Equivalent Relaxations of Optimal Power Flow
Energy Technology Data Exchange (ETDEWEB)
Bose, S; Low, SH; Teeraratkul, T; Hassibi, B
2015-03-01
Several convex relaxations of the optimal power flow (OPF) problem have recently been developed using both bus injection models and branch flow models. In this paper, we prove relations among three convex relaxations: a semidefinite relaxation that computes a full matrix, a chordal relaxation based on a chordal extension of the network graph, and a second-order cone relaxation that computes the smallest partial matrix. We prove a bijection between the feasible sets of the OPF in the bus injection model and the branch flow model, establishing the equivalence of these two models and their second-order cone relaxations. Our results imply that, for radial networks, all these relaxations are equivalent and one should always solve the second-order cone relaxation. For mesh networks, the semidefinite relaxation and the chordal relaxation are equally tight and both are strictly tighter than the second-order cone relaxation. Therefore, for mesh networks, one should either solve the chordal relaxation or the SOCP relaxation, trading off tightness and the required computational effort. Simulations are used to illustrate these results.
Multi-region relaxed magnetohydrodynamics with flow
Dennis, G R; Dewar, R L; Hole, M J
2014-01-01
We present an extension of the multi-region relaxed magnetohydrodynamics (MRxMHD) equilibrium model that includes plasma flow. This new model is a generalization of Woltjer's model of relaxed magnetohydrodynamics equilibria with flow. We prove that as the number of plasma regions becomes infinite our extension of MRxMHD reduces to ideal MHD with flow. We also prove that some solutions to MRxMHD with flow are not time-independent in the laboratory frame, and instead have 3D structure which rotates in the toroidal direction with fixed angular velocity. This capability gives MRxMHD potential application to describing rotating 3D MHD structures such as 'snakes' and long-lived modes.
Multi-region relaxed magnetohydrodynamics with flow
Energy Technology Data Exchange (ETDEWEB)
Dennis, G. R., E-mail: graham.dennis@anu.edu.au; Dewar, R. L.; Hole, M. J. [Research School of Physics and Engineering, Australian National University, ACT 0200 (Australia); Hudson, S. R. [Princeton Plasma Physics Laboratory, PO Box 451, Princeton, New Jersey 08543 (United States)
2014-04-15
We present an extension of the multi-region relaxed magnetohydrodynamics (MRxMHD) equilibrium model that includes plasma flow. This new model is a generalization of Woltjer's model of relaxed magnetohydrodynamics equilibria with flow. We prove that as the number of plasma regions becomes infinite, our extension of MRxMHD reduces to ideal MHD with flow. We also prove that some solutions to MRxMHD with flow are not time-independent in the laboratory frame, and instead have 3D structure which rotates in the toroidal direction with fixed angular velocity. This capability gives MRxMHD potential application to describing rotating 3D MHD structures such as 'snakes' and long-lived modes.
Reduced-Complexity Semidefinite Relaxations of Optimal Power Flow Problems
DEFF Research Database (Denmark)
Andersen, Martin Skovgaard; Hansson, Anders; Vandenberghe, Lieven
2014-01-01
We propose a new method for generating semidefinite relaxations of optimal power flow problems. The method is based on chordal conversion techniques: by dropping some equality constraints in the conversion, we obtain semidefinite relaxations that are computationally cheaper, but potentially weaker......, than the standard semidefinite relaxation. Our numerical results show that the new relaxations often produce the same results as the standard semidefinite relaxation, but at a lower computational cost....
Energy Technology Data Exchange (ETDEWEB)
Schlüter, Steffen [School of Chemical, Biological and Environmental Engineering, Oregon State University, Corvallis Oregon USA; Department Soil Physics, Helmholtz-Centre for Environmental Research-UFZ, Halle Germany; Berg, Steffen [Shell Global Solutions International B.V., Rijswijk Netherlands; Li, Tianyi [School of Chemical, Biological and Environmental Engineering, Oregon State University, Corvallis Oregon USA; Vogel, Hans-Jörg [Department Soil Physics, Helmholtz-Centre for Environmental Research-UFZ, Halle Germany; Institut für Agrar- und Ernährungswissenschaften, Martin-Luther-Universität Halle-Wittenberg, Halle Germany; Wildenschild, Dorthe [School of Chemical, Biological and Environmental Engineering, Oregon State University, Corvallis Oregon USA
2017-06-01
The relaxation dynamics toward a hydrostatic equilibrium after a change in phase saturation in porous media is governed by fluid reconfiguration at the pore scale. Little is known whether a hydrostatic equilibrium in which all interfaces come to rest is ever reached and which microscopic processes govern the time scales of relaxation. Here we apply fast synchrotron-based X-ray tomography (X-ray CT) to measure the slow relaxation dynamics of fluid interfaces in a glass bead pack after fast drainage of the sample. The relaxation of interfaces triggers internal redistribution of fluids, reduces the surface energy stored in the fluid interfaces, and relaxes the contact angle toward the equilibrium value while the fluid topology remains unchanged. The equilibration of capillary pressures occurs in two stages: (i) a quick relaxation within seconds in which most of the pressure drop that built up during drainage is dissipated, a process that is to fast to be captured with fast X-ray CT, and (ii) a slow relaxation with characteristic time scales of 1–4 h which manifests itself as a spontaneous imbibition process that is well described by the Washburn equation for capillary rise in porous media. The slow relaxation implies that a hydrostatic equilibrium is hardly ever attained in practice when conducting two-phase experiments in which a flux boundary condition is changed from flow to no-flow. Implications for experiments with pressure boundary conditions are discussed.
Local fluctuations in the relaxation rate in a glassy system
Pandit, Rajib; Flenner, Elijah; Castillo, Horacio E.
We numerically study the equilibrium dynamics of a glass-forming binary hard-sphere mixture, for different packing fractions. We extract a correlator that probes the integrated fluctuations in the local relaxation rate in the system. We find that the strength of this correlator at t =τα (the α-relaxation time) grows with packing fraction approximately as a power of τα. We also find that for a fixed packing fraction, the correlator grows as a power of time, for very long times, with an exponent that depends on the packing fraction. This exponent probes the time correlations of the relaxation rate fluctuations. We find that the exponent is around 3 for very low packing fractions, and gradually decreases to a value below 2 as the glass transition is approached. We conclude that a description of fluctuations in terms of local relaxation rates is only applicable at long times and for packing fractions close to the glass transition.
Stability and suppression of turbulence in relaxing molecular gas flows
Grigoryev, Yurii N
2017-01-01
This book presents an in-depth systematic investigation of a dissipative effect which manifests itself as the growth of hydrodynamic stability and suppression of turbulence in relaxing molecular gas flows. The work describes the theoretical foundations of a new way to control stability and laminar turbulent transitions in aerodynamic flows. It develops hydrodynamic models for describing thermal nonequilibrium gas flows which allow the consideration of suppression of inviscid acoustic waves in 2D shear flows. Then, nonlinear evolution of large-scale vortices and Kelvin-Helmholtz waves in relaxing shear flows are studied. Critical Reynolds numbers in supersonic Couette flows are calculated analytically and numerically within the framework of both linear and nonlinear classical energy hydrodynamic stability theories. The calculations clearly show that the relaxation process can appreciably delay the laminar-turbulent transition. The aim of the book is to show the new dissipative effect, which can be used for flo...
Flow restrictive and shear reducing effect of magnetization relaxation in ferrofluid cavity flow
Singh, Chamkor; Das, Arup Kumar; Das, Prasanta Kumar
2016-08-01
In this study, we report the effects of a uniform stationary magnetic field on the flow of ferrofluid (FF) inside a boundary driven cavity. A coupled set of conservation equations for the flow field, the Maxwell's magnetostatic equations, and the constitutive magnetization equation are solved numerically. The non-dimensional groups primarily influencing the phenomenon are first systematically identified through the normalization of the complete set of equations. We find the magnetization relaxation effects, under the stationary uniform field, to be flow restrictive in nature. The misalignment between the local magnetic field and the magnetization suppresses the vorticity field in the cavity, shifts the primary central vortex, and reduces the average shear stress at the boundaries. As a consequence, it becomes apparent that at a given Reynolds number, the application of uniform magnetic field can reduce the shear drag at the boundaries of the cavity, of course at an expense of reduced flow rate in their vicinity. Our study uniquely reveals that the relaxation time effects are dominant in the regions of ferrofluid flow where the change in the magnitude of the vorticity takes place over a length scale which is much smaller than the characteristic length scale of the flow geometry. Depending on the magnitudes of influencing parameters, the solution exhibits anomalous characteristics, such as creeping and saturating behavior.
Multi-region relaxed Hall magnetohydrodynamics with flow
Lingam, Manasvi; Hudson, Stuart R
2016-01-01
The recent formulations of multi-region relaxed magnetohydrodynamics (MRxMHD) have generalized the famous Woltjer-Taylor states by incorporating a collection of "ideal barriers" that prevent global relaxation, and flow. In this paper, we generalize MRxMHD with flow to include Hall effects (MRxHMHD), and thereby obtain the partially relaxed counterparts of the famous double Beltrami states as a special subset. The physical and mathematical consequences arising from the introduction of the Hall term are also presented. We demonstrate that our results (in the ideal MHD limit) constitute an important subset of ideal MHD equilibria, and we compare our approach against other variational principles proposed for deriving the relaxed states.
Multi-region relaxed Hall magnetohydrodynamics with flow
Lingam, Manasvi; Abdelhamid, Hamdi M.; Hudson, Stuart R.
2016-08-01
The recent formulations of multi-region relaxed magnetohydrodynamics (MRxMHD) have generalized the famous Woltjer-Taylor states by incorporating a collection of "ideal barriers" that prevent global relaxation and flow. In this paper, we generalize MRxMHD with flow to include Hall effects, and thereby obtain the partially relaxed counterparts of the famous double Beltrami states as a special subset. The physical and mathematical consequences arising from the introduction of the Hall term are also presented. We demonstrate that our results (in the ideal MHD limit) constitute an important subset of ideal MHD equilibria, and we compare our approach against other variational principles proposed for deriving the partially relaxed states.
State resolved vibrational relaxation modeling for strongly nonequilibrium flows
Boyd, Iain D.; Josyula, Eswar
2011-05-01
Vibrational relaxation is an important physical process in hypersonic flows. Activation of the vibrational mode affects the fundamental thermodynamic properties and finite rate relaxation can reduce the degree of dissociation of a gas. Low fidelity models of vibrational activation employ a relaxation time to capture the process at a macroscopic level. High fidelity, state-resolved models have been developed for use in continuum gas dynamics simulations based on computational fluid dynamics (CFD). By comparison, such models are not as common for use with the direct simulation Monte Carlo (DSMC) method. In this study, a high fidelity, state-resolved vibrational relaxation model is developed for the DSMC technique. The model is based on the forced harmonic oscillator approach in which multi-quantum transitions may become dominant at high temperature. Results obtained for integrated rate coefficients from the DSMC model are consistent with the corresponding CFD model. Comparison of relaxation results obtained with the high-fidelity DSMC model shows significantly less excitation of upper vibrational levels in comparison to the standard, lower fidelity DSMC vibrational relaxation model. Application of the new DSMC model to a Mach 7 normal shock wave in carbon monoxide provides better agreement with experimental measurements than the standard DSMC relaxation model.
Velocity and energy relaxation in two-phase flows
Meyapin, Yannick; Gisclon, Marguerite
2009-01-01
In the present study we investigate analytically the process of velocity and energy relaxation in two-phase flows. We begin our exposition by considering the so-called six equations two-phase model [Ishii1975, Rovarch2006]. This model assumes each phase to possess its own velocity and energy variables. Despite recent advances, the six equations model remains computationally expensive for many practical applications. Moreover, its advection operator may be non-hyperbolic which poses additional theoretical difficulties to construct robust numerical schemes |Ghidaglia et al, 2001]. In order to simplify this system, we complete momentum and energy conservation equations by relaxation terms. When relaxation characteristic time tends to zero, velocities and energies are constrained to tend to common values for both phases. As a result, we obtain a simple two-phase model which was recently proposed for simulation of violent aerated flows [Dias et al, 2010]. The preservation of invariant regions and incompressible li...
Anelastic relaxations associated with local disordering in grain boundaries
Cheng, Bolin; Ge, Tingsui
1993-04-01
Internal friction and micro-creep measurements were performed with high-purity Al bamboo-crystal specimens. The relaxation strength was found to decrease with the decrease of the temperature of measurement and became zero at about 0.4 T sub m, (T sub m being melting temperature). This reflects the occurrence of local disordering in the bamboo boundary region at this temperature. This result conforms to the picture of grain boundary disordering constructed by atomic simulation studies.
Relaxation techniques for three-dimensional transonic flow about wings.
Bailey, F. R.; Steger, J. L.
1972-01-01
A relaxation procedure has been developed to treat the three-dimensional, transonic small perturbation equations about finite lifting wings. A combination of two schemes is employed. For flow forward of the wing trailing edge the equations are written in terms of a velocity potential in order to minimize computer algebra and storage. For the remaining flow field the equations are written in terms of the velocity components in order to simplify the enforcement of the Kutta condition. Difference equations and relaxation procedures are described for both schemes. The computational method automatically captures the imbedded shock wave in the three-dimensional flow field. Computed results are given and compared to experiment and other inviscid methods.
Localized turbulence in pipe flow
Kuik, D.J.
2011-01-01
In this thesis the transition to turbulence in pipe flow is investigated. At low Reynolds numbers, the flow returns to the laminar state spontaneously. At high Reynolds number a small perturbation causes the flow to suddenly become turbulent. In the intermediate regime localized turbulence is observ
Local spin relaxation within the random Heisenberg chain.
Herbrych, J; Kokalj, J; Prelovšek, P
2013-10-04
Finite-temperature local dynamical spin correlations S(nn)(ω) are studied numerically within the random spin-1/2 antiferromagnetic Heisenberg chain. The aim is to explain measured NMR spin-lattice relaxation times in BaCu(2)(Si(0.5)Ge(0.5))(2)O(7), which is the realization of a random spin chain. In agreement with experiments we find that the distribution of relaxation times within the model shows a very large span similar to the stretched-exponential form. The distribution is strongly reduced with increasing T, but stays finite also in the high-T limit. Anomalous dynamical correlations can be associated with the random singlet concept but not directly with static quantities. Our results also reveal the crucial role of the spin anisotropy (interaction), since the behavior is in contrast with the ones for the XX model, where we do not find any significant T dependence of the distribution.
Directory of Open Access Journals (Sweden)
Xingwen Zhu
2015-01-01
Full Text Available Smoothing analysis process of distributive red-black Jacobi relaxation in multigrid method for solving 2D Stokes flow is mainly investigated on the nonstaggered grid by using local Fourier analysis (LFA. For multigrid relaxation, the nonstaggered discretizing scheme of Stokes flow is generally stabilized by adding an artificial pressure term. Therefore, an important problem is how to determine the zone of parameter in adding artificial pressure term in order to make stabilization of the algorithm for multigrid relaxation. To end that, a distributive red-black Jacobi relaxation technique for the 2D Stokes flow is established. According to the 2h-harmonics invariant subspaces in LFA, the Fourier representation of the distributive red-black Jacobi relaxation for discretizing Stokes flow is given by the form of square matrix, whose eigenvalues are meanwhile analytically computed. Based on optimal one-stage relaxation, a mathematical relation of the parameter in artificial pressure term between the optimal relaxation parameter and related smoothing factor is well yielded. The analysis results show that the numerical schemes for solving 2D Stokes flow by multigrid method on the distributive red-black Jacobi relaxation have a specified convergence parameter zone of the added artificial pressure term.
Clifford, Philip S.
2011-01-01
Organ blood flow is determined by perfusion pressure and vasomotor tone in the resistance vessels of the organ. Local factors that regulate vasomotor tone include myogenic and metabolic autoregulation, flow-mediated and conducted responses, and vasoactive substances released from red blood cells. The relative importance of each of these factors…
STUDY ON INTERMITTENT SHEAR FLOW AND RELAXATION BEHAVIOR OF THERMOTROPIC LIQUID CRYSTALLINE POLYMER
Institute of Scientific and Technical Information of China (English)
Ruo-Bing Yu; Chi-Xing Zhou; Wei Yu
2005-01-01
Intermittent shear flow including start-up flow and small oscillatory amplitude time sweep or stress relaxation after cessation of shear flow was used to study the rheological behavior and internal structure of thermotropic liquid crystalline polymer (TLCP). There are two kinds of intermittent shear flow: all start-up flows are in the same direction (intermittent flow forward: IFF) and start-up flows change their directions alternately (intermittent flow reversal: IFR). The results show that the stress of start-up flow of IFF and IFR in the test process is not superposed, indicating different changes of internal structure of thermotropic LCP (TLCP). Two main factors affect structure changes in the experimental time scale. One relates to long-term texture relaxation process, the other is an interchain reaction that becomes important after 30 min. The two factors raise the stress of IFF, but express complex effects for the stress of IFR. The latter factor becomes very important at long time annealing process. The relaxation behavior was also studied by the application of wide range relaxation spectrum calculated from the combined dynamic modulus, which gave three characteristic relaxation times (0.3, 10 and 600 s)ascribable to the relaxations of less-phase orientation, domain orientation, and domain deformation, respectively. The result also shows that the domain coalescence (texture relaxation), a long relaxation time, is a much slow process and lasts beyond 2400 s of the test time.
“I think relax, relax and it flows a lot easier”: Exploring client-generated relax strategies
Directory of Open Access Journals (Sweden)
Dianne Cirone
2014-10-01
Full Text Available Background. Some adult stroke survivors participating in Cognitive Orientation to daily Occupational Performance (CO-OP treatment programs self-generated relax strategies that have not been explored in previous CO-OP publications. The objective of this study was to describe the process by which adults with stroke used relax strategies and to explore the outcomes associated with their use. Methods. Secondary analysis of transcripts of intervention sessions from five participants was conducted. Results. All five participants applied relax strategies after initially observing a breakdown in performance that was attributed to increased fatigue or tension. The relax strategies used by the participants during their occupations included general relaxation, physical modifications to reduce tension, mental preparation, and pacing. The application of these strategies seemed to result in improved skill performance, reduced fatigue, and transfer to other activities. Conclusion. The relax strategy warrants further investigation as a potentially important therapeutic tool to improve occupational performance in individuals who have had a stroke.
Elsken, J. van der; Frenkel, D.
1977-01-01
Many molecular relaxation processes in fluids are sensitive to the time-dependence of local, anisotropic density fluctuations. The role played by anisotropic density fluctuations in the rotational relaxation of a linear, quantized rotor will be discussed in some detail. An expression for the dipolec
Elsken, J. van der; Frenkel, D.
1977-01-01
Many molecular relaxation processes in fluids are sensitive to the time-dependence of local, anisotropic density fluctuations. The role played by anisotropic density fluctuations in the rotational relaxation of a linear, quantized rotor will be discussed in some detail. An expression for the
Impact crater relaxation on Dione and Tethys and relation to past heat flow
White, Oliver L.; Schenk, Paul M.; Bellagamba, Anthony W.; Grimm, Ashley M.; Dombard, Andrew J.; Bray, Veronica J.
2017-05-01
Relating relaxation of impact crater topography to past heat flow through the crusts of icy satellites is a technique that has been applied to satellites around Jupiter and Saturn. We use global digital elevation models of the surfaces of Dione and Tethys generated from Cassini data to obtain crater depth/diameter (d/D) data. Relaxation is found to affect craters down to smaller diameters on these satellites compared to Rhea. We perform relaxation simulations in order to assess the heat flow necessary to relax craters on Dione and Tethys to their present morphologies. Heat flows exceeding 60 mW m-2 are required to relax several craters on both satellites, and relaxation appears to be subject to geographical controls. On Dione, we define a 'relaxation dichotomy' that separates the more relaxed craters in sparsely cratered plains from the less relaxed craters in heavily cratered terrain. The configuration of this dichotomy resembles that of the structural-geological dichotomy on Enceladus, implying that a similar resonance-induced tidal heating mechanism concentrated in the southern hemisphere may have affected both satellites. Defining geographical distribution of relaxation on Tethys is hindered by the presence of the young Odysseus impact and its associated ejecta.
Jin–Xin relaxation method for solving a traffic flow problem in one dimension
Ambar Sulistiyawati, Bernadetta; Mungkasi, Sudi
2017-01-01
We test the performance of the Jin–Xin relaxation and Lax–Friedrichs finite volume numerical methods in solving a traffic flow problem. In particular, we focus on traffic flow at a traffic light turning from red to green. Numerical solutions are compared with the analytical solution to the mathematical model. We find that the Jin–Xin relaxation solution is more accurate than the Lax–Friedrichs finite volume solution.
Non-local Probes in Holographic Theories with Momentum Relaxation
Mozaffara, M Reza Mohammadi; Omidi, Farzad
2016-01-01
We consider recently introduced solutions of Einstein gravity with minimally coupled massless scalars. The geometry is homogeneous, isotropic and asymptotically anti de-Sitter while the scalar fields have linear spatial-dependent profiles. The spatially-dependent marginal operators dual to scalar fields cause momentum dissipation in the deformed dual CFT. We study the effect of these marginal deformations on holographic entanglement measures and Wilson loop. We show that the structure of the universal terms of entanglement entropy for d(>2)-dim deformed CFTs is corrected depending on the geometry of the entangling regions. In d = 2 case, the universal term is not corrected while momentum relaxation leads to a non-critical correction. We also show that decrease of the correlation length causes: the phase transition of holographic mutual information to happen at smaller separations and the confinement/deconfinement phase transition to take place at smaller critical lengths. The effective potential between point...
Genomics of local adaptation with gene flow.
Tigano, Anna; Friesen, Vicki L
2016-05-01
Gene flow is a fundamental evolutionary force in adaptation that is especially important to understand as humans are rapidly changing both the natural environment and natural levels of gene flow. Theory proposes a multifaceted role for gene flow in adaptation, but it focuses mainly on the disruptive effect that gene flow has on adaptation when selection is not strong enough to prevent the loss of locally adapted alleles. The role of gene flow in adaptation is now better understood due to the recent development of both genomic models of adaptive evolution and genomic techniques, which both point to the importance of genetic architecture in the origin and maintenance of adaptation with gene flow. In this review, we discuss three main topics on the genomics of adaptation with gene flow. First, we investigate selection on migration and gene flow. Second, we discuss the three potential sources of adaptive variation in relation to the role of gene flow in the origin of adaptation. Third, we explain how local adaptation is maintained despite gene flow: we provide a synthesis of recent genomic models of adaptation, discuss the genomic mechanisms and review empirical studies on the genomics of adaptation with gene flow. Despite predictions on the disruptive effect of gene flow in adaptation, an increasing number of studies show that gene flow can promote adaptation, that local adaptations can be maintained despite high gene flow, and that genetic architecture plays a fundamental role in the origin and maintenance of local adaptation with gene flow.
Effects of relaxation and stress on the capsaicin-induced local inflammatory response.
Lutgendorf, S; Logan, H; Kirchner, H L; Rothrock, N; Svengalis, S; Iverson, K; Lubaroff, D
2000-01-01
Although stress is known to modulate the inflammatory response, there has been little experimental examination of the effects of stress and stress reduction on inflammation in humans. In particular, the effects of stress and relaxation on neurogenic inflammation have been minimally studied. This study examines the effects of three experimental manipulations: mental stress, relaxation, and control on the local inflammatory response evoked by the intradermal injection of capsaicin, the active ingredient in chili peppers. Fifty subjects (28 men and 22 women) were pretrained in relaxation using an imagery-based relaxation tape and then randomized to experimental condition. Subjects participated in an evening reactivity session including 20 minutes of a stress (Stroop test), relaxation (tape), or control (video) manipulation, followed by a capsaicin injection in the forearm. Digitized flare measurements were taken for 1 hour postcapsaicin, and measurements of cardiovascular variables, cortisol, adrenocorticotrophic hormone, and norepinephrine were taken at regular intervals. The size of the maximum capsaicin-induced flare was significantly smaller in the relaxation condition than in the stress or control conditions, which did not differ from each other. Increases in norepinephrine, heart rate, and systolic blood pressure during the experimental task, but not after capsaicin, significantly predicted size of maximum flare and total area under the curve of flare measurements. These findings suggest that stress reduction may affect local inflammatory processes. Results are consistent with sympathetic modulation of the effects of relaxation on the flare response.
Phase-Field Relaxation of Topology Optimization with Local Stress Constraints
DEFF Research Database (Denmark)
Stainko, Roman; Burger, Martin
2006-01-01
We introduce a new relaxation scheme for structural topology optimization problems with local stress constraints based on a phase-field method. In the basic formulation we have a PDE-constrained optimization problem, where the finite element and design analysis are solved simultaneously...... parameter decreases to zero. A major advantage of this kind of relaxation opposed to standard approaches is a uniform constraint qualification that is satisfied for any positive value of the penalization parameter. The relaxation scheme yields a large-scale optimization problem with a high number of linear...
Relaxing monotonicity in the identification of local average treatment effects
DEFF Research Database (Denmark)
Huber, Martin; Mellace, Giovanni
In heterogeneous treatment effect models with endogeneity, the identification of the local average treatment effect (LATE) typically relies on an instrument that satisfies two conditions: (i) joint independence of the potential post-instrument variables and the instrument and (ii) monotonicity...
Non-equilibrium reacting gas flows kinetic theory of transport and relaxation processes
Nagnibeda, Ekaterina; Nagnibeda, Ekaterina
2009-01-01
This volume develops the kinetic theory of transport phenomena and relaxation processes in the flows of reacting gas mixtures. The theory is applied to the modeling of non-equilibrium flows behind strong shock waves, in the boundary layer, and in nozzles.
Slow dynamics and local quasi-equilibrium-relaxation in supercooled colloidal systems
Energy Technology Data Exchange (ETDEWEB)
RubI, J M; SantamarIa-Holek, I; Perez-Madrid, A [Department de Fisica Fonamental, Facultat de Fisica, Universitat de Barcelona, Diagonal 647, 08028 Barcelona (Spain)
2004-06-09
We present a Fokker-Planck description of supercooled colloidal systems exhibiting slow relaxation dynamics. Assuming the existence of a local quasi-equilibrium state during the relaxation of the system, we derive a non-Markovian Fokker-Planck equation for the non-stationary conditional probability. A generalized Stokes-Einstein relation containing the temperature of the system at local quasi-equilibrium instead of the temperature of the bath is obtained. Our results explain experiments showing that the diffusion coefficient is not proportional to the inverse of the effective viscosity at frequencies related to the diffusion timescale.
Dynamics of Star Polymers in Fast Extensional Flow and Stress Relaxation
DEFF Research Database (Denmark)
Huang, Qian; Agostini, Serena; Hengeller, Ludovica
2016-01-01
We confirm the observation from Ianniruberto and Marrucci [ Macromolecules 2013, 46, 267-275 ] that entangled melts of branched polystyrenes behave like linear polystyrenes in the steady state of fast extensional flow, by measuring a linear, an asymmetric star, and a symmetric star polystyrene wi...... they relax in a similar way, most likely via arm retraction, at short time, but behave differently at long time due to both the length of the arm and the branch point. The terminal relaxation is described by a Doi and Edwards based model, i.e., considering pure orientational relaxation....
Influence of dopant ion on localized relaxation of an oxygen vacancy in stabilized zirconia
Ohta, M.; Wigmore, J. K.; Nobugai, K.; Miyasato, T.
2002-05-01
It is well known that stabilized zirconia exhibits long-range transport of oxygen ions which gives rise to diffusion relaxation of oxygen vacancies. The internal friction and the change in sound velocity in single-crystal calcia-stabilized zirconia (CSZ) doped with 12 mol % CaO were measured for longitudinal sound waves in the frequency range from 20 Hz to 700 Hz using a vibrating reed technique. In the temperature range from 300 K to 700 K, the relaxation strength exhibits strong anisotropy with respect to the directions of the k vectors. As the frequency increases the internal friction peak and the change in sound velocity shift toward high temperature, and the relaxation strength remains constant. The results show that a smaller number of oxygen vacancies contribute to diffusion relaxation than to localized relaxation, which is attributed to hopping of bound oxygen vacancies within the local structure. Comparison of the results with those reported previously for yttria-stabilized zirconia (YSZ) doped with 9.5 mol % Y2O3, suggests that oxygen vacancies are more strongly bound by the local structure in CSZ than in YSZ.
Local mechanical stress relaxation of Gunn diodes irradiated by protons
Gradoboev, A. V.; Tesleva, E. P.
2017-05-01
The aim of the work is studying the impact of Gunn diodes thermocompression bonding conditions upon their resistance to being radiated with protons of various energies. It was established that the tough conditions of Gunn diodes thermocompression bonding results in local mechanic stresses introduced into the active layer of the device, reduction of electron mobility because of the faults introduction and, subsequently, to reduction of operating current, power of UHF generation, percentage of qualitative units production and general reduction of production efficiency of the devices with required characteristics. Irradiation of Gunn diodes produced under the tough conditions of thermocompression bonding with protons which energy is (40-60) MeV with an absorbed dose of (1-6)·102 Gy does not practically reduce the radiation resistance of Gunn diodes produced with application of the given technique. This technique can be recommended for all semiconductor devices on the base of GaAs, which parameters depend significantly upon the mobility of the electrons, to increase the efficiency of production.
Dielectric relaxation losses in lead chloride and lead bromide: Localized dipoles
Brom, W.E. van den; Volger, J.
1974-01-01
A further analysis of previous reported measurements of dielectric relaxation losses in lead chloride and lead bromide crystals shows that the dipoles may occupy several energetically different positions, giving rise to localization of the dipoles and anomalous behaviour of the susceptibility. This
DEFF Research Database (Denmark)
Ruban, Andrei; Simak, S.I.; Shallcross, S.;
2003-01-01
We present a simple effective tetrahedron model for local lattice relaxation effects in random metallic alloys on simple primitive lattices. A comparison with direct ab initio calculations for supercells representing random Ni0.50Pt0.50 and Cu0.25Au0.75 alloys as well as the dilute limit of Au...
Solar subsurface flows from local helioseismology
Zhao, Junwei; Chen, Ruizhu
2016-07-01
In this article, we review recent progresses in subsurface flows obtained from two local helioseismology methods: time-distance helioseismology and ring-diagram analysis. We review results in the following four topics: flows beneath sunspots and active regions, supergranular subsurface flows, shallow meridional flow and its variations with solar cycles, and meridional circulation in the deep solar interior. Despite recent advancements in methodology, modeling, and observations, many questions are still to be answered and a few topics remain controversial. More efforts, especially in numerical modeling and accurate interpretation of acoustic wave travel-time measurements, are needed to improve the derivations of subsurface flows.
Arctigenin exhibits relaxation effect on bronchus by affecting transmembrane flow of calcium.
Zhao, Zhenying; Yin, Yongqiang; Wang, Zengyong; Fang, Runping; Wu, Hong; Jiang, Min; Bai, Gang; Luo, Guo'an
2013-12-01
Arctigenin, a lignan extract from Arctium lappa (L.), exhibits anti-inflammation, antioxidation, vasodilator effects, etc. However, the effects of arctigenin on bronchus relaxation are not well investigated. This study aimed to investigate how arctigenin regulates bronchus tone and calcium ion (Ca(2+)) flow. Trachea strips of guinea pigs were prepared for testing the relaxation effect of arctigenin to acetylcholine, histamine, KCl, and CaCl2, respectively. Furthermore, L-type calcium channel currents were detected by patch-clamp, and intracellular Ca(2+) concentration was detected by confocal microscopy. The results showed that arctigenin exhibited relaxation effect on tracheae to different constrictors, and this was related to decreasing cytoplasmic Ca(2+) concentration by inhibiting Ca(2+) influx partly through L-type calcium channel as well as promoting Ca(2+) efflux. In summary, this study provides new insight into the mechanisms by which arctigenin exhibits relaxation effect on bronchus and suggests its potential use for airway disease therapy.
Local Schrodinger flow into Kahler manifolds
Institute of Scientific and Technical Information of China (English)
丁伟岳; 王友德
2001-01-01
In this paper we show that there exists a unique local smooth solution for the Cauchy problem of the Schrodinger flow for maps from a compact Riemannian manifold into a complete Kahler manifold, or from a Euclidean space Rm into a compact Kahler manifold. As a consequence, we prove that Heisenberg spin system is locally well-posed in the appropriate Sobolev spaces.
Leiser, Randolph J.; Rotstein, Horacio G.
2017-08-01
Oscillations in far-from-equilibrium systems (e.g., chemical, biochemical, biological) are generated by the nonlinear interplay of positive and negative feedback effects operating at different time scales. Relaxation oscillations emerge when the time scales between the activators and the inhibitors are well separated. In addition to the large-amplitude oscillations (LAOs) or relaxation type, these systems exhibit small-amplitude oscillations (SAOs) as well as abrupt transitions between them (canard phenomenon). Localized cluster patterns in networks of relaxation oscillators consist of one cluster oscillating in the LAO regime or exhibiting mixed-mode oscillations (LAOs interspersed with SAOs), while the other oscillates in the SAO regime. Because the individual oscillators are monostable, localized patterns are a network phenomenon that involves the interplay of the connectivity and the intrinsic dynamic properties of the individual nodes. Motivated by experimental and theoretical results on the Belousov-Zhabotinsky reaction, we investigate the mechanisms underlying the generation of localized patterns in globally coupled networks of piecewise-linear relaxation oscillators where the global feedback term affects the rate of change of the activator (fast variable) and depends on the weighted sum of the inhibitor (slow variable) at any given time. We also investigate whether these patterns are affected by the presence of a diffusive type of coupling whose synchronizing effects compete with the symmetry-breaking global feedback effects.
Efficient relaxations for joint chance constrained AC optimal power flow
Energy Technology Data Exchange (ETDEWEB)
Baker, Kyri; Toomey, Bridget
2017-07-01
Evolving power systems with increasing levels of stochasticity call for a need to solve optimal power flow problems with large quantities of random variables. Weather forecasts, electricity prices, and shifting load patterns introduce higher levels of uncertainty and can yield optimization problems that are difficult to solve in an efficient manner. Solution methods for single chance constraints in optimal power flow problems have been considered in the literature, ensuring single constraints are satisfied with a prescribed probability; however, joint chance constraints, ensuring multiple constraints are simultaneously satisfied, have predominantly been solved via scenario-based approaches or by utilizing Boole's inequality as an upper bound. In this paper, joint chance constraints are used to solve an AC optimal power flow problem while preventing overvoltages in distribution grids under high penetrations of photovoltaic systems. A tighter version of Boole's inequality is derived and used to provide a new upper bound on the joint chance constraint, and simulation results are shown demonstrating the benefit of the proposed upper bound. The new framework allows for a less conservative and more computationally efficient solution to considering joint chance constraints, specifically regarding preventing overvoltages.
A Sufficient Condition on Convex Relaxation of AC Optimal Power Flow in Distribution Networks
DEFF Research Database (Denmark)
Huang, Shaojun; Wu, Qiuwei; Wang, Jianhui;
2016-01-01
This paper proposes a sufficient condition for the convex relaxation of AC Optimal Power Flow (OPF) in radial distribution networks as a second order cone program (SOCP) to be exact. The condition requires that the allowed reverse power flow is only reactive or active, or none. Under the proposed...... sufficient condition, the feasible sub-injection region (power injections of nodes excluding the root node) of the AC OPF is convex. The exactness of the convex relaxation under the proposed condition is proved through constructing a group of monotonic series with limits, which ensures that the optimal...... solution of the SOCP can be converted to an optimal solution of the original AC OPF. The efficacy of the convex relaxation to solve the AC OPF is demonstrated by case studies of an optimal multi-period planning problem of electric vehicles (EVs) in distribution networks....
A Sufficient Condition on Convex Relaxation of AC Optimal Power Flow in Distribution Networks
DEFF Research Database (Denmark)
Huang, Shaojun; Wu, Qiuwei; Wang, Jianhui
2016-01-01
This paper proposes a sufficient condition for the convex relaxation of AC Optimal Power Flow (OPF) in radial distribution networks as a second order cone program (SOCP) to be exact. The condition requires that the allowed reverse power flow is only reactive or active, or none. Under the proposed...... sufficient condition, the feasible sub-injection region (power injections of nodes excluding the root node) of the AC OPF is convex. The exactness of the convex relaxation under the proposed condition is proved through constructing a group of monotonic series with limits, which ensures that the optimal...... solution of the SOCP can be converted to an optimal solution of the original AC OPF. The efficacy of the convex relaxation to solve the AC OPF is demonstrated by case studies of an optimal multi-period planning problem of electric vehicles (EVs) in distribution networks....
Bioinspired sensory systems for local flow characterization
Colvert, Brendan; Chen, Kevin; Kanso, Eva
2016-11-01
Empirical evidence suggests that many aquatic organisms sense differential hydrodynamic signals.This sensory information is decoded to extract relevant flow properties. This task is challenging because it relies on local and partial measurements, whereas classical flow characterization methods depend on an external observer to reconstruct global flow fields. Here, we introduce a mathematical model in which a bioinspired sensory array measuring differences in local flow velocities characterizes the flow type and intensity. We linearize the flow field around the sensory array and express the velocity gradient tensor in terms of frame-independent parameters. We develop decoding algorithms that allow the sensory system to characterize the local flow and discuss the conditions under which this is possible. We apply this framework to the canonical problem of a circular cylinder in uniform flow, finding excellent agreement between sensed and actual properties. Our results imply that combining suitable velocity sensors with physics-based methods for decoding sensory measurements leads to a powerful approach for understanding and developing underwater sensory systems.
Climatology of local flow patterns around Basel
Energy Technology Data Exchange (ETDEWEB)
Weber, R.O. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)
1997-06-01
Recently a method has been developed to classify local-scale flow patterns from the wind measurements at a dense network of stations. It was found that in the MISTRAL area around Basel a dozen characteristic flow patterns occur. However, as the dense network of stations ran only during one year, no reliable climatology can be inferred from these data, especially the annual cycle of the flow patterns is not well determined from a single year of observations. As there exist several routinely operated stations in and near the MISTRAL area, a method was searched to identify the local flow patterns from the observations at the few routine stations. A linear discriminant analysis turned out to be the best method. Based of data from 11 stations which were simultaneously operated during 1990-1995 a six-year climatology of the flow patterns could be obtained. (author) 1 fig., 1 tab., 3 refs.
Geerdink, J.B.W.; Hoekstra, A.G.
2009-01-01
We compare the Lattice BGK, the Multiple Relaxation Times and the Entropic Lattice Boltzmann Methods for time harmonic flows. We measure the stability, speed and accuracy of the three models for Reynolds and Womersley numbers that are representative for human arteries. The Lattice BGK shows
Exact Convex Relaxation of Optimal Power Flow in Radial Networks
Energy Technology Data Exchange (ETDEWEB)
Gan, LW; Li, N; Topcu, U; Low, SH
2015-01-01
The optimal power flow (OPF) problem determines a network operating point that minimizes a certain objective such as generation cost or power loss. It is nonconvex. We prove that a global optimum of OPF can be obtained by solving a second-order cone program, under a mild condition after shrinking the OPF feasible set slightly, for radial power networks. The condition can be checked a priori, and holds for the IEEE 13, 34, 37, 123-bus networks and two real-world networks.
Sellou, Hafida; Lebeaupin, Théo; Chapuis, Catherine; Smith, Rebecca; Hegele, Anna; Singh, Hari R.; Kozlowski, Marek; Bultmann, Sebastian; Ladurner, Andreas G.; Timinszky, Gyula; Huet, Sébastien
2016-01-01
Chromatin relaxation is one of the earliest cellular responses to DNA damage. However, what determines these structural changes, including their ATP requirement, is not well understood. Using live-cell imaging and laser microirradiation to induce DNA lesions, we show that the local chromatin relaxation at DNA damage sites is regulated by PARP1 enzymatic activity. We also report that H1 is mobilized at DNA damage sites, but, since this mobilization is largely independent of poly(ADP-ribosyl)ation, it cannot solely explain the chromatin relaxation. Finally, we demonstrate the involvement of Alc1, a poly(ADP-ribose)- and ATP-dependent remodeler, in the chromatin-relaxation process. Deletion of Alc1 impairs chromatin relaxation after DNA damage, while its overexpression strongly enhances relaxation. Altogether our results identify Alc1 as an important player in the fast kinetics of the NAD+- and ATP-dependent chromatin relaxation upon DNA damage in vivo. PMID:27733626
Controlling Flow Turbulence Using Local Pinning Feedback
Institute of Scientific and Technical Information of China (English)
TANG Guo-Ning; HU Gang
2006-01-01
Flow turbulence control in two-dimensional Navier-Stokes equation is considered．By applying local pinning control only to a sjngle component of flow velocity field,the flow turbulence can be controlled to desirable targets．It is found that with certain number of controllers there exist an optimal control strength at which control error takes minimum value,and larger and smaller control strengths give worse control efficiency．The phvsical mechanism underlying these strange control results is analysed based on the interactions between different types of modes.
Dynamics of Star Polymers in Fast Extensional Flow and Stress Relaxation
DEFF Research Database (Denmark)
Huang, Qian; Agostini, Serena; Hengeller, Ludovica;
2016-01-01
We confirm the observation from Ianniruberto and Marrucci [ Macromolecules 2013, 46, 267-275 ] that entangled melts of branched polystyrenes behave like linear polystyrenes in the steady state of fast extensional flow, by measuring a linear, an asymmetric star, and a symmetric star polystyrene...... with the same span molecular weight (180 kg/mol). We show that all three melts reach the same extensional steady-state viscosity in fast extensional flow (faster than the inverse Rouse time). We further measure stress relaxation following steady extensional flow for the three melts. We show that initially...
Tsuji, Kosuke; Han, HyukSu; Guillemet-Fritsch, Sophie; Randall, Clive A
2017-03-28
Dielectric spectroscopy was performed on a Nb and In co-doped rutile TiO2 nano-crystalline ceramic (n-NITO) synthesized by a low-temperature spark plasma sintering (SPS) technique. The dielectric properties of the n-NITO were not largely affected by the metal electrode contacts. Huge dielectric relaxation was observed at a very low temperature below 35 K. Both the activation energy and relaxation time suggested that the electronic hopping motion is the underlying mechanism responsible for the colossal dielectric permittivity (CP) and its relaxation, instead of the internal barrier layer effect or a dipolar relaxation. With Havriliak-Negami (H-N) fitting, a relaxation time with a large distribution of dielectric relaxations was revealed. The broad distributed relaxation phenomena indicated that Nb and In were involved, controlling the dielectric relaxation by modifying the polarization mechanism and localized states. The associated distribution function is calculated and presented. The frequency-dependent a.c. conductance is successfully explained by a hopping conduction model of the localized electrons with the distribution function. It is demonstrated that the dielectric relaxation is strongly correlated with the hopping electrons in the localized states. The CP in SPS n-NITO is then ascribed to a hopping polarization.
Local flow control for active building facades
Kaligotla, Srikar; Chen, Wayne; Glauser, Mark
2010-11-01
Existing building facade designs are for a passive and an impermeable shell to prevent migration of outdoor air into the building and to control heat transfers between the exterior environment and the building interior. An active facade that can respond in real time to changing environmental conditions like wind speed and direction, pollutant load, temperature, humidity and light can lower energy use and maximize occupant comfort. With an increased awareness of cost and environmental effects of energy use, cross or natural ventilation has become an attractive method to lower energy use. Separated flow regions around such buildings are undesirable due to high concentration of pollutants, especially if the vents or dynamic windows for cross ventilation are situated in these regions. Outside pollutant load redistribution through vents can be regulated via flow separation control to minimize transport of pollutants into the building. Flow separation has been substantially reduced with the application of intelligent flow control tools developed at Syracuse University for flow around "silo" (turret) like structures. Similar flow control models can be introduced into buildings with cross ventilation for local external flow separation control. Initial experiments will be performed for turbulent flow over a rectangular block (scaled to be a mid-rise building) that has been configured with dynamic vents and unsteady suction actuators in a wind tunnel at various wind speeds.
Directory of Open Access Journals (Sweden)
Tintin Sukartini
2017-07-01
Full Text Available Introduction: Limited progressive air flow in Chronic Obstructive Pulmonary Disease (COPD can caused by small airway disease (bronchiolitis obstructive and loss of elasticity of the lung (emphysema. Further it can be decreasing the quality of life in COPD patients because dyspnea and uncomfortable in activity. Progressive muscle relaxation (PMR is one of the relaxation technique that can repair pulmonary ventilation by decreasing chronic constriction of the respiratory muscles. The objective of this study was to analyze the effect of progressive muscle relaxation on raised peak expiratory flow rate (PEFR. Method: A pre-experimental one group pre-post test design was used in this study. Population was all of the COPD patients at Pulmonary Specialist Polyclinic Dr Mohamad Soewandhie Surabaya. There were 8 respondents taken by using purposive sampling. PEFR was counted by using peak flow meter every six day. Data were analyzed by using Paired t-Test with significance level p≤0.05. Result: The result showed that PMR had significance level on increasing of PEFR (p=0.012. Discussion: It can be concluded that PMR has an effect on raise PEFR. Further studies are recommended to measure the effect of PMR on respiratory rate (RR, heart rate (HR subjective dyspnoe symptoms, forced expiration volume on the first minute (FEV1 and mid maximum flow rate (MMFR in COPD patients.
Pradipto; Purqon, Acep
2017-07-01
Lattice Boltzmann Method (LBM) is the novel method for simulating fluid dynamics. Nowadays, the application of LBM ranges from the incompressible flow, flow in the porous medium, until microflows. The common collision model of LBM is the BGK with a constant single relaxation time τ. However, BGK suffers from numerical instabilities. These instabilities could be eliminated by implementing LBM with multiple relaxation time. Both of those scheme have implemented for incompressible 2 dimensions lid-driven cavity. The stability analysis has done by finding the maximum Reynolds number and velocity for converged simulations. The accuracy analysis is done by comparing the velocity profile with the benchmark results from Ghia, et al and calculating the net velocity flux. The tests concluded that LBM with MRT are more stable than BGK, and have a similar accuracy. The maximum Reynolds number that converges for BGK is 3200 and 7500 for MRT respectively.
Ohta, Michihiro; Kirimoto, Kenta; Nobugai, Kohji; Wigmore, J. Keith; Miyasato, Tatsuro
2001-09-01
The internal friction in single crystal yttria-stabilized zirconia (YSZ) doped with 9.5 mol% Y2O3 was measured for longitudinal sound waves in the frequency range from 10 Hz to 800 Hz using a vibrating reed technique. In the temperature range from 300 K to 700 K, observations of internal friction reveal two closely overlapping absorption peaks, confirming the existence of two relaxation modes in YSZ@. One of the peaks is due to diffusion relaxation, which is known to be responsible for long-range transport of O-ions. The second peak shows clearly the existence of localized relaxation, which is attributed to bound oxygen vacancies within the local structure which is formed around an Y-ion due to symmetry breaking. The absorption peak caused by the localized relaxation exhibits anisotropy resulting from the asymmetric local structure, and the strength of this peak changes with temperature reflecting the number of bound oxygen vacancies.
Localized spirals in Taylor-Couette flow.
Heise, M; Abshagen, J; Küter, D; Hochstrate, K; Pfister, G; Hoffmann, Ch
2008-02-01
We present a type of spiral vortex state that appears from a supercritical Hopf bifurcation below the linear instability of circular Couette flow in a Taylor-Couette system with rigid end plates. These spirals have been found experimentally as well as numerically as "pure" states but also coexist with "classical" spirals (or axially standing waves for smaller systems) which typically appear from linear instability in counterrotating Taylor-Couette flow. These spiral states have an axial distribution of the strongly localized amplitude in the vicinity of the rigid end plates that confine the system in the axial direction. Furthermore, they show significantly different oscillation frequencies compared to the critical spiral frequencies. Despite the localization of the amplitude near the ends, the states appear as global states with spirals that propagate either toward the middle from each end of the system or vice versa. In contrast to classical spirals, these states exhibit a spatial or a spatiotemporal reflection symmetry.
Niu, Xiao-Dong; Hyodo, Shi-Aki; Munekata, Toshihisa; Suga, Kazuhiko
2007-09-01
It is well known that the Navier-Stokes equations cannot adequately describe gas flows in the transition and free-molecular regimes. In these regimes, the Boltzmann equation (BE) of kinetic theory is invoked to govern the flows. However, this equation cannot be solved easily, either by analytical techniques or by numerical methods. Hence, in order to efficiently maneuver around this equation for modeling microscale gas flows, a kinetic lattice Boltzmann method (LBM) has been introduced in recent years. This method is regarded as a numerical approach for solving the BE in discrete velocity space with Gauss-Hermite quadrature. In this paper, a systematic description of the kinetic LBM, including the lattice Boltzmann equation, the diffuse-scattering boundary condition for gas-surface interactions, and definition of the relaxation time, is provided. To capture the nonlinear effects due to the high-order moments and wall boundaries, an effective relaxation time and a modified regularization procedure of the nonequilibrium part of the distribution function are further presented based on previous work [Guo et al., J. Appl. Phys. 99, 074903 (2006); Shan et al., J. Fluid Mech. 550, 413 (2006)]. The capability of the kinetic LBM of simulating microscale gas flows is illustrated based on the numerical investigations of micro Couette and force-driven Poiseuille flows.
Relaxation and Flow of Polymer Thin Films in Isothermal Temperature Jump Measurements
Beaucage, G.; Banach, M. J.; Vaia, R. A.
2000-03-01
The dynamic behavior of thin polymer films is of interest in fabrication of microelectronics, optoelectronics and for the coatings industry. It is known that polymer relaxation is effected by film thickness and by the particular substrate/polymer pair. Recently, we have used a spectroscopic ellipsometer to investigate the glass transition in thin films. In addition to information on modification of thermal transitions, the spectroscopic ellipsometer allows for direct observation of the isothermal dimensions of a thin polymer film as a function of time following a rapid temperature change. Recent results will be presented on the observation of time dependence in film-normal thickness and normalized, in-plane, lateral dimension (explained in talk) as well as simple fits to this relaxation behavior in terms of a normalized viscosity and relaxation time. Initial results support a highly asymmetric initial thermal expansion followed by close to isotropic relaxation and anisotropic flow. These features may elucidate models for chain orientation in thin polymer films. Beaucage, G.; Composto, R.; Stein, R.S. (1993). J. Poly. Sci., Polym. Phys. Ed., 31 319. Kovacs, A. J.; Hutchinson, J. M.; Aklonis, J. J. (1977) in "The Structure of Non-Crystalline Materials", Ed. P. H. Gaskell, Taylor and Francis, London. Banach, M. J.; Clarson, S. J.; Beaucage, G.; Kramer, E. J.; Benkoski, J.; Vaia, R. Submitted Macromolecules (1999). Beaucage, G.; Banach, M. J.; Vaia, R. A. Submitted Macromolecules (1999).
Localization model description of diffusion and structural relaxation in glass-forming Cu-Zr alloys
Douglas, Jack F.; Pazmino Betancourt, Beatriz A.; Tong, Xuhang; Zhang, Hao
2016-05-01
We test the localization model (LM) prediction of a parameter-free relationship between the α-structural relaxation time τ α and the Debye-Waller factor for a series of simulated glass-forming Cu-Zr metallic liquids having a range of alloy compositions. After validating this relationship between the picosecond (‘fast’) and long-time relaxation dynamics over the full range of temperatures and alloy compositions investigated in our simulations, we show that it is also possible to estimate the self-diffusion coefficients of the individual atomic species (D Cu, D Zr) and the average diffusion coefficient D using the LM, in conjunction with the empirical fractional Stokes-Einstein (FSE) relation linking these diffusion coefficients to τ α . We further observe that the fragility and extent of decoupling between D and τ α strongly correlate with at the onset temperature of glass-formation T A where particle caging and the breakdown of Arrhenius relaxation first emerge.
A new multiple-relaxation-time lattice Boltzmann model for incompressible flows in porous media
Liu, Qing; He, Chao
2013-01-01
In this paper, a two-dimensional eight-velocity (D2Q8) multiple-relaxation-time (MRT) lattice Boltzmann (LB) model is proposed for incompressible porous flows at the representative elementary volume scale based on the Brinkman-Forchheimer-extended Darcy formulation. In the MRT-LB model, newly defined equilibrium moments are employed to account for the porosity of the porous media, and the linear and nonlinear drag forces of the media are incorporated into the model by adding a forcing term to the MRT-LB equation in the moment space. The model is validated by simulating the 2D Poiseuille flow, Couette flow and lid-driven cavity flow in porous media. The numerical results are in excellent agreement with the analytical solutions and/or the well-documented data available in the literature.
Spin-Relaxation without Coherence Loss: Fine-Structure Splitting of Localized Excitons
DEFF Research Database (Denmark)
Langbein, W.; Zimmermann, R.; Runge, E.
2000-01-01
We investigate the polarization dynamics of the secondary emission from a disordered quantum well after resonant excitation. Using the speckle analysis technique we determine the coherence degree of the emission, and find that the polarization-relaxed emission has a coherence degree comparable...... to the one of the emission co-polarized to the excitation. This is explained by the finestructure splitting between the two optically active states of anisotropically localized excitons. The eigenstates are linearly polarized with distributed orientations. The time evolution of the involved eigenstate...
Mathematical model for blood flow autoregulation by endothelium-derived relaxing factor
Chernyavsky, I L; Chernyavsky, Igor L.; Kudryashov, Nikolai A.
2006-01-01
The fluid shear stress is an important regulator of the cardiovascular system via the endothelium-derived relaxing factor (EDRF) that is Nitric Oxide. This mechanism involves biochemical reactions in an arterial wall. The autoregulation process is managed by the vascular tonus and gives the negative feedback for the shear stress changing. A new mathematical model for the autoregulation of a blood flow through arteria under the constant transmural pressure is presented. Endothelium-derived relaxing factor Nitric Oxide, the multi-layer structure of an arterial wall, and kinetic-diffusion processes are taken into consideration. The limit case of the thin-wall artery is analytically studied. The stability condition for a stationary point of the linearized system is given. The exact stationary solutions of the origin system are found. The numerical simulation for the autoregulation system is presented. It is shown the arteria adaptation to an initial radial perturbation and the transition of the system to new equi...
Convex relaxation of Optimal Power Flow in Distribution Feeders with embedded solar power
DEFF Research Database (Denmark)
Hermann, Alexander Niels August; Wu, Qiuwei; Huang, Shaojun
2016-01-01
panels with uncontrolled inverters, the upper limit of installable capacity is quickly reached in many of today’s distribution feeders. This problem can often be mitigated by optimally controlling the voltage angles of inverters. However, the optimal power flow problem in its standard form is a large......There is an increasing interest in using Distributed Energy Resources (DER) directly coupled to end user distribution feeders. This poses an array of challenges because most of today’s distribution feeders are designed for unidirectional power flow. Therefore when installing DERs such as solar...... scale non-convex optimization problem, and thus can’t be solved precisely and also is computationally heavy and intractable for large systems. This paper examines the use of a convex relaxation using Semi-definite programming to optimally control solar power inverters in a distribution grid in order...
Non-orthogonal multiple-relaxation-time lattice Boltzmann method for incompressible thermal flows
Liu, Qing; Li, Dong
2015-01-01
In this paper, a non-orthogonal multiple-relaxation-time (MRT) lattice Boltzmann (LB) method for simulating incompressible thermal flows is presented. In the method, the incompressible Navier-Stokes equations and temperature equation (or convection-diffusion equation) are solved separately by two different MRT-LB models, which are proposed based on non-orthogonal transformation matrices constructed in terms of some proper non-orthogonal basis vectors obtained from the combinations of the lattice velocity components. The macroscopic equations for incompressible thermal flows can be recovered from the present method through the Chapman-Enskog analysis in the incompressible limit. Numerical simulations of several typical two-dimensional problems are carried out to validate the present method. It is found that the present numerical results are in good agreement with the analytical solutions or other numerical results of previous studies. Furthermore, the grid convergence tests indicate that the present MRT-LB met...
DEFF Research Database (Denmark)
Ding, Tao; Li, Cheng; Yang, Yongheng
2017-01-01
The detailed topology of renewable resource bases may have the impact on the optimal power flow of the VSC-HVDC transmission network. To address this issue, this paper develops an optimal power flow with the hybrid VSC-HVDC transmission and active distribution networks to optimally schedule...... the generation output and voltage regulation of both networks, which leads to a non-convex programming model. Furthermore, the non-convex power flow equations are based on the Second Order Cone Programming (SOCP) relaxation approach. Thus, the proposed model can be relaxed to a SOCP that can be tractably solved...
Local Schrodinger flow into Kahler manifolds
Institute of Scientific and Technical Information of China (English)
DlNG; Weiyue(
2001-01-01
［1］Ding, W. Y. , Wang, Y. D. , Schrodinger flows of maps into symplectic manifolds, Science in China, Ser. A, 1998, 41(7): 746.［2］Landau, L. D., Lifshitz, E. M., On the theory of the dispersion of magnetic permeability in ferromagnetic bodies, Phys. Z.Sowj., 1935, 8: 153; reproduced in Collected Papers of L. D. Landau, New York: Pergaman Press, 1965, 101－114.［3］Faddeev, L., Takhtajan, L. A. , Hamiltonian Methods in the Theory of Solitons, Berlin-Heidelberg-New York: Springer-Verlag, 1987.［4］Nakamura, K., Sasada, T., Soliton and wave trains in ferromagnets, Phys. Lett. A, 1974, 48: 321.［5］Zhou, Y. , Guo, B. , Tan, S. , Existence and uniqueness of smooth solution for system of ferromagnetic chain, Science in China, Ser. A, 1991, 34(3): 257.［6］Pang, P. , Wang, H. , Wang, Y. D. , Schrodinger flow of maps into Kahler manifolds, Asian J. of Math. , in press.［7］Wang, H. , Wang, Y. D. , Global inhomogeneous Schrodinger flow, Int. J. Math., 2000, 11: 1079.［8］Pang, P., Wang, H., Wang, Y. D., Local existence for inhomogeneous Schrodinger flow of maps into Kahler manifolds,Acta Math. Sinica, English Series, 2000, 16: 487.［9］Temg, C. L., Uhlenbeck, K., Schrodinger flows on Grassmannians, in Integrable Systems, Geometry and Topology,Somervi11e, MA: International Press, in press.［10］Chang, N., Shatah, J., Uhlenbeck, K., Schrodinger maps, Commun. Pure Appl. Math., 2000, 53: 157.［11］Wang, Y. D., Ferromagnetic chain equation from a closed Riemannian manifold into S2, Int. J. Math., 1995, 6: 93.［12］Wang, Y. D., Heisenberg chain systems from compact manifolds into S2, J. Math. Phys., 1998, 39(1): 363.［13］Sulem, P., Sulem, C., Bardos, C., On the continuous limit for a system of classical spins, Commun. Math. Phys., 1986,107: 431.［14］Aubin, T., Nonlinear Analysis on Manifolds, Monge-Ampère Equations, Berlin-Heidelberg-New York: Springer-Verlag,1982.［15］Eells, J. , Lemaire, L. , Another report on harmonic maps, Bull. London
Pressure-flow study as an evaluating method of neurogenic urethral relaxation failure.
Sakakibara, R; Fowler, C J; Hattori, T; Hussain, I F; Swinn, M J; Uchiyama, T; Yamanishi, T
2000-04-12
Voiding difficulty is a common feature in neurological diseases, which can be attributed to dysfunction of the urethral sphincter and the detrusor. Electromyography (EMG)-cystometry can reveal the presence of detrusor-external sphincter dyssynergia (DESD), however, internal sphincter function on voiding is not easily evaluated. Pressure-flow study is widely used to diagnose benign outlet obstruction due to prostatic hypertrophy. We applied pressure-flow study in neurological patients in order to evaluate neurogenic urethral relaxation failure. We recruited 71 patients with neurological diseases. All were men under 60 years, with mean age of 44 years, ranging from 18 to 59 years. None had abnormal finding of digital examination or ultrasound echography of the prostate. Standard cystometry showed detrusor hyperreflexia in 33 patients and residual urine was noted in 36. DESD was noted in seven of 43 patients. Pressure-flow relation curve and a detrusor pressure (P(det)) at the point of maximum flow rate (Q(max)) (i.e., P(det)Q(max)) were obtained by urodynamic computers. The Abram-Griffiths (AG) number (P(det)Q(max)-2Q(max)), showing outlet obstruction particularly over 40, was also obtained. The points of P(det)Q(max) of the patients fell into three categories of the AG nomogram, showing obstruction in 19.7%, equivocal in 52.1% and unobstructed in 28.2%. Patients with DESD had AG number over 40 more commonly (57.1%) than those without DESD (8.4%) (p<0.05). The mean AG number was 46.4 in patients with DESD, which was larger than 17.1 in patients without DESD (p<0.01). Patients with detrusor hyperreflexia had AG number over 40 more commonly (42.4%) than those with normal cystometric curve (0%) (p<0.01). The mean AG number was 30.6 in patients with detrusor hyperreflexia, which was larger than 13.6 in patients with normal cystometric curve (p<0.01). The results showed that 19.7% of patients with neurological diseases had obstructive pattern (high pressure voiding
Local Reynolds number and thresholds of transition in shear flows
Tao, JianJun; Chen, ShiYi; Su, WeiDong
2013-02-01
Recent experimental and numerical investigations reveal that the onset of turbulence in plane-Poiseuille flow and plane-Couette flow has some similar stages separated with different threshold Reynolds numbers. Based on these observations and the energy equation of a disturbed fluid element, a local Reynolds number Re L is derived to represent the maximum ratio of the energy supplement to the energy dissipation in a cross section. It is shown that along the sequence of transition stages, which include transient localized turbulence, "equilibrium" localized turbulence, spatially intermittent but temporally persistent turbulence and uniform turbulence, the corresponding thresholds of Re L for plane-Couette flow, Hagen-Poiseuille flow and plane-Poiseuille flow are consistent, indicating that the critical (threshold) states during the laminar-turbulent transition are determined by the local properties of the base flow and are independent of global features, such as flow geometries (pipe or channel) and types of driving forces (shear driving or pressure driving).
Dynamic relaxation processes in compressible multiphase flows. Application to evaporation phenomena
Directory of Open Access Journals (Sweden)
Le Métayer O.
