WorldWideScience

Sample records for local dust storm

  1. The cascade from local to global dust storms on Mars: Temporal and spatial thresholds on thermal and dynamical feedback

    Science.gov (United States)

    Toigo, Anthony D.; Richardson, Mark I.; Wang, Huiqun; Guzewich, Scott D.; Newman, Claire E.

    2018-03-01

    We use the MarsWRF general circulation model to examine the temporal and spatial response of the atmosphere to idealized local and regional dust storm radiative heating. The ability of storms to modify the atmosphere away from the location of dust heating is a likely prerequisite for dynamical feedbacks that aid the growth of storms beyond the local scale, while the ability of storms to modify the atmosphere after the cessation of dust radiative heating is potentially important in preconditioning the atmosphere prior to large scale storms. Experiments were conducted over a range of static, prescribed storm sizes, durations, optical depth strengths, locations, and vertical extents of dust heating. Our results show that for typical sizes (order 105 km2) and durations (1-10 sols) of local dust storms, modification of the atmosphere is less than the typical variability of the unperturbed (storm-free) state. Even if imposed on regional storm length scales (order 106 km2), a 1-sol duration storm similarly does not significantly modify the background atmosphere. Only when imposed for 10 sols does a regional dust storm create a significant impact on the background atmosphere, allowing for the possibility of self-induced dynamical storm growth. These results suggest a prototype for how the subjective observational categorization of storms may be related to objective dynamical growth feedbacks that only become available to storms after they achieve a threshold size and duration, or if they grow into an atmosphere preconditioned by a prior large and sustained storm.

  2. Properties of a local dust storm on Mars' Atlantis Chaos by means of radiative transfer modeling.

    Science.gov (United States)

    Oliva, Fabrizio; Altieri, Francesca; Geminale, Anna; Bellucci, Giancarlo; D'Aversa, Emiliano; Carrozzo, Giacomo; Sindoni, Giuseppe; Grassi, Davide

    2017-04-01

    In this study we present the analysis of the dust properties in a local storm imaged in the Atlantis Chaos region on Mars by the OMEGA spectrometer (Bibring et al., 2004) on March 2nd 2005 (ORB1441_5). By means of an inverse radiative transfer code we study the dust properties across the region and try to infer the connection be-tween the local storm dynamics and the orography. OMEGA is a visible and near-IR mapping spectrometer, operating in the spectral range 0.38-5.1 μm with three separate channels with different spectral resolution. The instrument's IFOV is 1.2 mrad. To analyze the storm properties we have used the inverse radiative transfer model MITRA (Oliva et al., 2016; Sindoni et al., 2013) to retrieve the effective radius reff, the optical depth at 880 nm τ880 and the top pressure tp of the dust layer. We used the Mars Climate Database (MCD, Forget et al., 1999) to obtain the atmospheric properties of the studied region to be used as input in our model. Moreover we used the optical constants from Wolff et al. (2009) to describe the dust composition. The properties from the surface have been obtained by ap-plying the SAS method (Geminale et al., 2015) to observations of the same region relatively clear from dust. All retrievals have been performed in the spectral range 500 ÷ 2500 nm. Here we describe the result from our analysis carried out on selected regions of the storm and characterized by a different optical depth of the dust. Aknowledgements: This study has been performed within the UPWARDS project and funded in the context of the European Union's Horizon 2020 Programme (H2020-Compet-08-2014), grant agreement UPWARDS-633127. References: Bibring, J-P. et al., 2004. OMEGA: Observatoire pour la Minéralogie, l'Eau, les Glaces et l'Activité. Mars Express: the scientific payload, Ed. by Andrew Wilson, scientific coordination: Agustin Chicarro. ESA SP-1240, Noordwijk, Netherlands: ESA Publications Division, ISBN 92-9092-556-6, 2004, p. 37 - 49. Forget

  3. Dust storm, northern Mexico

    Science.gov (United States)

    1983-01-01

    This large dust storm along the left side of the photo, covers a large portion of the state of Coahuila, Mexico (27.5N, 102.0E). The look angle of this oblique photo is from the south to the north. In the foreground is the Sierra Madre Oriental in the states Coahuila and Nuevo Leon with the Rio Grande River, Amistad Reservoir and Texas in the background.

  4. Spring Dust Storm Smothers Beijing

    Science.gov (United States)

    2002-01-01

    A few days earlier than usual, a large, dense plume of dust blew southward and eastward from the desert plains of Mongolia-quite smothering to the residents of Beijing. Citizens of northeastern China call this annual event the 'shachenbao,' or 'dust cloud tempest.' However, the tempest normally occurs during the spring time. The dust storm hit Beijing on Friday night, March 15, and began coating everything with a fine, pale brown layer of grit. The region is quite dry; a problem some believe has been exacerbated by decades of deforestation. According to Chinese government estimates, roughly 1 million tons of desert dust and sand blow into Beijing each year. This true-color image was made using two adjacent swaths (click to see the full image) of data from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS), flying aboard the OrbView-2 satellite, on March 17, 2002. The massive dust storm (brownish pixels) can easily be distinguished from clouds (bright white pixels) as it blows across northern Japan and eastward toward the open Pacific Ocean. The black regions are gaps between SeaWiFS' viewing swaths and represent areas where no data were collected. Image courtesy the SeaWiFS Project, NASA/Goddard Space Flight Center, and ORBIMAGE

  5. Dust Storm Hits Canary Islands

    Science.gov (United States)

    2002-01-01

    A thick pall of sand and dust blew out from the Sahara Desert over the Atlantic Ocean yesterday (January 6, 2002), engulfing the Canary Islands in what has become one of the worst sand storms ever recorded there. In this scene, notice how the dust appears particularly thick in the downwind wake of Tenerife, the largest of the Canary Islands. Perhaps the turbulence generated by the air currents flowing past the island's volcanic peaks is churning the dust back up into the atmosphere, rather than allowing it to settle toward the surface. This true-color image was captured by the Moderate-resolution Imaging Spectroradiometer (MODIS), flying aboard NASA's Terra satellite, on January 7, 2002. Image courtesy Jacques Descloitres, MODIS Land Rapid Response Team at NASA GSFC

  6. Characterisation of atmospheric deposited particles during a dust storm in urban areas of Eastern Australia

    Energy Technology Data Exchange (ETDEWEB)

    Gunawardena, Janaka, E-mail: j.gunawardena@qut.edu.au; Ziyath, Abdul M., E-mail: mohamed.ziyath@qut.edu.au; Bostrom, Thor E., E-mail: t.bostrom@qut.edu.au; Bekessy, Lambert K., E-mail: l.bekessy@qut.edu.au; Ayoko, Godwin A., E-mail: g.ayoko@qut.edu.au; Egodawatta, Prasanna, E-mail: p.egodawatta@qut.edu.au; Goonetilleke, Ashantha, E-mail: a.goonetilleke@qut.edu.au

    2013-09-01

    The characteristics of dust particles deposited during the 2009 dust storm in the Gold Coast and Brisbane regions of Australia are discussed in this paper. The study outcomes provide important knowledge in relation to the potential impacts of dust storm related pollution on ecosystem health in the context that the frequency of dust storms is predicted to increase due to anthropogenic desert surface modifications and climate change impacts. The investigated dust storm contributed a large fraction of fine particles to the environment with an increased amount of total suspended solids, compared to dry deposition under ambient conditions. Although the dust storm passed over forested areas, the organic carbon content in the dust was relatively low. The primary metals present in the dust storm deposition were aluminium, iron and manganese, which are common soil minerals in Australia. The dust storm deposition did not contain significant loads of nickel, cadmium, copper and lead, which are commonly present in the urban environment. Furthermore, the comparison between the ambient and dust storm chromium and zinc loads suggested that these metals were contributed to the dust storm by local anthropogenic sources. The potential ecosystem health impacts of the 2009 dust storm include, increased fine solids deposition on ground surfaces resulting in an enhanced capacity to adsorb toxic pollutants as well as increased aluminium, iron and manganese loads. In contrast, the ecosystem health impacts related to organic carbon and other metals from dust storm atmospheric deposition are not considered to be significant. - Highlights: • The dust storm contributed a large fraction of fine particles to pollutant build-up. • The dust storm increased TSS, Al, Fe and Mn loads in build-up on ground surfaces. • Dust storm did not significantly increase TOC, Ni, Cu, Pb and Cd loads in build-up. • Cr and Zn in dust storm deposition were contributed by local anthropogenic sources.

  7. Characterisation of atmospheric deposited particles during a dust storm in urban areas of Eastern Australia

    International Nuclear Information System (INIS)

    Gunawardena, Janaka; Ziyath, Abdul M.; Bostrom, Thor E.; Bekessy, Lambert K.; Ayoko, Godwin A.; Egodawatta, Prasanna; Goonetilleke, Ashantha

    2013-01-01

    The characteristics of dust particles deposited during the 2009 dust storm in the Gold Coast and Brisbane regions of Australia are discussed in this paper. The study outcomes provide important knowledge in relation to the potential impacts of dust storm related pollution on ecosystem health in the context that the frequency of dust storms is predicted to increase due to anthropogenic desert surface modifications and climate change impacts. The investigated dust storm contributed a large fraction of fine particles to the environment with an increased amount of total suspended solids, compared to dry deposition under ambient conditions. Although the dust storm passed over forested areas, the organic carbon content in the dust was relatively low. The primary metals present in the dust storm deposition were aluminium, iron and manganese, which are common soil minerals in Australia. The dust storm deposition did not contain significant loads of nickel, cadmium, copper and lead, which are commonly present in the urban environment. Furthermore, the comparison between the ambient and dust storm chromium and zinc loads suggested that these metals were contributed to the dust storm by local anthropogenic sources. The potential ecosystem health impacts of the 2009 dust storm include, increased fine solids deposition on ground surfaces resulting in an enhanced capacity to adsorb toxic pollutants as well as increased aluminium, iron and manganese loads. In contrast, the ecosystem health impacts related to organic carbon and other metals from dust storm atmospheric deposition are not considered to be significant. - Highlights: • The dust storm contributed a large fraction of fine particles to pollutant build-up. • The dust storm increased TSS, Al, Fe and Mn loads in build-up on ground surfaces. • Dust storm did not significantly increase TOC, Ni, Cu, Pb and Cd loads in build-up. • Cr and Zn in dust storm deposition were contributed by local anthropogenic sources

  8. [Geochemical characteristics and sources of atmospheric particulates in Shanghai during dust storm event].

    Science.gov (United States)

    Qian, Peng; Zheng, Xiang-min; Zhou, Li-min

    2013-05-01

    Atmospheric particulates were sampled from three sampling sites of Putuo, Minhang and Qingpu Districts in Shanghai between Oct. , 2009 and Oct. , 2010. In addition, particulate samples were also collected from Nantong, Zhengzhou, Xi'an, and Beijing city where dust storm dust transported along during spring. Element compositions of atmospheric particulates were determined by XRF and ICP-MS. The concentrations of major and trace elements in atmospheric particulates from Putuo, Minhang and Qingpu Districts were similar, indicating their common source. The UCC standardization distribution map showed that the major element composition of dust storm samples was similar to that of loess in northwestern China, indicating that the dust storm dust was mainly derived from Western desert and partly from local area. The REE partition patterns of dust storm dusts among different cities along dust transport route were similar to each other, as well as to those of northern loess, which indicates that the dust storm samples may have the same material source as loess, which mainly comes from crust material. However, the REE partition patterns of non-dust storm particulates were different among the studied cities, and different from those of loess, which suggests that the non-dust storm samples may be mixed with non-crust source material, which is different from dust storm dust and loess. The major element composition and REE partition pattern are effective indicators for source tracing of dust storm dust.

  9. Origin-Dependent Variations in the Atmospheric Microbiome in Eastern Mediterranean Dust Storms

    Science.gov (United States)

    Rudich, Y.; Gat, D.

    2017-12-01

    Microorganisms carried by dust storms are transported through the atmosphere and may affect human health and the functionality of microbial communities in various environments. Characterizing the dust-borne microbiome in dust storms of different origins, or that followed different trajectories, provides valuable data to improve our understanding of global health and environmental impacts. We present a comparative study on the diversity of dust- borne bacterial communities in dust storms from three distinct origins—North Africa, Syria and Saudi Arabia—and compare them with local bacterial communities sampled on clear days, all collected at a single location, in Israel. Storms from different dust origins exhibited distinct bacterial communities, with signature bacterial taxa for each source. Dust storms were characterized by a lower abundance of selected antibiotic resistance genes (ARGs) compared with ambient dust, asserting that the origin of these genes is local, possibly anthropogenic. With the progression of the storm, the storm-borne bacterial community showed increasing resemblance to ambient dust, suggesting mixing with local dust. We will also discuss how exposure to dust containing biological components affect lung epithelial cells. These results show, for the first time, that dust storms from different sources display distinct bacterial communities, suggesting possible distinct effects on the environment and public health.

  10. Radio Emissions from Electrical Activity in Martian Dust Storms

    Science.gov (United States)

    Majid, W.; Arabshahi, S.; Kocz, J.; Schulter, T.; White, L.

    2017-12-01

    Dust storms on Mars are predicted to be capable of producing electrostatic fields and discharges, even larger than those in dust storms on Earth. There are three key elements in the characterization of Martian electrostatic discharges: dependence on Martian environmental conditions, event rate, and the strength of the generated electric fields. The detection and characterization of electric activity in Martian dust storms has important implications for habitability, and preparations for human exploration of the red planet. Furthermore, electrostatic discharges may be linked to local chemistry and plays an important role in the predicted global electrical circuit. Because of the continuous Mars telecommunication needs of NASA's Mars-based assets, the Deep Space Network (DSN) is the only facility in the world that combines long term, high cadence, observing opportunities with large sensitive telescopes, making it a unique asset worldwide in searching for and characterizing electrostatic activity from large scale convective dust storms at Mars. We will describe a newly inaugurated program at NASA's Madrid Deep Space Communication Complex to carry out a long-term monitoring campaign to search for and characterize the entire Mars hemisphere for powerful discharges during routine tracking of spacecraft at Mars on an entirely non-interfering basis. The ground-based detections will also have important implications for the design of a future instrument that could make similar in-situ measurements from orbit or from the surface of Mars, with far greater sensitivity and duty cycle, opening up a new window in our understanding of the Martian environment.

  11. Martian dust storms as a possible sink of atmospheric methane

    Science.gov (United States)

    Farrell, W. M.; Delory, G. T.; Atreya, S. K.

    2006-11-01

    Recent laboratory tests, analog studies and numerical simulations all suggest that Martian dust devils and larger dusty convective storms generate and maintain large-scale electric fields. Such expected E-fields will have the capability to create significant electron drift motion in the collisional gas and to form an extended high energy (u $\\gg$ kT) electron tail in the distribution. We demonstrate herein that these energetic electrons are capable of dissociating any trace CH4 in the ambient atmosphere thereby acting as an atmospheric sink of this important gas. We demonstrate that the methane destruction rate increases by a factor of 1012 as the dust storm E-fields, E, increase from 5 to 25 kV/m, resulting in an apparent decrease in methane stability from ~ 1010 sec to a value of ~1000 seconds. While destruction in dust storms is severe, the overall methane lifetime is expected to decrease only moderately due to recycling of products, heterogeneous effects from localized sinks, etc. We show further evidence that the electrical activity anticipated in Martian dust storms creates a new harsh electro-chemical environment.

  12. Earlier vegetation green-up has reduced spring dust storms.

    Science.gov (United States)

    Fan, Bihang; Guo, Li; Li, Ning; Chen, Jin; Lin, Henry; Zhang, Xiaoyang; Shen, Miaogen; Rao, Yuhan; Wang, Cong; Ma, Lei

    2014-10-24

    The observed decline of spring dust storms in Northeast Asia since the 1950s has been attributed to surface wind stilling. However, spring vegetation growth could also restrain dust storms through accumulating aboveground biomass and increasing surface roughness. To investigate the impacts of vegetation spring growth on dust storms, we examine the relationships between recorded spring dust storm outbreaks and satellite-derived vegetation green-up date in Inner Mongolia, Northern China from 1982 to 2008. We find a significant dampening effect of advanced vegetation growth on spring dust storms (r = 0.49, p = 0.01), with a one-day earlier green-up date corresponding to a decrease in annual spring dust storm outbreaks by 3%. Moreover, the higher correlation (r = 0.55, p storm outbreak ratio (the ratio of dust storm outbreaks to times of strong wind events) indicates that such effect is independent of changes in surface wind. Spatially, a negative correlation is detected between areas with advanced green-up dates and regional annual spring dust storms (r = -0.49, p = 0.01). This new insight is valuable for understanding dust storms dynamics under the changing climate. Our findings suggest that dust storms in Inner Mongolia will be further mitigated by the projected earlier vegetation green-up in the warming world.

  13. Parameterization of Rocket Dust Storms on Mars in the LMD Martian GCM: Modeling Details and Validation

    Science.gov (United States)

    Wang, Chao; Forget, François; Bertrand, Tanguy; Spiga, Aymeric; Millour, Ehouarn; Navarro, Thomas

    2018-04-01

    The origin of the detached dust layers observed by the Mars Climate Sounder aboard the Mars Reconnaissance Orbiter is still debated. Spiga et al. (2013, https://doi.org/10.1002/jgre.20046) revealed that deep mesoscale convective "rocket dust storms" are likely to play an important role in forming these dust layers. To investigate how the detached dust layers are generated by this mesoscale phenomenon and subsequently evolve at larger scales, a parameterization of rocket dust storms to represent the mesoscale dust convection is designed and included into the Laboratoire de Météorologie Dynamique (LMD) Martian Global Climate Model (GCM). The new parameterization allows dust particles in the GCM to be transported to higher altitudes than in traditional GCMs. Combined with the horizontal transport by large-scale winds, the dust particles spread out and form detached dust layers. During the Martian dusty seasons, the LMD GCM with the new parameterization is able to form detached dust layers. The formation, evolution, and decay of the simulated dust layers are largely in agreement with the Mars Climate Sounder observations. This suggests that mesoscale rocket dust storms are among the key factors to explain the observed detached dust layers on Mars. However, the detached dust layers remain absent in the GCM during the clear seasons, even with the new parameterization. This implies that other relevant atmospheric processes, operating when no dust storms are occurring, are needed to explain the Martian detached dust layers. More observations of local dust storms could improve the ad hoc aspects of this parameterization, such as the trigger and timing of dust injection.

  14. Dust storm detection using random forests and physical-based ...

    Indian Academy of Sciences (India)

    arid areas of the Middle. East. Due to the influences of dust aerosols on climate and human daily activities, dust detection plays a crucial role in environmental and climatic studies. Detection of dust storms is critical to accurately under- stand dust ...

  15. Climate change and wind erosion by dust storms

    International Nuclear Information System (INIS)

    Wheaton, E.E.; Wittrock, V.

    1991-01-01

    Dust storms and their associated wind erosion are thought to be almost synonymous with drought. Dust storms have varying impacts including sandblasting and burying crops, wind erosion of soil, health effects and traffic accidents. A comparison of drought periods for southern Saskatchewan with dust storm frequencies for the period 1977-1988 revealed that the worst drought conditions coincided with the greatest April dust storm frequencies, with 1981 having the worst drought, and secondary spring droughts occurring in 1977, 1988, 1980 and 1982, and spring dust storm peaks occurring, in order of magnitude, in 1981, 1977, 1987, and 1982. An increase in atmospheric dust particles may lead to enhanced atmospheric subsidence and associated drought, and could be a positive feedback for drought intensity. Wind erosion potential may rise with rising temperature due to decreased vegetation cover, but the effect might be offset by rising precipitation

  16. Dust storm events over Delhi: verification of dust AOD forecasts with satellite and surface observations

    Science.gov (United States)

    Singh, Aditi; Iyengar, Gopal R.; George, John P.

    2016-05-01

    Thar desert located in northwest part of India is considered as one of the major dust source. Dust storms originate in Thar desert during pre-monsoon season, affects large part of Indo-Gangetic plains. High dust loading causes the deterioration of the ambient air quality and degradation in visibility. Present study focuses on the identification of dust events and verification of the forecast of dust events over Delhi and western part of IG Plains, during the pre-monsoon season of 2015. Three dust events have been identified over Delhi during the study period. For all the selected days, Terra-MODIS AOD at 550 nm are found close to 1.0, while AURA-OMI AI shows high values. Dust AOD forecasts from NCMRWF Unified Model (NCUM) for the three selected dust events are verified against satellite (MODIS) and ground based observations (AERONET). Comparison of observed AODs at 550 nm from MODIS with NCUM predicted AODs reveals that NCUM is able to predict the spatial and temporal distribution of dust AOD, in these cases. Good correlation (~0.67) is obtained between the NCUM predicted dust AODs and location specific observations available from AERONET. Model under-predicted the AODs as compared to the AERONET observations. This may be mainly because the model account for only dust and no anthropogenic activities are considered. The results of the present study emphasize the requirement of more realistic representation of local dust emission in the model both of natural and anthropogenic origin, to improve the forecast of dust from NCUM during the dust events.

  17. Paracas dust storms: Sources, trajectories and associated meteorological conditions

    Science.gov (United States)

    Briceño-Zuluaga, F.; Castagna, A.; Rutllant, J. A.; Flores-Aqueveque, V.; Caquineau, S.; Sifeddine, A.; Velazco, F.; Gutierrez, D.; Cardich, J.

    2017-09-01

    Dust storms that develop along the Pisco-Ica desert in Southern Peru, locally known as ;Paracas; winds have ecological, health and economic repercussions. Here we identify dust sources through MODIS (Moderate Resolution Imaging Spectroradiometer) imagery and analyze HYSPLIT (Hybrid Single Particles Lagrangian Integrated Trajectory) model trajectories and dispersion patterns, along with concomitant synoptic-scale meteorological conditions from National Centers for Environmental Prediction/National Center for Atmospheric Research reanalysis (NCEP/NCAR). Additionally, surface pressure data from the hourly METeorological Aerodrome Report (METAR) at Arica (18.5°S, 70.3°W) and Pisco (13.7°S, 76.2°W) were used to calculate Alongshore (sea-level) Pressure Gradient (APG) anomalies during Paracas dust storms, their duration and associated wind-speeds and wind directions. This study provides a review on the occurrence and strength of the Paracas dust storms as reported in the Pisco airfield for five-year period and their correspondence with MODIS true-color imagery in terms of dust-emission source areas. Our results show that most of the particle fluxes moving into the Ica-Pisco desert area during Paracas wind events originate over the coastal zone, where strong winds forced by steep APGs develop as the axis of a deep mid-troposphere trough sets in along north-central Chile. Direct relationships between Paracas wind intensity, number of active dust-emission sources and APGs are also documented, although the scarcity of simultaneous METAR/MODIS data for clearly observed MODIS dust plumes prevents any significant statistical inference. Synoptic-scale meteorological composites from NCEP/NCAR reanalysis data show that Paracas wind events (steep APGs) are mostly associated with the strengthening of anticyclonic conditions in northern Chile, that can be attributed to cold air advection associated with the incoming trough. Compared to the MODIS images, HYSPLIT outputs were able

  18. Electrical Activity in Martian Dust Storms

    Science.gov (United States)

    Majid, W.; Arabshahi, S.; Kocz, J.

    2016-12-01

    Dust storms on Mars are predicted to be capable of producing electrostatic fields and discharges, even larger than those in dust storms on Earth. Such electrical activity poses serious risks to any Human exploration of the planet and the lack of sufficient data to characterize any such activity has been identified by NASA's MEPAG as a key human safety knowledge gap. There are three key elements in the characterization of Martian electrostatic discharges: dependence on Martian environmental conditions, frequency of occurrence, and the strength of the generated electric fields. We will describe a recently deployed detection engine using NASA's Deep Space Network (DSN) to carry out a long term monitoring campaign to search for and characterize the entire Mars hemisphere for powerful discharges during routine tracking of spacecraft at Mars on an entirely non-interfering basis. The resulting knowledge of Mars electrical activity would allow NASA to plan risk mitigation measures to ensure human safety during Mars exploration. In addition, these measurements will also allow us to place limits on presence of oxidants such as H2O2 that may be produced by such discharges, providing another measurement point for models describing Martian atmospheric chemistry and habitability. Because of the continuous Mars telecommunication needs of NASA's Mars-based assets, the DSN is the only instrument in the world that combines long term, high cadence, observing opportunities with large sensitive telescopes, making it a unique asset worldwide in searching for and characterizing electrostatic activity at Mars from the ground.

  19. Operational aerosol and dust storm forecasting

    International Nuclear Information System (INIS)

    Westphal, D L; Curtis, C A; Liu, M; Walker, A L

    2009-01-01

    The U. S. Navy now conducts operational forecasting of aerosols and dust storms on global and regional scales. The Navy Aerosol Analysis and Prediction System (NAAPS) is run four times per day and produces 6-day forecasts of sulfate, smoke, dust and sea salt aerosol concentrations and visibility for the entire globe. The Coupled Ocean Atmosphere Mesoscale Prediction System (COAMPS (registered) ) is run twice daily for Southwest Asia and produces 3-day forecasts of dust, smoke, and visibility. The graphical output from these models is available on the Internet (www.nrlmry.navy.mil/aerosol/). The aerosol optical properties are calculated for each specie for each forecast output time and used for sea surface temperature (SST) retrieval corrections, regional electro-optical (EO) propagation assessments, and the development of satellite algorithms. NAAPS daily aerosol optical depth (AOD) values are compared with the Advanced Very High Resolution Radiometer (AVHRR) and Moderate Resolution Imaging Spectroradiometer (MODIS) AOD values. Visibility forecasts are compared quantitatively with surface synoptic reports.

  20. Mars atmospheric phenomena during major dust storms, as measured at surface

    International Nuclear Information System (INIS)

    Ryan, J.A.; Henry, R.M.

    1979-01-01

    Meteorological instrumentation aboard the Viking Mars Landers measures wind, temperature, and pressure. Two global dust storms occurred during northern autumn and winter, observed both by the orbiters and by the landers. The meteorological data from the landers has been analyzed for the period just before first storm arrival to just after second storm arrival, with the objectives being definition of meteorological phenomena during the storm period, determination of those associated with storm and dust arrival, and evaluation of effects on synoptic conditions and the general circulation. Times of dust arrival over the sites could be defined fairly closely from optical and pressure (solar tide) data, and dust arrival was also accompanied by changes in diurnal temperature range, temperature maxima, and temperature minima. The arrivals of the storms at VL-1 were accompanied by significant increase in wind speed and pressure. No such changes were observed at VL-2. It is possible that surface material could have been raised locally at VL-1. Throughout the period except following the second dust storm synoptic picture at VL-2 was one of eastward moving cyclonic and anticyclonic systems. These disappeared following the second storm, a phenomenon which may be related to the storm

  1. Analysis of synoptic situation for dust storms in Iraq

    Energy Technology Data Exchange (ETDEWEB)

    Al-Jumaily, Kais J.; Ibrahim, Morwa K. [Department of Atmospheric Sciences, College of Science, Al-Mustansiriyah University, Baghdad (Iraq)

    2013-07-01

    Dust storms are considered major natural disasters that cause many damages to society and environment in Iraq and surrounded deserted regions. The aim of this research is to analyze and study the synoptic patterns leading to the formation of dust storms in Iraq. Analysis are based on satellite images, aerosols index and synoptic weather maps. Two severe dust storms occurred over Iraq on February 22, 2010, and on December 10, 2011 were analyzed. The results showed that dust storms form when a low-pressure system forms over Iran causing Shamal winds blow; they carry cool air from that region towards warmer regions like eastern Syria and Iraq. In some cases, this low-pressure system is followed by a high-pressure system brining more cold air to the region and pushing dust toward south. Dust storms are initiated from source regions near Iraq-Syria borders by the existence of negative vertical velocity, which causes dust particles to be lifted upwards, and the strong westerly wind drives dust to travel eastward.

  2. Effect of dust storms on FSO communications links

    KAUST Repository

    Esmail, Maged Abdullah

    2017-05-18

    In literature, there is a lake of information about free space optic (FSO) systems\\' performance in arid and semi-arid areas that are prone to frequent dust storms. Therefore, in this paper, we investigate the performance of FSO links under dust storm conditions. We aim to determine the limits and capabilities of such systems in this harsh environment. To achieve this goal, we use some performance metrics including signal-to-noise (SNR) ratio, bit error rate (BER), and channel capacity. The results show that dust is a rough impairment that causes link drop under low visibility range. Moreover, we found that the system performance can be improved by using short segments or multi-hop system. Furthermore, the results show negligible improvement in system performance under dense dust. The comparison of fog and dust impairments show that dust introduces much higher attenuation than fog. Therefore, dust can be considered as the ultimate impairment for FSO links.

  3. Effect of dust storms on FSO communications links

    KAUST Repository

    Esmail, Maged Abdullah; Fathallah, Habib; Alouini, Mohamed-Slim

    2017-01-01

    In literature, there is a lake of information about free space optic (FSO) systems' performance in arid and semi-arid areas that are prone to frequent dust storms. Therefore, in this paper, we investigate the performance of FSO links under dust storm conditions. We aim to determine the limits and capabilities of such systems in this harsh environment. To achieve this goal, we use some performance metrics including signal-to-noise (SNR) ratio, bit error rate (BER), and channel capacity. The results show that dust is a rough impairment that causes link drop under low visibility range. Moreover, we found that the system performance can be improved by using short segments or multi-hop system. Furthermore, the results show negligible improvement in system performance under dense dust. The comparison of fog and dust impairments show that dust introduces much higher attenuation than fog. Therefore, dust can be considered as the ultimate impairment for FSO links.

  4. An electrified dust storm over the Negev desert, Israel

    Science.gov (United States)

    Yair, Yoav; Katz, Shai; Yaniv, Roy; Ziv, Baruch; Price, Colin

    2016-11-01

    We report on atmospheric electrical measurements conducted at the Wise Observatory in Mitzpe-Ramon, Israel (30°35‧N, 34°45‧E) during a large dust storm that occurred over the Eastern Mediterranean region on 10-11 February 2015. The dust was transported from the Sahara, Egypt and the Sinai Peninsula ahead of an approaching Cyprus low. Satellite images show the dust plume covering the Negev desert and Southern Israel and moving north. The concentrations of PM10 particles measured by the air-quality monitoring network of the Israeli Ministry of the Environment in Beer-Sheba reached values > 450 μg m- 3 and the AOT from the AERONET station in Sde-Boker was 1.5 on February 10th. The gradual intensification of the event reached peak concentrations on February 11th of over 1200 μg m- 3 and an AOT of 1.8. Continuous measurements of the fair weather vertical electric field (Ez) and vertical current density (Jz) were conducted at the Wise Observatory with 1 minute temporal resolution. Meteorological data was also recorded at the site. As the dust was advected over the observatory, very large fluctuations in the electrical parameters were registered. From the onset of the dust storm, the Ez values changed between + 1000 and + 8000 V m- 1 while the current density fluctuated between - 10 pA m2 and + 20 pA m2, both on time-scales of a few minutes. These values are significant departures from the average fair-weather values measured at the site, which are ~- 200 V m- 1 and ~ 2 pA m2. The disturbed episodes lasted for several hours on February 10th and the 11th and coincided with local meteorological conditions related to the wind speed and direction, which carried large amounts of dust particles over our observation station. We interpret the rapid changes as caused by the transport of electrically charged dust, carrying an excess of negative charge at lower altitudes.

  5. Thermal tides and Martian dust storms: Direct evidence for coupling

    International Nuclear Information System (INIS)

    Leovy, C.B.; Zurek, R.W.

    1979-01-01

    Observations of surface pressure oscillations at the Viking 1 and Viking 2 lander sites on Mars indicate that the thermally driven global atmospheric tides were closely coupled to the dust content of the Martian atmosphere, especially during northern fall and winter, when two successive global dust storms occurred. The onset of each of these global storms was marked by substantial, nearly simultaneous increases in the dust opacity and in the range of the daily surface pressure variation observed at both lander sites. Although both the diurnal and semidiurnal tidal surface pressure components were amplified at Lander 1 during the onset of a global dust storm, the semidiurnal component was greatly enhanced in relation to the diurnal tide. Semidiurnal wind components were prominent at both lander sites during the height of the global dust storm. We have attempted to interpret these observations using simplified dynamical models. In particular, the semidiurnal wind component can be successfully related to the observed surface pressure variation using a simplified model of a semidiurnally forced Ekman boundary layer. On the other hand, a classical atmospheric tidal model shows that the preferential enhancement of the semidiurnal surface pressure oscillation at Lander 1 can be produced by a tidal heating distribution which places most of the heating (per unit mass) above 10-km altitude. Furthermore, when a dust storm expands to global scale, it does so rather quickly, and the total atmospheric heating at the peak of the dust storm can represent more than 50% of the available insolation. The Viking observations suggest that a number of mechanisms are important for the generation and decay of these episodic Martian global dust storms

  6. The Role of Jet Adjustment Processes in Subtropical Dust Storms

    Science.gov (United States)

    Pokharel, Ashok Kumar; Kaplan, Michael L.; Fiedler, Stephanie

    2017-11-01

    Meso-α/β/γ scale atmospheric processes of jet dynamics responsible for generating Harmattan, Saudi Arabian, and Bodélé Depression dust storms are analyzed with observations and high-resolution modeling. The analysis of the role of jet adjustment processes in each dust storm shows similarities as follows: (1) the presence of a well-organized baroclinic synoptic scale system, (2) cross mountain flows that produced a leeside inversion layer prior to the large-scale dust storm, (3) the presence of thermal wind imbalance in the exit region of the midtropospheric jet streak in the lee of the respective mountains shortly after the time of the inversion formation, (4) dust storm formation accompanied by large magnitude ageostrophic isallobaric low-level winds as part of the meso-β scale adjustment process, (5) substantial low-level turbulence kinetic energy (TKE), and (6) emission and uplift of mineral dust in the lee of nearby mountains. The thermally forced meso-γ scale adjustment processes, which occurred in the canyons/small valleys, may have been the cause of numerous observed dust streaks leading to the entry of the dust into the atmosphere due to the presence of significant vertical motion and TKE generation. This study points to the importance of meso-β to meso-γ scale adjustment processes at low atmospheric levels due to an imbalance within the exit region of an upper level jet streak for the formation of severe dust storms. The low level TKE, which is one of the prerequisites to deflate the dust from the surface, cannot be detected with the low resolution data sets; so our results show that a high spatial resolution is required for better representing TKE as a proxy for dust emission.

  7. The Spatial Variation of Dust Particulate Matter Concentrations during Two Icelandic Dust Storms in 2015

    Directory of Open Access Journals (Sweden)

    Pavla Dagsson-Waldhauserova

    2016-06-01

    Full Text Available Particulate matter mass concentrations and size fractions of PM1, PM2.5, PM4, PM10, and PM15 measured in transversal horizontal profile of two dust storms in southwestern Iceland are presented. Images from a camera network were used to estimate the visibility and spatial extent of measured dust events. Numerical simulations were used to calculate the total dust flux from the sources as 180,000 and 280,000 tons for each storm. The mean PM15 concentrations inside of the dust plumes varied from 10 to 1600 µg·m−3 (PM10 = 7 to 583 µg·m−3. The mean PM1 concentrations were 97–241 µg·m−3 with a maximum of 261 µg·m−3 for the first storm. The PM1/PM2.5 ratios of >0.9 and PM1/PM10 ratios of 0.34–0.63 show that suspension of volcanic materials in Iceland causes air pollution with extremely high PM1 concentrations, similar to polluted urban areas in Europe or Asia. Icelandic volcanic dust consists of a higher proportion of submicron particles compared to crustal dust. Both dust storms occurred in relatively densely inhabited areas of Iceland. First results on size partitioning of Icelandic dust presented here should challenge health authorities to enhance research in relation to dust and shows the need for public dust warning systems.

  8. Long-term variability of dust-storms in Iceland

    Science.gov (United States)

    Dagsson-Waldhauserová, Pavla; Ólafsson, Haraldur; Arnalds, Ólafur

    2013-04-01

    Iceland is a volcanic island in the North Atlantic Ocean with maritime climate. In spite of moist climate, large areas are with limited vegetation cover where >40% of Iceland is classified with considerable to very severe erosion and 21% of Iceland are volcanic sandy deserts. Natural emissions from these sources influenced by strong winds affect not only regional air quality in Iceland ("Reykjavik haze") but dust particles are transported over the Atlantic ocean and Arctic Ocean > 1000 km at times. The study places Icelandic dust production area into international perspective, present long term frequency of dust storm events in NE Iceland, and estimate dust aerosol concentrations during reported dust events. Meteorological observations with dust presence codes and related visibility were used to identify the frequency and the long-term changes in dust production in NE Iceland. There were annually 16.4 days on average with reported dust observations on weather stations within the NE erosion area, indicating extreme dust plume activity and erosion within the NE deserts, even though the area is covered with snow during the major part of winter. During the 2000s the highest occurrence of dust events in six decades was reported. We have measured saltation and aeolian transport during dust/volcanic ash storms in Iceland which give some of the most intense wind erosion events ever measured. Icelandic dust affects the ecosystems over much of Iceland and causes regional haze. It is likely to affect the ecosystems of the oceans around Iceland, and it brings dust that lowers the albedo of the Icelandic glaciers, increasing melt-off due to global warming. The study indicates that Icelandic dust is not only a substantial source for regional air pollution, but may be considered to contribute to the Arctic haze phenomena and Arctic air pollution.

  9. Effects of dust storm events on weekly clinic visits related to pulmonary tuberculosis disease in Minqin, China

    Science.gov (United States)

    Wang, Yun; Wang, Ruoyu; Ming, Jing; Liu, Guangxiu; Chen, Tuo; Liu, Xinfeng; Liu, Haixia; Zhen, Yunhe; Cheng, Guodong

    2016-02-01

    Pulmonary tuberculosis (PTB) is a major public health problem in China. Minqin, a Northwest county of China, has a very high number of annual PTB clinic visits and it is also known for its severe dust storms. The epidemic usually begins in February and ends in July, while the dust storms mainly occur throughout spring and early summer, thereby suggesting that there might be a close link between the causative agent of PTB and dust storms. We investigated the general impact of dust storms on PTB over time by analyzing the variation in weekly clinic visits in Minqin during 2005-2012. We used the Mann-Whitney-Pettitt test and a regression model to determine the seasonal periodicity of PTB and dust storms in a time series, as well as assessing the relationships between meteorological variables and weekly PTB clinic visits. After comparing the number of weekly PTB cases in Gansu province with dust storm events, we detected a clear link between the population dynamics of PTB and climate events, i.e., the onset of epidemics and dust storms (defined by an atmospheric index) occurred in almost the same mean week. Thus, particulate matter might be the cause of PTB outbreaks on dust storm days. It is highly likely that the significant decline in annual clinic visits was closely associated with improvements in the local environment, which prevented desertification and decreased the frequency of dust storm events. To the best of our knowledge, this is the first population-based study to provide clear evidence that a PTB epidemic was affected by dust storms in China, which may give insights into the association between this environmental problem and the evolution of epidemic disease.

  10. Investigation of dust storms entering Western Iran using remotely sensed data and synoptic analysis.

    Science.gov (United States)

    Boloorani, Ali D; Nabavi, Seyed O; Bahrami, Hosain A; Mirzapour, Fardin; Kavosi, Musa; Abasi, Esmail; Azizi, Rasoul

    2014-01-01

    One of the natural phenomena which have had considerable impacts on various regions of the world, including Iran, is "dust storm". In recent years, this phenomenon has taken on new dimensions in Iran and has changed from a local problem to a national issue. This study is an attempt to investigate the formation of the dust storms crossing the Western Iran. To find the sources of the dust storms entering Iran, first we examine three determined dust paths in the region and their temporal activities, using MODIS satellite images. Then, four regions were identified as dust sources through soil, land cover and wind data. Finally, atmospheric analyses are implemented to find synoptic patterns inducing dust storms. Source 1 has covered the region between the eastern banks of Euphrates and western banks of Tigris. Source 2 is in desert area of western and south-western Iraq. Finally source 3 is bounded in eastern and south-eastern deserts of Saudi Arabia called Rub-Al-Khali desert, or Empty Quarter. Moreover, south-eastern part of Iraq (source 4) was also determined as a secondary source which thickens the dust masses originating from the above mentioned sources. The study of synoptic circulations suggests that the dust storms originating from source 1 are formed due to the intense pressure gradient between the low-pressure system of Zagros and a high-pressure cell formed on Mediterranean Sea. The dust events in sources 2 and 3 are outcomes of the atmospheric circulations dominant in the cold period of the year in mid-latitudes.

  11. Trajectory Calculation as Forecasting Support Tool for Dust Storms

    Directory of Open Access Journals (Sweden)

    Sultan Al-Yahyai

    2014-01-01

    Full Text Available In arid and semiarid regions, dust storms are common during windy seasons. Strong wind can blow loose sand from the dry surface. The rising sand and dust is then transported to other places depending on the wind conditions (speed and direction at different levels of the atmosphere. Considering dust as a moving object in space and time, trajectory calculation then can be used to determine the path it will follow. Trajectory calculation is used as a forecast supporting tool for both operational and research activities. Predefined dust sources can be identified and the trajectories can be precalculated from the Numerical Weather Prediction (NWP forecast. In case of long distance transported dust, the tool should allow the operational forecaster to perform online trajectory calculation. This paper presents a case study for using trajectory calculation based on NWP models as a forecast supporting tool in Oman Meteorological Service during some dust storm events. Case study validation results showed a good agreement between the calculated trajectories and the real transport path of the dust storms and hence trajectory calculation can be used at operational centers for warning purposes.

  12. Dust storms and their impact on ocean and human health: dust in Earth's atmosphere

    Science.gov (United States)

    Griffin, Dale W.; Kellog, Christina A.

    2004-01-01

    Satellite imagery has greatly influenced our understanding of dust activity on a global scale. A number of different satellites such as NASA's Earth-Probe Total Ozone Mapping Spectrometer (TOMS) and Se-viewing Field-of-view Sensor (SeaWiFS) acquire daily global-scale data used to produce imagery for monitoring dust storm formation and movement. This global-scale imagery has documented the frequent transmission of dust storm-derived soils through Earth's atmosphere and the magnitude of many of these events. While various research projects have been undertaken to understand this normal planetary process, little has been done to address its impact on ocean and human health. This review will address the ability of dust storms to influence marine microbial population densities and transport of soil-associated toxins and pathogenic microorganisms to marine environments. The implications of dust on ocean and human health in this emerging scientific field will be discussed.

  13. Detection of Asian Dust Storm Using MODIS Measurements

    Directory of Open Access Journals (Sweden)

    Yong Xie

    2017-08-01

    Full Text Available Every year, a large number of aerosols are released from dust storms into the atmosphere, which may have potential impacts on the climate, environment, and air quality. Detecting dust aerosols and monitoring their movements and evolutions in a timely manner is a very significant task. Satellite remote sensing has been demonstrated as an effective means for observing dust aerosols. In this paper, an algorithm based on the multi-spectral technique for detecting dust aerosols was developed by combining measurements of moderate resolution imaging spectroradiometer (MODIS reflective solar bands and thermal emissive bands. Data from dust events that occurred during the past several years were collected as training data for spectral and statistical analyses. According to the spectral curves of various scene types, a series of spectral bands was selected individually or jointly, and corresponding thresholds were defined for step-by-step scene classification. The multi-spectral algorithm was applied mainly to detect dust storms in Asia. The detection results were validated not only visually with MODIS true color images, but also quantitatively with products of Ozone Monitoring Instrument (OMI and Cloud Aerosol Lidar with Orthogonal Polarization (CALIOP. The validations showed that this multi-spectral detection algorithm was suitable to monitor dust aerosols in the selected study areas.

  14. Oxidant enhancement in martian dust devils and storms: storm electric fields and electron dissociative attachment.

    Science.gov (United States)

    Delory, Gregory T; Farrell, William M; Atreya, Sushil K; Renno, Nilton O; Wong, Ah-San; Cummer, Steven A; Sentman, Davis D; Marshall, John R; Rafkin, Scot C R; Catling, David C

    2006-06-01

    Laboratory studies, numerical simulations, and desert field tests indicate that aeolian dust transport can generate atmospheric electricity via contact electrification or "triboelectricity." In convective structures such as dust devils and dust storms, grain stratification leads to macroscopic charge separations and gives rise to an overall electric dipole moment in the aeolian feature, similar in nature to the dipolar electric field generated in terrestrial thunderstorms. Previous numerical simulations indicate that these storm electric fields on Mars can approach the ambient breakdown field strength of approximately 25 kV/m. In terrestrial dust phenomena, potentials ranging from approximately 20 to 160 kV/m have been directly measured. The large electrostatic fields predicted in martian dust devils and storms can energize electrons in the low pressure martian atmosphere to values exceeding the electron dissociative attachment energy of both CO2 and H2O, which results in the formation of the new chemical products CO/O- and OH/H-, respectively. Using a collisional plasma physics model, we present calculations of the CO/O- and OH/H- reaction and production rates. We demonstrate that these rates vary geometrically with the ambient electric field, with substantial production of dissociative products when fields approach the breakdown value of approximately 25 kV/m. The dissociation of H2O into OH/H- provides a key ingredient for the generation of oxidants; thus electrically charged dust may significantly impact the habitability of Mars.

  15. WRF-Chem Model Simulations of Arizona Dust Storms

    Science.gov (United States)

    Mohebbi, A.; Chang, H. I.; Hondula, D.

    2017-12-01

    The online Weather Research and Forecasting model with coupled chemistry module (WRF-Chem) is applied to simulate the transport, deposition and emission of the dust aerosols in an intense dust outbreak event that took place on July 5th, 2011 over Arizona. Goddard Chemistry Aerosol Radiation and Transport (GOCART), Air Force Weather Agency (AFWA), and University of Cologne (UoC) parameterization schemes for dust emission were evaluated. The model was found to simulate well the synoptic meteorological conditions also widely documented in previous studies. The chemistry module performance in reproducing the atmospheric desert dust load was evaluated using the horizontal field of the Aerosol Optical Depth (AOD) from Moderate Resolution Imaging Spectro (MODIS) radiometer Terra/Aqua and Aerosol Robotic Network (AERONET) satellites employing standard Dark Target (DT) and Deep Blue (DB) algorithms. To assess the temporal variability of the dust storm, Particulate Matter mass concentration data (PM10 and PM2.5) from Arizona Department of Environmental Quality (AZDEQ) ground-based air quality stations were used. The promising performance of WRF-Chem indicate that the model is capable of simulating the right timing and loading of a dust event in the planetary-boundary-layer (PBL) which can be used to forecast approaching severe dust events and to communicate an effective early warning.

  16. Developing Subdomain Allocation Algorithms Based on Spatial and Communicational Constraints to Accelerate Dust Storm Simulation

    Science.gov (United States)

    Gui, Zhipeng; Yu, Manzhu; Yang, Chaowei; Jiang, Yunfeng; Chen, Songqing; Xia, Jizhe; Huang, Qunying; Liu, Kai; Li, Zhenlong; Hassan, Mohammed Anowarul; Jin, Baoxuan

    2016-01-01

    Dust storm has serious disastrous impacts on environment, human health, and assets. The developments and applications of dust storm models have contributed significantly to better understand and predict the distribution, intensity and structure of dust storms. However, dust storm simulation is a data and computing intensive process. To improve the computing performance, high performance computing has been widely adopted by dividing the entire study area into multiple subdomains and allocating each subdomain on different computing nodes in a parallel fashion. Inappropriate allocation may introduce imbalanced task loads and unnecessary communications among computing nodes. Therefore, allocation is a key factor that may impact the efficiency of parallel process. An allocation algorithm is expected to consider the computing cost and communication cost for each computing node to minimize total execution time and reduce overall communication cost for the entire simulation. This research introduces three algorithms to optimize the allocation by considering the spatial and communicational constraints: 1) an Integer Linear Programming (ILP) based algorithm from combinational optimization perspective; 2) a K-Means and Kernighan-Lin combined heuristic algorithm (K&K) integrating geometric and coordinate-free methods by merging local and global partitioning; 3) an automatic seeded region growing based geometric and local partitioning algorithm (ASRG). The performance and effectiveness of the three algorithms are compared based on different factors. Further, we adopt the K&K algorithm as the demonstrated algorithm for the experiment of dust model simulation with the non-hydrostatic mesoscale model (NMM-dust) and compared the performance with the MPI default sequential allocation. The results demonstrate that K&K method significantly improves the simulation performance with better subdomain allocation. This method can also be adopted for other relevant atmospheric and numerical

  17. Analysis of dust storms observed in Mongolia during 1937-1999

    Science.gov (United States)

    Natsagdorj, L.; Jugder, D.; Chung, Y. S.

