WorldWideScience

Sample records for local effect model

  1. Antiferromagnetic Ising model decorated with D-vector spins: Transversal and longitudinal local fields effects

    International Nuclear Information System (INIS)

    Vasconcelos Dos Santos, R.J.; Coutinho, S.

    1995-01-01

    The effect of a local field acting on decorating classical D-vector bond spins of an antiferromagnetic Ising model on the square lattice is studied for both the annealed isotropic and the axial decorated cases. In both models the effect on the phase diagrams of the transversal and the longitudinal components of the local field acting on the decorating spins are fully analyzed and discussed

  2. A Bayesian localized conditional autoregressive model for estimating the health effects of air pollution.

    Science.gov (United States)

    Lee, Duncan; Rushworth, Alastair; Sahu, Sujit K

    2014-06-01

    Estimation of the long-term health effects of air pollution is a challenging task, especially when modeling spatial small-area disease incidence data in an ecological study design. The challenge comes from the unobserved underlying spatial autocorrelation structure in these data, which is accounted for using random effects modeled by a globally smooth conditional autoregressive model. These smooth random effects confound the effects of air pollution, which are also globally smooth. To avoid this collinearity a Bayesian localized conditional autoregressive model is developed for the random effects. This localized model is flexible spatially, in the sense that it is not only able to model areas of spatial smoothness, but also it is able to capture step changes in the random effects surface. This methodological development allows us to improve the estimation performance of the covariate effects, compared to using traditional conditional auto-regressive models. These results are established using a simulation study, and are then illustrated with our motivating study on air pollution and respiratory ill health in Greater Glasgow, Scotland in 2011. The model shows substantial health effects of particulate matter air pollution and nitrogen dioxide, whose effects have been consistently attenuated by the currently available globally smooth models. © 2014, The Authors Biometrics published by Wiley Periodicals, Inc. on behalf of International Biometric Society.

  3. Gauging Non-local Quark Models

    International Nuclear Information System (INIS)

    Broniowski, W.

    1999-09-01

    The gauge effective quark model with non-local interactions is considered. It is shown how this approach regularize the theory in such a way that the anomalies are preserved and charges are properly quantized. With non-local interactions the effective action is finite to all orders in the loop expansion and there is no need to introduce the quark momentum cut-off parameter

  4. Efficient Iris Localization via Optimization Model

    Directory of Open Access Journals (Sweden)

    Qi Wang

    2017-01-01

    Full Text Available Iris localization is one of the most important processes in iris recognition. Because of different kinds of noises in iris image, the localization result may be wrong. Besides this, localization process is time-consuming. To solve these problems, this paper develops an efficient iris localization algorithm via optimization model. Firstly, the localization problem is modeled by an optimization model. Then SIFT feature is selected to represent the characteristic information of iris outer boundary and eyelid for localization. And SDM (Supervised Descent Method algorithm is employed to solve the final points of outer boundary and eyelids. Finally, IRLS (Iterative Reweighted Least-Square is used to obtain the parameters of outer boundary and upper and lower eyelids. Experimental result indicates that the proposed algorithm is efficient and effective.

  5. Size effects and strain localization in atomic-scale cleavage modeling

    International Nuclear Information System (INIS)

    Elsner, B A M; Müller, S

    2015-01-01

    In this work, we study the adhesion and decohesion of Cu(1 0 0) surfaces using density functional theory (DFT) calculations. An upper stress to surface decohesion is obtained via the universal binding energy relation (UBER), but the model is limited to rigid separation of bulk-terminated surfaces. When structural relaxations are included, an unphysical size effect arises if decohesion is considered to occur as soon as the strain energy equals the energy of the newly formed surfaces. We employ the nudged elastic band (NEB) method to show that this size effect is opposed by a size-dependency of the energy barriers involved in the transition. Further, we find that the transition occurs via a localization of bond strain in the vicinity of the cleavage plane, which resembles the strain localization at the tip of a sharp crack that is predicted by linear elastic fracture mechanics. (paper)

  6. Gauge threshold corrections for local string models

    International Nuclear Information System (INIS)

    Conlon, Joseph P.

    2009-01-01

    We study gauge threshold corrections for local brane models embedded in a large compact space. A large bulk volume gives important contributions to the Konishi and super-Weyl anomalies and the effective field theory analysis implies the unification scale should be enhanced in a model-independent way from M s to RM s . For local D3/D3 models this result is supported by the explicit string computations. In this case the scale RM s comes from the necessity of global cancellation of RR tadpoles sourced by the local model. We also study D3/D7 models and discuss discrepancies with the effective field theory analysis. We comment on phenomenological implications for gauge coupling unification and for the GUT scale.

  7. More about the comparison of local and non-local NN interaction models

    International Nuclear Information System (INIS)

    Amghar, A.; Desplanques, B.

    2003-01-01

    The effect of non-locality in the NN interaction with an off-energy shell character has been studied in the past in relation with the possibility that some models could be approximately phase-shifts equivalent. This work is extended to a non-locality implying terms that involve an anticommutator with the operator p 2 . It includes both scalar and tensor components. The most recent 'high accuracy' models are considered in the analysis. After studying the deuteron wave functions, electromagnetic properties of various models are compared with the idea that these ones differ by their non-locality but are equivalent up to a unitary transformation. It is found that the extra non-local tensor interaction considered in this work tends to re-enforce the role of the term considered in previous works, allowing one to explain almost completely the difference in the deuteron D-state probabilities evidenced by the comparison of the Bonn-QB and Paris models for instance. Conclusions for the effect of the non-local scalar interaction are not so clear. In many cases, it was found that these terms could explain part of the differences that the comparison of predictions for various models evidences but cases where they could not were also found. Some of these last ones have been analyzed in order to pointing out the origin of the failure

  8. Investigation of local load effect on damping characteristics of synchronous generator using transfer-function block-diagram model

    Directory of Open Access Journals (Sweden)

    Pichai Aree

    2005-07-01

    Full Text Available The transfer-function block-diagram model of single-machine infinite-bus power system has been a popular analytical tool amongst power engineers for explaining and assessing synchronous generator dynamic behaviors. In previous studies, the effects of local load together with damper circuit on generator damping have not yet been addressed because neither of them was integrated into this model. Since the model only accounts for the generator main field circuit, it may not always yield a realistic damping assessment due to lack of damper circuit representation. This paper presents an extended transfer-function block-diagram model, which includes one of the q-axis damper circuits as well as local load. This allows a more realistic investigation of the local load effect on the generator damping. The extended model is applied to assess thegenerator dynamic performance. The results show that the damping power components mostly derived from the q-axis damper and the field circuits can be improved according to the local load. The frequency response method is employed to carry out the fundamental analysis.

  9. Local lattice relaxations in random metallic alloys: Effective tetrahedron model and supercell approach

    DEFF Research Database (Denmark)

    Ruban, Andrei; Simak, S.I.; Shallcross, S.

    2003-01-01

    We present a simple effective tetrahedron model for local lattice relaxation effects in random metallic alloys on simple primitive lattices. A comparison with direct ab initio calculations for supercells representing random Ni0.50Pt0.50 and Cu0.25Au0.75 alloys as well as the dilute limit of Au-ri......-rich CuAu alloys shows that the model yields a quantitatively accurate description of the relaxtion energies in these systems. Finally, we discuss the bond length distribution in random alloys....

  10. Macroscopic local-field effects on photoabsorption processes

    International Nuclear Information System (INIS)

    Ma Xiaoguang; Gong Yubing; Wang Meishan; Wang Dehua

    2008-01-01

    The influence of the local-field effect on the photoabsorption cross sections of the atoms which are embedded in the macroscopic medium has been studied by a set of alternative expressions in detail. Some notes on the validity of some different local-field models used to study the photoabsorption cross sections of atoms in condensed matter have been given for the first time. Our results indicate that the local fields can have substantial and different influence on the photoabsorption cross section of atoms in condensed matter for different models. Clausius-Mossotti model and Onsager model have proved to be more reasonable to describe the local field in gas, liquid, or even some simple solid, while Glauber-Lewenstein model probably is wrong in these conditions except for the ideal gas. A procedure which can avoid the errors introduced by Kramers-Kronig transformation has been implemented in this work. This procedure can guarantee that the theoretical studies on the local field effects will not be influenced by the integral instability of the Kramers-Kronig transformation

  11. A local effect model-based interpolation framework for experimental nanoparticle radiosensitisation data

    OpenAIRE

    Brown, Jeremy M. C.; Currell, Fred J.

    2017-01-01

    A local effect model (LEM)-based framework capable of interpolating nanoparticle-enhanced photon-irradiated clonogenic cell survival fraction measurements as a function of nanoparticle concentration was developed and experimentally benchmarked for gold nanoparticle (AuNP)-doped bovine aortic endothelial cells (BAECs) under superficial kilovoltage X-ray irradiation. For three different superficial kilovoltage X-ray spectra, the BAEC survival fraction response was predicted for two different Au...

  12. Modeling Local Monetary Flows in Poor Regions: A Research Setup to Simulate the Multiplier Effect in Local Economies

    Directory of Open Access Journals (Sweden)

    Henk van Arkel

    2007-10-01

    Full Text Available In poor regions, lack of local monetary circulation is one of the key elements causing underdevelopment. The more incoming money is passed from hand to hand, the more the local economy will be stimulated. However, in most poor areas money is spent outside the community before circulating locally, reducing the effectiveness of money inflow dramatically.Development programs would increase their effectiveness if knowledge was available on how spending money could lead to optimized and prolonged local circulation. To gain this knowledge a simulation tool will be created, which is able to analyze financial flows, to evaluate the potency of specific actions aimed on local development, and to monitor a development scheme during the execution phase.The basic model will be developed through a multi-agent approach, where each agent represents one (or more family/households belonging to one of several socio-economic groups. A Social Accounting Matrix (SAM of the local economy will be used as a basis to set up a spendings matrix for each agent, defining its spending priorities. Artificial Intelligence techniques will be used to give the agent the possibility to make decisions on how to satisfy these spending priorities. Also, social dynamics, the simulation of strategic planning behavior, learning, and exchange in limited networks will be addressed.The simulation application will consist of a common user interface allowing the user to “play” the simulation. This user interface layer will be “pluggable” with the underlying programming layer responsible for the calculations on the simulation, so that different plug-ins may be used for different simulation techniques.

  13. Non-local model analysis of heat pulse propagation

    International Nuclear Information System (INIS)

    Iwasaki, Takuya; Itoh, Sanae-I.; Yagi, Masatoshi

    1998-01-01

    A new theoretical model equation which includes the non-local effect in the heat flux is proposed to study the transient transport phenomena. A non-local heat flux, which is expressed in terms of the integral equation, is superimposed on the conventional form of the heat flux. This model is applied to describe the experimental results from the power switching [Stroth U, et al 1996 Plasma Phys. Control. Fusion 38 1087] and the power modulation experiments [Giannone L, et al 1992 Nucl. Fusion 32 1985] in the W7-AS stellarator. A small fraction of non-local component in the heat flux is found to be very effective in modifying the response against an external modulation. The transient feature of the transport property, which are observed in the response of heat pulse propagation, are qualitatively reproduced by the transport simulations based on this model. A possibility is discussed to determine the correlation length of the non-local effect experimentally by use of the results of transport simulations. (author)

  14. Estimation and prediction under local volatility jump-diffusion model

    Science.gov (United States)

    Kim, Namhyoung; Lee, Younhee

    2018-02-01

    Volatility is an important factor in operating a company and managing risk. In the portfolio optimization and risk hedging using the option, the value of the option is evaluated using the volatility model. Various attempts have been made to predict option value. Recent studies have shown that stochastic volatility models and jump-diffusion models reflect stock price movements accurately. However, these models have practical limitations. Combining them with the local volatility model, which is widely used among practitioners, may lead to better performance. In this study, we propose a more effective and efficient method of estimating option prices by combining the local volatility model with the jump-diffusion model and apply it using both artificial and actual market data to evaluate its performance. The calibration process for estimating the jump parameters and local volatility surfaces is divided into three stages. We apply the local volatility model, stochastic volatility model, and local volatility jump-diffusion model estimated by the proposed method to KOSPI 200 index option pricing. The proposed method displays good estimation and prediction performance.

  15. Relativistic effects in local inertial frames including PPN effects

    International Nuclear Information System (INIS)

    Shahid-Saless, B.

    1986-01-01

    In this dissertation they use the concept of a generalized Fermi frame to describe the relativistic effects on a body placed in a local inertial frame of reference due to local and distant sources of gravitation. They have considered, in particular, a model, consisted of two spherically symmetric gravitating sources, moving in circular orbits around a common barycenter where one of the bodies is chosen to be the local and the other the distant one. This has been done in the Parametrized-Post-Newtonian formalism using the slow motion, weak field approximation. The PPN parameters used are γ, β, zeta 1 and zeta 2 . They show that the main relativistic effect on a local satellite is described by the Schwarzchild field of the local body and the nonlinear term corresponding to the self-interaction of the local source itself. There are also much smaller terms that are proportional to the product of the potentials of local and distant bodies and distant body's self interactions. The spatial axis of the local frame undergoes Geodetic precession. Effects involving the parameters zeta 1 and zeta 2 seem to be slightly too small to be observable at the present time. In addition they have found accelerations that vanish in the general relativity limit

  16. Assessing Local Model Adequacy in Bayesian Hierarchical Models Using the Partitioned Deviance Information Criterion

    Science.gov (United States)

    Wheeler, David C.; Hickson, DeMarc A.; Waller, Lance A.

    2010-01-01

    Many diagnostic tools and goodness-of-fit measures, such as the Akaike information criterion (AIC) and the Bayesian deviance information criterion (DIC), are available to evaluate the overall adequacy of linear regression models. In addition, visually assessing adequacy in models has become an essential part of any regression analysis. In this paper, we focus on a spatial consideration of the local DIC measure for model selection and goodness-of-fit evaluation. We use a partitioning of the DIC into the local DIC, leverage, and deviance residuals to assess local model fit and influence for both individual observations and groups of observations in a Bayesian framework. We use visualization of the local DIC and differences in local DIC between models to assist in model selection and to visualize the global and local impacts of adding covariates or model parameters. We demonstrate the utility of the local DIC in assessing model adequacy using HIV prevalence data from pregnant women in the Butare province of Rwanda during 1989-1993 using a range of linear model specifications, from global effects only to spatially varying coefficient models, and a set of covariates related to sexual behavior. Results of applying the diagnostic visualization approach include more refined model selection and greater understanding of the models as applied to the data. PMID:21243121

  17. The physical and radiobiological basis of the Local Effect Model (LEM) A response to the commentary by R. Katz

    CERN Document Server

    Scholz, M; The Physics of Quantum Electronics

    2004-01-01

    The physical and biological basis of our model to calculate the biological effects of charged particles, termed local effect model (LEM), has been recently questioned in a commentary by R. Katz. Major objections were related to the definition of the target size and the use of the term cross section. Here we show that the objections raised against our approach are unjustified and largely based on serious misunderstandings of the conceptual basis of the local effect model. Furthermore, we show that the approach developed by Katz and coworkers itself suffers from exactly those deficiencies, for which Katz criticises our model. The essential conceptual differences between the two models are discussed by means of some illustrative examples, based on a comparison with experimental data. For these examples, the predictions of the LEM model are fully consistent with the experimental data. Contrarily, e.g. for very heavy ions there are significant discrepancies observed for the Katz approach. These discrepancies can b...

  18. Response-surface models for deterministic effects of localized irradiation of the skin by discrete {beta}/{gamma} -emitting sources

    Energy Technology Data Exchange (ETDEWEB)

    Scott, B.R.

    1995-12-01

    Individuals who work at nuclear reactor facilities can be at risk for deterministic effects in the skin from exposure to discrete {Beta}- and {gamma}-emitting ({Beta}{gamma}E) sources (e.g., {Beta}{gamma}E hot particles) on the skin or clothing. Deterministic effects are non-cancer effects that have a threshold and increase in severity as dose increases (e.g., ulcer in skin). Hot {Beta}{gamma}E particles are {sup 60}Co- or nuclear fuel-derived particles with diameters > 10 {mu}m and < 3 mm and contain at least 3.7 kBq (0.1 {mu}Ci) of radioactivity. For such {Beta}{gamma}E sources on the skin, it is the beta component of the dose that is most important. To develop exposure limitation systems that adequately control exposure of workers to discrete {Beta}{gamma}E sources, models are needed for systems that adequately control exposure of workers to discrete {Beta}{gamma}E sources, models are needed for evaluating the risk of deterministic effects of localized {Beta} irradiation of the skin. The purpose of this study was to develop dose-rate and irradiated-area dependent, response-surface models for evaluating risks of significant deterministic effects of localized irradiation of the skin by discrete {Beta}{gamma}E sources and to use modeling results to recommend approaches to limiting occupational exposure to such sources. The significance of the research results as follows: (1) response-surface models are now available for evaluating the risk of specific deterministic effects of localized irradiation of the skin; (2) modeling results have been used to recommend approaches to limiting occupational exposure of workers to {Beta} radiation from {Beta}{gamma}E sources on the skin or on clothing; and (3) the generic irradiated-volume, weighting-factor approach to limiting exposure can be applied to other organs including the eye, the ear, and organs of the respiratory or gastrointestinal tract and can be used for both deterministic and stochastic effects.

  19. Response-surface models for deterministic effects of localized irradiation of the skin by discrete β/γ -emitting sources

    International Nuclear Information System (INIS)

    Scott, B.R.

    1995-01-01

    Individuals who work at nuclear reactor facilities can be at risk for deterministic effects in the skin from exposure to discrete Β- and γ-emitting (ΒγE) sources (e.g., ΒγE hot particles) on the skin or clothing. Deterministic effects are non-cancer effects that have a threshold and increase in severity as dose increases (e.g., ulcer in skin). Hot ΒγE particles are 60 Co- or nuclear fuel-derived particles with diameters > 10 μm and < 3 mm and contain at least 3.7 kBq (0.1 μCi) of radioactivity. For such ΒγE sources on the skin, it is the beta component of the dose that is most important. To develop exposure limitation systems that adequately control exposure of workers to discrete ΒγE sources, models are needed for systems that adequately control exposure of workers to discrete ΒγE sources, models are needed for evaluating the risk of deterministic effects of localized Β irradiation of the skin. The purpose of this study was to develop dose-rate and irradiated-area dependent, response-surface models for evaluating risks of significant deterministic effects of localized irradiation of the skin by discrete ΒγE sources and to use modeling results to recommend approaches to limiting occupational exposure to such sources. The significance of the research results as follows: (1) response-surface models are now available for evaluating the risk of specific deterministic effects of localized irradiation of the skin; (2) modeling results have been used to recommend approaches to limiting occupational exposure of workers to Β radiation from ΒγE sources on the skin or on clothing; and (3) the generic irradiated-volume, weighting-factor approach to limiting exposure can be applied to other organs including the eye, the ear, and organs of the respiratory or gastrointestinal tract and can be used for both deterministic and stochastic effects

  20. A NEW COMBINED LOCAL AND NON-LOCAL PBL MODEL FOR METEOROLOGY AND AIR QUALITY MODELING

    Science.gov (United States)

    A new version of the Asymmetric Convective Model (ACM) has been developed to describe sub-grid vertical turbulent transport in both meteorology models and air quality models. The new version (ACM2) combines the non-local convective mixing of the original ACM with local eddy diff...

  1. Local business models for district heat production; Kaukolaemmoen paikalliset liiketoimintamallit

    Energy Technology Data Exchange (ETDEWEB)

    Hakala, L.; Pesola, A.; Vanhanen, J.

    2012-12-15

    Local district heating business, outside large urban centers, is a profitable business in Finland, which can be practiced with several different business models. In addition to the traditional, local district heating business, local district heat production can be also based on franchising business model, on integrated service model or on different types of cooperation models, either between a local district heat producer and industrial site providing surplus heat or between a local district heat producer and a larger district heating company. Locally available wood energy is currently utilized effectively in the traditional district heating business model, in which a local entrepreneur produces heat to consumers in the local area. The franchising model is a more advanced version of the traditional district heating entrepreneurship. In this model, franchisor funds part of the investments, as well as offers centralized maintenance and fuel supply, for example. In the integrated service model, the local district heat producer offers also energy efficiency services and other value-added services, which are based on either the local district heat suppliers or his partner's expertise. In the cooperation model with industrial site, the local district heating business is based on the utilization of the surplus heat from the industrial site. In some cases, profitable operating model approach may be a district heating company outsourcing operations of one or more heating plants to a local entrepreneur. It can be concluded that all business models for district heat production (traditional district heat business model, franchising, integrated service model, cooperative model) discussed in this report can be profitable in Finnish conditions, as well for the local heat producer as for the municipality - and, above all, they produce cost-competitive heat for the end-user. All the models were seen as viable and interesting and having possibilities for expansion Finland

  2. Inference for local autocorrelations in locally stationary models.

    Science.gov (United States)

    Zhao, Zhibiao

    2015-04-01

    For non-stationary processes, the time-varying correlation structure provides useful insights into the underlying model dynamics. We study estimation and inferences for local autocorrelation process in locally stationary time series. Our constructed simultaneous confidence band can be used to address important hypothesis testing problems, such as whether the local autocorrelation process is indeed time-varying and whether the local autocorrelation is zero. In particular, our result provides an important generalization of the R function acf() to locally stationary Gaussian processes. Simulation studies and two empirical applications are developed. For the global temperature series, we find that the local autocorrelations are time-varying and have a "V" shape during 1910-1960. For the S&P 500 index, we conclude that the returns satisfy the efficient-market hypothesis whereas the magnitudes of returns show significant local autocorrelations.

  3. Coupling of nonlocal and local continuum models by the Arlequinapproach

    KAUST Repository

    Han, Fei

    2011-08-09

    The objective of this work is to develop and apply the Arlequin framework to couple nonlocal and local continuum mechanical models. A mechanically-based model of nonlocal elasticity, which involves both contact and long-range forces, is used for the \\'fine scale\\' description in which nonlocal interactions are considered to have non-negligible effects. Classical continuum mechanics only involving local contact forces is introduced for the rest of the structure where these nonlocal effects can be neglected. Both models overlap in a coupling subdomain called the \\'gluing area\\' in which the total energy is separated into nonlocal and local contributions by complementary weight functions. A weak compatibility is ensured between kinematics of both models using Lagrange multipliers over the gluing area. The discrete formulation of this specific Arlequin coupling framework is derived and fully described. The validity and limits of the technique are demonstrated through two-dimensional numerical applications and results are compared against those of the fully nonlocal elasticity method. © 2011 John Wiley & Sons, Ltd.

  4. Empowering Effective STEM Role Models to Promote STEM Equity in Local Communities

    Science.gov (United States)

    Harte, T.; Taylor, J.

    2017-12-01

    Empowering Effective STEM Role Models, a three-hour training developed and successfully implemented by NASA Langley Research Center's Science Directorate, is an effort to encourage STEM professionals to serve as role models within their community. The training is designed to help participants reflect on their identity as a role model and provide research-based strategies to effectively engage youth, particularly girls, in STEM (science, technology, engineering, and mathematics). Research shows that even though girls and boys do not demonstrate a significant difference in their ability to be successful in mathematics and science, there is a significant difference in their confidence level when participating in STEM subject matter and pursuing STEM careers. The Langley training model prepares professionals to disrupt this pattern and take on the habits and skills of effective role models. The training model is based on other successful models and resources for role modeling in STEM including SciGirls; the National Girls Collaborative; and publications by the American Association of University Women and the National Academies. It includes a significant reflection component, and participants walk through situation-based scenarios to practice a focused suite of research-based strategies. These strategies can be implemented in a variety of situations and adapted to the needs of groups that are underrepresented in STEM fields. Underpinning the training and the discussions is the fostering of a growth mindset and promoting perseverance. "The Power of Yet" becomes a means whereby role models encourage students to believe in themselves, working toward reaching their goals and dreams in the area of STEM. To provide additional support, NASA Langley role model trainers are available to work with a champion at other organizations to facilitate the training. This champion helps recruit participants, seeks leadership buy-in, and helps provide valuable insights for needs and

  5. Local and Global Function Model of the Liver

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hesheng, E-mail: hesheng@umich.edu [Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan (United States); Feng, Mary [Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan (United States); Jackson, Andrew [Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Ten Haken, Randall K.; Lawrence, Theodore S. [Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan (United States); Cao, Yue [Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan (United States); Department of Radiology, University of Michigan, Ann Arbor, Michigan (United States); Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan (United States)

    2016-01-01

    Purpose: To develop a local and global function model in the liver based on regional and organ function measurements to support individualized adaptive radiation therapy (RT). Methods and Materials: A local and global model for liver function was developed to include both functional volume and the effect of functional variation of subunits. Adopting the assumption of parallel architecture in the liver, the global function was composed of a sum of local function probabilities of subunits, varying between 0 and 1. The model was fit to 59 datasets of liver regional and organ function measures from 23 patients obtained before, during, and 1 month after RT. The local function probabilities of subunits were modeled by a sigmoid function in relating to MRI-derived portal venous perfusion values. The global function was fitted to a logarithm of an indocyanine green retention rate at 15 minutes (an overall liver function measure). Cross-validation was performed by leave-m-out tests. The model was further evaluated by fitting to the data divided according to whether the patients had hepatocellular carcinoma (HCC) or not. Results: The liver function model showed that (1) a perfusion value of 68.6 mL/(100 g · min) yielded a local function probability of 0.5; (2) the probability reached 0.9 at a perfusion value of 98 mL/(100 g · min); and (3) at a probability of 0.03 [corresponding perfusion of 38 mL/(100 g · min)] or lower, the contribution to global function was lost. Cross-validations showed that the model parameters were stable. The model fitted to the data from the patients with HCC indicated that the same amount of portal venous perfusion was translated into less local function probability than in the patients with non-HCC tumors. Conclusions: The developed liver function model could provide a means to better assess individual and regional dose-responses of hepatic functions, and provide guidance for individualized treatment planning of RT.

  6. Assessment of Constraint Effects based on Local Approach

    International Nuclear Information System (INIS)

    Lee, Tae Rin; Chang, Yoon Suk; Choi, Jae Boong; Seok, Chang Sung; Kim, Young Jin

    2005-01-01

    Traditional fracture mechanics has been used to ensure a structural integrity, in which the geometry independence is assumed in crack tip deformation and fracture toughness. However, the assumption is applicable only within limited conditions. To address fracture covering a broad range of loading and crack geometries, two-parameter global approach and local approach have been proposed. The two-parameter global approach can quantify the load and crack geometry effects by adopting T-stress or Q-parameter but time-consuming and expensive since lots of experiments and finite element (FE) analyses are necessary. On the other hand, the local approach evaluates the load and crack geometry effects based on damage model. Once material specific fitting constants are determined from a few experiments and FE analyses, the fracture resistance characteristics can be obtained by numerical simulation. The purpose of this paper is to investigate constraint effects for compact tension (CT) specimens with different in-plane or out-of-plane size using local approach. Both modified GTN model and Rousselier model are adopted to examine the ductile fracture behavior of SA515 Gr.60 carbon steel at high temperature. The fracture resistance (J-R) curves are estimated through numerical analysis, compared with corresponding experimental results and, then, crack length, thickness and side-groove effects are evaluated

  7. A non-local shell model of hydrodynamic and magnetohydrodynamic turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Plunian, F [Laboratoire de Geophysique Interne et Tectonophysique, CNRS, Universite Joseph Fourier, Maison des Geosciences, BP 53, 38041 Grenoble Cedex 9 (France); Stepanov, R [Institute of Continuous Media Mechanics, Korolyov 1, 614013 Perm (Russian Federation)

    2007-08-15

    We derive a new shell model of magnetohydrodynamic (MHD) turbulence in which the energy transfers are not necessarily local. Like the original MHD equations, the model conserves the total energy, magnetic helicity, cross-helicity and volume in phase space (Liouville's theorem) apart from the effects of external forcing, viscous dissipation and magnetic diffusion. The model of hydrodynamic (HD) turbulence is derived from the MHD model setting the magnetic field to zero. In that case the conserved quantities are the kinetic energy and the kinetic helicity. In addition to a statistically stationary state with a Kolmogorov spectrum, the HD model exhibits multiscaling. The anomalous scaling exponents are found to depend on a free parameter {alpha} that measures the non-locality degree of the model. In freely decaying turbulence, the infra-red spectrum also depends on {alpha}. Comparison with theory suggests using {alpha} = -5/2. In MHD turbulence, we investigate the fully developed turbulent dynamo for a wide range of magnetic Prandtl numbers in both kinematic and dynamic cases. Both local and non-local energy transfers are clearly identified.

  8. Modelling of ductile and cleavage fracture by local approach

    International Nuclear Information System (INIS)

    Samal, M.K.; Dutta, B.K.; Kushwaha, H.S.

    2000-08-01

    This report describes the modelling of ductile and cleavage fracture processes by local approach. It is now well known that the conventional fracture mechanics method based on single parameter criteria is not adequate to model the fracture processes. It is because of the existence of effect of size and geometry of flaw, loading type and rate on the fracture resistance behaviour of any structure. Hence, it is questionable to use same fracture resistance curves as determined from standard tests in the analysis of real life components because of existence of all the above effects. So, there is need to have a method in which the parameters used for the analysis will be true material properties, i.e. independent of geometry and size. One of the solutions to the above problem is the use of local approaches. These approaches have been extensively studied and applied to different materials (including SA33 Gr.6) in this report. Each method has been studied and reported in a separate section. This report has been divided into five sections. Section-I gives a brief review of the fundamentals of fracture process. Section-II deals with modelling of ductile fracture by locally uncoupled type of models. In this section, the critical cavity growth parameters of the different models have been determined for the primary heat transport (PHT) piping material of Indian pressurised heavy water reactor (PHWR). A comparative study has been done among different models. The dependency of the critical parameters on stress triaxiality factor has also been studied. It is observed that Rice and Tracey's model is the most suitable one. But, its parameters are not fully independent of triaxiality factor. For this purpose, a modification to Rice and Tracery's model is suggested in Section-III. Section-IV deals with modelling of ductile fracture process by locally coupled type of models. Section-V deals with the modelling of cleavage fracture process by Beremins model, which is based on Weibulls

  9. Local models of astrophysical discs

    Science.gov (United States)

    Latter, Henrik N.; Papaloizou, John

    2017-12-01

    Local models of gaseous accretion discs have been successfully employed for decades to describe an assortment of small-scale phenomena, from instabilities and turbulence, to dust dynamics and planet formation. For the most part, they have been derived in a physically motivated but essentially ad hoc fashion, with some of the mathematical assumptions never made explicit nor checked for consistency. This approach is susceptible to error, and it is easy to derive local models that support spurious instabilities or fail to conserve key quantities. In this paper we present rigorous derivations, based on an asympototic ordering, and formulate a hierarchy of local models (incompressible, Boussinesq and compressible), making clear which is best suited for a particular flow or phenomenon, while spelling out explicitly the assumptions and approximations of each. We also discuss the merits of the anelastic approximation, emphasizing that anelastic systems struggle to conserve energy unless strong restrictions are imposed on the flow. The problems encountered by the anelastic approximation are exacerbated by the disc's differential rotation, but also attend non-rotating systems such as stellar interiors. We conclude with a defence of local models and their continued utility in astrophysical research.

  10. Local heterogeneity effects on small-sample worths

    International Nuclear Information System (INIS)

    Schaefer, R.W.

    1986-01-01

    One of the parameters usually measured in a fast reactor critical assembly is the reactivity associated with inserting a small sample of a material into the core (sample worth). Local heterogeneities introduced by the worth measurement techniques can have a significant effect on the sample worth. Unfortunately, the capability is lacking to model some of the heterogeneity effects associated with the experimental technique traditionally used at ANL (the radial tube technique). It has been suggested that these effects could account for a large portion of what remains of the longstanding central worth discrepancy. The purpose of this paper is to describe a large body of experimental data - most of which has never been reported - that shows the effect of radial tube-related local heterogeneities

  11. Integration of anatomical and external response mappings explains crossing effects in tactile localization: A probabilistic modeling approach.

    Science.gov (United States)

    Badde, Stephanie; Heed, Tobias; Röder, Brigitte

    2016-04-01

    To act upon a tactile stimulus its original skin-based, anatomical spatial code has to be transformed into an external, posture-dependent reference frame, a process known as tactile remapping. When the limbs are crossed, anatomical and external location codes are in conflict, leading to a decline in tactile localization accuracy. It is unknown whether this impairment originates from the integration of the resulting external localization response with the original, anatomical one or from a failure of tactile remapping in crossed postures. We fitted probabilistic models based on these diverging accounts to the data from three tactile localization experiments. Hand crossing disturbed tactile left-right location choices in all experiments. Furthermore, the size of these crossing effects was modulated by stimulus configuration and task instructions. The best model accounted for these results by integration of the external response mapping with the original, anatomical one, while applying identical integration weights for uncrossed and crossed postures. Thus, the model explained the data without assuming failures of remapping. Moreover, performance differences across tasks were accounted for by non-individual parameter adjustments, indicating that individual participants' task adaptation results from one common functional mechanism. These results suggest that remapping is an automatic and accurate process, and that the observed localization impairments in touch result from a cognitively controlled integration process that combines anatomically and externally coded responses.

  12. Assimilation of global versus local data sets into a regional model of the Gulf Stream system. 1. Data effectiveness

    Science.gov (United States)

    Malanotte-Rizzoli, Paola; Young, Roberta E.

    1995-12-01

    The primary objective of this paper is to assess the relative effectiveness of data sets with different space coverage and time resolution when they are assimilated into an ocean circulation model. We focus on obtaining realistic numerical simulations of the Gulf Stream system typically of the order of 3-month duration by constructing a "synthetic" ocean simultaneously consistent with the model dynamics and the observations. The model used is the Semispectral Primitive Equation Model. The data sets are the "global" Optimal Thermal Interpolation Scheme (OTIS) 3 of the Fleet Numerical Oceanography Center providing temperature and salinity fields with global coverage and with bi-weekly frequency, and the localized measurements, mostly of current velocities, from the central and eastern array moorings of the Synoptic Ocean Prediction (SYNOP) program, with daily frequency but with a very small spatial coverage. We use a suboptimal assimilation technique ("nudging"). Even though this technique has already been used in idealized data assimilation studies, to our knowledge this is the first study in which the effectiveness of nudging is tested by assimilating real observations of the interior temperature and salinity fields. This is also the first work in which a systematic assimilation is carried out of the localized, high-quality SYNOP data sets in numerical experiments longer than 1-2 weeks, that is, not aimed to forecasting. We assimilate (1) the global OTIS 3 alone, (2) the local SYNOP observations alone, and (3) both OTIS 3 and SYNOP observations. We assess the success of the assimilations with quantitative measures of performance, both on the global and local scale. The results can be summarized as follows. The intermittent assimilation of the global OTIS 3 is necessary to keep the model "on track" over 3-month simulations on the global scale. As OTIS 3 is assimilated at every model grid point, a "gentle" weight must be prescribed to it so as not to overconstrain

  13. The effect of local/topical analgesics on incisional pain in a pig model

    Directory of Open Access Journals (Sweden)

    Castel D

    2017-09-01

    Full Text Available David Castel,1 Itai Sabbag,2 Sigal Meilin3 1The Neufeld Cardiac Research Institute, Sheba Medical Centre, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, 2Lahav Research Institute, Kibutz Lahav, Negev, 3Neurology R&D Division, MD Biosciences, Nes-Ziona, Israel Abstract: Interest in the development of new topical/local drug administration for blocking pain at peripheral sites, with maximum drug activity and minimal systemic effects, is on the rise. In the review article by Kopsky and Stahl, four critical barriers in the process of research and development of topical analgesics were indicated. The active pharmaceutical ingredient (API and the formulation are among the major challenges. The road to the development of such drugs passes through preclinical studies. These studies, if planned correctly, should serve as guidance for choosing the right API and formulation. Although rodent models for pain continue to provide valuable data on the mechanisms driving pain, their use in developing topical and localized treatment approaches is limited for technical (intraplate injection area is small as well as mechanical reasons (non-similarity to human skin and innervation. It has been previously shown that pigs are comparable to humans in ways that make them a better choice for evaluating topical and local analgesics. The aim of this study was to summarize several experiments that used pigs for testing postoperative pain in an incisional pain model (skin incision [SI] and skin and muscle incision [SMI]. At the end of the surgery, the animals were treated with different doses of bupivacaine solution (Marcaine®, bupivacaine liposomal formulation (Exparel® or ropivacaine solution (Naropin. Von Frey testing demonstrated a decrease in the animals’ sensitivity to mechanical stimulation expressed as an increase in the withdrawal force following local treatment. These changes reflect the clinical condition in the level as well as in the duration of

  14. The Integrated Model of Sustainability Perspective in Spermatophyta Learning Based on Local Wisdom

    Science.gov (United States)

    Hartadiyati, E.; Rizqiyah, K.; Wiyanto; Rusilowati, A.; Prasetia, A. P. B.

    2017-09-01

    In present condition, culture is diminished, the change of social order toward the generation that has no policy and pro-sustainability; As well as the advancement of science and technology are often treated unwisely so as to excite local wisdom. It is therefore necessary to explore intra-curricular local wisdom in schools. This study aims to produce an integration model of sustainability perspectives based on local wisdom on spermatophyta material that is feasible and effective. This research uses define, design and develop stages to an integration model of sustainability perspectives based on local wisdom on spermatophyta material. The resulting product is an integration model of socio-cultural, economic and environmental sustainability perspective and formulated with preventive, preserve and build action on spermatophyta material consisting of identification and classification, metagenesis and the role of spermatophyta for human life. The integration model of sustainability perspective in learning spermatophyta based on local wisdom is considered proven to be effective in raising sustainability’s awareness of high school students.

  15. Modeling of plastic localization in aluminum and Al–Cu alloys under shock loading

    International Nuclear Information System (INIS)

    Krasnikov, V.S.; Mayer, A.E.

    2014-01-01

    This paper focuses on the modeling of plastic deformation localization in pure aluminum and aluminum–copper alloys during the propagation of a plane shock wave. Modeling is carried out with the use of continual dislocation plasticity model in 2-D geometry. It is shown that the formation of localization bands occurs at an angle of 45° to the direction of propagation of the shock front. Effective initiators for plastic localization in pure aluminum are the perturbations of the initial dislocation density, in the alloys – perturbations of the dislocation density and the concentration of copper atoms. Perturbations of temperature field in a range of tens of kelvins are not so effective for plastic localization. In the alloy plastic localization intensity decreases with an increase of strain rate due to the thermally activated nature of the dislocation motion

  16. Pengembangan Model Outdoor Learning melalui Project Berbasis Local Wisdom dalam Pembelajaran Fisika

    Directory of Open Access Journals (Sweden)

    Indah kurnia Putri Damayanti

    2017-12-01

    Full Text Available Abstrak Penelitian ini bertujuan untuk: (1 menghasilkan model outdoor learning melalui project berbasis local wisdom yang layak digunakan dalam pembelajaran fisika, (2 mengetahui keefektifan penggunaan model outdoor learning melalui project berbasis local wisdom. Penelitian pengembangan ini menggunakan metode pengembangan R & D (Research dan Development. Pada tahap Development, peneliti mengadopsi model 4D, yaitu Define, Design, Develop, dan Disseminate. Hasil penelitian menunjukkan bahwa model outdoor learning melalui project berbasis local wisdom yang dikembangkan layak digunakan dari segi produk pendukung pembelajaran yang memenuhi kriteria sangat tinggi menurut para ahli, praktis menurut guru dan peserta didik. Lembar observasi yang memenuhi kriteria valid dan reliabel berdasarkan hasil ICC dan tes hasil belajar yang memenuhi kriteria valid dan reliabel berdasarkan hasil Quest. Selain itu, model outdoor learning melalui project berbasis local wisdom lebih efektif digunakan dalam pembelajaran fisika dilihat dari hasil analisis multivariate dan GLMMDs yang memperoleh nilai signifikansi 0,000 dan MD yang tinggi.   AbstractThis research was aimed to: (1 produce outdoor learning via project based suitable local wisdom model used in physics learning, (2 know the effectiveness in using outdoor learning via project based local wisdom model. This developing research used a R & D method (Research and Development. On Development step, the researcher adopted 4D model, they were Define, Design, Develop, dan Dissemination. The results showed that the developed outdoor learning via project based local wisdom model was suitable to be used in terms of learning support product that was in very high category according expert, practical according teacher and students. In addition the observation sheet was in valid criteria and reliabel based on ICC and the learning outcome test was in valid criteria and reliabel based on Quest. Besides, outdoor learning via

  17. Analytical model for local scour prediction around hydrokinetic turbine foundations

    Science.gov (United States)

    Musa, M.; Heisel, M.; Hill, C.; Guala, M.

    2017-12-01

    Marine and Hydrokinetic renewable energy is an emerging sustainable and secure technology which produces clean energy harnessing water currents from mostly tidal and fluvial waterways. Hydrokinetic turbines are typically anchored at the bottom of the channel, which can be erodible or non-erodible. Recent experiments demonstrated the interactions between operating turbines and an erodible surface with sediment transport, resulting in a remarkable localized erosion-deposition pattern significantly larger than those observed by static in-river construction such as bridge piers, etc. Predicting local scour geometry at the base of hydrokinetic devices is extremely important during foundation design, installation, operation, and maintenance (IO&M), and long-term structural integrity. An analytical modeling framework is proposed applying the phenomenological theory of turbulence to the flow structures that promote the scouring process at the base of a turbine. The evolution of scour is directly linked to device operating conditions through the turbine drag force, which is inferred to locally dictate the energy dissipation rate in the scour region. The predictive model is validated using experimental data obtained at the University of Minnesota's St. Anthony Falls Laboratory (SAFL), covering two sediment mobility regimes (clear water and live bed), different turbine designs, hydraulic parameters, grain size distribution and bedform types. The model is applied to a potential prototype scale deployment in the lower Mississippi River, demonstrating its practical relevance and endorsing the feasibility of hydrokinetic energy power plants in large sandy rivers. Multi-turbine deployments are further studied experimentally by monitoring both local and non-local geomorphic effects introduced by a twelve turbine staggered array model installed in a wide channel at SAFL. Local scour behind each turbine is well captured by the theoretical predictive model. However, multi

  18. Local environment effects in disordered alloys

    International Nuclear Information System (INIS)

    Cable, J.W.

    1978-01-01

    The magnetic moment of an atom in a ferromagnetic disordered alloy depends on the local environment of that atom. This is particularly true for Ni and Pd based alloys for which neutron diffuse scattering measurements of the range and magnitude of the moment disturbances indicate that both magnetic and chemical environment are important in determining the moment distribution. In this paper we review recent neutron studies of local environment effects in Ni based alloys. These are discussed in terms of a phenomenological model that allows a separation of the total moment disturbance at a Ni site into its chemical and magnetic components

  19. Improved Application of Local Models to Steel Corrosion in Lead-Bismuth Loops

    International Nuclear Information System (INIS)

    Zhang Jinsuo; Li Ning

    2003-01-01

    The corrosion of steels exposed to flowing liquid metals is influenced by local and global conditions of flow systems. The present study improves the previous local models when applied to closed loops by incorporating some global condition effects. In particular the bulk corrosion product concentration is calculated based on balancing the dissolution and precipitation in the entire closed loop. Mass transfer expressions developed in aqueous medium and an analytical expression are tested in the liquid-metal environments. The improved model is applied to a pure lead loop and produces results closer to the experimental data than the previous local models do. The model is also applied to a lead-bismuth eutectic (LBE) test loop. Systematic studies illustrate the effects of the flow rate, the oxygen concentration in LBE, and the temperature profile on the corrosion rate

  20. Local models and hidden nonlocality in Quantum Theory

    OpenAIRE

    Guerini, Leonardo

    2014-01-01

    This Master's thesis has two central subjects: the simulation of correlations generated by local measurements on entangled quantum states by local hidden-variables models and the revelation of hidden nonlocality. We present and detail the Werner's local model and the hidden nonlocality of some Werner states of dimension $d\\geq5$, the Gisin-Degorre's local model for a Werner state of dimension $d=2$ and the local model of Hirsch et al. for mixtures of the singlet state and noise, all of them f...

  1. Relativistic effects in local inertial frames including parametrized-post-Newtonian effects

    International Nuclear Information System (INIS)

    Shahid-Saless, B.; Ashby, N.

    1988-01-01

    We use the concept of a generalized Fermi frame to describe relativistic effects, due to local and distant sources of gravitation, on a body placed in a local inertial frame of reference. In particular we have considered a model of two spherically symmetric gravitating point sources, moving in circular orbits around a common barycenter where one of the bodies is chosen to be the local and the other the distant one. This has been done using the slow-motion, weak-field approximation and including four of the parametrized-post-Newtonian (PPN) parameters. The position of the classical center of mass must be modified when the PPN parameter zeta 2 is included. We show that the main relativistic effect on a local satellite is described by the Schwarzschild field of the local body and the nonlinear term corresponding to the self-interaction of the local source with itself. There are also much smaller terms that are proportional, respectively, to the product of the potentials of local and distant bodies and to the distant body's self-interactions. The spatial axes of the local frame undergo geodetic precession. In addition we have an acceleration of the order of 10/sup -11/ cm sec -2 that vanish in the case of general relativity, which is discussed in detail

  2. Islands Climatology at Local Scale. Downscaling with CIELO model

    Science.gov (United States)

    Azevedo, Eduardo; Reis, Francisco; Tomé, Ricardo; Rodrigues, Conceição

    2016-04-01

    Islands with horizontal scales of the order of tens of km, as is the case of the Atlantic Islands of Macaronesia, are subscale orographic features for Global Climate Models (GCMs) since the horizontal scales of these models are too coarse to give a detailed representation of the islands' topography. Even the Regional Climate Models (RCMs) reveals limitations when they are forced to reproduce the climate of small islands mainly by the way they flat and lowers the elevation of the islands, reducing the capacity of the model to reproduce important local mechanisms that lead to a very deep local climate differentiation. Important local thermodynamics mechanisms like Foehn effect, or the influence of topography on radiation balance, have a prominent role in the climatic spatial differentiation. Advective transport of air - and the consequent induced adiabatic cooling due to orography - lead to transformations of the state parameters of the air that leads to the spatial configuration of the fields of pressure, temperature and humidity. The same mechanism is in the origin of the orographic clouds cover that, besides the direct role as water source by the reinforcement of precipitation, act like a filter to direct solar radiation and as a source of long-wave radiation that affect the local balance of energy. Also, the saturation (or near saturation) conditions that they provide constitute a barrier to water vapour diffusion in the mechanisms of evapotranspiration. Topographic factors like slope, aspect and orographic mask have also significant importance in the local energy balance. Therefore, the simulation of the local scale climate (past, present and future) in these archipelagos requires the use of downscaling techniques to adjust locally outputs obtained at upper scales. This presentation will discuss and analyse the evolution of the CIELO model (acronym for Clima Insular à Escala LOcal) a statistical/dynamical technique developed at the University of the Azores

  3. Combined discriminative global and generative local models for visual tracking

    Science.gov (United States)

    Zhao, Liujun; Zhao, Qingjie; Chen, Yanming; Lv, Peng

    2016-03-01

    It is a challenging task to develop an effective visual tracking algorithm due to factors such as pose variation, rotation, and so on. Combined discriminative global and generative local appearance models are proposed to address this problem. Specifically, we develop a compact global object representation by extracting the low-frequency coefficients of the color and texture of the object based on two-dimensional discrete cosine transform. Then, with the global appearance representation, we learn a discriminative metric classifier in an online fashion to differentiate the target object from its background, which is very important to robustly indicate the changes in appearance. Second, we develop a new generative local model that exploits the scale invariant feature transform and its spatial geometric information. To make use of the advantages of the global discriminative model and the generative local model, we incorporate them into Bayesian inference framework. In this framework, the complementary models help the tracker locate the target more accurately. Furthermore, we use different mechanisms to update global and local templates to capture appearance changes. The experimental results demonstrate that the proposed approach performs favorably against state-of-the-art methods in terms of accuracy.

  4. The Thick Market Effect on Local Unemployment Rate Fluctuations

    OpenAIRE

    Li Gan; Qinghua Zhang

    2005-01-01

    This paper studies how the thick market effect influences local unemployment rate fluctuations. The paper presents a model to demonstrate that the average matching quality improves as the number of workers and firms increases. Unemployed workers accumulate in a city until the local labor market reaches a critical minimum size, which leads to cyclical fluctuations in the local unemployment rates. Since larger cities attain the critical market size more frequently, they have shorter unemploymen...

  5. The small length scale effect for a non-local cantilever beam: a paradox solved.

    Science.gov (United States)

    Challamel, N; Wang, C M

    2008-08-27

    Non-local continuum mechanics allows one to account for the small length scale effect that becomes significant when dealing with microstructures or nanostructures. This paper presents some simplified non-local elastic beam models, for the bending analyses of small scale rods. Integral-type or gradient non-local models abandon the classical assumption of locality, and admit that stress depends not only on the strain value at that point but also on the strain values of all points on the body. There is a paradox still unresolved at this stage: some bending solutions of integral-based non-local elastic beams have been found to be identical to the classical (local) solution, i.e. the small scale effect is not present at all. One example is the Euler-Bernoulli cantilever nanobeam model with a point load which has application in microelectromechanical systems and nanoelectromechanical systems as an actuator. In this paper, it will be shown that this paradox may be overcome with a gradient elastic model as well as an integral non-local elastic model that is based on combining the local and the non-local curvatures in the constitutive elastic relation. The latter model comprises the classical gradient model and Eringen's integral model, and its application produces small length scale terms in the non-local elastic cantilever beam solution.

  6. Including local rainfall dynamics and uncertain boundary conditions into a 2-D regional-local flood modelling cascade

    Science.gov (United States)

    Bermúdez, María; Neal, Jeffrey C.; Bates, Paul D.; Coxon, Gemma; Freer, Jim E.; Cea, Luis; Puertas, Jerónimo

    2016-04-01

    Flood inundation models require appropriate boundary conditions to be specified at the limits of the domain, which commonly consist of upstream flow rate and downstream water level. These data are usually acquired from gauging stations on the river network where measured water levels are converted to discharge via a rating curve. Derived streamflow estimates are therefore subject to uncertainties in this rating curve, including extrapolating beyond the maximum observed ratings magnitude. In addition, the limited number of gauges in reach-scale studies often requires flow to be routed from the nearest upstream gauge to the boundary of the model domain. This introduces additional uncertainty, derived not only from the flow routing method used, but also from the additional lateral rainfall-runoff contributions downstream of the gauging point. Although generally assumed to have a minor impact on discharge in fluvial flood modeling, this local hydrological input may become important in a sparse gauge network or in events with significant local rainfall. In this study, a method to incorporate rating curve uncertainty and the local rainfall-runoff dynamics into the predictions of a reach-scale flood inundation model is proposed. Discharge uncertainty bounds are generated by applying a non-parametric local weighted regression approach to stage-discharge measurements for two gauging stations, while measured rainfall downstream from these locations is cascaded into a hydrological model to quantify additional inflows along the main channel. A regional simplified-physics hydraulic model is then applied to combine these inputs and generate an ensemble of discharge and water elevation time series at the boundaries of a local-scale high complexity hydraulic model. Finally, the effect of these rainfall dynamics and uncertain boundary conditions are evaluated on the local-scale model. Improvements in model performance when incorporating these processes are quantified using observed

  7. Population genetics models of local ancestry.

    Science.gov (United States)

    Gravel, Simon

    2012-06-01

    Migrations have played an important role in shaping the genetic diversity of human populations. Understanding genomic data thus requires careful modeling of historical gene flow. Here we consider the effect of relatively recent population structure and gene flow and interpret genomes of individuals that have ancestry from multiple source populations as mosaics of segments originating from each population. This article describes general and tractable models for local ancestry patterns with a focus on the length distribution of continuous ancestry tracts and the variance in total ancestry proportions among individuals. The models offer improved agreement with Wright-Fisher simulation data when compared to the state-of-the art and can be used to infer time-dependent migration rates from multiple populations. Considering HapMap African-American (ASW) data, we find that a model with two distinct phases of "European" gene flow significantly improves the modeling of both tract lengths and ancestry variances.

  8. Improved non-local electron thermal transport model for two-dimensional radiation hydrodynamics simulations

    Science.gov (United States)

    Cao, Duc; Moses, Gregory; Delettrez, Jacques

    2015-08-01

    An implicit, non-local thermal conduction algorithm based on the algorithm developed by Schurtz, Nicolai, and Busquet (SNB) [Schurtz et al., Phys. Plasmas 7, 4238 (2000)] for non-local electron transport is presented and has been implemented in the radiation-hydrodynamics code DRACO. To study the model's effect on DRACO's predictive capability, simulations of shot 60 303 from OMEGA are completed using the iSNB model, and the computed shock speed vs. time is compared to experiment. Temperature outputs from the iSNB model are compared with the non-local transport model of Goncharov et al. [Phys. Plasmas 13, 012702 (2006)]. Effects on adiabat are also examined in a polar drive surrogate simulation. Results show that the iSNB model is not only capable of flux-limitation but also preheat prediction while remaining numerically robust and sacrificing little computational speed. Additionally, the results provide strong incentive to further modify key parameters within the SNB theory, namely, the newly introduced non-local mean free path. This research was supported by the Laboratory for Laser Energetics of the University of Rochester.

  9. Crack propagation model taking into consideration the local effect of the deviatoric stress and the non-local effect of the isotropic stress

    Czech Academy of Sciences Publication Activity Database

    Kafka, Vratislav

    2011-01-01

    Roč. 56, č. 4 (2011), s. 343-358 ISSN 0001-7043 R&D Projects: GA ČR(CZ) GA103/09/2101 Institutional research plan: CEZ:AV0Z20710524 Keywords : crack propagation * nonlocal effect * deviatoric local effect * isotropic nonlocal Subject RIV: BM - Solid Matter Physics ; Magnetism

  10. Modeling of Reverberation Effects for Radio Localization and Communications

    DEFF Research Database (Denmark)

    Steinböck, Gerhard

    2013-01-01

    a recently proposed approach, we transcribe these models to electromagnetics and validate them experimentally following a systematic procedure. These transcribed models provide accurate predictions of the delay power spectrum in a typical office environment. Furthermore, they can predict changes...... into a distance dependent model of the delay power spectrum, which we then validate experimentally. From this model we derive secondary models that predict the received power, the mean delay, the rms delay spread and the kurtosis versus distance. The behavior of the diffuse component versus distance in indoor...... environment is linked to reverberation effects analog to reverberation effects observed in room acoustics and electromagnetic reverberation chambers. Reverberation models of room acoustics relate the decay rate of the diffuse component to the room geometry and an average absorption coefficient. Following...

  11. Recent Developments of the Local Effect Model (LEM) - Implications of clustered damage on cell transformation

    Science.gov (United States)

    Elsässer, Thilo

    Exposure to radiation of high-energy and highly charged ions (HZE) causes a major risk to human beings, since in long term space explorations about 10 protons per month and about one HZE particle per month hit each cell nucleus (1). Despite the larger number of light ions, the high ionisation power of HZE particles and its corresponding more complex damage represents a major hazard for astronauts. Therefore, in order to get a reasonable risk estimate, it is necessary to take into account the entire mixed radiation field. Frequently, neoplastic cell transformation serves as an indicator for the oncogenic potential of radiation exposure. It can be measured for a small number of ion and energy combinations. However, due to the complexity of the radiation field it is necessary to know the contribution to the radiation damage of each ion species for the entire range of energies. Therefore, a model is required which transfers the few experimental data to other particles with different LETs. We use the Local Effect Model (LEM) (2) with its cluster extension (3) to calculate the relative biological effectiveness (RBE) of neoplastic transformation. It was originally developed in the framework of hadrontherapy and is applicable for a large range of ions and energies. The input parameters for the model include the linear-quadratic parameters for the induction of lethal events as well as for the induction of transformation events per surviving cell. Both processes of cell inactivation and neoplastic transformation per viable cell are combined to eventually yield the RBE for cell transformation. We show that the Local Effect Model is capable of predicting the RBE of neoplastic cell transformation for a broad range of ions and energies. The comparison of experimental data (4) with model calculations shows a reasonable agreement. We find that the cluster extension results in a better representation of the measured RBE values. With this model it should be possible to better

  12. Quark model and equivalent local potential

    International Nuclear Information System (INIS)

    Takeuchi, Sachiko; Shimizu, Kiyotaka

    2002-01-01

    In this paper, we investigate the short-range repulsion given by the quark cluster model employing an inverse scattering problem. We find that the local potential which reproduces the same phase shifts as those given by the quark cluster model has a strong repulsion at short distances in the NN 1 S 0 channel. There, however, appears an attractive pocket at very short distances due to a rather weak repulsive behavior at very high energy. This repulsion-attractive-pocket structure becomes more manifest in the channel which has an almost forbidden state, ΣN(T=3/2) 3 S 1 . In order to see what kinds of effects are important to reproduce the short-range repulsion in the quark cluster model, we investigate the contribution coming from the one-gluon-exchange potential and the normalization separately. It is clarified that the gluon exchange constructs the short-range repulsion in the NN 1 S 0 while the quark Pauli-blocking effect governs the feature of the repulsive behavior in the ΣN(T=3/2) 3 S 1 channel

  13. Local load-sharing fiber bundle model in higher dimensions.

    Science.gov (United States)

    Sinha, Santanu; Kjellstadli, Jonas T; Hansen, Alex

    2015-08-01

    We consider the local load-sharing fiber bundle model in one to five dimensions. Depending on the breaking threshold distribution of the fibers, there is a transition where the fracture process becomes localized. In the localized phase, the model behaves as the invasion percolation model. The difference between the local load-sharing fiber bundle model and the equal load-sharing fiber bundle model vanishes with increasing dimensionality with the characteristics of a power law.

  14. Improved non-local electron thermal transport model for two-dimensional radiation hydrodynamics simulations

    International Nuclear Information System (INIS)

    Cao, Duc; Moses, Gregory; Delettrez, Jacques

    2015-01-01

    An implicit, non-local thermal conduction algorithm based on the algorithm developed by Schurtz, Nicolai, and Busquet (SNB) [Schurtz et al., Phys. Plasmas 7, 4238 (2000)] for non-local electron transport is presented and has been implemented in the radiation-hydrodynamics code DRACO. To study the model's effect on DRACO's predictive capability, simulations of shot 60 303 from OMEGA are completed using the iSNB model, and the computed shock speed vs. time is compared to experiment. Temperature outputs from the iSNB model are compared with the non-local transport model of Goncharov et al. [Phys. Plasmas 13, 012702 (2006)]. Effects on adiabat are also examined in a polar drive surrogate simulation. Results show that the iSNB model is not only capable of flux-limitation but also preheat prediction while remaining numerically robust and sacrificing little computational speed. Additionally, the results provide strong incentive to further modify key parameters within the SNB theory, namely, the newly introduced non-local mean free path. This research was supported by the Laboratory for Laser Energetics of the University of Rochester

  15. Improved non-local electron thermal transport model for two-dimensional radiation hydrodynamics simulations

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Duc; Moses, Gregory [University of Wisconsin—Madison, 1500 Engineering Drive, Madison, Wisconsin 53706 (United States); Delettrez, Jacques [Laboratory for Laser Energetics of the University of Rochester, 250 East River Road, Rochester, New York 14623 (United States)

    2015-08-15

    An implicit, non-local thermal conduction algorithm based on the algorithm developed by Schurtz, Nicolai, and Busquet (SNB) [Schurtz et al., Phys. Plasmas 7, 4238 (2000)] for non-local electron transport is presented and has been implemented in the radiation-hydrodynamics code DRACO. To study the model's effect on DRACO's predictive capability, simulations of shot 60 303 from OMEGA are completed using the iSNB model, and the computed shock speed vs. time is compared to experiment. Temperature outputs from the iSNB model are compared with the non-local transport model of Goncharov et al. [Phys. Plasmas 13, 012702 (2006)]. Effects on adiabat are also examined in a polar drive surrogate simulation. Results show that the iSNB model is not only capable of flux-limitation but also preheat prediction while remaining numerically robust and sacrificing little computational speed. Additionally, the results provide strong incentive to further modify key parameters within the SNB theory, namely, the newly introduced non-local mean free path. This research was supported by the Laboratory for Laser Energetics of the University of Rochester.

  16. Modeling non-locality of plasmonic excitations with a fictitious film

    Science.gov (United States)

    Kong, Jiantao; Shvonski, Alexander; Kempa, Krzysztof

    Non-local effects, requiring a wavevector (q) dependent dielectric response are becoming increasingly important in studies of plasmonic and metamaterial structures. The phenomenological hydrodynamic approximation (HDA) is the simplest, and most often used model, but it often fails. We show that the d-function formalism, exact to first order in q, is a powerful and simple-to-use alternative. Recently, we developed a mapping of the d-function formalism into a purely local fictitious film. This geometric mapping allows for non-local extensions of any local calculation scheme, including FDTD. We demonstrate here, that such mapped FDTD simulation of metallic nanoclusters agrees very well with various experiments.

  17. The role of local repulsion in superconductivity in the Hubbard–Holstein model

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Chungwei, E-mail: clin@merl.com; Wang, Bingnan; Teo, Koon Hoo

    2017-01-15

    Highlights: • There exists an optimal Boson energy for superconductivity in Hubbard–Holstein model. • The electron-Boson coupling is essential for superconductivity, but the same coupling can lead to polaron insulator, which is against superconductivity. • The local Coulomb repulsion can sometimes enhance superconductivity. - Abstract: We examine the superconducting solution in the Hubbard–Holstein model using Dynamical Mean Field Theory. The Holstein term introduces the site-independent Boson fields coupling to local electron density, and has two competing influences on superconductivity: The Boson field mediates the effective electron-electron attraction, which is essential for the S-wave electron pairing; the same coupling to the Boson fields also induces the polaron effect, which makes the system less metallic and thus suppresses superconductivity. The Hubbard term introduces an energy penalty U when two electrons occupy the same site, which is expected to suppress superconductivity. By solving the Hubbard–Holstein model using Dynamical Mean Field theory, we find that the Hubbard U can be beneficial to superconductivity under some circumstances. In particular, we demonstrate that when the Boson energy Ω is small, a weak local repulsion actually stabilizes the S-wave superconducting state. This behavior can be understood as an interplay between superconductivity, the polaron effect, and the on-site repulsion: As the polaron effect is strong and suppresses superconductivity in the small Ω regime, the weak on-site repulsion reduces the polaron effect and effectively enhances superconductivity. Our calculation elucidates the role of local repulsion in the conventional S-wave superconductors.

  18. The effects of local insulin application to lumbar spinal fusions in a rat model.

    Science.gov (United States)

    Koerner, John D; Yalamanchili, Praveen; Munoz, William; Uko, Linda; Chaudhary, Saad B; Lin, Sheldon S; Vives, Michael J

    2013-01-01

    The rates of pseudoarthrosis after a single-level spinal fusion have been reported up to 35%, and the agents that increase the rate of fusion have an important role in decreasing pseudoarthrosis after spinal fusion. Previous studies have analyzed the effects of local insulin application to an autograft in a rat segmental defect model. Defects treated with a time-released insulin implant had significantly more new bone formation and greater quality of bone compared with controls based on histology and histomorphometry. A time-released insulin implant may have similar effects when applied in a lumbar spinal fusion model. This study analyzes the effects of a local time-released insulin implant applied to the fusion bed in a rat posterolateral lumbar spinal fusion model. Our hypothesis was twofold: first, a time-released insulin implant applied to the autograft bed in a rat posterolateral lumbar fusion will increase the rate of successful fusion and second, will alter the local environment of the fusion site by increasing the levels of local growth factors. Animal model (Institutional Animal Care and Use Committee approved) using 40 adult male Sprague-Dawley rats. Forty skeletally mature Sprague-Dawley rats weighing approximately 500 g each underwent posterolateral intertransverse lumbar fusions with iliac crest autograft from L4 to L5 using a Wiltse-type approach. After exposure of the transverse processes and high-speed burr decortication, a Linplant (Linshin Canada, Inc., ON, Canada) consisting of 95% microrecrystalized palmitic acid and 5% bovine insulin (experimental group) or a sham implant consisting of only palmitic acid (control group) was implanted on the fusion bed with iliac crest autograft. As per the manufacturer, the Linplant has a release rate of 2 U/day for a minimum of 40 days. The transverse processes and autograft beds of 10 animals from the experimental and 10 from the control group were harvested at Day 4 and analyzed for growth factors. The

  19. Comprehensive modelling for approaching the Kyoto targets on a local scale

    International Nuclear Information System (INIS)

    Pietrapertosa, F.; Macchiato, M.; Salvia, M.

    2003-01-01

    This study aimed to evaluate the effectiveness of the MARKAL comprehensive model in the development of coherent medium-term strategies and sound climate protection policies at local level. The local case study (Val d'Agri, Basilicata region, Italy) discusses the possible role of local communities in the achievement of the national objectives derived by the Kyoto Protocol, investigating the traditional sectors responsible for air pollution and providing a full picture of the main energy and material flows. A scenario analysis was performed to analyse the response of the modelled system to the introduction of an exogenous constraint on carbon dioxide (CO 2 ) emissions. The main effects are presented with reference to fuel mix, technology choice, real market prices and reduced costs of competing options. The comparison of the solutions obtained for the different scenarios is useful to point out the effects of the CO 2 constraint on the total system cost and on the emission levels of other atmospheric pollutants. A further multiobjective optimisation was performed to analyse the effects of combined environmental constraints (CO 2 and particulate) on the overall system cost as well as in terms of marginal costs. (author)

  20. Comprehensive modelling for approaching the Kyoto targets on a local scale

    Energy Technology Data Exchange (ETDEWEB)

    Pietrapertosa, F. [Istituto di Metodologie per l' Analisi Ambientale, Tito Scalo (Italy); Universita degli Studi della Basilicata, Potenza (Italy). Dipartimento di Ingegneria e Fisica dell' Ambiente; Cosmi, C.; Marmo, G. [Istituto di Metodologie per l' Analisi Ambientale, Tito Scalo (Italy); Istituto Nazionale di Fisica della Materia, Napoli (Italy); Macchiato, M. [Universita Federico II, Napoli (Italy). Dipartimento di Scienze Fisiche; Salvia, M. [Istituto di Metodologie per l' Analisi Ambientale, Tito Scalo (Italy)

    2003-06-01

    This study aimed to evaluate the effectiveness of the MARKAL comprehensive model in the development of coherent medium-term strategies and sound climate protection policies at local level. The local case study (Val d'Agri, Basilicata region, Italy) discusses the possible role of local communities in the achievement of the national objectives derived by the Kyoto Protocol, investigating the traditional sectors responsible for air pollution and providing a full picture of the main energy and material flows. A scenario analysis was performed to analyse the response of the modelled system to the introduction of an exogenous constraint on carbon dioxide (CO{sub 2}) emissions. The main effects are presented with reference to fuel mix, technology choice, real market prices and reduced costs of competing options. The comparison of the solutions obtained for the different scenarios is useful to point out the effects of the CO{sub 2} constraint on the total system cost and on the emission levels of other atmospheric pollutants. A further multiobjective optimisation was performed to analyse the effects of combined environmental constraints (CO{sub 2} and particulate) on the overall system cost as well as in terms of marginal costs. (author)

  1. Dynamics Modeling and Analysis of Local Fault of Rolling Element Bearing

    Directory of Open Access Journals (Sweden)

    Lingli Cui

    2015-01-01

    Full Text Available This paper presents a nonlinear vibration model of rolling element bearings with 5 degrees of freedom based on Hertz contact theory and relevant bearing knowledge of kinematics and dynamics. The slipping of ball, oil film stiffness, and the nonlinear time-varying stiffness of the bearing are taken into consideration in the model proposed here. The single-point local fault model of rolling element bearing is introduced into the nonlinear model with 5 degrees of freedom according to the loss of the contact deformation of ball when it rolls into and out of the local fault location. The functions of spall depth corresponding to defects of different shapes are discussed separately in this paper. Then the ode solver in Matlab is adopted to perform a numerical solution on the nonlinear vibration model to simulate the vibration response of the rolling elements bearings with local fault. The simulation signals analysis results show a similar behavior and pattern to that observed in the processed experimental signals of rolling element bearings in both time domain and frequency domain which validated the nonlinear vibration model proposed here to generate typical rolling element bearings local fault signals for possible and effective fault diagnostic algorithms research.

  2. Location of power stations and measures for local people model analysis concerning location negotiation with local fishery association

    International Nuclear Information System (INIS)

    Wakatani, Yoshifumi; Yamanaka, Yoshiro

    1982-01-01

    The recent negotiation of enterprisers and local people concerning the location of power stations tends to extend for long period because of diversified arguing points and the information exchange of high density, and also to be complicated by the interrelation with other points. It is a large problem to seek the policy of such negotiation for enterprisers to respond to local people. In this study, as the first step, the policy and action appeared in location negotiations and the development of the negotiations were analyzed on the cases of location, and two kinds of the model analysis were carried out, taking fishery compensation negotiation as the object among them. The knowledge was obtained about what response to local fishery associations is effective to promote the location. The classification of location negotiation and the factors affecting the development of negotiation were investigated. It was shown to be effective to divide the process of location negotiation into five stages of advancement. The model analysis was carried out according to game theory and by gaming simulation method. The results are reported. (Kako, I.)

  3. Location of power stations and measures for local people model analysis concerning location negotiation with local fishery association

    Energy Technology Data Exchange (ETDEWEB)

    Wakatani, Yoshifumi; Yamanaka, Yoshiro (Central Research Inst. of electric Power Industry, Tokyo (Japan))

    1982-05-01

    The recent negotiation of enterprisers and local people concerning the location of power stations tends to extend for long periods because of diversified arguing points and the information exchange of high density, and also to be complicated by the interrelation with other points. It is a large problem to seek the policy of such negotiation for enterprisers to respond to local people. In this study, as the first step, the policy and action appeared in location negotiations and the development of the negotiations were analyzed on the cases of location, and two kinds of the model analysis were carried out, taking fishery compensation negotiation as the object among them. The knowledge was obtained about what response to local fishery associations is effective to promote the location. The classification of location negotiation and the factors affecting the development of negotiation were investigated. It was shown to be effective to divide the process of location negotiation into five stages of advancement. The model analysis was carried out according to game theory and by gaming simulation method. The results are reported.