2013-07-01
Full Text Available Phase changes and heat exchanges are examples of physical processes appearing in many industrial applications involving multiphase compressible flows. Their knowledge is of fundamental importance to reproduce correctly the resulting effects in simulation tools. A fine description of the flow topology is thus required to obtain the interfacial area between phases. This one is responsible for the dynamics and the kinetics of heat and mass transfer when evaporation or condensation occurs. Unfortunately this exchange area cannot be obtained easily and accurately especially when complex mixtures (drops, bubbles, pockets of very different sizes appear inside the transient medium. The natural way to solve this specific trouble consists in using a thin grid to capture interfaces at all spatial scales. But this possibility needs huge computing resources and can be hardly used when considering physical systems of large dimensions. A realistic method is to consider instantaneous exchanges between phases by the way of additional source terms in a full non-equilibrium multiphase flow model [2,15,17]. In this one each phase obeys its own equation of state and has its own set of equations and variables (pressure, temperature, velocity, energy, entropy,.... When enabling the relaxation source terms the multiphase mixture instantaneously tends towards a mechanical or thermodynamic equilibrium state at each point of the flow. This strategy allows to mark the boundaries of the real flow behavior and to magnify the dominant physical effects (heat exchanges, evaporation, drag,... inside the medium. A description of the various relaxation processes is given in the paper. Les changements de phase et les transferts de chaleur sont des exemples de phénomènes physiques présents dans de nombreuses applications industrielles faisant intervenir des écoulements compressibles multiphasiques. La connaissance des mécanismes associés est primordiale afin de reproduire
Delayed plastic relaxation limit in SiGe islands grown by Ge diffusion from a local source
Energy Technology Data Exchange (ETDEWEB)
Vanacore, G. M.; Zani, M.; Tagliaferri, A., E-mail: alberto.tagliaferri@polimi.it [CNISM-Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133 Milano (Italy); Nicotra, G. [IMM-CNR, Stradale Primosole 50, I-95121 Catania (Italy); Bollani, M. [CNR-IFN, LNESS, Via Anzani 42, I-22100 Como (Italy); Bonera, E.; Montalenti, F.; Picco, A.; Boioli, F. [Dipartimento di Scienza dei Materiali and L-NESS, Università Milano-Bicocca, via Cozzi 53, I-20125 Milano (Italy); Capellini, G. [Department of Sciences at the Università Roma Tre, Via Vasca Navale 79, 00146 Roma (Italy); Isella, G. [CNISM, LNESS, Dipartimento di Fisica, Politecnico di Milano (Polo di Como), Via Anzani 42, I-22100 Como (Italy); Osmond, J. [ICFO–The Institute of Photonic Sciences, Av. Carl Friedrich Gauss, 3, E-08860 Castelldefels (Barcelona) (Spain)
2015-03-14
The hetero-epitaxial strain relaxation in nano-scale systems plays a fundamental role in shaping their properties. Here, the elastic and plastic relaxation of self-assembled SiGe islands grown by surface-thermal-diffusion from a local Ge solid source on Si(100) are studied by atomic force and transmission electron microscopies, enabling the simultaneous investigation of the strain relaxation in different dynamical regimes. Islands grown by this technique remain dislocation-free and preserve a structural coherence with the substrate for a base width as large as 350 nm. The results indicate that a delay of the plastic relaxation is promoted by an enhanced Si-Ge intermixing, induced by the surface-thermal-diffusion, which takes place already in the SiGe overlayer before the formation of a critical nucleus. The local entropy of mixing dominates, leading the system toward a thermodynamic equilibrium, where non-dislocated, shallow islands with a low residual stress are energetically stable. These findings elucidate the role of the interface dynamics in modulating the lattice distortion at the nano-scale, and highlight the potential use of our growth strategy to create composition and strain-controlled nano-structures for new-generation devices.
Directory of Open Access Journals (Sweden)
Stanford Shateyi
2015-01-01
Full Text Available The present study investigates entropy generation on a magnetohydrodynamic flow and heat transfer of a Maxwell fluid using a spectral relaxation method. The method is based on simple iteration schemes formed by reduction of the order of the momentum equation followed by a rearrangement of the resulting governing nonlinear equation systems which are then solved using spectral methods. The velocity and temperature profiles are obtained numerically and used to generate the entropy generation number. Entropy generation increased with the Reynolds number, the magnetic parameter and the dimensionless group parameter while decreased for higher Prandtl numbers. The effect of the flow parameters on the velocity and temperature of the flow were also investigated. The results were validated using the bvp4c where the spectral relaxation method was found to be accurate and rapidly convergent to the numerical results.
Ma, Qiang; Chen, Zhenqian; Liu, Hao
2017-07-01
In this paper, to predict the dynamics behaviors of flow and mass transfer with adsorption phenomena in porous media at the representative elementary volume (REV) scale, a multiple-relaxation-time (MRT) lattice Boltzmann (LB) model for the convection-diffusion equation is developed to solve the transfer problem with an unsteady source term in porous media. Utilizing the Chapman-Enskog analysis, the modified MRT-LB model can recover the macroscopic governing equations at the REV scale. The coupled MRT-LB model for momentum and mass transfer is validated by comparing with the finite-difference method and the analytical solution. Moreover, using the MRT-LB method coupled with the linear driving force model, the fluid transfer and adsorption behaviors of the carbon dioxide in a porous fixed bed are explored. The breakthrough curve of adsorption from MRT-LB simulation is compared with the experimental data and the finite-element solution, and the transient concentration distributions of the carbon dioxide along the porous fixed bed are elaborated upon in detail. In addition, the MRT-LB simulation results show that the appearance time of the breakthrough point in the breakthrough curve is advanced as the mass transfer resistance in the linear driving force model increases; however, the saturation point is prolonged inversely.
Non-local flow effects on bedform dynamics
Perron, J. Taylor; Kao, Justin; Myrow, Paul
2013-04-01
Bedform patterns are sensitive recorders of feedbacks among bed topography, fluid flow, and sediment transport. Some of the most important feedbacks are local. For example, evolution models based on simple flow parameterizations that only incorporate local bed height can reproduce some of the essential features of bedform evolution, including bedform growth and migration. However, non-local effects can also be critically important. For example, field and laboratory measurements have shown that the spacing of most sand ripples generated by wave-driven oscillatory flows is linearly proportional to the amplitude of the flow oscillation, implying that fluid stress and sediment transport at a given location depend on upstream features that perturb the flow. A model that fully captures the coupling of flow and bedform evolution must include such effects, but it is not clear how detailed the description of the flow must be to reproduce the most important aspects of bedform evolution. To account for the most significant non-local flow effects without resorting to a coupled hydrodynamic model, we propose an approximation in which the bed shear stress is expressed as a convolution of the bed topography with a kernel that includes both local effects, such as acceleration over bumps, and non-local effects, such as flow separation and re-attachment. Two-dimensional flow simulations demonstrate that a single, generic kernel gives a good approximation of shear stress over a wide range of bed profiles under oscillatory and some combined flows. Incorporating this approximation into a simple bedform evolution model, we show that non-local effects are required to reproduce the characteristic transient patterns that emerge as wave ripples respond to changes in the flow, which we have documented with time-lapse imagery of laboratory wave tank experiments. We then show how this result informs interpretations of two-dimensional wave ripple patterns preserved in the geologic record.
Constraining Ω with the fluctuation of the local Hubble flow
Institute of Scientific and Technical Information of China (English)
Quan Guo; Huan-Yuan Shan
2009-01-01
We present an analysis of the fluctuation of the local Hubble flow using 350 galaxies in the Local Volume (D＜5 Mpc, hereafter LV) with accurate measurements of distances, positions and radial velocities, and compare the results with the theoretical prediction of the local Hubble flow induced by density perturbations. This allows us to set a useful constraint on the local Ω parameters: ΩM～0.6 and ΩΛ～0.7, which may serve as compelling evidence for the existence of dark energy in the local Universe.
Directory of Open Access Journals (Sweden)
Flamer D
2011-11-01
Full Text Available David Flamer, Philip WH PengDepartment of Anesthesia, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, ON, CanadaPurpose: To provide a review of local anesthetic (LA agents and adjuncts, opioids and muscle relaxants, and their intraoperative effects and postoperative outcomes in intravenous regional anesthesia (IVRA.Source: A search for prospective, double-blind, randomized controlled trials evaluating LA agents, opioids and muscle relaxants as adjuvants for IVRA, was conducted (MEDLINE®, Embase. Intraoperative benefits (onset/recovery of sensory and motor block, intraoperative analgesia, tourniquet pain, postoperative benefits (pain score, analgesic consumption, time to first analgesia, and side effects were recorded. A conclusion for overall benefit was made based on statistical significance and clinical relevance.Findings: Thirty-one studies were evaluated, with data collected on 1523 subjects. LA agents evaluated were lidocaine, ropivacaine, and prilocaine. Adjuncts evaluated were opioids (morphine, fentanyl, meperidine, sufentanil, tramadol and muscle relaxants (pancuronium, atracurium, mivacurium, cisatacurium. There was good evidence that ropivacaine provided effective IVRA and improved postoperative analgesia. Lidocaine and prilocaine were effective LA agents, however they lacked postoperative benefits. Morphine, fentanyl, and meperidine as sole adjuncts did not demonstrate clinically significant benefits or result in an increased risk of side effects. Sufentanil data was limited, but appeared to provide faster onset of sensory block. Tramadol provided faster onset of sensory block and tourniquet tolerance, however postoperative benefits were not consistent and the risk of minor side effects increased. Muscle relaxants improved the quality of motor block, but at the expense of delayed motor recovery. The combination of fentanyl and muscle relaxants can achieve an equivalent quality of IVRA with 50
Nerkararyan, Khachatur V; Bozhevolnyi, Sergey I
2015-01-01
We investigate the relaxation dynamics of a quantum dipole emitter (QDE), e.g., a molecule or quantum dot, located near a metal nanoparticle (MNP) exhibiting a dipolar localized surface plasmon (LSP) resonance at the frequency of the QDE radiative transition. A generic three-level QDE, which is pumped with an external laser pulse and thereby brought into an optically active excited state, is considered to be weakly coupled to the resonant LSP described by a coherent state. It is shown that, under the condition of the QDE-MNP characteristic relaxation time being much shorter than that of the QDE in free space but much longer than the LSP lifetime, the QDE relaxation dynamics can be described analytically and feature, in general, non-exponential decay with complicated transient behaviour. The main physical consequence of this relaxation process is that the emission, being largely determined by the MNP, comes out with a substantial delay. It is also shown that energy dissipation in the QDE-MNP system is relatively weak with the probability of the photon emission being ∼0.75, a number which, rather surprisingly, does not explicitly depend on the metal absorption characteristics. A large number of QDE-MNP system parameters in our analytical description open new possibilities for controlling quantum emitter dynamics.
Localized microstructures induced by fluid flow in directional solidification.
Jamgotchian, H; Bergeon, N; Benielli, D; Voge, P; Billia, B; Guérin, R
2001-10-15
The dynamical process of microstructure localization by multiscale interaction between instabilities is uncovered in directional solidification of transparent alloy. As predicted by Chen and Davis, morphological instability of the interface is observed at inward flow-stagnation regions of the cellular convective field. Depending on the driving force of fluid flow, focus-type and honeycomb-type localized patterns form in the initial transient of solidification, that then evolves with time. In the case of solute-driven flow, the analysis of the onset of thermosolutal convection in initial transient of solidification enables a complete understanding of the dynamics and of the localization of morphological instability.
The very local Hubble flow: computer simulations of dynamical history
Chernin, A D; Valtonen, M J; Dolgachev, V P; Domozhilova, L M; Makarov, D I
2003-01-01
The phenomenon of the very local ($\\le3$ Mpc) Hubble flow is studied on the basis of the data of recent precision observations. A set of computer simulations is performed to trace the trajectories of the flow galaxies back in time to the epoch of the formation of the Local Group. It is found that the `initial conditions' of the flow are drastically different from the linear velocity-distance relation. The simulations enable also to recognize the major trends of the flow evolution and identify the dynamical role of universal antigravity produced by cosmic vacuum.
Architecture Models and Data Flows in Local and Group Datawarehouses
Bogza, R. M.; Zaharie, Dorin; Avasilcai, Silvia; Bacali, Laura
Architecture models and possible data flows for local and group datawarehouses are presented, together with some data processing models. The architecture models consists of several layers and the data flow between them. The choosen architecture of a datawarehouse depends on the data type and volumes from the source data, and inflences the analysis, data mining and reports done upon the data from DWH.
Comparison of Vibrational Relaxation Modeling for Strongly Non-Equilibrium Flows
2014-01-01
145 .98 4396 V. Summary and Conclusions The form of two vibrational relaxation models that are commonly used in DSMC and CFD simula- tions have been...Technical Paper 3. DATES COVERED (From - To) Dec 2013 – Jan 2014 4. TITLE AND SUBTITLE Comparison of Vibrational Relaxation Modeling for Strongly Non...including experimental gas measurement techniques , shock layer vibration-dissociation coupling, and vibrational energy freezing in strong expansions
Local interfacial area concentration measurement in bubbly flow
Ishii, M.; Revankar, S. T.
1990-10-01
The interfacial area concentration is one of the most important parameters in a thermal-hydraulic analysis of two-phase flow systems based on the two-fluid model. A theoretical foundation of the measurement method for the time averaged local interfacial area using a double sensor probe is presented. Based on this theory, the double sensor resistivity probe was employed for the measurement of local properties of two-phase flow such as the interfacial velocity, local interfacial area concentration and void fraction in vertical air-water bubbly flow. Experimental data are presented on the radial profiles of the void fraction, bubble velocity, bubble chord length and interfacial area concentration at various gas flow rates. In addition to these, some statistical information on turbulent motions of bubbles are presented. Each of the double sensors are checked against the global void measurement using a differential pressure. The result is very satisfactory. Furthermore, the area averaged void fraction, and the interfacial area concentration obtained from the double sensor probe measurement compared very well with the photographic measurements. The results show that the double sensor probe method is accurate and reliable for the local measurements of interfacial area and void fraction in bubbly two-phase flow. Results of the measurement of interfacial area concentration with the double sensor probe in forced flow loop are presented for bubbly flow at different liquid flow rates. The data indicate that the radial profiles of the interfacial area concentration show similar dependence on the liquid and gas flow rate like radial profiles of void fraction in the bubbly flow regime.
Ninomiya, Asako; Terakawa, Yui; Matsuura, Nobuyuki; Ichinohe, Tatsuya; Kaneko, Yuzuru
2012-01-01
The purpose of this study was to examine how submucosal injection of a clinically relevant dose of a lidocaine hydrochloride solution containing epinephrine affects the muscle relaxant effects of rocuronium bromide. Sixteen patients scheduled for orthognathic surgery participated in this study. All patients were induced with fentanyl citrate, a target-controlled infusion of propofol and rocuronium bromide. Anesthesia was maintained by total intravenous anesthesia. After nasotracheal intubation, an infusion of rocuronium bromide was started at 7 µg/kg/min, and the infusion rate was then adjusted to maintain a train of four (TOF) ratio at 10 to 15%. The TOF ratio just prior to oral mucosal injection of a 1% lidocaine hydrochloride solution containing 10 µg/mL epinephrine (LE) was taken as the baseline. TOF ratio was observed for 20 minutes, with 1-minute intervals following the start of injection. Mean epinephrine dose was 85.6 ± 18.6 µg and mean infusion rate of rocuronium bromide was 6.3 ± 1.6 µg/kg/min. TOF ratio began to decrease 2 minutes after the injection of LE, reached the minimum value at 3.1 ± 3.6% 12 minutes after the injection, and then began to recover. We conclude that oral mucosal injection of LE enhances the muscle relaxant effects of rocuronium bromide.
Directory of Open Access Journals (Sweden)
Nemati Hasan
2011-01-01
Full Text Available A numerical investigation of the two-dimensional laminar flow and heat transfer a rotating circular cylinder with uniform planar shear, where the free-stream velocity varies linearly across the cylinder using Multi-Relaxation-Time Lattice Boltzmann method is conducted. The effects of variation of Reynolds number, rotational speed ratio at shear rate 0.1, blockage ratio 0.1 and Prandtl number 0.71 are studied. The Reynolds number changing from 50 to 160 for three rotational speed ratios of 0, 0.5, 1 is investigated. Results show that flow and heat transfer depends significantly on the rotational speed ratio as well as the Reynolds number. The effect of Reynolds number on the vortex-shedding frequency and period-surface Nusselt numbers is overall very strong compared with rotational speed ratio. Flow and heat conditions characteristics such as lift and drag coefficients, Strouhal number and Nusselt numbers are studied.
A Sufficient Condition on Convex Relaxation of AC Optimal Power Flow in Distribution Networks
DEFF Research Database (Denmark)
Huang, Shaojun; Wu, Qiuwei; Wang, Jianhui;
2016-01-01
solution of the SOCP can be converted to an optimal solution of the original AC OPF. The efficacy of the convex relaxation to solve the AC OPF is demonstrated by case studies of an optimal multi-period planning problem of electric vehicles (EVs) in distribution networks....
Snakes and ladders: localized solutions of plane Couette flow
Schneider, Tobias M; Burke, John
2009-01-01
We demonstrate the existence of a large number of exact solutions of plane Couette flow, which share the topology of known periodic solutions but are localized in space. Solutions of different size are organized in a snakes-and-ladders structure strikingly similar to that observed for simpler pattern-forming PDE systems. These new solutions are a step towards extending the dynamical systems view of transitional turbulence to spatially extended flows.
Global nonautonomous Schrodinger flows on Hermitian locally symmetric spaces
Institute of Scientific and Technical Information of China (English)
王宏玉; 王友德
2002-01-01
In this paper, we consider the global existence of one-dimensional nonautonomous (inhomogeneous) Schrodinger flow. By exploiting geometric symmetries, we prove that, given a smooth initial map, the Cauchy problem of the nonautonomous (inhomogeneous) Schrodinger flow from S1 into a Hermitian locally symmetric space admits a unique global smooth solution, and then we address the global existence of the Cauchy problem of inhomogeneous Heisenberg spin ferromagnet system.
Response of axisymmetric separated flow to its spatially localized perturbation
Dovgal, A. V.; Zanin, B. Yu.; Sorokin, A. M.
2016-11-01
The flow past an axisymmetric body with laminar boundary-layer separation in a low-velocity air stream has been studied. The hot-wire technique was employed to identify the variation of velocity field induced by a local stationary perturbation of separation region at the stern of the experimental model. A large-scale influence upon the near-wall flow due to a cylinder roughness element provided on the model surface was observed. The obtained data substantiate the possibility of controlling the laminar boundary-layer separation on an axisymmetric body using a local external forcing.
Dwarfs and Giants in the local flows of galaxies.
Chernin, A. D.; Emelyanov, N. V.; Karachentsev, I. D.
We use recent Hubble Space Telescope data on nearby dwarf and giant galaxies to study the dynamical structure and evolutionary trends of the local expansion flows of galaxies. It is found that antigravity of dark energy dominates the force field of the flows and makes them expand with acceleration. It also cools the flows and introduces to them the nearly linear velocity-distance relation with the time-rate close to the global Hubble's factor. There are grounds to expect that this is the universal physical regularity that is common not only for the nearby flows we studied here, but also for all the expansion flows of various spatial scales from the 1 Mpc scale and up to the scale of the global cosmological expansion.
Gunes, Deniz Z; Clain, Xavier; Breton, Olivier; Mayor, Guy; Burbidge, Adam S
2010-03-01
From two-drop collision experiments, it is known that local extensional flow favors coalescence. Recently, Bremond et al. used microfluidic methods to evidence this point. Similarly, we used specific microfluidic geometries to impose sudden extensional flow, following drop collision under controlled conditions, and coalescence events were recorded with a high-speed camera. In this study we focus on the effect of surfactant on the coalescence, or stabilisation against it, between drops flowing apart due to either imposed external flow or capillary forces related to drop shape relaxation. Coalescence can be induced even when drops are initially separated by an intersticial lubricating film by far thicker than the critical thickness for rupturing under the action of Van der Waals forces. This is particularly relevant to avalanches of coalescence events, in flowing or even quiescent emulsions or foams. When non-ionic surfactant was used, it was observed that small concentrations apparently enhance coalescence in extension. But at higher concentrations it provides stabilisation through a specific mechanism of thread formation and rupture; the stabilisation mechanism can be complex.
Demonstration of flow localization in analogue partially molten system
Takashima, S.; Kumagai, I.; Kurita, K.
2003-04-01
Melt migration in partially molten medium is conceptually classified into two contrasting models; homogeneous permeable flow and localized channeled flow. The transition from permeable flow to localized one is promoted with advance of melting and deformation of the medium. Kelemen et al(1995) and Spiegelmanet al(2001) modeled this process taking into accounts of compaction and dissolution. But the physics behind this transition is not yet clarified well. Here we explore rheological aspect of this problem based analogue experiments using deformable soft gel as a solid phase and would like to argue the role of self-organization in the flow development. In this presentation we show two kinds of experimental results which are mutually related. One is a demonstration of development of the channeled flow in a so-called Rayleigh-Taylor Instability experiments. Dense viscous fluid(glycerol solution) is poured at the top of the matrix fluid;homogeneous mixture of soft transparent gel and visocous fluid( the viscosity is controlled by adding methyl-cellulose) having equal density. Liquid fraction is varied for this matrix fluid to see how the fraction controls the development. At the intermediate gel fraction(between70% to about 40%) the dense fluid at first migrates through the grain boundary as permeable flow. But local heterogeneity in the gel fraction induces relative movement of solid phase, which in turns enhances the localization of the flow and deformation. We measured the motion of fluid phase and solid phase separately by adoting PIV/PTV methods. Calculated relative motion describes how flow localization has developed. The deformation-induced compaction plays an important role. The second experimental result is rheology of the dense suspension of soft gel and viscous fluid. At the intermediate gel fraction, the rheology is sensitive to the mixture state. Deformation of bulk sample depends on the internal melt distribution and the melt distribution depends on the
Streamwise decay of localized states in channel flow
Zammert, Stefan
2016-01-01
Channel flow, the pressure driven flow between parallel plates, has exact coherent structures that show various degrees of localization. For states which are localized in streamwise direction but extended in spanwise direction, we show that they are exponentially localized, with decay constants that are different on the upstream and downstream side. We extend the analysis of Brand and Gibson, J. Fluid Mech. 750, R1 (2014), for stationary states to the case of advected structures that is needed here, and derive expressions for the decay in terms of eigenvalues and eigenfunctions of certain second order differential equations. The results are in very good agreement with observations on exact coherent structures of different transversal wave length.
The local Hubble flow a manifestation of dark energy
Baryshev, Yu V; Teerikorpi, P; Baryshev, Yurij; Chernin, Arthur; Teerikorpi, Pekka
2000-01-01
Our local environment at $r<10$ Mpc expands linearly and smoothly, as if ruled by a uniform matter distribution, while observations show the very clumpy local universe. This is a long standing enigma in cosmology. We argue that the recently discovered vacuum or quintessence (dark energy (DE) component with the equation of state $p_Q = w \\rho_Q c^2$, $w \\in [-1,0)$) from observations of the high-redshift universe may also manifest itself in the properties of the very local Hubble flow. We introduce the concept of the critical distance $r_Q$ where the repulsive force of dark energy starts to dominate over the gravity of a mass concentration. For the Local Group $r_Q$ is about 1.5 Mpc. Intriguingly, at the same distance 1.5 Mpc the linear and very "cold" Hubble flow emerges, with about the global Hubble constant. We also consider the critical epoch $t_Q$, when the DE antigravity began to dominate over the local matter gravity for a galaxy which at the present epoch is in the local DE dominated region. Our mai...
Local Transport Barrier Formation and Relaxation in Reversed Shear Plasmas on TFTR
Synakowski, E. J.
1996-11-01
Central to discussions of transport barrier formation and sustainment in the plasma core or edge is E× B shear stabilization of plasma turbulence. It has also been suggested that the low core current densities in TFTR reversed shear plasmas yield large gradients in the Shafranov shift that in themselves stabilize the dominant modes in the core of these plasmas without the benefit of E× B shear. (M. Beer, invited presentation, this meeting) Examined here are the possibilities that one, both, or neither mechanism is responsible for the improved core confinement of TFTR Enhanced Reversed Shear (ERS) plasmas. The difficulty in separating the influence of both effects centers in part on the fact that large Shafranov shifts are accompanied by large pressure gradients, implying that shift-induced stabilization will always be favorable when pressure-gradient-driven E× B shear is expected to be large. The roles of these two mechanisms are separated on TFTR by varying the local radial electric field through changes in the velocity shear induced by different combinations of co- and counter-injection of neutral beams at constant heating power. Co- and counter-injection provide the opportunity of generating V_φ-driven contributions to the E× B shear that add both destructively and constructively to the nabla p-driven term in the radial force balance equation. Significant variations in the E× B shear at and near the transport barrier region can thus be realized, permitting detailed examinations of the response of local transport to changes in the local radial electric field with small variations in the Shafranov shift. The relation between shearing rates, predicted growth rates, and the threshold behavior of local barrier formation and losses in confinement will be discussed. Changes in local fluctuation behavior across the transition into and out of ERS confinement will also be examined for these experiments. The characteristics and power thresholds of barrier formation
Gradient flow of the stochastic relaxation on a generic exponential family
Energy Technology Data Exchange (ETDEWEB)
Malagò, Luigi, E-mail: malago@shinshu-u.ac.jp [Collegio Carlo Alberto, Via Real Collegio 30, 10024 Moncalieri, Italy and Shinshu University, 4-17-1 Wakasato, Nagano 380-8553 (Japan); Pistone, Giovanni, E-mail: giovanni.pistone@carloalberto.org [Collegio Carlo Alberto, Via Real Collegio 30, 10024 Moncalieri (Italy)
2015-01-13
We study the natural gradient flow of the expected value E{sub p} [f] of an objective function f for p in an exponential family. We parameterize the exponential family with the expectation parameters and we show that the dynamical system associated to the natural gradient flow can be extended outside the marginal polytope.
Simulations of Bingham plastic flows with the multiple-relaxation-time lattice Boltzmann model
Chen, SongGui; Sun, QiCheng; Jin, Feng; Liu, JianGuo
2014-03-01
Fresh cement mortar is a type of workable paste, which can be well approximated as a Bingham plastic and whose flow behavior is of major concern in engineering. In this paper, Papanastasiou's model for Bingham fluids is solved by using the multiplerelaxation-time lattice Boltzmann model (MRT-LB). Analysis of the stress growth exponent m in Bingham fluid flow simulations shows that Papanastasiou's model provides a good approximation of realistic Bingham plastics for values of m > 108. For lower values of m, Papanastasiou's model is valid for fluids between Bingham and Newtonian fluids. The MRT-LB model is validated by two benchmark problems: 2D steady Poiseuille flows and lid-driven cavity flows. Comparing the numerical results of the velocity distributions with corresponding analytical solutions shows that the MRT-LB model is appropriate for studying Bingham fluids while also providing better numerical stability. We further apply the MRT-LB model to simulate flow through a sudden expansion channel and the flow surrounding a round particle. Besides the rich flow structures obtained in this work, the dynamics fluid force on the round particle is calculated. Results show that both the Reynolds number Re and the Bingham number Bn affect the drag coefficients C D , and a drag coefficient with Re and Bn being taken into account is proposed. The relationship of Bn and the ratio of unyielded zone thickness to particle diameter is also analyzed. Finally, the Bingham fluid flowing around a set of randomly dispersed particles is simulated to obtain the apparent viscosity and velocity fields. These results help simulation of fresh concrete flowing in porous media.
Local mesh refinement for incompressible fluid flow with free surfaces
Energy Technology Data Exchange (ETDEWEB)
Terasaka, H.; Kajiwara, H.; Ogura, K. [Tokyo Electric Power Company (Japan)] [and others
1995-09-01
A new local mesh refinement (LMR) technique has been developed and applied to incompressible fluid flows with free surface boundaries. The LMR method embeds patches of fine grid in arbitrary regions of interest. Hence, more accurate solutions can be obtained with a lower number of computational cells. This method is very suitable for the simulation of free surface movements because free surface flow problems generally require a finer computational grid to obtain adequate results. By using this technique, one can place finer grids only near the surfaces, and therefore greatly reduce the total number of cells and computational costs. This paper introduces LMR3D, a three-dimensional incompressible flow analysis code. Numerical examples calculated with the code demonstrate well the advantages of the LMR method.
Persistent Near-Surface Flow Structures from Local Helioseismology
Howe, R; Baker, D; Harra, L; van Driel-Gesztelyi, L; Bogart, R S
2015-01-01
Near-surface flows measured by the ring-diagram technique of local helioseismology show structures that persist over multiple rotations. We examine these phenomena using data from the {\\em Global Oscillation Network Group} (GONG) and the {\\em Helioseismic and Magnetic Imager} (HMI) and show that a correlation analysis of the structures can be used to estimate the rotation rate as a function of latitude, giving a result consistent with the near-surface rate from global helioseismology and slightly slower than that obtained from a similar analysis of the surface magnetic field strength. At latitudes of 60$^{\\circ}$ and above the HMI flow data reveal a strong signature of a two-sided zonal flow structure. This signature may be related to recent reports of "giant cells" in solar convection.
Implication of Negative Entropy Flow for Local Rainfall
Directory of Open Access Journals (Sweden)
Zhaohui Li
2013-08-01
Full Text Available The relation between the atmospheric entropy flow field and local rainfall is examined in terms of the theory of dissipative structures. In this paper, the entropy balance equation in a form suitable for describing the entropy budget of the Earth’s atmosphere is derived starting from the Gibbs relation, and, as examples, the entropy flows of the two severe weather events associated with the development of an extratropical cyclone and a tropical storm are calculated, respectively. The results show that negative entropy flow (NEF has a significant effect on the precipitation intensity and scope with an apparent matching of the NEF’s pattern with the rainfall distribution revealed and, that the diagnosis of NEF is able to provide a good indicator for precipitation forecasting.
Embrittlement and Flow Localization in Reactor Structural Materials
Energy Technology Data Exchange (ETDEWEB)
Xianglin Wu; Xiao Pan; James Stubbins
2006-10-06
Many reactor components and structural members are made from metal alloys due, in large part, to their strength and ability to resist brittle fracture by plastic deformation. However, brittle fracture can occur when structural material cannot undergo extensive, or even limited, plastic deformation due to irradiation exposure. Certain irradiation conditions lead to the development of a damage microstructure where plastic flow is limited to very small volumes or regions of material, as opposed to the general plastic flow in unexposed materials. This process is referred to as flow localization or plastic instability. The true stress at the onset of necking is a constant regardless of the irradiation level. It is called 'critical stress' and this critical stress has strong temperature dependence. Interrupted tensile testes of 316L SS have been performed to investigate the microstructure evolution and competing mechanism between mechanic twinning and planar slip which are believed to be the controlling mechanism for flow localization. Deformation twinning is the major contribution of strain hardening and good ductility for low temperatures, and the activation of twinning system is determined by the critical twinning stress. Phases transform and texture analyses are also discussed in this study. Finite element analysis is carried out to complement the microstructural analysis and for the prediction of materaials performance with and without stress concentration and irradiation.
Local properties of countercurrent stratified steam-water flow
Energy Technology Data Exchange (ETDEWEB)
Kim, H J
1985-10-01
A study of steam condensation in countercurrent stratified flow of steam and subcooled water has been carried out in a rectangular channel/flat plate geometry over a wide range of inclination angles (4/sup 0/-87/sup 0/) at several aspect ratios. Variables were inlet water and steam flow rates, and inlet water temperature. Local condensation rates and pressure gradients were measured, and local condensation heat transfer coefficients and interfacial shear stress were calculated. Contact probe traverses of the surface waves were made, which allowed a statistical analysis of the wave properties. The local condensation Nusselt number was correlated in terms of local water and steam Reynolds or Froude numbers, as well as the liquid Prandtl number. A turbulence-centered model developed by Theofanous, et al. principally for gas absorption in several geometries, was modified. A correlation for the interfacial shear stress and the pressure gradient agreed with measured values. Mean water layer thicknesses were calculated. Interfacial wave parameters, such as the mean water layer thickness, liquid fraction probability distribution, wave amplitude and wave frequency, are analyzed.
Strain gradient crystal plasticity effects on flow localization
DEFF Research Database (Denmark)
Borg, Ulrik
2007-01-01
In metal grains one of the most important failure mechanisms involves shear band localization. As the band width is small, the deformations are affected by material length scales. To study localization in single grains a rate-dependent crystal plasticity formulation for finite strains is presented...... in the absence of strain gradients. The model is used to study the effect of an internal material length scale on the localization of plastic flow in shear bands in a single crystal under plane strain tension. It is shown that the mesh sensitivity is removed when using the nonlocal material model considered...... for metals described by the reformulated Fleck-Hutchinson strain gradient plasticity theory. The theory is implemented numerically within a finite element framework using slip rate increments and displacement increments as state variables. The formulation reduces to the classical crystal plasticity theory...
Cosmic Flows and the Structure of the Local Universe
Steinmetz, Matthias
2016-03-01
The Local Volume is the area of the cosmos we can analyze in most detail with respect to the properties of its galaxy population, their abundance, their inner structure, their distribution, and their formation. Indeed, many challenges of the cosmological concordance model such as the substructure crisis or the surprising occurrence of vast planes of satellite galaxies are intimately linked to observations of the local galaxy population. However, owing to the peculiar environment of our Milky Way system and its cosmic neighborhood, the Local Volume may also be severely biased. Cosmography, i.e. the reconstruction of the local cosmic web from cosmic flows, and constrained simulations of structure formation as a tool to produce simulated local group analogues provide a powerful method to analyze and quantify these biases. Possible applications include the analysis of the local distribution of dwarf galaxies around luminous galaxies and the characterization of the mass accretion history of these objects. Thanks to the extension of galaxy velocity data out to distances in excess of 200Mpc, we are now capable to reconstruct the 3D matter distribution out to these distances, thus constraining the formation history of object such as the Virgo Cluster.
Homogenized Model of Two-Phase Flow with Local Nonequilibrium in Double Porosity Media
Directory of Open Access Journals (Sweden)
Brahim Amaziane
2016-01-01
Full Text Available We consider two-phase flow in a heterogeneous porous medium with highly permeable fractures and low permeable periodic blocks. The flow in the blocks is assumed to be in local capillary disequilibrium and described by Barenblatt’s relaxation relationships for the relative permeability and capillary pressure. It is shown that the homogenization of such equations leads to a new macroscopic model that includes two kinds of long-memory effects: the mass transfer between the blocks and fractures and the memory caused by the microscopic Barenblatt disequilibrium. We have obtained a general relationship for the double nonequilibrium capillary pressure which represents great interest for applications. Due to the nonlinear coupling and the nonlocality in time, the macroscopic model remains incompletely homogenized in general case. The completely homogenized model was obtained for two different regimes. The first case corresponds to a linearized flow in the blocks. In the second case, we assume a low contrast in the block-fracture permeability. Numerical results for the two-dimensional problem are presented for two test cases to demonstrate the effectiveness of the methodology.
Institute of Scientific and Technical Information of China (English)
Zhen-Hua Chai; Tian-Shou Zhao
2012-01-01
In this paper,a pseudopotential-based multiplerelaxation-time lattice Boltzmann model is proposed for multicomponent/multiphase flow systems.Unlike previous models in the literature,the present model not only enables the study of multicomponent flows with different molecular weights,different viscosities and different Schmidt numbers,but also ensures that the distribution function of each component evolves on the same square lattice without invoking additional interpolations.Furthermore,the Chapman-Enskog analysis shows that the present model results in the correct hydrodynamic equations,and satisfies the indifferentiability principle.The numerical validation exercises further demonstrate that the favorable performance of the present model.
Pine Island Glacier - local flow mechanisms and basal sliding
Wilkens, N. M.; Kleiner, T.; Humbert, A.
2013-12-01
Pine Island Glacier is a fast moving outlet glacier in the West Antarctic Ice Sheet. Several tributaries feeding the central ice stream characterise the flow field structure of this glacier. In the past decades the glacier has shown acceleration, thinning and a significant grounding line retreat. These ongoing processes are coinciding with a concentrated mass loss in the area around Pine Island Glacier, the Amundsen Sea Embayment. The area is of additional interest due to its retrograde bed slope. The postulated instability of the setting turns the glacier into an even more suitable object for modelling studies. One major challenge encountered when modelling the flow field of Pine Island Glacier is to reproduce the locally varying flow pattern, with its many tributaries. Commonly this difficulty is overcome by inversion for parameters controlling basal sliding. Our study is aimed at connecting basal sliding again to physical parameters. To achieve this we conduct experiments of Pine Island Glacier with the diagnostic 3D full-Stokes model COMice. The model is thermo-mechanically coupled and implemented with the commercial finite-element package COMSOL Multiphysics©. We use remotely sensed surface velocity data to validate our results. In a first step, the model is used to identify dominant local mechanisms that drive the flow of the different tributaries. We identify connections between the basal topography, the basal temperature, the driving stress and the basal roughness distribution. The thus gained information is used to confine basal sliding. Areas with similar qualitative characteristics are identified, and constant-sliding assumptions made for those. Additionally, the basal roughness distribution is matched onto a basal sliding parameter. This way the sliding law is again brought closer to its original meaning. Our results are important for prognostic model experiments, as we connect basal sliding to locally varying basal properties, which might lead to
P. Arosio; M. Corti; Mariani, M; Orsini, F.; Bogani, L.; A. CANESCHI; Lago, J.; Lascialfari, A.
2015-01-01
The spin dynamics of the molecular magnetic chain [Dy(hfac)(3){NIT(C6H4OPh)}] were investigated by means of the Muon Spin Relaxation (mu+SR) technique. This system consists of a magnetic lattice of alternating Dy(III) ions and radical spins, and exhibits single-chain-magnet behavior. The magnetic properties of [Dy(hfac)(3){NIT(C6H4OPh)}] have been studied by measuring the magnetization vs. temperature at different applied magnetic fields (H - 5, 3500, and 16500 Oe) and by performing mu+SR exp...
DEFF Research Database (Denmark)
Huang, Shaojun; Wu, Qiuwei; Zhao, Haoran
2016-01-01
Renewable energies are increasingly integrated in electric distribution networks and will cause severe overvoltage issues. Smart grid technologies make it possible to use coordinated control to mitigate the overvoltage issues and the optimal power flow (OPF) method is proven to be efficient in th...... profile of the feasible sub-injection (injection of nodes excluding the root/substation node) region...
Constrained simulations of the local universe: II. The nature of the local Hubble flow
Martinez-Vaquero, Luis A; Hoffman, Yehuda; Gottlöber, Stefan; Sivan, Mira
2009-01-01
Using a suite of N-body simulations in different Cold Dark Matter (CDM) scenarios, with cosmological constant (\\LCDM) and without (OCDM, SCDM), we study the Hubble flow (\\sigh) in Local Volumes (LV) around Local Group (LG) like objects found in these simulations, and compare the numerical results with the most recent observations. We show that \\LCDM and OCDM models exhibit the same behavior of \\sigh. Hence, we demonstrate that the observed coldness of the Hubble flow is not likely to be a manifestation of the dark energy, contrary to previous claims. The coldness does not constitute a problem by itself but it poses a problem to the standard \\LCDM model only if the mean density within the Local Volume is greater than twice the mean matter cosmic density. The lack of blueshifted galaxies in the LV, outside of the LG can be considered as another manifestation of the coldness of the flow. Finally, we show that the main dynamical parameter that affects the coldness of the flow is the relative isolation of the LG, ...
On Event Detection and Localization in Acyclic Flow Networks
Suresh, Mahima Agumbe
2013-05-01
Acyclic flow networks, present in many infrastructures of national importance (e.g., oil and gas and water distribution systems), have been attracting immense research interest. Existing solutions for detecting and locating attacks against these infrastructures have been proven costly and imprecise, particularly when dealing with large-scale distribution systems. In this article, to the best of our knowledge, for the first time, we investigate how mobile sensor networks can be used for optimal event detection and localization in acyclic flow networks. We propose the idea of using sensors that move along the edges of the network and detect events (i.e., attacks). To localize the events, sensors detect proximity to beacons, which are devices with known placement in the network. We formulate the problem of minimizing the cost of monitoring infrastructure (i.e., minimizing the number of sensors and beacons deployed) in a predetermined zone of interest, while ensuring a degree of coverage by sensors and a required accuracy in locating events using beacons. We propose algorithms for solving the aforementioned problem and demonstrate their effectiveness with results obtained from a realistic flow network simulator.
Cross flow response of a cylindrical structure under local shear flow
Directory of Open Access Journals (Sweden)
Yoo-Chul Kim
2009-12-01
Full Text Available The VIV (Vortex-Induced Vibration analysis of a flexible cylindrical structure under locally strong shear flow is presented. The model is made of Teflon and has 9.5m length, 0.0127m diameter, and 0.001m wall thickness. 11 2-dimensional accelerometers are installed along the model. The experiment has been conducted at the ocean engineering basin in the University of Tokyo in which uniform current can be generated. The model is installed at about 30 degree of slope and submerged by almost overall length. Local shear flow is made by superposing uniform current and accelerated flow generated by an impeller. The results of frequency and modal analysis are presented.
Multigrid Relaxation Methods and the Analysis of Lightness, Shading, and Flow
1984-10-01
performed in parallel by many locally Coilut1in.0 tine trncsors dist i ibtti n conp)utItional netw~orks or grids. l poc , 1. arrle algi.rnI dr appealing in...of Color Vision, Macmillan. Braddick, 0.. Campbell, F.W., and Atkinson, J., [1978], "Channels in vision. basic aspects," Handbook of Sensory
Non-local deformation effects in shear flows
Directory of Open Access Journals (Sweden)
A. V. Popova
2015-01-01
Full Text Available The method for detection of clusters on the basis of event space–time dependence is classically applied for foreshock–mainshock–aftershock sequences for which event connectedness is generally accepted. In the paper, this approach is used to investigate the whole event catalogue of foreshock and aftershock sequences filtered from the events with small magnitudes, in which connected events are also determined. The space scale is extended due to the inclusion of the parameter of seismic event connectedness in the direction of dislocation shift that allows us to consider the obtained connected events as clusters in a shear flow. A statistical model of the shear flow was constructed by catalogue decomposition into timescales and space scales defined analytically. A modelling algorithm of the shear flow was developed and its stability to initial condition change was investigated. Shear flow structure and arising non-local deformation characteristics which may be the criteria for dynamic process activity in the considered subduction zone of the Kuril–Kamchatka island arc were analysed.
Local conservative regularizations of compressible MHD and neutral flows
Krishnaswami, Govind S; Thyagaraja, Anantanarayanan
2016-01-01
Ideal systems like MHD and Euler flow may develop singularities in vorticity (w = curl v). Viscosity and resistivity provide dissipative regularizations of the singularities. In this paper we propose a minimal, local, conservative, nonlinear, dispersive regularization of compressible flow and ideal MHD, in analogy with the KdV regularization of the 1D kinematic wave equation. This work extends and significantly generalizes earlier work on incompressible Euler and ideal MHD. It involves a micro-scale cutoff length lambda which is a function of density, unlike in the incompressible case. In MHD, it can be taken to be of order the electron collisionless skin depth c/omega_pe. Our regularization preserves the symmetries of the original systems, and with appropriate boundary conditions, leads to associated conservation laws. Energy and enstrophy are subject to a priori bounds determined by initial data in contrast to the unregularized systems. A Hamiltonian and Poisson bracket formulation is developed and applied ...
Fluid dynamics in airway bifurcations: III. Localized flow conditions.
Martonen, T B; Guan, X; Schreck, R M
2001-04-01
Localized flow conditions (e.g., backflows) in transition regions between parent and daughter airways of bifurcations were investigated using a computational fluid dynamics software code (FIDAP) with a Cray T90 supercomputer. The configurations of the bifurcations were based on Schreck s (1972) laboratory models. The flow intensities and spatial regions of reversed motion were simulated for different conditions. The effects of inlet velocity profiles, Reynolds numbers, and dimensions and orientations of airways were addressed. The computational results showed that backflow was increased for parabolic inlet conditions, larger Reynolds numbers, and larger daughter-to-parent diameter ratios. This article is the third in a systematic series addressed in this issue; the first addressed primary velocity patterns and the second discussed secondary currents.
Energy Technology Data Exchange (ETDEWEB)
Liu, C.; Liu, Z. [Univ. of Colorado, Denver, CO (United States)
1994-12-31
A new multilevel technology was developed in this study which provides a successful numerical simulation for the whole process of flow transition in 3-D flat plate boundary layers, including linear growth, secondary instability, breakdown, and transition on a relatively coarse grid with low CPU cost. A fourth-order finite difference scheme on stretched and staggered grids, a fully implicit time-marching technique, a semi-coarsening multigrid based on the so-called approximate line-box relaxation, and a buffer domain for the outflow boundary conditions were all employed for high-order accuracy, good stability, and fast convergence. A new fine-coarse-fine grid mapping technique was developed to catch the large eddies and represent main roles of small eddies to keep the code running after the laminar flow breaks down. The computational results are in good agreement with linear stability theory, secondary instability theory, and some experiments. The computation also reproduced the K-type and C-type transition observed by laboratory experiments. The CPU cost for a typical case is around 2-9 CRAY-YMP hours.
Interface oscillation of subcooled flow boiling in locally heated microchannels
Liu, J. T.; Peng, X. F.
2009-02-01
An investigation was conducted to understand flow boiling of subcooled de-ionized water in locally heated parallel microchannels. High-speed visualization technology was employed to visually observe the transient phase change process in an individual microchannel. Signal analysis method was employed in studying the interface movement and phase change process. The phase change at locally heated condition was different from those at entirely heated condition where elongated bubble(s) stayed quasi-stable for a long time without venting out. Diversified and intensive interface oscillation was observed occurring on both of the upstream and downstream bubble caps. Evaporation and condensation modes were characterized with distinguished oscillation frequencies. The film-driven oscillations of both evaporating and condensing interfaces generally operated at higher frequencies than the oscillations driven by nucleation or dropwise condensation.
Convex relaxation of Optimal Power Flow in Distribution Feeders with embedded solar power
DEFF Research Database (Denmark)
Hermann, Alexander Niels August; Wu, Qiuwei; Huang, Shaojun;
2016-01-01
There is an increasing interest in using Distributed Energy Resources (DER) directly coupled to end user distribution feeders. This poses an array of challenges because most of today’s distribution feeders are designed for unidirectional power flow. Therefore when installing DERs such as solar pa...... to minimize the global line losses of the feeder. The mathematical model is presented in details. Further, case studies are completed with simulations involving a 15-bus radial distribution system. These simulations are run for 24 hour periods, with actual solar data and demand data....
Percolation velocity dependence on local concentration in bidisperse granular flows
Jones, Ryan P.; Xiao, Hongyi; Deng, Zhekai; Umbanhowar, Paul B.; Lueptow, Richard M.
The percolation velocity, up, of granular material in size or density bidisperse mixtures depends on the local concentration, particle size ratio, particle density ratio, and shear rate, γ ˙. Discrete element method computational results were obtained for bounded heap flows with size ratios between 1 and 3 and for density ratios between 1 and 4. The results indicate that small particles percolate downward faster when surrounded by large particles than large particles percolate upward when surrounded by small particles, as was recently observed in shear-box experiments. Likewise, heavy particles percolate downward faster when surrounded by light particles than light particles percolate upward when surrounded by heavy particles. The dependence of up / γ ˙ on local concentration results in larger percolation flux magnitudes at high concentrations of large (or light) particles compared to high concentrations of small (or heavy) particles, while local volumetric flux is conserved. The dependence of up / γ ˙ on local concentration can be incorporated into a continuum model, but the impact on global segregation patterns is usually minimal. Partially funded by Dow Chemical Company and NSF Grant No. CBET-1511450.
Dark Energy and the quietness of the Local Hubble Flow
Axenides, M
2002-01-01
The linearity and quietness of the Local ($< 10 Mpc$) Hubble Flow (LHF) in view of the very clumpy local universe is a long standing puzzle in standard and in open CDM cosmogony. The question addressed in this paper is whether the antigravity component of the recently discovered dark energy can cool the velocity flow enough to provide a solution to this puzzle. We calculate the growth of matter fluctuations in a flat universe containing a fraction $\\Omega_X(t_0)$ of dark energy obeying the time independent equation of state $p_X = w \\rho_X$. We find that dark energy can indeed cool the LHF. However the dark energy parameter values required to make the predicted velocity dispersion consistent with the observed value $v_{rms}\\simeq 40km/sec$ have been ruled out by other observational tests constraining the dark energy parameters $w$ and $\\Omega_X$. Therefore despite the claims of recent qualitative studies dark energy with time independent equation of state can not by itself explain the quietness and lineari...
Institute of Scientific and Technical Information of China (English)
WENJianping; ChenYunlin; 等
2002-01-01
The local gas-phase flow characteristics such as local gas holdup (εg), local bubble velocity (Vb) and local bubble mean diameter(db) at a specified point in a gas-liquid-solid three-phase reversed flow jet loop reactor was experimentally investigated by a five-point conductivity probe. The effects of gas jet flow rate, liquid jet flow rate, solid loading, nozzle diameter and axial position on the local εg,Vb and db profiles were discussed. The presence of solids at low solid concentrations not only increased the local εg and Vb, but also decreased the local db. The optimum solid olading for the maximum local εg and Vb together with the minimum local db was 0.16×10-3m3, corresponding to a solid volume fraction,εS=2.5%.
Directory of Open Access Journals (Sweden)
Ai-Min Yang
2014-03-01
Full Text Available The fractal heat flow within local fractional derivative is investigated. The nonhomogeneous heat equations arising in fractal heat flow are discussed. The local fractional Fourier series solutions for one-dimensional nonhomogeneous heat equations are obtained. The nondifferentiable series solutions are given to show the efficiency and implementation of the present method.
Towards Optimal Event Detection and Localization in Acyclic Flow Networks
Agumbe Suresh, Mahima
2012-01-03
Acyclic flow networks, present in many infrastructures of national importance (e.g., oil & gas and water distribution systems), have been attracting immense research interest. Existing solutions for detecting and locating attacks against these infrastructures, have been proven costly and imprecise, especially when dealing with large scale distribution systems. In this paper, to the best of our knowledge for the first time, we investigate how mobile sensor networks can be used for optimal event detection and localization in acyclic flow networks. Sensor nodes move along the edges of the network and detect events (i.e., attacks) and proximity to beacon nodes with known placement in the network. We formulate the problem of minimizing the cost of monitoring infrastructure (i.e., minimizing the number of sensor and beacon nodes deployed), while ensuring a degree of sensing coverage in a zone of interest and a required accuracy in locating events. We propose algorithms for solving these problems and demonstrate their effectiveness with results obtained from a high fidelity simulator.
Regimes of Axisymmetric Flow and Scaling Laws in a Rotating Annulus with Local Convective Forcing
Directory of Open Access Journals (Sweden)
Susie Wright
2017-07-01
Full Text Available We present a numerical study of axisymmetric flow in a rotating annulus in which local thermal forcing, via a heated annular ring on the outside of the base and a cooled circular disk in the centre of the top surface, drives convection. This new configuration is a variant of the classical thermally-driven annulus, where uniform heating and cooling are applied through the outer and inner sidewalls respectively. The annulus provides an analogue to a planetary circulation and the new configuration, with its more relaxed vertical thermal boundary conditions, is expected to better emulate vigorous convection in the tropics and polar regions as well as baroclinic instability in the mid-latitude baroclinic zone. Using the Met Office/Oxford Rotating Annulus Laboratory (MORALS code, we have investigated a series of equilibrated, two dimensional axisymmetric flows across a large region of parameter space. These are characterized in terms of their velocity and temperature fields. When rotation is applied several distinct flow regimes may be identified for different rotation rates and strengths of differential heating. These regimes are defined as a function of the ratio of the horizontal Ekman layer thickness to the non-rotating thermal boundary layer thickness and are found to be similar to those identified in previous annulus experiments. Convection without rotation is also considered and the scaling of the heat transport with Rayleigh number is calculated. This is then compared with existing work on the classical annulus as well as horizontal and Rayleigh-Bénard convection. As with previous studies on both rotating and non-rotating convection the system’s behaviour is found to be aspect ratio dependent. This dependence is seen in the scaling of the non-rotating Nusselt number and in transitions between regimes in the rotating case although further investigation is required to fully explain these observations.
Institute of Scientific and Technical Information of China (English)
Chai Zhen-Hua; Shi Bao-Chang; Zheng Lin
2006-01-01
By coupling the non-equilibrium extrapolation scheme for boundary condition with the multi-relaxation-time lattice Boltzmann method, this paper finds that the stability of the multi-relaxation-time model can be improved greatly, especially on simulating high Reynolds number (Re) flow. As a discovery, the super-stability analysed by Lallemand and Luo is verified and the complex structure of the cavity flow is also exhibited in our numerical simulation when Re is high enough. To the best knowledge of the authors, the maximum of Re which has been investigated by direct numerical simulation is only around 50 000 in the literature; however, this paper can readily extend the maximum to 1000 000 with the above combination.
Local conservative regularizations of compressible magnetohydrodynamic and neutral flows
Krishnaswami, Govind S.; Sachdev, Sonakshi; Thyagaraja, A.
2016-02-01
Ideal systems like magnetohydrodynamics (MHD) and Euler flow may develop singularities in vorticity ( w =∇×v ). Viscosity and resistivity provide dissipative regularizations of the singularities. In this paper, we propose a minimal, local, conservative, nonlinear, dispersive regularization of compressible flow and ideal MHD, in analogy with the KdV regularization of the 1D kinematic wave equation. This work extends and significantly generalizes earlier work on incompressible Euler and ideal MHD. It involves a micro-scale cutoff length λ which is a function of density, unlike in the incompressible case. In MHD, it can be taken to be of order the electron collisionless skin depth c/ωpe. Our regularization preserves the symmetries of the original systems and, with appropriate boundary conditions, leads to associated conservation laws. Energy and enstrophy are subject to a priori bounds determined by initial data in contrast to the unregularized systems. A Hamiltonian and Poisson bracket formulation is developed and applied to generalize the constitutive relation to bound higher moments of vorticity. A "swirl" velocity field is identified, and shown to transport w/ρ and B/ρ, generalizing the Kelvin-Helmholtz and Alfvén theorems. The steady regularized equations are used to model a rotating vortex, MHD pinch, and a plane vortex sheet. The proposed regularization could facilitate numerical simulations of fluid/MHD equations and provide a consistent statistical mechanics of vortices/current filaments in 3D, without blowup of enstrophy. Implications for detailed analyses of fluid and plasma dynamic systems arising from our work are briefly discussed.
Bagus, Paul S.; Broer, R; Graaf, C. de; Nieuwpoort, W.C.
1999-01-01
The electronic structure of NiO, with emphasis on the Ni 3s-hole ionic states, is studied using non-orthogonal configuration interaction, NOCI, wavefunctions for an NiO6 model of the crystal. Orbital sets are relaxed, or optimized, separately for each configuration used in the NOCI and orbital
Flow in a Circular Expansion Pipe Flow: Effect of a Vortex Perturbation on Localized Turbulence
Selvam, Kamal; Willis, Ashley P
2016-01-01
We report the results of three-dimensional direct numerical simulations for incompressible viscous fluid in a circular pipe flow with a sudden expansion. At the inlet, a parabolic velocity profile is applied together with a finite amplitude perturbation in the form of a vortex with its axis parallel to the axis of the pipe. At sufficiently high Reynolds numbers the recirculation region breaks into a turbulent patch that changes position axially depending on the strength of the perturbation. This vortex perturbation is believed to produce a less abrupt transition than in previous studies with a tilt perturbation, as the localized turbulence is observed via the formation of a wavy structure at a low order azimuthal mode, which resembles an optimally amplified perturbation. For higher amplitude, the localized turbulence remains at a constant axial position. It is further investigated using proper orthogonal decomposition, which indicates that the centre region close to the expansion is highly energetic.
Lanzoni, S.; Bogoni, M.; Nittrouer, J. A.; Cantelli, A.
2016-12-01
Modeling of long-term evolution of meander planforms is usually applied to river reaches characterized by a uniform flow perturbed by the effects of the curvature and width distributions. However, in nature meandering rivers may be characterized by localized variations due to external conditions, e.g. changes in floodplain slope (geologic variation), confluence of a tributary into the main river (hydrologic variation), or backwater effects (hydrodynamic variation). As a consequence, the hypothesis of a sufficiently long reach having constant forcing characteristic could limit the reliability of the numerical simulations. We developed a mathematical extension of a well-known fully coupled two-dimensional morphodynamic model (i.e., the ZS model) able to manage an internally localized boundary condition which affects the characteristic of the main flow. The resulting modular model computes the flow field in the two meandering sub-reaches determined by the presence of a section entailing prescribed changes in external conditions, and simulates the long-term lateral migration above the floodplain surface due to erosion and deposition processes at the banks, and the possible occurrence of neck cutoffs. Calibration runs and simulations based on real test cases show that internal variations in the parameters controlling the flow field might strongly affect the morphodynamic behavior of the migrating planforms. Future research shall provide an extension of this approach in order to manage multiple internal boundary conditions within the investigated river reach. The aim is to relax the common hypothesis of a unique formative uniform flow, exploiting the less restrictive assumption of a sequence of uniform flows to describe the flow field that establishes in the river and controls its morphodynamic behaviour.
Interaction Between Strategic and Local Traffic Flow Controls
Grabbe, Son; Sridhar, Banavar; Mukherjee, Avijit; Morando, Alexander
2010-01-01
The loosely coordinated sets of traffic flow management initiatives that are operationally implemented at the national- and local-levels have the potential to under, over, and inconsistently control flights. This study is designed to explore these interactions through fast-time simulations with an emphasis on identifying inequitable situations in which flights receive multiple uncoordinated delays. Two operationally derived scenarios were considered in which flights arriving into the Dallas/Fort Worth International Airport were first controlled at the national-level, either with a Ground Delay Program or a playbook reroute. These flights were subsequently controlled at the local level. The Traffic Management Advisor assigned them arrival scheduling delays. For the Ground Delay Program scenarios, between 51% and 53% of all arrivals experience both pre-departure delays from the Ground Delay Program and arrival scheduling delays from the Traffic Management Advisor. Of the subset of flights that received multiple delays, between 5.7% and 6.4% of the internal departures were first assigned a pre-departure delay by the Ground Delay Program, followed by a second pre-departure delay as a result of the arrival scheduling. For the playbook reroute scenario, Dallas/Fort Worth International Airport arrivals were first assigned pre-departure reroutes based on the MW_2_DALLAS playbook plan, and were subsequently assigned arrival scheduling delays by the Traffic Management Advisor. Since the airport was operating well below capacity when the playbook reroute was in effect, only 7% of the arrivals were observed to receive both rerouting and arrival scheduling delays. Findings from these initial experiments confirm field observations that Ground Delay Programs operated in conjunction with arrival scheduling can result in inequitable situations in which flights receive multiple uncoordinated delays.
Meng, Xuhui; Guo, Zhaoli
2015-10-01
A lattice Boltzmann model with a multiple-relaxation-time (MRT) collision operator is proposed for incompressible miscible flow with a large viscosity ratio as well as a high Péclet number in this paper. The equilibria in the present model are motivated by the lattice kinetic scheme previously developed by Inamuro et al. [Philos. Trans. R. Soc. London, Ser. A 360, 477 (2002), 10.1098/rsta.2001.0942]. The fluid viscosity and diffusion coefficient depend on both the corresponding relaxation times and additional adjustable parameters in this model. As a result, the corresponding relaxation times can be adjusted in proper ranges to enhance the performance of the model. Numerical validations of the Poiseuille flow and a diffusion-reaction problem demonstrate that the proposed model has second-order accuracy in space. Thereafter, the model is used to simulate flow through a porous medium, and the results show that the proposed model has the advantage to obtain a viscosity-independent permeability, which makes it a robust method for simulating flow in porous media. Finally, a set of simulations are conducted on the viscous miscible displacement between two parallel plates. The results reveal that the present model can be used to simulate, to a high level of accuracy, flows with large viscosity ratios and/or high Péclet numbers. Moreover, the present model is shown to provide superior stability in the limit of high kinematic viscosity. In summary, the numerical results indicate that the present lattice Boltzmann model is an ideal numerical tool for simulating flow with a large viscosity ratio and/or a high Péclet number.
Focusing of the Flow Capture for Local Exhaust Ventilation Systems
Directory of Open Access Journals (Sweden)
S. Y. Spotar
2010-01-01
Full Text Available Problem statement: The extraction hoods commonly used as inlet element of the local ventilation systems exhibit limited emission capture over moderate distances from the source of the hazardous emissions. Proposed inclusion of a swirling peripheral jet was found to increase the effective length over which the extraction hood successfully captures harmful fumes. However information on a detailed pattern field of the vortex focused inflow was insufficient thus restricting the potential applications of the method. Approach: The numerical modeling study of the focusing by vortex inflow was accomplished to reveal the implication of the key operating parameters. In addition the visualization technique was applied to confirm the fume capturing features. Results: The simulated overall flow field patterns for an inflow of 10 m sec-1 value under sets of 0.5-1.5 swirl numbers and 0- 21 m sec-1 outcome velocities of peripheral jet showed the arrangement and contour of the capture stream. Under optimum parameters the capture zone derived from the vector velocity field yielded up to 4 inlet diameters near-axis distance from the extractor entrance. The complimentary observations using laser sheet visualization technique confirmed the enhanced capturing capacity from the mist or smoke sources of emission. Conclusion: Through numerical modeling study the capacity of peripheral vortex shielding to generate the more concentrated exhaust inflow comparing with action of the conventional hood has been elucidated.
Synakowski, E. J.; Batha, S. H.; Beer, M. A.; Bell, M. G.; Bell, R. E.; Budny, R. V.; Bush, C. E.; Efthimion, P. C.; Hahm, T. S.; Hammett, G. W.; LeBlanc, B.; Levinton, F.; Mazzucato, E.; Park, H.; Ramsey, A. T.; Schmidt, G.; Rewoldt, G.; Scott, S. D.; Taylor, G.; Zarnstorff, M. C.
1997-05-01
The roles of turbulence stabilization by sheared E×B flow and Shafranov shift gradients are examined for Tokamak Fusion Test Reactor [D. J. Grove and D. M. Meade, Nucl. Fusion 25, 1167 (1985)] enhanced reverse-shear (ERS) plasmas. Both effects in combination provide the basis of a positive-feedback model that predicts reinforced turbulence suppression with increasing pressure gradient. Local fluctuation behavior at the onset of ERS confinement is consistent with this framework. The power required for transitions into the ERS regime are lower when high power neutral beams are applied earlier in the current profile evolution, consistent with the suggestion that both effects play a role. Separation of the roles of E×B and Shafranov shift effects was performed by varying the E×B shear through changes in the toroidal velocity with nearly steady-state pressure profiles. Transport and fluctuation levels increase only when E×B shearing rates are driven below a critical value that is comparable to the fastest linear growth rates of the dominant instabilities. While a turbulence suppression criterion that involves the ratio of shearing to linear growth rates is in accord with many of these results, the existence of hidden dependencies of the criterion is suggested in experiments where the toroidal field was varied. The forward transition into the ERS regime has also been examined in strongly rotating plasmas. The power threshold is higher with unidirectional injection than with balance injection.
Dandapat, Manika; Mandal, Debabrata
2017-01-01
Organogels prepared from AOT/4-chlorophenol/m-xylene are immobile in the macroscopic sense, with a well-characterized internal structure. However, the molecular level dynamics inside the gels is not too clear, although a very slow structural relaxation has been reported previously. Using a set of rod-like fluorophores, we find that the rotational mobility of a small guest molecule inside the gel can be extremely fast, indicating presence of sufficiently low-microviscosity domains. These domains consist of m-xylene solvent molecules trapped in the interstices of fiber bundles comprising columnar stacks of 4-chlorophenol surrounded by AOT molecules. However, interstitial trapping of m-xylene does retard its own dynamics, which explains the slow solvent relaxation inside the gels. Hence, the state of m-xylene in the organogel may be characterized as "bound", in contrast to the "free" state in neat m-xylene.