    Climatology of dust storms in Mongolia is compiled based on observational data of 49 meteorological stations from 1960 to 1999 and compared them with data between 1937 and 1989. Three different maps of the distribution of dust storms, drifting dust and the number of dusty days are presented. The results of the analysis show that the number of days with dust storms is hollow of west Mongolia. It is found that 61% of dust storms occur in the spring in Mongolia and a dust storm lasts on average from 3.1 to 6.0 h. About 65.5-91.0% of dust storms occur in daytime and 9.0-34.5% at night. Dust storms occur more frequently in the city region and are accompanied by surface wind speeds usually from 6 to 20 ms -1. Dust storms usually occur when soil and air are dry, and 70% of dust storms occur in dry soil conditions. When dust storms occur, relative humidity averages 20-40% in Mongolia. An important outcome of this study is the trend of dusty days between 1960 and 1999. It shows that the number of dusty days has tripled from the 1960s to 1990s and has decreased since 1990.

  18. Activation analysis of deposited dust brought to Israel by dust storms

    International Nuclear Information System (INIS)

    Ganor, E.; Tal, A.; Donagi, A.

    1975-01-01

    The determination of dust particles deposited in Jerusalem during regional dust storms was carried out by polarized microscopy, X-ray analysis and atomic absorption measurements. These analyses showed the presence of particles of quartz, calcite, dolomite, feldspar, halite, kaolinite, montmorillonite, epidote, tourmaline, glauconite, illite and other heavy minerals. The aims of the present study were to apply activation analysis for the determination of element composition in dust samples; to compare the results obtained by activation analysis with those obtained by other methods, i.e. chemical analysis, polarized microscopy and X-ray analysis. The results obtained by the various methods were in good agreement. (B.G.)

  19. Long-Term Observations of Dust Storms in Sandy Desert Environments

    Science.gov (United States)

    Yun, Hye-Won; Kim, Jung-Rack; Choi, Yun-Soo

    2015-04-01

    Mineral dust occupies the largest portion of atmospheric aerosol. Considering the numerous risks that dust poses for socioeconomic and anthropogenic activities, it is crucial to understand sandy desert environments, which frequently generate dust storms and act as a primary source of atmospheric aerosol. To identify mineral aerosol mechanisms, it is essential to monitor desert environmental factors involving dust storm generation in the long term. In this study, we focused on two major environmental factors: local surface roughness and soil moisture. Since installments of ground observation networks in sandy deserts are unfeasible, remote sensing techniques for mining desert environmental factors were employed. The test area was established within the Badain Jaran and Kubuqi Deserts in Inner Mongolia, China, where significant seasonal aeolian processes emit mineral dust that influences all of East Asia. To trace local surface roughness, we employed a multi-angle imaging spectroradiometer (MISR) image sequence to extract multi-angle viewing (MAV) topographic parameters such as normalized difference angular index, which represents characteristics of the target desert topography. The backscattering coefficient from various space-borne SAR and stereotopography were compared with MAV observations to determine calibrated local surface roughness. Soil moisture extraction techniques from InSAR-phase coherence stacks were developed and compiled with advanced scatterometer (ASCAT) soil moisture data. Combined with metrological information such as the European Centre for Medium-Range Weather Forecasts (ECMWF) ERA interim, correlations between intensity of sand dune activity as a proxy of aeolian processes in desert environments, surface wind conditions, and surface soil moisture were traced. Overall, we have confirmed that tracking sandy desert aeolian environments for long-term observations is feasible with space-borne, multi-sensor observations when combined with

  20. Onset of frequent dust storms in northern China at ~AD 1100.

    Science.gov (United States)

    He, Yuxin; Zhao, Cheng; Song, Mu; Liu, Weiguo; Chen, Fahu; Zhang, Dian; Liu, Zhonghui

    2015-11-26

    Dust storms in northern China strongly affect the living and health of people there and the dusts could travel a full circle of the globe in a short time. Historically, more frequent dust storms occurred during cool periods, particularly the Little Ice Age (LIA), generally attributed to the strengthened Siberian High. However, limited by chronological uncertainties in proxy records, this mechanism may not fully reveal the causes of dust storm frequency changes. Here we present a late Holocene dust record from the Qaidam Basin, where hydrological changes were previously reconstructed, and examine dust records from northern China, including the ones from historical documents. The records, being broadly consistent, indicate the onset of frequent dust storms at ~AD 1100. Further, peaked dust storm events occurred at episodes of high total solar irradiance or warm-dry conditions in source regions, superimposed on the high background of frequent dust storms within the cool LIA period. We thus suggest that besides strong wind activities, the centennial-scale dust storm events over the last 1000 years appear to be linked to the increased availability of dust source. With the anticipated global warming and deteriorating vegetation coverage, frequent occurrence of dust storms in northern China would be expected to persist.

  1. Asian Dust Storm Outbreaks: A Satellite-Surface Perspective

    Science.gov (United States)

    Tsay, Si-Chee

    2006-01-01

    Airborne dusts from northern China contribute a significant part of the air quality problem and, to some extent, regional climatic impact in Asia during springtime. Asian dust typically originates in desert areas far from polluted urban regions. During the transport, dust layers can interact with anthropogenic sulfate and soot aerosols from heavily polluted urban areas. Added to the complex effects of clouds and natural marine aerosols, dust particles reaching the marine environment can have drastically different properties than those from the source. Thus, understanding the unique temporal and spatial variations of Asian dust is of special importance in regional-to-global climate issues (e.g., radiative forcing, hydrological cycle, and primary biological productivity in the mid-Pacific Ocean, etc.), as well as societal concerns (e.g., adverse health effects to humans). The Asian dust and air pollution aerosols can be detected by its colored appearance on current Earth observing satellites (e.g., MODIS, SeaWiFS, TOMS, etc.) and its evolution monitored by satellites and surface network (e.g. AERONET, SKY NET, MPLNET, etc.). Recently, many field campaigns (e.g., ACE-Asia-2001, TRACEP-2001, ADE-2002 & -2003, APEX-2001 & -2003, etc.) were designed and executed to study the compelling variability in spatial and temporal scale of both pollution-derived and naturally occurring aerosols, which often exist in high concentrations over eastern Asia and along the rim of the western Pacific. I will present an overview of the outbreak of Asian dust storms from space and surface observations and to address the climatic effects and societal impacts.

  2. Interannual Similarity in the Martian Atmosphere During the Dust Storm Season

    Science.gov (United States)

    Kass, D. M.; Kleinboehl, A.; McCleese, D. J.; Schofield, J. T.; Smith, M. D.

    2016-01-01

    We find that during the dusty season on Mars (southern spring and summer) of years without a global dust storm there are three large regional-scale dust storms. The storms are labeled A, B, and C in seasonal order. This classification is based on examining the zonal mean 50 Pa (approximately 25 km) daytime temperature retrievals from TES/MGS and MCS/MRO over 6 Mars Years. Regional-scale storms are defined as events where the temperature exceeds 200 K. Examining the MCS dust field at 50 Pa indicates that warming in the Southern Hemisphere is dominated by direct heating, while northern high latitude warming is a dynamical response. A storms are springtime planet encircling Southern Hemisphere events. B storms are southern polar events that begin near perihelion and last through the solstice. C storms are southern summertime events starting well after the end of the B storm. C storms show the most interannual variability.

  3. Meteorological aspects associated with dust storms in the Sistan region, southeastern Iran

    Science.gov (United States)

    Kaskaoutis, D. G.; Rashki, A.; Houssos, E. E.; Mofidi, A.; Goto, D.; Bartzokas, A.; Francois, P.; Legrand, M.

    2015-07-01

    Dust storms are considered natural hazards that seriously affect atmospheric conditions, ecosystems and human health. A key requirement for investigating the dust life cycle is the analysis of the meteorological (synoptic and dynamic) processes that control dust emission, uplift and transport. The present work focuses on examining the synoptic and dynamic meteorological conditions associated with dust-storms in the Sistan region, southeastern Iran during the summer season (June-September) of the years 2001-2012. The dust-storm days (total number of 356) are related to visibility records below 1 km at Zabol meteorological station, located near to the dust source. RegCM4 model simulations indicate that the intense northern Levar wind, the high surface heating and the valley-like characteristics of the region strongly affect the meteorological dynamics and the formation of a low-level jet that are strongly linked with dust exposures. The intra-annual evolution of the dust storms does not seem to be significantly associated with El-Nino Southern Oscillation, despite the fact that most of the dust-storms are related to positive values of Oceanic Nino Index. National Center for Environmental Prediction/National Center for Atmospheric Research reanalysis suggests that the dust storms are associated with low sea-level pressure conditions over the whole south Asia, while at 700 hPa level a trough of low geopotential heights over India along with a ridge over Arabia and central Iran is the common scenario. A significant finding is that the dust storms over Sistan are found to be associated with a pronounced increase of the anticyclone over the Caspian Sea, enhancing the west-to-east pressure gradient and, therefore, the blowing of Levar. Infrared Difference Dust Index values highlight the intensity of the Sistan dust storms, while the SPRINTARS model simulates the dust loading and concentration reasonably well, since the dust storms are usually associated with peaks in model

  4. Environmentally dependent dust chemistry of a super Asian dust storm in March 2010: observation and simulation

    Science.gov (United States)

    Wang, Qiongzhen; Dong, Xinyi; Fu, Joshua S.; Xu, Jian; Deng, Congrui; Jiang, Yilun; Fu, Qingyan; Lin, Yanfen; Huang, Kan; Zhuang, Guoshun

    2018-03-01

    Near-surface and vertical in situ measurements of atmospheric particles were conducted in Shanghai during 19-23 March 2010 to explore the transport and chemical evolution of dust particles in a super dust storm. An air quality model with optimized physical dust emission scheme and newly implemented dust chemistry was utilized to study the impact of dust chemistry on regional air quality. Two discontinuous dust periods were observed with one traveling over northern China (DS1) and the other passing over the coastal regions of eastern China (DS2). Stronger mixing extents between dust and anthropogenic emissions were found in DS2, reflected by the higher SO2 / PM10 and NO2 / PM10 ratios as well as typical pollution elemental species such as As, Cd, Pb, and Zn. As a result, the concentrations of SO42- and NO3- and the ratio of Ca2+ / Ca were more elevated in DS2 than in DS1 but opposite for the [NH4+] / [SO42-+NO3-] ratio, suggesting the heterogeneous reactions between calcites and acid gases were significantly promoted in DS2 due to the higher level of relative humidity and gaseous pollution precursors. Lidar observation showed a columnar effect on the vertical structure of particle optical properties in DS1 that dust dominantly accounted for ˜ 80-90 % of the total particle extinction from near the ground to ˜ 700 m. In contrast, the dust plumes in DS2 were restrained within lower altitudes while the extinction from spherical particles exhibited a maximum at a high altitude of ˜ 800 m. The model simulation reproduced relatively consistent results with observations that strong impacts of dust heterogeneous reactions on secondary aerosol formation occurred in areas where the anthropogenic emissions were intensive. Compared to the sulfate simulation, the nitrate formation on dust is suggested to be improved in the future modeling efforts.

  5. Simulation of spontaneous and variable global dust storms with the GFDL Mars GCM

    OpenAIRE

    Basu, Shabari; Wilson, John; Richardson, Mark; Ingersoll, Andrew

    2006-01-01

    We report on the successful simulation of global dust storms in a general circulation model. The simulated storms develop spontaneously in multiyear simulations and exhibit significant interannual variability. The simulated storms produce dramatic increases in atmospheric dustiness, global-mean air temperatures, and atmospheric circulation intensity, in accord with observations. As with observed global storms, spontaneous initiation of storms in the model occurs in southern spring and summer,...

  6. Vulnerability Assessment of Dust Storms in the United States under a Changing Climate Scenario

    Science.gov (United States)

    Severe weather events, such as flooding, drought, forest fires, and dust storms can have a serious impact on human health. Dust storm events are not well predicted in the United States, however they are expected to become more frequent as global climate warms through the 21st cen...

  7. Atmospheric Electricity Effects of Eastern Mediterranean Dust Storms

    Science.gov (United States)

    Katz, Shai; Yair, Yoav; Yaniv, Roy; Price, Colin

    2016-04-01

    We present atmospheric electrical measurements conducted at the Wise Observatory (WO) in Mizpe-Ramon (30035'N, 34045'E) and Mt. Hermon (30024'N, 35051'E), Israel, during two massive and unique dust storms that occurred over the Eastern Mediterranean region on February 10-11 and September 08-12, 2015. The first event transported Saharan dust from Egypt and the Sinai Peninsula in advance of a warm front of a Cyprus low pressure system. In the second event, dust particles were transported from the Syrian desert, which dominates the north-east border with Iraq, through flow associated with a shallow Persian trough system. In both events the concentrations of PM10 particles measured by the air-quality monitoring network of the Israeli Ministry of the Environment in Beer-Sheba reached values > 2200 μg m-3. Aerosol Optical Thickness (AOT) obtained from the AERONET station in Sde-Boker reached values up to 4.0. The gradual intensification of the first event reached peak values on the February 11th > 1200 μg m-3 and an AOT ~ 1.8, while the second dust storm commenced on September 8th with a sharp increase reaching peak values of 2225 μg m-3 and AOT of 4.0. Measurements of the fair weather vertical electric field (Ez) and of the vertical current density (Jz) were conducted continuously with a 1 minute temporal resolution. During the February event, very large fluctuations in the electrical parameters were measured at the WO. The Ez values changed between +1000 and +8000 V m-1 while the Jz fluctuated between -10 and +20 pA m-2 (this is an order of magnitude larger compared to the fair weather current density of ~2 pA m-2. In contrast, during the September event, Ez values registered at WO were between -430 and +10 V m-1 while the Jz fluctuated between -6 and +3 pA m2. For the September event the Hermon site showed Ez and Jz values fluctuating between -460 and +570 V m-1 and -14.5 and +18 pA m-2 respectively. The electric field and current variability, amplitude and the

  8. Effects of Asian dust storm events on daily mortality in Taipei, Taiwan

    International Nuclear Information System (INIS)

    Chen, Y.-S.; Sheen, P.-C.; Chen, E.-R.; Liu, Y.-K.; Wu, T.-N.; Yang, C.-Y.

    2004-01-01

    In spring, windblown dust storms originating in the deserts of Mongolia and China make their way to Taipei City. These occurrences are known as Asian dust storm events. The objective of this study was to assess the possible effects of Asian dust storms on the mortality of residents in Taipei, Taiwan, during the period from 1995 to 2000. We identified 39 dust storm episodes, which were classified as index days. Daily deaths on the index days were compared with deaths on the comparison days. We selected two comparison days for each index day, 7 days before the index day and 7 days after the index day. The strongest estimated effects of dust storms were increases of 7.66% in risk for respiratory disease 1 day after the event, 4.92% for total deaths 2 days following the dust storms and 2.59% for circulatory diseases 2 days following the dust storms. However, none of these effects were statistically significant. This study found greater specificity for associations with respiratory deaths, and this increases the likelihood that the association between dust events and daily mortality represents a causal relationship

  9. The impact of dust storms on the Arabian Peninsula and the Red Sea

    KAUST Repository

    Jish Prakash, P.

    2015-01-12

    Located in the dust belt, the Arabian Peninsula is a major source of atmospheric dust. Frequent dust outbreaks and some 15 to 20 dust storms per year have profound effects on all aspects of human activity and natural processes in this region. To quantify the effect of severe dust events on radiation fluxes and regional climate characteristics, we simulated the storm that occurred from 18 to 20 March 2012 using a regional weather research forecast model fully coupled with the chemistry/aerosol module (WRF–Chem). This storm swept over a remarkably large area affecting the entire Middle East, northeastern Africa, Afghanistan, and Pakistan. It was caused by a southward propagating cold front, and the associated winds activated the dust production in river valleys of the lower Tigris and Euphrates in Iraq; the coastal areas in Kuwait, Iran, and the United Arab Emirates; the Rub al Khali, An Nafud, and Ad Dahna deserts; and along the Red Sea coast on the west side of the Arabian Peninsula. Our simulation results compare well with available ground-based and satellite observations. We estimate the total amount of dust generated by the storm to have reached 94 Mt. Approximately 78% of this dust was deposited within the calculation domain. The Arabian Sea and Persian Gulf received 5.3 Mt and the Red Sea 1.2 Mt of dust. Dust particles bring nutrients to marine ecosystems, which is especially important for the oligotrophic Northern Red Sea. However, their contribution to the nutrient balance in the Red Sea remains largely unknown. By scaling the effect of one storm to the number of dust storms observed annually over the Red Sea, we estimate the annual dust deposition to the Red Sea, associated with major dust storms, to be 6 Mt.

  10. The impact of dust storms on the Arabian Peninsula and the Red Sea

    KAUST Repository

    Jish Prakash, P.; Stenchikov, Georgiy L.; Kalenderski, Stoitchko; Osipov, Sergey; Bangalath, Hamza Kunhu

    2015-01-01

    Located in the dust belt, the Arabian Peninsula is a major source of atmospheric dust. Frequent dust outbreaks and some 15 to 20 dust storms per year have profound effects on all aspects of human activity and natural processes in this region. To quantify the effect of severe dust events on radiation fluxes and regional climate characteristics, we simulated the storm that occurred from 18 to 20 March 2012 using a regional weather research forecast model fully coupled with the chemistry/aerosol module (WRF–Chem). This storm swept over a remarkably large area affecting the entire Middle East, northeastern Africa, Afghanistan, and Pakistan. It was caused by a southward propagating cold front, and the associated winds activated the dust production in river valleys of the lower Tigris and Euphrates in Iraq; the coastal areas in Kuwait, Iran, and the United Arab Emirates; the Rub al Khali, An Nafud, and Ad Dahna deserts; and along the Red Sea coast on the west side of the Arabian Peninsula. Our simulation results compare well with available ground-based and satellite observations. We estimate the total amount of dust generated by the storm to have reached 94 Mt. Approximately 78% of this dust was deposited within the calculation domain. The Arabian Sea and Persian Gulf received 5.3 Mt and the Red Sea 1.2 Mt of dust. Dust particles bring nutrients to marine ecosystems, which is especially important for the oligotrophic Northern Red Sea. However, their contribution to the nutrient balance in the Red Sea remains largely unknown. By scaling the effect of one storm to the number of dust storms observed annually over the Red Sea, we estimate the annual dust deposition to the Red Sea, associated with major dust storms, to be 6 Mt.

  11. Environmentally dependent dust chemistry of a super Asian dust storm in March 2010: observation and simulation

    Directory of Open Access Journals (Sweden)

    Q. Wang

    2018-03-01

    Full Text Available Near-surface and vertical in situ measurements of atmospheric particles were conducted in Shanghai during 19–23 March 2010 to explore the transport and chemical evolution of dust particles in a super dust storm. An air quality model with optimized physical dust emission scheme and newly implemented dust chemistry was utilized to study the impact of dust chemistry on regional air quality. Two discontinuous dust periods were observed with one traveling over northern China (DS1 and the other passing over the coastal regions of eastern China (DS2. Stronger mixing extents between dust and anthropogenic emissions were found in DS2, reflected by the higher SO2 ∕ PM10 and NO2 ∕ PM10 ratios as well as typical pollution elemental species such as As, Cd, Pb, and Zn. As a result, the concentrations of SO42− and NO3− and the ratio of Ca2+ ∕ Ca were more elevated in DS2 than in DS1 but opposite for the [NH4+] ∕ [SO42−+NO3−] ratio, suggesting the heterogeneous reactions between calcites and acid gases were significantly promoted in DS2 due to the higher level of relative humidity and gaseous pollution precursors. Lidar observation showed a columnar effect on the vertical structure of particle optical properties in DS1 that dust dominantly accounted for ∼ 80–90 % of the total particle extinction from near the ground to ∼ 700 m. In contrast, the dust plumes in DS2 were restrained within lower altitudes while the extinction from spherical particles exhibited a maximum at a high altitude of ∼ 800 m. The model simulation reproduced relatively consistent results with observations that strong impacts of dust heterogeneous reactions on secondary aerosol formation occurred in areas where the anthropogenic emissions were intensive. Compared to the sulfate simulation, the nitrate formation on dust is suggested to be improved in the future modeling efforts.

  12. Study of characterizations of aerosols in a dust storm source region and its influence on Beijing by NAA and ICP-MS

    International Nuclear Information System (INIS)

    Song Yan; Chai Zhifang; Xu Diandou; Feng Weiyue; Ouyang Hong; Mao Xueying

    2005-01-01

    Dust storms have caused many problems in the environment, health and climate. For decades, dust storms have occurred frequently in various regions of China. The dust aerosols not only affected the local atmosphere, but also contaminated the atmosphere of the circumjacent regions. Further, they could affect Korea, Japan and even USA via long-range transportation. Many researches related to Chinese dust storms have been reported, however, there are few reports on the chemical components and characters of dust aerosols at their sources. Data on chemical properties of dust storm in the dust source region can help people understand the characteristics of dust storms and their influence on local and other regions. Duolun county (42 degree 13' N, 116 degree 25' E) lies in the southeast of Inner Mongolia, China, in the south of Hunshandake sands (one of the four famous sands in China). Because it is located at windward of Beijing, the dust aerosols can affect Beijing quickly when dust storm occurs. Hence, the study of chemical compositions and elemental abundance patterns of atmospheric particulate matters at Duolun is imperative to understand its influence on Beijing's atmospheric quality. In this work, TSP and PM2.5 samples were collected in Beijing and Duolun, Inner Mongolia, China, in April and May of 2002. Monthly arithmetic averages of the mass concentrations indicated that the pollution of atmospheric particulate matter's (APM) in Duolun was very serious, especially in April. The chemical compositions of total 163 samples were analyzed by INAA and ICP-MS and their origins were identified through Enrichment Factor and Principal Component Analysis. The results showed that the main source of Duolun aerosols was soil dust, and coal combustion constituted the important anthropogenic contribution. The dust events in April and changes of local meteorological conditions were the main reasons for the differences of APM characteristics between April and May. The

  13. Identification of dust storm source areas in West Asia using multiple environmental datasets.

    Science.gov (United States)

    Cao, Hui; Amiraslani, Farshad; Liu, Jian; Zhou, Na

    2015-01-01

    Sand and Dust storms are common phenomena in arid and semi-arid areas. West Asia Region, especially Tigris-Euphrates alluvial plain, has been recognized as one of the most important dust source areas in the world. In this paper, a method is applied to extract SDS (Sand and Dust Storms) sources in West Asia region using thematic maps, climate and geography, HYSPLIT model and satellite images. Out of 50 dust storms happened during 2000-2013 and collected in form of MODIS images, 27 events were incorporated as demonstrations of the simulated trajectories by HYSPLIT model. Besides, a dataset of the newly released Landsat images was used as base-map for the interpretation of SDS source regions. As a result, six main clusters were recognized as dust source areas. Of which, 3 clusters situated in Tigris-Euphrates plain were identified as severe SDS sources (including 70% dust storms in this research). Another cluster in Sistan plain is also a potential source area. This approach also confirmed six main paths causing dust storms. These paths are driven by the climate system including Siberian and Polar anticyclones, monsoon from Indian Subcontinent and depression from north of Africa. The identification of SDS source areas and paths will improve our understandings on the mechanisms and impacts of dust storms on socio-economy and environment of the region. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Dust Storms in North China in 2002: A Case Study of the Low Frequency Oscillation

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The low frequency oscillation in both hemispheres and its possible role in the dust weather storm events over North China in 2002 are analyzed as a case study. Results show that the Aleutian Low is linked with the Circumpolar Vortex in the Southern Hemisphere on a 30-60-day oscillation, with a weak Circumpolar Vortex tending to deepen the Aleutian Low which may be helpful for the generation of dust storm events.The possible mechanism behind this is the inter-hemispheric interaction of the mean meridional circulation,with the major variability over East Asia. The zonal mean westerly wind at high latitudes of the Southern Hemisphere in the upper level troposphere may lead that of the Northern Hemisphere, which then impacts the local circulation in the Northern Hemisphere. Thus, the low frequency oscillation teleconnection is one possible linkage in the coupling between the Southern Hemisphere circulation and dust events over North China. However, the interannual variation of the low frequency oscillation is unclear.

  15. Development of a Severe Sand-dust Storm Model and its Application to Northwest China

    International Nuclear Information System (INIS)

    Zhang Xiaoling; Cheng, Linsheng; Chung, Yong-Seung

    2003-01-01

    A very strong sand-dust storm occurred on 5 May, 1993 in Northwest China. In order to give a detailed description of the evolution of a mesoscale system along with the heavy sand-dust storm, a complex model including improved physical processes and a radiation parameterization scheme was developed based on a simulation model. The improved model introduced a sand-dust transport equation as well as a lifting transport model, sand-dust aerosols and radiation parameterization scheme.Using this model, the super sand-dust storm case on 5 May was simulated. Results indicated that the coupled mesoscale model successfully simulated the mesoscale vortex, its strong upward movement and the warm core structure of PBL. The generation and development of these structures were consistent with that of the sand-dust storm and dry squall-line (which was different with normal squall-line). Simulated sand-dust concentration and its radiative effect corresponded with observation data. The radiative effect of sand-dust aerosols caused the air to heat on the top of aerosol layer with a heating rate amounting to 2 K hr -1 . As a result, solar radiation flux that reached the surface, net radiation flux and surface temperature all suddenly went down. The temperature gradient across the cold front became obviously larger. Therefore, enhancing the development of the mesoscale system. The simulation generally reflected features during the squall-line passage of this strong sand-dust storm

  16. Spotter's Guide for Identifying and Reporting Severe Local Storms.

    Science.gov (United States)

    National Oceanic and Atmospheric Administration (DOC), Rockville, MD.

    This guide is designed to assist personnel working in the National Weather Service's Severe Local Storm Spotter Networks in identifying and reporting severe local storms. Provided are pictures of cloud types for severe storms including tornadoes, hail, thunder, lightning, heavy rains, and waterspouts. Instructions for key indications to watch for…

  17. Dust Storm Feature Identification and Tracking from 4D Simulation Data

    Science.gov (United States)

    Yu, M.; Yang, C. P.

    2016-12-01

    Dust storms cause significant damage to health, property and the environment worldwide every year. To help mitigate the damage, dust forecasting models simulate and predict upcoming dust events, providing valuable information to scientists, decision makers, and the public. Normally, the model simulations are conducted in four-dimensions (i.e., latitude, longitude, elevation and time) and represent three-dimensional (3D), spatial heterogeneous features of the storm and its evolution over space and time. This research investigates and proposes an automatic multi-threshold, region-growing based identification algorithm to identify critical dust storm features, and track the evolution process of dust storm events through space and time. In addition, a spatiotemporal data model is proposed, which can support the characterization and representation of dust storm events and their dynamic patterns. Quantitative and qualitative evaluations for the algorithm are conducted to test the sensitivity, and capability of identify and track dust storm events. This study has the potential to assist a better early warning system for decision-makers and the public, thus making hazard mitigation plans more effective.

  18. An automated and integrated framework for dust storm detection based on ogc web processing services

    Science.gov (United States)

    Xiao, F.; Shea, G. Y. K.; Wong, M. S.; Campbell, J.

    2014-11-01

    Dust storms are known to have adverse effects on public health. Atmospheric dust loading is also one of the major uncertainties in global climatic modelling as it is known to have a significant impact on the radiation budget and atmospheric stability. The complexity of building scientific dust storm models is coupled with the scientific computation advancement, ongoing computing platform development, and the development of heterogeneous Earth Observation (EO) networks. It is a challenging task to develop an integrated and automated scheme for dust storm detection that combines Geo-Processing frameworks, scientific models and EO data together to enable the dust storm detection and tracking processes in a dynamic and timely manner. This study develops an automated and integrated framework for dust storm detection and tracking based on the Web Processing Services (WPS) initiated by Open Geospatial Consortium (OGC). The presented WPS framework consists of EO data retrieval components, dust storm detecting and tracking component, and service chain orchestration engine. The EO data processing component is implemented based on OPeNDAP standard. The dust storm detecting and tracking component combines three earth scientific models, which are SBDART model (for computing aerosol optical depth (AOT) of dust particles), WRF model (for simulating meteorological parameters) and HYSPLIT model (for simulating the dust storm transport processes). The service chain orchestration engine is implemented based on Business Process Execution Language for Web Service (BPEL4WS) using open-source software. The output results, including horizontal and vertical AOT distribution of dust particles as well as their transport paths, were represented using KML/XML and displayed in Google Earth. A serious dust storm, which occurred over East Asia from 26 to 28 Apr 2012, is used to test the applicability of the proposed WPS framework. Our aim here is to solve a specific instance of a complex EO data

  19. Simulation and analysis of synoptic scale dust storms over the Arabian Peninsula

    Science.gov (United States)

    Beegum, S. Naseema; Gherboudj, Imen; Chaouch, Naira; Temimi, Marouane; Ghedira, Hosni

    2018-01-01

    Dust storms are among the most severe environmental problems in arid and semi-arid regions of the world. The predictability of seven dust events, viz. D1: April 2-4, 2014; D2: February 23-24, 2015; D3: April 1-3, 2015; D4: March 26-28, 2016; D5: August 3-5, 2016; D6: March 13-14, 2017 and D7:March 19-21, 2017, are investigated over the Arabian Peninsula using a regionally adapted chemistry transport model CHIMERE coupled with the Weather Research and Forecast (WRF) model. The hourly forecast products of particulate matter concentrations (PM10) and aerosol optical depths (AOD) are compared against both satellite-based (MSG/SEVRI RGB dust, MODIS Deep Blue Aerosol Optical Depth: DB-AOD, Ozone Monitoring Instrument observed UV Aerosol Absorption Index: OMI-AI) and ground-based (AERONET AOD) remote sensing products. The spatial pattern and the time series of the simulations show good agreement with the observations in terms of the dust intensity as well as the spatiotemporal distribution. The causative mechanisms of these dust events are identified by the concurrent analyses of the meteorological data. From these seven storms, five are associated with synoptic scale meteorological processes, such as prefrontal storms (D1 and D7), postfrontal storms of short (D2), and long (D3) duration types, and a summer shamal storm (D6). However, the storms D4 and D6 are partly associated with mesoscale convective type dust episodes known as haboobs. The socio-economic impacts of the dust events have been assessed by estimating the horizontal visibility, air quality index (AQI), and the dust deposition flux (DDF) from the forecasted dust concentrations. During the extreme dust events, the horizontal visibility drops to near-zero values co-occurred withhazardous levels of AQI and extremely high dust deposition flux (250 μg cm- 2 day- 1).

  20. Aerosol deposition and suspension during a Texas dust storm

    International Nuclear Information System (INIS)

    Porch, W.M.; Lovill, J.E.

    1976-03-01

    It is important to understand deposition and suspension of aerosol by wind as separate phenomena. This is especially true for the case of a contaminated area of land, contributing toxic aerosol. Once the toxic particulates have left the contaminated area, they can only deposit, even though new non-toxic particulates are being suspended all around them. A fortunate meteorological situation and a site with fast response aerosol and wind instrumentation, allowed us to analyze deposition and suspension, as separate phenomena on the same data record during a Texas dust storm. The major results of this analysis can be summarized as follows: The size distribution of the soil particulates and the geometrical orientation of plowed furrows to the wind are important to the threshold velocity, beyond which particles will be suspended from bare soil. Thresholds this year for clay soil were almost double that for the previous year for sand soil; the relationship between aerosol flux and wind speed above threshold was less well defined than the sandy soil data. The relationship does seem to involve a lower exponent than the sandy soil data, which showed a flux that varied as about the sixth power of the wind speed

  1. An analysis of the correlation between dust storms in Korea and 137Cs nuclide concentration

    International Nuclear Information System (INIS)

    Choi, Soo-won; Kim, Jeong-hun; Shin, Sang-hwa; Hwang, Joo-ho

    2008-01-01

    Dust storms occur in Korea during spring time when fine dust is blown in from the far western regions of western China and Mongolia. A fine powdery dust is blown up into the sky and enters the upper reaches of the atmosphere where it is carried easterly across China then slowly falls to the ground on the Korean peninsula and Japan. The dust originates mostly in the Gobi dessert of China, as well as the yellow earth regions in the middle and upper streams of the Yellow river in China. Previous studies on dust storms have been limited to following or estimating their courses, distribution and frequency, or distribution of the heavy metals they transmit. However, since radionuclides exist in the dust, they must also exist in the dust storms. In this study, we analyzed the correlation of :1 37 Cs nuclide concentration based on a count of annual dust storm occurrence in the city of Suwon, South Korea and assessed seasonal differences of 137 Cs nuclide concentration

  2. Dust storms over the Arabian Gulf: a possible indicator of climate changes consequences

    NARCIS (Netherlands)

    Hamza, W.; Enan, M.R.; Al-Hassini, H.; Stuut, J.B.; de-Beer, D.

    2011-01-01

    Dust storm frequencies and strengths were monitored during 2009 at various locations along the coast of the United Arab Emirates (UAE), as representative sites of the Arabian Gulf marine environment. The results have been compared with a pre-2009 five-year data set. Mineralogical components of dust

  3. Impacts of sand and dust storms on agriculture and potential agricultural applications of a SDSWS

    International Nuclear Information System (INIS)

    Stefanski, R; Sivakumar, M V K

    2009-01-01

    This paper will give an overview of the various impacts of sand and dust storms on agriculture and then address the potential applications of a Sand and Dust Storm Warning System (SDSWS) for agricultural users. Sand and dust storms have many negative impacts on the agricultural sector including: reducing crop yields by burial of seedlings under sand deposits, the loss of plant tissue and reduced photosynthetic activity as a result of sandblasting, delaying plant development, increasing end-of-season drought risk, causing injury and reduced productivity of livestock, increasing soil erosion and accelerating the process of land degradation and desertification, filling up irrigation canals with sediments, covering transportation routes, affecting water quality of rivers and streams, and affecting air quality. One positive impact is the fertilization of soil minerals to terrestrial ecosystems. There are several potential agricultural applications of a SDSWS. The first is to alert agricultural communities farmers to take preventive action in the near-term such as harvesting maturing crops (vegetables, grain), sheltering livestock, and strengthening infrastructure (houses, roads, grain storage) for the storm. Also, the products of a SDSWS could be used in for monitoring potential locust movement and post-storm crop damage assessments. An archive of SDSWS products (movement, amount of sand and dust) could be used in researching plant and animal pathogen movement and the relationship of sand and dust storms to disease outbreaks and in developing improved soil erosion and land degradation models.

  4. Climate change implications and use of early warning systems for global dust storms

    Science.gov (United States)

    Harriman, Lindsey M.

    2014-01-01

    With increased changes in land cover and global climate, early detection and warning of dust storms in conjunction with effective and widespread information broadcasts will be essential to the prevention and mitigation of future risks and impacts. Human activities, seasonal variations and long-term climatic patterns influence dust storms. More research is needed to analyse these factors of dust mobilisation to create more certainty for the fate of vulnerable populations and ecosystems in the future. Early warning and communication systems, when in place and effectively implemented, can offer some relief to these vulnerable areas. As an issue that affects many regions of the world, there is a profound need to understand the potential changes and ultimately create better early warning systems for dust storms.

  5. Radiative Effects of Aerosols Generated from Biomass Burning, Dust Storms, and Forest Fires

    Science.gov (United States)

    Christopher Sundar A.; Vulcan, Donna V.; Welch, Ronald M.

    1996-01-01

    Atmospheric aerosol particles, both natural and anthropogenic, are important to the earth's radiative balance. They scatter the incoming solar radiation and modify the shortwave reflective properties of clouds by acting as Cloud Condensation Nuclei (CCN). Although it has been recognized that aerosols exert a net cooling influence on climate (Twomey et al. 1984), this effect has received much less attention than the radiative forcings due to clouds and greenhouse gases. The radiative forcing due to aerosols is comparable in magnitude to current anthropogenic greenhouse gas forcing but opposite in sign (Houghton et al. 1990). Atmospheric aerosol particles generated from biomass burning, dust storms and forest fires are important regional climatic variables. A recent study by Penner et al. (1992) proposed that smoke particles from biomass burning may have a significant impact on the global radiation balance. They estimate that about 114 Tg of smoke is produced per year in the tropics through biomass burning. The direct and indirect effects of smoke aerosol due to biomass burning could add up globally to a cooling effect as large as 2 W/sq m. Ackerman and Chung (1992) used model calculations and the Earth Radiation Budget Experiment (ERBE) data to show that in comparison to clear days, the heavy dust loading over the Saudi Arabian peninsula can change the Top of the Atmosphere (TOA) clear sky shortwave and longwave radiant exitance by 40-90 W/sq m and 5-20 W/sq m, respectively. Large particle concentrations produced from these types of events often are found with optical thicknesses greater than one. These aerosol particles are transported across considerable distances from the source (Fraser et al. 1984). and they could perturb the radiative balance significantly. In this study, the regional radiative effects of aerosols produced from biomass burning, dust storms and forest fires are examined using the Advanced Very High Resolution Radiometer (AVHRR) Local Area

  6. The relationship between gorgonian coral (Cnidaria: Gorgonacea) diseases and African dust storms

    Science.gov (United States)

    Weir-Brush, J. R.; Garrison, V.H.; Smith, G.W.; Shinn, E.A.

    2004-01-01

    The number of reports of coral diseases has increased throughout the world in the last 20 years. Aspergillosis, which primarily affects Gorgonia ventalina and G. flabellum, is one of the few diseases to be characterized. This disease is caused by Aspergillus sydowii, a terrestrial fungus with a worldwide distribution. Upon infection, colonies may lose tissue, and ultimately, mortality may occur if the infection is not sequestered. The spores of A. sydowii are African dust storms transport and deposit pathogens, we collected air samples from both dust storms and periods of nondust in St. John, U.S. Virgin Islands. Because we focused on fungal pathogens and used A. sydowii as a model, we isolated and cultured fungi on various types of media. Fungi including Aspergillus spp. were isolated from air samples taken from dust events and non-dust events. Twenty-three separate cultures and seven genera were isolated from dust event samples whereas eight cultures from five genera were isolated from non-dust air samples. Three isolates from the Virgin Islands dust event samples morphologically identified as Aspergillus spp. produced signs of aspergillosis in seafans, and the original pathogens were re-isolated from those diseased seafans fulfilling Koch's Postulates. This research supports the hypothesis that African dust storms transport across the Atlantic Ocean and deposit potential coral pathogens in the Caribbean.

  7. Dust Storms from Degraded Drylands of Asia: Dynamics and Health Impacts

    Directory of Open Access Journals (Sweden)

    Shinji Otani

    2017-11-01

    Full Text Available Asian dust events are massive meteorological phenomena during which dust particles from Chinese and Mongolian deserts are blown into the atmosphere and carried by westerly winds across Northeast Asia. Recently, there has been steady increase in both the frequency and the severity of Asian atmospheric dust events. Concern has been expressed regarding the potential health hazards in affected areas. The principal nature of the damage associated with Asian dust events differs between the emission (sandstorm and downwind (air pollution regions. In the emission region, the health impacts of dust storms are reflected in the high prevalence of respiratory diseases and severe subjective symptoms. Extreme dust storm events may cause a disaster to happen. In downwind regions such as Japan, analysis of Asian dust particles has shown the presence of ammonium ions, sulfate ions, nitrate ions, and heavy metal compounds that are considered not to originate from soil. Asian dust particles have been thought to adsorb anthropogenic atmospheric pollutants during transport. Therefore, Asian dust events coincide with increases in daily hospital admissions and clinical visits for allergic diseases such as asthma, allergic rhinitis, and conjunctivitis. Although the effect of Asian dust on human health in each region is influenced by a variety of different mechanisms, human activities are partly responsible for such negative effects in many situations. We therefore need to address these environmental problems.

  8. Accelerating Dust Storm Simulation by Balancing Task Allocation in Parallel Computing Environment

    Science.gov (United States)

    Gui, Z.; Yang, C.; XIA, J.; Huang, Q.; YU, M.

    2013-12-01

    Dust storm has serious negative impacts on environment, human health, and assets. The continuing global climate change has increased the frequency and intensity of dust storm in the past decades. To better understand and predict the distribution, intensity and structure of dust storm, a series of dust storm models have been developed, such as Dust Regional Atmospheric Model (DREAM), the NMM meteorological module (NMM-dust) and Chinese Unified Atmospheric Chemistry Environment for Dust (CUACE/Dust). The developments and applications of these models have contributed significantly to both scientific research and our daily life. However, dust storm simulation is a data and computing intensive process. Normally, a simulation for a single dust storm event may take several days or hours to run. It seriously impacts the timeliness of prediction and potential applications. To speed up the process, high performance computing is widely adopted. By partitioning a large study area into small subdomains according to their geographic location and executing them on different computing nodes in a parallel fashion, the computing performance can be significantly improved. Since spatiotemporal correlations exist in the geophysical process of dust storm simulation, each subdomain allocated to a node need to communicate with other geographically adjacent subdomains to exchange data. Inappropriate allocations may introduce imbalance task loads and unnecessary communications among computing nodes. Therefore, task allocation method is the key factor, which may impact the feasibility of the paralleling. The allocation algorithm needs to carefully leverage the computing cost and communication cost for each computing node to minimize total execution time and reduce overall communication cost for the entire system. This presentation introduces two algorithms for such allocation and compares them with evenly distributed allocation method. Specifically, 1) In order to get optimized solutions, a

  9. Investigation of Three-Dimensional Evolution of East Asian Dust Storm by Modeling and Remote Sensing Measurements

    Directory of Open Access Journals (Sweden)

    Jiawei Li

    2015-01-01

    Full Text Available The three-dimensional evolution of an East Asian dust storm during 23–26 April 2009 was investigated by utilizing a regional air quality model system (RAQMS and satellite measurements. This severe dust storm hit Mt. Tai in east China with daily mean PM10 concentration reaching 1400 μg/m3 and the model captured the PM10 variation reasonably well. Modeled spatial distributions of AOD and vertical profiles of aerosol extinction coefficient during the dust storm were compared with MODIS and CALIPSO data, demonstrating that RAQMS was able to reproduce the 3D structure and the evolution of the dust storm reasonably well. During early days of the dust storm, daily mean dust-induced AOD exceeded 2.0 over dust source regions (the Gobi desert and the Taklamakan desert and was in a range of 1.2–1.8 over the North China Plain, accounting for about 98% and up to 90% of total AOD over corresponding areas, respectively. The top of the dust storm reached about 8 km over east China, with high dust concentration locating at around 40°N. Dust aerosol below 2 km was transported southeastward off the Gobi desert while dust above 2 km was transported out of China along 40°–45°N.

  10. Aerosol Particles from Dried Salt-Lakes and Saline Soils Carried on Dust Storms over Beijing

    Directory of Open Access Journals (Sweden)

    Xingying Zhang

    2009-01-01

    Full Text Available Characteristics of individual particles from a super dust storm (DS on 20 March 2002, and those of non dust storm aero sols for Beijing (NDS and Duolun (DL (a desert area are determined using a variety of methods. In China, typically the source of aero sols in dust storms is thought to be deserts with alumino silicates being the main constituent particles; how ever, this does not reflect a complete analysis with our evidence indicating potential alternate dust sources along the storm's trans port path. Individual particle anal y sis of aero sols collected from a super dust storm on 20 March 2002 in Beijing shows that among all the 14 elements measured, only S and Cl have re mark able positive correlation. 82.5% of all particles measured contained both S and Cl, and the relative mass per cent age of S and Cl in these particles is much higher than the average of all particles. 62.0% of all particles contained S, Cl, and Na, in which the concentration of Na is 1.4 times higher than average. PMF (Positive Matrix Factorization anal y sis indicates that NaCl and Na2SO4 are major components of these particles with S and Cl showing significant positive correlation. More over, SO4 2- and Cl- also show significant positive correlation in bulk aero sol analysis. XPS (X-ray Pho to electron Spectros copy analysis of the surface of aero sols demonstrates that concentrations of Na and S on particles from the dust storm are higher than those from non-dust storm particles in Beijing and also for particles from. It is very likely that particles enriched with S, Cl, and Na is from the surface soils of dried salt-lakes and saline soils enriched with chloride and sulfate. This evidence demonstrates that be sides deserts, surface soils from dry salt-lakes and saline soils of arid and semi-arid areas are also sources of particulates in dust storms over Beijing.

  11. Extreme dust storm over the eastern Mediterranean in September 2015: satellite, lidar, and surface observations in the Cyprus region

    Directory of Open Access Journals (Sweden)

    R.-E. Mamouri

    2016-11-01

    Full Text Available A record-breaking dust storm originating from desert regions in northern Syria and Iraq occurred over the eastern Mediterranean in September 2015. In this contribution of a series of two articles (part 1, observations; part 2, atmospheric modeling, we provide a comprehensive overview of the aerosol conditions during this extreme dust outbreak in the Cyprus region. These observations are based on satellite observations (MODIS, moderate resolution imaging spectroradiometer of aerosol optical thickness (AOT and Ångström exponent, surface particle mass (PM10 concentrations measured at four sites in Cyprus, visibility observations at three airports in southern Cyprus and corresponding conversion products (particle extinction coefficient, dust mass concentrations, EARLINET (European Aerosol Research Lidar Network lidar observations of dust vertical layering over Limassol, particle optical properties (backscatter, extinction, lidar ratio, linear depolarization ratio, and derived profiles of dust mass concentrations. Maximum 550 nm AOT exceeded values of 5.0, according to MODIS, and the mass loads were correspondingly >  10 g m−2 over Larnaca and Limassol during the passage of an extremely dense dust front on 8 September 2015. Hourly mean PM10 values were close to 8000 µg m−3 and the observed meteorological optical range (visibility was reduced to 300–750 m at Larnaca and Limassol. The visibility observations suggest peak values of the near-surface total suspended particle (TSP extinction coefficients of 6000 Mm−1 and thus TSP mass concentrations of 10 000 µg m−3. The Raman polarization lidar observations mainly indicated a double layer structure of the dust plumes (reaching to about 4 km height, pointing to at least two different dust source regions. Dust particle extinction coefficients (532 nm already exceeded 1000 Mm−1 and the mass concentrations reached 2000 µg m−3 in the elevated dust layers on

  12. PM10 concentration levels at an urban and background site in Cyprus: the impact of urban sources and dust storms.

    Science.gov (United States)

    Achilleos, Souzana; Evans, John S; Yiallouros, Panayiotis K; Kleanthous, Savvas; Schwartz, Joel; Koutrakis, Petros

    2014-12-01

    Air quality in Cyprus is influenced by both local and transported pollution, including desert dust storms. We examined PM10 concentration data collected in Nicosia (urban representative) from April 1, 1993, through December 11, 2008, and in Ayia Marina (rural background representative) from January 1, 1999, through December 31, 2008. Measurements were conducted using a Tapered Element Oscillating Micro-balance (TEOM). PM10 concentrations, meteorological records, and satellite data were used to identify dust storm days. We investigated long-term trends using a Generalized Additive Model (GAM) after controlling for day of week, month, temperature, wind speed, and relative humidity. In Nicosia, annual PM10 concentrations ranged from 50.4 to 63.8 μg/m3 and exceeded the EU annual standard limit enacted in 2005 of 40 μg/m3 every year A large, statistically significant impact of urban sources (defined as the difference between urban and background levels) was seen in Nicosia over the period 2000-2008, and was highest during traffic hours, weekdays, cold months, and low wind conditions. Our estimate of the mean (standard error) contribution of urban sources to the daily ambient PM10 was 24.0 (0.4) μg/m3. The study of yearly trends showed that PM10 levels in Nicosia decreased from 59.4 μg/m3 in 1993 to 49.0 μg/m3 in 2008, probably in part as a result of traffic emission control policies in Cyprus. In Ayia Marina, annual concentrations ranged from 27.3 to 35.6 μg/m3, and no obvious time trends were observed. The levels measured at the Cyprus background site are comparable to background concentrations reported in other Eastern Mediterranean countries. Average daily PM10 concentrations during desert dust storms were around 100 μg/m3 since 2000 and much higher in earlier years. Despite the large impact ofdust storms and their increasing frequency over time, dust storms were responsible for a small fraction of the exceedances of the daily PM10 limit. Implications: This

  13. High Proportions of Sub-micron Particulate Matter in Icelandic Dust Storms in 2015

    Science.gov (United States)

    Dagsson Waldhauserova, Pavla; Arnalds, Olafur; Olafsson, Haraldur; Magnusdottir, Agnes

    2017-04-01

    Iceland is extremely active dust region and desert areas of over 44,000 km2 acknowledge Iceland as the largest Arctic and European desert. Frequent dust events, up to 135 dust days annually, transport dust particles far distances towards the Arctic and Europe. Satellite MODIS pictures have revealed dust plumes exceeding 1,000 km. The annual dust deposition was calculated as 40.1 million tons yr-1. Two dust storms were measured in transverse horizontal profile about 90 km far from different dust sources in southwestern Iceland in the summer of 2015. Aerosol monitor DustTrak DRX 8533EP was used to measure PM mass concentrations corresponding to PM1, PM2.5, PM4, PM10 and the total PM15 at several places within the dust plume. Images from camera network operated by the Icelandic Road and Coastal Administration were used to estimate the visibility and spatial extent of measured dust events. A numerical simulation of surface winds was carried out with the numerical model HIRLAM with horizontal resolution of 5 km and used to calculate the total dust flux from the sources. The in situ measurements inside the dust plumes showed that aeolian dust can be very fine. The study highlights that suspended volcanic dust in Iceland causes air pollution with extremely high PM1 concentrations comparable to the polluted urban stations in Europe or Asia rather than reported dust event observations from around the world. The PM1/PM2.5 ratios are generally low during dust storms outside of Iceland, much lower than > 0.9 and PM1/PM10 ratios of 0.34-0.63 found in our study. It shows that Icelandic volcanic dust consists of higher proportion of submicron particles compared to crustal dust. The submicron particles are predicted to travel long distances. Moreover, such submicron particles pose considerable health risk because of high potential for entering the lungs. Icelandic volcanic glass has often fine pipe-vesicular structures known from asbestos and high content of heavy metals. Previous

  14. An Extensive Study on Dynamical aspects of Dust Storm over the United Arab Emirates during 18-20 March 2012

    Science.gov (United States)

    Basha, Ghouse; Phanikumar, Devulapalli V.; Ouarda, Taha B. M. J.