  4. Locality effects on bifurcation paradigm of L-H transition in tokamak plasmas

    Directory of Open Access Journals (Sweden)

    Boonyarit Chatthong

    2015-12-01

    Full Text Available The locality effects on bifurcation paradigm of L-H transition phenomenon in magnetic confinement plasmas are investigated. One dimensional thermal transport equation with both neoclassical and anomalous transports effects included is considered, where a flow shear due to pressure gradient component is included as a transport suppression mechanism. Three different locally driven models for anomalous transport are considered, including a constant transport model, pressure gradient driven transport model, and critical pressure gradient threshold transport model. Local stability analysis shows that the transition occurs at a threshold flux with hysteresis nature only if ratio of anomalous strength over neoclassical transport exceeds a critical value. The depth of the hysteresis loop depends on both neoclassical and anomalous transports, as well as the suppression strength. The reduction of the heat flux required to maintain H-mode can be as low as a factor of two, which is similar to experimental evidence.

  5. Global and local level density models

    International Nuclear Information System (INIS)

    Koning, A.J.; Hilaire, S.; Goriely, S.

    2008-01-01

    Four different level density models, three phenomenological and one microscopic, are consistently parameterized using the same set of experimental observables. For each of the phenomenological models, the Constant Temperature Model, the Back-shifted Fermi gas Model and the Generalized Superfluid Model, a version without and with explicit collective enhancement is considered. Moreover, a recently published microscopic combinatorial model is compared with the phenomenological approaches and with the same set of experimental data. For each nuclide for which sufficient experimental data exists, a local level density parameterization is constructed for each model. Next, these local models have helped to construct global level density prescriptions, to be used for cases for which no experimental data exists. Altogether, this yields a collection of level density formulae and parameters that can be used with confidence in nuclear model calculations. To demonstrate this, a large-scale validation with experimental discrete level schemes and experimental cross sections and neutron emission spectra for various different reaction channels has been performed

  6. Many-body localization proximity effects in platforms of coupled spins and bosons

    Science.gov (United States)

    Marino, J.; Nandkishore, R. M.

    2018-02-01

    We discuss the onset of many-body localization in a one-dimensional system composed of a XXZ quantum spin chain and a Bose-Hubbard model linearly coupled together. We consider two complementary setups, depending whether spatial disorder is initially imprinted on spins or on bosons; in both cases, we explore the conditions for the disordered portion of the system to localize by proximity of the other clean half. Assuming that the dynamics of one of the two parts develops on shorter time scales than the other, we can adiabatically eliminate the fast degrees of freedom, and derive an effective Hamiltonian for the system's remainder using projection operator techniques. Performing a locator expansion on the strength of the many-body interaction term or on the hopping amplitude of the effective Hamiltonian thus derived, we present results on the stability of the many-body localized phases induced by proximity effect. We also briefly comment on the feasibility of the proposed model through modern quantum optics architectures, with the long-term perspective to realize experimentally, in composite open systems, Anderson or many-body localization proximity effects.

  7. Local discrete symmetries from superstring derived models

    International Nuclear Information System (INIS)

    Faraggi, A.E.

    1996-10-01

    Discrete and global symmetries play an essential role in many extensions of the Standard Model, for example, to preserve the proton lifetime, to prevent flavor changing neutral currents, etc. An important question is how can such symmetries survive in a theory of quantum gravity, like superstring theory. In a specific string model the author illustrates how local discrete symmetries may arise in string models and play an important role in preventing fast proton decay and flavor changing neutral currents. The local discrete symmetry arises due to the breaking of the non-Abelian gauge symmetries by Wilson lines in the superstring models and forbids, for example dimension five operators which mediate rapid proton decay, to all orders of nonrenormalizable terms. In the context of models of unification of the gauge and gravitational interactions, it is precisely this type of local discrete symmetries that must be found in order to insure that a given model is not in conflict with experimental observations

  8. Concurrent multiscale modeling of microstructural effects on localization behavior in finite deformation solid mechanics

    Science.gov (United States)

    Alleman, Coleman N.; Foulk, James W.; Mota, Alejandro; Lim, Hojun; Littlewood, David J.

    2018-02-01

    The heterogeneity in mechanical fields introduced by microstructure plays a critical role in the localization of deformation. To resolve this incipient stage of failure, it is therefore necessary to incorporate microstructure with sufficient resolution. On the other hand, computational limitations make it infeasible to represent the microstructure in the entire domain at the component scale. In this study, the authors demonstrate the use of concurrent multiscale modeling to incorporate explicit, finely resolved microstructure in a critical region while resolving the smoother mechanical fields outside this region with a coarser discretization to limit computational cost. The microstructural physics is modeled with a high-fidelity model that incorporates anisotropic crystal elasticity and rate-dependent crystal plasticity to simulate the behavior of a stainless steel alloy. The component-scale material behavior is treated with a lower fidelity model incorporating isotropic linear elasticity and rate-independent J2 plasticity. The microstructural and component scale subdomains are modeled concurrently, with coupling via the Schwarz alternating method, which solves boundary-value problems in each subdomain separately and transfers solution information between subdomains via Dirichlet boundary conditions. In this study, the framework is applied to model incipient localization in tensile specimens during necking.

  9. Locally Simple Models Construction: Methodology and Practice

    Directory of Open Access Journals (Sweden)

    I. A. Kazakov

    2017-12-01

    Full Text Available One of the most notable trends associated with the Fourth industrial revolution is a significant strengthening of the role played by semantic methods. They are engaged in artificial intelligence means, knowledge mining in huge flows of big data, robotization, and in the internet of things. Smart contracts also can be mentioned here, although the ’intelligence’ of smart contracts still needs to be seriously elaborated. These trends should inevitably lead to an increased role of logical methods working with semantics, and significantly expand the scope of their application in practice. However, there are a number of problems that hinder this process. We are developing an approach, which makes the application of logical modeling efficient in some important areas. The approach is based on the concept of locally simple models and is primarily focused on solving tasks in the management of enterprises, organizations, governing bodies. The most important feature of locally simple models is their ability to replace software systems. Replacement of programming by modeling gives huge advantages, for instance, it dramatically reduces development and support costs. Modeling, unlike programming, preserves the explicit semantics of models allowing integration with artificial intelligence and robots. In addition, models are much more understandable to general people than programs. In this paper we propose the implementation of the concept of locally simple modeling on the basis of so-called document models, which has been developed by us earlier. It is shown that locally simple modeling is realized through document models with finite submodel coverages. In the second part of the paper an example of using document models for solving a management problem of real complexity is demonstrated.

  10. A local-world evolving hypernetwork model

    International Nuclear Information System (INIS)

    Yang Guang-Yong; Liu Jian-Guo

    2014-01-01

    Complex hypernetworks are ubiquitous in the real system. It is very important to investigate the evolution mechanisms. In this paper, we present a local-world evolving hypernetwork model by taking into account the hyperedge growth and local-world hyperedge preferential attachment mechanisms. At each time step, a newly added hyperedge encircles a new coming node and a number of nodes from a randomly selected local world. The number of the selected nodes from the local world obeys the uniform distribution and its mean value is m. The analytical and simulation results show that the hyperdegree approximately obeys the power-law form and the exponent of hyperdegree distribution is γ = 2 + 1/m. Furthermore, we numerically investigate the node degree, hyperedge degree, clustering coefficient, as well as the average distance, and find that the hypernetwork model shares the scale-free and small-world properties, which shed some light for deeply understanding the evolution mechanism of the real systems. (interdisciplinary physics and related areas of science and technology)

  11. Localized Sympathectomy Reduces Mechanical Hypersensitivity by Restoring Normal Immune Homeostasis in Rat Models of Inflammatory Pain.

    Science.gov (United States)

    Xie, Wenrui; Chen, Sisi; Strong, Judith A; Li, Ai-Ling; Lewkowich, Ian P; Zhang, Jun-Ming

    2016-08-17

    Some forms of chronic pain are maintained or enhanced by activity in the sympathetic nervous system (SNS), but attempts to model this have yielded conflicting findings. The SNS has both pro- and anti-inflammatory effects on immunity, confounding the interpretation of experiments using global sympathectomy methods. We performed a "microsympathectomy" by cutting the ipsilateral gray rami where they entered the spinal nerves near the L4 and L5 DRG. This led to profound sustained reductions in pain behaviors induced by local DRG inflammation (a rat model of low back pain) and by a peripheral paw inflammation model. Effects of microsympathectomy were evident within one day, making it unlikely that blocking sympathetic sprouting in the local DRGs or hindpaw was the sole mechanism. Prior microsympathectomy greatly reduced hyperexcitability of sensory neurons induced by local DRG inflammation observed 4 d later. Microsympathectomy reduced local inflammation and macrophage density in the affected tissues (as indicated by paw swelling and histochemical staining). Cytokine profiling in locally inflamed DRG showed increases in pro-inflammatory Type 1 cytokines and decreases in the Type 2 cytokines present at baseline, changes that were mitigated by microsympathectomy. Microsympathectomy was also effective in reducing established pain behaviors in the local DRG inflammation model. We conclude that the effect of sympathetic fibers in the L4/L5 gray rami in these models is pro-inflammatory. This raises the possibility that therapeutic interventions targeting gray rami might be useful in some chronic inflammatory pain conditions. Sympathetic blockade is used for many pain conditions, but preclinical studies show both pro- and anti-nociceptive effects. The sympathetic nervous system also has both pro- and anti-inflammatory effects on immune tissues and cells. We examined effects of a very localized sympathectomy. By cutting the gray rami to the spinal nerves near the lumbar sensory

  12. Development of local TDC model in core thermal hydraulic analysis

    International Nuclear Information System (INIS)

    Kwon, H.S.; Park, J.R.; Hwang, D.H.; Lee, S.K.

    2004-01-01

    The local TDC model consisting of natural mixing and forced mixing part was developed to obtain more realistic local fluid properties in the core subchannel analysis. To evaluate the performance of local TDC model, the CHF prediction capability was tested with the various CHF correlations and local fluid properties at CHF location which are based on the local TDC model. The results show that the standard deviation of measured to predicted CHF ratio (M/P) based on local TDC model can be reduced by about 7% compared to those based on global TDC model when the CHF correlation has no term to account for distance from the spacer grid. (author)

  13. Operating cost model for local service airlines

    Science.gov (United States)

    Anderson, J. L.; Andrastek, D. A.

    1976-01-01

    Several mathematical models now exist which determine the operating economics for a United States trunk airline. These models are valuable in assessing the impact of new aircraft into an airline's fleet. The use of a trunk airline cost model for the local service airline does not result in representative operating costs. A new model is presented which is representative of the operating conditions and resultant costs for the local service airline. The calculated annual direct and indirect operating costs for two multiequipment airlines are compared with their actual operating experience.

  14. Characterizing Time Irreversibility in Disordered Fermionic Systems by the Effect of Local Perturbations

    Science.gov (United States)

    Vardhan, Shreya; De Tomasi, Giuseppe; Heyl, Markus; Heller, Eric J.; Pollmann, Frank

    2017-07-01

    We study the effects of local perturbations on the dynamics of disordered fermionic systems in order to characterize time irreversibility. We focus on three different systems: the noninteracting Anderson and Aubry-André-Harper (AAH) models and the interacting spinless disordered t -V chain. First, we consider the effect on the full many-body wave functions by measuring the Loschmidt echo (LE). We show that in the extended or ergodic phase the LE decays exponentially fast with time, while in the localized phase the decay is algebraic. We demonstrate that the exponent of the decay of the LE in the localized phase diverges proportionally to the single-particle localization length as we approach the metal-insulator transition in the AAH model. Second, we probe different phases of disordered systems by studying the time expectation value of local observables evolved with two Hamiltonians that differ by a spatially local perturbation. Remarkably, we find that many-body localized systems could lose memory of the initial state in the long-time limit, in contrast to the noninteracting localized phase where some memory is always preserved.

  15. A Local Poisson Graphical Model for inferring networks from sequencing data.

    Science.gov (United States)

    Allen, Genevera I; Liu, Zhandong

    2013-09-01

    Gaussian graphical models, a class of undirected graphs or Markov Networks, are often used to infer gene networks based on microarray expression data. Many scientists, however, have begun using high-throughput sequencing technologies such as RNA-sequencing or next generation sequencing to measure gene expression. As the resulting data consists of counts of sequencing reads for each gene, Gaussian graphical models are not optimal for this discrete data. In this paper, we propose a novel method for inferring gene networks from sequencing data: the Local Poisson Graphical Model. Our model assumes a Local Markov property where each variable conditional on all other variables is Poisson distributed. We develop a neighborhood selection algorithm to fit our model locally by performing a series of l1 penalized Poisson, or log-linear, regressions. This yields a fast parallel algorithm for estimating networks from next generation sequencing data. In simulations, we illustrate the effectiveness of our methods for recovering network structure from count data. A case study on breast cancer microRNAs (miRNAs), a novel application of graphical models, finds known regulators of breast cancer genes and discovers novel miRNA clusters and hubs that are targets for future research.

  16. Construction of exact constants of motion and effective models for many-body localized systems

    Science.gov (United States)

    Goihl, M.; Gluza, M.; Krumnow, C.; Eisert, J.

    2018-04-01

    One of the defining features of many-body localization is the presence of many quasilocal conserved quantities. These constants of motion constitute a cornerstone to an intuitive understanding of much of the phenomenology of many-body localized systems arising from effective Hamiltonians. They may be seen as local magnetization operators smeared out by a quasilocal unitary. However, accurately identifying such constants of motion remains a challenging problem. Current numerical constructions often capture the conserved operators only approximately, thus restricting a conclusive understanding of many-body localization. In this work, we use methods from the theory of quantum many-body systems out of equilibrium to establish an alternative approach for finding a complete set of exact constants of motion which are in addition guaranteed to represent Pauli-z operators. By this we are able to construct and investigate the proposed effective Hamiltonian using exact diagonalization. Hence, our work provides an important tool expected to further boost inquiries into the breakdown of transport due to quenched disorder.

  17. Analysis of Local Dependence and Multidimensionality in Graphical Loglinear Rasch Models

    DEFF Research Database (Denmark)

    Kreiner, Svend; Christensen, Karl Bang

    2004-01-01

    Local independence; Multidimensionality; Differential item functioning; Uniform local dependence and DIF; Graphical Rasch models; Loglinear Rasch model......Local independence; Multidimensionality; Differential item functioning; Uniform local dependence and DIF; Graphical Rasch models; Loglinear Rasch model...

  18. The role of local repulsion in superconductivity in the Hubbard-Holstein model

    Science.gov (United States)

    Lin, Chungwei; Wang, Bingnan; Teo, Koon Hoo

    2017-01-01

    We examine the superconducting solution in the Hubbard-Holstein model using Dynamical Mean Field Theory. The Holstein term introduces the site-independent Boson fields coupling to local electron density, and has two competing influences on superconductivity: The Boson field mediates the effective electron-electron attraction, which is essential for the S-wave electron pairing; the same coupling to the Boson fields also induces the polaron effect, which makes the system less metallic and thus suppresses superconductivity. The Hubbard term introduces an energy penalty U when two electrons occupy the same site, which is expected to suppress superconductivity. By solving the Hubbard-Holstein model using Dynamical Mean Field theory, we find that the Hubbard U can be beneficial to superconductivity under some circumstances. In particular, we demonstrate that when the Boson energy Ω is small, a weak local repulsion actually stabilizesthe S-wave superconducting state. This behavior can be understood as an interplay between superconductivity, the polaron effect, and the on-site repulsion: As the polaron effect is strong and suppresses superconductivity in the small Ω regime, the weak on-site repulsion reduces the polaron effect and effectively enhances superconductivity. Our calculation elucidates the role of local repulsion in the conventional S-wave superconductors.

  19. Effect of water on the local electric potential of simulated ionic micelles

    Energy Technology Data Exchange (ETDEWEB)

    Brodskaya, Elena N.; Vanin, Alexander A., E-mail: alexvanin@yandex.ru [Institute of Chemistry, St. Petersburg State University, Universitetskiy pr. 26, Petrodvoretz, St. Petersburg 198504 (Russian Federation)

    2015-07-28

    Ionic micelles in an aqueous solution containing single-charged counter-ions have been simulated by molecular dynamics. For both cationic and anionic micelles, it has been demonstrated that explicit description of solvent has strong effect on the micelle’s electric field. The sign of the local charge alters in the immediate vicinity of the micellar crown and the electric potential varies nonmonotonically. Two micelle models have been examined: the hybrid model with a rigid hydrocarbon core and the atomistic model. For three molecular models of water (Simple Point Charge model (SPC), Transferable Intermolecular Potential 5- Points (TIP5P) and two-centered S2), the results have been compared with those for the continuum solvent model. The orientational ordering of solvent molecules has strong effect on the local electric field surprisingly far from the micelle surface.

  20. Finite element modeling of temperature load effects on the vibration of local modes in multi-cable structures

    Science.gov (United States)

    Treyssède, Fabien

    2018-01-01

    Understanding thermal effects on the vibration of local (cable-dominant) modes in multi-cable structures is a complicated task. The main difficulty lies in the modification by temperature change of cable tensions, which are then undetermined. This paper applies a finite element procedure to investigate the effects of thermal loads on the linear dynamics of prestressed self-weighted multi-cable structures. Provided that boundary conditions are carefully handled, the discretization of cables with nonlinear curved beam elements can properly represent the thermoelastic behavior of cables as well as their linearized dynamics. A three-step procedure that aims to replace applied pretension forces with displacement continuity conditions is used. Despite an increase in the computational cost related to beam rotational degrees of freedom, such an approach has several advantages. Nonlinear beam finite elements are usually available in commercial codes. The overall method follows a thermoelastic geometrically non-linear analysis and hereby includes the main sources of non-linearities in multi-cable structures. The effects of cable bending stiffness, which can be significant, are also naturally accounted for. The accuracy of the numerical approach is assessed thanks to an analytical model for the vibration of a single inclined cable under temperature change. Then, the effects of thermal loads are investigated for two cable bridges, highlighting how natural frequencies can be affected by temperature. Although counterintuitive, a reverse relative change of natural frequency may occur for certain local modes. This phenomenon can be explained by two distinct mechanisms, one related to the physics intrinsic to cables and the other related to the thermal deflection of the superstructure. Numerical results show that cables cannot be isolated from the rest of the structure and the importance of modeling the whole structure for a quantitative analysis of temperature effects on the

  1. A comparative study of the models dealing with localized and semi-localized transitions in thermally stimulated luminescence

    International Nuclear Information System (INIS)

    Kumar, Munish; Kher, R K; Bhatt, B C; Sunta, C M

    2007-01-01

    Different models dealing with localized and semi-localized transitions, namely Chen-Halperin, Mandowski and the model based on the Braunlich-Scharmann (BS) approach are compared. It has been found that for recombination dominant situations (r > 1, the three models differ. This implies that for localized transitions under recombination dominant situations, the Chen-Halperin model is the best representative of the thermally stimulated luminescence (TSL) process. It has also been found that for the TSL glow curves arising from delocalized recombination in Mandowski's semi-localized transitions model, the double peak structure of the TSL glow curve is a function of the radiation dose as well as of the heating rate. Further, the double peak structure of the TSL glow curves arising from delocalized recombination disappears at low doses as well as at higher heating rates. It has also been found that the TSL glow curves arising from delocalized recombination in the semi-localized transitions model based on the BS approach do not exhibit double peak structure as observed in the Mandowski semi-localized transitions model

  2. Joint Testlet Cognitive Diagnosis Modeling for Paired Local Item Dependence in Response Times and Response Accuracy

    Directory of Open Access Journals (Sweden)

    Peida Zhan

    2018-04-01

    Full Text Available In joint models for item response times (RTs and response accuracy (RA, local item dependence is composed of local RA dependence and local RT dependence. The two components are usually caused by the same common stimulus and emerge as pairs. Thus, the violation of local item independence in the joint models is called paired local item dependence. To address the issue of paired local item dependence while applying the joint cognitive diagnosis models (CDMs, this study proposed a joint testlet cognitive diagnosis modeling approach. The proposed approach is an extension of Zhan et al. (2017 and it incorporates two types of random testlet effect parameters (one for RA and the other for RTs to account for paired local item dependence. The model parameters were estimated using the full Bayesian Markov chain Monte Carlo (MCMC method. The 2015 PISA computer-based mathematics data were analyzed to demonstrate the application of the proposed model. Further, a brief simulation study was conducted to demonstrate the acceptable parameter recovery and the consequence of ignoring paired local item dependence.

  3. Non-local model analysis of heat pulse propagation and simulation of experiments in W7-AS

    International Nuclear Information System (INIS)

    Iwasaki, Takuya; Itoh, Sanae-I.; Yagi, Masatoshi; Itoh, Kimitaka; Stroth, U.

    1999-01-01

    A new model equation which includes the non-local effect in the hear flux is introduced to study the transient transport phenomena. A non-local heat flux, which is expressed in terms of the integral equation, is superimposed on the conventional form of the heat flux. This model is applied to describe the experimental results from the power switching [U. Stroth et al.: Plasma Phys. Control. Fusion 38 (1996) 1087] and the power modulation experiments [L. Giannone et al.: Nucl. Fusion 32 (1992) 1985] in the W7-AS stellarator. A small fraction of non-local component in the heat flux is found to be very effective in modifying the response against an external modulation. The transient feature of the transport property, which are observed in the response of heat pulse propagation, are qualitatively reproduced by the transport simulations based on this model. A possibility is discussed to estimate the correlation length of the non-local effect experimentally by use of the results of transport simulations. (author)

  4. A simple model for localized-itinerant magnetic systems: crystal field effects

    International Nuclear Information System (INIS)

    Iannarella, L.; Silva, X.A. da; Guimarares, A.P.

    1989-01-01

    The magnetic behavior of a system consisting of localized electrons coupled to conduction electrons and submitted to an axial crystral field at T=0 K is ivestigated within the framework of the molecular field approximation. An analytical ionic magnetic state equation is deduced; it shows how the magnetization depends on the model parameters (exchange, crystal field, band occupation) and external magnetic field. A condition for the onset of spontaneous magnetic order is obtained and the ferro - and paramagnetic phases are studied. This study displays several features of real magnetic systems, including quenching or total suppression of the magnetic moments (depending on the relative value of the crystal field parameter) and exchange enhacement. The relevance of such model for the description of rare-earth intermetallic compounds is discussed. (author) [pt

  5. The Optimization of the Local Public Policies’ Development Process Through Modeling And Simulation

    Directory of Open Access Journals (Sweden)

    Minodora URSĂCESCU

    2012-06-01

    Full Text Available The local public policies development in Romania represents an empirically realized measure, the strategic management practices in this domain not being based on a scientific instrument capable to anticipate and evaluate the results of implementing a local public policy in a logic of needs-policies-effects type. Beginning from this motivation, the purpose of the paper resides in the reconceptualization of the public policies process on functioning principles of the dynamic systems with inverse connection, by means of mathematical modeling and techniques simulation. Therefore, the research is oriented in the direction of developing an optimization method for the local public policies development process, using as instruments the mathematical modeling and the techniques simulation. The research’s main results are on the one side constituted by generating a new process concept of the local public policies, and on the other side by proposing the conceptual model of a complex software product which will permit the parameterized modeling in a virtual environment of these policies development process. The informatic product’s finality resides in modeling and simulating each local public policy type, taking into account the respective policy’s characteristics, but also the value of their appliance environment parameters in a certain moment.

  6. The principle of locality: Effectiveness, fate, and challenges

    International Nuclear Information System (INIS)

    Doplicher, Sergio

    2010-01-01

    The special theory of relativity and quantum mechanics merge in the key principle of quantum field theory, the principle of locality. We review some examples of its 'unreasonable effectiveness' in giving rise to most of the conceptual and structural frame of quantum field theory, especially in the absence of massless particles. This effectiveness shows up best in the formulation of quantum field theory in terms of operator algebras of local observables; this formulation is successful in digging out the roots of global gauge invariance, through the analysis of superselection structure and statistics, in the structure of the local observable quantities alone, at least for purely massive theories; but so far it seems unfit to cope with the principle of local gauge invariance. This problem emerges also if one attempts to figure out the fate of the principle of locality in theories describing the gravitational forces between elementary particles as well. An approach based on the need to keep an operational meaning, in terms of localization of events, of the notion of space-time, shows that, in the small, the latter must loose any meaning as a classical pseudo-Riemannian manifold, locally based on Minkowski space, but should acquire a quantum structure at the Planck scale. We review the geometry of a basic model of quantum space-time and some attempts to formulate interaction of quantum fields on quantum space-time. The principle of locality is necessarily lost at the Planck scale, and it is a crucial open problem to unravel a replacement in such theories which is equally mathematically sharp, namely, a principle where the general theory of relativity and quantum mechanics merge, which reduces to the principle of locality at larger scales. Besides exploring its fate, many challenges for the principle of locality remain; among them, the analysis of superselection structure and statistics also in the presence of massless particles, and to give a precise mathematical

  7. Local lattice-gas model for immiscible fluids

    International Nuclear Information System (INIS)

    Chen, S.; Doolen, G.D.; Eggert, K.; Grunau, D.; Loh, E.Y.

    1991-01-01

    We present a lattice-gas model for two-dimensional immiscible fluid flows with surface tension that uses strictly local collision rules. Instead of using a local total color flux as Somers and Rem [Physica D 47, 39 (1991)], we use local colored holes to be the memory of particles of the same color. Interactions between walls and fluids are included that produce arbitrary contact angles

  8. Local effect of zoledronic acid on new bone formation in posterolateral spinal fusion with demineralized bone matrix in a murine model.

    Science.gov (United States)

    Zwolak, Pawel; Farei-Campagna, Jan; Jentzsch, Thorsten; von Rechenberg, Brigitte; Werner, Clément M

    2018-01-01

    Posterolateral spinal fusion is a common orthopaedic surgery performed to treat degenerative and traumatic deformities of the spinal column. In posteriolateral spinal fusion, different osteoinductive demineralized bone matrix products have been previously investigated. We evaluated the effect of locally applied zoledronic acid in combination with commercially available demineralized bone matrix putty on new bone formation in posterolateral spinal fusion in a murine in vivo model. A posterolateral sacral spine fusion in murine model was used to evaluate the new bone formation. We used the sacral spine fusion model to model the clinical situation in which a bone graft or demineralized bone matrix is applied after dorsal instrumentation of the spine. In our study, group 1 received decortications only (n = 10), group 2 received decortication, and absorbable collagen sponge carrier, group 3 received decortication and absorbable collagen sponge carrier with zoledronic acid in dose 10 µg, group 4 received demineralized bone matrix putty (DBM putty) plus decortication (n = 10), and group 5 received DBM putty, decortication and locally applied zoledronic acid in dose 10 µg. Imaging was performed using MicroCT for new bone formation assessment. Also, murine spines were harvested for histopathological analysis 10 weeks after surgery. The surgery performed through midline posterior approach was reproducible. In group with decortication alone there was no new bone formation. Application of demineralized bone matrix putty alone produced new bone formation which bridged the S1-S4 laminae. Local application of zoledronic acid to demineralized bone matrix putty resulted in significant increase of new bone formation as compared to demineralized bone matrix putty group alone. A single local application of zoledronic acid with DBM putty during posterolateral fusion in sacral murine spine model increased significantly new bone formation in situ in our model. Therefore, our

  9. A morphing strategy to couple non-local to local continuum mechanics

    KAUST Repository

    Lubineau, Gilles

    2012-06-01

    A method for coupling non-local continuum models with long-range central forces to local continuum models is proposed. First, a single unified model that encompasses both local and non-local continuum representations is introduced. This model can be purely non-local, purely local or a hybrid depending on the constitutive parameters. Then, the coupling between the non-local and local descriptions is performed through a transition (morphing) affecting only the constitutive parameters. An important feature is the definition of the morphing functions, which relies on energy equivalence. This approach is useful in large-scale modeling of materials that exhibit strong non-local effects. The computational cost can be reduced while maintaining a reasonable level of accuracy. Efficiency, robustness and basic properties of the approach are discussed using one- and two-dimensional examples. © 2012 Elsevier Ltd.

  10. A morphing strategy to couple non-local to local continuum mechanics

    KAUST Repository

    Lubineau, Gilles; Azdoud, Yan; Han, Fei; Rey, Christian C.; Askari, Abe H.

    2012-01-01

    A method for coupling non-local continuum models with long-range central forces to local continuum models is proposed. First, a single unified model that encompasses both local and non-local continuum representations is introduced. This model can be purely non-local, purely local or a hybrid depending on the constitutive parameters. Then, the coupling between the non-local and local descriptions is performed through a transition (morphing) affecting only the constitutive parameters. An important feature is the definition of the morphing functions, which relies on energy equivalence. This approach is useful in large-scale modeling of materials that exhibit strong non-local effects. The computational cost can be reduced while maintaining a reasonable level of accuracy. Efficiency, robustness and basic properties of the approach are discussed using one- and two-dimensional examples. © 2012 Elsevier Ltd.

  11. Modeling Shock Induced Plasticity in Copper Single Crystal: Numerical and Strain Localization Issues

    International Nuclear Information System (INIS)

    Shehadeh, M

    2011-01-01

    Multiscale dislocation dynamics plasticity (MDDP) simulations are carried out to address the following issues in modeling shock-induced plasticity: 1- the effect of finite element (FE) boundary conditions on shock wave characteristics and wave-dislocation interaction, 2- the effect of the evolution of the dislocation microstructure on lattice rotation and strain localization. While uniaxial strain is achieved with high accuracy using confined boundary condition, periodic boundary condition yields a disturbed wave profile due the edge effect. Including lattice rotation in the analysis leads to higher dislocation density and more localized plastic strain. (author)

  12. An investigation into electromagnetic force models: differences in global and local effects demonstrated by selected problems

    Science.gov (United States)

    Reich, Felix A.; Rickert, Wilhelm; Müller, Wolfgang H.

    2018-03-01

    This study investigates the implications of various electromagnetic force models in macroscopic situations. There is an ongoing academic discussion which model is "correct," i.e., generally applicable. Often, gedankenexperiments with light waves or photons are used in order to motivate certain models. In this work, three problems with bodies at the macroscopic scale are used for computing theoretical model-dependent predictions. Two aspects are considered, total forces between bodies and local deformations. By comparing with experimental data, insight is gained regarding the applicability of the models. First, the total force between two cylindrical magnets is computed. Then a spherical magnetostriction problem is considered to show different deformation predictions. As a third example focusing on local deformations, a droplet of silicone oil in castor oil is considered, placed in a homogeneous electric field. By using experimental data, some conclusions are drawn and further work is motivated.

  13. Region effects influence local tree species diversity.

    Science.gov (United States)

    Ricklefs, Robert E; He, Fangliang

    2016-01-19

    Global patterns of biodiversity reflect both regional and local processes, but the relative importance of local ecological limits to species coexistence, as influenced by the physical environment, in contrast to regional processes including species production, dispersal, and extinction, is poorly understood. Failure to distinguish regional influences from local effects has been due, in part, to sampling limitations at small scales, environmental heterogeneity within local or regional samples, and incomplete geographic sampling of species. Here, we use a global dataset comprising 47 forest plots to demonstrate significant region effects on diversity, beyond the influence of local climate, which together explain more than 92% of the global variation in local forest tree species richness. Significant region effects imply that large-scale processes shaping the regional diversity of forest trees exert influence down to the local scale, where they interact with local processes to determine the number of coexisting species.

  14. Tracer experiment data sets for the verification of local and meso-scale atmospheric dispersion models including topographic effects

    International Nuclear Information System (INIS)

    Sartori, E.; Schuler, W.

    1992-01-01

    Software and data for nuclear energy applications are acquired, tested and distributed by several information centres; in particular, relevant computer codes are distributed internationally by the OECD/NEA Data Bank (France) and by ESTSC and EPIC/RSIC (United States). This activity is coordinated among the centres and is extended outside the OECD area through an arrangement with the IAEA. This article proposes more specifically a scheme for acquiring, storing and distributing atmospheric tracer experiment data (ATE) required for verification of atmospheric dispersion models especially the most advanced ones including topographic effects and specific to the local and meso-scale. These well documented data sets will form a valuable complement to the set of atmospheric dispersion computer codes distributed internationally. Modellers will be able to gain confidence in the predictive power of their models or to verify their modelling skills. (au)

  15. A model of optimization for local energy infrastructure development

    International Nuclear Information System (INIS)

    Juroszek, Zbigniew; Kudelko, Mariusz

    2016-01-01

    The authors present a non-linear, optimization model supporting the planning of local energy systems development. The model considers two forms of final energy – heat and electricity. The model reflects both private and external costs and is designed to show the social perspective. It considers the variability of the marginal costs attributed to local renewable resources. In order to demonstrate the capacity of the model, the authors present a case study by modelling the development of the energy infrastructure in a municipality located in the south of Poland. The ensuing results show that a swift and significant shift in the local energy policy of typical central European municipalities is needed. The modelling is done in two scenarios – with and without the internalization of external environmental costs. The results confirm that the internalization of the external costs of energy production on a local scale leads to a significant improvement in the allocation of resources. - Highlights: • A model for municipal energy system development in Central European environment has been developed. • The variability of marginal costs of local, renewable fuels is considered. • External, environmental costs are considered. • The model reflects both network and individual energy infrastructure (e.g. individual housing boilers). • A swift change in Central European municipal energy infrastructure is necessary.

  16. Local fit evaluation of structural equation models using graphical criteria.

    Science.gov (United States)

    Thoemmes, Felix; Rosseel, Yves; Textor, Johannes

    2018-03-01

    Evaluation of model fit is critically important for every structural equation model (SEM), and sophisticated methods have been developed for this task. Among them are the χ² goodness-of-fit test, decomposition of the χ², derived measures like the popular root mean square error of approximation (RMSEA) or comparative fit index (CFI), or inspection of residuals or modification indices. Many of these methods provide a global approach to model fit evaluation: A single index is computed that quantifies the fit of the entire SEM to the data. In contrast, graphical criteria like d-separation or trek-separation allow derivation of implications that can be used for local fit evaluation, an approach that is hardly ever applied. We provide an overview of local fit evaluation from the viewpoint of SEM practitioners. In the presence of model misfit, local fit evaluation can potentially help in pinpointing where the problem with the model lies. For models that do fit the data, local tests can identify the parts of the model that are corroborated by the data. Local tests can also be conducted before a model is fitted at all, and they can be used even for models that are globally underidentified. We discuss appropriate statistical local tests, and provide applied examples. We also present novel software in R that automates this type of local fit evaluation. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  17. Relative-locality effects in Snyder spacetime

    International Nuclear Information System (INIS)

    Mignemi, S.; Samsarov, A.

    2017-01-01

    Most models of noncommutative geometry and doubly special relativity suggest that the principle of absolute locality should be replaced by the milder notion of relative locality. In particular, they predict the occurrence of a delay in the time of arrival of massless particle of different energies emitted by a distant observer. In this letter, we show that this is not the case with Snyder spacetime, essentially because the Lorentz invariance is not deformed in this case. Distant observers may however measure different times of flight for massive particles. - Highlights: • We discuss the dynamics of the Snyder model from the point of view of relative locality. • We show that no time delay is present for particles emitted by distant observers. • We ascribe this fact to the Lorentz invariance of the model. • Distant observers may however measure different times of flight for massive particle.

  18. Relative-locality effects in Snyder spacetime

    Energy Technology Data Exchange (ETDEWEB)

    Mignemi, S., E-mail: smignemi@unica.it [Dipartimento di Matematica e Informatica, Università di Cagliari, viale Merello 92, 09123 Cagliari (Italy); INFN, Sezione di Cagliari, Cittadella Universitaria, 09042 Monserrato (Italy); Samsarov, A., E-mail: andjelo.samsarov@irb.hr [Rudjer Bošković Institute, Bijenička cesta 54, 10002 Zagreb (Croatia)

    2017-05-18

    Most models of noncommutative geometry and doubly special relativity suggest that the principle of absolute locality should be replaced by the milder notion of relative locality. In particular, they predict the occurrence of a delay in the time of arrival of massless particle of different energies emitted by a distant observer. In this letter, we show that this is not the case with Snyder spacetime, essentially because the Lorentz invariance is not deformed in this case. Distant observers may however measure different times of flight for massive particles. - Highlights: • We discuss the dynamics of the Snyder model from the point of view of relative locality. • We show that no time delay is present for particles emitted by distant observers. • We ascribe this fact to the Lorentz invariance of the model. • Distant observers may however measure different times of flight for massive particle.

  19. Strain gradient crystal plasticity effects on flow localization

    DEFF Research Database (Denmark)

    Borg, Ulrik

    2007-01-01

    for metals described by the reformulated Fleck-Hutchinson strain gradient plasticity theory. The theory is implemented numerically within a finite element framework using slip rate increments and displacement increments as state variables. The formulation reduces to the classical crystal plasticity theory...... in the absence of strain gradients. The model is used to study the effect of an internal material length scale on the localization of plastic flow in shear bands in a single crystal under plane strain tension. It is shown that the mesh sensitivity is removed when using the nonlocal material model considered...

  20. Investigating the Effective Factors on Entering into International Markets by Presenting the Local Islamic Model

    Directory of Open Access Journals (Sweden)

    Sayyed Mohammad Ali Alamolhodaei

    2015-03-01

    Full Text Available The internationalization of small and medium size businesses is regarded as one of the most leading general policies in many of the world’s countries. The reason is that it is often the small and medium size companies which have a vital role in industrial innovation and gain profit for their societies through economic development. This research has investigated and identified the effective factors (organizational factors and business etiquette in Islam on entering into international markets by presenting local Islamic model in the companies of incubator of Science and Technology Park. The statistical population of the research includes the existing companies of Incubator of Mashhad Science and Technology Park. The statistical sample was investigated through simple random sampling from managers of active companies in export in Science and Technology Park. AMOS and SPSS software were applied for data analysis to identify the effects among variables survey research methodology and questionnaire tools were used.

  1. A space-jump derivation for non-local models of cell-cell adhesion and non-local chemotaxis.

    Science.gov (United States)

    Buttenschön, Andreas; Hillen, Thomas; Gerisch, Alf; Painter, Kevin J

    2018-01-01

    Cellular adhesion provides one of the fundamental forms of biological interaction between cells and their surroundings, yet the continuum modelling of cellular adhesion has remained mathematically challenging. In 2006, Armstrong et al. proposed a mathematical model in the form of an integro-partial differential equation. Although successful in applications, a derivation from an underlying stochastic random walk has remained elusive. In this work we develop a framework by which non-local models can be derived from a space-jump process. We show how the notions of motility and a cell polarization vector can be naturally included. With this derivation we are able to include microscopic biological properties into the model. We show that particular choices yield the original Armstrong model, while others lead to more general models, including a doubly non-local adhesion model and non-local chemotaxis models. Finally, we use random walk simulations to confirm that the corresponding continuum model represents the mean field behaviour of the stochastic random walk.

  2. A Local Composition Model for Paraffinic Solid Solutions

    DEFF Research Database (Denmark)

    Coutinho, A.P. João; Knudsen, Kim; Andersen, Simon Ivar

    1996-01-01

    The description of the solid-phase non-ideality remains the main obstacle in modelling the solid-liquid equilibrium of hydrocarbons. A theoretical model, based on the local composition concept, is developed for the orthorhombic phase of n-alkanes and tested against experimental data for binary sy...... systems. It is shown that it can adequately predict the experimental phase behaviour of paraffinic mixtures. This work extends the applicability of local composition models to the solid phase. Copyright (C) 1996 Elsevier Science Ltd....

  3. Globally COnstrained Local Function Approximation via Hierarchical Modelling, a Framework for System Modelling under Partial Information

    DEFF Research Database (Denmark)

    Øjelund, Henrik; Sadegh, Payman

    2000-01-01

    be obtained. This paper presents a new approach for system modelling under partial (global) information (or the so called Gray-box modelling) that seeks to perserve the benefits of the global as well as local methodologies sithin a unified framework. While the proposed technique relies on local approximations......Local function approximations concern fitting low order models to weighted data in neighbourhoods of the points where the approximations are desired. Despite their generality and convenience of use, local models typically suffer, among others, from difficulties arising in physical interpretation...... simultaneously with the (local estimates of) function values. The approach is applied to modelling of a linear time variant dynamic system under prior linear time invariant structure where local regression fails as a result of high dimensionality....

  4. Effect of conductor geometry on source localization: Implications for epilepsy studies

    International Nuclear Information System (INIS)

    Schlitt, H.; Heller, L.; Best, E.; Ranken, D.; Aaron, R.

    1994-01-01

    We shall discuss the effects of conductor geometry on source localization for applications in epilepsy studies. The most popular conductor model for clinical MEG studies is a homogeneous sphere. However, several studies have indicated that a sphere is a poor model for the head when the sources are deep, as is the case for epileptic foci in the mesial temporal lobe. We believe that replacing the spherical model with a more realistic one in the inverse fitting procedure will improve the accuracy of localizing epileptic sources. In order to include a realistic head model in the inverse problem, we must first solve the forward problem for the realistic conductor geometry. We create a conductor geometry model from MR images, and then solve the forward problem via a boundary integral equation for the electric potential due to a specified primary source. One the electric potential is known, the magnetic field can be calculated directly. The most time-intensive part of the problem is generating the conductor model; fortunately, this needs to be done only once for each patient. It takes little time to change the primary current and calculate a new magnetic field for use in the inverse fitting procedure. We present the results of a series of computer simulations in which we investigate the localization accuracy due to replacing the spherical model with the realistic head model in the inverse fitting procedure. The data to be fit consist of a computer generated magnetic field due to a known current dipole in a realistic head model, with added noise. We compare the localization errors when this field is fit using a spherical model to the fit using a realistic head model. Using a spherical model is comparable to what is usually done when localizing epileptic sources in humans, where the conductor model used in the inverse fitting procedure does not correspond to the actual head

  5. Semi-local invariance in Ising models with multi-spin interaction

    International Nuclear Information System (INIS)

    Lipowski, A.

    1996-08-01

    We examine implications of semi-local invariance in Ising models with multispin interaction. In ergodic models all spin-spin correlation functions vanish and the local symmetry is the same as in locally gauge-invariant models. The d = 3 model with four-spin interaction is nonergodic at low temperature but the magnetic symmetry remains unbroken. The d = 3 model with eight-spin interaction is ergodic but undergoes the phase transition and most likely its low-temperature phase is characterized by a nonlocal order parameter. (author). 7 refs, 1 fig

  6. Effect of altering local protein fluctuations using artificial intelligence

    Directory of Open Access Journals (Sweden)

    Katsuhiko Nishiyama

    2017-03-01

    Full Text Available The fluctuations in Arg111, a significantly fluctuating residue in cathepsin K, were locally regulated by modifying Arg111 to Gly111. The binding properties of 15 dipeptides in the modified protein were analyzed by molecular simulations, and modeled as decision trees using artificial intelligence. The decision tree of the modified protein significantly differed from that of unmodified cathepsin K, and the Arg-to-Gly modification exerted a remarkable effect on the peptide binding properties. By locally regulating the fluctuations of a protein, we may greatly alter the original functions of the protein, enabling novel applications in several fields.

  7. Effect of altering local protein fluctuations using artificial intelligence

    Science.gov (United States)

    Nishiyama, Katsuhiko

    2017-03-01

    The fluctuations in Arg111, a significantly fluctuating residue in cathepsin K, were locally regulated by modifying Arg111 to Gly111. The binding properties of 15 dipeptides in the modified protein were analyzed by molecular simulations, and modeled as decision trees using artificial intelligence. The decision tree of the modified protein significantly differed from that of unmodified cathepsin K, and the Arg-to-Gly modification exerted a remarkable effect on the peptide binding properties. By locally regulating the fluctuations of a protein, we may greatly alter the original functions of the protein, enabling novel applications in several fields.

  8. Variational local moment approach: From Kondo effect to Mott transition in correlated electron systems

    International Nuclear Information System (INIS)

    Kauch, Anna; Byczuk, Krzysztof

    2012-01-01

    The variational local moment approach (VLMA) solution of the single impurity Anderson model is presented. It generalizes the local moment approach of Logan et al. by invoking the variational principle to determine the lengths of local moments and orbital occupancies. We show that VLMA is a comprehensive, conserving and thermodynamically consistent approximation and treats both Fermi and non-Fermi liquid regimes as well as local moment phases on equal footing. We tested VLMA on selected problems. We solved the single- and multi-orbital impurity Anderson model in various regions of parameters, where different types of Kondo effects occur. The application of VLMA as an impurity solver of the dynamical mean-field theory, used to solve the multi-orbital Hubbard model, is also addressed.

  9. A Local Land Use Competition Cellular Automata Model and Its Application

    Directory of Open Access Journals (Sweden)

    Jun Yang

    2016-06-01

    Full Text Available Cellular automaton (CA is an important method in land use and cover change studies, however, the majority of research focuses on the discovery of macroscopic factors affecting LUCC, which results in ignoring the local effects within the neighborhoods. This paper introduces a Local Land Use Competition Cellular Automata (LLUC-CA model, based on local land use competition, land suitability evaluation, demand analysis of the different land use types, and multi-target land use competition allocation algorithm to simulate land use change at a micro level. The model is applied to simulate land use changes at Jinshitan National Tourist Holiday Resort from 1988 to 2012. The results show that the simulation accuracies were 64.46%, 77.21%, 85.30% and 99.14% for the agricultural land, construction land, forestland and water, respectively. In addition, comparing the simulation results of the LLUC-CA and CA-Markov model with the real land use data, their overall spatial accuracies were found to be 88.74% and 86.82%, respectively. In conclusion, the results from this study indicated that the model was an acceptable method for the simulation of large-scale land use changes, and the approach used here is applicable to analyzing the land use change driven forces and assist in decision-making.

  10. Taylor expansion of luminosity distance in Szekeres cosmological models: effects of local structures evolution on cosmographic parameters

    Energy Technology Data Exchange (ETDEWEB)

    Villani, Mattia, E-mail: villani@fi.infn.it [Sezione INFN di Firenze, Polo Scientifico Via Sansone 1, 50019, Sesto Fiorentino (Italy)

    2014-06-01

    We consider the Goode-Wainwright representation of the Szekeres cosmological models and calculate the Taylor expansion of the luminosity distance in order to study the effects of the inhomogeneities on cosmographic parameters. Without making a particular choice for the arbitrary functions defining the metric, we Taylor expand up to the second order in redshift for Family I and up to the third order for Family II Szekeres metrics under the hypotesis, based on observation, that local structure formation is over. In a conservative fashion, we also allow for the existence of a non null cosmological constant.

  11. Local models violating Bell's inequality by time delays

    International Nuclear Information System (INIS)

    Scalera, G.C.

    1984-01-01

    The performance of ensemble averages is neither a sufficient nor a necessary condition to avoid Bell's inequality violations characteristic of nonergodic systems. Slight modifications of a local nonergodic logical model violating Bell's inequality produce a stochastic model exactly fitting the quantum-mechanical correlation function. From these considerations is appears evident that the last experiments on the existence of local hidden variables are not conclusive

  12. A DGTD method for the numerical modeling of the interaction of light with nanometer scale metallic structures taking into account non-local dispersion effects

    Energy Technology Data Exchange (ETDEWEB)

    Schmitt, Nikolai [Inria, 2004 Route des Lucioles, BP 93, 06902 Sophia Antipolis Cedex (France); Technische Universitaet Darmstadt, Institut fuer Theorie Elektromagnetischer Felder (TEMF), Schlossgartenstr. 8, 64289 Darmstadt (Germany); Scheid, Claire [Inria, 2004 Route des Lucioles, BP 93, 06902 Sophia Antipolis Cedex (France); University of Nice – Sophia Antipolis, Mathematics laboratory, Parc Valrose, 06108 Nice, Cedex 02 (France); Lanteri, Stéphane, E-mail: Stephane.Lanteri@inria.fr [Inria, 2004 Route des Lucioles, BP 93, 06902 Sophia Antipolis Cedex (France); Moreau, Antoine [Institut Pascal, Université Blaise Pascal, 24, avenue des Landais, 63171 Aubière Cedex (France); Viquerat, Jonathan [Inria, 2004 Route des Lucioles, BP 93, 06902 Sophia Antipolis Cedex (France)

    2016-07-01

    The interaction of light with metallic nanostructures is increasingly attracting interest because of numerous potential applications. Sub-wavelength metallic structures, when illuminated with a frequency close to the plasma frequency of the metal, present resonances that cause extreme local field enhancements. Exploiting the latter in applications of interest requires a detailed knowledge about the occurring fields which can actually not be obtained analytically. For the latter mentioned reason, numerical tools are thus an absolute necessity. The insight they provide is very often the only way to get a deep enough understanding of the very rich physics at play. For the numerical modeling of light-structure interaction on the nanoscale, the choice of an appropriate material model is a crucial point. Approaches that are adopted in a first instance are based on local (i.e. with no interaction between electrons) dispersive models, e.g. Drude or Drude–Lorentz models. From the mathematical point of view, when a time-domain modeling is considered, these models lead to an additional system of ordinary differential equations coupled to Maxwell's equations. However, recent experiments have shown that the repulsive interaction between electrons inside the metal makes the response of metals intrinsically non-local and that this effect cannot generally be overlooked. Technological achievements have enabled the consideration of metallic structures in a regime where such non-localities have a significant influence on the structures' optical response. This leads to an additional, in general non-linear, system of partial differential equations which is, when coupled to Maxwell's equations, significantly more difficult to treat. Nevertheless, dealing with a linearized non-local dispersion model already opens the route to numerous practical applications of plasmonics. In this work, we present a Discontinuous Galerkin Time-Domain (DGTD) method able to solve the system

  13. Robust MR spine detection using hierarchical learning and local articulated model.

    Science.gov (United States)

    Zhan, Yiqiang; Maneesh, Dewan; Harder, Martin; Zhou, Xiang Sean

    2012-01-01

    A clinically acceptable auto-spine detection system, i.e., localization and labeling of vertebrae and inter-vertebral discs, is required to have high robustness, in particular to severe diseases (e.g., scoliosis) and imaging artifacts (e.g. metal artifacts in MR). Our method aims to achieve this goal with two novel components. First, instead of treating vertebrae/discs as either repetitive components or completely independent entities, we emulate a radiologist and use a hierarchial strategy to learn detectors dedicated to anchor (distinctive) vertebrae, bundle (non-distinctive) vertebrae and inter-vertebral discs, respectively. At run-time, anchor vertebrae are detected concurrently to provide redundant and distributed appearance cues robust to local imaging artifacts. Bundle vertebrae detectors provide candidates of vertebrae with subtle appearance differences, whose labels are mutually determined by anchor vertebrae to gain additional robustness. Disc locations are derived from a cloud of responses from disc detectors, which is robust to sporadic voxel-level errors. Second, owing to the non-rigidness of spine anatomies, we employ a local articulated model to effectively model the spatial relations across vertebrae and discs. The local articulated model fuses appearance cues from different detectors in a way that is robust to abnormal spine geometry resulting from severe diseases. Our method is validated by 300 MR spine scout scans and exhibits robust performance, especially to cases with severe diseases and imaging artifacts.

  14. Full-wave modeling of ICRF waves: global and quasi-local descriptions

    International Nuclear Information System (INIS)

    Dumont, R. J.

    2007-01-01

    Waves in the Ion Cyclotron Range of Frequencies (ICRF) undergo significant space dispersion as they propagate in magnetic fusion plasmas, making it necessary to incorporate non-local effects in their physical description. Full-wave codes are routinely employed to simulate ICRF heating experiments in tokamaks. The vast majority of these codes rely on a description of the plasma based on a 'quasi-local' derivation of the dielectric tensor, i.e. assuming that the range of space dispersion remains small compared to the system dimensions. However, non-local effects caused by wide particle orbits are expected to play a significant role in current and future experiments featuring wave-driven fast ions, fusion-born alpha particles... Global formalisms have thus been proposed to include these effects in a more comprehensive fashion. Based on a description of the particle dynamics in terms of action-angle variables, a full-wave code, named EVE, is currently under development. Its first version, presented here, incorporates quasi-local expressions valid to second order in Larmor radius, derived from the more general Hamiltonian formalism. The obtained tool has the advantage of being compatible with the current requirements of integrated modeling, and lends itself to direct comparisons with existing codes

  15. Integrated modeling and characterization of local crack chemistry

    International Nuclear Information System (INIS)

    Savchik, J.A.; Burke, M.S.

    1996-01-01

    The MULTEQ computer program has become an industry wide tool which can be used to calculate the chemical composition in a flow occluded region as the solution within concentrates due to a local boiling process. These results can be used to assess corrosion concerns in plant equipment such as steam generators. Corrosion modeling attempts to quantify corrosion assessments by accounting for the mass transport processes involved in the corrosion mechanism. MULTEQ has played an ever increasing role in defining the local chemistry for such corrosion models. This paper will outline how the integration of corrosion modeling with the analysis of corrosion films and deposits can lead to the development of a useful modeling tool, wherein MULTEQ is interactively linked to a diffusion and migration transport process. This would provide a capability to make detailed inferences of the local crack chemistry based on the analyses of the local corrosion films and deposits inside a crack and thus provide guidance for chemical fixes to avoid cracking. This methodology is demonstrated for a simple example of a cracked tube. This application points out the utility of coupling MULTEQ with a mass transport process and the feasibility of an option in a future version of MULTEQ that would permit relating film and deposit analyses to the local chemical environment. This would increase the amount of information obtained from removed tube analyses and laboratory testing that can contribute to an overall program for mitigating tubing and crevice corrosion

  16. Integrated modeling and characterization of local crack chemistry

    International Nuclear Information System (INIS)

    Savchik, J.A.; Burke, M.S.

    1995-01-01

    The MULTEQ computer program has become an industry wide tool which can be used to calculate the chemical composition in a flow occluded region as the solution within concentrates due to a local boiling process. These results can be used to assess corrosion concerns in plant equipment such as steam generators. Corrosion modeling attempts to quantify corrosion assessments by accounting for the mass transport processes involved in the corrosion mechanism. MULTEQ has played an ever increasing role in defining the local chemistry for such corrosion models. This paper will outline how the integration of corrosion modeling with the analysis of corrosion films and deposits can lead to the development of a useful modeling tool, wherein MULTEQ is interactively linked to a diffusion and migration transport process. This would provide a capability to make detailed inferences of the local crack chemistry based on the analyses of the local corrosion films and deposits inside a crack and thus provide guidance for chemical fixes to avoid cracking. This methodology is demonstrated for a simple example of a cracked tube. This application points out the utility of coupling MULTEQ with a mass transport process and the feasibility of an option in a future version of MULTEQ that would permit relating film and deposit analyses to the local chemical environment. This would increase the amount of information obtained from removed tube analyses and laboratory testing that can contribute to an overall program for mitigating tubing and crevice corrosion

  17. Simulation of delamination crack growth in composite laminates: application of local and non-local interface damage models

    International Nuclear Information System (INIS)

    Ijaz, H.; Asad, M.

    2015-01-01

    The use of composite laminates is increasing in these days due to higher strength and low density values in comparison of metals. Delamination is a major source of failure in composite laminates. Damage mechanics based theories are employed to simulate the delamination phenomena between composite laminates. These damage models are inherently local and can cause the concentration of stresses around the crack tip. In the present study integral type non-local damage formulation is proposed to avoid the localization problem associated to damage formulation. A comprehensive study is carried out for the models and classical local damage model are performed and results are compared with available experimental data for un IMS/924 Carbon/fiber epoxy composite laminate. (author)

  18. Effective theory of rotationally faulted multilayer graphene - the local limit

    International Nuclear Information System (INIS)

    Kindermann, M; First, P N

    2012-01-01

    Interlayer coupling in rotationally faulted graphene multilayers breaks the local sublattice-symmetry of the individual layers. Earlier we have presented a theory of this mechanism, which reduces to an effective Dirac model with space-dependent mass in an important limit. It thus makes a wealth of existing knowledge available for the study of rotationally faulted graphene multilayers. Agreement of this theory with a recent experiment in a strong magnetic field was demonstrated. Here we explore some of the predictions of this theory for the system in zero magnetic field at large interlayer bias, when it becomes local in space. We use that theory to illuminate the physics of localization and velocity renormalization in twisted graphene layers. (paper)

  19. Destruction of Anderson localization by nonlinearity in kicked rotator at different effective dimensions

    International Nuclear Information System (INIS)

    Ermann, L; Shepelyansky, D L

    2014-01-01

    We study numerically the frequency modulated kicked nonlinear rotator with effective dimension d=1,2,3,4. We follow the time evolution of the model up to 10 9 kicks and determine the exponent α of subdiffusive spreading which changes from 0.35 to 0.5 when the dimension changes from d = 1 to 4. All results are obtained in a regime of relatively strong Anderson localization well below the Anderson transition point existing for d = 3, 4. We explain that this variation of the exponent is different from the usual d− dimensional Anderson models with local nonlinearity where α drops with increasing d. We also argue that the renormalization arguments proposed by Cherroret N et al (arXiv:1401.1038) are not valid for this model and the Anderson model with local nonlinearity in d = 3. (paper)

  20. Global effects of local food-production crises: a virtual water perspective.

    Science.gov (United States)

    Tamea, Stefania; Laio, Francesco; Ridolfi, Luca

    2016-01-25

    By importing food and agricultural goods, countries cope with the heterogeneous global water distribution and often rely on water resources available abroad. The virtual displacement of the water used to produce such goods (known as virtual water) connects together, in a global water system, all countries participating to the international trade network. Local food-production crises, having social, economic or environmental origin, propagate in this network, modifying the virtual water trade and perturbing local and global food availability, quantified in terms of virtual water. We analyze here the possible effects of local crises by developing a new propagation model, parsimonious but grounded on data-based and statistically-verified assumptions, whose effectiveness is proved on the Argentinean crisis in 2008-09. The model serves as the basis to propose indicators of crisis impact and country vulnerability to external food-production crises, which highlight that countries with largest water resources have the highest impact on the international trade, and that not only water-scarce but also wealthy and globalized countries are among the most vulnerable to external crises. The temporal analysis reveals that global average vulnerability has increased over time and that stronger effects of crises are now found in countries with low food (and water) availability.

  1. Vortices, semi-local vortices in gauged linear sigma model

    International Nuclear Information System (INIS)

    Kim, Namkwon

    1998-11-01

    We consider the static (2+1)D gauged linear sigma model. By analyzing the governing system of partial differential equations, we investigate various aspects of the model. We show the existence of energy finite vortices under a partially broken symmetry on R 2 with the necessary condition suggested by Y. Yang. We also introduce generalized semi-local vortices and show the existence of energy finite semi-local vortices under a certain condition. The vacuum manifold for the semi-local vortices turns out to be graded. Besides, with a special choice of a representation, we show that the O(3) sigma model of which target space is nonlinear is a singular limit of the gauged linear sigma model of which target space is linear. (author)

  2. Random incidence absorption coefficients of porous absorbers based on local and extended reaction models

    DEFF Research Database (Denmark)

    Jeong, Cheol-Ho

    2011-01-01

    resistivity and the absorber thickness on the difference between the two surface reaction models are examined and discussed. For a porous absorber backed by a rigid surface, the local reaction models give errors of less than 10% if the thickness exceeds 120 mm for a flow resistivity of 5000 Nm-4s. As the flow...... incidence acoustical characteristics of typical building elements made of porous materials assuming extended and local reaction. For each surface reaction, five well-established wave propagation models, the Delany-Bazley, Miki, Beranek, Allard-Champoux, and Biot model, are employed. Effects of the flow...... resistivity doubles, a decrease in the required thickness by 25 mm is observed to achieve the same amount of error. For an absorber backed by an air gap, the thickness ratio between the material and air cavity is important. If the absorber thickness is approximately 40% of the cavity depth, the local reaction...

  3. Local perturbations perturb—exponentially–locally

    International Nuclear Information System (INIS)

    De Roeck, W.; Schütz, M.

    2015-01-01

    We elaborate on the principle that for gapped quantum spin systems with local interaction, “local perturbations [in the Hamiltonian] perturb locally [the groundstate].” This principle was established by Bachmann et al. [Commun. Math. Phys. 309, 835–871 (2012)], relying on the “spectral flow technique” or “quasi-adiabatic continuation” [M. B. Hastings, Phys. Rev. B 69, 104431 (2004)] to obtain locality estimates with sub-exponential decay in the distance to the spatial support of the perturbation. We use ideas of Hamza et al. [J. Math. Phys. 50, 095213 (2009)] to obtain similarly a transformation between gapped eigenvectors and their perturbations that is local with exponential decay. This allows to improve locality bounds on the effect of perturbations on the low lying states in certain gapped models with a unique “bulk ground state” or “topological quantum order.” We also give some estimate on the exponential decay of correlations in models with impurities where some relevant correlations decay faster than one would naively infer from the global gap of the system, as one also expects in disordered systems with a localized groundstate

  4. Integrating local urban climate modelling and mobile sensor data for personal exposure assessments in the context of urban heat island effect

    Science.gov (United States)

    Ueberham, Maximilian; Hertel, Daniel; Schlink, Uwe

    2017-04-01

    Deeper knowledge about urban climate conditions is getting more important in the context of climate change, urban population growth, urban compaction and continued surface sealing. Especially the urban heat island effect (UHI) is one of the most significant human induced alterations of Earth's surface climate. According to this the appearance frequency of heat waves in cities will increase with deep impacts on personal thermal comfort, human health and local residential quality of citizens. UHI can be very heterogenic within a city and research needs to focus more on the neighborhood scale perspective to get further insights about the heat burden of individuals. However, up to now, few is known about local thermal environmental variances and personal exposure loads. To monitor these processes and the impact on individuals, improved monitoring approaches are crucial, complementing data recorded at conventional fixed stations. Therefore we emphasize the importance of micro-meteorological modelling and mobile measurements to shed new light on the nexus of urban human-climate interactions. Contributing to this research we jointly present the approaches of our two PhD-projects. Firstly we illustrate on the basis of an example site, how local thermal conditions in an urban district can be simulated and predicted by a micro-meteorological model. Secondly we highlight the potentials of personal exposure measurements based on an evaluation of mobile micro-sensing devices (MSDs) and analyze and explain differences between model predictions and mobile records. For the examination of local thermal conditions we calculated ENVI-met simulations within the "Bayerischer Bahnhof" quarter in Leipzig (Saxony, Germany; 51°20', 12°22'). To accomplish the maximum temperature contrasts within the diverse built-up structures we chose a hot summer day (25 Aug 2016) under autochthonous weather conditions. From these simulations we analyzed a UHI effect between the model core (urban area

  5. Modelling local government unit credit risk in the Republic of Croatia

    Directory of Open Access Journals (Sweden)

    Petra Posedel

    2012-12-01

    Full Text Available The objective of this paper is to determine possible indicators that affect local unit credit risk and investigate their effect on default (credit risk of local government units in Croatia. No system for the estimation of local unit credit risk has been established in Croatia so far causing many practical problems in local unit borrowing. Because of the specific nature of the operations of local government units and legislation that does not allow local government units to go into bankruptcy, conventional methods for estimating credit risk are not applicable, and the set of standard potential determinants of credit risk has to be expanded with new indicators. Thus in the paper, in addition to the usual determinants of credit risk, the hypothesis of the influence of political factors on local unit credit risk in Croatia is also tested out, with the use of a Tobit model. Results of econometric analysis show that credit risk of local government units in Croatia is affected by the political structure of local government, the proportion of income tax and surtax in operating revenue, the ratio of net operating balance, net financial liabilities and direct debt to operating revenue, as well as the ratio of debt repayment and cash, and direct debt and operating revenue.

  6. Integration of Local Hydrology into Regional Hydrologic Simulation Model

    Science.gov (United States)

    Van Zee, R. J.; Lal, W. A.

    2002-05-01

    South Florida hydrology is dominated by the Central and South Florida (C&SF) Project that is managed to provide flood protection, water supply and environmental protection. A complex network of levees canals and structures provide these services to the individual drainage basins. The landscape varies widely across the C&SF system, with corresponding differences in the way water is managed within each basin. Agricultural areas are managed for optimal crop production. Urban areas maximize flood protection while maintaining minimum water levels to protect adjacent wetlands and local water supplies. "Natural" areas flood and dry out in response to the temporal distribution of rainfall. The evaluation of planning, regulation and operational issues require access to a simulation model that captures the effects of both regional and local hydrology. The Regional Simulation Model (RSM) uses a "pseudo-cell" approach to integrate local hydrology within the context of a regional hydrologic system. A 2-dimensional triangulated mesh is used to represent the regional surface and ground water systems and a 1-dimensional canal network is superimposed onto this mesh. The movement of water is simulated using a finite volume formulation with a diffusive wave approximation. Each cell in the triangulated mesh has a "pseudo-cell" counterpart, which represents the same area as the cell, but it is conceptualized such that it simulates the localized hydrologic conditions Protocols have been established to provide an interface between a cell and its pseudo-cell counterpart. . A number of pseudo-cell types have already been developed and tested in the simulation of Water Conservation Area 1 and several have been proposed to deal with specific local issues in the Southwest Florida Feasibility Study. This presentation will provide an overview of the overall RSM design, describe the relationship between cells and pseudo-cells, and illustrate how pseudo-cells are be used to simulate agriculture

  7. GPU-based local interaction simulation approach for simplified temperature effect modelling in Lamb wave propagation used for damage detection

    International Nuclear Information System (INIS)

    Kijanka, P; Radecki, R; Packo, P; Staszewski, W J; Uhl, T

    2013-01-01

    Temperature has a significant effect on Lamb wave propagation. It is important to compensate for this effect when the method is considered for structural damage detection. The paper explores a newly proposed, very efficient numerical simulation tool for Lamb wave propagation modelling in aluminum plates exposed to temperature changes. A local interaction approach implemented with a parallel computing architecture and graphics cards is used for these numerical simulations. The numerical results are compared with the experimental data. The results demonstrate that the proposed approach could be used efficiently to produce a large database required for the development of various temperature compensation procedures in structural health monitoring applications. (paper)

  8. SU-D-16A-03: A Radiation Pneumonitis Dose-Response Model Incorporating Non- Local Radiation-Induced Bystander Effect

    International Nuclear Information System (INIS)

    Gordon, J; Snyder, K; Zhong, H; Chetty, I

    2014-01-01

    Purpose: Dose-response models that can reliably predict radiation pneumonitis (RP) to guide radiation therapy (RT) for lung cancer presently do not exist. A model is proposed that incorporates non-local radiationinduced bystander effect (RIBE). Methods: A single sigmoid response function, derived from published data for whole lung irradiation, relates RP probability to cumulative lung damage, regardless of fractionation scheme. Lung damage is assumed to be caused by direct local radiation damage, quantified via the linear-quadratic (LQ) model, and RIBE. Based on published data, RIBE is assumed to be activated when per-fraction dose rises above ∼0.6 Gy, but is constant with dose above that threshold. Integral RIBE damage is assumed proportional to lung volume irradiated above ∼0.6 Gy per fraction. Key model parameters include LQ α and β, and two RIBE parameters: the single-fraction probability δ of damage, and a proportionality parameter κ that relates the potential for RIBE damage to irradiated lung volume. All parameters are tentatively fitted from published data, the RIBE parameters from published RP rates for conventionally fractionated RT (CFRT) and stereotactic body RT (SBRT). Results: The model predicts dose-response curves that are consistent with clinical experience. It provides a tentative explanation for why V20 (33 fractions), V13 (20 fractions) and V5 (<10 fractions) are observed to be correlated with RP. It also provides a plausible explanation for the success of SBRT — RIBE damage increases with the number of fractions, so penalizes CFRT relative to SBRT. Conclusion: The proposed model is relatively simple, extrapolates from published data, plausibly explains several clinical observations, and produces dose-response curves that are consistent with clinical experience. While capable of elaboration, its ability to explain doseresponse experience with different fractionation schemes using a small number of assumptions and parameters is an

  9. SU-D-16A-03: A Radiation Pneumonitis Dose-Response Model Incorporating Non- Local Radiation-Induced Bystander Effect

    Energy Technology Data Exchange (ETDEWEB)

    Gordon, J; Snyder, K; Zhong, H; Chetty, I [Henry Ford Health System, Dept. Radiation Oncology, Detroit, MI (United States)

    2014-06-01

    Purpose: Dose-response models that can reliably predict radiation pneumonitis (RP) to guide radiation therapy (RT) for lung cancer presently do not exist. A model is proposed that incorporates non-local radiationinduced bystander effect (RIBE). Methods: A single sigmoid response function, derived from published data for whole lung irradiation, relates RP probability to cumulative lung damage, regardless of fractionation scheme. Lung damage is assumed to be caused by direct local radiation damage, quantified via the linear-quadratic (LQ) model, and RIBE. Based on published data, RIBE is assumed to be activated when per-fraction dose rises above ∼0.6 Gy, but is constant with dose above that threshold. Integral RIBE damage is assumed proportional to lung volume irradiated above ∼0.6 Gy per fraction. Key model parameters include LQ α and β, and two RIBE parameters: the single-fraction probability δ of damage, and a proportionality parameter κ that relates the potential for RIBE damage to irradiated lung volume. All parameters are tentatively fitted from published data, the RIBE parameters from published RP rates for conventionally fractionated RT (CFRT) and stereotactic body RT (SBRT). Results: The model predicts dose-response curves that are consistent with clinical experience. It provides a tentative explanation for why V20 (33 fractions), V13 (20 fractions) and V5 (<10 fractions) are observed to be correlated with RP. It also provides a plausible explanation for the success of SBRT — RIBE damage increases with the number of fractions, so penalizes CFRT relative to SBRT. Conclusion: The proposed model is relatively simple, extrapolates from published data, plausibly explains several clinical observations, and produces dose-response curves that are consistent with clinical experience. While capable of elaboration, its ability to explain doseresponse experience with different fractionation schemes using a small number of assumptions and parameters is an

  10. Local-scale high-resolution atmospheric dispersion model using large-eddy simulation. LOHDIM-LES

    International Nuclear Information System (INIS)

    Nakayama, Hiromasa; Nagai, Haruyasu

    2016-03-01

    We developed LOcal-scale High-resolution atmospheric DIspersion Model using Large-Eddy Simulation (LOHDIM-LES). This dispersion model is designed based on LES which is effective to reproduce unsteady behaviors of turbulent flows and plume dispersion. The basic equations are the continuity equation, the Navier-Stokes equation, and the scalar conservation equation. Buildings and local terrain variability are resolved by high-resolution grids with a few meters and these turbulent effects are represented by immersed boundary method. In simulating atmospheric turbulence, boundary layer flows are generated by a recycling turbulent inflow technique in a driver region set up at the upstream of the main analysis region. This turbulent inflow data are imposed at the inlet of the main analysis region. By this approach, the LOHDIM-LES can provide detailed information on wind velocities and plume concentration in the investigated area. (author)

  11. General Business Model Patterns for Local Energy Management Concepts

    International Nuclear Information System (INIS)

    Facchinetti, Emanuele; Sulzer, Sabine

    2016-01-01

    The transition toward a more sustainable global energy system, significantly relying on renewable energies and decentralized energy systems, requires a deep reorganization of the energy sector. The way how energy services are generated, delivered, and traded is expected to be very different in the coming years. Business model innovation is recognized as a key driver for the successful implementation of the energy turnaround. This work contributes to this topic by introducing a heuristic methodology easing the identification of general business model patterns best suited for Local Energy Management concepts such as Energy Hubs. A conceptual framework characterizing the Local Energy Management business model solution space is developed. Three reference business model patterns providing orientation across the defined solution space are identified, analyzed, and compared. Through a market review, a number of successfully implemented innovative business models have been analyzed and allocated within the defined solution space. The outcomes of this work offer to potential stakeholders a starting point and guidelines for the business model innovation process, as well as insights for policy makers on challenges and opportunities related to Local Energy Management concepts.