DEFF Research Database (Denmark)
Kalliokoski, Kari K; Langberg, Henning; Ryberg, Ann Kathrine;
2006-01-01
skeletal muscle. Skeletal muscle blood flow was measured in seven healthy young men using near-infrared spectroscopy and indocyanine green and muscle glucose uptake using positron emission tomography and 2-fluoro-2-deoxy-D-[(18)F]glucose without and with local blockade of NO and PG at rest and during one-legged...... dynamic knee-extension exercise. Local blockade was produced by infusing nitro-L-arginine methyl ester and indomethacin directly in the muscle via a microdialysis catheter. Blood flow and glucose uptake were measured in the region of blockade and in two additional regions of vastus lateralis muscle 1......Synergic action of nitric oxide (NO) and prostaglandins (PG) in the regulation of muscle blood flow during exercise has been demonstrated. In the present study, we investigated whether these vasodilators also regulate local blood flow, flow heterogeneity, and glucose uptake within the exercising...
Girard, F; Poulet, P; Namer, I J; Steibel, J; Chambron, J
1994-12-01
This work presents a new method allowing localized T2 measurements, based upon the OSIRIS scheme. A train of 180 degrees pulses is applied after the OSIRIS preparation cycle, recording directly the transverse magnetization decay. The method was verified for two nuclei, 1H and 19F, with phantoms and in vivo on rats. The accuracy of the T2 values is discussed, as well as possible applications of the OSIRIS-CPMG method to proton transverse spin relaxation measurements, free of diffusion effects, and to non-invasive in vivo blood oxygenation measurements, through the use of an emulsion of perfluorooctylbromide, a blood substitute containing fluorine.
Changes in subcutaneous blood flow during locally applied negative pressure to the skin
DEFF Research Database (Denmark)
Skagen, K; Henriksen, O
1983-01-01
The effect of locally applied subatmospheric pressure on subcutaneous blood flow was studied in 12 healthy subjects. Blood flow was measured on the forearm by the local 133Xe wash-out technique. Air suction between 10 mmHg and 250 mmHg was applied to the skin. Subatmospheric pressure of 20 mmHg c...
Local and global consequences of flow on bacterial quorum sensing.
Kim, Minyoung Kevin; Ingremeau, François; Zhao, Aishan; Bassler, Bonnie L; Stone, Howard A
2016-01-11
Bacteria use a chemical communication process called quorum sensing (QS) to control collective behaviours such as pathogenesis and biofilm formation(1,2). QS relies on the production, release and group-wide detection of signal molecules called autoinducers. To date, studies of bacterial pathogenesis in well-mixed cultures have revealed virulence factors and the regulatory circuits controlling them, including the overarching role of QS(3). Although flow is ubiquitous to nearly all living systems(4), much less explored is how QS influences pathogenic traits in scenarios that mimic host environments, for example, under fluid flow and in complex geometries. Previous studies(5-7) have shown that sufficiently strong flow represses QS. Nonetheless, it is not known how QS functions under constant or intermittent flow, how it varies within biofilms or as a function of position along a confined flow, or how surface topography (grooves, crevices, pores) influence QS-mediated communication. We explore these questions using two common pathogens, Staphylococcus aureus and Vibrio cholerae. We identify conditions where flow represses QS and other conditions where QS is activated despite flow, including characterizing geometric and topographic features that influence the QS response. Our studies highlight that, under flow, genetically identical cells do not exhibit phenotypic uniformity with respect to QS in space and time, leading to complex patterns of pathogenesis and colonization. Understanding the ramifications of spatially and temporally non-uniform QS responses in realistic environments will be crucial for successful deployment of synthetic pro- and anti-QS strategies.
Energy Technology Data Exchange (ETDEWEB)
Labois, M
2008-10-15
This thesis deals with hyperbolic models for the simulation of compressible two-phase flows, to find alternatives to the classical bi-fluid model. We first establish a hierarchy of two-phase flow models, obtained according to equilibrium hypothesis between the physical variables of each phase. The use of Chapman-Enskog expansions enables us to link the different existing models to each other. Moreover, models that take into account small physical unbalances are obtained by means of expansion to the order one. The second part of this thesis focuses on the simulation of flows featuring velocity unbalances and pressure balances, in two different ways. First, a two-velocity two-pressure model is used, where non-instantaneous velocity and pressure relaxations are applied so that a balancing of these variables is obtained. A new one-velocity one-pressure dissipative model is then proposed, where the arising of second-order terms enables us to take into account unbalances between the phase velocities. We develop a numerical method based on a fractional step approach for this model. (author)
Asinari, P.
2011-03-01
Boltzmann equation is one the most powerful paradigms for explaining transport phenomena in fluids. Since early fifties, it received a lot of attention due to aerodynamic requirements for high altitude vehicles, vacuum technology requirements and nowadays, micro-electro-mechanical systems (MEMs). Because of the intrinsic mathematical complexity of the problem, Boltzmann himself started his work by considering first the case when the distribution function does not depend on space (homogeneous case), but only on time and the magnitude of the molecular velocity (isotropic collisional integral). The interest with regards to the homogeneous isotropic Boltzmann equation goes beyond simple dilute gases. In the so-called econophysics, a Boltzmann type model is sometimes introduced for studying the distribution of wealth in a simple market. Another recent application of the homogeneous isotropic Boltzmann equation is given by opinion formation modeling in quantitative sociology, also called socio-dynamics or sociophysics. The present work [1] aims to improve the deterministic method for solving homogenous isotropic Boltzmann equation proposed by Aristov [2] by two ideas: (a) the homogeneous isotropic problem is reformulated first in terms of particle kinetic energy (this allows one to ensure exact particle number and energy conservation during microscopic collisions) and (b) a DVM-like correction (where DVM stands for Discrete Velocity Model) is adopted for improving the relaxation rates (this allows one to satisfy exactly the conservation laws at macroscopic level, which is particularly important for describing the late dynamics in the relaxation towards the equilibrium).
The void-size effect on plastic flow localization in the Gurson model
Jie, Wen; Yonggang, Huang; Keh-Chih, Hwang
2004-08-01
Recent studies have shown that the size of microvoids has a significant effect on the void growth rate. The purpose of this paper is to explore whether the void size effect can influence the plastic flow localization in ductile materials. We have used the extended Gurson's dilatational plasticity theory, which accounts for the void size effect, to study the plastic flow localization in porous solids with long cylindrical voids. The localization model of Rice is adopted, in which the material inside the band may display a different response from that outside the band at the incipient plastic flow localization. The present study shows that it has little effect on the shear band angle.
THE VOID-SIZE EFFECT ON PLASTIC FLOW LOCALIZATION IN THE GURSON MODEL
Institute of Scientific and Technical Information of China (English)
WEN Jie; HUANG Yonggang; HWANG Keh-Chih
2004-01-01
Recent studies have shown that the size of microvoids has a significant effect on the void growth rate. The purpose of this paper is to explore whether the void size effect can influence the plastic flow localization in ductile materials. We have used the extended Gurson's dilatational plasticity theory, which accounts for the void size effect, to study the plastic flow localization in porous solids with long cylindrical voids. The localization model of Rice is adopted, in which the material inside the band may display a different response from that outside the band at the incipient plastic flow localization. The present study shows that it has little effect on the shear band angle.
Weiss, N.; Van Leeuwen, T.G.; Kalkman, J.
2013-01-01
We report on localized measurement of the longitudinal and transverse flow velocities in a colloidal suspension using optical coherence tomography. We present a model for the path-length resolved autocorrelation function including diffusion and flow, which we experimentally verify. For flow that is
The flow patterning capability of localized natural convection.
Huang, Ling-Ting; Chao, Ling
2016-09-14
Controlling flow patterns to align materials can have various applications in optics, electronics, and biosciences. In this study, we developed a natural-convection-based method to create desirable spatial flow patterns by controlling the locations of heat sources. Fluid motion in natural convection is induced by the spatial fluid density gradient that is caused by the established spatial temperature gradient. To analyze the patterning resolution capability of this method, we used a mathematical model combined with nondimensionalization to correlate the flow patterning resolution with experimental operating conditions. The nondimensionalized model suggests that the flow pattern and resolution is only influenced by two dimensionless parameters, and , where Gr is the Grashof number, representing the ratio of buoyancy to the viscous force acting on a fluid, and Pr is the Prandtl number, representing the ratio of momentum diffusivity to thermal diffusivity. We used the model to examine all of the flow behaviors in a wide range of the two dimensionless parameter group and proposed a flow pattern state diagram which suggests a suitable range of operating conditions for flow patterning. In addition, we developed a heating wire with an angular configuration, which enabled us to efficiently examine the pattern resolution capability numerically and experimentally. Consistent resolutions were obtained between the experimental results and model predictions, suggesting that the state diagram and the identified operating range can be used for further application.
Directory of Open Access Journals (Sweden)
S. S. Motsa
2014-01-01
Full Text Available This paper introduces two novel numerical algorithms for the efficient solution of coupled systems of nonlinear boundary value problems. The methods are benchmarked against existing methods by finding dual solutions of the highly nonlinear system of equations that model the flow of a viscoelastic liquid of Oldroyd-B type in a channel of infinite extent. The methods discussed here are the spectral relaxation method and spectral quasi-linearisation method. To verify the accuracy and efficiency of the proposed methods a comparative evaluation of the performance of the methods against established numerical techniques is given.
Holographic superfluid flows with a localized repulsive potential
Ishibashi, Akihiro; Okamura, Takashi
2016-01-01
We investigate a holographic model of superfluid flows with an external repulsive potential. When the strength of the potential is sufficiently weak, we analytically construct two steady superfluid flow solutions. As the strength of the potential is increased, the two solutions merge into a single critical solution at a critical strength, and then disappear above the critical value, as predicted by a saddle-node bifurcation theory. We also analyze the spectral function of fluctuations around the solutions under a certain decoupling approximation.
Geiger, Remi; Mazets, Igor; Schmiedmayer, Jörg
2013-01-01
We describe the relaxation dynamics of a coherently split one-dimensional (1D) Bose gas in the harmonic approximation. A dephased, prethermalized state emerges in a light-cone-like evolution which is connected to the spreading of correlations with a characteristic velocity. In our description we put special emphasis on the influence of the longitudinal trapping potential and the finite size of the system, both of which are highly relevant in experiments. In particular, we quantify their influence on the phase correlation properties and the characteristic velocity with which the prethermalized state is established. Finally, we show that the trapping potential has an important effect on the recurrences of coherence which are expected to appear in a finite size system.
Magnetoviscosity and relaxation in ferrofluids
Felderhof
2000-09-01
The increase in viscosity of a ferrofluid due to an applied magnetic field is discussed on the basis of a phenomenological relaxation equation for the magnetization. The relaxation equation was derived earlier from irreversible thermodynamics, and differs from that postulated by Shliomis. The two relaxation equations lead to a different dependence of viscosity on magnetic field, unless the relaxation rates are related in a specific field-dependent way. Both planar Couette flow and Poiseuille pipe flow in parallel and perpendicular magnetic field are discussed. The entropy production for these situations is calculated and related to the magnetoviscosity.
Non-local two phase flow momentum transport in S BWR
Energy Technology Data Exchange (ETDEWEB)
Espinosa P, G.; Salinas M, L.; Vazquez R, A., E-mail: gepe@xanum.uam.mx [Universidad Autonoma Metropolitana, Unidad Iztapalapa, Area de Ingenieria en Recursos Energeticos, Apdo. Postal 55-535, 09340 Ciudad de Mexico (Mexico)
2015-09-15
The non-local momentum transport equations derived in this work contain new terms related with non-local transport effects due to accumulation, convection, diffusion and transport properties for two-phase flow. For instance, they can be applied in the boundary between a two-phase flow and a solid phase, or in the boundary of the transition region of two-phase flows where the local volume averaging equations fail. The S BWR was considered to study the non-local effects on the two-phase flow thermal-hydraulic core performance in steady-state, and the results were compared with the classical local averaging volume conservation equations. (Author)
Shavykin, Oleg V; Neelov, Igor M; Darinskii, Anatolii A
2016-09-21
The effect of excluded volume (EV) interactions on the manifestation of the local dynamics in the spin-lattice NMR relaxation in dendrimers has been studied by using Brownian dynamics simulations. The study was motivated by the theory developed by Markelov et al., [J. Chem. Phys., 2014, 140, 244904] for a Gaussian dendrimer model without EV interactions. The theory connects the experimentally observed dependence of the spin-lattice relaxation rate 1/T(1)H on the location of NMR active groups with the restricted flexibility (semiflexibility) of dendrimers. Semiflexibility was introduced through the correlations between the orientations of different segments. However, these correlations exist even in flexible dendrimer models with EV interactions. We have simulated coarse-grained flexible and semiflexible dendrimer models with and without EV interactions. Every dendrimer segment consisted of two rigid bonds. Semiflexibility was introduced through a potential which restricts the fluctuations of angles between neighboring bonds but does not change orientational correlations in the EV model as compared to the flexible case. The frequency dependence of the reduced 1/T(1)H(ωH) for segments and bonds belonging to different dendrimer shells was calculated. It was shown that the main effect of EV interactions consists of a much stronger contribution of the overall dendrimer rotation to the dynamics of dendrimer segments as compared to phantom models. After the exclusion of this contribution the manifestation of internal dynamics in spin-lattice NMR relaxation appears to be practically insensitive to EV interactions. For the flexible models, the position ωmax of the peak of the modified 1/T(1)H(ωH) does not depend on the shell number. For semiflexible models, the maximum of 1/T(1)H(ωH) for internal segments or bonds shifts to lower frequencies as compared to outer ones. The dependence of ωmax on the number of dendrimer shells appears to be universal for segments and
Wang, Kai-Yuan; Wang, Hong-Wu; Xin, Lian-Feng; Wang, Yong-Wang; Xue, Yu-Liang
2011-12-01
Inhalational anesthesia with sevoflurane for endotracheal intubation without muscle relaxant is now used widely for pediatric patients. This study assessed the efficacy and safety of induction with high concentration sevoflurane and of nasotracheal intubation without muscle relaxant in infants with increased or decreased pulmonary blood flow (PBF) and undergoing surgery for congenital heart diseases. Fifty-five infants aged 2 - 12 months, weighing 4.7 - 10.0 kg, and scheduled for congenital cardiac surgery were enrolled. Subjects were divided into those with increased (IPBF group, n = 29) and decreased (DPBF group, n = 26) pulmonary blood flow. All infants received inhalational induction with 8% sevoflurane in 100.0% oxygen at a gas flow rate of 6 L/min. Nasotracheal intubation was performed 4 minutes after induction. Sevoflurane vaporization was decreased to 4.0% for placement of a peripheral intravenous line and invasive hemodynamic monitors. Five minutes later, sedatives and muscle relaxant were administered and the vaporizer was adjusted to 2% for maintenance of anesthesia. Bispectral index (BIS) scores, circulatory parameters, satisfactory and successful intubation ratios, adverse reactions, and complications of intubation were recorded. Times to loss of lash and pain reflexes were longer for the DPBF group (P intubation ratios were 93.1% and 61.5% for the IPBF and DPBF groups, respectively (P = 0.008). Successful intubation ratios were 96.6% and 76.9% for the IPBF and DPBF groups, respectively (P = 0.044). Following sevoflurane inhalation, blood pressures decreased significantly in the IPBF group but remained stable in the DPBF group. BIS scores declined to similar stable values, and a "nadir BIS" was recorded for both groups. No obvious adverse reactions or complications of intubation were noted perioperatively. Induction with high concentration sevoflurane, although faster for infants with IPBF, is safe for infants with IPBF or DPBF. However, nasotracheal
Institute of Scientific and Technical Information of China (English)
WANG Kai-yuan; WANG Hong-wu; XIN Lian-feng; WANG Yong-wang; XUE Yu-liang
2011-01-01
Background Inhalational anesthesia with sevoflurane for endotracheal intubation without muscle relaxant is now used widely for pediatric patients.This study assessed the efficacy and safety of induction with high concentration sevoflurane and of nasotracheal intubation without muscle relaxant in infants with increased or decreased pulmonary blood flow (PBF) and undergoing surgery for congenital heart diseases.Methods Fifty-five infants aged 2-12 months,weighing 4.7-10.0 kg,and scheduled for congenital cardiac surgery were enrolled.Subjects were divided into those with increased (IPBF group,n=29) and decreased (DPBF group,n=26) pulmonary blood flow.All infants received inhalational induction with 8％ sevoflurane in 100.0％ oxygen at a gas flow rate of 6 L/min.Nasotracheal intubation was performed 4 minutes after induction.Sevoflurane vaporization was decreased to 4.0％ for placement of a peripheral intravenous line and invasive hemodynamic monitors.Five minutes later,sedatives and muscle relaxant were administered and the vaporizer was adjusted to 2％ for maintenance of anesthesia.Bispectral index (BIS) scores,circulatory parameters,satisfactory and successful intubation ratios,adverse reactions,and complications of intubation were recorded.Results Times to loss of lash and pain reflexes were longer for the DPBF group (P ＜0.01).Satisfactory intubation ratios were 93.1％ and 61.5％ for the IPBF and DPBF groups,respectively (P=0.008).Successful intubation ratios were 96.6％ and 76.9％ for the IPBF and DPBF groups,respectively (P=0.044).Following sevoflurane inhalation,blood pressures decreased significantly in the IPBF group but remained stable in the DPBF group.BIS scores declined to similar stable values,and a “nadir BIS” was recorded for both groups.No obvious adverse reactions or complications of intubation were noted perioperatively.Conclusions Induction with high concentration sevoflurane,although faster for infants with IPBF,is safe for infants
Radiohalogenated thienylethylamine derivatives for evaluating local cerebral blood flow
Goodman, Mark M.; Knapp, Jr., Furn F.
1990-01-01
Radiopharmaceuticals useful in brain imaging comprising radiohalogenated thienylethylamine derivatives. The compounds are 5-halo-thiophene-2-isopropyl amines able to cross the blood-brain barrier and be retained for a sufficient length of time to allow the evaluation or regional blood flow by radioimaging of the brain.
Migration and Adult Language Learning: Global Flows and Local Transpositions
Burns, Anne; Roberts, Celia
2010-01-01
In the 21st century, global flows politically, socially, economically, and environmentally are creating widespread movements of people around the world and giving rise to increased resettlements of immigrants and refugees internationally. The reality in most countries worldwide is that contemporary populations are multifaceted, multicultural,…
Energy Technology Data Exchange (ETDEWEB)
Zemach, Charles [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Kurien, Susan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2016-11-14
These notes present an account of the Local Wave Vector (LWV) model of a turbulent flow defined throughout physical space. The previously-developed Local Wave Number (LWN) model is taken as a point of departure. Some general properties of turbulent fields and appropriate notation are given first. The LWV model is presently restricted to incompressible flows and the incompressibility assumption is introduced at an early point in the discussion. The assumption that the turbulence is homogeneous is also introduced early on. This assumption can be relaxed by generalizing the space diffusion terms of LWN, but the present discussion is focused on a modeling of homogeneous turbulence.
Limits to ductility set by plastic flow localization
Energy Technology Data Exchange (ETDEWEB)
Needleman, A; Rice, J R
1977-11-01
The theory of strain localization is reviewed with reference both to local necking in sheet metal forming processes and to more general three dimensional shear band localizations that sometimes mark the onset of ductile rupture. Both bifurcation behavior and the growth of initial imperfections are considered. In addition to analyses based on classical Mises-like constitutive laws, approaches to localization based on constitutive models that may more accurately model processes of slip and progressive rupturing on the microscale in structural alloys are discussed. Among these non-classical constitutive features are the destabilizing roles of yield surface vertices and of non-normality effects, arising, for example, from slight pressure sensitivity of yield. Analyses based on a constitutive model of a progressively cavitating dilational plastic material which is intended to model the process of ductile void growth in metals are also discussed. A variety of numerical results are presented. In the context of the three dimensional theory of localization, it is shown that a simple vertex model predicts ratios of ductility in plane strain tension to ductility in axisymmetric tension qualitatively consistent with experiment, and the destabilizing influence of a hydrostatic stress dependent void nucleation criterion is illustrated. In the sheet necking context, and focussing on positive biaxial stretching, it is shown that forming limit curves based on a simple vertex model and those based on a simple void growth model are qualitatively in accord, although attributing instability to very different physical mechanisms. These forming limit curves are compared with those obtained from the Mises material model and employing various material and geometric imperfections.
Influence of Local Flow Field on Flow Accelerated Corrosion Downstream from an Orifice
Utanohara, Yoichi; Nagaya, Yukinori; Nakamura, Akira; Murase, Michio
Flow accelerated corrosion (FAC) rate downstream from an orifice was measured in a high-temperature water test loop to evaluate the effects of flow field on FAC. Orifice flow was also measured using laser Doppler velocimetry (LDV) and simulated by steady RANS simulation and large eddy simulation (LES). The LDV measurements indicated the flow structure did not depend on the flow velocity in the range of Re = 2.3×104 to 1.2×105. Flow fields predicted by RANS and LES agreed well with LDV data. Measured FAC rate was higher downstream than upstream from the orifice and the maximum appeared at 2D (D: pipe diameter) downstream. The shape of the profile of the root mean square (RMS) wall shear stress predicted by LES had relatively good agreement with the shape of the profile of FAC rate. This result indicates that the effects of flow field on FAC can be evaluated using the calculated wall shear stress.
Iodoamphetamine as a new tracer for local cerebral blood flow in the rat
DEFF Research Database (Denmark)
Rapin, J R; Le Poncin-Lafitte, M; Duterte, D
1984-01-01
practically no differences. Autoradiographic quantification of the local cerebral blood flow, calculated according to the microsphere model, produced identical results for both molecules. However, compared with the values reported for other tracers, our values constituted an underestimation of white matter...
Focusing of the Flow Capture for Local Exhaust Ventilation Systems
S. Y. Spotar; Sorokin, A. L.
2010-01-01
Problem statement: The extraction hoods commonly used as inlet element of the local ventilation systems exhibit limited emission capture over moderate distances from the source of the hazardous emissions. Proposed inclusion of a swirling peripheral jet was found to increase the effective length over which the extraction hood successfully captures harmful fumes. However information on a detailed pattern field of the vortex focused inflow was insufficient thus restricting the potential applicat...
Regularities in localization of plastic flow upon electrolytic hydrogenation of an iron bcc-alloy
Barannikova, S. A.; Nadezhkin, M. V.; Lunev, A. G.; Gorbatenko, V. V.; Zuev, L. B.
2014-03-01
The impact of implanted hydrogen atoms on mechanical properties and characteristics of plastic-flow localization upon tensile stresses of the polycrystalline Fe-0.07 wt % C alloy is studied. Using the method of double-exposure speckle photography, we identified the main types and parameters of plastic-flow localization at different stages of strain hardening as a result of electrolytic saturation in a three-electrode electrochemical cell at a constant controlled cathodic potential.
Local expansion flows of galaxies: quantifying acceleration effect of dark energy
Chernin, A. D.; Teerikorpi, P.
2013-08-01
The nearest expansion flow of galaxies observed around the Local group is studied as an archetypical example of the newly discovered local expansion flows around groups and clusters of galaxies in the nearby Universe. The flow is accelerating due to the antigravity produced by the universal dark energy background. We introduce a new acceleration measure of the flow which is the dimensionless ``acceleration parameter" Q (x) = x - x-2 depending on the normalized distance x only. The parameter is zero at the zero-gravity distance x = 1, and Q(x) ∝ x, when x ≫ 1. At the distance x = 3, the parameter Q = 2.9. Since the expansion flows have a self-similar structure in normalized variables, we expect that the result is valid as well for all the other expansion flows around groups and clusters of galaxies on the spatial scales from ˜ 1 to ˜ 10 Mpc everywhere in the Universe.
Impact of local flow haemodynamics on atherosclerosis in coronary artery bifurcations.
Antoniadis, Antonios P; Giannopoulos, Andreas A; Wentzel, Jolanda J; Joner, Michael; Giannoglou, George D; Virmani, Renu; Chatzizisis, Yiannis S
2015-01-01
Coronary artery bifurcations are susceptible to atherosclerosis as a result of the unique local flow patterns and the subsequent endothelial shear stress (ESS) environment that are conducive to the development of plaques. Along the lateral walls of the main vessel and side branches, a distinct flow pattern is observed with local low and oscillatory ESS, while high ESS develops at the flow divider (carina). Histopathologic studies have shown that the distribution of plaque at bifurcation regions is related to the local ESS patterns. The local ESS profile also influences the outcome of percutaneous coronary interventions in bifurcation lesions. A variety of invasive and non-invasive imaging modalities have enabled 3D reconstruction of coronary bifurcations and thereby detailed local ESS assessment by computational fluid dynamics. Highly effective strategies for treatment and ultimately prevention of atherosclerosis in coronary bifurcations are anticipated with the use of advanced imaging and computational fluid dynamic techniques.
Local blood flow measured by fluorescence excitation of nonradioactive microspheres
Energy Technology Data Exchange (ETDEWEB)
Morita, Y.; Payne, B.D.; Aldea, G.S.; McWatters, C.; Husseini, W.; Mori, H.; Hoffman, J.I.; Kaufman, L. (Univ. of California, San Francisco (USA))
1990-05-01
An X-ray fluorescence system with low Compton background and high counting efficiency was developed to measure regional blood flow with nonradioactive microspheres. The performance of the system was tested in vitro by counting mixed aqueous solutions of either Mo, Ag, and I; Nb, Ag, and Ba; or Zr, Mo, Rh, Ag, Sn, I, and Ba, as well as a mixture of Ag and Ba nonradioactive microspheres. Mixtures containing 2-20 ppm of each element were counted for 10 min by the fluorescence system, and the individual elements in mixtures of three to seven nonradioactive elements were measured with high accuracy. The best counting statistics were obtained for Ag. For 10-min counts, the system measures as few as 120 Ag microspheres with 30% standard deviation but measures 800 Ag microspheres per sample with 3.6% standard deviation. We compared regional myocardial blood flows determined simultaneously by fluorescence and radioactive microsphere methods; the latter samples were counted by a 3-in. NaI (Tl) well detector and pulse-height analyzer. The radioactive and nonradioactive measurements showed good correlations.
Akgoren, Nuran; Fabricius, Martin; Lauritzen, Martin
1994-06-01
The endothelium-derived relaxing factor, probably nitric oxide (NO), is a potent vasodilator that regulates the vascular tone in several vascular beds, including the brain. We explored the possibility that NO might be of importance for the increase of cerebral blood flow (CBF) associated with activity of the well-defined neuronal circuits of the rat cerebellar cortex. Laser-Doppler flowmetry was used to measure increases of cerebellar blood flow evoked by trains of electrical stimulations of the dorsal surface. The evoked increases of CBF were frequency-dependent, being larger on than off the parallel fiber tracts, suggesting that conduction along parallel fibers and synaptic activation of target cells were important for the increase of CBF. This was verified experimentally since the evoked CBF increases were abolished by tetrodotoxin and reduced by 10 mM Mg2+ and selective antagonists for non-N-methyl-D-aspartate receptors. The cerebellar cortex contains high levels of NO synthase. This raised the possibility that NO was involved in the increase of CBF associated with neuronal activation. NO synthase inhibition by topical application of N^G-nitro-L-arginine attenuated the evoked CBF increase by about 50%. This effect was partially reversed by pretreatment with L-arginine, the natural substrate for the enzyme, while N^G-nitro-D-arginine, the inactive enantiomer, had no effect on the evoked CBF increases. Simultaneous blockade of non-N-methyl-D-aspartate receptors and NO synthase had no further suppressing effect on the blood flow increase than either substance alone, suggesting that the NO-dependent flow rise was dependent on postsynaptic mechanisms. These findings are consistent with the idea that local synthesis of NO is involved in the transduction mechanism between neuronal activity and increased CBF.
Implication of Flow in the Lower Crust on Strain Localization
Le Pourhiet, Laetitia
2016-04-01
A major difference between oceanic and continental crust is the capacity of the lower crust to flow. This has been the moto of the research group centered around Genia Burov over the last 15 years and I will try to summarize the results of number of numerical models run in different geodynamic setting to tackle the question of the rheology of the lithosphere and crust at the scale of plate tectonics. I will insist on how apriori very complex numerical models have helped the community to build our intuition on geodynamics processes and change the way of thinking the interactions between mantle process and crustal processes which are the core of plate tectonic and beyond. I will finally discuss what have we learn about the rheology of the lithosphere so far and how we intend to pursues evgeni's fundamental contribution to the field.
Song, Yongjia; Hu, Hengshan; Rudnicki, John W.
2016-07-01
Grain-scale local fluid flow is an important loss mechanism for attenuating waves in cracked fluid-saturated poroelastic rocks. In this study, a dynamic elastic modulus model is developed to quantify local flow effect on wave attenuation and velocity dispersion in porous isotropic rocks. The Eshelby transform technique, inclusion-based effective medium model (the Mori-Tanaka scheme), fluid dynamics and mass conservation principle are combined to analyze pore-fluid pressure relaxation and its influences on overall elastic properties. The derivation gives fully analytic, frequency-dependent effective bulk and shear moduli of a fluid-saturated porous rock. It is shown that the derived bulk and shear moduli rigorously satisfy the Biot-Gassmann relationship of poroelasticity in the low-frequency limit, while they are consistent with isolated-pore effective medium theory in the high-frequency limit. In particular, a simplified model is proposed to quantify the squirt-flow dispersion for frequencies lower than stiff-pore relaxation frequency. The main advantage of the proposed model over previous models is its ability to predict the dispersion due to squirt flow between pores and cracks with distributed aspect ratio instead of flow in a simply conceptual double-porosity structure. Independent input parameters include pore aspect ratio distribution, fluid bulk modulus and viscosity, and bulk and shear moduli of the solid grain. Physical assumptions made in this model include (1) pores are inter-connected and (2) crack thickness is smaller than the viscous skin depth. This study is restricted to linear elastic, well-consolidated granular rocks.
Wu, Y.; M.D. Nieuwenhoff (Mariska D.); F.J.P.M. Huygen (Frank); F.C.T. van der Helm (Frans C.); S.P. Niehof (Sjoerd); A.C. Schouten (A.)
2017-01-01
textabstractSmall nerve fibers regulate local skin blood flow in response to local thermal perturbations. Small nerve fiber function is difficult to assess with classical neurophysiological tests. In this study, a vasomotor response model in combination with a heating protocol was developed to
Local Measurement of Gas-Liquid Bubbly Flow with a Double-Sensor Probe
Institute of Scientific and Technical Information of China (English)
孙科霞; 张鸣远; 陈学俊
2000-01-01
A double-sensor probe was used to measure local interfacial parameters of a gas-liquid bubbly flow in a horizontal tube. The parameters included void fraction, interfacial concentration, bubble size distribution, bubble frequency and bubble interface velocity. The authors paid special attention to the probe design and construction for minimizing measurement errors. Measures were also taken in the design of sensor ends for preventing corrosions in the flow. This is an effort to improve the current double-sensor probe technique to meet the ever-increasing needs to local varameter measurements in gas-liquid two-phase flows.
A note on local and non-local properties of turbulence in the bora flow
Energy Technology Data Exchange (ETDEWEB)
Belusic, D.; Pasaric, M.; Pasaric, Z.; Orlic, M.; Grisogono, B. [Andrija Mohorovicic Geophysical Inst., Univ. of Zagreb (Croatia)
2006-06-15
On the basis of two-month measurements of the bora wind at Senj, Croatia, with a 1 s temporal resolution, properties of the bora turbulence are inspected using the records of three bora episodes. The spectrum is divided into two parts: high-frequency turbulence (periods less than 1 min) and the low-frequency part (periods between 1 and 10 min) where pulsations appear. We have found that the high-frequency turbulence is generated locally by surface roughness and local wind shear. On the other hand, the low-frequency turbulence, i.e. the pulsations, seems to be independent of the local properties and can therefore be treated as an organized non-local effect. This is in accordance with the studies of the pulsations in the Boulder downslope windstorm. (orig.)
Falconi, C. J.; Lehrenfeld, C.; Marschall, H.; Meyer, C.; Abiev, R.; Bothe, D.; Reusken, A.; Schlüter, M.; Wörner, M.
2016-01-01
The vertically upward Taylor flow in a small square channel (side length 2 mm) is one of the guiding measures within the priority program "Transport Processes at Fluidic Interfaces" (SPP 1506) of the German Research Foundation (DFG). This paper presents the results of coordinated experiments and three-dimensional numerical simulations (with three different academic computer codes) for typical local flow parameters (bubble shape, thickness of the liquid film, and velocity profiles) in different cutting planes (lateral and diagonal) for a specific co-current Taylor flow. For most quantities, the differences between the three simulation results and also between the numerical and experimental results are below a few percent. The experimental and computational results consistently show interesting three-dimensional flow effects in the rear part of the liquid film. There, a local back flow of liquid occurs in the fixed frame of reference which leads to a temporary reversal of the direction of the wall shear stress during the passage of a Taylor bubble. Notably, the axial positions of the region with local backflow and those of the minimum vertical velocity differ in the lateral and the diagonal liquid films. By a thorough analysis of the fully resolved simulation results, this previously unknown phenomenon is explained in detail and, moreover, approximate criteria for its occurrence in practical applications are given. It is the different magnitude of the velocity in the lateral film and in the corner region which leads to azimuthal pressure differences in the lateral and diagonal liquid films and causes a slight deviation of the bubble from the rotational symmetry. This deviation is opposite in the front and rear parts of the bubble and has the mentioned significant effects on the local flow field in the rear part of the liquid film.
Flow equation approach to one-body and many-body localization
Quito, Victor; Bhattacharjee, Paraj; Pekker, David; Refael, Gil
2014-03-01
We study one-body and many-body localization using the flow equation technique applied to spin-1/2 Hamiltonians. This technique, first introduced by Wegner, allows us to exact diagonalize interacting systems by solving a set of first-order differential equations for coupling constants. Besides, by the flow of individual operators we also compute physical properties, such as correlation and localization lengths, by looking at the flow of probability distributions of couplings in the Hilbert space. As a first example, we analyze the one-body localization problem written in terms of spins, the disordered XY model with a random transverse field. We compare the results obtained in the flow equation approach with the diagonalization in the fermionic language. For the many-body problem, we investigate the physical properties of the disordered XXZ Hamiltonian with a random transverse field in the z-direction.
Experiment and Simulation of Turbulent Flow in Local Scour around a Spur Dyke
Institute of Scientific and Technical Information of China (English)
Hao ZHANG; Hajime NAKAGAWA; Kenji KAWAIKE; Yasuyuki BABA
2009-01-01
The turbulent flow in the local scour hole around a single non-submerged spur dyke is investigated with both experimental and numerical methods.The experiments are conducted under clear-water scour regime with an impermeable spur dyke.The scour geometry and flow velocities are measured in details with a high-resolution laser displacement meter,electro-magnetic velocimetries and PIV (Particle image velocimetry).A 3D non-linear κ-ε model is developed to simulate the complex local flow field around the scour area.The numerical model is formulated using FVM (Finite volume method) on a collocated unstructured mesh,capable of resolving complex geometries and boundaries.It is found that the simulation results are reasonably consistent with those of the experimental measurements.Based on the study results,the nature of the flow structrue around a spur dyke with local scour hole is analyzed.
Localization of Short-Chain Polyphosphate Enhances its Ability to Clot Flowing Blood Plasma
Yeon, Ju Hun; Mazinani, Nima; Schlappi, Travis S.; Chan, Karen Y. T.; Baylis, James R.; Smith, Stephanie A.; Donovan, Alexander J.; Kudela, Damien; Stucky, Galen D.; Liu, Ying; Morrissey, James H.; Kastrup, Christian J.
2017-02-01
Short-chain polyphosphate (polyP) is released from platelets upon platelet activation, but it is not clear if it contributes to thrombosis. PolyP has increased propensity to clot blood with increased polymer length and when localized onto particles, but it is unknown whether spatial localization of short-chain polyP can accelerate clotting of flowing blood. Here, numerical simulations predicted the effect of localization of polyP on clotting under flow, and this was tested in vitro using microfluidics. Synthetic polyP was more effective at triggering clotting of flowing blood plasma when localized on a surface than when solubilized in solution or when localized as nanoparticles, accelerating clotting at 10–200 fold lower concentrations, particularly at low to sub-physiological shear rates typical of where thrombosis occurs in large veins or valves. Thus, sub-micromolar concentrations of short-chain polyP can accelerate clotting of flowing blood plasma under flow at low to sub-physiological shear rates. However, a physiological mechanism for the localization of polyP to platelet or vascular surfaces remains unknown.
Energy Technology Data Exchange (ETDEWEB)
Wachter, S.; Dal Don, B.; Schmidt, M.; Baldauf, M.; Dinger, A.; Kurtz, E.; Klingshirn, C.; Kalt, H. [Karlsruhe Univ. (T.H.) (Germany). Inst. fuer Angewandte Physik
2001-03-08
We report on localization dynamics of excitons in ensembles of self-organized CdSe islands embedded in ZnSe. The experimental methods employed are temperature dependent, spatially-resolved photoluminescence ({mu}-PL), spatially-integrated PL (macro-PL), as well as time-resolved PL (TRPL). We see the often observed non-monotonous shift of the PL maximum with temperature which we can explain by a redistribution of the excitons amongst the islands. The measured shift is compared with the exact shift of the bandgap deduced from {mu}-PL measurements and is found to depend strongly on island size and distribution. These transport processes are recovered in the temporal evolution of the PL. The decay time of the spectrally integrated PL reaches its maximum at exactly the same temperature at which the redshift of the macro-PL turns into a blueshift. (orig.)
LOCAL DISCONTINUOUS GALERKIN METHOD FOR RADIAL POROUS FLOW WITH DISPERSION AND ADSORPTION
Institute of Scientific and Technical Information of China (English)
汪继文; 刘慈群
2004-01-01
Based on the local discontinuous Galerkin methods for time-dependent convection-diffusion systems newly developed by Corkburn and Shu,according to the form of the generalized convection-diffusion equations which model the radial porous flow with dispersion and adsorption,a local discontinuous Galerkin method for radial porous flow with dispersion and adsorption was developed,a high order accurary new scheme for radial porous flow is obtained.The presented method was applied to the numerical tests of two cases of radial porous,i.e., the convection-dispersion flow and the convection-dispersion-adsorption flow,the corresponding parts of the numerical results are in good agreement with the published solutions,so the presented method is reliable.Reckoning of the computational cost also shows that the method is practicable.
Simultaneous measurement of localized diffusion and flow using optical coherence tomography
Weiss, Nicolás; Kalkman, Jeroen
2014-01-01
We report on the simultaneous and localized measurements of the diffusion coefficient and flow velocity based on the normalized autocorrelation function using optical coherence tomography (OCT). Our results on a flowing solution of polystyrene spheres show that the flow velocity and the diffusion coefficient can be reliably estimated in a regime determined by the sample diffusivity, the local flow velocity, and the Gaussian beam waist. We experimentally show that a smaller beam waist results in an improvement of the velocity sensitivity at cost of the precision and accuracy of the estimation of the diffusion coefficient. Further, we show that the decay of the OCT autocorrelation due to flow depends only on the Gaussian beam waist irrespective of the sample position with respect to the focus position.
Measurement of local current density of all-vanadium redox flow batteries
Hsieh, Wen-Yen; Leu, Chih-Hsing; Wu, Chun-Hsing; Chen, Yong-Song
2014-12-01
This article presents a preliminary study of the measurement of local current density in all-vanadium redox flow batteries. Two batteries are designed and manufactured in this study, and the experimental results are compared. In the first cell, the current collector is divided into 25 segments, and the flow field plate is not segmented, whereas in the other cell, the flow field plate is segmented. The effects of the electrolyte flow rate on the battery efficiencies and the local current density variation are investigated. The experimental results show that the current density near the outlet significantly decreases when the discharge capacity approaches zero. In addition, the battery has a larger discharge depth at a higher electrolyte flow rate.
Experimental study on two-dimensional film flow with local measurement methods
Energy Technology Data Exchange (ETDEWEB)
Yang, Jin-Hwa, E-mail: evo03@snu.ac.kr [Nuclear Thermal-Hydraulic Engineering Laboratory, Seoul National University, Gwanak 599, Gwanak-ro, Gwanak-gu, Seoul 151-742 (Korea, Republic of); Korea Atomic Energy Research Institute, 989-111, Daedeok-daero, Yuseong-gu, Daejeon 305-600 (Korea, Republic of); Cho, Hyoung-Kyu [Nuclear Thermal-Hydraulic Engineering Laboratory, Seoul National University, Gwanak 599, Gwanak-ro, Gwanak-gu, Seoul 151-742 (Korea, Republic of); Kim, Seok [Korea Atomic Energy Research Institute, 989-111, Daedeok-daero, Yuseong-gu, Daejeon 305-600 (Korea, Republic of); Euh, Dong-Jin, E-mail: djeuh@kaeri.re.kr [Korea Atomic Energy Research Institute, 989-111, Daedeok-daero, Yuseong-gu, Daejeon 305-600 (Korea, Republic of); Park, Goon-Cherl [Nuclear Thermal-Hydraulic Engineering Laboratory, Seoul National University, Gwanak 599, Gwanak-ro, Gwanak-gu, Seoul 151-742 (Korea, Republic of)
2015-12-01
Highlights: • An experimental study on the two-dimensional film flow with lateral air injection was performed. • The ultrasonic thickness gauge was used to measure the local liquid film thickness. • The depth-averaged PIV (Particle Image Velocimetry) method was applied to measure the local liquid film velocity. • The uncertainty of the depth-averaged PIV was quantified with a validation experiment. • Characteristics of two-dimensional film flow were classified following the four different flow patterns. - Abstract: In an accident condition of a nuclear reactor, multidimensional two-phase flows may occur in the reactor vessel downcomer and reactor core. Therefore, those have been regarded as important issues for an advanced thermal-hydraulic safety analysis. In particular, the multi-dimensional two-phase flow in the upper downcomer during the reflood phase of large break loss of coolant accident appears with an interaction between a downward liquid and a transverse gas flow, which determines the bypass flow rate of the emergency core coolant and subsequently, the reflood coolant flow rate. At present, some thermal-hydraulic analysis codes incorporate multidimensional modules for the nuclear reactor safety analysis. However, their prediction capability for the two-phase cross flow in the upper downcomer has not been validated sufficiently against experimental data based on local measurements. For this reason, an experimental study was carried out for the two-phase cross flow to clarify the hydraulic phenomenon and provide local measurement data for the validation of the computational tools. The experiment was performed in a 1/10 scale unfolded downcomer of Advanced Power Reactor 1400 (APR1400). Pitot tubes, a depth-averaged PIV method and ultrasonic thickness gauge were applied for local measurement of the air velocity, the liquid film velocity and the liquid film thickness, respectively. The uncertainty of the depth-averaged PIV method for the averaged
Wingo, Jonathan E; Low, David A; Keller, David M; Brothers, R Matthew; Shibasaki, Manabu; Crandall, Craig G
2010-11-01
Sweat rate (SR) is reduced in locally cooled skin, which may result from decreased temperature and/or parallel reductions in skin blood flow. The purpose of this study was to test the hypotheses that decreased skin blood flow and decreased local temperature each independently attenuate sweating. In protocols I and II, eight subjects rested supine while wearing a water-perfused suit for the control of whole body skin and internal temperatures. While 34°C water perfused the suit, four microdialysis membranes were placed in posterior forearm skin not covered by the suit to manipulate skin blood flow using vasoactive agents. Each site was instrumented for control of local temperature and measurement of local SR (capacitance hygrometry) and skin blood flow (laser-Doppler flowmetry). In protocol I, two sites received norepinephrine to reduce skin blood flow, while two sites received Ringer solution (control). All sites were maintained at 34°C. In protocol II, all sites received 28 mM sodium nitroprusside to equalize skin blood flow between sites before local cooling to 20°C (2 sites) or maintenance at 34°C (2 sites). In both protocols, individuals were then passively heated to increase core temperature ~1°C. Both decreased skin blood flow and decreased local temperature attenuated the slope of the SR to mean body temperature relationship (2.0 ± 1.2 vs. 1.0 ± 0.7 mg·cm(-2)·min(-1)·°C(-1) for the effect of decreased skin blood flow, P = 0.01; 1.2 ± 0.9 vs. 0.07 ± 0.05 mg·cm(-2)·min(-1)·°C(-1) for the effect of decreased local temperature, P = 0.02). Furthermore, local cooling delayed the onset of sweating (mean body temperature of 37.5 ± 0.4 vs. 37.6 ± 0.4°C, P = 0.03). These data demonstrate that local cooling attenuates sweating by independent effects of decreased skin blood flow and decreased local skin temperature.
Contraceptive security, information flow, and local adaptations: family planning Morocco.
Chandani, Y; Breton, G
2001-12-01
Many developing countries increasingly recognize and acknowledge family planning as a critical part of socio-economic development. However, with few health dollars to go around, countries tend to provide essential drugs for curative care, rather than for family planning products. Donors have historically provided free contraceptives for family planning services. Whether products are donated or purchased by the country, a successful family planning program depends on an uninterrupted supply of products, beginning with the manufacturer and ending with the customer. Any break in the supply chain may cause a family planning program to fail. A well-functioning logistics system can manage the supply chain and ensure that the customers have the products they need, when they need them. Morocco was selected for the case study. The researchers had ready access to key informants and information about the Logistics Management Information System. Because the study had time and resource constraints, research included desktop reviews and interview, rather than data collection in the field. The case study showed that even in a challenging environment an LMIS can be successfully deployed and fully supported by the users. It is critical to customize the system to a country-specific situation to ensure buy-in for the implementation. Significant external support funding and technical expertise are critical components to ensure the initial success of the system. Nonetheless, evidence from the case study shows that, after a system has been implemented, the benefits may not ensure its institutionalization. Other support, including local funding and technical expertise, is required.
The Local Hubble Flow: Is it a Manifestation of Dark Energy?
Hoffman, Yehuda; Yepes, Gustavo; Gottlober, Stefan
2007-01-01
To study the local Hubble flow, we have run constrained dark matter (DM) simulations of the Local Group (LG) in the concordance LCDM and OCDM cosmologies, with identical cosmological parameters apart from the Lambda term. The simulations were performed within a computational box of 64 h^{-1}Mpc centred on the LG. The initial conditions were constrained by the observed peculiar velocities of galaxies and positions of X-ray nearby clusters of galaxies. The simulations faithfully reproduce the nearby large scale structure, and in particular the Local Supercluster and the Virgo cluster. LG-like objects have been selected from the DM halos so as to closely resemble the dynamical properties of the LG. Both the LCDM and OCDM simulations show very similar local Hubble flow around the LG-like objects. It follows that, contrary to recent statements, the dark energy (DE) does not manifest itself in the local dynamics.
Jung, Eunbum; Lee, Wook; Kang, Seongwon; Iaccarino, Gianluca
2015-11-01
The turbulent Prandtl number (Prt) is an important parameter in turbulent flows used in many engineering models for heat transfer. In the present study, spatial variation of Prt in a wall-bounded turbulent flow is investigated using DNS. We derived a form of Prt applicable to a general flow configuration, using the least-square method in a manner consistent with the turbulent viscosity model in LES. For a flow subject to local acceleration and deceleration induced by the wall geometry, we performed a parametric study for the Reynolds number, Prandtl number and a geometric factor using DNS. A comparison of the data from DNS and RANS with a constant Prt indicates the potential of improved RANS predictions using the present variable Prt subject to the local flow field. Also, it is observed that the local pressure gradient has an important effect on the Prt field. From the flow statistics, a few flow variables showing higher correlations with Prt are identified. An elementary model for Prt is devised, and used for RANS prediction producing a more accurate prediction of the heat transfer rate. Corresponding author
Evolution of finite-amplitude localized vortices in planar homogeneous shear flows
Karp, Michael; Shukhman, Ilia G.; Cohen, Jacob
2017-02-01
An analytical-based method is utilized to follow the evolution of localized initially Gaussian disturbances in flows with homogeneous shear, in which the base velocity components are at most linear functions of the coordinates, including hyperbolic, elliptic, and simple shear. Coherent structures, including counterrotating vortex pairs (CVPs) and hairpin vortices, are formed for the cases where the streamlines of the base flow are open (hyperbolic and simple shear). For hyperbolic base flows, the dominance of shear over rotation leads to elongation of the localized disturbance along the outlet asymptote and formation of CVPs. For simple shear CVPs are formed from linear and nonlinear disturbances, whereas hairpins are observed only for highly nonlinear disturbances. For elliptic base flows CVPs, hairpins and vortex loops form initially, however they do not last and break into various vortical structures that spread in the spanwise direction. The effect of the disturbance's initial amplitude and orientation is examined and the optimal orientation achieving maximal growth is identified.
Pratt, J; Mueller, W -C; Chapman, S C; Watkins, N W
2014-01-01
Local regions of anomalous particle dispersion, and intermittent events that occur in turbulent flows can greatly influence the global statistical description of the flow. These local behaviors can be identified and analyzed by comparing the growth of neighboring convex hulls of Lagrangian tracer particles. Although in our simulations of homogeneous turbulence the convex hulls generally grow in size, after the Lagrangian particles that define the convex hulls begin to disperse, our analysis reveals short periods when the convex hulls of the Lagrangian particles shrink, evidence that particles are not dispersing simply. Shrinkage can be associated with anisotropic flows, since it occurs most frequently in the presence of a mean magnetic field or thermal convection. We compare dispersion between a wide range of statistically homogeneous and stationary turbulent flows ranging from homogeneous isotropic Navier-Stokes turbulence over different configurations of magnetohydrodynamic turbulence and Boussinesq convect...
Modulating toroidal flow stabilization of edge localized modes with plasma density
Cheng, Shikui; Banerjee, Debabrata
2016-01-01
Recent EAST experiments have demonstrated mitigation and suppression of edge localized modes (ELMs) with toroidal rotation flow in higher collisionality regime, suggesting potential roles of plasma density. In this work, the effects of plasma density on the toroidal flow stabilization of the high-$n$ edge localized modes have been extensively studied in linear calculations for a circular-shaped limiter H-mode tokamak, using the extended MHD code NIMROD. In the single MHD model, toroidal flow has a weak stabilizing effects on the high-$n$ modes. Such a stabilization, however, can be significantly enhanced with the increase in plasma density. Furthermore, our calculations show that the enhanced stabilization of high-$n$ modes from toroidal flow with higher edge plasma density persists in the 2-fluid MHD model. These findings may explain the ELM mitigation and suppression by toroidal rotation in higher collisionality regime due to the enhancement of plasma density obtained in recent EAST experiments.
Liu, Q
2016-01-01
In this paper, a multiple-relaxation-time (MRT) lattice Boltzmann (LB) model is proposed for convection heat transfer in porous media under local thermal non-equilibrium (LTNE) condition. The model is constructed within the framework of the three-distribution-function approach: two temperature-based MRT-LB equations are proposed for the temperature fields of fluid and solid phases in addition to the MRT-LB equation of a density distribution function for the velocity field described by the generalized non-Darcy model. The thermal non-equilibrium effects are incorporated into the model by adding source terms into the temperature-based MRT-LB equations. Moreover, the discrete lattice effects are considered in the introduction of source terms into the temperature-based MRT-LB equations. The source terms accounting for the thermal non-equilibrium effects are simple and the model retains the inherent features of the standard LB method. Numerical results demonstrate that the proposed model can be served as an accura...
Springer, Abraham E; Boldt, Elizabeth M; Junghans, Katie M
2017-01-01
The recharge location for many springs is unknown because they can be sourced from proximal, shallow, atmospheric sources or long-traveled, deep, regional aquifers. The stable isotope ((18) O and (2) H) geochemistry of springs water can provide cost-effective indications of relative flow path distance without the expense of drilling boreholes, conducting geophysical studies, or building groundwater flow models. Locally sourced springs generally have an isotopic signature similar to local precipitation for that region and elevation. Springs with a very different isotopic composition than local meteoric inputs likely have non-local recharge, representing a regional source. We tested this local vs. regional flow derived hypothesis with data from a new, large springs isotopic database from studies across Western North America in Arizona, Nevada, and Alberta. The combination of location-specific precipitation data with stable isotopic groundwater data provides an effective method for flow path determination at springs. We found springs in Arizona issue from a mix of regional and local recharge sources. These springs have a weak elevation trend across 1588 m of elevation where higher elevation springs are only slightly more depleted than low elevation springs with a δ(18) O variation of 5.9‰. Springs sampled in Nevada showed a strong elevation-isotope relationship with high-elevation sites discharging depleted waters and lower elevation springs issuing enriched waters; only a 2.6‰ difference exists in (18) O values over an elevation range of more than 1500 m. Alberta's springs are mostly sourced from local flow systems and show a moderate elevation trend of 1200 m, but the largest range in δ(18) O, 7.1‰.
Local heat transfer in an in-line tube bundle with asymmetrical flow
DEFF Research Database (Denmark)
Meyer, Knud Erik
1999-01-01
Measurements of the local heat transfer in themiddle of a small in-line tube bundle with longitudinal to transverse pitches of $1.5\\times 1.8$ are performed at a Reynolds number of $30\\,000$. Asymmetrical distributions of the local heat transfer are found. The distributions are in good agreement...... with earlier flow measurements. The mean heat transfer rate is only little affected bythe asymmetrical conditions....
Local cerebral blood flow and glucose metabolism during seizure in spontaneously epileptic El mice
Energy Technology Data Exchange (ETDEWEB)
Hosokawa, Chisa; Ochi, Hironobu; Yamagami, Sakae; Kawabe, Joji; Kobashi, Toshiko; Okamura, Terue; Yamada, Ryusaku [Osaka City Univ. (Japan). Faculty of Medicine
1995-09-01
Local cerebral blood flow and glucose metabolism were examined in spontaneously epileptic El mice using autoradiography with {sup 125}I-IMP and {sup 14}C-DG in the interictal phase and during seizure. El (+) mice that developed generalized tonic-clonic convulsions and El (-) mice that received no stimulation and had no history of epileptic seizures were examined. The seizure non-susceptible, maternal strain ddY mice were used as control. Uptake ratios for IMP and DG in mouse brain were calculated using the autoradiographic density. In the interictal phase, the pattern of local cerebral blood flow of El (+) mice was similar to that of ddY and El (-) mice, and glucose metabolism in the hippocampus was higher in El (+) mice than in El (-) and ddY mice, but flow and metabolism were nearly matched. During seizure, no significant changed blood flow and increased glucose metabolism in the hippocampus, the epileptic focus, and no markedly changed blood flow and depressed glucose metabolism in other brain regions were observed and considered to be flow-metabolism uncoupling. These observations have never been reported in clinical or experimental studies of epilepsy. Seizures did not cause large regional differences in cerebral blood flow. Therefore, only glucose metabolism is useful for detection of the focus of secondary generalized seizures in El mice, and appeared possibly to be related to the pathophysiology of secondary generalized epilepsy in El mice. (author).
Řehoř, Martin; Pr&oring; ša, Vít; T&oring; ma, Karel
2016-10-01
Rigorous analysis of the response of nonlinear materials to step inputs requires one to simultaneously handle the discontinuity, differentiation, and nonlinearity. This task is however beyond the reach of the standard theories such as the classical theory of distributions and presents a considerable mathematical difficulty. New advanced mathematical tools are necessary to handle the challenge. An elegant and relatively easy-to-use framework capable of accomplishing the task is provided by the Colombeau algebra, which is a generalisation of the classical theory of distributions to the nonlinear setting. We use the Colombeau algebra formalism and derive explicit formulae describing the response of incompressible Maxwell viscoelastic fluid subject to step load/deformation in the lubricated squeeze flow setting.
Local Heat and Mass Transfer for Gas—Solid Two Phase Flow in CFB
Institute of Scientific and Technical Information of China (English)
FengLu; Ming－HengShi
1994-01-01
An experimental investigation on the flow characteristics and the local heat and mass transfer between coarse wet particles and hot gas in the circulaing fluidized bed(CFB) has been performed.A twothermocouple contrast method was developed to measure the local gas and solid temperature along the height of the bed.The influences of air superficial velocity,solid rate and initial moisture content on the local heat and mass transfer between gas and sloid were examined.The correlations of heat and mass transfer coefficients between gas and coarse wet particles in CFB were obtained.
Energy Technology Data Exchange (ETDEWEB)
Arosio, Paolo, E-mail: paolo.arosio@guest.unimi.it; Orsini, Francesco [Department of Physics, Università degli Studi di Milano, and INSTM, Milano (Italy); Corti, Maurizio [Department of Physics, Università degli Studi di Pavia and INSTM, Pavia (Italy); Mariani, Manuel [Department of Physics and Astronomy, Università degli Studi di Bologna, Bologna (Italy); Bogani, Lapo [Physikalisches Institut, Universität Stuttgart, Stuttgart (Germany); Caneschi, Andrea [INSTM and Department of Chemistry, University of Florence, Firenze (Italy); Lago, Jorge [Departamento de Quimica Inorganica, Universidad del Pais Vasco, Bilbao (Spain); Lascialfari, Alessandro [Department of Physics, Università degli Studi di Milano, and INSTM, Milano (Italy); Centro S3, Istituto Nanoscienze - CNR, Modena (Italy)
2015-05-07
The spin dynamics of the molecular magnetic chain [Dy(hfac){sub 3}(NIT(C{sub 6}H{sub 4}OPh))] were investigated by means of the Muon Spin Relaxation (μ{sup +}SR) technique. This system consists of a magnetic lattice of alternating Dy(III) ions and radical spins, and exhibits single-chain-magnet behavior. The magnetic properties of [Dy(hfac){sub 3}(NIT(C{sub 6}H{sub 4}OPh))] have been studied by measuring the magnetization vs. temperature at different applied magnetic fields (H = 5, 3500, and 16500 Oe) and by performing μ{sup +}SR experiments vs. temperature in zero field and in a longitudinal applied magnetic field H = 3500 Oe. The muon asymmetry P(t) was fitted by the sum of three components, two stretched-exponential decays with fast and intermediate relaxation times, and a third slow exponential decay. The temperature dependence of the spin dynamics has been determined by analyzing the muon longitudinal relaxation rate λ{sub interm}(T), associated with the intermediate relaxing component. The experimental λ{sub interm}(T) data were fitted with a corrected phenomenological Bloembergen-Purcell-Pound law by using a distribution of thermally activated correlation times, which average to τ = τ{sub 0} exp(Δ/k{sub B}T), corresponding to a distribution of energy barriers Δ. The correlation times can be associated with the spin freezing that occurs when the system condenses in the ground state.
Shafer, M. W.; McKee, G. R.; Schlossberg, D. J.; Austin, M. E.; Waltz, R. E.; Candy, J.
2007-11-01
Turbulence is observed to transiently decrease locally during the formation of internal transport barriers (ITBs) following the appearance of low-order rational qmin surfaces in negative central shear discharges on DIII-D. Simultaneously, increased poloidal flow shear is observed. To further study this phenomenon, localized 2D density fluctuation measurements of turbulence and turbulence flow were obtained over 0.3 < r/a < 0.7 via the high-sensitivity beam emission spectroscopy diagnostic. Both the reduction in fluctuations and the poloidal velocity shear are found to propagate radially outward at about 1 m/s. Initial observations suggest that these effects follow the q=2 surface. Related GYRO simulations suggest transient zonal flows form near the q=2 surface to trigger these ITBs. High-frequency poloidal velocity measurements will be used to examine this mechanism.
Directional Solidification of a Binary Alloy into a Cellular Convective Flow: Localized Morphologies
Chen, Y.- J.; Davis, S. H.
1999-01-01
A steady, two dimensional cellular convection modifies the morphological instability of a binary alloy that undergoes directional solidification. When the convection wavelength is far longer than that of the morphological cells, the behavior of the moving front is described by a slow, spatial-temporal dynamics obtained through a multiple-scale analysis. The resulting system has a "parametric-excitation" structure in space, with complex parameters characterizing the interactions between flow, solute diffusion, and rejection. The convection stabilizes two dimensional disturbances oriented with the flow, but destabilizes three dimensional disturbances in general. When the flow is weak, the morphological instability behaves incommensurably to the flow wavelength, but becomes quantized and forced to fit into the flow-box as the flow gets stronger. At large flow magnitudes the instability is localized, confined in narrow envelopes with cells traveling with the flow. In this case the solutions are discrete eigenstates in an unbounded space. Their stability boundary and asymptotics are obtained by the WKB analysis.
Multilevel local refinement and multigrid methods for 3-D turbulent flow
Energy Technology Data Exchange (ETDEWEB)
Liao, C.; Liu, C. [UCD, Denver, CO (United States); Sung, C.H.; Huang, T.T. [David Taylor Model Basin, Bethesda, MD (United States)
1996-12-31
A numerical approach based on multigrid, multilevel local refinement, and preconditioning methods for solving incompressible Reynolds-averaged Navier-Stokes equations is presented. 3-D turbulent flow around an underwater vehicle is computed. 3 multigrid levels and 2 local refinement grid levels are used. The global grid is 24 x 8 x 12. The first patch is 40 x 16 x 20 and the second patch is 72 x 32 x 36. 4th order artificial dissipation are used for numerical stability. The conservative artificial compressibility method are used for further improvement of convergence. To improve the accuracy of coarse/fine grid interface of local refinement, flux interpolation method for refined grid boundary is used. The numerical results are in good agreement with experimental data. The local refinement can improve the prediction accuracy significantly. The flux interpolation method for local refinement can keep conservation for a composite grid, therefore further modify the prediction accuracy.
Online Adaptive Local-Global Model Reduction for Flows in Heterogeneous Porous Media
Directory of Open Access Journals (Sweden)
Yalchin Efendiev
2016-06-01
Full Text Available We propose an online adaptive local-global POD-DEIM model reduction method for flows in heterogeneous porous media. The main idea of the proposed method is to use local online indicators to decide on the global update, which is performed via reduced cost local multiscale basis functions. This unique local-global online combination allows (1 developing local indicators that are used for both local and global updates (2 computing global online modes via local multiscale basis functions. The multiscale basis functions consist of offline and some online local basis functions. The approach used for constructing a global reduced system is based on Proper Orthogonal Decomposition (POD Galerkin projection. The nonlinearities are approximated by the Discrete Empirical Interpolation Method (DEIM. The online adaption is performed by incorporating new data, which become available at the online stage. Once the criterion for updates is satisfied, we adapt the reduced system online by changing the POD subspace and the DEIM approximation of the nonlinear functions. The main contribution of the paper is that the criterion for adaption and the construction of the global online modes are based on local error indicators and local multiscale basis function which can be cheaply computed. Since the adaption is performed infrequently, the new methodology does not add significant computational overhead associated with when and how to adapt the reduced basis. Our approach is particularly useful for situations where it is desired to solve the reduced system for inputs or controls that result in a solution outside the span of the snapshots generated in the offline stage. Our method also offers an alternative of constructing a robust reduced system even if a potential initial poor choice of snapshots is used. Applications to single-phase and two-phase flow problems demonstrate the efficiency of our method.
Online Adaptive Local-Global Model Reduction for Flows in Heterogeneous Porous Media
Efendiev, Yalchin R.
