式收支自主权,从制度层面营造地区间协调有序的竞争关系。%This paper analyses the strategic interaction pattern of Chinese local government expenditure since Revenue-Sharing Reform by Spatial Econometrics of Panel Data. The empirical results indicate that there are obvious spatial autocorrelation and strategic complementary among expenditures on infrastructure, culture, education, technology and health, and extra-budgetary. While expenditure pattern on administration is strategic substitution due to different local revenue situations, which is driven by spillover effect, fiscal competition mechanism and yardstick effect in turn. The fiscal decentralization of revenue and expenditure affect strategic pattern of local expenditure inconsistently. Expansion of expenditure decentralization will increase local government competition, especially infrastructure competition. It is important that local governments have revenue autonomy, and central government takes back provision duty of public goods which have strong regional externalities. Local informal revenue and expenditure autonomy should be reduced so as to create coordinated inter-regional competition relationship from institutional perspective.

  12. Local Helioseismology

    Directory of Open Access Journals (Sweden)

    Gizon Laurent

    2005-11-01

    Full Text Available We review the current status of local helioseismology, covering both theoretical and observational results. After a brief introduction to solar oscillations and wave propagation through inhomogeneous media, we describe the main techniques of local helioseismology: Fourier-Hankel decomposition, ring-diagram analysis, time-distance helioseismology, helioseismic holography, and direct modeling. We discuss local helioseismology of large-scale flows, the solar-cycle dependence of these flows, perturbations associated with regions of magnetic activity, and solar supergranulation.

  13. Studies concerning the interaction between local anesthetics and lipid membrane by phosphorus-31, deuterium and proton NMR; Estudo da interacao entre anestesicos locais e membranas lipidicas por ressonancia magnetica de fosforo ({sup 31} P), deuterio ({sup 2} H) e proton ({sup 1} H)

    Energy Technology Data Exchange (ETDEWEB)

    Paula, Eneida de [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Dept. de Bioquimica; Jarrell, Harold C. [National Research Council of Canada, Ottawa, ON (Canada). Inst. for Biological Sciences; Schreier, Shirley [Sao Paulo Univ., SP (Brazil). Inst. de Quimica

    1993-12-31

    Local anesthetics block the conduction of nervous stimulus by impeding the entrance of sodium ion and the consequently depolarization of the nervous membrane. The action mechanism of local anesthetics, however, is not fully understood yet. In the present work the interaction between local anesthetics and membranes are studied by the perspective of lipid phase perturbation using NMR to elucidate the mechanism. Results are presented and discussed 5 refs., 1 fig., 1 tab.

  14. Cross-talk interactions of sucrose and Fusarium oxysporum in the phenylpropanoid pathway and the accumulation and localization of flavonoids in embryo axes of yellow lupine.

    Science.gov (United States)

    Morkunas, Iwona; Narożna, Dorota; Nowak, Witold; Samardakiewicz, Sławomir; Remlein-Starosta, Dorota

    2011-03-15

    This study investigated the effects of cross-talk interactions of sucrose and infection caused by a pathogenic fungus Fusarium oxysporum f.sp. lupini on the regulation of the phenylpropanoid pathway, i.e. the level of expression of genes encoding enzymes participating in flavonoid biosynthesis, as well as cell location and accumulation of these compounds in embryo axes of Lupinus luteus L. cv. Polo. Embryo axes, both non-inoculated and inoculated, were cultured for 96h on Heller medium with 60mM sucrose (+Sn and +Si) or without it (-Sn and -Si). Real-time RT-PCR to assess expression levels of the flavonoid biosynthetic genes, phenylalanine ammonialyase (PAL), chalcone synthase (CHS), chalcone isomerase (CHI) and isoflavone synthase (IFS) were used. Sucrose alone strongly stimulated the expression of these genes. There was a very high expression level of these genes in +Si embryo axes in the early phase of infection. Signal amplification by sucrose and the infection was most intense in the 48-h +Si axes, resulting in the highest level of expression of flavonoid biosynthetic genes. In -Si tissues, the expression level of these genes increased at 48 and 72h after inoculation relative to 24h; however, the relative level of expression was much lower than in +Si axes, except at 72h for PAL and CHS.Moreover, at 48h of culture, considerably higher activity of CHI (EC 5.5.1.6) was observed in axes with a high level of sucrose than in those with a sucrose deficit. CHI activity in +Si axes at 48 and 96h post-inoculation was over 1.5 and 2 times higher than that in +Sn axes, as well as higher than in -Si axes.Observations of yellow lupine embryo axes under a confocal microscope showed an increased post-infection accumulation of flavonoids, particularly in cells of embryo axes infected with F. oxysporum and cultured on a medium containing sucrose (+Si). Up to 48h post-infection in +Si axes, a very intensive emission of green fluorescence was observed, indicating high

  15. Effective method for interactive image local content amplification%一种有效的交互式图像局部内容放大方法

    Institute of Scientific and Technical Information of China (English)