  12. General Business Model Patterns for Local Energy Management Concepts

    Energy Technology Data Exchange (ETDEWEB)

    Facchinetti, Emanuele, E-mail: emanuele.facchinetti@hslu.ch; Sulzer, Sabine [Lucerne Competence Center for Energy Research, Lucerne University of Applied Science and Arts, Horw (Switzerland)

    2016-03-03

    The transition toward a more sustainable global energy system, significantly relying on renewable energies and decentralized energy systems, requires a deep reorganization of the energy sector. The way how energy services are generated, delivered, and traded is expected to be very different in the coming years. Business model innovation is recognized as a key driver for the successful implementation of the energy turnaround. This work contributes to this topic by introducing a heuristic methodology easing the identification of general business model patterns best suited for Local Energy Management concepts such as Energy Hubs. A conceptual framework characterizing the Local Energy Management business model solution space is developed. Three reference business model patterns providing orientation across the defined solution space are identified, analyzed, and compared. Through a market review, a number of successfully implemented innovative business models have been analyzed and allocated within the defined solution space. The outcomes of this work offer to potential stakeholders a starting point and guidelines for the business model innovation process, as well as insights for policy makers on challenges and opportunities related to Local Energy Management concepts.

  13. A generative, probabilistic model of local protein structure

    DEFF Research Database (Denmark)

    Boomsma, Wouter; Mardia, Kanti V.; Taylor, Charles C.

    2008-01-01

    Despite significant progress in recent years, protein structure prediction maintains its status as one of the prime unsolved problems in computational biology. One of the key remaining challenges is an efficient probabilistic exploration of the structural space that correctly reflects the relative...... conformational stabilities. Here, we present a fully probabilistic, continuous model of local protein structure in atomic detail. The generative model makes efficient conformational sampling possible and provides a framework for the rigorous analysis of local sequence-structure correlations in the native state...

  14. Modeling of liquid–gas meniscus for textured surfaces: effects of curvature and local slip length

    International Nuclear Information System (INIS)

    Gaddam, Anvesh; Garg, Mayank; Agrawal, Amit; Joshi, Suhas S

    2015-01-01

    Surface texturing at the micro/nanolevel allows air to be trapped in sufficiently small cavities, thereby reducing the flow resistance over the surface in the laminar regime. The nature of the liquid–gas meniscus plays an important role in defining the boundary condition and it depends on the flow conditions and geometrical properties of textures. In the present work, we employ the unsteady volume of fluid model to investigate the behavior of the liquid–gas meniscus for ridges arranged normal to the flow direction to substantiate the frictional resistance of flow in a microchannel. It is found that the assumption of ‘zero shear stress’ at the liquid–gas interface grossly overpredicts the effective slip length with meniscus curvature and local partial slip length playing the dominant role. Numerical simulations performed in the laminar regime (20  <  Re  <  120) over single layered ridges normal to the flow direction revealed the effect of texture geometry on the reduction in pressure drop. In single layered structures, lotus-like geometries exhibited a greater reduction in drag (more than 30%) when compared to all other texture geometries. It is recognized that the flow experiences expansion and contraction cycles as it flows over the transverse ridges increasing the frictional resistance. Our findings will help to modify the boundary condition at the liquid–gas meniscus for accurate modeling in the laminar regime and to optimize the texture geometry to improve drag reduction. (paper)

  15. Local yield stress statistics in model amorphous solids

    Science.gov (United States)

    Barbot, Armand; Lerbinger, Matthias; Hernandez-Garcia, Anier; García-García, Reinaldo; Falk, Michael L.; Vandembroucq, Damien; Patinet, Sylvain

    2018-03-01

    We develop and extend a method presented by Patinet, Vandembroucq, and Falk [Phys. Rev. Lett. 117, 045501 (2016), 10.1103/PhysRevLett.117.045501] to compute the local yield stresses at the atomic scale in model two-dimensional Lennard-Jones glasses produced via differing quench protocols. This technique allows us to sample the plastic rearrangements in a nonperturbative manner for different loading directions on a well-controlled length scale. Plastic activity upon shearing correlates strongly with the locations of low yield stresses in the quenched states. This correlation is higher in more structurally relaxed systems. The distribution of local yield stresses is also shown to strongly depend on the quench protocol: the more relaxed the glass, the higher the local plastic thresholds. Analysis of the magnitude of local plastic relaxations reveals that stress drops follow exponential distributions, justifying the hypothesis of an average characteristic amplitude often conjectured in mesoscopic or continuum models. The amplitude of the local plastic rearrangements increases on average with the yield stress, regardless of the system preparation. The local yield stress varies with the shear orientation tested and strongly correlates with the plastic rearrangement locations when the system is sheared correspondingly. It is thus argued that plastic rearrangements are the consequence of shear transformation zones encoded in the glass structure that possess weak slip planes along different orientations. Finally, we justify the length scale employed in this work and extract the yield threshold statistics as a function of the size of the probing zones. This method makes it possible to derive physically grounded models of plasticity for amorphous materials by directly revealing the relevant details of the shear transformation zones that mediate this process.

  16. Evaluation of local site effect from microtremor measurements in Babol City, Iran

    Science.gov (United States)

    Rezaei, Sadegh; Choobbasti, Asskar Janalizadeh

    2018-03-01

    Every year, numerous casualties and a large deal of financial losses are incurred due to earthquake events. The losses incurred by an earthquake vary depending on local site effect. Therefore, in order to conquer drastic effects of an earthquake, one should evaluate urban districts in terms of the local site effect. One of the methods for evaluating the local site effect is microtremor measurement and analysis. Aiming at evaluation of local site effect across the city of Babol, the study area was gridded and microtremor measurements were performed with an appropriate distribution. The acquired data was analyzed through the horizontal-to-vertical noise ratio (HVNR) method, and fundamental frequency and associated amplitude of the H/V peak were obtained. The results indicate that fundamental frequency of the study area is generally lower than 1.25 Hz, which is acceptably in agreement with the findings of previous studies. Also, in order to constrain and validate the seismostratigraphic model obtained with this method, the results were compared with geotechnical, geological, and seismic data. Comparing the results of different methods, it was observed that the presented geophysical method can successfully determine the values of fundamental frequency across the study area as well as local site effect. Using the data obtained from the analysis of microtremor, a microzonation map of fundamental frequency across the city of Babol was prepared. This map has numerous applications in designing high-rise building and urban development plans.

  17. MFAM: Multiple Frequency Adaptive Model-Based Indoor Localization Method.

    Science.gov (United States)

    Tuta, Jure; Juric, Matjaz B

    2018-03-24

    This paper presents MFAM (Multiple Frequency Adaptive Model-based localization method), a novel model-based indoor localization method that is capable of using multiple wireless signal frequencies simultaneously. It utilizes indoor architectural model and physical properties of wireless signal propagation through objects and space. The motivation for developing multiple frequency localization method lies in the future Wi-Fi standards (e.g., 802.11ah) and the growing number of various wireless signals present in the buildings (e.g., Wi-Fi, Bluetooth, ZigBee, etc.). Current indoor localization methods mostly rely on a single wireless signal type and often require many devices to achieve the necessary accuracy. MFAM utilizes multiple wireless signal types and improves the localization accuracy over the usage of a single frequency. It continuously monitors signal propagation through space and adapts the model according to the changes indoors. Using multiple signal sources lowers the required number of access points for a specific signal type while utilizing signals, already present in the indoors. Due to the unavailability of the 802.11ah hardware, we have evaluated proposed method with similar signals; we have used 2.4 GHz Wi-Fi and 868 MHz HomeMatic home automation signals. We have performed the evaluation in a modern two-bedroom apartment and measured mean localization error 2.0 to 2.3 m and median error of 2.0 to 2.2 m. Based on our evaluation results, using two different signals improves the localization accuracy by 18% in comparison to 2.4 GHz Wi-Fi-only approach. Additional signals would improve the accuracy even further. We have shown that MFAM provides better accuracy than competing methods, while having several advantages for real-world usage.

  18. MFAM: Multiple Frequency Adaptive Model-Based Indoor Localization Method

    Directory of Open Access Journals (Sweden)

    Jure Tuta

    2018-03-01

    Full Text Available This paper presents MFAM (Multiple Frequency Adaptive Model-based localization method, a novel model-based indoor localization method that is capable of using multiple wireless signal frequencies simultaneously. It utilizes indoor architectural model and physical properties of wireless signal propagation through objects and space. The motivation for developing multiple frequency localization method lies in the future Wi-Fi standards (e.g., 802.11ah and the growing number of various wireless signals present in the buildings (e.g., Wi-Fi, Bluetooth, ZigBee, etc.. Current indoor localization methods mostly rely on a single wireless signal type and often require many devices to achieve the necessary accuracy. MFAM utilizes multiple wireless signal types and improves the localization accuracy over the usage of a single frequency. It continuously monitors signal propagation through space and adapts the model according to the changes indoors. Using multiple signal sources lowers the required number of access points for a specific signal type while utilizing signals, already present in the indoors. Due to the unavailability of the 802.11ah hardware, we have evaluated proposed method with similar signals; we have used 2.4 GHz Wi-Fi and 868 MHz HomeMatic home automation signals. We have performed the evaluation in a modern two-bedroom apartment and measured mean localization error 2.0 to 2.3 m and median error of 2.0 to 2.2 m. Based on our evaluation results, using two different signals improves the localization accuracy by 18% in comparison to 2.4 GHz Wi-Fi-only approach. Additional signals would improve the accuracy even further. We have shown that MFAM provides better accuracy than competing methods, while having several advantages for real-world usage.

  19. Local galactic kinematics: an isothermal model

    International Nuclear Information System (INIS)

    Nunez, J.

    1983-01-01

    The kinematical parameters of galactic rotation in the solar neighborhood and the corrections to the precession have been calculated. For this purpose, an isothermal model for the solar neighborhood has been used together with the high order momenta of the local stellar velocity distribution and the Ogorodnikov-Milne model. Both have been calculated using some samples of the ''512 Distant FK4/FK4 Sup. Stars'' of Fricke (1977) and of Gliese's Gatalogue. (author)

  20. A non-local model analysis of heat pulse propagation

    International Nuclear Information System (INIS)

    Iwasaki, T.; Itoh, S.I.; Yagi, M.; Stroth, U.

    1998-01-01

    The anomalous transport in high temperature plasma has been studied for a long time, from the beginning of the fusion research. Since the electron channel in stellarators and tokamaks is clearly anomalous, it is of fundamental importance to investigate the electron heat diffusivity coefficient, χ e and to understand the physical mechanism. Recently, the experimental data for the transient transport of the heat pulse propagation in fusion plasma has been accumulated. An observation was reported on W7-AS which the heat flux changes faster than the change of the temperature profile, responding to the switching on off of the central heating power. The observation on the transient response has simulated the transport modeling, e.g., the critical marginality which implies the existence of a finite threshold in ∇T for the excitation of the turbulence, or the model in which the thermal conductivity is assumed to depend on the heating power. Extensive study is made by use of these models, and the critical marginally model seems to be insufficient to explain various transient transport. The rapid change of the plasma state and its hysteresis nature were successfully modeled by a heating-power-dependent model. The foundation of this model, however, is left for future work. The development of the transport modeling remains to be an urgent problem. In this paper, we investigate the role of the non-locality of the plasma transport in the study of the heat pulse propagation. For this purpose, a model equation is proposed, in which the non-local effect is taken into account in the heat flux. The properties of this model are investigated by performing a transport simulation. The organization of this paper is as follows: In Sec. II, the model equation is proposed and the properties of the model are explained. Using the model equation, the switching on off experiment is simulated in Sec. III. Summary and discussion are given in Sec. IV. (author)

  1. Evaluation of sub grid scale and local wall models in Large-eddy simulations of separated flow

    Directory of Open Access Journals (Sweden)

    Sam Ali Al

    2015-01-01

    Full Text Available The performance of the Sub Grid Scale models is studied by simulating a separated flow over a wavy channel. The first and second order statistical moments of the resolved velocities obtained by using Large-Eddy simulations at different mesh resolutions are compared with Direct Numerical Simulations data. The effectiveness of modeling the wall stresses by using local log-law is then tested on a relatively coarse grid. The results exhibit a good agreement between highly-resolved Large Eddy Simulations and Direct Numerical Simulations data regardless the Sub Grid Scale models. However, the agreement is less satisfactory with relatively coarse grid without using any wall models and the differences between Sub Grid Scale models are distinguishable. Using local wall model retuned the basic flow topology and reduced significantly the differences between the coarse meshed Large-Eddy Simulations and Direct Numerical Simulations data. The results show that the ability of local wall model to predict the separation zone depends strongly on its implementation way.

  2. Estimating Causal Effects of Local Air Pollution on Daily Deaths: Effect of Low Levels.

    Science.gov (United States)

    Schwartz, Joel; Bind, Marie-Abele; Koutrakis, Petros

    2017-01-01

    Although many time-series studies have established associations of daily pollution variations with daily deaths, there are fewer at low concentrations, or focused on locally generated pollution, which is becoming more important as regulations reduce regional transport. Causal modeling approaches are also lacking. We used causal modeling to estimate the impact of local air pollution on mortality at low concentrations. Using an instrumental variable approach, we developed an instrument for variations in local pollution concentrations that is unlikely to be correlated with other causes of death, and examined its association with daily deaths in the Boston, Massachusetts, area. We combined height of the planetary boundary layer and wind speed, which affect concentrations of local emissions, to develop the instrument for particulate matter ≤ 2.5 μm (PM2.5), black carbon (BC), or nitrogen dioxide (NO2) variations that were independent of year, month, and temperature. We also used Granger causality to assess whether omitted variable confounding existed. We estimated that an interquartile range increase in the instrument for local PM2.5 was associated with a 0.90% increase in daily deaths (95% CI: 0.25, 1.56). A similar result was found for BC, and a weaker association with NO2. The Granger test found no evidence of omitted variable confounding for the instrument. A separate test confirmed the instrument was not associated with mortality independent of pollution. Furthermore, the association remained when all days with PM2.5 concentrations > 30 μg/m3 were excluded from the analysis (0.84% increase in daily deaths; 95% CI: 0.19, 1.50). We conclude that there is a causal association of local air pollution with daily deaths at concentrations below U.S. EPA standards. The estimated attributable risk in Boston exceeded 1,800 deaths during the study period, indicating that important public health benefits can follow from further control efforts. Citation: Schwartz J, Bind MA

  3. Simulation of local instabilities with the use of reduced order models

    International Nuclear Information System (INIS)

    Dykin, V.; Demaziere, C.; Lange, C.; Hennig, D.

    2011-01-01

    The development of an advanced reduced order model (ROM) with four heated channels, taking into account local, regional and core-wide oscillations, is described. The ROM contains three sub-models: a neutron-kinetic model (describing neutron transport), a thermal- hydraulic model (describing the coolant flow) and a heat transfer model (describing heat transfer between the fuel and the coolant). All these three models are coupled to each other, using two feedback mechanisms: void feedback and doppler feedback. Each of the sub-models is described by a set of reduced ordinary differential equations, derived from the corresponding time space-dependent partial differential equations by using different types of approximations and mathematical techniques. All three models were developed from past ROMs and, subsequently, were modified in order to fit the purpose of our investigations. One of the novelties of the present ROM is that it takes into account the effect of the first three neutronic modes, namely the fundamental, the first and the second azimuthal modes, as well as the effect of local oscillations on these modes. In order to have a proper representation of both azimuthal modes, a four heated channel ROM was developed. Another modification, compared to earlier work, is the determination of the coupling reactivity coefficients for both void fraction and fuel temperature, which were calculated explicitly by evaluating cross-section perturbations with the help of the SIMULATE-3 and the CORESIM codes. The ROM was thereafter applied to a channel instability event that occurred at the Swedish Forsmark-1 BWR in 1996/1997. The time signals for each of the modes were generated from the ROM and compared with the measurements, performed at the plant. Some qualitative comparison between the ROM and the measurements was made. The results could bear some significance in understanding the instability event and its coupling mechanism to core-wide oscillations. (author)

  4. Coarse-grained models using local-density potentials optimized with the relative entropy: Application to implicit solvation

    International Nuclear Information System (INIS)

    Sanyal, Tanmoy; Shell, M. Scott

    2016-01-01

    Bottom-up multiscale techniques are frequently used to develop coarse-grained (CG) models for simulations at extended length and time scales but are often limited by a compromise between computational efficiency and accuracy. The conventional approach to CG nonbonded interactions uses pair potentials which, while computationally efficient, can neglect the inherently multibody contributions of the local environment of a site to its energy, due to degrees of freedom that were coarse-grained out. This effect often causes the CG potential to depend strongly on the overall system density, composition, or other properties, which limits its transferability to states other than the one at which it was parameterized. Here, we propose to incorporate multibody effects into CG potentials through additional nonbonded terms, beyond pair interactions, that depend in a mean-field manner on local densities of different atomic species. This approach is analogous to embedded atom and bond-order models that seek to capture multibody electronic effects in metallic systems. We show that the relative entropy coarse-graining framework offers a systematic route to parameterizing such local density potentials. We then characterize this approach in the development of implicit solvation strategies for interactions between model hydrophobes in an aqueous environment.

  5. Modelling of local extinction and reignition of the flame

    Energy Technology Data Exchange (ETDEWEB)

    Brink, A.; Kilpinen, P.; Hupa, M. [Aabo Akademi, Turku (Finland); Kjaeldman, L. [VTT Energy, Espoo (Finland); Jaeaeskelaeinen, K. [Imatran Voima Oy, Helsinki (Finland)

    1996-12-31

    The influence of the relations between the chemical time scale and the turbulent time scale on local extinction in turbulent flames has been studied. The results from the numerical investigation of a non-swirling flame in a sudden-expansion combustor was compared with measurements and computations reported in the literature. The turbulence-chemistry interaction was modelled using the Eddy-Dissipation Concept (EDC). In the study, different turbulent time scales were used; the Kolmogorov related time scale proposed in the EDC model and two turbulent time scales related to k/{epsilon}. The chemical time scale has been obtained from a model based on calculations with a comprehensive chemical reaction scheme. The results indicate that the Kolmogorov related time scale of the EDC model is too short to be used as an extinction criterium. The two k/{epsilon} related time scales both resulted in a closer agreement between the numerically obtained and the measured results. The result indicates that the time scale used in the EDC model should be further investigated before confident results from modelling of flows with extinction effects can be obtained. (author)

  6. Modelling of local extinction and reignition of the flame

    Energy Technology Data Exchange (ETDEWEB)

    Brink, A; Kilpinen, P; Hupa, M [Aabo Akademi, Turku (Finland); Kjaeldman, L [VTT Energy, Espoo (Finland); Jaeaeskelaeinen, K [Imatran Voima Oy, Helsinki (Finland)

    1997-12-31

    The influence of the relations between the chemical time scale and the turbulent time scale on local extinction in turbulent flames has been studied. The results from the numerical investigation of a non-swirling flame in a sudden-expansion combustor was compared with measurements and computations reported in the literature. The turbulence-chemistry interaction was modelled using the Eddy-Dissipation Concept (EDC). In the study, different turbulent time scales were used; the Kolmogorov related time scale proposed in the EDC model and two turbulent time scales related to k/{epsilon}. The chemical time scale has been obtained from a model based on calculations with a comprehensive chemical reaction scheme. The results indicate that the Kolmogorov related time scale of the EDC model is too short to be used as an extinction criterium. The two k/{epsilon} related time scales both resulted in a closer agreement between the numerically obtained and the measured results. The result indicates that the time scale used in the EDC model should be further investigated before confident results from modelling of flows with extinction effects can be obtained. (author)

  7. Localizing gravity on Maxwell gauged CP1 model in six dimensions

    International Nuclear Information System (INIS)

    Kodama, Yuta; Kokubu, Kento; Sawado, Nobuyuki

    2008-01-01

    We shall consider a 3-brane embedded in six-dimensional space-time with a negative bulk cosmological constant. The 3-brane is constructed by a topological soliton solution living in two-dimensional axially symmetric transverse subspace. Similar to most previous works of six-dimensional soliton models, our Maxwell gauged CP 1 brane model can also achieve localizing gravity around the 3-brane. The CP 1 field is described by a scalar doublet and derived from the O(3) sigma model by projecting it onto two-dimensional complex space. In that sense, our framework is more effective than other solitonic brane models concerning gauge theory. We shall also discuss the linear stability analysis for our new model by fluctuating all fields.

  8. Effects of large-scale deforestation on precipitation in the monsoon regions: remote versus local effects.

    Science.gov (United States)

    Devaraju, N; Bala, Govindasamy; Modak, Angshuman

    2015-03-17

    In this paper, using idealized climate model simulations, we investigate the biogeophysical effects of large-scale deforestation on monsoon regions. We find that the remote forcing from large-scale deforestation in the northern middle and high latitudes shifts the Intertropical Convergence Zone southward. This results in a significant decrease in precipitation in the Northern Hemisphere monsoon regions (East Asia, North America, North Africa, and South Asia) and moderate precipitation increases in the Southern Hemisphere monsoon regions (South Africa, South America, and Australia). The magnitude of the monsoonal precipitation changes depends on the location of deforestation, with remote effects showing a larger influence than local effects. The South Asian Monsoon region is affected the most, with 18% decline in precipitation over India. Our results indicate that any comprehensive assessment of afforestation/reforestation as climate change mitigation strategies should carefully evaluate the remote effects on monsoonal precipitation alongside the large local impacts on temperatures.

  9. A Local Search Modeling for Constrained Optimum Paths Problems (Extended Abstract

    Directory of Open Access Journals (Sweden)

    Quang Dung Pham

    2009-10-01

    Full Text Available Constrained Optimum Path (COP problems appear in many real-life applications, especially on communication networks. Some of these problems have been considered and solved by specific techniques which are usually difficult to extend. In this paper, we introduce a novel local search modeling for solving some COPs by local search. The modeling features the compositionality, modularity, reuse and strengthens the benefits of Constrained-Based Local Search. We also apply the modeling to the edge-disjoint paths problem (EDP. We show that side constraints can easily be added in the model. Computational results show the significance of the approach.

  10. Effect of tumor dose, volume and overall treatment time on local control after radiochemotherapy including MRI guided brachytherapy of locally advanced cervical cancer

    DEFF Research Database (Denmark)

    Tanderup, Kari; Fokdal, Lars Ulrik; Sturdza, Alina

    2016-01-01

    -center patient series (retroEMBRACE). Materials and methods This study analyzed 488 locally advanced cervical cancer patients treated with external beam radiotherapy ± chemotherapy combined with IGABT. Brachytherapy contouring and reporting was according to ICRU/GEC-ESTRO recommendations. The Cox Proportional...... Hazards model was applied to analyze the effect on local control of dose-volume metrics as well as overall treatment time (OTT), dose rate, chemotherapy, and tumor histology. Results With a median follow up of 46 months, 43 local failures were observed. Dose (D90) to the High Risk Clinical Target Volume...

  11. Coherent density fluctuation model as a local-scale limit to ATDHF

    International Nuclear Information System (INIS)

    Antonov, A.N.; Petkov, I.Zh.; Stoitsov, M.V.

    1985-04-01

    The local scale transformation method is used for the construction of an Adiabatic Time-Dependent Hartree-Fock approach in terms of the local density distribution. The coherent density fluctuation relations of the model result in a particular case when the ''flucton'' local density is connected with the plane wave determinant model function be means of the local-scale coordinate transformation. The collective potential energy expression is obtained and its relation to the nuclear matter energy saturation curve is revealed. (author)

  12. Understanding Laterally Varying Path Effects on P/S Ratios and their Effectiveness for Event Discrimination at Local Distances

    Science.gov (United States)

    Pyle, M. L.; Walter, W. R.

    2017-12-01

    Discrimination between underground explosions and naturally occurring earthquakes is an important endeavor for global security and test-ban treaty monitoring, and ratios of seismic P to S-wave amplitudes at regional distances have proven to be an effective discriminant. The use of the P/S ratio is rooted in the idea that explosive sources should theoretically only generate compressional energy. While, in practice, shear energy is observed from explosions, generally when corrections are made for magnitude and distance, P/S ratios from explosions are higher than those from surrounding earthquakes. At local distances (chemical explosions at the Nevada National Security Site (NNSS) designed to improve our understanding and modeling capabilities of shear waves generated by explosions. Phase I consisted of 5 explosions in granite and Phase II will move to a contrasting dry alluvium geology. We apply a high-resolution 2D attenuation model to events near the NNSS to examine what effect path plays in local P/S ratios, and how well an earthquake-derived model can account for shallower explosion paths. The model incorporates both intrinsic attenuation and scattering effects and extends to 16 Hz, allowing us to make lateral path corrections and consider high-frequency ratios. Preliminary work suggests that while 2D path corrections modestly improve earthquake amplitude predictions, explosion amplitudes are not well matched, and so P/S ratios do not necessarily improve. Further work is needed to better understand the uses and limitation of 2D path corrections for local P/S ratios.

  13. Hop-distance relationship analysis with quasi-UDG model for node localization in wireless sensor networks

    Directory of Open Access Journals (Sweden)

    Chen Ping

    2011-01-01

    Full Text Available Abstract In wireless sensor networks (WSNs, location information plays an important role in many fundamental services which includes geographic routing, target tracking, location-based coverage, topology control, and others. One promising approach in sensor network localization is the determination of location based on hop counts. A critical priori of this approach that directly influences the accuracy of location estimation is the hop-distance relationship. However, most of the related works on the hop-distance relationship assume the unit-disk graph (UDG model that is unrealistic in a practical scenario. In this paper, we formulate the hop-distance relationship for quasi-UDG model in WSNs where sensor nodes are randomly and independently deployed in a circular region based on a Poisson point process. Different from the UDG model, quasi-UDG model has the non-uniformity property for connectivity. We derive an approximated recursive expression for the probability of the hop count with a given geographic distance. The border effect and dependence problem are also taken into consideration. Furthermore, we give the expressions describing the distribution of distance with known hop counts for inner nodes and those suffered from the border effect where we discover the insignificance of the border effect. The analytical results are validated by simulations showing the accuracy of the employed approximation. Besides, we demonstrate the localization application of the formulated relationship and show the accuracy improvement in the WSN localization.

  14. Localization effects in heavy ion collisions

    International Nuclear Information System (INIS)

    Donangelo, R.J.

    1984-01-01

    Radial and angular localization in heavy ion reactions on deformed nuclei is discussed. A theoretical method appropriate to study these localization effects is briefly described and then applied to the determination of deformed heavy ion potentials from inclastic scattering data. It is argued that one-and two-nucleon transfer reactions on deformed nuclei can provide a probe of nuclear structure in high angular momentum states and be at least qualitatively analyzed in the light of these localization concepts. (Author) [pt

  15. Local TEC Modelling and Forecasting using Neural Networks

    Science.gov (United States)

    Tebabal, A.; Radicella, S. M.; Nigussie, M.; Damtie, B.; Nava, B.; Yizengaw, E.

    2017-12-01

    Abstract Modelling the Earth's ionospheric characteristics is the focal task for the ionospheric community to mitigate its effect on the radio communication, satellite navigation and technologies. However, several aspects of modelling are still challenging, for example, the storm time characteristics. This paper presents modelling efforts of TEC taking into account solar and geomagnetic activity, time of the day and day of the year using neural networks (NNs) modelling technique. The NNs have been designed with GPS-TEC measured data from low and mid-latitude GPS stations. The training was conducted using the data obtained for the period from 2011 to 2014. The model prediction accuracy was evaluated using data of year 2015. The model results show that diurnal and seasonal trend of the GPS-TEC is well reproduced by the model for the two stations. The seasonal characteristics of GPS-TEC is compared with NN and NeQuick 2 models prediction when the latter one is driven by the monthly average value of solar flux. It is found that NN model performs better than the corresponding NeQuick 2 model for low latitude region. For the mid-latitude both NN and NeQuick 2 models reproduce the average characteristics of TEC variability quite successfully. An attempt of one day ahead forecast of TEC at the two locations has been made by introducing as driver previous day solar flux and geomagnetic index values. The results show that a reasonable day ahead forecast of local TEC can be achieved.

  16. Bang-bang Model for Regulation of Local Blood Flow

    Science.gov (United States)

    Golub, Aleksander S.; Pittman, Roland N.

    2013-01-01

    The classical model of metabolic regulation of blood flow in muscle tissue implies the maintenance of basal tone in arterioles of resting muscle and their dilation in response to exercise and/or tissue hypoxia via the evoked production of vasodilator metabolites by myocytes. A century-long effort to identify specific metabolites responsible for explaining active and reactive hyperemia has not been successful. Furthermore, the metabolic theory is not compatible with new knowledge on the role of physiological radicals (e.g., nitric oxide, NO, and superoxide anion, O2−) in the regulation of microvascular tone. We propose a model of regulation in which muscle contraction and active hyperemia are considered the physiologically normal state. We employ the “bang-bang” or “on/off” regulatory model which makes use of a threshold and hysteresis; a float valve to control the water level in a tank is a common example of this type of regulation. Active bang-bang regulation comes into effect when the supply of oxygen and glucose exceeds the demand, leading to activation of membrane NADPH oxidase, release of O2− into the interstitial space and subsequent neutralization of the interstitial NO. Switching arterioles on/off when local blood flow crosses the threshold is realized by a local cell circuit with the properties of a bang-bang controller, determined by its threshold, hysteresis and dead-band. This model provides a clear and unambiguous interpretation of the mechanism to balance tissue demand with a sufficient supply of nutrients and oxygen. PMID:23441827

  17. Using interactive modeling tools to engage with, inform and empower decision making in local communities of landscape managers

    DEFF Research Database (Denmark)

    Christensen, Andreas Aagaard

    During the last decade digital modelling tools for environmental impact assessment have become increasingly interactive, agile and user-oriented. This has made it possible to implement models in situ, using them in live scenario situations with local stakeholders. As a result modelling tools......- and long term environmental impact of landscape management. This opens up a number of questions regarding the status and consequence of scientific data and modelled impact estimates as compared to locally held knowledge and expertise. It also opens up questions regarding how the injection of modelling...... for modelling the effect of agricultural land use decisions on nitrogen emission to the environment at landscape scales. Recently Danish authorities proposed to shift the scale of regulation from national regulatory instruments to a more local level to better fit relevant socio-political and agro-environmental...

  18. Diverse effects of combined radiotherapy and EGFR inhibition with antibodies or TK inhibitors on local tumour control and correlation with EGFR gene expression

    International Nuclear Information System (INIS)

    Gurtner, Kristin; Deuse, Yvonne; Buetof, Rebecca; Schaal, Katja; Eicheler, Wolfgang; Oertel, Reinhard; Grenman, Reidar; Thames, Howard; Yaromina, Ala; Baumann, Michael; Krause, Mechthild

    2011-01-01

    Purpose: To compare functional effects of combined irradiation and EGFR inhibition in different HNSCC tumour models in vivo with the results of molecular evaluations, aiming to set a basis for the development of potential biomarkers for local tumour control. Material and methods: In five HNSCC tumour models, all wild-type for EGFR and KRAS, the effect of radiotherapy alone (30 fractions/6 weeks) and with simultaneous cetuximab or erlotinib treatment on local tumour control were evaluated and compared with molecular data on western blot, immunohistochemistry and fluorescence-in situ-hybridisation (FISH). Results: Erlotinib and cetuximab alone significantly prolonged tumour growth time in 4/5 tumour models. Combined irradiation and cetuximab treatment significantly improved local tumour control in 3/5 tumour models, whereas erlotinib did not alter local tumour control in any of the tumour models. The amount of the cetuximab-effect on local tumour control significantly correlated with the EGFR/CEP-7 ratios obtained by FISH. Conclusion: Both drugs prolonged growth time in most tumour models, but only application of cetuximab during irradiation significantly improved local tumour control in 3/5 tumour models. The significant correlation of this curative effect with the genetic EGFR expression measured by FISH will be further validated in preclinical and clinical studies.

  19. A Bayesian network approach for modeling local failure in lung cancer

    International Nuclear Information System (INIS)

    Oh, Jung Hun; Craft, Jeffrey; Al Lozi, Rawan; Vaidya, Manushka; Meng, Yifan; Deasy, Joseph O; Bradley, Jeffrey D; El Naqa, Issam

    2011-01-01

    Locally advanced non-small cell lung cancer (NSCLC) patients suffer from a high local failure rate following radiotherapy. Despite many efforts to develop new dose-volume models for early detection of tumor local failure, there was no reported significant improvement in their application prospectively. Based on recent studies of biomarker proteins' role in hypoxia and inflammation in predicting tumor response to radiotherapy, we hypothesize that combining physical and biological factors with a suitable framework could improve the overall prediction. To test this hypothesis, we propose a graphical Bayesian network framework for predicting local failure in lung cancer. The proposed approach was tested using two different datasets of locally advanced NSCLC patients treated with radiotherapy. The first dataset was collected retrospectively, which comprises clinical and dosimetric variables only. The second dataset was collected prospectively in which in addition to clinical and dosimetric information, blood was drawn from the patients at various time points to extract candidate biomarkers as well. Our preliminary results show that the proposed method can be used as an efficient method to develop predictive models of local failure in these patients and to interpret relationships among the different variables in the models. We also demonstrate the potential use of heterogeneous physical and biological variables to improve the model prediction. With the first dataset, we achieved better performance compared with competing Bayesian-based classifiers. With the second dataset, the combined model had a slightly higher performance compared to individual physical and biological models, with the biological variables making the largest contribution. Our preliminary results highlight the potential of the proposed integrated approach for predicting post-radiotherapy local failure in NSCLC patients.

  20. A local leaky-box model for the local stellar surface density-gas surface density-gas phase metallicity relation

    Science.gov (United States)

    Zhu, Guangtun Ben; Barrera-Ballesteros, Jorge K.; Heckman, Timothy M.; Zakamska, Nadia L.; Sánchez, Sebastian F.; Yan, Renbin; Brinkmann, Jonathan

    2017-07-01

    We revisit the relation between the stellar surface density, the gas surface density and the gas-phase metallicity of typical disc galaxies in the local Universe with the SDSS-IV/MaNGA survey, using the star formation rate surface density as an indicator for the gas surface density. We show that these three local parameters form a tight relationship, confirming previous works (e.g. by the PINGS and CALIFA surveys), but with a larger sample. We present a new local leaky-box model, assuming star-formation history and chemical evolution is localized except for outflowing materials. We derive closed-form solutions for the evolution of stellar surface density, gas surface density and gas-phase metallicity, and show that these parameters form a tight relation independent of initial gas density and time. We show that, with canonical values of model parameters, this predicted relation match the observed one well. In addition, we briefly describe a pathway to improving the current semi-analytic models of galaxy formation by incorporating the local leaky-box model in the cosmological context, which can potentially explain simultaneously multiple properties of Milky Way-type disc galaxies, such as the size growth and the global stellar mass-gas metallicity relation.

  1. Real-time prediction of respiratory motion based on a local dynamic model in an augmented space.

    Science.gov (United States)

    Hong, S-M; Jung, B-H; Ruan, D

    2011-03-21

    Motion-adaptive radiotherapy aims to deliver ablative radiation dose to the tumor target with minimal normal tissue exposure, by accounting for real-time target movement. In practice, prediction is usually necessary to compensate for system latency induced by measurement, communication and control. This work focuses on predicting respiratory motion, which is most dominant for thoracic and abdominal tumors. We develop and investigate the use of a local dynamic model in an augmented space, motivated by the observation that respiratory movement exhibits a locally circular pattern in a plane augmented with a delayed axis. By including the angular velocity as part of the system state, the proposed dynamic model effectively captures the natural evolution of respiratory motion. The first-order extended Kalman filter is used to propagate and update the state estimate. The target location is predicted by evaluating the local dynamic model equations at the required prediction length. This method is complementary to existing work in that (1) the local circular motion model characterizes 'turning', overcoming the limitation of linear motion models; (2) it uses a natural state representation including the local angular velocity and updates the state estimate systematically, offering explicit physical interpretations; (3) it relies on a parametric model and is much less data-satiate than the typical adaptive semiparametric or nonparametric method. We tested the performance of the proposed method with ten RPM traces, using the normalized root mean squared difference between the predicted value and the retrospective observation as the error metric. Its performance was compared with predictors based on the linear model, the interacting multiple linear models and the kernel density estimator for various combinations of prediction lengths and observation rates. The local dynamic model based approach provides the best performance for short to medium prediction lengths under relatively

  2. Dissipative Continuous Spontaneous Localization (CSL) model.

    Science.gov (United States)

    Smirne, Andrea; Bassi, Angelo

    2015-08-05

    Collapse models explain the absence of quantum superpositions at the macroscopic scale, while giving practically the same predictions as quantum mechanics for microscopic systems. The Continuous Spontaneous Localization (CSL) model is the most refined and studied among collapse models. A well-known problem of this model, and of similar ones, is the steady and unlimited increase of the energy induced by the collapse noise. Here we present the dissipative version of the CSL model, which guarantees a finite energy during the entire system's evolution, thus making a crucial step toward a realistic energy-conserving collapse model. This is achieved by introducing a non-linear stochastic modification of the Schrödinger equation, which represents the action of a dissipative finite-temperature collapse noise. The possibility to introduce dissipation within collapse models in a consistent way will have relevant impact on the experimental investigations of the CSL model, and therefore also on the testability of the quantum superposition principle.

  3. Local versus global interactions in nonequilibrium transitions: A model of social dynamics

    Science.gov (United States)

    González-Avella, J. C.; Eguíluz, V. M.; Cosenza, M. G.; Klemm, K.; Herrera, J. L.; San Miguel, M.

    2006-04-01

    A nonequilibrium system of locally interacting elements in a lattice with an absorbing order-disorder phase transition is studied under the effect of additional interacting fields. These fields are shown to produce interesting effects in the collective behavior of this system. Both for autonomous and external fields, disorder grows in the system when the probability of the elements to interact with the field is increased. There exists a threshold value of this probability beyond which the system is always disordered. The domain of parameters of the ordered regime is larger for nonuniform local fields than for spatially uniform fields. However, the zero field limit is discontinous. In the limit of vanishingly small probability of interaction with the field, autonomous or external fields are able to order a system that would fall in a disordered phase under local interactions of the elements alone. We consider different types of fields which are interpreted as forms of mass media acting on a social system in the context of Axelrod’s model for cultural dissemination.

  4. A comparison of non-local electron transport models relevant to inertial confinement fusion

    Science.gov (United States)

    Sherlock, Mark; Brodrick, Jonathan; Ridgers, Christopher

    2017-10-01

    We compare the reduced non-local electron transport model developed by Schurtz et al. to Vlasov-Fokker-Planck simulations. Two new test cases are considered: the propagation of a heat wave through a high density region into a lower density gas, and a 1-dimensional hohlraum ablation problem. We find the reduced model reproduces the peak heat flux well in the ablation region but significantly over-predicts the coronal preheat. The suitability of the reduced model for computing non-local transport effects other than thermal conductivity is considered by comparing the computed distribution function to the Vlasov-Fokker-Planck distribution function. It is shown that even when the reduced model reproduces the correct heat flux, the distribution function is significantly different to the Vlasov-Fokker-Planck prediction. Two simple modifications are considered which improve agreement between models in the coronal region. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  5. Cost-effectiveness of modern radiotherapy techniques in locally advanced pancreatic cancer.

    Science.gov (United States)

    Murphy, James D; Chang, Daniel T; Abelson, Jon; Daly, Megan E; Yeung, Heidi N; Nelson, Lorene M; Koong, Albert C

    2012-02-15

    Radiotherapy may improve the outcome of patients with pancreatic cancer but at an increased cost. In this study, the authors evaluated the cost-effectiveness of modern radiotherapy techniques in the treatment of locally advanced pancreatic cancer. A Markov decision-analytic model was constructed to compare the cost-effectiveness of 4 treatment regimens: gemcitabine alone, gemcitabine plus conventional radiotherapy, gemcitabine plus intensity-modulated radiotherapy (IMRT); and gemcitabine with stereotactic body radiotherapy (SBRT). Patients transitioned between the following 5 health states: stable disease, local progression, distant failure, local and distant failure, and death. Health utility tolls were assessed for radiotherapy and chemotherapy treatments and for radiation toxicity. SBRT increased life expectancy by 0.20 quality-adjusted life years (QALY) at an increased cost of $13,700 compared with gemcitabine alone (incremental cost-effectiveness ratio [ICER] = $69,500 per QALY). SBRT was more effective and less costly than conventional radiotherapy and IMRT. An analysis that excluded SBRT demonstrated that conventional radiotherapy had an ICER of $126,800 per QALY compared with gemcitabine alone, and IMRT had an ICER of $1,584,100 per QALY compared with conventional radiotherapy. A probabilistic sensitivity analysis demonstrated that the probability of cost-effectiveness at a willingness to pay of $50,000 per QALY was 78% for gemcitabine alone, 21% for SBRT, 1.4% for conventional radiotherapy, and 0.01% for IMRT. At a willingness to pay of $200,000 per QALY, the probability of cost-effectiveness was 73% for SBRT, 20% for conventional radiotherapy, 7% for gemcitabine alone, and 0.7% for IMRT. The current results indicated that IMRT in locally advanced pancreatic cancer exceeds what society considers cost-effective. In contrast, combining gemcitabine with SBRT increased clinical effectiveness beyond that of gemcitabine alone at a cost potentially acceptable by

  6. Business model innovation for Local Energy Management: a perspective from Swiss utilities

    Directory of Open Access Journals (Sweden)

    Emanuele Facchinetti

    2016-08-01

    Full Text Available The successful deployment of the energy transition relies on a deep reorganization of the energy market. Business model innovation is recognized as a key driver of this process. This work contributes to this topic by providing to potential Local Energy Management stakeholders and policy makers a conceptual framework guiding the Local Energy Management business model innovation. The main determinants characterizing Local Energy Management concepts and impacting its business model innovation are identified through literature reviews on distributed generation typologies and customer/investor preferences related to new business opportunities emerging with the energy transition. Afterwards, the relation between the identified determinants and the Local Energy Management business model solution space is analyzed based on semi-structured interviews with managers of Swiss utilities companies. The collected managers’ preferences serve as explorative indicators supporting the business model innovation process and provide insights to policy makers on challenges and opportunities related to Local Energy Management.

  7. Magnetomechanical local-global effects in magnetostrictive composite materials

    Science.gov (United States)

    Elhajjar, Rani F.; Law, Chiu T.

    2015-10-01

    A constitutive model for magnetostrictive composite materials (MCMs) that describes the relations among stress, strain, magnetic field, and magnetization Liu and Zheng (2005 Acta Mech. Sin. 21 278-85) is implemented for multiphysics simulation for analysis of non-periodic or non-uniform microstructure effects. The multiphysics models that capture designed and actual microstructural details are used for predicting the responses of magnetostrictive composite materials under various mechanical and magnetic loading conditions. The approach overcomes the limitation with strain gages in the investigation of magnetostrictive strain due to stress localization around magnetostrictive phases. Three-dimensional digital image correlation (3D-DIC) is used to measure the displacements and strain in the composites under fluctuating magnetic fields. The specimens are prepared using epoxy and particulate magnetostrictive materials with the particles in the range of approximately 20 to 300 microns range. We examine the displacement and strain fields obtained and compare the results to those obtained from fiber Bragg grating (FBG) measurements. The coupling coefficients obtained from this method were in agreement with those measured using other techniques. The validated model allows us to predict the effect of curing, preload, microstructure alignment and particle shape on the magnetostrictive strains.

  8. Magnetomechanical local-global effects in magnetostrictive composite materials

    International Nuclear Information System (INIS)

    Elhajjar, Rani F; Law, Chiu T

    2015-01-01

    A constitutive model for magnetostrictive composite materials (MCMs) that describes the relations among stress, strain, magnetic field, and magnetization Liu and Zheng (2005 Acta Mech. Sin. 21 278–85) is implemented for multiphysics simulation for analysis of non-periodic or non-uniform microstructure effects. The multiphysics models that capture designed and actual microstructural details are used for predicting the responses of magnetostrictive composite materials under various mechanical and magnetic loading conditions. The approach overcomes the limitation with strain gages in the investigation of magnetostrictive strain due to stress localization around magnetostrictive phases. Three-dimensional digital image correlation (3D-DIC) is used to measure the displacements and strain in the composites under fluctuating magnetic fields. The specimens are prepared using epoxy and particulate magnetostrictive materials with the particles in the range of approximately 20 to 300 microns range. We examine the displacement and strain fields obtained and compare the results to those obtained from fiber Bragg grating (FBG) measurements. The coupling coefficients obtained from this method were in agreement with those measured using other techniques. The validated model allows us to predict the effect of curing, preload, microstructure alignment and particle shape on the magnetostrictive strains. (paper)

  9. Source Localization with Acoustic Sensor Arrays Using Generative Model Based Fitting with Sparse Constraints

    Directory of Open Access Journals (Sweden)

    Javier Macias-Guarasa

    2012-10-01

    Full Text Available This paper presents a novel approach for indoor acoustic source localization using sensor arrays. The proposed solution starts by defining a generative model, designed to explain the acoustic power maps obtained by Steered Response Power (SRP strategies. An optimization approach is then proposed to fit the model to real input SRP data and estimate the position of the acoustic source. Adequately fitting the model to real SRP data, where noise and other unmodelled effects distort the ideal signal, is the core contribution of the paper. Two basic strategies in the optimization are proposed. First, sparse constraints in the parameters of the model are included, enforcing the number of simultaneous active sources to be limited. Second, subspace analysis is used to filter out portions of the input signal that cannot be explained by the model. Experimental results on a realistic speech database show statistically significant localization error reductions of up to 30% when compared with the SRP-PHAT strategies.

  10. Brain MRI Tumor Detection using Active Contour Model and Local Image Fitting Energy

    Science.gov (United States)

    Nabizadeh, Nooshin; John, Nigel

    2014-03-01

    Automatic abnormality detection in Magnetic Resonance Imaging (MRI) is an important issue in many diagnostic and therapeutic applications. Here an automatic brain tumor detection method is introduced that uses T1-weighted images and K. Zhang et. al.'s active contour model driven by local image fitting (LIF) energy. Local image fitting energy obtains the local image information, which enables the algorithm to segment images with intensity inhomogeneities. Advantage of this method is that the LIF energy functional has less computational complexity than the local binary fitting (LBF) energy functional; moreover, it maintains the sub-pixel accuracy and boundary regularization properties. In Zhang's algorithm, a new level set method based on Gaussian filtering is used to implement the variational formulation, which is not only vigorous to prevent the energy functional from being trapped into local minimum, but also effective in keeping the level set function regular. Experiments show that the proposed method achieves high accuracy brain tumor segmentation results.

  11. Effective Communication as Catalyst of Developmental Local Government and Rural Development amid Threats of Overpopulation

    Directory of Open Access Journals (Sweden)

    Naledzani Rasila

    2012-09-01

    Full Text Available South Africa’s population has risen from 40.5 million in 1996  to 44.8 million in 2001 and to 51.77 in 2011. Africans are in majority making 79.2% of the whole population. About 22.3% of blacks have received no schooling with the unemployment rate of the blacks at 28.1%. Most of these unemployed and uneducated blacks are found in rural areas. This compelled government to introduce Developmental Local government. Developmental Local government refers to the layer of public service that has the capacity to deliver and account to the people in a responsive, accountable, and efficient manner. It is also described as a sphere that encourages community participation in matters of governance and developmental initiatives. However, Developmental Local government is hindered by continuous growth of population which is likely to lead to overpopulation. Overpopulation is characterised by lack of basic resources such as water and  food. Developmental Local government on the other hand is expected to deliver on these needs. Lack of fulfilment of goals of Developmental Local government is attributed to lack of effective communication between local government and community members. Although population growth is not attributed only to high birth rate, governments around the continent have introduced measures to encourage healthy reproductive life. However, this needs community members that are self-motivated to be active participants in government initiatives. This is not achievable as there is an indication of lack of effective communication. This paper’s main focus is the provision of effective communication model at local sphere which will see community members working together with government on matters of their own development including initiatives  to preserve limited resources amid the challenges of overpopulation. This paper is based on the qualitative study on effectiveness of communication in Mutale local municipality on the enhancement of

  12. Synthesis of industrial applications of local approach to fracture models

    International Nuclear Information System (INIS)

    Eripret, C.

    1993-03-01

    This report gathers different applications of local approach to fracture models to various industrial configurations, such as nuclear pressure vessel steel, cast duplex stainless steels, or primary circuit welds such as bimetallic welds. As soon as models are developed on the basis of microstructural observations, damage mechanisms analyses, and fracture process, the local approach to fracture proves to solve problems where classical fracture mechanics concepts fail. Therefore, local approach appears to be a powerful tool, which completes the standard fracture criteria used in nuclear industry by exhibiting where and why those classical concepts become unvalid. (author). 1 tab., 18 figs., 25 refs

  13. Four-parameter analytical local model potential for atoms

    International Nuclear Information System (INIS)

    Fei, Yu; Jiu-Xun, Sun; Rong-Gang, Tian; Wei, Yang

    2009-01-01

    Analytical local model potential for modeling the interaction in an atom reduces the computational effort in electronic structure calculations significantly. A new four-parameter analytical local model potential is proposed for atoms Li through Lr, and the values of four parameters are shell-independent and obtained by fitting the results of X a method. At the same time, the energy eigenvalues, the radial wave functions and the total energies of electrons are obtained by solving the radial Schrödinger equation with a new form of potential function by Numerov's numerical method. The results show that our new form of potential function is suitable for high, medium and low Z atoms. A comparison among the new potential function and other analytical potential functions shows the greater flexibility and greater accuracy of the present new potential function. (atomic and molecular physics)

  14. Modeling local chemistry in PWR steam generator crevices

    International Nuclear Information System (INIS)

    Millett, P.J.

    1997-01-01

    Over the past two decades steam generator corrosion damage has been a major cost impact to PWR owners. Crevices and occluded regions create thermal-hydraulic conditions where aggressive impurities can become highly concentrated, promoting localized corrosion of the tubing and support structure materials. The type of corrosion varies depending on the local conditions, with stress corrosion cracking being the phenomenon of most current concern. A major goal of the EPRI research in this area has been to develop models of the concentration process and resulting crevice chemistry conditions. These models may then be used to predict crevice chemistry based on knowledge of bulk chemistry, thereby allowing the operator to control corrosion damage. Rigorous deterministic models have not yet been developed; however, empirical approaches have shown promise and are reflected in current versions of the industry-developed secondary water chemistry guidelines

  15. Subcellular localization for Gram positive and Gram negative bacterial proteins using linear interpolation smoothing model.

    Science.gov (United States)

    Saini, Harsh; Raicar, Gaurav; Dehzangi, Abdollah; Lal, Sunil; Sharma, Alok

    2015-12-07

    Protein subcellular localization is an important topic in proteomics since it is related to a protein׳s overall function, helps in the understanding of metabolic pathways, and in drug design and discovery. In this paper, a basic approximation technique from natural language processing called the linear interpolation smoothing model is applied for predicting protein subcellular localizations. The proposed approach extracts features from syntactical information in protein sequences to build probabilistic profiles using dependency models, which are used in linear interpolation to determine how likely is a sequence to belong to a particular subcellular location. This technique builds a statistical model based on maximum likelihood. It is able to deal effectively with high dimensionality that hinders other traditional classifiers such as Support Vector Machines or k-Nearest Neighbours without sacrificing performance. This approach has been evaluated by predicting subcellular localizations of Gram positive and Gram negative bacterial proteins. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Effective Management for National or Local Policy Objectives?

    DEFF Research Database (Denmark)

    Winter, Søren; Skou, Mette; Beer, Frederikke

    This research considers the role of local policies and management in affecting street-level bureaucrats’ actions in implementing national policy mandates. The focus on sanctioning behavior by social workers provides a strong test of these effects, given that the behaviors are both visible and have...... workers with a better fit with the goals of the organization increases workers’ compliance with local policy goals, but only when these diverge from national ones! Increasing staff capacity and information provision have simpler effects in fostering more compliance with the national policy mandate among...... workers. Managers’ addressing adverse selection problems seems more effective than coping with moral hazard. The combination of local politicians’ influence on the formation of local policy goals and managers’ influence in getting workers to comply with those indicates a very important role for policy...

  17. Local void and slip model used in BODYFIT-2PE

    International Nuclear Information System (INIS)

    Chen, B.C.J.; Chien, T.H.; Kim, J.H.; Lellouche, G.S.

    1983-01-01

    A local void and slip model has been proposed for a two-phase flow without the need of fitting any empirical parameters. This model is based on the assumption that all bubbles have reached their terminal rise velocities in the two-phase region. This simple model seems to provide reasonable calculational results when compared with the experimental data and other void and slip models. It provides a means to account for the void and slip of a two-phase flow on a local basis. This is particularly suitable for a fine mesh thermal-hydraulic computer program such as BODYFIT-2PE

  18. Removal of semivolatiles from soils by steam stripping. 1. A local equilibrium model

    International Nuclear Information System (INIS)

    Wilson, D.J.; Clarke, A.N.

    1992-01-01

    A mathematical model for the in-situ steam stripping of volatile and semivolatile organics from contaminated vadose zone soils at hazardous waste sites is developed. A single steam injection well is modeled. The model assumes that the pneumatic permeability of the soil is spatially constant and isotropic, that the adsorption isotherm of the contaminant is linear, and that the local equilibrium approximation is adequate. The model is used to explore the streamlines and transit times of the injected steam as well as the effects of injection well depth and contaminant distribution on the time required for remediation

  19. The effect of the PROSPER partnership model on cultivating local stakeholder knowledge of evidence-based programs: a five-year longitudinal study of 28 communities.

    Science.gov (United States)

    Crowley, D Max; Greenberg, Mark T; Feinberg, Mark E; Spoth, Richard L; Redmond, Cleve R

    2012-02-01

    A substantial challenge in improving public health is how to facilitate the local adoption of evidence-based interventions (EBIs). To do so, an important step is to build local stakeholders' knowledge and decision-making skills regarding the adoption and implementation of EBIs. One EBI delivery system, called PROSPER (PROmoting School-community-university Partnerships to Enhance Resilience), has effectively mobilized community prevention efforts, implemented prevention programming with quality, and consequently decreased youth substance abuse. While these results are encouraging, another objective is to increase local stakeholder knowledge of best practices for adoption, implementation and evaluation of EBIs. Using a mixed methods approach, we assessed local stakeholder knowledge of these best practices over 5 years, in 28 intervention and control communities. Results indicated that the PROSPER partnership model led to significant increases in expert knowledge regarding the selection, implementation, and evaluation of evidence-based interventions. Findings illustrate the limited programming knowledge possessed by members of local prevention efforts, the difficulty of complete knowledge transfer, and highlight one method for cultivating that knowledge.

  20. Strong Local-Nonlocal Coupling for Integrated Fracture Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Littlewood, David John [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Silling, Stewart A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Mitchell, John A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Seleson, Pablo D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bond, Stephen D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Parks, Michael L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Turner, Daniel Z. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Burnett, Damon J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Ostien, Jakob [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Gunzburger, Max [Florida State Univ., Tallahassee, FL (United States)

    2015-09-01

    Peridynamics, a nonlocal extension of continuum mechanics, is unique in its ability to capture pervasive material failure. Its use in the majority of system-level analyses carried out at Sandia, however, is severely limited, due in large part to computational expense and the challenge posed by the imposition of nonlocal boundary conditions. Combined analyses in which peridynamics is em- ployed only in regions susceptible to material failure are therefore highly desirable, yet available coupling strategies have remained severely limited. This report is a summary of the Laboratory Directed Research and Development (LDRD) project "Strong Local-Nonlocal Coupling for Inte- grated Fracture Modeling," completed within the Computing and Information Sciences (CIS) In- vestment Area at Sandia National Laboratories. A number of challenges inherent to coupling local and nonlocal models are addressed. A primary result is the extension of peridynamics to facilitate a variable nonlocal length scale. This approach, termed the peridynamic partial stress, can greatly reduce the mathematical incompatibility between local and nonlocal equations through reduction of the peridynamic horizon in the vicinity of a model interface. A second result is the formulation of a blending-based coupling approach that may be applied either as the primary coupling strategy, or in combination with the peridynamic partial stress. This blending-based approach is distinct from general blending methods, such as the Arlequin approach, in that it is specific to the coupling of peridynamics and classical continuum mechanics. Facilitating the coupling of peridynamics and classical continuum mechanics has also required innovations aimed directly at peridynamic models. Specifically, the properties of peridynamic constitutive models near domain boundaries and shortcomings in available discretization strategies have been addressed. The results are a class of position-aware peridynamic constitutive laws for

  1. Non-local modeling of materials

    DEFF Research Database (Denmark)

    Niordson, Christian Frithiof

    2002-01-01

    Numerical studies of non-local plasticity effects on different materials and problems are carried out. Two different theories are used. One is of lower order in that it retains the structure of a conventional plasticity boundary value problem, while the other is of higher order and employs higher...... order stresses as work conjugates to higher order strains and uses higher order boundary conditions. The influence of internal material length parameters is studied, and the effects of higher order boundary conditions are analyzed. The focus of the thesis is on metal-matrix composites, and non...

  2. Developing a local least-squares support vector machines-based neuro-fuzzy model for nonlinear and chaotic time series prediction.

    Science.gov (United States)

    Miranian, A; Abdollahzade, M

    2013-02-01

    Local modeling approaches, owing to their ability to model different operating regimes of nonlinear systems and processes by independent local models, seem appealing for modeling, identification, and prediction applications. In this paper, we propose a local neuro-fuzzy (LNF) approach based on the least-squares support vector machines (LSSVMs). The proposed LNF approach employs LSSVMs, which are powerful in modeling and predicting time series, as local models and uses hierarchical binary tree (HBT) learning algorithm for fast and efficient estimation of its parameters. The HBT algorithm heuristically partitions the input space into smaller subdomains by axis-orthogonal splits. In each partitioning, the validity functions automatically form a unity partition and therefore normalization side effects, e.g., reactivation, are prevented. Integration of LSSVMs into the LNF network as local models, along with the HBT learning algorithm, yield a high-performance approach for modeling and prediction of complex nonlinear time series. The proposed approach is applied to modeling and predictions of different nonlinear and chaotic real-world and hand-designed systems and time series. Analysis of the prediction results and comparisons with recent and old studies demonstrate the promising performance of the proposed LNF approach with the HBT learning algorithm for modeling and prediction of nonlinear and chaotic systems and time series.

  3. Controlling effect of geometrically defined local structural changes on chaotic Hamiltonian systems.

    Science.gov (United States)

    Ben Zion, Yossi; Horwitz, Lawrence

    2010-04-01

    An effective characterization of chaotic conservative Hamiltonian systems in terms of the curvature associated with a Riemannian metric tensor derived from the structure of the Hamiltonian has been extended to a wide class of potential models of standard form through definition of a conformal metric. The geodesic equations reproduce the Hamilton equations of the original potential model through an inverse map in the tangent space. The second covariant derivative of the geodesic deviation in this space generates a dynamical curvature, resulting in (energy-dependent) criteria for unstable behavior different from the usual Lyapunov criteria. We show here that this criterion can be constructively used to modify locally the potential of a chaotic Hamiltonian model in such a way that stable motion is achieved. Since our criterion for instability is local in coordinate space, these results provide a minimal method for achieving control of a chaotic system.

  4. AN INVESTIGATION OF LOCAL EFFECTS ON SURFACE WARMING WITH GEOGRAPHICALLY WEIGHTED REGRESSION (GWR

    Directory of Open Access Journals (Sweden)

    Y. Xue

    2012-07-01

    Full Text Available Urban warming is sensitive to the nature (thermal properties, including albedo, water content, heat capacity and thermal conductivity and the placement (surface geometry or urban topography of urban surface. In the literature the spatial dependence and heterogeneity of urban thermal landscape is widely observed based on thermal infrared remote sensing within the urban environment. Urban surface warming is conceived as a big contribution to urban warming, the study of urban surface warming possesses significant meaning for probing into the problem of urban warming.The urban thermal landscape study takes advantage of the continuous surface derived from thermal infrared remote sensing at the landscape scale, the detailed variation of local surface temperature can be measured and analyzed through the systematic investigation. At the same time urban environmental factors can be quantified with remote sensing and GIS techniques. This enables a systematic investigation of urban thermal landscape with a link to be established between local environmental setting and surface temperature variation. The goal of this research is utilizing Geographically Weighted Regression (GWR to analyze the spatial relationship between urban form and surface temperature variation in order to clarify the local effects on surface warming, moreover to reveal the possible dynamics in the local influences of environmental indicators on the variation of local surface temperature across space and time. In this research, GWR analysis proved that the spatial variation in relationships between environmental setting and surface temperature was significant with Monte Carlo significance test and distinctive in day-night change. Comparatively, GWR facilitated the site specific investigation based on local statistical technique. The inference based on GWR model provided enriched information regarding the spatial variation of local environment effect on surface temperature variation which

  5. Sharp Contradiction for Local-Hidden-State Model in Quantum Steering

    Science.gov (United States)

    Chen, Jing-Ling; Su, Hong-Yi; Xu, Zhen-Peng; Pati, Arun Kumar

    2016-08-01

    In quantum theory, no-go theorems are important as they rule out the existence of a particular physical model under consideration. For instance, the Greenberger-Horne-Zeilinger (GHZ) theorem serves as a no-go theorem for the nonexistence of local hidden variable models by presenting a full contradiction for the multipartite GHZ states. However, the elegant GHZ argument for Bell’s nonlocality does not go through for bipartite Einstein-Podolsky-Rosen (EPR) state. Recent study on quantum nonlocality has shown that the more precise description of EPR’s original scenario is “steering”, i.e., the nonexistence of local hidden state models. Here, we present a simple GHZ-like contradiction for any bipartite pure entangled state, thus proving a no-go theorem for the nonexistence of local hidden state models in the EPR paradox. This also indicates that the very simple steering paradox presented here is indeed the closest form to the original spirit of the EPR paradox.

  6. Genuine tripartite entangled states with a local hidden-variable model

    International Nuclear Information System (INIS)

    Toth, Geza; Acin, Antonio

    2006-01-01

    We present a family of three-qubit quantum states with a basic local hidden-variable model. Any von Neumann measurement can be described by a local model for these states. We show that some of these states are genuine three-partite entangled and also distillable. The generalization for larger dimensions or higher number of parties is also discussed. As a by-product, we present symmetric extensions of two-qubit Werner states

  7. Localization and traces in open-closed topological Landau-Ginzburg models

    International Nuclear Information System (INIS)

    Herbst, Manfred; Lazaroiu, Calin-Iuliu

    2005-01-01

    We reconsider the issue of localization in open-closed B-twisted Landau-Ginzburg models with arbitrary Calabi-Yau target. Through careful analysis of zero-mode reduction, we show that the closed model allows for a one-parameter family of localization pictures, which generalize the standard residue representation. The parameter λ which indexes these pictures measures the area of worldsheets with S 2 topology, with the residue representation obtained in the limit of small area. In the boundary sector, we find a double family of such pictures, depending on parameters λ and μ which measure the area and boundary length of worldsheets with disk topology. We show that setting μ = 0 and varying λ interpolates between the localization picture of the B-model with a noncompact target space and a certain residue representation proposed recently. This gives a complete derivation of the boundary residue formula, starting from the explicit construction of the boundary coupling. We also show that the various localization pictures are related by a semigroup of homotopy equivalences

  8. Using local multiplicity to improve effect estimation from a hypothesis-generating pharmacogenetics study.

    Science.gov (United States)

    Zou, W; Ouyang, H

    2016-02-01

    We propose a multiple estimation adjustment (MEA) method to correct effect overestimation due to selection bias from a hypothesis-generating study (HGS) in pharmacogenetics. MEA uses a hierarchical Bayesian approach to model individual effect estimates from maximal likelihood estimation (MLE) in a region jointly and shrinks them toward the regional effect. Unlike many methods that model a fixed selection scheme, MEA capitalizes on local multiplicity independent of selection. We compared mean square errors (MSEs) in simulated HGSs from naive MLE, MEA and a conditional likelihood adjustment (CLA) method that model threshold selection bias. We observed that MEA effectively reduced MSE from MLE on null effects with or without selection, and had a clear advantage over CLA on extreme MLE estimates from null effects under lenient threshold selection in small samples, which are common among 'top' associations from a pharmacogenetics HGS.

  9. Localized endomorphisms of the chiral Ising model

    International Nuclear Information System (INIS)

    Boeckenhauer, J.

    1994-07-01

    In the frame of the treatment of the chiral Ising model by Mack and Schomerus, examples of localized endomorphisms ρ 1 loc and ρ 1/2 loc are presented. It is shown that they lead to the same superselection sectors as the global ones in the sense that π 0 oρ 1 log ≅π 1 and π 0 pρ 1/2 loc ≅π 1/2 holds. For proving the latter unitary equivalence, Arakis formalism of the selfdual CAR algebra is used. Further it is shown that the localized endomorphisms obey the Ising fusion rules. (orig.)

  10. Local and non-local effects of spanwise finite perturbations in erodible river bathymetries

    Science.gov (United States)

    Musa, Mirko; Hill, Craig; Guala, Michele

    2015-11-01

    Laboratory experiments were performed to study the effect of axial-flow hydrokinetic turbine models on an erodible river bed under live-bed conditions. Results indicate that the presence of an operating turbine rotor creates a blockage in the mean flow which produces a remarkable geomorphic signature in the migrating bedforms. These impacts affect a local area downstream of the turbines when placed symmetrically with respect to the cross section of the channel. On the other hand, more interesting results are observed with an asymmetric installation of the turbines. This configuration demonstrates a stronger effect on the mean flow, resulting in a larger plan-wise distortion of the mean topography and differential migration patterns of bedforms. Different turbine installation arrangements and hub heights above the mean bed were investigated, focusing mainly on the perturbation of sediment transport characteristics influenced by the turbine wake. Additional results with spanwise modulated submerged walls explore the possibility to control river topography harvesting this type of geomorphic destabilization.

  11. CMB anomalies and the effects of local features of the inflaton potential

    Energy Technology Data Exchange (ETDEWEB)

    Cadavid, Alexander Gallego [Kyoto University, Yukawa Institute for Theoretical Physics, Kyoto (Japan); ICRANet, Pescara (Italy); Universidad de Antioquia, Instituto de Fisica, Medellin (Colombia); Romano, Antonio Enea [Kyoto University, Yukawa Institute for Theoretical Physics, Kyoto (Japan); University of Torino, Department of Physics, Turin (Italy); Universidad de Antioquia, Instituto de Fisica, Medellin (Colombia); Gariazzo, Stefano [University of Torino, Department of Physics, Turin (Italy); INFN, Sezione di Torino, Turin (Italy); Instituto de Fisica Corpuscular (CSIC-Universitat de Valencia), Paterna, Valencia (Spain)

    2017-04-15

    Recent analysis of the WMAP and Planck data have shown the presence of a dip and a bump in the spectrum of primordial perturbations at the scales k = 0.002 Mpc{sup -1}, respectively. We analyze for the first time the effects of a local feature in the inflaton potential to explain the observed deviations from scale invariance in the primordial spectrum. We perform a best-fit analysis of the cosmic microwave background (CMB) radiation temperature and polarization data. The effects of the features can improve the agreement with observational data respect to the featureless model. The best-fit local feature affects the primordial curvature spectrum mainly in the region of the bump, leaving the spectrum unaffected on other scales. (orig.)

  12. Evidence of Non-local Chemical, Thermal and Gravitational Effects

    Directory of Open Access Journals (Sweden)

    Hu H.

    2007-04-01

    Full Text Available Quantum entanglement is ubiquitous in the microscopic world and manifests itself macroscopically under some circumstances. But common belief is that it alone cannot be used to transmit information nor could it be used to produce macroscopic non- local effects. Yet we have recently found evidence of non-local effects of chemical substances on the brain produced through it. While our reported results are under independent verifications by other groups, we report here our experimental findings of non-local chemical, thermal and gravitational effects in simple physical systems such as reservoirs of water quantum-entangled with water being manipulated in a remote reservoir. With the aids of high-precision instruments, we have found that the pH value, temperature and gravity of water in the detecting reservoirs can be non-locally affected through manipulating water in the remote reservoir. In particular, the pH value changes in the same direction as that being manipulated; the temperature can change against that of local environment; and the gravity apparently can also change against local gravity. These non-local effects are all reproducible and can be used for non-local signalling and many other purposes. We suggest that they are mediated by quantum entanglement between nuclear and/or electron spins in treated water and discuss the implications of these results.

  13. The FLUKA Monte Carlo code coupled with the local effect model for biological calculations in carbon ion therapy

    CERN Document Server

    Mairani, A; Kraemer, M; Sommerer, F; Parodi, K; Scholz, M; Cerutti, F; Ferrari, A; Fasso, A

    2010-01-01

    Clinical Monte Carlo (MC) calculations for carbon ion therapy have to provide absorbed and RBE-weighted dose. The latter is defined as the product of the dose and the relative biological effectiveness (RBE). At the GSI Helmholtzzentrum fur Schwerionenforschung as well as at the Heidelberg Ion Therapy Center (HIT), the RBE values are calculated according to the local effect model (LEM). In this paper, we describe the approach followed for coupling the FLUKA MC code with the LEM and its application to dose and RBE-weighted dose calculations for a superimposition of two opposed C-12 ion fields as applied in therapeutic irradiations. The obtained results are compared with the available experimental data of CHO (Chinese hamster ovary) cell survival and the outcomes of the GSI analytical treatment planning code TRiP98. Some discrepancies have been observed between the analytical and MC calculations of absorbed physical dose profiles, which can be explained by the differences between the laterally integrated depth-d...