    2015-04-01

    On 18 March 2012, a super dust storm event occurred over Middle East (ME) and lasted for several hours. Following to this, another dust storm occurred on early morning of 20 March 2012 with almost higher intensity. Both these storms reduced the horizontal visibility to few hundreds of meters and represented as one of the most intense and long duration dust storms over United Arab Emirates (UAE) in recent times. These storms also reduced the air quality in most parts of the ME implying the shutdown of Airports, schools and hundreds of people were hospitalized with respirational problems. In the context of the above, we have made a detailed study on the dynamical processes leading to triggering of dust storm over UAE and neighboring regions. We have also analyzed its impact on surface, and vertical profiles of background parameters and aerosols during the dust storm period by using ground-based, space borne, dust forecasting model, and reanalysis data sets. The synoptic and dynamic conditions responsible for the occurrence of the dust storm are discussed extensively by using European Centre for Medium-Range Weather Forecasts (ECMWF) ERA interim reanalysis data sets. The Impact of dust storm on surface and upper air radiosonde measurements and aerosol optical properties are also investigated before, during and after the dust storm event. During the dust storm, surface temperature decreased by 15oC when compared to before and after the event. PM10 values significantly increased maximum of about 1600µg/m3. Spatial variation of Aerosol Optical Depth (AOD) from Moderate-resolution Imaging Spectroradiometer (MODIS) and Ozone Monitoring Instrument (OMI) aerosol index (AI) exhibited very high values during the event and source region can be identified of dust transport to our region with this figure. The total attenuated backscatter at 550nm from Cloud-Aerosol Lidar and Infrared Pathfinder Satellite shows the vertical extent of dust up to 8km. The dynamics of this event is

  15. Study on an intense dust storm over Greece

    Science.gov (United States)

    Kaskaoutis, D. G.; Kambezidis, H. D.; Nastos, P. T.; Kosmopoulos, P. G.

    Springtime constitutes the most favorable period for Sahara dust outbreaks and transport over Eastern Mediterranean. This study investigates the aerosol properties during April 2005 using remote-sensing and ground-based measurements. Three dust events with high aerosol optical depth (AOD) values have been observed during the measuring period, with duration of two days, i.e. 11-12, 16-17 and 25-26 April 2005. In this paper we mainly focus on the intense dust event of 16-17 April 2005, when a thick dust layer transported from Libya affected the whole Greek territory. Very high AOD values obtained from Aqua-MODIS sensor were observed over Greece (mean 2.42 ± 1.25) on 17 April, while the respective mean April value was 0.31 ± 0.09. The AOD at 550 nm (AOD 550) values over Crete were even larger, reaching ˜4.0. As a consequence, the PM 10 concentrations over Athens dramatically increased reaching up to 200 μg m -3. On the other hand, the fine-mode fraction values obtained from Terra-MODIS showed a substantial decrease in the whole Greek area on 17 April with values below 0.2 in the Southern regions. The intense dust layer showed a complex behavior concerning its spatial and temporal evolution and allowed us to study the changes in the optical properties of the desert dust particles along their transport routes due to the mixing processes with other aerosol types. The results from different measurements (ground-based and remote-sensing) did not contradict each other and, therefore, are adequate for monitoring of dust load over the Eastern Mediterranean.

  16. The time interval distribution of sand–dust storms in theory: testing with observational data for Yanchi, China

    International Nuclear Information System (INIS)

    Liu, Guoliang; Zhang, Feng; Hao, Lizhen

    2012-01-01

    We previously introduced a time record model for use in studying the duration of sand–dust storms. In the model, X is the normalized wind speed and Xr is the normalized wind speed threshold for the sand–dust storm. X is represented by a random signal with a normal Gaussian distribution. The storms occur when X ≥ Xr. From this model, the time interval distribution of N = Aexp(−bt) can be deduced, wherein N is the number of time intervals with length greater than t, A and b are constants, and b is related to Xr. In this study, sand–dust storm data recorded in spring at the Yanchi meteorological station in China were analysed to verify whether the time interval distribution of the sand–dust storms agrees with the above time interval distribution. We found that the distribution of the time interval between successive sand–dust storms in April agrees well with the above exponential equation. However, the interval distribution for the sand–dust storm data for the entire spring period displayed a better fit to the Weibull equation and depended on the variation of the sand–dust storm threshold wind speed. (paper)

  17. Detection and monitoring of two dust storm events by multispectral modis images.

    Digital Repository Service at National Institute of Oceanography (India)

    Mehta P.S.; Kunte, P.D.

    of Oman, over Arabian Sea to the coast of Pakistan. The dust storm lasted over the Arabian Sea till 30th March. MODIS sensors on both Terra and Aqua Satellites captured images of both events. From the difference in emissive/transmissive nature...

  18. Local time and cutoff rigidity dependences of storm time increase associated with geomagnetic storms

    International Nuclear Information System (INIS)

    Kudo, S.; Wada, M.; Tanskanen, P.; Kodama, M.

    1987-01-01

    The cosmic ray increases due to considerable depressions of cosmic ray cutoff rigidity during large geomagnetic storms are investigated. Data from a worldwide network of cosmic ray neutron monitors are analyzed for 17 geomagnetic storms which occurred in the quiet phase of the solar activity cycle during 1966-1978. As expected from the longitudinal asymmetry of the low-altitude geomagnetic field during large geomagnetic storms, a significant local time dependence of the increment in the cosmic ray during large geomagnetic storms, a significant local time dependence of the increment in the cosmic ray intensity is obtained. It is shown that the maximum phases of the local time dependence occur at around 1800 LT and that the amplitudes of the local time dependence are consistent with presently available theoretical estimates. The dependence of the increment on the cutoff rigidity is obtained for both the local time dependent part and the local time independent part of the storm time increase. The local time independent part, excluding the randomizing local time dependent part, shows a clear-cut dependence on cutoff rigidity which is consistent with theoretical estimates

  19. Thermal Tides During the 2001 Martian Global-Scale Dust Storm

    Science.gov (United States)

    Guzewich, Scott D.; Wilson, R. John; McConnochie, Timothy H.; Toigo, Anthony D.; Bandfield, Donald J.; Smith, Michael D.

    2014-01-01

    The 2001 (Mars Year 25) global dust storm radically altered the dynamics of the Martian atmosphere. Using observations from the Thermal Emission Spectrometer onboard the Mars Global Surveyor spacecraft and Mars WRF general circulation model simulations, we examine the changes to thermal tides and planetary waves caused by the storm. We find that the extratropical diurnal migrating tide is dramatically enhanced during the storm, particularly in the southern hemisphere, reaching amplitudes of more than 20 K. The tropical diurnal migrating tide is weakened to almost undetectable levels. The diurnal Kelvin waves are also significantly weakened, particularly during the period of global expansion at Ls=200deg-210deg. In contrast, the westward propagating diurnal wavenumber 2 tide strengthens to 4-8 K at altitudes above 30km. The wavenumber 1 stationary wave reaches amplitudes of 10-12 K at 50deg-70degN, far larger than is typically seen during this time of year. The phase of this stationary wave and the enhancement of the diurnal wavenumber 2 tide appear to be responses to the high-altitude westward propagating equatorial wavenumber 1 structure in dust mixing ratio observed during the storm in previous works. This work provides a global picture of dust storm wave dynamics that reveals the coupling between the tropics and high-latitude wave responses. We conclude that the zonal distribution of thermotidal forcing from atmospheric aerosol concentration is as important to understanding the atmospheric wave response as the total global mean aerosol optical depth.

  20. Storm water best management practices for local roadways.

    Science.gov (United States)

    2015-09-01

    Local communities and the Ohio Department of Transportation (ODOT) are required by the Ohio : Environmental Protection Agencys (Ohio EPA) statewide Construction General Permit for Storm : Water Discharges OHC000004 (CGP) to select, design, constru...

  1. A Peek into a Cul-De-Sac and a Mews of Martian Dust Storm Activity: Western Hellas and Syria-Claritas Fossae During Mars Year 29

    Science.gov (United States)

    Heavens, N. G.

    2016-12-01

    Western Hellas Planitia (WHP) and the region encompassed by Syria Planum and Claritas Fossae are the main centers of textured dust storm activity in Mars's southern low to mid-latitudes. (Texture in this context refers to distinct fine structure at the cloud tops indicative of active lifting.) WHP is a well-known initiation zone for regional and global dust storm activity and often the end point of the Utopia "flushing storm" track. Syria-Claritas Fossae (SCF), too, can be a lifting center in global dust storm activity. Indeed, SCF and the area to its west was the region most denuded of dust by the Mars Year (MY) 25 global dust storm, perhaps suggesting that SCF contained the principal lifting center of the storm. Thus, if the Acidalia and Utopia storm tracks are Mars's dust storm alleys, through which dust storms pass quickly again and again; WHP might be a cul-de-sac and SCF something like a mews, where dust storm activity can enter more or less easily but may not as easily leave. In this presentation, I will focus on dust storm activity in these areas in a typical non-global dust storm year, MY 29. Synthesizing visible imagery by the Mars Color Imager (MARCI) on board Mars Reconnaissance Orbiter (MRO) and Mars Climate Sounder (MCS) also on board MRO, I will consider the climatology, morphology, texture, and vertical structure of dust storm activity in these areas in order to infer their governing dynamics. This investigation has two aims: (1) to understand why these areas are centers of textured dust storm activity; and (2) to connect the characteristics of smaller-scale dust storm activity in these regions to the underlying dynamics in order to understand the role of WHP and SCF in the dynamics of global dust storms. This work is supported by NASA's Mars Data Analysis Program (NNX14AM32G).

  2. A Dynamic Enhancement With Background Reduction Algorithm: Overview and Application to Satellite-Based Dust Storm Detection

    Science.gov (United States)

    Miller, Steven D.; Bankert, Richard L.; Solbrig, Jeremy E.; Forsythe, John M.; Noh, Yoo-Jeong; Grasso, Lewis D.

    2017-12-01

    This paper describes a Dynamic Enhancement Background Reduction Algorithm (DEBRA) applicable to multispectral satellite imaging radiometers. DEBRA uses ancillary information about the clear-sky background to reduce false detections of atmospheric parameters in complex scenes. Applied here to the detection of lofted dust, DEBRA enlists a surface emissivity database coupled with a climatological database of surface temperature to approximate the clear-sky equivalent signal for selected infrared-based multispectral dust detection tests. This background allows for suppression of false alarms caused by land surface features while retaining some ability to detect dust above those problematic surfaces. The algorithm is applicable to both day and nighttime observations and enables weighted combinations of dust detection tests. The results are provided quantitatively, as a detection confidence factor [0, 1], but are also readily visualized as enhanced imagery. Utilizing the DEBRA confidence factor as a scaling factor in false color red/green/blue imagery enables depiction of the targeted parameter in the context of the local meteorology and topography. In this way, the method holds utility to both automated clients and human analysts alike. Examples of DEBRA performance from notable dust storms and comparisons against other detection methods and independent observations are presented.

  3. Legal immigrants: invasion of alien microbial communities during winter occurring desert dust storms.

    Science.gov (United States)

    Weil, Tobias; De Filippo, Carlotta; Albanese, Davide; Donati, Claudio; Pindo, Massimo; Pavarini, Lorenzo; Carotenuto, Federico; Pasqui, Massimiliano; Poto, Luisa; Gabrieli, Jacopo; Barbante, Carlo; Sattler, Birgit; Cavalieri, Duccio; Miglietta, Franco

    2017-03-10

    A critical aspect regarding the global dispersion of pathogenic microorganisms is associated with atmospheric movement of soil particles. Especially, desert dust storms can transport alien microorganisms over continental scales and can deposit them in sensitive sink habitats. In winter 2014, the largest ever recorded Saharan dust event in Italy was efficiently deposited on the Dolomite Alps and was sealed between dust-free snow. This provided us the unique opportunity to overcome difficulties in separating dust associated from "domestic" microbes and thus, to determine with high precision microorganisms transported exclusively by desert dust. Our metagenomic analysis revealed that sandstorms can move not only fractions but rather large parts of entire microbial communities far away from their area of origin and that this microbiota contains several of the most stress-resistant organisms on Earth, including highly destructive fungal and bacterial pathogens. In particular, we provide first evidence that winter-occurring dust depositions can favor a rapid microbial contamination of sensitive sink habitats after snowmelt. Airborne microbial depositions accompanying extreme meteorological events represent a realistic threat for ecosystem and public health. Therefore, monitoring the spread and persistence of storm-travelling alien microbes is a priority while considering future trajectories of climatic anomalies as well as anthropogenically driven changes in land use in the source regions.

  4. Limited production of sulfate and nitrate on front-associated dust storm particles moving from desert to distant populated areas in northwestern China

    Science.gov (United States)

    Wu, Feng; Zhang, Daizhou; Cao, Junji; Guo, Xiao; Xia, Yao; Zhang, Ting; Lu, Hui; Cheng, Yan

    2017-12-01

    Sulfate and nitrate compounds can greatly increase the hygroscopicity of mineral particles in the atmosphere and consequently alter the particles' physical and chemical properties. Their uptake on long-distance-transported Asian dust particles within mainland China has been reported to be substantial in previous studies, but the production was very inefficient in other studies. We compared these two salts in particles collected from a synoptic-scale, mid-latitude, cyclone-induced dust storm plume at the Tengger Desert (38.79° N, 105.38° E) and in particles collected in a postfrontal dust plume at an urban site in Xi'an (34.22° N, 108.87° E) when a front-associated dust storm from the Tengger Desert arrived there approximately 700 km downwind. The results showed that the sulfate concentration was not considerably different at the two sites, while the nitrate concentration was slightly larger at the urban site than that at the desert site. The estimated nitrate production rate was 4-5 ng µg-1 of mineral dust per day, which was much less than that in polluted urban air. The adiabatic process of the dust-loading air was suggested to be the reason for the absence of sulfate formation, and the uptake of background HNO3 was suggested to be the reason for the small nitrate production. According to our investigation of the published literature, the significant sulfate and nitrate in dust-storm-associated samples within the continental atmosphere reported in previous studies cannot be confirmed as actually produced on desert dust particles; the contribution from locally emitted and urban mineral particles or from soil-derived sulfate was likely substantial because the weather conditions in those studies indicated that the collection of the samples was started before dust arrival, or the air from which the samples were collected was a mixture of desert dust and locally emitted mineral particles. These results suggest that the production of nitrate and sulfate on dust

  5. Limited production of sulfate and nitrate on front-associated dust storm particles moving from desert to distant populated areas in northwestern China

    Directory of Open Access Journals (Sweden)

    F. Wu

    2017-12-01

    Full Text Available Sulfate and nitrate compounds can greatly increase the hygroscopicity of mineral particles in the atmosphere and consequently alter the particles' physical and chemical properties. Their uptake on long-distance-transported Asian dust particles within mainland China has been reported to be substantial in previous studies, but the production was very inefficient in other studies. We compared these two salts in particles collected from a synoptic-scale, mid-latitude, cyclone-induced dust storm plume at the Tengger Desert (38.79° N, 105.38° E and in particles collected in a postfrontal dust plume at an urban site in Xi'an (34.22° N, 108.87° E when a front-associated dust storm from the Tengger Desert arrived there approximately 700 km downwind. The results showed that the sulfate concentration was not considerably different at the two sites, while the nitrate concentration was slightly larger at the urban site than that at the desert site. The estimated nitrate production rate was 4–5 ng µg−1 of mineral dust per day, which was much less than that in polluted urban air. The adiabatic process of the dust-loading air was suggested to be the reason for the absence of sulfate formation, and the uptake of background HNO3 was suggested to be the reason for the small nitrate production. According to our investigation of the published literature, the significant sulfate and nitrate in dust-storm-associated samples within the continental atmosphere reported in previous studies cannot be confirmed as actually produced on desert dust particles; the contribution from locally emitted and urban mineral particles or from soil-derived sulfate was likely substantial because the weather conditions in those studies indicated that the collection of the samples was started before dust arrival, or the air from which the samples were collected was a mixture of desert dust and locally emitted mineral particles. These results suggest that the

  6. The dual effect of vegetation green-up date and strong wind on the return period of spring dust storms.

    Science.gov (United States)

    Feng, Jieling; Li, Ning; Zhang, Zhengtao; Chen, Xi

    2017-08-15

    Vegetation phenology changes have been widely applied in the disaster risk assessments of the spring dust storms, and vegetation green-up date shifts have a strong influence on dust storms. However, the effect of earlier vegetation green-up dates due to climate warming on the evaluation of dust storms return periods remains an important, but poorly understood issue. In this study, we evaluate the spring dust storm return period (February to June) in Inner Mongolia, Northern China, using 165 observations of severe spring dust storm events from 16 weather stations, and regional vegetation green-up dates as an integrated factor from NDVI (Normalized Difference Vegetation Index), covering a period from 1982 to 2007, by building the bivariate Copula model. We found that the joint return period showed better fitting results than without considering the integrated factor when the actual dust storm return period is longer than 2years. Also, for extremely severe dust storm events, the gap between simulation result and actual return period can be narrowed up to 0.4888years by using integrated factor. Furthermore, the risk map based on the return period results shows that the Mandula, Zhurihe, Sunitezuoqi, Narenbaolige stations are identified as high risk areas. In this study area, land surface is extensively covered by grasses and shrubs, vegetation green-up date can play a significant role in restraining spring dust storm outbreaks. Therefore, we suggest that Copula method can become a useful tool for joint return period evaluation and risk analysis of severe dust storms. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Hydrogen escape from Mars enhanced by deep convection in dust storms

    Science.gov (United States)

    Heavens, Nicholas G.; Kleinböhl, Armin; Chaffin, Michael S.; Halekas, Jasper S.; Kass, David M.; Hayne, Paul O.; McCleese, Daniel J.; Piqueux, Sylvain; Shirley, James H.; Schofield, John T.

    2018-02-01

    Present-day water loss from Mars provides insight into Mars's past habitability1-3. Its main mechanism is thought to be Jeans escape of a steady hydrogen reservoir sourced from odd-oxygen reactions with near-surface water vapour2, 4,5. The observed escape rate, however, is strongly variable and correlates poorly with solar extreme-ultraviolet radiation flux6-8, which was predicted to modulate escape9. This variability has recently been attributed to hydrogen sourced from photolysed middle atmospheric water vapour10, whose vertical and seasonal distribution is only partly characterized and understood11-13. Here, we report multi-annual observational estimates of water content and dust and water transport to the middle atmosphere from Mars Climate Sounder data. We provide strong evidence that the transport of water vapour and ice to the middle atmosphere by deep convection in Martian dust storms can enhance hydrogen escape. Planet-encircling dust storms can raise the effective hygropause (where water content rapidly decreases to effectively zero) from 50 to 80 km above the areoid (the reference equipotential surface). Smaller dust storms contribute to an annual mode in water content at 40-50 km that may explain seasonal variability in escape. Our results imply that Martian atmospheric chemistry and evolution can be strongly affected by the meteorology of the lower and middle atmosphere of Mars.

  8. [Dust storms trend in the Capital Circle of China over the past 50 years and its correlation with temperature, precipitation and wind].

    Science.gov (United States)

    Chen, Yu-fu; Tang, Hai-ping

    2005-01-01

    The trends of number of dust storm days of the selected 11 meteorological stations from their established year to 2000 as well as their correlations with temperature, precipitation and wind are revealed. The number of dust storm days of the Capital Circle of China is distinctly variable in space and time. The numbers of dust storm days of the western area are far more than those of the eastern area. The interannual variability of number of dust storm days is remarkable. The number of dust storm days of the following 7 stations, Erlianhaote, Abaga, Xilinhaote, Fengning, Zhangjiakou, Huailai and Beijing, declined along the past decades, but those of the other four stations had no significant upward or downward trends. There is a marked seasonality of the number of dust storm days, and the maximum was in April. The correlation between number of dust storm days and number of days of mean wind velocity > 5 m/s, which is critical wind velocity to entrain sand into the air, was strongest among the three climatic factor. There were significant positive correlations between the number of dust storm days and number of days of mean wind velocity > 5 m/s in 6 stations. The second strongest climatic factor correlated with the number of dust storm days is temperature. There are significant negative correlations between the number of dust storm days and mean annual temperature, mean winter temperature, mean spring temperature in 3 or 4 stations. The correlation between the number of dust storm days and precipitation is weakest. Only one station, Zhurihe, showes significant negative correlation between the number of dust storm days and spring rainfall. There are 4 stations whose number of dust storm days don't significantly correlate with the climate. In the end, the spatial-temporal variability of dust storms and its relation with climate in the Capital Circle of China were discussed thoroughly.

  9. Dust Storm over the Middle East: Retrieval Approach, Source Identification, and Trend Analysis

    Science.gov (United States)

    Moridnejad, A.; Karimi, N.; Ariya, P. A.

    2014-12-01

    The Middle East region has been considered to be responsible for approximately 25% of the Earth's global emissions of dust particles. By developing Middle East Dust Index (MEDI) and applying to 70 dust storms characterized on MODIS images and occurred during the period between 2001 and 2012, we herein present a new high resolution mapping of major atmospheric dust source points participating in this region. To assist environmental managers and decision maker in taking proper and prioritized measures, we then categorize identified sources in terms of intensity based on extracted indices for Deep Blue algorithm and also utilize frequency of occurrence approach to find the sensitive sources. In next step, by implementing the spectral mixture analysis on the Landsat TM images (1984 and 2012), a novel desertification map will be presented. The aim is to understand how human perturbations and land-use change have influenced the dust storm points in the region. Preliminary results of this study indicate for the first time that c.a., 39 % of all detected source points are located in this newly anthropogenically desertified area. A large number of low frequency sources are located within or close to the newly desertified areas. These severely desertified regions require immediate concern at a global scale. During next 6 months, further research will be performed to confirm these preliminary results.

  10. Use of SEVIRI images and derived products in a WMO Sand and dust Storm Warning System

    Energy Technology Data Exchange (ETDEWEB)

    MartInez, M A; Ruiz, J; Cuevas, E [Agencia Estatal de MeteorologIa (AEMET) (Spain)], E-mail: mig@inm.es

    2009-03-01

    The Visible/IR images of SEVIRI (Spinning Enhanced Visible and Infrared Imager), on board Meteosat Second Generation (MSG) satellites, are used to monitor dust events. Satellite-based detection of dust is a difficult problem due in part to the observing-system limitations. The main difficulty is that the dust can be confused with water/ice clouds. SEVIRI is not as optimal for the viewing of dust as SEAWIFS or MODIS, due to the fact that both of them count with additional short-wavelength channels. However, the SEVIRI 15-minute loop images can detect small dust plumes as well as subtle changes from one image to the next. A description of how the AEMET, former INM, is developing the environment to support MSG satellite imagery to the WMO/GEO Sand and Dust Storm Warning System (SDS WS) for Europe, Africa and Middle East Regional Centre will be briefly presented, together with some on-going operational developments to best monitor dust events.

  11. Experimental Constraints On Transparency of The 1052;1040;rtian Atmosphere Out of Dust Storm

    Science.gov (United States)

    Korablev, O.; Moroz, V. I.; Rodin, A. V.

    In the absence of a dust storm so-called permanent dust haze with = 0.2 in the atmo- sphere of Mars determines its thermal structure, as it has been shown by Gierasch and Goody [1972 JAS 29, 400] and is confirmed by modern Mars GCMs that include dust cycle. Dust loading varies substantially with the season and geographic location, and only the data of mapping instruments are adequate to characterize it. Presently, these are the data of thermal IR instruments, benefiting from being insensitive to condensa- tional clouds: TES/MGS and IRTM/Viking. In calm atmospheric conditions (aphelion season) a typical value of 9-µm optical depth 9 of 0.05-0.15 is observed by these instruments [Smith et al. 2000, 2001 JGR 105, 9539; JGR 106, 23929; Martin and Richardson 1993 JGR 98, 10941]. In order to quantify the typical optical depth of the permanent dust haze, we will discuss, among others, the following two questions: 1) How to agree the above values and reliable measurements from the surface (VL, Pathfinder) which give the typical optical depth (out of dust storms) of = 0.5 from one side, and some ground-based observations (in UV-visible range) that frequently reveal < 0.02 on the other side. 2) What is the relationship between 9 and the visi- ble optical depth? Comparison of IRTM and VL measurements (the only simultaneous observations available so far) suggest vis/9 = 2.5, that contradict to vis/9 = 0.9 that follow from IRIS/Mariner 9 mineralogy model, which is confirmed by recent re- analysis of IRIS data.

  12. Development of High-Resolution Dynamic Dust Source Function - A Case Study with a Strong Dust Storm in a Regional Model

    Science.gov (United States)

    Kim, Dongchul; Chin, Mian; Kemp, Eric M.; Tao, Zhining; Peters-Lidard, Christa D.; Ginoux, Paul

    2017-01-01

    A high-resolution dynamic dust source has been developed in the NASA Unified-Weather Research and Forecasting (NU-WRF) model to improve the existing coarse static dust source. In the new dust source map, topographic depression is in 1-km resolution and surface bareness is derived using the Normalized Difference Vegetation Index (NDVI) data from Moderate Resolution Imaging Spectroradiometer (MODIS). The new dust source better resolves the complex topographic distribution over the Western United States where its magnitude is higher than the existing, coarser resolution static source. A case study is conducted with an extreme dust storm that occurred in Phoenix, Arizona in 0203 UTC July 6, 2011. The NU-WRF model with the new high-resolution dynamic dust source is able to successfully capture the dust storm, which was not achieved with the old source identification. However the case study also reveals several challenges in reproducing the time evolution of the short-lived, extreme dust storm events.

  13. Development of High-Resolution Dynamic Dust Source Function -A Case Study with a Strong Dust Storm in a Regional Model.

    Science.gov (United States)

    Kim, Dongchul; Chin, Mian; Kemp, Eric M; Tao, Zhining; Peters-Lidard, Christa D; Ginoux, Paul

    2017-06-01

    A high-resolution dynamic dust source has been developed in the NASA Unified-Weather Research and Forecasting (NU-WRF) model to improve the existing coarse static dust source. In the new dust source map, topographic depression is in 1-km resolution and surface bareness is derived using the Normalized Difference Vegetation Index (NDVI) data from Moderate Resolution Imaging Spectroradiometer (MODIS). The new dust source better resolves the complex topographic distribution over the Western United States where its magnitude is higher than the existing, coarser resolution static source. A case study is conducted with an extreme dust storm that occurred in Phoenix, Arizona in 02-03 UTC July 6, 2011. The NU-WRF model with the new high-resolution dynamic dust source is able to successfully capture the dust storm, which was not achieved with the old source identification. However the case study also reveals several challenges in reproducing the time evolution of the short-lived, extreme dust storm events.

  14. Surface observation of sand and dust storm in East Asia and its application in CUACE/Dust

    Directory of Open Access Journals (Sweden)

    Y. Q. Wang

    2008-02-01

    Full Text Available The spatial-temporal distributions and sources of sand and dust storm (SDS in East Asia from 2001 to 2006 were investigated on the basis of visibility and PM10 data from the routine SDS and weather monitoring networks run by CMA (China Meteorological Administration. A power functional relationships between PM10 and visibility was found among various regions generally with a good correlation (r2=0.90, especially in Asian SDS source regions. In addition, three SDS occurrence centers, i.e. western China, Mongolia and northern China, were identified with the Mongolia source contributing more dust to the downwind areas including Korea and Japan than other two sources. Generally, high PM10 concentrations were observed in most areas of northern China. The highest value was obtained in the center of western China with a spring daily mean value of 876 μgm−3, and the value in other source regions exceeds 200 μgm−3. These data sets together with the satellite observations in China form the main observation database for the evaluation and data assimilation of CUACE/Dust system – an operational SDS forecasting system for East Asia.

  15. Oxidant enhancement in martian dust devils and storms: implications for life and habitability.

    Science.gov (United States)

    Atreya, Sushil K; Wong, Ah-San; Renno, Nilton O; Farrell, William M; Delory, Gregory T; Sentman, Davis D; Cummer, Steven A; Marshall, John R; Rafkin, Scot C R; Catling, David C

    2006-06-01

    We investigate a new mechanism for producing oxidants, especially hydrogen peroxide (H2O2), on Mars. Large-scale electrostatic fields generated by charged sand and dust in the martian dust devils and storms, as well as during normal saltation, can induce chemical changes near and above the surface of Mars. The most dramatic effect is found in the production of H2O2 whose atmospheric abundance in the "vapor" phase can exceed 200 times that produced by photochemistry alone. With large electric fields, H2O2 abundance gets large enough for condensation to occur, followed by precipitation out of the atmosphere. Large quantities of H2O2 would then be adsorbed into the regolith, either as solid H2O2 "dust" or as re-evaporated vapor if the solid does not survive as it diffuses from its production region close to the surface. We suggest that this H2O2, or another superoxide processed from it in the surface, may be responsible for scavenging organic material from Mars. The presence of H2O2 in the surface could also accelerate the loss of methane from the atmosphere, thus requiring a larger source for maintaining a steady-state abundance of methane on Mars. The surface oxidants, together with storm electric fields and the harmful ultraviolet radiation that readily passes through the thin martian atmosphere, are likely to render the surface of Mars inhospitable to life as we know it.

  16. The global dispersion of pathogenic microorganisms by dust storms and its relevance to agriculture: Chapter 1

    Science.gov (United States)

    Gonzalez-Martin, Cristina; Teigell-Perez, Nuria; Valladares, Basilio; Griffin, Dale W.

    2014-01-01

    Dust storms move an estimated 500–5000 Tg of soil through Earth’s atmosphere every year. Dust-storm transport of topsoils may have positive effects such as fertilization of aquatic and terrestrial ecosystems and the evolution of soils in proximal and distal environments. Negative effects may include the stripping of nutrient-rich topsoils from source regions, sandblasting of plant life in downwind environments, the fertilization of harmful algal blooms, and the transport of toxins (e.g., metals, pesticides, herbicides, etc.) and pathogenic microorganisms. With respect to the long-range dispersion of microorganisms and more specifically pathogens, research is just beginning to demonstrate the quantity and diversity of organisms that can survive this type of transport. Most studies to date have utilized different assays to identify microorganisms and microbial communities using predominately culture-based, and more recently nonculture-based, methodologies. There is a clear need for international-scale research efforts that apply standardized methods to advance this field of science. Here we present a review of dust-borne microorganisms with a focus on their relevance to agronomy.

  17. Impact of Middle Eastern dust storms on indoor and outdoor composition of bioaerosol

    Science.gov (United States)

    Soleimani, Zahra; Goudarzi, Gholamreza; Sorooshian, Armin; Marzouni, Mohammad Bagherian; Maleki, Heidar

    2016-08-01

    The presence of microbes in airborne aerosol particles, especially dust, is a major public health concern in desert regions. This study is the first of its kind to examine the effect of dust storms on indoor and outdoor microbial air quality at a hospital on the western side of Iran (city of Ahvaz), which is notorious for being highly vulnerable to dust emissions. Air samples were collected inside and outside of the hospital environment for six months, with the unique advantage of this study being that the region and duration of measurements allow for a clear comparison between dusty and normal days. On normal days, the average concentrations (outdoor/indoor) of bacteria and fungi were 423/329 cfu m-3 and 596/386 cfu m-3, respectively, which increased to 1257/406 cfu m-3 and 1116/550 cfu m-3 on dust event days. Indoor/Outdoor ratios for bacteria and fungi are lower on dust event days (0.26-0.60) versus normal days (0.44-0.95). Bacillus spp., Micrococcus spp., Streptomyces spp., and Staphylococcus spp. were the dominant bacteria both indoors and outdoors on normal and dust event days. Gram positive bacteria exhibited higher concentrations than Gram negative bacteria in both outdoor and indoor air samples as well as during both normal and dust event days. The data suggest that Gram positive bacteria are more resistant to undesirable outdoor conditions (e.g., high incident solar radiation) as compared to Gram negative ones. These results have implications for other populated arid regions where more stringent control of indoor air quality can greatly benefit public health.

  18. A SUBMILLIMETER CONTINUUM SURVEY OF LOCAL DUST-OBSCURED GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong Chul [Korea Astronomy and Space Science Institute, 776 Daedeokdae-ro, Yuseong-gu, Daejeon 34055 (Korea, Republic of); Hwang, Ho Seong [School of Physics, Korea Institute for Advanced Study, 85 Hoegiro, Dongdaemun-gu, Seoul 02455 (Korea, Republic of); Lee, Gwang-Ho, E-mail: jclee@kasi.re.kr [Department of Physics and Astronomy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742 (Korea, Republic of)

    2016-12-20

    We conduct a 350 μ m dust continuum emission survey of 17 dust-obscured galaxies (DOGs) at z = 0.05–0.08 with the Caltech Submillimeter Observatory (CSO). We detect 14 DOGs with S{sub 350μm} = 114–650 mJy and signal-to-noise > 3. By including two additional DOGs with submillimeter data in the literature, we are able to study dust content for a sample of 16 local DOGs, which consist of 12 bump and four power-law types. We determine their physical parameters with a two-component modified blackbody function model. The derived dust temperatures are in the range 57–122 K and 22–35 K for the warm and cold dust components, respectively. The total dust mass and the mass fraction of the warm dust component are 3–34 × 10{sup 7} M {sub ⊙} and 0.03%–2.52%, respectively. We compare these results with those of other submillimeter-detected infrared luminous galaxies. The bump DOGs, the majority of the DOG sample, show similar distributions of dust temperatures and total dust mass to the comparison sample. The power-law DOGs show a hint of smaller dust masses than other samples, but need to be tested with a larger sample. These findings support that the reason DOGs show heavy dust obscuration is not an overall amount of dust content, but probably the spatial distribution of dust therein.

  19. A SUBMILLIMETER CONTINUUM SURVEY OF LOCAL DUST-OBSCURED GALAXIES

    International Nuclear Information System (INIS)

    Lee, Jong Chul; Hwang, Ho Seong; Lee, Gwang-Ho

    2016-01-01

    We conduct a 350 μ m dust continuum emission survey of 17 dust-obscured galaxies (DOGs) at z = 0.05–0.08 with the Caltech Submillimeter Observatory (CSO). We detect 14 DOGs with S 350μm = 114–650 mJy and signal-to-noise > 3. By including two additional DOGs with submillimeter data in the literature, we are able to study dust content for a sample of 16 local DOGs, which consist of 12 bump and four power-law types. We determine their physical parameters with a two-component modified blackbody function model. The derived dust temperatures are in the range 57–122 K and 22–35 K for the warm and cold dust components, respectively. The total dust mass and the mass fraction of the warm dust component are 3–34 × 10 7 M ⊙ and 0.03%–2.52%, respectively. We compare these results with those of other submillimeter-detected infrared luminous galaxies. The bump DOGs, the majority of the DOG sample, show similar distributions of dust temperatures and total dust mass to the comparison sample. The power-law DOGs show a hint of smaller dust masses than other samples, but need to be tested with a larger sample. These findings support that the reason DOGs show heavy dust obscuration is not an overall amount of dust content, but probably the spatial distribution of dust therein.

  20. Variability in the correlation between Asian dust storms and chlorophyll a concentration from the North to Equatorial Pacific.

    Directory of Open Access Journals (Sweden)

    Sai-Chun Tan

    Full Text Available A long-term record of Asian dust storms showed seven high-occurrence-frequency centers in China. The intrusion of Asian dust into the downwind seas, including the China seas, the Sea of Japan, the subarctic North Pacific, the North Pacific subtropical gyre, and the western and eastern Equatorial Pacific, has been shown to add nutrients to ocean ecosystems and enhance their biological activities. To explore the relationship between the transported dust from various sources to the six seas and oceanic biological activities with different nutrient conditions, the correlation between monthly chlorophyll a concentration in each sea and monthly dust storm occurrence frequencies reaching the sea during 1997-2007 was examined in this study. No correlations were observed between dust and chlorophyll a concentration in the 50 m China seas and the North Pacific subtropical gyre, the correlation coefficients were in the range 0.32-0.57. The correlation coefficients for the western and eastern Equatorial Pacific were relatively low (<0.36. These correlation coefficients were further interpreted in terms of the geographical distributions of dust sources, the transport pathways, the dust deposition, the nutrient conditions of oceans, and the probability of dust storms reaching the seas.

  1. The impact of the winter North Atlantic Oscillation on the frequency of spring dust storms over Tarim Basin in northwest China in the past half-century

    International Nuclear Information System (INIS)

    Zhao Yong; Huang Anning; Zhou Yang; Huang Ying; Zhu Xinsheng

    2013-01-01

    The relationship between the frequency of spring dust storms over Tarim Basin in northwest China and the winter North Atlantic Oscillation (NAO) is investigated by using the observed dust storm frequency (DSF) and the 10 m wind velocity at 36 stations in Tarim Basin and the National Centers for Environment Prediction/National Center for Atmospheric Research reanalysis data for the period 1961–2007. The spring DSF (winter NAO) index shows a clear decreasing (increasing) linear trend over 1961–2007. The winter NAO correlates well with the subsequent spring DSF over Tarim Basin on both interannual and interdecadal time scales and its interannual to interdecadal variation plays an important role in the spring DSF. Two possible physical mechanisms are identified. One is related to the large scale anomalous circulations in spring in the middle to high troposphere modulated by the winter NAO, providing the background of dynamical conditions for the dust storm occurrences. The other is related to the shifts in the local horizontal sea level pressure (SLP) gradients and 10 m wind speed, corresponding to changes in the large scale circulations in spring. The decrease in the local 10 m wind speed due to the reduced horizontal SLP gradients over Tarim Basin during the strong winter NAO years contributes to the decline of the DSF in the subsequent spring. (letter)

  2. Assessment of Vegetation Variation on Primarily Creation Zones of the Dust Storms Around the Euphrates Using Remote Sensing Images

    Directory of Open Access Journals (Sweden)

    Jamil Amanollahi

    2012-06-01

    Full Text Available Recently, period frequency and effect domain of the dust storms that enter Iran from Iraq have increased. In this study, in addition to detecting the creation zones of the dust storms, the effect of vegetation cover variation on their creation was investigated using remote sensing. Moderate resolution image Spectroradiometer (MODIS and Landsat Thematic Mapper (TM5 have been utilized to identify the primarily creation zones of the dust storms and to assess the vegetation cover variation, respectively. Vegetation cover variation was studied using Normalized Differences Vegetation Index (NDVI obtained from band 3 and band 4 of the Landsate satellite. The results showed that the surrounding area of the Euphrates in Syria, the desert in the vicinity of this river in Iraq, including the deserts of Alanbar Province, and the north deserts of Saudi Arabia are the primarily creation zones of the dust storms entering west and south west of Iran. The results of NDVI showed that excluding the deserts in the border of Syria and Iraq, the area with very weak vegetation cover have increased between 2.44% and 20.65% from 1991 to 2009. In the meanwhile, the retention pound surface areas in the south deserts of Syria as well as the deserts in its border with Iraq have decreased 6320 and 4397 hectares, respectively. As it can be concluded from the findings, one of the main environmental parameters initiating these dust storms is the decrease in the vegetation cover in their primarily creation zones.

  3. Storms

    International Nuclear Information System (INIS)

    Kai, Keizo; Melrose, D.B.; Suzuki, S.

    1985-01-01

    At metre and decametre wavelengths long-lasting solar radio emission, consisting of thousands of short-lived spikes superimposed on a slowly varying continuum, is observed. This type of storm emission may continue for periods ranging from a few hours to several days; the long duration is one of the characteristics which distinguish storms from other types of solar radio emission. These events are called storms or noise storms by analogy with geomagnetic storms. (author)

  4. Quantitative detection of mass concentration of sand-dust storms via wind-profiling radar and analysis of Z- M relationship

    Science.gov (United States)

    Wang, Minzhong; Ming, Hu; Ruan, Zheng; Gao, Lianhui; Yang, Di

    2018-02-01

    With the aim to achieve quantitative monitoring of sand-dust storms in real time, wind-profiling radar is applied to monitor and study the process of four sand-dust storms in the Tazhong area of the Taklimakan Desert. Through evaluation and analysis of the spatial-temporal distribution of reflectivity factor, it is found that reflectivity factor ranges from 2 to 18 dBz under sand-dust storm weather. Using echo power spectrum of radar vertical beams, sand-dust particle spectrum and sand-dust mass concentration at the altitude of 600 ˜ 1500 m are retrieved. This study shows that sand-dust mass concentration reaches 700 μg/m3 under blowing sand weather, 2000 μg/m3 under sand-dust storm weather, and 400 μg/m3 under floating dust weather. The following equations are established to represent the relationship between the reflectivity factor and sand-dust mass concentration: Z = 20713.5 M 0.995 under floating dust weather, Z = 22988.3 M 1.006 under blowing sand weather, and Z = 24584.2 M 1.013 under sand-dust storm weather. The retrieval results from this paper are almost consistent with previous monitoring results achieved by former researchers; thus, it is implied that wind-profiling radar can be used as a new reference device to quantitatively monitor sand-dust storms.

  5. Health risk assessment of exposure to the Middle-Eastern Dust storms in the Iranian megacity of Kermanshah.

    Science.gov (United States)

    Goudarzi, G; Daryanoosh, S M; Godini, H; Hopke, P K; Sicard, P; De Marco, A; Rad, H D; Harbizadeh, A; Jahedi, F; Mohammadi, M J; Savari, J; Sadeghi, S; Kaabi, Z; Omidi Khaniabadi, Y

    2017-07-01

    This study assessed the effects of particulate matter (PM), equal or less than 10 μm in aerodynamic diameter (PM 10 ), from the Middle-Eastern Dust events on public health in the megacity of Kermanshah (Iran). This study used epidemiological modeling and monitored ambient air quality data to estimate the potential PM 10 impacts on public health. The AirQ2.2.3 model was used to calculate mortality and morbidity attributed to PM 10 as representative of dust events. Using Visual Basic for Applications, the programming language of Excel software, hourly PM 10 concentrations obtained from the local agency were processed to prepare input files for the AirQ2.2.3 model. Using baseline incidence, defined by the World Health Organization, the number of estimated excess cases for respiratory mortality, hospital admissions for chronic obstructive pulmonary disease, for respiratory diseases, and for cardiovascular diseases were 37, 39, 476, and 184 persons, respectively, from 21st March, 2014 to 20th March, 2015. Furthermore, 92% of mortality and morbidity cases occurred in days with PM 10 concentrations lower than 150 μg/m 3 . The highest percentage of person-days occurred for daily concentrations range of 100-109 μg/m 3 , causing the maximum health end-points among the citizens of Kermanshah. Calculating the number of cumulative excess cases for mortality or morbidity attributed to PM 10 provides a good tool for decision and policy-makers in the field of health care to compensate their shortcomings particularly at hospital and healthcare centers for combating dust storms. To diminish these effects, several immediate actions should be managed in the governmental scale to control dust such as spreading mulch and planting new species that are compatible to arid area. Copyright © 2017 The Royal Society for Public Health. All rights reserved.

  6. Satellite Monitoring of Vegetation Response to Precipitation and Dust Storm Outbreaks in Gobi Desert Regions

    Directory of Open Access Journals (Sweden)

    Yuki Sofue

    2018-02-01

    Full Text Available Recently, droughts have become widespread in the Northern Hemisphere, including in Mongolia. The ground surface condition, particularly vegetation coverage, affects the occurrence of dust storms. The main sources of dust storms in the Asian region are the Taklimakan and Mongolian Gobi desert regions. In these regions, precipitation is one of the most important factors for growth of plants especially in arid and semi-arid land. The purpose of this study is to clarify the relationship between precipitation and vegetation cover dynamics over 29 years in the Gobi region. We compared the patterns between precipitation and Normalized Difference Vegetation Index (NDVI for a period of 29 years. The precipitation and vegetation datasets were examined to investigate the trends during 1985–2013. Cross correlation analysis between the precipitation and the NDVI anomalies was performed. Data analysis showed that the variations of NDVI anomalies in the east region correspond well with the precipitation anomalies during this period. However, in the southwest region of the Gobi region, the NDVI had decreased regardless of the precipitation amount, especially since 2010. This result showed that vegetation in this region was more degraded than in the other areas.

  7. DUST PROPERTIES OF LOCAL DUST-OBSCURED GALAXIES WITH THE SUBMILLIMETER ARRAY

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Ho Seong; Andrews, Sean M.; Geller, Margaret J., E-mail: hhwang@cfa.harvard.edu, E-mail: sandrews@cfa.harvard.edu, E-mail: mgeller@cfa.harvard.edu [Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States)

    2013-11-01

    We report Submillimeter Array observations of the 880 μm dust continuum emission for four dust-obscured galaxies (DOGs) in the local universe. Two DOGs are clearly detected with S{sub ν}(880 μm) =10-13 mJy and S/N > 5, but the other two are not detected with 3σ upper limits of S{sub ν}(880 μm) =5-9 mJy. Including an additional two local DOGs with submillimeter data from the literature, we determine the dust masses and temperatures for six local DOGs. The infrared luminosities and dust masses for these DOGs are in the ranges of 1.2-4.9 × 10{sup 11}(L{sub ☉}) and 4-14 × 10{sup 7}(M{sub ☉}), respectively. The dust temperatures derived from a two-component modified blackbody function are 23-26 K and 60-124 K for the cold and warm dust components, respectively. Comparison of local DOGs with other infrared luminous galaxies with submillimeter detections shows that the dust temperatures and masses do not differ significantly among these objects. Thus, as argued previously, local DOGs are not a distinctive population among dusty galaxies, but simply represent the high-end tail of the dust obscuration distribution.

  8. DUST PROPERTIES OF LOCAL DUST-OBSCURED GALAXIES WITH THE SUBMILLIMETER ARRAY

    International Nuclear Information System (INIS)

    Hwang, Ho Seong; Andrews, Sean M.; Geller, Margaret J.