    孙英皓; 唐棣

    2012-01-01

    Interactive content amplification method can let users make different attentions to the content of photograph, and meanwhile maintain the integrity of the image. When user selects the region, in the image operating process, it can maintain the regional content consistency, and make the content of the region have obvious amplifying effect. With the help of seam carving technique, the content of image can be modified, and some seams can be removed which have less correlation with the surrounding area. In the premise of keeping image original size constant, this technique can enlarge the content of the image. Through certain correlation calculation function, the energy of each pixel can be got in the image. Weights function is used to change the energy of each pixel in the selected area, making sure that the environment of the area can be better retained. Accordingly, the regional content can reach more reasonable amplification effect.%交互式内容放大的方法可以让用户对图片的内容采取不同的关注度,能够维持图像的整体效果.当用户选定区域后,在对图像进行操作时,能够保持该区域内容的连贯性,使该区域的内容有明显的放大效果.在接缝雕刻(Seam Carving)技术的协助下可以对图像的内容进行修改,移除一些与周围区域相关度小的接缝,在不改变图像原本尺寸的前提下,对图片的内容进行放大.通过特定的相关度计算函数,可以得到图像中的各个像素点的能量值.用权值函数M来改变选定区域内的各个像素点的能量值,令该区域内的环境能被更好地保留,使该区域内容达到更合理的放大效果.

  16. Local food:

    DEFF Research Database (Denmark)

    Sundbo, Donna Isabella Caroline

    2013-01-01

    Recently there has been more focus on food in general and local food in particular. But what is local food? And what are the perceptions of this concept according to theory and to providers and consumers of local food? This article first summarises and compares three different theoretical...... as expressed by a group of Danish providers and consumers is empirically investigated through interviews, observation and surveys. From this, qualitative and quantitative data are generated, the analysis of which shows how varied perceptions of local food are. The elements of which the perceptions consist...... are identified and then categorised according to whether they pertain to the food product itself or the production methods and facilities and whether they describe physical or social properties of local food. From this a model with four categories is developed. It is found that properties of the product are more...

  17. Local development and Local Partnerships: Universities applying pro-active PR in a local systems network logics

    OpenAIRE

    Arta Musaraj

    2010-01-01

    Facing turmoil and continuous stunning, local governing bodies, decision makers and local actors, in most of cases found the most stable solution has been the regional cooperation and particularly that of increasing and strengthening local human resources capacities at a regional level. Trying to increase competiveness, local systems understand more and more the importance of being flexible, on the frame of a sustainable strategic planning. Local infrastructure and interaction of all local fa...

  18. The Golgi-Localized γ-Ear-Containing ARF-Binding (GGA Proteins Alter Amyloid-β Precursor Protein (APP Processing through Interaction of Their GAE Domain with the Beta-Site APP Cleaving Enzyme 1 (BACE1.

    Directory of Open Access Journals (Sweden)

    Bjoern von Einem

    Full Text Available Proteolytic processing of amyloid-β precursor protein (APP by beta-site APP cleaving enzyme 1 (BACE1 is the initial step in the production of amyloid beta (Aβ, which accumulates in senile plaques in Alzheimer's disease (AD. Essential for this cleavage is the transport and sorting of both proteins through endosomal/Golgi compartments. Golgi-localized γ-ear-containing ARF-binding (GGA proteins have striking cargo-sorting functions in these pathways. Recently, GGA1 and GGA3 were shown to interact with BACE1, to be expressed in neurons, and to be decreased in AD brain, whereas little is known about GGA2. Since GGA1 impacts Aβ generation by confining APP to the Golgi and perinuclear compartments, we tested whether all GGAs modulate BACE1 and APP transport and processing. We observed decreased levels of secreted APP alpha (sAPPα, sAPPβ, and Aβ upon GGA overexpression, which could be reverted by knockdown. GGA-BACE1 co-immunoprecipitation was impaired upon GGA-GAE but not VHS domain deletion. Autoinhibition of the GGA1-VHS domain was irrelevant for BACE1 interaction. Our data suggest that all three GGAs affect APP processing via the GGA-GAE domain.

  19. Net Locality

    DEFF Research Database (Denmark)

    de Souza e Silva, Adriana Araujo; Gordon, Eric

    Provides an introduction to the new theory of Net Locality and the profound effect on individuals and societies when everything is located or locatable. Describes net locality as an emerging form of location awareness central to all aspects of digital media, from mobile phones, to Google Maps, to...... of emerging technologies, from GeoCities to GPS, Wi-Fi, Wiki Me, and Google Android....

  20. Net Locality

    DEFF Research Database (Denmark)

    de Souza e Silva, Adriana Araujo; Gordon, Eric

    Provides an introduction to the new theory of Net Locality and the profound effect on individuals and societies when everything is located or locatable. Describes net locality as an emerging form of location awareness central to all aspects of digital media, from mobile phones, to Google Maps, to...... of emerging technologies, from GeoCities to GPS, Wi-Fi, Wiki Me, and Google Android....