  14. Exploring the effect of diffuse reflection on indoor localization systems based on RSSI-VLC.

    Science.gov (United States)

    Mohammed, Nazmi A; Elkarim, Mohammed Abd

    2015-08-10

    This work explores and evaluates the effect of diffuse light reflection on the accuracy of indoor localization systems based on visible light communication (VLC) in a high reflectivity environment using a received signal strength indication (RSSI) technique. The effect of the essential receiver (Rx) and transmitter (Tx) parameters on the localization error with different transmitted LED power and wall reflectivity factors is investigated at the worst Rx coordinates for a directed/overall link. Since this work assumes harsh operating conditions (i.e., a multipath model, high reflectivity surfaces, worst Rx position), an error of ≥ 1.46 m is found. To achieve a localization error in the range of 30 cm under these conditions with moderate LED power (i.e., P = 0.45 W), low reflectivity walls (i.e., ρ = 0.1) should be used, which would enable a localization error of approximately 7 mm at the room's center.

  15. Modelling and inversion of local magnetic anomalies

    International Nuclear Information System (INIS)

    Quesnel, Y; Langlais, B; Sotin, C; Galdéano, A

    2008-01-01

    We present a method—named as MILMA for modelling and inversion of local magnetic anomalies—that combines forward and inverse modelling of aeromagnetic data to characterize both magnetization properties and location of unconstrained local sources. Parameters of simple-shape magnetized bodies (cylinder, prism or sphere) are first adjusted by trial and error to predict the signal. Their parameters provide a priori information for inversion of the measurements. Here, a generalized nonlinear approach with a least-squares criterion is adopted to seek the best parameters of the sphere (dipole). This inversion step allows the model to be more objectively adjusted to fit the magnetic signal. The validity of the MILMA method is demonstrated through synthetic and real cases using aeromagnetic measurements. Tests with synthetic data reveal accurate results in terms of depth source, whatever be the number of sources. The MILMA method is then used with real measurements to constrain the properties of the magnetized units of the Champtoceaux complex (France). The resulting parameters correlate with the crustal structure and properties revealed by other geological and geophysical surveys in the same area. The MILMA method can therefore be used to investigate the properties of poorly constrained lithospheric magnetized sources

  16. Non local-thermodynamical-equilibrium effects in the simulation of laser-produced plasmas

    Science.gov (United States)

    Klapisch, M.; Bar-Shalom, A.; Oreg, J.; Colombant, D.

    1998-05-01

    Local thermodynamic equilibrium (LTE) breaks down in directly or indirectly driven laser plasmas because of sharp gradients, energy deposition, etc. For modeling non-LTE effects in hydrodynamical simulations, Busquet's model [Phys. Fluids B 5, 4191 (1993)] is very convenient and efficient. It uses off-line generated LTE opacities and equation of states via an effective, radiation-dependent ionization temperature Tz. An overview of the model is given. The results are compared with an elaborate collisional radiative model based on superconfigurations. The agreements for average charge Z* and opacities are surprisingly good, even more so when the plasma is immersed in a radiation field. Some remaining discrepancy at low density is attributed to dielectronic recombination. Improvement appears possible, especially for emissivities, because the concept of ionization temperature seems to be validated.

  17. Analytical local electron-electron interaction model potentials for atoms

    International Nuclear Information System (INIS)

    Neugebauer, Johannes; Reiher, Markus; Hinze, Juergen

    2002-01-01

    Analytical local potentials for modeling the electron-electron interaction in an atom reduce significantly the computational effort in electronic structure calculations. The development of such potentials has a long history, but some promising ideas have not yet been taken into account for further improvements. We determine a local electron-electron interaction potential akin to those suggested by Green et al. [Phys. Rev. 184, 1 (1969)], which are widely used in atom-ion scattering calculations, electron-capture processes, and electronic structure calculations. Generalized Yukawa-type model potentials are introduced. This leads, however, to shell-dependent local potentials, because the origin behavior of such potentials is different for different shells as has been explicated analytically [J. Neugebauer, M. Reiher, and J. Hinze, Phys. Rev. A 65, 032518 (2002)]. It is found that the parameters that characterize these local potentials can be interpolated and extrapolated reliably for different nuclear charges and different numbers of electrons. The analytical behavior of the corresponding localized Hartree-Fock potentials at the origin and at long distances is utilized in order to reduce the number of fit parameters. It turns out that the shell-dependent form of Green's potential, which we also derive, yields results of comparable accuracy using only one shell-dependent parameter

  18. Effect of local automatic control rods on three-dimensional calculations of the power distribution in an RBMK

    International Nuclear Information System (INIS)

    Pogosbekyan, L.R.; Lysov, D.A.; Bronitskii, L.L.

    1993-01-01

    Numerical simulators and information systems that support nuclear reactor operators must have fast models to estimate how fuel reloads and control rod displacement affect neutron and power distributions in the core. The consequences of reloads and control rod displacement cannot be evaluated correctly without considering local automatic control-rod operations in maintaining the radial power distribution. Fast three-dimensional models to estimate the effects of reloads and displacement of the control and safety rods have already been examined. I.V. Zonov et al. used the following assumptions in their calculational model: (1) the full-scale problem could be reduced a three-dimensional fragment of a locally perturbed core, and (2) the boundary conditions of the fragment and its total power were constant. The last assumption considers approximately how local automatic control rods stabilize the radial power distribution, but three dimensional calculations with these rods are not considered. These assumptions were introduced to obtain high computational speed. I.L. Bronitskii et al. considered in more detail how moving the local automatic control rods affect the power dimensional in the three-dimensional fragment, because, with on-line monitoring of the reload process, information on control rod positions is periodically renewed, and the calculations are done in real time. This model to predict the three-dimensional power distribution to (1) do a preliminary reload analysis, and (2) prepare the core for reloading did not consider the effect of perturbations from the local automatic control rods. Here we examine a model of a stationary neutron distribution. On one hand it gives results in an acceptable computation time; on the other it is a full-scale three-dimensional model and considers how local automatic control rods affect both the radial and axial power distribution

  19. Mental models of women with breast implants : local complications

    NARCIS (Netherlands)

    Byram, S.; Fischhoff, B.; Embrey, M.; Bruine de Bruin, W.J.A.; Thorne, S.

    2001-01-01

    Twenty-five women with breast implants participated in semistructured interviews designed to reveal their "mental models" of the processes potentially causing local (ie, nonsystemic) problems. The authors analyzed their responses in terms of an "expert model," circumscribing scientifically relevant

  20. Evaluation of expansile nanoparticle tumor localization and efficacy in a cancer stem cell-derived model of pancreatic peritoneal carcinomatosis

    Science.gov (United States)

    Herrera, Victoria LM; Colby, Aaron H; Tan, Glaiza AL; Moran, Ann M; O’Brien, Michael J; Colson, Yolonda L; Ruiz-Opazo, Nelson; Grinstaff, Mark W

    2016-01-01

    Aim: To evaluate the tumor localization and efficacy pH-responsive expansile nanoparticles (eNPs) as a drug delivery system for pancreatic peritoneal carcinomatosis (PPC) modeled in nude rats. Methods & materials: A Panc-1-cancer stem cell xeno1graft model of PPC was validated in vitro and in vivo. Tumor localization was tracked via in situ imaging of fluorescent eNPs. Survival of animals treated with paclitaxel-loaded eNPs (PTX-eNPs) was evaluated in vivo. Results: The Panc-1-cancer stem cell xenograft model recapitulates significant features of PPC. Rhodamine-labeled eNPs demonstrate tumor-specific, dose- and time-dependent localization to macro- and microscopic tumors following intraperitoneal injection. PTX-eNPs are as effective as free PTX in treating established PPC; but, PTX-eNPs result in fewer side effects. Conclusion: eNPs are a promising tool for the detection and treatment of PPC. PMID:27078118

  1. Assessment of managed aquifer recharge potential using ensembles of local models.

    Science.gov (United States)

    Smith, Anthony J; Pollock, Daniel W

    2012-01-01

    A simple quantitative approach for assessing the artificial recharge potential of large regions using spatial ensembles of local models is proposed. The method extends existing qualitative approaches and enables rapid assessments within a programmable environment. Spatial discretization of a water resource region into continuous local domains allows simple local models to be applied independently in each domain using lumped parameters. The ensemble results can be analyzed directly or combined with other quantitative and thematic information and visualized as regional suitability maps. A case study considers the hydraulic potential for surface infiltration across a large water resource region using a published analytic model for basin recharge. The model solution was implemented within a geographic information system and evaluated independently in >21,000 local domains using lumped parameters derived from existing regional datasets. Computer execution times to run the whole ensemble and process the results were in the order of a few minutes. Relevant aspects of the case study results and general conclusions concerning the utility and limitations of the method are discussed. © 2011, CSIRO. Ground Water © 2011, National Ground Water Association.

  2. Autonomous tracked robots in planar off-road conditions modelling, localization, and motion control

    CERN Document Server

    González, Ramón; Guzmán, José Luis

    2014-01-01

    This monograph is framed within the context of off-road mobile robotics. In particular, it discusses issues related to modelling, localization, and motion control of tracked mobile robots working in planar slippery conditions. Tracked locomotion constitutes a well-known solution for mobile platforms operating over diverse challenging terrains, for that reason, tracked robotics constitutes an important research field with many applications (e.g. agriculture, mining, search and rescue operations, military activities). The specific topics of this monograph are: historical perspective of tracked vehicles and tracked robots; trajectory-tracking model taking into account slip effect; visual-odometry-based localization strategies; and advanced slip-compensation motion controllers ensuring efficient real-time execution. Physical experiments with a real tracked robot are presented showing the better performance of the suggested novel approaches to known techniques.   Keywords: longitudinal slip, visual odometry, slip...

  3. Equivalent charge source model based iterative maximum neighbor weight for sparse EEG source localization.

    Science.gov (United States)

    Xu, Peng; Tian, Yin; Lei, Xu; Hu, Xiao; Yao, Dezhong

    2008-12-01

    How to localize the neural electric activities within brain effectively and precisely from the scalp electroencephalogram (EEG) recordings is a critical issue for current study in clinical neurology and cognitive neuroscience. In this paper, based on the charge source model and the iterative re-weighted strategy, proposed is a new maximum neighbor weight based iterative sparse source imaging method, termed as CMOSS (Charge source model based Maximum neighbOr weight Sparse Solution). Different from the weight used in focal underdetermined system solver (FOCUSS) where the weight for each point in the discrete solution space is independently updated in iterations, the new designed weight for each point in each iteration is determined by the source solution of the last iteration at both the point and its neighbors. Using such a new weight, the next iteration may have a bigger chance to rectify the local source location bias existed in the previous iteration solution. The simulation studies with comparison to FOCUSS and LORETA for various source configurations were conducted on a realistic 3-shell head model, and the results confirmed the validation of CMOSS for sparse EEG source localization. Finally, CMOSS was applied to localize sources elicited in a visual stimuli experiment, and the result was consistent with those source areas involved in visual processing reported in previous studies.

  4. Comparing the relative cost-effectiveness of diagnostic studies: a new model

    International Nuclear Information System (INIS)

    Patton, D.D.; Woolfenden, J.M.; Wellish, K.L.

    1986-01-01

    We have developed a model to compare the relative cost-effectiveness of two or more diagnostic tests. The model defines a cost-effectiveness ratio (CER) for a diagnostic test as the ratio of effective cost to base cost, only dollar costs considered. Effective cost includes base cost, cost of dealing with expected side effects, and wastage due to imperfect test performance. Test performance is measured by diagnostic utility (DU), a measure of test outcomes incorporating the decision-analytic variables sensitivity, specificity, equivocal fraction, disease probability, and outcome utility. Each of these factors affecting DU, and hence CER, is a local, not universal, value; these local values strongly affect CER, which in effect becomes a property of the local medical setting. When DU = +1 and there are no adverse effects, CER = 1 and the patient benefits from the test dollar for dollar. When there are adverse effects effective cost exceeds base cost, and for an imperfect test DU 1. As DU approaches 0 (worthless test), CER approaches infinity (no effectiveness at any cost). If DU is negative, indicating that doing the test at all would be detrimental, CER also becomes negative. We conclude that the CER model is a useful preliminary method for ranking the relative cost-effectiveness of diagnostic tests, and that the comparisons would best be done using local values; different groups might well arrive at different rankings. (Author)

  5. New model. Local financing for local energy

    International Nuclear Information System (INIS)

    Detroy, Florent

    2015-01-01

    While evoking the case of the VMH Energies company in the Poitou-Charentes region, and indicating the difference between France and Germany in terms of wind and photovoltaic energy production potential, of number of existing local companies, and of citizen-based funding, this article shows that renewable energies could put the energy production financing in France into question again, with a more important participation of local communities and of their inhabitants. The author describes how the law on energy transition makes this possible, notably with the strengthening of citizen participation. The author evokes some French local experiments and the case of Germany where this participation is already very much developed

  6. A Pervasive Promotion Model for Personalized Promotion Systems on Using WLAN Localization and NFC Techniques

    Directory of Open Access Journals (Sweden)

    Kam-Yiu Lam

    2015-01-01

    Full Text Available In this paper, we propose a novel pervasive business model for sales promotion in retail chain stores utilizing WLAN localization and near field communication (NFC technologies. The objectives of the model are to increase the customers’ flow of the stores and their incentives in purchasing. In the proposed model, the NFC technology is used as the first mean to motivate customers to come to the stores. Then, with the use of WLAN, the movements of the customers, who are carrying smartphones, within the stores are captured and maintained in the movement database. By interpreting the movements of customers as indicators of their interests to the displayed items, personalized promotion strategies can be formulated to increase their incentives for purchasing future items. Various issues in the application of the adopted localization scheme for locating customers in a store are discussed. To facilitate the item management and space utilization in displaying the items, we propose an enhanced R-tree for indexing the data items maintained in the movement database. Experimental results have demonstrated the effectiveness of the adopted localization scheme in supporting the proposed model.

  7. Bonissone CIDU Presentation: Design of Local Fuzzy Models

    Data.gov (United States)

    National Aeronautics and Space Administration — After reviewing key background concepts in fuzzy systems and evolutionary computing, we will focus on the use of local fuzzy models, which are related to both kernel...

  8. Modelling Danish local CHP on market conditions

    DEFF Research Database (Denmark)

    Ravn, Hans V.; Riisom, Jannik; Schaumburg-Müller, Camilla

    2004-01-01

    with the liberalisation process of the energy sectors of the EU countries, it is however anticipated that Danish local CHP are to begin operating on market conditions within the year 2005. This means that the income that the local CHPs previously gained from selling electricity at the feed-in tariff is replaced in part...... the consequences of acting in a liberalised market for a given CHP plant, based on the abovementioned bottom-up model. The key assumption determining the bottom line is the electricity spot price. The formation of the spot price in the Nordic area depends heavily upon the state of the water reservoirs in Norway...

  9. Cost-effectiveness on a local level: whether and when to adopt a new technology.

    Science.gov (United States)

    Woertman, Willem H; Van De Wetering, Gijs; Adang, Eddy M M

    2014-04-01

    Cost-effectiveness analysis has become a widely accepted tool for decision making in health care. The standard textbook cost-effectiveness analysis focuses on whether to make the switch from an old or common practice technology to an innovative technology, and in doing so, it takes a global perspective. In this article, we are interested in a local perspective, and we look at the questions of whether and when the switch from old to new should be made. A new approach to cost-effectiveness from a local (e.g., a hospital) perspective, by means of a mathematical model for cost-effectiveness that explicitly incorporates time, is proposed. A decision rule is derived for establishing whether a new technology should be adopted, as well as a general rule for establishing when it pays to postpone adoption by 1 more period, and a set of decision rules that can be used to determine the optimal timing of adoption. Finally, a simple example is presented to illustrate our model and how it leads to optimal decision making in a number of cases.

  10. Localized Multi-Model Extremes Metrics for the Fourth National Climate Assessment

    Science.gov (United States)

    Thompson, T. R.; Kunkel, K.; Stevens, L. E.; Easterling, D. R.; Biard, J.; Sun, L.

    2017-12-01

    We have performed localized analysis of scenario-based datasets for the Fourth National Climate Assessment (NCA4). These datasets include CMIP5-based Localized Constructed Analogs (LOCA) downscaled simulations at daily temporal resolution and 1/16th-degree spatial resolution. Over 45 temperature and precipitation extremes metrics have been processed using LOCA data, including threshold, percentile, and degree-days calculations. The localized analysis calculates trends in the temperature and precipitation extremes metrics for relatively small regions such as counties, metropolitan areas, climate zones, administrative areas, or economic zones. For NCA4, we are currently addressing metropolitan areas as defined by U.S. Census Bureau Metropolitan Statistical Areas. Such localized analysis provides essential information for adaptation planning at scales relevant to local planning agencies and businesses. Nearly 30 such regions have been analyzed to date. Each locale is defined by a closed polygon that is used to extract LOCA-based extremes metrics specific to the area. For each metric, single-model data at each LOCA grid location are first averaged over several 30-year historical and future periods. Then, for each metric, the spatial average across the region is calculated using model weights based on both model independence and reproducibility of current climate conditions. The range of single-model results is also captured on the same localized basis, and then combined with the weighted ensemble average for each region and each metric. For example, Boston-area cooling degree days and maximum daily temperature is shown below for RCP8.5 (red) and RCP4.5 (blue) scenarios. We also discuss inter-regional comparison of these metrics, as well as their relevance to risk analysis for adaptation planning.

  11. Predicting habitat suitability for rare plants at local spatial scales using a species distribution model.

    Science.gov (United States)

    Gogol-Prokurat, Melanie

    2011-01-01

    If species distribution models (SDMs) can rank habitat suitability at a local scale, they may be a valuable conservation planning tool for rare, patchily distributed species. This study assessed the ability of Maxent, an SDM reported to be appropriate for modeling rare species, to rank habitat suitability at a local scale for four edaphic endemic rare plants of gabbroic soils in El Dorado County, California, and examined the effects of grain size, spatial extent, and fine-grain environmental predictors on local-scale model accuracy. Models were developed using species occurrence data mapped on public lands and were evaluated using an independent data set of presence and absence locations on surrounding lands, mimicking a typical conservation-planning scenario that prioritizes potential habitat on unsurveyed lands surrounding known occurrences. Maxent produced models that were successful at discriminating between suitable and unsuitable habitat at the local scale for all four species, and predicted habitat suitability values were proportional to likelihood of occurrence or population abundance for three of four species. Unfortunately, models with the best discrimination (i.e., AUC) were not always the most useful for ranking habitat suitability. The use of independent test data showed metrics that were valuable for evaluating which variables and model choices (e.g., grain, extent) to use in guiding habitat prioritization for conservation of these species. A goodness-of-fit test was used to determine whether habitat suitability values ranked habitat suitability on a continuous scale. If they did not, a minimum acceptable error predicted area criterion was used to determine the threshold for classifying habitat as suitable or unsuitable. I found a trade-off between model extent and the use of fine-grain environmental variables: goodness of fit was improved at larger extents, and fine-grain environmental variables improved local-scale accuracy, but fine-grain variables

  12. Scaling up local energy infrastructure; An agent-based model of the emergence of district heating networks

    International Nuclear Information System (INIS)

    Busch, Jonathan; Roelich, Katy; Bale, Catherine S.E.; Knoeri, Christof

    2017-01-01

    The potential contribution of local energy infrastructure – such as heat networks – to the transition to a low carbon economy is increasingly recognised in international, national and municipal policy. Creating the policy environment to foster the scaling up of local energy infrastructure is, however, still challenging; despite national policy action and local authority interest the growth of heat networks in UK cities remains slow. Techno-economic energy system models commonly used to inform policy are not designed to address institutional and governance barriers. We present an agent-based model of heat network development in UK cities in which policy interventions aimed at the institutional and governance barriers faced by diverse actors can be explored. Three types of project instigators are included – municipal, commercial and community – which have distinct decision heuristics and capabilities and follow a multi-stage development process. Scenarios of policy interventions developed in a companion modelling approach indicate that the effect of interventions differs between actors depending on their capabilities. Successful interventions account for the specific motivations and capabilities of different actors, provide a portfolio of support along the development process and recognise the important strategic role of local authorities in supporting low carbon energy infrastructure. - Highlights: • Energy policy should account for diverse actor motivations and capabilities. • Project development is a multi-stage process, not a one-off event. • Participatory agent-based modelling can inform policy that accounts for complexity. • Policy should take a portfolio approach to providing support. • Local authorities have an important strategic role in local infrastructure.

  13. Modeling of fuel vapor jet eruption induced by local droplet heating

    KAUST Repository

    Sim, Jaeheon

    2014-01-10

    The evaporation of a droplet by non-uniform heating is numerically investigated in order to understand the mechanism of the fuel-vapor jet eruption observed in the flame spread of a droplet array under microgravity condition. The phenomenon was believed to be mainly responsible for the enhanced flame spread rate through a droplet cloud at microgravity conditions. A modified Eulerian-Lagrangian method with a local phase change model is utilized to describe the interfacial dynamics between liquid droplet and surrounding air. It is found that the localized heating creates a temperature gradient along the droplet surface, induces the corresponding surface tension gradient, and thus develops an inner flow circulation commonly referred to as the Marangoni convection. Furthermore, the effect also produces a strong shear flow around the droplet surface, thereby pushing the fuel vapor toward the wake region of the droplet to form a vapor jet eruption. A parametric study clearly demonstrated that at realistic droplet combustion conditions the Marangoni effect is indeed responsible for the observed phenomena, in contrast to the results based on constant surface tension approximation

  14. Climate change and local pollution effects. An integrated approach

    International Nuclear Information System (INIS)

    Aaheim, H.A.; Kristin, A.; Seip, H.M.

    1999-01-01

    Few studies on measures for mitigation of damage caused by man-made emissions to the environment have tried to consider all major effects. We illustrate the importance of an integrated approach by estimating costs and benefits of a proposed energy saving program for Hungary, originally designed to reduce CO 2 emissions. The dominant benefit of implementing the program is likely to be reduced health damage from local pollutants. Also reduced costs of material damage and to a lesser extent vegetation damage contribute to make the net benefit considerable. Compared to the reduction in these local and regional effects, the benefits from reducing greenhouse gases are likely to be minor. Since local effects in general occur much earlier after measures have been implemented than effects of increased emissions of greenhouse gases, inclusion of local effects makes evaluation of climate policy less dependent on the choice of discount rate. In our opinion, similar results are likely for many measures originally designed to reduce emissions of greenhouse gases particularly in some areas in developing countries with high local pollution levels. Main uncertainties in the analysis, e.g. in the relationships between damage and pollution level, are discussed. 72 refs

  15. High performance computation of landscape genomic models including local indicators of spatial association.

    Science.gov (United States)

    Stucki, S; Orozco-terWengel, P; Forester, B R; Duruz, S; Colli, L; Masembe, C; Negrini, R; Landguth, E; Jones, M R; Bruford, M W; Taberlet, P; Joost, S

    2017-09-01

    With the increasing availability of both molecular and topo-climatic data, the main challenges facing landscape genomics - that is the combination of landscape ecology with population genomics - include processing large numbers of models and distinguishing between selection and demographic processes (e.g. population structure). Several methods address the latter, either by estimating a null model of population history or by simultaneously inferring environmental and demographic effects. Here we present samβada, an approach designed to study signatures of local adaptation, with special emphasis on high performance computing of large-scale genetic and environmental data sets. samβada identifies candidate loci using genotype-environment associations while also incorporating multivariate analyses to assess the effect of many environmental predictor variables. This enables the inclusion of explanatory variables representing population structure into the models to lower the occurrences of spurious genotype-environment associations. In addition, samβada calculates local indicators of spatial association for candidate loci to provide information on whether similar genotypes tend to cluster in space, which constitutes a useful indication of the possible kinship between individuals. To test the usefulness of this approach, we carried out a simulation study and analysed a data set from Ugandan cattle to detect signatures of local adaptation with samβada, bayenv, lfmm and an F ST outlier method (FDIST approach in arlequin) and compare their results. samβada - an open source software for Windows, Linux and Mac OS X available at http://lasig.epfl.ch/sambada - outperforms other approaches and better suits whole-genome sequence data processing. © 2016 The Authors. Molecular Ecology Resources Published by John Wiley & Sons Ltd.

  16. Applying Four Different Risk Models in Local Ore Selection

    International Nuclear Information System (INIS)

    Richmond, Andrew

    2002-01-01

    Given the uncertainty in grade at a mine location, a financially risk-averse decision-maker may prefer to incorporate this uncertainty into the ore selection process. A FORTRAN program risksel is presented to calculate local risk-adjusted optimal ore selections using a negative exponential utility function and three dominance models: mean-variance, mean-downside risk, and stochastic dominance. All four methods are demonstrated in a grade control environment. In the case study, optimal selections range with the magnitude of financial risk that a decision-maker is prepared to accept. Except for the stochastic dominance method, the risk models reassign material from higher cost to lower cost processing options as the aversion to financial risk increases. The stochastic dominance model usually was unable to determine the optimal local selection

  17. A non-local hidden-variable model that violates Leggett-type inequalities

    Energy Technology Data Exchange (ETDEWEB)

    Zela, F de [Departamento de Ciencias, Seccion Fisica, Pontificia Universidad Catolica del Peru, Apartado 1761, Lima (Peru)

    2008-12-19

    Recent experiments of Groeblacher et al proved the violation of a Leggett-type inequality that was claimed to be valid for a broad class of non-local hidden-variable theories. The impossibility of constructing a non-local and realistic theory, unless it entails highly counterintuitive features, seems thus to have been experimentally proved. This would bring us close to a definite refutation of realism. Indeed, realism was proved to be also incompatible with locality, according to a series of experiments testing Bell inequalities. The present paper addresses the said experiments of Groeblacher et al and presents an explicit, contextual and realistic, model that reproduces the predictions of quantum mechanics. It thus violates the Leggett-type inequality that was established with the aim of ruling out a supposedly broad class of non-local models. We can thus conclude that plausible contextual, realistic, models are still tenable. This restates the possibility of a future completion of quantum mechanics by a realistic and contextual theory which is not in a class containing only highly counterintuitive models. The class that was ruled out by the experiments of Groeblacher et al is thus proved to be a limited one, arbitrarily separating models that physically belong in the same class.

  18. A non-local hidden-variable model that violates Leggett-type inequalities

    International Nuclear Information System (INIS)

    Zela, F de

    2008-01-01

    Recent experiments of Groeblacher et al proved the violation of a Leggett-type inequality that was claimed to be valid for a broad class of non-local hidden-variable theories. The impossibility of constructing a non-local and realistic theory, unless it entails highly counterintuitive features, seems thus to have been experimentally proved. This would bring us close to a definite refutation of realism. Indeed, realism was proved to be also incompatible with locality, according to a series of experiments testing Bell inequalities. The present paper addresses the said experiments of Groeblacher et al and presents an explicit, contextual and realistic, model that reproduces the predictions of quantum mechanics. It thus violates the Leggett-type inequality that was established with the aim of ruling out a supposedly broad class of non-local models. We can thus conclude that plausible contextual, realistic, models are still tenable. This restates the possibility of a future completion of quantum mechanics by a realistic and contextual theory which is not in a class containing only highly counterintuitive models. The class that was ruled out by the experiments of Groeblacher et al is thus proved to be a limited one, arbitrarily separating models that physically belong in the same class

  19. Non local-thermodynamical-equilibrium effects in the simulation of laser-produced plasmas

    International Nuclear Information System (INIS)

    Klapisch, M.; Bar-Shalom, A.; Oreg, J.; Colombant, D.

    1998-01-01

    Local thermodynamic equilibrium (LTE) breaks down in directly or indirectly driven laser plasmas because of sharp gradients, energy deposition, etc. For modeling non-LTE effects in hydrodynamical simulations, Busquet close-quote s model [Phys. Fluids B 5, 4191 (1993)] is very convenient and efficient. It uses off-line generated LTE opacities and equation of states via an effective, radiation-dependent ionization temperature T z . An overview of the model is given. The results are compared with an elaborate collisional radiative model based on superconfigurations. The agreements for average charge Z * and opacities are surprisingly good, even more so when the plasma is immersed in a radiation field. Some remaining discrepancy at low density is attributed to dielectronic recombination. Improvement appears possible, especially for emissivities, because the concept of ionization temperature seems to be validated. copyright 1998 American Institute of Physics

  20. Adaptation of Mesoscale Weather Models to Local Forecasting

    Science.gov (United States)

    Manobianco, John T.; Taylor, Gregory E.; Case, Jonathan L.; Dianic, Allan V.; Wheeler, Mark W.; Zack, John W.; Nutter, Paul A.

    2003-01-01

    Methodologies have been developed for (1) configuring mesoscale numerical weather-prediction models for execution on high-performance computer workstations to make short-range weather forecasts for the vicinity of the Kennedy Space Center (KSC) and the Cape Canaveral Air Force Station (CCAFS) and (2) evaluating the performances of the models as configured. These methodologies have been implemented as part of a continuing effort to improve weather forecasting in support of operations of the U.S. space program. The models, methodologies, and results of the evaluations also have potential value for commercial users who could benefit from tailoring their operations and/or marketing strategies based on accurate predictions of local weather. More specifically, the purpose of developing the methodologies for configuring the models to run on computers at KSC and CCAFS is to provide accurate forecasts of winds, temperature, and such specific thunderstorm-related phenomena as lightning and precipitation. The purpose of developing the evaluation methodologies is to maximize the utility of the models by providing users with assessments of the capabilities and limitations of the models. The models used in this effort thus far include the Mesoscale Atmospheric Simulation System (MASS), the Regional Atmospheric Modeling System (RAMS), and the National Centers for Environmental Prediction Eta Model ( Eta for short). The configuration of the MASS and RAMS is designed to run the models at very high spatial resolution and incorporate local data to resolve fine-scale weather features. Model preprocessors were modified to incorporate surface, ship, buoy, and rawinsonde data as well as data from local wind towers, wind profilers, and conventional or Doppler radars. The overall evaluation of the MASS, Eta, and RAMS was designed to assess the utility of these mesoscale models for satisfying the weather-forecasting needs of the U.S. space program. The evaluation methodology includes

  1. A review of recent advances in numerical modelling of local scour problems

    DEFF Research Database (Denmark)

    Sumer, B. Mutlu

    2014-01-01

    A review is presented of recent advances in numerical modelling of local scour problems. The review is organized in five sections: Highlights of numerical modelling of local scour; Influence of turbulence on scour; Backfilling of scour holes; Scour around complex structures; and Scour protection ...

  2. Local-scale topoclimate effects on treeline elevations: a country-wide investigation of New Zealand's southern beech treelines.

    Science.gov (United States)

    Case, Bradley S; Buckley, Hannah L

    2015-01-01

    Although treeline elevations are limited globally by growing season temperature, at regional scales treelines frequently deviate below their climatic limit. The cause of these deviations relate to a host of climatic, disturbance, and geomorphic factors that operate at multiple scales. The ability to disentangle the relative effects of these factors is currently hampered by the lack of reliable topoclimatic data, which describe how regional climatic characteristics are modified by topographic effects in mountain areas. In this study we present an analysis of the combined effects of local- and regional-scale factors on southern beech treeline elevation variability at 28 study areas across New Zealand. We apply a mesoscale atmospheric model to generate local-scale (200 m) meteorological data at these treelines and, from these data, we derive a set of topoclimatic indices that reflect possible detrimental and ameliorative influences on tree physiological functioning. Principal components analysis of meteorological data revealed geographic structure in how study areas were situated in multivariate space along gradients of topoclimate. Random forest and conditional inference tree modelling enabled us to tease apart the relative effects of 17 explanatory factors on local-scale treeline elevation variability. Overall, modelling explained about 50% of the variation in treeline elevation variability across the 28 study areas, with local landform and topoclimatic effects generally outweighing those from regional-scale factors across the 28 study areas. Further, the nature of the relationships between treeline elevation variability and the explanatory variables were complex, frequently non-linear, and consistent with the treeline literature. To our knowledge, this is the first study where model-generated meteorological data, and derived topoclimatic indices, have been developed and applied to explain treeline variation. Our results demonstrate the potential of such an approach

  3. Strong expectations cancel locality effects: evidence from Hindi.

    Directory of Open Access Journals (Sweden)

    Samar Husain

    Full Text Available Expectation-driven facilitation (Hale, 2001; Levy, 2008 and locality-driven retrieval difficulty (Gibson, 1998, 2000; Lewis & Vasishth, 2005 are widely recognized to be two critical factors in incremental sentence processing; there is accumulating evidence that both can influence processing difficulty. However, it is unclear whether and how expectations and memory interact. We first confirm a key prediction of the expectation account: a Hindi self-paced reading study shows that when an expectation for an upcoming part of speech is dashed, building a rarer structure consumes more processing time than building a less rare structure. This is a strong validation of the expectation-based account. In a second study, we show that when expectation is strong, i.e., when a particular verb is predicted, strong facilitation effects are seen when the appearance of the verb is delayed; however, when expectation is weak, i.e., when only the part of speech "verb" is predicted but a particular verb is not predicted, the facilitation disappears and a tendency towards a locality effect is seen. The interaction seen between expectation strength and distance shows that strong expectations cancel locality effects, and that weak expectations allow locality effects to emerge.

  4. Strong expectations cancel locality effects: evidence from Hindi.

    Science.gov (United States)

    Husain, Samar; Vasishth, Shravan; Srinivasan, Narayanan

    2014-01-01

    Expectation-driven facilitation (Hale, 2001; Levy, 2008) and locality-driven retrieval difficulty (Gibson, 1998, 2000; Lewis & Vasishth, 2005) are widely recognized to be two critical factors in incremental sentence processing; there is accumulating evidence that both can influence processing difficulty. However, it is unclear whether and how expectations and memory interact. We first confirm a key prediction of the expectation account: a Hindi self-paced reading study shows that when an expectation for an upcoming part of speech is dashed, building a rarer structure consumes more processing time than building a less rare structure. This is a strong validation of the expectation-based account. In a second study, we show that when expectation is strong, i.e., when a particular verb is predicted, strong facilitation effects are seen when the appearance of the verb is delayed; however, when expectation is weak, i.e., when only the part of speech "verb" is predicted but a particular verb is not predicted, the facilitation disappears and a tendency towards a locality effect is seen. The interaction seen between expectation strength and distance shows that strong expectations cancel locality effects, and that weak expectations allow locality effects to emerge.

  5. Optimal Audiovisual Integration in the Ventriloquism Effect But Pervasive Deficits in Unisensory Spatial Localization in Amblyopia.

    Science.gov (United States)

    Richards, Michael D; Goltz, Herbert C; Wong, Agnes M F

    2018-01-01

    Classically understood as a deficit in spatial vision, amblyopia is increasingly recognized to also impair audiovisual multisensory processing. Studies to date, however, have not determined whether the audiovisual abnormalities reflect a failure of multisensory integration, or an optimal strategy in the face of unisensory impairment. We use the ventriloquism effect and the maximum-likelihood estimation (MLE) model of optimal integration to investigate integration of audiovisual spatial information in amblyopia. Participants with unilateral amblyopia (n = 14; mean age 28.8 years; 7 anisometropic, 3 strabismic, 4 mixed mechanism) and visually normal controls (n = 16, mean age 29.2 years) localized brief unimodal auditory, unimodal visual, and bimodal (audiovisual) stimuli during binocular viewing using a location discrimination task. A subset of bimodal trials involved the ventriloquism effect, an illusion in which auditory and visual stimuli originating from different locations are perceived as originating from a single location. Localization precision and bias were determined by psychometric curve fitting, and the observed parameters were compared with predictions from the MLE model. Spatial localization precision was significantly reduced in the amblyopia group compared with the control group for unimodal visual, unimodal auditory, and bimodal stimuli. Analyses of localization precision and bias for bimodal stimuli showed no significant deviations from the MLE model in either the amblyopia group or the control group. Despite pervasive deficits in localization precision for visual, auditory, and audiovisual stimuli, audiovisual integration remains intact and optimal in unilateral amblyopia.

  6. Effects of single injection of local anesthetic agents on intervertebral disc degeneration: ex vivo and long-term in vivo experimental study.

    Directory of Open Access Journals (Sweden)

    Koji Iwasaki

    Full Text Available Analgesic discography (discoblock can be used to diagnose or treat discogenic low back pain by injecting a small amount of local anesthetics. However, recent in vitro studies have revealed cytotoxic effects of local anesthetics on intervertebral disc (IVD cells. Here we aimed to investigate the deteriorative effects of lidocaine and bupivacaine on rabbit IVDs using an organotypic culture model and an in vivo long-term follow-up model.For the organotypic culture model, rabbit IVDs were harvested and cultured for 3 or 7 days after intradiscal injection of local anesthetics (1% lidocaine or 0.5% bupivacaine. Nucleus pulposus (NP cell death was measured using confocal microscopy. Histological and TUNEL assays were performed. For in vivo study, each local anesthetic was injected into rabbit lumbar IVDs under a fluoroscope. Six or 12 months after the injection, each IVD was prepared for magnetic resonance imaging (MRI and histological analysis.In the organotypic culture model, both anesthetic agents induced time-dependent NP cell death; when compared with injected saline solution, significant effects were detected within 7 days. Compared with the saline group, TUNEL-positive NP cells were significantly increased in the bupivacaine group. In the in vivo study, MRI analysis did not show any significant difference. Histological analysis revealed that IVD degeneration occurred to a significantly level in the saline- and local anesthetics-injected groups compared with the untreated control or puncture-only groups. However, there was no significant difference between the saline and anesthetic agents groups.In the in vivo model using healthy IVDs, there was no strong evidence to suggest that discoblock with local anesthetics has the potential of inducing IVD degeneration other than the initial mechanical damage of the pressurized injection. Further studies should be performed to investigate the deteriorative effects of the local injection of analgesic agents

  7. Local models of heterotic flux vacua: spacetime and worldsheet aspects

    International Nuclear Information System (INIS)

    Israel, D.; Carlevaro, L.

    2011-01-01

    We report on some recent progress in understanding heterotic flux compactifications, from a worldsheet perspective mainly. We consider local models consisting in torus fibration over warped Eguchi-Hanson space and non-Kaehler resolved conifold geometries. We analyze the supergravity solutions and define a double-scaling limit of the resolved singularities, defined such that the geometry is smooth and weakly coupled. We show that, remarkably, the heterotic solutions admit solvable worldsheet CFT descriptions in this limit. This allows in particular to understand the important role of worldsheet non-perturbative effects. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. Finite Element Analysis of the Amontons-Coulomb's Model using Local and Global Friction Tests

    International Nuclear Information System (INIS)

    Oliveira, M. C.; Menezes, L. F.; Ramalho, A.; Alves, J. L.

    2011-01-01

    In spite of the abundant number of experimental friction tests that have been reported, the contact with friction modeling persists to be one of the factors that determine the effectiveness of sheet metal forming simulation. This difficulty can be understood due to the nature of the friction phenomena, which comprises the interaction of different factors connected to both sheet and tools' surfaces. Although in finite element numerical simulations friction models are commonly applied at the local level, they normally rely on parameters identified based on global experimental tests results. The aim of this study is to analyze the applicability of the Amontons-Coulomb's friction coefficient identified using complementary tests: (i) load-scanning, at the local level and (ii) draw-bead, at the global level; to the numerical simulation of sheet metal forming processes.

  9. Local Refinement of the Super Element Model of Oil Reservoir

    Directory of Open Access Journals (Sweden)

    A.B. Mazo

    2017-12-01

    Full Text Available In this paper, we propose a two-stage method for petroleum reservoir simulation. The method uses two models with different degrees of detailing to describe hydrodynamic processes of different space-time scales. At the first stage, the global dynamics of the energy state of the deposit and reserves is modeled (characteristic scale of such changes is km / year. The two-phase flow equations in the model of global dynamics operate with smooth averaged pressure and saturation fields, and they are solved numerically on a large computational grid of super-elements with a characteristic cell size of 200-500 m. The tensor coefficients of the super-element model are calculated using special procedures of upscaling of absolute and relative phase permeabilities. At the second stage, a local refinement of the super-element model is constructed for calculating small-scale processes (with a scale of m / day, which take place, for example, during various geological and technical measures aimed at increasing the oil recovery of a reservoir. Then we solve the two-phase flow problem in the selected area of the measure exposure on a detailed three-dimensional grid, which resolves the geological structure of the reservoir, and with a time step sufficient for describing fast-flowing processes. The initial and boundary conditions of the local problem are formulated on the basis of the super-element solution. This approach allows us to reduce the computational costs in order to solve the problems of designing and monitoring the oil reservoir. To demonstrate the proposed approach, we give an example of the two-stage modeling of the development of a layered reservoir with a local refinement of the model during the isolation of a water-saturated high-permeability interlayer. We show a good compliance between the locally refined solution of the super-element model in the area of measure exposure and the results of numerical modeling of the whole history of reservoir

  10. The utility of comparative models and the local model quality for protein crystal structure determination by Molecular Replacement

    Directory of Open Access Journals (Sweden)

    Pawlowski Marcin

    2012-11-01

    Full Text Available Abstract Background Computational models of protein structures were proved to be useful as search models in Molecular Replacement (MR, a common method to solve the phase problem faced by macromolecular crystallography. The success of MR depends on the accuracy of a search model. Unfortunately, this parameter remains unknown until the final structure of the target protein is determined. During the last few years, several Model Quality Assessment Programs (MQAPs that predict the local accuracy of theoretical models have been developed. In this article, we analyze whether the application of MQAPs improves the utility of theoretical models in MR. Results For our dataset of 615 search models, the real local accuracy of a model increases the MR success ratio by 101% compared to corresponding polyalanine templates. On the contrary, when local model quality is not utilized in MR, the computational models solved only 4.5% more MR searches than polyalanine templates. For the same dataset of the 615 models, a workflow combining MR with predicted local accuracy of a model found 45% more correct solution than polyalanine templates. To predict such accuracy MetaMQAPclust, a “clustering MQAP” was used. Conclusions Using comparative models only marginally increases the MR success ratio in comparison to polyalanine structures of templates. However, the situation changes dramatically once comparative models are used together with their predicted local accuracy. A new functionality was added to the GeneSilico Fold Prediction Metaserver in order to build models that are more useful for MR searches. Additionally, we have developed a simple method, AmIgoMR (Am I good for MR?, to predict if an MR search with a template-based model for a given template is likely to find the correct solution.

  11. Model analysis of local oxygen delivery with liposome-encapsulated hemoglobin.

    Science.gov (United States)

    Matsumoto, Takeshi; Mano, Katsuhiko; Ueha, Ryohei; Naito, Hisashi; Tanaka, Masao

    2009-03-01

    Liposome-encapsulated hemoglobins (LHs) are comparable to red blood cells (RBCs) in terms of oxygen (O(2))-carrying capacity. The smaller particle size of LHs than of platelets allows their homogeneous dispersion in circulating plasma. In this study, we evaluated the effect of LH transfusion on arterial O(2) delivery through vascular trees by simulation. A mathematical model was established on the basis of the coronary arterial anatomy, the conservation of flow and RBC flux, and Poiseuille's law. The Fåhraeus-Lindqvist, Fåhraeus, and phase separation effects were considered in the model. By assuming steady perfusion, the arterial flow and O(2) delivery were calculated for five model trees undergoing the isovolumic replacement of RBCs (0.3 mg hemoglobin (Hb)/mL) with LHs (0.2 mg Hb/mL) or a plasma volume expander (PVE). The RBC-LH exchange increased both the total flow and the total O(2) flux but had almost no effect on the relative distribution of O(2) flux. In contrast, the RBC-PVE exchange decreased the total O(2) flux and increased the proportion of regions receiving a relatively low O(2) supply. Thus, LH transfusion may compensate for an enhanced bias in RBC-associated O(2) flux under hemodilution and is expected to be beneficial for both total and local O(2) delivery.

  12. Aerosol numerical modelling at local scale

    International Nuclear Information System (INIS)

    Albriet, Bastien

    2007-01-01

    At local scale and in urban areas, an important part of particulate pollution is due to traffic. It contributes largely to the high number concentrations observed. Two aerosol sources are mainly linked to traffic. Primary emission of soot particles and secondary nanoparticle formation by nucleation. The emissions and mechanisms leading to the formation of such bimodal distribution are still badly understood nowadays. In this thesis, we try to provide an answer to this problematic by numerical modelling. The Modal Aerosol Model MAM is used, coupled with two 3D-codes: a CFD (Mercure Saturne) and a CTM (Polair3D). A sensitivity analysis is performed, at the border of a road but also in the first meters of an exhaust plume, to identify the role of each process involved and the sensitivity of different parameters used in the modelling. (author) [fr

  13. Geometric effects of 90-degree vertical elbows on local two-phase flow parameters

    International Nuclear Information System (INIS)

    Yadav, M.; Worosz, T.; Kim, S.

    2011-01-01

    This study presents the geometric effects of 90-degree vertical elbows on the development of the local two-phase flow parameters. A multi-sensor conductivity probe is used to measure local two-phase flow parameters. It is found that immediately downstream of the vertical-upward elbow, the bubbles have a bimodal distribution along the horizontal radius of the pipe cross-section causing a dual-peak in the profiles of local void fraction and local interfacial area concentration. Immediately downstream of the vertical-downward elbow it is observed that the bubbles tend to migrate towards the inside of the elbow's curvature. The axial transport of void fraction and interfacial area concentration indicates that the elbows promote bubble disintegration. Preliminary predictions are obtained from group-one interfacial area transport equation (IATE) model for vertical-upward and vertical-downward two-phase flow. (author)

  14. Electrophysiological Data and the Biophysical Modelling of Local Cortical Circuits

    Directory of Open Access Journals (Sweden)

    Dimitris Pinotsis

    2014-03-01

    Full Text Available This paper shows how recordings of gamma oscillations – under different experimental conditions or from different subjects – can be combined with a class of population models called neural fields and dynamic causal modeling (DCM to distinguish among alternative hypotheses regarding cortical structure and function. This approach exploits inter-subject variability and trial-specific effects associated with modulations in the peak frequency of gamma oscillations. It draws on the computational power of Bayesian model inversion, when applied to neural field models of cortical dynamics. Bayesian model comparison allows one to adjudicate among different mechanistic hypotheses about cortical excitability, synaptic kinetics and the cardinal topographic features of local cortical circuits. It also provides optimal parameter estimates that quantify neuromodulation and the spatial dispersion of axonal connections or summation of receptive fields in the visual cortex. This paper provides an overview of a family of neural field models that have been recently implemented using the DCM toolbox of the academic freeware Statistical Parametric Mapping (SPM. The SPM software is a popular platform for analyzing neuroimaging data, used by several neuroscience communities worldwide. DCM allows for a formal (Bayesian statistical analysis of cortical network connectivity, based upon realistic biophysical models of brain responses. It is this particular feature of DCM – the unique combination of generative models with optimization techniques based upon (variational Bayesian principles – that furnishes a novel way to characterize functional brain architectures. In particular, it provides answers to questions about how the brain is wired and how it responds to different experimental manipulations. For a review of the general role of neural fields in SPM the reader can consult e.g. see [1]. Neural fields have a long and illustrious history in mathematical

  15. Development and Implementation of Dynamic Scripts to Support Local Model Verification at National Weather Service Weather Forecast Offices

    Science.gov (United States)

    Zavodsky, Bradley; Case, Jonathan L.; Gotway, John H.; White, Kristopher; Medlin, Jeffrey; Wood, Lance; Radell, Dave

    2014-01-01

    Local modeling with a customized configuration is conducted at National Weather Service (NWS) Weather Forecast Offices (WFOs) to produce high-resolution numerical forecasts that can better simulate local weather phenomena and complement larger scale global and regional models. The advent of the Environmental Modeling System (EMS), which provides a pre-compiled version of the Weather Research and Forecasting (WRF) model and wrapper Perl scripts, has enabled forecasters to easily configure and execute the WRF model on local workstations. NWS WFOs often use EMS output to help in forecasting highly localized, mesoscale features such as convective initiation, the timing and inland extent of lake effect snow bands, lake and sea breezes, and topographically-modified winds. However, quantitatively evaluating model performance to determine errors and biases still proves to be one of the challenges in running a local model. Developed at the National Center for Atmospheric Research (NCAR), the Model Evaluation Tools (MET) verification software makes performing these types of quantitative analyses easier, but operational forecasters do not generally have time to familiarize themselves with navigating the sometimes complex configurations associated with the MET tools. To assist forecasters in running a subset of MET programs and capabilities, the Short-term Prediction Research and Transition (SPoRT) Center has developed and transitioned a set of dynamic, easily configurable Perl scripts to collaborating NWS WFOs. The objective of these scripts is to provide SPoRT collaborating partners in the NWS with the ability to evaluate the skill of their local EMS model runs in near real time with little prior knowledge of the MET package. The ultimate goal is to make these verification scripts available to the broader NWS community in a future version of the EMS software. This paper provides an overview of the SPoRT MET scripts, instructions for how the scripts are run, and example use

  16. MODELING OF THERMOELECTRIC SYSTEM FOR LOCAL THERMAL EFFECTS ON HUMAN FOREARM ZONE

    Directory of Open Access Journals (Sweden)

    T. A. Ismailov

    2013-01-01

    Full Text Available In this paper we consider a model of the thermoelectric system for the thermal effect on the human forearm. The model is implemented on the basis of numerical solution of differentialequations of heat conduction for bodies of complex configuration. Two-dimensional and onedimensional graphs of the temperature change in different zones of the object of exposure aregiven.

  17. The charge-asymmetric nonlocally determined local-electric (CANDLE) solvation model

    Energy Technology Data Exchange (ETDEWEB)

    Sundararaman, Ravishankar; Goddard, William A. [Joint Center for Artificial Photosynthesis, Pasadena, California 91125 (United States)

    2015-02-14

    Many important applications of electronic structure methods involve molecules or solid surfaces in a solvent medium. Since explicit treatment of the solvent in such methods is usually not practical, calculations often employ continuum solvation models to approximate the effect of the solvent. Previous solvation models either involve a parametrization based on atomic radii, which limits the class of applicable solutes, or based on solute electron density, which is more general but less accurate, especially for charged systems. We develop an accurate and general solvation model that includes a cavity that is a nonlocal functional of both solute electron density and potential, local dielectric response on this nonlocally determined cavity, and nonlocal approximations to the cavity-formation and dispersion energies. The dependence of the cavity on the solute potential enables an explicit treatment of the solvent charge asymmetry. With four parameters per solvent, this “CANDLE” model simultaneously reproduces solvation energies of large datasets of neutral molecules, cations, and anions with a mean absolute error of 1.8 kcal/mol in water and 3.0 kcal/mol in acetonitrile.

  18. A knowledge representation of local pandemic influenza planning models.

    Science.gov (United States)

    Islam, Runa; Brandeau, Margaret L; Das, Amar K

    2007-10-11

    Planning for pandemic flu outbreak at the small-government level can be aided through the use of mathematical policy models. Formulating and analyzing policy models, however, can be a time- and expertise-expensive process. We believe that a knowledge-based system for facilitating the instantiation of locale- and problem-specific policy models can reduce some of these costs. In this work, we present the ontology we have developed for pandemic influenza policy models.

  19. A novel Monte Carlo approach to hybrid local volatility models

    NARCIS (Netherlands)

    A.W. van der Stoep (Anton); L.A. Grzelak (Lech Aleksander); C.W. Oosterlee (Cornelis)

    2017-01-01

    textabstractWe present in a Monte Carlo simulation framework, a novel approach for the evaluation of hybrid local volatility [Risk, 1994, 7, 18–20], [Int. J. Theor. Appl. Finance, 1998, 1, 61–110] models. In particular, we consider the stochastic local volatility model—see e.g. Lipton et al. [Quant.

  20. QUALITY, EFFECTIVENESS AND MANAGEMENT INFORMATION SYSTEMS PERFORMANCE OF LOCAL TREASURIES BUDGET ACCOUNTING

    Directory of Open Access Journals (Sweden)

    Biljana Tešić

    2011-09-01

    Full Text Available The role of management information systems (MIS of local treasuries budget accounting is to provide qualitative information support to management in process of decision making and to provide effective managing of key processes of budget accounting, in accordance with requests of management on all levels of decision making. From the aspect of effectiveness and request for quality, in accordance with request of users and defined system goals, this research includes the analysis of characteristics and goals of identified key processes, critical success factors (CSF, key performance indicators (KPI, standards for realization of users requests, results of processes and indicators of goals realisation. The aim of this paper, based on the results of the analysis, is to develop models for evaluation of quality and effectiveness and to define key performance indicators of MIS of budget accounting, in order to perceive the level of achievement of the goals of the system, effectiveness of processes and level of fulfillment of requirements and needs of all users groups that are significant for budge t accounting of local treasuries.

  1. The effect of unemployment, aggregate wages, and spatial contiguity on local wages: An investigation with German district level data

    OpenAIRE

    Thiess Buettner

    1999-01-01

    Despite spatial rigidity of collectively negotiated wages the local unemployment rate is found to have a significant negative impact on wages. This impact is shown to be consistent with both the wage-curve hypothesis and modern Phillips-curve modelling. Spatial contiguity effects are found in wages and unemployment and their neglect leads to an underestimation of the effect of local unemployment. Yet, the impact of local unemployment on wages turns out to be quite low as compared to studies f...

  2. Multi-site evaluation of the JULES land surface model using global and local data

    Directory of Open Access Journals (Sweden)

    D. Slevin

    2015-02-01

    Full Text Available This study evaluates the ability of the JULES land surface model (LSM to simulate photosynthesis using local and global data sets at 12 FLUXNET sites. Model parameters include site-specific (local values for each flux tower site and the default parameters used in the Hadley Centre Global Environmental Model (HadGEM climate model. Firstly, gross primary productivity (GPP estimates from driving JULES with data derived from local site measurements were compared to observations from the FLUXNET network. When using local data, the model is biased with total annual GPP underestimated by 16% across all sites compared to observations. Secondly, GPP estimates from driving JULES with data derived from global parameter and atmospheric reanalysis (on scales of 100 km or so were compared to FLUXNET observations. It was found that model performance decreases further, with total annual GPP underestimated by 30% across all sites compared to observations. When JULES was driven using local parameters and global meteorological data, it was shown that global data could be used in place of FLUXNET data with a 7% reduction in total annual simulated GPP. Thirdly, the global meteorological data sets, WFDEI and PRINCETON, were compared to local data to find that the WFDEI data set more closely matches the local meteorological measurements (FLUXNET. Finally, the JULES phenology model was tested by comparing results from simulations using the default phenology model to those forced with the remote sensing product MODIS leaf area index (LAI. Forcing the model with daily satellite LAI results in only small improvements in predicted GPP at a small number of sites, compared to using the default phenology model.

  3. Quantifying Local, Response Dependence between Two Polytomous Items Using the Rasch Model

    Science.gov (United States)

    Andrich, David; Humphry, Stephen M.; Marais, Ida

    2012-01-01

    Models of modern test theory imply statistical independence among responses, generally referred to as "local independence." One violation of local independence occurs when the response to one item governs the response to a subsequent item. Expanding on a formulation of this kind of violation as a process in the dichotomous Rasch model,…

  4. Progress towards localization in the attractive Hubbard model

    Science.gov (United States)

    Morong, W.; Xu, W.; Demarco, B.

    2017-04-01

    The interplay between fermionic superfluidity and disorder is a topic of long-standing interest that has recently come within reach of ultracold gas experiments. Outstanding questions include the fate of Cooper pairs in a localized superfluid and the effect of disorder on the superfluid transition temperature. We report progress on tackling this problem using a realization of the Hubbard model with attractive interactions. Our system consists of two spin states of fermionic potassium-40 trapped in a cubic optical lattice. Disorder is introduced using an optical speckle potential, and interactions are controlled via a Feshbach resonance. We study the binding and unbinding of Cooper pairs in this system using rf spectroscopy, changes in Tc by measuring the condensate fraction, and transport properties by observing the response to an applied impulse. We will discuss progress towards these measurements.

  5. A model for cell type localization in the migrating slug of ...

    Indian Academy of Sciences (India)

    PRAKASH

    . Localization of the three major cell types within the migrating slug stage is a dynamic process (Sternfeld 1992;. A model for cell type localization in the migrating slug of Dictyostelium discoideum based on differential chemotactic sensitivity to ...

  6. Self-organized dynamics in local load-sharing fiber bundle models.

    Science.gov (United States)

    Biswas, Soumyajyoti; Chakrabarti, Bikas K

    2013-10-01

    We study the dynamics of a local load-sharing fiber bundle model in two dimensions under an external load (which increases with time at a fixed slow rate) applied at a single point. Due to the local load-sharing nature, the redistributed load remains localized along the boundary of the broken patch. The system then goes to a self-organized state with a stationary average value of load per fiber along the (increasing) boundary of the broken patch (damaged region) and a scale-free distribution of avalanche sizes and other related quantities are observed. In particular, when the load redistribution is only among nearest surviving fiber(s), the numerical estimates of the exponent values are comparable with those of the Manna model. When the load redistribution is uniform along the patch boundary, the model shows a simple mean-field limit of this self-organizing critical behavior, for which we give analytical estimates of the saturation load per fiber values and avalanche size distribution exponent. These are in good agreement with numerical simulation results.

  7. Strain Localization and Weakening Processes in Viscously Deforming Rocks: Numerical Modeling Based on Laboratory Torsion Experiments

    Science.gov (United States)

    Doehmann, M.; Brune, S.; Nardini, L.; Rybacki, E.; Dresen, G.

    2017-12-01

    Strain localization is an ubiquitous process in earth materials observed over a broad range of scales in space and time. Localized deformation and the formation of shear zones and faults typically involves material softening by various processes, like shear heating and grain size reduction. Numerical modeling enables us to study the complex physical and chemical weakening processes by separating the effect of individual parameters and boundary conditions. Using simple piece-wise linear functions for the parametrization of weakening processes allows studying a system at a chosen (lower) level of complexity (e.g. Cyprych et al., 2016). In this study, we utilize a finite element model to test two weakening laws that reduce the strength of the material depending on either the I) amount of accumulated strain or II) deformational work. Our 2D Cartesian models are benchmarked to single inclusion torsion experiments performed at elevated temperatures of 900 °C and pressures of up to 400 MPa (Rybacki et al., 2014). The experiments were performed on Carrara marble samples containing a weak Solnhofen limestone inclusion at a maximum strain rate of 2.0*10-4 s-1. Our models are designed to reproduce shear deformation of a hollow cylinder equivalent to the laboratory setup, such that material leaving one side of the model in shear direction enters again on the opposite side using periodic boundary conditions. Similar to the laboratory tests, we applied constant strain rate and constant stress boundary conditions.We use our model to investigate the time-dependent distribution of stress and strain and the effect of different parameters. For instance, inclusion rotation is shown to be strongly dependent on the viscosity ratio between matrix and inclusion and stronger ductile weakening increases the localization rate while decreasing shear zone width. The most suitable weakening law for representation of ductile rock is determined by combining the results of parameter tests with

  8. Implementation of SNS Model for Intrusion Prevention in Wireless Local Area Network

    DEFF Research Database (Denmark)

    Isah, Abdullahi

    The thesis has proposed and implemented a so-called SNS (Social network security) model for intrusion prevention in the Wireless Local Area Network of an organization. An experimental design was used to implement and test the model at a university in Nigeria.......The thesis has proposed and implemented a so-called SNS (Social network security) model for intrusion prevention in the Wireless Local Area Network of an organization. An experimental design was used to implement and test the model at a university in Nigeria....

  9. Central Limit Theorem for Exponentially Quasi-local Statistics of Spin Models on Cayley Graphs

    Science.gov (United States)

    Reddy, Tulasi Ram; Vadlamani, Sreekar; Yogeshwaran, D.

    2018-04-01

    Central limit theorems for linear statistics of lattice random fields (including spin models) are usually proven under suitable mixing conditions or quasi-associativity. Many interesting examples of spin models do not satisfy mixing conditions, and on the other hand, it does not seem easy to show central limit theorem for local statistics via quasi-associativity. In this work, we prove general central limit theorems for local statistics and exponentially quasi-local statistics of spin models on discrete Cayley graphs with polynomial growth. Further, we supplement these results by proving similar central limit theorems for random fields on discrete Cayley graphs taking values in a countable space, but under the stronger assumptions of α -mixing (for local statistics) and exponential α -mixing (for exponentially quasi-local statistics). All our central limit theorems assume a suitable variance lower bound like many others in the literature. We illustrate our general central limit theorem with specific examples of lattice spin models and statistics arising in computational topology, statistical physics and random networks. Examples of clustering spin models include quasi-associated spin models with fast decaying covariances like the off-critical Ising model, level sets of Gaussian random fields with fast decaying covariances like the massive Gaussian free field and determinantal point processes with fast decaying kernels. Examples of local statistics include intrinsic volumes, face counts, component counts of random cubical complexes while exponentially quasi-local statistics include nearest neighbour distances in spin models and Betti numbers of sub-critical random cubical complexes.

  10. Co-encapsulation of paclitaxel and C6 ceramide in tributyrin-containing nanocarriers improve co-localization in the skin and potentiate cytotoxic effects in 2D and 3D models.

    Science.gov (United States)

    Carvalho, Vanessa F M; Migotto, Amanda; Giacone, Daniela V; de Lemos, Débora P; Zanoni, Thalita B; Maria-Engler, Silvya S; Costa-Lotufo, Leticia V; Lopes, Luciana B

    2017-11-15

    Considering that tumor development is generally multifactorial, therapy with a combination of agents capable of potentiating cytotoxic effects is promising. In this study, we co-encapsulated C6 ceramide (0.35%) and paclitaxel (0.50%) in micro and nanoemulsions containing tributyrin (a butyric acid pro-drug included for potentiation of cytotoxicity), and compared their ability to co-localize the drugs in viable skin layers. The nanoemulsion delivered 2- and 2.4-fold more paclitaxel into viable skin layers of porcine skin in vitro at 4 and 8h post-application than the microemulsion, and 1.9-fold more C6 ceramide at 8h. The drugs were co-localized mainly in the epidermis, suggesting the nanoemulsion ability for a targeted delivery. Based on this result, the nanoemulsion was selected for evaluation of the nanocarrier-mediated cytotoxicity against cells in culture (2D model) and histological changes in a 3D melanoma model. Encapsulation of the drugs individually decreased the concentration necessary to reduce melanoma cells viability to 50% (EC 50 ) by approximately 4- (paclitaxel) and 13-fold (ceramide), demonstrating an improved nanoemulsion-mediated drug delivery. Co-encapsulation of paclitaxel and ceramide further decreased EC 50 by 2.5-4.5-fold, and calculation of the combination index indicated a synergistic effect. Nanoemulsion topical administration on 3D bioengineered melanoma models for 48h promoted marked epidermis destruction, with only few cells remaining in this layer. This result demonstrates the efficacy of the nanoemulsion, but also suggests non-selective cytotoxic effects, which highlights the importance of localizing the drugs within cutaneous layers where the lesions develop to avoid adverse effects. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Modeling Correlation Effects in Nickelates with Slave Particles

    Science.gov (United States)

    Georgescu, Alexandru Bogdan; Ismail-Beigi, Sohrab

    Nickelate interfaces display interesting electronic properties including orbital ordering similar to that of cuprate superconductors and thickness dependent metal-insulator transitions. One-particle band theory calculations do not include dynamic localized correlation effects on the nickel sites and thus often incorrectly predict metallic systems or incorrect ARPES spectra. Building on two previous successful slave-particle treatments of local correlations, we present a generalized slave-particle method that includes prior models and allows us to produce new intermediate models. The computational efficiency of these slave-boson methods means that one can readily study correlation effects in complex heterostructures. We show some predictions of these methods for the electronic structure of bulk and thin film nickelates. Work supported by NSF Grant MRSEC DMR-1119826.

  12. Mathematical models and methods of localized interaction theory

    CERN Document Server

    Bunimovich, AI

    1995-01-01

    The interaction of the environment with a moving body is called "localized" if it has been found or assumed that the force or/and thermal influence of the environment on each body surface point is independent and can be determined by the local geometrical and kinematical characteristics of this point as well as by the parameters of the environment and body-environment interactions which are the same for the whole surface of contact.Such models are widespread in aerodynamics and gas dynamics, covering supersonic and hypersonic flows, and rarefied gas flows. They describe the influence of light

  13. Local-scale topoclimate effects on treeline elevations: a country-wide investigation of New Zealand’s southern beech treelines

    Directory of Open Access Journals (Sweden)

    Bradley S. Case

    2015-10-01

    Full Text Available Although treeline elevations are limited globally by growing season temperature, at regional scales treelines frequently deviate below their climatic limit. The cause of these deviations relate to a host of climatic, disturbance, and geomorphic factors that operate at multiple scales. The ability to disentangle the relative effects of these factors is currently hampered by the lack of reliable topoclimatic data, which describe how regional climatic characteristics are modified by topographic effects in mountain areas. In this study we present an analysis of the combined effects of local- and regional-scale factors on southern beech treeline elevation variability at 28 study areas across New Zealand. We apply a mesoscale atmospheric model to generate local-scale (200 m meteorological data at these treelines and, from these data, we derive a set of topoclimatic indices that reflect possible detrimental and ameliorative influences on tree physiological functioning. Principal components analysis of meteorological data revealed geographic structure in how study areas were situated in multivariate space along gradients of topoclimate. Random forest and conditional inference tree modelling enabled us to tease apart the relative effects of 17 explanatory factors on local-scale treeline elevation variability. Overall, modelling explained about 50% of the variation in treeline elevation variability across the 28 study areas, with local landform and topoclimatic effects generally outweighing those from regional-scale factors across the 28 study areas. Further, the nature of the relationships between treeline elevation variability and the explanatory variables were complex, frequently non-linear, and consistent with the treeline literature. To our knowledge, this is the first study where model-generated meteorological data, and derived topoclimatic indices, have been developed and applied to explain treeline variation. Our results demonstrate the potential

  14. Local-scale topoclimate effects on treeline elevations: a country-wide investigation of New Zealand’s southern beech treelines

    Science.gov (United States)

    Buckley, Hannah L.

    2015-01-01

    Although treeline elevations are limited globally by growing season temperature, at regional scales treelines frequently deviate below their climatic limit. The cause of these deviations relate to a host of climatic, disturbance, and geomorphic factors that operate at multiple scales. The ability to disentangle the relative effects of these factors is currently hampered by the lack of reliable topoclimatic data, which describe how regional climatic characteristics are modified by topographic effects in mountain areas. In this study we present an analysis of the combined effects of local- and regional-scale factors on southern beech treeline elevation variability at 28 study areas across New Zealand. We apply a mesoscale atmospheric model to generate local-scale (200 m) meteorological data at these treelines and, from these data, we derive a set of topoclimatic indices that reflect possible detrimental and ameliorative influences on tree physiological functioning. Principal components analysis of meteorological data revealed geographic structure in how study areas were situated in multivariate space along gradients of topoclimate. Random forest and conditional inference tree modelling enabled us to tease apart the relative effects of 17 explanatory factors on local-scale treeline elevation variability. Overall, modelling explained about 50% of the variation in treeline elevation variability across the 28 study areas, with local landform and topoclimatic effects generally outweighing those from regional-scale factors across the 28 study areas. Further, the nature of the relationships between treeline elevation variability and the explanatory variables were complex, frequently non-linear, and consistent with the treeline literature. To our knowledge, this is the first study where model-generated meteorological data, and derived topoclimatic indices, have been developed and applied to explain treeline variation. Our results demonstrate the potential of such an approach

  15. Modeling of Local Magnetic Field Enhancements within Solar Flux Ropes

    OpenAIRE

    Romashets, E; Vandas, M; Poedts, Stefaan

    2010-01-01

    To model and study local magnetic-field enhancements in a solar flux rope we consider the magnetic field in its interior as a superposition of two linear (constant alpha) force-free magnetic-field distributions, viz. a global one, which is locally similar to a part of the cylinder, and a local torus-shaped magnetic distribution. The newly derived solution for a toroid with an aspect ratio close to unity is applied. The symmetry axis of the toroid and that of the cylinder may or may not coinci...

  16. Local air gap thickness and contact area models for realistic simulation of human thermo-physiological response

    Science.gov (United States)

    Psikuta, Agnes; Mert, Emel; Annaheim, Simon; Rossi, René M.

    2018-02-01

    To evaluate the quality of new energy-saving and performance-supporting building and urban settings, the thermal sensation and comfort models are often used. The accuracy of these models is related to accurate prediction of the human thermo-physiological response that, in turn, is highly sensitive to the local effect of clothing. This study aimed at the development of an empirical regression model of the air gap thickness and the contact area in clothing to accurately simulate human thermal and perceptual response. The statistical model predicted reliably both parameters for 14 body regions based on the clothing ease allowances. The effect of the standard error in air gap prediction on the thermo-physiological response was lower than the differences between healthy humans. It was demonstrated that currently used assumptions and methods for determination of the air gap thickness can produce a substantial error for all global, mean, and local physiological parameters, and hence, lead to false estimation of the resultant physiological state of the human body, thermal sensation, and comfort. Thus, this model may help researchers to strive for improvement of human thermal comfort, health, productivity, safety, and overall sense of well-being with simultaneous reduction of energy consumption and costs in built environment.

  17. The effect of interacting dark energy on local measurements of the Hubble constant

    International Nuclear Information System (INIS)

    Odderskov, Io; Baldi, Marco; Amendola, Luca

    2016-01-01

    In the current state of cosmology, where cosmological parameters are being measured to percent accuracy, it is essential to understand all sources of error to high precision. In this paper we present the results of a study of the local variations in the Hubble constant measured at the distance scale of the Coma Cluster, and test the validity of correcting for the peculiar velocities predicted by gravitational instability theory. The study is based on N-body simulations, and includes models featuring a coupling between dark energy and dark matter, as well as two ΛCDM simulations with different values of σ 8 . It is found that the variance in the local flows is significantly larger in the coupled models, which increases the uncertainty in the local measurements of the Hubble constant in these scenarios. By comparing the results from the different simulations, it is found that most of the effect is caused by the higher value of σ 8 in the coupled cosmologies, though this cannot account for all of the additional variance. Given the discrepancy between different estimates of the Hubble constant in the universe today, cosmological models causing a greater cosmic variance is something that we should be aware of.