2016-06-07
We propose an online adaptive local-global POD-DEIM model reduction method for flows in heterogeneous porous media. The main idea of the proposed method is to use local online indicators to decide on the global update, which is performed via reduced cost local multiscale basis functions. This unique local-global online combination allows (1) developing local indicators that are used for both local and global updates (2) computing global online modes via local multiscale basis functions. The multiscale basis functions consist of offline and some online local basis functions. The approach used for constructing a global reduced system is based on Proper Orthogonal Decomposition (POD) Galerkin projection. The nonlinearities are approximated by the Discrete Empirical Interpolation Method (DEIM). The online adaption is performed by incorporating new data, which become available at the online stage. Once the criterion for updates is satisfied, we adapt the reduced system online by changing the POD subspace and the DEIM approximation of the nonlinear functions. The main contribution of the paper is that the criterion for adaption and the construction of the global online modes are based on local error indicators and local multiscale basis function which can be cheaply computed. Since the adaption is performed infrequently, the new methodology does not add significant computational overhead associated with when and how to adapt the reduced basis. Our approach is particularly useful for situations where it is desired to solve the reduced system for inputs or controls that result in a solution outside the span of the snapshots generated in the offline stage. Our method also offers an alternative of constructing a robust reduced system even if a potential initial poor choice of snapshots is used. Applications to single-phase and two-phase flow problems demonstrate the efficiency of our method.
Characteristic of Secondary Flow Caused by Local Density Change in Standing Acoustic Fields
Tonsho, Kazuyuki; Hirosawa, Takuya; Kusakawa, Hiroshi; Kuwahara, Takuo; Tanabe, Mitsuaki
Secondary flow is a flow which is caused by the interference between standing acoustic fields and local density change. The behavior of the secondary flow depends on the location of the given local density change in the standing acoustic fields. When the density change is given at the middle of a velocity node and the neighboring velocity anti-node (middle point) or when it is given at the velocity anti-node in standing acoustic fields, the secondary flow shows particular behavior. Characteristic of the secondary flow at the two positions was predicted by numerical simulations. It was examined from these simulations whether the driving mechanism of the flow can be explained by the kind of acoustic radiation force that has been proposed so far. The predicted secondary flow was verified by experiments. For both the simulations and experiments, the standing acoustic fields generated in a cylinder are employed. In the experiments, the acoustic fields are generated by two loud speakers that are vibrated in same phase in a chamber. The employed resonance frequency is about 1000 Hz. The chamber is filled with air of room temperature and atmospheric pressure. In the numerical simulations and experiments, the local density change is given by heating or cooling. Because the secondary flow is influenced by buoyancy, the numerical simulations were done without taking gravity force into account and a part of the experiments were done by the microgravity condition using a drop tower. As a result of the simulations, at the middle point, the heated air was blown toward the node and the cooled air was blown toward the anti-node. It is clarified that the secondary flow is driven by the expected kind of acoustic radiation force. At the anti-node, both the heated and cooled air expands perpendicular to the traveling direction of the sound wave. The driving mechanism of the secondary flow can not be explained by the acoustic radiation force, and a detailed analysis is done. Through the
Turbulent flow regime in coiled tubes: local heat-transfer coefficient
Bozzoli, F.; Cattani, L.; Mocerino, A.; Rainieri, S.
2017-08-01
Wall curvature represents a widely adopted technique for enhancing heat transfer: the fluid flowing inside a coiled pipe experiences the centrifugal force and this phenomenon induces local maxima in the velocity distribution that locally increase the temperature gradients at the wall by enhancing the heat transfer both in the laminar and in the turbulent flow regime. Consequently, the distribution of the velocity field over the cross-section of the tube is strongly uneven thus leading to significant variations along the circumferential angular coordinate of the convective heat-transfer coefficient at the wall internal surface: in particular, it shows higher values at the outer bend side of the coil than at the inner bend side. The aim of the present work is to estimate experimentally the local convective heat-transfer coefficient at the fluid wall interface in coiled tubes when turbulent flow regime occurs. In particular, the temperature distribution maps on the external coil wall are employed as input data of the inverse heat conduction problem in the wall and a solution approach based on the Tikhonov regularisation is implemented. The results, obtained with water as working fluid, are focused on the fully developed region in the turbulent flow regime in the Reynolds number range of 5000 to 12,000. For the sake of completeness, the overall efficiency of the coiled tubes under test is assessed under a first-law performance evaluation criterion.
Saavedra-Rodriguez, Karla; Beaty, Meaghan; Lozano-Fuentes, Saul; Denham, Steven; Garcia-Rejon, Julian; Reyes-Solis, Guadalupe; Machain-Williams, Carlos; Loroño-Pino, Maria Alba; Flores-Suarez, Adriana; Ponce-Garcia, Gustavo; Beaty, Barry; Eisen, Lars; Black, William C
2015-01-01
The mosquito Aedes aegypti is the major vector of the four serotypes of dengue virus (DENV1-4). Previous studies have shown that Ae. aegypti in Mexico have a high effective migration rate and that gene flow occurs among populations that are up to 150 km apart. Since 2000, pyrethroids have been widely used for suppression of Ae. aegypti in cities in Mexico. In Yucatan State in particular, pyrethroids have been applied in and around dengue case households creating an opportunity for local selection and evolution of resistance. Herein, we test for evidence of local adaptation by comparing patterns of variation among 27 Ae. aegypti collections at 13 single nucleotide polymorphisms (SNPs): two in the voltage-gated sodium channel gene para known to confer knockdown resistance, three in detoxification genes previously associated with pyrethroid resistance, and eight in putatively neutral loci. The SNPs in para varied greatly in frequency among collections, whereas SNPs at the remaining 11 loci showed little variation supporting previous evidence for extensive local gene flow. Among Ae. aegypti in Yucatan State, Mexico, local adaptation to pyrethroids appears to offset the homogenizing effects of gene flow.
Saavedra-Rodriguez, Karla; Beaty, Meaghan; Lozano-Fuentes, Saul; Denham, Steven; Garcia-Rejon, Julian; Reyes-Solis, Guadalupe; Machain-Williams, Carlos; Loroño-Pino, Maria Alba; Flores-Suarez, Adriana; Ponce-Garcia, Gustavo; Beaty, Barry; Eisen, Lars; Black, William C.
2015-01-01
The mosquito Aedes aegypti is the major vector of the four serotypes of dengue virus (DENV1–4). Previous studies have shown that Ae. aegypti in Mexico have a high effective migration rate and that gene flow occurs among populations that are up to 150 km apart. Since 2000, pyrethroids have been widely used for suppression of Ae. aegypti in cities in Mexico. In Yucatan State in particular, pyrethroids have been applied in and around dengue case households creating an opportunity for local selection and evolution of resistance. Herein, we test for evidence of local adaptation by comparing patterns of variation among 27 Ae. aegypti collections at 13 single nucleotide polymorphisms (SNPs): two in the voltage-gated sodium channel gene para known to confer knockdown resistance, three in detoxification genes previously associated with pyrethroid resistance, and eight in putatively neutral loci. The SNPs in para varied greatly in frequency among collections, whereas SNPs at the remaining 11 loci showed little variation supporting previous evidence for extensive local gene flow. Among Ae. aegypti in Yucatan State, Mexico, local adaptation to pyrethroids appears to offset the homogenizing effects of gene flow. PMID:25371186
Wu, Y; Nieuwenhoff, M D; Huygen, F J P M; van der Helm, F C T; Niehof, S; Schouten, A C
2017-05-01
Small nerve fibers regulate local skin blood flow in response to local thermal perturbations. Small nerve fiber function is difficult to assess with classical neurophysiological tests. In this study, a vasomotor response model in combination with a heating protocol was developed to quantitatively characterize the control mechanism of small nerve fibers in regulating skin blood flow in response to local thermal perturbation. The skin of healthy subjects' hand dorsum (n=8) was heated to 42°C with an infrared lamp, and then naturally cooled down. The distance between the lamp and the hand was set to three different levels in order to change the irradiation intensity on the skin and implement three different skin temperature rise rates (0.03°C/s, 0.02°C/s and 0.01°C/s). A laser Doppler imager (LDI) and a thermographic video camera recorded the temporal profile of the skin blood flow and the skin temperature, respectively. The relationship between the skin blood flow and the skin temperature was characterized by a vasomotor response model. The model fitted the skin blood flow response well with a variance accounted for (VAF) between 78% and 99%. The model parameters suggested a similar mechanism for the skin blood flow regulation with the thermal perturbations at 0.03°C/s and 0.02°C/s. But there was an accelerated skin vasoconstriction after a slow heating (0.01°C/s) (p-value<0.05). An attenuation of the skin vasodilation was also observed in four out of the seven subjects during the slow heating (0.01°C/s). Our method provides a promising way to quantitatively assess the function of small nerve fibers non-invasively and non-contact.
Isolated dSph galaxy KKs3 in the local Hubble flow
Karachentsev, I D; Sharina, M E
2015-01-01
We present the SALT spectroscopy of a globular cluster in the center of the nearby isolated dSph galaxy KKs3 situated at a distance of 2.12 Mpc. Its heliocentric radial velocity is 316+-7 km/s that corresponds to V_{LG} = 112 km/s in the Local Group (LG) reference frame. We use its distance and velocity along with the data on other 35 field galaxies in the proximity of the LG to trace the local Hubble flow. Some basic properties of the local field galaxies: their morphology, absolute magnitudes, average surface brightnesses, specific star formation rates, and hydrogen mass-to-stellar mass ratios are briefly discussed. Surprisingly, the sample of the neighboring isolated galaxies displays no signs of compression under the influence of the expanding Local Void.
Locally-rotationally-symmetric Bianchi type-V cosmology with heat flow
Indian Academy of Sciences (India)
C P Singh; A Beesham
2009-10-01
In this paper we present a spatially homogeneous locally-rotationally-symmetric (LRS) Bianchi type-V cosmological model with perfect fluid and heat flow. A general approach is introduced to solve Einstein’s field equations using a law of variation for the mean Hubble parameter, which is related to average scale factor of the model that yields a constant value for the deceleration parameter. Exact solutions that correspond to singular and non-singular models are found with heat flow. The physical constraints on the solution and, in particular, the thermodynamical laws that govern such solutions are discussed in some detail.
Simulation of Local Blood Flow in Human Brain under Altered Gravity
Kim, Chang Sung; Kiris, Cetin; Kwak, Dochan
2003-01-01
In addition to the altered gravitational forces, specific shapes and connections of arteries in the brain vary in the human population (Cebral et al., 2000; Ferrandez et al., 2002). Considering the geometric variations, pulsatile unsteadiness, and moving walls, computational approach in analyzing altered blood circulation will offer an economical alternative to experiments. This paper presents a computational approach for modeling the local blood flow through the human brain under altered gravity. This computational approach has been verified through steady and unsteady experimental measurements and then applied to the unsteady blood flows through a carotid bifurcation model and an idealized Circle of Willis (COW) configuration under altered gravity conditions.
In Situ Local Fracture Flow Measurement by the Double Packer Dilution Test
Englert, A.; Le Borgne, T.; Bour, O.; Klepikova, M.; Lavenant, N.
2011-12-01
For prediction of flow and transport in fractured media, prior estimation of the fracture network is essential, but challenging. Recent developments in hydraulic tomography have shown promising results for understanding connectivities between boreholes. However, as the hydraulic tomographic survey is typically based on the propagation of head only, it becomes a strongly non unique problem. To reduce the non uniqueness of tomographic surveys point conditioning has been found beneficial. Just as well, measurement of local flow in a fracture can serve as point conditioning for hydraulic and tracer tomographic surveys. Nevertheless, only few measurements of local fracture flow have been performed since this type of measurements implies several important technical issues. Dilution test in a packed off interval is a possible method for measuring fracture flow (e.g. Drost et al. 1968, Novakowski et al., 2005). However, a key issue for estimating flow with dilution tests is to ensure a full mixing of the tracer in the packed interval. This is typically done by including a mixing system within the packer. The design of such system can be challenging for deep wells and small diameters. Here, we propose a method where mixing is ensured by a recirculation loop including a surface tank. This method is adapted from the design proposed by Brouyere et al. (2008), who measured dilution in open wells. Dilution is quantified by measuring the concentration in the surface barrel as function of time. Together with the measurement of the circulating flow and the water filled volume in the surface barrel, the measured tracer dilution allows for calculation of the fracture flow. Since the method can be applied using a classical double packer system, it may provide a broader application of local flow measurements in heterogeneous media. We tested the approach on the Ploemeur fractured crystalline rock site. A one meter interval at depth 80 m with a single flowing fracture was isolated with
Improvements for multi-objective flow shop scheduling by Pareto Iterated Local Search
Geiger, Martin Josef
2009-01-01
The article describes the proposition and application of a local search metaheuristic for multi-objective optimization problems. It is based on two main principles of heuristic search, intensification through variable neighborhoods, and diversification through perturbations and successive iterations in favorable regions of the search space. The concept is successfully tested on permutation flow shop scheduling problems under multiple objectives and compared to other local search approaches. While the obtained results are encouraging in terms of their quality, another positive attribute of the approach is its simplicity as it does require the setting of only very few parameters.
HORIZONTAL FLOWS IN ACTIVE REGIONS FROM RING-DIAGRAM AND LOCAL CORRELATION TRACKING METHODS
Energy Technology Data Exchange (ETDEWEB)
Jain, Kiran; Tripathy, S. C.; Komm, R.; Hill, F. [National Solar Observatory, 950 N Cherry Avenue, Tucson, AZ 85719 (United States); Ravindra, B., E-mail: kjain@nso.edu [Indian Institute of Astrophysics, Block 2, Koramangala, Bangaluru, 560034 (India)
2016-01-01
Continuous high-cadence and high spatial resolution Dopplergrams allow us to study subsurface dynamics that may be further extended to explore precursors of visible solar activity on the surface. Since the p-mode power is absorbed in the regions of high magnetic field, the inferences in these regions are often presumed to have large uncertainties. In this paper, using the Dopplergrams from space-borne Helioseismic Magnetic Imager, we compare horizontal flows in a shear layer below the surface and the photospheric layer in and around active regions. The photospheric flows are calculated using the local correlation tracking (LCT) method, while the ring-diagram technique of helioseismology is used to infer flows in the subphotospheric shear layer. We find a strong positive correlation between flows from both methods near the surface. This implies that despite the absorption of acoustic power in the regions of strong magnetic field, the flows inferred from the helioseismology are comparable to those from the surface measurements. However, the magnitudes are significantly different; the flows from the LCT method are smaller by a factor of 2 than the helioseismic measurements. Also, the median difference between the direction of corresponding vectors is 49°.
Local Stable and Unstable Manifolds and Their Control in Nonautonomous Finite-Time Flows
Balasuriya, Sanjeeva
2016-08-01
It is well known that stable and unstable manifolds strongly influence fluid motion in unsteady flows. These emanate from hyperbolic trajectories, with the structures moving nonautonomously in time. The local directions of emanation at each instance in time is the focus of this article. Within a nearly autonomous setting, it is shown that these time-varying directions can be characterised through the accumulated effect of velocity shear. Connections to Oseledets spaces and projection operators in exponential dichotomies are established. Availability of data for both infinite- and finite-time intervals is considered. With microfluidic flow control in mind, a methodology for manipulating these directions in any prescribed time-varying fashion by applying a local velocity shear is developed. The results are verified for both smoothly and discontinuously time-varying directions using finite-time Lyapunov exponent fields, and excellent agreement is obtained.
Energy Technology Data Exchange (ETDEWEB)
Yastremsky, I.A., E-mail: yastremsky@ukr.net
2015-05-15
The relaxation of non-equilibrium redistributions of the magnetization in a model Ni–Fe heterostructure is analyzed on the basis of the Landau–Lifshitz equation with the relaxation terms proposed by Bar'yakhtar. Bar'yakhtar‘s terms account for both the relativistic (local) and exchange (nonlocal) relaxations. It is demonstrated that the role of the nonlocal relaxation term (a spin current flowing between layers) increases for smaller systems. For nanometer-size systems the nonlocal relaxation term significantly enhances the relaxation of the Ni layer magnetization back to equilibrium. The reason of this size dependence is a competition of fast magnetization dynamics, induced by the nonlocal relaxation term near an interface between metals and slow, relativistic dynamics, which occurs at each point of the Ni–Fe heterostructure. This study provides insight in how to achieve an exceptionally fast remagnetization in magnetic heterostructures after laser excitation. - Highlights: • The relaxation of non-equilibrium spin states in a Ni–Fe heterostructure is analyzed. • Both the exchange (nonlocal) and relativistic (local) relaxations are accounted. • The nonlocal relaxation is concurrent with the creation of a spin current. • The role of the spin current increases for thinner metallic layers. • For nanometer-size systems the relaxation is primarily driven by the spin current.
Directory of Open Access Journals (Sweden)
C. Mucha
2002-02-01
Full Text Available Objectives: Muscle blood flow in the forearm of patients with rheuma-toid arthritis and healthy volunteers following treatment with temperature increasingarm baths, mudpacks and short- or decimeter-wave diathermy was studied in thisinvestigation. The aim of the study was to find out the difference of reactive hyperemia between the different temperature methods as well as the influence on theconsensual reaction. Subjects: Eighty patients with rheumatoid arthritis, stage 3 according toSteinbrocker, as well as 80 healthy human subjects had been assigned numerically in the four therapy- and controlgroups. Patients with diseases influencing the peripheral blood flow were excluded. Design: Blood flow was measured by venous occlusion plethysmography in both forearms with the subjects lyingsupine. The application of the local heat therapies had been excluded on the left forearm. The forearm blood flow wasmonitored before heat therapy, directly after as well as in two further 10 minutes intervals. An analysis of variancewas used to determine the influence on blood flow of the response to the heat therapies in patients with rheumatoidarthritis and healthy subjects.Results: Under homogeneous starting conditions and a statistically uniformed high blood flow in rest the reactive values of blood flow on the left-hand side of application and the right consensual side showed high significant differencesbetween all methods of therapy. Differences between the patients and the healthy subjects only showed tendencies withpartially lower reactions, concerning the patients with rheumatoid arthritis. All methods of heat therapy caused a statistically provable consensual reaction that turned out smaller after diathermic methods. Here the post therapeuticreaction of the blood flow on the side of application was also lower or rather shorter. Conclusion: Greater differences of the blood flow in rest between the patients with rheumatoid arthritis and healthysubjects
Insect-Inspired Micropump: Flow in a Tube with Local Contractions
2015-01-01
A biologically-inspired micropumping model in a three-dimensional tube subjected to localized wall constrictions is given in this article. The present study extends our previous pumping model where a 3D channel with a square cross-section is considered. The proposed pumping approach herein applies to tubular geometries and is given to mimic an insect respiration mode, where the tracheal tube rhythmic wall contractions are used/hypothesized to enhance the internal flow transport within the ent...
Farano, Mirko; Cherubini, Stefania; Robinet, Jean-Christophe; De Palma, Pietro
2016-12-01
Subcritical transition in plane Poiseuille flow is investigated by means of a Lagrange-multiplier direct-adjoint optimization procedure with the aim of finding localized three-dimensional perturbations optimally growing in a given time interval (target time). Space localization of these optimal perturbations (OPs) is achieved by choosing as objective function either a p-norm (with p\\gg 1) of the perturbation energy density in a linear framework; or the classical (1-norm) perturbation energy, including nonlinear effects. This work aims at analyzing the structure of linear and nonlinear localized OPs for Poiseuille flow, and comparing their transition thresholds and scenarios. The nonlinear optimization approach provides three types of solutions: a weakly nonlinear, a hairpin-like and a highly nonlinear optimal perturbation, depending on the value of the initial energy and the target time. The former shows localization only in the wall-normal direction, whereas the latter appears much more localized and breaks the spanwise symmetry found at lower target times. Both solutions show spanwise inclined vortices and large values of the streamwise component of velocity already at the initial time. On the other hand, p-norm optimal perturbations, although being strongly localized in space, keep a shape similar to linear 1-norm optimal perturbations, showing streamwise-aligned vortices characterized by low values of the streamwise velocity component. When used for initializing direct numerical simulations, in most of the cases nonlinear OPs provide the most efficient route to transition in terms of time to transition and initial energy, even when they are less localized in space than the p-norm OP. The p-norm OP follows a transition path similar to the oblique transition scenario, with slightly oscillating streaks which saturate and eventually experience secondary instability. On the other hand, the nonlinear OP rapidly forms large-amplitude bent streaks and skips the phases
Marzola, Luca; Raidal, Martti
2016-11-01
Motivated by natural inflation, we propose a relaxation mechanism consistent with inflationary cosmology that explains the hierarchy between the electroweak scale and Planck scale. This scenario is based on a selection mechanism that identifies the low-scale dynamics as the one that is screened from UV physics. The scenario also predicts the near-criticality and metastability of the Standard Model (SM) vacuum state, explaining the Higgs boson mass observed at the Large Hadron Collider (LHC). Once Majorana right-handed neutrinos are introduced to provide a viable reheating channel, our framework yields a corresponding mass scale that allows for the seesaw mechanism as well as for standard thermal leptogenesis. We argue that considering singlet scalar dark matter extensions of the proposed scenario could solve the vacuum stability problem and discuss how the cosmological constant problem is possibly addressed.
Recursive estimation of 3D motion and surface structure from local affine flow parameters.
Calway, Andrew
2005-04-01
A recursive structure from motion algorithm based on optical flow measurements taken from an image sequence is described. It provides estimates of surface normals in addition to 3D motion and depth. The measurements are affine motion parameters which approximate the local flow fields associated with near-planar surface patches in the scene. These are integrated over time to give estimates of the 3D parameters using an extended Kalman filter. This also estimates the camera focal length and, so, the 3D estimates are metric. The use of parametric measurements means that the algorithm is computationally less demanding than previous optical flow approaches and the recursive filter builds in a degree of noise robustness. Results of experiments on synthetic and real image sequences demonstrate that the algorithm performs well.
Directory of Open Access Journals (Sweden)
Tahmina Akhter
2014-01-01
Full Text Available The flow of a compressible fluid with slip through a cylinder with an asymmetric local constriction has been considered both numerically, as well as analytically. For the numerical work, a particle-based method whose dynamics is governed by the multiparticle collision (MPC rule has been used together with a generalized boundary condition that allows for slip at the wall. Since it is well known that an MPC system corresponds to an ideal gas and behaves like a compressible, viscous flow on average, an approximate analytical solution has been derived from the compressible Navier–Stokes equations of motion coupled to an ideal gas equation of state using the Karman–Pohlhausen method. The constriction is assumed to have a polynomial form, and the location of maximum constriction is varied throughout the constricted portion of the cylinder. Results for centerline densities and centerline velocities have been compared for various Reynolds numbers, Mach numbers, wall slip values and flow geometries.
Enhanced toroidal flow stabilization of edge localized modes with increased plasma density
Cheng, Shikui; Zhu, Ping; Banerjee, Debabrata
2017-09-01
Toroidal flow alone is generally thought to have an important influence on tokamak edge pedestal stability, even though theoretical analysis often predicts merely a weak stabilizing effect of toroidal flow on the edge localized modes (ELMs) in experimental parameter regimes. For the first time, we find from two-fluid MHD calculations that such a stabilization, however, can be significantly enhanced by increasing the edge plasma density. Our finding resolves a long-standing mystery whether or how toroidal rotation can indeed have an effective influence on ELMs, and explains why the ELM mitigation and suppression by toroidal rotation are more favorably achieved in higher collisionality regime in recent experiments. The finding suggests a new control scheme on modulating toroidal flow stabilization of ELMs with plasma density, along with a new additional constraint on the optimal level of plasma density for the desired edge plasma conditions.
Measurement of local cerebral blood flow with (/sup 14/C)iodoantipyrine in the mouse
Energy Technology Data Exchange (ETDEWEB)
Jay, T.M.; Lucignani, G.; Crane, A.M.; Jehle, J.; Sokoloff, L.
1988-02-01
Local cerebral blood flow was measured in the mouse by means of the (/sup 14/C)iodoantipyrine method. This method has been previously used in the monkey, dog, cat, and rat, but its application to small mammals such as the mouse requires special attention to potential sources of error. The small size of the mouse brain requires special attention to the rapid removal and freezing of the brain to minimize effects of postmortem diffusion of tracer in the tissue. Because of the relatively low diameter/length ratios of the catheters needed for arterial sampling in small animals, substantial errors can occur in the determination of the time course of the (/sup 14/C)iodoantipyrine concentration in the arterial blood unless corrections for lag time and dead space washout in the catheter are properly applied. Local cerebral blood flow was measured in seven awake mice with appropriate care to minimize these sources of error. The values were found to vary from 48 ml/100 g/min in the corpus callosum to 198 ml/100 g/min in the inferior colliculus. The results demonstrate that the (/sup 14/C)iodoantipyrine method can be used to measure local cerebral blood flow in the mouse and that the values in that species are, in general, somewhat higher than those in the rat.
Cosmic flows and the expansion of the Local Universe from nonlinear phase-space reconstructions
Hess, Steffen
2014-01-01
We investigate the impact of cosmic flows and density perturbations on Hubble constant $H_0$ measurements using nonlinear phase-space reconstructions of the Local Universe (LU). We rely on a set of 25 N-body simulations which are constrained to resemble the LU within distances of about 90 Mpc/h. These have been randomly extended up to volumes enclosing distances of 360 Mpc/h with augmented Lagrangian perturbation theory (=750 simulations), accounting in this way for effects from from larger scales ($\\sigma_{\\rm large}=134$ km/s). We report on Local Group (LG) speed reconstructions, which are compatible with those derived from the CMB-dipole: $|v_{\\rm LG}|=685\\pm137$ km/s. The direction $(l,b)=(260.5\\pm 13.3,39.1\\pm 10.4)^\\circ$ is found to be compatible with observations. We use the CMB-dipole information to estimate the missing large scale bulk flow component, indicating that we miss a closely perpendicular flow with a magnitude corresponding to $1.4 \\sigma_{\\rm large}$. Considering this, our bulk flow estim...
Measurement of local two-phase flow parameters of nanofluids using conductivity double-sensor probe
Directory of Open Access Journals (Sweden)
Park Yu sun
2011-01-01
Full Text Available Abstract A two-phase flow experiment using air and water-based γ-Al2O3 nanofluid was conducted to observe the basic hydraulic phenomenon of nanofluids. The local two-phase flow parameters were measured with a conductivity double-sensor two-phase void meter. The void fraction, interfacial velocity, interfacial area concentration, and mean bubble diameter were evaluated, and all of those results using the nanofluid were compared with the corresponding results for pure water. The void fraction distribution was flattened in the nanofluid case more than it was in the pure water case. The higher interfacial area concentration resulted in a smaller mean bubble diameter in the case of the nanofluid. This was the first attempt to measure the local two-phase flow parameters of nanofluids using a conductivity double-sensor two-phase void meter. Throughout this experimental study, the differences in the internal two-phase flow structure of the nanofluid were identified. In addition, the heat transfer enhancement of the nanofluid can be resulted from the increase of the interfacial area concentration which means the available area of the heat and mass transfer.
Characterizing local forces and rearrangements inside a gravity-driven granular flow
Thackray, Emma; Nordstrom, Kerstin
While the gravity-driven flow of a granular material in a silo geometry can be modeled by the Beverloo equation, the mesoscale-level particle rearrangements and interactions that drive this flow are not well-understood. We have constructed a quasi-two-dimensional system of bidisperse, millimeter-scale disks with photoelastic properties that make force networks within the material visible. The system is contained in an acrylic box with an adjustable bottom opening. We can approach the clogging transition by adjusting this opening and by adding external forcing to the top of the flowing pile. By placing the system between cross-polarizers, we can obtain high-speed video of this system during flow, and extract intensity signals that can be used to identify and quantify localized, otherwise indeterminate forces. We can simultaneously track individual particle motions, which can be used to identify shear transformation zones in the system. We are therefore able to correlate local forces with rearrangements within the system, and characterize the evolution of this interplay on the approach to the clogging transition.
Kinetic Actviation Relaxation Technique
Béland, Laurent Karim; El-Mellouhi, Fedwa; Joly, Jean-François; Mousseau, Normand
2011-01-01
We present a detailed description of the kinetic Activation-Relaxation Technique (k-ART), an off-lattice, self-learning kinetic Monte Carlo algorithm with on-the-fly event search. Combining a topological classification for local environments and event generation with ART nouveau, an efficient unbiased sampling method for finding transition states, k-ART can be applied to complex materials with atoms in off-lattice positions or with elastic deformations that cannot be handled with standard KMC approaches. In addition to presenting the various elements of the algorithm, we demonstrate the general character of k-ART by applying the algorithm to three challenging systems: self-defect annihilation in c-Si, self-interstitial diffusion in Fe and structural relaxation in amorphous silicon.
Tan, C; Liu, W L; Dong, F
2016-06-28
Understanding of flow patterns and their transitions is significant to uncover the flow mechanics of two-phase flow. The local phase distribution and its fluctuations contain rich information regarding the flow structures. A wire-mesh sensor (WMS) was used to study the local phase fluctuations of horizontal gas-liquid two-phase flow, which was verified through comparing the reconstructed three-dimensional flow structure with photographs taken during the experiments. Each crossing point of the WMS is treated as a node, so the measurement on each node is the phase fraction in this local area. An undirected and unweighted flow pattern network was established based on connections that are formed by cross-correlating the time series of each node under different flow patterns. The structure of the flow pattern network reveals the relationship of the phase fluctuations at each node during flow pattern transition, which is then quantified by introducing the topological index of the complex network. The proposed analysis method using the WMS not only provides three-dimensional visualizations of the gas-liquid two-phase flow, but is also a thorough analysis for the structure of flow patterns and the characteristics of flow pattern transition. This article is part of the themed issue 'Supersensing through industrial process tomography'.
Cohen, J.; Shukhman, I. G.; Karp, M.; Philip, J.
2010-10-01
Recent experimental and numerical studies have shown that the interaction between a localized vortical disturbance and the shear of an external base flow can lead to the formation of counter-rotating vortex pairs and hairpin vortices that are frequently observed in wall bounded and free turbulent shear flows as well as in subcritical shear flows. In this paper an analytical-based solution method is developed. The method is capable of following (numerically) the evolution of finite-amplitude localized vortical disturbances embedded in shear flows. Due to their localization in space, the surrounding base flow is assumed to have homogeneous shear to leading order. The method can solve in a novel way the interaction between a general family of unbounded planar homogeneous shear flows and any localized disturbance. The solution is carried out using Lagrangian variables in Fourier space which is convenient and enables fast computations. The potential of the method is demonstrated by following the evolved structures of large amplitude disturbances in three canonical base flows, including simple shear, plane stagnation (extensional) and pure rotation flows, and a general case. The results obtained by the current method for plane stagnation and simple shear flows are compared with the published results. The proposed method could be extended to other flows (e.g. geophysical and rotating flows) and to include periodic disturbances as well.
Horizontal Flows in Active Regions from Ring-diagram and Local Correlation Tracking Methods
Jain, Kiran; Ravindra, B; Komm, R; Hill, F
2015-01-01
Continuous high-cadence and high-spatial resolution Dopplergrams allow us to study sub-surface dynamics that may be further extended to explore precursors of visible solar activity on the surface. Since the p-mode power is absorbed in the regions of high magnetic field, the inferences in these regions are often presumed to have large uncertainties. In this paper, using the Dopplergrams from space-borne Helioseismic Magnetic Imager (HMI), we compare horizontal flows in a shear layer below the surface and the photospheric layer in and around active regions. The photospheric flows are calculated using local correlation tracking (LCT) method while the ring-diagram (RD) technique of helioseismology is used to infer flows in the sub-photospheric shear layer. We find a strong positive correlation between flows from both methods near the surface. This implies that despite the absorption of acoustic power in the regions of strong magnetic field, the flows inferred from the helioseismology are comparable to those from ...
Fluid-structure interaction of complex bodies in two-phase flows on locally refined grids
Angelidis, Dionysios; Shen, Lian; Sotiropoulos, Fotis
2016-11-01
Many real-life flow problems in engineering applications involve fluid-structure interaction (FSI) of arbitrarily complex geometries interacting with free surface flows. Despite the recent significant computational advances, conventional numerical methods are inefficient to resolve the prevailing complex dynamics due to the inherent large disparity of spatial and temporal scales that emerge in the air/water phases of the flow and around rigid bodies. To this end, the new generation 3D, unsteady, unstructured Cartesian incompressible flow solver, developed at the Saint Anthony Falls Laboratory (SAFL), is integrated with a FSI immersed boundary method and is coupled with the level-set formulation. The predictive capabilities of our method to simulate non-linear free surface phenomena, with low computational cost, are significantly improved by locally refining the computational grid in the vicinity of solid boundaries and around the free surface interface. We simulate three-dimensional complex flows involving complex rigid bodies interacting with a free surface both with prescribed body motion and coupled FSI and we investigate breaking wave events. In all the cases, very good agreement with benchmark data is found. This material is based upon work supported by the National Science Foundation (CBET-1509071).
Pajón-Suárez, Pedro; Rojas-Lorenzo, Germán A; Rubayo-Soneira, Jesús; Hernández-Lamoneda, Ramón; Larrégaray, Pascal
2009-12-31
The local relaxation of solid neon subsequent to the impulsive excitation of the NO chromophore to its A(3s sigma) Ryberg state is investigated using molecular dynamics simulations. This study makes use of empirical NO(X,A)-Ne isotropic pair potentials as well as a recently developed ab initio triatomic potential energy surface for the excited state. The role of these interaction potentials is analyzed, including many-body effects. In particular, empirical potentials, designed to reproduce correctly both the NO X-A steady-state absorption and emission bands, are shown to lead to a good description of the subpicosecond relaxation dynamics. The 600 fs expansion of the electronic bubble fairly agrees with experimental data. This relatively long time scale with respect to solid Argon, which was previously attributed to the range of the NO(A)-Ne interaction, is presumably related to the quantum nature of the medium. The time-resolved local relaxation of the Ne solid is understandably intermediate between that of classical solids (e.g., Ar) and that of quantum solids (e.g., H(2)).
Contaminant flow and transport simulation in cracked porous media using locally conservative schemes
Song, Pu
2012-10-25
The purpose of this paper is to analyze some features of contaminant flow passing through cracked porous medium, such as the influence of fracture network on the advection and diffusion of contaminant species, the impact of adsorption on the overall transport of contaminant wastes. In order to precisely describe the whole process, we firstly build the mathematical model to simulate this problem numerically. Taking into consideration of the characteristics of contaminant flow, we employ two partial differential equations to formulate the whole problem. One is flow equation; the other is reactive transport equation. The first equation is used to describe the total flow of contaminant wastes, which is based on Darcy law. The second one will characterize the adsorption, diffusion and convection behavior of contaminant species, which describes most features of contaminant flow we are interested in. After the construction of numerical model, we apply locally conservative and compatible algorithms to solve this mathematical model. Specifically, we apply Mixed Finite Element (MFE) method to the flow equation and Discontinuous Galerkin (DG) method for the transport equation. MFE has a good convergence rate and numerical accuracy for Darcy velocity. DG is more flexible and can be used to deal with irregular meshes, as well as little numerical diffusion. With these two numerical means, we investigate the sensitivity analysis of different features of contaminant flow in our model, such as diffusion, permeability and fracture density. In particular, we study K d values which represent the distribution of contaminant wastes between the solid and liquid phases. We also make omparisons of two different schemes and discuss the advantages of both methods. © 2012 Global Science Press.
Shao, H.; Huang, Y.; Kolditz, O.
2015-12-01
Multiphase flow problems are numerically difficult to solve, as it often contains nonlinear Phase transition phenomena A conventional technique is to introduce the complementarity constraints where fluid properties such as liquid saturations are confined within a physically reasonable range. Based on such constraints, the mathematical model can be reformulated into a system of nonlinear partial differential equations coupled with variational inequalities. They can be then numerically handled by optimization algorithms. In this work, two different approaches utilizing the complementarity constraints based on persistent primary variables formulation[4] are implemented and investigated. The first approach proposed by Marchand et.al[1] is using "local complementary constraints", i.e. coupling the constraints with the local constitutive equations. The second approach[2],[3] , namely the "global complementary constrains", applies the constraints globally with the mass conservation equation. We will discuss how these two approaches are applied to solve non-isothermal componential multiphase flow problem with the phase change phenomenon. Several benchmarks will be presented for investigating the overall numerical performance of different approaches. The advantages and disadvantages of different models will also be concluded. References[1] E.Marchand, T.Mueller and P.Knabner. Fully coupled generalized hybrid-mixed finite element approximation of two-phase two-component flow in porous media. Part I: formulation and properties of the mathematical model, Computational Geosciences 17(2): 431-442, (2013). [2] A. Lauser, C. Hager, R. Helmig, B. Wohlmuth. A new approach for phase transitions in miscible multi-phase flow in porous media. Water Resour., 34,(2011), 957-966. [3] J. Jaffré, and A. Sboui. Henry's Law and Gas Phase Disappearance. Transp. Porous Media. 82, (2010), 521-526. [4] A. Bourgeat, M. Jurak and F. Smaï. Two-phase partially miscible flow and transport modeling in
Institute of Scientific and Technical Information of China (English)
李建初; 蔡胜; 姜玉新; 张缙熙; 王岩青
2001-01-01
Objective. To evaluate the diagnostic criteria for the localization of acquired arteriovenous fistulas (AVFs)by color Doppler flow imaging (CDFI) based on the features of their hemodynamic changes.Methods. The shape and hemodynamic changes of involved vessels which could be helpful to localize thesites of fistulas were studied according to the observation of 10 cases of acquired AVFs.Results. The s tes of the fistulas could be shown by two-dimensional ultrasonography and color flow imagingin 40% and 80% tases, respectively. In all cases, turbulent high-velocity flow was present at the sites of thefistulas, low resistant flow was present in the arteries proximal to the fistulas, and artery-like flow was detected inthe veins.Conclusion. C OFt was accurate for the localization of acquired AVFs, which were mainly localized by theirhemodynamic changes shown by pulse Doppler ultrasound.``
Energy Technology Data Exchange (ETDEWEB)
Berry, St
2000-07-01
This experimental study of the magnetic field-temperature phase diagram and of the vortex dynamics in high- T{sub c} superconductors focuses on Bismuth-based cuprates: Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8}. In type-II superconductors, mixed state characterized by the presence of vortices (quanta of magnetic flux) is divided by a transition line determined by two features of magnetization loops. For T > 40 K, magnetization loops vs applied field show a step evidence of a first order transition. From 20 to 40 K, a second peak replacing the step correspond to an abrupt increase of irreversibility interpreted as a bulk current. We want to understand the nature of the second peak (thermodynamic or nonequilibrium property) and separate phenomena contributing to irreversibility (flux pinning, geometrical or surface effects). Magnetic measurement techniques are nondestructive and have a resolution of few microns. Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8} single crystals are optimized by localizing defectives regions with a magneto-optic technique for flux imaging and elimination of these regions with a wire saw. Local magnetization loops and relaxation measurements performed with a microscopic Hall probe array allow to distinguish irreversibility sources. The shape of induction profiles indicates which current dominate between surface current and bulk pinning induced current. Two crossover with time and a direct observation of two phases coexistence in induction profiles enlighten phenomena in play. The measured electric field-current density characteristics lead to barrier energy U(j) controlling thermally activated flux motion. Three relations (U(j) (surface, bulk low and high field) explain second peak. (author)
Receptivity of plane Poiseuille flow to local micro-vibration disturbance on wall
Directory of Open Access Journals (Sweden)
Wei-dong CAO
2015-04-01
Full Text Available The receptivity of plane Poiseuille flow to local single-period micro-vibration disturbances with different phases at the top and bottom walls was investigated through direct numerical simulation of three-dimensional incompressible Navier-Stokes equations. Results show that the disturbance presents a symmetrical distribution in the spanwise direction when the micro-vibration on the wall ends, and the initial disturbance velocities and spatial distribution of the disturbance structure are different at the top and bottom walls. The disturbance’s velocity, amplitude, and high- and low-speed streaks increase with time, and the amplitude of streamwise disturbance velocity is larger than those of spanwise and vertical disturbance velocities. However, no significant Tollmien-Schlichting wave was found in the flow field. The number of disturbance vortex cores gradually increases with the disturbance area. High-speed disturbance fluid concentrates near the wall and its normal velocity largely points to the wall, while low-speed disturbance fluid largely deviates from the wall. Furthermore, the streamwise velocity profiles near the top and bottom walls both become plump because of the existence of the disturbances, and the streamwise velocity profiles show a trend of evolving into turbulent velocity profiles. The shear stress near the wall increases significantly. The local micro-vibration disturbance on the wall in plane Poiseuille flow can induce the development of a structure similar to turbulent spots.
Metzger, H P
1989-01-01
The combined method of hydrogen inhalation and local hydrogen production enable the determination of hepatic blood flow (HBF) and local hepatic blood flow (LHBF). LHBF was registered within a small superficial tissue volume of 0.5 mm in diameter by means of a multi-wire electrode having 200 microns producing and 100 microns measuring wires arranged within less than 300 microns distance between the measuring wires. The feeding current for hydrogen production was 1 microA, the potential less than 10 V. The clearance in response to inhalation was registered by means of the same measuring electrodes within the same tissue volume. Spontaneously breathing rats (Wistar-Frömter strain, 180-230 g bw, N = 19, ketamin-xylazine anesthesia, artificial respiration) showed the following flow values: HBF +/- SD = 0.50 +/- 0.26 ml/g.min, n = 48 registrations; LHBF +/- SD = 4.66 +/- 2.13 ml/g.min, n = 43. The validity of the combined method is demonstrated in the LHBF/HBF graph which summarizes the data of hemorrhagic and control animals, m = 0.1 and yo = 0.001. The correlation coefficient of r = 0.685 shows a reasonable correlation of the combined data despite the wide scattering of the individual values.
Global-local nonlinear model reduction for flows in heterogeneous porous media
AlOtaibi, Manal
2015-08-01
In this paper, we combine discrete empirical interpolation techniques, global mode decomposition methods, and local multiscale methods, such as the Generalized Multiscale Finite Element Method (GMsFEM), to reduce the computational complexity associated with nonlinear flows in highly-heterogeneous porous media. To solve the nonlinear governing equations, we employ the GMsFEM to represent the solution on a coarse grid with multiscale basis functions and apply proper orthogonal decomposition on a coarse grid. Computing the GMsFEM solution involves calculating the residual and the Jacobian on a fine grid. As such, we use local and global empirical interpolation concepts to circumvent performing these computations on the fine grid. The resulting reduced-order approach significantly reduces the flow problem size while accurately capturing the behavior of fully-resolved solutions. We consider several numerical examples of nonlinear multiscale partial differential equations that are numerically integrated using fully-implicit time marching schemes to demonstrate the capability of the proposed model reduction approach to speed up simulations of nonlinear flows in high-contrast porous media.
Mode decomposition methods for flows in high-contrast porous media. Global-local approach
Ghommem, Mehdi
2013-11-01
In this paper, we combine concepts of the generalized multiscale finite element method (GMsFEM) and mode decomposition methods to construct a robust global-local approach for model reduction of flows in high-contrast porous media. This is achieved by implementing Proper Orthogonal Decomposition (POD) and Dynamic Mode Decomposition (DMD) techniques on a coarse grid computed using GMsFEM. The resulting reduced-order approach enables a significant reduction in the flow problem size while accurately capturing the behavior of fully-resolved solutions. We consider a variety of high-contrast coefficients and present the corresponding numerical results to illustrate the effectiveness of the proposed technique. This paper is a continuation of our work presented in Ghommem et al. (2013) [1] where we examine the applicability of POD and DMD to derive simplified and reliable representations of flows in high-contrast porous media on fully resolved models. In the current paper, we discuss how these global model reduction approaches can be combined with local techniques to speed-up the simulations. The speed-up is due to inexpensive, while sufficiently accurate, computations of global snapshots. © 2013 Elsevier Inc.
Local and global stability analysis of compressible channel flow over wall impedance
Rahbari, Iman; Scalo, Carlo
2016-11-01
The stability properties of compressible channel flow over porous walls is investigated via Local (LSA) and Global Stability Analysis (GSA) for laminar and turbulent base flows at Reb = 6900 and Mb = 0 . 85 , 1 . 5 , 3 . 5 . Linearized Navier-Stokes equations are discretized via a sixth-order fully collocated Padé scheme leading to a Generalized Eigenvalue Problem (GEVP) solved using a parallel sparse eigenvalue solver based on the shift-invert Arnoldi method. The adopted discretization guarantees spectral-like spatial resolution. Fully sparsity of the system is retained via implicit calculation of the numerical derivatives ensuring computational efficiency on multi-processor platforms. The global eigen-spectrum exhibits various sets of modes grouped by streamwise wave-numbers, which are captured via LSA, as well as global acoustic modes. Consistently with the findings of C. Scalo et al., two unstable local modes are found for sufficiently high wall permeability: one standing-wave-like and one representing a bulk pressure mode, both generating additional Reynolds shear stresses concentrated in the viscous sublayer region. Stability properties of the flow over non-modal streamwise impedance distributions are also discussed.
Yang, Fann-Wei; You, Yu-Siang; Feng, Shih-Wei
2017-04-01
Based on time-resolved electroluminescence (TREL) measurement, more efficient carrier injection, transport, relaxation, and recombination associated with a stronger carrier localization and a low polarization effect in a nonpolar m-plane InGaN/GaN light emitting diode ( m-LED), compared with those in a polar c-LED, are reported. With a higher applied voltage in the c-LED, decreasing response time and rising time improve device performance, but a longer recombination time degrades luminescence efficiency. By using an m-LED with a stronger carrier localization and a low polarization effect, shorter response, rising, and recombination times provide more efficient carrier injection, transport, relaxation, and recombination. These advantages can be realized for high-power and high-speed flash LEDs. In addition, with a weaker carrier localization and a polarization effect in the c-LED, the slower radiative and faster nonradiative decay rates at a larger applied voltage result in the slower total decay rate and the lower luminescence efficiency. For the m-LED at a higher applied voltage, a slow decreasing nonradiative decay rate is beneficial to device performance, while the more slowly decreasing and overall faster radiative decay rate of the m-LED than that of the c-LED demonstrates that a stronger carrier localization and a reduced polarization effect are efficient for carrier recombination. The resulting recombination dynamics are correlated with the device characteristics and performance of the c- and m-LEDs.
Insect-Inspired Micropump: Flow in a Tube with Local Contractions
Directory of Open Access Journals (Sweden)
Yasser Aboelkassem
2015-08-01
Full Text Available A biologically-inspired micropumping model in a three-dimensional tube subjected to localized wall constrictions is given in this article. The present study extends our previous pumping model where a 3D channel with a square cross-section is considered. The proposed pumping approach herein applies to tubular geometries and is given to mimic an insect respiration mode, where the tracheal tube rhythmic wall contractions are used/hypothesized to enhance the internal flow transport within the entire respiration network. The method of regularized Stokeslets-mesh-free computations is used to reconstruct the flow motions induced by the wall movements and to calculate the time-averaged net flow rate. The time-averaged net flow rates from both the tube and channel models are compared. Results have shown that an inelastic tube with at least two contractions forced to move with a specific time lag protocol can work as a micropump. The system is simple and expected to be useful in many biomedical applications.
Directory of Open Access Journals (Sweden)
J.R.F. Arruda
1998-01-01
Full Text Available This paper presents an experimental method especially adapted for the computation of structural power flow using spatially dense vibration data measured with scanning laser Doppler vibrometers. In the proposed method, the operational deflection shapes measured over the surface of the structure are curve-fitted using a two-dimensional discrete Fourier series approximation that minimizes the effects of spatial leakage. From the wavenumber-frequency domain data thus obtained, the spatial derivatives that are necessary to determine the structural power flow are easily computed. Divergence plots are then obtained from the computed intensity fields. An example consisting of a rectangular aluminum plate supported by rubber mounts and excited by a point force is used to appraise the proposed method. The proposed method is compared with more traditional finite difference methods. The proposed method was the only to allow the localization of the energy source and sinks from the experimental divergence plots.
A New Spectral Local Linearization Method for Nonlinear Boundary Layer Flow Problems
Directory of Open Access Journals (Sweden)
S. S. Motsa
2013-01-01
Full Text Available We propose a simple and efficient method for solving highly nonlinear systems of boundary layer flow problems with exponentially decaying profiles. The algorithm of the proposed method is based on an innovative idea of linearizing and decoupling the governing systems of equations and reducing them into a sequence of subsystems of differential equations which are solved using spectral collocation methods. The applicability of the proposed method, hereinafter referred to as the spectral local linearization method (SLLM, is tested on some well-known boundary layer flow equations. The numerical results presented in this investigation indicate that the proposed method, despite being easy to develop and numerically implement, is very robust in that it converges rapidly to yield accurate results and is more efficient in solving very large systems of nonlinear boundary value problems of the similarity variable boundary layer type. The accuracy and numerical stability of the SLLM can further be improved by using successive overrelaxation techniques.
Tissue motion tracking at the edges of a radiation treatment field using local optical flow analysis
Teo, P. T.; Pistorius, S.
2014-03-01
This paper investigates the feasibility and accuracy of tracking the motion of an intruding organ-at-risk (OAR) at the edges of a treatment field using a local optical flow analysis of electronic portal images. An intruding OAR was simulated by modifying the portal images obtained by irradiating a programmable phantom's lung tumour. A rectangular treatment aperture was assumed and the edges of the beam's eye view (BEV) were partitioned into clusters/grids according to the width of the multi-leaf collimators (MLC). The optical flow velocities were calculated and the motion accuracy in these clusters was analysed. A velocity error of 0.4 ± 1.4 mm/s with a linearity of 1.04 for tracking an object intruding at 10mm/s (max) was obtained.
Madeo, Angela; Neff, Patrizio; Ghiba, Ionel-Dumitrel; Rosi, Giuseppe
2016-10-01
In this paper we derive, by means of a suitable least action principle, the duality jump conditions to be imposed at surfaces of discontinuity of the material properties in non-dissipative, linear-elastic, isotropic, Mindlin's and relaxed micromorphic media, respectively. The introduced theoretical framework allows the transparent set-up of different types of micro-macro connections which are intrinsically compatible with the governing bulk equations. To illustrate the interest of the many introduced jump conditions, we focus on the case of an interface between a classical Cauchy continuum on one side and a relaxed micromorphic one on the other side. As expected, we find a complete reflection in the frequency intervals for which band-gaps are known to occur in the relaxed micromorphic continuum and precise microstructure-related reflective patterns are identified. We repeat a similar study for analogous connections between a classical Cauchy continuum and a Mindlin's micromorphic one and we show that the reflective properties of the considered interfaces are drastically modified due to the fact that band-gaps are not allowed in standard Mindlin's micromorphic media. The present work opens the way towards the possibility of conceiving complex metastructures in which band-gap metamaterials and classical materials are coupled together to produce structures with completely new and unorthodox properties with respect to wave propagation, transmission and reflection. Last, but not least, indirect measurements of the material coefficients of the relaxed micromorphic model based upon real experiments of reflection and transmission in band-gap metamaterials are uncovered by the present work which makes them finally realizable in the short term.
Localized reactive flow in carbonate rocks: Core-flood experiments and network simulations
Wang, Haoyue; Bernabé, Yves; Mok, Ulrich; Evans, Brian
2016-11-01
We conducted four core-flood experiments on samples of a micritic, reef limestone from Abu Dhabi under conditions of constant flow rate. The pore fluid was water in equilibrium with CO2, which, because of its lowered pH, is chemically reactive with the limestone. Flow rates were between 0.03 and 0.1 mL/min. The difference between up and downstream pore pressures dropped to final values ≪1 MPa over periods of 3-18 h. Scanning electron microscope and microtomography imaging of the starting material showed that the limestone is mostly calcite and lacks connected macroporosity and that the prevailing pores are few microns large. During each experiment, a wormhole formed by localized dissolution, an observation consistent with the decreases in pressure head between the up and downstream reservoirs. Moreover, we numerically modeled the changes in permeability during the experiments. We devised a network approach that separated the pore space into competing subnetworks of pipes. Thus, the problem was framed as a competition of flow of the reactive fluid among the adversary subnetworks. The precondition for localization within certain time is that the leading subnetwork rapidly becomes more transmissible than its competitors. This novel model successfully simulated features of the shape of the wormhole as it grew from few to about 100 µm, matched the pressure history patterns, and yielded the correct order of magnitude of the breakthrough time. Finally, we systematically studied the impact of changing the statistical parameters of the subnetworks. Larger mean radius and spatial correlation of the leading subnetwork led to faster localization.
Local pressure gradients due to incipience of boiling in subcooled flows
Energy Technology Data Exchange (ETDEWEB)
Ruggles, A.E.; McDuffee, J.L. [Univ. of Tennessee, Knoxville, TN (United States)
1995-09-01
Models for vapor bubble behavior and nucleation site density during subcooled boiling are integrated with boundary layer theory in order to predict the local pressure gradient and heat transfer coefficient. Models for bubble growth rate and bubble departure diameter are used to scale the movement of displaced liquid in the laminar sublayer. An added shear stress, analogous to a turbulent shear stress, is derived by considering the liquid movement normal to the heated surface. The resulting mechanistic model has plausible functional dependence on wall superheat, mass flow, and heat flux and agrees well with data available in the literature.
Flow past superhydrophobic surfaces with cosine variation in local slip length
Asmolov, Evgeny S; Harting, Jens; Vinogradova, Olga I
2012-01-01
Anisotropic super-hydrophobic surfaces have the potential to greatly reduce drag and enhance mixing phenomena in microfluidic devices. Recent work has focused mostly on cases of super-hydrophobic stripes. Here, we analyze a relevant situation of cosine variation of the local slip length. We derive approximate formulae for maximal (longitudinal) and minimal (transverse) directional effective slip lengths that are in good agreement with the exact numerical solution and lattice-Bolzmann simulations for any surface slip fraction. The cosine texture can provide a very large effective (forward) slip, but it was found to be less efficient in generating a transverse flow as compared to super-hydrophobic stripes.
Local parametric instability near elliptic points in vortex flows under shear deformation
Energy Technology Data Exchange (ETDEWEB)
Koshel, Konstantin V., E-mail: kvkoshel@poi.dvo.ru [Pacific Oceanological Institute, FEB RAS, 43, Baltiyskaya Street, Vladivostok 690041 (Russian Federation); Institute of Applied Mathematics, FEB RAS, 7, Radio Street, Vladivostok 690022 (Russian Federation); Far Eastern Federal University, 8, Sukhanova Street, Vladivostok 690950 (Russian Federation); Ryzhov, Eugene A., E-mail: ryzhovea@gmail.com [Pacific Oceanological Institute, FEB RAS, 43, Baltiyskaya Street, Vladivostok 690041 (Russian Federation)
2016-08-15
The dynamics of two point vortices embedded in an oscillatory external flow consisted of shear and rotational components is addressed. The region associated with steady-state elliptic points of the vortex motion is established to experience local parametric instability. The instability forces the point vortices with initial positions corresponding to the steady-state elliptic points to move in spiral-like divergent trajectories. This divergent motion continues until the nonlinear effects suppress their motion near the region associated with the steady-state separatrices. The local parametric instability is then demonstrated not to contribute considerably to enhancing the size of the chaotic motion regions. Instead, the size of the chaotic motion region mostly depends on overlaps of the nonlinear resonances emerging in the perturbed system.
Akbarzadeh, Pooria
2016-05-12
In this paper, magneto-hydrodynamic blood flows through porous arteries are numerically simulated using a locally modified homogenous nanofluids model. Blood is taken into account as the third-grade non-Newtonian fluid containing nanoparticles. In the modified nanofluids model, the viscosity, density, and thermal conductivity of the solid-liquid mixture (nanofluids) which are commonly utilized as an effective value, are locally combined with the prevalent single-phase model. The modified governing equations are solved numerically using Newton's method and a block tridiagonal matrix solver. The results are compared to the prevalent nanofluids single-phase model. In addition, the efficacies of important physical parameters such as pressure gradient, Brownian motion parameter, thermophoresis parameter, magnetic-field parameter, porosity parameter, and etc. on temperature, velocity and nanoparticles concentration profiles are examined.
Wang, Xiao-Dong; Duan, Yuan-Yuan; Yan, Wei-Mon
Three-dimensional models of proton exchange membrane fuel cells (PEMFCs) with parallel and interdigitated flow channel designs were developed including the effects of liquid water formation on the reactant gas transport. The models were used to investigate the effects of the flow channel area ratio and the cathode flow rate on the cell performance and local transport characteristics. The results reveal that at high operating voltages, the cell performance is independent of the flow channel designs and operating parameters, while at low operating voltages, both significantly affect cell performance. For the parallel flow channel design, as the flow channel area ratio increases the cell performance improves because fuel is transported into the diffusion layer and the catalyst layer mainly by diffusion. A larger flow channel area ratio increases the contact area between the fuel and the diffusion layer, which allows more fuel to directly diffuse into the porous layers to participate in the electrochemical reaction which enhances the reaction rates. For the interdigitated flow channel design, the baffle forces more fuel to enter the cell and participate in the electrochemical reaction, so the flow channel area ratio has less effect. Forced convection not only increases the fuel transport rates but also enhances the liquid water removal, thus interdigitated flow channel design has higher performance than the parallel flow channel design. The optimal performance for the interdigitated flow channel design occurs for a flow channel area ratio of 0.4. The cell performance also improves as the cathode flow rate increases. The effects of the flow channel area ratio and the cathode flow rate on cell performance are analyzed based on the local current densities, oxygen flow rates and liquid water concentrations inside the cell.
Energy Technology Data Exchange (ETDEWEB)
Wang, Xiao-Dong [Department of Thermal Engineering, School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Duan, Yuan-Yuan [Key Laboratory of Thermal Science and Power Engineering of MOE, Tsinghua University, Beijing 100084 (China); Yan, Wei-Mon [Department of Mechatronic Engineering, Huafan University, Shih-Ting 22305 (China)
2007-10-11
Three-dimensional models of proton exchange membrane fuel cells (PEMFCs) with parallel and interdigitated flow channel designs were developed including the effects of liquid water formation on the reactant gas transport. The models were used to investigate the effects of the flow channel area ratio and the cathode flow rate on the cell performance and local transport characteristics. The results reveal that at high operating voltages, the cell performance is independent of the flow channel designs and operating parameters, while at low operating voltages, both significantly affect cell performance. For the parallel flow channel design, as the flow channel area ratio increases the cell performance improves because fuel is transported into the diffusion layer and the catalyst layer mainly by diffusion. A larger flow channel area ratio increases the contact area between the fuel and the diffusion layer, which allows more fuel to directly diffuse into the porous layers to participate in the electrochemical reaction which enhances the reaction rates. For the interdigitated flow channel design, the baffle forces more fuel to enter the cell and participate in the electrochemical reaction, so the flow channel area ratio has less effect. Forced convection not only increases the fuel transport rates but also enhances the liquid water removal, thus interdigitated flow channel design has higher performance than the parallel flow channel design. The optimal performance for the interdigitated flow channel design occurs for a flow channel area ratio of 0.4. The cell performance also improves as the cathode flow rate increases. The effects of the flow channel area ratio and the cathode flow rate on cell performance are analyzed based on the local current densities, oxygen flow rates and liquid water concentrations inside the cell. (author)
Directory of Open Access Journals (Sweden)
Yu Zhang
2015-10-01
Full Text Available In this article, we begin with the non-homogeneous model for the non-differentiable heat flow, which is described using the local fractional vector calculus, from the first law of thermodynamics in fractal media point view. We employ the local fractional variational iteration algorithm II to solve the fractal heat equations. The obtained results show the non-differentiable behaviors of temperature fields of fractal heat flow defined on Cantor sets.
Vinnitskiĭ, L I; Piuskiulian, L I; Zhidkov, I L; Demurov, E A
1981-04-01
The time course of the local tissue blood flow in the small intestinal graft used for esophagoplasty was studied in 54 acute experiments on rabbits exposed to hyperbaric oxygenation (1 hour, 2 ata). It has been shown that hyperbaric oxygenation prevents alterations in the local tissue blood flow in the small intestine. This fact provides evidence in favour of hyperbaric oxygenation application under clinical conditions.
MASS TRANSFER CONTROL OF A BACKWARD-FACING STEP FLOW BY LOCAL FORCING- EFFECT OF REYNOLDS NUMBER
Directory of Open Access Journals (Sweden)
Zouhaier MEHREZ
2011-01-01
Full Text Available The control of fluid mechanics and mass transfer in separated and reattaching flow over a backward-facing step by a local forcing, is studied using Large Eddy Simulation (LES.To control the flow, the local forcing is realized by a sinusoidal oscillating jet at the step edge. The Reynolds number is varied in the range 10000 ≤ Re≤ 50000 and the Schmidt number is fixed at 1.The found results show that the flow structure is modified and the local mass transfer is enhanced by the applied forcing. The observed changes depend on the Reynolds number and vary with the frequency and amplitude of the local forcing. For the all Reynolds numbers, the largest recirculation zone size reduction is obtained at the optimum forcing frequency St = 0.25. At this frequency the local mass transfer enhancement attains the maximum.
Standardization of a device for continuous observation of local flow in tissue.
Vermariën, H; Coremans, J; Vereecke, F; Bourgain, R H
1986-01-01
As our experimental set-up for continuous recording of local blood flow in the cerebral cortex of a laboratory animal with chronically implanted miniature thermistors (based on the heat clearance principle) gave satisfactory results for routine tests of pharmacological agents during anoxia, hypoxia, hypercapnia, etc., experiments, we intended to standardize the apparatus, to increase accuracy, to facilitate calibration and to enhance flexibility with respect to the operator. The exponential aspect in the thermistor resistance/temperature characteristic is linearized by applying a logarithmic converter in the thermistor amplifier. Calibration to the centigrade temperature scale is performed by a three digit numerical adaptation of two thermistor constants determined in a thermostatic-cryostatic bath (zero and slope). A heating power measuring circuit is provided so that the dissipation constant of the thermistor implanted in tissue can be obtained and the thermal conductivity of the tissue can be estimated. Linearity of the relation between cooling of the heated thermistor and local flow, for small cooling values as they are registered in vivo, is still being investigated.
Shear localization and effective wall friction in a wall bounded granular flow
Directory of Open Access Journals (Sweden)
Artoni Riccardo
2017-01-01
Full Text Available In this work, granular flow rheology is investigated by means of discrete numerical simulations of a torsional, cylindrical shear cell. Firstly, we focus on azimuthal velocity profiles and study the effect of (i the confining pressure, (ii the particle-wall friction coefficient, (iii the rotating velocity of the bottom wall and (iv the cell diameter. For small cell diameters, azimuthal velocity profiles are nearly auto-similar, i.e. they are almost linear with the radial coordinate. Different strain localization regimes are observed : shear can be localized at the bottom, at the top of the shear cell, or it can be even quite distributed. This behavior originates from the competition between dissipation at the sidewalls and dissipation in the bulk of the system. Then we study the effective friction at the cylindrical wall, and point out the strong link between wall friction, slip and fluctuations of forces and velocities. Even if the system is globally below the sliding threshold, force fluctuations trigger slip events, leading to a nonzero wall slip velocity and an effective wall friction coefficient different from the particle-wall one. A scaling law was found linking slip velocity, granular temperature in the main flow direction and effective friction. Our results suggest that fluctuations are an important ingredient for theories aiming to capture the interface rheology of granular materials.