    2013-01-01

    We report Submillimeter Array observations of the 880 μm dust continuum emission for four dust-obscured galaxies (DOGs) in the local universe. Two DOGs are clearly detected with S ν (880 μm) =10-13 mJy and S/N > 5, but the other two are not detected with 3σ upper limits of S ν (880 μm) =5-9 mJy. Including an additional two local DOGs with submillimeter data from the literature, we determine the dust masses and temperatures for six local DOGs. The infrared luminosities and dust masses for these DOGs are in the ranges of 1.2-4.9 × 10 11 (L ☉ ) and 4-14 × 10 7 (M ☉ ), respectively. The dust temperatures derived from a two-component modified blackbody function are 23-26 K and 60-124 K for the cold and warm dust components, respectively. Comparison of local DOGs with other infrared luminous galaxies with submillimeter detections shows that the dust temperatures and masses do not differ significantly among these objects. Thus, as argued previously, local DOGs are not a distinctive population among dusty galaxies, but simply represent the high-end tail of the dust obscuration distribution

  9. Correlation between Asian dust storms and worsening asthma in Western Japan.

    Science.gov (United States)

    Watanabe, Masanari; Yamasaki, Akira; Burioka, Naoto; Kurai, Jun; Yoneda, Kazuhiko; Yoshida, Atsushi; Igishi, Tadashi; Fukuoka, Yasushi; Nakamoto, Masaki; Takeuchi, Hiromi; Suyama, Hisashi; Tatsukawa, Toshiyuki; Chikumi, Hiroki; Matsumoto, Shingo; Sako, Takanori; Hasegawa, Yasuyuki; Okazaki, Ryota; Horasaki, Kazunori; Shimizu, Eiji

    2011-09-01

    Severe wind storms during spring in East Asia, called Asian dust storms (ADS), have been assessed in the past for their effect on health in Asian countries. Our objective was to study the ADS association with asthma symptoms in adult patients in Japan. We designed a telephone survey to assess ADS influence on upper and lower respiratory, ocular and cutaneous symptoms in 98 patients with adult asthma from April to May 2007. Peak expiratory flow (PEF) was also measured from February to May. Worsening lower respiratory symptoms were noted by 22 of 98 patients during ADS in April, when Japanese cedar pollen levels also increased. During ADS in May, however, Japanese cedar and cypress pollen levels were not elevated, 11 patients had worsening of lower respiratory symptoms. None required emergency treatment for the exacerbation. Lower respiratory symptoms worsening most were cough and sputum; this was more common in patients with allergic rhinitis or atopy than in those without (P storm. We found that ADS aggravated lower respiratory symptoms in adult patients with asthma, but this influence was mild.

  10. Characterisation of bio-aerosols during dust storm period in N-NW India

    Science.gov (United States)

    Yadav, Sudesh; Chauhan, M. S.; Sharma, Anupam

    Bio-investigations for pollen and spores were performed on dry free-fall dust and PM 10 aerosol samples, collected from three different locations separated by a distance of 600 km, situated in dust storm hit region of N-NW India. Presence of pollen of trees namely Prosopis ( Prosopis juliflora and Prosopis cinearia), Acacia, Syzygium, Pinus, Cedrus, Holoptelea and shrubs namely Ziziphus, Ricinus, Ephedra and members of Fabaceae, Oleaceae families was recorded but with varying proportions in the samples of different locations. Poaceae, Chenopodiaceae/Amaranthaceae, Caryophyllaceae, Brassicaceae and Cyperaceae (sedges) were some of the herb pollen identified in the samples. Among the fungal spores Nigrospora was seen in almost all samples. Nigrospora is a well known allergen and causes health problems. The concentration of trees and shrubs increases in the windward direction just as the climate changes from hot arid to semiarid. The higher frequency of grasses (Poaceae) or herbs could either be a result of the presence of these herbs in the sampling area and hence the higher production of pollen/spores or due to the resuspension from the exposed surface by the high-intensity winds. But we cannot ascertain the exact process at this stage. The overall similarity in the pollen and spore assemblage in our dust samples indicates a common connection or source(s) to the dust in this region. Presence of the pollen of the species of Himalayan origin in our entire samples strongly point towards a Himalayan connection, could be direct or indirect, to the bioaerosols and hence dust in N-NW India. In order to understand the transport path and processes involved therein, present study needs further extension with more number of samples and with reference to meteorological parameters.

  11. Impact of Two Intense Dust Storms on Aerosol Characteristics and Radiative Forcing over Patiala, Northwestern India

    Directory of Open Access Journals (Sweden)

    Deepti Sharma

    2012-01-01

    Full Text Available Impact of dust storms on the aerosol characteristics and radiative forcing over Patiala, northwestern India has been studied during April-June of 2010 using satellite observations and ground-based measurements. Six dust events (DE have been identified during the study period with average values of Aqua-MODIS AOD550 and Microtops-II AOD500 over Patiala as 1.00±0.51 and 0.84±0.41, respectively while Aura-OMI AI exhibits high values ranging from 2.01 to 6.74. The Ångström coefficients α380–870 and β range from 0.12 to 0.31 and 0.95 to 1.40, respectively. The measured spectral AODs, the OPAC-derived aerosol properties and the surface albedo obtained from MODIS were used as main inputs in SBDART model for the calculation of aerosol radiative forcing (ARF over Patiala. The ARF at surface (SRF and top of atmosphere (TOA ranges from ∼−50 to −100 Wm−2 and from ∼−10 to −25 Wm−2, respectively during the maximum of dust storms. The radiative forcing efficiency was found to be −66 Wm−2AOD−1 at SRF and −14 Wm−2AOD−1 at TOA. High values of ARF in the atmosphere (ATM, ranging between ∼+40 Wm−2 and +80.0 Wm−2 during the DE days, might have significant effect on the warming of the lower and middle atmosphere and, hence, on climate over northwestern India.

  12. Large Salt Dust Storms Follow a 30-Year Rainfall Cycle in the Mar Chiquita Lake (Córdoba, Argentina.

    Directory of Open Access Journals (Sweden)

    Enrique H Bucher

    Full Text Available Starting in 2006, a new source of intense salt dust storms developed in Mar Chiquita (Córdoba, Argentina, the largest saline lake in South America. Storms originate from vast mudflats left by a 30-year expansion-retreat cycle of the lake due to changes in the regional rainfall regime. The annual frequency of salt dust storms correlated with the size of the salt mudflats. Events were restricted to the coldest months, and reached up to 800 km from the source. Occurrence of dust storms was associated with specific surface colors and textures easily identifiable in satellite images. High-emission surfaces were characterized by the presence of sodium sulfate hydrous/anhydrous crystals (mirabilite and thenardite, and a superficial and variable water table, which may result in the periodic development of a characteristic "fluffy" surface derived from salt precipitation-dissolution processes. HYSPLIT model simulation estimates a deposition maximum near the sources (of about 2.5 kg/ha/yr, and a decreasing trend from the emission area outwards, except for the relative secondary maximum modeled over the mountain ranges in southern Bolivia and northern Argentina due to an orographic effect. The 2009 total deposition of salt dust generated in Mar Chiquita was estimated at 6.5 million tons.

  13. The Dust Storm Index (DSI): A method for monitoring broadscale wind erosion using meteorological records

    Science.gov (United States)

    O'Loingsigh, T.; McTainsh, G. H.; Tews, E. K.; Strong, C. L.; Leys, J. F.; Shinkfield, P.; Tapper, N. J.

    2014-03-01

    Wind erosion of soils is a natural process that has shaped the semi-arid and arid landscapes for millennia. This paper describes the Dust Storm Index (DSI); a methodology for monitoring wind erosion using Australian Bureau of Meteorology (ABM) meteorological observational data since the mid-1960s (long-term), at continental scale. While the 46 year length of the DSI record is its greatest strength from a wind erosion monitoring perspective, there are a number of technical challenges to its use because when the World Meteorological Organisation (WMO) recording protocols were established the use of the data for wind erosion monitoring was never intended. Data recording and storage protocols are examined, including the effects of changes to the definition of how observers should interpret and record dust events. A method is described for selecting the 180 long-term ABM stations used in this study and the limitations of variable observation frequencies between stations are in part resolved. The rationale behind the DSI equation is explained and the examples of temporal and spatial data visualisation products presented include; a long term national wind erosion record (1965-2011), continental DSI maps, and maps of the erosion event types that are factored into the DSI equation. The DSI is tested against dust concentration data and found to provide an accurate representation of wind erosion activity. As the ABM observational records used here were collected according to WMO protocols, the DSI methodology could be used in all countries with WMO-compatible meteorological observation and recording systems.

  14. Estimation of radiative effect of a heavy dust storm over northwest China using Fu–Liou model and ground measurements

    International Nuclear Information System (INIS)

    Wang, Wencai; Huang, Jianping; Zhou, Tian; Bi, Jianrong; Lin, Lei; Chen, Yonghang; Huang, Zhongwei; Su, Jing

    2013-01-01

    A heavy dust storm that occurred in Northwestern China during April 24–30 2010 was studied using observational data along with the Fu–Liou radiative transfer model. The dust storm was originated from Mongolia and affected more than 10 provinces of China. Our results showed that dust aerosols have a significant impact on the radiative energy budget. At Minqin (102.959°E, 38.607°N) and Semi-Arid Climate and Environment Observatory of Lanzhou University (SACOL, 104.13°E, 35.95°N) sites, the net radiative forcing (RF) ranged from 5.93 to 35.7 W m −2 at the top of the atmosphere (TOA), −6.3 to −30.94 W m −2 at surface, and 16.77 to 56.32 W m −2 in the atmosphere. The maximum net radiative heating rate reached 5.89 K at 1.5 km on 24 April at the Minqin station and 4.46 K at 2.2 km on 29 April at the SACOL station. Our results also indicated that the radiative effect of dust aerosols is affected by aerosol optical depth (AOD), single-scattering albedo (SSA) and surface albedo. Modifications of the radiative energy budget by dust aerosols may have important implications for atmospheric circulation and regional climate. -- Highlights: ► Dust aerosols' optical properties and radiative effects were investigated. ► We have surface observations on Minqin and SACOL where heavy dust storm occurred. ► Accurate input parameters for model were acquired from ground-based measurements. ► Aerosol's optical properties may have changed when transported

  15. Diagnosis of the Relationship between Dust Storms over the Sahara Desert and Dust Deposit or Coloured Rain in the South Balkans

    Directory of Open Access Journals (Sweden)

    N. G. Prezerakos

    2010-01-01

    Full Text Available The main objects of study in this paper are the synoptic scale atmospheric circulation systems associated with the rather frequent phenomenon of coloured rain and the very rare phenomenon of dust or sand deposits from a Saharan sandstorm triggered by a developing strong depression. Analysis of two such cases revealed that two days before the occurrence of the coloured rain or the dust deposits over Greece a sand storm appeared over the north-western Sahara desert. The flow in the entire troposphere is southerly/south-westerly with an upward vertical motion regime. If the atmospheric conditions over Greece favour rain then this rain contains a part of the dust cloud while the rest is drawn away downstream adopting a light yellow colour. In cases where the atmospheric circulation on the route of the dust cloud trajectories is not intensively anticyclonic dust deposits can occur on the surface long far from the region of the dust origin. Such was the case on 4th April, 1988, when significant synoptic-scale subsidence occurred over Italy and towards Greece. The upper air data, in the form of synoptic maps, illustrate in detail the synoptic-scale atmospheric circulations associated with the emission-transport-deposition and confirm the transportation of dust particles.

  16. DMS photochemistry during the Asian dust-storm period in the Spring of 2001: model simulations vs. field observations.

    Science.gov (United States)

    Shon, Zang-Ho; Kim, Ki-Hyun; Swan, Hilton; Lee, Gangwoong; Kim, Yoo-Keun

    2005-01-01

    This study examines the local/regional DMS oxidation chemistry on Jeju Island (33.17 degrees N, 126.10 degrees E) during the Asian dust-storm (ADS) period of April 2001. Three ADS events were observed during the periods of April 10-12, 13-14, and 25-26, respectively. For comparative purposes, a non-Asian-dust-storm (NADS) period was also considered in this study, which represents the entire measurement periods in April except the ADS events. The atmospheric concentrations of DMS and SO2 were measured at a ground station on Jeju Island, Korea, as part of the ACE-Asia intensive operation. DMS (means of 34-52 pptv) and SO2 (means of 0.96-1.14 ppbv) levels measured during the ADS period were higher than those (mean of 0.45 ppbv) during the NADS period. The enhanced DMS levels during the ADS period were likely due to the increase in DMS flux under reduced oxidant levels (OH and NO3). SO2 levels between the two contrasting periods were affected sensitively by some factors such as air mass origins. The diurnal variation patterns of DMS observed during the two periods were largely different from those seen in the background environment (e.g., the marine boundary layer (MBL)). In contrast to the MBL, the maximum DMS value during the ADS period was seen in the late afternoon at about sunset; this reversed pattern appears to be regulated by certain factors (e.g., enhanced NO3 oxidation). The sea-to-air fluxes of DMS between the ADS and NADS periods were calculated based on the mass-balance photochemical-modeling approach; their results were clearly distinguished with the values of 4.4 and 2.4 micromole m(-2) day(-1), respectively. This study confirmed that the contribution of DMS oxidation to observed SO2 levels on Jeju Island was not significant during our study period regardless of ADS or NADS periods.

  17. Long-range Transport of Asian Dust Storms: A Satellite/Surface Perspective on Societal and Scientific Influence

    Science.gov (United States)

    2007-01-01

    Among the many components contributing to air pollution, airborne mineral dust plays an important role due to its biogeochemical impact on the ecosystem and its radiative forcing effect on the weather/climate system. As much as one-third to half of the global dust emissions, estimated about 800 Tg, are introduced annually into Earth's atmosphere from various deserts in China. Asian dust storm outbreaks are believed to have persisted for hundreds and thousands years over the vast territory of north and northwest China, but not until recent decades that many studies reveal the compelling evidence in recognizing the importance of these eolian dust particles for forming Chinese Loess Plateau and for biogeochemical cycling in the North Pacific Ocean to as far as in the Greenland ice-sheets through long-range transport. The Asian dust and air pollution aerosols can be detected by its colored appearance on current Earth observing satellites and its evolution monitored by satellite and surface network. In this paper, we will demonstrate the capability of a new satellite algorithm, called Deep Blue, to retrieve aerosol properties, particularly but not limited to, over bright-reflecting surfaces such as urban areas and deserts. Recently, many field campaigns were designed and executed to study the compelling variability in spatial and temporal scale of both pollution-derived and naturally occurring aerosols, which often exist in high concentrations over eastern Asia and along the rim of the western Pacific. We will provide an overview of the outbreak of Asian dust storms, near source/sink and their evolution along transport pathway, from space and surface observations. The climatic effects and societal impacts of the Asian dusts will be addressed in depth. (to be presented in the International Workshop on Semi-Arid Land Surface-

  18. Localization in smart dust sensor networks

    NARCIS (Netherlands)

    Kilic, Y.; Meijerink, Arjan; Bentum, Marinus Jan

    2010-01-01

    Our research goal is to design a robust localization system that offers good accuracy even in the harsh indoor and outdoor environments by handling problems in the physical layer. In this respect, localization based on ultra-wide band (UWB) technology with time-based ranging is a good candidate

  19. Implementation of dust emission and chemistry into the Community Multiscale Air Quality modeling system and initial application to an Asian dust storm episode

    Directory of Open Access Journals (Sweden)

    K. Wang

    2012-11-01

    Full Text Available The US Environmental Protection Agency's (EPA Community Multiscale Air Quality (CMAQ modeling system version 4.7 is further developed to enhance its capability in simulating the photochemical cycles in the presence of dust particles. The new model treatments implemented in CMAQ v4.7 in this work include two online dust emission schemes (i.e., the Zender and Westphal schemes, nine dust-related heterogeneous reactions, an updated aerosol inorganic thermodynamic module ISORROPIA II with an explicit treatment of crustal species, and the interface between ISORROPIA II and the new dust treatments. The resulting improved CMAQ (referred to as CMAQ-Dust, offline-coupled with the Weather Research and Forecast model (WRF, is applied to the April 2001 dust storm episode over the trans-Pacific domain to examine the impact of new model treatments and understand associated uncertainties. WRF/CMAQ-Dust produces reasonable spatial distribution of dust emissions and captures the dust outbreak events, with the total dust emissions of ~111 and 223 Tg when using the Zender scheme with an erodible fraction of 0.5 and 1.0, respectively. The model system can reproduce well observed meteorological and chemical concentrations, with significant improvements for suspended particulate matter (PM, PM with aerodynamic diameter of 10 μm, and aerosol optical depth than the default CMAQ v4.7. The sensitivity studies show that the inclusion of crustal species reduces the concentration of PM with aerodynamic diameter of 2.5 μm (PM2.5 over polluted areas. The heterogeneous chemistry occurring on dust particles acts as a sink for some species (e.g., as a lower limit estimate, reducing O3 by up to 3.8 ppb (~9% and SO2 by up to 0.3 ppb (~27% and as a source for some others (e.g., increasing fine-mode SO42− by up to 1.1 μg m−3 (~12% and PM2.5 by up to 1.4 μg m−3 (~3% over the domain. The

  20. Spatial and temporal distributions of Martian north polar cold spots before, during, and after the global dust storm of 2001

    Science.gov (United States)

    Cornwall, C.; Titus, T.N.

    2009-01-01

    In the 1970s, Mariner and Viking observed features in the Mars northern polar region that were a few hundred kilometers in diameter with 20 fj,m brightness temperatures as low as 130 K (considerably below C02 ice sublimation temperatures). Over the past decade, studies have shown that these areas (commonly called "cold spots") are usually due to emissivity effects of frost deposits and occasionally to active C02 snowstorms. Three Mars years of Mars Global Surveyor Thermal Emission Spectrometer data were used to observe autumn and wintertime cold spot activity within the polar regions. Many cold spots formed on or near scarps of the perennial cap, probably induced by adiabatic cooling due to orographic lifting. These topographically associated cold spots were often smaller than those that were not associated with topography. We determined that initial grain sizes within the cold spots were on the order of a few millimeters, assuming the snow was uncontaminated by dust or water ice. On average, the half-life of the cold spots was 5 Julian days. The Mars global dust storm in 2001 significantly affected cold spot activity in the north polar region. Though overall perennial cap cold spot activity seemed unaffected, the distribution of cold spots did change by a decrease in the number of topographically associated cold spots and an increase in those not associated with topography. We propose that the global dust storm affected the processes that form cold spots and discuss how the global dust storm may have affected these processes. ?? 2009 by the American Geophysical Union.

  1. Developing Local Scale, High Resolution, Data to Interface with Numerical Storm Models

    Science.gov (United States)

    Witkop, R.; Becker, A.; Stempel, P.

    2017-12-01

    High resolution, physical storm models that can rapidly predict storm surge, inundation, rainfall, wind velocity and wave height at the intra-facility scale for any storm affecting Rhode Island have been developed by Researchers at the University of Rhode Island's (URI's) Graduate School of Oceanography (GSO) (Ginis et al., 2017). At the same time, URI's Marine Affairs Department has developed methods that inhere individual geographic points into GSO's models and enable the models to accurately incorporate local scale, high resolution data (Stempel et al., 2017). This combination allows URI's storm models to predict any storm's impacts on individual Rhode Island facilities in near real time. The research presented here determines how a coastal Rhode Island town's critical facility managers (FMs) perceive their assets as being vulnerable to quantifiable hurricane-related forces at the individual facility scale and explores methods to elicit this information from FMs in a format usable for incorporation into URI's storm models.

  2. New insights into the vertical structure of the September 2015 dust storm employing eight ceilometers and auxiliary measurements over Israel

    Science.gov (United States)

    Uzan, Leenes; Egert, Smadar; Alpert, Pinhas

    2018-03-01

    On 7 September 2015, an unprecedented and unexceptional extreme dust storm struck the eastern Mediterranean (EM) basin. Here, we provide an overview of the previous studies and describe the dust plume evolution over a relatively small area, i.e., Israel. This study presents vertical profiles provided by an array of eight ceilometers covering the Israeli shore, inland and mountain regions. We employ multiple tools including spectral radiometers (Aerosol Robotic Network - AERONET), ground particulate matter concentrations, satellite images, global/diffuse/direct solar radiation measurements and radiosonde profiles. The main findings reveal that the dust plume penetrated Israel on 7 September from the northeast in a downward motion to southwest. On 8 September, the lower level of the dust plume reached 200 m above ground level, generating aerosol optical depth (AOD) above 3 and extreme ground particulate matter concentrations up to ˜ 10 000 µm m-3. A most interesting feature on 8 September was the very high variability in the surface solar radiation in the range of 200-600 W m-2 (22 sites) over just a distance of several hundred kilometers in spite of the thick dust layer above. Furthermore, 8 September shows the lowest radiation levels for this event. On the following day, the surface solar radiation increased, thus enabling a late (between 11:00 and 12:00 UTC) sea breeze development mainly in the coastal zone associated with a creation of a narrow dust layer detached from the ground. On 10 September, the AOD values started to drop down to ˜ 1.5, and the surface concentrations of particulate matter decreased as well as the ceilometers' aerosol indications (signal counts) although Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) revealed an upper dust layer remained.

  3. Diagnostic evaluation of the Community Earth System Model in simulating mineral dust emission with insight into large-scale dust storm mobilization in the Middle East and North Africa (MENA)

    Science.gov (United States)

    Parajuli, Sagar Prasad; Yang, Zong-Liang; Lawrence, David M.

    2016-06-01

    Large amounts of mineral dust are injected into the atmosphere during dust storms, which are common in the Middle East and North Africa (MENA) where most of the global dust hotspots are located. In this work, we present simulations of dust emission using the Community Earth System Model Version 1.2.2 (CESM 1.2.2) and evaluate how well it captures the spatio-temporal characteristics of dust emission in the MENA region with a focus on large-scale dust storm mobilization. We explicitly focus our analysis on the model's two major input parameters that affect the vertical mass flux of dust-surface winds and the soil erodibility factor. We analyze dust emissions in simulations with both prognostic CESM winds and with CESM winds that are nudged towards ERA-Interim reanalysis values. Simulations with three existing erodibility maps and a new observation-based erodibility map are also conducted. We compare the simulated results with MODIS satellite data, MACC reanalysis data, AERONET station data, and CALIPSO 3-d aerosol profile data. The dust emission simulated by CESM, when driven by nudged reanalysis winds, compares reasonably well with observations on daily to monthly time scales despite CESM being a global General Circulation Model. However, considerable bias exists around known high dust source locations in northwest/northeast Africa and over the Arabian Peninsula where recurring large-scale dust storms are common. The new observation-based erodibility map, which can represent anthropogenic dust sources that are not directly represented by existing erodibility maps, shows improved performance in terms of the simulated dust optical depth (DOD) and aerosol optical depth (AOD) compared to existing erodibility maps although the performance of different erodibility maps varies by region.

  4. Chemical composition of PM10 and its in vitro toxicological impacts on lung cells during the Middle Eastern Dust (MED) storms in Ahvaz, Iran.

    Science.gov (United States)

    Naimabadi, Abolfazl; Ghadiri, Ata; Idani, Esmaeil; Babaei, Ali Akbar; Alavi, Nadali; Shirmardi, Mohammad; Khodadadi, Ali; Marzouni, Mohammad Bagherian; Ankali, Kambiz Ahmadi; Rouhizadeh, Ahmad; Goudarzi, Gholamreza

    2016-04-01

    Reports on the effects of PM10 from dust storm on lung cells are limited. The main purpose of this study was to investigate the chemical composition and in vitro toxicological impacts of PM10 suspensions, its water-soluble fraction, and the solvent-extractable organics extracted from Middle Eastern Dust storms on the human lung epithelial cell (A549). Samples of dust storms and normal days (PM10 0.05). These results led to the conclusions that dust storm PM10 as well as normal day PM10 could lead to cytotoxicity, and the organic compounds (PAHs) and the insoluble particle-core might be the main contributors to cytotoxicity. Our results showed that cytotoxicity and the risk of PM10 to human lung may be more severe during dust storm than normal days due to inhalation of a higher mass concentration of airborne particles. Further research on PM dangerous fractions and the most responsible components to make cytotoxicity in exposed cells is recommended. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Mortality associated with particulate concentration and Asian dust storms in Metropolitan Taipei

    Science.gov (United States)

    Wang, Yu-Chun; Lin, Yu-Kai

    2015-09-01

    This study evaluates mortality risks from all causes, circulatory diseases, and respiratory diseases associated with particulate matter (PM10 and PM2.5) concentrations and Asian dust storms (ADS) from 2000 to 2008 in Metropolitan Taipei. This study uses a distributed lag non-linear model with Poisson distribution to estimate the cumulative 5-day (lags 0-4) relative risks (RRs) and confidence intervals (CIs) of cause-specific mortality associated with daily PM10 and PM2.5 concentrations, as well as ADS, for total (all ages) and elderly (≥65 years) populations based on study periods (ADS frequently inflicted period: 2000-2004; and less inflicted period: 2005-2008). Risks associated with ADS characteristics, including inflicted season (winter and spring), strength (the ratio of stations with Pollutant Standard Index >100 is increase in PM10 from 10 μg/m3 to 50 μg/m3 was associated with increased all-cause mortality risk with cumulative 5-day RR of 1.10 (95% CI: 1.04, 1.17) for the total population and 1.10 (95% CI: 1.02, 1.18) for elders. Mortality from circulatory diseases for the elderly was related to increased PM2.5 from 5 μg/m3 to 30 μg/m3, with cumulative 5-day RR of 1.21 (95% CI: 1.02, 1.44) from 2005 to 2008. Compared with normal days, the mortality from all causes and circulatory diseases for the elderly population was associated with winter ADS with RRs of 1.05 (95% CI: 1.01, 1.08) and 1.08 (95% CI: 1.01, 1.15), respectively. Moreover, all-cause mortality was associated with shorter and less area-affected ADS with an RR of 1.04 for total and elderly populations from 2000 to 2004. Population health risk differed not only with PM concentration but also with ADS characteristics.

  6. The role of dust storms in total atmospheric particle concentrations at two sites in the western U.S.

    Science.gov (United States)

    Neff, Jason C.; Reynolds, Richard L.; Munson, Seth M.; Fernandez, Daniel; Belnap, Jayne

    2013-01-01

    Mineral aerosols are produced during the erosion of soils by wind and are a common source of particles (dust) in arid and semiarid regions. The size of these particles varies widely from less than 2 µm to larger particles that can exceed 50 µm in diameter. In this study, we present two continuous records of total suspended particle (TSP) concentrations at sites in Mesa Verde and Canyonlands National Parks in Colorado and Utah, USA, respectively, and compare those values to measurements of fine and coarse particle concentrations made from nearby samplers. Average annual concentrations of TSP at Mesa Verde were 90 µg m−3 in 2011 and at Canyonlands were 171 µg m−3 in 2009, 113 µg m−3 in 2010, and 134 µg m−3 in 2011. In comparison, annual concentrations of fine (diameter of 2.5 µm and below) and coarse (2.5–10 µm diameter) particles at these sites were below 10 µg m−3 in all years. The high concentrations of TSP appear to be the result of regional dust storms with elevated concentrations of particles greater than 10 µm in diameter. These conditions regularly occur from spring through fall with 2 week mean TSP periodically in excess of 200 µg m−3. Measurement of particles on filters indicates that the median particle size varies between approximately 10 µm in winter and 40 µm during the spring. These persistently elevated concentrations of large particles indicate that regional dust emission as dust storms and events are important determinants of air quality in this region.

  7. Synergistic Use of Remote Sensing and Modeling for Tracing Dust Storms in the Mediterranean

    Directory of Open Access Journals (Sweden)

    D. G. Kaskaoutis

    2012-01-01

    Full Text Available This study focuses on the detection of the dust source region and monitoring of the transport of the dust plume from its primary outflow to final deposition. The application area is the Sahara desert and the eastern Mediterranean, where two dust events occurred during the period 4–6 February 2009, an unusual event for a winter period. The Aqua-MODIS and OMI observations clearly define the spatial distribution of the dust plumes, while the CALIPSO observations of total attenuated backscatter (TAB at 532 nm, depolarization ratio (DR, and attenuated color ratio (1064/532 nm on 5 February 2009 provide a clear view and vertical structure of the dust-laden layer. The dust source region is defined to be near the Chad-Niger-Libyan borders, using satellite observations and model (DREAM output. This dust plume is vertically extended up to 2.5 km and is observed as a mass plume of dust from surface level to that altitude, where the vertical variation of TAB (0.002 to 0.2 and DR (0.2–0.5 implies dust-laden layer with non-spherical particles. CALIPSO profiles show that after the dust plume reached at its highest level, the dust particles start to be deposited over the Mediterranean and the initial dust plume was strongly attenuated, while features of dust were limited below about 1–1.5 km for latitudes northern of ~36° (Greek territory.

  8. Restoration of STORM images from sparse subset of localizations (Conference Presentation)

    Science.gov (United States)

    Moiseev, Alexander A.; Gelikonov, Grigory V.; Gelikonov, Valentine M.

    2016-02-01

    To construct a Stochastic Optical Reconstruction Microscopy (STORM) image one should collect sufficient number of localized fluorophores to satisfy Nyquist criterion. This requirement limits time resolution of the method. In this work we propose a probabalistic approach to construct STORM images from a subset of localized fluorophores 3-4 times sparser than required from Nyquist criterion. Using a set of STORM images constructed from number of localizations sufficient for Nyquist criterion we derive a model which allows us to predict the probability for every location to be occupied by a fluorophore at the end of hypothetical acquisition, having as an input parameters distribution of already localized fluorophores in the proximity of this location. We show that probability map obtained from number of fluorophores 3-4 times less than required by Nyquist criterion may be used as superresolution image itself. Thus we are able to construct STORM image from a subset of localized fluorophores 3-4 times sparser than required from Nyquist criterion, proportionaly decreasing STORM data acquisition time. This method may be used complementary with other approaches desined for increasing STORM time resolution.

  9. Three-dimensional variational assimilation of MODIS aerosol optical depth: Implementation and application to a dust storm over East Asia

    Science.gov (United States)

    Liu, Zhiquan; Liu, Quanhua; Lin, Hui-Chuan; Schwartz, Craig S.; Lee, Yen-Huei; Wang, Tijian

    2011-12-01

    Assimilation of the Moderate Resolution Imaging Spectroradiometer (MODIS) total aerosol optical depth (AOD) retrieval products (at 550 nm wavelength) from both Terra and Aqua satellites have been developed within the National Centers for Environmental Prediction (NCEP) Gridpoint Statistical Interpolation (GSI) three-dimensional variational (3DVAR) data assimilation system. This newly developed algorithm allows, in a one-step procedure, the analysis of 3-D mass concentration of 14 aerosol variables from the Goddard Chemistry Aerosol Radiation and Transport (GOCART) module. The Community Radiative Transfer Model (CRTM) was extended to calculate AOD using GOCART aerosol variables as input. Both the AOD forward model and corresponding Jacobian model were developed within the CRTM and used in the 3DVAR minimization algorithm to compute the AOD cost function and its gradient with respect to 3-D aerosol mass concentration. The impact of MODIS AOD data assimilation was demonstrated by application to a dust storm from 17 to 24 March 2010 over East Asia. The aerosol analyses initialized Weather Research and Forecasting/Chemistry (WRF/Chem) model forecasts. Results indicate that assimilating MODIS AOD substantially improves aerosol analyses and subsequent forecasts when compared to MODIS AOD, independent AOD observations from the Aerosol Robotic Network (AERONET) and Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) instrument, and surface PM10 (particulate matter with diameters less than 10 μm) observations. The newly developed AOD data assimilation system can serve as a tool to improve simulations of dust storms and general air quality analyses and forecasts.

  10. Chemical composition of PM_1_0 and its in vitro toxicological impacts on lung cells during the Middle Eastern Dust (MED) storms in Ahvaz, Iran

    International Nuclear Information System (INIS)

    Naimabadi, Abolfazl; Ghadiri, Ata; Idani, Esmaeil; Babaei, Ali Akbar; Alavi, Nadali; Shirmardi, Mohammad; Khodadadi, Ali

    2016-01-01

    Reports on the effects of PM_1_0 from dust storm on lung cells are limited. The main purpose of this study was to investigate the chemical composition and in vitro toxicological impacts of PM_1_0 suspensions, its water-soluble fraction, and the solvent-extractable organics extracted from Middle Eastern Dust storms on the human lung epithelial cell (A549). Samples of dust storms and normal days (PM_1_0   0.05). These results led to the conclusions that dust storm PM_1_0 as well as normal day PM_1_0 could lead to cytotoxicity, and the organic compounds (PAH_s) and the insoluble particle-core might be the main contributors to cytotoxicity. Our results showed that cytotoxicity and the risk of PM_1_0 to human lung may be more severe during dust storm than normal days due to inhalation of a higher mass concentration of airborne particles. Further research on PM dangerous fractions and the most responsible components to make cytotoxicity in exposed cells is recommended. - Highlights: • Chemical compositions of PM_1_0 during normal and dust event days were obtained. • Heavy metal concentrations in dusty conditions were higher than normal days. • PM_1_0 caused a decrease in the cell viability and an increase in LDH in supernatant. • Water-soluble fraction had severe cytotoxicity than solvent extractable organics. • Higher mass concentrations of PM_1_0 may contribute to more severe cytotoxicity. - Inhalation of higher mass concentration of PM during the MED storms may contribute to more severe cytotoxicity than normal days.

  11. Snow–Dust Storm: Unique case study from Iceland, March 6–7, 2013

    Czech Academy of Sciences Publication Activity Database

    Dagsson-Waldhauserova, P.; Arnalds, O.; Olafsson, H.; Hladil, Jindřich; Skála, Roman; Navrátil, Tomáš; Chadimová, Leona; Meinander, O.

    2015-01-01

    Roč. 16, March (2015), s. 69-74 ISSN 1875-9637 Institutional support: RVO:67985831 Keywords : snow dust deposition * atmosphere cryosphere interactions * volcanic dust * natural phenomenon * Arctic Subject RIV: DB - Geology ; Mineralogy Impact factor: 2.275, year: 2015

  12. Simulating the meteorology and PM10 concentrations in Arizona dust storms using the Weather Research and Forecasting model with Chemistry (Wrf-Chem).

    Science.gov (United States)

    Hyde, Peter; Mahalov, Alex; Li, Jialun

    2018-03-01

    Nine dust storms in south-central Arizona were simulated with the Weather Research and Forecasting with Chemistry model (WRF-Chem) at 2 km resolution. The windblown dust emission algorithm was the Air Force Weather Agency model. In comparison with ground-based PM 10 observations, the model unevenly reproduces the dust-storm events. The model adequately estimates the location and timing of the events, but it is unable to precisely replicate the magnitude and timing of the elevated hourly concentrations of particles 10 µm and smaller ([PM 10 ]).Furthermore, the model underestimated [PM 10 ] in highly agricultural Pinal County because it underestimated surface wind speeds and because the model's erodible fractions of the land surface data were too coarse to effectively resolve the active and abandoned agricultural lands. In contrast, the model overestimated [PM 10 ] in western Arizona along the Colorado River because it generated daytime sea breezes (from the nearby Gulf of California) for which the surface-layer speeds were too strong. In Phoenix, AZ, the model's performance depended on the event, with both under- and overestimations partly due to incorrect representation of urban features. Sensitivity tests indicate that [PM 10 ] highly relies on meteorological forcing. Increasing the fraction of erodible surfaces in the Pinal County agricultural areas improved the simulation of [PM 10 ] in that region. Both 24-hr and 1-hr measured [PM 10 ] were, for the most part, and especially in Pinal County, extremely elevated, with the former exceeding the health standard by as much as 10-fold and the latter exceeding health-based guidelines by as much as 70-fold. Monsoonal thunderstorms not only produce elevated [PM 10 ], but also cause urban flash floods and disrupt water resource deliveries. Given the severity and frequency of these dust storms, and conceding that the modeling system applied in this work did not produce the desired agreement between simulations and

  13. Properties of Aerosols during a Dust Storm over the Beijing Area,

    Science.gov (United States)

    1983-12-12

    THE BEIJING AREA by Zhou Mingyu , Qu Shaohou, et al DTIC S ELECTE JAN 04 1984 N Lum E Approved for public release; distribution unlimited. 84 01 04 015...STORM OVER THE BEIJING AREA By: Zhou Mingyu , Qu Shaohou, et al. English~ pages: 22 Source: Huanjing Kexue Xuebao, Vol. 1, Nr. 3, September 1981, pp... Mingyu , Qu Shaohou, Song Ximing, Li Yuying, Yang Shaojin and Qian Qinfang Zhou, Qu, Song and Li of Institute of Atmospheric Physics, Chinese Academy

  14. Epifluorescent direct counts of bacteria and viruses from topsoil of various desert dust storm regions

    Science.gov (United States)

    Gonzalez-Martin, Cristina; Teigell-Perez, Nuria; Lyles, Mark; Valladares, Basilio; Griffin, Dale W.

    2013-01-01

    Topsoil from arid regions is the main source of dust clouds that move through the earth's atmosphere, and microbial communities within these soils can survive long-range dispersion. Microbial abundance and chemical composition were analyzed in topsoil from various desert regions. Statistical analyses showed that microbial direct counts were strongly positively correlated with calcium concentrations and negatively correlated with silicon concentrations. While variance between deserts was expected, it was interesting to note differences between sample sites within a given desert region, illustrating the 'patchy' nature of microbial communities in desert environments.

  15. Difference in the wind speeds required for initiation versus continuation of sand transport on mars: implications for dunes and dust storms.

    Science.gov (United States)

    Kok, Jasper F

    2010-02-19

    Much of the surface of Mars is covered by dunes, ripples, and other features formed by the blowing of sand by wind, known as saltation. In addition, saltation loads the atmosphere with dust aerosols, which dominate the Martian climate. We show here that saltation can be maintained on Mars by wind speeds an order of magnitude less than required to initiate it. We further show that this hysteresis effect causes saltation to occur for much lower wind speeds than previously thought. These findings have important implications for the formation of dust storms, sand dunes, and ripples on Mars.

  16. The ecology of dust: local- to global-scale perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Whicker, Jeffrey J [Los Alamos National Laboratory; Field, Jason P [UA; Belnap, Jayne [NON LANL; Breshears, David D [UA; Neff, Jason [CU; Okin, Gregory S [UCLA; Painter, Thomas H [UNIV OF ARIZONA; Ravi, Sujith [UNIV OF ARIZONA; Reheis, Marith C [UCLA; Reynolds, Richard L [NON LANL

    2009-01-01

    Emission and redistribution of dust due to wind erosion in drylands drives major biogeochemical dynamics and provides important aeolian environmental connectivity at scales from individual plants up to the global scale. Yet, perhaps because most relevant research on aeolian processes has been presented in a geosciences rather than ecological context, most ecological studies do not explicitly consider dust-driven processes. To bridge this disciplinary gap, we provide a general overview of the ecological importance of dust, examine complex interactions between wind erosion and ecosystem dynamics from the plant-interspace scale to regional and global scales, and highlight specific examples of how disturbance affects these interactions and their consequences. Changes in climate and intensification of land use will both likely lead to increased dust production. To address these challenges, environmental scientists, land managers and policy makers need to more explicitly consider dust in resource management decisions.

  17. The Origin and Evolution of Interstellar Dust in the Local and High-redshift Universe

    Science.gov (United States)

    Dwek, Eliahu

    2012-01-01

    In this talk I will begin by reviewing our current state of knowledge regarding the origin and evolution of dust in the local solar neighborhood. using chemical evolution models, I will discuss their many different input parameters and their uncertainties. An important consequence of these models is the delayed injection of dust from AGB stars, compared to supernova-condensed dust, into the interstellar medium. I will show that these stellar evolutionary effects on dust composition are manifested in the infrared spectra of local galaxies. The delayed production of dust in AGB stars has also important consequences for the origin of the large amount of dust detected in high-redshift galaxies, when the universe was less that approx. 1 Gyr old. Supernovae may have been the only viable dust sources in those galaxies. Recent observations of sN1987a show a significant mass of dust in the ejecta of this SN. Is that production rate high enough to account for the observed dust mass in these galaxies? If not, what are the alternative viable sources of dust, and how do they depend on the nature of the galaxy (starburst or AGN) and its star formation history .

  18. Asian Dust Storm Elevates Children’s Respiratory Health Risks: A Spatiotemporal Analysis of Children’s Clinic Visits across Taipei (Taiwan)

    OpenAIRE

    Yu, Hwa-Lung; Chien, Lung-Chang; Yang, Chiang-Hsing

    2012-01-01

    Concerns have been raised about the adverse impact of Asian dust storms (ADS) on human health; however, few studies have examined the effect of these events on children's health. Using databases from the Taiwan National Health Insurance and Taiwan Environmental Protection Agency, this study investigates the documented daily visits of children to respiratory clinics during and after ADS that occurred from 1997 to 2007 among 12 districts across Taipei City by applying a Bayesian structural addi...

  19. Effect of exposure to an Asian dust storm on fractional exhaled nitric oxide in adult asthma patients in Western Japan.

    Science.gov (United States)

    Watanabe, Masanari; Kurai, Jun; Sano, Hiroyuki; Shimizu, Eiji

    2015-01-01

    Epidemiological investigations indicate that an Asian dust storm (ADS) can aggravate respiratory disorders. However, the effects of ADS on airway inflammation remain unclear. The aim of this study was to investigate the association of exposure to ADS with airway inflammation. The subjects were 33 adult patients with asthma who measured daily peak flow expiratory (PEF) from March to May 2012. Fractional exhaled nitric oxide (FeNO) was measured before and after ADS. The FeNO values were 13.8±13.7 ppb before the ADS and 20.3±19.0 ppb after the ADS, with no significant difference. There was also no significant association of PEF with ADS exposure. However, the increase of FeNO after ADS exposure was proportional to the decrease of PEF (R=-0.78, P<0.0001). These results suggest that airway inflammation aggravated by ADS exposure may induce a decrease in pulmonary function in some adult patients with asthma.

  20. Asian dust storm elevates children's respiratory health risks: a spatiotemporal analysis of children's clinic visits across Taipei (Taiwan.

    Directory of Open Access Journals (Sweden)

    Hwa-Lung Yu

    Full Text Available Concerns have been raised about the adverse impact of Asian dust storms (ADS on human health; however, few studies have examined the effect of these events on children's health. Using databases from the Taiwan National Health Insurance and Taiwan Environmental Protection Agency, this study investigates the documented daily visits of children to respiratory clinics during and after ADS that occurred from 1997 to 2007 among 12 districts across Taipei City by applying a Bayesian structural additive regressive model controlled for spatial and temporal patterns. This study finds that the significantly impact of elevated children's respiratory clinic visits happened after ADS. Five of the seven lagged days had increasing percentages of relative rate, which was consecutively elevated from a 2-day to a 5-day lag by 0.63%∼2.19% for preschool children (i.e., 0∼6 years of age and 0.72%∼3.17% for school children (i.e., 7∼14 years of age. The spatial pattern of clinic visits indicated that geographical heterogeneity was possibly associated with the clinic's location and accessibility. Moreover, day-of-week effects were elevated on Monday, Friday, and Saturday. We concluded that ADS may significantly increase the risks of respiratory diseases consecutively in the week after exposure, especially in school children.

  1. Lorentz-Shaped Comet Dust Trail Cross Section from New Hybrid Visual and Video Meteor Counting Technique - Implications for Future Leonid Storm Encounters

    Science.gov (United States)

    Jenniskens, Peter; Crawford, Chris; Butow, Steven J.; Nugent, David; Koop, Mike; Holman, David; Houston, Jane; Jobse, Klaas; Kronk, Gary

    2000-01-01

    A new hybrid technique of visual and video meteor observations was developed to provide high precision near real-time flux measurements for satellite operators from airborne platforms. A total of 33,000 Leonids. recorded on video during the 1999 Leonid storm, were watched by a team of visual observers using a video head display and an automatic counting tool. The counts reveal that the activity profile of the Leonid storm is a Lorentz profile. By assuming a radial profile for the dust trail that is also a Lorentzian, we make predictions for future encounters. If that assumption is correct, we passed 0.0003 AU deeper into the 1899 trailet than expected during the storm of 1999 and future encounters with the 1866 trailet will be less intense than. predicted elsewhere.

  2. Importance of dust storms in the diagenesis of sandstones: a case study, Entrada sandstone in the Ghost Ranch area, New Mexico, USA

    Science.gov (United States)

    Orhan, Hükmü

    1992-04-01

    The importance of dust storms on geological processes has only been studied recently. Case-hardening, desert-varnish formation, duricrust development, reddening and cementation of sediments and caliche formation, are some important geological processes related to dust storms. Dust storms can also be a major source for cements in aeolian sandstones. The Jurassic aeolian Entrada Formation in the Ghost Ranch area is composed of quartz with minor amounts of feldspar and rock fragments, and is cemented with smectite as grain coatings and calcite and kaolinite as pore fillings. Smectite shows a crinkly and honeycomb-like morphology which points to an authigenic origin. The absence of smectite as framework grains and the presence of partially dissolved grains, coated with smectite and smectite egg-shells, indicate an external source. Clay and fine silt-size particles are believed to be the major source for cements, smectite and calcite in the Entrada Formation. The common association of kaolinite with altered feldspar, and the absence of kaolinite in spots heavily cemented with calcite, lead to the conclusions that the kaolinite formation postdates carbonates and that framework feldspar grains were the source of kaolinite.

  3. Origin of Harmattan dust settled in Northern Ghana – Long transported or local dust?

    DEFF Research Database (Denmark)

    Lyngsie, Gry; Awadzi, Theodore W; Breuning-Madsen, Henrik

    2011-01-01

    is that the majority of dust deposited in northern Ghana may not be from the original Harmattan source in the Bodélé Depression. The aim of this study is therefore to investigate the origin of deposited dust in Tamale, Ghana. This is examined by comparing wind data, grain size distribution, mineralogical......The Harmattan is a dry, dust-laden continental wind which has its origin in the Bodélé Depression in the Chad basin. In Ghana the Harmattan can be experienced from November to March, when the Harmattan replaces the dominant south westerly maritime Monsoon wind. The hypothesis of this study...... and geochemical data from dust samples deposited during the Harmattan and Monsoon seasons, and topsoil. This study shows that despite a clear difference between the wind directions in the Harmattan and Monsoon seasons in Tamale, northern Ghana, no distinct differences are observed between the mineral or elemental...

  4. Local drainage analyses of the Paducah and Portsmouth Gaseous Diffusion Plants during an extreme storm

    International Nuclear Information System (INIS)

    Johnson, R.O.; Wang, J.C.; Lee, D.W.

    1993-01-01

    Local drainage analyses have been performed for the Paducah and Portsmouth Gaseous Diffusion Plants during an extreme storm having an approximate 10,000-yr recurrence interval. This review discusses the methods utilized to accomplish the analyses in accordance with US Department of Energy (DOE) design and evaluation guidelines, and summarizes trends, results, generalizations, and uncertainties applicable to other DOE facilities. Results indicate that some culverts may be undersized, and that the storm sewer system cannot drain the influx of precipitation from the base of buildings. Roofs have not been designed to sustain ponding when the primary drainage system is clogged. Some underground tunnels, building entrances, and ground level air intakes may require waterproofing

  5. Influence of tropical storms in the Northern Indian Ocean on dust entrainment and long-range transport.

    Digital Repository Service at National Institute of Oceanography (India)

    Ramaswamy, V.

    to the winter and summer Shamal Winds, tropical cyclones are an important mechanism of dust entrainment and transport of dust in this region. Elevated dust levels were observed in the northern Arabian Sea during most tropical cyclone events. During the study...