  18. The effect of interacting dark energy on local measurements of the Hubble constant

    Energy Technology Data Exchange (ETDEWEB)

    Odderskov, Io [Department of Physics and Astronomy, University of Aarhus, Ny Munkegade 120, Aarhus C (Denmark); Baldi, Marco [Dipartimento di Fisica e Astronomia, Alma Mater Studiorum Università di Bologna, viale Berti Pichat 6/2, I-40127, Bologna (Italy); Amendola, Luca, E-mail: isho07@phys.au.dk, E-mail: marco.baldi5@unibo.it, E-mail: l.amendola@thphys.uni-heidelberg.de [Institut für Theoretische Physik, Ruprecht-Karls-Universität Heidelberg, Philosophenweg 16, 69120 Heidelberg (Germany)

    2016-05-01

    In the current state of cosmology, where cosmological parameters are being measured to percent accuracy, it is essential to understand all sources of error to high precision. In this paper we present the results of a study of the local variations in the Hubble constant measured at the distance scale of the Coma Cluster, and test the validity of correcting for the peculiar velocities predicted by gravitational instability theory. The study is based on N-body simulations, and includes models featuring a coupling between dark energy and dark matter, as well as two ΛCDM simulations with different values of σ{sub 8}. It is found that the variance in the local flows is significantly larger in the coupled models, which increases the uncertainty in the local measurements of the Hubble constant in these scenarios. By comparing the results from the different simulations, it is found that most of the effect is caused by the higher value of σ{sub 8} in the coupled cosmologies, though this cannot account for all of the additional variance. Given the discrepancy between different estimates of the Hubble constant in the universe today, cosmological models causing a greater cosmic variance is something that we should be aware of.

  19. The FLUKA Monte Carlo code coupled with the local effect model for biological calculations in carbon ion therapy

    Energy Technology Data Exchange (ETDEWEB)

    Mairani, A [University of Pavia, Department of Nuclear and Theoretical Physics, and INFN, via Bassi 6, 27100 Pavia (Italy); Brons, S; Parodi, K [Heidelberg Ion Beam Therapy Center and Department of Radiation Oncology, Im Neuenheimer Feld 450, 69120 Heidelberg (Germany); Cerutti, F; Ferrari, A; Sommerer, F [CERN, 1211 Geneva 23 (Switzerland); Fasso, A [SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Kraemer, M; Scholz, M, E-mail: Andrea.Mairani@mi.infn.i [GSI Biophysik, Planck-Str. 1, D-64291 Darmstadt (Germany)

    2010-08-07

    Clinical Monte Carlo (MC) calculations for carbon ion therapy have to provide absorbed and RBE-weighted dose. The latter is defined as the product of the dose and the relative biological effectiveness (RBE). At the GSI Helmholtzzentrum fuer Schwerionenforschung as well as at the Heidelberg Ion Therapy Center (HIT), the RBE values are calculated according to the local effect model (LEM). In this paper, we describe the approach followed for coupling the FLUKA MC code with the LEM and its application to dose and RBE-weighted dose calculations for a superimposition of two opposed {sup 12}C ion fields as applied in therapeutic irradiations. The obtained results are compared with the available experimental data of CHO (Chinese hamster ovary) cell survival and the outcomes of the GSI analytical treatment planning code TRiP98. Some discrepancies have been observed between the analytical and MC calculations of absorbed physical dose profiles, which can be explained by the differences between the laterally integrated depth-dose distributions in water used as input basic data in TRiP98 and the FLUKA recalculated ones. On the other hand, taking into account the differences in the physical beam modeling, the FLUKA-based biological calculations of the CHO cell survival profiles are found in good agreement with the experimental data as well with the TRiP98 predictions. The developed approach that combines the MC transport/interaction capability with the same biological model as in the treatment planning system (TPS) will be used at HIT to support validation/improvement of both dose and RBE-weighted dose calculations performed by the analytical TPS.

  20. THE EFFECT OF LOCAL ANESTHETICS ON TEAR PRODUCTION

    African Journals Online (AJOL)

    that local anesthetics measure only basic secretion thus reducing normal tear production/secretion, which is both reflex and basic. This could be attributed to the fact that local anesthetics have an adrenergic potentiating effects and because lacrimal fluid receive a preganglionic parasympathetic supply from lacrimal muscles ...

  1. Modeling the effects of local climate change on crop acreage

    Directory of Open Access Journals (Sweden)

    Hyunok Lee

    2016-01-01

    Full Text Available The impacts of climate change on agriculture depend on local conditions and crops grown. For instance, warmer winter temperatures in a given area would reduce chill hours, potentially cutting yields for some crops but extending the growing season for others. Using a century of climate data and six decades of acreage data, we established quantitative economic relationships between the evolution of local climate and acreage of 12 important crops in Yolo County. We then used the historical trend in climate change to project future crop acreages in the county. Only marginal changes in acreage in 2050 were projected for tree and vine crops there, in part because chill hours, although lower, remained above critical values. Walnuts were the most vulnerable tree crop, and the projections indicated some cultivars might be marginal in years with particularly warm winters. Processing tomato acreage might increase, due to a longer growing season, and also alfalfa acreage, if water availability and other factors remain constant.

  2. When High-Capacity Readers Slow Down and Low-Capacity Readers Speed Up: Working Memory and Locality Effects.

    Science.gov (United States)

    Nicenboim, Bruno; Logačev, Pavel; Gattei, Carolina; Vasishth, Shravan

    2016-01-01

    We examined the effects of argument-head distance in SVO and SOV languages (Spanish and German), while taking into account readers' working memory capacity and controlling for expectation (Levy, 2008) and other factors. We predicted only locality effects, that is, a slowdown produced by increased dependency distance (Gibson, 2000; Lewis and Vasishth, 2005). Furthermore, we expected stronger locality effects for readers with low working memory capacity. Contrary to our predictions, low-capacity readers showed faster reading with increased distance, while high-capacity readers showed locality effects. We suggest that while the locality effects are compatible with memory-based explanations, the speedup of low-capacity readers can be explained by an increased probability of retrieval failure. We present a computational model based on ACT-R built under the previous assumptions, which is able to give a qualitative account for the present data and can be tested in future research. Our results suggest that in some cases, interpreting longer RTs as indexing increased processing difficulty and shorter RTs as facilitation may be too simplistic: The same increase in processing difficulty may lead to slowdowns in high-capacity readers and speedups in low-capacity ones. Ignoring individual level capacity differences when investigating locality effects may lead to misleading conclusions.

  3. When high-capacity readers slow down and low-capacity readers speed up: Working memory and locality effects

    Directory of Open Access Journals (Sweden)

    Bruno eNicenboim

    2016-03-01

    Full Text Available We examined the effects of argument-head distance in SVO and SOV languages (Spanish and German, while taking into account readers’ working memory capacity and controlling for expectation (Levy, 2008 and other factors. We predicted only locality effects, that is, a slow-down produced by increased dependency distance (Gibson, 2000; Lewis & Vasishth, 2005. Furthermore, we expected stronger locality effects for readers with low working memory capacity. Contrary to our predictions, low-capacity readers showed faster reading with increased distance, while high-capacity readers showed locality effects. We suggest that while the locality effects are compatible with memory-based explanations, the speedup of low-capacity readers can be explained by an increased probability of retrieval failure. We present a computational model based on ACT-R built under the previous assumptions, which is able to give a qualitative account for the present data and can be tested in future research. Our results suggest that in some cases, interpreting longer RTs as indexing increased processing difficulty and shorter RTs as facilitation may be too simplistic: The same increase in processing difficulty may lead to slowdowns in high-capacity readers and speedups in low-capacity ones. Ignoring individual level capacity differences when investigating locality effects may lead to misleading conclusions.

  4. Modeling Shocks Detected by Voyager 1 in the Local Interstellar Medium

    Energy Technology Data Exchange (ETDEWEB)

    Kim, T. K.; Pogorelov, N. V. [Center for Space Plasma and Aeronomic Research, University of Alabama in Huntsville, Huntsville, AL 35805 (United States); Burlaga, L. F. [NASA Goddard Space Flight Center, Code 673, Greenbelt, MD 20771 (United States)

    2017-07-10

    The magnetometer (MAG) on Voyager 1 ( V1 ) has been sampling the interstellar magnetic field (ISMF) since 2012 August. The V1 MAG observations have shown draped ISMF in the very local interstellar medium disturbed occasionally by significant enhancements in magnetic field strength. Using a three-dimensional, data-driven, multi-fluid model, we investigated these magnetic field enhancements beyond the heliopause that are supposedly associated with solar transients. To introduce time-dependent effects at the inner boundary at 1 au, we used daily averages of the solar wind parameters from the OMNI data set. The model ISMF strength, direction, and proton number density are compared with V1 data beyond the heliopause. The model reproduced the large-scale fluctuations between 2012.652 and 2016.652, including major events around 2012.9 and 2014.6. The model also predicts shocks arriving at V1 around 2017.395 and 2019.502. Another model driven by OMNI data with interplanetary coronal mass ejections (ICMEs) removed at the inner boundary suggests that ICMEs may play a significant role in the propagation of shocks into the interstellar medium.

  5. Implants delivering bisphosphonate locally increase periprosthetic bone density in an osteoporotic sheep model. A pilot study

    Directory of Open Access Journals (Sweden)

    GVA Stadelmann

    2008-07-01

    Full Text Available It is a clinical challenge to obtain a sufficient orthopaedic implant fixation in weak osteoporotic bone. When the primary implant fixation is poor, micromotions occur at the bone-implant interface, activating osteoclasts, which leads to implant loosening. Bisphosphonate can be used to prevent the osteoclastic response, but when administered systemically its bioavailability is low and the time it takes for the drug to reach the periprosthetic bone may be a limiting factor. Recent data has shown that delivering bisphosphonate locally from the implant surface could be an interesting solution. Local bisphosphonate delivery increased periprosthetic bone density, which leads to a stronger implant fixation, as demonstrated in rats by the increased implant pullout force. The aim of the present study was to verify the positive effect on periprosthetic bone remodelling of local bisphosphonate delivery in an osteoporotic sheep model. Four implants coated with zoledronate and two control implants were inserted in the femoral condyle of ovariectomized sheep for 4 weeks. The bone at the implant surface was 50% higher in the zoledronate-group compared to control group. This effect was significant up to a distance of 400µm from the implant surface. The presented results are similar to what was observed in the osteoporotic rat model, which suggest that the concept of releasing zoledronate locally from the implant to increase the implant fixation is not species specific. The results of this trial study support the claim that local zoledronate could increase the fixation of an implant in weak bone.

  6. The effect of sadness on global-local processing.

    Science.gov (United States)

    von Mühlenen, Adrian; Bellaera, Lauren; Singh, Amrendra; Srinivasan, Narayanan

    2018-05-04

    Gable and Harmon-Jones (Psychological Science, 21(2), 211-215, 2010) reported that sadness broadens attention in a global-local letter task. This finding provided the key test for their motivational intensity account, which states that the level of spatial processing is not determined by emotional valence, but by motivational intensity. However, their finding is at odds with several other studies, showing no effect, or even a narrowing effect of sadness on attention. This paper reports two attempts to replicate the broadening effect of sadness on attention. Both experiments used a global-local letter task, but differed in terms of emotion induction: Experiment 1 used the same pictures as Gable and Harmon-Jones, taken from the IAPS dataset; Experiment 2 used a sad video underlaid with sad music. Results showed a sadness-specific global advantage in the error rates, but not in the reaction times. The same null results were also found in a South-Asian sample in both experiments, showing that effects on global/local processing were not influenced by a culturally related processing bias.

  7. Investigating the effect of curved shape of bridge abutment provided with collar on local scour, experimentally and numerically

    Directory of Open Access Journals (Sweden)

    Y. Abdallah Mohamed

    2015-06-01

    Full Text Available Scour around bridge supports such as abutments can result in structural collapse and loss of life and property, so there is a need to control and minimize the local scour depth. In this paper, numerical and experimental studies were carried out to investigate the effect of different relative radii of the bridge abutment provided with collar on local scour depth. A 3-D numerical model is developed to simulate the scour at bridge abutment using SSIIM program. This model solves 3-D Navier–Stokes equations and a bed load conservation equation. The k–ε turbulence model is used to solve the Reynolds-stress term. It was found the curvature shape of bridge abutment provided with collar could share to reduce the local scour depth by more 95%. In addition, the results of simulation models agree well with the experimental data.

  8. Determination of the Support Level of Local Organizations in a Model Forest Initiative: Do Local Stakeholders Have Willingness to Be Involved in the Model Forest Development?

    Directory of Open Access Journals (Sweden)

    Ahmet Tolunay

    2014-10-01

    Full Text Available Voluntary cooperation and the support of stakeholders carry a major importance in the development of Model Forests. The identification of the support level of local organizations as stakeholders in the Bucak Model Forest initiative, located in the Mediterranean region of Turkey, constitutes the theme of this study. Within this scope, the views of the stakeholders comprising local government units (LGUs, non-governmental organizations (NGOs, village councils (VCs, professional organizations (POs and forest products enterprises (FPEs located in the district of Bucak were collected by utilizing a survey technique. The data were analysed by using non-parametric statistical analyses due to the absence of a normal distribution. The results show that the information provided about the Model Forest concept to the stakeholders located in the district on the Bucak Model Forest initiative was identified as a factor impacting the support level. Moreover, it was also observed that the stakeholders were more willing to provide advisory support rather than financial support. NGOs and VCs were identified as stakeholders who could not provide financial support due to their restricted budgets. We discuss the benefits for a Model Forest initiative of establishing international cooperation to strengthen the local and regional sustainable development process.

  9. Improving UWB-Based Localization in IoT Scenarios with Statistical Models of Distance Error.

    Science.gov (United States)

    Monica, Stefania; Ferrari, Gianluigi

    2018-05-17

    Interest in the Internet of Things (IoT) is rapidly increasing, as the number of connected devices is exponentially growing. One of the application scenarios envisaged for IoT technologies involves indoor localization and context awareness. In this paper, we focus on a localization approach that relies on a particular type of communication technology, namely Ultra Wide Band (UWB). UWB technology is an attractive choice for indoor localization, owing to its high accuracy. Since localization algorithms typically rely on estimated inter-node distances, the goal of this paper is to evaluate the improvement brought by a simple (linear) statistical model of the distance error. On the basis of an extensive experimental measurement campaign, we propose a general analytical framework, based on a Least Square (LS) method, to derive a novel statistical model for the range estimation error between a pair of UWB nodes. The proposed statistical model is then applied to improve the performance of a few illustrative localization algorithms in various realistic scenarios. The obtained experimental results show that the use of the proposed statistical model improves the accuracy of the considered localization algorithms with a reduction of the localization error up to 66%.

  10. Restructuring a State Nutrition Education and Obesity Prevention Program: Implications of a Local Health Department Model for SNAP-Ed.

    Science.gov (United States)

    Wu, Helen W; Backman, Desiree; Kizer, Kenneth W

    The US Department of Agriculture Supplemental Nutrition Assistance Program-Education (SNAP-Ed) funds state programs to improve nutrition and physical activity in low-income populations through its Nutrition Education and Obesity Prevention grants. States vary in how they manage and structure these programs. California substantially restructured its program in 2012 to universally position local health departments (LHDs) as the programmatic lead in all jurisdictions. This study sought to determine whether California's reorganization aligned with desirable attributes of decentralized public management. This study conducted 40 in person, semistructured interviews with 57 local, state, and federal SNAP-Ed stakeholders between October 2014 and March 2015. Local respondents represented 15 counties in all 7 of California's SNAP-Ed regions. We identified 3 common themes that outlined advantages or disadvantages of local public management, and we further defined subthemes within: (1) coordination and communication (within local jurisdictions, across regions, between local and state), (2) efficiency (administrative, fiscal, program), and (3) quality (innovation, skills). We conducted qualitative content analysis to evaluate how respondents characterized the California experience for each theme, identifying positive and negative experiences. California's LHD model offers some distinct advantages, but the model does not exhibit all the advantages of decentralized public management. Strategic planning, partnerships, subcontracting, and fiscal oversight are closer to communities than previously. However, administrative burden remains high and LHDs are limited in their ability to customize programs on the basis of community needs because of state and federal constraints. California's use of a universal LHD model for SNAP-Ed is novel. Recent federal SNAP-Ed changes present an opportunity for other states to consider this structure. Employing small-scale approaches initially (eg

  11. Model-based monitoring techniques for leakage localization in distribution water networks

    OpenAIRE

    Meseguer Amela, Jordi; Mirats Tur, Josep Maria; Cembrano Gennari, Gabriela; Puig Cayuela, Vicenç

    2015-01-01

    This is an open access article under the CC BY-NC-ND license This paper describes an integrated model-based monitoring framework for leakage localization in district-metered areas (DMA) of water distribution networks, which takes advantage of the availability of a hydraulic model of the network. The leakage localization methodology is based on the use of flow and pressure sensors at the DMA inlets and a limited number of pressure sensors deployed inside the DMA. The placement of these sens...

  12. Benchmark of the local drift-kinetic models for neoclassical transport simulation in helical plasmas

    Science.gov (United States)

    Huang, B.; Satake, S.; Kanno, R.; Sugama, H.; Matsuoka, S.

    2017-02-01

    The benchmarks of the neoclassical transport codes based on the several local drift-kinetic models are reported here. Here, the drift-kinetic models are zero orbit width (ZOW), zero magnetic drift, DKES-like, and global, as classified in Matsuoka et al. [Phys. Plasmas 22, 072511 (2015)]. The magnetic geometries of Helically Symmetric Experiment, Large Helical Device (LHD), and Wendelstein 7-X are employed in the benchmarks. It is found that the assumption of E ×B incompressibility causes discrepancy of neoclassical radial flux and parallel flow among the models when E ×B is sufficiently large compared to the magnetic drift velocities. For example, Mp≤0.4 where Mp is the poloidal Mach number. On the other hand, when E ×B and the magnetic drift velocities are comparable, the tangential magnetic drift, which is included in both the global and ZOW models, fills the role of suppressing unphysical peaking of neoclassical radial-fluxes found in the other local models at Er≃0 . In low collisionality plasmas, in particular, the tangential drift effect works well to suppress such unphysical behavior of the radial transport caused in the simulations. It is demonstrated that the ZOW model has the advantage of mitigating the unphysical behavior in the several magnetic geometries, and that it also implements the evaluation of bootstrap current in LHD with the low computation cost compared to the global model.

  13. Global existence of solutions to a tear film model with locally elevated evaporation rates

    Science.gov (United States)

    Gao, Yuan; Ji, Hangjie; Liu, Jian-Guo; Witelski, Thomas P.

    2017-07-01

    Motivated by a model proposed by Peng et al. (2014) for break-up of tear films on human eyes, we study the dynamics of a generalized thin film model. The governing equations form a fourth-order coupled system of nonlinear parabolic PDEs for the film thickness and salt concentration subject to non-conservative effects representing evaporation. We analytically prove the global existence of solutions to this model with mobility exponents in several different ranges and present numerical simulations that are in agreement with the analytic results. We also numerically capture other interesting dynamics of the model, including finite-time rupture-shock phenomenon due to the instabilities caused by locally elevated evaporation rates, convergence to equilibrium and infinite-time thinning.

  14. Model-based synthesis of locally contingent responses to global market signals

    Science.gov (United States)

    Magliocca, N. R.

    2015-12-01

    Rural livelihoods and the land systems on which they depend are increasingly influenced by distant markets through economic globalization. Place-based analyses of land and livelihood system sustainability must then consider both proximate and distant influences on local decision-making. Thus, advancing land change theory in the context of economic globalization calls for a systematic understanding of the general processes as well as local contingencies shaping local responses to global signals. Synthesis of insights from place-based case studies of land and livelihood change is a path forward for developing such systematic knowledge. This paper introduces a model-based synthesis approach to investigating the influence of local socio-environmental and agent-level factors in mediating land-use and livelihood responses to changing global market signals. A generalized agent-based modeling framework is applied to six case-study sites that differ in environmental conditions, market access and influence, and livelihood settings. The largest modeled land conversions and livelihood transitions to market-oriented production occurred in sties with relatively productive agricultural land and/or with limited livelihood options. Experimental shifts in the distributions of agents' risk tolerances generally acted to attenuate or amplify responses to changes in global market signals. Importantly, however, responses of agents at different points in the risk tolerance distribution varied widely, with the wealth gap growing wider between agents with higher or lower risk tolerance. These results demonstrate model-based synthesis is a promising approach to overcome many of the challenges of current synthesis methods in land change science, and to identify generalized as well as locally contingent responses to global market signals.

  15. Effects of weak localization in quasi-one-dimensional electronic system over liquid helium

    CERN Document Server

    Kovdrya, Y Z; Gladchenko, S P

    2001-01-01

    One measured rho sub x sub x magnetoresistance of a quasi-one-dimensional electronic system over liquid helium within gas scattering range (1.3-2.0 K temperature range). It is shown that with increase of magnetic field the magnetoresistance is reduced at first and them upon passing over minimum it begins to increase from rho sub x sub x approx B sup 2 law. One anticipated that the negative magnetoresistance detected in the course of experiments resulted from the effects of weak localization. The experiment results are in qualitative conformity with the theoretical model describing processes of weak localization in single-dimensional nondegenerate electronic systems

  16. Combined local and systemic antibiotic delivery improves eradication of wound contamination: An animal experimental model of contaminated fracture.

    Science.gov (United States)

    Rand, B C C; Penn-Barwell, J G; Wenke, J C

    2015-10-01

    Systemic antibiotics reduce infection in open fractures. Local delivery of antibiotics can provide higher doses to wounds without toxic systemic effects. This study investigated the effect on infection of combining systemic with local antibiotics via polymethylmethacrylate (PMMA) beads or gel delivery. An established Staphylococcus aureus contaminated fracture model in rats was used. Wounds were debrided and irrigated six hours after contamination and animals assigned to one of three groups, all of which received systemic antibiotics. One group had local delivery via antibiotic gel, another PMMA beads and the control group received no local antibiotics. After two weeks, bacterial levels were quantified. Combined local and systemic antibiotics were superior to systemic antibiotics alone at reducing the quantity of bacteria recoverable from each group (p = 0.002 for gel; p = 0.032 for beads). There was no difference in the bacterial counts between bead and gel delivery (p = 0.62). These results suggest that local antibiotics augment the antimicrobial effect of systemic antibiotics. Although no significant difference was found between vehicles, gel delivery offers technical advantages with its biodegradable nature, ability to conform to wound shape and to deliver increased doses. Further study is required to see if the gel delivery system has a clinical role. ©2015 The British Editorial Society of Bone & Joint Surgery.

  17. Power Balance Modeling of Local Helicity Injection for Non-Solenoidal ST Startup

    Science.gov (United States)

    Weberski, J. D.; Barr, J. L.; Bongard, M. W.; Fonck, R. J.; Perry, J. M.; Reusch, J. A.

    2017-10-01

    A zero-dimensional power balance model for predicting Ip(t) for Local Helicity Injection (LHI) discharges has been used to interpret experimental results from recent experimental campaigns using high-field-side (HFS) helicity injection. This model quantifies LHI's effective drive (Veff) through helicity balance while enforcing the Taylor relaxation current limit and tracking inductive effects to determine Ip(t) . Recent analysis of HFS LHI discharges indicate LHI is the dominant source of drive and provides Veff up to 1.3 V while geometric effects and inductive drive provide < 0.1 V throughout much of the discharge. In contrast to previous analysis of low-field-side (LFS) LHI discharges, which were driven by Veff = 0.3 V and 2.0 V from geometric effects and inductive drive. A significant remaining uncertainty in the model is the resistive dissipation of LHI discharges. This requires greater understanding of LHI confinement scaling and impurity content, which are currently under investigation. However, the model and experimental Ip(t) exhibit good agreement for parameters consistent with previous experimental findings. Extrapolation of plasma parameters and shaping from recent experiments allow for the model to project the performance of LHI systems. These projections indicate Ip 0.3 MA can be accessed on Pegasus via HFS LHI through changes to injector geometry to provide more Veff. This regime can be accessed via a LFS system by increasing the Taylor relaxation current limit early in the discharge. Work supported by US DOE Grants DE-FG02-96ER54375 and DE-SC0006928.

  18. Anomalously suppressed localization in the two-channel Anderson model

    International Nuclear Information System (INIS)

    Nguyen, Ba Phi; Kim, Kihong

    2012-01-01

    We study numerically the localization properties of a two-channel quasi-one-dimensional Anderson model with uncorrelated diagonal disorder within the nearest-neighbor tight-binding approximation. We calculate and analyze the disorder-averaged transmittance and the Lyapunov exponent. We find that the localization of the entire system is enhanced by increasing the interchain hopping strength t-tilde. From the numerical investigation of the energy dependence of the Lyapunov exponent for many different interchain hopping strengths, we find that apart from the band center anomaly, which usually occurs in strictly one-dimensional disordered systems, additional anomalies appear at special spectral points. They are found to be associated with the interchain hopping strength and occur at E=± t-tilde/2 and ± t-tilde. We find that the anomalies at E=± t-tilde are associated with the π-coupling occurring within one energy band and those at E=± t-tilde/2 are associated with the π-coupling occurring between two different energy bands. Despite having a similar origin, these two anomalies have distinct characteristics in their dependence on the strength of disorder. We also show that for a suitable range of parameter values, effectively delocalized states are observed in finite-size systems. (paper)

  19. Variable selection for modelling effects of eutrophication on stream and river ecosystems

    NARCIS (Netherlands)

    Nijboer, R.C.; Verdonschot, P.F.M.

    2004-01-01

    Models are needed for forecasting the effects of eutrophication on stream and river ecosystems. Most of the current models do not include differences in local stream characteristics and effects on the biota. To define the most important variables that should be used in a stream eutrophication model,

  20. Magnetic field effects on exciplex-forming systems: the effect on the locally excited fluorophore and its dependence on free energy.

    Science.gov (United States)

    Kattnig, Daniel R; Rosspeintner, Arnulf; Grampp, Günter

    2011-02-28

    This study addresses magnetic field effects in exciplex forming donor-acceptor systems. For moderately exergonic systems, the exciplex and the locally excited fluorophore emission are found to be magneto-sensitive. A previously introduced model attributing this finding to excited state reversibility is confirmed. Systems characterised by a free energy of charge separation up to approximately -0.35 eV are found to exhibit a magnetic field effect on the fluorophore. A simple three-state model of the exciplex is introduced, which uses the reaction distance and the asymmetric electron transfer reaction coordinate as pertinent variables. Comparing the experimental emission band shapes with those predicted by the model, a semi-quantitative picture of the formation of the magnetic field effect is developed based on energy hypersurfaces. The model can also be applied to estimate the indirect contribution of the exchange interaction, even if the perturbative approach fails. The energetic parameters that are essential for the formation of large magnetic field effects on the exciplex are discussed.

  1. Local impact effects on concrete target due to missile: An empirical and numerical approach

    International Nuclear Information System (INIS)

    Ranjan, Rajiv; Banerjee, Sauvik; Singh, R.K.; Banerji, Pradipta

    2014-01-01

    Highlights: • Local impact effect of hard missile on reinforced concrete targets has been studied. • Review of empirical formulation for predicting local response carried out. • Numerical simulation of experimental test of Kojima (1991) carried out. • Divergence of FE results with those obtained using emperical formulations. • Close match of numerical simulation results with experimental data. - Abstract: Concrete containment walls and internal concrete barrier walls of a Nuclear Power Plant safety related structures are often required to be designed for externally and internally generated missiles. Potential missiles include external extreme wind generated missiles, aircraft crash and internal accident generated missiles such as impact due to turbine blade failure and steel pipe missiles resulting from pipe break. The objective of the present paper is to compare local missile impact effects on reinforced concrete target using available empirical formulations with those obtained using LS-DYNA numerical simulation. The use of numerical simulations for capturing the transient structural response has become increasingly used for structural design against impact loads. They overcome the limits of applicability of the empirical formulae and also provide information on stress and deformation fields, which may be used to improve the resistance of the concrete. Finite element (FE) analyses of an experimental impact problem reported by Kojima (1991) are carried out that are able to capture the missile impact effects; in terms of local and global damage. The continuous surface cap model has been used for modelling concrete behaviour. A range of missile velocity has been considered to simulate local missile impact phenomenon and modes of failure and to capture the concrete response from elastic to plastic fracture. A comparison is then made between the empirical formulations, numerical simulation results, and available experimental results of slab impact tests

  2. Positronium annihilation in liquids in the framework of non-local interaction

    International Nuclear Information System (INIS)

    Mukherjee, Tapas; Dutta, Dhanadeep

    2012-01-01

    In the bubble model of ortho positronium (o-Ps) annihilation in liquid the origin of the trapping of o-Ps is the electron-exchange repulsive interaction between the electron of o-Ps and the electron of the medium. The corresponding effective interaction is non-local in nature. However, in the prevalent bubble model, this effective interaction is usually treated as local (model) potential (sharp or smooth). In the present study, we have taken an approach to consider this trapping interaction as non-local in nature, which is included through a model separable non-local function to tackle the problem in analytically solvable manner. The analytical calculations show that this non-local interaction effectively acts as a gauge potential in the energy of the Ps atom in parameter (bubble radius) space. The computed bubble variables obtained using experimental Ps annihilation data are shown. A comparison between the present data with the calculated results using prevalent bubble model has been presented. Discussions have been made on the input parameter dependencies of the computed data. - Highlights: ► Bubble model has been modified by considering positronium-atom non-local interaction. ► No straight forward correlation between bubble size and effective potential is observed. ► Non-local potential acts as a guage potential.

  3. Revival of the Deser-Woodard nonlocal gravity model: Comparison of the original nonlocal form and a localized formulation

    Science.gov (United States)

    Park, Sohyun

    2018-02-01

    We examine the origin of two opposite results for the growth of perturbations in the Deser-Woodard (DW) nonlocal gravity model. One group previously analyzed the model in its original nonlocal form and showed that the growth of structure in the DW model is enhanced compared to general relativity (GR) and thus concluded that the model was ruled out. Recently, however, another group has reanalyzed it by localizing the model and found that the growth in their localized version is suppressed even compared to the one in GR. The question was whether the discrepancy originates from an intrinsic difference between the nonlocal and localized formulations or is due to their different implementations of the subhorizon limit. We show that the nonlocal and local formulations give the same solutions for the linear perturbations as long as the initial conditions are set the same. The different implementations of the subhorizon limit lead to different transient behaviors of some perturbation variables; however, they do not affect the growth of matter perturbations at the sub-horizon scale much. In the meantime, we also report an error in the numerical calculation code of the former group and verify that after fixing the error the nonlocal version also gives the suppressed growth. Finally, we discuss two alternative definitions of the effective gravitational constant taken by the two groups and some open problems.

  4. Quantum non-locality vs. quasi-local measurements in the conditions of the Aharonov-Bohm effect

    International Nuclear Information System (INIS)

    Gulian, Armen M

    2014-01-01

    Theoretical explanation of the Meissner effect involves proportionality between current density and vector potential, which has many deep consequences. As noticed by de Gennes, superconductors in a magnetic field 'find an equilibrium state where the sum of kinetic and magnetic energies is minimum' and this state 'corresponds to the expulsion of the magnetic field'. This statement still leaves an open question: from which source is the superconducting current acquiring its kinetic energy? A naïve answer, perhaps, is from the energy of the magnetic field. However, one can consider situations (Aharonov-Bohm effect), where the classical magnetic field is locally absent in the area occupied by the current. Experiments demonstrate that despite the local absence of the magnetic field, current is, nevertheless, building up. From what source is it acquiring its energy then? Locally, only a vector potential is present. How does the vector potential facilitate the formation of the current? Is the current formation a result of a truly non-local quantum action, or does the local action of the vector potential have experimental consequences? We discuss possible experiments with a hybrid normal-metal superconductor circuitry, which can clarify this puzzling situation. Experimental answers will be important for further developments.

  5. Quantifying the effects of LUCCs on local temperatures, precipitation, and wind using the WRF model.

    Science.gov (United States)

    Lian, Lishu; Li, Baofu; Chen, Yaning; Chu, Cuicui; Qin, Yanhua

    2017-09-11

    Land use/cover changes (LUCCs) are an important cause of regional climate changes, but the contribution of LUCCs to regional climate changes is not clear. In this study, the Weather Research and Forecasting (WRF) model and statistical methods were used to investigate changes in meteorologic variables in January, April, July, and October 2013 due to local LUCCs from 1990 to 2010 in southern Shandong province, China. The results indicate that the WRF model simulates temperatures in the region well, with high correlation coefficients (0.86-0.97, p wind speed and direction substantially during these four months: average wind speeds increased by 0.02 and 0.01 m/s in January and October, respectively, and decreased by 0.02 and 0.05 m/s in April and July, respectively. Overall, The LUCCs affected spring temperatures the least and summer precipitation the most.

  6. Effects of local and global network connectivity on synergistic epidemics

    Science.gov (United States)

    Broder-Rodgers, David; Pérez-Reche, Francisco J.; Taraskin, Sergei N.

    2015-12-01

    Epidemics in networks can be affected by cooperation in transmission of infection and also connectivity between nodes. An interplay between these two properties and their influence on epidemic spread are addressed in the paper. A particular type of cooperative effects (called synergy effects) is considered, where the transmission rate between a pair of nodes depends on the number of infected neighbors. The connectivity effects are studied by constructing networks of different topology, starting with lattices with only local connectivity and then with networks that have both local and global connectivity obtained by random bond-rewiring to nodes within a certain distance. The susceptible-infected-removed epidemics were found to exhibit several interesting effects: (i) for epidemics with strong constructive synergy spreading in networks with high local connectivity, the bond rewiring has a negative role in epidemic spread, i.e., it reduces invasion probability; (ii) in contrast, for epidemics with destructive or weak constructive synergy spreading on networks of arbitrary local connectivity, rewiring helps epidemics to spread; (iii) and, finally, rewiring always enhances the spread of epidemics, independent of synergy, if the local connectivity is low.

  7. Primary assembly of soil communities: disentangling the effect of dispersal and local environment.

    Science.gov (United States)

    Ingimarsdóttir, María; Caruso, Tancredi; Ripa, Jörgen; Magnúsdóttir, Olöf Birna; Migliorini, Massimo; Hedlund, Katarina

    2012-11-01

    It has long been recognised that dispersal abilities and environmental factors are important in shaping invertebrate communities, but their relative importance for primary soil community assembly has not yet been disentangled. By studying soil communities along chronosequences on four recently emerged nunataks (ice-free land in glacial areas) in Iceland, we replicated environmental conditions spatially at various geographical distances. This allowed us to determine the underlying factors of primary community assembly with the help of metacommunity theories that predict different levels of dispersal constraints and effects of the local environment. Comparing community assembly of the nunataks with that of non-isolated deglaciated areas indicated that isolation of a few kilometres did not affect the colonisation of the soil invertebrates. When accounting for effects of geographical distances, soil age and plant richness explained a significant part of the variance observed in the distribution of the oribatid mites and collembola communities, respectively. Furthermore, null model analyses revealed less co-occurrence than expected by chance and also convergence in the body size ratio of co-occurring oribatids, which is consistent with species sorting. Geographical distances influenced species composition, indicating that the community is also assembled by dispersal, e.g. mass effect. When all the results are linked together, they demonstrate that local environmental factors are important in structuring the soil community assembly, but are accompanied with effects of dispersal that may "override" the visible effect of the local environment.

  8. VCE Model of Community, Local, Regional Food Systems

    OpenAIRE

    Niewolny, Kim

    2016-01-01

    This document is a chart illustrating the Virginia Cooperative Extension model for food systems at the community, local and regional level. This chart shows an interrelationship between basic and applied research, leveraging of resources and opportunities, communication and marketing, assessment, evaluation and impact, knowledge, skills, and social change, facilitation of partnerships, and also teaching.

  9. IMPLICATIONS OF NON-LOCALITY OF TRANSPORT IN GEOMORPHIC TRANSPORT LAWS: HILLSLOPES AND LANDSCAPE EVOLUTION MODELING

    Science.gov (United States)

    Foufoula-Georgiou, E.; Ganti, V. K.; Dietrich, W. E.

    2009-12-01

    Sediment transport on hillslopes can be thought of as a hopping process, where the sediment moves in a series of jumps. A wide range of processes shape the hillslopes which can move sediment to a large distance in the downslope direction, thus, resulting in a broad-tail in the probability density function (PDF) of hopping lengths. Here, we argue that such a broad-tailed distribution calls for a non-local computation of sediment flux, where the sediment flux is not only a function of local topographic quantities but is an integral flux which takes into account the upslope topographic “memory” of the point of interest. We encapsulate this non-local behavior into a simple fractional diffusive model that involves fractional (non-integer) derivatives. We present theoretical predictions from this nonlocal model and demonstrate a nonlinear dependence of sediment flux on local gradient, consistent with observations. Further, we demonstrate that the non-local model naturally eliminates the scale-dependence exhibited by any local (linear or nonlinear) sediment transport model. An extension to a 2-D framework, where the fractional derivative can be cast into a mixture of directional derivatives, is discussed together with the implications of introducing non-locality into existing landscape evolution models.

  10. Application of modeling to local chemistry in PWR steam generators

    International Nuclear Information System (INIS)

    Fauchon, C.; Millett, P.J.; Ollar, P.

    1998-01-01

    Localized corrosion of the SG tubes and other components is due to the presence of an aggressive environment in local crevices and occluded regions. In crevices and on vertical and horizontal tube surfaces, corrosion products and particulate matter can accumulate in the form of porous deposits. The SG water contains impurities at extremely low levels (ppb). Low levels of non-volatile impurities, however, can be efficiently concentrated in crevices and sludge piles by a thermal hydraulic mechanism. The temperature gradient across the SG tube coupled with local flow starvation, produces local boiling in the sludge and crevices. Since mass transfer processes are inhibited in these geometries, the residual liquid becomes enriched in many of the species present in the SG water. The resulting concentrated solutions have been shown to be aggressive and can corrode the SG materials. This corrosion may occur under various conditions which result in different types of attack such as pitting, stress corrosion cracking, wastage and denting. A major goal of EPRI's research program has been the development of models of the concentration process and the resulting chemistry. An improved understanding should eventually allow utilities to reduce or eliminate the corrosion by the appropriate manipulation of the steam generator water chemistry and or crevice conditions. The application of these models to experimental data obtained for prototypical SG tube support crevices is described in this paper. The models adequately describe the key features of the experimental data allowing extrapolations to be made to plant conditions. (author)

  11. Local and regional minimum 1D models for earthquake location and data quality assessment in complex tectonic regions: application to Switzerland

    International Nuclear Information System (INIS)

    Husen, S.; Clinton, J. F.; Kissling, E.

    2011-01-01

    One-dimensional (1D) velocity models are still widely used for computing earthquake locations at seismological centers or in regions where three-dimensional (3D) velocity models are not available due to the lack of data of sufficiently high quality. The concept of the minimum 1D model with appropriate station corrections provides a framework to compute initial hypocenter locations and seismic velocities for local earthquake tomography. Since a minimum 1D model represents a solution to the coupled hypocenter-velocity problem it also represents a suitable velocity model for earthquake location and data quality assessment, such as evaluating the consistency in assigning pre-defined weighting classes and average picking error. Nevertheless, the use of a simple 1D velocity structure in combination with station delays raises the question of how appropriate the minimum 1D model concept is when applied to complex tectonic regions with significant three-dimensional (3D) variations in seismic velocities. In this study we compute one regional minimum 1D model and three local minimum 1D models for selected subregions of the Swiss Alpine region, which exhibits a strongly varying Moho topography. We compare the regional and local minimum 1D models in terms of earthquake locations and data quality assessment to measure their performance. Our results show that the local minimum 1D models provide more realistic hypocenter locations and better data fits than a single model for the Alpine region. We attribute this to the fact that in a local minimum 1D model local and regional effects of the velocity structure can be better separated. Consequently, in tectonically complex regions, minimum 1D models should be computed in sub-regions defined by similar structure, if they are used for earthquake location and data quality assessment. (authors)

  12. Local and regional minimum 1D models for earthquake location and data quality assessment in complex tectonic regions: application to Switzerland

    Energy Technology Data Exchange (ETDEWEB)

    Husen, S.; Clinton, J. F. [Swiss Seismological Service, ETH Zuerich, Zuerich (Switzerland); Kissling, E. [Institute of Geophysics, ETH Zuerich, Zuerich (Switzerland)

    2011-10-15

    One-dimensional (1D) velocity models are still widely used for computing earthquake locations at seismological centers or in regions where three-dimensional (3D) velocity models are not available due to the lack of data of sufficiently high quality. The concept of the minimum 1D model with appropriate station corrections provides a framework to compute initial hypocenter locations and seismic velocities for local earthquake tomography. Since a minimum 1D model represents a solution to the coupled hypocenter-velocity problem it also represents a suitable velocity model for earthquake location and data quality assessment, such as evaluating the consistency in assigning pre-defined weighting classes and average picking error. Nevertheless, the use of a simple 1D velocity structure in combination with station delays raises the question of how appropriate the minimum 1D model concept is when applied to complex tectonic regions with significant three-dimensional (3D) variations in seismic velocities. In this study we compute one regional minimum 1D model and three local minimum 1D models for selected subregions of the Swiss Alpine region, which exhibits a strongly varying Moho topography. We compare the regional and local minimum 1D models in terms of earthquake locations and data quality assessment to measure their performance. Our results show that the local minimum 1D models provide more realistic hypocenter locations and better data fits than a single model for the Alpine region. We attribute this to the fact that in a local minimum 1D model local and regional effects of the velocity structure can be better separated. Consequently, in tectonically complex regions, minimum 1D models should be computed in sub-regions defined by similar structure, if they are used for earthquake location and data quality assessment. (authors)

  13. Network model of top-down influences on local gain and contextual interactions in visual cortex.

    Science.gov (United States)

    Piëch, Valentin; Li, Wu; Reeke, George N; Gilbert, Charles D

    2013-10-22

    The visual system uses continuity as a cue for grouping oriented line segments that define object boundaries in complex visual scenes. Many studies support the idea that long-range intrinsic horizontal connections in early visual cortex contribute to this grouping. Top-down influences in primary visual cortex (V1) play an important role in the processes of contour integration and perceptual saliency, with contour-related responses being task dependent. This suggests an interaction between recurrent inputs to V1 and intrinsic connections within V1 that enables V1 neurons to respond differently under different conditions. We created a network model that simulates parametrically the control of local gain by hypothetical top-down modification of local recurrence. These local gain changes, as a consequence of network dynamics in our model, enable modulation of contextual interactions in a task-dependent manner. Our model displays contour-related facilitation of neuronal responses and differential foreground vs. background responses over the neuronal ensemble, accounting for the perceptual pop-out of salient contours. It quantitatively reproduces the results of single-unit recording experiments in V1, highlighting salient contours and replicating the time course of contextual influences. We show by means of phase-plane analysis that the model operates stably even in the presence of large inputs. Our model shows how a simple form of top-down modulation of the effective connectivity of intrinsic cortical connections among biophysically realistic neurons can account for some of the response changes seen in perceptual learning and task switching.

  14. Localized Modeling of Biochemical and Flow Interactions during Cancer Cell Adhesion.

    Directory of Open Access Journals (Sweden)

    Julie Behr

    Full Text Available This work focuses on one component of a larger research effort to develop a simulation tool to model populations of flowing cells. Specifically, in this study a local model of the biochemical interactions between circulating melanoma tumor cells (TC and substrate adherent polymorphonuclear neutrophils (PMN is developed. This model provides realistic three-dimensional distributions of bond formation and attendant attraction and repulsion forces that are consistent with the time dependent Computational Fluid Dynamics (CFD framework of the full system model which accounts local pressure, shear and repulsion forces. The resulting full dynamics model enables exploration of TC adhesion to adherent PMNs, which is a known participating mechanism in melanoma cell metastasis. The model defines the adhesion molecules present on the TC and PMN cell surfaces, and calculates their interactions as the melanoma cell flows past the PMN. Biochemical rates of reactions between individual molecules are determined based on their local properties. The melanoma cell in the model expresses ICAM-1 molecules on its surface, and the PMN expresses the β-2 integrins LFA-1 and Mac-1. In this work the PMN is fixed to the substrate and is assumed fully rigid and of a prescribed shear-rate dependent shape obtained from micro-PIV experiments. The melanoma cell is transported with full six-degrees-of-freedom dynamics. Adhesion models, which represent the ability of molecules to bond and adhere the cells to each other, and repulsion models, which represent the various physical mechanisms of cellular repulsion, are incorporated with the CFD solver. All models are general enough to allow for future extensions, including arbitrary adhesion molecule types, and the ability to redefine the values of parameters to represent various cell types. The model presented in this study will be part of a clinical tool for development of personalized medical treatment programs.

  15. Localized Modeling of Biochemical and Flow Interactions during Cancer Cell Adhesion.

    Science.gov (United States)

    Behr, Julie; Gaskin, Byron; Fu, Changliang; Dong, Cheng; Kunz, Robert

    2015-01-01

    This work focuses on one component of a larger research effort to develop a simulation tool to model populations of flowing cells. Specifically, in this study a local model of the biochemical interactions between circulating melanoma tumor cells (TC) and substrate adherent polymorphonuclear neutrophils (PMN) is developed. This model provides realistic three-dimensional distributions of bond formation and attendant attraction and repulsion forces that are consistent with the time dependent Computational Fluid Dynamics (CFD) framework of the full system model which accounts local pressure, shear and repulsion forces. The resulting full dynamics model enables exploration of TC adhesion to adherent PMNs, which is a known participating mechanism in melanoma cell metastasis. The model defines the adhesion molecules present on the TC and PMN cell surfaces, and calculates their interactions as the melanoma cell flows past the PMN. Biochemical rates of reactions between individual molecules are determined based on their local properties. The melanoma cell in the model expresses ICAM-1 molecules on its surface, and the PMN expresses the β-2 integrins LFA-1 and Mac-1. In this work the PMN is fixed to the substrate and is assumed fully rigid and of a prescribed shear-rate dependent shape obtained from micro-PIV experiments. The melanoma cell is transported with full six-degrees-of-freedom dynamics. Adhesion models, which represent the ability of molecules to bond and adhere the cells to each other, and repulsion models, which represent the various physical mechanisms of cellular repulsion, are incorporated with the CFD solver. All models are general enough to allow for future extensions, including arbitrary adhesion molecule types, and the ability to redefine the values of parameters to represent various cell types. The model presented in this study will be part of a clinical tool for development of personalized medical treatment programs.

  16. Bi-local holography in the SYK model: perturbations

    Energy Technology Data Exchange (ETDEWEB)

    Jevicki, Antal; Suzuki, Kenta [Department of Physics, Brown University,182 Hope Street, Providence, RI 02912 (United States)

    2016-11-08

    We continue the study of the Sachdev-Ye-Kitaev model in the Large N limit. Following our formulation in terms of bi-local collective fields with dynamical reparametrization symmetry, we perform perturbative calculations around the conformal IR point. These are based on an ε expansion which allows for analytical evaluation of correlators and finite temperature quantities.

  17. A statistical model to estimate the local vulnerability to severe weather

    Science.gov (United States)

    Pardowitz, Tobias

    2018-06-01

    We present a spatial analysis of weather-related fire brigade operations in Berlin. By comparing operation occurrences to insured losses for a set of severe weather events we demonstrate the representativeness and usefulness of such data in the analysis of weather impacts on local scales. We investigate factors influencing the local rate of operation occurrence. While depending on multiple factors - which are often not available - we focus on publicly available quantities. These include topographic features, land use information based on satellite data and information on urban structure based on data from the OpenStreetMap project. After identifying suitable predictors such as housing coverage or local density of the road network we set up a statistical model to be able to predict the average occurrence frequency of local fire brigade operations. Such model can be used to determine potential hotspots for weather impacts even in areas or cities where no systematic records are available and can thus serve as a basis for a broad range of tools or applications in emergency management and planning.

  18. Solution chemistry of Mo(III) and Mo(IV): Thermodynamic foundation for modeling localized corrosion

    International Nuclear Information System (INIS)

    Wang Peiming; Wilson, Leslie L.; Wesolowski, David J.; Rosenqvist, Joergen; Anderko, Andrzej

    2010-01-01

    To investigate the behavior of molybdenum dissolution products in systems that approximate localized corrosion environments, solubility of Mo(III) in equilibrium with solid MoO 2 has been determined at 80 deg. C as a function of solution acidity, chloride concentration and partial pressure of hydrogen. The measurements indicate a strong increase in solubility with acidity and chloride concentration and a weak effect of hydrogen partial pressure. The obtained results have been combined with literature data for systems containing Mo(III), Mo(IV), and Mo(VI) in solutions to develop a comprehensive thermodynamic model of aqueous molybdenum chemistry. The model is based on a previously developed framework for simulating the properties of electrolyte systems ranging from infinite dilution to solid saturation or fused salt limit. To reproduce the measurements, the model assumes the presence of a chloride complex of Mo(III) (i.e., MoCl 2+ ) and hydrolyzed species (MoOH 2+ , Mo(OH) 2 + , and Mo(OH) 3 0 ) in addition to the Mo 3+ ion. The model generally reproduces the experimental data within experimental scattering and provides a tool for predicting the phase behavior and speciation in complex, concentrated aqueous solutions. Thus, it provides a foundation for simulating the behavior of molybdenum species in localized corrosion environments.

  19. Assessment of externalities related to global and local air pollutants with the NEEDS-TIMES Italy model

    Energy Technology Data Exchange (ETDEWEB)

    Pietrapertosa, F.; Cosmi, C.; Loperte, S.; Salvia, M.; Cuomo, V. [National Research Council, Institute of Methodologies for Environmental Analysis, C.da S. Loja, I-85050 Tito Scalo (PZ) (Italy); Di Leo, S. [University of Basilicata, Dept. of Environmental Engineering and Physics, C.da Macchia Romana, I-85100 Potenza (Italy); Macchiato, M. [Federico II University, Dept. of Physical Sciences, Via Cintia, I-80126 Naples (Italy)

    2010-01-15

    This work is aimed to illustrate the potentiality of the multi-region NEEDS-TIMES modelling platform, in the economic evaluation of the environmental damages due to air pollution. In particular the effects of external costs on the least-cost optimised energy system configuration were analysed in a national case study with the NEEDS-TIMES Italy model, considering the externalities related to local and global air pollutants (NO{sub x}, SO{sub 2}, VOC, particulates and GHGs). Different scenarios were compared to emphasise the role of external costs in the achievement of strategic environmental targets. The main results obtained are discussed, focusing on the changes in energy fuel mix as well as in local air pollutants and GHG emissions, highlighting the main conclusions in terms of policy strategies. (author)

  20. Modelling coral reef futures to inform management: can reducing local-scale stressors conserve reefs under climate change?

    Science.gov (United States)

    Gurney, Georgina G; Melbourne-Thomas, Jessica; Geronimo, Rollan C; Aliño, Perry M; Johnson, Craig R

    2013-01-01

    Climate change has emerged as a principal threat to coral reefs, and is expected to exacerbate coral reef degradation caused by more localised stressors. Management of local stressors is widely advocated to bolster coral reef resilience, but the extent to which management of local stressors might affect future trajectories of reef state remains unclear. This is in part because of limited understanding of the cumulative impact of multiple stressors. Models are ideal tools to aid understanding of future reef state under alternative management and climatic scenarios, but to date few have been sufficiently developed to be useful as decision support tools for local management of coral reefs subject to multiple stressors. We used a simulation model of coral reefs to investigate the extent to which the management of local stressors (namely poor water quality and fishing) might influence future reef state under varying climatic scenarios relating to coral bleaching. We parameterised the model for Bolinao, the Philippines, and explored how simulation modelling can be used to provide decision support for local management. We found that management of water quality, and to a lesser extent fishing, can have a significant impact on future reef state, including coral recovery following bleaching-induced mortality. The stressors we examined interacted antagonistically to affect reef state, highlighting the importance of considering the combined impact of multiple stressors rather than considering them individually. Further, by providing explicit guidance for management of Bolinao's reef system, such as which course of management action will most likely to be effective over what time scales and at which sites, we demonstrated the utility of simulation models for supporting management. Aside from providing explicit guidance for management of Bolinao's reef system, our study offers insights which could inform reef management more broadly, as well as general understanding of reef

  1. Modelling Coral Reef Futures to Inform Management: Can Reducing Local-Scale Stressors Conserve Reefs under Climate Change?

    Science.gov (United States)

    Gurney, Georgina G.; Melbourne-Thomas, Jessica; Geronimo, Rollan C.; Aliño, Perry M.; Johnson, Craig R.

    2013-01-01

    Climate change has emerged as a principal threat to coral reefs, and is expected to exacerbate coral reef degradation caused by more localised stressors. Management of local stressors is widely advocated to bolster coral reef resilience, but the extent to which management of local stressors might affect future trajectories of reef state remains unclear. This is in part because of limited understanding of the cumulative impact of multiple stressors. Models are ideal tools to aid understanding of future reef state under alternative management and climatic scenarios, but to date few have been sufficiently developed to be useful as decision support tools for local management of coral reefs subject to multiple stressors. We used a simulation model of coral reefs to investigate the extent to which the management of local stressors (namely poor water quality and fishing) might influence future reef state under varying climatic scenarios relating to coral bleaching. We parameterised the model for Bolinao, the Philippines, and explored how simulation modelling can be used to provide decision support for local management. We found that management of water quality, and to a lesser extent fishing, can have a significant impact on future reef state, including coral recovery following bleaching-induced mortality. The stressors we examined interacted antagonistically to affect reef state, highlighting the importance of considering the combined impact of multiple stressors rather than considering them individually. Further, by providing explicit guidance for management of Bolinao's reef system, such as which course of management action will most likely to be effective over what time scales and at which sites, we demonstrated the utility of simulation models for supporting management. Aside from providing explicit guidance for management of Bolinao's reef system, our study offers insights which could inform reef management more broadly, as well as general understanding of reef

  2. Modelling coral reef futures to inform management: can reducing local-scale stressors conserve reefs under climate change?

    Directory of Open Access Journals (Sweden)

    Georgina G Gurney

    Full Text Available Climate change has emerged as a principal threat to coral reefs, and is expected to exacerbate coral reef degradation caused by more localised stressors. Management of local stressors is widely advocated to bolster coral reef resilience, but the extent to which management of local stressors might affect future trajectories of reef state remains unclear. This is in part because of limited understanding of the cumulative impact of multiple stressors. Models are ideal tools to aid understanding of future reef state under alternative management and climatic scenarios, but to date few have been sufficiently developed to be useful as decision support tools for local management of coral reefs subject to multiple stressors. We used a simulation model of coral reefs to investigate the extent to which the management of local stressors (namely poor water quality and fishing might influence future reef state under varying climatic scenarios relating to coral bleaching. We parameterised the model for Bolinao, the Philippines, and explored how simulation modelling can be used to provide decision support for local management. We found that management of water quality, and to a lesser extent fishing, can have a significant impact on future reef state, including coral recovery following bleaching-induced mortality. The stressors we examined interacted antagonistically to affect reef state, highlighting the importance of considering the combined impact of multiple stressors rather than considering them individually. Further, by providing explicit guidance for management of Bolinao's reef system, such as which course of management action will most likely to be effective over what time scales and at which sites, we demonstrated the utility of simulation models for supporting management. Aside from providing explicit guidance for management of Bolinao's reef system, our study offers insights which could inform reef management more broadly, as well as general

  3. Anderson localization through Polyakov loops: Lattice evidence and random matrix model

    International Nuclear Information System (INIS)

    Bruckmann, Falk; Schierenberg, Sebastian; Kovacs, Tamas G.

    2011-01-01

    We investigate low-lying fermion modes in SU(2) gauge theory at temperatures above the phase transition. Both staggered and overlap spectra reveal transitions from chaotic (random matrix) to integrable (Poissonian) behavior accompanied by an increasing localization of the eigenmodes. We show that the latter are trapped by local Polyakov loop fluctuations. Islands of such ''wrong'' Polyakov loops can therefore be viewed as defects leading to Anderson localization in gauge theories. We find strong similarities in the spatial profile of these localized staggered and overlap eigenmodes. We discuss possible interpretations of this finding and present a sparse random matrix model that reproduces these features.

  4. Local effects of the quantum vacuum in Lorentz-violating electrodynamics

    Science.gov (United States)

    Martín-Ruiz, A.; Escobar, C. A.

    2017-02-01

    The Casimir effect is one of the most remarkable consequences of the nonzero vacuum energy predicted by quantum field theory. In this paper we use a local approach to study the Lorentz violation effects of the minimal standard model extension on the Casimir force between two parallel conducting plates in the vacuum. Using a perturbative method similar to that used for obtaining the Born series for the scattering amplitudes in quantum mechanics, we compute, at leading order in the Lorentz-violating coefficients, the relevant Green's function which satisfies given boundary conditions. The standard point-splitting technique allow us to express the vacuum expectation value of the stress-energy tensor in terms of the Green's function. We discuss its structure in the region between the plates. We compute the renormalized vacuum stress, which is obtained as the difference between the vacuum stress in the presence of the plates and that of the vacuum. The Casimir force is evaluated in an analytical fashion by two methods: by differentiating the renormalized global energy density and by computing the normal-normal component of the renormalized vacuum stress. We compute the local Casimir energy, which is found to diverge as approaching the plates, and we demonstrate that it does not contribute to the observable force.

  5. Tracer disposition kinetics in the determination of local cerebral blood flow by a venous equilibrium model, tube model, and distributed model

    International Nuclear Information System (INIS)

    Sawada, Y.; Sugiyama, Y.; Iga, T.; Hanano, M.

    1987-01-01

    Tracer distribution kinetics in the determination of local cerebral blood flow (LCBF) were examined by using three models, i.e., venous equilibrium, tube, and distributed models. The technique most commonly used for measuring LCBF is the tissue uptake method, which was first developed and applied by Kety. The measurement of LCBF with the 14 C-iodoantipyrine (IAP) method is calculated by using an equation derived by Kety based on the Fick's principle and a two-compartment model of blood-tissue exchange and tissue concentration at a single data point. The procedure, in which the tissue is to be in equilibrium with venous blood, will be referred to as the tissue equilibration model. In this article, effects of the concentration gradient of tracer along the length of the capillary (tube model) and the transverse heterogeneity in the capillary transit time (distributed model) on the determination of LCBF were theoretically analyzed for the tissue sampling method. Similarities and differences among these models are explored. The rank order of the LCBF calculated by using arterial blood concentration time courses and the tissue concentration of tracer based on each model were tube model (model II) less than distributed model (model III) less than venous equilibrium model (model I). Data on 14 C-IAP kinetics reported by Ohno et al. were employed. The LCBFs calculated based on model I were 45-260% larger than those in models II or III. To discriminate among three models, we propose to examine the effect of altering the venous infusion time of tracer on the apparent tissue-to-blood concentration ratio (lambda app). A range of the ratio of the predicted lambda app in models II or III to that in model I was from 0.6 to 1.3

  6. Integrated Modeling of the Human-Natural System to Improve Local Water Management and Planning

    Science.gov (United States)

    Gutowski, W. J., Jr.; Dziubanski, D.; Franz, K.; Goodwin, J.; Rehmann, C. R.; Simpkins, W. W.; Tesfastion, L.; Wanamaker, A. D.; Jie, Y.

    2015-12-01

    Communities across the world are experiencing the effects of unsustainable water management practices. Whether the problem is a lack of water, too much water, or water of degraded quality, finding acceptable solutions requires community-level efforts that integrate sound science with local needs and values. Our project develops both a software technology (agent-based hydrological modeling) and a social technology (a participatory approach to model development) that will allow communities to comprehensively address local water challenges. Using agent-based modeling (ABM), we are building a modeling system that includes a semi-distributed hydrologic process model coupled with agent (stakeholder) models. Information from the hydrologic model is conveyed to the agent models, which, along with economic information, determine appropriate agent actions that subsequently affect hydrology within the model. The iterative participatory modeling (IPM) process will assist with the continual development of the agent models. Further, IPM creates a learning environment in which all participants, including researchers, are co-exploring relevant data, possible scenarios and solutions, and viewpoints through continuous interactions. Our initial work focuses on the impact of flood mitigation and conservation efforts on reducing flooding in an urban area. We are applying all research elements above to the Squaw Creek watershed that flows through parts of four counties in central Iowa. The watershed offers many of the typical tensions encountered in Iowa, such as different perspectives on water management between upstream farmers and downstream urban areas, competition for various types of recreational services, and increasing absentee land ownership that may conflict with community values. Ultimately, climate change scenarios will be incorporated into the model to determine long term patterns that may develop within the social or natural system.

  7. Evaluation of sub grid scale and local wall models in Large-eddy simulations of separated flow

    OpenAIRE

    Sam Ali Al; Szasz Robert; Revstedt Johan

    2015-01-01

    The performance of the Sub Grid Scale models is studied by simulating a separated flow over a wavy channel. The first and second order statistical moments of the resolved velocities obtained by using Large-Eddy simulations at different mesh resolutions are compared with Direct Numerical Simulations data. The effectiveness of modeling the wall stresses by using local log-law is then tested on a relatively coarse grid. The results exhibit a good agreement between highly-resolved Large Eddy Simu...

  8. Developing a Local Neurofuzzy Model for Short-Term Wind Power Forecasting

    Directory of Open Access Journals (Sweden)

    E. Faghihnia

    2014-01-01

    Full Text Available Large scale integration of wind generation capacity into power systems introduces operational challenges due to wind power uncertainty and variability. Therefore, accurate wind power forecast is important for reliable and economic operation of the power systems. Complexities and nonlinearities exhibited by wind power time series necessitate use of elaborative and sophisticated approaches for wind power forecasting. In this paper, a local neurofuzzy (LNF approach, trained by the polynomial model tree (POLYMOT learning algorithm, is proposed for short-term wind power forecasting. The LNF approach is constructed based on the contribution of local polynomial models which can efficiently model wind power generation. Data from Sotavento wind farm in Spain was used to validate the proposed LNF approach. Comparison between performance of the proposed approach and several recently published approaches illustrates capability of the LNF model for accurate wind power forecasting.

  9. Rating the effectiveness of local tobacco policies for reducing youth smoking.

    Science.gov (United States)

    Lipperman-Kreda, Sharon; Friend, Karen B; Grube, Joel W

    2014-04-01

    Important questions remain regarding the effectiveness of local tobacco policies for preventing and reducing youth tobacco use and the relative importance of these policies. The aims of this paper are to: (1) compare policy effectiveness ratings provided by researchers and tobacco prevention specialists for individual local tobacco policies, and (2) develop and describe a systematic approach to score communities for locally-implemented tobacco policies. We reviewed municipal codes of 50 California communities to identify local tobacco regulations in five sub-domains. We then developed an instrument to rate the effectiveness of these policies and administered it to an expert panel of 40 tobacco researchers and specialists. We compared mean policy effectiveness ratings obtained from researchers and prevention specialists and used it to score the 50 communities. High inter-rater reliabilities obtained for each sub-domain indicated substantial agreement among the raters about relative policy effectiveness. Results showed that, although researchers and prevention specialists differed on the mean levels of policy ratings, their relative rank ordering of the effectiveness of policy sub-domains were very similar. While both researchers and prevention specialists viewed local outdoor clean air policies as least effective in preventing and reducing youth cigarette smoking, they rated tobacco sales policies and advertising and promotion as more effective than the other policies. Moreover, we found high correlations between community scores generated from researchers' and prevention specialists' ratings. This approach can be used to inform research on local policies and prevention efforts and help bridge the gap between research and practice.

  10. Estimation of effective brain connectivity with dual Kalman filter and EEG source localization methods.

    Science.gov (United States)

    Rajabioun, Mehdi; Nasrabadi, Ali Motie; Shamsollahi, Mohammad Bagher

    2017-09-01

    Effective connectivity is one of the most important considerations in brain functional mapping via EEG. It demonstrates the effects of a particular active brain region on others. In this paper, a new method is proposed which is based on dual Kalman filter. In this method, firstly by using a brain active localization method (standardized low resolution brain electromagnetic tomography) and applying it to EEG signal, active regions are extracted, and appropriate time model (multivariate autoregressive model) is fitted to extracted brain active sources for evaluating the activity and time dependence between sources. Then, dual Kalman filter is used to estimate model parameters or effective connectivity between active regions. The advantage of this method is the estimation of different brain parts activity simultaneously with the calculation of effective connectivity between active regions. By combining dual Kalman filter with brain source localization methods, in addition to the connectivity estimation between parts, source activity is updated during the time. The proposed method performance has been evaluated firstly by applying it to simulated EEG signals with interacting connectivity simulation between active parts. Noisy simulated signals with different signal to noise ratios are used for evaluating method sensitivity to noise and comparing proposed method performance with other methods. Then the method is applied to real signals and the estimation error during a sweeping window is calculated. By comparing proposed method results in different simulation (simulated and real signals), proposed method gives acceptable results with least mean square error in noisy or real conditions.

  11. Effects of increased small-scale biomass combustion on local air quality - A theoretical dispersion modelling study

    International Nuclear Information System (INIS)

    Boman, C.

    1997-01-01

    The decided phasing out of nuclear power and the goal of reducing CO 2 emissions from fossil fuels causes a substantial estimated increase in the use of biomass fuels for energy production. Thus, a significant shift from small scale heating generated by electricity or fuel oil to biomass fuels is desirable. If a drastic deterioration of the local air quality is to be avoided, a reduction of today's emission limits is necessary. The objective of this report was therefore to describe the use of biomass fuels and small scale pellet fuel combustion, to make a theoretical study of the effects of increased pellets heating on the air quality in a residential area, and to discuss necessary emission limits for small biomass fuel plants. The general description is based on literature studies. In the theoretical study, several different dispersion model calculations were performed using the computer program Dispersion 1.1.0. The contents of tar and total hydrocarbons (THC) in the air were calculated for different scenarios with conversion from electricity to pellets and with different pellet plant performance. A sensitivity analysis was performed with additional variables and dispersion calculations according to an underlying statistical experimental design. The modeling and design computer program MODDE was used to facilitate design, evaluation and illustration of the calculated results. The results show that a substantial increase in the use of small scale pellets heating with worst calculated plant performance, will lead to a drastic increase of the content of hydrocarbons in the air. Thus, with best available performance, the content only increases marginally. Conversion from electricity to pellets, plant performance and time of year were the most influential variables. Also conversion from wood to pellets showed a significant effect, despite the small number of wood heated houses within the studied area. If a significant deterioration of the air quality is to be avoided

  12. Computational modeling of local hemodynamics phenomena: methods, tools and clinical applications

    International Nuclear Information System (INIS)

    Ponzini, R.; Rizzo, G.; Vergara, C.; Veneziani, A.; Morbiducci, U.; Montevecchi, F.M.; Redaelli, A.

    2009-01-01

    Local hemodynamics plays a key role in the onset of vessel wall pathophysiology, with peculiar blood flow structures (i.e. spatial velocity profiles, vortices, re-circulating zones, helical patterns and so on) characterizing the behavior of specific vascular districts. Thanks to the evolving technologies on computer sciences, mathematical modeling and hardware performances, the study of local hemodynamics can today afford also the use of a virtual environment to perform hypothesis testing, product development, protocol design and methods validation that just a couple of decades ago would have not been thinkable. Computational fluid dynamics (Cfd) appears to be more than a complementary partner to in vitro modeling and a possible substitute to animal models, furnishing a privileged environment for cheap fast and reproducible data generation.

  13. Image contrast enhancement based on a local standard deviation model

    International Nuclear Information System (INIS)

    Chang, Dah-Chung; Wu, Wen-Rong

    1996-01-01

    The adaptive contrast enhancement (ACE) algorithm is a widely used image enhancement method, which needs a contrast gain to adjust high frequency components of an image. In the literature, the gain is usually inversely proportional to the local standard deviation (LSD) or is a constant. But these cause two problems in practical applications, i.e., noise overenhancement and ringing artifact. In this paper a new gain is developed based on Hunt's Gaussian image model to prevent the two defects. The new gain is a nonlinear function of LSD and has the desired characteristic emphasizing the LSD regions in which details are concentrated. We have applied the new ACE algorithm to chest x-ray images and the simulations show the effectiveness of the proposed algorithm

  14. Local-scale modelling of density-driven flow for the phases of repository operation and post-closure at Beberg

    International Nuclear Information System (INIS)

    Jaquet, O.; Siegel, P.

    2004-09-01

    A hydrogeological model was developed for Beberg with the aim of evaluating the impact of a repository (for the operational and post-closure phases) while accounting for the effects of density-driven flow. Two embedded scales were taken into account for this modelling study: a local scale at which the granitic medium was considered as a continuum and a repository scale, where the medium is fractured and therefore was regarded to be discrete. The following step-wise approach was established to model density-driven flow at both repository and local scale: (a) modelling fracture networks at the repository scale, (b) upscaling the hydraulic properties to a continuum at local scale and (c) modelling density-driven flow to evaluate repository impact at local scale. The results demonstrate the strong impact of the repository on the flow field during the phase of operation. The distribution of the salt concentration is affected by a large upcoming effect with increased relative concentration and by the presence of fracture zones carrying freshwater from the surface. The concentrations obtained for the reference case, expressed in terms of percentage with respect to the maximum (prescribed) value in the model, are as follows: ca 30% for the phase of desaturation, and ca 20% for the resaturation phase. For the reference case, the impact of repository operations appears no longer visible after a resaturation period of about 20 years after repository closure; under resaturation conditions, evidence of the operational phase has already disappeared in terms of the observed hydraulic and concentration fields. Sensitivity calculations have proven the importance of explicitly discretising repository tunnels when assessing resaturation time and maximum concentration values. Furthermore, the definition of a fixed potential as boundary condition along the model's top surface is likely to provide underestimated values for the maximum concentration and overestimated flow rates in the

  15. Environmental pollution has sex-dependent effects on local survival

    Science.gov (United States)

    Eeva, Tapio; Hakkarainen, Harri; Laaksonen, Toni; Lehikoinen, Esa

    2006-01-01

    Environmental pollutants cause a potential hazard for survival in free-living animal populations. We modelled local survival (including emigration) by using individual mark–recapture histories of males and females in a population of a small insectivorous passerine bird, the pied flycatcher (Ficedula hypoleuca) living around a point source of heavy metals (copper smelter). Local survival of F. hypoleuca females did not differ between polluted and unpolluted environments. Males, however, showed a one-third higher local-survival probability in the polluted area. Low fledgling production was generally associated with decreased local survival, but males in the polluted area showed relatively high local survival, irrespective of their fledgling number. A possible explanation of higher local survival of males in the polluted area could be a pollution-induced change in hormone (e.g. corticosterone or testosterone) levels of males. It could make them to invest more on their own survival or affect the hormonal control of breeding dispersal. The local survival of males decreased in the polluted area over the study period along with the simultaneous decrease in heavy metal emissions. This temporal trend is in agreement with the stress hormone hypothesis. PMID:17148387

  16. Extension of local front reconstruction method with controlled coalescence model

    Science.gov (United States)

    Rajkotwala, A. H.; Mirsandi, H.; Peters, E. A. J. F.; Baltussen, M. W.; van der Geld, C. W. M.; Kuerten, J. G. M.; Kuipers, J. A. M.