Temperature relaxation in dense plasma mixtures
Faussurier, Gérald; Blancard, Christophe
2016-09-01
We present a model to calculate temperature-relaxation rates in dense plasma mixtures. The electron-ion relaxation rates are calculated using an average-atom model and the ion-ion relaxation rates by the Landau-Spitzer approach. This method allows the study of the temperature relaxation in many-temperature electron-ion and ion-ion systems such as those encountered in inertial confinement fusion simulations. It is of interest for general nonequilibrium thermodynamics dealing with energy flows between various systems and should find broad use in present high energy density experiments.
Energy Technology Data Exchange (ETDEWEB)
Lindholm, Paula, E-mail: paula.lindholm@tyks.f [Department of Oncology and Radiotherapy, Turku University Hospital, Turku FI-20521 (Finland); Turku PET Centre, Turku (Finland); Sutinen, Eija [Department of Oncology and Radiotherapy, Turku University Hospital, Turku FI-20521 (Finland); Turku PET Centre, Turku (Finland); Oikonen, Vesa [Turku PET Centre, Turku (Finland); Mattila, Kimmo [Department of Radiology, Turku University Hospital, Turku FI-20521 (Finland); Tarkkanen, Maija [Department of Oncology, Helsinki University Central Hospital, Helsinki (Finland); Kallajoki, Markku [Department of Pathology, Turku University Hospital, Turku FI-20521 (Finland); Aro, Hannu [Department of Orthopaedic Surgery, Turku University Hospital, Turku FI-20521 (Finland); Boehling, Tom [Department of Pathology, Helsinki University Central Hospital, Helsinki (Finland); Kivioja, Aarne [Department of Orthopaedic Surgery, Helsinki University Central Hospital, Helsinki, FI-00029 (Finland); Elomaa, Inkeri [Department of Oncology, Helsinki University Central Hospital, Helsinki (Finland); Minn, Heikki [Department of Oncology and Radiotherapy, Turku University Hospital, Turku FI-20521 (Finland); Turku PET Centre, Turku (Finland)
2011-02-15
Introduction: Little is known about blood flow in sarcomas. Our purpose was to study glucose metabolism and blood flow in untreated localized musculoskeletal tumors of the extremities using [{sup 18}F]fluorodeoxyglucose (FDG), oxygen-15 labeled water ([15O]H{sub 2}O) and positron emission tomography (PET). Methods: Six patients with high-grade osteosarcoma (OS), two with soft-tissue sarcoma (STS) and one with aneurysmal bone cyst had PET studies with [15O]H{sub 2}O and FDG. Arterial blood sampling and autoradiography calculation method were used to define blood flow as milliliters per 100 g times minutes. Tumor FDG uptake was measured as standardized uptake values (SUVs) and regional metabolic rates for FDG (rMRFDG). Two patients also had FDG PET studies during (one patient) and after (two patients) preoperative chemotherapy. All patients underwent dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). The PET findings were compared with the clinical follow-up data and results of DCE-MRI. Results: Blood flow in bone tumors was 31.7-75.2 ml/(100 gxmin) and in STS 9.0-45.9 ml/(100 gxmin). [{sup 18}F]-Fluorodeoxyglucose uptake and rMRFDG in untreated bone tumors were 5.4-18.4 and 10.9-57.4 {mu}mol/100 g/min, respectively. [{sup 18}F]-Fluorodeoxyglucose uptake and rMRFDG in STS were 2.6-11.5 and 5.6-32.2 {mu}mol/100 g/min, respectively. Four of five sarcomas with SUV>9.0 have already relapsed. High blood flow in untreated OS was related to long overall survival, while the predictive power of glucose metabolism was less apparent. Good histopathological response to therapy was not associated with long survival. Conclusions: Measurement of blood flow in musculoskeletal tumors appears to be feasible by PET and [{sup 15}O]H{sub 2}O. The influence of tumor blood flow and glucose metabolism on the final outcome in sarcoma is variable and needs further research.
Local Entropy Production in Turbulent Shear Flows: A Tool for Evaluating Heat Transfer Performance
Institute of Scientific and Technical Information of China (English)
H. HERWIG; F. KOCK
2006-01-01
Performance evaluation of heat transfer devices can be based on the overall entropy production in these devices.In our study we therefore provide equations for the systematic and detailed determination of local entropy production due to dissipation of mechanical energy and due to heat conduction, both in turbulent flows. After turbulence modeling has been incorporated for the fluctuating parts the overall entropy production can be determined by integration with respect to the whole flow domain. Since, however, entropy production rates show very steep gradients close to the wall, numerical solutions are far more effective with wall functions for the entropy production terms. These wall functions are mandatory when high Reynolds number turbulence models are used. For turbulent flow in a pipe with an inserted twisted tape as heat transfer promoter it is shown that based on the overall entropy production rate a clear statement from a thermodynamic point of view is possible. For a certain range of twist strength there is a decrease in overall entropy production compared to the case without insert. Also, the optimum twist strength can be determined. This information is unavailable when only pressure drop and heat transfer data are given.
Nonlinear deformation and localized failure of bacterial streamers in creeping flows
Biswas, Ishita; Ghosh, Ranajay; Sadrzadeh, Mohtada; Kumar, Aloke
2016-08-01
We investigate the failure of bacterial floc mediated streamers in a microfluidic device in a creeping flow regime using both experimental observations and analytical modeling. The quantification of streamer deformation and failure behavior is possible due to the use of 200 nm fluorescent polystyrene beads which firmly embed in the extracellular polymeric substance (EPS) and act as tracers. The streamers, which form soon after the commencement of flow begin to deviate from an apparently quiescent fully formed state in spite of steady background flow and limited mass accretion indicating significant mechanical nonlinearity. This nonlinear behavior shows distinct phases of deformation with mutually different characteristic times and comes to an end with a distinct localized failure of the streamer far from the walls. We investigate this deformation and failure behavior for two separate bacterial strains and develop a simplified but nonlinear analytical model describing the experimentally observed instability phenomena assuming a necking route to instability. Our model leads to a power law relation between the critical strain at failure and the fluid velocity scale exhibiting excellent qualitative and quantitative agreeing with the experimental rupture behavior.
Analysis of nuclear localization of interleukin-1 family cytokines by flow cytometry.
Ross, Ralf; Grimmel, Jan; Goedicke, Sybelle; Möbus, Anna M; Bulau, Ana-Maria; Bufler, Philip; Ali, Shafaqat; Martin, Michael U
2013-01-31
The dual function cytokines IL-1α, IL-33 and IL-37 are members of the IL-1 cytokine family. Besides of being able to bind to their cognate receptors on target cells, they can act intracellularly in the producing cell. All three are able to translocate to the nucleus and have been discussed to affect gene expression. In order to compare and quantitate nuclear translocation of these IL-1 family members we established a robust technique which enables to measure nuclear localization on a single cell level by flow cytometry. Vectors encoding fusion proteins of different IL-1 family members with enhanced green fluorescent protein were cloned and cell lines transiently transfected with these. Fluorescent fusion proteins in intact cells or in isolated nuclei were detected subsequently by fluorescence microscopy and flow cytometry, respectively. Depending on the cellular system, cells and nuclei were distinguishable by flow cytometry in forward scatter/sideward scatter. Fluorescent fusion proteins were detectable in isolated nuclei up to three days following preparation. Signal intensity of fusion proteins of IL-33 and IL-37 in isolated nuclei but not of IL-1α, was markedly increased by fixation with paraformaldehyde, directly following cell lysis, indicating that IL-1α binds stronger to nuclear structures than IL-33 and IL-37. Nuclear translocation of fluorescent IL-37 fusion proteins in a stably transfected RAW264.7 mouse macrophage cell line required stimulation with lipopolysaccharide. Applying this method we demonstrated that a prolonged lag phase of more than 15h before LPS-stimulated nuclear translocation was detected. In summary, we present a robust method to analyze and quantitate nuclear localization of IL-1 cytokine family members. Copyright © 2012 Elsevier B.V. All rights reserved.
Institute of Scientific and Technical Information of China (English)
YangDu; MingDaoXin
1999-01-01
This paper developed a new type of three dimensional inner microfin tube,The experimental results of the flow patterns for the horizontal condensation inside these tubes are reported in the paper,The flow patterns for the hirizontal condensation inside the new made tubes are divided into annular flow stratified flow and intermittent flow within the test conditions.The experiments of the local heat transfer coefficients for the different flow patterns have been systematically caried out ,The experiments of the local heat transfer coefficients changing with the vapor dryness fraction have also been carried out.As compared with the heat transfer coefficients of the two dimensional inner microfin tubes,those of the three dimensional inner microfin tubes increase 47-127% for the annular flow region,38-183% for the stratified flow and 15-75%,for the intermittent flow,respectively.The enhancement factor of the local heat transfer coefficients is from 1\\8-6\\9 for the vapor dryness fraction from 0.05 to 1.
Fast Heterogeneous Relaxation Near The Glass Transition
Russina, Margarita
2000-03-01
More than a decade ago inelastic neutron scattering studies revealed a surprising characteristic feature in the atomic dynamics near the glass transition, which was often called the betta-process, with reference to predictions of the mode coupling theory (MCT). This process appears on the ps time scale, i.e. fast compared to the ordinary flow viscosity governed relaxation and slow compared to usual atomic vibrations, and its nature remained a puzzle over the years. Although inelastic neutron scattering is ideally suited to observe dynamics on microscopic time and length scales, experimental difficulties due to strong multiple scattering effects prevented the exploration of the spatial character of this process. By a new experimental approach to correct for these spurious contributions with a high precision, we were now able to extend the spatial domain of our observations from just about nearest neighbor atomic distances by close to an order of magnitude larger ones, which length scale includes that of the intermediate range order, which can be expected to reveal most sensitively collective, as opposed to the local, behavior. Our results in the fragile glass forming liquid Ca-K-NO3 show, that the betta-process is a first fast step of the structural relaxation, which confirms a most fundamental prediction of MCT. Furthermore, by investigating the Debye-Waller factor associated with this process, we found that its geometrical nature corresponds to quasi-rigid, correlated displacement of mobile groups of atoms, which move much faster than the ordinary flow of the bulk of the supercooled liquid. This is the first direct experimental evidence for the existence of heterogeneous fast flow processes similar to the string-flow motion recently observed in molecular dynamic simulations of model liquids close to the glass transition.
Localized Modeling of Biochemical and Flow Interactions during Cancer Cell Adhesion.
Directory of Open Access Journals (Sweden)
Julie Behr
Full Text Available This work focuses on one component of a larger research effort to develop a simulation tool to model populations of flowing cells. Specifically, in this study a local model of the biochemical interactions between circulating melanoma tumor cells (TC and substrate adherent polymorphonuclear neutrophils (PMN is developed. This model provides realistic three-dimensional distributions of bond formation and attendant attraction and repulsion forces that are consistent with the time dependent Computational Fluid Dynamics (CFD framework of the full system model which accounts local pressure, shear and repulsion forces. The resulting full dynamics model enables exploration of TC adhesion to adherent PMNs, which is a known participating mechanism in melanoma cell metastasis. The model defines the adhesion molecules present on the TC and PMN cell surfaces, and calculates their interactions as the melanoma cell flows past the PMN. Biochemical rates of reactions between individual molecules are determined based on their local properties. The melanoma cell in the model expresses ICAM-1 molecules on its surface, and the PMN expresses the β-2 integrins LFA-1 and Mac-1. In this work the PMN is fixed to the substrate and is assumed fully rigid and of a prescribed shear-rate dependent shape obtained from micro-PIV experiments. The melanoma cell is transported with full six-degrees-of-freedom dynamics. Adhesion models, which represent the ability of molecules to bond and adhere the cells to each other, and repulsion models, which represent the various physical mechanisms of cellular repulsion, are incorporated with the CFD solver. All models are general enough to allow for future extensions, including arbitrary adhesion molecule types, and the ability to redefine the values of parameters to represent various cell types. The model presented in this study will be part of a clinical tool for development of personalized medical treatment programs.
Fast left ventricle tracking in CMR images using localized anatomical affine optical flow
Queirós, Sandro; Vilaça, João. L.; Morais, Pedro; Fonseca, Jaime C.; D'hooge, Jan; Barbosa, Daniel
2015-03-01
In daily cardiology practice, assessment of left ventricular (LV) global function using non-invasive imaging remains central for the diagnosis and follow-up of patients with cardiovascular diseases. Despite the different methodologies currently accessible for LV segmentation in cardiac magnetic resonance (CMR) images, a fast and complete LV delineation is still limitedly available for routine use. In this study, a localized anatomically constrained affine optical flow method is proposed for fast and automatic LV tracking throughout the full cardiac cycle in short-axis CMR images. Starting from an automatically delineated LV in the end-diastolic frame, the endocardial and epicardial boundaries are propagated by estimating the motion between adjacent cardiac phases using optical flow. In order to reduce the computational burden, the motion is only estimated in an anatomical region of interest around the tracked boundaries and subsequently integrated into a local affine motion model. Such localized estimation enables to capture complex motion patterns, while still being spatially consistent. The method was validated on 45 CMR datasets taken from the 2009 MICCAI LV segmentation challenge. The proposed approach proved to be robust and efficient, with an average distance error of 2.1 mm and a correlation with reference ejection fraction of 0.98 (1.9 +/- 4.5%). Moreover, it showed to be fast, taking 5 seconds for the tracking of a full 4D dataset (30 ms per image). Overall, a novel fast, robust and accurate LV tracking methodology was proposed, enabling accurate assessment of relevant global function cardiac indices, such as volumes and ejection fraction
A local search heuristic for the Multi-Commodity k-splittable Maximum Flow Problem
DEFF Research Database (Denmark)
Gamst, Mette
2014-01-01
The Multi-Commodity k-splittable Maximum Flow Problem consists of maximizing the amount of flow routed through a network such that each commodity uses at most k paths and such that edge capacities are satisfied. The problem is NP -hard and has application in a.o. telecommunications. In this paper......, a local search heuristic for solving the problem is proposed. The heuristic is an iterative shortest path procedure on a reduced graph combined with a local search procedure to modify certain path flows and prioritize the different commodities. The heuristic is tested on benchmark instances from...
Monthus, Cécile
2016-07-01
The iterative methods to diagonalize matrices and many-body Hamiltonians can be reformulated as flows of Hamiltonians towards diagonalization driven by unitary transformations that preserve the spectrum. After a comparative overview of the various types of discrete flows (Jacobi, QR-algorithm) and differential flows (Toda, Wegner, White) that have been introduced in the past, we focus on the random XXZ chain with random fields in order to determine the best closed flow within a given subspace of running Hamiltonians. For the special case of the free-fermion random XX chain with random fields, the flow coincides with the Toda differential flow for tridiagonal matrices which is related to the classical integrable Toda chain and which can be seen as the continuous analog of the discrete QR-algorithm. For the random XXZ chain with random fields that displays a many-body-localization transition, the present differential flow should be an interesting alternative to compare with the discrete flow that has been proposed recently to study the many-body-localization properties in a model of interacting fermions (Rademaker and Ortuno 2016 Phys. Rev. Lett. 116, 010404).
Diskin, Glenn S.; Lempert, Walter R.; Miles, Richard B.
1996-01-01
The vibrational relaxation of ground-state molecular oxygen (O2, X(sup 3)Sigma(sup -)(sub g)) has been observed, following stimulated Raman excitation to the first excited vibrational level (v=1). Time delayed laser-induced fluorescence probing of the ro-vibrational population distribution was used to examine the temporal relaxation behavior. In the presence of water vapor, the relaxation process is rapid, and is dominated by near-resonant vibrational energy exchange between the v=1 level of O2 and the n2 bending mode of H2O. In the absence of H2O, reequilibration proceeds via homogeneous vibrational energy transfer, in which a collision between two v=1 O2 molecules leaves one molecule in the v=2 state and the other in the v=0 state. Subsequent collisions between molecules in v=1 and v>1 result in continued transfer of population up the vibrational ladder. The implications of these results for the RELIEF flow tagging technique are discussed.
Svarc, J. L.; Savage, J. C.
2004-12-01
The U. S. Geological Survey has observed the local postseismic deformation following the 1992 Landers (M=7.3), 1999 Hector Mine (M=7.1), 2002 Denali (M=7.9), and 2003 San Simeon (M=6.5) earthquakes. The observations consist of repeated campaign-style GPS surveys of geodetic arrays (aperture ˜ 50 km) in the epicentral area of each earthquake. The data span the intervals from 0.037 to 5.6, 0.0025 to 4.5, 0.022 to 1.6, and 0.005 to 0.55 yr postearthquake for the Landers, Hector Mine, Denali, and San Simeon earthquakes, respectively. We have reduced the observations to positions of the monuments measured relative to another monument within the array. The temporal dependence of the relative displacements for each monument can be approximated by a+bt+c(1-exp[-t/d]) where a, b, c, and d are constants particular to that monument and t is the time after the earthquake. The relaxation times d were found to be 0.367±0.062, 0.274±0.024, 0.145±0.017, and 0.032±0.002 yr for the Landers, Hector Mine, Denali, and San Simeon earthquakes, respectively. The observed increase in d with the duration of the time series fit suggests that the relaxation process involves more than a single relaxation time. An alternative function a'+b't+c'log(1+t/d') where a', b', c', and d' are constants particular to each monument furnishes a better fit to the data. This logarithmic form of the relaxation (Lomnitz creep function), identical to the calculated response of a simple spring-slider system subject to rate-state friction [Marone et al., 1991], contains a continuous spectrum of relaxation times. In fitting data the time constant d' is determined by observations within the first few days postseismic and consequently is poorly defined. Adequate fits to the data are found by simply setting d'=0.001 yr and determining a', b', and c' by linear least squares. That the temporal dependence is so readily fit by both exponential and logarithmic functions suggests that the temporal dependence by itself
Meso-scale modeling: beyond local equilibrium assumption for multiphase flow
Wang, Wei
2015-01-01
This is a summary of the article with the same title, accepted for publication in Advances in Chemical Engineering, 47: 193-277 (2015). Gas-solid fluidization is a typical nonlinear nonequilibrium system with multiscale structure. In particular, the mesoscale structure in terms of bubbles or clusters, which can be characterized by nonequilibrium features in terms of bimodal velocity distribution, energy non equipartition, and correlated density fluctuations, is the critical factor. Traditional two-fluid model (TFM) and relevant closures depend on local equilibrium and homogeneous distribution assumptions, and fail to predict the dynamic, nonequilibrium phenomena in circulating fluidized beds even with fine-grid resolution. In contrast, the mesoscale modeling, as exemplified by the energy-minimization multiscale (EMMS) model, is consistent with the nonequilibrium features in multiphase flows. Thus, the structure-dependent multi-fluid model conservation equations with the EMMS-based mesoscale modeling greatly i...
[Dynamics of local cerebral blood flow after thermodestruction of the thalamus in the dog].
Kaasik, A A; Asser, T K
1987-01-01
The dynamics of changes in local cerebral blood flow (LCBF) after stereotaxic thermodestruction of the right thalamus was studied by the method of hydrogen clearance. The experiments were conducted on 22 mongrel dogs. On the 10-12th day after implantation of platinum electrodes the initial values of LCBF were determined symmetrically in the thalami and frontal cortex of dogs who were awake. The animals were anesthetized, the initial values of LCBF were again determined, and destruction of the right thalamus was performed. Reactive hyperemia developed close to the focus of thermodestruction and persisted 90 minutes. In the remaining sites the reactive hyperemia was less manifest and was seen 10-15 minutes.
Depicting Vortex Stretching and Vortex Relaxing Mechanisms
Institute of Scientific and Technical Information of China (English)
符松; 李启兵; 王明皓
2003-01-01
Different from many existing studies on the paranetrization of vortices, we investigate the effectiveness of two new parameters for identifying the vortex stretching and vortex relaxing mechanisms. These parameters are invariants and identify three-dimensional flow structures only, i.e. they diminish in two-dimensional flows. This is also unlike the existing vortex identification approaches which deliver information in two-dimensional flows. The present proposals have been successfully applied to identify the stretching and relaxing vortices in compressible mixing layers and natural convection flows.
Local correlations for flap gap oscillatory blowing active flow control technology
Directory of Open Access Journals (Sweden)
Cătălin NAE
2010-09-01
Full Text Available Active technology for oscillatory blowing in the flap gap has been tested at INCAS subsonic wind tunnel in order to evaluate this technology for usage in high lift systems with active flow control. The main goal for this investigation was to validate TRL level 4 for this technology and to extend towards flight testing. CFD analysis was performed in order to identify local correlations with experimental data and to better formulate a design criteria so that a maximum increase in lift is possible under given geometrical constraints. Reference to a proposed metric for noise evaluation is also given. This includes basic 2D flow cases and also 2.5D configurations. In 2.5D test cases this work has been extended so that the proposed system may be selected as a mature technology in the JTI Clean Sky, Smart Fixed Wing Aircraft ITD. Complex post-processing of the experimental and CFD data was mainly oriented towards system efficiency and TRL evaluation for this active technology.
Phase-locked Josephson flux flow local oscillator for sub-mm integrated receivers
Mygind, J; Dmitriev, P N; Ermakov, A B; Koshelets, V P; Shitov, S V; Sobolev, A S; Torgashin, M Y; Khodos, V V; Vaks, V L; Wesselius, P R
2002-01-01
The Josephson flux flow oscillator (FFO) has proven to be one of the best on-chip local oscillators for heterodyne detection in integrated sub-mm receivers based on SIS mixers. Nb-AlO sub x -Nb FFOs have been successfully tested from about 120 to 700 GHz (gap frequency of Nb) providing enough power to pump an SIS mixer (about 1 mu W at 450 GHz). Both the frequency and the power of the FFO can be dc-tuned. Extensive measurements of the dependence of the free-running FFO linewidth on the differential resistances associated with both the bias current and the control-line current (applied magnetic field) have been performed. The FFO line is Lorentzian both in the resonant regime, on Fiske steps (FSs), and on the flux flow step (FFS). This indicates that internal wide-band noise is dominant. A phenomenological noise model can account for the FFO linewidth dependence on experimental parameters. The narrow free-running FFO linewidth achieved, in combination with the construction of a wide-band phase-locked loop (PLL...
The continuum intensity as a function of magnetic field II. Local magnetic flux and convective flows
Kobel, P; Borrero, J M
2014-01-01
To deepen our understanding of the role of small-scale magnetic fields in active regions (ARs) and in the quiet Sun (QS) on the solar irradiance, it is fundamental to investigate the physical processes underlying their continuum brightness. Previous results showed that magnetic elements in the QS reach larger continuum intensities than in ARs at disk center, but left this difference unexplained. We use Hinode/SP disk center data to study the influence of the local amount of magnetic flux on the vigour of the convective flows and the continuum intensity contrasts. The apparent (i.e. averaged over a pixel) longitudinal field strength and line-of-sight (LOS) plasma velocity were retrieved by means of Milne-Eddington inversions (VFISV code). We analyzed a series of boxes taken over AR plages and the QS, to determine how the continuum intensity contrast of magnetic elements, the amplitude of the vertical flows and the box-averaged contrast were affected by the mean longitudinal field strength in the box (which sca...
Parallel evolution of local adaptation and reproductive isolation in the face of gene flow.
Butlin, Roger K; Saura, Maria; Charrier, Grégory; Jackson, Benjamin; André, Carl; Caballero, Armando; Coyne, Jerry A; Galindo, Juan; Grahame, John W; Hollander, Johan; Kemppainen, Petri; Martínez-Fernández, Mónica; Panova, Marina; Quesada, Humberto; Johannesson, Kerstin; Rolán-Alvarez, Emilio
2014-04-01
Parallel evolution of similar phenotypes provides strong evidence for the operation of natural selection. Where these phenotypes contribute to reproductive isolation, they further support a role for divergent, habitat-associated selection in speciation. However, the observation of pairs of divergent ecotypes currently occupying contrasting habitats in distinct geographical regions is not sufficient to infer parallel origins. Here we show striking parallel phenotypic divergence between populations of the rocky-shore gastropod, Littorina saxatilis, occupying contrasting habitats exposed to either wave action or crab predation. This divergence is associated with barriers to gene exchange but, nevertheless, genetic variation is more strongly structured by geography than by ecotype. Using approximate Bayesian analysis of sequence data and amplified fragment length polymorphism markers, we show that the ecotypes are likely to have arisen in the face of continuous gene flow and that the demographic separation of ecotypes has occurred in parallel at both regional and local scales. Parameter estimates suggest a long delay between colonization of a locality and ecotype formation, perhaps because the postglacial spread of crab populations was slower than the spread of snails. Adaptive differentiation may not be fully genetically independent despite being demographically parallel. These results provide new insight into a major model of ecologically driven speciation.
Computation of the initially unknown boundaries of flow fields generated by local exhaust hoods.
Anastas, M Y
1991-09-01
Local exhaust hoods are important in controlling contaminants in the workplace. To predict hood effectiveness, it is important to have knowledge of the airflow field that it generates. Currently, there are theoretical models adequate for predicting the flow fields of hoods with flanged openings. These models are solutions of Laplace's equation in terms of the velocity potential. Comparison of experimental and theoretical values of air velocities show good agreement. With the exception of the plain slot, no such models are available for plain hoods or other hoods with complex geometries. This paper explores the feasibility of approximating the equal air velocity contours for any local exhaust hood by assuming that these contours are also equipotential contours. A slot configuration, for which an analytical model is available, was used to evaluate the accuracy of the assumption. Starting with a good approximation for the 15% velocity contour, three other boundaries were generated. The procedure used in generating boundaries after the initial one involved solution of Laplace's equation, assuming constant potential along the boundary and adjustment of boundary location on the basis of differences between the calculated value of the normal derivative of the velocity potential at a point on the boundary and the specified value (15%). The next-to-last boundary generated by the procedure exhibited an oscillation in the values of the normal derivative, which was detrimental to the desired solution. Possible causes for this oscillation and possible refinements in the procedure are discussed.
Computation of the initially unknown boundaries of flow fields generated by local exhaust hoods
Energy Technology Data Exchange (ETDEWEB)
Anastas, M.Y. (National Institute for Occupational Safety and Health, Cincinnati OH (United States))
1991-09-01
Local exhaust hoods are important in controlling contaminants in the workplace. To predict hood effectiveness, it is important to have knowledge of the airflow field that it generates. Currently, there are theoretical models adequate for predicting the flow fields of hoods with flanged openings. These models are solutions of Laplace's equation in terms of the velocity potential. Comparison of experimental and theoretical values of air velocities show good agreement. With the exception of the plain slot, no such models are available for plain hoods or other hoods with complex geometries. This paper explores the feasibility of approximating the equal air velocity contours for any local exhaust hood by assuming that these contours are also equipotential contours. A slot configuration, for which an analytical model is available, was used to evaluate the accuracy of the assumption. Starting with a good approximation for the 15% velocity contour, three other boundaries were generated. The procedure used in generating boundaries after the initial one involved solution of Laplace's equation, assuming constant potential along the boundary and adjustment of boundary location on the basis of differences between the calculated value of the normal derivative of the velocity potential at a point on the boundary and the specified value (15%). The next-to-last boundary generated by the procedure exhibited an oscillation in the values of the normal derivative, which was detrimental to the desired solution. Possible causes for this oscillation and possible refinements in the procedure are discussed.
Predicting Traffic Flow in Local Area Networks by the Largest Lyapunov Exponent
Directory of Open Access Journals (Sweden)
Yan Liu
2016-01-01
Full Text Available The dynamics of network traffic are complex and nonlinear, and chaotic behaviors and their prediction, which play an important role in local area networks (LANs, are studied in detail, using the largest Lyapunov exponent. With the introduction of phase space reconstruction based on the time sequence, the high-dimensional traffic is projected onto the low dimension reconstructed phase space, and a reduced dynamic system is obtained from the dynamic system viewpoint. Then, a numerical method for computing the largest Lyapunov exponent of the low-dimensional dynamic system is presented. Further, the longest predictable time, which is related to chaotic behaviors in the system, is studied using the largest Lyapunov exponent, and the Wolf method is used to predict the evolution of the traffic in a local area network by both Dot and Interval predictions, and a reliable result is obtained by the presented method. As the conclusion, the results show that the largest Lyapunov exponent can be used to describe the sensitivity of the trajectory in the reconstructed phase space to the initial values. Moreover, Dot Prediction can effectively predict the flow burst. The numerical simulation also shows that the presented method is feasible and efficient for predicting the complex dynamic behaviors in LAN traffic, especially for congestion and attack in networks, which are the main two complex phenomena behaving as chaos in networks.
Thermal relaxation and mechanical relaxation of rice gel
Institute of Scientific and Technical Information of China (English)
丁玉琴; 赵思明; 熊善柏
2008-01-01
Rice gel was prepared by simulating the production processes of Chinese local rice noodles,and the properties of thermal relaxation and mechanical relaxation during gelatinization were studied by differential scanning calorimetry(DSC) measurement and dynamic rheometer.The results show that during gelatinization,the molecular chains of rice starch undergo the thermal relaxation and mechanical relaxation.During the first heating and high temperature holding processes,the starch crystallites in the rice slurry melt,and the polymer chains stretch and interact,then viscoelastic gel forms.The cooling and low temperatures holding processes result in reinforced networks and decrease the viscoelasticity of the gel.During the second heating,the remaining starch crystallites further melt,the network is reinforced,and the viscoelasticity increases.The viscoelasticity,the molecular conformation and texture of the gel are adjusted by changing the temperature,and finally construct the gel with the textural characteristics of Chinese local rice noodle.
Relaxation Techniques for Health
... R S T U V W X Y Z Relaxation Techniques for Health Share: On This Page What’s the ... Bottom Line? How much do we know about relaxation techniques? A substantial amount of research has been done ...
Kobayashi, M; Irisawa, H
1961-10-27
The latent period of relaxation of molluscan myocardium due to anodal current is much longer than that of contraction. Although the rate and the grade of relaxation are intimately related to both the stimulus condition and the muscle tension, the latent period of relaxation remains constant, except when the temperature of the bathing fluid is changed.
Electrical control of optical emitter relaxation pathways enabled by graphene
Tielrooij, K. J.; Orona, L.; Ferrier, A.; Badioli, M.; Navickaite, G.; Coop, S.; Nanot, S.; Kalinic, B.; Cesca, T.; Gaudreau, L.; Ma, Q.; Centeno, A.; Pesquera, A.; Zurutuza, A.; de Riedmatten, H.; Goldner, P.; García de Abajo, F. J.; Jarillo-Herrero, P.; Koppens, F. H. L.
2015-03-01
Controlling the energy flow processes and the associated energy relaxation rates of a light emitter is of fundamental interest and has many applications in the fields of quantum optics, photovoltaics, photodetection, biosensing and light emission. Advanced dielectric, semiconductor and metallic systems have been developed to tailor the interaction between an emitter and its environment. However, active control of the energy flow from an emitter into optical, electronic or plasmonic excitations has remained challenging. Here, we demonstrate in situ electrical control of the relaxation pathways of excited erbium ions, which emit light at the technologically relevant telecommunication wavelength of 1.5 μm. By placing the erbium at a few nanometres distance from graphene, we modify the relaxation rate by more than a factor of three, and control whether the emitter decays into electron-hole pairs, emitted photons or graphene near-infrared plasmons, confined to control of the local density of optical states constitute a new paradigm for active (quantum) photonics and can be applied using any combination of light emitters and two-dimensional materials.
Jelinic, Maria; Leo, Chen-Huei; Post Uiterweer, Emiel D; Sandow, Shaun L; Gooi, Jonathan H; Wlodek, Mary E; Conrad, Kirk P; Parkington, Helena; Tare, Marianne; Parry, Laura J
2014-01-01
Relaxin is a potent vasodilator of small resistance arteries and modifies arterial compliance in some systemic vascular beds, yet receptors for relaxin, such as RXFP1, have only been localized to vascular smooth muscle. This study first aimed to localize RXFP1 in rat arteries and veins from different organ beds and determine whether receptors are present in endothelial cells. We then tested the hypothesis that region-specific vascular effects of relaxin may be influenced by the cellular localization of RXFP1 within different blood vessels. The aorta, vena cava, mesenteric artery, and vein had significantly higher (Pdifferential distribution of RXFP1 on endothelial and smooth muscle across the vasculature. In rats, mesenteric arteries exhibit the greatest functional response to chronic serelaxin treatment.
Institute of Scientific and Technical Information of China (English)
闻建平; 周怀; 陈云琳
2002-01-01
The local gas-phase flow characteristics such as local gas holdup (εs), local bubble velocity (Vb) and local bubble mean diameter (db) at a specified point in a gas-liquid-solid three-phase reversed flow jet loop reactor was experimentally investigated by a five-point conductivity probe. The effects of gas jet flow rate, liquid jet flow rate, solid loading, nozzle dianeter and axial position on the local εg, Vb and db profiles were discussed. The presence of solids at low solid concentrations not only increased the local eg and Vb, but also decreased the local db. The optimum solid loading for the maximum local εg and Vb together with the minimum local db was 0.16 × 10-3 m3,corresponding to a solid volume fraction, εs = 2.5%.
Energy Technology Data Exchange (ETDEWEB)
Ruiz E, J.A.; Castillo D, R.; Rojas S, A. [ININ, 52750 La Marquesa, Estado de Mexico (Mexico); Blazquez M, J. [CIEMAT, Madrid (Spain); Calleros M, G. [CFE, Alto Lucero, Veracruz (Mexico)]. e-mail: jare@nuclear.inin.mx
2007-07-01
The signal to noise of the local power of range monitors (LPRM for their initials in English) its are used to estimate the reactor power, but this signal includes information of the dynamic behavior of a boiling water reactor. An interesting parameter that one can obtain by means of the data of the local power monitors is the resistance time of the holes. That to make with the measures of these times that are inversely proportional to the local flow? It can be carried out a 'local surveillance' of the flow. In this work a relationship that allows to obtain the permanency time of the holes in the refrigeration channel in the reactor core with base in the mensurations of the index of the decay ratio and of the characteristic frequency value of the reactor of the neutronic signal in stationary state. The method of the first minimum of the transfer function between two detectors of neutron flow to different height to obtain the local residence time of the holes is also presented. For the determination of the permanency time of the holes in the refrigeration channel obtained signals of the backs of the SIIP of special sampling of the Unit 2 of Laguna Verde Central during 2006 were used. Firstly its were preconditioning the power signals and the signals of the neutronic noise to which are applied the first minimum method in the transfer function were obtained. Later on the STABIL code was used which contains an autoregressive model to obtain the DR and the frequency, with those that the holes residence times were determined. (Author)
Weng, Guo-En; Zhao, Wan-Ru; Chen, Shao-Qiang; Akiyama, Hidefumi; Li, Zeng-Cheng; Liu, Jian-Ping; Zhang, Bao-ping
2015-01-01
Strong localization effect in self-assembled InGaN quantum dots (QDs) grown by metalorganic chemical vapor deposition has been evidenced by temperature-dependent photoluminescence (PL) at different excitation power. The integrated emission intensity increases gradually in the range from 30 to 160 K and then decreases with a further increase in temperature at high excitation intensity, while this phenomenon disappeared at low excitation intensity. Under high excitation, about 40% emission enha...
Wu, Xianglin; Pan, Xiao; Mabon, James C.; Li, Meimei; Stubbins, James F.
2007-09-01
Type 316L stainless steel has been selected as a candidate structural material in a series of current accelerator driven systems and Generation IV reactor conceptual designs. The material is sensitive to irradiation damage in the temperature range of 150-400 °C: even low levels of irradiation exposure, as small as 0.1 dpa, can cause severe loss of ductility during tensile loading. This process, where the plastic flow becomes highly localized resulting in extremely low overall ductility, is referred as flow localization. The process controlling this confined flow is related to the difference between the yield and ultimate tensile strengths such that large irradiation-induced increases in the yield strength result in very limited plastic flow leading to necking after very small levels of uniform elongation. In this study, the microstructural evolution controlling flow localization is examined. It is found that twinning is an important deformation mechanism at lower temperatures since it promotes the strain hardening process. At higher temperatures, twinning becomes energetically impossible since the activation of twinning is determined by the critical twinning stress, which increases rapidly with temperature. Mechanical twinning and dislocation-based planar slip are competing mechanisms for plastic deformation.
Phase locked 270-440 GHz local oscillator based on flux flow in long Josephson tunnel junctions
DEFF Research Database (Denmark)
Koshelets, V.P.; Shitov, S.V.; Filippenko, L.V.;
2000-01-01
The combination of narrow linewidth and wide band tunability makes the Josephson flux flow oscillator (FFO) a perfect on-chip local oscillator for integrated sub-mm wave receivers for, e.g., spectral radio astronomy. The feasibility of phase locking the FFO to an external reference oscillator is ...
Muir, A P; Biek, R; Thomas, R; Mable, B K
2014-02-01
Both environmental and genetic influences can result in phenotypic variation. Quantifying the relative contributions of local adaptation and phenotypic plasticity to phenotypes is key to understanding the effect of environmental variation on populations. Identifying the selective pressures that drive divergence is an important, but often lacking, next step. High gene flow between high- and low-altitude common frog (Rana temporaria) breeding sites has previously been demonstrated in Scotland. The aim of this study was to assess whether local adaptation occurs in the face of high gene flow and to identify potential environmental selection pressures that drive adaptation. Phenotypic variation in larval traits was quantified in R. temporaria from paired high- and low-altitude sites using three common temperature treatments. Local adaptation was assessed using Q(ST)-F(ST) analyses, and quantitative phenotypic divergence was related to environmental parameters using Mantel tests. Although evidence of local adaptation was found for all traits measured, only variation in larval period and growth rate was consistent with adaptation to altitude. Moreover, this was only evident in the three mountains with the highest high-altitude sites. This variation was correlated with mean summer and winter temperatures, suggesting that temperature parameters are potentially strong selective pressures maintaining local adaptation, despite high gene flow.
Mucosal/submucosal blood flow in the gut wall determined by local washout of 133Xenon
DEFF Research Database (Denmark)
Mortensen, Peter; Olsen, J; Bülow, J
1991-01-01
the initial slope of the washout was used for measuring blood flow rate. Blood flow rate was simultaneously measured by microsphere entrapment technique. There was an excellent correlation between the blood flow rate determined by the two techniques the correlation coefficient R being 0.89 in the small...
Deng, Q.; Ginting, V.; McCaskill, B.; Torsu, P.
2017-10-01
We study the application of a stabilized continuous Galerkin finite element method (CGFEM) in the simulation of multiphase flow in poroelastic subsurfaces. The system involves a nonlinear coupling between the fluid pressure, subsurface's deformation, and the fluid phase saturation, and as such, we represent this coupling through an iterative procedure. Spatial discretization of the poroelastic system employs the standard linear finite element in combination with a numerical diffusion term to maintain stability of the algebraic system. Furthermore, direct calculation of the normal velocities from pressure and deformation does not entail a locally conservative field. To alleviate this drawback, we propose an element based post-processing technique through which local conservation can be established. The performance of the method is validated through several examples illustrating the convergence of the method, the effectivity of the stabilization term, and the ability to achieve locally conservative normal velocities. Finally, the efficacy of the method is demonstrated through simulations of realistic multiphase flow in poroelastic subsurfaces.
Energy landscape of relaxed amorphous silicon
Valiquette, Francis; Mousseau, Normand
2003-09-01
We analyze the structure of the energy landscape of a well-relaxed 1000-atom model of amorphous silicon using the activation-relaxation technique (ART nouveau). Generating more than 40 000 events starting from a single minimum, we find that activated mechanisms are local in nature, that they are distributed uniformly throughout the model, and that the activation energy is limited by the cost of breaking one bond, independently of the complexity of the mechanism. The overall shape of the activation-energy-barrier distribution is also insensitive to the exact details of the configuration, indicating that well-relaxed configurations see essentially the same environment. These results underscore the localized nature of relaxation in this material.
Directory of Open Access Journals (Sweden)
Abílio Amiguinho
2005-01-01
Full Text Available The process of socio-educational territorialisation in rural contexts is the topic of this text. The theme corresponds to a challenge to address it having as main axis of discussion either the problem of social exclusion or that of local development. The reasons to locate the discussion in this last field of analysis are discussed in the first part of the text. Theoretical and political reasons are there articulated because the question is about projects whose intentions and practices call for the political both in the theoretical debate and in the choices that anticipate intervention. From research conducted for several years, I use contributions that aim at discuss and enlighten how school can be a potential locus of local development. Its identification and recognition as local institution (either because of those that work and live in it or because of those that act in the surrounding context are crucial steps to progressively constitute school as a partner for development. The promotion of the local values and roots, the reconstruction of socio-personal and local identities, the production of sociabilities and the equation and solution of shared problems were the dimensions of a socio-educative intervention, markedly globalising. This scenario, as it is argued, was also, intentionally, one of transformation and of deliberate change of school and of the administration of the educative territoires.
DEFF Research Database (Denmark)
Krøyer, Kristian; Bülow, J; Nielsen, S L
1990-01-01
The blood flow of the dog urinary bladder measured by radioactive microsphere technique was compared to the clearance of locally injected 99mTechnetium pertechnate (99mTc) in the bladder wall. In semilogarithmic plots the 99mTc washout curves showed a multiexponential course. From the initial...... slopes (median 5.7 min) the bladder blood flow was calculated to be only 30-62% of the results obtained from the radioactive microsphere technique (blood flow in the muscular layer 21.7-44.8 ml/100 g/min). These lower values imply that the rate of removal of the hydrophilic tracer 99mTc at these flow...
Spin relaxation in nanowires by hyperfine coupling
Energy Technology Data Exchange (ETDEWEB)
Echeverria-Arrondo, C. [Department of Physical Chemistry, Universidad del Pais Vasco UPV/EHU, 48080 Bilbao (Spain); Sherman, E.Ya. [Department of Physical Chemistry, Universidad del Pais Vasco UPV/EHU, 48080 Bilbao (Spain); IKERBASQUE Basque Foundation for Science, 48011 Bilbao, Bizkaia (Spain)
2012-08-15
Hyperfine interactions establish limits on spin dynamics and relaxation rates in ensembles of semiconductor quantum dots. It is the confinement of electrons which determines nonzero hyperfine coupling and leads to the spin relaxation. As a result, in nanowires one would expect the vanishing of this effect due to extended electron states. However, even for relatively clean wires, disorder plays a crucial role and makes electron localization sufficient to cause spin relaxation on the time scale of the order of 10 ns. (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
Global vs local energy dissipation: the energy cycle of the turbulent Von K\\'arm\\'an flow
Kuzzay, Denis; Dubrulle, Bérengère
2015-01-01
In this paper, we investigate the relations between global and local energy transfers in a turbulent Von K\\'arm\\'an flow. The goal is to understand how and where energy is dissipated in such a flow and to reconstruct the energy cycle in an experimental device where local as well as global quantities can be measured. We use PIV measurements and we model the Reynolds stress tensor to take subgrid scales into account. This procedure involves a free parameter that is calibrated using angular momentum balance. We then estimate the local and global mean injected and dissipated power for several types of impellers, for various Reynolds numbers and for various flow topologies. These PIV-estimates are then compared with direct injected power estimates provided by torque measurements at the impellers. The agreement between PIV-estimates and direct measurements depends on the flow topology. In symmetric situations, we are able to capture up to 90% of the actual global energy dissipation rate. However, our results become...
Kim, Jin-Tae; Liberzon, Alex; Chamorro, Leonardo P.
2015-11-01
The distinctive differences between two jet flows that share the same hydraulic diameter dh = 0.01 m and Re ~ 6000, but different (nozzle) shape are explored via 3D Particle Tracking Velocimetry using OpenPTV (http://www.openptv.net). The two jets are formed from circular and semicircular pipes and released in a quiescent water tank of 40 dh height, 40 dh wide, and 200 dh long. The recirculating system is seeded with 100 μm particles, where flow measurements are performed in the intermediate flow field (14.5 < x /dh <18.5) at 550Hz for a total of ~ 30,000 frames. Analysis is focused on the spatial distribution of the local flow acceleration and curvature of the Lagrangian trajectories. The velocity and acceleration of particles are estimated by low-pass filtering their position with a moving cubic spline fitting, while the curvature is obtained from the Frenet-Serret equations. Probability density functions (p.d.f.) of these quantities are obtained at various sub-volumes containing a given streamwise velocity range, and compared between the two cases to evaluate the memory effects in the intermediate flow field.
Suzuki, K; Tada, I; Okada, K; Kim, Y I; Kobayashi, M
1988-08-01
The effect of intra-arterial infusion of lipiodol-emulsion and local hyperthermia on tissue blood flow was examined in experimental hepatic tumor and normal liver of rabbits. VX-2 tumor was implanted in liver of rabbit. The tissue blood flow was estimated by hydrogen gas clearance method when the tumor grew to about 2 cm. Tissue blood flow in tumor (64.5 ml/min/100 g) was significantly less than in normal liver (90.8 ml/min/100 g) (p less than 0.005). The intra-arterial infusion of lipiodol-emulsion did not alter the flow in either tissue. However, the addition of hyperthermia induced a substantial rise of tissue blood flow in normal liver (35% increase, from 93.8 to 127 ml/min/100 g) when compared with in VX-2 tumor (8.9% increase, from 65.1 to 71.8 ml/min/100 g). These were accompanied by a selective heating of liver tumor; the tumor temperature rose to 43 degrees C, although that of normal liver remained at 38 degrees C. Our results suggested that a specific temperature rise of liver tumor after infusion of lipiodol-emulsion and local heating might be related to a different response of microcirculation in tumor and normal liver to the hyperthermia.
Chaves-Guerrero, Arlex; Peña-Cruz, Víctor A.; Rinaldi, Carlos; Fuentes-Díaz, David
2017-07-01
The flow of a ferrofluid between two parallel infinitely long plates generated by a rotating magnetic field has been studied analytically and numerically using spin diffusion theory for a broad range of frequencies and intensities of the magnetic field. This work was motivated by interest in obtaining better agreement between the theoretical predictions and the experimental observations of the dependence of the flow magnitude on the amplitude and frequency of the magnetic field. These discrepancies have been attributed to the use of asymptotic solutions to assess velocity profiles obtained to moderate magnetic field strength and to the need to use a more accurate magnetization equation to high amplitudes and frequencies of the magnetic field. For such reasons, the objective of this work was to evaluate the effect of the magnetization equations derived by Shliomis [Sov. Phys. JETP 34, 1291 (1972)] (Sh-72) and by Martsenyuk, Raikher, and Shliomis [Sov. Phys. JETP 38, 413 (1974)] (MRSh-74) on the flow predictions of the spin diffusion theory using a simple geometry. It was found that the flow predictions for the two cases studied match with an asymptotic solution in the limit of low field strength when the Langevin parameter (α ) is less than 0.1, for any value of the dimensionless frequency (Ω ˜ ) . Marked differences were found in the predictions of flow magnitude dependence on the amplitude and frequency of the magnetic field when Sh-72 or MRSh-74 was used for α >1 . Results also show that there is a critical value of frequency above which the velocity of the ferrofluid decreases with increasing magnetic field amplitude. Whereas the value of the critical frequency predicted by the Sh-72 magnetization equation is approximately unity for any value of the magnetic field amplitude, the MRSh-74 equation predicts that the critical frequency increases with increasing magnetic field amplitude. Predictions of the MRSh-74 equation are in qualitative agreement with
DEFF Research Database (Denmark)
Niehuesbernd, Jörn; Müller, Clemens; Pantleon, Wolfgang;
2013-01-01
. The local grain orientations determined by EBSD measurements were used to calculate the elastic tensors at several positions along the strain gradient. Based on the geometric mean, the calculated local elastic constants were transferred into global ones by appropriate weighting. Ultrasonic measurements were......Severely deformed materials often show strong plastic strain gradients, which can lead to a variety of gradients in microstructure and texture. Since the elastic behavior of a material is in most cases linked to its crystallographic texture, gradients in the elastic properties are also possible....... Consequently, the macroscopic elastic behavior results from the local elastic properties within the gradient. In the present investigation profiles produced by the linear flow splitting process were examined with respect to local and global elastic anisotropy, which develops during the complex forming process...
Optic flow-based vision system for autonomous 3D localization and control of small aerial vehicles
Kendoul, Farid; Fantoni, Isabelle; Nonami, Kenzo
2009-01-01
International audience; The problem considered in this paper involves the design of a vision-based autopilot for small and micro Unmanned Aerial Vehicles (UAVs). The proposed autopilot is based on an optic flow-based vision system for autonomous localization and scene mapping, and a nonlinear control system for flight control and guidance. This paper focusses on the development of a real-time 3D vision algorithm for estimating optic flow, aircraft self-motion and depth map, using a low-resolu...
Directory of Open Access Journals (Sweden)
Caitlin M. S. Douglas
2016-10-01
Full Text Available Ephemeral rivers act as linear oases in drylands providing key resources to people and wildlife. However, not much is known about these rivers’ sensitivities to human activities. We investigated the landscape-level determinants of riparian tree dieback along the Swakop River, a dammed ephemeral river in Namibia, focusing on the native ana tree (Faidherbia albida and the invasive mesquite (Prosopis spp.. We surveyed over 1,900 individual trees distributed across 24 sites along a 250 km stretch of the river. General linear mixed models were used to test five hypotheses relating to three anthropogenic threats: river flow disruption from damming, human settlement and invasive species. We found widespread dieback in both tree populations: 51% mortality in ana tree, with surviving trees exhibiting 18% canopy death (median; and 26% mortality in mesquite, with surviving trees exhibiting 10% canopy death. Dieback in the ana tree was most severe where trees grew on drier stretches of the river, where tributary flow was absent and where mesquite grew more abundantly. Dieback in the mesquite, a more drought-tolerant taxon, did not show any such patterns. Our findings suggest that dieback in the ana tree is primarily driven by changes in river flow resulting from upstream dam creation and that tributary flows provide a local buffer against this loss of main channel flow. The hypothesis that the invasive mesquite may contribute to ana tree dieback was also supported. Our findings suggest that large dams along the main channels of ephemeral rivers have the ability to cause widespread mortality in downstream riparian trees. To mitigate such impacts, management might focus on the maintenance of natural tributary flows to buffer local tree populations from the disruption to main channel flow.
Directory of Open Access Journals (Sweden)
Dun Lin
2017-01-01
Full Text Available Gas turbines are important energy-converting equipment in many industries. The flow inside gas turbines is very complicated and the knowledge about the flow loss mechanism is critical to the advanced design. The current design system heavily relies on empirical formulas or Reynolds Averaged Navier–Stokes (RANS, which faces big challenges in dealing with highly unsteady complex flow and accurately predicting flow losses. Further improving the efficiency needs more insights into the loss generation in gas turbines. Conventional Unsteady Reynolds Averaged Simulation (URANS methods have defects in modeling multi-frequency, multi-length, highly unsteady flow, especially when mixing or separation occurs, while Direct Numerical Simulation (DNS and Large Eddy Simulation (LES are too costly for the high-Reynolds number flow. In this work, the Delayed Detached Eddy Simulation (DDES method is used with a low-dissipation numerical scheme to capture the detailed flow structures of the complicated flow in a high pressure turbine guide vane. DDES accurately predicts the wake vortex behavior and produces much more details than RANS and URANS. The experimental findings of the wake vortex length characteristics, which RANS and URANS fail to predict, are successfully captured by DDES. Accurate flow simulation builds up a solid foundation for accurate losses prediction. Based on the detailed DDES results, loss analysis in terms of entropy generation rate is conducted from two aspects. The first aspect is to apportion losses by its physical resources: viscous irreversibility and heat transfer irreversibility. The viscous irreversibility is found to be much stronger than the heat transfer irreversibility in the flow. The second aspect is weighing the contributions of steady effects and unsteady effects. Losses due to unsteady effects account for a large part of total losses. Effects of unsteadiness should not be neglected in the flow physics study and design
Kinetic activation-relaxation technique
Béland, Laurent Karim; Brommer, Peter; El-Mellouhi, Fedwa; Joly, Jean-François; Mousseau, Normand
2011-10-01
We present a detailed description of the kinetic activation-relaxation technique (k-ART), an off-lattice, self-learning kinetic Monte Carlo (KMC) algorithm with on-the-fly event search. Combining a topological classification for local environments and event generation with ART nouveau, an efficient unbiased sampling method for finding transition states, k-ART can be applied to complex materials with atoms in off-lattice positions or with elastic deformations that cannot be handled with standard KMC approaches. In addition to presenting the various elements of the algorithm, we demonstrate the general character of k-ART by applying the algorithm to three challenging systems: self-defect annihilation in c-Si (crystalline silicon), self-interstitial diffusion in Fe, and structural relaxation in a-Si (amorphous silicon).
Kinetic activation-relaxation technique.
Béland, Laurent Karim; Brommer, Peter; El-Mellouhi, Fedwa; Joly, Jean-François; Mousseau, Normand
2011-10-01
We present a detailed description of the kinetic activation-relaxation technique (k-ART), an off-lattice, self-learning kinetic Monte Carlo (KMC) algorithm with on-the-fly event search. Combining a topological classification for local environments and event generation with ART nouveau, an efficient unbiased sampling method for finding transition states, k-ART can be applied to complex materials with atoms in off-lattice positions or with elastic deformations that cannot be handled with standard KMC approaches. In addition to presenting the various elements of the algorithm, we demonstrate the general character of k-ART by applying the algorithm to three challenging systems: self-defect annihilation in c-Si (crystalline silicon), self-interstitial diffusion in Fe, and structural relaxation in a-Si (amorphous silicon).
Local Three-dimensional Flow and Sediment Patterns as an Evidence of Pool-riffle Self-maintenance
Rodriguez, J. F.; Vahidi, E.; Bayat, E.; Saco, P. M.; de Almeida, G. A. M.
2015-12-01
For decades pool-riffle morphodynamics has been described based on the cross- sectional averaged flow characteristics, using episodic shifts in higher shear stress or velocities from the riffles to the pools (i.e. reversal conditions) as an indication of the long term self-maintenance of the structures. Recently more attention has been paid to three-dimensional flow features and sediment transport characteristics, but this has been done in a compartmentalised way, with studies either focusing on one or the other aspect. In this study, we present for the first time a three-dimensional analysis of sediment transport processes as an indication of self-maintenance mechanisms due to erosion and aggradation in pools and riffles. We do that by first reconstructing from experimental data the 3-D flow patterns in a typical pool-riffle sequence and computing bed shear stress distribution and near-bed streamlines for low and high flow conditions. We then use these 3-D features to complement a one-year dataset from an unsteady fractional sediment transport and bed evolution model applied to an existing stream. Local instantaneous bedload transport is obtained using the bed shear stress distribution corresponding to the flow condition (low or high) and assumed to follow the streamlines for that flow condition (low or high). Streamlines laterally contract and expand on pools and riffles, respectively, but in a different way during low and high flow condition. We apply the streamtube concept to compute instantaneous local rates of sediment transport in pools and contiguous downstream riffles and compute reversal conditions and identify self-maintenance episodes. Comparison with reversal episodes identified using cross- sectional average values reveal that when considering the 3-D effects stronger reversal episodes were detected, but the actual number of episodes increased only slightly (8%). Most reversal episodes occurred in the streamtubes that originated near the centre of the
Hoefnagels, Paul B. J.; Wei, Ping; Narezo Guzman, Daniela; Sun, Chao; Lohse, Detlef; Ahlers, Guenter
2017-07-01
We report on an experimental study of the large-scale flow (LSF) and Reynolds numbers in turbulent convection in a cylindrical sample with height equal to its diameter and heated locally around the center of its bottom plate (locally heated convection). The sample size and shape are the same as those of Narezo Guzman et al. [D. Narezo Guzman et al., J. Fluid Mech. 787, 331 (2015), 10.1017/jfm.2015.701; D. Narezo Guzman et al., J. Fluid Mech. 795, 60 (2016), 10.1017/jfm.2016.178]. Measurements are made at a nearly constant Rayleigh number as a function of the mean temperature, both in the presence of controlled boiling (two-phase flow) and for the superheated fluid (one-phase flow). Superheat values Tb-To n up to about 11 K (Tb is the bottom-plate temperature and To n is the lowest Tb at which boiling is observed) are used. The LSF is less organized than it is in (uniformly heated) Rayleigh-Bénard convection (RBC), where it takes the form of a single convection roll. Large-scale-flow-induced sinusoidal azimuthal temperature variations (like those found for RBC) could be detected only in the lower portion of the sample, indicating a less organized flow in the upper portions. Reynolds numbers are determined using the elliptic model (EM) of He and Zhang [G.-W. He and J.-B. Zhang, Phys. Rev. E 73, 055303(R) (2006), 10.1103/PhysRevE.73.055303]. We found that for our system the EM is applicable over a wide range of space and time displacements, as long as these displacements are within the inertial range of the temporal and spatial spectrum. At three locations in the sample the results show that the vertical mean-flow velocity component is reduced while the fluctuation velocity is enhanced by the bubbles of the two-phase flow. Enhancements of velocity fluctuations up to about 60% are found at the largest superheat values. Local temperature measurements within the sample reveal temperature oscillations that also used to determine a Reynolds number. These results are
ON THE CENTRAL RELAXING SCHEMES I:SINGLE CONSERVATION LAWS
Institute of Scientific and Technical Information of China (English)
Hua-zhong Tang
2000-01-01
In this first paper we present a central relaxing scheme for scalar conservation laws, based on using the local relaxation approximation. Our scheme is obtained without using linear or nonlinear Riemann solvers. A cell entropy inequality is studied for the semidiscrete central relaxing scheme, and a second order MUSCL scheme is shown to be TVD in the zero relaxation limit. The next paper will extend the central relaxing scheme to multi-dimensional systems of conservation laws in curvilinear coordinates, including numerical experiments for 1D and 2D problems.
Energy Technology Data Exchange (ETDEWEB)
Espinosa-Paredes, Gilberto, E-mail: gepe@xanum.uam.m [Area de Ingenieria en Recursos Energeticos, Universidad Autonoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, Col. Vicentina, Apartado Postal 55-535, Mexico D.F. 09340 (Mexico)
2010-05-15
The aim of this paper is to propose a framework to obtain a new formulation for multiphase flow conservation equations without length-scale restrictions, based on the non-local form of the averaged volume conservation equations. The simplification of the local averaging volume of the conservation equations to obtain practical equations is subject to the following length-scale restrictions: d << l << L, where d is the characteristic length of the dispersed phases, l is the characteristic length of the averaging volume, and L is the characteristic length of the physical system. If the foregoing inequality does not hold, or if the scale of the problem of interest is of the order of l, the averaging technique and therefore, the macroscopic theories of multiphase flow should be modified in order to include appropriate considerations and terms in the corresponding equations. In these cases the local form of the averaged volume conservation equations are not appropriate to describe the multiphase system. As an example of the conservation equations without length-scale restrictions, the natural circulation boiling water reactor was consider to study the non-local effects on the thermal-hydraulic core performance during steady-state and transient behaviors, and the results were compared with the classic local averaging volume conservation equations.
DEFF Research Database (Denmark)
Ruban, V.P.; Senchenko, Sergey
2004-01-01
The evolution of piecewise constant distributions of a conserved quantity related to the frozen-in canonical vorticity in effectively two-dimensional incompressible ideal EMHD flows is analytically investigated by the Hamiltonian method. The study includes the case of axisymmetric flows with zero...
Local dark energy: HST evidence from the expansion flow around Cen A/M83 galaxy group
Chernin, A D; Makarov, D I; Kashibadze, O G; Teerikorpi, P; Valtonen, M J; Dolgachev, V P; Domozhilova, L M
2007-01-01
A structure with a massive group in its center and a cool expansion outflow outside is studied around the Cen A galaxy with the use of the Hubble Space Telescope observations. It is demonstrated that the dynamics of the flow is dominated by the antigravity of the dark energy background. The density of dark energy in the cell is estimated to be near the global cosmological density. This agrees with our previous result from the neighborhood of the Local group. A notion of the ``Hubble cell'' is introduced as a building block of the local structure of the universe.
Directory of Open Access Journals (Sweden)
Chi C Vu
2009-01-01
Full Text Available Abstract Background Previous studies suggested that multiple domestication events in South and South-East Asia (Yunnan and surrounding areas and India have led to the genesis of modern domestic chickens. Ha Giang province is a northern Vietnamese region, where local chickens, such as the H'mong breed, and wild junglefowl coexist. The assumption was made that hybridisation between wild junglefowl and Ha Giang chickens may have occurred and led to the high genetic diversity previously observed. The objectives of this study were i to clarify the genetic structure of the chicken population within the Ha Giang province and ii to give evidence of admixture with G. gallus. A large survey of the molecular polymorphism for 18 microsatellite markers was conducted on 1082 chickens from 30 communes of the Ha Giang province (HG chickens. This dataset was combined with a previous dataset of Asian breeds, commercial lines and samples of Red junglefowl from Thailand and Vietnam (Ha Noï. Measurements of genetic diversity were estimated both within-population and between populations, and a step-by-step Bayesian approach was performed on the global data set. Results The highest value for expected heterozygosity (> 0.60 was found in HG chickens and in the wild junglefowl populations from Thailand. HG chickens exhibited the highest allelic richness (mean A = 2.9. No significant genetic subdivisions of the chicken population within the Ha Giang province were found. As compared to other breeds, HG chickens clustered with wild populations. Furthermore, the neighbornet tree and the Bayesian clustering analysis showed that chickens from 4 communes were closely related to the wild ones and showed an admixture pattern. Conclusion In the absence of any population structuring within the province, the H'mong chicken, identified from its black phenotype, shared a common gene pool with other chickens from the Ha Giang population. The large number of alleles shared exclusively
Bento, David; Sousa, Lúcia; Yaginuma, Tomoko; Garcia, Valdemar; Lima, Rui; Miranda, João M
2017-03-01
Gas embolisms can hinder blood flow and lead to occlusion of the vessels and ischemia. Bubbles in microvessels circulate as tubular bubbles (Taylor bubbles) and can be trapped, blocking the normal flow of blood. To understand how Taylor bubbles flow in microcirculation, in particular, how bubbles disturb the blood flow at the scale of blood cells, experiments were performed in microchannels at a low Capillary number. Bubbles moving with a stream of in vitro blood were filmed with the help of a high-speed camera. Cell-free layers (CFLs) were observed downstream of the bubble, near the microchannel walls and along the centerline, and their thicknesses were quantified. Upstream to the bubble, the cell concentration is higher and CFLs are less clear. While just upstream of the bubble the maximum RBC concentration happens at positions closest to the wall, downstream the maximum is in an intermediate region between the centerline and the wall. Bubbles within microchannels promote complex spatio-temporal variations of the CFL thickness along the microchannel with significant relevance for local rheology and transport processes. The phenomenon is explained by the flow pattern characteristic of low Capillary number flows. Spatio-temporal variations of blood rheology may have an important role in bubble trapping and dislodging.
Hua, Dan; Suzuki, Hiroki; Mochizuki, Shinsuke
2017-09-01
A local wall shear stress measurement technique has been developed using a thin plate, referred to as a sublayer plate which is attached to the wall in the sublayer of a near-wall turbulent flow. The pressure difference between the leading and trailing edges of the plate is correlated to the known wall shear stress obtained in the fully developed turbulent channel flow. The universal calibration curve can be well represented in dimensionless form, and the sensitivity of the proposed method is as high as that of the sublayer fence, even if the sublayer fence is enveloped by the linear sublayer. The results of additional experiments prove that the sublayer plate has fairly good angular resolution in detecting the direction of the local wall shear stress vector.