  6. Quantifying local-scale dust emission from the Arabian Red Sea coastal plain

    KAUST Repository

    Anisimov, Anatolii

    2017-01-23

    Dust plumes emitted from the narrow Arabian Red Sea coastal plain are often observed on satellite images and felt in local population centers. Despite its relatively small area, the coastal plain could be a significant dust source; however, its effect is not well quantified as it is not well approximated in global or even regional models. In addition, because of close proximity to the Red Sea, a significant amount of dust from the coastal areas could be deposited into the Red Sea and serve as a vital component of the nutrient balance of marine ecosystems. In the current study, we apply the offline Community Land Model version 4 (CLM4) to better quantify dust emission from the coastal plain during the period of 2009-2011. We verify the spatial and temporal variability in model results using independent weather station reports. We also compare the results with the MERRA Aerosol Reanalysis (MERRAero). We show that the best results are obtained with 1 km model spatial resolution and dust source function based on Meteosat Second Generation Spinning Enhanced Visible and InfraRed Imager (SEVIRI) measurements. We present the dust emission spatial pattern, as well as estimates of seasonal and diurnal variability in dust event frequency and intensity, and discuss the emission regime in the major dust generation hot spot areas. We demonstrate the contrasting seasonal dust cycles in the northern and southern parts of the coastal plain and discuss the physical mechanisms responsible for dust generation. This study provides the first estimates of the fine-scale spatial and temporal distribution of dust emissions from the Arabian Red Sea coastal plain constrained by MERRAero and short-term WRF-Chem simulations. The estimate of total dust emission from the coastal plain, tuned to fit emissions in MERRAero, is 7.5 ± 0.5 Mt a. Small interannual variability indicates that the study area is a stable dust source. The mineralogical composition analysis shows that the coastal plain

  7. Quantifying local-scale dust emission from the Arabian Red Sea coastal plain

    KAUST Repository

    Anisimov, Anatolii; Tao, Weichun; Stenchikov, Georgiy L.; Kalenderski, Stoitchko; Jish Prakash, P.; Yang, Zong Liang; Shi, Mingjie

    2017-01-01

    Dust plumes emitted from the narrow Arabian Red Sea coastal plain are often observed on satellite images and felt in local population centers. Despite its relatively small area, the coastal plain could be a significant dust source; however, its effect is not well quantified as it is not well approximated in global or even regional models. In addition, because of close proximity to the Red Sea, a significant amount of dust from the coastal areas could be deposited into the Red Sea and serve as a vital component of the nutrient balance of marine ecosystems. In the current study, we apply the offline Community Land Model version 4 (CLM4) to better quantify dust emission from the coastal plain during the period of 2009-2011. We verify the spatial and temporal variability in model results using independent weather station reports. We also compare the results with the MERRA Aerosol Reanalysis (MERRAero). We show that the best results are obtained with 1 km model spatial resolution and dust source function based on Meteosat Second Generation Spinning Enhanced Visible and InfraRed Imager (SEVIRI) measurements. We present the dust emission spatial pattern, as well as estimates of seasonal and diurnal variability in dust event frequency and intensity, and discuss the emission regime in the major dust generation hot spot areas. We demonstrate the contrasting seasonal dust cycles in the northern and southern parts of the coastal plain and discuss the physical mechanisms responsible for dust generation. This study provides the first estimates of the fine-scale spatial and temporal distribution of dust emissions from the Arabian Red Sea coastal plain constrained by MERRAero and short-term WRF-Chem simulations. The estimate of total dust emission from the coastal plain, tuned to fit emissions in MERRAero, is 7.5 ± 0.5 Mt a. Small interannual variability indicates that the study area is a stable dust source. The mineralogical composition analysis shows that the coastal plain

  8. Impact of Short Interval SMS Digital Data on Wind Vector Determination for a Severe Local Storms Area

    Science.gov (United States)

    Peslen, C. A.

    1979-01-01

    The impact of 5 minute interval SMS-2 visible digital image data in analyzing severe local storms is examined using wind vectors derived from cloud tracking on time lapsed sequence of geosynchronous satellite images. The cloud tracking areas are located in the Central Plains, where on 6 May 1975, hail-producing thunderstorms occurred ahead of a well defined dry line. The results demonstrate that satellite-derived wind vectors and their associated divergence fields complement conventional meteorological analyses in describing the conditions preceding severe local storm development.

  9. Temporal and spatial variations in sand and dust storm events in East Asia from 2007 to 2016: Relationships with surface conditions and climate change.

    Science.gov (United States)

    An, Linchang; Che, Huizheng; Xue, Min; Zhang, Tianhang; Wang, Hong; Wang, Yaqiang; Zhou, Chunhong; Zhao, Hujia; Gui, Ke; Zheng, Yu; Sun, Tianze; Liang, Yuanxin; Sun, Enwei; Zhang, Hengde; Zhang, Xiaoye

    2018-08-15

    We analyzed the frequency and intensity of sand and dust storms (SDSs) in East Asia from 2007 to 2016 using observational data from ground stations, numerical modeling, and vegetation indices obtained from both satellite and reanalysis data. The relationships of SDSs with surface conditions and the synoptic circulation pattern were also analyzed. The statistical analyses demonstrated that the number and intensity of SDS events recorded in spring during 2007 to 2016 showed a decreasing trend. The total number of spring SDSs decreased from at least ten events per year before 2011 to less than ten events per year after 2011. The overall average annual variation of the surface dust concentration in the main dust source regions decreased 33.24μg/m 3 (-1.75%) annually. The variation in the temperatures near and below the ground surface and the amount of precipitation and soil moisture all favored an improvement in vegetation coverage, which reduced the intensity and frequency of SDSs. The strong winds accompanying the influx of cold air from high latitudes showed a decreasing trend, leading to a decrease in the number of SDSs and playing a key role in the decadal decrease of SDSs. The decrease in the intensity of the polar vortex during study period was closely related to the decrease in the intensity and frequency of SDSs. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Design, Implementation & Assessment of Local Exhaust Ventilation System and dust collectors for crushing unit

    Directory of Open Access Journals (Sweden)

    Farshid Ghorbani shahna

    2015-09-01

    Full Text Available Background & objective: Industrial ventilation systems and dust collectors are effective solutions to reduce particulate emissions in the workplace and environmental in mineral processes. In this study, Local Exhaust Ventilation System and dust collectors for control of emitted silica, coke, silicon carbide dusts from crushing unit was designed and evaluated. Methods: : Local Exhaust ventilation system based on standards and guides was designed and implemented after field study of the processes and sources of air pollutants. A set comprised of the four parallel cyclones (Stairmand model and a new design of the scrubber had been used for dust control. After set-up of systems, its effectiveness in reducing the exposure of workers in the workshops and dust collecting were assessed. Results: Test results were significant differences between the concentration of particles in both on and off the ventilation system revealed (P <0.05. The system has been implemented as means of personal exposure to pollutants and environmental emissions were reduced 93.01% and 64.64%, respectively. Also, alone and integrated collection efficiency of cyclone and scrubber, were 94.2%, 59.05% and 97.4%, respectively. The results show good agreement with the values of the parameters ventilation system was designed. Conclusion: Implementation of integrated dust collectors is a good option in industries that have the financial and technical constraints to improve change processes and devices. This method with attainment to health and environmental standards not only can be resolve of the pollution problems, but also will be economically justified of such projects with reduction of depreciation expense and dust recycling.

  11. Dependence of ionospheric response on the local time of sudden commencement and the intensity of geomagnetic storms

    International Nuclear Information System (INIS)

    Balan, N.; Rao, P.B.

    1990-01-01

    A study has been designed specifically to investigate the dependence of the ionospheric response on the time of occurrence of sudden commencement (SC) and the intensity of the magnetic storms for a low- and a mid-latitude station by considering total electron content and peak electron density data for more than 60 SC-type geomagnetic storms. The nature of the response, whether positive or negative, is found to be determined largely by the local time of SC, although there is a local time shift of about six hours between low- and mid-latitudes. The time delays associated with the positive responses are low for daytime SCs and high for night-time SCs, whereas the opposite applies for negative responses. The time delays are significantly shorter for mid-latitudes than for low-latitudes and, at both latitudes, are inversely related to the intensity of the storm. There is a positive correlation between the intensity of the ionospheric response and that of the magnetic storm, the correlation being greater at mid-latitudes. The results are discussed in the light of the possible processes which might contribute to the storm-associated ionospheric variations. (author)

  12. Fine-scale application of WRF-CAM5 during a dust storm episode over East Asia: Sensitivity to grid resolutions and aerosol activation parameterizations

    Science.gov (United States)

    Wang, Kai; Zhang, Yang; Zhang, Xin; Fan, Jiwen; Leung, L. Ruby; Zheng, Bo; Zhang, Qiang; He, Kebin

    2018-03-01

    An advanced online-coupled meteorology and chemistry model WRF-CAM5 has been applied to East Asia using triple-nested domains at different grid resolutions (i.e., 36-, 12-, and 4-km) to simulate a severe dust storm period in spring 2010. Analyses are performed to evaluate the model performance and investigate model sensitivity to different horizontal grid sizes and aerosol activation parameterizations and to examine aerosol-cloud interactions and their impacts on the air quality. A comprehensive model evaluation of the baseline simulations using the default Abdul-Razzak and Ghan (AG) aerosol activation scheme shows that the model can well predict major meteorological variables such as 2-m temperature (T2), water vapor mixing ratio (Q2), 10-m wind speed (WS10) and wind direction (WD10), and shortwave and longwave radiation across different resolutions with domain-average normalized mean biases typically within ±15%. The baseline simulations also show moderate biases for precipitation and moderate-to-large underpredictions for other major variables associated with aerosol-cloud interactions such as cloud droplet number concentration (CDNC), cloud optical thickness (COT), and cloud liquid water path (LWP) due to uncertainties or limitations in the aerosol-cloud treatments. The model performance is sensitive to grid resolutions, especially for surface meteorological variables such as T2, Q2, WS10, and WD10, with the performance generally improving at finer grid resolutions for those variables. Comparison of the sensitivity simulations with an alternative (i.e., the Fountoukis and Nenes (FN) series scheme) and the default (i.e., AG scheme) aerosol activation scheme shows that the former predicts larger values for cloud variables such as CDNC and COT across all grid resolutions and improves the overall domain-average model performance for many cloud/radiation variables and precipitation. Sensitivity simulations using the FN series scheme also have large impacts on

  13. POLARIZATION MEASUREMENTS OF HOT DUST STARS AND THE LOCAL INTERSTELLAR MEDIUM

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, J. P.; Cotton, D. V.; Bott, K.; Bailey, J.; Kedziora-Chudczer, L. [School of Physics, UNSW Australia, High Street, Kensington, NSW 2052 (Australia); Ertel, S. [Steward Observatory, Department of Astronomy, University of Arizona, 933 N. Cherry Avenue, Tucson, AZ 85721 (United States); Kennedy, G. M.; Wyatt, M. C. [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge, CB3 0HA (United Kingdom); Burgo, C. del [Instituto Nacional de Astrofísica, Óptica y Electrónica, Luis Enrique Erro 1, Sta. Ma. Tonantzintla, Puebla (Mexico); Absil, O. [Institut d’Astrophysique et de Géophysique, University of Liège, 19c allée du Six Août, B-4000 Liège (Belgium)

    2016-07-10

    Debris discs are typically revealed through the presence of excess emission at infrared wavelengths. Most discs exhibit excess at mid- and far-infrared wavelengths, analogous to the solar system’s Asteroid and Edgeworth-Kuiper belts. Recently, stars with strong (∼1%) excess at near-infrared wavelengths were identified through interferometric measurements. Using the HIgh Precision Polarimetric Instrument, we examined a sub-sample of these hot dust stars (and appropriate controls) at parts-per-million sensitivity in SDSS g ′ (green) and r ′ (red) filters for evidence of scattered light. No detection of strongly polarized emission from the hot dust stars is seen. We, therefore, rule out scattered light from a normal debris disk as the origin of this emission. A wavelength-dependent contribution from multiple dust components for hot dust stars is inferred from the dispersion (the difference in polarization angle in red and green) of southern stars. Contributions of 17 ppm (green) and 30 ppm (red) are calculated, with strict 3- σ upper limits of 76 and 68 ppm, respectively. This suggests weak hot dust excesses consistent with thermal emission, although we cannot rule out contrived scenarios, e.g., dust in a spherical shell or face-on discs. We also report on the nature of the local interstellar medium (ISM), obtained as a byproduct of the control measurements. Highlights include the first measurements of the polarimetric color of the local ISM and the discovery of a southern sky region with a polarization per distance thrice the previous maximum. The data suggest that λ {sub max}, the wavelength of maximum polarization, is bluer than typical.

  14. Evolution of trace elements in the planetary boundary layer in southern China: Effects of dust storms and aerosol-cloud interactions

    Science.gov (United States)

    Li, Tao; Wang, Yan; Zhou, Jie; Wang, Tao; Ding, Aijun; Nie, Wei; Xue, Likun; Wang, Xinfeng; Wang, Wenxing

    2017-03-01

    Aerosols and cloud water were analyzed at a mountaintop in the planetary boundary layer in southern China during March-May 2009, when two Asian dust storms occurred, to investigate the effects of aerosol-cloud interactions (ACIs) on chemical evolution of atmospheric trace elements. Fe, Al, and Zn predominated in both coarse and fine aerosols, followed by high concentrations of toxic Pb, As, and Cd. Most of these aerosol trace elements, which were affected by dust storms, exhibited various increases in concentrations but consistent decreases in solubility. Zn, Fe, Al, and Pb were the most abundant trace elements in cloud water. The trace element concentrations exhibited logarithmic inverse relationships with the cloud liquid water content and were found highly pH dependent with minimum concentrations at the threshold of pH 5.0. The calculation of Visual MINTEQ model showed that 80.7-96.3% of Fe(II), Zn(II), Pb(II), and Cu(II) existed in divalent free ions, while 71.7% of Fe(III) and 71.5% of Al(III) were complexed by oxalate and fluoride, respectively. ACIs could markedly change the speciation distributions of trace elements in cloud water by pH modification. The in-cloud scavenging of aerosol trace elements likely reached a peak after the first 2-3 h of cloud processing, with scavenging ratios between 0.12 for Cr and 0.57 for Pb. The increases of the trace element solubility (4-33%) were determined in both in-cloud aerosols and postcloud aerosols. These results indicated the significant importance of aerosol-cloud interactions to the evolution of trace elements during the first several cloud condensation/evaporation cycles.

  15. Dust Evolution in Low-Metallicity Environments: Bridging the Gap Between Local Universe and Primordial Galaxies

    Science.gov (United States)

    Galliano, Frederic; Barlow, Mike; Bendo, George; Boselli, Alessandro; Buat, Veronique; Chanial, Pierre; Clements, David; Davies, Jon; Eales, Steve; Gomez, Haley; Isaak, Kate; Madden, Suzanne; Page, Mathew; Perez Fournon, Ismael; Sauvage, Marc; Spinoglio, Luigi; Vaccari, Mattia; Wilson, Christine

    2008-03-01

    The local galaxy Science Advisory Group (SAG 2) in the Herschel/SPIRE consortium, has constructed a Guaranteed Time Key Program using the PACS and SPIRE insruments to obtain 60 to 550 micron photometry of a statistically significant sample of 51 dwarf galaxies in our local universe chosen to cover an impressivly broad range of physical conditions. Here we propose the necessary complementary IRAC, MIPS and IRS Spitzer observations which together with the Herschel GT database will provide a rich database to the community to perform the dust and gas analyses in unprecedented detail in low metallicity galaxies ranging between 1/50 to 1 solar metallicity. Due to their chemical youth, and to the extreme conditions they experience, low metallicity environments constitute a keystone to understand dust evolution. The primary goal of this combined Herschel and Spitzer project is to study in details the physical processes at play within the ISM of these galaxies. We will take advantage of the powerful combination of Spitzer, Herschel and ancillary data to decompose the SED into the emission coming from the main phases of the ISM. Such a decomposition will provide reliable estimate of the abundances of the principal dust species, as a fonction of metallicity and physical conditions. These results will be exploited to compare the various evolutionary processes affecting the dust content of galaxies. All these outstanding scientific advances will be the true legacy value that this project brings to the community.

  16. Aerosol contamination survey during dust storm process in Northwestern China using ground, satellite observations and atmospheric modeling data

    Science.gov (United States)

    Filonchyk, Mikalai; Yan, Haowen; Shareef, Tawheed Mohammed Elhessin; Yang, Shuwen

    2018-01-01

    The present survey addresses the comprehensive description of geographic locations, transport ways, size, and vertical aerosol distribution during four large dust events which occurred in the Northwest China. Based on the data from 35 ground-based air quality monitoring stations and the satellite data, emission flows for dust events within the period of 2014 to 2017 have been estimated. The data show that maximum peak daily average PM10 and PM2.5 concentrations exceeded 380 and 150 μg/m3, respectively, and the PM2.5/PM10 ratio was ranging within 0.12-0.66. Both satellite data and simulation data of the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) coincide with location and extension of a dust cloud. The Cloud Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) found dust at 0 to 10 km altitude which remained at this level during the most part of its trajectory. The vertical aerosol distribution at a wave of 532 nm total attenuated backscatter coefficient range of 0.0025-0.003 km-1 × sr-1. Moderate Resolution Imaging Spectroradiometer (MODIS) (Terra) Collection 6 Level-3 aerosol products data show that aerosol optical depth (AOD) at pollution epicenters exceeds 1. A comprehensive data survey thus demonstrated that the main sources of high aerosol pollutions in the territory were deserted areas of North and Northwest China as well as the most part of the Republic of Mongolia, where one of the largest deserts, Gobi, extends.

  17. Remote-sensing-based analysis of landscape change in the desiccated seabed of the Aral Sea--a potential tool for assessing the hazard degree of dust and salt storms.

    Science.gov (United States)

    Löw, F; Navratil, P; Kotte, K; Schöler, H F; Bubenzer, O

    2013-10-01

    With the recession of the Aral Sea in Central Asia, once the world's fourth largest lake, a huge new saline desert emerged which is nowadays called the Aralkum. Saline soils in the Aralkum are a major source for dust and salt storms in the region. The aim of this study was to analyze the spatio-temporal land cover change dynamics in the Aralkum and discuss potential implications for the recent and future dust and salt storm activity in the region. MODIS satellite time series were classified from 2000-2008 and change of land cover was quantified. The Aral Sea desiccation accelerated between 2004 and 2008. The area of sandy surfaces and salt soils, which bear the greatest dust and salt storm generation potential increased by more than 36 %. In parts of the Aralkum desalinization of soils was found to take place within 4-8 years. The implication of the ongoing regression of the Aral Sea is that the expansion of saline surfaces will continue. Knowing the spatio-temporal dynamics of both the location and the surface characteristics of the source areas for dust and salt storms allows drawing conclusions about the potential hazard degree of the dust load. The remote-sensing-based land cover assessment presented in this study could be coupled with existing knowledge on the location of source areas for an early estimation of trends in shifting dust composition. Opportunities, limits, and requirements of satellite-based land cover classification and change detection in the Aralkum are discussed.

  18. The DREAMS experiment flown on the ExoMars 2016 mission for the study of Martian environment during the dust storm season

    Science.gov (United States)

    Bettanini, C.; Esposito, R.; Debei, S.; Molfese, C.; Colombatti, G.; Aboudan, A.; Brucato, J. R.; Cortecchia, F.; Di Achille, G.; Guizzo, G. P.; Friso, E.; Ferri, F.; Marty, L.; Mennella, V.; Molinaro, R.; Schipani, P.; Silvestro, S.; Mugnuolo, R.; Pirrotta, S.; Marchetti, E.; Harri, A.-M.; Montmessin, F.; Wilson, C.; Arruego Rodriguez, I.; Abbaki, S.; Apestigue, V.; Bellucci, G.; Berthelier, J. J.; Calcutt, S. B.; Forget, F.; Genzer, M.; Gilbert, P.; Haukka, H.; Jimenez, J. J.; Jimenez, S.; Josset, J. L.; Karatekin, O.; Landis, G.; Lorenz, R.; Martinez, J.; Möhlmann, D.; Moirin, D.; Palomba, E.; Pateli, M.; Pommereau, J.-P.; Popa, C. I.; Rafkin, S.; Rannou, P.; Renno, N. O.; Schmidt, W.; Simoes, F.; Spiga, A.; Valero, F.; Vazquez, L.; Vivat, F.; Witasse, O.

    2017-08-01

    The DREAMS (Dust characterization, Risk assessment and Environment Analyser on the Martian Surface) experiment on Schiaparelli lander of ExoMars 2016 mission was an autonomous meteorological station designed to completely characterize the Martian atmosphere on surface, acquiring data not only on temperature, pressure, humidity, wind speed and direction, but also on solar irradiance, dust opacity and atmospheric electrification, to measure for the first time key parameters linked to hazard conditions for future manned explorations. Although with very limited mass and energy resources, DREAMS would be able to operate autonomously for at least two Martian days (sols) after landing in a very harsh environment as it was supposed to land on Mars during the dust storm season (October 2016 in Meridiani Planum) relying on its own power supply. ExoMars mission was successfully launched on 14th March 2016 and Schiaparelli entered the Mars atmosphere on October 20th beginning its 'six minutes of terror' journey to the surface. Unfortunately, some unexpected behavior during the parachuted descent caused an unrecoverable critical condition in navigation system of the lander driving to a destructive crash on the surface. The adverse sequence of events at 4 km altitude triggered the transition of the lander in surface operative mode, commanding switch on the DREAMS instrument, which was therefore able to correctly power on and send back housekeeping data. This proved the nominal performance of all DREAMS hardware before touchdown demonstrating the highest TRL of the unit for future missions. This paper describes this experiment in terms of scientific goals, design, performances, testing and operational capabilities with an overview of in flight performances and available mission data.

  19. Short-interval SMS wind vector determinations for a severe local storms area

    Science.gov (United States)

    Peslen, C. A.

    1980-01-01

    Short-interval SMS-2 visible digital image data are used to derive wind vectors from cloud tracking on time-lapsed sequences of geosynchronous satellite images. The cloud tracking areas are located in the Central Plains, where on May 6, 1975 hail-producing thunderstorms occurred ahead of a well defined dry line. Cloud tracking is performed on the Goddard Space Flight Center Atmospheric and Oceanographic Information Processing System. Lower tropospheric cumulus tracers are selected with the assistance of a cloud-top height algorithm. Divergence is derived from the cloud motions using a modified Cressman (1959) objective analysis technique which is designed to organize irregularly spaced wind vectors into uniformly gridded wind fields. The results demonstrate the feasibility of using satellite-derived wind vectors and their associated divergence fields in describing the conditions preceding severe local storm development. For this case, an area of convergence appeared ahead of the dry line and coincided with the developing area of severe weather. The magnitude of the maximum convergence varied between -10 to the -5th and -10 to the -14th per sec. The number of satellite-derived wind vectors which were required to describe conditions of the low-level atmosphere was adequate before numerous cumulonimbus cells formed. This technique is limited in areas of advanced convection.

  20. Maintaining the Background Dust Opacity During Northern Hemisphere Summer Mars Using Wind Stress Based Dust Lifting

    Science.gov (United States)

    Jha, V.; Kahre, M. A.

    2017-12-01

    The Mars atmosphere has low levels of dust during Northern Hemisphere (NH) spring and summer (the non-dusty season) and increased levels during NH autumn and winter (the dusty season). In the absence of regional or global storms, dust devils and local storms maintain a background minimum dust loading during the non-dusty season. While observational surveys and Global Climate Model (GCM) studies suggest that dust devils are likely to be major contributors to the background haze during NH spring and summer, a complete understanding of the relative contribution of dust devils and local dust storms has not yet been achieved. We present preliminary results from an investigation that focuses on the effects of radiatively active water ice clouds on dust lifting processes during these seasons. Water ice clouds are known to affect atmospheric temperatures directly by absorption and emission of thermal infrared radiation and indirectly through dynamical feedbacks. Our goal is to understand how clouds affect the contribution by local (wind stress) dust storms to the background dust haze during NH spring and summer. The primary tool for this work is the NASA Ames Mars GCM, which contains physical parameterizations for a fully interactive dust cycle. Three simulations that included wind stress dust lifting were executed for a period of 5 Martian years: a case that included no cloud formation, a case that included radiatively inert cloud formation and a case that included radiatively active cloud (RAC) formation. Results show that when radiatively active clouds are included, the clouds in the aphelion cloud belt radiatively heat the atmosphere aloft in the tropics (Figure 1). This heating produces a stronger overturning circulation, which in turn produces an enhanced low-level flow in the Hadley cell return branch. The stronger low-level flow drives higher surface stresses and increased dust lifting in those locations. We examine how realistic these simulated results are by

  1. Nonlinear localized dust acoustic waves in a charge varying dusty plasma with nonthermal ions

    International Nuclear Information System (INIS)

    Tribeche, Mouloud; Amour, Rabia

    2007-01-01

    A numerical investigation is presented to show the existence, formation, and possible realization of large-amplitude dust acoustic (DA) solitary waves in a charge varying dusty plasma with nonthermal ions. These nonlinear localized structures are self-consistent solutions of the collisionless Vlasov equation with a population of fast particles. The spatial patterns of the variable charge DA solitary wave are significantly modified by the nonthermal effects. The results complement and provide new insights into previously published results on this problem

  2. THE SUBARCSECOND MID-INFRARED VIEW OF LOCAL ACTIVE GALACTIC NUCLEI. III. POLAR DUST EMISSION

    International Nuclear Information System (INIS)

    Asmus, D.; Hönig, S. F.; Gandhi, P.

    2016-01-01

    Recent mid-infrared (MIR) interferometric observations have shown that in a few active galactic nuclei (AGNs) the bulk of the infrared emission originates from the polar region above the putative torus, where only a little dust should be present. Here, we investigate whether such strong polar dust emission is common in AGNs. Out of 149 Seyferts in the MIR atlas of local AGNs, 21 show extended MIR emission on single-dish images. In 18 objects, the extended MIR emission aligns with the position angle (PA) of the system axis, established by [O iii], radio, polarization, and maser-based PA measurements. The relative amount of resolved MIR emission is at least 40% and scales with the [O iv] fluxes, implying a strong connection between the extended continuum and [O iv] emitters. These results together with the radio-quiet nature of the Seyferts support the scenario that the bulk of MIR emission is emitted by dust in the polar region and not by the torus, which would demand a new paradigm for the infrared emission structure in AGNs. The current low detection rate of polar dust in the AGNs of the MIR atlas is explained by the lack of sufficient high-quality MIR data and the requirements on the orientation, strength of narrow-line region, and distance of the AGNs. The James Webb Space Telescope will enable much deeper nuclear MIR studies with comparable angular resolution, allowing us to resolve the polar emission and surroundings in most of the nearby AGNs.

  3. Foehn-induced effects on local dust pollution, frontal clouds and solar radiation in the Dead Sea valley

    Science.gov (United States)

    Kishcha, Pavel; Starobinets, Boris; Savir, Amit; Alpert, Pinhas; Kaplan, Michael

    2018-06-01

    Despite the long history of investigation of foehn phenomena, there are few studies of the influence of foehn winds on air pollution and none in the Dead Sea valley. For the first time the foehn phenomenon and its effects on local dust pollution, frontal cloudiness and surface solar radiation were analyzed in the Dead Sea valley, as it occurred on 22 March 2013. This was carried out using both numerical simulations and observations. The foehn winds intensified local dust emissions, while the foehn-induced temperature inversion trapped dust particles beneath this inversion. These two factors caused extreme surface dust concentration in the western Dead Sea valley. The dust pollution was transported by west winds eastward, to the central Dead Sea valley, where the speed of these winds sharply decreased. The transported dust was captured by the ascending airflow contributing to the maximum aerosol optical depth (AOD) over the central Dead Sea valley. On the day under study, the maximum surface dust concentration did not coincide with the maximum AOD: this being one of the specific effects of the foehn phenomenon on dust pollution in the Dead Sea valley. Radar data showed a passage of frontal cloudiness through the area of the Dead Sea valley leading to a sharp drop in noon solar radiation. The descending airflow over the downwind side of the Judean Mountains led to the formation of a cloud-free band followed by only the partial recovery of solar radiation because of the extreme dust pollution caused by foehn winds.

  4. The DREAMS experiment flown on the ExoMars 2016 mission for the study of Martian environment during the dust storm season

    Science.gov (United States)

    Bettanini, C.; Esposito, F.; Debei, S.; Molfese, C.; Colombatti, G.; Aboudan, A.; Brucato, J. R.; Cortecchia, F.; di Achille, G.; Guizzo, G. P.; Friso, E.; Ferri, F.; Marty, L.; Mennella, V.; Molinaro, R.; Schipani, P.; Silvestro, S.; Mugnuolo, R.; Pirrotta, S.; Marchetti, E.; International Dreams Team

    2018-07-01

    The DREAMS (Dust characterization, Risk assessment and Environment Analyser on the Martian Surface) instrument on Schiaparelli lander of ExoMars 2016 mission was an autonomous meteorological station designed to completely characterize the Martian atmosphere on surface, acquiring data not only on temperature, pressure, humidity, wind speed and its direction, but also on solar irradiance, dust opacity and atmospheric electrification; this comprehensive set of parameters would assist the quantification of risks and hazards for future manned exploration missions mainly related to the presence of airborne dust. Schiaparelli landing on Mars was in fact scheduled during the foreseen dust storm season (October 2016 in Meridiani Planum) allowing DREAMS to directly measure the characteristics of such extremely harsh environment. DREAMS instrument’s architecture was based on a modular design developing custom boards for analog and digital channel conditioning, power distribution, on board data handling and communication with the lander. The boards, connected through a common backbone, were hosted in a central electronic unit assembly and connected to the external sensors with dedicated harness. Designed with very limited mass and an optimized energy consumption, DREAMS was successfully tested to operate autonomously, relying on its own power supply, for at least two Martian days (sols) after landing on the planet. A total of three flight models were fully qualified before launch through an extensive test campaign comprising electrical and functional testing, EMC verification and mechanical and thermal vacuum cycling; furthermore following the requirements for planetary protection, contamination control activities and assay sampling were conducted before model delivery for final integration on spacecraft. During the six months cruise to Mars following the successful launch of ExoMars on 14th March 2016, periodic check outs were conducted to verify instrument health check and

  5. Viking orbiter imaging observations of dust in the Martian atmosphere

    International Nuclear Information System (INIS)

    Briggs, G.A.; Baum, W.A.; Barnes, J.

    1979-01-01

    More than 20 local Martian dust clouds and two global dust storms were observed with the Viking orbiter camera. Sixteen of the local clouds were imaged in two colors or were observed with other instruments confirming their identification as dust clouds. These Viking results are compared with earth-based observations of Martian dust storms and with Mariner 9 data. Most of the dust activity seen by Viking occurred during southern hemisphere spring and early summer, when Mars was near perihelion and isolation was near maximum. About half the local clouds occurred near the edge of the southern polar cap, where winds are presumably enhanced by a strong regional temperature gradient. The other half occurred mainly in the southern hemisphere near regions where circulation models incorporating topography predict positive vertical velocities. Although dust clouds observed from earth show a similar partial correlation with models, some ambiguity exists concerning interpretation of regions near Hellespontus that have spawned the most spectacular Martian dust storms on record

  6. Difference in Pro-Inflammatory Cytokine Responses Induced in THP1 Cells by Particulate Matter Collected on Days with and without ASIAN Dust Storms

    Directory of Open Access Journals (Sweden)

    Masanari Watanabe

    2015-07-01

    Full Text Available The associations between particulate matter from Asian dust storms (ADS and health disorders differ among studies, and the underlying mechanisms remain unclear. In this study, ADS and non-ADS particles were tested for their potential to induce pro-inflammatory cytokines associated with adverse respiratory effects. Particulate matter was collected in Japan during four periods in 2013 (2 × ADS periods; 2 × non-ADS. THP1 cells were exposed to this particulate matter, and the levels of various interleukins (ILs, and tumor necrosis factor (TNF-α were measured. Levels of IL-2 increased significantly following exposure to all particulate matter samples (compared to levels in a solvent control. Increased levels of IL-10 and TNF-α were also observed following exposure to particles collected during three (one ADS and two non-ADS and two (one ADS and one non-ADS collection periods, respectively. Thus, the effects of particulate matter on cytokine responses differed according to collection period, and the effects of ADS particles differed for each ADS event. Additionally, the levels of pro-inflammatory cytokines induced by ADS particles were not always higher than those induced by non-ADS particles.

  7. Dust Absorption and the Ultraviolet Luminosity Density at z ~ 3 as Calibrated by Local Starburst Galaxies

    Science.gov (United States)

    Meurer, Gerhardt R.; Heckman, Timothy M.; Calzetti, Daniela

    1999-08-01

    We refine a technique to measure the absorption-corrected ultraviolet (UV) luminosity of starburst galaxies using rest-frame UV quantities alone and apply it to Lyman-limit U dropouts at z~3 found in the Hubble Deep Field (HDF). The method is based on an observed correlation between the ratio of far-infrared (FIR) to UV fluxes with spectral slope β (a UV color). A simple fit to this relation allows the UV flux absorbed by dust and reprocessed to the FIR to be calculated, and hence the dust-free UV luminosity to be determined. International Ultraviolet Explorer spectra and Infrared Astronomical Satellite fluxes of local starbursts are used to calibrate the FFIR/F1600 versus β relation in terms of A1600 (the dust absorption at 1600 Å) and the transformation from broadband photometric color to β. Both calibrations are almost completely independent of theoretical stellar-population models. We show that the recent marginal and nondetections of HDF U dropouts at radio and submillimeter wavelengths are consistent with their assumed starburst nature and our calculated A1600. This is also true of recent observations of the ratio of optical emission-line flux to UV flux density in the brightest U dropouts. This latter ratio turns out not to be a good indicator of dust extinction. In U dropouts, absolute magnitude M1600,0 correlates with β: brighter galaxies are redder, as is observed to be the case for local starburst galaxies. This suggests that a mass-metallicity relationship is already in place at z~3. The absorption-corrected UV luminosity function of U dropouts extends up to M1600,0~-24 AB mag, corresponding to a star formation rate ~200 \\Mscrsolar yr-1 (H0=50 km s-1 Mpc-3 and q0=0.5 are assumed throughout). The absorption-corrected UV luminosity density at z~3 is ρ1600,0>=1.4×1027 ergs-1 Hz-1 Mpc-1. It is still a lower limit since completeness corrections have not been done and because only galaxies with A1600dropouts. The luminosity-weighted mean dust

  8. Moisture convergence using satellite-derived wind fields - A severe local storm case study

    Science.gov (United States)

    Negri, A. J.; Vonder Haar, T. H.

    1980-01-01

    Five-minute interval 1-km resolution SMS visible channel data were used to derive low-level wind fields by tracking small cumulus clouds on NASA's Atmospheric and Oceanographic Information Processing System. The satellite-derived wind fields were combined with surface mixing ratios to derive horizontal moisture convergence in the prestorm environment of April 24, 1975. Storms began developing in an area extending from southwest Oklahoma to eastern Tennessee 2 h subsequent to the time of the derived fields. The maximum moisture convergence was computed to be 0.0022 g/kg per sec and areas of low-level convergence of moisture were in general indicative of regions of severe storm genesis. The resultant moisture convergence fields derived from two wind sets 20 min apart were spatially consistent and reflected the mesoscale forcing of ensuing storm development. Results are discussed with regard to possible limitations in quantifying the relationship between low-level flow and between low-level flow and satellite-derived cumulus motion in an antecedent storm environment.

  9. DREAMS: a payload on-board the ExoMars EDM Schiaparelli for the characterization of Martian environment during the statistical dust storm season

    Science.gov (United States)

    Molfese, Cesare; Esposito, Francesca; Debei, Stefano; Bettanini, Carlo; Arruego Rodríguez, Ignacio; Colombatti, Giacomo; Harri, Ari-Matty.; Montmessin, Franck; Wilson, Colin; Aboudan, Alessio; Mugnuolo, Raffaele; Pirrotta, Simone; Marchetti, Ernesto; Witasse, Olivier

    2015-04-01

    , the dust opacity, and the atmospheric electric properties close to the surface of Mars. It will fly in January 2016 on-board the Schiaparelli Entry, Descent and landing Demonstrator Module (EDM) of the ExoMars space mission. It is foreseen to land on Mars in late October 2016 during the statistical dust storm season. Therefore, DREAMS might have the unique chance to make scientific measurements to characterize the Martian environment in a dusty scenario also performing the first ever measurements of atmospheric electric field on Mars. The relationship between the process of dust entrainment in the atmosphere during dust events and the enhancement of atmospheric electric field has been widely studied in an intense field test campaign in the Sahara desert. In order to better characterize this physical process, we performed atmospheric and environmental measurements comparable to those that DREAMS will acquire on Mars. Preliminary results will be discussed. DREAMS is in a high development state. A first model has been delivered to ESA and has been integrated in the EDM Flight Model. Integration tests are on-going. The DREAMS Flight Model will be delivered at the end of March this year.

  10. Environmental impacts on dust temperature of star-forming galaxies in the local Universe

    Science.gov (United States)

    Matsuki, Yasuhiro; Koyama, Yusei; Nakagawa, Takao; Takita, Satoshi

    2017-04-01

    We present infrared views of the environmental effects on the dust properties in star-forming (SF) galaxies at z ˜ 0, using the AKARI Far-Infrared Surveyor all-sky map and the large spectroscopic galaxy sample from Sloan Digital Sky Survey (SDSS) Data Release 7 (DR7). We restrict the sample to those within the redshift range of 0.05 4 Å) and emission line flux ratios. We perform far-infrared (FIR) stacking analyses by splitting the SDSS SF galaxy sample according to their stellar mass, specific star formation rate (SSFRSDSS), and environment. We derive total infrared luminosity (LIR) for each subsample using the average flux densities at WIDE-S (90 μm) and WIDE-L (140 μm) bands, and then compute infrared (IR)-based SFR (SFRIR) from LIR. We find a mild decrease of IR-based SSFR (SSFRIR) amongst SF galaxies with increasing local density (˜0.1-dex level at maximum), which suggests that environmental effects do not instantly shut down the SF activity in galaxies. We also derive average dust temperature (Tdust) using the flux densities at 90 and 140 μm bands. We confirm a strong positive correlation between Tdust and SSFRIR, consistent with recent studies. The most important finding of this study is that we find a marginal trend that Tdust increases with increasing environmental galaxy density. Although the environmental trend is much milder than the SSFR-Tdust correlation, our results suggest that the environmental density may affect the dust temperature in SF galaxies, and that the physical mechanism which is responsible for this phenomenon is not necessarily specific to cluster environments because the environmental dependence of Tdust holds down to relatively low-density environments.

  11. Dust Storms: Why Are Dust Storms a Concern?

    Science.gov (United States)

    ... Skip to main content ENVIRONMENTAL HEALTH CONCERNS AND TOXIC CHEMICALS WHERE YOU LIVE, WORK, AND PLAY Search:  Home ... Tree Farm and Logging Uranium Tailings Urban and Industrial Runoff Urban ... Acetone Ammonia Arsenic Asbestos Benzene Bisphenol A (BPA) ...

  12. Evolution of aerosol chemistry in Xi'an, inland China, during the dust storm period of 2013 - Part 1: Sources, chemical forms and formation mechanisms of nitrate and sulfate

    Science.gov (United States)

    Wang, G. H.; Cheng, C. L.; Huang, Y.; Tao, J.; Ren, Y. Q.; Wu, F.; Meng, J. J.; Li, J. J.; Cheng, Y. T.; Cao, J. J.; Liu, S. X.; Zhang, T.; Zhang, R.; Chen, Y. B.

    2014-11-01

    A total suspended particulate (TSP) sample was collected hourly in Xi'an, an inland megacity of China near the Loess Plateau, during a dust storm event of 2013 (9 March 18:00-12 March 10:00 LT), along with a size-resolved aerosol sampling and an online measurement of PM2.5. The TSP and size-resolved samples were determined for elemental carbon (EC), organic carbon (OC), water-soluble organic carbon (WSOC) and nitrogen (WSON), inorganic ions and elements to investigate chemistry evolution of dust particles. Hourly concentrations of Cl-, NO3-, SO42-, Na+ and Ca2+ in the TSP samples reached up to 34, 12, 180, 72 and 28 μg m-3, respectively, when dust peak arrived over Xi'an. Chemical compositions of the TSP samples showed that during the whole observation period NH4+ and NO3- were linearly correlated with each other (r2=0.76) with a molar ratio of 1 : 1, while SO42- and Cl- were well correlated with Na+, Ca2+, Mg2+ and K+ (r2 > 0.85). Size distributions of NH4+ and NO3- presented a same pattern, which dominated in the coarse mode (> 2.1 μm) during the event and predominated in the fine mode (hours, but both exhibited two equivalent peaks in both the fine and the coarse modes during the non-event, due to the fine-mode accumulations of secondarily produced SO42- and biomass-burning-emitted Cl- and the coarse-mode enrichments of urban soil-derived SO42- and Cl-. Linear fit regression analysis further indicated that SO42- and Cl- in the dust samples possibly exist as Na2SO4, CaSO4 and NaCl, which directly originated from Gobi desert surface soil, while NH4+ and NO3- in the dust samples exist as NH4NO3. We propose a mechanism to explain these observations in which aqueous phase of dust particle surface is formed via uptake of water vapor by hygroscopic salts such as Na2SO4 and NaCl, followed by heterogeneous formation of nitrate on the liquid phase and subsequent absorption of ammonia. Our data indicate that 54 ± 20% and 60 ± 23% of NH4+ and NO3- during the dust period

  13. THE OBSERVED RELATION BETWEEN STELLAR MASS, DUST EXTINCTION, AND STAR FORMATION RATE IN LOCAL GALAXIES

    International Nuclear Information System (INIS)

    Zahid, H. J.; Kewley, L. J.; Kudritzki, R. P.; Yates, R. M.

    2013-01-01

    In this study, we investigate the relation between stellar mass, dust extinction, and star formation rate (SFR) using ∼150,000 star-forming galaxies from SDSS DR7. We show that the relation between dust extinction and SFR changes with stellar mass. For galaxies at the same stellar mass, dust extinction is anti-correlated with the SFR at stellar masses 10 M ☉ . There is a sharp transition in the relation at a stellar mass of 10 10 M ☉ . At larger stellar masses, dust extinction is positively correlated with the SFR for galaxies at the same stellar mass. The observed relation between stellar mass, dust extinction, and SFR presented in this study helps to confirm similar trends observed in the relation between stellar mass, metallicity, and SFR. The relation reported in this study provides important new constraints on the physical processes governing the chemical evolution of galaxies. The correlation between SFR and dust extinction for galaxies with stellar masses >10 10 M ☉ is shown to extend to the population of quiescent galaxies suggesting that the physical processes responsible for the observed relation between stellar mass, dust extinction, and SFR may be related to the processes leading to the shutdown of star formation in galaxies.

  14. THE OBSERVED RELATION BETWEEN STELLAR MASS, DUST EXTINCTION, AND STAR FORMATION RATE IN LOCAL GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Zahid, H. J.; Kewley, L. J.; Kudritzki, R. P. [Institute for Astronomy, University of Hawaii at Manoa, 2680 Woodlawn Dr., Honolulu, HI 96822 (United States); Yates, R. M. [Max-Planck-Institute for Astrophysics, Karl-Schwarzschild-Str. 1, D-85741 Garching (Germany)

    2013-02-15

    In this study, we investigate the relation between stellar mass, dust extinction, and star formation rate (SFR) using {approx}150,000 star-forming galaxies from SDSS DR7. We show that the relation between dust extinction and SFR changes with stellar mass. For galaxies at the same stellar mass, dust extinction is anti-correlated with the SFR at stellar masses <10{sup 10} M {sub Sun }. There is a sharp transition in the relation at a stellar mass of 10{sup 10} M {sub Sun }. At larger stellar masses, dust extinction is positively correlated with the SFR for galaxies at the same stellar mass. The observed relation between stellar mass, dust extinction, and SFR presented in this study helps to confirm similar trends observed in the relation between stellar mass, metallicity, and SFR. The relation reported in this study provides important new constraints on the physical processes governing the chemical evolution of galaxies. The correlation between SFR and dust extinction for galaxies with stellar masses >10{sup 10} M {sub Sun} is shown to extend to the population of quiescent galaxies suggesting that the physical processes responsible for the observed relation between stellar mass, dust extinction, and SFR may be related to the processes leading to the shutdown of star formation in galaxies.

  15. Evaluation of local exhaust ventilation system performance for control of Fe2O3 dust at an iron making unit

    OpenAIRE

    Mahdi Jamshidi Rastani; Farshid Ghorbani Shahna; Abdolrahman Bahrami; Somayeh Hosseini

    2016-01-01

    Introduction: Adherence to the design values and ventilation standards (VS) after installing and also maintaining continuous work of ventilation system with maximum performance throughout its life are amongst the reasons of ventilation systems monitoring. Therefore, the aim of this study was to evaluate performance of local exhaust ventilation system for control of dust by measuring the operating parameters and also to compare it with ventilation standards (VS) and design values. Material...

  16. Conceptual design of an airborne laser Doppler velocimeter system for studying wind fields associated with severe local storms

    Science.gov (United States)

    Thomson, J. A. L.; Davies, A. R.; Sulzmann, K. G. P.

    1976-01-01

    An airborne laser Doppler velocimeter was evaluated for diagnostics of the wind field associated with an isolated severe thunderstorm. Two scanning configurations were identified, one a long-range (out to 10-20 km) roughly horizontal plane mode intended to allow probing of the velocity field around the storm at the higher altitudes (4-10 km). The other is a shorter range (out to 1-3 km) mode in which a vertical or horizontal plane is scanned for velocity (and possibly turbulence), and is intended for diagnostics of the lower altitude region below the storm and in the out-flow region. It was concluded that aircraft flight velocities are high enough and severe storm lifetimes are long enough that a single airborne Doppler system, operating at a range of less than about 20 km, can view the storm area from two or more different aspects before the storm characteristics change appreciably.

  17. Regional and climatic controls on seasonal dust deposition in the southwestern U.S.

    Science.gov (United States)

    Reheis, M.C.; Urban, F.E.

    2011-01-01

    Vertical dust deposition rates (dust flux) are a complex response to the interaction of seasonal precipitation, wind, changes in plant cover and land use, dust source type, and local vs. distant dust emission in the southwestern U.S. Seasonal dust flux in the Mojave-southern Great Basin (MSGB) deserts, measured from 1999 to 2008, is similar in summer-fall and winter-spring, and antecedent precipitation tends to suppress dust flux in winter-spring. In contrast, dust flux in the eastern Colorado Plateau (ECP) region is much larger in summer-fall than in winter-spring, and twice as large as in the MSGB. ECP dust is related to wind speed, and in the winter-spring to antecedent moisture. Higher summer dust flux in the ECP is likely due to gustier winds and runoff during monsoonal storms when temperature is also higher. Source types in the MSGB and land use in the ECP have important effects on seasonal dust flux. In the MSGB, wet playas produce salt-rich dust during wetter seasons, whereas antecedent and current moisture suppress dust emission from alluvial and dry-playa sources during winter-spring. In the ECP under drought conditions, dust flux at a grazed-and-plowed site increased greatly, and also increased at three annualized, previously grazed sites. Dust fluxes remained relatively consistent at ungrazed and currently grazed sites that have maintained perennial vegetation cover. Under predicted scenarios of future climate change, these results suggest that an increase in summer storms may increase dust flux in both areas, but resultant effects will depend on source type, land use, and vegetation cover. ?? 2011.