    2018-02-01

    The physics of droplet collisions involves a wide range of length scales. This poses a challenge to accurately simulate such flows with standard fixed grid methods due to their inability to resolve all relevant scales with an affordable number of computational grid cells. A solution is to couple a fixed grid method with subgrid models that account for microscale effects. In this paper, we improved and extended the Local Front Reconstruction Method (LFRM) with a film drainage model of Zang and Law [Phys. Fluids 23, 042102 (2011)]. The new framework is first validated by (near) head-on collision of two equal tetradecane droplets using experimental film drainage times. When the experimental film drainage times are used, the LFRM method is better in predicting the droplet collisions, especially at high velocity in comparison with other fixed grid methods (i.e., the front tracking method and the coupled level set and volume of fluid method). When the film drainage model is invoked, the method shows a good qualitative match with experiments, but a quantitative correspondence of the predicted film drainage time with the experimental drainage time is not obtained indicating that further development of film drainage model is required. However, it can be safely concluded that the LFRM coupled with film drainage models is much better in predicting the collision dynamics than the traditional methods.

  17. Local transplantation is an effective method for cell delivery in the osteogenesis imperfecta murine model.

    Science.gov (United States)

    Pauley, Penelope; Matthews, Brya G; Wang, Liping; Dyment, Nathaniel A; Matic, Igor; Rowe, David W; Kalajzic, Ivo

    2014-09-01

    Osteogenesis imperfecta is a serious genetic disorder that results from improper type I collagen production. We aimed to evaluate whether bone marrow stromal cells (BMSC) delivered locally into femurs were able to engraft, differentiate into osteoblasts, and contribute to formation of normal bone matrix in the osteogenesis imperfect murine (oim) model. Donor BMSCs from bone-specific reporter mice (Col2.3GFP) were expanded in vitro and transplanted into the femoral intramedullary cavity of oim mice. Engraftment was evaluated after four weeks. We detected differentiation of donor BMSCs into Col2.3GFP+ osteoblasts and osteocytes in cortical and trabecular bone of transplanted oim femurs. New bone formation was detected by deposition of dynamic label in the proximity to the Col2.3GFP+ osteoblasts, and new bone showed more organized collagen structure and expression of type I α2 collagen. Col2.3GFP cells were not found in the contralateral femur indicating that transplanted osteogenic cells did not disseminate by circulation. No osteogenic engraftment was observed following intravenous transplantation of BMSCs. BMSC cultures derived from transplanted femurs showed numerous Col2.3GFP+ colonies, indicating the presence of donor progenitor cells. Secondary transplantation of cells recovered from recipient femurs and expanded in vitro also showed Col2.3GFP+ osteoblasts and osteocytes confirming the persistence of donor stem/progenitor cells. We show that BMSCs delivered locally in oim femurs are able to engraft, differentiate into osteoblasts and osteocytes and maintain their progenitor potential in vivo. This suggests that local delivery is a promising approach for introduction of autologous MSC in which mutations have been corrected.

  18. Knowledge-Based Topic Model for Unsupervised Object Discovery and Localization.

    Science.gov (United States)

    Niu, Zhenxing; Hua, Gang; Wang, Le; Gao, Xinbo

    Unsupervised object discovery and localization is to discover some dominant object classes and localize all of object instances from a given image collection without any supervision. Previous work has attempted to tackle this problem with vanilla topic models, such as latent Dirichlet allocation (LDA). However, in those methods no prior knowledge for the given image collection is exploited to facilitate object discovery. On the other hand, the topic models used in those methods suffer from the topic coherence issue-some inferred topics do not have clear meaning, which limits the final performance of object discovery. In this paper, prior knowledge in terms of the so-called must-links are exploited from Web images on the Internet. Furthermore, a novel knowledge-based topic model, called LDA with mixture of Dirichlet trees, is proposed to incorporate the must-links into topic modeling for object discovery. In particular, to better deal with the polysemy phenomenon of visual words, the must-link is re-defined as that one must-link only constrains one or some topic(s) instead of all topics, which leads to significantly improved topic coherence. Moreover, the must-links are built and grouped with respect to specific object classes, thus the must-links in our approach are semantic-specific , which allows to more efficiently exploit discriminative prior knowledge from Web images. Extensive experiments validated the efficiency of our proposed approach on several data sets. It is shown that our method significantly improves topic coherence and outperforms the unsupervised methods for object discovery and localization. In addition, compared with discriminative methods, the naturally existing object classes in the given image collection can be subtly discovered, which makes our approach well suited for realistic applications of unsupervised object discovery.Unsupervised object discovery and localization is to discover some dominant object classes and localize all of object

  19. Modeling the leakage of LCD displays with local backlight for quality assessment

    DEFF Research Database (Denmark)

    Mantel, Claire; Korhonen, Jari; Pedersen, Jesper M.

    2014-01-01

    The recent technique of local backlight dimming has a significant impact on the quality of images displayed with a LCD screen with LED local dimming. Therefore it represents a necessary step in the quality assessment chain, independently from the other processes applied to images. This paper...... investigates the modeling of one of the major spatial artifacts produced by local dimming: leakage. Leakage appears in dark areas when the backlight level is too high for LC cells to block sufficiently and the final displayed brightness is higher than it should. A subjective quality experiment was run...... on videos displayed on LCD TV with local backlight dimming viewed from a 0° and 15° angles. The subjective results are then compared objective data using different leakage models: constant over the whole display or horizontally varying and three leakage factor (no leakage, measured at 0° and 15...

  20. Local analgesic effect of tramadol is not mediated by opioid receptors in early postoperative pain in rats

    Directory of Open Access Journals (Sweden)

    Angela Maria Sousa

    2015-06-01

    Full Text Available BACKGROUND AND OBJECTIVES: Tramadol is known as a central acting analgesic drug, used for the treatment of moderate to severe pain. Local analgesic effect has been demonstrated, in part due to local anesthetic-like effect, but other mechanisms remain unclear. The role of peripheral opioid receptors in the local analgesic effect is not known. In this study, we examined role of peripheral opioid receptors in the local analgesic effect of tramadol in the plantar incision model. METHODS: Young male Wistar rats were divided into seven groups: control, intraplantar tramadol, intravenous tramadol, intravenous naloxone-intraplantar tramadol, intraplantar naloxone-intraplantar tramadol, intravenous naloxone-intravenous tramadol, and intravenous naloxone. After receiving the assigned drugs (tramadol 5 mg, naloxone 200 µg or 0.9% NaCl, rats were submitted to plantar incision, and withdrawal thresholds after mechanical stimuli with von Frey filaments were assessed at baseline, 10, 15, 30, 45 and 60 min after incision. RESULTS: Plantar incision led to marked mechanical hyperalgesia during the whole period of observation in the control group, no mechanical hyperalgesia were observed in intraplantar tramadol group, intraplantar naloxone-intraplantar tramadol group and intravenous naloxone-intraplantar tramadol. In the intravenous tramadol group a late increase in withdrawal thresholds (after 45 min was observed, the intravenous naloxone-intravenous tramadol group and intravenous naloxone remained hyperalgesic during the whole period. CONCLUSIONS: Tramadol presented an early local analgesic effect decreasing mechanical hyperalgesia induced by plantar incision. This analgesic effect was not mediated by peripheral opioid receptors.

  1. Local Model Predictive Control for T-S Fuzzy Systems.

    Science.gov (United States)

    Lee, Donghwan; Hu, Jianghai

    2017-09-01

    In this paper, a new linear matrix inequality-based model predictive control (MPC) problem is studied for discrete-time nonlinear systems described as Takagi-Sugeno fuzzy systems. A recent local stability approach is applied to improve the performance of the proposed MPC scheme. At each time k , an optimal state-feedback gain that minimizes an objective function is obtained by solving a semidefinite programming problem. The local stability analysis, the estimation of the domain of attraction, and feasibility of the proposed MPC are proved. Examples are given to demonstrate the advantages of the suggested MPC over existing approaches.

  2. Understanding local residents of Korea using nuclear effective safety

    International Nuclear Information System (INIS)

    Chung, Yun Hyung; Lee, Gey Hwi; Hah, Yeonhee; Kim, Beom Jun

    2010-01-01

    The risk perception gap between experts and lay people is based on the use of different concept on risk. It is getting increasingly important for nuclear practitioners to understand the lay people's subjective perception on nuclear safety. We proposed the nuclear effective safety index (NESI) which is based on data of the public survey of local inhabitants. We extracted the four factors for effective safety indicators; communication, trust, plant emergency response capability, and personal emergency coping skills. The latest NESI was 41.54, which was increased from 38.22 but still low. The three-year data of NESI showed the differences between genders and between sites as well as trend. The survey of antecedents of effective safety showed some meaningful events and profound differences between plant employees and local inhabitants. The NESI can be utilized as useful communication tool between the local inhabitants and nuclear practitioners. (authors)

  3. The localized quantum vacuum field

    International Nuclear Information System (INIS)

    Dragoman, D

    2008-01-01

    A model for the localized quantum vacuum is proposed in which the zero-point energy (ZPE) of the quantum electromagnetic field originates in energy- and momentum-conserving transitions of material systems from their ground state to an unstable state with negative energy. These transitions are accompanied by emissions and re-absorptions of real photons, which generate a localized quantum vacuum in the neighborhood of material systems. The model could help resolve the cosmological paradox associated with the ZPE of electromagnetic fields, while reclaiming quantum effects associated with quantum vacuum such as the Casimir effect and the Lamb shift. It also offers a new insight into the Zitterbewegung of material particles

  4. The localized quantum vacuum field

    Energy Technology Data Exchange (ETDEWEB)

    Dragoman, D [Physics Department, University of Bucharest, PO Box MG-11, 077125 Bucharest (Romania)], E-mail: danieladragoman@yahoo.com

    2008-03-15

    A model for the localized quantum vacuum is proposed in which the zero-point energy (ZPE) of the quantum electromagnetic field originates in energy- and momentum-conserving transitions of material systems from their ground state to an unstable state with negative energy. These transitions are accompanied by emissions and re-absorptions of real photons, which generate a localized quantum vacuum in the neighborhood of material systems. The model could help resolve the cosmological paradox associated with the ZPE of electromagnetic fields, while reclaiming quantum effects associated with quantum vacuum such as the Casimir effect and the Lamb shift. It also offers a new insight into the Zitterbewegung of material particles.

  5. Adaptation Method for Overall and Local Performances of Gas Turbine Engine Model

    Science.gov (United States)

    Kim, Sangjo; Kim, Kuisoon; Son, Changmin

    2018-04-01

    An adaptation method was proposed to improve the modeling accuracy of overall and local performances of gas turbine engine. The adaptation method was divided into two steps. First, the overall performance parameters such as engine thrust, thermal efficiency, and pressure ratio were adapted by calibrating compressor maps, and second, the local performance parameters such as temperature of component intersection and shaft speed were adjusted by additional adaptation factors. An optimization technique was used to find the correlation equation of adaptation factors for compressor performance maps. The multi-island genetic algorithm (MIGA) was employed in the present optimization. The correlations of local adaptation factors were generated based on the difference between the first adapted engine model and performance test data. The proposed adaptation method applied to a low-bypass ratio turbofan engine of 12,000 lb thrust. The gas turbine engine model was generated and validated based on the performance test data in the sea-level static condition. In flight condition at 20,000 ft and 0.9 Mach number, the result of adapted engine model showed improved prediction in engine thrust (overall performance parameter) by reducing the difference from 14.5 to 3.3%. Moreover, there was further improvement in the comparison of low-pressure turbine exit temperature (local performance parameter) as the difference is reduced from 3.2 to 0.4%.

  6. RIPH: A Model for Representing the Reality in the Global and Local Television

    Directory of Open Access Journals (Sweden)

    Saket Hosseynov

    2013-03-01

    Full Text Available The world is witnessing great changes, and these changes are comprehensible in the realm of performance of "identity", "boundary", "geographic concept” (place and "time". Identities are now segmented, boundaries passed over, and places and time compressed. Television is one of the effective factors in making this happen. However, it seems like television, which itself is one of the evidences of globalization, has now acquired new characteristics. With a little care while reading texts related to globalization and media, we realize the four words "reality", "identity", "power" and "hyper-reality" are constantly repeated in these texts, and very few people doubt the close relationship between television and these topics. Facing such a situation, and to understand the characteristics of the global television, this article plans to start on the basis of a theoretic called "RIPH Model". Based on the presumption that the role and place of television in forming the cultural shapes must not be exaggerated, it tries to present an outlook of the activities of the local and global televisions in the age of globalization and share the outcomes with 20 Iranian experts through interviews. RIPH is the short form which stands for the four words "reality", "identity", "power" and "hyper-reality". These are the concepts with new definitions that have changed our views about life on the Planet Earth, and this article studies the factors related to global and local televisions in the frame of an innovative model suggested by the researcher called "The Lozenge of the Performance of the Global and Local Televisions (RIPH Model", by investigating the relations between television and the above-mentioned concepts.

  7. A neural network model of ventriloquism effect and aftereffect.

    Science.gov (United States)

    Magosso, Elisa; Cuppini, Cristiano; Ursino, Mauro

    2012-01-01

    Presenting simultaneous but spatially discrepant visual and auditory stimuli induces a perceptual translocation of the sound towards the visual input, the ventriloquism effect. General explanation is that vision tends to dominate over audition because of its higher spatial reliability. The underlying neural mechanisms remain unclear. We address this question via a biologically inspired neural network. The model contains two layers of unimodal visual and auditory neurons, with visual neurons having higher spatial resolution than auditory ones. Neurons within each layer communicate via lateral intra-layer synapses; neurons across layers are connected via inter-layer connections. The network accounts for the ventriloquism effect, ascribing it to a positive feedback between the visual and auditory neurons, triggered by residual auditory activity at the position of the visual stimulus. Main results are: i) the less localized stimulus is strongly biased toward the most localized stimulus and not vice versa; ii) amount of the ventriloquism effect changes with visual-auditory spatial disparity; iii) ventriloquism is a robust behavior of the network with respect to parameter value changes. Moreover, the model implements Hebbian rules for potentiation and depression of lateral synapses, to explain ventriloquism aftereffect (that is, the enduring sound shift after exposure to spatially disparate audio-visual stimuli). By adaptively changing the weights of lateral synapses during cross-modal stimulation, the model produces post-adaptive shifts of auditory localization that agree with in-vivo observations. The model demonstrates that two unimodal layers reciprocally interconnected may explain ventriloquism effect and aftereffect, even without the presence of any convergent multimodal area. The proposed study may provide advancement in understanding neural architecture and mechanisms at the basis of visual-auditory integration in the spatial realm.

  8. Convection with local thermal non-equilibrium and microfluidic effects

    CERN Document Server

    Straughan, Brian

    2015-01-01

    This book is one of the first devoted to an account of theories of thermal convection which involve local thermal non-equilibrium effects, including a concentration on microfluidic effects. The text introduces convection with local thermal non-equilibrium effects in extraordinary detail, making it easy for readers newer to the subject area to understand. This book is unique in the fact that it addresses a large number of convection theories and provides many new results which are not available elsewhere. This book will be useful to researchers from engineering, fluid mechanics, and applied mathematics, particularly those interested in microfluidics and porous media.

  9. Estimating the Cumulative Ecological Effect of Local Scale Landscape Changes in South Florida

    Science.gov (United States)

    Hogan, Dianna M.; Labiosa, William; Pearlstine, Leonard; Hallac, David; Strong, David; Hearn, Paul; Bernknopf, Richard

    2012-01-01

    Ecosystem restoration in south Florida is a state and national priority centered on the Everglades wetlands. However, urban development pressures affect the restoration potential and remaining habitat functions of the natural undeveloped areas. Land use (LU) planning often focuses at the local level, but a better understanding of the cumulative effects of small projects at the landscape level is needed to support ecosystem restoration and preservation. The South Florida Ecosystem Portfolio Model (SFL EPM) is a regional LU planning tool developed to help stakeholders visualize LU scenario evaluation and improve communication about regional effects of LU decisions. One component of the SFL EPM is ecological value (EV), which is evaluated through modeled ecological criteria related to ecosystem services using metrics for (1) biodiversity potential, (2) threatened and endangered species, (3) rare and unique habitats, (4) landscape pattern and fragmentation, (5) water quality buffer potential, and (6) ecological restoration potential. In this article, we demonstrate the calculation of EV using two case studies: (1) assessing altered EV in the Biscayne Gateway area by comparing 2004 LU to potential LU in 2025 and 2050, and (2) the cumulative impact of adding limestone mines south of Miami. Our analyses spatially convey changing regional EV resulting from conversion of local natural and agricultural areas to urban, industrial, or extractive use. Different simulated local LU scenarios may result in different alterations in calculated regional EV. These case studies demonstrate methods that may facilitate evaluation of potential future LU patterns and incorporate EV into decision making.

  10. Point process models for localization and interdependence of punctate cellular structures.

    Science.gov (United States)

    Li, Ying; Majarian, Timothy D; Naik, Armaghan W; Johnson, Gregory R; Murphy, Robert F

    2016-07-01

    Accurate representations of cellular organization for multiple eukaryotic cell types are required for creating predictive models of dynamic cellular function. To this end, we have previously developed the CellOrganizer platform, an open source system for generative modeling of cellular components from microscopy images. CellOrganizer models capture the inherent heterogeneity in the spatial distribution, size, and quantity of different components among a cell population. Furthermore, CellOrganizer can generate quantitatively realistic synthetic images that reflect the underlying cell population. A current focus of the project is to model the complex, interdependent nature of organelle localization. We built upon previous work on developing multiple non-parametric models of organelles or structures that show punctate patterns. The previous models described the relationships between the subcellular localization of puncta and the positions of cell and nuclear membranes and microtubules. We extend these models to consider the relationship to the endoplasmic reticulum (ER), and to consider the relationship between the positions of different puncta of the same type. Our results do not suggest that the punctate patterns we examined are dependent on ER position or inter- and intra-class proximity. With these results, we built classifiers to update previous assignments of proteins to one of 11 patterns in three distinct cell lines. Our generative models demonstrate the ability to construct statistically accurate representations of puncta localization from simple cellular markers in distinct cell types, capturing the complex phenomena of cellular structure interaction with little human input. This protocol represents a novel approach to vesicular protein annotation, a field that is often neglected in high-throughput microscopy. These results suggest that spatial point process models provide useful insight with respect to the spatial dependence between cellular structures.

  11. The EPED pedestal model and edge localized mode-suppressed regimes: Studies of quiescent H-mode and development of a model for edge localized mode suppression via resonant magnetic perturbations

    Energy Technology Data Exchange (ETDEWEB)

    Snyder, P. B.; Osborne, T. H.; Burrell, K. H.; Groebner, R. J.; Leonard, A. W.; Wade, M. R. [General Atomics, P.O. Box 85608, San Diego, California 92186-5608 (United States); Nazikian, R. [Princeton Plasma Physics Laboratory, Princeton, New Jersey (United States); Orlov, D. M. [University of California-San Diego, San Diego, California 92093 (United States); Schmitz, O. [Institut fuer Plasmaphysik, Forschungszentrum Juelich GmbH, Association FZJ-EURATOM, Juelich (Germany); Wilson, H. R. [York Plasma Institute, Department of Physics, University of York, Heslington, York YO10 5DD (United Kingdom)

    2012-05-15

    The EPED model predicts the H-mode pedestal height and width based upon two fundamental and calculable constraints: (1) onset of non-local peeling-ballooning modes at low to intermediate mode number, (2) onset of nearly local kinetic ballooning modes at high mode number. We present detailed tests of the EPED model in discharges with edge localized modes (ELMs), employing new high resolution measurements, and finding good quantitative agreement across a range of parameters. The EPED model is then applied for the first time to quiescent H-mode (QH), finding a similar level of agreement between predicted and observed pedestal height and width, and suggesting that the model can be used to predict the critical density for QH-mode operation. Finally, the model is applied toward understanding the suppression of ELMs with 3D resonant magnetic perturbations (RMP). Combining EPED with plasma response physics, a new working model for RMP ELM suppression is developed. We propose that ELMs are suppressed when a 'wall' associated with the RMP blocks the inward penetration of the edge transport barrier. A calculation of the required location of this 'wall' with EPED is consistent with observed profile changes during RMP ELM suppression and offers an explanation for the observed dependence on safety factor (q{sub 95}).

  12. Simplified local density model for adsorption over large pressure ranges

    International Nuclear Information System (INIS)

    Rangarajan, B.; Lira, C.T.; Subramanian, R.

    1995-01-01

    Physical adsorption of high-pressure fluids onto solids is of interest in the transportation and storage of fuel and radioactive gases; the separation and purification of lower hydrocarbons; solid-phase extractions; adsorbent regenerations using supercritical fluids; supercritical fluid chromatography; and critical point drying. A mean-field model is developed that superimposes the fluid-solid potential on a fluid equation of state to predict adsorption on a flat wall from vapor, liquid, and supercritical phases. A van der Waals-type equation of state is used to represent the fluid phase, and is simplified with a local density approximation for calculating the configurational energy of the inhomogeneous fluid. The simplified local density approximation makes the model tractable for routine calculations over wide pressure ranges. The model is capable of prediction of Type 2 and 3 subcritical isotherms for adsorption on a flat wall, and shows the characteristic cusplike behavior and crossovers seen experimentally near the fluid critical point

  13. From Family Based to Industrial Based Production: Local Economic Development Initiatives and the HELIX Model

    Directory of Open Access Journals (Sweden)

    Bartjan W Pennink

    2013-01-01

    Full Text Available To build a strong local economy, good practice tells us that each community should undertake a collaborative, strategically planned process to understand and then act upon its own strengths, weaknesses, opportunities and threats. From this perspective we start with the local communities but how is this related to the perspective from the Helix model in which three actors are explicitly introduced: the Government, the Industry and the Universities? The purpose of local economic development (LED is to build up the economic capacity of a local area to improve its economic future and the quality of life for all. To support  the Local Economic Development in remote areas,   a program  has been developed based on the LED frame work of the world bank. This approach and  the experiences over  the past years with this program are  described in the first part.  In the second part of the paper, We analyse work done with that program with the help of the social capital concept and the triple helix model.  In all cases it is important to pay attention to who is taken the initiative after the first move (and it is not always the governance as actor and for the triple helix we suggest  that the concepts of (national Government, Industry and University need a translation to Local Governance Agency, Cooperation or other ways of cooperation of local communities and Local Universities. Although a push from outside might help  a local region in development the endogenous factors are  also needed. Keywords: Triple Helix model, Local Economic Development, Local Actors, Double Triangle within the Helix Model

  14. A semi-local quasi-harmonic model to compute the thermodynamic and mechanical properties of silicon nanostructures

    International Nuclear Information System (INIS)

    Zhao, H; Aluru, N R

    2007-01-01

    This paper presents a semi-local quasi-harmonic model with local phonon density of states (LPDOS) to compute the thermodynamic and mechanical properties of silicon nanostructures at finite temperature. In contrast to an earlier approach (Tang and Aluru 2006 Phys. Rev. B 74 235441), where a quasi-harmonic model with LPDOS computed by a Green's function technique (QHMG) was developed considering many layers of atoms, the semi-local approach considers only two layers of atoms to compute the LPDOS. We show that the semi-local approach combines the accuracy of the QHMG approach and the computational efficiency of the local quasi-harmonic model. We present results for several silicon nanostructures to address the accuracy and efficiency of the semi-local approach

  15. Observation Likelihood Model Design and Failure Recovery Scheme toward Reliable Localization of Mobile Robots

    Directory of Open Access Journals (Sweden)

    Chang-bae Moon

    2011-01-01

    Full Text Available Although there have been many researches on mobile robot localization, it is still difficult to obtain reliable localization performance in a human co-existing real environment. Reliability of localization is highly dependent upon developer's experiences because uncertainty is caused by a variety of reasons. We have developed a range sensor based integrated localization scheme for various indoor service robots. Through the experience, we found out that there are several significant experimental issues. In this paper, we provide useful solutions for following questions which are frequently faced with in practical applications: 1 How to design an observation likelihood model? 2 How to detect the localization failure? 3 How to recover from the localization failure? We present design guidelines of observation likelihood model. Localization failure detection and recovery schemes are presented by focusing on abrupt wheel slippage. Experiments were carried out in a typical office building environment. The proposed scheme to identify the localizer status is useful in practical environments. Moreover, the semi-global localization is a computationally efficient recovery scheme from localization failure. The results of experiments and analysis clearly present the usefulness of proposed solutions.

  16. Observation Likelihood Model Design and Failure Recovery Scheme Toward Reliable Localization of Mobile Robots

    Directory of Open Access Journals (Sweden)

    Chang-bae Moon

    2010-12-01

    Full Text Available Although there have been many researches on mobile robot localization, it is still difficult to obtain reliable localization performance in a human co-existing real environment. Reliability of localization is highly dependent upon developer's experiences because uncertainty is caused by a variety of reasons. We have developed a range sensor based integrated localization scheme for various indoor service robots. Through the experience, we found out that there are several significant experimental issues. In this paper, we provide useful solutions for following questions which are frequently faced with in practical applications: 1 How to design an observation likelihood model? 2 How to detect the localization failure? 3 How to recover from the localization failure? We present design guidelines of observation likelihood model. Localization failure detection and recovery schemes are presented by focusing on abrupt wheel slippage. Experiments were carried out in a typical office building environment. The proposed scheme to identify the localizer status is useful in practical environments. Moreover, the semi-global localization is a computationally efficient recovery scheme from localization failure. The results of experiments and analysis clearly present the usefulness of proposed solutions.

  17. Local Side Effects of Sublingual and Oral Immunotherapy.

    Science.gov (United States)

    Passalacqua, Giovanni; Nowak-Węgrzyn, Anna; Canonica, Giorgio Walter

    Sublingual immunotherapy (SLIT) is increasingly used worldwide, and several products have been recently registered as drugs for respiratory allergy by the European Medicine Agency and the Food and Drug Administration. Concerning inhalant allergens, the safety of SLIT is overall superior to that of subcutaneous immunotherapy in terms of systemic adverse events. No fatality has been ever reported, and episodes of anaphylaxis were described only exceptionally. Looking at the historical and recent trials, most (>90%) adverse events are "local" and confined to the site of administration. For this reason, a specific grading system has been developed by the World Allergy Organization to classify and describe local adverse events. There is an increasing amount of literature concerning oral desensitization for food allergens, referred to as oral immunotherapy. Also, in this case, local side effects are predominant, although systemic adverse events are more frequent than with inhalant allergens. We review herein the description of local side effects due to SLIT, with a special focus on large trials having a declared sample size calculation. The use of the Medical Dictionary for Regulatory Activities nomenclature for adverse events is mentioned in this context, as recommended by regulatory agencies. It is expected that a uniform classification/grading of local adverse events will improve and harmonize the surveillance and reporting on the safety of SLIT. Copyright © 2016 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  18. Effect of coulomb interaction on Anderson localization

    International Nuclear Information System (INIS)

    Waintal, X.

    1999-01-01

    We study the quantum mechanics of interacting particles in a disordered system, and in particular, what happens to Anderson localisation when interaction is taken into account. In the first part, one looks at the excited states of two particles in one dimension. For this model, it has been shown (Shepelyansky 1994) that a local repulsive interaction can partially destroy Anderson localisation. Here, we show that this model has similarities with the three-dimensional Anderson model at the metal-insulator transition. In particular, the maximum of rigidity obtained in the spectral statistics correspond to some intermediary statistics that cannot be described by random matrix theory neither by a Poisson statistics. The wave functions show a multifractal behaviour and the spreading of the center of mass of a wave packet is logarithmic in time. The second part deals with the ground state of a finite density of spinless fermions in two dimensions. After the scaling theory of localisation, it was commonly accepted that there was no metal in two dimensions. This idea has been challenged by the observation of a metal-insulator transition in low density electron gas (Kravchenko et al. 1994). We propose a scenario in which a metallic phase occurs between the Anderson insulator and the pinned Wigner crystal. This intermediate phase is characterized by an alignment of the local currents flowing in the system. (author)

  19. Local Inflammation in Fracture Hematoma: Results from a Combined Trauma Model in Pigs

    Directory of Open Access Journals (Sweden)

    K. Horst

    2015-01-01

    Full Text Available Background. Previous studies showed significant interaction between the local and systemic inflammatory response after severe trauma in small animal models. The purpose of this study was to establish a new combined trauma model in pigs to investigate fracture-associated local inflammation and gain information about the early inflammatory stages after polytrauma. Material and Methods. Combined trauma consisted of tibial fracture, lung contusion, liver laceration, and controlled hemorrhage. Animals were mechanically ventilated and under ICU-monitoring for 48 h. Blood and fracture hematoma samples were collected during the time course of the study. Local and systemic levels of serum cytokines and diverse alarmins were measured by ELISA kit. Results. A statistical significant difference in the systemic serum values of IL-6 and HMGB1 was observed when compared to the sham. Moreover, there was a statistical significant difference in the serum values of the fracture hematoma of IL-6, IL-8, IL-10, and HMGB1 when compared to the systemic inflammatory response. However a decrease of local proinflammatory concentrations was observed while anti-inflammatory mediators increased. Conclusion. Our data showed a time-dependent activation of the local and systemic inflammatory response. Indeed it is the first study focusing on the local and systemic inflammatory response to multiple-trauma in a large animal model.

  20. [Experimental model of severe local radiation injuries of the skin after X-rays].

    Science.gov (United States)

    Kotenko, K V; Moroz, B B; Nasonova, T A; Dobrynina, O A; LIpengolz, A A; Gimadova, T I; Deshevoy, Yu B; Lebedev, V G; Lyrschikova, A V; Eremin, I I

    2013-01-01

    The experimental model of severe local radiation injuries skin under the influence of a relatively soft X-rays on a modified device RAP 100-10 produced by "Diagnostica-M" (Russia) was proposed. The model can be used as pre-clinical studies in small experimental animals in order to improve the treatment of local radiation injuries, especially in the conditions of application of cellular therapy.

  1. Exploring structural variability in X-ray crystallographic models using protein local optimization by torsion-angle sampling

    International Nuclear Information System (INIS)

    Knight, Jennifer L.; Zhou, Zhiyong; Gallicchio, Emilio; Himmel, Daniel M.; Friesner, Richard A.; Arnold, Eddy; Levy, Ronald M.

    2008-01-01

    Torsion-angle sampling, as implemented in the Protein Local Optimization Program (PLOP), is used to generate multiple structurally variable single-conformer models which are in good agreement with X-ray data. An ensemble-refinement approach to differentiate between positional uncertainty and conformational heterogeneity is proposed. Modeling structural variability is critical for understanding protein function and for modeling reliable targets for in silico docking experiments. Because of the time-intensive nature of manual X-ray crystallographic refinement, automated refinement methods that thoroughly explore conformational space are essential for the systematic construction of structurally variable models. Using five proteins spanning resolutions of 1.0–2.8 Å, it is demonstrated how torsion-angle sampling of backbone and side-chain libraries with filtering against both the chemical energy, using a modern effective potential, and the electron density, coupled with minimization of a reciprocal-space X-ray target function, can generate multiple structurally variable models which fit the X-ray data well. Torsion-angle sampling as implemented in the Protein Local Optimization Program (PLOP) has been used in this work. Models with the lowest R free values are obtained when electrostatic and implicit solvation terms are included in the effective potential. HIV-1 protease, calmodulin and SUMO-conjugating enzyme illustrate how variability in the ensemble of structures captures structural variability that is observed across multiple crystal structures and is linked to functional flexibility at hinge regions and binding interfaces. An ensemble-refinement procedure is proposed to differentiate between variability that is a consequence of physical conformational heterogeneity and that which reflects uncertainty in the atomic coordinates

  2. Modeling LCD Displays with Local Backlight Dimming for Image Quality Assessment

    DEFF Research Database (Denmark)

    Korhonen, Jari; Burini, Nino; Forchhammer, Søren

    2011-01-01

    for evaluating the signal quality distortion related directly to digital signal processing, such as compression. However, the physical characteristics of the display device also pose a significant impact on the overall perception. In order to facilitate image quality assessment on modern liquid crystaldisplays...... (LCD) using light emitting diode (LED) backlight with local dimming, we present the essential considerations and guidelines for modeling the characteristics of displays with high dynamic range (HDR) and locally adjustable backlight segments. The representation of the image generated by the model can...... be assessed using the traditional objective metrics, and therefore the proposed approach is useful for assessing the performance of different backlight dimming algorithms in terms of resulting quality and power consumption in a simulated environment. We have implemented the proposed model in C++ and compared...

  3. Regulatory odour model development: Survey of modelling tools and datasets with focus on building effects

    DEFF Research Database (Denmark)

    Olesen, H. R.; Løfstrøm, P.; Berkowicz, R.

    dispersion models for estimating local concentration levels in general. However, the report focuses on some particular issues, which are relevant for subsequent work on odour due to animal production. An issue of primary concern is the effect that buildings (stables) have on flow and dispersion. The handling...... of building effects is a complicated problem, and a major part of the report is devoted to the treatment of building effects in dispersion models......A project within the framework of a larger research programme, Action Plan for the Aquatic Environment III (VMP III) aims towards improving an atmospheric dispersion model (OML). The OML model is used for regulatory applications in Denmark, and it is the candidate model to be used also in future...

  4. Local Stability Conditions for Two Types of Monetary Models with Recursive Utility

    OpenAIRE

    Miyazaki, Kenji; Utsunomiya, Hitoshi

    2009-01-01

    This paper explores local stability conditions for money-in-utility-function (MIUF) and transaction-costs (TC) models with recursive utility.A monetary variant of the Brock-Gale condition provides a theoretical justification of the comparative statics analysis. One of sufficient conditions for local stability is increasing marginal impatience (IMI) in consumption and money. However, this does not deny the possibility of decreasing marginal impatience (DMI). The local stability with DMI is mor...

  5. Local and omnibus goodness-of-fit tests in classical measurement error models

    KAUST Repository

    Ma, Yanyuan

    2010-09-14

    We consider functional measurement error models, i.e. models where covariates are measured with error and yet no distributional assumptions are made about the mismeasured variable. We propose and study a score-type local test and an orthogonal series-based, omnibus goodness-of-fit test in this context, where no likelihood function is available or calculated-i.e. all the tests are proposed in the semiparametric model framework. We demonstrate that our tests have optimality properties and computational advantages that are similar to those of the classical score tests in the parametric model framework. The test procedures are applicable to several semiparametric extensions of measurement error models, including when the measurement error distribution is estimated non-parametrically as well as for generalized partially linear models. The performance of the local score-type and omnibus goodness-of-fit tests is demonstrated through simulation studies and analysis of a nutrition data set.

  6. Local models of Gauge Mediated Supersymmetry Breaking in String Theory

    CERN Document Server

    Garcia-Etxebarria, I; Uranga, Angel M; Garcia-Etxebarria, Inaki; Saad, Fouad; Uranga, Angel M.

    2006-01-01

    We describe local Calabi-Yau geometries with two isolated singularities at which systems of D3- and D7-branes are located, leading to chiral sectors corresponding to a semi-realistic visible sector and a hidden sector with dynamical supersymmetry breaking. We provide explicit models with a 3-family MSSM-like visible sector, and a hidden sector breaking supersymmetry at a meta-stable minimum. For singularities separated by a distance smaller than the string scale, this construction leads to a simple realization of gauge mediated supersymmetry breaking in string theory. The models are simple enough to allow the explicit computation of the massive messenger sector, using dimer techniques for branes at singularities. The local character of the configurations makes manifest the UV insensitivity of the supersymmetry breaking mediation.

  7. Developing Local Scale, High Resolution, Data to Interface with Numerical Hurricane Models

    Science.gov (United States)

    Witkop, R.; Becker, A.

    2017-12-01

    In 2017, the University of Rhode Island's (URI's) Graduate School of Oceanography (GSO) developed hurricane models that specify wind speed, inundation, and erosion around Rhode Island with enough precision to incorporate impacts on individual facilities. At the same time, URI's Marine Affairs Visualization Lab (MAVL) developed a way to realistically visualize these impacts in 3-D. Since climate change visualizations and water resource simulations have been shown to promote resiliency action (Sheppard, 2015) and increase credibility (White et al., 2010) when local knowledge is incorporated, URI's hurricane models and visualizations may also more effectively enable hurricane resilience actions if they include Facility Manager (FM) and Emergency Manager (EM) perceived hurricane impacts. This study determines how FM's and EM's perceive their assets as being vulnerable to quantifiable hurricane-related forces at the individual facility scale while exploring methods to elicit this information from FMs and EMs in a format usable for incorporation into URI GSO's hurricane models.

  8. Rescaled Local Interaction Simulation Approach for Shear Wave Propagation Modelling in Magnetic Resonance Elastography

    Directory of Open Access Journals (Sweden)

    Z. Hashemiyan

    2016-01-01

    Full Text Available Properties of soft biological tissues are increasingly used in medical diagnosis to detect various abnormalities, for example, in liver fibrosis or breast tumors. It is well known that mechanical stiffness of human organs can be obtained from organ responses to shear stress waves through Magnetic Resonance Elastography. The Local Interaction Simulation Approach is proposed for effective modelling of shear wave propagation in soft tissues. The results are validated using experimental data from Magnetic Resonance Elastography. These results show the potential of the method for shear wave propagation modelling in soft tissues. The major advantage of the proposed approach is a significant reduction of computational effort.

  9. Rescaled Local Interaction Simulation Approach for Shear Wave Propagation Modelling in Magnetic Resonance Elastography

    Science.gov (United States)

    Packo, P.; Staszewski, W. J.; Uhl, T.

    2016-01-01

    Properties of soft biological tissues are increasingly used in medical diagnosis to detect various abnormalities, for example, in liver fibrosis or breast tumors. It is well known that mechanical stiffness of human organs can be obtained from organ responses to shear stress waves through Magnetic Resonance Elastography. The Local Interaction Simulation Approach is proposed for effective modelling of shear wave propagation in soft tissues. The results are validated using experimental data from Magnetic Resonance Elastography. These results show the potential of the method for shear wave propagation modelling in soft tissues. The major advantage of the proposed approach is a significant reduction of computational effort. PMID:26884808

  10. Local effect of equilibrium current on tearing mode stability

    International Nuclear Information System (INIS)

    Cozzani, F.

    1985-12-01

    The local effect of the equilibrium current on the linear stability of low poloidal number tearing modes in tokamaks is investigated analytically. The plasma response inside the tearing layer is derived from fluid theory and the local equilibrium current is shown to couple to the mode dynamics through its gradient, which is proportional to the local electron temperature gradient under the approximations used in the analysis. The relevant eigenmode equations, expressing Ampere's law and the plasma quasineutrality condition, respectively, are suitably combined in a single integral equation, from which a variational principle is formulated to derive the mode dispersion relations for several cases of interest. The local equilibrium current is treated as a small perturbation of the known results for the m greater than or equal to 2 and the m = 1 tearing modes in the collisional regime, and the m greater than or equal to 2 tearing mode in the semicollisional regime; its effect is found to enhance stabilization for the m greater than or equal to 2 drift-tearing mode in the collisional regime, whereas the m = 1 growth rate is very slightly increased and the stabilizing effect of the parallel thermal conduction on the m greater than or equal to 2 mode in the semicollisional regime is slightly reduced

  11. Effect of (social) media on the political figure fever model: Jokowi-fever model

    Science.gov (United States)

    Yong, Benny; Samat, Nor Azah

    2016-02-01

    In recent years, political figures begin to utilize social media as one of alternative to engage in communication with their supporters. Publics referred to Jokowi, one of the candidates in Indonesia presidential election in 2014, as the first politician in Indonesia to truly understand the power of social media. Social media is very important in shaping public opinion. In this paper, effect of social media on the Jokowi-fever model in a closed population will be discussed. Supporter population is divided into three class sub-population, i.e susceptible supporters, Jokowi infected supporters, and recovered supporters. For case no positive media, there are two equilibrium points; the Jokowi-fever free equilibrium point in which it locally stable if basic reproductive ratio less than one and the Jokowi-fever endemic equilibrium point in which it locally stable if basic reproductive ratio greater than one. For case no negative media, there is only the Jokowi-fever endemic equilibrium point in which it locally stable if the condition is satisfied. Generally, for case positive media proportion is positive, there is no Jokowi-fever free equilibrium point. The numerical result shows that social media gives significantly effect on Jokowi-fever model, a sharp increase or a sharp decrease in the number of Jokowi infected supporters. It is also shown that the boredom rate is one of the sensitive parameters in the Jokowi-fever model; it affects the number of Jokowi infected supporters.

  12. A local-circulation model for Darrieus vertical-axis wind turbines

    Science.gov (United States)

    Masse, B.

    1986-04-01

    A new computational model for the aerodynamics of the vertical-axis wind turbine is presented. Based on the local-circulation method generalized for curved blades, combined with a wake model for the vertical-axis wind turbine, it differs markedly from current models based on variations in the streamtube momentum and vortex models using the lifting-line theory. A computer code has been developed to calculate the loads and performance of the Darrieus vertical-axis wind turbine. The results show good agreement with experimental data and compare well with other methods.

  13. Accounting for model error in Bayesian solutions to hydrogeophysical inverse problems using a local basis approach

    Science.gov (United States)

    Irving, J.; Koepke, C.; Elsheikh, A. H.

    2017-12-01

    Bayesian solutions to geophysical and hydrological inverse problems are dependent upon a forward process model linking subsurface parameters to measured data, which is typically assumed to be known perfectly in the inversion procedure. However, in order to make the stochastic solution of the inverse problem computationally tractable using, for example, Markov-chain-Monte-Carlo (MCMC) methods, fast approximations of the forward model are commonly employed. This introduces model error into the problem, which has the potential to significantly bias posterior statistics and hamper data integration efforts if not properly accounted for. Here, we present a new methodology for addressing the issue of model error in Bayesian solutions to hydrogeophysical inverse problems that is geared towards the common case where these errors cannot be effectively characterized globally through some parametric statistical distribution or locally based on interpolation between a small number of computed realizations. Rather than focusing on the construction of a global or local error model, we instead work towards identification of the model-error component of the residual through a projection-based approach. In this regard, pairs of approximate and detailed model runs are stored in a dictionary that grows at a specified rate during the MCMC inversion procedure. At each iteration, a local model-error basis is constructed for the current test set of model parameters using the K-nearest neighbour entries in the dictionary, which is then used to separate the model error from the other error sources before computing the likelihood of the proposed set of model parameters. We demonstrate the performance of our technique on the inversion of synthetic crosshole ground-penetrating radar traveltime data for three different subsurface parameterizations of varying complexity. The synthetic data are generated using the eikonal equation, whereas a straight-ray forward model is assumed in the inversion

  14. Measuring and Modeling the Earth's Gravity - Introduction to Ground-Based Gravity Surveys and Analysis of Local Gravity Data

    Energy Technology Data Exchange (ETDEWEB)

    Rowe, Charlotte Anne [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-11-21

    We can measure changes in gravity from place to place on the earth. These measurements require careful recording of location, elevation and time for each reading. These readings must be adjusted for known effects (such as elevation, latitude, tides) that can bias our data and mask the signal of interest. After making corrections to our data, we can remove regional trends to obtain local Bouguer anomalies. The Bouguer anomalies arise from variations in the subsurface density structure. We can build models to explain our observations, but these models must be consistent with what is known about the local geology. Combining gravity models with other information – geologic, seismic, electromagnetic, will improve confidence in the results.

  15. Localization effects in rare earth high Tc superconductors

    International Nuclear Information System (INIS)

    Badera, Nitu; Godbole, Bhavana; Srivastava, S.B.; Rathore, M.K.; Ganesa, V.

    2006-01-01

    The Y 1-x Gd x Ba 2 Cu 3 O 7-δ samples have been prepared for different concentration of Gd . We employ thermoelectric power technique, which is sensitive to changes at the Fermi surface to study these materials. Metallic diffusion model and two band model are used to evaluate the normal state properties of these materials. At concentrations above 5% clear wide linear regions have been observed suggesting good evidence for localized states. (author)

  16. Two-Stage Method Based on Local Polynomial Fitting for a Linear Heteroscedastic Regression Model and Its Application in Economics

    Directory of Open Access Journals (Sweden)

    Liyun Su

    2012-01-01

    Full Text Available We introduce the extension of local polynomial fitting to the linear heteroscedastic regression model. Firstly, the local polynomial fitting is applied to estimate heteroscedastic function, then the coefficients of regression model are obtained by using generalized least squares method. One noteworthy feature of our approach is that we avoid the testing for heteroscedasticity by improving the traditional two-stage method. Due to nonparametric technique of local polynomial estimation, we do not need to know the heteroscedastic function. Therefore, we can improve the estimation precision, when the heteroscedastic function is unknown. Furthermore, we focus on comparison of parameters and reach an optimal fitting. Besides, we verify the asymptotic normality of parameters based on numerical simulations. Finally, this approach is applied to a case of economics, and it indicates that our method is surely effective in finite-sample situations.

  17. Students' Critical Thinking Skills in Chemistry Learning Using Local Culture-Based 7E Learning Cycle Model

    Science.gov (United States)

    Suardana, I. Nyoman; Redhana, I. Wayan; Sudiatmika, A. A. Istri Agung Rai; Selamat, I. Nyoman

    2018-01-01

    This research aimed at describing the effectiveness of the local culture-based 7E learning cycle model in improving students' critical thinking skills in chemistry learning. It was an experimental research with post-test only control group design. The population was the eleventh-grade students of senior high schools in Singaraja, Indonesia. The…

  18. A neural network model of ventriloquism effect and aftereffect.

    Directory of Open Access Journals (Sweden)

    Elisa Magosso

    Full Text Available Presenting simultaneous but spatially discrepant visual and auditory stimuli induces a perceptual translocation of the sound towards the visual input, the ventriloquism effect. General explanation is that vision tends to dominate over audition because of its higher spatial reliability. The underlying neural mechanisms remain unclear. We address this question via a biologically inspired neural network. The model contains two layers of unimodal visual and auditory neurons, with visual neurons having higher spatial resolution than auditory ones. Neurons within each layer communicate via lateral intra-layer synapses; neurons across layers are connected via inter-layer connections. The network accounts for the ventriloquism effect, ascribing it to a positive feedback between the visual and auditory neurons, triggered by residual auditory activity at the position of the visual stimulus. Main results are: i the less localized stimulus is strongly biased toward the most localized stimulus and not vice versa; ii amount of the ventriloquism effect changes with visual-auditory spatial disparity; iii ventriloquism is a robust behavior of the network with respect to parameter value changes. Moreover, the model implements Hebbian rules for potentiation and depression of lateral synapses, to explain ventriloquism aftereffect (that is, the enduring sound shift after exposure to spatially disparate audio-visual stimuli. By adaptively changing the weights of lateral synapses during cross-modal stimulation, the model produces post-adaptive shifts of auditory localization that agree with in-vivo observations. The model demonstrates that two unimodal layers reciprocally interconnected may explain ventriloquism effect and aftereffect, even without the presence of any convergent multimodal area. The proposed study may provide advancement in understanding neural architecture and mechanisms at the basis of visual-auditory integration in the spatial realm.

  19. Unstable spiral waves and local Euclidean symmetry in a model of cardiac tissue

    International Nuclear Information System (INIS)

    Marcotte, Christopher D.; Grigoriev, Roman O.

    2015-01-01

    This paper investigates the properties of unstable single-spiral wave solutions arising in the Karma model of two-dimensional cardiac tissue. In particular, we discuss how such solutions can be computed numerically on domains of arbitrary shape and study how their stability, rotational frequency, and spatial drift depend on the size of the domain as well as the position of the spiral core with respect to the boundaries. We also discuss how the breaking of local Euclidean symmetry due to finite size effects as well as the spatial discretization of the model is reflected in the structure and dynamics of spiral waves. This analysis allows identification of a self-sustaining process responsible for maintaining the state of spiral chaos featuring multiple interacting spirals

  20. Unstable spiral waves and local Euclidean symmetry in a model of cardiac tissue.

    Science.gov (United States)

    Marcotte, Christopher D; Grigoriev, Roman O

    2015-06-01

    This paper investigates the properties of unstable single-spiral wave solutions arising in the Karma model of two-dimensional cardiac tissue. In particular, we discuss how such solutions can be computed numerically on domains of arbitrary shape and study how their stability, rotational frequency, and spatial drift depend on the size of the domain as well as the position of the spiral core with respect to the boundaries. We also discuss how the breaking of local Euclidean symmetry due to finite size effects as well as the spatial discretization of the model is reflected in the structure and dynamics of spiral waves. This analysis allows identification of a self-sustaining process responsible for maintaining the state of spiral chaos featuring multiple interacting spirals.

  1. Hybrid Scheme for Modeling Local Field Potentials from Point-Neuron Networks.

    Science.gov (United States)

    Hagen, Espen; Dahmen, David; Stavrinou, Maria L; Lindén, Henrik; Tetzlaff, Tom; van Albada, Sacha J; Grün, Sonja; Diesmann, Markus; Einevoll, Gaute T

    2016-12-01

    With rapidly advancing multi-electrode recording technology, the local field potential (LFP) has again become a popular measure of neuronal activity in both research and clinical applications. Proper understanding of the LFP requires detailed mathematical modeling incorporating the anatomical and electrophysiological features of neurons near the recording electrode, as well as synaptic inputs from the entire network. Here we propose a hybrid modeling scheme combining efficient point-neuron network models with biophysical principles underlying LFP generation by real neurons. The LFP predictions rely on populations of network-equivalent multicompartment neuron models with layer-specific synaptic connectivity, can be used with an arbitrary number of point-neuron network populations, and allows for a full separation of simulated network dynamics and LFPs. We apply the scheme to a full-scale cortical network model for a ∼1 mm 2 patch of primary visual cortex, predict laminar LFPs for different network states, assess the relative LFP contribution from different laminar populations, and investigate effects of input correlations and neuron density on the LFP. The generic nature of the hybrid scheme and its public implementation in hybridLFPy form the basis for LFP predictions from other and larger point-neuron network models, as well as extensions of the current application with additional biological detail. © The Author 2016. Published by Oxford University Press.

  2. A systematic study of ball passing frequencies based on dynamic modeling of rolling ball bearings with localized surface defects

    Science.gov (United States)

    Niu, Linkai; Cao, Hongrui; He, Zhengjia; Li, Yamin

    2015-11-01

    Ball passing frequencies (BPFs) are very important features for condition monitoring and fault diagnosis of rolling ball bearings. The ball passing frequency on outer raceway (BPFO) and the ball passing frequency on inner raceway (BPFI) are usually calculated by two well-known kinematics equations. In this paper, a systematic study of BPFs of rolling ball bearings is carried out. A novel method for accurately calculating BPFs based on a complete dynamic model of rolling ball bearings with localized surface defects is proposed. In the used dynamic model, three-dimensional motions, relative slippage, cage effects and localized surface defects are all considered. Moreover, localized surface defects are modeled accurately with consideration of the finite size of the ball, the additional clearance due to material absence, and changes of contact force directions. The reasonability of the proposed method for the prediction of dynamic behaviors of actual ball bearings with localized surface defects and for the calculation of BPFs is discussed by investigating the motion characteristics of a ball when it rolls through a defect. Parametric investigation shows that the shaft speed, external loads, the friction coefficient, raceway groove curvature factors, the initial contact angle, and defect sizes have great effects on BPFs. For a loaded ball bearing, the combination of rolling and sliding in contact region occurs, and the BPFs calculated by simple kinematical relationships are inaccurate, especially for high speed, low external load, and large initial contact angle conditions where severe skidding occurs. The hypothesis that the percentage variation of the spacing between impulses in a defective ball bearing was about 1-2% reported in previous investigations can be satisfied only for the conditions where the skidding effect in a bearing is slight. Finally, the proposed method is verified with two experiments.

  3. Structural model to evaluate the effect of participation and satisfaction on ecotourism sustainability

    Science.gov (United States)

    Kencana, Eka N.; Manutami, T.

    2017-10-01

    This paper is directed to study the effect of local community participation and visitors’ satisfaction on ecotourism sustainability at Badung regency of Bali province, Indonesia. Two important aspects regarding ecotourism sustainability had been studied, i.e. (a) economic benefits for local people and (b) tourists’ satisfaction. Applying variance-based structural equation modeling, data were collected in July 2015 from local community leaders of Kiadan Village at Badung regency and tourists whom visited this village, were analysed. Four latent variables, namely (a) community participation, (b) economic benefits, (c) tourists’ satisfaction, and (d) ecotourism sustainability, were used to build structural model. The results showed sustainability of Kiadan’s ecotourism was significantly affected by local community participation and visitors’ satisfaction although community participation’s effect slightly greater than tourists’ satisfaction with path values for participation and satisfaction as much as 0.651 and 0.627, respectively.

  4. Numerical modeling of local scour around hydraulic structure in sandy beds by dynamic mesh method

    Science.gov (United States)

    Fan, Fei; Liang, Bingchen; Bai, Yuchuan; Zhu, Zhixia; Zhu, Yanjun

    2017-10-01

    Local scour, a non-negligible factor in hydraulic engineering, endangers the safety of hydraulic structures. In this work, a numerical model for simulating local scour was constructed, based on the open source code computational fluid dynamics model OpenFOAM. We consider both the bedload and suspended load sediment transport in the scour model and adopt the dynamic mesh method to simulate the evolution of the bed elevation. We use the finite area method to project data between the three-dimensional flow model and the two-dimensional (2D) scour model. We also improved the 2D sand slide method and added it to the scour model to correct the bed bathymetry when the bed slope angle exceeds the angle of repose. Moreover, to validate our scour model, we conducted and compared the results of three experiments with those of the developed model. The validation results show that our developed model can reliably simulate local scour.

  5. Toy models for wrapping effects

    International Nuclear Information System (INIS)

    Penedones, Joao; Vieira, Pedro

    2008-01-01

    The anomalous dimensions of local single trace gauge invariant operators in N = 4 supersymmetric Yang-Mills theory can be computed by diagonalizing a long range integrable Hamiltonian by means of a perturbative asymptotic Bethe ansatz. This formalism breaks down when the number of fields of the composite operator is smaller than the range of the Hamiltonian which coincides with the order in perturbation theory at study. We analyze two spin chain toy models which might shed some light on the physics behind these wrapping effects. One of them, the Hubbard model, is known to be closely related to N = 4 SYM. In this example, we find that the knowledge of the effective spin chain description is insufficient to reconstruct the finite size effects of the underlying electron theory. We compute the wrapping corrections for generic states and relate them to a Luscher like approach. The second toy models are long range integrable Hamiltonians built from the standard algebraic Bethe ansatz formalism. This construction is valid for any symmetry group. In particular, for non-compact groups it exhibits an interesting relation between wrapping interactions and transcendentality.

  6. Papaya Development Model As A Competitive Local Superior Commodity

    Directory of Open Access Journals (Sweden)

    Reny Sukmawani

    2014-12-01

    Full Text Available The aim of this research is to study the comparative advantage and papaya competitive and to design its development model by using the approach of local base agriculture development. This research uses survey method. The resulting research shows that papaya is a base commodity that has comparative advantage and competitive. The development papaya in the district of Sukabumi is quite good bases on eight superior creations. But in order to be the main sector in economic development and has a competition, the development of papaya must concern to its influence factors. In supporting papaya development as a competitive local superior commodity, it needs to be done some efforts are as follows: (1 increase a skillful worker; (2 improve business management; (3 increase papaya productivity by using technology and study papaya planted technology in specific local superior commodity; (4 develop the involvement of the business relation; (5 provide market information and information technology network; and (6 improve infrastructures.

  7. Local versus landscape-scale effects of anthropogenic land-use on forest species richness

    Science.gov (United States)

    Buffa, G.; Del Vecchio, S.; Fantinato, E.; Milano, V.

    2018-01-01

    The study investigated the effects of human-induced landscape patterns on species richness in forests. For 80 plots of fixed size, we measured human disturbance (categorized as urban/industrial and agricultural land areas), at 'local' and 'landscape' scale (500 m and 2500 m radius from each plot, respectively), the distance from the forest edge, and the size and shape of the woody patch. By using GLM, we analyzed the effects of disturbance and patch-based measures on both total species richness and the richness of a group of specialist species (i.e. the 'ancient forest species'), representing more specific forest features. Patterns of local species richness were sensitive to the structure and composition of the surrounding landscape. Among the landscape components taken into account, urban/industrial land areas turned out as the most threatening factor for both total species richness and the richness of the ancient forest species. However, the best models evidenced a different intensity of the response to the same disturbance category as well as a different pool of significant variables for the two groups of species. The use of groups of species, such as the ancient forest species pool, that are functionally related and have similar ecological requirements, may represent an effective solution for monitoring forest dynamics under the effects of external factors. The approach of relating local assessment of species richness, and in particular of the ancient forest species pool, to land-use patterns may play an important role for the science-policy interface by supporting and strengthening conservation and regional planning decision making.

  8. Coupling of nonlocal and local continuum models by the Arlequinapproach

    KAUST Repository

    Han, Fei; Lubineau, Gilles

    2011-01-01

    for the 'fine scale' description in which nonlocal interactions are considered to have non-negligible effects. Classical continuum mechanics only involving local contact forces is introduced for the rest of the structure where these nonlocal effects can

  9. How to transform local energy systems towards bioenergy? Three strategy models for transformation

    International Nuclear Information System (INIS)

    Martensson, Kjell; Westerberg, Karin

    2007-01-01

    During the last decades, the actors within the energy sector in Sweden-as well as in many other countries-have faced increasing demands to transform the energy system towards ecological sustainability. In Sweden these demands have led to numerous policies and economic incentives promoting the use of renewables (which in the Swedish discourse often also includes a connotation of 'indigenous energy sources'), and especially the promotion of bioenergy. To be successful, however, these policies and economic incentives need to be interpreted and adapted to different local contexts and translated into actual transformation processes. In Sweden the municipal authorities have played an important role as interpreters of such institutional frameworks and implementers of local transformation processes. In this article, we re-construct three transformation processes implemented by local municipal authorities, chiselling out the different strategy models developed through them. We argue that such re-constructions help to make visible the different and complex interactions between national institutional frameworks and local contexts as well as interactions within such local contexts. We hope that the strategy models presented can contribute to the understanding of the different kinds of local actions that can foster a further implementation of bioenergy into the energy system

  10. Local thermodynamic mapping for effective liquid density-functional theory

    Science.gov (United States)

    Kyrlidis, Agathagelos; Brown, Robert A.

    1992-01-01

    The structural-mapping approximation introduced by Lutsko and Baus (1990) in the generalized effective-liquid approximation is extended to include a local thermodynamic mapping based on a spatially dependent effective density for approximating the solid phase in terms of the uniform liquid. This latter approximation, called the local generalized effective-liquid approximation (LGELA) yields excellent predictions for the free energy of hard-sphere solids and for the conditions of coexistence of a hard-sphere fcc solid with a liquid. Moreover, the predicted free energy remains single valued for calculations with more loosely packed crystalline structures, such as the diamond lattice. The spatial dependence of the weighted density makes the LGELA useful in the study of inhomogeneous solids.

  11. Local and omnibus goodness-of-fit tests in classical measurement error models

    KAUST Repository

    Ma, Yanyuan; Hart, Jeffrey D.; Janicki, Ryan; Carroll, Raymond J.

    2010-01-01

    We consider functional measurement error models, i.e. models where covariates are measured with error and yet no distributional assumptions are made about the mismeasured variable. We propose and study a score-type local test and an orthogonal

  12. Council Appointed Mayors in Spain: Effects on Local Democracy

    Directory of Open Access Journals (Sweden)

    María Jesús García García

    2017-03-01

    Full Text Available This paper deals with the influence of having council appointed mayors on local governments. Five elements of local government systems are considered: the electoral system and its influence on the political composition of the local government; the local government structure and the distribution of functions and powers between mayor and council; the role of political parties; scrutiny of the executive and accountability; and citizen participation. This analysis highlights the effect that a council appointed mayor system has in terms of accountability and legitimacy, transparency and efficiency. KEYWORDS Local government systems, directly elected mayors, local governance, council appointed mayors, Local Government Structure; Political Parties; Citizen Participation; Accountability. El presente artículo toma en consideración los efectos que el sistema de elección del Alcalde tiene sobre la democracia local, basándose en la consideración cinco aspectos: el sistema electoral y su influencia en la composición política de las administraciones locales; la estructura de la administración local y la distribución de funciones entre los alcaldes y el pleno municipal; el papel de los partidos políticos; los mecanismos de control del ejecutivo local y la participación ciudadana. El estudio subraya especialmente la incidencia que el sistema de elección del alcalde por los concejales tiene en relación con los principios de responsabilidad, legitimidad, transparencia y eficiencia de la gestión local. PALABRAS CLAVE Gobierno local, elección directa de los alcaldes, elección indirecta de los alcaldes, estructura del gobierno local, partidos políticos, participación ciudadana, responsabilidad política.

  13. Three-dimensional modelling of slope stability using the Local Factor of Safety concept

    Science.gov (United States)

    Moradi, Shirin; Huisman, Sander; Beck, Martin; Vereecken, Harry; Class, Holger

    2017-04-01

    Slope stability is governed by coupled hydrological and mechanical processes. The slope stability depends on the effective stress, which in turn depends on the weight of the soil and the matrix potential. Therefore, changes in water content and matrix potential associated with infiltration will affect slope stability. Most available models describing these coupled hydro-mechanical processes either rely on a one- or two-dimensional representation of hydrological and mechanical properties and processes, which obviously is a strong simplification in many applications. Therefore, the aim of this work is to develop a three-dimensional hydro-mechanical model that is able to capture the effect of spatial and temporal variability of both mechanical and hydrological parameters on slope stability. For this, we rely on DuMux, which is a free and open-source simulator for flow and transport processes in porous media that facilitates coupling of different model approaches and offers flexibility for model development. We use the Richards equation to model unsaturated water flow. The simulated water content and matrix potential distribution is used to calculate the effective stress. We only consider linear elasticity and solve for statically admissible fields of stress and displacement without invoking failure or the redistribution of post-failure stress or displacement. The Local Factor of Safety concept is used to evaluate slope stability in order to overcome some of the main limitations of commonly used methods based on limit equilibrium considerations. In a first step, we compared our model implementation with a 2D benchmark model that was implemented in COMSOL Multiphysics. In a second step, we present in-silico experiments with the newly developed 3D model to show the effect of slope morphology, spatial variability in hydraulic and mechanical material properties, and spatially variable soil depth on simulated slope stability. It is expected that this improved physically

  14. Vibration analysis of rotating nanobeam systems using Eringen's two-phase local/nonlocal model

    Science.gov (United States)

    Khaniki, Hossein Bakhshi

    2018-05-01

    Due to the inability of differential form of nonlocal elastic theory in modelling cantilever beams and inaccurate results for some type of boundaries, in this study, a reliable investigation on transverse vibrational behavior of rotating cantilever size-dependent beams is presented. Governing higher order equations are written in the framework of Eringen's two-phase local/nonlocal model and solved using a modified generalized differential quadrature method. In order to indicate the influence of different material and scale parameters, a comprehensive parametric study is presented. It is shown that increasing the nonlocality term leads to lower natural frequency terms for cantilever nanobeams especially for the fundamental frequency parameter which differential nonlocal model is unable to track appropriately. Moreover, it is shown that rotating speed and hub radius have a remarkable effect in varying the mechanical behavior of rotating cantilever nanobeams. This study is a step forward in analyzing nanorotors, nanoturbines, nanoblades, etc.

  15. First status report on regional and local ground-water flow modeling for Richton Dome, Mississippi

    International Nuclear Information System (INIS)

    Andrews, R.W.; Metcalfe, D.E.

    1984-03-01

    Regional and local ground-water flow within the principal hydrogeologic units in the vicinity of Richton Dome is evaluated by developing conceptual models of the flow regime within these units at three different scales and testing these models using a three-dimensional, finite-difference flow code. Semiquantitative sensitivity analysis is conducted to define the system response to changes in the conceptual model, particularly the hydrologic properties. The effects of salinity on the flow field are evaluated at the refined and local scales. Adjoint sensitivity analysis is applied to the conceptualized flow regime in the Wilcox aquifer. All steps leading to the final results and conclusions are incorporated in this report. The available data utilized in this study is summarized. The specific conceptual models, defining the areal and vertical averaging of lithologic units, aquifer properties, fluid properties, and hydrologic boundary conditions, are described in detail. The results are delineated by the simulated potentiometric surfaces and tables summarizing areal and vertical boundary fluxes, Darcy velocities at specific points, and ground-water travel paths. These results are presented at regional, refined, and local (near-dome) scales. The reported work is the first stage of an ongoing evaluation of the Richton Dome as a potential repository for high-level radioactive wastes. The results and conclusions should thus be considered preliminary and subject to modification with the collection of additional data. However, this report does provide a useful basis for describing the sensitivity and, to a lesser extent, the uncertainty of the present conceptualization of ground-water flow in the vicinity of Richton Dome. 25 references, 69 figures, 15 tables

  16. Local Electric Field Effects on Rhodium-Porphyrin and NHC-Gold Catalysts

    Science.gov (United States)

    2015-01-05

    AFRL-OSR-VA-TR-2015-0023 (NII) - Local Electric Field Effects on Rhodium -Porphyrin and NHC-Gold Catalysts MATTHEW KANAN LELAND STANFORD JUNIOR UNIV...Effects on Rhodium -Porphyrin and NHC-Gold Catalysts Principal Investigator: Matthew W. Kanan Project Publications: 1. “An Electric Field–Induced Change...Stanford University Grant/Contract Title The full title of the funded effort. (NII)-Local Electric Field Effects on Rhodium -Porphyrin and NHC-Gold

  17. Addressing potential local adaptation in species distribution models: implications for conservation under climate change

    Science.gov (United States)

    Hällfors, Maria Helena; Liao, Jishan; Dzurisin, Jason D. K.; Grundel, Ralph; Hyvärinen, Marko; Towle, Kevin; Wu, Grace C.; Hellmann, Jessica J.

    2016-01-01

    Species distribution models (SDMs) have been criticized for involving assumptions that ignore or categorize many ecologically relevant factors such as dispersal ability and biotic interactions. Another potential source of model error is the assumption that species are ecologically uniform in their climatic tolerances across their range. Typically, SDMs to treat a species as a single entity, although populations of many species differ due to local adaptation or other genetic differentiation. Not taking local adaptation into account, may lead to incorrect range prediction and therefore misplaced conservation efforts. A constraint is that we often do not know the degree to which populations are locally adapted, however. Lacking experimental evidence, we still can evaluate niche differentiation within a species' range to promote better conservation decisions. We explore possible conservation implications of making type I or type II errors in this context. For each of two species, we construct three separate MaxEnt models, one considering the species as a single population and two of disjunct populations. PCA analyses and response curves indicate different climate characteristics in the current environments of the populations. Model projections into future climates indicate minimal overlap between areas predicted to be climatically suitable by the whole species versus population-based models. We present a workflow for addressing uncertainty surrounding local adaptation in SDM application and illustrate the value of conducting population-based models to compare with whole-species models. These comparisons might result in more cautious management actions when alternative range outcomes are considered.

  18. Asymptotically exact solution of a local copper-oxide model

    International Nuclear Information System (INIS)

    Zhang Guangming; Yu Lu.

    1994-03-01

    We present an asymptotically exact solution of a local copper-oxide model abstracted from the multi-band models. The phase diagram is obtained through the renormalization-group analysis of the partition function. In the strong coupling regime, we find an exactly solved line, which crosses the quantum critical point of the mixed valence regime separating two different Fermi-liquid (FL) phases. At this critical point, a many-particle resonance is formed near the chemical potential, and a marginal-FL spectrum can be derived for the spin and charge susceptibilities. (author). 15 refs, 1 fig

  19. Localization in inelastic rate dependent shearing deformations

    KAUST Repository

    Katsaounis, Theodoros

    2016-09-18

    Metals deformed at high strain rates can exhibit failure through formation of shear bands, a phenomenon often attributed to Hadamard instability and localization of the strain into an emerging coherent structure. We verify formation of shear bands for a nonlinear model exhibiting strain softening and strain rate sensitivity. The effects of strain softening and strain rate sensitivity are first assessed by linearized analysis, indicating that the combined effect leads to Turing instability. For the nonlinear model a class of self-similar solutions is constructed, that depicts a coherent localizing structure and the formation of a shear band. This solution is associated to a heteroclinic orbit of a dynamical system. The orbit is constructed numerically and yields explicit shear localizing solutions. © 2016 Elsevier Ltd

  20. Localization in inelastic rate dependent shearing deformations

    KAUST Repository

    Katsaounis, Theodoros; Lee, Min-Gi; Tzavaras, Athanasios

    2016-01-01

    Metals deformed at high strain rates can exhibit failure through formation of shear bands, a phenomenon often attributed to Hadamard instability and localization of the strain into an emerging coherent structure. We verify formation of shear bands for a nonlinear model exhibiting strain softening and strain rate sensitivity. The effects of strain softening and strain rate sensitivity are first assessed by linearized analysis, indicating that the combined effect leads to Turing instability. For the nonlinear model a class of self-similar solutions is constructed, that depicts a coherent localizing structure and the formation of a shear band. This solution is associated to a heteroclinic orbit of a dynamical system. The orbit is constructed numerically and yields explicit shear localizing solutions. © 2016 Elsevier Ltd

  1. Modeling amorphization of tetrahedral structures under local approaches

    International Nuclear Information System (INIS)

    Jesurum, C.E.; Pulim, V.; Berger, B.; Hobbs, L.W.

    1997-01-01

    Many crystalline ceramics can be topologically disordered (amorphized) by disordering radiation events involving high-energy collision cascades or (in some cases) successive single-atom displacements. The authors are interested in both the potential for disorder and the possible aperiodic structures adopted following the disordering event. The potential for disordering is related to connectivity, and among those structures of interest are tetrahedral networks (such as SiO 2 , SiC and Si 3 N 4 ) comprising corner-shared tetrahedral units whose connectivities are easily evaluated. In order to study the response of these networks to radiation, the authors have chosen to model their assembly according to the (simple) local rules that each corner obeys in connecting to another tetrahedron; in this way they easily erect large computer models of any crystalline polymorphic form. Amorphous structures can be similarly grown by application of altered rules. They have adopted a simple model of irradiation in which all bonds in the neighborhood of a designated tetrahedron are destroyed, and they reform the bonds in this region according to a set of (possibly different) local rules appropriate to the environmental conditions. When a tetrahedron approaches the boundary of this neighborhood, it undergoes an optimization step in which a spring is inserted between two corners of compatible tetrahedra when they are within a certain distance of one another; component forces are then applied that act to minimize the distance between these corners and minimize the deviation from the rules. The resulting structure is then analyzed for the complete adjacency matrix, irreducible ring statistics, and bond angle distributions

  2. Atomic quantum simulation of the lattice gauge-Higgs model: Higgs couplings and emergence of exact local gauge symmetry.