Bottlenecks to vibrational energy flow in OCS: Structures and mechanisms
PaÅ¡kauskas, R; Uzer, T
2008-01-01
Finding the causes for the nonstatistical vibrational energy relaxation in the planar carbonyl sulfide (OCS) molecule is a longstanding problem in chemical physics: Not only is the relaxation incomplete long past the predicted statistical relaxation time, but it also consists of a sequence of abrupt transitions between long-lived regions of localized energy modes. We report on the phase space bottlenecks responsible for this slow and uneven vibrational energy flow in this Hamiltonian system with three degrees of freedom. They belong to a particular class of two-dimensional invariant tori which are organized around elliptic periodic orbits. We relate the trapping and transition mechanisms with the linear stability of these structures.
2014-01-01
Both environmental and genetic influences can result in phenotypic variation. Quantifying the relative contributions of local adaptation and phenotypic plasticity to phenotypes is key to understanding the effect of environmental variation on populations. Identifying the selective pressures that drive divergence is an important, but often lacking, next step. High gene flow between high- and low-altitude common frog (Rana temporaria) breeding sites has previously been demonstrated in Scotland. ...
Hemidi, Amel; Henry, François; Leclaire, Sébastien; Seynhaeve, Jean-Marie; Bartosiewicz, Yann
2009-01-01
Abstract This paper presents an original CFD analysis of the operation of a supersonic ejector. This study is based on CFD and experimental results obtained in the first part paper [1]. Results clearly demonstrates that a good predictions of the entrainment rate, even over a wide range of operating conditions, do not necessarily mean a good prediction of the local flow features. This issue is shown through the results obtained for two turbulence models, and also raises the problem ...
Blood flow and muscle bio-energetics by 31P-nuclear magnetic resonance after local cold acclimation.
Savourey, G; Clerc, L; Vallerand, A L; Leftheriotis, G; Mehier, H; Bittel, J H
1992-01-01
To clarify the origin of local cold adaptation and to define precisely its influence on muscle bio-energetics during local exercise, five subjects were subjected to repeated 5 degrees C cold water immersion of the right hand and forearm. The first aim of our investigation was therefore carried out by measuring local skin temperatures and peripheral blood flow during a cold hand test (5 degrees C, 5 min) followed by a 10-min recovery period. The 31P by nuclear magnetic resonance (31PNMR) muscle bio-energetic changes, indicating possible heat production changes, were measured during the recovery period. The second aim of our investigation was carried out by measuring 31PNMR muscle bioenergetics during handgrip exercise (10% of the maximal voluntary contraction for 5 min followed by a 10-min recovery period) performed both at a comfortable ambient temperature (22 degrees C; E) and after a cold hand test (EC), before and after local cold adaptation. Local cold adaptation, confirmed by warmer skin temperatures of the extremities (+30%, P less than 0.05), was related more to an increased peripheral blood flow, as shown by the smaller decrease in systolic peak [-245 (SEM 30) Hz vs -382 (SEM 95) Hz, P less than 0.05] than to a change in local heat production, because muscle bioenergetics did not vary. Acute local cold immersion decreased the inorganic phosphate:phosphocreatine (PC) ratio during EC compared to E [+0.006 (SEM 0.010) vs +0.078 (SEM 0.002) before acclimation and +0.029 (SEM 0.002) vs +0.090 (SEM 0.002) after acclimation respectively, P less than 0.05] without significant change in the PC:beta-adenosine triphosphate ratio and pH. Local adaptation did not modify these results statistically. The recovery of PC during E increased after acclimation [9.0 (SEM 0.2) min vs 3.0 (SEM 0.4) min, P less than 0.05]. These results suggested that local cold adaptation is related more to peripheral blood flow changes than to increased metabolic heat production in the muscle.
Huebner, Claudia S.
2016-10-01
As a consequence of fluctuations in the index of refraction of the air, atmospheric turbulence causes scintillation, spatial and temporal blurring as well as global and local image motion creating geometric distortions. To mitigate these effects many different methods have been proposed. Global as well as local motion compensation in some form or other constitutes an integral part of many software-based approaches. For the estimation of motion vectors between consecutive frames simple methods like block matching are preferable to more complex algorithms like optical flow, at least when challenged with near real-time requirements. However, the processing power of commercially available computers continues to increase rapidly and the more powerful optical flow methods have the potential to outperform standard block matching methods. Therefore, in this paper three standard optical flow algorithms, namely Horn-Schunck (HS), Lucas-Kanade (LK) and Farnebäck (FB), are tested for their suitability to be employed for local motion compensation as part of a turbulence mitigation system. Their qualitative performance is evaluated and compared with that of three standard block matching methods, namely Exhaustive Search (ES), Adaptive Rood Pattern Search (ARPS) and Correlation based Search (CS).
Walitt, L.
1982-01-01
The VANS successive approximation numerical method was extended to the computation of three dimensional, viscous, transonic flows in turbomachines. A cross-sectional computer code, which conserves mass flux at each point of the cross-sectional surface of computation was developed. In the VANS numerical method, the cross-sectional computation follows a blade-to-blade calculation. Numerical calculations were made for an axial annular turbine cascade and a transonic, centrifugal impeller with splitter vanes. The subsonic turbine cascade computation was generated in blade-to-blade surface to evaluate the accuracy of the blade-to-blade mode of marching. Calculated blade pressures at the hub, mid, and tip radii of the cascade agreed with corresponding measurements. The transonic impeller computation was conducted to test the newly developed locally mass flux conservative cross-sectional computer code. Both blade-to-blade and cross sectional modes of calculation were implemented for this problem. A triplet point shock structure was computed in the inducer region of the impeller. In addition, time-averaged shroud static pressures generally agreed with measured shroud pressures. It is concluded that the blade-to-blade computation produces a useful engineering flow field in regions of subsonic relative flow; and cross-sectional computation, with a locally mass flux conservative continuity equation, is required to compute the shock waves in regions of supersonic relative flow.
Yoshida, Hiroaki; Kinjo, Tomoyuki; Washizu, Hitoshi
2014-10-01
We present a coupled lattice Boltzmann method (LBM) to solve a set of model equations for electrokinetic flows in micro-/nano-channels. The model consists of the Poisson equation for the electrical potential, the Nernst-Planck equation for the ion concentration, and the Navier-Stokes equation for the flows of the electrolyte solution. In the proposed LBM, the electrochemical migration and the convection of the electrolyte solution contributing to the ion flux are incorporated into the collision operator, which maintains the locality of the algorithm inherent to the original LBM. Furthermore, the Neumann-type boundary condition at the solid/liquid interface is then correctly imposed. In order to validate the present LBM, we consider an electro-osmotic flow in a slit between two charged infinite parallel plates, and the results of LBM computation are compared to the analytical solutions. Good agreement is obtained in the parameter range considered herein, including the case in which the nonlinearity of the Poisson equation due to the large potential variation manifests itself. We also apply the method to a two-dimensional problem of a finite-length microchannel with an entry and an exit. The steady state, as well as the transient behavior, of the electro-osmotic flow induced in the microchannel is investigated. It is shown that, although no external pressure difference is imposed, the presence of the entry and exit results in the occurrence of the local pressure gradient that causes a flow resistance reducing the magnitude of the electro-osmotic flow.
Isochronous relaxation curves for type 304 stainless steel after monotonic and cyclic strain
Energy Technology Data Exchange (ETDEWEB)
Swindeman, R.W.
1978-01-01
Relaxation tests to 100 hr were performed on type 304 stainless steel in the temperature range 480 to 650/sup 0/C and were used to develop isochronous relaxation curves. Behavior after monotonic and cyclic strain was compared. Relaxation differed only slightly as a consequence of the type of previous strain, provided that plastic flow preceded the relaxation period. We observed that the short-time relaxation behavior did not manifest strong heat-to-heat variation in creep strength.
Directory of Open Access Journals (Sweden)
Alan eUrban
2012-06-01
Full Text Available Although it is know since more than a century that neuronal activity is coupled to blood supply regulation, the underlying pathways remains to be identified. In the brain, neuronal activation triggers a local increase of cerebral blood flow (CBF that is controlled by the neurogliovascular unit composed of terminals of neurons, astrocytes and blood vessel muscles. It is generally accepted that the regulation of the neurogliovascular unit is adjusted to local metabolic demand by local circuits. Today experimental data led us to realize that the regulatory mechanisms are more complex and that a neuronal system within the brain is devoted to the control of local brain blood flow. Recent optogenetic experiments combined with functional magnetic resonance imaging (fMRI have revealed that light stimulation of neurons expressing the calcium binding protein parvalbumin (PV is associated with positive blood oxygen level-dependent (BOLD signal in the corresponding barrel field but also with negative BOLD in the surrounding deeper area. Here, we demonstrate that in acute brain slices, ChR2-based photostimulation of PV containing neurons gives rise to an effective contraction of penetrating arterioles. These results support the neurogenic hypothesis of a complex distributed nervous system controlling the CBF.
DEFF Research Database (Denmark)
Eg Nielsen, Einar; Hansen, Jakob Hemmer; Poulsen, Nina Aagaard;
2009-01-01
Background: Marine fishes have been shown to display low levels of genetic structuring and associated high levels of gene flow, suggesting shallow evolutionary trajectories and, possibly, limited or lacking adaptive divergence among local populations. We investigated variation in 98 gene...... selection in local demes, or closely linked to loci under selection. Likewise, on a regional south/north transect of central and eastern Atlantic populations, seven loci displayed strongly elevated levels of genetic differentiation. Selection patterns among populations appeared to be relatively widespread...... archived otoliths from a Faeroese population demonstrated stability of the intra-population variation over 24 years. An exploratory landscape genetic analysis was used to elucidate potential effects of the most likely environmental factors responsible for the signatures of local adaptation. We found...
Directory of Open Access Journals (Sweden)
Mittelholzer Christian
2009-12-01
Full Text Available Abstract Background Marine fishes have been shown to display low levels of genetic structuring and associated high levels of gene flow, suggesting shallow evolutionary trajectories and, possibly, limited or lacking adaptive divergence among local populations. We investigated variation in 98 gene-associated single nucleotide polymorphisms (SNPs for evidence of selection in local populations of Atlantic cod (Gadus morhua L. across the species distribution. Results Our global genome scan analysis identified eight outlier gene loci with very high statistical support, likely to be subject to directional selection in local demes, or closely linked to loci under selection. Likewise, on a regional south/north transect of central and eastern Atlantic populations, seven loci displayed strongly elevated levels of genetic differentiation. Selection patterns among populations appeared to be relatively widespread and complex, i.e. outlier loci were generally not only associated with one of a few divergent local populations. Even on a limited geographical scale between the proximate North Sea and Baltic Sea populations four loci displayed evidence of adaptive evolution. Temporal genome scan analysis applied to DNA from archived otoliths from a Faeroese population demonstrated stability of the intra-population variation over 24 years. An exploratory landscape genetic analysis was used to elucidate potential effects of the most likely environmental factors responsible for the signatures of local adaptation. We found that genetic variation at several of the outlier loci was better correlated with temperature and/or salinity conditions at spawning grounds at spawning time than with geographic distance per se. Conclusion These findings illustrate that adaptive population divergence may indeed be prevalent despite seemingly high levels of gene flow, as found in most marine fishes. Thus, results have important implications for our understanding of the interplay of
Papapostolou, Vassilios
2017-09-11
Enstrophy is an intrinsic feature of turbulent flows, and its transport properties are essential for the understanding of premixed flame-turbulence interaction. The interrelation between the enstrophy transport and flow topologies, which can be assigned to eight categories based on the three invariants of the velocity-gradient tensor, has been analysed here. The enstrophy transport conditional on flow topologies in turbulent premixed flames has been analysed using a Direct Numerical Simulation database representing the corrugated flamelets (CF), thin reaction zones (TRZ) and broken reaction zones (BRZ) combustion regimes. The flame in the CF regime exhibits considerable flame-generated enstrophy, and the dilatation rate and baroclinic torque contributions to the enstrophy transport act as leading order sink and source terms, respectively. Consequently, flow topologies associated with positive dilatation rate values, contribute significantly to the enstrophy transport in the CF regime. By contrast, enstrophy decreases from the unburned to the burned gas side for the cases representing the TRZ and BRZ regimes, with diminishing influences of dilatation rate and baroclinic torque. The enstrophy transport in the TRZ and BRZ regimes is governed by the vortex-stretching and viscous dissipation contributions, similar to non-reacting flows, and topologies existing for all values of dilatation rate remain significant contributors.
Dynamic evolution of a flow to localized, kinetics-driven ablation or coagulation
Hagan, Daniel; Crocker, Ryan; Dubief, Yves
2012-11-01
This research focuses on the numerical simulation of the ablative creation of a cavity or a coagulative formation at a wall in a flow. The fluid-solid interface is defined by a level set (LS) variable, whose transport equation is driven by the mass-loss or growth process. The boundary conditions at the fluid-solid interface are enforced by a mass and energy-conserving immersed boundary method (IBM) using the ghost-fluid node approach for the latter and for the transport of chemical species. The first application of the LS/IBM algorithm is a channel flow in which both walls are cavity-free, but one wall contains a section made of ablatable material, which could correspond to a hole or gap in a spacecraft thermal protection shield. The second application is a pipe flow in which the wall is capable of accumulating material, which could describe the coagulation of blood at a vessel wall. The solid mass loss or growth is driven by one step kinetics. For both flows, the dynamical interplay between the ablative or coagulative patch is investigated through statistics and flow topology. We gratefully acknowledge the financial support of NASA, grant No. NNX11AM07A, and NIH, grant No. P01HL46703, and the computational support of the Vermont Advanced Computing Core.
Local parameters of air–water two-phase flow at a vertical T-junction
Energy Technology Data Exchange (ETDEWEB)
Monrós-Andreu, G., E-mail: gmonros@uji.es; Martínez-Cuenca, R., E-mail: rcuenca@uji.es; Torró, S., E-mail: torro@uji.es; Chiva, S., E-mail: schiva@uji.es
2017-02-15
Significant experimental work and modeling about vertical T-junction as a phase separator has been done for churn and annular flows, but a survey on the literature reveals a lack of experimental data regarding bubbly flow nor any phenomenological explanation to their behavior. The objective of this work is to extend the understanding of these junctions by obtaining complete datasets, i.e. of both gas and liquid, of the phase splitting process in bubbly flow conditions by means of conductivity needle probes, Laser Doppler anemometry and visual inspection. Measurements and observations of the phase split, as well as the vortex structure in a vertical T-junction with equal pipe diameters (52 mm inner diameter), are reported. Results suggest a relationship between the vortex structure and the efficiency of the junction as phase separator.
Garaud, Pascale; Gagnier, Damien; Verhoeven, Jan
2017-03-01
Shear-induced turbulence could play a significant role in mixing momentum and chemical species in stellar radiation zones, as discussed by Zahn. In this paper we analyze the results of direct numerical simulations of stratified plane Couette flows, in the limit of rapid thermal diffusion, to measure the turbulent viscosity and the turbulent diffusivity of a passive tracer as a function of the local shear and the local stratification. We find that the stability criterion proposed by Zahn, namely that the product of the gradient Richardson number and the Prandtl number must be smaller than a critical values {(J\\Pr )}c for instability, adequately accounts for the transition to turbulence in the flow, with {(J\\Pr )}c≃ 0.007. This result recovers and confirms the prior findings of Prat et al. Zahn’s model for the turbulent diffusivity and viscosity, namely that the mixing coefficient should be proportional to the ratio of the thermal diffusivity to the gradient Richardson number, does not satisfactorily match our numerical data. It fails (as expected) in the limit of large stratification where the Richardson number exceeds the aforementioned threshold for instability, but it also fails in the limit of low stratification where the turbulent eddy scale becomes limited by the computational domain size. We propose a revised model for turbulent mixing by diffusive stratified shear instabilities that properly accounts for both limits, fits our data satisfactorily, and recovers Zahn’s model in the limit of large Reynolds numbers.
Garaud, P; Verhoeven, J
2016-01-01
Shear-induced turbulence could play a significant role in mixing momentum and chemical species in stellar radiation zones, as discussed by Zahn (1974). In this paper we analyze the results of direct numerical simulations of stratified plane Couette flows, in the limit of rapid thermal diffusion, to measure the turbulent diffusivity and turbulent viscosity as a function of the local shear and the local stratification. We find that the stability criterion proposed by Zahn (1974), namely that the product of the gradient Richardson number and the Prandtl number must be smaller than a critical values $(J\\Pr)_c$ for instability, adequately accounts for the transition to turbulence in the flow, with $(J\\Pr)_c \\simeq 0.007$. This result recovers and confirms the prior findings of Prat et al. (2016). Zahn's model for the turbulent diffusivity and viscosity (Zahn 1992), namely that the mixing coefficient should be proportional to the ratio of the thermal diffusivity to the gradient Richardson number, does not satisfact...
Experimental studies of local scour in the pressurized OCF below a wooden log across the flow
Indian Academy of Sciences (India)
Soumen Maji; Prashanth Reddy Hanmaiahgari; Subhasish Dey
2014-10-01
The proposed study examined and reviewed the published experimental results related to clear water scour below a cylinder across the flow. It also highlighted the limitations of existing methods for estimating the scour depth below a submerged cylinder. In the present study, experiments were performed for 50% and 75% submergences of a 70 mm diameter cylinder in the free surface flow over a uniform sand bed with $d_{50}\\ =$ 0.98 mm downstream of an apron. Based on the experimental results, an empirical equation was proposed to estimate the amount of gap flow between the cylinder and the bed for an equilibrium scour for a given flow depth and sediment properties. Measured scour profile consisted of a scour hole and immediately followed by a dune. However, no general sediment transport was occurring away from the cylinder due to the undisturbed bed shear stress less than or equal to the critical shear stress required for the sediment entrainment. Different submergence ratios of the cylinder resulted in different longitudinal and vertical extensions of the scour hole and the dune. The maximum equilibrium scour depth occurred when the cylinder is fully submerged in the unidirectional flow with water depth equals to the cylinder diameter. The non-dimensional measured scour profiles were found to be similar. The characteristic lengths of the scour hole and the dune were computed analytically by approximating the measured scour profile by third degree polynomials. The computed non-dimensional scour profiles compared satisfactorily with the measured profiles. It was found that analytical non-dimensional scour profiles were identical for a given diameter of a cylinder with different submergences for the same flow conditions.
Models of Flux Tubes from Constrained Relaxation
Indian Academy of Sciences (India)
Α. Mangalam; V. Krishan
2000-09-01
We study the relaxation of a compressible plasma to an equilibrium with flow. The constraints of conservation of mass, energy, angular momentum, cross-helicity and relative magnetic helicity are imposed. Equilibria corresponding to the energy extrema while conserving these invariants for parallel flows yield three classes of solutions and one of them with an increasing radial density profile, relevant to solar flux tubes is presented.
Indentation load relaxation test
Energy Technology Data Exchange (ETDEWEB)
Hannula, S.P.; Stone, D.; Li, C.Y. (Cornell Univ., Ithaca, NY (USA))
Most of the models that are used to describe the nonelastic behavior of materials utilize stress-strain rate relations which can be obtained by a load relaxation test. The conventional load relaxation test, however, cannot be performed if the volume of the material to be tested is very small. For such applications the indentation type of test offers an attractive means of obtaining data necessary for materials characterization. In this work the feasibility of the indentation load relaxation test is studied. Experimental techniques are described together with results on Al, Cu and 316 SS. These results are compared to those of conventional uniaxial load relaxation tests, and the conversion of the load-indentation rate data into the stress-strain rate data is discussed.
Relaxation techniques for stress
... problems such as high blood pressure, stomachaches, headaches, anxiety, and depression. Using relaxation techniques can help you feel calm. These exercises can also help you manage stress and ease the effects of stress on your body.
Perturbations and quantum relaxation
Kandhadai, Adithya
2016-01-01
We investigate whether small perturbations can cause relaxation to quantum equilibrium over very long timescales. We consider in particular a two-dimensional harmonic oscillator, which can serve as a model of a field mode on expanding space. We assume an initial wave function with small perturbations to the ground state. We present evidence that the trajectories are highly confined so as to preclude relaxation to equilibrium even over very long timescales. Cosmological implications are briefly discussed.
Microscopic Local Measurement of Blood Flow and Oxygen Tension in Brain Microcirculation
Minamitani, Haruyuki; Takahashi, Ryota; Tsukada, Kousuke
A multi-photonic imaging system was proposed for measuring blood flow velocity, vessel diameter and blood oxygen tension pO2 simultaneously with high spatio-temporal resolution in the parenchymatous organ microcirculation, such as pial tissue, by using a closed cranial window and two light sources. FITC-stained erythrocytes was used to visualize the microcirculation, and the fluorescent image was recorded by a high-speed video camera for measuring blood flow velocity. Oxygen tension pO2 was measured by oxygen-dependent quenching of phosphorescent molecules, Pd-TCPP, in the microvessels after irradiation of second harmonic light of Nd:YAG pulse laser (532nm). Animal experiments were performed for investigation of blood flow dynamics and oxygen diffusion phenomenon during acute cerebral ischemia using photochemical thrombus formation in the closed cranial window of male Wistar rats. Experimental results showed specific and significant blood flow and oxygen diffusion phenomena related to the abnormal organ tissues, from those the proposed technique would contribute to the trasnlational research for the clinical medicine, concerned in the ischemic dysfunction, angiogenisis, tumorgenisis and so on.
Moving object localization using optical flow for pedestrian detection from a moving vehicle.
Hariyono, Joko; Hoang, Van-Dung; Jo, Kang-Hyun
2014-01-01
This paper presents a pedestrian detection method from a moving vehicle using optical flows and histogram of oriented gradients (HOG). A moving object is extracted from the relative motion by segmenting the region representing the same optical flows after compensating the egomotion of the camera. To obtain the optical flow, two consecutive images are divided into grid cells 14 × 14 pixels; then each cell is tracked in the current frame to find corresponding cell in the next frame. Using at least three corresponding cells, affine transformation is performed according to each corresponding cell in the consecutive images, so that conformed optical flows are extracted. The regions of moving object are detected as transformed objects, which are different from the previously registered background. Morphological process is applied to get the candidate human regions. In order to recognize the object, the HOG features are extracted on the candidate region and classified using linear support vector machine (SVM). The HOG feature vectors are used as input of linear SVM to classify the given input into pedestrian/nonpedestrian. The proposed method was tested in a moving vehicle and also confirmed through experiments using pedestrian dataset. It shows a significant improvement compared with original HOG using ETHZ pedestrian dataset.
Phase-locked Josephson flux flow local oscillator for sub-mm integrated receivers
DEFF Research Database (Denmark)
Mygind, Jesper; Mahaini, C.; Dmitriev, P.
2002-01-01
) have been performed. The FFO line is Lorentzian both in the resonant regime, on Fiske steps (FSs), and on the flux flow step (FFS). This indicates that internal wide-band noise is dominant. A phenomenological noise model can account for the FFO linewidth dependence on experimental parameters...
Directory of Open Access Journals (Sweden)
Zong-Guang Zhou
2004-04-01
Conclusions: The correlations between increased COX-2 expression and decreased capillary perfusion and blood flow and increased oedema following AIP may show that COX-2 expression can induce neutrophil sequestration to the pancreas, which may be one of the cascading inflammatory factors in the development of AIP.
Karimi, Amir
1991-01-01
NASA's effort for the thermal environmental control of the Space Station Freedom is directed towards the design, analysis, and development of an Active Thermal Control System (ATCS). A two phase, flow through condenser/radiator concept was baselined, as a part of the ATCS, for the radiation of space station thermal load into space. The proposed condenser rejects heat through direct condensation of ATCS working fluid (ammonia) in the small diameter radiator tubes. Analysis of the condensation process and design of condenser tubes are based on the available two phase flow models for the prediction of flow regimes, heat transfer, and pressure drops. The prediction formulas use the existing empirical relationships of friction factor at gas-liquid interface. An attempt is made to study the stability of interfacial waves in two phase annular flow. The formulation is presented of a stability problem in cylindrical coordinates. The contribution of fluid viscosity, surface tension, and transverse radius of curvature to the interfacial surface is included. A solution is obtained for Kelvin-Helmholtz instability problem which can be used to determine the critical and most dangerous wavelengths for interfacial waves.
Direct Numerical Simulations of Local and Global Torque in Taylor-Couette Flow up to Re=30.000
Brauckmann, Hannes
2015-01-01
The torque in turbulent Taylor-Couette flows for shear Reynolds numbers Re_S up to 3x10^4 at various mean rotations is studied by means of direct numerical simulations for a radius ratio of \\eta=0.71. Convergence of simulations is tested using three criteria of which the agreement of dissipation values estimated from the torque and from the volume dissipation rate turns out to be most demanding. We evaluate the influence of Taylor vortex heights on the torque for a stationary outer cylinder and select a value of the aspect ratio of \\Gamma=2, close to the torque maximum. The connection between the torque and the transverse current J^\\omega of azimuthal motion which can be computed from the velocity field enables us to investigate the local transport resulting in the torque. The typical spatial distribution of the individual convective and viscous contributions to the local current is analysed for a turbulent flow case. To characterise the turbulent statistics of the transport, PDF's of local current fluctuatio...
Weber, Tobias; Ducos, Michel; Mulder, Edwin; Beijer, Åsa; Herrera, Frankyn; Zange, Jochen; Degens, Hans; Bloch, Wilhelm; Rittweger, Jörn
2014-05-01
In the light of the dynamic nature of habitual plantar flexor activity, we utilized an incremental isokinetic exercise test (IIET) to assess the work-related power deficit (WoRPD) as a measure for exercise-induced muscle fatigue before and after prolonged calf muscle unloading and in relation to arterial blood flow and muscle perfusion. Eleven male subjects (31 ± 6 years) wore the HEPHAISTOS unloading orthosis unilaterally for 56 days. It allows habitual ambulation while greatly reducing plantar flexor activity and torque production. Endpoint measurements encompassed arterial blood flow, measured in the femoral artery using Doppler ultrasound, oxygenation of the soleus muscle assessed by near-infrared spectroscopy, lactate concentrations determined in capillary blood and muscle activity using soleus muscle surface electromyography. Furthermore, soleus muscle biopsies were taken to investigate morphological muscle changes. After the intervention, maximal isokinetic torque was reduced by 23·4 ± 8·2% (PBlood flow, tissue oxygenation, lactate concentrations and EMG median frequency kinematics during the exercise test were comparable before and after the intervention, whereas the increase of RMS in response to IIET was less following the intervention (P = 0·03). In conclusion, following submaximal isokinetic muscle work exercise-induced muscle fatigue is unaffected after prolonged local muscle unloading. The observation that arterial blood flow was maintained may underlie the unchanged fatigability.
Guo, H.; Huang, Q. M.; Liu, P. Q.; Feng, T.
2015-08-01
The effects of localized unsteady ejection by synthetic jet with slot-type exit on a turbulent boundary layer at zero pressure gradient conditions were investigated downstream of the slot using hot-wire anemometry. This work is to investigate the influence of unsteady disturbance on turbulent structures at small scales, i.e., in the isotropy recovery range (IRR) and the shear-dominated range (SDR). In the near-slot region, our results show that IRR is extended and SDR is shortened for the perturbed flow in the near-wall region, which contributes to the decrease in anisotropy and intermittency. For the perturbed flow, only one scaling behavior of the longitudinal structure functions similar to the classical Kolmogorov-like scaling is observed in IRR.
Papaloizou, J C B
2004-01-01
We carry out a general study of the stability of astrophysical flows that appear steady in a uniformly rotating frame. Such a flow might correspond to a stellar pulsation mode or an accretion disk with a free global distortion giving it finite eccentricity. We consider perturbations arbitrarily localized in the neighbourhood of unperturbed fluid streamlines.When conditions do not vary around them, perturbations take the form of oscillatory inertial or gravity modes. However, when conditions do vary so that a circulating fluid element is subject to periodic variations, parametric instability may occur. For nearly circular streamlines, the dense spectra associated with inertial or gravity modes ensure that resonance conditions can always be satisfied when twice the period of circulation round a streamline falls within. We apply our formalism to a differentially rotating disk for which the streamlines are Keplerian ellipses, with free eccentricity up to 0.7, which do not precess in an inertial frame. We show tha...
The dynamics of plate tectonics and mantle flow: from local to global scales.
Stadler, Georg; Gurnis, Michael; Burstedde, Carsten; Wilcox, Lucas C; Alisic, Laura; Ghattas, Omar
2010-08-27
Plate tectonics is regulated by driving and resisting forces concentrated at plate boundaries, but observationally constrained high-resolution models of global mantle flow remain a computational challenge. We capitalized on advances in adaptive mesh refinement algorithms on parallel computers to simulate global mantle flow by incorporating plate motions, with individual plate margins resolved down to a scale of 1 kilometer. Back-arc extension and slab rollback are emergent consequences of slab descent in the upper mantle. Cold thermal anomalies within the lower mantle couple into oceanic plates through narrow high-viscosity slabs, altering the velocity of oceanic plates. Viscous dissipation within the bending lithosphere at trenches amounts to approximately 5 to 20% of the total dissipation through the entire lithosphere and mantle.
PRELIMINARY APPLICATION OF COLOR DOPPLER FLOW IMAGING IN THE LOCALIZATION OF PARATHYROID ADENOMAS
Institute of Scientific and Technical Information of China (English)
张缙熙; 李建初
1994-01-01
From December 1991 to April 1993,we performed color Doppler flow imaging(CDFI) in 11 patients with parathyroid adenoma,and all cases were confirmed by toperation and pathology.In all the parathyroid adenomas,vessels were clearly revealed at the periphery of the upper pole and /or anterior periphery,where arterial signals were elicited.These arteries had branches into the adenomas and originated from inferior thyroid arteries on the same side in most cases.The internal flow signals were increased markedly as compared to normal thyroid,and high-velocity arterial signals were detected.Because of the thyroid's rich blood supply and landmark peripheral vessels.CDFI can distinguish parathyroid foci from thyroid nodules,lymph nodes,and normal tissues and provide a sound basis for the diagnosis of small parathyroid foci.
Film flows and self-organized patterns of 2D-localized structures
Energy Technology Data Exchange (ETDEWEB)
Frenkel, A.L. [Univ. of Alabama, Tuscaloosa, AL (United States)
1996-12-31
Films flowing down an inclined plane are considered. An unconventional perturbation approach is discussed. It yields the most general evolution equation for film thickness and the least restrictive conditions for its validity. Results of numerical simulations of the dissipative-dispersive evolution equation indicate that novel, more complex type of spatiotemporal patterns can exist for strange attractors of nonequilibrium systems. It is suggested that real-life experiments satisfying the validity conditions of this theory are possible.
Local Limit Phenomena, Flow Compression, and Fuel Cracking Effects in High-Speed Turbulent Flames
2015-06-01
dynamic adaptive hybrid integration, was developed for stiff chemistry. 15. SUBJECT TERMS chemical explosive mode analysis ( CEMA ...TECHNICAL DISCUSSION 1. Chemical explosive mode analysis ( CEMA ) for computational flame diagnostics The method of chemical explosive mode...analysis ( CEMA ) is a systematic approach to identify limit flame phenomena, including local ignition, extinction, and premixed and non- premixed reaction
Hult, Francis M.; Källkvist, Marie
2016-01-01
In this paper, the language policies of three Swedish universities are examined as instances of language planning in local contexts. Although Sweden has the national Language Act of 2009 (SFS 2009:600) as well as a general Higher Education Ordinance (SFS 1993:100; SFS 2014:1096), language planning for higher education is left to the purview of…
Hyperoxia and local organ blood flow in the developing chick embryo
Golde, J.M.C.G. van; Mulder, T.A.L.M.; Scheve, E.; Prinzen, F.W.; Blanco, C.E.
1999-01-01
1. Hyperoxia can cause local vasoconstriction in adult animal organs as a protective mechanism against hyperoxia-induced toxicity. It is not known at what time during development this vasoconstrictor capacity is present. Therefore, we measured the cardiac output (GO) distribution in different organs
Groce, J. L.; Izumi, K. H.; Markham, C. H.; Schwab, R. W.; Thompson, J. L.
1986-01-01
The Local Flow Management/Profile Descent (LFM/PD) algorithm designed for the NASA Transport System Research Vehicle program is described. The algorithm provides fuel-efficient altitude and airspeed profiles consistent with ATC restrictions in a time-based metering environment over a fixed ground track. The model design constraints include accommodation of both published profile descent procedures and unpublished profile descents, incorporation of fuel efficiency as a flight profile criterion, operation within the performance capabilities of the Boeing 737-100 airplane with JT8D-7 engines, and conformity to standard air traffic navigation and control procedures. Holding and path stretching capabilities are included for long delay situations.
Numerical Solution of Stokes Flow in a Circular Cavity Using Mesh-free Local RBF-DQ
DEFF Research Database (Denmark)
Kutanaai, S Soleimani; Roshan, Naeem; Vosoughi, A;
2012-01-01
This work reports the results of a numerical investigation of Stokes flow problem in a circular cavity as an irregular geometry using mesh-free local radial basis function-based differential quadrature (RBF-DQ) method. This method is the combination of differential quadrature approximation...... is applied on a two-dimensional geometry. The obtained results from the numerical simulations are compared with those gained by previous works. Outcomes prove that the current technique is in very good agreement with previous investigations and this fact that RBF-DQ method is an accurate and flexible method...... in solution of partial differential equations (PDEs)....
2MTF IV. A bulk flow measurement of the local Universe
Hong, Tao; Staveley-Smith, Lister; Scrimgeour, Morag I; Masters, Karen L; Macri, Lucas M; Koribalski, Bärbel S; Jones, D Heath; Jarrett, Tom H
2014-01-01
Using the 2MASS near-infrared photometry and high signal-to-noise HI 21-cm data from the Arecibo, Green Bank, Nancay, and Parkes telescopes, we calculate the redshift-independent distances and peculiar velocities of 2,018 bright inclined spiral galaxies over the whole sky. This project is part of the 2MASS Tully-Fisher survey (2MTF), aiming to map the galaxy peculiar velocity field within 100 h^{-1}Mpc, with an all-sky coverage apart from Galactic latitudes |b|< 5 deg. A \\chi^2 minimization method was adopted to analyze the Tully-Fisher peculiar velocity field in J, H and K bands, using a Gaussian filter. We combine information from the three wavebands, to provide bulk flow measurements of 310.9 +/- 33.9 km/s, 280.8 +/- 25.0 km/s, and 292.3 +/- 27.8 km/s at depths of 20 h^{-1}Mpc, 30 h^{-1}Mpc and 40 h^{-1}Mpc, respectively. Each of these bulk flow vectors points in a direction similar to those found by previous measurements. At each of the three depths, the bulk flow magnitude is consistent with predictio...
Institute of Scientific and Technical Information of China (English)
张燕来; 朱慧铭; 尹秋响
2011-01-01
A chromochemical reactive mass transfer technique has been employed to study local mass transfer characteristics of structured packing. This technology adopted by experiment is an Ammonia Adsorption Method （AAM） that yields the surface distribution of transferred mass by analyzing the color distribution on a filter paper with the results of the color chemical reaction. A digital image processing technology is applied for data visualiza-tion. The three-dimensional plot of the local mass transfer coefficients shows that there exist three peak values on different positions of a unit cell of structured packing. In order to improve mass transfer efficiency of the structured packing, one piece of baffle is added between packing sheets. As a result, the average mass transfer coefficient increases by （10 20）% and the pressure drop decreases by （15-55）%.
Torsional shear flow of granular materials: shear localization and minimum energy principle
Artoni, Riccardo; Richard, Patrick
2016-10-01
The rheological properties of granular matter submitted to torsional shear are investigated numerically by means of discrete element method. The shear cell is made of a cylinder filled by grains which are sheared by a bumpy bottom and submitted to a vertical pressure which is applied at the top. Regimes differing by their strain localization features are observed. They originate from the competition between dissipation at the sidewalls and dissipation in the bulk of the system. The effects of the (i) the applied pressure, (ii) sidewall friction, and (iii) angular velocity are investigated. A model, based on the purely local μ (I) -rheology and a minimum energy principle is able to capture the effect of the two former quantities but unable to account the effect of the latter. Although, an ad hoc modification of the model allows to reproduce all the numerical results, our results point out the need for an alternative rheology.
Cabriology: Putting Digital Collections in the Local Flow at Bruges Public Library
Directory of Open Access Journals (Sweden)
Koen Calis
2010-02-01
Full Text Available Cabrio, the Aquabrowser implementation at the Bruges Public Library, is more than a catalogue makeover. Rich, variable, flashy and truly inspirational, its open structure tackles several strategic issues related to a changing network environment. Digital collections are merged with the catalogue to become part of a hybrid library mediation model. Cabrio focuses on local dynamics and existing participation, which are key features of public libraries, in order to challenge and redefine library perceptions and services.
Seeking the Local Convergence Depth. The Abell Cluster Dipole Flow to $200h^{-1}$ Mpc
Dale, D A; Haynes, M P; Campusano, L E; Hardy, E; Borgani, S; Dale, Daniel A.; Giovanelli, Riccardo; Haynes, Martha P.; Campusano, Luis E.; Hardy, Eduardo; Borgani, Stefano
1999-01-01
We have obtained new Tully-Fisher (TF) peculiar velocity measurements for 52 Abell galaxy clusters distributed throughout the sky between ~ 50 and 200 Mpc/h.The measurements are based on I band photometry and optical rotation curves for a sample of 522 spiral galaxies, from which an accurate TF template relation has been constructed. Individual cluster TF relations are referred to the template to compute cluster peculiar motions. The reflex motion of the Local Group of galaxies is measured with respect to the reference frame defined by our cluster sample and the distant portion of the Giovanelli et al. (1998) cluster set. We find the Local Group motion in this frame to be 565+/-113 km/s in the direction (l,b)=(267,26)+/-10 when peculiar velocities are weighted according to their errors. After optimizing the dipole calculation to sample equal volumes equally, the vector is 509+/-195 km/s towards (255,33)+/-22. Both solutions agree, to within 1-sigma or better, with the Local Group motion as inferred from the c...
Institute of Scientific and Technical Information of China (English)
无
1996-01-01
The coupled heat and mass transfer problem of gas flow over a UHF flat plate with its wall coated with sublimable substance was been solved by local non-smimilarity method.Considerations have been given also to the effect of non-saturation of the sublimable substance in the oncoming flow and the normal injection velocity at the surface.Analytical results are given for local Noselt and Sherwood Numbers at the various locations.
Bifurcation in a thin liquid film flowing over a locally heated surface
Katkar, Harshwardhan H
2014-01-01
We investigate the non-linear dynamics of a two-dimensional film flowing down a finite heater, for a non-volatile and a volatile liquid. An oscillatory instability is predicted beyond a critical value of Marangoni number using linear stability theory. Continuation along the Marangoni number using non-linear evolution equation is used to trace bifurcation diagram associated with the oscillatory instability. Hysteresis, a characteristic attribute of a sub-critical Hopf bifurcation, is observed in a critical parametric region. The bifurcation is universally observed for both, a non-volatile film and a volatile film.
p-q growth via relaxation methods
Directory of Open Access Journals (Sweden)
Irene Benedetti
2004-01-01
Full Text Available Local Lipschitz continuity of local minimizers of vectorial integrals ∫Ω f(x,Dudx is proved when f satisfies p-q growth condition and ξ↦f(x,ξ is not convex. The uniform convexity and the radial structure condition with respect to the last variable are assumed only at infinity. In the proof, we use semicontinuity and relaxation results for functionals with nonstandard growth.
Raudies, Florian; Ringbauer, Stefan; Neumann, Heiko
2013-09-01
Visual navigation requires the estimation of self-motion as well as the segmentation of objects from the background. We suggest a definition of local velocity gradients to compute types of self-motion, segment objects, and compute local properties of optical flow fields, such as divergence, curl, and shear. Such velocity gradients are computed as velocity differences measured locally tangent and normal to the direction of flow. Then these differences are rotated according to the local direction of flow to achieve independence of that direction. We propose a bio-inspired model for the computation of these velocity gradients for video sequences. Simulation results show that local gradients encode ordinal surface depth, assuming self-motion in a rigid scene or object motions in a nonrigid scene. For translational self-motion velocity, gradients can be used to distinguish between static and moving objects. The information about ordinal surface depth and self-motion can help steering control for visual navigation.
Mitchell, Andrew K.; Becker, Michael; Bulla, Ralf
2011-09-01
The existence of a length scale ξK˜1/TK (with TK the Kondo temperature) has long been predicted in quantum impurity systems. At low temperatures T≪TK, the standard interpretation is that a spin-(1)/(2) impurity is screened by a surrounding “Kondo cloud” of spatial extent ξK. We argue that renormalization group (RG) flow between any two fixed points (FPs) results in a characteristic length scale, observed in real space as a crossover between physical behavior typical of each FP. In the simplest example of the Anderson impurity model, three FPs arise, and we show that “free orbital,” “local moment,” and “strong coupling” regions of space can be identified at zero temperature. These regions are separated by two crossover length scales ξLM and ξK, with the latter diverging as the Kondo effect is destroyed on increasing temperature through TK. One implication is that moment formation occurs inside the “Kondo cloud”, while the screening process itself occurs on flowing to the strong coupling FP at distances ˜ξK. Generic aspects of the real-space physics are exemplified by the two-channel Kondo model, where ξK now separates local moment and overscreening clouds.
Pinsker estimators for local helioseismology: inversion of travel times for mass-conserving flows
Fournier, Damien; Gizon, Laurent; Holzke, Martin; Hohage, Thorsten
2016-10-01
A major goal of helioseismology is the three-dimensional reconstruction of the three velocity components of convective flows in the solar interior from sets of wave travel-time measurements. For small amplitude flows, the forward problem is described in good approximation by a large system of convolution equations. The input observations are highly noisy random vectors with a known dense covariance matrix. This leads to a large statistical linear inverse problem. Whereas for deterministic linear inverse problems several computationally efficient minimax optimal regularization methods exist, only one minimax-optimal linear estimator exists for statistical linear inverse problems: the Pinsker estimator. However, it is often computationally inefficient because it requires a singular value decomposition of the forward operator or it is not applicable because of an unknown noise covariance matrix, so it is rarely used for real-world problems. These limitations do not apply in helioseismology. We present a simplified proof of the optimality properties of the Pinsker estimator and show that it yields significantly better reconstructions than traditional inversion methods used in helioseismology, i.e. regularized least squares (Tikhonov regularization) and SOLA (approximate inverse) methods. Moreover, we discuss the incorporation of the mass conservation constraint in the Pinsker scheme using staggered grids. With this improvement we can reconstruct not only horizontal, but also vertical velocity components that are much smaller in amplitude.
Institute of Scientific and Technical Information of China (English)
温秀芬; 陈云超; 张晖; 高虹; 张雪燕; 徐光芸; 骆如香
2014-01-01
Objective To investigate the effects of relaxation training combined music therapy on postoperative psychological ,pain sensitivity ,and hemodynamic of patients undergoing surgery with local anesthesia .Method 120 patients were randomly divided into 2 group:experimental group and control group ,60 cases in each group .Pa-tients in group experimental received routine care and relaxation training combined with music therapy ,in the anoth-er hand ,patients in group control only received routine care .The changes of pain sensitivity and anxiety levels were observed before surgery and postoperative .changes of heart rate and blood pressure of both group were observed in the day before surgery ,before entering the operating room ,during the surgery and postoperative .Result The SAS and postoperative VAS score of group experimental was significantly lower than that of group control and systolic blood pressure ,diastolic blood pressure and heart rate in postoperative 30 min of group experimental were lower those in group control ether (P 0 .05) .systolic pressure ,diastolic blood pressure and heart rate of patients in both group before entering the operating room were higher than those in the day before sur-gery (P0 .05) .In group control , compared with the data before entering the operating room ,there were there were no significant differences of sys-tolic blood pressure ,diastolic blood pressure ,heart rate among the data before entering the operating room ,during and after the surgery (P> 0 .05) .Conclusion The therapy of relaxation training combined with music could reduce anxiety and pain sensitivity and helps to maintain stable vital signs of anesthesia during and after the surgery in pa-tients with local anesthesia .%目的：探讨放松训练联合音乐疗法对局麻手术患者术中、术后的心理、疼痛敏感度及血流动力学的影响。方法将120例患者按手术安排顺序单双数分为实验组与对照组，每组各60
Local existence and stability for a hyperbolic-elliptic system modeling two-phase reservoir flow
Directory of Open Access Journals (Sweden)
H. J. Schroll
2000-01-01
Full Text Available A system arising in the modeling of oil-recovery processes is analyzed. It consists of a hyperbolic conservation law governing the saturation and an elliptic equation for the pressure. By an operator splitting approach, an approximate solution is constructed. For this approximation appropriate a-priori bounds are derived. Applying the Arzela-Ascoli theorem, local existence and uniqueness of a classical solution for the original hyperbolic-elliptic system is proved. Furthermore, convergence of the approximation generated by operator splitting towards the unique solution follows. It is also proved that the unique solution is stable with respect to perturbations of the initial data.
Molecular Relaxation in Liquids
Bagchi, Biman
2012-01-01
This book brings together many different relaxation phenomena in liquids under a common umbrella and provides a unified view of apparently diverse phenomena. It aligns recent experimental results obtained with modern techniques with recent theoretical developments. Such close interaction between experiment and theory in this area goes back to the works of Einstein, Smoluchowski, Kramers' and de Gennes. Development of ultrafast laser spectroscopy recently allowed study of various relaxation processes directly in the time domain, with time scales going down to picosecond (ps) and femtosecond (fs
Relaxation Dynamics of Semiflexible Fractal Macromolecules
Directory of Open Access Journals (Sweden)
Jonas Mielke
2016-07-01
Full Text Available We study the dynamics of semiflexible hyperbranched macromolecules having only dendritic units and no linear spacers, while the structure of these macromolecules is modeled through T-fractals. We construct a full set of eigenmodes of the dynamical matrix, which couples the set of Langevin equations. Based on the ensuing relaxation spectra, we analyze the mechanical relaxation moduli. The fractal character of the macromolecules reveals itself in the storage and loss moduli in the intermediate region of frequencies through scaling, whereas at higher frequencies, we observe the locally-dendritic structure that is more pronounced for higher stiffness.
Turbulent intermittent structure in non-homogeneous non-local flows
Mahjoub, O. B.; Castilla, R.; Vindel, J. M.; Redondo, J. M.
2010-05-01
Data from SABLES98 experimental campaign have been used in order to study the influence of stability (from weak to strong stratification) on intermittency [1]. Standard instrumentation, 14 thermocouples and 3 sonic anemometers at three levels (5.8, 13.5 and 32 m) were available in September 1998 and calculations are done in order to evaluate structure functions and the scale to scale characteristics. Using BDF [2-4] as well as other models of cascades, the spectral equilibrium values were used to calculate fluxes of momentum and heat as well as non-homogeneous models and the turbulent mixing produced. The differences in structure and higher order moments between stable, convective and neutral turbulence were used to identify differences in turbulent intermittent mixing and velocity PDF's. The intermittency of atmospheric turbulence in strongly stable situations affected by buoyancy and internal waves are seen to modify the structure functions exponents and intermittency, depending on the modulus of the Richardson's number,Ri, as well as of the Monin-Obukhov and Ozmidov lengthscales. The topological aspects of the turbulence affected by stratification reduce the vertical length-scales to a maximum described by the Thorpe and the Ozmidov lenth-scales, but intermittency, Kurtosis and other higher order descriptors of the turbulence based on spectral wavelet analysis are also affected in a complex way [5,6]. The relationship between stratification, intermittency, µ(Ri) and the fractal dimension of the stable flows and between the dispersion, the fractal dimension are discussed. The data analyzed is from the campaign SABLES-98 at the north-west Iberian Peninsula plateau.(Cuxart et al. 2000). Conditional statistics of the relationship between µ(Ri) are confirmed as in (Vindel et al 2008)[4] and compared with laboratory experiments and with 2D-3D aspects of the turbulence cascade. The use of BDF [3] model comparing the corresponding relative scaling exponents which are
How to determine local stretching and tension in a flow-stretched DNA molecule
Pedersen, Jonas N.; Marie, Rodolphe; Kristensen, Anders; Flyvbjerg, Henrik
2016-04-01
We determine the nonuniform stretching of and tension in a mega base pairs-long fragment of deoxyribonucleic acid (DNA) that is flow stretched in a nanofluidic chip. We use no markers, do not know the contour length of the DNA, and do not have the full DNA molecule inside our field of view. Instead, we analyze the transverse thermal motion of the DNA. Tension at the center of the DNA adds up to 16 pN, giving almost fully stretched DNA. This method was devised for optical mapping of DNA, specifically, DNA denaturation patterns. It may be useful also for other studies, e.g., DNA-protein interactions, specifically, their tension dependence. Generally, wherever long strands of DNA—e.g., native DNA extracted from human cells or bacteria—must be stretched with ease for inspection, this method applies.
How to determine local stretching and tension in a flow-stretched DNA molecule
DEFF Research Database (Denmark)
Pedersen, Jonas Nyvold; Marie, Rodolphe; Kristensen, Anders
2016-01-01
We determine the nonuniform stretching of and tension in amega base pairs-long fragment of deoxyribonucleic acid (DNA) that is flow stretched in a nanofluidic chip. We use no markers, do not know the contour length of the DNA, and do not have the full DNA molecule inside our field of view. Instead......, we analyze the transverse thermal motion of the DNA. Tension at the center of the DNA adds up to 16 pN, giving almost fully stretched DNA. This method was devised for optical mapping of DNA, specifically, DNA denaturation patterns. It may be useful also for other studies, e.g., DNA......-protein interactions, specifically, their tension dependence. Generally, wherever long strands of DNA—e.g., native DNA extracted from human cells or bacteria—must be stretched with ease for inspection, this method applies....
Catapult current sheet relaxation model confirmed by THEMIS observations
Machida, S.; Miyashita, Y.; Ieda, A.; Nose, M.; Angelopoulos, V.; McFadden, J. P.
2014-12-01
In this study, we show the result of superposed epoch analysis on the THEMIS probe data during the period from November, 2007 to April, 2009 by setting the origin of time axis to the substorm onset determined by Nishimura with THEMIS all sky imager (THEMS/ASI) data (http://www.atmos.ucla.edu/~toshi/files/paper/Toshi_THEMIS_GBO_list_distribution.xls). We confirmed the presence of earthward flows which can be associated with north-south auroral streamers during the substorm growth phase. At around X = -12 Earth radii (Re), the northward magnetic field and its elevation angle decreased markedly approximately 4 min before substorm onset. A northward magnetic-field increase associated with pre-onset earthward flows was found at around X = -17Re. This variation indicates the occurrence of the local depolarization. Interestingly, in the region earthwards of X = -18Re, earthward flows in the central plasma sheet (CPS) reduced significantly about 3min before substorm onset. However, the earthward flows enhanced again at t = -60 sec in the region around X = -14 Re, and they moved toward the Earth. At t = 0, the dipolarization of the magnetic field started at X ~ -10 Re, and simultaneously the magnetic reconnection started at X ~ -20 Re. Synthesizing these results, we can confirm the validity of our catapult current sheet relaxation model.
Directory of Open Access Journals (Sweden)
Le Wang
Full Text Available The genetic differentiation of many marine fish species is low. Yet local adaptation may be common in marine fish species as the vast and changing marine environment provides more chances for natural selection. Here, we used anonymous as well as known protein gene linked microsatellites and mitochondrial DNA to detect the population structure of the small yellow croaker (Larimichthys polyactis in the Northwest Pacific marginal seas. Among these loci, we detected at least two microsatellites, anonymous H16 and HSP27 to be clearly under diversifying selection in outlier tests. Sequence cloning and analysis revealed that H16 was located in the intron of BAHCC1 gene. Landscape genetic analysis showed that H16 mutations were significantly associated with temperature, which further supported the diversifying selection at this locus. These marker types presented different patterns of population structure: (i mitochondrial DNA phylogeny showed no evidence of genetic divergence and demonstrated only one glacial linage; (ii population differentiation using putatively neutral microsatellites presented a pattern of high gene flow in the L. polyactis. In addition, several genetic barriers were identified; (iii the population differentiation pattern revealed by loci under diversifying selection was rather different from that revealed by putatively neutral loci. The results above suggest local adaptation in the small yellow croaker. In summary, population genetic studies based on different marker types disentangle the effects of demographic history, migration, genetic drift and local adaptation on population structure and also provide valuable new insights for the design of management strategies in L. polyactis.
DEFF Research Database (Denmark)
Kastrup, J; Nørgaard, T; Parving, H H
1987-01-01
The function of the local nervous veno-arteriolar reflex regulation of blood flow in subcutaneous tissue of the lower leg was studied in diabetic patients. The material comprised 11 long-term insulin-dependent diabetic (IDDM) patients with retinopathy and nephropathy and eight short-term IDDM...... patients without retinopathy or nephropathy and 11 non-diabetic subjects. The diabetic patients had no or a slight to moderate degree of peripheral autonomic and sensoric neuropathy. Blood flow was measured by the local 133Xe wash-out technique. Blood flow was determined before, during and after...
Directory of Open Access Journals (Sweden)
T. M. Agbaje
2015-06-01
Full Text Available In this study, the spectral perturbation method (SPM is utilized to solve the momentum, heat and mass transfer equations describing the unsteady MHD mixed convection flow over an impulsively stretched vertical surface in the presence of chemical reaction effect. The governing partial differential equations are reduced into a set of coupled non similar equations and then solved numerically using the SPM. The SPM combines the standard perturbation method idea with the Chebyshev pseudo-spectral collocation method. In order to demonstrate the accuracy and efficiency of the proposed method, the spectral perturbation (SPM numerical results are compared with numerical results generated using the spectral relaxation method (SRM and a good agreement between the two methods is observed up to a minimum of eight decimal digits. Several simulation are conducted to ascertain the accuracy of the SPM and the SRM. The computational speed of the SPM is demonstrated by comparing the SPM computational time with the SRM computational time. A residual error analysis is also conducted for the SPM and the SRM in order to further assess the accuracy of the SPM. The study shows that the spectral perturbation method (SPM is more efficient in terms of computational speed when compared with the SRM. The study also shows that the SPM can be used as an efficient and reliable tool for solving strongly nonlinear boundary value partial differential equation problems that are defined under the Williams and Rhyne [3] transformation. In addition, the study shows that accurate results can be obtained using the perturbation method and thus, the conclusions earlier drawn by researchers regarding the accuracy of perturbation methods is corrected.
Jianping; Ping; Lin; Yunlin
2000-07-01
The local overall volumetric gas-liquid mass transfer coefficients at the specified point in a gas-liquid-solid three-phase reversed flow jet loop bioreactor (JLB) with a non-Newtonian fluid was experimentally investigated by a transient gassing-in method. The effects of liquid jet flow rate, gas jet flow rate, particle density, particle diameter, solids loading, nozzle diameter and CMC concentration on the local overall volumetric gas-liquid mass transfer coefficient (K(L)a) profiles were discussed. It was observed that local overall K(L)a profiles in the three-phase reversed flow JLB with non-Newtonian fluid increased with the increase of gas jet flow rate, liquid jet flow rate, particle density and particle diameter, but decreased with the increase of the nozzle diameter and CMC concentration. The presence of solids at a low concentration increased the local overall K(L)a profiles, and the optimum of solids loading for a maximum profile of the local overall K(L)a was found to be 0.18x10(-3)m(3) corresponding to a solids volume fraction, varepsilon(S)=2.8%.
Jan, Yih-Kuen; Lee, Bernard; Liao, Fuyuan; Foreman, Robert D
2012-10-01
The objectives of this study were to investigate the effects of local cooling on skin blood flow response to prolonged surface pressure and to identify associated physiological controls mediating these responses using the wavelet analysis of blood flow oscillations in rats. Twelve Sprague-Dawley rats were randomly assigned to three protocols, including pressure with local cooling (Δt = -10 °C), pressure with local heating (Δt = 10 °C) and pressure without temperature changes. Pressure of 700 mmHg was applied to the right trochanter area of rats for 3 h. Skin blood flow was measured using laser Doppler flowmetry. The 3 h loading period was divided into non-overlapping 30 min epochs for the analysis of the changes of skin blood flow oscillations using wavelet spectral analysis. The wavelet amplitudes and powers of three frequencies (metabolic, neurogenic and myogenic) of skin blood flow oscillations were calculated. The results showed that after an initial loading period of 30 min, skin blood flow continually decreased under the conditions of pressure with heating and of pressure without temperature changes, but maintained stable under the condition of pressure with cooling. Wavelet analysis revealed that stable skin blood flow under pressure with cooling was attributed to changes in the metabolic and myogenic frequencies. This study demonstrates that local cooling may be useful for reducing ischemia of weight-bearing soft tissues that prevents pressure ulcers.
Jan, Yih-Kuen; Lee, Bernard; Liao, Fuyuan; Foreman, Robert D.
2012-01-01
The objectives of this study were to investigate the effects of local cooling on skin blood flow response to prolonged surface pressure and to identify associated physiological controls mediating these responses using wavelet analysis of blood flow oscillations in rats. Twelve Sprague Dawley rats were randomly assigned into three protocols, including pressure with local cooling (Δt= −10°C), pressure with local heating (Δt= 10°C), and pressure without temperature changes. Pressure of 700 mmHg ...
Directory of Open Access Journals (Sweden)
Dong-Hoon Yi
2015-05-01
Full Text Available This paper introduces a novel afocal optical flow sensor (OFS system for odometry estimation in indoor robotic navigation. The OFS used in computer optical mouse has been adopted for mobile robots because it is not affected by wheel slippage. Vertical height variance is thought to be a dominant factor in systematic error when estimating moving distances in mobile robots driving on uneven surfaces. We propose an approach to mitigate this error by using an afocal (infinite effective focal length system. We conducted experiments in a linear guide on carpet and three other materials with varying sensor heights from 30 to 50 mm and a moving distance of 80 cm. The same experiments were repeated 10 times. For the proposed afocal OFS module, a 1 mm change in sensor height induces a 0.1% systematic error; for comparison, the error for a conventional fixed-focal-length OFS module is 14.7%. Finally, the proposed afocal OFS module was installed on a mobile robot and tested 10 times on a carpet for distances of 1 m. The average distance estimation error and standard deviation are 0.02% and 17.6%, respectively, whereas those for a conventional OFS module are 4.09% and 25.7%, respectively.
Yi, Dong-Hoon; Lee, Tae-Jae; Cho, Dong-Il Dan
2015-05-13
This paper introduces a novel afocal optical flow sensor (OFS) system for odometry estimation in indoor robotic navigation. The OFS used in computer optical mouse has been adopted for mobile robots because it is not affected by wheel slippage. Vertical height variance is thought to be a dominant factor in systematic error when estimating moving distances in mobile robots driving on uneven surfaces. We propose an approach to mitigate this error by using an afocal (infinite effective focal length) system. We conducted experiments in a linear guide on carpet and three other materials with varying sensor heights from 30 to 50 mm and a moving distance of 80 cm. The same experiments were repeated 10 times. For the proposed afocal OFS module, a 1 mm change in sensor height induces a 0.1% systematic error; for comparison, the error for a conventional fixed-focal-length OFS module is 14.7%. Finally, the proposed afocal OFS module was installed on a mobile robot and tested 10 times on a carpet for distances of 1 m. The average distance estimation error and standard deviation are 0.02% and 17.6%, respectively, whereas those for a conventional OFS module are 4.09% and 25.7%, respectively.
Wheeler, M.F.
2010-09-06
For many years there have been formulations considered for modeling single phase ow on general hexahedra grids. These include the extended mixed nite element method, and families of mimetic nite di erence methods. In most of these schemes either no rate of convergence of the algorithm has been demonstrated both theoret- ically and computationally or a more complicated saddle point system needs to be solved for an accurate solution. Here we describe a multipoint ux mixed nite element (MFMFE) method [5, 2, 3]. This method is motivated from the multipoint ux approximation (MPFA) method [1]. The MFMFE method is locally conservative with continuous ux approximations and is a cell-centered scheme for the pressure. Compared to the MPFA method, the MFMFE has a variational formulation, since it can be viewed as a mixed nite element with special approximating spaces and quadrature rules. The framework allows han- dling of hexahedral grids with non-planar faces by applying trilinear mappings from physical elements to reference cubic elements. In addition, there are several multi- scale and multiphysics extensions such as the mortar mixed nite element method that allows the treatment of non-matching grids [4]. Extensions to the two-phase oil-water ow are considered. We reformulate the two- phase model in terms of total velocity, capillary velocity, water pressure, and water saturation. We choose water pressure and water saturation as primary variables. The total velocity is driven by the gradient of the water pressure and total mobility. Iterative coupling scheme is employed for the coupled system. This scheme allows treatments of di erent time scales for the water pressure and water saturation. In each time step, we rst solve the pressure equation using the MFMFE method; we then Center for Subsurface Modeling, The University of Texas at Austin, Austin, TX 78712; mfw@ices.utexas.edu. yCenter for Subsurface Modeling, The University of Texas at Austin, Austin, TX 78712; gxue
Local control of information flow in segmental and ascending collaterals of single afferents.
Lomelí, J; Quevedo, J; Linares, P; Rudomin, P
1998-10-08
In the vertebrate spinal cord, the activation of GABA(gamma-amino-butyric acid)-releasing interneurons that synapse with intraspinal terminals of sensory fibres leading into the central nervous system (afferent fibres) produces primary afferent depolarization and presynaptic inhibition. It is not known to what extent these presynaptic mechanisms allow a selective control of information transmitted through specific sets of intraspinal branches of individual afferents. Here we study the local nature of the presynaptic control by measuring primary afferent depolarization simultaneously in two intraspinal collaterals of the same muscle spindle afferent. One of these collaterals ends at the L6-L7 segmental level in the intermediate nucleus, and the other ascends to segment L3 within Clarke's column, the site of origin of spinocerebellar neurons. Our results indicate that there are central mechanisms that are able to affect independently the synaptic effectiveness of segmental and ascending collaterals of individual muscle spindle afferents. Focal control of presynaptic inhibition thus allows the intraspinal branches of afferent fibres to function as a dynamic assembly that can be fractionated to convey information to selected neuronal targets. This may be a mechanism by which different spinal postsynaptic targets that are coupled by sensory input from a common source could be uncoupled.
Localized immunoassay in flow-through optical microbubble resonator (Conference Presentation)
Berneschi, Simone; Baldini, Francesco; Cosci, Alessandro; Cosi, Franco; Farnesi, Daniele; Nunzi Conti, Gualtiero; Tombelli, Sara; Trono, Cosimo; Pelli, Stefano; Giannetti, Ambra
2016-05-01
The integration of the Whispering Gallery Modes (WGMs) resonators in a microfluidics platform represents an important feature towards the realization of a compact high performance label-free biosensor. These hollow resonant microstructures present the advantage to combine the WGM resonator properties with the intrinsic capability of integrated microfluidics. In this sense, optical microbubble resonators (OMBRs), intended as a hollow core spherical bulge realized in a glass microcapillary by a suitable fabrication process, with their high Q factors (microfluidic parts completely inert from a biochemical point of view. The method is based on UV photoactivation, which allows to localize the biolayers only in correspondence of the OMBR inner wall. As a proof of concept, an immunoassay based on rabbit IgG/anti rabbit-IgG interaction was performed and. The anti rabbit-IgG antibody was labelled with Alexa Fluor 488 to verify, by a fluorescence characterization, the goodness of this procedure. Moreover, an anti mouse-IgG, labelled with the same fluorophore (Alexa Fluor 488) was used for specificity-tests of the IgG/anti-IgG interaction. The immunoassay based on fluorescence was characterized using an optical microscope (Zeiss AXIO inverted fluorescence microscope) working at the wavelengths of 470 nm for excitation of Alexa Fluor 488. The real time measurement of the resonance broadening after each functionalization step together with the high Q factor (< 105) measured after the IgG/anti-IgG interaction in water, gives a further proof for the method validity.