  18. A comparison of climatological subseasonal variations in the wintertime storm track activity between the North Pacific and Atlantic: local energetics and moisture effect

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sun-Seon; Ha, Kyung-Ja [Pusan National University, Division of Earth Environmental System, Busan (Korea, Republic of); Lee, June-Yi; Wang, Bin; Jin, Fei-Fei [University of Hawaii, School of Ocean and Earth Science and Technology, Honolulu, HI (United States); Lee, Woo-Jin [Korea Meteorological Administration, Seoul (Korea, Republic of)

    2011-12-15

    Distinct differences of the storm track-jet relationship over the North Pacific and North Atlantic are investigated in terms of barotropic and baroclinic energetics using NCEP-2 reanalysis data for the period of 1979-2008. From fall to midwinter the Pacific storm track (PST) activity weakens following the southward shift of the Pacific jet, whereas the Atlantic storm track (AST) activity remains steady in position and intensifies regardless of the slight southward shift of the Atlantic jet. This study is devoted to seeking for the factors that can contribute to this conspicuous difference between the two storm tracks on climatological subseasonal variation by analyzing eddy properties and local energetics. Different eddy properties over the two oceans lead to different contribution of barotropic energy conversion to the initiation of storm tracks. In the North Atlantic, meridionally elongated eddies gain kinetic energy efficiently from stretching deformation of the mean flow in the jet entrance. On the other hand, the term associated with shearing deformation is important for the initiation of PST. Analysis of baroclinic energetics reveals that the intensification of the AST activity in midwinter is mainly attributed to coincidence between location of maximum poleward and upward eddy heat fluxes and that of the largest meridional temperature gradient over slight upstream of the AST. The relatively large amount of precipitable water and meridional eddy moisture flux along baroclinic energy conversion axis likely provides a more favorable environment for baroclinic eddy growth over the North Atlantic than over the North Pacific. In the meantime, the midwinter minimum of the PST activity is attributable to the southward shift of the Pacific jet stream that leads to discrepancy between core region of poleward and upward heat fluxes and that of meridional thermal gradient. Weakening of eddy-mean flow interaction due to eddy shape and reduction of moist effect are also

  19. Dust, Climate, and Human Health

    Science.gov (United States)

    Maynard, Nancy G.

    2003-01-01

    Air pollution from both natural and anthropogenic causes is considered to be one of the most serious world-wide environment-related health problems, and is expected to become worse with changes in the global climate. Dust storms from the atmospheric transport of desert soil dust that has been lifted and carried by the winds - often over significant distances - have become an increasingly important emerging air quality issue for many populations. Recent studies have shown that the dust storms can cause significant health impacts from the dust itself as well as the accompanying pollutants, pesticides, metals, salt, plant debris, and other inorganic and organic materials, including viable microorganisms (bacteria, viruses and fungi). For example, thousands of tons of Asian desert sediments, some containing pesticides and herbicides from farming regions, are commonly transported into the Arctic during dust storm events. These chemicals have been identified in animal and human tissues among Arctic indigenous populations. Millions of tons of airborne desert dust are being tracked by satellite imagery, which clearly shows the magnitude as well as the temporal and spatial variability of dust storms across the "dust belt" regions of North Africa, the Middle East, and China. This paper summarizes the most recent findings on the effects of airborne desert dust on human health as well as potential climate influences on dust and health.

  20. Learning Storm

    CERN Document Server

    Jain, Ankit

    2014-01-01

    If you are a Java developer who wants to enter into the world of real-time stream processing applications using Apache Storm, then this book is for you. No previous experience in Storm is required as this book starts from the basics. After finishing this book, you will be able to develop not-so-complex Storm applications.

  1. Evolved stars in the Local Group galaxies - II. AGB, RSG stars and dust production in IC10

    Science.gov (United States)

    Dell'Agli, F.; Di Criscienzo, M.; Ventura, P.; Limongi, M.; García-Hernández, D. A.; Marini, E.; Rossi, C.

    2018-06-01

    We study the evolved stellar population of the Local Group galaxy IC10, with the aim of characterizing the individual sources observed and to derive global information on the galaxy, primarily the star formation history and the dust production rate. To this aim, we use evolutionary sequences of low- and intermediate-mass (M account for 40% of the sources brighter than the tip of the red giant branch. Most of these stars descend from ˜1.1 - 1.3 M⊙ progenitors, formed during the major epoch of star formation, which occurred ˜2.5 Gyr ago. The presence of a significant number of bright stars indicates that IC10 has been site of significant star formation in recent epochs and currently hosts a group of massive stars in the core helium-burning phase. Dust production in this galaxy is largely dominated by carbon stars; the overall dust production rate estimated is 7 × 10-6 M⊙/yr.

  2. Aerosol impacts on California winter clouds and precipitation during CalWater 2011: local pollution vs. long-range transported dust

    Science.gov (United States)

    Fan, J.; Leung, L. R.; DeMott, P. J.; Comstock, J. M.; Singh, B.; Rosenfeld, D.; Tomlinson, J. M.; White, A.; Prather, K. A.; Minnis, P.; Ayers, J. K.; Min, Q.

    2013-07-01

    Mineral dust aerosols often observed over California in winter/spring, associated with long-range transport from Asia and Sahara, have been linked to enhanced precipitation based on observations. Local anthropogenic pollution, on the other hand, was shown in previous observational and modeling studies to reduce precipitation. Here we incorporate recent developments in ice nucleation parameterizations to link aerosols with ice crystal formation in a spectral-bin cloud microphysical model coupled with the Weather Research and Forecasting (WRF) model, to examine the relative and combined impacts of dust and local pollution particles on cloud properties and precipitation type and intensity. Simulations are carried out for two cloud cases with contrasting meteorology and cloud dynamics that occurred on 16 February (FEB16) and 2 March (MAR02) from the CalWater 2011 field campaign. In both cases, observations show the presence of dust or dust/biological particles in a relative pristine environment. The simulated cloud microphysical properties and precipitation show reasonable agreement with aircraft and surface measurements. Model sensitivity experiments indicate that in the pristine environment, the dust/biological aerosol layers increase the accumulated precipitation by 10-20% from the Central Valley to the Sierra Nevada Mountains for both FEB16 and MAR02 due to a 40% increase in snow formation, validating the observational hypothesis. Model results show that local pollution increases precipitation over the windward slope of the mountains by few percent due to increased snow formation when dust is present but reduces precipitation by 5-8% if dust is removed on FEB16. The effects of local pollution on cloud microphysics and precipitation strongly depend on meteorology including the strength of the Sierra Barrier Jet, and cloud dynamics. This study further underscores the importance of the interactions between local pollution, dust, and environmental conditions for

  3. THE LOCAL DUST FOREGROUNDS IN THE MICROWAVE SKY. I. THERMAL EMISSION SPECTRA

    International Nuclear Information System (INIS)

    Dikarev, Valeri; Preuss, Oliver; Solanki, Sami; Krueger, Harald; Krivov, Alexander

    2009-01-01

    Analyses of the cosmic microwave background (CMB) radiation maps made by the Wilkinson Microwave Anisotropy Probe (WMAP) have revealed anomalies not predicted by the standard inflationary cosmology. In particular, the power of the quadrupole moment of the CMB fluctuations is remarkably low, and the quadrupole and octopole moments are aligned mutually and with the geometry of the solar system. It has been suggested in the literature that microwave sky pollution by an unidentified dust cloud in the vicinity of the solar system may be the cause for these anomalies. In this paper, we simulate the thermal emission by clouds of spherical homogeneous particles of several materials. Spectral constraints from the WMAP multi-wavelength data and earlier infrared observations on the hypothetical dust cloud are used to determine the dust cloud's physical characteristics. In order for its emissivity to demonstrate a flat, CMB-like wavelength dependence over the WMAP wavelengths (3 through 14 mm), and to be invisible in the infrared light, its particles must be macroscopic. Silicate spheres of several millimeters in size and carbonaceous particles an order of magnitude smaller will suffice. According to our estimates of the abundance of such particles in the zodiacal cloud and trans-Neptunian belt, yielding the optical depths of the order of 10 -7 for each cloud, the solar system dust can well contribute 10 μK (within an order of magnitude) in the microwaves. This is not only intriguingly close to the magnitude of the anomalies (about 30 μK), but also alarmingly above the presently believed magnitude of systematic biases of the WMAP results (below 5 μK) and, to an even greater degree, of the future missions with higher sensitivities, e.g., Planck.

  4. Aerosol impacts on California winter clouds and precipitation during CalWater 2011: local pollution versus long-range transported dust

    Science.gov (United States)

    Fan, J.; Leung, L. R.; DeMott, P. J.; Comstock, J. M.; Singh, B.; Rosenfeld, D.; Tomlinson, J. M.; White, A.; Prather, K. A.; Minnis, P.; Ayers, J. K.; Min, Q.

    2014-01-01

    Mineral dust aerosols often observed over California in winter and spring, associated with long-range transport from Asia and the Sahara, have been linked to enhanced precipitation based on observations. Local anthropogenic pollution, on the other hand, was shown in previous observational and modeling studies to reduce precipitation. Here we incorporate recent developments in ice nucleation parameterizations to link aerosols with ice crystal formation in a spectral-bin cloud microphysical model coupled with the Weather Research and Forecasting (WRF) model in order to examine the relative and combined impacts of dust and local pollution particles on cloud properties and precipitation type and intensity. Simulations are carried out for two cloud cases (from the CalWater 2011 field campaign) with contrasting meteorology and cloud dynamics that occurred on 16 February (FEB16) and 2 March (MAR02). In both cases, observations show the presence of dust and biological particles in a relative pristine environment. The simulated cloud microphysical properties and precipitation show reasonable agreement with aircraft and surface measurements. Model sensitivity experiments indicate that in the pristine environment, the dust and biological aerosol layers increase the accumulated precipitation by 10-20% from the Central Valley to the Sierra Nevada for both FEB16 and MAR02 due to a ~40% increase in snow formation, validating the observational hypothesis. Model results show that local pollution increases precipitation over the windward slope of the mountains by a few percent due to increased snow formation when dust is present, but reduces precipitation by 5-8% if dust is removed on FEB16. The effects of local pollution on cloud microphysics and precipitation strongly depend on meteorology, including cloud dynamics and the strength of the Sierra Barrier Jet. This study further underscores the importance of the interactions between local pollution, dust, and environmental

  5. Asian dust events of April 1998

    Science.gov (United States)

    Husar, R.B.; Tratt, D.M.; Schichtel, B.A.; Falke, S.R.; Li, F.; Jaffe, D.; Gasso, S.; Gill, T.; Laulainen, N.S.; Lu, F.; Reheis, M.C.; Chun, Y.; Westphal, D.; Holben, B.N.; Gueymard, C.; McKendry, I.; Kuring, N.; Feldman, G.C.; McClain, C.; Frouin, R.J.; Merrill, J.; DuBois, D.; Vignola, F.; Murayama, T.; Nickovic, S.; Wilson, W.E.; Sassen, K.; Sugimoto, N.; Malm, W.C.

    2001-01-01

    On April 15 and 19, 1998, two intense dust storms were generated over the Gobi desert by springtime low-pressure systems descending from the northwest. The windblown dust was detected and its evolution followed by its yellow color on SeaWiFS satellite images, routine surface-based monitoring, and through serendipitous observations. The April 15 dust cloud was recirculating, and it was removed by a precipitating weather system over east Asia. The April 19 dust cloud crossed the Pacific Ocean in 5 days, subsided to the surface along the mountain ranges between British Columbia and California, and impacted severely the optical and the concentration environments of the region. In east Asia the dust clouds increased the albedo over the cloudless ocean and land by up to 10-20%, but it reduced the near-UV cloud reflectance, causing a yellow coloration of all surfaces. The yellow colored backscattering by the dust eludes a plausible explanation using simple Mie theory with constant refractive index. Over the West Coast the dust layer has increased the spectrally uniform optical depth to about 0.4, reduced the direct solar radiation by 30-40%, doubled the diffuse radiation, and caused a whitish discoloration of the blue sky. On April 29 the average excess surface-level dust aerosol concentration over the valleys of the West Coast was about 20-50 ??g/m3 with local peaks >100 ??g/m3. The dust mass mean diameter was 2-3 ??m, and the dust chemical fingerprints were evident throughout the West Coast and extended to Minnesota. The April 1998 dust event has impacted the surface aerosol concentration 2-4 times more than any other dust event since 1988. The dust events were observed and interpreted by an ad hoc international web-based virtual community. It would be useful to set up a community-supported web-based infrastructure to monitor the global aerosol pattern for such extreme aerosol events, to alert and to inform the interested communities, and to facilitate collaborative

  6. Aeolian sediments deposited in Lake Hamoun; the proxy of frequency and severity of dust storms in Sistan since the late glacial

    Directory of Open Access Journals (Sweden)

    Mohammad Ali Hamzeh

    2017-03-01

    Our results suggest that the late Holocene in the Sistan Basin (facies C3 was characterized by frequent changes in MLW and SH activity. Palaeoclimatic records show since the mid Holocene to the present time, the climate of Sistan and its catchment area more or less oscillated around a steady state comparable with modern situations (Hamzeh et al. 2016. During this time, the hydroclimatic regime and Aeolian activity of the Sistan Basin and NW Himalaya have been mostly governed by MLW-associated precipitation. Periods of prolonged droughts are indicated in proxy records of NW Iran such Lake Neor (Sharifi et al. 2015, presumably consistent with high MS values in our record. It is possible that weakening of ISM, along with distal influences of the MLW during the late Holocene exposed the Lake Hamoun basin to frequent droughts. Frequent lake level fluctuations show unstable climate of the Sistan Basin during mid to late Holocene with frequent wind storms.

  7. Dust in the western U.S.: how biological, physical and human activities at the local scale interact to affect hydrologic function at the landscape scale (Invited)

    Science.gov (United States)

    Belnap, J.; Reheis, M. C.; Munson, S. M.

    2009-12-01

    Dryland regions constitute over 35% of terrestrial lands around the globe. Limited rainfall in these regions restricts plant growth and the spaces between vascular plants are often large. Most interspace soils are protected from wind erosion by the cover of rocks, physical crusts, and biological crusts (cyanobacteria, lichens, and mosses). However, disturbance of the soil surface in dryland regions (e.g., recreation, livestock, mining and energy exploration, military exercises, fire) reduces or eliminates the protective cover of the soils. Rising temperatures will reduce soil moisture and thus plant cover. Wind tunnel data show that most desert surfaces produce little sediment under typical wind speeds. However, disturbing the soil surface with vehicles, humans, or animals resulted in much higher sediment production from all surfaces tested, regardless of parent material, texture, or age of the soil surface. Synergist effects, such as surface disturbance occurring during drought periods in annualized plant communities, can create very large dust events. As surface disturbance, invasion, and drought are expected to increase in the future, an increase in dust production can be expected as well. Increased particulates in the air threaten human well-being through disease, highway accidents, and economic losses. Where dust losses are greater than the inputs, the source areas lose carbon and nutrients. These compounds are transferred to high elevation regions, where such fertilization likely impacts ecosystem function. Deposition of dust on the snowpack darkens the surface, increasing snowmelt by 30 days or more and exposing soils to evaporation, all of which decrease the quantity and quality of water in major streams and rivers. As increases occur in temperature, pumping of shallow aquifers, human activities, and invasion of exotic annual plants in dryland regions, the frequency, severity, and negative impact of dust storms is expected to increase as well. The

  8. Ozone Production by Colliding Dust in the Martian Atmosphere

    Science.gov (United States)

    Baragiola, R. A.; Dukes, C. A.

    2012-03-01

    Laboratory studies show that ozone is produced by electrical discharges when rocks fracture. We propose that a similar process should occur in the collision of dust particles during dust storms in Mars and discuss implications.

  9. Forecasting Winter Storms in the Sierra: A Social Science Perspective in Keeping the Public Safe without Negatively Impacting the Local Tourism Industry

    Science.gov (United States)

    Milne, R.; Wallmann, J.; Myrick, D. T.

    2010-12-01

    The National Weather Service Office in Reno is responsible for issuing Blizzard Warnings, Winter Storm Warnings, and Winter Weather Advisories for the Sierra, including the Lake Tahoe Basin and heavily traveled routes such as Interstate 80, Highway 395 and Highway 50. These forecast products prepare motorists for harsh travel conditions as well as those venturing into the backcountry, which are essential to the NWS mission of saving lives and property. During the winter season, millions of people from around the world visit the numerous world class ski resorts in the Sierra and the Lake Tahoe Basin, which is vital to the local economy. This situation creates a challenging decision for the forecasters to provide appropriate wording in winter statements to keep the public safe, without significantly impacting the local tourism-based economy. Numerous text and graphical products, including online weather briefings, are utilized by NWS Reno to highlight hazards in ensuring the public, businesses, and other government agencies are prepared for winter storms and take appropriate safety measures. The effectiveness of these product types will be explored, with past snowstorms used as examples to show how forecasters determine which type of text or graphical product is most appropriate to convey the hazardous weather threats.

  10. Multilinear approach to the precipitation-lightning relationship: a case study of summer local electrical storms in the northern part of Spain during 2002-2009 period

    Science.gov (United States)

    Herrero, I.; Ezcurra, A.; Areitio, J.; Diaz-Argandoña, J.; Ibarra-Berastegi, G.; Saenz, J.

    2013-11-01

    Storms developed under local instability conditions are studied in the Spanish Basque region with the aim of establishing precipitation-lightning relationships. Those situations may produce, in some cases, flash flood. Data used correspond to daily rain depth (mm) and the number of CG flashes in the area. Rain and lightning are found to be weakly correlated on a daily basis, a fact that seems related to the existence of opposite gradients in their geographical distribution. Rain anomalies, defined as the difference between observed and estimated rain depth based on CG flashes, are analysed by PCA method. Results show a first EOF explaining 50% of the variability that linearly relates the rain anomalies observed each day and that confirms their spatial structure. Based on those results, a multilinear expression has been developed to estimate the rain accumulated daily in the network based on the CG flashes registered in the area. Moreover, accumulates and maximum values of rain are found to be strongly correlated, therefore making the multilinear expression a useful tool to estimate maximum precipitation during those kind of storms.

  11. Inter- and intra-storm variability of the isotope composition of precipitation in Southern Israel: Are local or large-scale factors responsible?

    International Nuclear Information System (INIS)

    Gat, J.R.; Adar, E.; Alpert, P.

    2002-01-01

    A detailed sequential rain sampling of rainstorms was carried out during the 1989/90 and 1990/91 rainy season in the coastal plain of Israel with an annual average of 530 mm of rain and in the western Negev where the average annual rainfall is 93 mm. On four occasions, rain was concurrently available at both stations. The variability of the isotope composition within a rainy spell is quite considerable but falls short of the range of isotopic values encountered during the total season. Different rainy episodes show distinguishable isotope compositions, which evidently are characteristic of a larger time/space niche than that of the momentary, local, rain event. This is confirmed by the good correlation between the mean isotope composition of concurrently sampled events at both stations. A 'rain amount effect' is not apparent when the amount-weighted data for each complete rain episode are compared, because any possible effect is masked by the inter-storm variability. However by singling out the data within each storm sequence separately, a moderate effect is seen. On the whole, the results seem to support the notion that the isotope data are determined by the large, synoptic scale, situation. However within the range of values characteristic of the origin of the air masses there is a pronounced dependence of the isotope composition on the extent of the cloud field associated with each event, which is interpreted as a measure of the degree of rainout from the air mass, i.e. a typical Rayleigh effect. Local effects related to momentary rain intensity contribute only to a residual modulation of the above-mentioned effects. (author)

  12. Geomagnetic storms

    International Nuclear Information System (INIS)

    McNamara, A.G.

    1980-01-01

    Disturbances due to geomagnetic storms can affect the functioning of communications satellites and of power lines and other long conductors. Two general classes of geomagnetic activity can be distinguished: ionospheric current flow (the auroral electrojet), and magnetospheric compression. Super magnetic storms, such as the one of August 1972, can occur at any time and average about 17 occurrences per century. Electrical transmission systems can be made more tolerant of such events at a price, but the most effective way to minimize damage is by better operator training coupled with effective early warning systems. (LL)

  13. Field Measurements and Modeling of Dust Transport and Deposition on a Hawaiian Volcano

    Science.gov (United States)

    Douglas, M.; Stock, J. D.; Cerovski-Darriau, C.; Bishaw, K.; Bedford, D.

    2017-12-01

    The western slopes of Hawaii's Mauna Kea volcano are mantled by fine-grained soils that record volcanic airfall and eolian deposition. Where exposed, strong winds transport this sediment across west Hawaii, affecting tourism and local communities by decreasing air and water quality. Operations on US Army's Ke'amuku Maneuver Area (KMA) have the potential to increase dust flux from these deposits. To understand regional dust transport and composition, the USGS established 18 ground monitoring sites and sampling locations surrounding KMA. For over three years, each station measured vertical and horizontal dust flux while co-located anemometers measured wind speed and direction. We use these datasets to develop a model for dust supply and transport to assess whether KMA is a net dust sink or source. We find that horizontal dust flux rates are most highly correlated with entrainment threshold wind speeds of 8 m/s. Using a dust model that partitions measured horizontal dust flux into inward- and outward-directed components, we predict that KMA is currently a net dust sink. Geochemical analysis of dust samples illustrates that organics and pedogenic carbonate make up to 70% of their mass. Measured vertical dust deposition rates of 0.005 mm/m2/yr are similar to deposition rates of 0.004 mm/m2/yr predicted from the divergence of dust across KMA's boundary. These rates are low compared to pre-historic rates of 0.2-0.3 mm/yr estimated from radiocarbon dating of buried soils. Therefore, KMA's soils record persistent deposition both over past millennia and at present at rates that imply infrequent, large dust storms. Such events led to soil-mantled topography in an otherwise rocky Pleistocene volcanic landscape. A substantial portion of fine-grained soils in other leeward Hawaiian Island landscapes may have formed from similar eolian deposition, and not direct weathering of parent rock.

  14. A simplified Suomi NPP VIIRS dust detection algorithm

    Science.gov (United States)

    Yang, Yikun; Sun, Lin; Zhu, Jinshan; Wei, Jing; Su, Qinghua; Sun, Wenxiao; Liu, Fangwei; Shu, Meiyan

    2017-11-01

    Due to the complex characteristics of dust and sparse ground-based monitoring stations, dust monitoring is facing severe challenges, especially in dust storm-prone areas. Aim at constructing a high-precision dust storm detection model, a pixel database, consisted of dusts over a variety of typical feature types such as cloud, vegetation, Gobi and ice/snow, was constructed, and their distributions of reflectance and Brightness Temperatures (BT) were analysed, based on which, a new Simplified Dust Detection Algorithm (SDDA) for the Suomi National Polar-Orbiting Partnership Visible infrared Imaging Radiometer (NPP VIIRS) is proposed. NPP VIIRS images covering the northern China and Mongolian regions, where features serious dust storms, were selected to perform the dust detection experiments. The monitoring results were compared with the true colour composite images, and results showed that most of the dust areas can be accurately detected, except for fragmented thin dusts over bright surfaces. The dust ground-based measurements obtained from the Meteorological Information Comprehensive Analysis and Process System (MICAPS) and the Ozone Monitoring Instrument Aerosol Index (OMI AI) products were selected for comparison purposes. Results showed that the dust monitoring results agreed well in the spatial distribution with OMI AI dust products and the MICAPS ground-measured data with an average high accuracy of 83.10%. The SDDA is relatively robust and can realize automatic monitoring for dust storms.

  15. Aerosol impacts on California winter clouds and precipitation during CalWater 2011: local pollution vs. long-range transported dust

    OpenAIRE

    J. Fan; L. R. Leung; P. J. DeMott; J. M. Comstock; B. Singh; D. Rosenfeld; J. M. Tomlinson; A. White; K. A. Prather; P. Minnis; J. K. Ayers; Q. Min

    2013-01-01

    Mineral dust aerosols often observed over California in winter/spring, associated with long-range transport from Asia and Sahara, have been linked to enhanced precipitation based on observations. Local anthropogenic pollution, on the other hand, was shown in previous observational and modeling studies to reduce precipitation. Here we incorporate recent developments in ice nucleation parameterizations to link aerosols with ice crystal formation in a spectral-bin cloud microphysical mode...

  16. Aerosol impacts on California winter clouds and precipitation during CalWater 2011: local pollution versus long-range transported dust

    OpenAIRE

    Fan, J.; Leung, L. R.; DeMott, P. J.; Comstock, J. M.; Singh, B.; Rosenfeld, D.; Tomlinson, J. M.; White, A.; Prather, K. A.; Minnis, P.; Ayers, J. K.; Min, Q.

    2014-01-01

    Mineral dust aerosols often observed over California in winter and spring, associated with long-range transport from Asia and the Sahara, have been linked to enhanced precipitation based on observations. Local anthropogenic pollution, on the other hand, was shown in previous observational and modeling studies to reduce precipitation. Here we incorporate recent developments in ice nucleation parameterizations to link aerosols with ice crystal formation in a spectral-bin cloud microphysical mod...

  17. Evaluation of local exhaust ventilation system performance for control of Fe2O3 dust at an iron making unit

    Directory of Open Access Journals (Sweden)

    Mahdi Jamshidi Rastani

    2016-06-01

    Full Text Available Introduction: Adherence to the design values and ventilation standards (VS after installing and also maintaining continuous work of ventilation system with maximum performance throughout its life are amongst the reasons of ventilation systems monitoring. Therefore, the aim of this study was to evaluate performance of local exhaust ventilation system for control of dust by measuring the operating parameters and also to compare it with ventilation standards (VS and design values. Material and Method: The present research is a descriptive and cross-sectional study, conducted in three sections of measuring, monitoring and evaluating the operating parameters on hoods, channels and fan of ventilation system based on the current status of the system, documentation (design, and recommended standards (VS. Static pressure, velocity pressure, surface area, and flow rate were measured based on the recommendations of various sources and ACGIH industrial ventilation manual, and the data were compared with the design and recommended values, using the SPSS software version 16.   Result: The results of paired sample t-test between flow rate and velocities of design and current status, showed significant differences in various parts. Accordingly, the results revealed a reduction of more than 50% in the design duct velocity compared to the current duct velocity, while design duct velocity is 1.3 more than the standard duct velocity of current status, and current duct velocity is about 65% of standard duct velocity. Conclusion: The reduction and nonconformity of the results of measurements of operating parameters (after a minimum of two decades with design and standard values are corroborant and sufficient reason for obstructions, abrasions, leaks, imbalance of system ducts and their inefficiency in some branches. Since there is no base line measurements for system (supposing that the system worked with maximum amounts of setup time, one of the reasons for these

  18. The Lunar Dust Environment

    Science.gov (United States)

    Szalay, Jamey Robert

    Planetary bodies throughout the solar system are continually bombarded by dust particles, largely originating from cometary activities and asteroidal collisions. Surfaces of bodies with thick atmospheres, such as Venus, Earth, Mars and Titan are mostly protected from incoming dust impacts as these particles ablate in their atmospheres as 'shooting stars'. However, the majority of bodies in the solar system have no appreciable atmosphere and their surfaces are directly exposed to the flux of high speed dust grains. Impacts onto solid surfaces in space generate charged and neutral gas clouds, as well as solid secondary ejecta dust particles. Gravitationally bound ejecta clouds forming dust exospheres were recognized by in situ dust instruments around the icy moons of Jupiter and Saturn, and had not yet been observed near bodies with refractory regolith surfaces before NASA's Lunar Dust and Environment Explorer (LADEE) mission. In this thesis, we first present the measurements taken by the Lunar Dust Explorer (LDEX), aboard LADEE, which discovered a permanently present, asymmetric dust cloud surrounding the Moon. The global characteristics of the lunar dust cloud are discussed as a function of a variety of variables such as altitude, solar longitude, local time, and lunar phase. These results are compared with models for lunar dust cloud generation. Second, we present an analysis of the groupings of impacts measured by LDEX, which represent detections of dense ejecta plumes above the lunar surface. These measurements are put in the context of understanding the response of the lunar surface to meteoroid bombardment and how to use other airless bodies in the solar system as detectors for their local meteoroid environment. Third, we present the first in-situ dust measurements taken over the lunar sunrise terminator. Having found no excess of small grains in this region, we discuss its implications for the putative population of electrostatically lofted dust.

  19. Local geological dust in the area of Rome (Italy): linking mineral composition, size distribution and optical properties to radiative transfer modelling

    Science.gov (United States)

    Pietrodangelo, Adriana; Salzano, Roberto; Bassani, Cristiana; Pareti, Salvatore; Perrino, Cinzia

    2015-04-01

    Airborne mineral dust plays a key role in the energy balance of the Earth - atmosphere coupled system. The microphysical and optical properties of dust drive the direct radiative effects and are in turn influenced by the dust mineralogical composition. The latter varies largely, depending on the geology of the source region. Knowledge gaps still exist about relationships between the scattering and absorption of solar and terrestrial radiation by mineral dust and its mineralogical, size distribution and particle morphology features; this also affects the reliability of radiative transfer (RT) modelling estimates (Hansell et al., 2011). In this study, these relationships were investigated focusing on the crustal suspended PM10 dust, sourced from outcropping rocks of the local geological domains around Rome (Latium, Italy). The mineral composition variability of the Latium rocks ranges from the silicate-dominated (volcanics domain) to the calcite-dominated (travertine), through lithological materials composed in different proportions by silicates, silica and calcite, mainly (limestone series, siliciclastic series) (Cosentino et al., 2009). This peculiarity of the Latium region was thus exploited to investigate the behavior of the size distribution, optical properties and radiative transfer at BOA (Bottom Of Atmosphere) of the suspended dust PM10 fraction with the variability of mineral composition. Elemental source profiles of the same dust samples were previously determined (Pietrodangelo et al., 2013). A multi-faceted analysis was performed, and outcomes from the following approaches were merged: individual-particle scanning electron microscopy combined with X-ray energy-dispersive microanalysis (SEM XEDS), bulk mineralogical analysis by X-ray diffraction (XRD), size distribution fit of the individual-particle data set and modelling of the dust optical and radiative properties. To this aim, the 6SV atmospheric radiative transfer code (Kotchenova et al., 2008

  20. The physics of wind-blown sand and dust.

    Science.gov (United States)

    Kok, Jasper F; Parteli, Eric J R; Michaels, Timothy I; Karam, Diana Bou

    2012-10-01

    The transport of sand and dust by wind is a potent erosional force, creates sand dunes and ripples, and loads the atmosphere with suspended dust aerosols. This paper presents an extensive review of the physics of wind-blown sand and dust on Earth and Mars. Specifically, we review the physics of aeolian saltation, the formation and development of sand dunes and ripples, the physics of dust aerosol emission, the weather phenomena that trigger dust storms, and the lifting of dust by dust devils and other small-scale vortices. We also discuss the physics of wind-blown sand and dune formation on Venus and Titan.

  1. Localized electron density enhancements in the high-altitude polar ionosphere and their relationships with storm-enhanced density (SED plumes and polar tongues of ionization (TOI

    Directory of Open Access Journals (Sweden)

    Y. Kitanoya

    2011-02-01

    Full Text Available Events of localized electron density increase in the high-altitude (>3000 km polar ionosphere are occasionally identified by the thermal plasma instruments on the Akebono satellite. In this paper, we investigate the vertical density structure in one of such events in detail using simultaneous observations by the Akebono and DMSP F15 satellites, the SuperDARN radars, and a network of ground Global Positioning System (GPS receivers, and the statistical characteristics of a large number (>10 000 of such events using Akebono data over half of an 11-year solar cycle. At Akebono altitude, the parallel drift velocity is remarkably low and the O+ ion composition ratio remarkably high, inside the high plasma-density regions at high altitude. Detailed comparisons between Akebono, DMSP ion velocity and density, and GPS total electron content (TEC data suggest that the localized plasma density increase observed at high altitude on Akebono was likely connected with the polar tongue of ionization (TOI and/or storm enhanced density (SED plume observed in the F-region ionosphere. Together with the SuperDARN plasma convection map these data suggest that the TOI/SED plume penetrated into the polar cap due to anti-sunward convection and the plume existed in the same convection channel as the dense plasma at high altitude; in other words, the two were probably connected to each other by the convecting magnetic field lines. The observed features are consistent with the observed high-density plasma being transported from the mid-latitude ionosphere or plasmasphere and unlikely a part of the polar wind population.

  2. [Electrical storm].

    Science.gov (United States)

    Barnay, C; Taieb, J; Morice, R

    2007-11-01

    Electrical storm is defined as repeated occurrence of severe ventricular arrhythmias requiring multiple cardioversions, two or more or three or more following different studies. The clinical aspect can sometimes be made of multiple, self aggravating, life threatening accesses. There are three main clinical circumstances of occurrence: in patients equipped with intracardiac defibrillators, during the acute phase of myocardial infarction and in Brugada syndrome. 10 to 15% of patients with cardiac defibrillators are subject to electrical storms in a period of two years. The causative arrhythmia is most often ventricular tachycardia than ventricular fibrillation, especially in secondary prevention and if the initial arrhythmias justifying the device was a ventricular tachycardia. Precipitaing factors are present in one third of cases, mainly acute heart failure, ionic disorders and arrhythmogenic drugs. Predictive factors are age, left ventricular ejection fractionelectrical shock in 50% of cases, antitachycardi stimulation in 30% and in 20% by association of the two. Treatment, after elimination of inappropriate shocks, is mainly based on beta-blockers and amiodarone, class I antiarrhythmics, lidocaïne or bretylium in some cases, and sedation pushed to general anesthesia in some cases. Radio-frequency ablation and even heart transplantation have been proposed in extreme cases. Quinidine has been proved efficient in cases of Brugada syndrome.

  3. Inter-annual changes of Biomass Burning and Desert Dust and their impact over East Asia

    Science.gov (United States)

    DONG, X.; Fu, J. S.; Huang, K.

    2014-12-01

    Impact of mineral dust and biomass burning aerosols on air quality has been well documented in the last few decades, but the knowledge about their interactions with anthropogenic emission and their impacts on regional climate is very limited (IPCC, 2007). While East Asia is greatly affected by dust storms in spring from Taklamakan and Gobi deserts (Huang et al., 2010; Li et al., 2012), it also suffers from significant biomass burning emission from Southeast Asia during the same season. Observations from both surface monitoring and satellite data indicated that mineral dust and biomass burning aerosols may approach to coastal area of East Asia simultaneously, thus have a very unique impact on the local atmospheric environment and regional climate. In this study, we first investigated the inter-annual variations of biomass burning and dust aerosols emission for 5 consecutive years from 2006-2010 to estimate the upper and lower limits and correlation with meteorology conditions, and then evaluate their impacts with a chemical transport system. Our preliminary results indicated that biomass burning has a strong correlation with precipitation over Southeast Asia, which could drive the emission varying from 542 Tg in 2008 to 945 Tg in 2010, according to FLAMBE emission inventory (Reid et al., 2009). Mineral dust also demonstrated a strong dependence on wind filed. These inter-annual/annual variations will also lead to different findings and impacts on air quality in East Asia. Reference: Huang, K., et al. (2010), Mixing of Asian dust with pollution aerosol and the transformation of aerosol components during the dust storm over China in spring 2007, Journal of Geophysical Research-Atmospheres, 115. IPCC (2007), Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, New York. Li, J., et al. (2012), Mixing of Asian mineral dust with anthropogenic pollutants over East Asia: a model case study of a super-duststorm in

  4. Geomagnetic Storm Sudden Commencements

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Storm Sudden Commencements (ssc) 1868 to present: STORM1 and STORM2 Lists: (Some text here is taken from the International Association of Geomagnetism and Aeronomy...

  5. Enhancement and identification of dust events in the south-west ...

    Indian Academy of Sciences (India)

    in dust source regions, which have a negative impact on human health ... Keywords. MODIS; dust storm; visible; infrared; remote sensing; brightness temperature. 1 ... clouds can often be misinterpreted as dust. In order to ... dust aerosol outbreaks over land using satellite ... models were also used to track air parcels arriving.

  6. Transportation and Bioavailability of Copper and Zinc in a Storm Water Retention Pond

    Science.gov (United States)

    Camponelli, K.; Casey, R. E.; Wright, M. E.; Lev, S. M.; Landa, E. R.

    2006-05-01

    Highway runoff has been identified as a non-point source of metals to storm water retention ponds. Zinc and copper are major components of tires and brake pads, respectively. As these automobile parts degrade, they deposit particulates onto the roadway surface. During a storm event, these metal containing particulates are washed into a storm water retention pond where they can then accumulate over time. These metals may be available to organisms inhabiting the pond and surrounding areas. This study focuses on tracking the metals from their deposition on the roadway to their transport and accumulation into a retention pond. The retention pond is located in Owings Mills, MD and collects runoff from an adjacent four lane highway. Pond sediments, background soils, road dust samples, and storm events were collected and analyzed. Copper and zinc concentrations in the pond sediments are higher than local background soils indicating that the pond is storing anthropogenically derived metals. Storm event samples also reveal elevated levels of copper and zinc transported through runoff, along with a large concentration of total suspended solids. After looking at the particulate and dissolved fractions of both metals in the runoff, the majority of the Zn and Cu are in the particulate fraction. Changes in TSS are proportional with changes in particulate bound Zn, indicating that the solid particulates that are entering into the pond are a major contributor of the total metal loading. Sequential extractions carried out on the road dust show that the majority of zinc is extracted in the second and third fractions and could become available to organisms in the pond. There is a small amount of Cu that is being released in the more available stages of the procedure; however the bulk of the Cu is seen in the more recalcitrant steps. In the pond sediments however, both Cu and Zn are only being released from the sediments in the later steps and are most likely not highly available.

  7. Coupling Mars' Dust and Water Cycles: Effects on Dust Lifting Vigor, Spatial Extent and Seasonality

    Science.gov (United States)

    Kahre, M. A.; Hollingsworth, J. L.; Haberle, R. M.; Montmessin, F.

    2012-01-01

    The dust cycle is an important component of Mars' current climate system. Airborne dust affects the radiative balance of the atmosphere, thus greatly influencing the thermal and dynamical state of the atmosphere. Dust raising events on Mars occur at spatial scales ranging from meters to planet-wide. Although the occurrence and season of large regional and global dust storms are highly variable from one year to the next, there are many features of the dust cycle that occur year after year. Generally, a low-level dust haze is maintained during northern spring and summer, while elevated levels of atmospheric dust occur during northern autumn and winter. During years without global-scale dust storms, two peaks in total dust loading were observed by MGS/TES: one peak occurred before northern winter solstice at Ls 200-240, and one peak occurred after northern winter solstice at L(sub s) 305-340. These maxima in dust loading are thought to be associated with transient eddy activity in the northern hemisphere, which has been observed to maximize pre- and post-solstice. Interactive dust cycle studies with Mars General Circulation Models (MGCMs) have included the lifting, transport, and sedimentation of radiatively active dust. Although the predicted global dust loadings from these simulations capture some aspects of the observed dust cycle, there are marked differences between the simulated and observed dust cycles. Most notably, the maximum dust loading is robustly predicted by models to occur near northern winter solstice and is due to dust lifting associated with down slope flows on the flanks of the Hellas basin. Thus far, models have had difficulty simulating the observed pre- and post- solstice peaks in dust loading. Interactive dust cycle studies typically have not included the formation of water ice clouds or their radiative effects. Water ice clouds can influence the dust cycle by scavenging dust from atmosphere and by interacting with solar and infrared radiation

  8. Wood Dust

    Science.gov (United States)

    Learn about wood dust, which can raise the risk of cancers of the paranasal sinuses and nasal cavity. High amounts of wood dust are produced in sawmills, and in the furniture-making, cabinet-making, and carpentry industries.

  9. Systematic characterization of structural, dynamical and electrical properties of dust devils and implications for dust lifting processes

    Science.gov (United States)

    Franzese, Gabriele; Esposito, Francesca; Lorenz, Ralph D.; Popa, Ciprian; Silvestro, Simone; Deniskina, Natalia; Cozzolino, Fabio

    2017-04-01

    Dust devils are convective vortices able to lift sand and dust grains from the soil surface, even in conditions of low wind speed environment. They have been observed not only on Earth but also on other planets of the solar system; in particular, they are largely studied on Mars. Indeed, the contribution of the dust devils to the Martian climate is a highly debated question. In order to investigate this topic, it is important to understand the nature of the dust lifting mechanism by the vortex and characterize the induced electric field. As part of the development process of DREAMS, the meteorological station on board the Schiapparelli lander of the ExoMars 2016 mission, and of the Dust complex package of the ExoMars 2020 mission, we performed various field campaigns in the Sahara desert (Tafilalt region, Morocco). We deployed a fully equipped meteorological station and, during the 2014 summer, we observed three months of dust devils activity, collecting almost six hundreds events. For each dust devil, we monitored the horizontal wind speed and direction, the vertical wind speed, the pressure drop due to the vortex core, the temperature, the induced electric field and the concentration of dust lifted. This data set is unique in literature and represents up to now the most comprehensive one available for the dusty convective vortices. Here we will present the analysis of the Moroccan data with particular emphasis on the study of the atmospheric electric field variations due to the passage of the vortices. The distribution of the vortex parameters (wind speed and direction, pressure, E-field and dust lifted) are showed and compared, when possible, to the ones observed by the Martian surveys. The connection between the E-field and the other parameters will be presented. In the terrestrial environment, the development of the convective vortices is restricted by the presence of the vegetation and of the urban areas, hence dust devils can impact the climate only on local

  10. Quantifying Anthropogenic Dust Emissions

    Science.gov (United States)

    Webb, Nicholas P.; Pierre, Caroline

    2018-02-01

    Anthropogenic land use and land cover change, including local environmental disturbances, moderate rates of wind-driven soil erosion and dust emission. These human-dust cycle interactions impact ecosystems and agricultural production, air quality, human health, biogeochemical cycles, and climate. While the impacts of land use activities and land management on aeolian processes can be profound, the interactions are often complex and assessments of anthropogenic dust loads at all scales remain highly uncertain. Here, we critically review the drivers of anthropogenic dust emission and current evaluation approaches. We then identify and describe opportunities to: (1) develop new conceptual frameworks and interdisciplinary approaches that draw on ecological state-and-transition models to improve the accuracy and relevance of assessments of anthropogenic dust emissions; (2) improve model fidelity and capacity for change detection to quantify anthropogenic impacts on aeolian processes; and (3) enhance field research and monitoring networks to support dust model applications to evaluate the impacts of disturbance processes on local to global-scale wind erosion and dust emissions.

  11. Solar noise storms

    CERN Document Server

    Elgaroy, E O

    2013-01-01

    Solar Noise Storms examines the properties and features of solar noise storm phenomenon. The book also presents some theories that can be used to gain a better understanding of the phenomenon. The coverage of the text includes topics that cover the features and behavior of noise storms, such as the observable features of noise storms; the relationship between noise storms and the observable features on the sun; and ordered behavior of storm bursts in the time-frequency plane. The book also covers the spectrum, polarization, and directivity of noise storms. The text will be of great use to astr

  12. 40 CFR 35.925-21 - Storm sewers.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Storm sewers. 35.925-21 Section 35.925... STATE AND LOCAL ASSISTANCE Grants for Construction of Treatment Works-Clean Water Act § 35.925-21 Storm... treatment works for control of pollutant discharges from a separate storm sewer system (as defined in § 35...

  13. Electrodynamic Dust Shield Demonstrator

    Science.gov (United States)

    Stankie, Charles G.

    2013-01-01

    The objective of the project was to design and manufacture a device to demonstrate a new technology developed by NASA's Electrostatics and Surface Physics Laboratory. The technology itself is a system which uses magnetic principles to remove regolith dust from its surface. This project was to create an enclosure that will be used to demonstrate the effectiveness of the invention to The Office of the Chief Technologist. ONE of the most important challenges of space exploration is actually caused by something very small and seemingly insignificant. Dust in space, most notably on the moon and Mars, has caused many unforeseen issues. Dirt and dust on Earth, while a nuisance, can be easily cleaned and kept at bay. However, there is considerably less weathering and erosion in space. As a result, the microscopic particles are extremely rough and abrasive. They are also electrostatically charged, so they cling to everything they make contact with. This was first noted to be a major problem during the Apollo missions. Dust would stick to the spacesuits, and could not be wiped off as predicted. Dust was brought back into the spacecraft, and was even inhaled by astronauts. This is a major health hazard. Atmospheric storms and other events can also cause dust to coat surfaces of spacecraft. This can cause abrasive damage to the craft. The coating can also reduce the effectiveness of thermal insulation and solar panels.' A group of engineers at Kennedy Space Center's Electrostatics and Surface Physics Laboratory have developed a new technology, called the Electrodynamic Dust Shield, to help alleviate these problems. It is based off of the electric curtain concept developed at NASA in 1967. "The EDS is an active dust mitigation technology that uses traveling electric fields to transport electrostatically charged dust particles along surfaces. To generate the traveling electric fields, the EDS consists of a multilayer dielectric coating with an embedded thin electrode grid

  14. Storm Water BMP Tool Implementation Testing

    Science.gov (United States)

    2017-12-01

    Under project 2015-ORIL 7, a screening tool was developed to assist Local communities with selecting post-construction storm water best management practices (BMPs) to comply with the Ohio Environmental Protection Agencys (Ohio EPA) statewide Const...

  15. Dust observations by PFS on Mars Express

    Science.gov (United States)

    Zasova, L. V.; Formisano, V.; Moroz, V. I.; Grassi, D.; Ignatiev, N. I.; Blecka, M. I.; Maturilli, A.; Palomba, E.; Piccioni, G.; Pfs Team

    Dust is always present in the Martian atmosphere with opacity, which changes from values below 0.1 (at 9 μ m) up to several units during the dust storms. From the thermal IR (LW channel of PFS) the dust opacity is retrieved in a self consistent way together with the temperature profile from the same spectrum A preliminary investigation along the orbit, which comes through Hellas, shows that the value of dust opacity anticorrelates with surface altitude. From -70 to +25 of latitude the vertical dust distribution follows the exponential low with the scale of 12 km, which corresponds to the gaseous scale height near noon and indicates for well mixed condition. The dust opacity, corresponding to the zero surface altitude, is found of 0.25+-0.05. More detailed investigations of all available data will be presented, including analysis of both short- and long- wavelength spectra of PFS.

  16. Asian Dust particles impacts on air quality and radiative forcing over Korea

    International Nuclear Information System (INIS)

    Kim, Y J; Noh, Y M; Song, C H; Yoon, S C; Han, J S

    2009-01-01

    Asian Dust particles originated from the deserts and loess areas of the Asian continent are often transported over Korea, Japan, and the North Pacific Ocean during spring season. Major air mass pathway of Asian dust storm to Korea is from either north-western Chinese desert regions or north-eastern Chinese sandy areas. The local atmospheric environment condition in Korea is greatly impacted by Asian dust particles transported by prevailing westerly wind. Since these Asian dust particles pass through heavily populated urban and industrial areas in China before it reach Korean peninsular, their physical, chemical and optical properties vary depending on the atmospheric conditions and air mass pathway characteristics. An integrated system approach has been adopted at the Advanced Environment Monitoring Research Center (ADEMRC), Gwangju Institute Science and Technology (GIST), Korea for effective monitoring of atmospheric aerosols utilizing various in-situ and optical remote sensing methods, which include a multi-channel Raman LIDAR system, sunphotometer, satellite, and in-situ instruments. Results from recent studies on impacts of Asian dust particles on local air quality and radiative forcing over Korea are summarized here.

  17. Cometary Dust

    Science.gov (United States)

    Levasseur-Regourd, Anny-Chantal; Agarwal, Jessica; Cottin, Hervé; Engrand, Cécile; Flynn, George; Fulle, Marco; Gombosi, Tamas; Langevin, Yves; Lasue, Jérémie; Mannel, Thurid; Merouane, Sihane; Poch, Olivier; Thomas, Nicolas; Westphal, Andrew

    2018-04-01

    This review presents our understanding of cometary dust at the end of 2017. For decades, insight about the dust ejected by nuclei of comets had stemmed from remote observations from Earth or Earth's orbit, and from flybys, including the samples of dust returned to Earth for laboratory studies by the Stardust return capsule. The long-duration Rosetta mission has recently provided a huge and unique amount of data, obtained using numerous instruments, including innovative dust instruments, over a wide range of distances from the Sun and from the nucleus. The diverse approaches available to study dust in comets, together with the related theoretical and experimental studies, provide evidence of the composition and physical properties of dust particles, e.g., the presence of a large fraction of carbon in macromolecules, and of aggregates on a wide range of scales. The results have opened vivid discussions on the variety of dust-release processes and on the diversity of dust properties in comets, as well as on the formation of cometary dust, and on its presence in the near-Earth interplanetary medium. These discussions stress the significance of future explorations as a way to decipher the formation and evolution of our Solar System.

  18. NCDC Storm Events Database

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Storm Data is provided by the National Weather Service (NWS) and contain statistics on personal injuries and damage estimates. Storm Data covers the United States of...