    Science.gov (United States)

    Kasamatsu, Kenichi; Ichinose, Ikuo; Matsui, Tetsuo

    2013-09-13

    Recently, the possibility of quantum simulation of dynamical gauge fields was pointed out by using a system of cold atoms trapped on each link in an optical lattice. However, to implement exact local gauge invariance, fine-tuning the interaction parameters among atoms is necessary. In the present Letter, we study the effect of violation of the U(1) local gauge invariance by relaxing the fine-tuning of the parameters and showing that a wide variety of cold atoms is still a faithful quantum simulator for a U(1) gauge-Higgs model containing a Higgs field sitting on sites. The clarification of the dynamics of this gauge-Higgs model sheds some light upon various unsolved problems, including the inflation process of the early Universe. We study the phase structure of this model by Monte Carlo simulation and also discuss the atomic characteristics of the Higgs phase in each simulator.

  3. Influence of local porosity and local permeability on the performances of a polymer electrolyte membrane fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Akiki, Tilda [Universite Saint Esprit Kaslik (Lebanon); Universite de Technologie de Belfort-Montbeliard, FCLAB Institute for Research on Fuel Cell Systems, 90010 Belfort (France); Charon, Willy; Iltchev, Marie-Christine; Kouta, Raed [Universite de Technologie de Belfort-Montbeliard, FCLAB Institute for Research on Fuel Cell Systems, 90010 Belfort (France); Accary, Gilbert [Universite Saint Esprit Kaslik (Lebanon)

    2010-08-15

    In the literature, many models and studies focused on the steady-state aspect of fuel cell systems while their dynamic transient behavior is still a wide area of research. In the present paper, we study the effects of mechanical solicitations on the performance of a proton exchange membrane fuel cell as well as the coupling between the physico-chemical phenomena and the mechanical behavior. We first develop a finite element method to analyze the local porosity distribution and the local permeability distribution inside the gas diffusion layer induced by different pressures applied on deformable graphite or steel bipolar plates. Then, a multi-physical approach is carried out, taking into account the chemical phenomena and the effects of the mechanical compression of the fuel cell, more precisely the deformation of the gas diffusion layer, the changes in the physical properties and the mass transfer in the gas diffusion layer. The effects of this varying porosity and permeability fields on the polarization and on the power density curves are reported, and the local current density is also investigated. Unlike other studies, our model accounts for a porosity field that varies locally in order to correctly simulate the effect of an inhomogeneous compression in the cell. (author)

  4. Modeling of heat transfer into a heat pipe for a localized heat input zone

    International Nuclear Information System (INIS)

    Rosenfeld, J.H.

    1987-01-01

    A general model is presented for heat transfer into a heat pipe using a localized heat input. Conduction in the wall of the heat pipe and boiling in the interior structure are treated simultaneously. The model is derived from circumferential heat transfer in a cylindrical heat pipe evaporator and for radial heat transfer in a circular disk with boiling from the interior surface. A comparison is made with data for a localized heat input zone. Agreement between the theory and the model is good. This model can be used for design purposes if a boiling correlation is available. The model can be extended to provide improved predictions of heat pipe performance

  5. On the locally stable states of the Sherrington-Kirkpatrick model

    International Nuclear Information System (INIS)

    Parga, N.; Parisi, G.

    1985-07-01

    By using a steepest descent algorithm we calculate the attraction basin of locally stable states of the Sherrington-Kirkpatrick model of spin glasses. Looking for correlations among these states we show the existence of clusters of spins and construct a cluster Hamiltonian. (author)

  6. Surface effects on static bending of nanowires based on non-local elasticity theory

    Directory of Open Access Journals (Sweden)

    Quan Wu

    2015-10-01

    Full Text Available The surface elasticity and non-local elasticity effects on the elastic behavior of statically bent nanowires are investigated in the present investigation. Explicit solutions are presented to evaluate the surface stress and non-local elasticity effects with various boundary conditions. Compared with the classical Euler beam, a nanowire with surface stress and/or non-local elasticity can be either stiffer or less stiff, depending on the boundary conditions. The concept of surface non-local elasticity was proposed and its physical interpretation discussed to explain the combined effect of surface elasticity and non-local elasticity. The effect of the nanowire size on its elastic bending behavior was investigated. The results obtained herein are helpful to characterize mechanical properties of nanowires and aid nanowire-based devices design.

  7. Modeling Source Water TOC Using Hydroclimate Variables and Local Polynomial Regression.

    Science.gov (United States)

    Samson, Carleigh C; Rajagopalan, Balaji; Summers, R Scott

    2016-04-19

    To control disinfection byproduct (DBP) formation in drinking water, an understanding of the source water total organic carbon (TOC) concentration variability can be critical. Previously, TOC concentrations in water treatment plant source waters have been modeled using streamflow data. However, the lack of streamflow data or unimpaired flow scenarios makes it difficult to model TOC. In addition, TOC variability under climate change further exacerbates the problem. Here we proposed a modeling approach based on local polynomial regression that uses climate, e.g. temperature, and land surface, e.g., soil moisture, variables as predictors of TOC concentration, obviating the need for streamflow. The local polynomial approach has the ability to capture non-Gaussian and nonlinear features that might be present in the relationships. The utility of the methodology is demonstrated using source water quality and climate data in three case study locations with surface source waters including river and reservoir sources. The models show good predictive skill in general at these locations, with lower skills at locations with the most anthropogenic influences in their streams. Source water TOC predictive models can provide water treatment utilities important information for making treatment decisions for DBP regulation compliance under future climate scenarios.

  8. Local control on precipitation in a fully coupled climate-hydrology model.

    Science.gov (United States)

    Larsen, Morten A D; Christensen, Jens H; Drews, Martin; Butts, Michael B; Refsgaard, Jens C

    2016-03-10

    The ability to simulate regional precipitation realistically by climate models is essential to understand and adapt to climate change. Due to the complexity of associated processes, particularly at unresolved temporal and spatial scales this continues to be a major challenge. As a result, climate simulations of precipitation often exhibit substantial biases that affect the reliability of future projections. Here we demonstrate how a regional climate model (RCM) coupled to a distributed hydrological catchment model that fully integrates water and energy fluxes between the subsurface, land surface, plant cover and the atmosphere, enables a realistic representation of local precipitation. Substantial improvements in simulated precipitation dynamics on seasonal and longer time scales is seen for a simulation period of six years and can be attributed to a more complete treatment of hydrological sub-surface processes including groundwater and moisture feedback. A high degree of local influence on the atmosphere suggests that coupled climate-hydrology models have a potential for improving climate projections and the results further indicate a diminished need for bias correction in climate-hydrology impact studies.

  9. A comprehensive multi-local-world model for complex networks

    International Nuclear Information System (INIS)

    Fan Zhengping; Chen Guanrong; Zhang Yunong

    2009-01-01

    The nodes in a community within a network are much more connected to each other than to the others outside the community in the same network. This phenomenon has been commonly observed from many real-world networks, ranging from social to biological even to technical networks. Meanwhile, the number of communities in some real-world networks, such as the Internet and most social networks, are evolving with time. To model this kind of networks, the present Letter proposes a multi-local-world (MLW) model to capture and describe their essential topological properties. Based on the mean-field theory, the degree distribution of this model is obtained analytically, showing that the generated network has a novel topological feature as being not completely random nor completely scale-free but behaving somewhere between them. As a typical application, the MLW model is applied to characterize the Internet against some other models such as the BA, GBA, Fitness and HOT models, demonstrating the superiority of the new model.

  10. The effects of local culture on hospital administration in West Sumatra, Indonesia.

    Science.gov (United States)

    Semiarty, Rima; Fanany, Rebecca

    2017-02-06

    Purpose Problems in health-care leadership are serious in West Sumatra, Indonesia, especially in hospitals, which are controlled locally. The purpose of this paper is to present the experience of three hospitals in balancing the conflicting demands of the national health-care system and the traditional model of leadership in the local community. Design/methodology/approach Three case studies of the hospital leadership dynamic in West Sumatra were developed from in-depth interviews with directors, senior administrators and a representative selection of employees in various professional categories. Findings An analysis of findings shows that traditional views about leadership remain strong in the community and color the expectations of hospital staff. Hospital directors, however, are bound by the modern management practices of the national system. This conflict has intensified since regional autonomy which emphasizes the local culture much more than in the past. Research limitations/implications The research was carried out in one Indonesian province and was limited to three hospitals of different types. Practical implications The findings elucidate a potential underlying cause of problems in hospital management in Indonesia and may inform culturally appropriate ways of addressing them. Originality/value The social and cultural contexts of management have not been rigorously studied in Indonesia. The relationship between local and national culture reported here likely has a similar effect in other parts of the country.

  11. Dynamics of spiral waves in a cardiac electromechanical model with a local electrical inhomogeneity

    International Nuclear Information System (INIS)

    Mesin, Luca

    2012-01-01

    Highlights: ► I study spirals in a model of electromechanical coupling in a cardiac tissue. ► The model is anisotropic and includes an electrical heterogeneity. ► Mechanical deformation is described under the active strain hypothesis. ► Joint effect of inhomogeneity and deformation influences spiral dynamics. ► Conductivity of stretch activated current is the parameter most affecting spirals. - Abstract: Joint effect of electrical heterogeneity (e.g. induced by ischemia) and mechanical deformation is investigated for an anisotropic, quasi–incompressible model of cardiac electromechanical coupling (EMC) using the active strain approach and periodic boundary conditions. Three local inhomogeneities with different geometry are simulated. Under a specific stimulation protocol, the heterogeneities are able to induce spirals. The interplay between the dimension of the electrical inhomogeneity, the EMC and the mechano-electrical feedback provided by the stretch activated current (SAC) determines the dynamics of the spiral waves of excitation, which could extinguish (in the case of low SAC), or be stable (with the tip rotating inside the inhomogeneity), or drift and be annihilated (in the case of high SAC).

  12. Global Qualitative Flow-Path Modeling for Local State Determination in Simulation and Analysis

    Science.gov (United States)

    Malin, Jane T. (Inventor); Fleming, Land D. (Inventor)

    1998-01-01

    For qualitative modeling and analysis, a general qualitative abstraction of power transmission variables (flow and effort) for elements of flow paths includes information on resistance, net flow, permissible directions of flow, and qualitative potential is discussed. Each type of component model has flow-related variables and an associated internal flow map, connected into an overall flow network of the system. For storage devices, the implicit power transfer to the environment is represented by "virtual" circuits that include an environmental junction. A heterogeneous aggregation method simplifies the path structure. A method determines global flow-path changes during dynamic simulation and analysis, and identifies corresponding local flow state changes that are effects of global configuration changes. Flow-path determination is triggered by any change in a flow-related device variable in a simulation or analysis. Components (path elements) that may be affected are identified, and flow-related attributes favoring flow in the two possible directions are collected for each of them. Next, flow-related attributes are determined for each affected path element, based on possibly conflicting indications of flow direction. Spurious qualitative ambiguities are minimized by using relative magnitudes and permissible directions of flow, and by favoring flow sources over effort sources when comparing flow tendencies. The results are output to local flow states of affected components.

  13. Non-local spatial frequency response of photopolymer materials containing chain transfer agents: I. Theoretical modelling

    International Nuclear Information System (INIS)

    Guo, Jinxin; Gleeson, Michael R; Liu, Shui; Sheridan, John T

    2011-01-01

    The non-local photopolymerization driven diffusion (NPDD) model predicts that a reduction in the non-local response length within a photopolymer material will improve its high spatial frequency response. The introduction of a chain transfer agent reduces the average molecular weight of polymer chains formed during free radical polymerization. Therefore a chain transfer agent (CTA) provides a practical method to reduce the non-local response length. An extended NPDD model is presented, which includes the chain transfer reaction and most major photochemical processes. The addition of a chain transfer agent into an acrylamide/polyvinyl alcohol photopolymer material is simulated and the predictions of the model are examined. The predictions of the model are experimentally examined in part II of this paper

  14. The plastic flow localization effect on crystalline material

    International Nuclear Information System (INIS)

    Pajot, A.

    2011-01-01

    Irradiation affects the mechanical properties of materials. In particular, an increase of yield strength followed by a decrease of ductility and a reduction of the elongation to fracture are observed above a threshold irradiation dose. The last two phenomena are correlated with the appearance of bands free of defects (clear bands) in which plastic deformation is confined. These bands also determine accumulation of dislocations at grain boundaries, thereby favouring local grain decohesion and possibly initiating fracture. Clear bands have an important impact on metal resistance, nevertheless our level of understanding is not sufficient to evaluate quantitatively their effect on the loss of ductility and reduction of elongation to fracture that are observed experimentally. A clear band is a microstructural defect, created when loading an irradiated material. Its complex interaction with defects on the nano scale affects the behaviour of the metal at the macroscopic scale. A full understanding implies the application of a multi scale modeling approach. This explains why, even though clear bands have first been

  15. Distributed Evaluation of Local Sensitivity Analysis (DELSA), with application to hydrologic models

    Science.gov (United States)

    Rakovec, O.; Hill, M. C.; Clark, M. P.; Weerts, A. H.; Teuling, A. J.; Uijlenhoet, R.

    2014-01-01

    This paper presents a hybrid local-global sensitivity analysis method termed the Distributed Evaluation of Local Sensitivity Analysis (DELSA), which is used here to identify important and unimportant parameters and evaluate how model parameter importance changes as parameter values change. DELSA uses derivative-based "local" methods to obtain the distribution of parameter sensitivity across the parameter space, which promotes consideration of sensitivity analysis results in the context of simulated dynamics. This work presents DELSA, discusses how it relates to existing methods, and uses two hydrologic test cases to compare its performance with the popular global, variance-based Sobol' method. The first test case is a simple nonlinear reservoir model with two parameters. The second test case involves five alternative "bucket-style" hydrologic models with up to 14 parameters applied to a medium-sized catchment (200 km2) in the Belgian Ardennes. Results show that in both examples, Sobol' and DELSA identify similar important and unimportant parameters, with DELSA enabling more detailed insight at much lower computational cost. For example, in the real-world problem the time delay in runoff is the most important parameter in all models, but DELSA shows that for about 20% of parameter sets it is not important at all and alternative mechanisms and parameters dominate. Moreover, the time delay was identified as important in regions producing poor model fits, whereas other parameters were identified as more important in regions of the parameter space producing better model fits. The ability to understand how parameter importance varies through parameter space is critical to inform decisions about, for example, additional data collection and model development. The ability to perform such analyses with modest computational requirements provides exciting opportunities to evaluate complicated models as well as many alternative models.

  16. Mild focal cerebral ischemia in the rat. The effect of local temperature on infarct size

    DEFF Research Database (Denmark)

    Hildebrandt-Eriksen, Elisabeth S; Christensen, Thomas; Diemer, Nils Henrik

    2002-01-01

    . The effect of local temperature at the occlusion site in this model was furthermore tested. Thirty-three Wistar rats were subjected to 30 min of simultaneous common carotid artery and distal middle cerebral artery occlusion or sham treatment. Animals were magnetic resonance-scanned repeatedly between day one...... and day 14 after surgery, then sacrificed, and paraffin brain sections stained. All animals scanned 24 h after reperfusion showed an area of edema in the affected cortex, which later was identified as an infarct. Animals with a temperature of 33.9 +/- 1.5 degrees C at the MCA site (hypothermic) showed...... smaller infarcts (14.4 +/- 10 mm3) than animals with normothermic local temperature (36.7 +/- 0.2 degrees C, 57.7 +/- 26.4 mm3). Infarct size was maximal on day 3 after ischemia but decreased as edema subsided. Infarct volumes from histology and magnetic resonance imaging correlated well. The model...

  17. EFFECTS OF LOCAL DISSIPATION PROFILES ON MAGNETIZED ACCRETION DISK SPECTRA

    International Nuclear Information System (INIS)

    Tao, Ted; Blaes, Omer

    2013-01-01

    We present spectral calculations of non-LTE accretion disk models appropriate for high-luminosity stellar mass black hole X-ray binary systems. We first use a dissipation profile based on scaling the results of shearing box simulations of Hirose et al. to a range of annuli parameters. We simultaneously scale the effective temperature, orbital frequency, and surface density with luminosity and radius according to the standard α-model. This naturally brings increased dissipation to the disk surface layers (around the photospheres) at small radii and high luminosities. We find that the local spectrum transitions directly from a modified blackbody to a saturated Compton scattering spectrum as we increase the effective temperature and orbital frequency while decreasing midplane surface density. Next, we construct annuli models based on the parameters of a L/L Edd = 0.8 disk orbiting a 6.62 solar mass black hole using two modified dissipation profiles that explicitly put more dissipation per unit mass near the disk surface. The new dissipation profiles are qualitatively similar to the one found by Hirose et al., but produce strong near power-law spectral tails. Our models also include physically motivated magnetic acceleration support based once again on scaling the Hirose et al. results. We present three full-disk spectra, each based on one of the dissipation prescriptions. Our most aggressive dissipation profile results in a disk spectrum that is in approximate quantitative agreement with certain observations of the steep power-law spectral states from some black hole X-ray binaries.

  18. Accounting for Local Dependence with the Rasch Model: The Paradox of Information Increase.

    Science.gov (United States)

    Andrich, David

    Test theories imply statistical, local independence. Where local independence is violated, models of modern test theory that account for it have been proposed. One violation of local independence occurs when the response to one item governs the response to a subsequent item. Expanding on a formulation of this kind of violation between two items in the dichotomous Rasch model, this paper derives three related implications. First, it formalises how the polytomous Rasch model for an item constituted by summing the scores of the dependent items absorbs the dependence in its threshold structure. Second, it shows that as a consequence the unit when the dependence is accounted for is not the same as if the items had no response dependence. Third, it explains the paradox, known, but not explained in the literature, that the greater the dependence of the constituent items the greater the apparent information in the constituted polytomous item when it should provide less information.

  19. Effects of surface roughness on plastic strain localization in polycrystalline aggregates

    Directory of Open Access Journals (Sweden)

    Guilhem Yoann

    2014-06-01

    Full Text Available The surface state of mechanical components differs according to applied loadings. Industrial processes may produce specific features at the surface, such as roughness, local hardening, residual stresses or recrystallization. Under fatigue loading, all these parameters will affect the component lifetime, but in different manner. A better understanding of each surface state parameter, separately first and then all combined, will provide a better prediction of fatigue life. The study focuses on the effect of surface roughness. Crystal plasticity finite element computations have been carried out on three-dimensional polycrystalline aggregates with different roughness levels. Local mechanical fields have been analyzed both at the surface and inside the bulk to highlight the competition between crystallography and roughness to impose localization patterns. As soon as surface roughness is strong enough, classical localization bands driven by grains orientation are replaced by localizations patterns driven by the local roughness topology. Nevertheless, this effect tends to decrease gradually under the surface, and it becomes usually negligible after the first layer of grains. The discussion allows us to characterize the influence of the surface state on the local mechanical fields.

  20. Various oscillation patterns in phase models with locally attractive and globally repulsive couplings.

    Science.gov (United States)

    Sato, Katsuhiko; Shima, Shin-ichiro

    2015-10-01

    We investigate a phase model that includes both locally attractive and globally repulsive coupling in one dimension. This model exhibits nontrivial spatiotemporal patterns that have not been observed in systems that contain only local or global coupling. Depending on the relative strengths of the local and global coupling and on the form of global coupling, the system can show a spatially uniform state (in-phase synchronization), a monotonically increasing state (traveling wave), and three types of oscillations of relative phase difference. One of the oscillations of relative phase difference has the characteristic of being locally unstable but globally attractive. That is, any small perturbation to the periodic orbit in phase space destroys its periodic motion, but after a long time the system returns to the original periodic orbit. This behavior is closely related to the emergence of saddle two-cluster states for global coupling only, which are connected to each other by attractive heteroclinic orbits. The mechanism of occurrence of this type of oscillation is discussed.

  1. Radioprotective effect of local hypothermia

    International Nuclear Information System (INIS)

    Hong, Seong-Su; Ogawa, Yoshihiro; Higano, Shuichi; Nakamura, Mamoru; Hoshino, Fumihiko

    1985-01-01

    We attempted local hypothermia to prevent radiation dermatitis and stomatitis. With regard to parasternal skin reactions postoperatively irradiated breast cancer, dry and moist desquamation, which occasionally occurred with conventional irradiation was not observed in combination with local cooling. As for head and neck tumors, patients who complained of stomatitis decreased with the local cooling, and no one wanted a pause in irradiation before 40 Gy. As local hypothermia is free from danger and does not require special equipment, it was considered to be widely applicable. (author)

  2. Local Geostatistical Models and Big Data in Hydrological and Ecological Applications

    Science.gov (United States)

    Hristopulos, Dionissios

    2015-04-01

    The advent of the big data era creates new opportunities for environmental and ecological modelling but also presents significant challenges. The availability of remote sensing images and low-cost wireless sensor networks implies that spatiotemporal environmental data to cover larger spatial domains at higher spatial and temporal resolution for longer time windows. Handling such voluminous data presents several technical and scientific challenges. In particular, the geostatistical methods used to process spatiotemporal data need to overcome the dimensionality curse associated with the need to store and invert large covariance matrices. There are various mathematical approaches for addressing the dimensionality problem, including change of basis, dimensionality reduction, hierarchical schemes, and local approximations. We present a Stochastic Local Interaction (SLI) model that can be used to model local correlations in spatial data. SLI is a random field model suitable for data on discrete supports (i.e., regular lattices or irregular sampling grids). The degree of localization is determined by means of kernel functions and appropriate bandwidths. The strength of the correlations is determined by means of coefficients. In the "plain vanilla" version the parameter set involves scale and rigidity coefficients as well as a characteristic length. The latter determines in connection with the rigidity coefficient the correlation length of the random field. The SLI model is based on statistical field theory and extends previous research on Spartan spatial random fields [2,3] from continuum spaces to explicitly discrete supports. The SLI kernel functions employ adaptive bandwidths learned from the sampling spatial distribution [1]. The SLI precision matrix is expressed explicitly in terms of the model parameter and the kernel function. Hence, covariance matrix inversion is not necessary for parameter inference that is based on leave-one-out cross validation. This property

  3. Fault feature extraction method based on local mean decomposition Shannon entropy and improved kernel principal component analysis model

    Directory of Open Access Journals (Sweden)

    Jinlu Sheng

    2016-07-01

    Full Text Available To effectively extract the typical features of the bearing, a new method that related the local mean decomposition Shannon entropy and improved kernel principal component analysis model was proposed. First, the features are extracted by time–frequency domain method, local mean decomposition, and using the Shannon entropy to process the original separated product functions, so as to get the original features. However, the features been extracted still contain superfluous information; the nonlinear multi-features process technique, kernel principal component analysis, is introduced to fuse the characters. The kernel principal component analysis is improved by the weight factor. The extracted characteristic features were inputted in the Morlet wavelet kernel support vector machine to get the bearing running state classification model, bearing running state was thereby identified. Cases of test and actual were analyzed.

  4. Irrigation enhances local warming with greater nocturnal warming effects than daytime cooling effects

    Science.gov (United States)

    Chen, Xing; Jeong, Su-Jong

    2018-02-01

    To meet the growing demand for food, land is being managed to be more productive using agricultural intensification practices, such as the use of irrigation. Understanding the specific environmental impacts of irrigation is a critical part of using it as a sustainable way to provide food security. However, our knowledge of irrigation effects on climate is still limited to daytime effects. This is a critical issue to define the effects of irrigation on warming related to greenhouse gases (GHGs). This study shows that irrigation led to an increasing temperature (0.002 °C year-1) by enhancing nighttime warming (0.009 °C year-1) more than daytime cooling (-0.007 °C year-1) during the dry season from 1961-2004 over the North China Plain (NCP), which is one of largest irrigated areas in the world. By implementing irrigation processes in regional climate model simulations, the consistent warming effect of irrigation on nighttime temperatures over the NCP was shown to match observations. The intensive nocturnal warming is attributed to energy storage in the wetter soil during the daytime, which contributed to the nighttime surface warming. Our results suggest that irrigation could locally amplify the warming related to GHGs, and this effect should be taken into account in future climate change projections.

  5. Algebraic models of local period maps and Yukawa algebras

    Science.gov (United States)

    Bandiera, Ruggero; Manetti, Marco

    2018-02-01

    We describe some L_{∞} model for the local period map of a compact Kähler manifold. Applications include the study of deformations with associated variation of Hodge structure constrained by certain closed strata of the Grassmannian of the de Rham cohomology. As a by-product, we obtain an interpretation in the framework of deformation theory of the Yukawa coupling.

  6. Evaluation of new injection and cavity preparation model in local anesthesia teaching

    NARCIS (Netherlands)

    Yekta, S.S.; Lampert, F.; Kazemi, S.; Kazemi, R.; Brand, H.S.; Baart, J.A.; Mazandarani, M.

    2013-01-01

    The aim of this study was to evaluate a recently developed preclinical injection and cavity preparation model in local anesthesia. Thirty-three dental students administered an inferior alveolar nerve block injection in the model, followed by preparation on a tooth. The injection was evaluated by

  7. Noise Localization Method for Model Tests in a Large Cavitation Tunnel Using a Hydrophone Array

    Directory of Open Access Journals (Sweden)

    Cheolsoo Park

    2016-02-01

    Full Text Available Model tests are performed in order to predict the noise level of a full ship and to control its noise signature. Localizing noise sources in the model test is therefore an important research subject along with measuring noise levels. In this paper, a noise localization method using a hydrophone array in a large cavitation tunnel is presented. The 45-channel hydrophone array was designed using a global optimization technique for noise measurement. A set of noise experiments was performed in the KRISO (Korea Research Institute of Ships & Ocean Engineering large cavitation tunnel using scaled models, including a ship with a single propeller, a ship with twin propellers and an underwater vehicle. The incoherent broadband processors defined based on the Bartlett and the minimum variance (MV processors were applied to the measured data. The results of data analysis and localization are presented in the paper. Finally, it is shown that the mechanical noise, as well as the propeller noise can be successfully localized using the proposed localization method.

  8. EDF and local authorities: a historical model of compromise and control?

    International Nuclear Information System (INIS)

    Bouneau, Ch.

    2008-01-01

    The June 15, 1906 Distribution Act is central to the country's legal and energy heritage, and has retained, after 1946, its validity and relevance, in the era of EDF. By acknowledging the essential role of local authorities, mainly cities, it established the local public electricity agency (SPL) based on relationships between the licensor and the Licence Holder. After setting up the FNCCR (Federation Nationale des Collectivites Concedantes et Regies) in 1933, the April 8, 946 Nationalization Act had initiated a golden age for local electric economy control by public agencies, by confirming the privileges of local authorities. The end of rural electrification, the role of FACE (Fonds d'Amortissement des charges d'electrification rurale) and the increasing number of inter-city associations symbolize the French model of concession economy. Open competition under European energy liberalization directives since 1990 has led to increased authority, as well as responsibilities, for local authorities looking for a new SPL. Its key words are not only competitiveness, but also social and territorial solidarity and the new requirements of sustainable energy development, and its agenda. (author)

  9. National Interference in Local Public Good Provision

    NARCIS (Netherlands)

    A.J. Dur (Robert); K. Staal (Klaas)

    2003-01-01

    textabstractWe analyze a simple model of local public good provision in a country consisting of a large number of heterogeneous regions, each comprising two districts, a city and a village. When districts remain autonomous and local public goods have positive spillover effects on the neighbouring

  10. Effects of global and local contexts on chord processing: An ERP study.

    Science.gov (United States)

    Zhang, Jingjing; Zhou, Xuefeng; Chang, Ruohan; Yang, Yufang

    2018-01-31

    In real life, the processing of an incoming event is continuously influenced by prior information at multiple timescales. The present study investigated how harmonic contexts at both local and global levels influence the processing of an incoming chord in an event-related potentials experiment. Chord sequences containing two phrases were presented to musically trained listeners, with the last critical chord either harmonically related or less related to its preceding context at local and/or global levels. ERPs data showed an ERAN-like effect for local context in early time window and a N5-like component for later interaction between the local context and global context. These results suggest that both the local and global contexts influence the processing of an incoming music event, and the local effect happens earlier than the global. Moreover, the interaction between the local context and global context in N5 may suggest that music syntactic integration at local level takes place prior to the integration at global level. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. The effect of non-local higher order stress to predict the nonlinear vibration behavior of carbon nanotube conveying viscous nanoflow

    Energy Technology Data Exchange (ETDEWEB)

    Mohammadimehr, M., E-mail: mmohammadimehr@kashanu.ac.ir [Department of Solid Mechanics, Faculty of Mechanical Engineering, University of Kashan, P.O. Box: 87317-53153, Kashan (Iran, Islamic Republic of); Mohammadi-Dehabadi, A.A. [Department of Solid Mechanics, Faculty of Mechanical Engineering, University of Kashan, P.O. Box: 87317-53153, Kashan (Iran, Islamic Republic of); Department of Mechanical Engineering, Iran University of Science and Technology, Narmak, Tehran (Iran, Islamic Republic of); Maraghi, Z. Khoddami [Department of Solid Mechanics, Faculty of Mechanical Engineering, University of Kashan, P.O. Box: 87317-53153, Kashan (Iran, Islamic Republic of)

    2017-04-01

    In this research, the effect of non-local higher order stress on the nonlinear vibration behavior of carbon nanotube conveying viscous nanoflow resting on elastic foundation is investigated. Physical intuition reveals that increasing nanoscale stress leads to decrease the stiffness of nanostructure which firstly established by Eringen's non-local elasticity theory (previous nonlocal method) while many of papers have concluded otherwise at microscale based on modified couple stress, modified strain gradient theories and surface stress effect. The non-local higher order stress model (new nonlocal method) is used in this article that has been studied by few researchers in other fields and the results from the present study show that the trend of the new nonlocal method and size dependent effect including modified couple stress theory is the same. In this regard, the nonlinear motion equations are derived using a variational principal approach considering essential higher-order non-local terms. The surrounded elastic medium is modeled by Pasternak foundation to increase the stability of system where the fluid flow may cause system instability. Effects of various parameters such as non-local parameter, elastic foundation coefficient, and fluid flow velocity on the stability and dimensionless natural frequency of nanotube are investigated. The results of this research show that the small scale parameter based on higher order stress help to increase the natural frequency which has been approved by other small scale theories such as strain gradient theory, modified couple stress theory and experiments, and vice versa for previous nonlocal method. This study may be useful to measure accurately the vibration characteristics of nanotubes conveying viscous nanoflow and to design nanofluidic devices for detecting blood Glucose.

  12. The effect of non-local higher order stress to predict the nonlinear vibration behavior of carbon nanotube conveying viscous nanoflow

    International Nuclear Information System (INIS)

    Mohammadimehr, M.; Mohammadi-Dehabadi, A.A.; Maraghi, Z. Khoddami

    2017-01-01

    In this research, the effect of non-local higher order stress on the nonlinear vibration behavior of carbon nanotube conveying viscous nanoflow resting on elastic foundation is investigated. Physical intuition reveals that increasing nanoscale stress leads to decrease the stiffness of nanostructure which firstly established by Eringen's non-local elasticity theory (previous nonlocal method) while many of papers have concluded otherwise at microscale based on modified couple stress, modified strain gradient theories and surface stress effect. The non-local higher order stress model (new nonlocal method) is used in this article that has been studied by few researchers in other fields and the results from the present study show that the trend of the new nonlocal method and size dependent effect including modified couple stress theory is the same. In this regard, the nonlinear motion equations are derived using a variational principal approach considering essential higher-order non-local terms. The surrounded elastic medium is modeled by Pasternak foundation to increase the stability of system where the fluid flow may cause system instability. Effects of various parameters such as non-local parameter, elastic foundation coefficient, and fluid flow velocity on the stability and dimensionless natural frequency of nanotube are investigated. The results of this research show that the small scale parameter based on higher order stress help to increase the natural frequency which has been approved by other small scale theories such as strain gradient theory, modified couple stress theory and experiments, and vice versa for previous nonlocal method. This study may be useful to measure accurately the vibration characteristics of nanotubes conveying viscous nanoflow and to design nanofluidic devices for detecting blood Glucose.

  13. A probabilistic model for robust acoustic localization based on an auditory front-end

    NARCIS (Netherlands)

    May, T.; Par, van de S.L.J.D.E.; Kohlrausch, A.G.; Boone, M.

    2009-01-01

    Although extensive research has been done in the field of localization, the degrading effect of reverberation and the presence of multiple sources on localization performance has remained a major issue. The classical approach to localize an acoustic source in the horizontal space is to search for

  14. A Morphing framework to couple non-local and local anisotropic continua

    KAUST Repository

    Azdoud, Yan

    2013-05-01

    In this article, we develop a method to couple anisotropic local continua with anisotropic non-local continua with central long-range forces. First, we describe anisotropic non-local models based on spherical harmonic descriptions. We then derive compatible classic continuum models. Finally, we apply the morphing method to these anisotropic non-local models and present three-dimensional numerical examples to validate the efficiency of the technique. © 2013 Elsevier Ltd. All rights reserved.

  15. Modeling of Local BEAM Structure for Evaluation of MMOD Impacts to Support Development of a Health Monitoring System

    Science.gov (United States)

    Lyle, Karen H.; Vassilakos, Gregory J.

    2015-01-01

    This report summarizes initial modeling of the local response of the Bigelow Expandable Activity Module (BEAM) to micrometeorite and orbital debris (MMOD) impacts using a structural, non-linear, transient dynamic finite element code. Complementary test results for a local BEAM structure are presented for both hammer and projectile impacts. Review of these data provided guidance for the transient dynamic model development. The local model is intended to support predictions using the global BEAM model, described in a companion report. Two types of local models were developed. One mimics the simplified Soft-Goods (fabric envelop) part of the BEAM NASTRAN model delivered by the project. The second investigates through-the-thickness modeling challenges for MMOD-type impacts. Both the testing and the analysis summaries contain lessons learned and areas for future efforts.

  16. Multiphysics and Thermal Response Models to Improve Accuracy of Local Temperature Estimation in Rat Cortex under Microwave Exposure

    Science.gov (United States)

    Kodera, Sachiko; Gomez-Tames, Jose; Hirata, Akimasa; Masuda, Hiroshi; Arima, Takuji; Watanabe, Soichi

    2017-01-01

    The rapid development of wireless technology has led to widespread concerns regarding adverse human health effects caused by exposure to electromagnetic fields. Temperature elevation in biological bodies is an important factor that can adversely affect health. A thermophysiological model is desired to quantify microwave (MW) induced temperature elevations. In this study, parameters related to thermophysiological responses for MW exposures were estimated using an electromagnetic-thermodynamics simulation technique. To the authors’ knowledge, this is the first study in which parameters related to regional cerebral blood flow in a rat model were extracted at a high degree of accuracy through experimental measurements for localized MW exposure at frequencies exceeding 6 GHz. The findings indicate that the improved modeling parameters yield computed results that match well with the measured quantities during and after exposure in rats. It is expected that the computational model will be helpful in estimating the temperature elevation in the rat brain at multiple observation points (that are difficult to measure simultaneously) and in explaining the physiological changes in the local cortex region. PMID:28358345

  17. An Effective Cuckoo Search Algorithm for Node Localization in Wireless Sensor Network.

    Science.gov (United States)

    Cheng, Jing; Xia, Linyuan

    2016-08-31

    Localization is an essential requirement in the increasing prevalence of wireless sensor network (WSN) applications. Reducing the computational complexity, communication overhead in WSN localization is of paramount importance in order to prolong the lifetime of the energy-limited sensor nodes and improve localization performance. This paper proposes an effective Cuckoo Search (CS) algorithm for node localization. Based on the modification of step size, this approach enables the population to approach global optimal solution rapidly, and the fitness of each solution is employed to build mutation probability for avoiding local convergence. Further, the approach restricts the population in the certain range so that it can prevent the energy consumption caused by insignificant search. Extensive experiments were conducted to study the effects of parameters like anchor density, node density and communication range on the proposed algorithm with respect to average localization error and localization success ratio. In addition, a comparative study was conducted to realize the same localization task using the same network deployment. Experimental results prove that the proposed CS algorithm can not only increase convergence rate but also reduce average localization error compared with standard CS algorithm and Particle Swarm Optimization (PSO) algorithm.

  18. Modeling Local Control After Hypofractionated Stereotactic Body Radiation Therapy for Stage I Non-Small Cell Lung Cancer: A Report From the Elekta Collaborative Lung Research Group

    International Nuclear Information System (INIS)

    Ohri, Nitin; Werner-Wasik, Maria; Grills, Inga S.; Belderbos, José; Hope, Andrew; Yan Di; Kestin, Larry L.; Guckenberger, Matthias; Sonke, Jan-Jakob; Bissonnette, Jean-Pierre; Xiao, Ying

    2012-01-01

    Purpose: Hypofractionated stereotactic body radiation therapy (SBRT) has emerged as an effective treatment option for early-stage non-small cell lung cancer (NSCLC). Using data collected by the Elekta Lung Research Group, we generated a tumor control probability (TCP) model that predicts 2-year local control after SBRT as a function of biologically effective dose (BED) and tumor size. Methods and Materials: We formulated our TCP model as follows: TCP = e [BED10−c∗L−TCD50]/k ÷ (1 + e [BED10−c∗L−TCD50]/k ), where BED10 is the biologically effective SBRT dose, c is a constant, L is the maximal tumor diameter, and TCD50 and k are parameters that define the shape of the TCP curve. Least-squares optimization with a bootstrap resampling approach was used to identify the values of c, TCD50, and k that provided the best fit with observed actuarial 2-year local control rates. Results: Data from 504 NSCLC tumors treated with a variety of SBRT schedules were available. The mean follow-up time was 18.4 months, and 26 local recurrences were observed. The optimal values for c, TCD50, and k were 10 Gy/cm, 0 Gy, and 31 Gy, respectively. Thus, size-adjusted BED (sBED) may be defined as BED minus 10 times the tumor diameter (in centimeters). Our TCP model indicates that sBED values of 44 Gy, 69 Gy, and 93 Gy provide 80%, 90%, and 95% chances of tumor control at 2 years, respectively. When patients were grouped by sBED, the model accurately characterized the relationship between sBED and actuarial 2-year local control (r=0.847, P=.008). Conclusion: We have developed a TCP model that predicts 2-year local control rate after hypofractionated SBRT for early-stage NSCLC as a function of biologically effective dose and tumor diameter. Further testing of this model with additional datasets is warranted.

  19. Modeling Local Control After Hypofractionated Stereotactic Body Radiation Therapy for Stage I Non-Small Cell Lung Cancer: A Report From the Elekta Collaborative Lung Research Group

    Energy Technology Data Exchange (ETDEWEB)

    Ohri, Nitin, E-mail: ohri.nitin@gmail.com [Department of Radiation Oncology, Jefferson Medical College of Thomas Jefferson University, Philadelphia, Pennsylvania (United States); Werner-Wasik, Maria [Department of Radiation Oncology, Jefferson Medical College of Thomas Jefferson University, Philadelphia, Pennsylvania (United States); Grills, Inga S. [Department of Radiation Oncology, William Beaumont Hospital, Royal Oak, Michigan (United States); Belderbos, Jose [Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam (Netherlands); Hope, Andrew [Department of Radiation Oncology, Princess Margaret Hospital and University of Toronto, Toronto, ON (Canada); Yan Di; Kestin, Larry L. [Department of Radiation Oncology, William Beaumont Hospital, Royal Oak, Michigan (United States); Guckenberger, Matthias [Department of Radiation Oncology, University of Wuerzburg, Wuerzburg (Germany); Sonke, Jan-Jakob [Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam (Netherlands); Bissonnette, Jean-Pierre [Department of Radiation Oncology, Princess Margaret Hospital and University of Toronto, Toronto, ON (Canada); Xiao, Ying [Department of Radiation Oncology, Jefferson Medical College of Thomas Jefferson University, Philadelphia, Pennsylvania (United States)

    2012-11-01

    Purpose: Hypofractionated stereotactic body radiation therapy (SBRT) has emerged as an effective treatment option for early-stage non-small cell lung cancer (NSCLC). Using data collected by the Elekta Lung Research Group, we generated a tumor control probability (TCP) model that predicts 2-year local control after SBRT as a function of biologically effective dose (BED) and tumor size. Methods and Materials: We formulated our TCP model as follows: TCP = e{sup [BED10-c Asterisk-Operator L-TCD50]/k} Division-Sign (1 + e{sup [BED10-c Asterisk-Operator L-TCD50]/k}), where BED10 is the biologically effective SBRT dose, c is a constant, L is the maximal tumor diameter, and TCD50 and k are parameters that define the shape of the TCP curve. Least-squares optimization with a bootstrap resampling approach was used to identify the values of c, TCD50, and k that provided the best fit with observed actuarial 2-year local control rates. Results: Data from 504 NSCLC tumors treated with a variety of SBRT schedules were available. The mean follow-up time was 18.4 months, and 26 local recurrences were observed. The optimal values for c, TCD50, and k were 10 Gy/cm, 0 Gy, and 31 Gy, respectively. Thus, size-adjusted BED (sBED) may be defined as BED minus 10 times the tumor diameter (in centimeters). Our TCP model indicates that sBED values of 44 Gy, 69 Gy, and 93 Gy provide 80%, 90%, and 95% chances of tumor control at 2 years, respectively. When patients were grouped by sBED, the model accurately characterized the relationship between sBED and actuarial 2-year local control (r=0.847, P=.008). Conclusion: We have developed a TCP model that predicts 2-year local control rate after hypofractionated SBRT for early-stage NSCLC as a function of biologically effective dose and tumor diameter. Further testing of this model with additional datasets is warranted.

  20. Advanced design of local ventilation systems

    Energy Technology Data Exchange (ETDEWEB)

    Kulmala, I. [VTT Manufacturing Technology, Espoo (Finland). Safety Technology

    1997-12-31

    Local ventilation is widely used in industry for controlling airborne contaminants. However, the present design practices of local ventilation systems are mainly based on empirical equations and do not take quantitatively into account the various factors affecting the performance of these systems. The aim of this study was to determine the applicability and limitations of more advanced fluid mechanical methods to the design and development of local ventilation systems. The most important factors affecting the performance of local ventilation systems were determined and their effect was studied in a systematic manner. The numerical calculations were made with the FLUENT computer code and they were verified by laboratory experiments, previous measurements or analytical solutions. The results proved that the numerical calculations can provide a realistic simulation of exhaust openings, effects of ambient air flows and wake regions. The experiences with the low-velocity local supply air showed that these systems can also be modelled fairly well. The results were used to improve the efficiency and thermal comfort of a local ventilation unit and to increase the effective control range of exhaust hoods. In the simulation of the interaction of a hot buoyant source and local exhaust, the predicted capture efficiencies were clearly higher than those observed experimentally. The deviations between measurements and non-isothermal flow calculations may have partly been caused by the inability to achieve grid independent solutions. CFD simulations is an advanced and flexible tool for designing and developing local ventilation. The simulations can provide insight into the time-averaged flow field which may assist us in understanding the observed phenomena and to explain experimental results. However, for successful calculations the applicability and limitations of the models must be known. (orig.) 78 refs.

  1. Heat pulse analysis in JET and relation to local energy transport models

    International Nuclear Information System (INIS)

    Haas, J.C.M. de; Lopes Cardozo, N.J.; Han, W.; Sack, C.; Taroni, A.

    1989-01-01

    The evolution of a perturbation T e of the electron temperature depends on the linearised expression of the heat flux q e and may be not simply related to the local value of the electron heat conductivity χ e . It is possible that local heat transport models predicting similar temperature profiles and global energy confinement properties, imply a different propagation of heat pulses. We investigate here this possibility for the case of two models developed at JET. We also present results obtained at JET on a set of discharges covering the range of currents from 2 to 5 MA. Only L-modes, limiter discharges are considered here. Experimental results on the scaling of χ HP , the value of χ e related to heat pulse propagation, are compared with those of χ HP derived from the models. (author) 7 refs., 2 figs., 2 tabs

  2. Optimizing operation costs of the heating system of a household using model predictive control considering a local PV installation

    DEFF Research Database (Denmark)

    Koch-Ciobotaru, Cosmin; Isleifsson, Fridrik Rafn; Gehrke, Oliver

    2012-01-01

    This paper presents a model predictive controller developed in order to minimize the cost of grid energy consumption and maximize the amount of energy consumed from a local photovoltaic (PV) installation. The usage of as much locally produced renewable energy sources (RES) as possible, diminishes...... the effects of their large penetration in the distribution grid and reduces overloading the grid capacity, which is an increasing problem for the power system. The controller uses 24 hour prediction data for the ambient temperature, the solar irradiance, and for the PV output power. Simulation results...

  3. Simulation of temperature effect on microalgae culture in a tubular photo bioreactor for local solar irradiance

    Science.gov (United States)

    Shahriar, M.; Deb, Ujjwal Kumar; Rahman, Kazi Afzalur

    2017-06-01

    Microalgae based biofuel is now an emerging source of renewable energy alternative to the fossil fuel. This paper aims to present computational model of microalgae culture taking effect of solar irradiance and corresponding temperature in a photo bioreactor (PBR). As microalgae is a photosynthetic microorganism, so irradiance of sunlight is one of the important limiting factors for the proper growth of microalgae cells as temperature is associated with it. We consider the transient behaviour of temperature inside the photo bioreactor for a microalgae culture. The optimum range of temperature for outdoor cultivation of microalgae is about 16-35°c and out of this range the cell growth inhibits. Many correlations have already been established to investigate the heat transfer phenomena inside a tubular PBR. However, none of them are validated yet numerically by using a user defined function in a simulated model. A horizontal tubular PBR length 20.5m with radius 0.05m has taken account to investigate the temperature effect for the growth of microalgae cell. As the solar irradiance varies at any geographic latitude for a year so an empirical relation is established between local solar irradiance and temperature to simulate the effect. From our simulation, we observed that the growth of microalgae has a significant effect of temperature and the solar irradiance of our locality is suitable for the culture of microalgae.

  4. One-loop Yukawa Couplings in Local Models

    CERN Document Server

    Conlon, Joseph P; Palti, Eran; 10.1007

    2010-01-01

    We calculate the one-loop Yukawa couplings and threshold corrections for supersymmetric local models of branes at singularities in type IIB string theory. We compute the corrections coming both from wavefunction and vertex renormalisation. The former comes in the IR from conventional field theory running and in the UV from threshold corrections that cause it to run from the winding scale associated to the full Calabi-Yau volume. The vertex correction is naively absent as it appears to correspond to superpotential renormalisation. However, we find that while the Wilsonian superpotential is not renormalised there is a physical vertex correction in the 1PI action associated to light particle loops.

  5. One-loop Yukawa couplings in local models

    International Nuclear Information System (INIS)

    Conlon, Joseph P.; Goodsell, Mark; Palti, Eran

    2010-07-01

    We calculate the one-loop Yukawa couplings and threshold corrections for supersymmetric local models of branes at singularities in type IIB string theory. We compute the corrections coming both from wavefunction and vertex renormalisation. The former comes in the IR from conventional field theory running and in the UV from threshold corrections that cause it to run from the winding scale associated to the full Calabi-Yau volume. The vertex correction is naively absent as it appears to correspond to superpotential renormalisation. However, we find that while the Wilsonian superpotential is not renormalised there is a physical vertex correction in the 1PI action associated to light particle loops. (orig.)

  6. One-loop Yukawa couplings in local models

    Energy Technology Data Exchange (ETDEWEB)

    Conlon, Joseph P. [Rudolf Peierls Center for Theoretical Physics, Oxford (United Kingdom); Balliol College, Oxford (United Kingdom); Goodsell, Mark [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Palti, Eran [Centre de Physique Theorique, Ecole Polytechnique, CNRS, Palaiseau (France)

    2010-07-15

    We calculate the one-loop Yukawa couplings and threshold corrections for supersymmetric local models of branes at singularities in type IIB string theory. We compute the corrections coming both from wavefunction and vertex renormalisation. The former comes in the IR from conventional field theory running and in the UV from threshold corrections that cause it to run from the winding scale associated to the full Calabi-Yau volume. The vertex correction is naively absent as it appears to correspond to superpotential renormalisation. However, we find that while the Wilsonian superpotential is not renormalised there is a physical vertex correction in the 1PI action associated to light particle loops. (orig.)

  7. Quantum effects and regular cosmological models

    International Nuclear Information System (INIS)

    Gurovich, V.Ts.; Starobinskij, A.A.; AN SSSR, Moscow. Inst. Teoreticheskoj Fiziki)

    1979-01-01

    Allowance for the quantum nature of material fields and weak gravitational waves on the background of the classical metric of the cosmological model results in two basic effects: vacuum polarization and particle production. The first of the effects may be taken into account qualitatively by introducing into the lagrangian density of the gravitational field an additional term of the type A+BR 2 +CR 2 In|R/R 0 |; the second effect can be accounted for by prescribing a local rate of particle (graviton) production which is proportional to the square of the scalar curvature R 2 . It is shown that the taking into account of the combined effect of these phenomena on the evolution of a homogeneous anisotropic metric of the first Bianchi type removes the Einstein singularities. Asymptotic approach to the classical model, however, is attained only if additional assumptions are made. At the stage of compression the solution is close to the anisotropic vacuum Kasner solution; at the expansion stage it tends to the isotropic Friedman solution in which matter is produced by the gravitational field

  8. A hybrid local/non-local framework for the simulation of damage and fracture

    KAUST Repository

    Azdoud, Yan

    2014-01-01

    Recent advances in non-local continuum models, notably peridynamics, have spurred a paradigm shift in solid mechanics simulation by allowing accurate mathematical representation of singularities and discontinuities. This doctoral work attempts to extend the use of this theory to a community more familiar with local continuum models. In this communication, a coupling strategy - the morphing method -, which bridges local and non-local models, is presented. This thesis employs the morphing method to ease use of the non-local model to represent problems with failure-induced discontinuities. First, we give a quick review of strategies for the simulation of discrete degradation, and suggest a hybrid local/non-local alternative. Second, we present the technical concepts involved in the morphing method and evaluate the quality of the coupling. Third, we develop a numerical tool for the simulation of the hybrid model for fracture and damage and demonstrate its capabilities on numerical model examples

  9. Beyond local effective material properties for metamaterials

    Science.gov (United States)

    Mnasri, K.; Khrabustovskyi, A.; Stohrer, C.; Plum, M.; Rockstuhl, C.

    2018-02-01

    To discuss the properties of metamaterials on physical grounds and to consider them in applications, effective material parameters are usually introduced and assigned to a given metamaterial. In most cases, only weak spatial dispersion is considered. It allows to assign local material properties, e.g., a permittivity and a permeability. However, this turned out to be insufficient. To solve this problem, we study here the effective properties of metamaterials with constitutive relations beyond a local response and take strong spatial dispersion into account. This research requires two contributions. First, bulk properties in terms of eigenmodes need to be studied. We particularly investigate the isofrequency surfaces of their dispersion relation are investigated and compared to those of an actual metamaterial. The significant improvement to effectively describe it provides evidence for the necessity to use nonlocal material laws in the effective description of metamaterials. Second, to be able to capitalize on such constitutive relations, also interface conditions need to be known. They are derived in this contribution for our form of the nonlocality using a generalized (weak) formulation of Maxwell's equations. Based on such interface conditions, Fresnel expressions are obtained that predict the amplitude of the reflected and transmitted plane wave upon illuminating a slab of such a nonlocal metamaterial. This all together offers the necessary means for the in-depth analysis of metamaterials characterized by strong spatial dispersion. The general formulation we choose here renders our approach applicable to a wide class of metamaterials.

  10. Towards a local learning (innovation) model of solar photovoltaic deployment

    International Nuclear Information System (INIS)

    Shum, Kwok L.; Watanabe, Chihiro

    2008-01-01

    It is by now familiar that in the deployment of solar photovoltaic (PV) systems, the cost dynamics of major system component like solar cell/module is subjected to experience curve effects driven by production learning and research and development at the supplier side. What is less clear, however, is the economics of system integration or system deployment that takes place locally close to the user, involving other market players, in the downstream solar PV value chain. Experts have agreed that suppliers of solar PV system must customize their flexible characteristics to address local unique users' and applications requirements and compete on price/performance basis. A lack of understanding of the drivers of the economics of system customization therefore is a deficiency in our understanding of the overall economics of this renewable energy technology option. We studied the non-module BOS cost for grid-connected small PV system using the experience curve framework. Preliminary analysis of PV statistics of the US from IEA seems to suggest that learning in one application type is taking place with respect to the cumulative installation among all types of grid-connected small PV projects. The effectiveness of this learning is also improving over time. A novel aspect is the interpretation of such experience curve effect or learning pattern. We draw upon the notion of product platform in the industrial management literature and consider different types of local small-scale grid-tied PV customization projects as adapting a standard platform to different idiosyncratic and local application requirements. Economics of system customization, which is user-oriented, involves then a refined notion of inter-projects learning, rather than volume-driven learning by doing. We formalized such inter-projects learning as a dynamic economy of scope, which can potentially be leveraged to manage the local and downstream aspect of PV deployment. This dynamic economy may serve as a focus

  11. A New Paradigm For Modeling Fault Zone Inelasticity: A Multiscale Continuum Framework Incorporating Spontaneous Localization and Grain Fragmentation.

    Science.gov (United States)

    Elbanna, A. E.

    2015-12-01

    The brittle portion of the crust contains structural features such as faults, jogs, joints, bends and cataclastic zones that span a wide range of length scales. These features may have a profound effect on earthquake nucleation, propagation and arrest. Incorporating these existing features in modeling and the ability to spontaneously generate new one in response to earthquake loading is crucial for predicting seismicity patterns, distribution of aftershocks and nucleation sites, earthquakes arrest mechanisms, and topological changes in the seismogenic zone structure. Here, we report on our efforts in modeling two important mechanisms contributing to the evolution of fault zone topology: (1) Grain comminution at the submeter scale, and (2) Secondary faulting/plasticity at the scale of few to hundreds of meters. We use the finite element software Abaqus to model the dynamic rupture. The constitutive response of the fault zone is modeled using the Shear Transformation Zone theory, a non-equilibrium statistical thermodynamic framework for modeling plastic deformation and localization in amorphous materials such as fault gouge. The gouge layer is modeled as 2D plane strain region with a finite thickness and heterogeenous distribution of porosity. By coupling the amorphous gouge with the surrounding elastic bulk, the model introduces a set of novel features that go beyond the state of the art. These include: (1) self-consistent rate dependent plasticity with a physically-motivated set of internal variables, (2) non-locality that alleviates mesh dependence of shear band formation, (3) spontaneous evolution of fault roughness and its strike which affects ground motion generation and the local stress fields, and (4) spontaneous evolution of grain size and fault zone fabric.

  12. Back-reaction and effective acceleration in generic LTB dust models

    International Nuclear Information System (INIS)

    Sussman, Roberto A

    2011-01-01

    We provide a thorough examination of the conditions for the existence of back-reaction and an 'effective' acceleration (in the context of Buchert's averaging formalism) in regular generic spherically symmetric Lemaitre-Tolman-Bondi (LTB) dust models. By considering arbitrary spherical comoving domains,we verify rigorously the fulfillment of these conditions expressed in terms of suitable scalar variables that are evaluated at the boundary of every domain. Effective deceleration necessarily occurs in all domains in (a) the asymptotic radial range of models converging to a FLRW background (b) the asymptotic time range of non-vacuum hyperbolic models (c) LTB self-similar solutions and (d) near a simultaneous big bang. Accelerating domains are proven to exist in the following scenarios: (i) central vacuum regions(ii) central (non-vacuum) density voids (iii) the intermediate radial range of models converging to a FLRW background (iv) the asymptotic radial range of models converging to a Minkowski vacuum and (v) domains near and or intersecting a non-simultaneous big bang. All these scenarios occur in hyperbolic models with negative averaged and local spatial curvature though scenarios (iv) and (v) are also possible in low density regions of a class of elliptic models in which the local spatial curvature is negative but its average is positive. Rough numerical estimates between -0.003 and -0.5 were found for the effective deceleration parameter. While the existence of accelerating domains cannot be ruled out in models converging to an Einstein-de Sitter background and in domains undergoing gravitational collapse the conditions for this are very restrictive. The results obtained may provide important theoretical clues on the effects of back-reaction and averaging in more general non-spherical models. Communicated by L Andersson (paper)

  13. Localized Models of Charged Particle Motion in Martian Crustal Magnetic Cusps

    Science.gov (United States)

    Brain, D. A.; Poppe, A. R.; Jarvinen, R.; Dong, Y.; Egan, H. L.; Fang, X.

    2017-12-01

    The induced magnetosphere of Mars is punctuated by localized but strong crustal magnetic fields that are observed to play host to a variety of phenomena typically associated with global magnetic fields, such as auroral processes and particle precipitation, field-aligned current systems, and ion outflow. Each of these phenomena occur on the night side, in small-scale magnetic `cusp' regions of vertically aligned field. Cusp regions are not yet capable of being spatially resolved in global scale models that include the ion kinetics necessary for simulating charged particle transport along cusps. Local models are therefore necessary if we are to understand how cusp processes operate at Mars. Here we present the first results of an effort to model the kinetic particle motion and electric fields in Martian cusps. We are adapting both a 1.5D Particle-in-Cell (PIC) model for lunar magnetic cusps regions to the Martian case and a hybrid model framework (used previously for the global Martian plasma interaction and for lunar magnetic anomaly regions) to cusps in 2D. By comparing the models we can asses the importance of electron kinetics in particle transport along cusp field lines. In this first stage of our study we model a moderately strong nightside cusp, with incident hot hydrogen plasma from above, and cold planetary (oxygen) plasma entering the simulation from below. We report on the spatial and temporal distribution of plasma along cusp field lines for this initial case.

  14. Local effects in thin elastic shell due to thermal and mechanical loadings

    International Nuclear Information System (INIS)

    Taheri, S.

    1987-01-01

    For a thick cylinder (1/15)<(h/rm)<(1/3) the local effect is represented by the same field. When the local effect is negligible the Love-Kirchhoff solution is valid for a thick cylinder. A shear effect shell theory may give for a thin cylinder a large error compared to the exact 3D solution on a thermal shock. The Love-Kirchhoff solution is generally not valid in the vicinity of a clamped or simply supported edge. A finite element program of thin shell with shear effect or thick shell ist not really reliable. A combination of 3D local solution and Love-Kirchhoff global solution through a transition zone may replace a complete 3D solution for not very thick structures. (orig./GL)

  15. Nonlinear Local Deformations of Red Blood Cell Membranes: Effects of Toxins and Pharmaceuticals (Part 2

    Directory of Open Access Journals (Sweden)

    Alexander M. Chernysh

    2018-01-01

    Full Text Available Modifiers of membranes cause local defects on the cell surface. Measurement of the rigidity at the sites of local defects can provide further information about the structure of defects and mechanical properties of altered membranes.The purpose of the study: a step-by-step study of the process of a nonlinear deformation of red blood cells membranes under the effect of modifiers of different physico-chemical nature.Materials and methods. The membrane deformation of a viscoelastic composite erythrocyte construction inside a cell was studied by the atomic force spectroscopy. Nonlinear deformations formed under the effect of hemin, Zn2+ ions, and verapamil were studied.Results. The process of elastic deformation of the membrane with the indentation of a probe at the sites of local defects caused by modifiers was demonstrated. The probe was inserted during the same step of the piezo scanner z displacement; the probe indentation occured at the different discrete values of h, which are the functions of the membrane structure. At the sites of domains, under the effect of the hemin, tension areas and plasticity areas appeared. A mathematical model of probe indentation at the site of membrane defects is presented.Conclusion. The molecular mechanisms of various types of nonlinear deformations occurring under the effect of toxins are discussed. The results of the study may be of interest both for fundamental researchers of the blood cell properties and for practical reanimatology and rehabilitology. 

  16. Comprehensive personal witness: a model to enlarge missional involvement of the local church

    Directory of Open Access Journals (Sweden)

    Hancke, Frans

    2013-06-01

    Full Text Available In the The Split-Level Fellowship, Wesley Baker analysed the role of individual members in the Church. He gave a name to a tragic phenomenon with which Church leaders are familiar. Although true of society in general it is especially true of the church. Baker called the difference between the committed few and the uninvolved many, Factor Beta. This reality triggers the question: Why are the majority of Christians in the world not missionally involved through personal witness and which factors consequently influence personal witness and missional involvement? This article explains how the range of personal witness and missional involvement found in local churches are rooted in certain fundamental factors and conditions which are mutually influencing each other and ultimately contribute towards forming a certain paradigm. This paradigm acts as the basis from which certain behavioural patterns (witness will manifest. The factors influencing witness are either described as accelerators or decelerators and their relativity and mutual relationships are considered. Factors acting as decelerators can severely hamper or even annul witness, while accelerators on the other hand, can have an immensely positive effect to enlarge the transformational influence of witness. In conclusion a transformational model is developed through which paradigms can be influenced and eventually changed. This model fulfils a diagnostic and remedial function and will support local churches to enlarge the individual and corporate missional involvement of believers.

  17. Correlation of a hypoxia based tumor control model with observed local control rates in nasopharyngeal carcinoma treated with chemoradiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Avanzo, Michele; Stancanello, Joseph; Franchin, Giovanni; Sartor, Giovanna; Jena, Rajesh; Drigo, Annalisa; Dassie, Andrea; Gigante, Marco; Capra, Elvira [Department of Medical Physics, Centro di Riferimento Oncologico, Aviano 33081 (Italy); Research and Clinical Collaborations, Siemens Healthcare, Erlangen 91052 (Germany); Department of Radiation Oncology, Centro di Riferimento Oncologico, Aviano 33081 (Italy); Department of Medical Physics, Centro di Riferimento Oncologico, Aviano 33081 (Italy); Oncology Centre, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ (United Kingdom); Department of Medical Physics, Centro di Riferimento Oncologico, Aviano 33081 (Italy); Department of Radiation Oncology, Centro di Riferimento Oncologico, Aviano 33081 (Italy); Department of Medical Physics, Centro di Riferimento Oncologico, Aviano 33081 (Italy)

    2010-04-15

    Purpose: To extend the application of current radiation therapy (RT) based tumor control probability (TCP) models of nasopharyngeal carcinoma (NPC) to include the effects of hypoxia and chemoradiotherapy (CRT). Methods: A TCP model is described based on the linear-quadratic model modified to account for repopulation, chemotherapy, heterogeneity of dose to the tumor, and hypoxia. Sensitivity analysis was performed to determine which parameters exert the greatest influence on the uncertainty of modeled TCP. On the basis of the sensitivity analysis, the values of specific radiobiological parameters were set to nominal values reported in the literature for NPC or head and neck tumors. The remaining radiobiological parameters were determined by fitting TCP to clinical local control data from published randomized studies using both RT and CRT. Validation of the model was performed by comparison of estimated TCP and average overall local control rate (LCR) for 45 patients treated at the institution with conventional linear-accelerator-based or helical tomotherapy based intensity-modulated RT and neoadjuvant chemotherapy. Results: Sensitivity analysis demonstrates that the model is most sensitive to the radiosensitivity term {alpha} and the dose per fraction. The estimated values of {alpha} and OER from data fitting were 0.396 Gy{sup -1} and 1.417. The model estimate of TCP (average 90.9%, range 26.9%-99.2%) showed good correlation with the LCR (86.7%). Conclusions: The model implemented in this work provides clinicians with a useful tool to predict the success rate of treatment, optimize treatment plans, and compare the effects of multimodality therapy.

  18. Correlation of a hypoxia based tumor control model with observed local control rates in nasopharyngeal carcinoma treated with chemoradiotherapy

    International Nuclear Information System (INIS)

    Avanzo, Michele; Stancanello, Joseph; Franchin, Giovanni; Sartor, Giovanna; Jena, Rajesh; Drigo, Annalisa; Dassie, Andrea; Gigante, Marco; Capra, Elvira

    2010-01-01

    Purpose: To extend the application of current radiation therapy (RT) based tumor control probability (TCP) models of nasopharyngeal carcinoma (NPC) to include the effects of hypoxia and chemoradiotherapy (CRT). Methods: A TCP model is described based on the linear-quadratic model modified to account for repopulation, chemotherapy, heterogeneity of dose to the tumor, and hypoxia. Sensitivity analysis was performed to determine which parameters exert the greatest influence on the uncertainty of modeled TCP. On the basis of the sensitivity analysis, the values of specific radiobiological parameters were set to nominal values reported in the literature for NPC or head and neck tumors. The remaining radiobiological parameters were determined by fitting TCP to clinical local control data from published randomized studies using both RT and CRT. Validation of the model was performed by comparison of estimated TCP and average overall local control rate (LCR) for 45 patients treated at the institution with conventional linear-accelerator-based or helical tomotherapy based intensity-modulated RT and neoadjuvant chemotherapy. Results: Sensitivity analysis demonstrates that the model is most sensitive to the radiosensitivity term α and the dose per fraction. The estimated values of α and OER from data fitting were 0.396 Gy -1 and 1.417. The model estimate of TCP (average 90.9%, range 26.9%-99.2%) showed good correlation with the LCR (86.7%). Conclusions: The model implemented in this work provides clinicians with a useful tool to predict the success rate of treatment, optimize treatment plans, and compare the effects of multimodality therapy.

  19. Local blockage of EMMPRIN impedes pressure ulcers healing in a rat model.

    Science.gov (United States)

    Zhao, Xi-Lan; Luo, Xiao; Wang, Ze-Xin; Yang, Guo-Li; Liu, Ji-Zhong; Liu, Ya-Qiong; Li, Ming; Chen, Min; Xia, Yong-Mei; Liu, Jun-Jie; Qiu, Shu-Ping; Gong, Xiao-Qing

    2015-01-01

    Excessive extracellular matrix degradation caused by the hyperfunction of matrix metalloproteinases (MMPs) has been implicated in the failure of pressure ulcers healing. EMMPRIN, as a widely expressed protein, has emerged as an important regulator of MMP activity. We hypothesize that EMMPRIN affects the process of pressure ulcer healing by modulating MMP activity. In the rat pressure ulcer model, the expression of EMMPRIN in ulcers detected by Western blot was elevated compared with that observed in normal tissue. To investigate the role of EMMPRIN in regulating ulcer healing, specific antibodies against EMMPRIN were used via direct administration on the pressure ulcer. Local blockage of EMMPRIN resulted in a poor ulcer healing process compared with control ulcers, which was the opposite of our expectation. Furthermore, inhibiting EMMPRIN minimally impacted MMP activity. However, the collagen content in the pressure ulcer was reduced in the EMMPRIN treated group. Angiogenesis and the expression of angiogenic factors in pressure ulcers were also reduced by EMMPRIN local blockage. The results in the present study indicate a novel effect of EMMPRIN in the regulation of pressure ulcer healing by controlling the collagen contents and angiogenesis rather than MMPs activity.

  20. Effect of peripheral morphine in a human model of acute inflammatory pain

    DEFF Research Database (Denmark)

    Lillesø, J; Hammer, N A; Pedersen, J L

    2000-01-01

    Several studies have demonstrated the presence of opioid inducible receptors on peripheral nerves and peripheral antinociceptive effects of opioids. However, the effects of peripheral opioid administration in man are controversial. Our study used a randomized, double-blind, placebo-controlled, th......Several studies have demonstrated the presence of opioid inducible receptors on peripheral nerves and peripheral antinociceptive effects of opioids. However, the effects of peripheral opioid administration in man are controversial. Our study used a randomized, double-blind, placebo......-controlled, three-way crossover design in a human model of acute inflammatory pain (heat injury). We studied 18 healthy volunteers who each received morphine locally (2 mg), morphine systemically (2 mg), or placebo on three separate study days. The subjects received morphine infiltration subcutaneously (s.c.). 1 h......, but local morphine infiltration neither reduced pain during the burn, nor primary or secondary hyperalgesia to mechanical and heat stimuli after the burn. In conclusion, peripherally applied morphine had no acute antinociceptive effects in this human model of acute inflammatory pain....

  1. A local mixing model for deuterium replacement in solids

    International Nuclear Information System (INIS)

    Doyle, B.L.; Brice, D.K.; Wampler, W.R.

    1980-01-01

    A new model for hydrogen isotope exchange by ion implantation has been developed. The basic difference between the present approach and previous work is that the depth distribution of the implanted species is included. The outstanding feature of this local mixing model is that the only adjustable parameter is the saturation hydrogen concentration which is specific to the target material and dependent only on temperature. The model is shown to give excellent agreement both with new data on H/D exchange in the low Z coating materials VB 2 , TiC, TiB 2 , and B reported here and with previously reported data on stainless steel. The saturation hydrogen concentrations used to fit these data were 0.15, 0.25, 0.15, 0.45, and 1.00 times atomic density respectively. This model should be useful in predicting the recycling behavior of hydrogen isotopes in tokamak limiter and wall materials. (author)

  2. Detailed modeling of local anisotropy and transverse Ku interplay regarding hysteresis loop in FeCuNbSiB nanocrystalline ribbons

    Science.gov (United States)

    Geoffroy, Olivier; Boust, Nicolas; Chazal, Hervé; Flury, Sébastien; Roudet, James

    2018-04-01

    This article focuses on the modeling of the hysteresis loop featured by Fe-Cu-Nb-Si-B nanocrystalline alloys with transverse induced anisotropy. The magnetization reversal process of a magnetic correlated volume (CV), characterized by the induced anisotropy Ku, and a deviation of the local easy magnetization direction featuring the effect of a local incoherent anisotropy Ki, is analyzed, taking account of magnetostatic interactions. Solving the equations shows that considering a unique typical kind of CV does not enable accounting for both the domain pattern and the coercivity. Actually, the classical majority CVs obeying the random anisotropy model explains well the domain pattern but considering another kind of CVs, minority, mingled with classical ones, featuring a magnitude of Ki comparable to Ku, is necessary to account for coercivity. The model has been successfully compared with experimental data.

  3. Multiscale modeling of electroosmotic flow: Effects of discrete ion, enhanced viscosity, and surface friction

    Science.gov (United States)

    Bhadauria, Ravi; Aluru, N. R.