Weis, Clara; Oelschlaeger, Claude; Dijkstra, Dick; Ranft, Meik; Willenbacher, Norbert
2016-09-01
We present a comprehensive micro- and macrorheological study of the effect of weak depletion attraction (Ψdep ≈ 1-10 kBT) on dense colloidal suspensions stabilized by short-range repulsive interactions. We used aqueous polymer dispersions as model system and demonstrated the unique capabilities of multiple particle tracking (MPT) to disclose structural changes in such technically important systems exhibiting many characteristic features of hard sphere systems. Below the hard sphere freezing point ϕc, viscosity increases monotonically with increasing Ψdep due to the transition from a fluid to a fluid/crystalline and finally to a gel state. Above ϕc, increasing attraction strength first results in a viscosity reduction corresponding to the formation of large, permeable crystals and then in a viscosity increase when a network of dense, small crystals forms. The fraction of the fluid and crystal phase, particle concentration in each phase as well as the modulus of the micro-crystals are obtained, the latter decreases with Ψdep. Above the colloidal glass transition strong heterogeneities and different local particle mobility in the repulsive and attractive arrested states are found. Particles are trapped in the cage of neighboring particles rather than in an attractive potential well. The intermediate ergodic state exhibits uniform tracer diffusivity.
Cosmic flows and the expansion of the local Universe from non-linear phase-space reconstructions
Heß, Steffen; Kitaura, Francisco-Shu
2016-03-01
In this work, we investigate the impact of cosmic flows and density perturbations on Hubble constant H0 measurements using non-linear phase-space reconstructions of the Local Universe (LU). In particular, we rely on a set of 25 precise constrained N-body simulations based on Bayesian initial conditions reconstructions of the LU using the Two-Micron Redshift Survey galaxy sample within distances of about 90 h-1 Mpc. These have been randomly extended up to volumes enclosing distances of 360 h-1 Mpc with augmented Lagrangian perturbation theory (750 simulations in total), accounting in this way for gravitational mode coupling from larger scales, correcting for periodic boundary effects, and estimating systematics of missing attractors (σlarge = 134 s-1 km). We report on Local Group (LG) speed reconstructions, which for the first time are compatible with those derived from cosmic microwave background-dipole measurements: |vLG| = 685 ± 137 s-1 km. The direction (l, b) = (260.5° ± 13.3°, 39.1 ± 10.4°) is found to be compatible with the observations after considering the variance of large scales. Considering this effect of large scales, our local bulk flow estimations assuming a Λ cold dark matter model are compatible with the most recent estimates based on velocity data derived from the Tully-Fisher relation. We focus on low-redshift supernova measurements out to 0.01 tension. The first one is caused by the anisotropic distribution of supernovae, which aligns with the velocity dipole and hence induces a systematic boost in H0. The second one is due to the inhomogeneous matter fluctuations in the LU. In particular, a divergent region surrounding the Virgo Supercluster is responsible for an additional positive bias in H0. Taking these effects into account yields a correction of ΔH0 = -1.76 ± 0.21 s- 1 km Mpc- 1, thereby reducing the tension between local probes and more distant probes. Effectively H0 is lower by about 2 per cent.
Unterweger, K.
2015-01-01
© Springer International Publishing Switzerland 2015. We propose to couple our adaptive mesh refinement software PeanoClaw with existing solvers for complex overland flows that are tailored to regular Cartesian meshes. This allows us to augment them with spatial adaptivity and local time-stepping without altering the computational kernels. FullSWOF2D—Full Shallow Water Overland Flows—here is our software of choice though all paradigms hold for other solvers as well.We validate our hybrid simulation software in an artificial test scenario before we provide results for a large-scale flooding scenario of the Mecca region. The latter demonstrates that our coupling approach enables the simulation of complex “real-world” scenarios.
Directory of Open Access Journals (Sweden)
M. Górska
2009-04-01
Full Text Available The article the influence of changes of combustion gas temperature during flow around of horizontal cylinder on local Nu number was presented. In order to test an influence of effect waste gas temperature cycle of experimental investigations were conducted. Experimental tests were carried out on a properly designed measuring cylinder furnished with a number of thermocouples embedded along the cylinder perimeter. The cylinder was made from stainless steel of known thermal conductivity, and was cooled on the outer side through a water cooling system. The cylinder was placed horizontally in a heating chamber equipped with an axially positioned gas burner fired with natural gas. Gas and air feeds were regulated with control valves, based on combustion gas analyzer data.
Energy Technology Data Exchange (ETDEWEB)
Czarnecki, J.B. [Geological Survey, Denver, CO (United States); Kroitoru, L. [Roy F. Weston, Inc., Washington, DC (United States); Ronen, D. [Weizmann Inst. of Science, Rehovot (Israel)]|[Hydrological Service, Jerusalem (Israel); Magaritz, M. [Weizmann Inst. of Science, Rehovot (Israel)
1992-10-01
Studies done in 1984, at a central site on Franklin Lake playa (also known as Alkali Flat, a major discharge area of the ground-water flow system that includes Yucca Mountain, Nevada, the potential site of a high-level nuclear-waste repository) yield limited hydraulic-head and hydrochemical data from a 3-piezometer nest which indicated a slightly downward hydraulic gradient ({minus}0.02) and decreasing concentration of dissolved solids with increasing depth. Hydraulic-head measurements in June, 1989 made at the piezometer nest showed a substantially larger downward gradient ({minus}0.10) and a 0. 83{minus}meter higher water level in the shallowest piezometer (3.29 meters deep), indicating the possibility of localized recharge. during the period of September-November, 1989, a multilevel sampler was used to obtain detailed hydrochemical profiles of the uppermost 1. 5 m of the saturated zone.
... For Consumers Consumer Information by Audience For Women Hair Dye and Hair Relaxers Share Tweet Linkedin Pin it More sharing ... products. If you have a bad reaction to hair dyes and relaxers, you should: Stop using the ...
Energy Technology Data Exchange (ETDEWEB)
Carrington, David Bradley [Los Alamos National Laboratory (LANL), Los Alamos, NM (United States); Monayem, A. K. M. [Univ. of New Mexico, Albuquerque, NM (United States); Mazumder, H. [Univ. of New Mexico, Albuquerque, NM (United States); Heinrich, Juan C. [Univ. of New Mexico, Albuquerque, NM (United States)
2015-03-05
A three-dimensional finite element method for the numerical simulations of fluid flow in domains containing moving rigid objects or boundaries is developed. The method falls into the general category of Arbitrary Lagrangian Eulerian methods; it is based on a fixed mesh that is locally adapted in the immediate vicinity of the moving interfaces and reverts to its original shape once the moving interfaces go past the elements. The moving interfaces are defined by separate sets of marker points so that the global mesh is independent of interface movement and the possibility of mesh entanglement is eliminated. The results is a fully robust formulation capable of calculating on domains of complex geometry with moving boundaries or devises that can also have a complex geometry without danger of the mesh becoming unsuitable due to its continuous deformation thus eliminating the need for repeated re-meshing and interpolation. Moreover, the boundary conditions on the interfaces are imposed exactly. This work is intended to support the internal combustion engines simulator KIVA developed at Los Alamos National Laboratories. The model's capabilities are illustrated through application to incompressible flows in different geometrical settings that show the robustness and flexibility of the technique to perform simulations involving moving boundaries in a three-dimensional domain.
Directory of Open Access Journals (Sweden)
P. Hasal
2000-01-01
Full Text Available Velocity data obtained by laser Doppler velocimetry (LDV in a flat-bottomed cylindrical stirred vessel (diameter: 300 mm, filling height: 300 mm, working liquids: water and aqueous glycerine, impeller Reynolds number values (ReM: 750, 1200 and 75000 equipped with four radial baffles and stirred with a pitched blade impeller are analyzed by methods of non-linear analysis. The macro-instability of the flow pattern (MI was extracted from the experimental data by a combination of the proper orthogonal decomposition (POD technique and spectral analysis. The relative magnitude of the MI (the fraction of flow total kinetic energy captured by MI was evaluated and its spatial distribution was determined. The temporal evolution of the MI was constructed from the POD eigenmodes. The chaotic attractors of the macro-instabilities were reconstructed by the method of delays. The embedding dimension was determined by the false nearest neighbor analysis (FNN method, and the time delay from the first min imum of mutual information. Correlation dimension de and the largest Lyapunov exponents λmax of the reconstructed attractorswere evaluated. The correlation dimension slightly increases with the increasing ReM value. The spatial distribution of dc is quite uniform at all ReM values. The maximum Lyapunov exponent is clearly positive for all analyzed at tractors. Spatial distribution of λmax is markedly non-uniform and exhibits irregular variations. Possible applications of nonlinear analysis of local velocity data in mixing processes are mentioned.
A model of asynchronous left ventricular relaxation predicting the bi-exponential pressure decay
R.W. Brower (Ronald); S. Meij (Simon); P.W.J.C. Serruys (Patrick)
1983-01-01
textabstractA new model for the pressure relaxation of the left ventricle is proposed. The model presumes that the myocardium relaxes asynchronously, but that when regions begin to relax, after a delay, the local wall stress decays as a mono-exponential process. This formulation results in an appare
Salama, Amgad
2013-09-01
In this work the problem of flow in three-dimensional, axisymmetric, heterogeneous porous medium domain is investigated numerically. For this system, it is natural to use cylindrical coordinate system, which is useful in describing phenomena that have some rotational symmetry about the longitudinal axis. This can happen in porous media, for example, in the vicinity of production/injection wells. The basic feature of this system is the fact that the flux component (volume flow rate per unit area) in the radial direction is changing because of the continuous change of the area. In this case, variables change rapidly closer to the axis of symmetry and this requires the mesh to be denser. In this work, we generalize a methodology that allows coarser mesh to be used and yet yields accurate results. This method is based on constructing local analytical solution in each cell in the radial direction and moves the derivatives in the other directions to the source term. A new expression for the harmonic mean of the hydraulic conductivity in the radial direction is developed. Apparently, this approach conforms to the analytical solution for uni-directional flows in radial direction in homogeneous porous media. For the case when the porous medium is heterogeneous or the boundary conditions is more complex, comparing with the mesh-independent solution, this approach requires only coarser mesh to arrive at this solution while the traditional methods require more denser mesh. Comparisons for different hydraulic conductivity scenarios and boundary conditions have also been introduced. © 2013 Elsevier B.V.
Shojaaee, Zahra; Roux, Jean-Noël; Chevoir, François; Wolf, Dietrich E
2012-07-01
We report on a numerical study of the shear flow of a simple two-dimensional model of a granular material under controlled normal stress between two parallel smooth frictional walls moving with opposite velocities ± V. Discrete simulations, which are carried out with the contact dynamics method in dense assemblies of disks, reveal that, unlike rough walls made of strands of particles, smooth ones can lead to shear strain localization in the boundary layer. Specifically, we observe, for decreasing V, first a fluidlike regime (A), in which the whole granular layer is sheared, with a homogeneous strain rate except near the walls, then (B) a symmetric velocity profile with a solid block in the middle and strain localized near the walls, and finally (C) a state with broken symmetry in which the shear rate is confined to one boundary layer, while the bulk of the material moves together with the opposite wall. Both transitions are independent of system size and occur for specific values of V. Transient times are discussed. We show that the first transition, between regimes A and B, can be deduced from constitutive laws identified for the bulk material and the boundary layer, while the second one could be associated with an instability in the behavior of the boundary layer. The boundary zone constitutive law, however, is observed to depend on the state of the bulk material nearby.
Energy Technology Data Exchange (ETDEWEB)
Kelly, V.A.; Beach, J.A.; Statham, W.H.; Pickens, J.F. [INTERA, Inc., Austin, TX (United States)
1993-02-19
The Savannah River Site (SRS) is a Department of Energy (DOE) facility located near Aiken, South Carolina which is currently operated and managed by Westinghouse Savannah River Company (WSRC). The Sanitary Landfill (Sanitary Landfill) at the SRS is located approximately 2,000 feet Northwest of Upper Three Runs Creek (UTRC) on an approximately 70 acre site located south of Road C between the SRS B-Area and UTRC. The Sanitary Landfill has been receiving wastes since 1974 and operates as an unlined trench and fill operation. The original landfill site was 32 acres. This area reached its capacity around 1987 and a Northern Expansion of 16 acres and a Southern Expansion of 22 acres were added in 1987. The Northern Expansion has not been used for waste disposal to date and the Southern Expansion is expected to reach capacity in 1992 or 1993. The waste received at the Sanitary Landfill is predominantly paper, plastics, rubber, wood, metal, cardboard, rags saturated with degreasing solvents, pesticide bags, empty cans, and asbestos in bags. The landfill is not supposed to receive any radioactive wastes. However, tritium has been detected in the groundwater at the site. Gross alpha and gross beta are also evaluated at the landfill. The objectives of this modeling study are twofold: (1) to create a local scale Sanitary Landfill flow model to study hydraulic effects resulting from capping the Sanitary Landfill; and (2) to create a Sanitary Landfill local scale transport model to support ACL Demonstrations for a RCRA Part B Permit Renewal.
Wei, Xiu; Zhang, Wenqiang; Weng, Wei; Fujimura, Shigeru
This paper proposed a multi-objective local search procedure (MOLS). It is combined with NSGA-II for solving bi-criteria PFSP with the objectives of minimizing makespan and maximum tardiness. Utilizing the properties of active blocks for flow shop scheduling problem, neighborhood structures MOINS (multi-objective insertion) and MOEXC (multi-objective exchange) are designed in order to improve efficiency of perturbation. Any perturbation based on MOINS and MOEXC takes effect on different criteria simultaneously. The original idea of MOLS is systematic change neighborhoods in the local search procedure. The search direction of MOLS on an individual is naturally guided by interaction of MOINS and MOEXC. Moreover, there is no need to set parameters in MOLS. The MOLS combined with popular multi-objective evolutionary algorithm NSGA-II (Non-dominated Sorting Genetic Algorithm-II) is called as “NSGA-II-MOLS”. To illustrate the efficacy of proposed approach, four different scaled problems are used to test performance of NSGA-II-MOLS. The numerous comparisons show efficacy of NSGA-II-MOLS is better than most of algorithms even with the same number of individual evaluations and parameters setting.
Nonlinear fractional relaxation
Indian Academy of Sciences (India)
A Tofighi
2012-04-01
We deﬁne a nonlinear model for fractional relaxation phenomena. We use -expansion method to analyse this model. By studying the fundamental solutions of this model we ﬁnd that when → 0 the model exhibits a fast decay rate and when → ∞ the model exhibits a power-law decay. By analysing the frequency response we ﬁnd a logarithmic enhancement for the relative ratio of susceptibility.
Load Relaxation of Olivine Single Crystals
Cooper, R. F.; Stone, D. S.; Plookphol, T.
2016-12-01
Single crystals of ferromagnesian olivine (San Carlos, AZ, peridot; Fo90-92) have been deformed in both uniaxial creep and load relaxation under conditions of ambient pressure, T = 1500ºC and pO2 = 10-10 atm; creep stresses were in the range 40 ≤ σ1 (MPa) ≤ 220. The crystals were oriented such that the applied stress was parallel to [011]c, which promotes single slip on the slowest slip system in olivine, (010)[001]. The creep rates at steady state match well the results of earlier investigators, as does the stress sensitivity (a power-law exponent of n = 3.6). Dislocation microstructures, including spatial distribution of low-angle (subgrain) boundaries, additionally confirm previous investigations. Inverted primary creep (an accelerating strain rate with an increase in stress) was observed. Load-relaxation, however, produced a singular response—a single hardness curve—regardless of the magnitude of creep stress or total accumulated strain preceding relaxation. The log-stress v. log-strain rate data from load-relaxation and creep experiments overlap to within experimental error. The load-relaxation behavior is distinctly different that that described for other crystalline solids, where the flow stress is affected strongly by work hardening such that a family of distinct hardness curves is generated, which are related by a scaling function. The response of olivine for the conditions studied, thus, indicates flow that is rate-limited by dislocation glide, reflecting specifically a high intrinsic lattice resistance (Peierls stress).
Hypnotizability modulates the cardiovascular correlates of subjective relaxation.
Santarcangelo, Enrica L; Paoletti, Giulia; Balocchi, Rita; Carli, Giancarlo; Morizzo, Carmela; Palombo, Carlo; Varanini, Maurizio
2012-01-01
Mean values and the spectral variability of heart rate (HRV), blood pressure, and skin blood flow were studied in high and low hypnotizable subjects during simple relaxation. Similar subjective relaxation was reported by highs and lows. A parasympathetic prevalence (indicated by a higher High-Frequency component of HRV and a lower High/Low-Frequency ratio) and lower renin-angiotensin activity (indicated by a lower Very-Low-Frequency component of HRV) could be attributed to highs with respect to lows. Hypnotizability did not affect blood pressure and its variability and modulated the skin blood flow across the session only in lows. The findings confirm that relaxation cannot be defined solely on cardiovascular parameters and also indicate that hypnotizability modulates cardiovascular activity during simple relaxation and suggest it may have a protective role against cardiovascular disease.
Kejnovský, E; Vrána, J; Matsunaga, S.; Soucek, P.; Siroký, J; Dolezel, J; Vyskot, B
2001-01-01
The dioecious white campion Silene latifolia (syn. Melandrium album) has heteromorphic sex chromosomes, XX in females and XY in males, that are larger than the autosomes and enable their separation by flow sorting. The group of MROS genes, the first male-specifically expressed genes in dioecious plants, was recently identified in S. latifolia. To localize the MROS genes, we used the flow-sorted X chromosomes and autosomes as a template for PCR with internal primers. Our results indicate that ...
DEFF Research Database (Denmark)
Mortensen, Peter; Olsen, J; Sejrsen, P
1990-01-01
In 11 anaesthetized pigs a laparotomy was performed and the mucosal and submucosal blood flow rate in the small intestine of the pig was determined by a local application of 133Xe and by 6.5-microns radioactive microspheres. The 133Xe washout plotted in a semilogarithmic diagram showed a multiexp......In 11 anaesthetized pigs a laparotomy was performed and the mucosal and submucosal blood flow rate in the small intestine of the pig was determined by a local application of 133Xe and by 6.5-microns radioactive microspheres. The 133Xe washout plotted in a semilogarithmic diagram showed...
Konig, Seymour H.
A novel derivation of the equations that describe the spin-lattice magnetic relaxation of nuclear spin moments, in liquids, resulting from magnetic dipolar interactions with neighboring paramagnetic ions, the Solomon-Bloembergen-Morgan equations was previously presented (S. H. Koenig, J. Magn. Reson.31, 1 (1978)). The derivation involves a computation of the dissipative energy flow from the nuclear spins to the lattice rather than a computation of the lattice-produced fluctuations of the local field at the nuclear spins. Two advantages accrue: (1) the spectral densities that enter into the relaxation expressions can be directly related to well-defined absorption transitions and relaxation processes of the paramagnetic ions, clarifying the physical processes that produce relaxation, and (2) the derivation can be readily generalized to paramagnetic ions with arbitrary spin Hamiltonian, and to deviations of their susceptibility from Curie law behavior. The derivation is extended to include relaxation in liquids in the rotating frame: the on resonance T1 ϱ which reduces to T2 for small amplitude radiofrequency fields; and the off resonance T1 ϱoff, which reduces to T1. The results, which are given for contact as well as dipolar interactions, also describe relaxation of 13C and 15N nuclei by protons under conditions of proton-decoupling, a situation becoming increasingly important in the study of biological macromolecules by high-resolution NMR spectroscopy.
Béguinot, Jean
2012-01-01
Selecting suitable supports for egg-laying, among host species and host individuals, as well as between leaves of various qualities within a preferred host, is a major component of prehatching maternal care in herbivore insects. This feature is especially important for those species having a tightly concealed larval stage, such as leaf miners. Yet, increasing density of neighbouring conspecific females may possibly induce ovipositing mothers to relax their degree of selectivity, so as to dist...
Ibrahim, T. G.; Thornton, S.; Surridge, B.; Wainwright, J.
2009-12-01
The groundwater-surface water interface (GSI) is a critical environmental hotspot, a key area influencing the fate of carbon, nutrients and contaminants of surface and subsurface origin, and a zone of ecological importance. Policy seeking to mitigate issues relating to dissolved contaminants and to improve stream health, increasingly recognizes its significance, particularly in the context of integrated management of streams and aquifers. Techniques assessing riverbed flow and solute patterns are often limited to the local scale. When related to the multi-scale pattern of hydrogeologic and geomorphic features controlling stream, hyporheic and groundwater fluxes, they can improve larger scale predictions of flow and solute behaviour at the GSI. This study develops a conceptual model of riverbed flow and solute patterns, and tests it in a 4th order stream in the UK. It assesses the interaction between large scale subsurface flowpaths, driven by the distribution of bedrock outcrops, and the expansion and closure of alluvial deposits, and small-scale hyporheic flowpaths, driven by riffle-pool sequences. It uses two networks of riverbed mini-piezometers and multi-level samplers: network 1, across fifteen sites in a 7.2 km length of river in unconstrained (open alluvial valley), asymmetric (bedrock outcropping on one bank) and constrained (bedrock on both banks) contexts; and network 2, across six riffle-pool sequences in a 350-m reach, at the transition between asymmetric/unconstrained and constrained contexts. Subsurface flowpaths and stream-water infiltration were deduced by relating vertical exchange fluxes to stream and pore-water patterns of conservative natural tracers. Biogeochemical processes were highlighted using reactive natural tracers. At network 2, measurements of surface water profiles and riverbed coring were also undertaken, and dissolved metal concentrations in the first 15 cm of sediments assessed using gel probes. Network 1 was sampled twice. Monthly
Institute of Scientific and Technical Information of China (English)
闻建平; 贾晓强; 毛国柱
2004-01-01
A small scale isotropic mass transfer model was developed for the local liquid side mass transfer coefficients in gas-liquid-solid three-phase flow airlift loop reactor for Newtonian and non-Newtonian fluids. It is based on Higbie's penetration theory and Kolmogoroff's theory of isotropic turbulence with kl=3√2D∈11/3/π(η1-1/3-λf-1/3)where e1 is local rate of energy dissipation, Af is the local microscale, r/l is the local Kolmogoroff scale and D is the diffusion coefficient. The capability of the proposed model is discussed in the light of experimental data obtained from 12 L gas-liquid-solid three-phase flow airlift loop reactor using Newtonian and non-Newtonian fluids. Good agreement with the experimental data was obtained over a wide range of conditions suggesting a general applicability of the proposed model.
Microscopic origin of shear relaxation in a model viscoelastic liquid.
Ashwin, J; Sen, Abhijit
2015-02-01
An atomistic description of shear stress relaxation in a viscoelastic liquid is developed from first principles through accurate molecular dynamic simulations in a model Yukawa system. It is shown that the relaxation time τ(M)(ex) of the excess part of the shear stress autocorrelation function provides a correct measure of the relaxation process. Below a certain critical value Γ(c) of the Coulomb coupling strength, the lifetime of local atomic connectivity τ(LC) converges to τ(M)(ex) and is the microscopic origin of the relaxation. At Γ≫Γ(c), i.e., in the potential energy dominated regime, τ(M)(ex)→τ(M) (the Maxwell relaxation time) and can, therefore, fully account for the elastic or "solidlike" behavior. Our results can help provide a better fundamental understanding of viscoelastic behavior in a variety of strongly coupled systems such as dusty plasmas, colloids, and non-Newtonian fluids.
Microscopic Origin of Shear Relaxation in a Model Viscoelastic Liquid
Ashwin, J.; Sen, Abhijit
2015-02-01
An atomistic description of shear stress relaxation in a viscoelastic liquid is developed from first principles through accurate molecular dynamic simulations in a model Yukawa system. It is shown that the relaxation time τMex of the excess part of the shear stress autocorrelation function provides a correct measure of the relaxation process. Below a certain critical value Γc of the Coulomb coupling strength, the lifetime of local atomic connectivity τLC converges to τMex and is the microscopic origin of the relaxation. At Γ ≫Γc, i.e., in the potential energy dominated regime, τMex→τM (the Maxwell relaxation time) and can, therefore, fully account for the elastic or "solidlike" behavior. Our results can help provide a better fundamental understanding of viscoelastic behavior in a variety of strongly coupled systems such as dusty plasmas, colloids, and non-Newtonian fluids.
Mynard, Jonathan; Penny, Daniel J; Smolich, Joseph J
2008-12-05
Local reflection coefficients (R) provide important insights into the influence of wave reflection on vascular haemodynamics. Using the relatively new time-domain method of wave intensity analysis, R has been calculated as the ratio of the peak intensities (R(PI)) or areas (R(CI)) of incident and reflected waves, or as the ratio of the changes in pressure caused by these waves (R(DeltaP)). While these methods have not yet been compared, it is likely that elastic non-linearities present in large arteries will lead to changes in the size of waves as they propagate and thus errors in the calculation of R(PI) and R(CI). To test this proposition, R(PI), R(CI) and R(DeltaP) were calculated in a non-linear computer model of a single vessel with various degrees of elastic non-linearity, determined by wave speed and pulse amplitude (DeltaP(+)), and a terminal admittance to produce reflections. Results obtained from this model demonstrated that under linear flow conditions (i.e. as DeltaP(+)-->0), R(DeltaP) is equivalent to the square-root of R(PI) and R(CI) (denoted by R(PI)(p) and R(CI)(p)). However for non-linear flow, pressure-increasing (compression) waves undergo amplification while pressure-reducing (expansion) waves undergo attenuation as they propagate. Consequently, significant errors related to the degree of elastic non-linearity arise in R(PI) and R(CI), and also R(PI)(p) and R(CI)(p), with greater errors associated with larger reflections. Conversely, R(Delta)(P) is unaffected by the degree of non-linearity and is thus more accurate than R(PI) and R(CI).
Ideal relaxation of the Hopf fibration
Smiet, Christopher Berg; Candelaresi, Simon; Bouwmeester, Dirk
2017-07-01
Ideal magnetohydrodynamics relaxation is the topology-conserving reconfiguration of a magnetic field into a lower energy state where the net force is zero. This is achieved by modeling the plasma as perfectly conducting viscous fluid. It is an important tool for investigating plasma equilibria and is often used to study the magnetic configurations in fusion devices and astrophysical plasmas. We study the equilibrium reached by a localized magnetic field through the topology conserving relaxation of a magnetic field based on the Hopf fibration in which magnetic field lines are closed circles that are all linked with one another. Magnetic fields with this topology have recently been shown to occur in non-ideal numerical simulations. Our results show that any localized field can only attain equilibrium if there is a finite external pressure, and that for such a field a Taylor state is unattainable. We find an equilibrium plasma configuration that is characterized by a lowered pressure in a toroidal region, with field lines lying on surfaces of constant pressure. Therefore, the field is in a Grad-Shafranov equilibrium. Localized helical magnetic fields are found when plasma is ejected from astrophysical bodies and subsequently relaxes against the background plasma, as well as on earth in plasmoids generated by, e.g., a Marshall gun. This work shows under which conditions an equilibrium can be reached and identifies a toroidal depression as the characteristic feature of such a configuration.
Briggs, Martin A.; Day-Lewis, Frederick D.; Ong, John B.; Curtis, Gary P.; Lane, Jr., John W.
2013-01-01
Anomalous solute transport, modeled as rate-limited mass transfer, has an observable geoelectrical signature that can be exploited to infer the controlling parameters. Previous experiments indicate the combination of time-lapse geoelectrical and fluid conductivity measurements collected during ionic tracer experiments provides valuable insight into the exchange of solute between mobile and immobile porosity. Here, we use geoelectrical measurements to monitor tracer experiments at a former uranium mill tailings site in Naturita, Colorado. We use nonlinear regression to calibrate dual-domain mass transfer solute-transport models to field data. This method differs from previous approaches by calibrating the model simultaneously to observed fluid conductivity and geoelectrical tracer signals using two parameter scales: effective parameters for the flow path upgradient of the monitoring point and the parameters local to the monitoring point. We use regression statistics to rigorously evaluate the information content and sensitivity of fluid conductivity and geophysical data, demonstrating multiple scales of mass transfer parameters can simultaneously be estimated. Our results show, for the first time, field-scale spatial variability of mass transfer parameters (i.e., exchange-rate coefficient, porosity) between local and upgradient effective parameters; hence our approach provides insight into spatial variability and scaling behavior. Additional synthetic modeling is used to evaluate the scope of applicability of our approach, indicating greater range than earlier work using temporal moments and a Lagrangian-based Damköhler number. The introduced Eulerian-based Damköhler is useful for estimating tracer injection duration needed to evaluate mass transfer exchange rates that range over several orders of magnitude.
Mitsutake, Ayori
2015-01-01
It is important to extract reaction coordinates or order parameters from protein simulations in order to investigate the local-minimum-energy states and the transition between them. The most popular method is principal component analysis, which extracts modes with large conformational fluctuation around an average structure. For protein systems, we recently have applied relaxation mode analysis, which investigate dynamics properties of structural fluctuations of proteins and extract slow relaxation modes. In this article, we apply relaxation mode analysis to extract reaction coordinates for the system, in which there are large conformational changes such as folding/unfolding simulation. We have performed a 750 ns simulation of chignolin at a transition temperature and observed many transitions between the most stable, misfolded and unfolded states. Here, we apply principal component analysis and relaxation mode analysis to the system. In relaxation mode analysis, we extract good reaction coordinates automatic...
Fingerprinting Molecular Relaxation in Deformed Polymers
Wang, Zhe; Lam, Christopher N.; Chen, Wei-Ren; Wang, Weiyu; Liu, Jianning; Liu, Yun; Porcar, Lionel; Stanley, Christopher B.; Zhao, Zhichen; Hong, Kunlun; Wang, Yangyang
2017-07-01
The flow and deformation of macromolecules is ubiquitous in nature and industry, and an understanding of this phenomenon at both macroscopic and microscopic length scales is of fundamental and practical importance. Here, we present the formulation of a general mathematical framework, which could be used to extract, from scattering experiments, the molecular relaxation of deformed polymers. By combining and modestly extending several key conceptual ingredients in the literature, we show how the anisotropic single-chain structure factor can be decomposed by spherical harmonics and experimentally reconstructed from its cross sections on the scattering planes. The resulting wave-number-dependent expansion coefficients constitute a characteristic fingerprint of the macromolecular deformation, permitting detailed examinations of polymer dynamics at the microscopic level. We apply this approach to survey a long-standing problem in polymer physics regarding the molecular relaxation in entangled polymers after a large step deformation. The classical tube theory of Doi and Edwards predicts a fast chain retraction process immediately after the deformation, followed by a slow orientation relaxation through the reptation mechanism. This chain retraction hypothesis, which is the keystone of the tube theory for macromolecular flow and deformation, is critically examined by analyzing the fine features of the two-dimensional anisotropic spectra from small-angle neutron scattering by entangled polystyrenes. We show that the unique scattering patterns associated with the chain retraction mechanism are not experimentally observed. This result calls for a fundamental revision of the current theoretical picture for nonlinear rheological behavior of entangled polymeric liquids.
Grueneisen relaxation photoacoustic microscopy
Wang, Lidai; Zhang, Chi; Wang, Lihong V.
2014-01-01
The temperature-dependent property of the Grueneisen parameter has been employed in photoacoustic imaging mainly to measure tissue temperature. Here we explore this property using a different approach and develop Grueneisen-relaxation photoacoustic microscopy (GR-PAM), a technique that images non-radiative absorption with confocal optical resolution. GR-PAM sequentially delivers two identical laser pulses with a micro-second-scale time delay. The first laser pulse generates a photoacoustic signal and thermally tags the in-focus absorbers. Owing to the temperature dependence of the Grueneisen parameter, when the second laser pulse excites the tagged absorbers within the thermal relaxation time, a photoacoustic signal stronger than the first one is produced. GR-PAM detects the amplitude difference between the two co-located photoacoustic signals, confocally imaging the non-radiative absorption. We greatly improved axial resolution from 45 µm to 2.3 µm and at the same time slightly improved lateral resolution from 0.63 µm to 0.41 µm. In addition, the optical sectioning capability facilitates the measurement of the absolute absorption coefficient without fluence calibration. PMID:25379919
Relaxation dynamics of amorphous dibucaine using dielectric studies
Sahra, M.; Jumailath, K.; Thayyil, M. Shahin; Capaccioli, S.
2015-06-01
Using broadband dielectric spectroscopy the molecular mobility of dibucaine is investigated in the supercooled liquid and gassy states, over a wide temperature range for some test frequencies. Above the glass transition temperature Tg, the presence of structural α- relaxation peak was observed due to the cooperative motions of the molecule and upon cooling frozen kinetically to form the glass. The secondary relaxation process was perceivable below Tg due to localized motions. The peak loss frequency of α-relaxation process shows non-Arrhenius behavior and obeys Vogel-Fulcher-Tammann equation over the measured temperature range whereas the β- process shows Arrhenius behavior.
Institute of Scientific and Technical Information of China (English)
WANG Mao-Xiang
2009-01-01
We use dynamic Monte Carlo simulations to study the athermal relaxation of bulk extended chains and the isothermal crystallization in intermediately relaxed melts. It is found that the memory of chain orientations in the melt can significantly enhance the crystallization rates. The crystal orientation and lamellar thickness essentially depend on the orientational relaxation. Moreover, there is a transition of the nucleation mechanism during the isothermal crystallization from the intermediately relaxed melts. These results explain the mechanism of the self-nucleation by orientation and suggest that in flow-induced polymer crystallization, the orientational relaxation of chains decides the crystal orientation.
Extended MHD Modeling of Tearing-Driven Magnetic Relaxation
Sauppe, Joshua
2016-10-01
Driven plasma pinch configurations are characterized by the gradual accumulation and episodic release of free energy in discrete relaxation events. The hallmark of this relaxation in a reversed-field pinch (RFP) plasma is flattening of the parallel current density profile effected by a fluctuation-induced dynamo emf in Ohm's law. Nonlinear two-fluid modeling of macroscopic RFP dynamics has shown appreciable coupling of magnetic relaxation and the evolution of plasma flow. Accurate modeling of RFP dynamics requires the Hall effect in Ohm's law as well as first order ion finite Larmor radius (FLR) effects, represented by the Braginskii ion gyroviscous stress tensor. New results find that the Hall dynamo effect from / ne can counter the MHD effect from - in some of the relaxation events. The MHD effect dominates these events and relaxes the current profile toward the Taylor state, but the opposition of the two dynamos generates plasma flow in the direction of equilibrium current density, consistent with experimental measurements. Detailed experimental measurements of the MHD and Hall emf terms are compared to these extended MHD predictions. Tracking the evolution of magnetic energy, helicity, and hybrid helicity during relaxation identifies the most important contributions in single-fluid and two-fluid models. Magnetic helicity is well conserved relative to the magnetic energy during relaxation. The hybrid helicity is dominated by magnetic helicity in realistic low-beta pinch conditions and is also well conserved. Differences of less than 1 % between magnetic helicity and hybrid helicity are observed with two-fluid modeling and result from cross helicity evolution through ion FLR effects, which have not been included in contemporary relaxation theories. The kinetic energy driven by relaxation in the computations is dominated by velocity components perpendicular to the magnetic field, an effect that had not been predicted. Work performed at University of Wisconsin
Matveev, Vladimir V; Lähderanta, Erkki
2010-01-01
Relaxation rates in the $13mLiNO_3-6,5mCa(NO_3)_2-H_2O$ ternary system have been measured for nuclei of water ($^1H$ and $^{17}O$), anion ($^{14}N$), and both cations ($^7Li$, $^{43}Ca$). The data analysis reveals the system structure as consisting of two main charged units: [Li(H$_2$O)$_4$]$^+$ and [Ca(NO$_3$)$_4$]$^{2-}$. Thus the system presents inorganic ionic liquid like structure.
Immersed Boundary-Lattice Boltzmann Method Using Two Relaxation Times
Directory of Open Access Journals (Sweden)
Kosuke Hayashi
2012-06-01
Full Text Available An immersed boundary-lattice Boltzmann method (IB-LBM using a two-relaxation time model (TRT is proposed. The collision operator in the lattice Boltzmann equation is modeled using two relaxation times. One of them is used to set the fluid viscosity and the other is for numerical stability and accuracy. A direct-forcing method is utilized for treatment of immersed boundary. A multi-direct forcing method is also implemented to precisely satisfy the boundary conditions at the immersed boundary. Circular Couette flows between a stationary cylinder and a rotating cylinder are simulated for validation of the proposed method. The method is also validated through simulations of circular and spherical falling particles. Effects of the functional forms of the direct-forcing term and the smoothed-delta function, which interpolates the fluid velocity to the immersed boundary and distributes the forcing term to fixed Eulerian grid points, are also examined. As a result, the following conclusions are obtained: (1 the proposed method does not cause non-physical velocity distribution in circular Couette flows even at high relaxation times, whereas the single-relaxation time (SRT model causes a large non-physical velocity distortion at a high relaxation time, (2 the multi-direct forcing reduces the errors in the velocity profile of a circular Couette flow at a high relaxation time, (3 the two-point delta function is better than the four-point delta function at low relaxation times, but worse at high relaxation times, (4 the functional form of the direct-forcing term does not affect predictions, and (5 circular and spherical particles falling in liquids are well predicted by using the proposed method both for two-dimensional and three-dimensional cases.
Rupp, Wolf; Simon, Karl-Heinz; Bohnert, Michael
2009-01-01
Complete relaxation can be achieved by floating in a darkened, sound-proof relaxation tank filled with salinated water kept at body temperature. Under these conditions, meditation exercises up to self-hypnosis may lead to deep relaxation with physical and mental revitalization. A user manipulated his tank, presumably to completely cut off all optical and acoustic stimuli and accidentally also covered the ventilation hole. The man was found dead in his relaxation tank. The findings suggested lack of oxygen as the cause of death.
Chashei, I. V.; Fahr, H. J.
Charge-exchange processes between interstellar H-/O-atoms and protons of the bulk of the interstellar plasma flow downstream of the outer bowshock in the heliospheric interface induce secondary ions leading to non-relaxated velocity distribution functions. The relaxation of these freshly induced ions towards an equilibrium distribution occurs due to Coulomb interactions and wave-particle interactions with the background turbulence. Since Coulomb interactions are of low relevance, we study here in detail the effect of wave-particle interactions. To find the turbulence levels in the interface we consider the MHD-wave transformation at the outer shock surface between the interface and the local interstellar plasma. The turbulence in the outer interface region is shown to be dominated by incompressible Alfvén waves both for cases of quasiparallel and quasiperpendicular shocks. Also we show that waves propagating towards the shock are more intensive than those propagating away from it. The level of Alfvén turbulence in the interface is estimated using the recent data on local interstellar turbulence deduced from observations of interstellar scintillations of distant radiosources. Two proton relaxation processes are considered: quasilinear resonant interactions with Alfvén waves and non-linear self-induced wave-particle scattering. The corresponding diffusion coefficients are estimated, and typical time periods for protons and oxygen ions relaxation are shown to be of the same order of magnitude as H-/O-atoms passage time over the extent of the interface. This indicates that perturbed ion distribution functions must be expected there.
Domain Relaxation in Langmuir Films
Bernoff, Andrew J.; Alexander, James C.; Mann, Elizabeth K.; Mann, J. Adin; Zou, Lu; Wintersmith, Jacob R.
2007-11-01
We report on an experimental, theoretical and computational study of a molecularly thin polymer Langmuir layer domain on the surface of a subfluid. When stretched (by a transient stagnation flow), the Langmuir layer takes the form of a bola consisting of two roughly circular reservoirs connected by a thin tether. This shape relaxes to the circular minimum energy configuration. The tether is never observed to rupture, even when it is more than a hundred times as long as it is thin. We model these experiments as a free boundary problem where motion is driven by the line tension of the domain and damped by the viscosity of the subfluid. We process the digital images of the experiment to extract the domain shape, use one of these shapes as an initial condition for the numerical solution of a boundary-integral model of the underlying hydrodynamics, and compare the subsequent images of the experiment to the numerical simulation. The numerical evolutions verify that our hydrodynamical model can reproduce the observed dynamics. They also allow us to deduce the magnitude of the line tension in the system, often to within 1%.
Directory of Open Access Journals (Sweden)
MOHAMAD AMIN
2010-04-01
Full Text Available Amin M (2010 Intervention of genetic flow of the foreign cattle toward diversity of phenotype expressions of local cattle in the District of Banyuwangi. Biodiversitas 10: 69-74. The aims of the present research are two folds: to know the phenotypic diversity and to reconstruct the cross-breeding pattern of local cattle in Banyuwangi. Based on three sampling areas, it was found that there were 32 phenotypic cattle (10 in the sub districts of Rogojampi, 16 in Tegaldlimo and 6 in Glagah areas. The phenotypic varieties were caused by two factors, namely the flow of genetic intervention of the other local cattle (Bali, Ongole, and Brahman cattle and the artificial insemination program using the semen of Limousine, Simmental, Aberdeen Angus and Santa Gertrudis cattle.
Relaxing Behavioural Inheritance
Directory of Open Access Journals (Sweden)
Nuno Amálio
2013-05-01
Full Text Available Object-oriented (OO inheritance allows the definition of families of classes in a hierarchical way. In behavioural inheritance, a strong version, it should be possible to substitute an object of a subclass for an object of its superclass without any observable effect on the system. Behavioural inheritance is related to formal refinement, but, as observed in the literature, the refinement constraints are too restrictive, ruling out many useful OO subclassings. This paper studies behavioural inheritance in the context of ZOO, an object-oriented style for Z. To overcome refinement's restrictions, this paper proposes relaxations to the behavioural inheritance refinement rules. The work is presented for Z, but the results are applicable to any OO language that supports design-by-contract.
Haas, Andreas; Henzinger, Thomas A.; Holzer, Andreas; Kirsch, Christoph M.; Lippautz, Michael; Payer, Hannes; Sezgin, Ali; Sokolova, Ana; Veith, Helmut
2015-01-01
The semantics of concurrent data structures is usually given by a sequential specification and a consistency condition. Linearizability is the most popular consistency condition due to its simplicity and general applicability. Nevertheless, for applications that do not require all guarantees offered by linearizability, recent research has focused on improving performance and scalability of concurrent data structures by relaxing their semantics. In this paper, we present local linearizability,...
Directory of Open Access Journals (Sweden)
Gizon Laurent
2005-11-01
Full Text Available We review the current status of local helioseismology, covering both theoretical and observational results. After a brief introduction to solar oscillations and wave propagation through inhomogeneous media, we describe the main techniques of local helioseismology: Fourier-Hankel decomposition, ring-diagram analysis, time-distance helioseismology, helioseismic holography, and direct modeling. We discuss local helioseismology of large-scale flows, the solar-cycle dependence of these flows, perturbations associated with regions of magnetic activity, and solar supergranulation.
Directory of Open Access Journals (Sweden)
Tkachenko Egor M.
2016-01-01
Full Text Available Intensively evaporating liquid films moving under the action of the cocurrent gas flow in a microchannel are promising for the use in modern cooling systems of semiconductor devices with high local heat release. This work has studied the dependence of the critical heat flux on the inclination angle of the channel. It has been found that the inclination angle in the plane parallel to the flow has no significant effect on the critical heat flux. Whereas the inclination angle in the plane perpendicular to the flow, on the contrary, significantly changes the value of the critical heat flux. However, for a given flow rate of fluid there is a threshold gas velocity at which the critical heat flux does not differ from the case of zero inclination of the channel. Thus, it can be concluded that the cooling system based on shear-driven liquid films can be potentially used when direction of the gravity changes.
Institute of Scientific and Technical Information of China (English)
胡志华; 杨燕华; 刘磊; 周芳德
2006-01-01
The upward multiphase cross flow and heat transfer in the vertical tube may occur in oil production and chemical facilities. In this study, the local flow patterns of an upward gas-water two phase cross flow in a vertical tube with a horizontal rod have been investigated with an optical probe and the digital high speed video system. The local flow patterns are defined as the bubble, slug, churn and annular flow patterns. Optical probe signals are analyzed in terms of probability density function, and it is proved that the local flow patterns can be recognized by this method. The transition mechanisms between the different flow patterns have been analyzed and the corresponding transitional models are proposed. Finally, local flow pattern maps of the upward gas-water two-phase flow in the vertical tube with a horizontal rod are constructed.
Yin, Mingbo; Gießler, Sabine; Griebel, Johanna; Wolinska, Justyna
2014-04-12
In natural communities of cyclical parthenogens, rapid response to environmental change is enabled by switching between two reproduction modes. While long periods of asexual reproduction allow some clones to outcompete others, and may result in "clonal erosion", sexual reproduction restores genetic variation in such systems. Moreover, sexual reproduction may result in the formation of interspecific hybrids. These hybrids can then reach high abundances, through asexual clonal reproduction. In the present study, we explored genetic variation in water fleas of the genus Daphnia. The focus was on the short-term dynamics within several clonal assemblages from the hybridizing Daphnia longispina complex and the impact of gene flow at small spatial scales. Daphnia individuals belonged either to the parental species D. galeata and D. longispina, or to different hybrid classes, as identified by 15 microsatellite markers. The distribution and genotypic structure of parental species, but not hybrids, corresponded well with the geographical positions of the lakes. Within parental species, the genetic distance among populations of D. galeata was lower than among populations of D. longispina. Moreover, D. galeata dominance was associated with higher phosphorous load. Finally, there was no evidence for clonal erosion. Our results suggest that the contemporary structure of hybridizing Daphnia communities from ten nearby lakes is influenced by colonization events from neighbouring habitats as well as by environmental factors. Unlike the parental species, however, there was little evidence for successful dispersal of hybrids, which seem to be produced locally. Finally, in contrast to temporary Daphnia populations, in which a decrease in clonal diversity was sometimes detectable over a single growing season, the high clonal diversity and lack of clonal erosion observed here might result from repeated hatching of sexually produced offspring. Overall, our study provides insights into
Schwalm, Donelle; Epps, Clinton W; Rodhouse, Thomas J; Monahan, William B; Castillo, Jessica A; Ray, Chris; Jeffress, Mackenzie R
2016-04-01
Ecological niche theory holds that species distributions are shaped by a large and complex suite of interacting factors. Species distribution models (SDMs) are increasingly used to describe species' niches and predict the effects of future environmental change, including climate change. Currently, SDMs often fail to capture the complexity of species' niches, resulting in predictions that are generally limited to climate-occupancy interactions. Here, we explore the potential impact of climate change on the American pika using a replicated place-based approach that incorporates climate, gene flow, habitat configuration, and microhabitat complexity into SDMs. Using contemporary presence-absence data from occupancy surveys, genetic data to infer connectivity between habitat patches, and 21 environmental niche variables, we built separate SDMs for pika populations inhabiting eight US National Park Service units representing the habitat and climatic breadth of the species across the western United States. We then predicted occurrence probability under current (1981-2010) and three future time periods (out to 2100). Occurrence probabilities and the relative importance of predictor variables varied widely among study areas, revealing important local-scale differences in the realized niche of the American pika. This variation resulted in diverse and - in some cases - highly divergent future potential occupancy patterns for pikas, ranging from complete extirpation in some study areas to stable occupancy patterns in others. Habitat composition and connectivity, which are rarely incorporated in SDM projections, were influential in predicting pika occupancy in all study areas and frequently outranked climate variables. Our findings illustrate the importance of a place-based approach to species distribution modeling that includes fine-scale factors when assessing current and future climate impacts on species' distributions, especially when predictions are intended to manage and
Energy Technology Data Exchange (ETDEWEB)
Trabold, T.A.; Kumar, R. [Lockheed Martin Corp., Schenectady, NY (United States)
1999-07-01
In Part 1, detailed measurements were made in a high pressure, adiabatic (boiled at the inlet) annular flow in a narrow, high aspect ratio duct using a gamma densitometer, hot-film anemometer and high-speed video photography. Measurements of void fraction, droplet frequency, velocity, drop size, and interfacial area concentration have been made to support the three field computational capability. An important aspect of this testing is the use of a modeling fluid (R-134a) in a vertical duct which permits visual access in annular flow. This modeling fluid accurately simulates the low liquid-to-vapor density ratio of steam-water flows at high pressures. These measurements have been taken in a narrow duct of hydraulic diameter 4.85 mm, and a cross-section aspect ratio of 22.5. However, the flow displays profiles of various shapes not only in the narrow dimension, but also in the width dimension. In particular, the shape of the droplet profiles depends on the entrained droplet flux from the edges in the vapor core. The average diameter from these profiles compare well with the models developed in the literature. Interfacial area concentration for these low density ratio flows is higher than the highest concentration reported for air-water flows. Video records show that along with the bow-shaped waves, three-dimensional {lambda}-shaped waves appear in annular flows for high flow rates. Part 2 outlines the development of a three-field modeling approach in annular flow and the predictive capability of an analysis code. Models have been developed here or adapted from the literature for the thin film near the wall as well as the droplets in the vapor core, and have been locally applied in a fully developed, two-phase adiabatic boiling annular flow in a duct heated at the inlet at high pressure. Numerical results have been obtained using these models that are required for the closure of the continuity and momentum equations. The two-dimensional predictions are compared with
Anisotropic hydrodynamics for conformal Gubser flow
Energy Technology Data Exchange (ETDEWEB)
Strickland, Michael; Nopoush, Mohammad [Kent State University, Kent OH 44242 (United States); Ryblewski, Radoslaw [The H. Niewodniczański Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Kraków (Poland)
2016-12-15
In this proceedings contribution, we review the exact solution of the anisotropic hydrodynamics equations for a system subject to Gubser flow. For this purpose, we use the leading-order anisotropic hydrodynamics equations which assume that the distribution function is ellipsoidally symmetric in local-rest-frame momentum. We then prove that the SO(3){sub q} symmetry in de Sitter space constrains the anisotropy tensor to be of spheroidal form with only one independent anisotropy parameter remaining. As a consequence, the exact solution reduces to the problem of solving two coupled non-linear differential equations. We show that, in the limit that the relaxation time goes to zero, one obtains Gubser's ideal hydrodynamic solution and, in the limit that the relaxation time goes to infinity, one obtains the exact free streaming solution obtained originally by Denicol et al. For finite relaxation time, we solve the equations numerically and compare to the exact solution of the relaxation-time-approximation Boltzmann equation subject to Gubser flow. Using this as our standard, we find that anisotropic hydrodynamics describes the spatio-temporal evolution of the system better than all currently known dissipative hydrodynamics approaches.
Magnetic relaxation in anisotropic magnets
DEFF Research Database (Denmark)
Lindgård, Per-Anker
1971-01-01
The line shape and the kinematic and thermodynamic slowing down of the critical and paramagnetic relaxation in axially anisotropic materials are discussed. Kinematic slowing down occurs only in the longitudinal relaxation function. The thermodynamic slowing down occurs in either the transverse or...
Institute of Scientific and Technical Information of China (English)
王佐; 刘雁; 张家忠
2016-01-01
With the rapid development of micro-electro-mechanical systems (MEMS), microscale rarefied gas flows have re-ceived considerable attention in the past decades. Recently, the lattice Boltzmann method (LBM) emerges as a promising way to study the flow in MEMS for its kinetic nature and distinctive computational features. Various LBM models have been used to simulate the microscale and nanoscale flow, among which the two-dimensional and nine-velocities (D2Q9)-based LBM is most widely accepted due to its extremely simplicity and high efficiency. However, the D2Q9-based LBM encounters great difficulties in the transition regime due to the rarefaction effects on mean free path and gas viscosity. An effective way to improve the capability of the existing LBM model is to incorporate an effective viscosity into the relaxation time, which can improve the accuracy of LBM model while keeping the simplicity and efficiency of LBM. However, the existing D2Q9-based LBM models with effective viscosity cannot give satisfactory predictions of the none-equilibrium phenomenon at moderate or high Knudsen (Kn) number both in accuracy and efficiency. To solve the above problem, in this study, an effective mean free path function proposed by Dongari et al. (Dongari N, Zhang Y H, Reese J M 2011 J. Fluids Eng. 133 071101) via modular dynamics mean is introduced into the D2Q9 multi-relaxation-time lattice Boltzmann model (MRT-LBM) to account for the effect of Knudsen layer in transition flow regime, and the viscosity in the MRT-LBM model is modified correspondingly. The combination of the bounce-back and specular reflection boundary condition is used to deal with the velocity slip, and the relaxation time and the reflection coefficient are properly set to eliminate the numerical artifact on the boundaries as the kinetic boundary condition is used. Micro Couette flow at Kn=0.1–6.77, and periodic Poiseuille flow at Kn=0.1128–2.2568, respectively, are numerically investigated by using the
DEFF Research Database (Denmark)
Nielsen, Kim Lau; Pardoen, Thomas; Tvergaard, Viggo
2010-01-01
Plastic flow localisation and ductile failure during tensile testing of friction stir welded aluminium spec- imens are investigated with a specific focus on modelling the local, finite strain, hardening response. In the experimental part, friction stir welds in a 6005A-T6 aluminium alloy were...... prepared and analysed using digital image correlation (DIC) during tensile testing as well as scanning electron microscopy (SEM) on polished samples and on fracture surfaces. The locations of the various regions of the weld were determined based on hardness measurements, while the flow behaviour...
Viscous relaxation of Ganymede's impact craters: Constraints on heat flux
Bland, Michael; Singer, Kelsi N.; McKinnon, William B.; Schenk, Paul M.
2017-01-01
Measurement of crater depths in Ganymede’s dark terrain have revealed substantial numbers of unusually shallow craters indicative of viscous relaxation [see companion paper: Singer, K.N., Schenk, P. M., Bland, M.T., McKinnon, W.B., (2017). Relaxed impact craters on Ganymede: Regional variations and high heat flow. Icarus, submitted]. These viscously relaxed craters provide insight into the thermal history of the dark terrain: the rate of relaxation depends on the size of the crater and the thermal structure of the lithosphere. Here we use finite element simulations of crater relaxation to constrain the heat flux within the dark terrain when relaxation occurred. We show that the degree of viscous relaxation observed cannot be achieved through radiogenic heating alone, even if all of the relaxed craters are ancient and experienced the high radiogenic fluxes present early in the satellite’s history. For craters with diameter ≥ 10 km, heat fluxes of 40–50 mW m-2−2"> can reproduce the observed crater depths, but only if the fluxes are sustained for ∼1 Gyr. These craters can also be explained by shorter-lived “heat pulses” with magnitudes of ∼100 mW m-2−2"> and timescales of 10–100 Myr. At small crater diameters (4 km) the observed shallow depths are difficult to achieve even when heat fluxes as high as 150 mW m-2−2"> are sustained for 1 Gyr. The extreme thermal conditions required to viscously relax small craters may indicate that mechanisms other than viscous relaxation, such as topographic degradation, are also in play at small crater diameters. The timing of the relaxation event(s) is poorly constrained due to the sparsity of adequate topographic information, though it likely occurred in Ganymede’s middle history (neither recently, nor shortly after satellite formation). The consistency between the timing and magnitude of the heat fluxes derived here and those inferred from other tectonic features suggests that a single event
On relaxation nature of glass transition in amorphous materials
Sanditov, Damba S.; Ojovan, Michael I.
2017-10-01
A short review on relaxation theories of glass transition is presented. The main attention is paid to modern aspects of the glass transition equation qτg = C, suggested by Bartenev in 1951 (q - cooling rate of the melt, τg - structural relaxation time at the glass transition temperature Tg). This equation represents a criterion of structural relaxation at transition from liquid to glass at T = Tg (analogous to the condition of mechanical relaxation ωτ = 1, where the maximum of mechanical loss is observed). The empirical parameter С = δTg has the meaning of temperature range δTg that characterizes the liquid-glass transition. Different approaches of δTg calculation are reviewed. In the framework of the model of delocalized atoms a modified kinetic criterion of glass transition is proposed (q/Tg)τg = Cg, where Cg ≅ 7·10-3 is a practically universal dimensionless constant. It depends on fraction of fluctuation volume fg, which is frozen at the glass transition temperature Cg = fg/ln(1/fg). The value of fg is approximately constant fg ≅ 0.025. At Tg the process of atom delocalization, i.e. its displacement from the equilibrium position, is frozen. In silicate glasses atom delocalization is reduced to critical displacement of bridge oxygen atom in Si-O-Si bridge necessary to switch a valence bond according to Muller and Nemilov. An equation is derived for the temperature dependence of viscosity of glass-forming liquids in the wide temperature range, including the liquid-glass transition and the region of higher temperatures. Notion of (bridge) atom delocalization is developed, which is related to necessity of local low activation deformation of structural network for realization of elementary act of viscous flow - activated switch of a valence (bridge) bond. Without atom delocalization (;trigger mechanism;) a switch of the valence bond is impossible and, consequently, the viscous flow. Thus the freezing of atom delocalization process at low temperatures
Olds, Daniel; Page, Katharine; Paecklar, Arnold; Peterson, Peter F.; Liu, Jue; Rucker, Gerald; Ruiz-Rodriguez, Mariano; Olsen, Michael; Pawel, Michelle; Overbury, Steven H.; Neilson, James R.
2017-03-01
Gas-solid interfaces enable a multitude of industrial processes, including heterogeneous catalysis; however, there are few methods available for studying the structure of this interface under operating conditions. Here, we present a new sample environment for interrogating materials under gas-flow conditions using time-of-flight neutron scattering under both constant and pulse probe gas flow. Outlined are descriptions of the gas flow cell and a commissioning example using the adsorption of N2 by Ca-exchanged zeolite-X (Na78-2xCaxAl78Si144O384,x ≈ 38). We demonstrate sensitivities to lattice contraction and N2 adsorption sites in the structure, with both static gas loading and gas flow. A steady-state isotope transient kinetic analysis of N2 adsorption measured simultaneously with mass spectrometry is also demonstrated. In the experiment, the gas flow through a plugged-flow gas-solid contactor is switched between 15N2 and 14N2 isotopes at a temperature of 300 K and a constant pressure of 1 atm; the gas flow and mass spectrum are correlated with the structure factor determined from event-based neutron total scattering. Available flow conditions, sample considerations, and future applications are discussed.
MOHAMAD AMIN
2010-01-01
Amin M (2010) Intervention of genetic flow of the foreign cattle toward diversity of phenotype expressions of local cattle in the District of Banyuwangi. Biodiversitas 10: 69-74. The aims of the present research are two folds: to know the phenotypic diversity and to reconstruct the cross-breeding pattern of local cattle in Banyuwangi. Based on three sampling areas, it was found that there were 32 phenotypic cattle (10 in the sub districts of Rogojampi, 16 in Tegaldlimo and 6 in Glagah areas)....
Dynamics of Sulfonated Polystyrene Ionomers by Dielectric Relaxation Spectroscopy
Castagna, Alicia; Wang, Wenqin; Winey, Karen; Runt, James
2010-03-01
Broadband dielectric spectroscopy was used to investigate the dynamics of sulfonated polystyrene (SPS) ionomers, in both the acid and neutralized form. This study seeks to elucidate the role of counter ion type (Zn, Na, and Cs), degree of sulfonation (9 and 6%), and ion cluster morphology on the relaxation phenomena of SPS. Degree of neutralization and ion type have been found to significantly impact the breadth and time scale of the segmental relaxation process. High temperature relaxation processes, tentatively proposed to arise from Maxwell-Wagner-Sillars interfacial polarization and a hydrogen bonding relaxation, have also been identified. Bands in the sulfonate stretching region of FTIR spectra reveal information about ion coordination in the local aggregate environment. A combination of scanning transmission electron microscopy imaging and X-ray scattering confirmed the presence of homogeneously distributed, nearly monodisperse spherical ionic aggregates in the polymer matrix.
Current inversion and wind relaxation events along the western inner shelf of the Gulf of Cadiz
Garel, Erwan; Relvas, Paulo; Drago, Teresa
2015-04-01
At Eastern Boundary Upwelling Systems, warm counter-currents leaning along the coast are recurrently observed inshore of previously upwelled cold water. This feature is well-evidenced in summer by SST satellite imagery along the western part of the northern continental margin of the Gulf of Cadiz, Southern Iberia. At this location, wind driven upwelling prevails roughly from April till October, producing a typical equatorward (eastward) alongshore coastal circulation. This flow temporally alternates with a warm coastal counter-current propagating poleward (westward) that develops during non-upwelling (relaxation) wind conditions. These opposed circulation regimes occur also in winter but without the generation of thermal fronts. The onset of counter-currents along the inner shelf of the Gulf of Cadiz is driven by complex processes. It is generally assumed that inversion events develop when a background alongshore pressure gradient resulting from local wind or large scale atmospheric pressure systems becomes unbalanced during relaxation events. Additional mechanisms may include: strong upwelling jets producing local pressure gradients in the lee of capes and promontories; advection of warm water from very shallow inland areas in the eastern Gulf of Cadiz; and, flow response to short but strong westward wind events (Leventer) that typically occur after upwelling favourable winds. Until now, relatively short (less than 1 month) hydrodynamic observations were available for the study of the processes driving current inversions. The present research compiles 6 Acoustic Doppler Current Meter (ADCP) deployments of 2 to 3 months duration at a single location on the inner shelf (20 m water depth), constituting about 18 months of hourly records. Wind data from an offshore buoy (Cadiz) are also used to define relaxation periods, based on selected thresholds. The excellent correspondence between inversion periods and relaxations confirms that the circulation regime in this area
Mamaev, A. I.; Mamaeva, V. A.; Beletskaya, E. Yu.
2017-08-01
The paper presents the results of research performed by the modeling method and focusing on the distribution of material and energy flows at the interface of solid and liquid media under non-steady-state conditions. Modeling was performed using the case of two parallel oxidation-reduction reactions that occur under the impact of an external current supply of unlimited power. The identified regularities can be used when designing and arranging specific heterogeneous oxidation-reduction processes, in order to arrange local energy impact, including when one needs to form the nano-structured non-metallic inorganic coatings by microplasma method. Modeling demonstrates that nanosized localization of high-energy flows is possible at the media interface. Depending on pulse duration, the instantaneous energy can exceed the bond energy of chemical compounds. The identified regularities are true for description of non-steady-state heterogeneous oxidation-reduction reactions in chemistry, electrochemistry, catalysis and other areas of science and technology.