  19. Direct Radiative Effect of Mineral Dust on the Development of African Easterly Wave in Late Summer, 2003-2007

    Science.gov (United States)

    Ma, Po-Lun; Zhang, Kai; Shi, Jainn Jong; Matsui, Toshihisa; Arking, Albert

    2012-01-01

    Episodic events of both Saharan dust outbreaks and African Easterly Waves (AEWs) are observed to move westward over the eastern tropical Atlantic Ocean. The relationship between the warm, dry, and dusty Saharan Air Layer (SAL) on the nearby storms has been the subject of considerable debate. In this study, the Weather Research and Forecasting (WRF) model is used to investigate the radiative effect of dust on the development of AEWs during August and September, the months of maximum tropical cyclone activity, in years 2003-2007. The simulations show that dust radiative forcing enhances the convective instability of the environment. As a result, most AEWs intensify in the presence of a dust layer. The Lorenz energy cycle analysis reveals that the dust radiative forcing enhances the condensational heating, which elevates the zonal and eddy available potential energy. In turn, available potential energy is effectively converted to eddy kinetic energy, in which local convective overturning plays the primary role. The magnitude of the intensification effect depends on the initial environmental conditions, including moisture, baroclinity, and the depth of the boundary layer. We conclude that dust radiative forcing, albeit small, serves as a catalyst to promote local convection that facilitates AEW development.

  20. Investigation of dust formations in the atmosphere on the basis of satellite observations

    Science.gov (United States)

    Ivanchik, M. V.; Kliushnikov, S. I.; Krovotyntsev, V. A.; Serebrennikov, A. N.

    1984-06-01

    A method for the computer processing of space photographs is described which makes it possible to determine dust formations in the atmosphere. Dust formations are identified according to the character of contrast-density distribution. Processed images are compared with actinometric data collected in a dust storm area (Conakry, Guinea, May 1983).

  1. Density currents as a desert dust mobilization mechanism

    Directory of Open Access Journals (Sweden)

    S. Solomos

    2012-11-01

    Full Text Available The formation and propagation of density currents are well studied processes in fluid dynamics with many applications in other science fields. In the atmosphere, density currents are usually meso-β/γ phenomena and are often associated with storm downdrafts. These storms are responsible for the formation of severe dust episodes (haboobs over desert areas. In the present study, the formation of a convective cool pool and the associated dust mobilization are examined for a representative event over the western part of Sahara desert. The physical processes involved in the mobilization of dust are described with the use of the integrated atmospheric-air quality RAMS/ICLAMS model. Dust is effectively produced due to the development of near surface vortices and increased turbulent mixing along the frontal line. Increased dust emissions and recirculation of the elevated particles inside the head of the density current result in the formation of a moving "dust wall". Transport of the dust particles in higher layers – outside of the density current – occurs mainly in three ways: (1 Uplifting of preexisting dust over the frontal line with the aid of the strong updraft (2 Entrainment at the upper part of the density current head due to turbulent mixing (3 Vertical mixing after the dilution of the system. The role of the dust in the associated convective cloud system was found to be limited. Proper representation of convective processes and dust mobilization requires the use of high resolution (cloud resolving model configuration and online parameterization of dust production. Haboob-type dust storms are effective dust sources and should be treated accordingly in dust modeling applications.

  2. Allergies, asthma, and dust

    Science.gov (United States)

    Reactive airway disease - dust; Bronchial asthma - dust; Triggers - dust ... Things that make allergies or asthma worse are called triggers. Dust is a common trigger. When your asthma or allergies become worse due to dust, you are ...

  3. Seasonal Contribution of Mineral Dust and Otlher Major Components to Particulate Matter at Two Remote Sites in Central Asia

    Science.gov (United States)

    Dust storms are significant contributors to ambient levels of particulate matter (PM) in many areas of the world. Central Asia, an area that is relatively understudied in this regard, is anticipated to be affected by dust storms due to its proximity to several major deserts that ...

  4. The Continuous Monitoring of Desert Dust using an Infrared-based Dust Detection and Retrieval Method

    Science.gov (United States)

    Duda, David P.; Minnis, Patrick; Trepte, Qing; Sun-Mack, Sunny

    2006-01-01

    Airborne dust and sand are significant aerosol sources that can impact the atmospheric and surface radiation budgets. Because airborne dust affects visibility and air quality, it is desirable to monitor the location and concentrations of this aerosol for transportation and public health. Although aerosol retrievals have been derived for many years using visible and near-infrared reflectance measurements from satellites, the detection and quantification of dust from these channels is problematic over bright surfaces, or when dust concentrations are large. In addition, aerosol retrievals from polar orbiting satellites lack the ability to monitor the progression and sources of dust storms. As a complement to current aerosol dust retrieval algorithms, multi-spectral thermal infrared (8-12 micron) data from the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Meteosat-8 Spinning Enhanced Visible and Infrared Imager (SEVIRI) are used in the development of a prototype dust detection method and dust property retrieval that can monitor the progress of Saharan dust fields continuously, both night and day. The dust detection method is incorporated into the processing of CERES (Clouds and the Earth s Radiant Energy System) aerosol retrievals to produce dust property retrievals. Both MODIS (from Terra and Aqua) and SEVERI data are used to develop the method.

  5. Stochastic Optical Reconstruction Microscopy (STORM).

    Science.gov (United States)

    Xu, Jianquan; Ma, Hongqiang; Liu, Yang

    2017-07-05

    Super-resolution (SR) fluorescence microscopy, a class of optical microscopy techniques at a spatial resolution below the diffraction limit, has revolutionized the way we study biology, as recognized by the Nobel Prize in Chemistry in 2014. Stochastic optical reconstruction microscopy (STORM), a widely used SR technique, is based on the principle of single molecule localization. STORM routinely achieves a spatial resolution of 20 to 30 nm, a ten-fold improvement compared to conventional optical microscopy. Among all SR techniques, STORM offers a high spatial resolution with simple optical instrumentation and standard organic fluorescent dyes, but it is also prone to image artifacts and degraded image resolution due to improper sample preparation or imaging conditions. It requires careful optimization of all three aspects-sample preparation, image acquisition, and image reconstruction-to ensure a high-quality STORM image, which will be extensively discussed in this unit. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.

  6. Comprehensive Condition Survey and Storm Waves, Circulation, and Sediment Study, Dana Point Harbor, California

    Science.gov (United States)

    2014-12-01

    waters; 3) west to northwest local sea; 4) prefrontal local sea; 5) tropical storm swell; and 6) extratropical cyclone in the southern hemisphere...14-13 58 Prefrontal local sea The coastal zone within the south Orange County area is vulnerable under extratropical winter storm conditions (a...wave characteristics for severe extratropical storms during the 39 yr time period (1970–2008) are comparable to peak storm wave heights that were

  7. Nippon Storm Study design

    Directory of Open Access Journals (Sweden)

    Takashi Kurita

    2012-10-01

    Full Text Available An understanding of the clinical aspects of electrical storm (E-storms in patients with implantable cardiac shock devices (ICSDs: ICDs or cardiac resynchronization therapy with defibrillator [CRT-D] may provide important information for clinical management of patients with ICSDs. The Nippon Storm Study was organized by the Japanese Heart Rhythm Society (JHRS and Japanese Society of Electrocardiology and was designed to prospectively collect a variety of data from patients with ICSDs, with a focus on the incidence of E-storms and clinical conditions for the occurrence of an E-storm. Forty main ICSD centers in Japan are participating in the present study. From 2002, the JHRS began to collect ICSD patient data using website registration (termed Japanese cardiac defibrillator therapy registration, or JCDTR. This investigation aims to collect data on and investigate the general parameters of patients with ICSDs, such as clinical backgrounds of the patients, purposes of implantation, complications during the implantation procedure, and incidence of appropriate and inappropriate therapies from the ICSD. The Nippon Storm Study was planned as a sub-study of the JCDTR with focus on E-storms. We aim to achieve registration of more than 1000 ICSD patients and complete follow-up data collection, with the assumption of a 5–10% incidence of E-storms during the 2-year follow-up.

  8. Assessing storm erosion hazards

    NARCIS (Netherlands)

    Ranasinghe, Ranasinghe W M R J B; Callaghan, D.; Ciavola, Paolo; Coco, Giovanni

    2017-01-01

    The storm erosion hazard on coasts is usually expressed as an erosion volume and/or associated episodic coastline retreat. The accurate assessment of present-day and future storm erosion volumes is a key task for coastal zone managers, planners and engineers. There are four main approaches that can

  9. What does the magnetic storm development depend on?

    International Nuclear Information System (INIS)

    Wodnicka, E.B.

    1991-01-01

    Adiabatic drift model applied to the magnetic storm development simulation reveals the significance of initial energy, initial pitch angle and the site of ions injection for the intensity, growth time and growth rate of a storm produced by two ion species - H + and O + . The most severe storms are caused by the ring current intensified by low initial pitch angle ions injected at low radial distance in the postmidnight local time region. (author)

  10. Monitoring the airborne dust and water vapor in the low atmosphere of Mars: the MEDUSA experiment for the ESA ExoMars mission

    Science.gov (United States)

    Esposito, Francesca; Colangeli, Luigi; Palumbo, Pasquale; Della Corte, Vincenzo; Molfese, Cesare; Merrison, Jonathan; Nornberg, Per; Lopez-Moreno, J. J.; Rodriguez Gomez, Julio

    Dust and water vapour are fundamental components of Martian atmosphere. Dust amount varies with seasons and with the presence of local and global dust storms, but never drops entirely to zero. Aerosol dust has always played a fundamental role on the Martian climate. Dust interaction with solar and thermal radiation and the related condensation and evaporation processes influence the thermal structure and balance, and the dynamics (in terms of circulation) of the atmosphere. Water vapour is a minor constituent of the Martian atmosphere but it plays a fundamental role and it is important as indicator of seasonal climate changes. Moreover, the interest about the water cycle on local and global scales is linked to the fundamental function that water could have played in relation to the existence of living organisms on Mars. In view of tracing the past environmental conditions on Mars, that possibly favoured the appearing of life forms, it is important to study the present climate and its evolution, on which dust and water vapour have (and have had) strong influence. Moreover, nowadays, dust is a relevant agent that affects environmental conditions in the lower Martian atmosphere and, thus, may interact / interfere with any instrumentation delivered to Mars surface for in situ analyses. So, information on dust properties and deposition rate is also of great interest for future mission design. Knowledge of how much dust settles on solar arrays and the size and shape of particles will be crucial elements for designing missions that will operate by solar power for periods of several years and will have moving parts which will experience degradation by dust. This information is essential also for proper planning of future manned missions in relation to characterisation of environmental hazardous conditions. Little is known about dust structure and dynamics, so far. Size distribution is known only roughly and the mechanism of settling and rising into the atmosphere, the

  11. Martian Dust Devil Electron Avalanche Process and Associated Electrochemistry

    Science.gov (United States)

    Jackson, Telana L.; Farrell, William M.; Delory, Gregory T.; Nithianandam, Jeyasingh

    2010-01-01

    Mars' dynamic atmosphere displays localized dust devils and larger, global dust storms. Based on terrestrial analog studies, electrostatic modeling, and laboratory work these features will contain large electrostatic fields formed via triboelectric processes. In the low-pressure Martian atmosphere, these fields may create an electron avalanche and collisional plasma due to an increase in electron density driven by the internal electrical forces. To test the hypothesis that an electron avalanche is sustained under these conditions, a self-consistent atmospheric process model is created including electron impact ionization sources and electron losses via dust absorption, electron dissociation attachment, and electron/ion recombination. This new model is called the Dust Devil Electron Avalanche Model (DDEAM). This model solves simultaneously nine continuity equations describing the evolution of the primary gaseous chemical species involved in the electrochemistry. DDEAM monitors the evolution of the electrons and primary gas constituents, including electron/water interactions. We especially focus on electron dynamics and follow the electrons as they evolve in the E field driven collisional gas. When sources and losses are self-consistently included in the electron continuity equation, the electron density grows exponentially with increasing electric field, reaching an equilibrium that forms a sustained time-stable collisional plasma. However, the character of this plasma differs depending upon the assumed growth rate saturation process (chemical saturation versus space charge). DDEAM also shows the possibility of the loss of atmospheric methane as a function of electric field due to electron dissociative attachment of the hydrocarbon. The methane destruction rates are presented and can be included in other larger atmospheric models.

  12. Dust: Small-scale processes with global consequences

    Science.gov (United States)

    Okin, G.S.; Bullard, J.E.; Reynolds, R.L.; Ballantine, J.-A.C.; Schepanski, K.; Todd, M.C.; Belnap, J.; Baddock, M.C.; Gill, T.E.; Miller, M.E.

    2011-01-01

    Desert dust, both modern and ancient, is a critical component of the Earth system. Atmospheric dust has important effects on climate by changing the atmospheric radiation budget, while deposited dust influences biogeochemical cycles in the oceans and on land. Dust deposited on snow and ice decreases its albedo, allowing more light to be trapped at the surface, thus increasing the rate of melt and influencing energy budgets and river discharge. In the human realm, dust contributes to the transport of allergens and pathogens and when inhaled can cause or aggravate respiratory diseases. Dust storms also represent a significant hazard to road and air travel. Because it affects so many Earth processes, dust is studied from a variety of perspectives and at multiple scales, with various disciplines examining emissions for different purposes using disparate strategies. Thus, the range of objectives in studying dust, as well as experimental approaches and results, has not yet been systematically integrated. Key research questions surrounding the production and sources of dust could benefit from improved collaboration among different research communities. These questions involve the origins of dust, factors that influence dust production and emission, and methods through which dust can be monitored. ?? Author(s) 2011.

  13. Dust emission: small-scale processes with global consequences

    Science.gov (United States)

    Okin, Gregory S.; Bullard, Joanna E.; Reynolds, Richard L.; Ballantine, John-Andrew C.; Schepanski, Kerstin; Todd, Martin C.; Belnap, Jayne; Baddock, Matthew C.; Gill, Thomas E.; Miller, Mark E.

    2011-01-01

    Desert dust, both modern and ancient, is a critical component of the Earth system. Atmospheric dust has important effects on climate by changing the atmospheric radiation budget, while deposited dust influences biogeochemical cycles in the oceans and on land. Dust deposited on snow and ice decreases its albedo, allowing more light to be trapped at the surface, thus increasing the rate of melt and influencing energy budgets and river discharge. In the human realm, dust contributes to the transport of allergens and pathogens and when inhaled can cause or aggravate respiratory diseases. Dust storms also represent a significant hazard to road and air travel. Because it affects so many Earth processes, dust is studied from a variety of perspectives and at multiple scales, with various disciplines examining emissions for different purposes using disparate strategies. Thus, the range of objectives in studying dust, as well as experimental approaches and results, has not yet been systematically integrated. Key research questions surrounding the production and sources of dust could benefit from improved collaboration among different research communities. These questions involve the origins of dust, factors that influence dust production and emission, and methods through which dust can be monitored.

  14. Mechanisms of Saharan Dust Radiative Effects Coupled to Eddy Energy and Wave Activity

    Science.gov (United States)

    Hosseinpour, F.; Wilcox, E. M.; Colarco, P. R.

    2017-12-01

    We explore mechanisms addressing the relationships between the net radiative forcing of Saharan Air Layer (SAL) and eddy energetics of the African Easterly jet-African easterly wave (AEJ-AEWs) system across the tropical Atlantic storm track. This study indicates that radiatively interactive dust aerosols have the capability to modify the exchange of kinetic energy between the AEWs and AEJ. We find that while dust can have both constructive and destructive effects on eddy activity of the waves, depending on the behavior and structure of waves exhibiting different characteristic time-scales, the local heating by dust tends to change the quadruple pattern of eddy momentum fluxes of the AEWs which can yield feedbacks onto the mean-flow. These results arise from applying an ensemble of large NASA satellite observational data sets, such as MODIS, SeaWiFS and TRMM, as well as the GOCART aerosol model and MERRA reanalysis. Sensitivity studies indicate that the results are consistent when the analysis is performed with multiple different aerosol datasets. While the mechanisms proposed here require further evaluation with numerical model experiments, this study presents a novel approach and new insights into Saharan dust effects on large-scale climate dynamics.

  15. Storm Data Publication

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — 'Storm Data and Unusual Weather Phenomena' is a monthly publication containing a chronological listing, by state, of hurricanes, tornadoes, thunderstorms, hail,...

  16. Storm surge climatology report

    OpenAIRE

    Horsburgh, Kevin; Williams, Joanne; Cussack, Caroline

    2017-01-01

    Any increase in flood frequency or severity due to sea level rise or changes in storminess would adversely impact society. It is crucial to understand the physical drivers of extreme storm surges to have confidence in the datasets used for extreme sea level statistics. We will refine and improve methods to the estimation of extreme sea levels around Europe and more widely. We will do so by developing a comprehensive world picture of storm surge distribution (including extremes) for both tropi...

  17. A comparative study of night-time enhancement of TEC at a low latitude station on storm and quiet nights including the local time, seasonal and solar activity dependence

    Directory of Open Access Journals (Sweden)

    K. Unnikrishnan

    Full Text Available The main characteristics of night-time enhancements in TEC during magnetic storms are compared with those during quiet nights for different seasons and solar activity conditions at Palehua, a low latitude station during the period 1980–1989. We find that the mean amplitude has both a seasonal and solar activity dependence: in winter, the values are higher for weak storms as compared to those during quiet nights and increase with an increase in solar activity. In summer, the mean amplitude values during weak storms and quiet nights are almost equal. But during equinox, the mean amplitude values for quiet nights are greater than those during weak storms. The mean half-amplitude duration is higher during weak storms as compared to that during quiet nights in summer. However, during winter and equinox, the durations are almost equal for both quiet and weak storm nights. For the mean half-amplitude duration, the quiet night values for all the seasons and equinoctial weak storm values increase with an increase in solar activity. The occurrence frequency (in percent of TEC enhancement during weak storms is greater than during quiet nights for all seasons. The mean amplitude, the mean half-amplitude duration and the occurrence frequency (in percent of TEC enhancement values are higher during major storms as compared to those during quiet nights. The above parameters have their highest values during pre-midnight hours. From the data analysed, this behaviour is true in the case of major storms also.

    Key words. Ionosphere (ionospheric disturbances; plasma convection Magnetospheric physics (storms and substorms

  18. Model development of dust emission and heterogeneous chemistry within the Community Multiscale Air Quality modeling system and its application over East Asia

    Directory of Open Access Journals (Sweden)

    X. Dong

    2016-07-01

    Full Text Available The Community Multiscale Air Quality (CMAQ model has been further developed in terms of simulating natural wind-blown dust in this study, with a series of modifications aimed at improving the model's capability to predict the emission, transport, and chemical reactions of dust. The default parameterization of initial threshold friction velocity constants are revised to correct the double counting of the impact of soil moisture in CMAQ by the reanalysis of field experiment data; source-dependent speciation profiles for dust emission are derived based on local measurements for the Gobi and Taklamakan deserts in East Asia; and dust heterogeneous chemistry is also implemented. The improved dust module in the CMAQ is applied over East Asia for March and April from 2006 to 2010. The model evaluation result shows that the simulation bias of PM10 and aerosol optical depth (AOD is reduced, respectively, from −55.42 and −31.97 % by the original CMAQ to −16.05 and −22.1 % by the revised CMAQ. Comparison with observations at the nearby Gobi stations of Duolun and Yulin indicates that applying a source-dependent profile helps reduce simulation bias for trace metals. Implementing heterogeneous chemistry also results in better agreement with observations for sulfur dioxide (SO2, sulfate (SO42−, nitric acid (HNO3, nitrous oxides (NOx, and nitrate (NO3−. The investigation of a severe dust storm episode from 19 to 21 March 2010 suggests that the revised CMAQ is capable of capturing the spatial distribution and temporal variation of dust. The model evaluation also indicates potential uncertainty within the excessive soil moisture used by meteorological simulation. The mass contribution of fine-mode particles in dust emission may be underestimated by 50 %. The revised CMAQ model provides a useful tool for future studies to investigate the emission, transport, and impact of wind-blown dust over East Asia and elsewhere.

  19. Simulating Mars' Dust Cycle with a Mars General Circulation Model: Effects of Water Ice Cloud Formation on Dust Lifting Strength and Seasonality

    Science.gov (United States)

    Kahre, Melinda A.; Haberle, Robert; Hollingsworth, Jeffery L.

    2012-01-01

    The dust cycle is critically important for the current climate of Mars. The radiative effects of dust impact the thermal and dynamical state of the atmosphere [1,2,3]. Although dust is present in the Martian atmosphere throughout the year, the level of dustiness varies with season. The atmosphere is generally the dustiest during northern fall and winter and the least dusty during northern spring and summer [4]. Dust particles are lifted into the atmosphere by dust storms that range in size from meters to thousands of kilometers across [5]. Regional storm activity is enhanced before northern winter solstice (Ls200 degrees - 240 degrees), and after northern solstice (Ls305 degrees - 340 degrees ), which produces elevated atmospheric dust loadings during these periods [5,6,7]. These pre- and post- solstice increases in dust loading are thought to be associated with transient eddy activity in the northern hemisphere with cross-equatorial transport of dust leading to enhanced dust lifting in the southern hemisphere [6]. Interactive dust cycle studies with Mars General Circulation Models (MGCMs) have included the lifting, transport, and sedimentation of radiatively active dust. Although the predicted global dust loadings from these simulations capture some aspects of the observed dust cycle, there are marked differences between the simulated and observed dust cycles [8,9,10]. Most notably, the maximum dust loading is robustly predicted by models to occur near northern winter solstice and is due to dust lifting associated with down slope flows on the flanks of the Hellas basin. Thus far, models have had difficulty simulating the observed pre- and post- solstice peaks in dust loading.

  20. Cosmological simulation with dust formation and destruction

    Science.gov (United States)

    Aoyama, Shohei; Hou, Kuan-Chou; Hirashita, Hiroyuki; Nagamine, Kentaro; Shimizu, Ikkoh

    2018-06-01

    To investigate the evolution of dust in a cosmological volume, we perform hydrodynamic simulations, in which the enrichment of metals and dust is treated self-consistently with star formation and stellar feedback. We consider dust evolution driven by dust production in stellar ejecta, dust destruction by sputtering, grain growth by accretion and coagulation, and grain disruption by shattering, and treat small and large grains separately to trace the grain size distribution. After confirming that our model nicely reproduces the observed relation between dust-to-gas ratio and metallicity for nearby galaxies, we concentrate on the dust abundance over the cosmological volume in this paper. The comoving dust mass density has a peak at redshift z ˜ 1-2, coincident with the observationally suggested dustiest epoch in the Universe. In the local Universe, roughly 10 per cent of the dust is contained in the intergalactic medium (IGM), where only 1/3-1/4 of the dust survives against dust destruction by sputtering. We also show that the dust mass function is roughly reproduced at ≲ 108 M⊙, while the massive end still has a discrepancy, which indicates the necessity of stronger feedback in massive galaxies. In addition, our model broadly reproduces the observed radial profile of dust surface density in the circum-galactic medium (CGM). While our model satisfies the observational constraints for the dust extinction on cosmological scales, it predicts that the dust in the CGM and IGM is dominated by large (>0.03 μm) grains, which is in tension with the steep reddening curves observed in the CGM.

  1. Global transport of thermophilic bacteria in atmospheric dust.

    Science.gov (United States)

    Perfumo, Amedea; Marchant, Roger

    2010-04-01

    Aerosols from dust storms generated in the Sahara-Sahel desert area of Africa are transported north over Europe and periodically result in dry dust precipitation in the Mediterranean region. Samples of dust collected in Turkey and Greece following two distinct desert storm events contained viable thermophilic organisms of the genus Geobacillus, namely G. thermoglucosidasius and G. thermodenitrificans, and the recently reclassified Aeribacillus pallidus (formerly Geobacillus pallidus). We present here evidence that African dust storms create an atmospheric bridge between distant geographical regions and that they are also probably the source of thermophilic geobacilli later deposited over northern Europe by rainfall or dust plumes themselves. The same organisms (99% similarity in the 16S rDNA sequence) were found in dust collected in the Mediterranean region and inhabiting cool soils in Northern Ireland. This study also contributes new insights to the taxonomic identification of Geobacillus sp. Attempts to identify these organisms using 16S rRNA gene sequences have revealed that they contain multiple and diverse copies of the ribosomal RNA operon (up to 10 copies with nine different sequences), which dictates care in interpreting data about the systematics of this genus. © 2010 Society for Applied Microbiology and Blackwell Publishing Ltd.

  2. A linkage between Asian dust, dissolved iron and marine export production in the deep ocean

    Science.gov (United States)

    Han, Yongxiang; Zhao, Tianliang; Song, Lianchun; Fang, Xiaomin; Yin, Yan; Deng, Zuqin; Wang, Suping; Fan, Shuxian

    2011-08-01

    Iron-addition experiments have revealed that iron supply exerts controls on biogeochemical cycles in the ocean and ultimately influences the Earth's climate system. The iron hypothesis in its broad outlines has been proved to be correct. However, the hypothesis needs to be verified with an observable biological response to specific dust deposition events. Plankton growth following the Asian dust storm over Ocean Station PAPA (50°N, 145°W) in the North Pacific Ocean in April 2001 was the first supportive evidence of natural aeolian iron inputs to ocean; The data were obtained through the SeaWiFS satellite and robot carbon explorers by Bishop et al. Using the NARCM modeling results in this study, the calculated total dust deposition flux was 35 mg m -2 per day in PAPA region from the dust storm of 11-13 April, 2001 into 0.0615 mg m -2 d -1 (about 1100 nM) soluble iron in the surface layer at Station PAPA. It was enough for about 1100 nM to enhance the efficiency of the marine biological pump and trigger the rapid increase of POC and chlorophyll. The iron fertilization hypothesis therefore is plausible. However, even if this specific dust event can support the iron fertilization hypothesis, long-term observation data are lacking in marine export production and continental dust. In this paper, we also conducted a simple correlation analysis between the diatoms and foraminifera at about 3000 m and 4000 m at two subarctic Pacific stations and the dust aerosol production from China's mainland. The correlation coefficient between marine export production and dust storm frequency in the core area of the dust storms was significantly high, suggesting that aerosols generated by Asian dust storm are the source of iron for organic matter fixation in the North Pacific Ocean. These results suggest that there could be an interlocking chain for the change of atmospheric dust aerosol-soluble iron-marine export production.

  3. Progress in the Study of Coastal Storm Deposits

    Science.gov (United States)

    Xiong, Haixian; Huang, Guangqing; Fu, Shuqing; Qian, Peng

    2018-05-01

    Numerous studies have been carried out to identify storm deposits and decipher storm-induced sedimentary processes in coastal and shallow-marine areas. This study aims to provide an in-depth review on the study of coastal storm deposits from the following five aspects. 1) The formation of storm deposits is a function of hydrodynamic and sedimentary processes under the constraints of local geological and ecological factors. Many questions remain to demonstrate the genetic links between storm-related processes and a variety of resulting deposits such as overwash deposits, underwater deposits and hummocky cross-stratification (HCS). Future research into the formation of storm deposits should combine flume experiments, field observations and numerical simulations, and make full use of sediment source tracing methods. 2) Recently there has been rapid growth in the number of studies utilizing sediment provenance analysis to investigate the source of storm deposits. The development of source tracing techniques, such as mineral composition, magnetic susceptibility, microfossil and geochemical property, has allowed for better understanding of the depositional processes and environmental changes associated with coastal storms. 3) The role of extreme storms in the sedimentation of low-lying coastal wetlands with diverse ecosystem services has also drawn a great deal of attention. Many investigations have attempted to quantify widespread land loss, vertical marsh sediment accumulation and wetland elevation change induced by major hurricanes. 4) Paleostorm reconstructions based on storm sedimentary proxies have shown many advantages over the instrumental records and historic documents as they allow for the reconstruction of storm activities on millennial or longer time scales. Storm deposits having been used to establish proxies mainly include beach ridges and shelly cheniers, coral reefs, estuary-deltaic storm sequences and overwash deposits. Particularly over the past few

  4. Probabilistic storm surge inundation maps for Metro Manila based on Philippine public storm warning signals

    Science.gov (United States)

    Tablazon, J.; Caro, C. V.; Lagmay, A. M. F.; Briones, J. B. L.; Dasallas, L.; Lapidez, J. P.; Santiago, J.; Suarez, J. K.; Ladiero, C.; Gonzalo, L. A.; Mungcal, M. T. F.; Malano, V.

    2015-03-01

    A storm surge is the sudden rise of sea water over the astronomical tides, generated by an approaching storm. This event poses a major threat to the Philippine coastal areas, as manifested by Typhoon Haiyan on 8 November 2013. This hydro-meteorological hazard is one of the main reasons for the high number of casualties due to the typhoon, with 6300 deaths. It became evident that the need to develop a storm surge inundation map is of utmost importance. To develop these maps, the Nationwide Operational Assessment of Hazards under the Department of Science and Technology (DOST-Project NOAH) simulated historical tropical cyclones that entered the Philippine Area of Responsibility. The Japan Meteorological Agency storm surge model was used to simulate storm surge heights. The frequency distribution of the maximum storm surge heights was calculated using simulation results of tropical cyclones under a specific public storm warning signal (PSWS) that passed through a particular coastal area. This determines the storm surge height corresponding to a given probability of occurrence. The storm surge heights from the model were added to the maximum astronomical tide data from WXTide software. The team then created maps of inundation for a specific PSWS using the probability of exceedance derived from the frequency distribution. Buildings and other structures were assigned a probability of exceedance depending on their occupancy category, i.e., 1% probability of exceedance for critical facilities, 10% probability of exceedance for special occupancy structures, and 25% for standard occupancy and miscellaneous structures. The maps produced show the storm-surge-vulnerable areas in Metro Manila, illustrated by the flood depth of up to 4 m and extent of up to 6.5 km from the coastline. This information can help local government units in developing early warning systems, disaster preparedness and mitigation plans, vulnerability assessments, risk-sensitive land use plans, shoreline

  5. Biological effects of desert dust in respiratory epithelial cells and a murine model.

    Science.gov (United States)

    Abstract As a result of the challenge of recent dust storms to public health, we tested the postulate that desert dust collected in the southwestern United States could impact a biological effect in respiratory epithelial cells and an animal model. Two samples of surface sedime...

  6. Limb clouds and dust on Mars from images obtained by the Visual Monitoring Camera (VMC) onboard Mars Express

    Science.gov (United States)

    Sánchez-Lavega, A.; Chen-Chen, H.; Ordoñez-Etxeberria, I.; Hueso, R.; del Río-Gaztelurrutia, T.; Garro, A.; Cardesín-Moinelo, A.; Titov, D.; Wood, S.

    2018-01-01

    The Visual Monitoring Camera (VMC) onboard the Mars Express (MEx) spacecraft is a simple camera aimed to monitor the release of the Beagle-2 lander on Mars Express and later used for public outreach. Here, we employ VMC as a scientific instrument to study and characterize high altitude aerosols events (dust and condensates) observed at the Martian limb. More than 21,000 images taken between 2007 and 2016 have been examined to detect and characterize elevated layers of dust in the limb, dust storms and clouds. We report a total of 18 events for which we give their main properties (areographic location, maximum altitude, limb projected size, Martian solar longitude and local time of occurrence). The top altitudes of these phenomena ranged from 40 to 85 km and their horizontal extent at the limb ranged from 120 to 2000 km. They mostly occurred at Equatorial and Tropical latitudes (between ∼30°N and 30°S) at morning and afternoon local times in the southern fall and northern winter seasons. None of them are related to the orographic clouds that typically form around volcanoes. Three of these events have been studied in detail using simultaneous images taken by the MARCI instrument onboard Mars Reconnaissance Orbiter (MRO) and studying the properties of the atmosphere using the predictions from the Mars Climate Database (MCD) General Circulation Model. This has allowed us to determine the three-dimensional structure and nature of these events, with one of them being a regional dust storm and the two others water ice clouds. Analyses based on MCD and/or MARCI images for the other cases studied indicate that the rest of the events correspond most probably to water ice clouds.

  7. Biological effects of geomagnetic storms

    International Nuclear Information System (INIS)

    Chibisov, S.M.; Breus, T.K.; Levitin, A.E.; Drogova, G.M.; AN SSSR, Moscow; AN SSSR, Moscow

    1995-01-01

    Six physiological parameters of cardio-vascular system of rabbits and ultrastructure of cardiomyocytes were investigated during two planetary geomagnetic storms. At the initial and main phase of the storm the normal circadian structure in each cardiovascular parameter was lost. The disynchronozis was growing together with the storm and abrupt drop of cardia activity was observed during the main phase of storm. The main phase of storm followed by the destruction and degradation of cardiomyocytes. Parameters of cardia activity became substantially synchronized and characterized by circadian rhythm structure while the amplitude of deviations was still significant at the recovery stage of geomagnetic storm. 3 refs.; 7 figs

  8. Great magnetic storms

    International Nuclear Information System (INIS)

    Tsurutani, B.T.; Yen Te Lee; Tang, F.; Gonzalez, W.D.

    1992-01-01

    The five largest magnetic storms that occurred between 1971 and 1986 are studied to determine their solar and interplanetary causes. All of the events are found to be associated with high speed solar wind streams led by collisionless shocks. The high speed streams are clearly related to identifiable solar flares. It is found that (1) it is the extreme values of the southward interplanetary magnetic fields rather than solar wind speeds that are the primary causes of great magnetic storms, (2) shocked and draped sheath fields preceding the driver gas (magnetic cloud) are at least as effective in causing the onset of great magnetic storms (3 of 5 events ) as the strong fields within the driver gas itself, and (3) precursor southward fields ahead of the high speed streams allow the shock compression mechanism (item 2) to be particularly geoeffective

  9. PERSPECTIVE: Dust, fertilization and sources

    Science.gov (United States)

    Remer, Lorraine A.

    2006-11-01

    fraction that arrives at another continent [2]. At the deposition end of the chain, it is still unclear how the limited minerals in the dust such as iron are released for uptake by organisms either on land or in the ocean. Not all dust deposited into oceans results in a phytoplankton bloom. The process requires a chemical pathway that mobilizes a fraction of the iron into soluble form. Meskhidze et al [3] show that phytoplankton blooms following dust transport from the Gobi desert in Asia into the Pacific ocean result in a phytoplankton bloom only if the dust is accompanied by high initial SO2-to-dust ratios, suggesting that sulfuric acid coatings on the dust particle mobilize the embedded iron in the dust for phytoplankton uptake. Quantifying transport, deposition and nutrient availability are the latter ends of a puzzle that must begin by identifying and quantifying dust emission at the sources. The emission process is complex at the microscale requiring the right conditions for saltation and bombardment, which makes identification and inclusion of sources in global transport models very difficult. The result is that estimates of annual global dust emissions range from 1000 to 3000 Tg per year [4]. Even as global estimates of dust emissions are uncertain, localizing the sources brings even greater uncertainty. It has been recognized for several years that dust sources are not uniformly distributed over the arid regions of the Earth, but are regulated to topographic lows associated with dried lake deposits [5]. Using aerosol information from satellites, a comprehensive map of the world's source regions shows sources localized to specific areas of the Earth's arid regions [6]. Still these maps suggest broad emission sources covering several degrees of latitude and longitude. In the paper by Koren and co-authors [7] appearing in this issue, one particular dust source, the Bodélé depression in Chad, is analyzed in detail. They find that the specific topography of the

  10. I Got Them Dust Bowl Blues: Wind Erosion in the Music of the Southern Great Plains

    Science.gov (United States)

    Lee, J. A.

    2017-12-01

    This paper deals with the role of wind erosion and blowing dust on the music of the Dust Bowl region, a portion of the southern Great Plains of the United States. A defining characteristic of the region is dust storms, and in the 1930s, severe dust storms created dramatic images that came to symbolize all of the economic, social and environmental hardships suffered by the people during the 1930s. The music of the time, by Woody Guthrie and others, suggested that the region was being destroyed, never to recover. The region was resilient, however, and in recent decades, dust has been depicted in songs either as an adversity to be endured or simply as a normal part of life in the area. It may be that blowing dust has become a defining characteristic of the region because of a somewhat warped sense of pride in living in an often-difficult environment.

  11. Storm and cloud dynamics

    CERN Document Server

    Cotton, William R

    1992-01-01

    This book focuses on the dynamics of clouds and of precipitating mesoscale meteorological systems. Clouds and precipitating mesoscale systems represent some of the most important and scientifically exciting weather systems in the world. These are the systems that produce torrential rains, severe winds including downburst and tornadoes, hail, thunder and lightning, and major snow storms. Forecasting such storms represents a major challenge since they are too small to be adequately resolved by conventional observing networks and numerical prediction models.Key Features* Key Highlight

  12. Suspended dust in Norwegian cities

    International Nuclear Information System (INIS)

    2001-01-01

    According to calculations, at least 80 000 people in Oslo and 8 000 in Trondheim were annoyed by too much suspended dust in 2000. The dust concentration is greatest in the spring, presumably because dust is swirling up from melting snow and ice on the streets. Car traffic is the main source of the dust, except for some of the most highly exposed regions where wood-firing from old stoves contributes up to 70 percent of the dust. National targets for air quality include suspended dust, nitrogen dioxide, sulphur dioxide and benzene. Calculations show that nitrogen dioxide emissions exceeding the limit affected 4 000 people in Oslo and 1 000 people in Trondheim. The sulphur dioxide emissions in the major cities did non exceed the national quality limit; they did exceed the limit in some of the smaller industrial centres. In Trondheim, measurements show that the national limit for benzene was exceeded. Most of the emission of nitrogen dioxide comes from the road traffic. Local air pollution at times causes considerable health- and well-being problems in the larger cities and industrial centres, where a great part of the population may be at risk of early death, infection of the respiratory passage, heart- and lung diseases and cancer

  13. Ecological Restoration Programs Induced Amelioration of the Dust Pollution in North China Plain

    Science.gov (United States)

    Long, X.; Tie, X.; Li, G.; Junji, C.

    2017-12-01

    With Moderate Resolution Imaging Spectroradiometer (MODIS) land cover product (MCD12Q1), we quantitatively evaluate the ecological restoration programs (ERP) induced land cover change in China by calculating gridded the land use fraction (LUF). We clearly capture two obvious vegetation (grass and forest) protective barriers arise between the dust source region DSR and North China Plain NCP from 2011 to 2013. The WRF-DUST model is applied to investigate the impact of ERPs on dust pollution from 2 to 8 March 2016, corresponding to a national dust storm event over China. Despite some model biases, the WRF-DUST model reasonably reproduced the temporal variations of dust storm event, involving IOA of 0.96 and NMB of 2% for DSR, with IOA of 0.83 and NMB of -15% for downwind area of NCP. Generally, the WRF-DUST model well capture the spatial variations and evolutions of dust storm events with episode-average [PMC] correlation coefficient (R) of 0.77, especially the dust storm outbreak and transport evolution, involving daily average [PMC] R of 0.9 and 0.73 on 4-5 March, respectively. It is found that the ERPs generally reduce the dust pollution in NCP, especially for BTH, involving upper dust pollution control benefits of -15.3% (-21.0 μg m-3) for BTH, and -6.2% (-9.3 μg m-3) for NCP. We are the first to conduct model sensitivity studies to quantitatively evaluate the impacts of the ERPs on the dust pollution in NCP. And our narrative is independently based on first-hand sources, whereas government statistics.

  14. Long-term variability of dust events in Iceland (1949-2011)

    Science.gov (United States)

    Dagsson-Waldhauserova, P.; Arnalds, O.; Olafsson, H.

    2014-12-01

    The long-term frequency of atmospheric dust observations was investigated for the southern part of Iceland and interpreted together with earlier results obtained from northeastern (NE) Iceland (Dagsson-Waldhauserova et al., 2013). In total, over 34 dust days per year on average occurred in Iceland based on conventionally used synoptic codes for dust observations. However, frequent volcanic eruptions, with the re-suspension of volcanic materials and dust haze, increased the number of dust events fourfold (135 dust days annually). The position of the Icelandic Low determined whether dust events occurred in the NE (16.4 dust days annually) or in the southern (S) part of Iceland (about 18 dust days annually). The decade with the most frequent dust days in S Iceland was the 1960s, but the 2000s in NE Iceland. A total of 32 severe dust storms (visibility typically warm, occurring during summer/autumn (May-September) and during mild southwesterly winds, while the subarctic dust events (S Iceland) were mainly cold, occurring during winter/spring (March-May) and during strong northeasterly winds. About half of the dust events in S Iceland occurred in winter or at sub-zero temperatures. A good correlation was found between particulate matter (PM10) concentrations and visibility during dust observations at the stations Vík and Stórhöfði. This study shows that Iceland is among the dustiest areas of the world and that dust is emitted year-round.

  15. Evaluation of Radioactivity in Dusty Storm

    International Nuclear Information System (INIS)

    Mohammed, A.S; Majeed, N. A.; Nasaer, M.H.; Hoshi, H.; Abood, M.

    2013-01-01

    sample had been collected from the powder of the dusty storms which had been moved over Baghdad for a different months of a year 2011 by using metal containers that had manufactured locally and had been mounted over the roof of houses in particular regions of Baghdad (Kerkh and Risafa).The radioactive concentration of dust samples had been measured and analyzed by using the Gamma Spectroscopy analyzing System which consist of high purity Germanium detector of efficiency of 40 %, resolution 2keV at 1.332 MeV (Co-60) , DSA 2000 system which protective barrier made in Canberra Company , the developed Genie 2000Program and using personal computer. The measurement system for energy calibration and efficiency had been calibrated by using a standard point sources and standard source of a multi energy made by the American Canberra company. The Marnelli geometrical shape had been used to measure the activity of the samples. Results indicated the existence of the natural radioactive isotopes such as K-40, Be-7 which has been composed of as a result of the nuclear reaction between the Cosmic ray and some other elements of the atmosphere like Oxygen and Nitrogen besides the existence of radioactive isotopes which belongs to the natural Uranium series and the natural Thorium series. Highest measurements indicated the existence of industrial radioactive isotope Cs-137.The highest value of concentration for Be-7 was (381.5 Bq/kg) at Al-Shaab region, and the highest value of concentration for K-40 was (467.7 Bq/kg) and some other radioactive isotopes which belong to the series of U-238 as follows:- Bi -214 (32.6 Bq/kg), Pb-214 (33.6 Bq/kg), and radioactive isotopes which belong to the series Th-232 as follows:- Bi-212(18.6Bq/kg), Pb-212 (18.8Bq/kg),Ac-228 (30.3 Bq/kg),the highest value of concentration for the industrial Cs-137 was (26,8 Bq/kg) it was at Al-shaab region ,and this concentration is relatively high in comparison to the levels of normal concentration which exist in

  16. Iron oxide minerals in dust of the Red Dawn event in eastern Australia, September 2009

    Science.gov (United States)

    Reynolds, Richard L.; Cattle, Stephen R.; Moskowitz, Bruce M.; Goldstein, Harland L.; Yauk, Kimberly; Flagg, Cody B.; Berquó, Thelma S.; Kokaly, Raymond F.; Morman, Suzette A.; Breit, George N.

    2014-01-01

    Iron oxide minerals typically compose only a few weight percent of bulk atmospheric dust but are important for potential roles in forcing climate, affecting cloud properties, influencing rates of snow and ice melt, and fertilizing marine phytoplankton. Dust samples collected from locations across eastern Australia (Lake Cowal, Orange, Hornsby, and Sydney) following the spectacular “Red Dawn” dust storm on 23 September 2009 enabled study of the dust iron oxide assemblage using a combination of magnetic measurements, Mössbauer spectroscopy, reflectance spectroscopy, and scanning electron microscopy. Red Dawn was the worst dust storm to have hit the city of Sydney in more than 60 years, and it also deposited dust into the Tasman Sea and onto snow cover in New Zealand. Magnetization measurements from 20 to 400 K reveal that hematite, goethite, and trace amounts of magnetite are present in all samples. Magnetite concentrations (as much as 0.29 wt%) were much higher in eastern, urban sites than in western, agricultural sites in central New South Wales (0.01 wt%), strongly suggesting addition of magnetite from local urban sources. Variable temperature Mössbauer spectroscopy (300 and 4.2 K) indicates that goethite and hematite compose approximately 25–45% of the Fe-bearing phases in samples from the inland sites of Orange and Lake Cowal. Hematite was observed at both temperatures but goethite only at 4.2 K, thereby revealing the presence of nanogoethite (less than about 20 nm). Similarly, hematite particulate matter is very small (some of it d < 100 nm) on the basis of magnetic results and Mössbauer spectra. The degree to which ferric oxide in these samples might absorb solar radiation is estimated by comparing reflectance values with a magnetic parameter (hard isothermal remanent magnetization, HIRM) for ferric oxide abundance. Average visible reflectance and HIRM are correlated as a group (r2 = 0.24), indicating that Red Dawn ferric oxides have

  17. (dust, PM10 , and BC) using CHIMERE chemistry tra

    Indian Academy of Sciences (India)

    The objective of this study is to evaluate the ability of a European chemistry transport model,. 'CHIMERE' driven by ..... tive days in May 2008 (12–16 May) to simulate the dust storm ...... Regional Office for Europe, Copenhagen. Zender C, Bian ...

  18. California's Perfect Storm

    Science.gov (United States)

    Bacon, David

    2010-01-01

    The United States today faces an economic crisis worse than any since the Great Depression of the 1930s. Nowhere is it sharper than in the nation's schools. Last year, California saw a perfect storm of protest in virtually every part of its education system. K-12 teachers built coalitions with parents and students to fight for their jobs and their…

  19. Dave Storm esitleb singlit

    Index Scriptorium Estoniae

    2002-01-01

    7. märtsil klubis Spirit ja 8. märtsil klubis Terminal presenteerib tallinlane DJ Dave Storm oma uut singlit "Ride", millel teeb laulmisega kaasa ameeriklane Charlie C. Singelplaadi annab peadselt välja Inglise plaadifirma Refunkt

  20. Interview with Gert Storm

    NARCIS (Netherlands)

    Storm, Gerrit

    2013-01-01

    Gert Storm studied biology at the Utrecht University, The Netherlands, and obtained his PhD degree in 1987 at the Department of Pharmaceutics of the same university. He is now Professor of targeted drug delivery at the University of Utrecht, as well as Professor of targeted therapeutics at the MIRA

  1. Effect of ecological restoration programs on dust concentrations in the North China Plain: a case study

    Science.gov (United States)

    Long, Xin; Tie, Xuexi; Li, Guohui; Cao, Junji; Feng, Tian; Zhao, Shuyu; Xing, Li; An, Zhisheng

    2018-05-01

    In recent decades, the Chinese government has made a great effort in initiating large-scale ecological restoration programs (ERPs) to reduce the dust concentrations in China, especially for dust storm episodes. Using the Moderate Resolution Imaging Spectroradiometer (MODIS) land cover product, the ERP-induced land cover changes are quantitatively evaluated in this study. Two obvious vegetation protective barriers arise throughout China from the southwest to the northeast, which are well known as the Green Great Wall (GGW). Both the grass GGW and forest GGW are located between the dust source region (DSR) and the densely populated North China Plain (NCP). To assess the effect of ERPs on dust concentrations, a regional transport/dust model (WRF-DUST, Weather Research and Forecast model with dust) is applied to investigate the evolution of dust plumes during a strong dust storm episode from 2 to 8 March 2016. The WRF-DUST model generally performs reasonably well in reproducing the temporal variations and spatial distributions of near-surface [PMC] (mass concentration of particulate matter with aerodynamic diameter between 2.5 and 10 µm) during the dust storm event. Sensitivity experiments have indicated that the ERP-induced GGWs help to reduce the dust concentration in the NCP, especially in BTH (Beijing, Tianjin, and Hebei). When the dust storm is transported from the upwind DSR to the downwind NCP, the [PMC] reduction ranges from -5 to -15 % in the NCP, with a maximum reduction of -12.4 % (-19.2 µg m-3) in BTH and -7.6 % (-10.1 µg m-3) in the NCP. We find the dust plumes move up to the upper atmosphere and are transported from the upwind DSR to the downwind NCP, accompanied by dust decrease. During the episode, the forest GGW is nonsignificant in dust concentration control because it is of benefit for dry deposition and not for emission. Conversely, the grass GGW is beneficial in controlling dust erosion and is the dominant reason for [PMC] decrease in the NCP

  2. Effect of ecological restoration programs on dust concentrations in the North China Plain: a case study

    Directory of Open Access Journals (Sweden)

    X. Long

    2018-05-01

    Full Text Available In recent decades, the Chinese government has made a great effort in initiating large-scale ecological restoration programs (ERPs to reduce the dust concentrations in China, especially for dust storm episodes. Using the Moderate Resolution Imaging Spectroradiometer (MODIS land cover product, the ERP-induced land cover changes are quantitatively evaluated in this study. Two obvious vegetation protective barriers arise throughout China from the southwest to the northeast, which are well known as the Green Great Wall (GGW. Both the grass GGW and forest GGW are located between the dust source region (DSR and the densely populated North China Plain (NCP. To assess the effect of ERPs on dust concentrations, a regional transport/dust model (WRF-DUST, Weather Research and Forecast model with dust is applied to investigate the evolution of dust plumes during a strong dust storm episode from 2 to 8 March 2016. The WRF-DUST model generally performs reasonably well in reproducing the temporal variations and spatial distributions of near-surface [PMC] (mass concentration of particulate matter with aerodynamic diameter between 2.5 and 10 µm during the dust storm event. Sensitivity experiments have indicated that the ERP-induced GGWs help to reduce the dust concentration in the NCP, especially in BTH (Beijing, Tianjin, and Hebei. When the dust storm is transported from the upwind DSR to the downwind NCP, the [PMC] reduction ranges from −5 to −15 % in the NCP, with a maximum reduction of −12.4 % (−19.2 µg m−3 in BTH and −7.6 % (−10.1 µg m−3 in the NCP. We find the dust plumes move up to the upper atmosphere and are transported from the upwind DSR to the downwind NCP, accompanied by dust decrease. During the episode, the forest GGW is nonsignificant in dust concentration control because it is of benefit for dry deposition and not for emission. Conversely, the grass GGW is beneficial in controlling dust erosion and is the

  3. Dust collector

    Energy Technology Data Exchange (ETDEWEB)

    Sahourin, H.