    2017-05-01

    We propose an isothermal, one-dimensional, electroosmotic flow model for slit-shaped nanochannels. Nanoscale confinement effects are embedded into the transport model by incorporating the spatially varying solvent and ion concentration profiles that correspond to the electrochemical potential of mean force. The local viscosity is dependent on the solvent local density and is modeled using the local average density method. Excess contributions to the local viscosity are included using the Onsager-Fuoss expression that is dependent on the local ionic strength. A Dirichlet-type boundary condition is provided in the form of the slip velocity that is dependent on the macroscopic interfacial friction. This solvent-surface specific interfacial friction is estimated using a dynamical generalized Langevin equation based framework. The electroosmotic flow of Na+ and Cl- as single counterions and NaCl salt solvated in Extended Simple Point Charge (SPC/E) water confined between graphene and silicon slit-shaped nanochannels are considered as examples. The proposed model yields a good quantitative agreement with the solvent velocity profiles obtained from the non-equilibrium molecular dynamics simulations.

  4. Assessment of damage localization based on spatial filters using numerical crack propagation models

    International Nuclear Information System (INIS)

    Deraemaeker, Arnaud

    2011-01-01

    This paper is concerned with vibration based structural health monitoring with a focus on non-model based damage localization. The type of damage investigated is cracking of concrete structures due to the loss of prestress. In previous works, an automated method based on spatial filtering techniques applied to large dynamic strain sensor networks has been proposed and tested using data from numerical simulations. In the simulations, simplified representations of cracks (such as a reduced Young's modulus) have been used. While this gives the general trend for global properties such as eigen frequencies, the change of more local features, such as strains, is not adequately represented. Instead, crack propagation models should be used. In this study, a first attempt is made in this direction for concrete structures (quasi brittle material with softening laws) using crack-band models implemented in the commercial software DIANA. The strategy consists in performing a non-linear computation which leads to cracking of the concrete, followed by a dynamic analysis. The dynamic response is then used as the input to the previously designed damage localization system in order to assess its performances. The approach is illustrated on a simply supported beam modeled with 2D plane stress elements.

  5. A quantitative modeling of the contributions of localized surface plasmon resonance and interband transitions to absorbance of gold nanoparticles

    International Nuclear Information System (INIS)

    Zhu, S.; Chen, T. P.; Liu, Y. C.; Liu, Y.; Fung, S.

    2012-01-01

    A quantitative modeling of the contributions of localized surface plasmon resonance (LSPR) and interband transitions to absorbance of gold nanoparticles has been achieved based on Lorentz–Drude dispersion function and Maxwell-Garnett effective medium approximation. The contributions are well modeled with three Lorentz oscillators. Influence of the structural properties of the gold nanoparticles on the LSPR and interband transitions has been examined. In addition, the dielectric function of the gold nanoparticles has been extracted from the modeling to absorbance, and it is found to be consistent with the result yielded from the spectroscopic ellipsometric analysis.

  6. Mobilising sustainable local government revenue in Ghana: modelling property rates and business taxes

    Directory of Open Access Journals (Sweden)

    Samuel B Biitir

    2015-06-01

    Full Text Available Property rates and business operating license fees constitute the major revenue sources for local government authorities. Accurate assessment of these revenues enhances the revenue base and effectiveness of their generation. Assessment of property rates and business operating license fees have been identified as one of the limiting factors that inhibit the revenue potential of local government authorities. Assessment must obey the principles of taxation such as efficiency, equity and fairness, adequacy, administrative feasibility and political acceptability. Over the years, the Sekondi-Takoradi Metropolitan Assembly (STMA acknowledges that, it has had problems in ensuring equity and fairness in the assessment of property rates and business operating license fees. The paper reports on a computer modelling study carried out to introduce measure to ensure equity and fairness in assessing tax objects. A computer application has been developed with quantitative measures to evaluate and assess equity in tax assessment. A test run of the system has been successful and a pilot test is currently being implemented by STMA.

  7. Optimization modeling of U.S. renewable electricity deployment using local input variables

    Science.gov (United States)

    Bernstein, Adam

    For the past five years, state Renewable Portfolio Standard (RPS) laws have been a primary driver of renewable electricity (RE) deployments in the United States. However, four key trends currently developing: (i) lower natural gas prices, (ii) slower growth in electricity demand, (iii) challenges of system balancing intermittent RE within the U.S. transmission regions, and (iv) fewer economical sites for RE development, may limit the efficacy of RPS laws over the remainder of the current RPS statutes' lifetime. An outsized proportion of U.S. RE build occurs in a small number of favorable locations, increasing the effects of these variables on marginal RE capacity additions. A state-by-state analysis is necessary to study the U.S. electric sector and to generate technology specific generation forecasts. We used LP optimization modeling similar to the National Renewable Energy Laboratory (NREL) Renewable Energy Development System (ReEDS) to forecast RE deployment across the 8 U.S. states with the largest electricity load, and found state-level RE projections to Year 2031 significantly lower than thoseimplied in the Energy Information Administration (EIA) 2013 Annual Energy Outlook forecast. Additionally, the majority of states do not achieve their RPS targets in our forecast. Combined with the tendency of prior research and RE forecasts to focus on larger national and global scale models, we posit that further bottom-up state and local analysis is needed for more accurate policy assessment, forecasting, and ongoing revision of variables as parameter values evolve through time. Current optimization software eliminates much of the need for algorithm coding and programming, allowing for rapid model construction and updating across many customized state and local RE parameters. Further, our results can be tested against the empirical outcomes that will be observed over the coming years, and the forecast deviation from the actuals can be attributed to discrete parameter

  8. A statistical-dynamical modeling approach for the simulation of local paleo proxy records using GCM output

    Energy Technology Data Exchange (ETDEWEB)

    Reichert, B.K.; Bengtsson, L. [Max-Planck-Institut fuer Meteorologie, Hamburg (Germany); Aakesson, O. [Sveriges Meteorologiska och Hydrologiska Inst., Norrkoeping (Sweden)

    1998-08-01

    Recent proxy data obtained from ice core measurements, dendrochronology and valley glaciers provide important information on the evolution of the regional or local climate. General circulation models integrated over a long period of time could help to understand the (external and internal) forcing mechanisms of natural climate variability. For a systematic interpretation of in situ paleo proxy records, a combined method of dynamical and statistical modeling is proposed. Local 'paleo records' can be simulated from GCM output by first undertaking a model-consistent statistical downscaling and then using a process-based forward modeling approach to obtain the behavior of valley glaciers and the growth of trees under specific conditions. The simulated records can be compared to actual proxy records in order to investigate whether e.g. the response of glaciers to climatic change can be reproduced by models and to what extent climate variability obtained from proxy records (with the main focus on the last millennium) can be represented. For statistical downscaling to local weather conditions, a multiple linear forward regression model is used. Daily sets of observed weather station data and various large-scale predictors at 7 pressure levels obtained from ECMWF reanalyses are used for development of the model. Daily data give the closest and most robust relationships due to the strong dependence on individual synoptic-scale patterns. For some local variables, the performance of the model can be further increased by developing seasonal specific statistical relationships. The model is validated using both independent and restricted predictor data sets. The model is applied to a long integration of a mixed layer GCM experiment simulating pre-industrial climate variability. The dynamical-statistical local GCM output within a region around Nigardsbreen glacier, Norway is compared to nearby observed station data for the period 1868-1993. Patterns of observed

  9. Monitoring, modeling and mitigating impacts of wind farms on local meteorology

    Science.gov (United States)

    Baidya Roy, Somnath; Traiteur, Justin; Kelley, Neil

    2010-05-01

    Wind power is one of the fastest growing sources of energy. Most of the growth is in the industrial sector comprising of large utility-scale wind farms. Recent modeling studies have suggested that such wind farms can significantly affect local and regional weather and climate. In this work, we present observational evidence of the impact of wind farms on near-surface air temperatures. Data from perhaps the only meteorological field campaign in an operational wind farm shows that downwind temperatures are lower during the daytime and higher at night compared to the upwind environment. Corresponding radiosonde profiles at the nearby Edwards Air Force Base WMO meteorological station show that the diurnal environment is unstable while the nocturnal environment is stable during the field campaign. This behavior is consistent with the hypothesis proposed by Baidya Roy et al. (JGR 2004) that states that turbulence generated in the wake of rotors enhance vertical mixing leading to a warming/cooling under positive/negative potential temperature lapse rates. We conducted a set of 306 simulations with the Regional Atmospheric Modeling System (RAMS) to test if regional climate models can capture the thermal effects of wind farms. We represented wind turbines with a subgrid parameterization that assumes rotors to be sinks of momentum and sources of turbulence. The simulated wind farms consistently generated a localized warming/cooling under positive/negative lapse rates as hypothesized. We found that these impacts are inversely correlated with background atmospheric boundary layer turbulence. Thus, if the background turbulence is high due to natural processes, the effects of additional turbulence generated by wind turbine rotors are likely to be small. We propose the following strategies to minimize impacts of wind farms: • Engineering solution: design rotors that generate less turbulence in their wakes. Sensitivity simulations show that these turbines also increase the

  10. Thermodynamic modeling of transcription: sensitivity analysis differentiates biological mechanism from mathematical model-induced effects.

    Science.gov (United States)

    Dresch, Jacqueline M; Liu, Xiaozhou; Arnosti, David N; Ay, Ahmet

    2010-10-24

    Quantitative models of gene expression generate parameter values that can shed light on biological features such as transcription factor activity, cooperativity, and local effects of repressors. An important element in such investigations is sensitivity analysis, which determines how strongly a model's output reacts to variations in parameter values. Parameters of low sensitivity may not be accurately estimated, leading to unwarranted conclusions. Low sensitivity may reflect the nature of the biological data, or it may be a result of the model structure. Here, we focus on the analysis of thermodynamic models, which have been used extensively to analyze gene transcription. Extracted parameter values have been interpreted biologically, but until now little attention has been given to parameter sensitivity in this context. We apply local and global sensitivity analyses to two recent transcriptional models to determine the sensitivity of individual parameters. We show that in one case, values for repressor efficiencies are very sensitive, while values for protein cooperativities are not, and provide insights on why these differential sensitivities stem from both biological effects and the structure of the applied models. In a second case, we demonstrate that parameters that were thought to prove the system's dependence on activator-activator cooperativity are relatively insensitive. We show that there are numerous parameter sets that do not satisfy the relationships proferred as the optimal solutions, indicating that structural differences between the two types of transcriptional enhancers analyzed may not be as simple as altered activator cooperativity. Our results emphasize the need for sensitivity analysis to examine model construction and forms of biological data used for modeling transcriptional processes, in order to determine the significance of estimated parameter values for thermodynamic models. Knowledge of parameter sensitivities can provide the necessary

  11. Spectroscopic study of local thermal effect in transparent glass ceramics containing nanoparticles

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Local thermal effect influencing the fluorescence of triply ionized rare earth ions doped in nanocrystals is studied with laser spectroscopy and theory of thermal transportation for transparent oxyfluoride glass ceramics containing nanocrystals. The result shows that the local temperature of the nanocrystals embedded in glass matrices is much higher than the environmental temperature of the sample. It is suggested that the temperature-dependent thermal energy induced by the light absorption must be considered when the theory of thermal transportation is applied to the study of local thermal effect.

  12. Novel active contour model based on multi-variate local Gaussian distribution for local segmentation of MR brain images

    Science.gov (United States)

    Zheng, Qiang; Li, Honglun; Fan, Baode; Wu, Shuanhu; Xu, Jindong

    2017-12-01

    Active contour model (ACM) has been one of the most widely utilized methods in magnetic resonance (MR) brain image segmentation because of its ability of capturing topology changes. However, most of the existing ACMs only consider single-slice information in MR brain image data, i.e., the information used in ACMs based segmentation method is extracted only from one slice of MR brain image, which cannot take full advantage of the adjacent slice images' information, and cannot satisfy the local segmentation of MR brain images. In this paper, a novel ACM is proposed to solve the problem discussed above, which is based on multi-variate local Gaussian distribution and combines the adjacent slice images' information in MR brain image data to satisfy segmentation. The segmentation is finally achieved through maximizing the likelihood estimation. Experiments demonstrate the advantages of the proposed ACM over the single-slice ACM in local segmentation of MR brain image series.

  13. Imprints of local lightcone \\ projection effects on the galaxy bispectrum. Part II

    Energy Technology Data Exchange (ETDEWEB)

    Jolicoeur, Sheean; Umeh, Obinna; Maartens, Roy; Clarkson, Chris, E-mail: beautifulheart369@gmail.com, E-mail: umeobinna@gmail.com, E-mail: roy.maartens@gmail.com, E-mail: chris.clarkson@qmul.ac.uk [Department of Physics and Astronomy, University of the Western Cape, Cape Town 7535 (South Africa)

    2017-09-01

    General relativistic imprints on the galaxy bispectrum arise from observational (or projection) effects. The lightcone projection effects include local contributions from Doppler and gravitational potential terms, as well as lensing and other integrated contributions. We recently presented for the first time, the correction to the galaxy bispectrum from all local lightcone projection effects up to second order in perturbations. Here we provide the details underlying this correction, together with further results and illustrations. For moderately squeezed shapes, the correction to the Newtonian prediction is ∼ 30% on equality scales at z ∼ 1. We generalise our recent results to include the contribution, up to second order, of magnification bias (which affects some of the local terms) and evolution bias.

  14. Preoperative localization of parathyroid adenomas is cost-effective

    International Nuclear Information System (INIS)

    Wilson, M.A.; Mack, E.; Rowe, B.; Perlman, S.B.

    1986-01-01

    The preoperative localization of parathyroid adenomas is cost-effective because it reduces anesthesia and surgery times. The technique is sensitive in single and double adenomas (90%), and some surgeons have modified their operative technique because of its introduction. The practical experience of one surgeon is presented, with similar patient subsets (n = 22) compared before and after use of a localization scan was instituted. The average operative time fell by 94%, from 2 hours 35 minutes to 1 hour 19 minutes. The reduction in operative time was possible because the surgeon did not seek to identify the remaining normal parathyroids when the scanned lesion was excised and proved to be the adenoma

  15. RANS modeling of scalar dispersion from localized sources within a simplified urban-area model

    Science.gov (United States)

    Rossi, Riccardo; Capra, Stefano; Iaccarino, Gianluca

    2011-11-01

    The dispersion of a passive scalar downstream a localized source within a simplified urban-like geometry is examined by means of RANS scalar flux models. The computations are conducted under conditions of neutral stability and for three different incoming wind directions (0°, 45°, 90°) at a roughness Reynolds number of Ret = 391. A Reynolds stress transport model is used to close the flow governing equations whereas both the standard eddy-diffusivity closure and algebraic flux models are employed to close the transport equation for the passive scalar. The comparison with a DNS database shows improved reliability from algebraic scalar flux models towards predicting both the mean concentration and the plume structure. Since algebraic flux models do not increase substantially the computational effort, the results indicate that the use of tensorial-diffusivity can be promising tool for dispersion simulations for the urban environment.

  16. Modeling the Subjective Quality of Highly Contrasted Videos Displayed on LCD With Local Backlight Dimming

    DEFF Research Database (Denmark)

    Mantel, Claire; Bech, Søren; Korhonen, Jari

    2015-01-01

    Local backlight dimming is a technology aiming at both saving energy and improving visual quality on television sets. As the rendition of the image is specified locally, the numerical signal corresponding to the displayed image needs to be computed through a model of the display. This simulated...... signal can then be used as input to objective quality metrics. The focus of this paper is on determining which characteristics of locally backlit displays influence quality assessment. A subjective experiment assessing the quality of highly contrasted videos displayed with various local backlight......-dimming algorithms is set up. Subjective results are then compared with both objective measures and objective quality metrics using different display models. The first analysis indicates that the most significant objective features are temporal variations, power consumption (probably representing leakage...

  17. Absence of local thermal equilibrium in two models of heat conduction

    OpenAIRE

    Dhar, Abhishek; Dhar, Deepak

    1998-01-01

    A crucial assumption in the conventional description of thermal conduction is the existence of local thermal equilibrium. We test this assumption in two simple models of heat conduction. Our first model is a linear chain of planar spins with nearest neighbour couplings, and the second model is that of a Lorentz gas. We look at the steady state of the system when the two ends are connected to heat baths at temperatures T1 and T2. If T1=T2, the system reaches thermal equilibrium. If T1 is not e...

  18. Implementation of Localized Corrosion in the Performance Assessment Model for Yucca Mountain

    International Nuclear Information System (INIS)

    Vivek Jain, S.; David Sevougian; Patrick D. Mattie; Kevin G. Mon; Robert J. Mackinnon

    2006-01-01

    A total system performance assessment (TSPA) model has been developed to analyze the ability of the natural and engineered barriers of the Yucca Mountain repository to isolate nuclear waste over the 10,000-year period following repository closure. The principal features of the engineered barrier system (EBS) are emplacement tunnels (or ''drifts'') containing a two-layer waste package (WP) for waste containment and a titanium drip shield to protect the waste package from seeping water and falling rock, The 20-mm-thick outer shell of the WP is composed of Alloy 22, a highly corrosion-resistant nickel-based alloy. The barrier function of the EBS is to isolate the waste from migrating water. The water and its associated chemical conditions eventually lead to degradation of the waste packages and mobilization of the radionuclides within the packages. There are five possible waste package degradation modes of the Alloy 22: general corrosion, microbially influenced corrosion, stress corrosion cracking, early failure due to manufacturing defects, and localized corrosion. This paper specifically examines the incorporation of the Alloy-22 localized corrosion model into the Yucca Mountain TSPA model, particularly the abstraction and modeling methodology, as well as issues dealing with scaling, spatial variability, uncertainty, and coupling to other sub-models that are part of the total system model

  19. Comparative analysis of elements and models of implementation in local-level spatial plans in Serbia

    Directory of Open Access Journals (Sweden)

    Stefanović Nebojša

    2017-01-01

    Full Text Available Implementation of local-level spatial plans is of paramount importance to the development of the local community. This paper aims to demonstrate the importance of and offer further directions for research into the implementation of spatial plans by presenting the results of a study on models of implementation. The paper describes the basic theoretical postulates of a model for implementing spatial plans. A comparative analysis of the application of elements and models of implementation of plans in practice was conducted based on the spatial plans for the local municipalities of Arilje, Lazarevac and Sremska Mitrovica. The analysis includes four models of implementation: the strategy and policy of spatial development; spatial protection; the implementation of planning solutions of a technical nature; and the implementation of rules of use, arrangement and construction of spaces. The main results of the analysis are presented and used to give recommendations for improving the elements and models of implementation. Final deliberations show that models of implementation are generally used in practice and combined in spatial plans. Based on the analysis of how models of implementation are applied in practice, a general conclusion concerning the complex character of the local level of planning is presented and elaborated. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. TR 36035: Spatial, Environmental, Energy and Social Aspects of Developing Settlements and Climate Change - Mutual Impacts and Grant no. III 47014: The Role and Implementation of the National Spatial Plan and Regional Development Documents in Renewal of Strategic Research, Thinking and Governance in Serbia

  20. Network models provide insights into how oriens–lacunosum-moleculare and bistratified cell interactions influence the power of local hippocampal CA1 theta oscillations

    Directory of Open Access Journals (Sweden)

    Katie A Ferguson

    2015-08-01

    Full Text Available Hippocampal theta is a 4-12 Hz rhythm associated with episodic memory, and although it has been studied extensively, the cellular mechanisms underlying its generation are unclear. The complex interactions between different interneuron types, such as those between oriens--lacunosum-moleculare (OLM interneurons and bistratified cells (BiCs, make their contribution to network rhythms difficult to determine experimentally. We created network models that are tied to experimental work at both cellular and network levels to explore how these interneuron interactions affect the power of local oscillations. Our cellular models were constrained with properties from patch clamp recordings in the CA1 region of an intact hippocampus preparation in vitro. Our network models are composed of three different types of interneurons: parvalbumin-positive (PV+ basket and axo-axonic cells (BC/AACs, PV+ BiCs, and somatostatin-positive OLM cells. Also included is a spatially extended pyramidal cell model to allow for a simplified local field potential representation, as well as experimentally-constrained, theta frequency synaptic inputs to the interneurons. The network size, connectivity, and synaptic properties were constrained with experimental data. To determine how the interactions between OLM cells and BiCs could affect local theta power, we explored a number of OLM-BiC connections and connection strengths.We found that our models operate in regimes in which OLM cells minimally or strongly affected the power of network theta oscillations due to balances that, respectively, allow compensatory effects or not. Inactivation of OLM cells could result in no change or even an increase in theta power. We predict that the dis-inhibitory effect of OLM cells to BiCs to pyramidal cell interactions plays a critical role in the power of network theta oscillations. Our network models reveal a dynamic interplay between different classes of interneurons in influencing local theta

  1. Many-body Anderson localization of strongly interacting bosons in random lattices

    International Nuclear Information System (INIS)

    Katzer, Roman

    2015-05-01

    In the present work, we investigate the problem of many-body localization of strongly interacting bosons in random lattices within the disordered Bose-Hubbard model. This involves treating both the local Mott-Hubbard physics as well as the non-local quantum interference processes, which give rise to the phenomenon of Anderson localization, within the same theory. In order to determine the interaction induced transition to the Mott insulator phase, it is necessary to treat the local particle interaction exactly. Therefore, here we use a mean-field approach that approximates only the kinetic term of the Hamiltonian. This way, the full problem of interacting bosons on a random lattice is reduced to a local problem of a single site coupled to a particle bath, which has to be solved self-consistently. In accordance to previous works, we find that a finite disorder width leads to a reduced size of the Mott insulating regions. The transition from the superfluid phase to the Bose glass phase is driven by the non-local effect of Anderson localization. In order to describe this transition, one needs to work within a theory that is non-local as well. Therefore, here we introduce a new approach to the problem. Based on the results for the local excitation spectrum obtained within the mean-field theory, we reduce the full, interacting model to an effective, non-interacting model by applying a truncation scheme to the Hilbert space. Evaluating the long-ranged current density within this approximation, we identify the transition from the Bose glass to the superfluid phase with the Anderson transition of the effective model. Resolving this transition using the self-consistent theory of localization, we obtain the full phase diagram of the disordered Bose-Hubbard model in the regime of strong interaction and larger disorder. In accordance to the theorem of inclusions, we find that the Mott insulator and the superfluid phase are always separated by the compressible, but insulating

  2. ERO modeling and sensitivity analysis of locally enhanced beryllium erosion by magnetically connected antennas

    Science.gov (United States)

    Lasa, A.; Borodin, D.; Canik, J. M.; Klepper, C. C.; Groth, M.; Kirschner, A.; Airila, M. I.; Borodkina, I.; Ding, R.; Contributors, JET

    2018-01-01

    Experiments at JET showed locally enhanced, asymmetric beryllium (Be) erosion at outer wall limiters when magnetically connected ICRH antennas were in operation. A first modeling effort using the 3D erosion and scrape-off layer impurity transport modeling code ERO reproduced qualitatively the experimental outcome. However, local plasma parameters—in particular when 3D distributions are of interest—can be difficult to determine from available diagnostics and so erosion / impurity transport modeling input relies on output from other codes and simplified models, increasing uncertainties in the outcome. In the present contribution, we introduce and evaluate the impact of improved models and parameters with largest uncertainties of processes that impact impurity production and transport across the scrape-off layer, when simulated in ERO: (i) the magnetic geometry has been revised, for affecting the separatrix position (located 50-60 mm away from limiter surface) and thus the background plasma profiles; (ii) connection lengths between components, which lead to shadowing of ion fluxes, are also affected by the magnetic configuration; (iii) anomalous transport of ionized impurities, defined by the perpendicular diffusion coefficient, has been revisited; (iv) erosion yields that account for energy and angular distributions of background plasma ions under the present enhanced sheath potential and oblique magnetic field, have been introduced; (v) the effect of additional erosion sources, such as charge-exchange neutral fluxes, which are dominant in recessed areas like antennas, has been evaluated; (vi) chemically assisted release of Be in molecular form has been included. Sensitivity analysis highlights a qualitative effect (i.e. change in emission patterns) of magnetic shadowing, anomalous diffusion, and inclusion of neutral fluxes and molecular release of Be. The separatrix location, and energy and angular distribution of background plasma fluxes impact erosion

  3. Locally supersymmetric D=3 non-linear sigma models

    International Nuclear Information System (INIS)

    Wit, B. de; Tollsten, A.K.; Nicolai, H.

    1993-01-01

    We study non-linear sigma models with N local supersymmetries in three space-time dimensions. For N=1 and 2 the target space of these models is riemannian or Kaehler, respectively. All N>2 theories are associated with Einstein spaces. For N=3 the target space is quaternionic, while for N=4 it generally decomposes, into two separate quaternionic spaces, associated with inequivalent supermultiplets. For N=5, 6, 8 there is a unique (symmetric) space for any given number of supermultiplets. Beyond that there are only theories based on a single supermultiplet for N=9, 10, 12 and 16, associated with coset spaces with the exceptional isometry groups F 4(-20) , E 6(-14) , E 7(-5) and E 8(+8) , respectively. For N=3 and N ≥ 5 the D=2 theories obtained by dimensional reduction are two-loop finite. (orig.)

  4. Phase precession through acceleration of local theta rhythm: a biophysical model for the interaction between place cells and local inhibitory neurons.

    Science.gov (United States)

    Castro, Luísa; Aguiar, Paulo

    2012-08-01

    Phase precession is one of the most well known examples within the temporal coding hypothesis. Here we present a biophysical spiking model for phase precession in hippocampal CA1 which focuses on the interaction between place cells and local inhibitory interneurons. The model's functional block is composed of a place cell (PC) connected with a local inhibitory cell (IC) which is modulated by the population theta rhythm. Both cells receive excitatory inputs from the entorhinal cortex (EC). These inputs are both theta modulated and space modulated. The dynamics of the two neuron types are described by integrate-and-fire models with conductance synapses, and the EC inputs are described using non-homogeneous Poisson processes. Phase precession in our model is caused by increased drive to specific PC/IC pairs when the animal is in their place field. The excitation increases the IC's firing rate, and this modulates the PC's firing rate such that both cells precess relative to theta. Our model implies that phase coding in place cells may not be independent from rate coding. The absence of restrictive connectivity constraints in this model predicts the generation of phase precession in any network with similar architecture and subject to a clocking rhythm, independently of the involvement in spatial tasks.

  5. Strong disorder real-space renormalization for the many-body-localized phase of random Majorana models

    Science.gov (United States)

    Monthus, Cécile

    2018-03-01

    For the many-body-localized phase of random Majorana models, a general strong disorder real-space renormalization procedure known as RSRG-X (Pekker et al 2014 Phys. Rev. X 4 011052) is described to produce the whole set of excited states, via the iterative construction of the local integrals of motion (LIOMs). The RG rules are then explicitly derived for arbitrary quadratic Hamiltonians (free-fermions models) and for the Kitaev chain with local interactions involving even numbers of consecutive Majorana fermions. The emphasis is put on the advantages of the Majorana language over the usual quantum spin language to formulate unified RSRG-X rules.

  6. Modelling the impact of regional uplift and local tectonics on fluvial terrace preservation.

    NARCIS (Netherlands)

    Viveen, W.; Schoorl, J.M.; Veldkamp, A.; Balen, van R.T.

    2014-01-01

    A terrace formation model (TERRACE) combined with a longitudinal river profile model (FLUVER) was used to simulate fluvial terrace formation and preservation in the northwest Iberian lower Miño River basin under the influence of three tectonic conditions; namely regional vertical uplift, local basin

  7. Modelling malaria incidence with environmental dependency in a locality of Sudanese savannah area, Mali.

    Science.gov (United States)

    Gaudart, Jean; Touré, Ousmane; Dessay, Nadine; Dicko, A Lassane; Ranque, Stéphane; Forest, Loic; Demongeot, Jacques; Doumbo, Ogobara K

    2009-04-10

    The risk of Plasmodium falciparum infection is variable over space and time and this variability is related to environmental variability. Environmental factors affect the biological cycle of both vector and parasite. Despite this strong relationship, environmental effects have rarely been included in malaria transmission models.Remote sensing data on environment were incorporated into a temporal model of the transmission, to forecast the evolution of malaria epidemiology, in a locality of Sudanese savannah area. A dynamic cohort was constituted in June 1996 and followed up until June 2001 in the locality of Bancoumana, Mali. The 15-day composite vegetation index (NDVI), issued from satellite imagery series (NOAA) from July 1981 to December 2006, was used as remote sensing data.The statistical relationship between NDVI and incidence of P. falciparum infection was assessed by ARIMA analysis. ROC analysis provided an NDVI value for the prediction of an increase in incidence of parasitaemia.Malaria transmission was modelled using an SIRS-type model, adapted to Bancoumana's data. Environmental factors influenced vector mortality and aggressiveness, as well as length of the gonotrophic cycle. NDVI observations from 1981 to 2001 were used for the simulation of the extrinsic variable of a hidden Markov chain model. Observations from 2002 to 2006 served as external validation. The seasonal pattern of P. falciparum incidence was significantly explained by NDVI, with a delay of 15 days (p = 0.001). An NDVI threshold of 0.361 (p = 0.007) provided a Diagnostic Odd Ratio (DOR) of 2.64 (CI95% [1.26;5.52]).The deterministic transmission model, with stochastic environmental factor, predicted an endemo-epidemic pattern of malaria infection. The incidences of parasitaemia were adequately modelled, using the observed NDVI as well as the NDVI simulations. Transmission pattern have been modelled and observed values were adequately predicted. The error parameters have shown the smallest

  8. Modelling malaria incidence with environmental dependency in a locality of Sudanese savannah area, Mali

    Science.gov (United States)

    Gaudart, Jean; Touré, Ousmane; Dessay, Nadine; Dicko, A lassane; Ranque, Stéphane; Forest, Loic; Demongeot, Jacques; Doumbo, Ogobara K

    2009-01-01

    Background The risk of Plasmodium falciparum infection is variable over space and time and this variability is related to environmental variability. Environmental factors affect the biological cycle of both vector and parasite. Despite this strong relationship, environmental effects have rarely been included in malaria transmission models. Remote sensing data on environment were incorporated into a temporal model of the transmission, to forecast the evolution of malaria epidemiology, in a locality of Sudanese savannah area. Methods A dynamic cohort was constituted in June 1996 and followed up until June 2001 in the locality of Bancoumana, Mali. The 15-day composite vegetation index (NDVI), issued from satellite imagery series (NOAA) from July 1981 to December 2006, was used as remote sensing data. The statistical relationship between NDVI and incidence of P. falciparum infection was assessed by ARIMA analysis. ROC analysis provided an NDVI value for the prediction of an increase in incidence of parasitaemia. Malaria transmission was modelled using an SIRS-type model, adapted to Bancoumana's data. Environmental factors influenced vector mortality and aggressiveness, as well as length of the gonotrophic cycle. NDVI observations from 1981 to 2001 were used for the simulation of the extrinsic variable of a hidden Markov chain model. Observations from 2002 to 2006 served as external validation. Results The seasonal pattern of P. falciparum incidence was significantly explained by NDVI, with a delay of 15 days (p = 0.001). An NDVI threshold of 0.361 (p = 0.007) provided a Diagnostic Odd Ratio (DOR) of 2.64 (CI95% [1.26;5.52]). The deterministic transmission model, with stochastic environmental factor, predicted an endemo-epidemic pattern of malaria infection. The incidences of parasitaemia were adequately modelled, using the observed NDVI as well as the NDVI simulations. Transmission pattern have been modelled and observed values were adequately predicted. The error

  9. High-fidelity Modeling of Local Effects of Damage for Derated Offshore Wind Turbines

    Science.gov (United States)

    Richards, Phillip W.; Griffith, D. Todd; Hodges, Dewey H.

    2014-06-01

    Offshore wind power production is an attractive clean energy option, but the difficulty of access can lead to expensive and rare opportunities for maintenance. As part of the Structural Health and Prognostics Management (SHPM) project at Sandia National Laboratories, smart loads management (controls) are investigated for their potential to increase the fatigue life of offshore wind turbine rotor blades. Derating refers to altering the rotor angular speed and blade pitch to limit power production and loads on the rotor blades. High- fidelity analysis techniques like 3D finite element modeling (FEM) should be used alongside beam models of wind turbine blades to characterize these control strategies in terms of their effect to mitigate fatigue damage and extend life of turbine blades. This study will consider a commonly encountered damage type for wind turbine blades, the trailing edge disbond, and show how FEM can be used to quantify the effect of operations and control strategies designed to extend the fatigue life of damaged blades. The Virtual Crack Closure Technique (VCCT) will be used to post-process the displacement and stress results to provide estimates of damage severity/criticality and provide a means to estimate the fatigue life under a given operations and control strategy.

  10. High-fidelity Modeling of Local Effects of Damage for Derated Offshore Wind Turbines

    International Nuclear Information System (INIS)

    Richards, Phillip W; Griffith, D Todd; Hodges, Dewey H

    2014-01-01

    Offshore wind power production is an attractive clean energy option, but the difficulty of access can lead to expensive and rare opportunities for maintenance. As part of the Structural Health and Prognostics Management (SHPM) project at Sandia National Laboratories, smart loads management (controls) are investigated for their potential to increase the fatigue life of offshore wind turbine rotor blades. Derating refers to altering the rotor angular speed and blade pitch to limit power production and loads on the rotor blades. High- fidelity analysis techniques like 3D finite element modeling (FEM) should be used alongside beam models of wind turbine blades to characterize these control strategies in terms of their effect to mitigate fatigue damage and extend life of turbine blades. This study will consider a commonly encountered damage type for wind turbine blades, the trailing edge disbond, and show how FEM can be used to quantify the effect of operations and control strategies designed to extend the fatigue life of damaged blades. The Virtual Crack Closure Technique (VCCT) will be used to post-process the displacement and stress results to provide estimates of damage severity/criticality and provide a means to estimate the fatigue life under a given operations and control strategy

  11. Local switching of two-dimensional superconductivity using the ferroelectric field effect

    Science.gov (United States)

    Takahashi, K. S.; Gabay, M.; Jaccard, D.; Shibuya, K.; Ohnishi, T.; Lippmaa, M.; Triscone, J.-M.

    2006-05-01

    Correlated oxides display a variety of extraordinary physical properties including high-temperature superconductivity and colossal magnetoresistance. In these materials, strong electronic correlations often lead to competing ground states that are sensitive to many parameters-in particular the doping level-so that complex phase diagrams are observed. A flexible way to explore the role of doping is to tune the electron or hole concentration with electric fields, as is done in standard semiconductor field effect transistors. Here we demonstrate a model oxide system based on high-quality heterostructures in which the ferroelectric field effect approach can be studied. We use a single-crystal film of the perovskite superconductor Nb-doped SrTiO3 as the superconducting channel and ferroelectric Pb(Zr,Ti)O3 as the gate oxide. Atomic force microscopy is used to locally reverse the ferroelectric polarization, thus inducing large resistivity and carrier modulations, resulting in a clear shift in the superconducting critical temperature. Field-induced switching from the normal state to the (zero resistance) superconducting state was achieved at a well-defined temperature. This unique system could lead to a field of research in which devices are realized by locally defining in the same material superconducting and normal regions with `perfect' interfaces, the interface being purely electronic. Using this approach, one could potentially design one-dimensional superconducting wires, superconducting rings and junctions, superconducting quantum interference devices (SQUIDs) or arrays of pinning centres.

  12. Environmental and economic effects of renewable energy sources use on a local case study

    International Nuclear Information System (INIS)

    Cosmi, C.; Salvia, M.; Pietrapertosa, F.

    2003-01-01

    Renewable sources represent an effective alternative to fossil fuels for preventing resources depletion and for reducing air pollution. However, their diffusion requires huge capital investment and major infrastructure changes, which have to be assessed to verify their effectiveness. The article present an application of the R-MARKAL model to investigate the feasibility of renewable use on a local case study for electricity and thermal energy production. A comprehensive modelling approach is used to emphasise the relationships and feedback between conversion and demand sectors (residential, services and commercial), taking into account contemporaneously legal issues and physical limits of the system. The model's solutions represent the minimum cost choice and the results show that even in absence of erogenous environmental constraints, many renewable technologies are profitable demand device and their investment costs are paid off in a medium term by lower operating and maintenance expenditures. In this context the use of thermal energy from incinerator allows one to achieve a consistent reduction of atmospheric pollutant emissions and, particularly, of greenhouse gases emissions due to waste degradation. (author)

  13. Environmental and economic effects of renewable energy sources use on a local case study

    Energy Technology Data Exchange (ETDEWEB)

    Cosmi, C.; Salvia, M. [Istituto di Metodologie Avanzate di Analisi Ambientali, Tito Scalo (Italy); Unita di Napoli (Italy). Istituto Nazionale di Fisica della Materia; Macchiato, M. [Universita Federico II, Napoli (Italy). Dpto. di Scienze Fisiche; Mangiamele, L.; Marmo, G. [Universita degli Studi della Basilicata, Potenza (Italy); Pietrapertosa, F. [Istituto di Metodologie Avanzate di Analisi Ambientali, Tito Scalo (Italy); Universita degli Studi della Basilicata, Potenza (Italy)

    2003-04-01

    Renewable sources represent an effective alternative to fossil fuels for preventing resources depletion and for reducing air pollution. However, their diffusion requires huge capital investment and major infrastructure changes, which have to be assessed to verify their effectiveness. The article present an application of the R-MARKAL model to investigate the feasibility of renewable use on a local case study for electricity and thermal energy production. A comprehensive modelling approach is used to emphasise the relationships and feedback between conversion and demand sectors (residential, services and commercial), taking into account contemporaneously legal issues and physical limits of the system. The model's solutions represent the minimum cost choice and the results show that even in absence of erogenous environmental constraints, many renewable technologies are profitable demand device and their investment costs are paid off in a medium term by lower operating and maintenance expenditures. In this context the use of thermal energy from incinerator allows one to achieve a consistent reduction of atmospheric pollutant emissions and, particularly, of greenhouse gases emissions due to waste degradation. (author)

  14. Evaluation of a model training program for respiratory-protection preparedness at local health departments.

    Science.gov (United States)

    Alfano-Sobsey, Edie; Kennedy, Bobby; Beck, Frank; Combs, Brian; Kady, Wendy; Ramsey, Steven; Stockweather, Allison; Service, Will

    2006-04-01

    Respiratory-protection programs have had limited application in local health departments and have mostly focused on protecting employees against exposure to tuberculosis (TB). The need to provide the public health workforce with effective respiratory protection has, however, been underscored by recent concerns about emerging infectious diseases, bioterrorism attacks, drug-resistant microbes, and environmental exposures to microbial allergens (as in recent hurricane flood waters). Furthermore, OSHA has revoked the TB standard traditionally followed by local health departments, replacing it with a more stringent regulation. The additional OSHA requirements may place increased burdens on health departments with limited resources and time. For these reasons, the North Carolina Office of Public Health Preparedness and Response and industrial hygienists of the Public Health Regional Surveillance Teams have developed a training program to facilitate implementation of respiratory protection programs at local health departments. To date, more than 1,400 North Carolina health department employees have been properly fit-tested for respirator use and have received training in all aspects of respiratory protection. This article gives an overview of the development and evaluation of the program. The training approach presented here can serve as a model that other health departments and organizations can use in implementing similar respiratory-protection programs.

  15. Modeling Thermal Comfort and Optimizing Local Renewal Strategies—A Case Study of Dazhimen Neighborhood in Wuhan City

    Directory of Open Access Journals (Sweden)

    Chong Peng

    2015-03-01

    Full Text Available Modeling thermal comfort provides quantitative evidence and parameters for effective and efficient urban planning, design, and building construction particularly in a dense and narrow inner city, which has become one of many concerns for sustainable urban development. This paper aims to develop geometric and mathematical models of wind and thermal comfort and use them to examine the impacts of six small-scale renewal strategies on the wind and thermal environment at pedestrian level in Dazhimen neighborhood, Wuhan, which is a typical case study of urban renewal project in a mega-city. The key parameters such as the solar radiation, natural convection, relative humidity, ambient crosswind have been incorporated into the mathematical models by using user-defined-function (UDF method. Detailed temperature and velocity distributions under different strategies have been compared for the optimization of local renewal strategies. It is concluded that five rules generated from the simulation results can provide guidance for building demolition and reconstruction in a neighborhood and there is no need of large-scale demolition. Particularly, combining the local demolition and city virescence can both improve the air ventilation and decrease the temperature level in the study area.

  16. Observed increase in local cooling effect of deforestation at higher latitudes.

    Science.gov (United States)

    Lee, Xuhui; Goulden, Michael L; Hollinger, David Y; Barr, Alan; Black, T Andrew; Bohrer, Gil; Bracho, Rosvel; Drake, Bert; Goldstein, Allen; Gu, Lianhong; Katul, Gabriel; Kolb, Thomas; Law, Beverly E; Margolis, Hank; Meyers, Tilden; Monson, Russell; Munger, William; Oren, Ram; Paw U, Kyaw Tha; Richardson, Andrew D; Schmid, Hans Peter; Staebler, Ralf; Wofsy, Steven; Zhao, Lei

    2011-11-16

    Deforestation in mid- to high latitudes is hypothesized to have the potential to cool the Earth's surface by altering biophysical processes. In climate models of continental-scale land clearing, the cooling is triggered by increases in surface albedo and is reinforced by a land albedo-sea ice feedback. This feedback is crucial in the model predictions; without it other biophysical processes may overwhelm the albedo effect to generate warming instead. Ongoing land-use activities, such as land management for climate mitigation, are occurring at local scales (hectares) presumably too small to generate the feedback, and it is not known whether the intrinsic biophysical mechanism on its own can change the surface temperature in a consistent manner. Nor has the effect of deforestation on climate been demonstrated over large areas from direct observations. Here we show that surface air temperature is lower in open land than in nearby forested land. The effect is 0.85 ± 0.44 K (mean ± one standard deviation) northwards of 45° N and 0.21 ± 0.53 K southwards. Below 35° N there is weak evidence that deforestation leads to warming. Results are based on comparisons of temperature at forested eddy covariance towers in the USA and Canada and, as a proxy for small areas of cleared land, nearby surface weather stations. Night-time temperature changes unrelated to changes in surface albedo are an important contributor to the overall cooling effect. The observed latitudinal dependence is consistent with theoretical expectation of changes in energy loss from convection and radiation across latitudes in both the daytime and night-time phase of the diurnal cycle, the latter of which remains uncertain in climate models. © 2011 Macmillan Publishers Limited. All rights reserved

  17. Matrix models from localization of five-dimensional supersymmetric noncommutative U(1) gauge theory

    International Nuclear Information System (INIS)

    Lee, Bum-Hoon; Ro, Daeho; Yang, Hyun Seok

    2017-01-01

    We study localization of five-dimensional supersymmetric U(1) gauge theory on S 3 ×ℝ θ 2 where ℝ θ 2 is a noncommutative (NC) plane. The theory can be isomorphically mapped to three-dimensional supersymmetric U(N→∞) gauge theory on S 3 using the matrix representation on a separable Hilbert space on which NC fields linearly act. Therefore the NC space ℝ θ 2 allows for a flexible path to derive matrix models via localization from a higher-dimensional supersymmetric NC U(1) gauge theory. The result shows a rich duality between NC U(1) gauge theories and large N matrix models in various dimensions.

  18. Tests of local Lorentz invariance violation of gravity in the standard model extension with pulsars.

    Science.gov (United States)

    Shao, Lijing

    2014-03-21

    The standard model extension is an effective field theory introducing all possible Lorentz-violating (LV) operators to the standard model and general relativity (GR). In the pure-gravity sector of minimal standard model extension, nine coefficients describe dominant observable deviations from GR. We systematically implemented 27 tests from 13 pulsar systems to tightly constrain eight linear combinations of these coefficients with extensive Monte Carlo simulations. It constitutes the first detailed and systematic test of the pure-gravity sector of minimal standard model extension with the state-of-the-art pulsar observations. No deviation from GR was detected. The limits of LV coefficients are expressed in the canonical Sun-centered celestial-equatorial frame for the convenience of further studies. They are all improved by significant factors of tens to hundreds with existing ones. As a consequence, Einstein's equivalence principle is verified substantially further by pulsar experiments in terms of local Lorentz invariance in gravity.

  19. Localized structures and front propagation in the Lengyel-Epstein model

    DEFF Research Database (Denmark)

    Jensen, O.; Pannbacker, Viggo Ole; Mosekilde, Erik

    1994-01-01

    Pattern selection, localized structure formation, and front propagation are analyzed within the framework of a model for the chlorine dioxide-iodine-malonic acid reaction that represents a key to understanding recently obtained Turing structures. This model is distinguished from previously studied......, simple reaction-diffusion models by producing a strongly subcritical transition to stripes. The wave number for the modes of maximum linear gain is calculated and compared with the dominant wave number for the finally selected, stationary structures grown from the homogeneous steady state or developed...... bifurcation. In the subcritical regime there is an interval where the front velocity vanishes as a result of a pinning of the front to the underlying structure. In 2D, two different nucleation mechanisms for hexagonal structures are illustrated on the Lengyel-Epstein and the Brusselator model. Finally...

  20. Modeling the effects of longwall mining on the ground water system

    International Nuclear Information System (INIS)

    Matetic, R.J.; Liu, J.; Elsworth, D.

    1995-01-01

    The objective of this US Bureau of Mines hydrologic-subsidence investigation was to evaluate the effects of longwall mining on the local ground water regime through field monitoring and numerical modeling. Field data were obtained from multiple-position borehole extensometers (MPBXs) that were used to measure subsurface displacements. Survey monuments were installed to measure mining-induced surface deformations. Numerous drawdown and recovery tests were performed to characterized hydrologic properties of the overburden strata. Coreholes were drilled above the study area to determine lithologic and strength characteristics of the overburden strata using the rock samples collected. Electronic recorders were installed on all monitoring wells to continuously monitor ground water levels in coordination with mining of the longwall panels. A combined finite element model of the deformation of overlying strata, and its influence on ground water flow was used to define the change in local and regional water budgets. The predicted effects of the postmining ground water system determined by the model correlated well with field data collected from the fieldsite. Without an infiltration rate added to the model, a static decrease of 3.0 m (10 ft) in water level would occur due to mining of both longwall panels and if an infiltration rate was inputted in the model, no predicted long-term effects would occur to the ground water system

  1. Numerical Simulations of the Effects of a Tidal Turbine Array on Near-Bed Velocity and Local Bed Shear Stress

    Directory of Open Access Journals (Sweden)

    Philip A. Gillibrand

    2016-10-01

    Full Text Available We apply a three-dimensional hydrodynamic model to consider the potential effects of energy extraction by an array of tidal turbines on the ambient near-bed velocity field and local bed shear stress in a coastal channel with strong tidal currents. Local bed shear stress plays a key role in local sediment dynamics. The model solves the Reynold-averaged Navier-Stokes (RANS equations on an unstructured mesh using mixed finite element and finite volume techniques. Tidal turbines are represented through an additional form drag in the momentum balance equation, with the thrust imparted and power generated by the turbines being velocity dependent with appropriate cut-in and cut-out velocities. Arrays of 1, 4 and 57 tidal turbines, each of 1.5 MW capacity, were simulated. Effects due to a single turbine and an array of four turbines were negligible. The main effect of the array of 57 turbines was to cause a shift in position of the jet through the tidal channel, as the flow was diverted around the tidal array. The net effect of this shift was to increase near-bed velocities and bed shear stress along the northern perimeter of the array by up to 0.8 m·s−1 and 5 Pa respectively. Within the array and directly downstream, near-bed velocities and bed shear stress were reduced by similar amounts. Changes of this magnitude have the potential to modify the known sand and shell banks in the region. Continued monitoring of the sediment distributions in the region will provide a valuable dataset on the impacts of tidal energy extraction on local sediment dynamics. Finally, the mean power generated per turbine is shown to decrease as the turbine array increased in size.

  2. A simple localized-itinerant model for PrAl3: crystal field and exchange effects

    International Nuclear Information System (INIS)

    Ranke, P.J. von; Palermo, L.

    1990-01-01

    We present a simple magnetic model for PrAl sub(3). The effects of crystal field are treated using a reduced set of levels and the corresponding wave functions are extracted from the actual crystal field levels of Pr sup(+3) in a hexagonal symmetry. The exchange between 4f- and conduction electrons are dealt within a molecular field approximation. An analytical magnetic state equation is derived and the magnetic behaviour discussed. The parameters of the model are estimated from a fitting of the inverse susceptibility of PrAl sub(3) given in the literature. (author)

  3. LDR vs. HDR brachytherapy for localized prostate cancer: the view from radiobiological models.

    Science.gov (United States)

    King, Christopher R

    2002-01-01

    Permanent LDR brachytherapy and temporary HDR brachytherapy are competitive techniques for clinically localized prostate radiotherapy. Although a randomized trial will likely never be conducted comparing these two forms of brachytherapy, a comparative radiobiological modeling analysis proves useful in understanding some of their intrinsic differences, several of which could be exploited to improve outcomes. Radiobiological models based upon the linear quadratic equations are presented for fractionated external beam, fractionated (192)Ir HDR brachytherapy, and (125)I and (103)Pd LDR brachytherapy. These models incorporate the dose heterogeneities present in brachytherapy based upon patient-derived dose volume histograms (DVH) as well as tumor doubling times and repair kinetics. Radiobiological parameters are normalized to correspond to three accepted clinical risk factors based upon T-stage, PSA, and Gleason score to compare models with clinical series. Tumor control probabilities (TCP) for LDR and HDR brachytherapy (as monotherapy or combined with external beam) are compared with clinical bNED survival rates. Predictions are made for dose escalation with HDR brachytherapy regimens. Model predictions for dose escalation with external beam agree with clinical data and validate the models and their underlying assumptions. Both LDR and HDR brachytherapy achieve superior tumor control when compared with external beam at conventional doses (LDR brachytherapy as boost achieves superior tumor control than when used as monotherapy. Stage for stage, both LDR and current HDR regimens achieve similar tumor control rates, in agreement with current clinical data. HDR monotherapy with large-dose fraction sizes might achieve superior tumor control compared with LDR, especially if prostate cancer possesses a high sensitivity to dose fractionation (i.e., if the alpha/beta ratio is low). Radiobiological models support the current clinical evidence for equivalent outcomes in localized

  4. Nature of size effects in compact models of field effect transistors

    Energy Technology Data Exchange (ETDEWEB)

    Torkhov, N. A., E-mail: trkf@mail.ru [Tomsk State University, Tomsk 634050 (Russian Federation); Scientific-Research Institute of Semiconductor Devices, Tomsk 634050 (Russian Federation); Tomsk State University of Control Systems and Radioelectronics, Tomsk 634050 (Russian Federation); Babak, L. I.; Kokolov, A. A.; Salnikov, A. S.; Dobush, I. M. [Tomsk State University of Control Systems and Radioelectronics, Tomsk 634050 (Russian Federation); Novikov, V. A., E-mail: novikovvadim@mail.ru; Ivonin, I. V. [Tomsk State University, Tomsk 634050 (Russian Federation)

    2016-03-07

    Investigations have shown that in the local approximation (for sizes L < 100 μm), AlGaN/GaN high electron mobility transistor (HEMT) structures satisfy to all properties of chaotic systems and can be described in the language of fractal geometry of fractional dimensions. For such objects, values of their electrophysical characteristics depend on the linear sizes of the examined regions, which explain the presence of the so-called size effects—dependences of the electrophysical and instrumental characteristics on the linear sizes of the active elements of semiconductor devices. In the present work, a relationship has been established for the linear model parameters of the equivalent circuit elements of internal transistors with fractal geometry of the heteroepitaxial structure manifested through a dependence of its relative electrophysical characteristics on the linear sizes of the examined surface areas. For the HEMTs, this implies dependences of their relative static (A/mm, mA/V/mm, Ω/mm, etc.) and microwave characteristics (W/mm) on the width d of the sink-source channel and on the number of sections n that leads to a nonlinear dependence of the retrieved parameter values of equivalent circuit elements of linear internal transistor models on n and d. Thus, it has been demonstrated that the size effects in semiconductors determined by the fractal geometry must be taken into account when investigating the properties of semiconductor objects on the levels less than the local approximation limit and designing and manufacturing field effect transistors. In general, the suggested approach allows a complex of problems to be solved on designing, optimizing, and retrieving the parameters of equivalent circuits of linear and nonlinear models of not only field effect transistors but also any arbitrary semiconductor devices with nonlinear instrumental characteristics.

  5. Hidden conformal symmetry in Randall–Sundrum 2 model: Universal fermion localization by torsion

    Directory of Open Access Journals (Sweden)

    G. Alencar

    2017-10-01

    Full Text Available In this manuscript we describe a hidden conformal symmetry of the second Randall–Sundrum model (RS2. We show how this can be used to localize fermions of both chiralities. The conformal symmetry leaves few free dimensionless constants and constrains the allowed interactions. In this formulation the warping of the extra dimension emerges from a partial breaking of the conformal symmetry in five dimensions. The solution of the system can be described in two alternative gauges: by the metric or by the conformon. By considering this as a fundamental symmetry we construct a conformally invariant action for a vector field which provides a massless photon localized over a Minkowski brane. This is obtained by a conformal non-minimal coupling that breaks the gauge symmetry in five dimensions. We further consider a generalization of the model by including conformally invariant torsion. By coupling torsion non-minimally to fermions we obtain a localized zero mode of both chiralities completing the consistence of the model. The inclusion of torsion introduces a fermion quartic interaction that can be used to probe the existence of large extra dimensions and the validity of the model. This seems to point to the fact that conformal symmetry may be more fundamental than gauge symmetry and that this is the missing ingredient for the full consistence of RS scenarios.

  6. An empirical test of the relative and combined effects of land-cover and climate change on local colonization and extinction.

    Science.gov (United States)

    Yalcin, Semra; Leroux, Shawn James

    2018-04-14

    Land-cover and climate change are two main drivers of changes in species ranges. Yet, the majority of studies investigating the impacts of global change on biodiversity focus on one global change driver and usually use simulations to project biodiversity responses to future conditions. We conduct an empirical test of the relative and combined effects of land-cover and climate change on species occurrence changes. Specifically, we examine whether observed local colonization and extinctions of North American birds between 1981-85 and 2001-05 are correlated with land-cover and climate change and whether bird life history and ecological traits explain interspecific variation in observed occurrence changes. We fit logistic regression models to test the impact of physical land-cover change, changes in net primary productivity, winter precipitation, mean summer temperature, and mean winter temperature on the probability of Ontario breeding bird local colonization and extinction. Models with climate change, land-cover change, and the combination of these two drivers were the top ranked models of local colonization for 30%, 27%, and 29% of species, respectively. Conversely, models with climate change, land-cover change, and the combination of these two drivers were the top ranked models of local extinction for 61%, 7%, and 9% of species, respectively. The quantitative impacts of land-cover and climate change variables also vary among bird species. We then fit linear regression models to test whether the variation in regional colonization and extinction rate could be explained by mean body mass, migratory strategy, and habitat preference of birds. Overall, species traits were weakly correlated to heterogeneity in species occurrence changes. We provide empirical evidence showing that land-cover change, climate change, and the combination of multiple global change drivers can differentially explain observed species local colonization and extinction. This article is protected

  7. Long-wavelength spin-effective actions for the infinite U Hubbard model

    Science.gov (United States)

    Braghin, Fábio L.

    2013-04-01

    The derivation of spin-effective actions is envisaged for the Hubbard model with infinite Coulomb repulsion for a very low concentration of holes with a slave fermion representation for electronic operators. For that, spinless charge variables (vacancies or holes) are integrated out and the resulting effective action at finite temperature is expanded up to the fourth order in the hopping term as proposed in reference [F.L. Braghin, A. Ferraz, E.A. Kochetov, Phys. Rev. B 78, 115109 (2008)] and, in a square lattice, the fourth order term is shown to have the structure of an extended gauge invariant J-Q model for localized spins. Two cases for which the resulting model is non trivial are analysed and they correspond basically to (1) holes hopping between two sub-lattices and (2) a time-dependent solution for the spinon variables in the square lattice. Whereas the first of these cases yields, at the leading order, an effective antiferromagnetic Heisenberg coupling for localized spins and the second one may lead either to ferromagnetic or antiferromagnetic effective coupling. In the second case, the ordering should appear rather in finite size domains and, although charge variables were integrated out, a subtle imbalance between charge degrees of freedom and spins should be at work.

  8. String states, loops and effective actions in noncommutative field theory and matrix models

    Directory of Open Access Journals (Sweden)

    Harold C. Steinacker

    2016-09-01

    Full Text Available Refining previous work by Iso, Kawai and Kitazawa, we discuss bi-local string states as a tool for loop computations in noncommutative field theory and matrix models. Defined in terms of coherent states, they exhibit the stringy features of noncommutative field theory. This leads to a closed form for the 1-loop effective action in position space, capturing the long-range non-local UV/IR mixing for scalar fields. The formalism applies to generic fuzzy spaces. The non-locality is tamed in the maximally supersymmetric IKKT or IIB model, where it gives rise to supergravity. The linearized supergravity interactions are obtained directly in position space at one loop using string states on generic noncommutative branes.

  9. String states, loops and effective actions in noncommutative field theory and matrix models

    Energy Technology Data Exchange (ETDEWEB)

    Steinacker, Harold C., E-mail: harold.steinacker@univie.ac.at

    2016-09-15

    Refining previous work by Iso, Kawai and Kitazawa, we discuss bi-local string states as a tool for loop computations in noncommutative field theory and matrix models. Defined in terms of coherent states, they exhibit the stringy features of noncommutative field theory. This leads to a closed form for the 1-loop effective action in position space, capturing the long-range non-local UV/IR mixing for scalar fields. The formalism applies to generic fuzzy spaces. The non-locality is tamed in the maximally supersymmetric IKKT or IIB model, where it gives rise to supergravity. The linearized supergravity interactions are obtained directly in position space at one loop using string states on generic noncommutative branes.

  10. The analgesic effect of wound infiltration with local anaesthetics after breast surgery

    DEFF Research Database (Denmark)

    Byager, N; Hansen, Mads; Mathiesen, Ole

    2014-01-01

    significant reduction in post-operative, supplemental opioid consumption that was, however, of limited clinical relevance. CONCLUSION: Wound infiltration with local anaesthetics may have a modest analgesic effect in the first few hours after surgery. Pain after breast surgery is, however, generally mild......BACKGROUND: Wound infiltration with local anaesthetics is commonly used during breast surgery in an attempt to reduce post-operative pain and opioid consumption. The aim of this review was to evaluate the effect of wound infiltration with local anaesthetics compared with a control group on post......-operative pain after breast surgery. METHODS: A systematic review was performed by searching PubMed, Google Scholar, the Cochrane database and Embase for randomised, blinded, controlled trials of wound infiltration with local anaesthetics for post-operative pain relief in female adults undergoing breast surgery...

  11. Methodology of investment effectiveness evaluation in the local energy market

    Energy Technology Data Exchange (ETDEWEB)

    Kamrat, W.

    1999-07-01

    The paper presents issues of investment effectiveness evaluation in the local energy market. Results of research presented in the paper are mainly proposing a concept of a methodology which allows the evaluation of investment processes in regional power markets at the decision-making stage. In this respect, selecting a rational investment strategy is an important stage of the entire investment process. In view of criteria of various nature, the construction of a methodology of investment effectiveness bears an especially important meaning for a local decision-maker or investor. It is of particular significance to countries that are undergoing a transition from a centrally planned economy to a market economy. (orig.)

  12. Effectiveness of local vancomycin powder to decrease surgical site infections: a meta-analysis.

    Science.gov (United States)

    Chiang, Hsiu-Yin; Herwaldt, Loreen A; Blevins, Amy E; Cho, Edward; Schweizer, Marin L

    2014-03-01

    Some surgeons use systemic vancomycin to prevent surgical site infections (SSIs), but patients who do not carry methicillin-resistant Staphylococcus aureus have an increased risk of SSIs when given vancomycin alone for intravenous prophylaxis. Applying vancomycin powder to the wound before closure could increase the local tissue vancomycin level without significant systemic levels. However, the effectiveness of local vancomycin powder application for preventing SSIs has not been established. Our objective was to systematically review and evaluate studies on the effectiveness of local vancomycin powder for decreasing SSIs. Meta-analysis. We included observational studies, quasi-experimental studies, and randomized controlled trials of patients undergoing surgical procedures that involved vancomycin powder application to surgical wounds, reported SSI rates, and had a comparison group that did not use local vancomycin powder. The primary outcome was postoperative SSIs. The secondary outcomes included deep incisional SSIs and S. aureus SSIs. We performed systematic literature searches in PubMed, the Cochrane Database of Systematic Reviews, the Database of Abstracts of Reviews of Effects, the Cochrane Central Register of Controlled Trials via Wiley, Scopus (including EMBASE abstracts), Web of Science, ClinicalTrials.gov, BMC Proceedings, ProQuest Dissertation, and Thesis in Health and Medicine, and conference abstracts from IDWeek, the Interscience Conference on Antimicrobial Agents and Chemotherapy, the Society for Healthcare Epidemiology of America, and the American Academy of Orthopedic Surgeons annual meetings, and also the Scoliosis Research Society Annual Meeting and Course. We ran the searches from inception on May 9, 2013 with no limits on date or language. After reviewing 373 titles or abstracts and 22 articles in detail, we included 10 independent studies and used a random-effects model when pooling risk estimates to assess the effectiveness of local

  13. Introducing local property tax for fiscal decentralization and local authority autonomy

    Science.gov (United States)

    Dimopoulos, Thomas; Labropoulos, Tassos; Hadjimitsis, Diafantos G.

    2015-06-01

    Charles Tiebout (1956), in his work "A Pure Theory of Local Expenditures", provides a vision of the workings of the local public sector, acknowledging many similarities to the features of a competitive market, however omitting any references to local taxation. Contrary to other researchers' claim that the Tiebout model and the theory of fiscal decentralization are by no means synonymous, this paper aims to expand Tiebout's theory, by adding the local property tax in the context, introducing a fair, ad valorem property taxation system based on the automated assessment of the value of real estate properties within the boundaries of local authorities. Computer Assisted Mass Appraisal methodology integrated with Remote Sensing technology and GIS analysis is applied to local authorities' property registries and cadastral data, building a spatial relational database and providing data to be statistically processed through Multiple Regression Analysis modeling. The proposed scheme accomplishes economy of scale using CAMA procedures on one hand, but also succeeds in making local authorities self-sufficient through a decentralized, fair, locally calibrated property taxation model, providing rational income administration.

  14. Out of the net: An agent-based model to study human movements influence on local-scale malaria transmission.

    Directory of Open Access Journals (Sweden)

    Francesco Pizzitutti

    Full Text Available Though malaria control initiatives have markedly reduced malaria prevalence in recent decades, global eradication is far from actuality. Recent studies show that environmental and social heterogeneities in low-transmission settings have an increased weight in shaping malaria micro-epidemiology. New integrated and more localized control strategies should be developed and tested. Here we present a set of agent-based models designed to study the influence of local scale human movements on local scale malaria transmission in a typical Amazon environment, where malaria is transmission is low and strongly connected with seasonal riverine flooding. The agent-based simulations show that the overall malaria incidence is essentially not influenced by local scale human movements. In contrast, the locations of malaria high risk spatial hotspots heavily depend on human movements because simulated malaria hotspots are mainly centered on farms, were laborers work during the day. The agent-based models are then used to test the effectiveness of two different malaria control strategies both designed to reduce local scale malaria incidence by targeting hotspots. The first control scenario consists in treat against mosquito bites people that, during the simulation, enter at least once inside hotspots revealed considering the actual sites where human individuals were infected. The second scenario involves the treatment of people entering in hotspots calculated assuming that the infection sites of every infected individual is located in the household where the individual lives. Simulations show that both considered scenarios perform better in controlling malaria than a randomized treatment, although targeting household hotspots shows slightly better performance.

  15. Out of the net: An agent-based model to study human movements influence on local-scale malaria transmission.

    Science.gov (United States)

    Pizzitutti, Francesco; Pan, William; Feingold, Beth; Zaitchik, Ben; Álvarez, Carlos A; Mena, Carlos F

    2018-01-01

    Though malaria control initiatives have markedly reduced malaria prevalence in recent decades, global eradication is far from actuality. Recent studies show that environmental and social heterogeneities in low-transmission settings have an increased weight in shaping malaria micro-epidemiology. New integrated and more localized control strategies should be developed and tested. Here we present a set of agent-based models designed to study the influence of local scale human movements on local scale malaria transmission in a typical Amazon environment, where malaria is transmission is low and strongly connected with seasonal riverine flooding. The agent-based simulations show that the overall malaria incidence is essentially not influenced by local scale human movements. In contrast, the locations of malaria high risk spatial hotspots heavily depend on human movements because simulated malaria hotspots are mainly centered on farms, were laborers work during the day. The agent-based models are then used to test the effectiveness of two different malaria control strategies both designed to reduce local scale malaria incidence by targeting hotspots. The first control scenario consists in treat against mosquito bites people that, during the simulation, enter at least once inside hotspots revealed considering the actual sites where human individuals were infected. The second scenario involves the treatment of people entering in hotspots calculated assuming that the infection sites of every infected individual is located in the household where the individual lives. Simulations show that both considered scenarios perform better in controlling malaria than a randomized treatment, although targeting household hotspots shows slightly better performance.

  16. Non-local effect in Brillouin optical time-domain analyzer based on Raman amplification

    International Nuclear Information System (INIS)

    Jia Xinhong; Rao Yunjiang; Wang Zinan; Zhang Weili; Ran Zengling; Deng Kun; Yang Zixin

    2012-01-01

    Compared with conventional Brillouin optical time-domain analyzer (BOTDA), the BOTDA based on Raman amplification allows longer sensing range, higher signal-to-noise ratio and higher measurement accuracy. However, the non-local effect induced by pump depletion significantly restricts the probe optical power injected to sensing fiber, thereby limiting the further extension for sensing distance. In this paper, the coupled equations including the interaction of probe light, Brillouin and Raman pumps are applied to the study on the non-local characteristics of BOTDA based on Raman amplification. The results show that, the system error induced by non-local effect worsens with increased powers of probe wave and Raman pump. The frequency-division-multiplexing (cascading the fibers with various Brillouin frequency shifts) and time-division-multiplexing (modulating both of the Brillouin pump and probe lights) technologies are efficient approaches to suppress the non-local effect, through shortening the effective interaction range between Brillouin pump and probe lights. (authors)

  17. Implicit Active Contours Driven by Local and Global Image Fitting Energy for Image Segmentation and Target Localization

    Directory of Open Access Journals (Sweden)

    Xiaosheng Yu

    2013-01-01

    Full Text Available We propose a novel active contour model in a variational level set formulation for image segmentation and target localization. We combine a local image fitting term and a global image fitting term to drive the contour evolution. Our model can efficiently segment the images with intensity inhomogeneity with the contour starting anywhere in the image. In its numerical implementation, an efficient numerical schema is used to ensure sufficient numerical accuracy. We validated its effectiveness in numerous synthetic images and real images, and the promising experimental results show its advantages in terms of accuracy, efficiency, and robustness.

  18. Local facet approximation for image stitching

    Science.gov (United States)

    Li, Jing; Lai, Shiming; Liu, Yu; Wang, Zhengming; Zhang, Maojun

    2018-01-01

    Image stitching aims at eliminating multiview parallax and generating a seamless panorama given a set of input images. This paper proposes a local adaptive stitching method, which could achieve both accurate and robust image alignments across the whole panorama. A transformation estimation model is introduced by approximating the scene as a combination of neighboring facets. Then, the local adaptive stitching field is constructed using a series of linear systems of the facet parameters, which enables the parallax handling in three-dimensional space. We also provide a concise but effective global projectivity preserving technique that smoothly varies the transformations from local adaptive to global planar. The proposed model is capable of stitching both normal images and fisheye images. The efficiency of our method is quantitatively demonstrated in the comparative experiments on several challenging cases.

  19. A Robust Wireless Sensor Network Localization Algorithm in Mixed LOS/NLOS Scenario.

    Science.gov (United States)

    Li, Bing; Cui, Wei; Wang, Bin

    2015-09-16

    Localization algorithms based on received signal strength indication (RSSI) are widely used in the field of target localization due to its advantages of convenient application and independent from hardware devices. Unfortunately, the RSSI values are susceptible to fluctuate under the influence of non-line-of-sight (NLOS) in indoor space. Existing algorithms often produce unreliable estimated distances, leading to low accuracy and low effectiveness in indoor target localization. Moreover, these approaches require extra prior knowledge about the propagation model. As such, we focus on the problem of localization in mixed LOS/NLOS scenario and propose a novel localization algorithm: Gaussian mixed model based non-metric Multidimensional (GMDS). In GMDS, the RSSI is estimated using a Gaussian mixed model (GMM). The dissimilarity matrix is built to generate relative coordinates of nodes by a multi-dimensional scaling (MDS) approach. Finally, based on the anchor nodes' actual coordinates and target's relative coordinates, the target's actual coordinates can be computed via coordinate transformation. Our algorithm could perform localization estimation well without being provided with prior knowledge. The experimental verification shows that GMDS effectively reduces NLOS error and is of higher accuracy in indoor mixed LOS/NLOS localization and still remains effective when we extend single NLOS to multiple NLOS.

  20. An evaluation of Knowledge and Understanding Framework personality disorder awareness training: can a co-production model be effective in a local NHS mental health Trust?

    Science.gov (United States)

    Davies, Julie; Sampson, Mark; Beesley, Frank; Smith, Debra; Baldwin, Victoria

    2014-05-01

    5 Boroughs Partnership NHS Foundation Trust, in the Northwest of England, has trained over 500 staff in the Knowledge and Understanding Framework, level 1 personality disorder awareness training. This is a 3-day nationally devised training programme delivered via an innovative co-production model (i.e. co-delivery and partnership working with service users who have lived experience). This paper provides quantitative and qualitative information on the effectiveness of training delivery and also serves to provide some insight into the impact of service-user involvement via such a co-production model. Information on 162 participants using the Knowledge and Understanding Framework bespoke questionnaire (Personality Disorder Knowledge, Attitudes and Skills Questionnaire) suggests that the training can be effectively delivered by and within a local NHS Mental Health Trust. Results immediately post-training suggest an improvement in levels of understanding and capability efficacy and a reduction in negative emotional reactions. Indications from a 3-month follow-up suggest that while understanding and emotional reaction remain improved, capability efficacy regresses back to pre-training levels, suggesting the need for ongoing supervision and/or support to consolidate skills. Discussion includes guidelines for the implementation of a truly integrated co-production model of training provision, as well as advice relating to the maximization of long-term benefits. Copyright © 2014 John Wiley & Sons, Ltd.