Energy Technology Data Exchange (ETDEWEB)
Delhaye, J. [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires
1968-07-01
The experimental knowledge of the local void-fraction is basic for the derivation of the constitutive equations of two-phase flows. This report deals with measurements of the local void-fraction based on the use of a constant temperature hot-film anemometer associated with a multichannel analyser. After determining the void-fraction profile along a diameter of a vertical pipe (40 mm I.D.), in which air and water flow upwards, we compare the void-fraction averaged over the diameter with the average value measured directly by a {gamma}-ray method. Two runs were made in bubble flow and a third in slug flow. The two methods give results in a good agreement especially for bubble flow. The void-fraction averaged over the cross-section was also calculated from the different profiles and compared in a good manner with the experimental results of R. ROUMY. For bubble flow we verified the theory of S.G. BANKOFF about the shape of the void-fraction profiles. (author) [French] Nous proposons une methode de mesure du taux de vide local a en ecoulement diphasique, basee sur l'emploi d'un anemometre a film chaud a temperature constante dont on etudie la repartition du signal en amplitude dans un analyseur multicanaux. Ayant trace un profil de taux de vide local suivant un diametre d'une conduite verticale de section circulaire parcourue par un ecoulement ascendant d'eau et d'air, nous avons compare la moyenne de {alpha} sur ce diametre a la valeur obtenue par une methode d'absorption de rayons {gamma}. Les essais ont ete faits en ecoulements a bulles et a bouchons. Les deux methodes donnent des resultats concordants en particulier pour les ecoulements a bulles. Le taux de vide moyenne dans la section, calcule a partir des differents profils, a egalement ete compare avec succes aux resultats experimentaux de R. ROUMY. Dans l'etude de la structure radiale des ecoulements a bulles, nous avons verifie l'hypothese de S.G. BAJMKOFF. (auteur)
Via, Sara; Conte, Gina; Mason-Foley, Casey; Mills, Kelly
2012-11-01
Populations that maintain phenotypic divergence in sympatry typically show a mosaic pattern of genomic divergence, requiring a corresponding mosaic of genomic isolation (reduced gene flow). However, mechanisms that could produce the genomic isolation required for divergence-with-gene-flow have barely been explored, apart from the traditional localized effects of selection and reduced recombination near centromeres or inversions. By localizing F(ST) outliers from a genome scan of wild pea aphid host races on a Quantitative Trait Locus (QTL) map of key traits, we test the hypothesis that between-population recombination and gene exchange are reduced over large 'divergence hitchhiking' (DH) regions. As expected under divergence hitchhiking, our map confirms that QTL and divergent markers cluster together in multiple large genomic regions. Under divergence hitchhiking, the nonoutlier markers within these regions should show signs of reduced gene exchange relative to nonoutlier markers in genomic regions where ongoing gene flow is expected. We use this predicted difference among nonoutliers to perform a critical test of divergence hitchhiking. Results show that nonoutlier markers within clusters of F(ST) outliers and QTL resolve the genetic population structure of the two host races nearly as well as the outliers themselves, while nonoutliers outside DH regions reveal no population structure, as expected if they experience more gene flow. These results provide clear evidence for divergence hitchhiking, a mechanism that may dramatically facilitate the process of speciation-with-gene-flow. They also show the power of integrating genome scans with genetic analyses of the phenotypic traits involved in local adaptation and population divergence. © 2012 Blackwell Publishing Ltd.
Goloviznin, V. M.; Kanaev, A. A.
2011-05-01
For the CABARET finite difference scheme, a new approach to the construction of convective flows for the one-dimensional nonlinear transport equation is proposed based on the minimum principle of partial local variations. The new approach ensures the monotonicity of solutions for a wide class of problems of a fairly general form including those involving discontinuous and nonconvex functions. Numerical results illustrating the properties of the proposed method are discussed.
Can Black Hole Relax Unitarily?
Solodukhin, S. N.
2005-03-01
We review the way the BTZ black hole relaxes back to thermal equilibrium after a small perturbation and how it is seen in the boundary (finite volume) CFT. The unitarity requires the relaxation to be quasi-periodic. It is preserved in the CFT but is not obvious in the case of the semiclassical black hole the relaxation of which is driven by complex quasi-normal modes. We discuss two ways of modifying the semiclassical black hole geometry to maintain unitarity: the (fractal) brick wall and the worm-hole modification. In the latter case the entropy comes out correctly as well.
Can Black Hole Relax Unitarily?
Solodukhin, Sergey N.
2004-01-01
We review the way the BTZ black hole relaxes back to thermal equilibrium after a small perturbation and how it is seen in the boundary (finite volume) CFT. The unitarity requires the relaxation to be quasi-periodic. It is preserved in the CFT but is not obvious in the case of the semiclassical black hole the relaxation of which is driven by complex quasi-normal modes. We discuss two ways of modifying the semiclassical black hole geometry to maintain unitarity: the (fractal) brick wall and the...
Can Black Hole Relax Unitarily?
Solodukhin, S N
2004-01-01
We review the way the BTZ black hole relaxes back to thermal equilibrium after a small perturbation and how it is seen in the boundary (finite volume) CFT. The unitarity requires the relaxation to be quasi-periodic. It is preserved in the CFT but is not obvious in the case of the semiclassical black hole the relaxation of which is driven by complex quasi-normal modes. We discuss two ways of modifying the semiclassical black hole geometry to maintain unitarity: the (fractal) brick wall and the worm-hole modification. In the latter case the entropy comes out correctly as well.
Energy Technology Data Exchange (ETDEWEB)
Chomaz, J.M. [Ecole Polytechnique, LadHyX-CNRS, 91 - Palaiseau (France)
2004-06-01
Mixing layers, jets, wakes, boundary layers over wings or rotating disks, Poiseuille and Couette flows are examples of open shear flows encountered in many industrial or geophysical situations. These flows develop spatially under the combined action of advection and instabilities and eventually undergo a transition to turbulence. In the eighties, the linear concepts of absolute and convective instability succeeded in predicting some aspects of open shear flow dynamics, but a description of their spatio-temporal development including nonlinear effects and secondary instabilities was lacking and even the very fact that a linear criterion describes so well strongly nonlinear flows remains mysterious. The present work reports on very recent progress elucidating open shear flow dynamics. A fully nonlinear extension of the concepts of absolute and convective instability introduced by Chomaz (Phys. Rev. Lett. 69 (1992) 1931) is recalled in connection with the broader problem of front and pattern selection. These new ideas are first illustrated on simple amplitude equations. Then the fully nonlinear concepts are applied to actual flows such as wakes and mixing layers. Furthermore, new scenarios involving secondary absolute instability are proposed and compared to the dynamics of the rotating disk and mixing layers experiment. (author)
Institute of Scientific and Technical Information of China (English)
LI Hua; WANG Mi; WU Ying-xiang; MA Yi-xin; WILLIAMS Richard
2005-01-01
This paper presents the use of a high performance dual-plane electrical resistance tomography (ERT) system and a local dual-sensor conductance probe to measure the vertical upward oil-in-water pipe flows in which the mean oil volume fraction is up to 23.1%.A sensitivity coefficient back-projection (SBP) algorithm was adopted to reconstruct the flow distributions and a cross correlation method was applied to obtain the oil velocity distributions. The oil volume fraction and velocity distributions obtained from both measurement techniques were compared and good agreement was found, which indicates that the ERT technique can be used to measure the low fraction oil-water flows. Finally, the factors affecting measurement precision were discussed.
Institute of Scientific and Technical Information of China (English)
ShouguangYao
1994-01-01
In this paper,the control volume method is used to establish the general expression of entropy generation due to combined convective heat and mass transfer in internal and external fluid streams.The expression accounts for irreversibilities due to the presence of heat transfer across a finite temperature difference,mass transfer across a finite difference in the chemical potential of a species,and due to flow friction.Based on the assumption of local thermodynamic equilibrium,the generalized form of the Gibbs equation is used in this analysis.The results are applied to two fundamental problems of forced convection heat and mass transfer in internal and external flows.After minimizing the entropy generation,useful conclusions are derived that are typical of the second law viewpoint for the definition of the optimum operation conditions for the specified applications.which is a valuable criterion for optimum design of heat and fluid flow devices.
Energy Technology Data Exchange (ETDEWEB)
Matzen, Gehard W. [Univ. of California, Berkeley, CA (United States)
1997-01-01
Three-dimensional creeping flow around single, axisymmetric protrusions is studied numerically using the boundary-integral technique. Emphasis is placed upon cylindrical protrusions on plane walls for various height-to-radius (h-to-a) aspect ratios, but cones and sections of spheres protruding from plane walls are also briefly examined. The presented items include shear-stress distributions, shear-stress contours, extents of the fluid-flow disturbance, total forces and torques on the cylinders, streamlines, and skin-friction lines. Also included is a discussion of flow topology around axisymmetric geometries. No flow reversal is observed for cylindrical protrusions with aspect ratios greater than 2.4 to 2.6. At higher aspect ratios, the fluid tends to be swept around cylindrical protrusions with little vertical motion. At lower aspect ratios, the strength of the recirculation increases, and the recirculation region becomes wider in the transverse direction and narrower in the flow direction. Also, the recirculation pattern begins to resemble the closed streamline patterns in two-dimensional flow over square ridges. However, unlike two-dimensional flow, closed streamline patterns are not observed. For arbitrary axisymmetric geometries, the extent of the fluid-flow disturbance can be estimated with the total force that is exerted on the protrusion. When the same force is exerted on protrusions with different aspect ratios, the protrusion with the higher aspect ratio tends to have a greater disturbance in the flow direction and a smaller disturbance in the transverse direction. The total force exerted on cylindrical protrusions with rounded corners is only slightly lower than the total force exerted on cylindrical protrusions with sharp corners.
Structural origins of Johari-Goldstein relaxation in a metallic glass
Liu, Y. H.; Fujita, T.; Aji, D. P. B.; Matsuura, M.; Chen, M. W.
2014-02-01
Johari-Goldstein or β relaxation, persisting down to glassy state from a supercooled liquid, is a universal phenomenon of glassy dynamics. Nevertheless, the underlying micromechanisms leading to the relaxation are still in debate despite great efforts devoted to this problem for decades. Here we report experimental evidence on the structural origins of Johari-Goldstein relaxation in an ultra-quenched metallic glass. The measured activation energy of the relaxation (~26 times of the product of gas constant and glass transition temperature) is consistent with the dynamic characteristics of Johari-Goldstein relaxation. Synchrotron X-ray investigations demonstrate that the relaxation originates from short-range collective rearrangements of large solvent atoms, which can be realized by local cooperative bonding switch. Our observations provide experimental insights into the atomic mechanisms of Johari-Goldstein relaxation and will be helpful in understanding the low-temperature dynamics and properties of metallic glasses.
Intrinsic correlation between β-relaxation and spatial heterogeneity in a metallic glass
Zhu, F.; Nguyen, H. K.; Song, S. X.; Aji, Daisman P. B.; Hirata, A.; Wang, H.; Nakajima, K.; Chen, M. W.
2016-01-01
β-relaxation has long been attributed to localized motion of constituent molecules or atoms confined to isolated regions in glasses. However, direct experimental evidence to support this spatially heterogeneous scenario is still missing. Here we report the evolution of nanoscale structural heterogeneity in a metallic glass during β-relaxation by utilizing amplitude-modulation dynamic atomic force microscopy. The successive degeneration of heterogeneity during β-relaxation can be well described by the Kohlrausch–Williams–Watts equation. The characteristic relaxation time and activation energy of the heterogeneity evolution are in accord with those of excess enthalpy release by β-relaxation. Our study correlates β-relaxation with nanoscale spatial heterogeneity and provides direct evidence on the structural origins of β-relaxation in metallic glasses. PMID:27158084
Ratkiewicz, Romana E.; Scherer, Klaus; Fahr, Hans J.; Cuzzi, Jeffrey N. (Technical Monitor)
1994-01-01
The solar system is in relative motion with respect to the ambient interstellar medium. The supersonic solar wind is expected to pass through the termination shock, thus the solar wind plasma eventually has to enter into an asymptotic outflow geometry appropriately adopted to this counterflow situation. Many attempts have been done to simulate the interaction between the solar wind and the LISM numerically. In this paper we generalize a Parker type analytical solution of the counterflow. The idea is to introduce a special kind of compressibility of the solar wind flow. With the assumption that only a transversal component of the density gradient normal to the flow lines exists we are able to calculate a full set of hydrodynamical quantities describing the circumsolar flow field of a Sun moving through the LISM. The equations governing the velocity and density fields lead to analytical solutions which can be taken as good approximations to the more general case of compressible plasma flows.
Multiple-relaxation-time model for the correct thermohydrodynamic equations.
Zheng, Lin; Shi, Baochang; Guo, Zhaoli
2008-08-01
A coupling lattice Boltzmann equation (LBE) model with multiple relaxation times is proposed for thermal flows with viscous heat dissipation and compression work. In this model the fixed Prandtl number and the viscous dissipation problems in the energy equation, which exist in most of the LBE models, are successfully overcome. The model is validated by simulating the two-dimensional Couette flow, thermal Poiseuille flow, and the natural convection flow in a square cavity. It is found that the numerical results agree well with the analytical solutions and/or other numerical results.
An Exact Relaxation of Clustering
DEFF Research Database (Denmark)
Mørup, Morten; Hansen, Lars Kai
2009-01-01
of clustering problems such as the K-means objective and pairwise clustering as well as graph partition problems, e.g., for community detection in complex networks. In particular we show that a relaxation to the simplex can be given for which the extreme solutions are stable hard assignment solutions and vice......Continuous relaxation of hard assignment clustering problems can lead to better solutions than greedy iterative refinement algorithms. However, the validity of existing relaxations is contingent on problem specific fuzzy parameters that quantify the level of similarity between the original...... versa. Based on the new relaxation we derive the SR-clustering algorithm that has the same complexity as traditional greedy iterative refinement algorithms but leading to significantly better partitions of the data. A Matlab implementation of the SR-clustering algorithm is available for download....
The relaxation & stress reduction workbook
National Research Council Canada - National Science Library
Davis, Martha; Eshelman, Elizabeth Robbins; McKay, Matthew
2008-01-01
"The Relaxation & Stress Reduction Workbook broke new ground when it was first published in 1980, detailing easy, step-by-step techniques for calming the body and mind in an increasingly overstimulated world...
Yamaleev, N. K.; Diskin, B.; Nielsen, E. J.
2009-01-01
.We study local-in-time adjoint-based methods for minimization of ow matching functionals subject to the 2-D unsteady compressible Euler equations. The key idea of the local-in-time method is to construct a very accurate approximation of the global-in-time adjoint equations and the corresponding sensitivity derivative by using only local information available on each time subinterval. In contrast to conventional time-dependent adjoint-based optimization methods which require backward-in-time integration of the adjoint equations over the entire time interval, the local-in-time method solves local adjoint equations sequentially over each time subinterval. Since each subinterval contains relatively few time steps, the storage cost of the local-in-time method is much lower than that of the global adjoint formulation, thus making the time-dependent optimization feasible for practical applications. The paper presents a detailed comparison of the local- and global-in-time adjoint-based methods for minimization of a tracking functional governed by the Euler equations describing the ow around a circular bump. Our numerical results show that the local-in-time method converges to the same optimal solution obtained with the global counterpart, while drastically reducing the memory cost as compared to the global-in-time adjoint formulation.
Stress relaxation following uniaxial extension of polystyrene melt and oligomer dilutions
DEFF Research Database (Denmark)
Huang, Qian; Rasmussen, Henrik K.
2016-01-01
The filament stretching rheometer has been used to measure the stress relaxation following the startup of uniaxial extensional flow, on anarrow molar mass distribution (NMMD) polystyrene melt and styrene oligomer dilutions thereof. All samples used here were characterizedin molecular weight, mech...... ofconstitutive representation was observed for all measured relaxations.VC 2016 The Society of Rheology....
Vijayakumar, M; Schwenzer, Birgit; Kim, Soowhan; Yang, Zhenguo; Thevuthasan, S; Liu, Jun; Graff, Gordon L; Hu, Jianzhi
2012-04-01
Proton conducting polymer composite membranes are of technological interest in many energy devices such as fuel cells and redox flow batteries. In particular, polymer composite membranes, such as SiO(2) incorporated Nafion membranes, are recently reported as highly promising for the use in redox flow batteries. However, there is conflicting reports regarding the performance of this type of Nafion-SiO(2) composite membrane in the redox flow cell. This paper presents results of the analysis of the Nafion-SiO(2) composite membrane used in a vanadium redox flow battery by nuclear magnetic resonance (NMR) spectroscopy, X-ray photoelectron spectroscopy (XPS), Fourier Transform Infra Red (FTIR) spectroscopy, and ultraviolet-visible spectroscopy. The XPS study reveals the chemical identity and environment of vanadium cations accumulated at the surface. On the other hand, the (19)F and (29)Si NMR measurement explores the nature of the interaction between the silica particles, Nafion side chains and diffused vanadium cations. The (29)Si NMR shows that the silica particles interact via hydrogen bonds with the sulfonic groups of Nafion and the diffused vanadium cations. Based on these spectroscopic studies, the chemical environment of the silica particles inside the Nafion membrane and their interaction with diffusing vanadium cations during flow cell operations are discussed. This study discusses the origin of performance degradation of the Nafion-SiO(2) composite membrane materials in vanadium redox flow batteries.
Relaxation Dynamics in Heme Proteins.
Scholl, Reinhard Wilhelm
A protein molecule possesses many conformational substates that are likely arranged in a hierarchy consisting of a number of tiers. A hierarchical organization of conformational substates is expected to give rise to a multitude of nonequilibrium relaxation phenomena. If the temperature is lowered, transitions between substates of higher tiers are frozen out, and relaxation processes characteristic of lower tiers will dominate the observational time scale. This thesis addresses the following questions: (i) What is the energy landscape of a protein? How does the landscape depend on the environment such as pH and viscosity, and how can it be connected to specific structural parts? (ii) What relaxation phenomena can be observed in a protein? Which are protein specific, and which occur in other proteins? How does the environment influence relaxations? (iii) What functional form best describes relaxation functions? (iv) Can we connect the motions to specific structural parts of the protein molecule, and are these motions important for the function of the protein?. To this purpose, relaxation processes after a pressure change are studied in carbonmonoxy (CO) heme proteins (myoglobin-CO, substrate-bound and substrate-free cytochrome P450cam-CO, chloroperoxidase-CO, horseradish peroxidase -CO) between 150 K and 250 K using FTIR spectroscopy to monitor the CO bound to the heme iron. Two types of p -relaxation experiments are performed: p-release (200 to ~eq40 MPa) and p-jump (~eq40 to 200 MPa) experiments. Most of the relaxations fall into one of three groups and are characterized by (i) nonexponential time dependence and non-Arrhenius temperature dependence (FIM1( nu), FIM1(Gamma)); (ii) exponential time dependence and non-Arrhenius temperature dependence (FIM0(A_{i}to A_{j})); exponential time dependence and Arrhenius temperature dependence (FIMX( nu)). The influence of pH is studied in myoglobin-CO and shown to have a strong influence on the substate population of the
Negative magnetic relaxation in superconductors
Directory of Open Access Journals (Sweden)
Krasnoperov E.P.
2013-01-01
Full Text Available It was observed that the trapped magnetic moment of HTS tablets or annuli increases in time (negative relaxation if they are not completely magnetized by a pulsed magnetic field. It is shown, in the framework of the Bean critical-state model, that the radial temperature gradient appearing in tablets or annuli during a pulsed field magnetization can explain the negative magnetic relaxation in the superconductor.
Thermal relaxation of molecular oxygen in collisions with nitrogen atoms
Andrienko, Daniil A.; Boyd, Iain D.
2016-07-01
Investigation of O2-N collisions is performed by means of the quasi-classical trajectory method on the two lowest ab initio potential energy surfaces at temperatures relevant to hypersonic flows. A complete set of bound-bound and bound-free transition rates is obtained for each precollisional rovibrational state. Special attention is paid to the vibrational and rotational relaxations of oxygen as a result of chemically non-reactive interaction with nitrogen atoms. The vibrational relaxation of oxygen partially occurs via the formation of an intermediate NO2 complex. The efficient energy randomization results in rapid vibrational relaxation at low temperatures, compared to other molecular systems with a purely repulsive potential. The vibrational relaxation time, computed by means of master equation studies, is nearly an order of magnitude lower than the relaxation time in N2-O collisions. The rotational nonequilibrium starts to play a significant effect at translational temperatures above 8000 K. The present work provides convenient relations for the vibrational and rotational relaxation times as well as for the quasi-steady dissociation rate coefficient and thus fills a gap in data due to a lack of experimental measurements for this system.
High fidelity modeling of thermal relaxation and dissociation of oxygen
Energy Technology Data Exchange (ETDEWEB)
Andrienko, Daniil A., E-mail: daniila@umich.edu; Boyd, Iain D. [Department of Aerospace Engineering, University of Michigan, 1320 Beal Ave., Ann Arbor, Michigan 48108 (United States)
2015-11-15
A master equation study of vibrational relaxation and dissociation of oxygen is conducted using state-specific O{sub 2}–O transition rates, generated by extensive trajectory simulations. Both O{sub 2}–O and O{sub 2}–O{sub 2} collisions are concurrently simulated in the evolving nonequilibrium gas system under constant heat bath conditions. The forced harmonic oscillator model is incorporated to simulate the state-to-state relaxation of oxygen in O{sub 2}–O{sub 2} collisions. The system of master equations is solved to simulate heating and cooling flows. The present study demonstrates the importance of atom-diatom collisions due to the extremely efficient energy randomization in the intermediate O{sub 3} complex. It is shown that the presence of atomic oxygen has a significant impact on vibrational relaxation time at temperatures observed in hypersonic flow. The population of highly-excited O{sub 2} vibrational states is affected by the amount of atomic oxygen when modeling the relaxation under constant heat bath conditions. A model of coupled state-to-state vibrational relaxation and dissociation of oxygen is also discussed.
Johnson, Aaron P; Barnes, W Jon P; Macauley, Martin W S
2004-01-01
Although a number of global mechanisms have been proposed over the years that explain how crabs might separate the rotational and translational components of their optic flow field, there has been no evidence to date that local mechanisms such as motion parallax are used in this separation. We describe here a study that takes advantage of a recently developed suite of computer-generated visual stimuli that creates a three-dimensional world surrounding the crab in which we can simulate translational and rotational optic flow. We show that, while motion parallax is not the only mechanism used in flow-field separation, it does play a role in the recognition of translational optic flow fields in that, under conditions of low overall light intensity and low contrast ratio when crabs find the distinction between rotation and translation harder, smaller eye movements occur in response to translation when motion parallax cues are present than when they are absent. Thus, motion parallax is one of many cues that crabs use to separate rotational and translational optic flow by showing compensatory eye movements to only the former.
Vibrational and structural relaxation of hydrated protons in Nafion membranes
Liu, Liyuan; Lotze, Stephan; Bakker, Huib J.
2017-02-01
We study the vibrational dynamics of the bending mode at 1730 cm-1 of proton hydration structures in Nafion membranes with polarization-resolved infrared (IR) pump-probe spectroscopy. The bending mode relaxes to an intermediate state with a time constant T1 of 170 ± 30 fs. Subsequently, the dissipated energy equilibrates with Teq of 1.5 ± 0.2 ps. The transient absorption signals show a long-living anisotropy, which indicates that for part of the excited proton hydration clusters the vibrational energy dissipation results in a local structural change, e.g. the breaking of a local hydrogen bond. This structural relaxation relaxes with a time constant of 38 ± 4 ps.
Relaxation dispersion NMR spectroscopy for the study of protein allostery.
Farber, Patrick J; Mittermaier, Anthony
2015-06-01
Allosteric transmission of information between distant sites in biological macromolecules often involves collective transitions between active and inactive conformations. Nuclear magnetic resonance (NMR) spectroscopy can yield detailed information on these dynamics. In particular, relaxation dispersion techniques provide structural, dynamic, and mechanistic information on conformational transitions occurring on the millisecond to microsecond timescales. In this review, we provide an overview of the theory and analysis of Carr-Purcell-Meiboom-Gill (CPMG) relaxation dispersion NMR experiments and briefly describe their application to the study of allosteric dynamics in the homeodomain from the PBX transcription factor (PBX-HD). CPMG NMR data show that local folding (helix/coil) transitions in one part of PBX-HD help to communicate information between two distant binding sites. Furthermore, the combination of CPMG and other spin relaxation data show that this region can also undergo local misfolding, reminiscent of conformational ensemble models of allostery.
Development of high-performance and low-noise axial-flow fan units in their local operating region
Energy Technology Data Exchange (ETDEWEB)
Heo, Seung; Ha, Min Ho; Cheong, Cheol Ung [Pusan National University, Busan (Korea, Republic of); Kim, Tae Hoon [LG Electronics Inc., Changwon (Korea, Republic of)
2015-09-15
Aerodynamic and aeroacoustic performances of an axial-flow fan unit are improved by modifying its housing structure without changing the fan blade. The target axial-flow fan system is used to lower temperature of a compressor and a condenser in the machine room of a household refrigerator which has relatively high system resistance due to complex layout of structures inside it. First, the performance of the fan system is experimentally characterized by measuring its volume flow rate versus static pressure using a fan performance tester satisfying the AMCA (Air Movement and Control Association) regulation, AMCA 210-07. The detailed structure of flow driven by the fan is numerically investigated using a virtual fan performance tester based on computational fluid dynamics techniques. The prediction result reveals possible loss due to radial and tangential velocity components in the wake flow downstream of the fan. The length of the fan housing is chosen as a design parameter for improving the aerodynamic and aeroacoustic performances of the fan unit by reducing the identified radial and tangential velocity components. Three fan units with different housing lengths longer than the original are analyzed using the virtual fan performance tester. The results confirm the improved aerodynamic performance of the proposed three designs. The flow field driven by the proposed fan unit is closely examined to find the causes for the observed performance improvements, which ensures that the radial and tangential velocity components in the wake flow are reduced. Finally, the improved performance of the proposed fan systems is validated by comparing the P-Q and efficiency curves measured using the fan performance tester. The noise emission from the household refrigerator is also found to be lessened when the new fan units are installed.
Energy Technology Data Exchange (ETDEWEB)
Holmen, Johan G.; Forsman, Jonas [Golder Associates, Stockholm (Sweden)
2005-01-15
Purpose: To study the flow of groundwater from rock masses at great depths and into the surface near deposits by use of mathematical models; and to estimate the spatial and temporal distribution of groundwater from great depths in the surface near deposits (quaternary deposits). The study is about the hydraulic interaction between the geosphere and the biosphere. Methodology: The system studied is represented by time dependent three dimensional mathematical models. The models include groundwater flows in the rock mass and in the quaternary deposits as well as surface water flows. The established groundwater models have such a resolution (degree of detail) that both rock masses at great depth and near surface deposits are included in the flow system studied. The modelling includes simulations under both steady state conditions and transient conditions The transient simulations represents the varying state of the groundwater system studied, caused by the variation in hydro-meteorological conditions during a normal year, a wet-year and a dry-year. The boundary condition along the topography of the model is a non-linear boundary condition, representing the ground surface above the sea and the varying actual groundwater recharge. Area studied: The area studied is located in Sweden, in the Northeast of the Uppland province, close to the Forsmark nuclear power plant. Water balance modelling: To obtain three significantly different groundwater recharge periods for the transient groundwater flow simulations a water balance modelling was carried out based on a statistical analysis of available hydro-meteorological data. To obtain a temporal distribution of the runoff (i.e. potential groundwater recharge), we have conducted a numerical time dependent water balance modelling. General conclusions of groundwater modelling: The discharge areas for the flow paths from great depth are given by the topography and located along valleys and lakes; the spatial and temporal extension of
Underwood, S. Jeffrey; Schultz, Michael D.; Berti, Metteo; Gregoretti, Carlo; Simoni, Alessandro; Mote, Thomas L.; Saylor, Anthony M.
2016-02-01
The Dolomite Alps of northeastern Italy experience debris flows with great frequency during the summer months. An ample supply of unconsolidated material on steep slopes and a summer season climate regime characterized by recurrent thunderstorms combine to produce an abundance of these destructive hydro-geologic events. In the past, debris flow events have been studied primarily in the context of their geologic and geomorphic characteristics. The atmospheric contribution to these mass-wasting events has been limited to recording rainfall and developing intensity thresholds for debris mobilization. This study aims to expand the examination of atmospheric processes that preceded both locally intense convective rainfall (LICR) and debris flows in the Dolomite region. 500 hPa pressure level plots of geopotential heights were constructed for a period of 3 days prior to debris flow events to gain insight into the synoptic-scale processes which provide an environment conducive to LICR in the Dolomites. Cloud-to-ground (CG) lightning flash data recorded at the meso-scale were incorporated to assess the convective environment proximal to debris flow source regions. Twelve events were analyzed and from this analysis three common synoptic-scale circulation patterns were identified. Evaluation of CG flashes at smaller spatial and temporal scales illustrated that convective processes vary in their production of CF flashes (total number) and the spatial distribution of flashes can also be quite different between events over longer periods. During the 60 min interval immediately preceding debris flow a majority of cases exhibited spatial and temporal colocation of LICR and CG flashes. Also a number of CG flash parameters were found to be significantly correlated to rainfall intensity prior to debris flow initiation.
Scully, J. E. C.; Russell, C. T.; Yin, A.; Jaumann, R.; Carey, E. M.; McSween, H. Y., Jr.; Castillo, J. C.; Raymond, C. A.; Reddy, V.; Le Corre, L.
2014-12-01
Vesta, the second most massive asteroid, has long been perceived as anhydrous. However, recent studies suggesting the localized presence of hydrated minerals and past sub-surface water have challenged this perception (e.g. Sarafian et al., 2013; De Sanctis et al., 2012; Prettyman et al., 2012; McCord et al. 2012; Reddy et al. 2012; Treiman et al, 2004). Herein we show evidence that transient water flowed on the surface, in a debris-flow-like process, and left distinctive geomorphologic features. Based on analysis of ~20 m/ pixel images obtained by Dawn, we identify a class of locally occurring, interconnected and curvilinear systems of gullies in the walls of young (< 100s Ma) impact craters, ending in lobate deposits near the crater floors. As curvilinear systems only occur within impact craters, we propose that they formed by a particulate-dominated transient flow of water (≤ 26 minutes) that was released from buried ice-bearing deposits by impact-induced heating. Our interpretation is in accordance with the occurrence of pitted terrain on lobate deposits and crater floors. Pitted terrain is interpreted to result from the degassing of volatiles (Denevi et al., 2012). We also identify linear gully systems, which are morphologically distinct from the curvilinear systems, and are interpreted to form by dry flow of material. Craters containing curvilinear systems are clustered in two regions of Vesta's surface, whereas linear systems are evenly distributed. This indicates that the proposed buried ice-bearing deposits are likely localized in extent. Together with the newly expanded understanding of the distribution and behavior of water in the asteroid belt (e.g. Küppers et al., 2014; Hsieh & Jewitt, 2006), our results support the new paradigm that there is a continuum of small bodies in the solar system with many intermediate states of hydration. The varied hydrologic processes that occur within this new paradigm suggest the evolution of our solar system is more
Synoptic forcing of wind relaxations at Pt. Conception, California
Fewings, Melanie R.; Washburn, Libe; Dorman, Clive E.; Gotschalk, Christopher; Lombardo, Kelly
2016-08-01
Over the California Current upwelling system in summer, the prevailing upwelling-favorable winds episodically weaken (relax) or reverse direction for a few days. Near Pt. Conception, California, the wind usually does not reverse, but wind relaxation allows poleward oceanic coastal flow with ecological consequences. To determine the offshore extent and synoptic forcing of these wind relaxations, we formed composite averages of wind stress from the QuikSCAT satellite and atmospheric pressure from the North American Regional Reanalysis (NARR) using 67 wind relaxations during summer 2000-2009. Wind relaxations at Pt. Conception are the third stage of an event sequence that repeatedly affects the west coast of North America in summer. First, 5-7 days before the wind weakens near Pt. Conception, the wind weakens or reverses off Oregon and northern California. Second, the upwelling-favorable wind intensifies along central California. Third, the wind relaxes at Pt. Conception, and the area of weakened winds extends poleward to northern California over 3-5 days. The NARR underestimates the wind stress within ˜200 km of coastal capes by a factor of 2. Wind relaxations at Pt. Conception are caused by offshore extension of the desert heat low. This synoptic forcing is related to event cycles that cause wind reversal as in Halliwell and Allen (1987) and Mass and Bond (1996), but includes weaker events. The wind relaxations extend ˜600 km offshore, similarly to the California-scale hydraulic expansion fan shaping the prevailing winds, and ˜1000 km alongshore, limited by an opposing pressure gradient force at Cape Mendocino.
Hughes, Joseph D.; Vacher, H. L.; Sanford, Ward E.
2007-07-01
Kohout convection is the name given to the circulation of saline groundwater deep within carbonate platforms, first proposed by F.A. Kohout in the 1960s for south Florida. It is now seen as an Mg pump for dolomitization by seawater. As proposed by Kohout, cold seawater is drawn into the Florida platform from the deep Straits of Florida as part of a geothermally driven circulation in which the seawater then rises in the interior of the platform to mix and exit with the discharging meteoric water of the Floridan aquifer system. Simulation of the asymmetrically emergent Florida platform with the new three-dimensional (3-D), finite-element groundwater flow and transport model SUTRA-MS, which couples salinity- and temperature-dependent density variations, allows analysis of how much of the cyclic flow is due to geothermal heating (free convection) as opposed to mixing with meteoric water discharging to the shoreline (forced convection). Simulation of the system with and without geothermal heating reveals that the inflow of seawater from the Straits of Florida would be similar without the heat flow, but the distribution would differ significantly. The addition of heat flow reduces the asymmetry of the circulation: it decreases seawater inflows on the Atlantic side by 8% and on the Gulf of Mexico side by half. The study illustrates the complex interplay of freshwater-saltwater mixing, geothermal heat flow, and projected dolomitization in complicated 3-D settings with asymmetric boundary conditions and realistic horizontal and vertical variations in hydraulic properties.
Institute of Scientific and Technical Information of China (English)
李慧; 张军; 常佳; 魏新利
2012-01-01
A numerical calculation model was founded on partial actual test data of flow field in chain plate type relaxation heat setting machine for staple fiber. The computational fluid dynamics software Fluent was adopted to analyze the numerical result of dryer box unit. The results showed that the chain plate type relaxation heat setting machine did not have a reasonable opening rate of air distribution plate, leading to an uneven flow rate perpendicular to chain plate motion in dryer which resulted in the uneven drying effect. The obvious velocity component parallel with the chain plate motion in the dryer flow field, which was beneficial to enhancing the convective mass transfer effect, resulted from the centrifugal force of the fan and the diversion effect of the volute. The numerical calculation method of the model produced the data similar to the actural test results. The numerical analytical results can be used as the preference for the structure optimization design of chain plate type relaxation heat setting machine for staple fiber, especially for the design of air distribution plate openings and fan volute.%在对短纤维链板式松弛热定型机内气体流场部分实测数据的基础上,建立了数值计算模型,利用流体动力学软件Fluent对干燥机箱体单元进行了数值模拟分析.结果表明:所研究短纤维链板式松弛热定型机的匀风板开孔率布置不合理,使得干燥机内垂直于链板运动方向流速不均匀,导致干燥效果的不均匀；由于风机的离心力及蜗壳的导流作用,使得干燥机流场具有明显链板移动方向速度分量,该分量有助于加强干燥过程中的对流传质效果.所建模型的数值计算方法与实际测试结果相近,数值分析结果可以用来作为短纤维链板式松弛热定型机结构优化设计,尤其是匀风板开孔和风机蜗壳的设计的依据.
A locally p-adaptive approach for Large Eddy Simulation of compressible flows in a DG framework
Tugnoli, Matteo; Bonaventura, Luca; Restelli, Marco
2016-01-01
We investigate the possibility of reducing the computational burden of LES models by employing local polynomial degree adaptivity in the framework of a high order DG method. A novel degree adaptation technique especially featured to be effective for LES applications is proposed and its effectiveness is compared to that of other criteria already employed in the literature. The resulting locally adaptive approach allows to achieve significant reductions in computational cost of representative LES computations.
Transverse relaxation of scalar-coupled protons.
Segawa, Takuya F; Baishya, Bikash; Bodenhausen, Geoffrey
2010-10-25
In a preliminary communication (B. Baishya, T. F. Segawa, G. Bodenhausen, J. Am. Chem. Soc. 2009, 131, 17538-17539), we recently demonstrated that it is possible to obtain clean echo decays of protons in biomolecules despite the presence of homonuclear scalar couplings. These unmodulated decays allow one to determine apparent transverse relaxation rates R(2) (app) of individual protons. Herein, we report the observation of R(2) (app) for three methyl protons, four amide H(N) protons, and all 11 backbone H(α) protons in cyclosporin A. If the proton resonances overlap, their R(2) (app) rates can be measured by transferring their magnetization to neighboring (13)C nuclei, which are less prone to overlap. The R(2) (app) rates of protons attached to (13)C are faster than those attached to (12)C because of (13)C-(1)H dipolar interactions. The differences of these rates allow the determination of local correlation functions. Backbone H(N) and H(α) protons that have fast decay rates R(2) (app) also feature fast longitudinal relaxation rates R(1) and intense NOESY cross peaks that are typical of crowded environments. Variations of R(2) (app) rates of backbone H(α) protons in similar amino acids reflect differences in local environments.
Directory of Open Access Journals (Sweden)
Matthias Bauer
2016-10-01
Full Text Available This paper discusses wind tunnel test results aimed at advancing active flow control technology to increase the aerodynamic efficiency of an aircraft during take-off. A model of the outer section of a representative civil airliner wing was equipped with two-stage fluidic actuators between the slat edge and wing tip, where mechanical high-lift devices fail to integrate. The experiments were conducted at a nominal take-off Mach number of M = 0.2. At this incidence velocity, separation on the wing section, accompanied by increased drag, is triggered by the strong slat edge vortex at high angles of attack. On the basis of global force measurements and local static pressure data, the effect of pulsed blowing on the complex flow is evaluated, considering various momentum coefficients and spanwise distributions of the actuation effort. It is shown that through local intensification of forcing, a momentum coefficient of less than c μ = 0.6 % suffices to offset the stall by 2.4°, increase the maximum lift by more than 10% and reduce the drag by 37% compared to the uncontrolled flow.
Hoffmann, S K; Goslar, J; Lijewski, S
2011-08-31
Electron spin-lattice relaxation was measured by the electron spin echo method in a broad temperature range above 4.2 K for Cu(2+) ions and free radicals produced by ionizing radiation in triglycine sulfate (TGS) and Tutton salt (NH4)(2)Zn(SO4)2 ⋅ 6H2O crystals. Localization of the paramagnetic centres in the crystal unit cells was determined from continuous wave electron paramagnetic resonance spectra. Various spin relaxation processes and mechanisms are outlined. Cu(2+) ions relax fast via two-phonon Raman processes in both crystals involving the whole phonon spectrum of the host lattice. This relaxation is slightly slower for TGS where Cu(2+) ions are in the interstitial position. The ordinary Raman processes do not contribute to the radical relaxation which relaxes via the local phonon mode. The local mode lies within the acoustic phonon band for radicals in TGS but within the optical phonon range in (NH4)(2)Zn(SO4)2 ⋅ 6H2O. In the latter the cross-relaxation was considered. A lack of phonons around the radical molecules suggested a local crystal amorphisation produced by x- or γ-rays.
Nonomura, Yoshihiko
2014-11-01
Nonequilibrium relaxation behaviors in the Ising model on a square lattice based on the Wolff algorithm are totally different from those based on local-update algorithms. In particular, the critical relaxation is described by the stretched-exponential decay. We propose a novel scaling procedure to connect nonequilibrium and equilibrium behaviors continuously, and find that the stretched-exponential scaling region in the Wolff algorithm is as wide as the power-law scaling region in local-update algorithms. We also find that relaxation to the spontaneous magnetization in the ordered phase is characterized by the exponential decay, not the stretched-exponential decay based on local-update algorithms.
Ryder, I.; Burgmann, R.; Pollitz, F.
2011-01-01
In 2001 November a magnitude 7.8 earthquake ruptured a 400 km long portion of the Kunlun fault, northeastern Tibet. In this study, we analyse over five years of post-seismic geodetic data and interpret the observed surface deformation in terms of stress relaxation in the thick Tibetan lower crust. We model GPS time-series (first year) and InSAR line of sight measurements (years two to five) and infer that the most likely mechanism of post-seismic stress relaxation is time-dependent distributed creep of viscoelastic material in the lower crust. Since a single relaxation time is not sufficient to model the observed deformation, viscous flow is modelled by a lower crustal Burgers rheology, which has two material relaxation times. The optimum model has a transient viscosity 9 ?? 1017 Pa s, steady-state viscosity 1 ?? 1019 Pa s and a ratio of long term to Maxwell shear modulus of 2:3. This model gives a good fit to GPS stations south of the Kunlun Fault, while displacements at stations north of the fault are over-predicted. We attribute this asymmetry in the GPS residual to lateral heterogeneity in rheological structure across the southern margin of the Qaidam Basin, with thinner crust/higher viscosities beneath the basin than beneath the Tibetan Plateau. Deep afterslip localized in a shear zone beneath the fault rupture gives a reasonable match to the observed InSAR data, but the slip model does not fit the earlier GPS data well. We conclude that while some localized afterslip likely occurred during the early post-seismic phase, the bulk of the observed deformation signal is due to viscous flow in the lower crust. To investigate regional variability in rheological structure, we also analyse post-seismic displacements following the 1997 Manyi earthquake that occurred 250 km west of the Kokoxili rupture. We find that viscoelastic properties are the same as for the Kokoxili area except for the transient viscosity, which is 5 ?? 1017 Pa s. The viscosities estimated for the
Some improvements in the theory of plasma relaxation
Energy Technology Data Exchange (ETDEWEB)
Hameiri, Eliezer, E-mail: hameiri@cims.nyu.edu [Courant Institute of Mathematical Sciences, New York University, New York, New York 10012 (United States)
2014-04-15
Taylor's relaxation theory is extended to plasmas with mass flow by using the cross helicity as a conserved quantity, similar to the magnetic helicity. Indeed, it is shown that the conservation of the cross helicity in magnetohydrodynamics is the result of the conservation of two magnetic-like helicities in two-fluid plasmas. In addition, the usually ignored toroidal flux is also held to be conserved. We also view plasma relaxation as attaining a maximum entropy state rather than Taylor's minimum energy state, but prove that maximizing the entropy subject to a given amount of energy is equivalent to minimizing the energy subject to a given amount of entropy. The resulting relaxed state is similar to the one discussed by Finn and Antonsen [Phys. Fluids 26, 3540 (1983)], and involves flow parallel to the magnetic field and constant temperature, but non-constant pressure. We show how to construct an asymptotic solution to the relaxed state based on the smallness of the Alfven Mach number of the flow.
DEFF Research Database (Denmark)
Simonsen, Lene; Enevoldsen, Lotte Hahn; Bülow, Jens
2003-01-01
Adipose tissue blood flow was measured in six healthy, non-obese subjects with the xenon wash-out technique after labelling of the tissue by either injection of 133Xe dissolved in isotonic sodium chloride (water depot) or injection of 133Xe in gas form (gas depot). The wash-out rates were registe...
DEFF Research Database (Denmark)
Guan, Xinfu; Karpen, Heidi E; Stephens, John
2006-01-01
BACKGROUND & AIMS: Glucagon-like peptide-2 (GLP-2) is a nutrient-responsive hormone that exerts diverse actions in the gastrointestinal tract, including enhancing epithelial cell survival and proliferation, mucosal blood flow, and nutrient uptake and suppressing gastric motility and secretion. Th...
Arbogast, Todd
2012-01-01
Motivated by possible generalizations to more complex multiphase multicomponent systems in higher dimensions, we develop an Eulerian-Lagrangian numerical approximation for a system of two conservation laws in one space dimension modeling a simplified two-phase flow problem in a porous medium. The method is based on following tracelines, so it is stable independent of any CFL constraint. The main difficulty is that it is not possible to follow individual tracelines independently. We approximate tracing along the tracelines by using local mass conservation principles and self-consistency. The two-phase flow problem is governed by a system of equations representing mass conservation of each phase, so there are two local mass conservation principles. Our numerical method respects both of these conservation principles over the computational mesh (i.e., locally), and so is a fully conservative traceline method. We present numerical results that demonstrate the ability of the method to handle problems with shocks and rarefactions, and to do so with very coarse spatial grids and time steps larger than the CFL limit. © 2012 Society for Industrial and Applied Mathematics.
5-HT is a potent relaxant in rat superior mesenteric veins
Watts, Stephanie W.; Darios, Emma S.; Seitz, Bridget M.; Janice M Thompson
2015-01-01
Serotonin (5-HT, 5-hydroxytryptamine) reduces blood pressure of the conscious rat when administered chronically (1 week). 5-HT does not directly relax isolated arteries, and microsphere experiments in 5-HT-infused rats suggested that 5-HT increased flow to the splanchnic bed. We hypothesized that 5-HT increased splanchnic flow because of direct venous relaxation; our focus was thus on the superior mesenteric vein (SMV) as an important vein in splanchnic circulation. Real-time RT-PCR, immunohi...
Hughes, J.D.; Vacher, H.L.; Sanford, W.E.
2007-01-01
Kohout convection is the name given to the circulation of saline groundwater deep within carbonate platforms, first proposed by F.A. Kohout in the 1960s for south Florida. It is now seen as an Mg pump for dolomitization by seawater. As proposed by Kohout, cold seawater is drawn into the Florida platform from the deep Straits of Florida as part of a geothermally driven circulation in which the seawater then rises in the interior of the platform to mix and exit with the discharging meteoric water of the Floridan aquifer system. Simulation of the asymmetrically emergent Florida platform with the new three-dimensional (3-D), finite-element groundwater flow and transport model SUTRA-MS, which couples salinity- and temperature-dependent density variations, allows analysis of how much of the cyclic flow is due to geothermal heating (free convection) as opposed to mixing with meteoric water discharging to the shoreline (forced convection). Simulation of the system with and without geothermal heating reveals that the inflow of seawater from the Straits of Florida would be similar without the heat flow, but the distribution would differ significantly. The addition of heat flow reduces the asymmetry of the circulation: it decreases seawater inflows on the Atlantic side by 8% and on the Guff of Mexico side by half. The study illustrates the complex interplay of freshwater-saltwater mixing, geothermal heat flow, and projected dolomitization in complicated 3-D settings with asymmetric boundary conditions and realistic horizontal and vertical variations in hydraulic properties. ?? 2007 The Geological Society of America.
Flow structure caused by a local cross-sectional area increase and curvature in sharp river bends
Vermeulen, B.
2015-12-01
Horizontal flow recirculation is often observed in sharp river bends, causing a complex three-dimensional flow structure with large implications for the morphological and planimetric development of meanders. Several field observations in small scale systems show that sharp bends are often found in association with a strong increase in cross-sectional area, the deposition of outer bank benches and reattachment bars near the inner bank. Recent studies show that these bends can also occur in large scale systems. In this study, we present field measurements of a sharp bend in the Mahakam River, East Kalimantan, Indonesia. The cross-sectional area increases by a factor of three compared with the reach averaged cross-sectional area. Along a river reach of about 150 km, cross-sectional area correlates strongly with curvature. The field measurements are analyzed together with the results from numerical simulation with a 3D finite element model, which yields a comprehensive view of the intricate flow structure. In turn, the model is used to validate a new equation that captures the water surface topography dependence on cross-sectional area variation and curvature. The results show the importance of the increase in cross-sectional area in the development of horizontal recirculation. Vertical acceleration of the flow into the scour causes the pressure to deviate from a hydrostatic pressure distribution. Strong downflow (up to 12 cm/s) advects longitudinal momentum towards the bed, causing the flow to concentrate in the lower part of the cross-section. This increases the velocity magnitude throughout the cross-section, which is expected to maintain the large scour depth found in several bends along the Mahakam River.
Flow structure caused by a local cross-sectional area increase and curvature in a sharp river bend
Vermeulen, B.; Hoitink, A. J. F.; Labeur, R. J.
2015-09-01
Horizontal flow recirculation is often observed in sharp river bends, causing a complex three-dimensional flow structure with large implications for the morphological and planimetric development of meanders. Several field observations in small-scale systems show that sharp bends are often found in association with a strong increase in cross-sectional area, the deposition of outer bank benches, and reattachment bars near the inner bank. Recent studies show that these bends can also occur in large-scale systems. In this study, we present field measurements of a sharp bend in the Mahakam River, East Kalimantan, Indonesia. The cross-sectional area increases by a factor of 3 compared with the reach-averaged cross-sectional area. Along a river reach of about 150 km, cross-sectional area correlates strongly with curvature. The field measurements are analyzed together with the results from numerical simulation with a three-dimensional finite element model, which yields a comprehensive view of the intricate flow structure. In turn, the model is used to validate a new equation that captures the water surface topography dependence on cross-sectional area variation and curvature. The results show the importance of the increase in cross-sectional area in the development of horizontal recirculation. Vertical acceleration of the flow into the scour causes the pressure to deviate from a hydrostatic pressure distribution. Strong downflow (up to 12 cm s-1) advects longitudinal momentum toward the bed, causing the flow to concentrate in the lower part of the cross section. This increases the velocity magnitude throughout the cross section, which is expected to maintain the large scour depth found in several bends along the Mahakam River.
ON A CELL ENTROPY INEQUALITY OF THE RELAXING SCHEMES FOR SCALAR CONSERVATION LAWS
Institute of Scientific and Technical Information of China (English)
Hua-zhong Tang; Hua-mo Wu
2000-01-01
In this paper we study a cell entropy inequality for a class of the local relaxation approximation -The Relaxing Schemes for scalar conservation laws presented by Jin and Xin in [1], which implies convergence for the one-dimensional scalar case.
Weihang, Kong; Lingfu, Kong; Lei, Li; Xingbin, Liu; Tao, Cui
2017-06-01
Water volume fraction is an important parameter of two-phase flow measurement, and it is an urgent task for accurate measurement in horizontal oil field development and optimization of oil production. The previous ring-shaped conductance water-cut meter cannot obtain the response values corresponding to the oil field water conductivity for oil-water two-phase flow in horizontal oil-producing wells characterized by low yield liquid, low velocity and high water cut. Hence, an inserted axisymmetric array structure sensor, i.e. a six-group local-conductance probe (SGLCP), is proposed in this paper. Firstly, the electric field distributions generated by the exciting electrodes of SGLCP are investigated by the finite element method (FEM), and the spatial sensitivity distributions of SGLCP are analyzed from the aspect of different separations between two electrodes and different axial rotation angles respectively. Secondly, the numerical simulation responses of SGLCP in horizontal segregated flow are calculated from the aspect of different water cut and heights of the water layer, respectively. Lastly, an SGLCP-based well logging instrument was developed, and experiments were carried out in a horizontal pipe with an inner diameter of 125 mm on the industrial-scale experimental multiphase flow setup in the Daqing Oilfield, China. In the experiments, the different oil-water two-phase flow, mineralization degree, temperature and pressure were tested. The results obtained from the simulation experiments and simulation well experiments demonstrate that the designed and developed SGLCP-based instrument still has a good response characteristic for measuring water conductivity under the different conditions mentioned above. The validity and reliability of obtaining the response values corresponding to the water conductivity through the designed and developed SGLCP-based instrument are verified by the experimental results. The significance of this work can provide an effective
Energy Technology Data Exchange (ETDEWEB)
Jaquet, O.; Siegel, P. [Colenco Power Engineering Ltd, Baden-Daettwil (Switzerland)
2004-09-01
A hydrogeological model was developed for Beberg with the aim of evaluating the impact of a repository (for the operational and post-closure phases) while accounting for the effects of density-driven flow. Two embedded scales were taken into account for this modelling study: a local scale at which the granitic medium was considered as a continuum and a repository scale, where the medium is fractured and therefore was regarded to be discrete. The following step-wise approach was established to model density-driven flow at both repository and local scale: (a) modelling fracture networks at the repository scale, (b) upscaling the hydraulic properties to a continuum at local scale and (c) modelling density-driven flow to evaluate repository impact at local scale. The results demonstrate the strong impact of the repository on the flow field during the phase of operation. The distribution of the salt concentration is affected by a large upcoming effect with increased relative concentration and by the presence of fracture zones carrying freshwater from the surface. The concentrations obtained for the reference case, expressed in terms of percentage with respect to the maximum (prescribed) value in the model, are as follows: ca 30% for the phase of desaturation, and ca 20% for the resaturation phase. For the reference case, the impact of repository operations appears no longer visible after a resaturation period of about 20 years after repository closure; under resaturation conditions, evidence of the operational phase has already disappeared in terms of the observed hydraulic and concentration fields. Sensitivity calculations have proven the importance of explicitly discretising repository tunnels when assessing resaturation time and maximum concentration values. Furthermore, the definition of a fixed potential as boundary condition along the model's top surface is likely to provide underestimated values for the maximum concentration and overestimated flow rates in
Spin Relaxation of Electrons in Single InAs Quantum Dots
Institute of Scientific and Technical Information of China (English)
MA Shan-Shan; DOU Xiu-Ming; CHANG Xiu-Ying; SUN Bao-Quan; XIONG Yong-Hua; NIU Zhi-Chuan; NI Hai-Qiao
2009-01-01
By using polarization-resolved photoluminescence spectra, we study the electron spin relaxation in single InAs quantum dots (QDs) with the configuration of positively charged excitons X~+ (one electron, two holes). The spin relaxation rate of the hot electrons increases with the increasing energy of exciting photons. For electrons localized in QDs the spin relaxation is induced by hyperfine interaction with the nuclei. A rapid decrease of polarization degree with increasing temperature suggests that the spin relaxation mechanisms are mainly changed from the hyperfine interaction with nuclei into an electron-hole exchange interaction.
First principles calculations of relationship between the Cu surface states and relaxations
Institute of Scientific and Technical Information of China (English)
Xie Yao-Ping; Luo Ying; Liu Shao-Jun
2007-01-01
In this paper the relationship between the surface relaxations and the electron density distributions of surface states of Cu(100), Cu(110), and Cu(111) surfaces is obtained by first-principles calculations. The calculations indicate that relaxations mainly occur in the layers at which the surface states electrons are localized, and the magnitudes of the multilayer relaxations correspond to the difference of electron density of surface states between adjacent layers. The larger the interlayer relaxation is, the larger the difference of electron density of surface states between two layers is.
Dynamical theory of spin relaxation
Field, Timothy R.; Bain, Alex D.
2013-02-01
The dynamics of a spin system is usually calculated using the density matrix. However, the usual formulation in terms of the density matrix predicts that the signal will decay to zero, and does not address the issue of individual spin dynamics. Using stochastic calculus, we develop a dynamical theory of spin relaxation, the origins of which lie in the component spin fluctuations. This entails consideration of random pure states for individual protons, and how these pure states are correctly combined when the density matrix is formulated. Both the lattice and the spins are treated quantum mechanically. Such treatment incorporates both the processes of spin-spin and (finite temperature) spin-lattice relaxation. Our results reveal the intimate connections between spin noise and conventional spin relaxation.
Energy Technology Data Exchange (ETDEWEB)
Follin, Sven [SF GeoLogic AB, Stockholm (Sweden); Svensson, Urban [Computer-aided Fluid Engineering AB, Norrkoeping (Sweden)
2002-05-01
The deduced Site Descriptive Model of the Laxemar area has been parameterised from a hydraulic point of view and subsequently put into practice in terms of a numerical flow model. The intention of the subproject has been to explore the adaptation of a numerical flow model to site-specific surface and borehole data, and to identify potential needs for development and improvement in the planned modelling methodology and tools. The experiences made during this process and the outcome of the simulations have been presented to the methodology test project group in course of the project. The discussion and conclusions made in this particular report concern two issues mainly, (i) the use of numerical simulations as a means of gaining creditability, e.g. discrimination between alternative geological models, and (ii) calibration and conditioning of probabilistic (Monte Carlo) realisations.
2016-01-01
Over recent years, several alternative relaxed clock models have been proposed in the context of Bayesian dating. These models fall in two distinct categories: uncorrelated and autocorrelated across branches. The choice between these two classes of relaxed clocks is still an open question. More fundamentally, the true process of rate variation may have both long-term trends and short-term fluctuations, suggesting that more sophisticated clock models unfolding over multiple time scales should ultimately be developed. Here, a mixed relaxed clock model is introduced, which can be mechanistically interpreted as a rate variation process undergoing short-term fluctuations on the top of Brownian long-term trends. Statistically, this mixed clock represents an alternative solution to the problem of choosing between autocorrelated and uncorrelated relaxed clocks, by proposing instead to combine their respective merits. Fitting this model on a dataset of 105 placental mammals, using both node-dating and tip-dating approaches, suggests that the two pure clocks, Brownian and white noise, are rejected in favour of a mixed model with approximately equal contributions for its uncorrelated and autocorrelated components. The tip-dating analysis is particularly sensitive to the choice of the relaxed clock model. In this context, the classical pure Brownian relaxed clock appears to be overly rigid, leading to biases in divergence time estimation. By contrast, the use of a mixed clock leads to more recent and more reasonable estimates for the crown ages of placental orders and superorders. Altogether, the mixed clock introduced here represents a first step towards empirically more adequate models of the patterns of rate variation across phylogenetic trees. This article is part of the themed issue ‘Dating species divergences using rocks and clocks’. PMID:27325829
LAVENDER AROMATERAPHY AS A RELAXANT
Directory of Open Access Journals (Sweden)
IGA Prima Dewi AP
2013-02-01
Full Text Available Aromatherapy is a kind of treatment that used aroma with aromatherapy essential oil. Extraction process from essential oil generally doing in three methods, there are distilling with water (boiled, distilling with water and steam, and distilling with steam. One of the most favorite aroma is lavender. The main content from lavender is linalyl acetate and linalool (C10H18O. Linalool is main active contents in lavender which can use for anti-anxiety (relaxation. Based on some research, the conclusion indicates that essential oil from lavender can give relaxation (carminative, sedative, reduce anxiety level and increasing mood.
Statistical mechanics of violent relaxation
Spergel, David N.; Hernquist, Lars
1992-01-01
We propose a functional that is extremized through violent relaxation. It is based on the Ansatz that the wave-particle scattering during violent dynamical processes can be approximated as a sequence of discrete scattering events that occur near a particle's perigalacticon. This functional has an extremum whose structure closely resembles that of spheroidal stellar systems such as elliptical galaxies. The results described here, therefore, provide a simple framework for understanding the physical nature of violent relaxation and support the view that galaxies are structured in accord with fundamental statistical principles.
Active optomechanics through relaxation oscillations
Princepe, Debora; Frateschi, Newton
2014-01-01
We propose an optomechanical laser based on III-V compounds which exhibits self-pulsation in the presence of a dissipative optomechanical coupling. In such a laser cavity, radiation pressure drives the mechanical degree of freedom and its back-action is caused by the mechanical modulation of the cavity loss rate. Our numerical analysis shows that even in a wideband gain material, such dissipative coupling couples the mechanical oscillation with the laser relaxation oscillations process. Laser self-pulsation is observed for mechanical frequencies below the laser relaxation oscillation frequency under sufficiently high optomechanical coupling factor.
Strain relaxation and self-organization phenomena in heteroepitaxial systems
DEFF Research Database (Denmark)
Shiryaev, Sergey Y; Hansen, J. Lundsgaard; Larsen, A. Nylandsted
1995-01-01
to 500 degrees C) temperatures, and examined at different length scales. We demonstrate that the strain relaxation in the thick metastable layers is an evolutionary propagative process, which is heterogenous from the very beginning and localized in narrow shear bands. It is shown that the relaxation......The plastic behavior of strained, compositionally graded Si1-xGex alloy layers grown on Si substrates has been studied by a combination of optical, atomic force, and transmission electron microscopy. Formation of ordered patterns of misfit dislocations has been found in films grown at low (similar...
Post-seismic stress relaxation with a linear transient rheology
Directory of Open Access Journals (Sweden)
Antonio Piersanti
2010-05-01
Full Text Available We performed an analysis of post-seismic stress relaxation, taking into account generalized linear rheologies. We compared the stress field (and its derived functions obtained with a classical Maxwell rheology with that obtained with a transient Burgers body. From a set of synthetic case studies, we have revealed quantitative and qualitative differences both in relaxation times and in local stress values when a transient rheology is introduced. As a practical application, we modeled the time evolution of the Coulomb failure function following the 2009 L'Aquila earthquake, and we show that a transient rheology can lead to non-monotonic time dependence.
Liao, Fuyuan; O'Brien, William D.; Jan, Yih-Kuen
2013-10-01
The objective of this study was to investigate the effects of local heating on the complexity of skin blood flow oscillations (BFO) under prolonged surface pressure in rats. Eleven Sprague-Dawley rats were studied: 7 rats underwent surface pressure with local heating (△t=10 °C) and 4 rats underwent pressure without heating. A pressure of 700 mmHg was applied to the right trochanter area of rats for 3 h. Skin blood flow was measured using laser Doppler flowmetry. The loading period was divided into nonoverlapping 30 min epochs. For each epoch, multifractal detrended fluctuation analysis (MDFA) was utilized to compute DFA coefficients and complexity of endothelial related metabolic, neurogenic, and myogenic frequencies of BFO. The results showed that under surface pressure, local heating led to a significant decrease in DFA coefficients of myogenic frequency during the initial epoch of loading period, a sustained decrease in complexity of myogenic frequency, and a significantly higher degree of complexity of metabolic frequency during the later phase of loading period. Surrogate tests showed that the reduction in complexity of myogenic frequency was associated with a loss of nonlinearity whereas increased complexity of metabolic frequency was associated with enhanced nonlinearity. Our results indicate that increased metabolic activity and decreased myogenic response due to local heating manifest themselves not only in magnitudes of metabolic and myogenic frequencies but also in their structural complexity. This study demonstrates the feasibility of using complexity analysis of BFO to monitor the ischemic status of weight-bearing skin and risk of pressure ulcers.
Young, D. L.; Tsai, C. H.; Wu, C. S.
2015-11-01
An alternative vector potential formulation is used to solve the Navier-Stokes (N-S) equations in 3D incompressible viscous flow problems with and without through-flow boundaries. Difficulties of the vector potential formulation include the implementation of boundary conditions for through-flow boundaries and the numerical treatment of fourth-order partial differential equations. The advantages on the other hand are the automatic satisfaction of the continuity equation; and pressure is decoupled from the velocity. The objective of this paper is to introduce the appropriate gauge and boundary conditions on the vector potential formulation by a localized meshless method. To handle the divergence-free property, a Coulomb gauge condition is enforced on the vector potential to ensure its existence and uniqueness mathematically. We further improve the algorithm to through-flow problems for the boundary conditions of vector potential by introducing the concept of Stokes' theorem. Based on this innovation, there is no need to include an additional variable to tackle the through-flow fields. This process will greatly simplify the imposition of boundary conditions by the vector potential approach. Under certain conditions, the coupled fourth-order partial differential equations can be easily solved by using this meshless local differential quadrature (LDQ) method. Due to the LDQ capability to deal with the high order differential equations, this algorithm is very attractive to solve this fourth-order vector potential formulation for the N-S equations as comparing to the conventional numerical schemes such as finite element or finite difference methods. The proposed vector potential formulation is simpler and has improved accuracy and efficiency compared to other pressure-free or pressure-coupled algorithms. This investigation can be regarded as the first complete study to obtain the N-S solutions by vector potential formulation through a LDQ method. Two classic 3D benchmark