    1988-03-22

    This invention relates to a dust collector or filter which may be used for large volume cleaning air for gases or for separating out industrial byproducts such as wood chips, sawdust, and shavings. It relies on filtration or separation using only a uniquely configured medium. A primary, but not exclusive, purpose of the invention is to enable very large throughput, capable of separating or filtering of gases containing up to three or more tons of byproduct with a minimum pressure-drop across the device. No preliminary cycloning, to remove major particulates is necessary. The collector generally comprises a continuous and integral filter medium which is suspended from a plurality of downwardly extending frames forming a series of separate elements having a triangular cross-section, each element being relatively wide at the top and narrow at the bottom to define, between adjacent elements, a divergent collecting space which is wide at the bottom. 11 figs.

  4. Dust Measurements in Tokamaks

    International Nuclear Information System (INIS)

    Rudakov, D; Yu, J; Boedo, J; Hollmann, E; Krasheninnikov, S; Moyer, R; Muller, S; Yu, A; Rosenberg, M; Smirnov, R; West, W; Boivin, R; Bray, B; Brooks, N; Hyatt, A; Wong, C; Fenstermacher, M; Groth, M; Lasnier, C; McLean, A; Stangeby, P; Ratynskaia, S; Roquemore, A; Skinner, C; Solomon, W M

    2008-01-01

    Dust production and accumulation impose safety and operational concerns for ITER. Diagnostics to monitor dust levels in the plasma as well as in-vessel dust inventory are currently being tested in a few tokamaks. Dust accumulation in ITER is likely to occur in hidden areas, e.g. between tiles and under divertor baffles. A novel electrostatic dust detector for monitoring dust in these regions has been developed and tested at PPPL. In DIII-D tokamak dust diagnostics include Mie scattering from Nd:YAG lasers, visible imaging, and spectroscopy. Laser scattering resolves size of particles between 0.16-1.6 (micro)m in diameter; the total dust content in the edge plasmas and trends in the dust production rates within this size range have been established. Individual dust particles are observed by visible imaging using fast-framing cameras, detecting dust particles of a few microns in diameter and larger. Dust velocities and trajectories can be determined in 2D with a single camera or 3D using multiple cameras, but determination of particle size is problematic. In order to calibrate diagnostics and benchmark dust dynamics modeling, pre-characterized carbon dust has been injected into the lower divertor of DIII-D. Injected dust is seen by cameras, and spectroscopic diagnostics observe an increase of carbon atomic, C2 dimer, and thermal continuum emissions from the injected dust. The latter observation can be used in the design of novel dust survey diagnostics

  5. Coupling the Mars Dust and Water Cycles: Investigating the Role of Clouds in Controlling the Vertical Distribution of Dust During N. H. Summer

    Science.gov (United States)

    Kahre, M. A.; Haberle, R. M.; Hollingsworth, J. L.; Wilson, R. J.

    2014-01-01

    The dust cycle is critically important for the current climate of Mars. The radiative effects of dust impact the thermal and dynamical state of the atmosphere (Gierasch and Goody, 1968; Haberle et al., 1982; Zurek et al., 1992). Although dust is present in the Martian atmosphere throughout the year, the level of dustiness varies with season. The atmosphere is generally the dustiest during northern fall and winter and the least dusty during northern spring and summer (Smith, 2004). Dust particles are lifted into the atmosphere by dust storms that range in size from meters to thousands of kilometers across (Cantor et al., 2001). During some years, regional storms combine to produce hemispheric or planet encircling dust clouds that obscure the surface and raise atmospheric temperatures by as much as 40 K (Smith et al., 2002). Key recent observations of the vertical distribution of dust indicate that elevated layers of dust exist in the tropics and sub-tropics throughout much of the year (Heavens et al., 2011). These observations have brought particular focus on the processes that control the vertical distribution of dust in the Martian atmosphere. The goal of this work is to further our understanding of how clouds in particular control the vertical distribution of dust, particularly during N. H. spring and summer

  6. Zonal wind observations during a geomagnetic storm

    Science.gov (United States)

    Miller, N. J.; Spencer, N. W.

    1986-01-01

    In situ measurements taken by the Wind and Temperature Spectrometer (WATS) onboard the Dynamics Explorer 2 spacecraft during a geomagnetic storm display zonal wind velocities that are reduced in the corotational direction as the storm intensifies. The data were taken within the altitudes 275 to 475 km in the dusk local time sector equatorward of the auroral region. Characteristic variations in the value of the Dst index of horizontal geomagnetic field strength are used to monitor the storm evolution. The detected global rise in atmospheric gas temperature indicates the development of thermospheric heating. Concurrent with that heating, reductions in corotational wind velocities were measured equatorward of the auroral region. Just after the sudden commencement, while thermospheric heating is intense in both hemispheres, eastward wind velocities in the northern hemisphere show reductions ranging from 500 m/s over high latitudes to 30 m/s over the geomagnetic equator. After 10 hours storm time, while northern thermospheric heating is diminishing, wind velocity reductions, distinct from those initially observed, begin to develop over southern latitudes. In the latter case, velocity reductions range from 300 m/s over the highest southern latitudes to 150 m/s over the geomagnetic equator and extend into the Northern Hemisphere. The observations highlight the interhemispheric asymmetry in the development of storm effects detected as enhanced gas temperatures and reduced eastward wind velocities. Zonal wind reductions over high latitudes can be attributed to the storm induced equatorward spread of westward polar cap plasma convection and the resulting plasma-neutral collisions. However, those collisions are less significant over low latitudes; so zonal wind reductions over low latitudes must be attributed to an equatorward extension of a thermospheric circulation pattern disrupted by high latitude collisions between neutrals transported via eastward winds and ions

  7. Stellar Absorption Line Analysis of Local Star-forming Galaxies: The Relation between Stellar Mass, Metallicity, Dust Attenuation, and Star Formation Rate

    International Nuclear Information System (INIS)

    Jabran Zahid, H.; Kudritzki, Rolf-Peter; Ho, I-Ting; Conroy, Charlie; Andrews, Brett

    2017-01-01

    We analyze the optical continuum of star-forming galaxies in the Sloan Digital Sky Survey by fitting stacked spectra with stellar population synthesis models to investigate the relation between stellar mass, stellar metallicity, dust attenuation, and star formation rate. We fit models calculated with star formation and chemical evolution histories that are derived empirically from multi-epoch observations of the stellar mass–star formation rate and the stellar mass–gas-phase metallicity relations, respectively. We also fit linear combinations of single-burst models with a range of metallicities and ages. Star formation and chemical evolution histories are unconstrained for these models. The stellar mass–stellar metallicity relations obtained from the two methods agree with the relation measured from individual supergiant stars in nearby galaxies. These relations are also consistent with the relation obtained from emission-line analysis of gas-phase metallicity after accounting for systematic offsets in the gas-phase metallicity. We measure dust attenuation of the stellar continuum and show that its dependence on stellar mass and star formation rate is consistent with previously reported results derived from nebular emission lines. However, stellar continuum attenuation is smaller than nebular emission line attenuation. The continuum-to-nebular attenuation ratio depends on stellar mass and is smaller in more massive galaxies. Our consistent analysis of stellar continuum and nebular emission lines paves the way for a comprehensive investigation of stellar metallicities of star-forming and quiescent galaxies.

  8. Stellar Absorption Line Analysis of Local Star-forming Galaxies: The Relation between Stellar Mass, Metallicity, Dust Attenuation, and Star Formation Rate

    Energy Technology Data Exchange (ETDEWEB)

    Jabran Zahid, H. [Smithsonian Astrophysical Observatory, Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Kudritzki, Rolf-Peter; Ho, I-Ting [University of Hawaii at Manoa, Institute for Astronomy, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Conroy, Charlie [Department of Astronomy, Harvard University, Cambridge, MA, 02138 (United States); Andrews, Brett, E-mail: zahid@cfa.harvard.edu [PITT PACC, Department of Physics and Astronomy, University of Pittsburgh, 3941 O’Hara Street, Pittsburgh, PA 15260 (United States)

    2017-09-20

    We analyze the optical continuum of star-forming galaxies in the Sloan Digital Sky Survey by fitting stacked spectra with stellar population synthesis models to investigate the relation between stellar mass, stellar metallicity, dust attenuation, and star formation rate. We fit models calculated with star formation and chemical evolution histories that are derived empirically from multi-epoch observations of the stellar mass–star formation rate and the stellar mass–gas-phase metallicity relations, respectively. We also fit linear combinations of single-burst models with a range of metallicities and ages. Star formation and chemical evolution histories are unconstrained for these models. The stellar mass–stellar metallicity relations obtained from the two methods agree with the relation measured from individual supergiant stars in nearby galaxies. These relations are also consistent with the relation obtained from emission-line analysis of gas-phase metallicity after accounting for systematic offsets in the gas-phase metallicity. We measure dust attenuation of the stellar continuum and show that its dependence on stellar mass and star formation rate is consistent with previously reported results derived from nebular emission lines. However, stellar continuum attenuation is smaller than nebular emission line attenuation. The continuum-to-nebular attenuation ratio depends on stellar mass and is smaller in more massive galaxies. Our consistent analysis of stellar continuum and nebular emission lines paves the way for a comprehensive investigation of stellar metallicities of star-forming and quiescent galaxies.

  9. Is the Electron Avalanche Process in a Martian Dust Devil Self-Quenching?

    Science.gov (United States)

    Farrell, William M.; McLain, Jason L.; Collier, M. R.; Keller, J. W.; Jackson, T. J.; Delory, G. T.

    2015-01-01

    Viking era laboratory experiments show that mixing tribocharged grains in a low pressure CO2 gas can form a discharge that glows, indicating the presence of an excited electron population that persists over many seconds. Based on these early experiments, it has been predicted that martian dust devils and storms may also contain a plasma and new plasma chemical species as a result of dust grain tribo-charging. However, recent results from modeling suggest a contrasting result: that a sustained electron discharge may not be easily established since the increase in gas conductivity would act to short-out the local E-fields and quickly dissipate the charged grains driving the process. In essence, the system was thought to be self-quenching (i.e., turn itself off). In this work, we attempt to reconcile the difference between observation and model via new laboratory measurements. We conclude that in a Mars-like low pressure CO2 atmosphere and expected E-fields, the electron current remains (for the most part) below the expected driving tribo-electric dust currents (approx. 10 microA/m(exp. 2)), thereby making quenching unlikely.

  10. Anthropogenic Air Pollution Observed Near Dust Source Regions in Northwestern China During Springtime 2008

    Science.gov (United States)

    Li, Can; Tsay, Si-Chee; Fu, Joshua S.; Dickerson, Russell R.; Ji, Qiang; Bell, Shaun W.; Gao, Yang; Zhang, Wu; Huang, Jianping; Li, Zhanqing; hide

    2010-01-01

    Trace gases and aerosols were measured in Zhangye (39.082degN, 100.276degE, 1460 m a.s. 1.), a rural site near the Gobi deserts in northwestern China during spring 2008. Primary trace gases (CO:265 ppb; SO2:3.4 ppb; NO(*y): 4.2 ppb; hereafter results given as means of hourly data) in the area were lower than in eastern China, but still indicative of marked anthropogenic emissions. Sizable aerosol mass concentration (153 micro-g/cu m) and light scattering (159/Mm at 500 nm) were largely attributable to dust emissions, and aerosol light absorption (10.3/Mm at 500 nm) was dominated by anthropogenic pollution. Distinct diurnal variations in meteorology and pollution were induced by the local valley terrain. Strong daytime northwest valley wind cleaned out pollution and was replaced by southeast mountain wind that allowed pollutants to build up overnight. In the afternoon, aerosols had single scattering albedo (SSA, 500 mn) of 0.95 and were mainly of supermicron particles, presumably dust, while at night smaller particles and SSA of 0.89-0.91 were related to Pollution. The diverse local emission sources were characterized: the CO/SO2, CO/NO(y), NO(y)/SO2 (by moles), and BC/CO (by mass) ratios for small point sources such as factories were 24.6-54.2, 25.8-35.9, 0.79-1.31, and 4.1-6.1 x 10(exp -3), respectively, compared to the corresponding inventory ratios of 43.7-71.9, 23.7-25.7, 1.84-2.79, and 3.4-4.0 x 10(exp -3) for the industrial sector in the area. The mixing between dust and pollution can be ubiquitous in this region. During a dust storm shown as an example, pollutants were observed to mix with dust, causing discernible changes in both SSA and aerosol size distribution. Further interaction between dust and pollutants during transport may modify the properties of dust particles that are critical for their large-scale impact on radiation, clouds, and global biogeochemical cycles.

  11. The MECA Payload as a Dust Analysis Laboratory on the MSP 2001 Lander

    Science.gov (United States)

    Marshall, J.; Anderson, M.; Buehler, M.; Frant, M.; Fuerstenau, S.; Hecht, M.; Keller, U.; Markiewicz, W.; Meloy, T.; Pike, T.

    1999-09-01

    planetology perspective, there are many enigmatic issues relating to dust and the aeolian regime in general. MECA will be able to address many questions in this area. For example, if MECA determines a particular particle size distribution (size and sorting values), it will be possible to make inferences about the origin of the dust - - is it all aeolian, or a more primitive residue of weathering, volcanic emissions, and meteoritic gardening? Trenching with the Lander/MECA robot arm will enable local stratigraphy to be determined in terms of depositional rates, amounts and cyclicity in dust storms and/or local aeolian transport. Grain shape will betray the origin of the dust fragments as being the product of recent or ancient weathering, or the comminution products of aeolian transport --the dust-silt ratio might be a measure of aeolian comminution energy. Additional information is contained in the original.

  12. Leonid storm research

    CERN Document Server

    Rietmeijer, Frans; Brosch, Noah; Fonda, Mark

    2000-01-01

    This book will appeal to all researchers that have an interest in the current Leonid showers It contains over forty research papers that present some of the first observational results of the November 1999 Leonid meteor storm, the first storm observed by modern observing techniques The book is a first glimpse of the large amount of information obtained during NASA's Leonid Multi-Instrument Aircraft Campaign and groundbased campaigns throughout the world It provides an excellent overview on the state of meteor shower research for any professional researcher or amateur meteor observer interested in studies of meteors and meteoroids and their relation to comets, the origin of life on Earth, the satellite impact hazard issue, and upper atmosphere studies of neutral atom chemistry, the formation of meteoric debris, persistent trains, airglow, noctilucent clouds, sprites and elves

  13. Solar storms; Tormentas solares

    Energy Technology Data Exchange (ETDEWEB)

    Collaboration: Pereira Cuesta, S.; Pereira Pagan, B.

    2016-08-01

    Solar storms begin with an explosion, or solar flare, on the surface of the sun. The X-rays and extreme ultraviolet radiation from the flare reach the Earths orbit minutes later-travelling at light speed. The ionization of upper layers of our atmosphere could cause radio blackouts and satellite navigation errors (GPS). Soon after, a wave of energetic particles, electrons and protons accelerated by the explosion crosses the orbit of the Earth, and can cause real and significant damage. (Author)

  14. LibrarySTORM

    DEFF Research Database (Denmark)

    Breüner, Niels; Bech, Tine

    2013-01-01

    Når flere uddannelser samles i en nybygning til Campus C på Ceres grunden i Aarhus, skal der også indrettes et fælles bibliotek. Når der samtidig er midler til at arbejde med brugerdreven innovation, lå det lige for at inddrage de studerende og få deres visioner for fremtidens bibliotek. Der blev...... arrangeret en udviklingsdag, hvor der skulle brainstormes – og projektet blev kaldt LibrarySTORM....

  15. Modeling storm waves

    International Nuclear Information System (INIS)

    Benoit, M.; Marcos, F.; Teisson, Ch.

    1999-01-01

    Nuclear power stations located on the coast take the water they use to cool their circuits from the sea. The water intake and discharge devices must be able to operate in all weathers, notably during extreme storms, with waves 10 m high and over. To predict the impact of the waves on the equipment, they are modeled digitally from the moment they form in the middle of the ocean right up to the moment they break on the shore. (authors)

  16. The Spatio-Temporal Distribution of Particulate Matter during Natural Dust Episodes at an Urban Scale.

    Directory of Open Access Journals (Sweden)

    Helena Krasnov

    Full Text Available Dust storms are a common phenomenon in arid and semi-arid areas, and their impacts on both physical and human environments are of great interest. Number of studies have associated atmospheric PM pollution in urban environments with origin in natural soil/dust, but less evaluated the dust spatial patterns over a city. We aimed to analyze the spatial-temporal behavior of PM concentrations over the city of Beer Sheva, in southern Israel, where dust storms are quite frequent. PM data were recorded during the peak of each dust episode simultaneously in 23 predetermined fixed points around the city. Data were analyzed for both dust days and non-dust days (background. The database was constructed using Geographic Information System and includes distributions of PM that were derived using inverse distance weighted (IDW interpolation. The results show that the daily averages of atmospheric PM10 concentrations during the background period are within a narrow range of 31 to 48 μg m-3 with low variations. During dust days however, the temporal variations are significant and can range from an hourly PM10 concentration of 100 μg m-3 to more than 1280 μg m-3 during strong storms. IDW analysis demonstrates that during the peak time of the storm the spatial variations in PM between locations in the city can reach 400 μg m-3. An analysis of site and storm contribution to total PM concentration revealed that higher concentrations are found in parts of the city that are proximal to dust sources. The results improve the understanding of the dynamics of natural PM and the dependence on wind direction. This may have implications for environmental and health outcomes.

  17. Noise storm coordinated observations

    International Nuclear Information System (INIS)

    Elgaroey, Oe.; Tlamicha, A.

    1983-01-01

    The usually accepted bipolar model of noise storm centers is irrelevant for the present observations. An alternative model has been proposed in which the different sources of a noise storm center are located in different flux tubes connecting active regions with their surroundings. Radio emission is observed from the wide, descending branch of the flux tubes, opposite to the flaring site. The relation between the sense of circular polarization of the radio emission and the magnetic polarity, has been more precisely defined. The radiation is in the ordinary mode with respect to the underlying large scale photospheric magnetic polarity. Thus the ''irregular'' polarity of noice storm center ''B'' is explained. As regards center ''C'', one should note that although the observed radio emission is polarized in the ordinary mode with respect to the leading spot of region HR 17653, center ''C'' is not situated in flux tubes originating from the leading part of this region according to the proposed model. Rather, the radio sources are located in the wide and descending part of flux tubes connecting a large, quiet area of south magnetic polarity with the following part of the region HR 17653 (of north magnetic polarity). Thus it is the polarity of the extended area which determines the polarization of the radio emission. The observed polarization should result rather from the emission process than from complicated conditions of propagation for the radio waves

  18. Modeling the ocean effect of geomagnetic storms

    DEFF Research Database (Denmark)

    Olsen, Nils; Kuvshinov, A.

    2004-01-01

    At coastal sites, geomagnetic variations for periods shorter than a few days are strongly distorted by the conductivity of the nearby sea-water. This phenomena, known as the ocean (or coast) effect, is strongest in the magnetic vertical component. We demonstrate the ability to predict the ocean...... if the oceans are considered. Our analysis also indicates a significant local time asymmetry (i.e., contributions from spherical harmonics other than P-I(0)), especially during the main phase of the storm....

  19. local

    Directory of Open Access Journals (Sweden)

    Abílio Amiguinho

    2005-01-01

    Full Text Available The process of socio-educational territorialisation in rural contexts is the topic of this text. The theme corresponds to a challenge to address it having as main axis of discussion either the problem of social exclusion or that of local development. The reasons to locate the discussion in this last field of analysis are discussed in the first part of the text. Theoretical and political reasons are there articulated because the question is about projects whose intentions and practices call for the political both in the theoretical debate and in the choices that anticipate intervention. From research conducted for several years, I use contributions that aim at discuss and enlighten how school can be a potential locus of local development. Its identification and recognition as local institution (either because of those that work and live in it or because of those that act in the surrounding context are crucial steps to progressively constitute school as a partner for development. The promotion of the local values and roots, the reconstruction of socio-personal and local identities, the production of sociabilities and the equation and solution of shared problems were the dimensions of a socio-educative intervention, markedly globalising. This scenario, as it is argued, was also, intentionally, one of transformation and of deliberate change of school and of the administration of the educative territoires.

  20. Study of Radiative Forcing of Dust Aerosols and its impact on Climate Characteristics

    KAUST Repository

    Qureshi, Fawwad H

    2012-12-01

    The purpose of following project is to study the effect of dust aerosols on the radiative forcing which is directly related to the surface temperature. A single column radiative convective model is used for simulation purpose. A series of simulations have been performed by varying the amount of dust aerosols present in the atmosphere to study the trends in ground temperature, heating rate and radiative forcing for both its longwave and shortwave components. A case study for dust storm is also performed as dust storms are common in Arabian Peninsula. A sensitivity analyses is also performed to study the relationship of surface temperature minimum and maximum against aerosol concentration, single scattering albedo and asymmetry factor. These analyses are performed to get more insight into the role of dust aerosols on radiative forcing.

  1. Using NASA EOS in the Arabian and Saharan Deserts to Examine Dust Particle Size and Spectral Signature of Aerosols

    Science.gov (United States)

    Brenton, J. C.; Keeton, T.; Barrick, B.; Cowart, K.; Cooksey, K.; Florence, V.; Herdy, C.; Luvall, J. C.; Vasquez, S.

    2012-12-01

    Exposure to high concentrations of airborne particulate matter can have adverse effects on the human respiratory system. Ground-based studies conducted in Iraq have revealed the presence of potential human pathogens in airborne dust. According to the Environmental Protection Agency (EPA), airborne particulate matter below 2.5μm (PM2.5) can cause long-term damage to the human respiratory system. Given the relatively high incidence of new-onset respiratory disorders experienced by US service members deployed to Iraq, this research offers a new glimpse into how satellite remote sensing can be applied to questions related to human health. NASA's Earth Observing System (EOS) can be used to determine spectral characteristics of dust particles, the depth of dust plumes, as well as dust particle sizes. Comparing dust particle size from the Sahara and Arabian Deserts gives insight into the composition and atmospheric transport characteristics of dust from each desert. With the use of NASA SeaWiFS DeepBlue Aerosol, dust particle sizes were estimated using Angström exponent. Brightness Temperature Difference (BTD) equation was used to determine the distribution of particle sizes, the area of the dust storm, and whether silicate minerals were present in the dust. The Moderate-resolution Imaging Spectroradiometer (MODIS) on Terra satellite was utilized in calculating BTD. Minimal research has been conducted on the spectral characteristics of airborne dust in the Arabian and Sahara Deserts. Mineral composition of a dust storm that occurred 17 April 2008 near Baghdad was determined using imaging spectrometer data from the Jet Propulsion Laboratory Spectral Library and EO-1 Hyperion data. Mineralogy of this dust storm was subsequently compared to that of a dust storm that occurred over the Bodélé Depression in the Sahara Desert on 7 June 2003.

  2. The Effect of Storm Driver and Intensity on Magnetospheric Ion Temperatures

    Science.gov (United States)

    Keesee, Amy M.; Katus, Roxanne M.; Scime, Earl E.

    2017-09-01

    Energy deposited in the magnetosphere during geomagnetic storms drives ion heating and convection. Ions are also heated and transported via internal processes throughout the magnetosphere. Injection of the plasma sheet ions to the inner magnetosphere drives the ring current and, thus, the storm intensity. Understanding the ion dynamics is important to improving our ability to predict storm evolution. In this study, we perform superposed epoch analyses of ion temperatures during storms, comparing ion temperature evolution by storm driver and storm intensity. The ion temperatures are calculated using energetic neutral atom measurements from the Two Wide-Angle Imaging Neutral-Atom Spectrometers (TWINS) mission. The global view of these measurements provide both spatial and temporal information. We find that storms driven by coronal mass ejections (CMEs) tend to have higher ion temperatures throughout the main phase than storms driven by corotating interaction regions (CIRs) but that the temperatures increase during the recovery phase of CIR-driven storms. Ion temperatures during intense CME-driven storms have brief intervals of higher ion temperatures than those during moderate CME-driven storms but have otherwise comparable ion temperatures. The highest temperatures during CIR-driven storms are centered at 18 magnetic local time and occur on the dayside for moderate CME-driven storms. During the second half of the main phase, ion temperatures tend to decrease in the postmidnight to dawn sector for CIR storms, but an increase is observed for CME storms. This increase begins with a sharp peak in ion temperatures for intense CME storms, likely a signature of substorm activity that drives the increased ring current.

  3. The impact of the Pacific Decadal Oscillation on springtime dust activity in Syria

    Directory of Open Access Journals (Sweden)

    B. Pu

    2016-10-01

    Full Text Available The increasing trend of aerosol optical depth in the Middle East and a recent severe dust storm in Syria have raised questions as to whether dust storms will increase and promoted investigations on the dust activities driven by the natural climate variability underlying the ongoing human perturbations such as the Syrian civil war. This study examined the influences of the Pacific Decadal Oscillation (PDO on dust activities in Syria using an innovative dust optical depth (DOD dataset derived from Moderate Resolution Imaging Spectroradiometer (MODIS Deep Blue aerosol products. A significantly negative correlation is found between the Syrian DOD and the PDO in spring from 2003 to 2015. High DOD in spring is associated with lower geopotential height over the Middle East, Europe, and North Africa, accompanied by near-surface anomalous westerly winds over the Mediterranean basin and southerly winds over the eastern Arabian Peninsula. These large-scale patterns promote the formation of the cyclones over the Middle East to trigger dust storms and also facilitate the transport of dust from North Africa, Iraq, and Saudi Arabia to Syria, where the transported dust dominates the seasonal mean DOD in spring. A negative PDO not only creates circulation anomalies favorable to high DOD in Syria but also suppresses precipitation in dust source regions over the eastern and southern Arabian Peninsula and northeastern Africa.On the daily scale, in addition to the favorable large-scale condition associated with a negative PDO, enhanced atmospheric instability in Syria (associated with increased precipitation in Turkey and northern Syria is also critical for the development of strong springtime dust storms in Syria.

  4. The impact of Pacific Decadal Oscillation on springtime dust activity in Syria

    Science.gov (United States)

    Pu, B.; Ginoux, P. A.

    2016-12-01

    The increasing trend of aerosol optical depth in the Middle East and a recent severe dust storm in Syria have raised questions as whether dust storms will increase and promoted investigations on the dust activities driven by the natural climate variability underlying the ongoing human perturbations such as the Syrian civil war. This study examined the influences of the Pacific decadal oscillation (PDO) on dust activities in Syria using an innovative dust optical depth (DOD) dataset derived from Moderate Resolution Imaging Spectroradiometer (MODIS) Deep Blue aerosol products. A significantly negative correlation is found between the Syrian DOD and the PDO in spring from 2003-2015. High DOD in spring is associated with lower geopotential height over the Middle East, Europe, and North Africa, accompanied by near surface anomalous westerly winds over the Mediterranean basin and southerly winds over the eastern Arabian Peninsula. These large-scale patterns promote the formation of the cyclones over the Middle East to trigger dust storms and also facilitate the transport of dust from North Africa, Iraq, and Saudi Arabian to Syria, where the transported dust dominates the seasonal mean DOD in spring. A negative PDO not only creates circulation anomalies favorable to high DOD in Syria but also suppresses precipitation in dust source regions over the eastern and southern Arabian Peninsula and northeastern Africa. On the daily scale, in addition to the favorable large-scale condition associated with a negative PDO, enhanced atmospheric instability in Syria associated with increased precipitation in Turkey and northern Syria is also critical for the development of strong springtime dust storms in Syria.

  5. The impact of the Pacific Decadal Oscillation on springtime dust activity in Syria

    Science.gov (United States)

    Pu, Bing; Ginoux, Paul

    2016-10-01

    The increasing trend of aerosol optical depth in the Middle East and a recent severe dust storm in Syria have raised questions as to whether dust storms will increase and promoted investigations on the dust activities driven by the natural climate variability underlying the ongoing human perturbations such as the Syrian civil war. This study examined the influences of the Pacific Decadal Oscillation (PDO) on dust activities in Syria using an innovative dust optical depth (DOD) dataset derived from Moderate Resolution Imaging Spectroradiometer (MODIS) Deep Blue aerosol products. A significantly negative correlation is found between the Syrian DOD and the PDO in spring from 2003 to 2015. High DOD in spring is associated with lower geopotential height over the Middle East, Europe, and North Africa, accompanied by near-surface anomalous westerly winds over the Mediterranean basin and southerly winds over the eastern Arabian Peninsula. These large-scale patterns promote the formation of the cyclones over the Middle East to trigger dust storms and also facilitate the transport of dust from North Africa, Iraq, and Saudi Arabia to Syria, where the transported dust dominates the seasonal mean DOD in spring. A negative PDO not only creates circulation anomalies favorable to high DOD in Syria but also suppresses precipitation in dust source regions over the eastern and southern Arabian Peninsula and northeastern Africa.On the daily scale, in addition to the favorable large-scale condition associated with a negative PDO, enhanced atmospheric instability in Syria (associated with increased precipitation in Turkey and northern Syria) is also critical for the development of strong springtime dust storms in Syria.

  6. Impacts of storm chronology on the morphological changes of the Formby beach and dune system, UK

    Science.gov (United States)

    Dissanayake, P.; Brown, J.; Karunarathna, H.

    2015-07-01

    of the storms. This model application provides inter-survey information about morphological response to repeated storm impact. This will inform local managers of the potential beach response and dune vulnerability to variable storm configurations.

  7. Empirical STORM-E Model. [I. Theoretical and Observational Basis

    Science.gov (United States)

    Mertens, Christopher J.; Xu, Xiaojing; Bilitza, Dieter; Mlynczak, Martin G.; Russell, James M., III

    2013-01-01

    Auroral nighttime infrared emission observed by the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument onboard the Thermosphere-Ionosphere-Mesosphere Energetics and Dynamics (TIMED) satellite is used to develop an empirical model of geomagnetic storm enhancements to E-region peak electron densities. The empirical model is called STORM-E and will be incorporated into the 2012 release of the International Reference Ionosphere (IRI). The proxy for characterizing the E-region response to geomagnetic forcing is NO+(v) volume emission rates (VER) derived from the TIMED/SABER 4.3 lm channel limb radiance measurements. The storm-time response of the NO+(v) 4.3 lm VER is sensitive to auroral particle precipitation. A statistical database of storm-time to climatological quiet-time ratios of SABER-observed NO+(v) 4.3 lm VER are fit to widely available geomagnetic indices using the theoretical framework of linear impulse-response theory. The STORM-E model provides a dynamic storm-time correction factor to adjust a known quiescent E-region electron density peak concentration for geomagnetic enhancements due to auroral particle precipitation. Part II of this series describes the explicit development of the empirical storm-time correction factor for E-region peak electron densities, and shows comparisons of E-region electron densities between STORM-E predictions and incoherent scatter radar measurements. In this paper, Part I of the series, the efficacy of using SABER-derived NO+(v) VER as a proxy for the E-region response to solar-geomagnetic disturbances is presented. Furthermore, a detailed description of the algorithms and methodologies used to derive NO+(v) VER from SABER 4.3 lm limb emission measurements is given. Finally, an assessment of key uncertainties in retrieving NO+(v) VER is presented

  8. Radionuclides in house dust

    Energy Technology Data Exchange (ETDEWEB)

    Fry, F A; Green, N; Dodd, N J; Hammond, D J

    1985-04-01

    Discharges of radionuclides from the British Nuclear Fuel plc (BNFL) reprocessing plant at Sellafield in Cumbria have led to elevated concentrations radionuclides in the local environment. The major routes of exposure of the public are kept under review by the appropriate authorising Government departments and monitoring is carried out both by the departments and by BNFL itself. Recently, there has been increasing public concern about general environmental contamination resulting from the discharges and, in particular, about possible exposure of members of the public by routes not previously investigated in detail. One such postulated route of exposure that has attracted the interest of the public, the press and Parliament arises from the presence of radionuclides within houses. In view of this obvious and widespread concern, the Board has undertaken a sampling programme in a few communities in Cumbria to assess the radiological significance of this source of exposure. From the results of our study, we conclude that, although radionuclides originating rom the BNFL site can be detected in house dust, this source of contamination is a negligible route of exposure for members of the public in West Cumbria. This report presents the results of the Board's study of house dust in twenty homes in Cumbria during the spring and summer of 1984. A more intensive investigation is being carried out by Imperial College. (author)

  9. Storm Warnings for Cuba

    Science.gov (United States)

    1994-01-01

    Services: Telephone: (310) 451-7002; Fax: (310) 451-6915; Internet : order@rand.org. al Accesion For "Ni %&’ Storm WarningsDTI’ TAB E03 --- - - -for...reaction leading to an uncontrol- lable burgeoning of private entrepreneurial activity. As one observer 14See Acuerdo del Buro Politico , "Para llevar a...34 10Comisi6n de Relaciones Internacionales, Asamblea Nacional del Poder Popular, Datos, Reflexiones y Argumentos Sobre la Actual Situaci6n de Cuba, n.p

  10. The women day storm

    OpenAIRE

    Parnowski, Aleksei; Polonska, Anna; Semeniv, Oleg

    2012-01-01

    On behalf of the International Women Day, the Sun gave a hot kiss to our mother Earth in a form of a full halo CME generated by the yesterday's double X-class flare. The resulting geomagnetic storm gives a good opportunity to compare the performance of space weather forecast models operating in near-real-time. We compare the forecasts of most major models and identify some common problems. We also present the results of our own near-real-time forecast models.

  11. Dust Studies in DIII-D and TEXTOR

    International Nuclear Information System (INIS)

    Rudakov, D.L.; Litnovsky, A.; West, W.P.; Yu, J.H.; Boedo, J.A.; Bray, B.D.; Brezinsek, S.; Brooks, N.H.; Fenstermacher, M.E.; Groth, M.; Hollmann, E.M.; Huber, A.; Hyatt, A.W.; Krasheninnikov, S.I.; Lasnier, C.J.; Moyer, R.A.; Pigarov, A.Y.; Philipps, V.; Pospieszczyk, A.; Smirnov, R.D.; Sharpe, J.P.; Solomon, W.M.; Watkins, J.G.; Wong, C.C.

    2009-01-01

    Studies of naturally occurring and artificially introduced carbon dust are conducted in DIII-D and TEXTOR. In DIII-D, dust does not present operational concerns except immediately after entry vents. Submicron sized dust is routinely observed using Mie scattering from a Nd:Yag laser. The source is strongly correlated with the presence of Type I edge localized modes (ELMs). Larger size (0.005-1 mm diameter) dust is observed by optical imaging, showing elevated dust levels after entry vents. Inverse dependence of the dust velocity on the inferred dust size is found from the imaging data. Direct heating of the dust particles by the neutral beam injection (NBI) and acceleration of dust particles by the plasma flows are observed. Energetic plasma disruptions produce significant amounts of dust. Large flakes or debris falling into the plasma may result in a disruption. Migration of pre-characterized carbon dust is studied in DIII-D and TEXTOR by introducing micron-size dust in plasma discharges. In DIII-D, a sample holder filled with ∼30 mg of dust is introduced in the lower divertor and exposed to high-power ELMing H-mode discharges with strike points swept across the divertor floor. After a brief exposure (∼0.1 s) at the outer strike point, part of the dust is injected into the plasma, raising the core carbon density by a factor of 2-3 and resulting in a twofold increase of the radiated power. In TEXTOR, instrumented dust holders with 1-45 mg of dust are exposed in the scrape-off layer 0-2 cm radially outside of the last closed flux surface in discharges heated with neutral beam injection (NBI) power of 1.4 MW. At the given configuration of the launch, the dust did not penetrate the core plasma and only moderately perturbed the edge plasma, as evidenced by an increase of the edge carbon content.

  12. Dust formation in a galaxy with primitive abundances.

    Science.gov (United States)

    Sloan, G C; Matsuura, M; Zijlstra, A A; Lagadec, E; Groenewegen, M A T; Wood, P R; Szyszka, C; Bernard-Salas, J; van Loon, J Th

    2009-01-16

    Interstellar dust plays a crucial role in the evolution of galaxies. It governs the chemistry and physics of the interstellar medium. In the local universe, dust forms primarily in the ejecta from stars, but its composition and origin in galaxies at very early times remain controversial. We report observational evidence of dust forming around a carbon star in a nearby galaxy with a low abundance of heavy elements, 25 times lower than the solar abundance. The production of dust by a carbon star in a galaxy with such primitive abundances raises the possibility that carbon stars contributed carbonaceous dust in the early universe.

  13. LADEE LUNAR DUST EXPERIMENT

    Data.gov (United States)

    National Aeronautics and Space Administration — This archive bundle includes data taken by the Lunar Dust Experiment (LDEX) instrument aboard the Lunar Atmosphere and Dust Environment Explorer (LADEE) spacecraft....

  14. Construction dust amelioration techniques.

    Science.gov (United States)

    2012-04-01

    Dust produced on seasonal road construction sites in Alaska is both a traffic safety and environmental concern. Dust emanating from : unpaved road surfaces during construction severely reduces visibility and impacts stopping sight distance, and contr...

  15. On Dust Charging Equation

    OpenAIRE

    Tsintsadze, Nodar L.; Tsintsadze, Levan N.

    2008-01-01

    A general derivation of the charging equation of a dust grain is presented, and indicated where and when it can be used. A problem of linear fluctuations of charges on the surface of the dust grain is discussed.

  16. Influence of storm characteristics on soil erosion and storm runoff

    Science.gov (United States)

    Johnny M. III Grace

    2008-01-01

    Unpaved forest roads can be major sources of sediment from forested watersheds. Storm runoff from forest roads are a concern due to their potential delivery of sediments and nutrients to stream systems resulting in degraded water quality. The volume and sediment concentrations of stormwater runoff emanating from forest roads can be greatly influenced by storm...

  17. Physics of interstellar dust

    CERN Document Server

    Krugel, Endrik

    2002-01-01

    The dielectric permeability; How to evaluate grain cross sections; Very small and very big particles; Case studies of Mie calculus; Particle statistics; The radiative transition probability; Structure and composition of dust; Dust radiation; Dust and its environment; Polarization; Grain alignment; PAHs and spectral features of dust; Radiative transport; Diffuse matter in the Milky Way; Stars and their formation; Emission from young stars. Appendices Mathematical formulae; List of symbols.

  18. Dust as a surfactant

    International Nuclear Information System (INIS)

    Ignatov, A M; Schram, P P J M; Trigger, S A

    2003-01-01

    We argue that dust immersed in a plasma sheath acts as a surfactant. By considering the momentum balance in a plasma sheath, we evaluate the dependence of the plasma surface pressure on the dust density. It is shown that the dust may reduce the surface pressure, giving rise to a sufficiently strong tangential force. The latter is capable of confining the dust layer inside the sheath in the direction perpendicular to the ion flow

  19. Hypervelocity Dust Injection for Plasma Diagnostic Applications

    Science.gov (United States)

    Ticos, Catalin

    2005-10-01

    Hypervelocity micron-size dust grain injection was proposed for high-temperature magnetized plasma diagnosis. Multiple dust grains are launched simultaneously into high temperature plasmas at several km/s or more. The hypervelocity dust grains are ablated by the electron and ion fluxes. Fast imaging of the resulting luminous plumes attached to each grain is expected to yield local magnetic field vectors. Combination of multiple local magnetic field vectors reproduces 2D or even 3D maps of the internal magnetic field topology. Key features of HDI are: (1) a high spatial resolution, due to a relatively small transverse size of the elongated tail, and (2) a small perturbation level, as the dust grains introduce negligible number of particles compared to the plasma particle inventory. The latter advantage, however, could be seriously compromised if the gas load from the accelerator has an unobstructed access to the diagnosed plasma. Construction of a HDI diagnostic for National Spherical Torus Experiment (NSTX), which includes a coaxial plasma gun for dust grain acceleration, is underway. Hydrogen and deuterium gas discharges inside accelerator are created by a ˜ 1 mF capacitor bank pre-charged up to 10 kV. The diagnostic apparatus also comprises a dust dispenser for pre-loading the accelerator with dust grains, and an imaging system that has a high spatial and temporal resolution.

  20. Nonlinear chaotic model for predicting storm surges

    Directory of Open Access Journals (Sweden)

    M. Siek

    2010-09-01

    Full Text Available This paper addresses the use of the methods of nonlinear dynamics and chaos theory for building a predictive chaotic model from time series. The chaotic model predictions are made by the adaptive local models based on the dynamical neighbors found in the reconstructed phase space of the observables. We implemented the univariate and multivariate chaotic models with direct and multi-steps prediction techniques and optimized these models using an exhaustive search method. The built models were tested for predicting storm surge dynamics for different stormy conditions in the North Sea, and are compared to neural network models. The results show that the chaotic models can generally provide reliable and accurate short-term storm surge predictions.

  1. Electrodynamic Dust Shield for Solar Panels on Mars

    Science.gov (United States)

    Calle, C. I.; Buhler, C. R.; Mantovani, J. G.; Clements S.; Chen, A.; Mazumder, M. K.; Biris, A. S.; Nowicki, A. W.

    2004-01-01

    The Materials Adherence Experiment on the Mars Pathfinder mission measured an obscuration of the solar arrays due to dust deposition at a rate of about 0.2 8% per day. It was estimated that settling dust may cause degradation in performance of a solar panel of between 22% and 89% over the course of two years [1, 2]. These results were obtained without the presence of a global dust storm. Several types of adherence forces keep dust particles attached to surfaces. The most widely discussed adherence force is the electrostatic force. Laboratory experiments [3] as well as indirect evidence from the Wheel Abrasion Experiment on Pathfinder [4] indicate that it is very likely that the particles suspended in the Martian atmosphere are electrostatically charged.

  2. Adaptive optics stochastic optical reconstruction microscopy (AO-STORM) by particle swarm optimization.

    Science.gov (United States)

    Tehrani, Kayvan F; Zhang, Yiwen; Shen, Ping; Kner, Peter

    2017-11-01

    Stochastic optical reconstruction microscopy (STORM) can achieve resolutions of better than 20nm imaging single fluorescently labeled cells. However, when optical aberrations induced by larger biological samples degrade the point spread function (PSF), the localization accuracy and number of localizations are both reduced, destroying the resolution of STORM. Adaptive optics (AO) can be used to correct the wavefront, restoring the high resolution of STORM. A challenge for AO-STORM microscopy is the development of robust optimization algorithms which can efficiently correct the wavefront from stochastic raw STORM images. Here we present the implementation of a particle swarm optimization (PSO) approach with a Fourier metric for real-time correction of wavefront aberrations during STORM acquisition. We apply our approach to imaging boutons 100 μm deep inside the central nervous system (CNS) of Drosophila melanogaster larvae achieving a resolution of 146 nm.

  3. Characterization of synoptic patterns causing dust outbreaks that affect the Arabian Peninsula

    Science.gov (United States)

    Hermida, L.; Merino, A.; Sánchez, J. L.; Fernández-González, S.; García-Ortega, E.; López, L.

    2018-01-01

    Dust storms pose serious weather hazards in arid and semiarid regions of the earth. Understanding the main synoptic conditions that give rise to dust outbreaks is important for issuing forecasts and warnings to the public in cases of severe storms. The aim of the present study is to determine synoptic patterns that are associated with or even favor dust outbreaks over the Arabian Peninsula. In this respect, red-green-blue dust composite images from the Meteosat Second Generation (MSG) satellite are used to detect dust outbreaks affecting the Arabian Peninsula, with possible influences in southwestern Asia and northeastern Africa, between 2005 and 2013. The Meteosat imagery yielded a sample of 95 dust storm days. Meteorological fields from NCEP/NCAR reanalysis data of wind fields at 10 m and 250 hPa, mean sea level pressure, and geopotential heights at 850 and 500 hPa were obtained for the dust storm days. Using principal component analysis in T-mode and non-hierarchical k-means clustering, we obtained four major atmospheric circulation patterns associated with dust outbreaks during the study days. Cluster 4 had the largest number of days with dust events, which were constrained to summer, and cluster 3 had the fewest. In clusters 1, 2 and 3, the jet stream favored the entry of a low-pressure area or trough that varied in location between the three clusters. Their most northerly location was found in cluster 4, along with an extensive low-pressure area supporting strong winds over the Arabian Peninsula. The spatial distribution of aerosol optical depth for each cluster obtained was characterized using the Moderate Resolution Imaging Spectroradiometer data. Then, using METAR stations, clusters were also characterized in terms of frequency and visibility.

  4. Substorms during different storm phases

    Directory of Open Access Journals (Sweden)

    N. Partamies

    2011-11-01

    Full Text Available After the deep solar minimum at the end of the solar cycle 23, a small magnetic storm occurred on 20–26 January 2010. The Dst (disturbance storm time index reached the minimum of −38 nT on 20 January and the prolonged recovery that followed the main phase that lasted for about 6 days. In this study, we concentrate on three substorms that took place (1 just prior to the storm, (2 during the main phase of the storm, and (3 at the end of the recovery of the storm. We analyse the solar wind conditions from the solar wind monitoring spacecraft, the duration and intensity of the substorm events as well as the behaviour of the electrojet currents from the ground magnetometer measurements. We compare the precipitation characteristics of the three substorms. The results show that the F-region electron density enhancements and dominant green and red auroral emission of the substorm activity during the storm recovery resembles average isolated substorm precipitation. However, the energy dissipated, even at the very end of a prolonged storm recovery, is very large compared to the typical energy content of isolated substorms. In the case studied here, the dissipation of the excess energy is observed over a 3-h long period of several consecutive substorm intensifications. Our findings suggest that the substorm energy dissipation varies between the storm phases.

  5. The Effect of Asian Dust Aerosols on Cloud Properties and Radiative Forcing from MODIS and CERES

    Science.gov (United States)

    Huang, Jianping; Minnis, Patrick; Lin, Bing; Wang, Tianhe; Yi, Yuhong; Hu, Yongxiang; Sun-Mack, Sunny; Ayers, Kirk

    2005-01-01

    The effects of dust storms on cloud properties and radiative forcing are analyzed over northwestern China from April 2001 to June 2004 using data collected by the Moderate Resolution Imaging Spectroradiometer (MODIS) and Clouds and the Earth's Radiant Energy System (CERES) instruments on the Aqua and Terra satellites. On average, ice cloud effective particle diameter, optical depth and ice water path of the cirrus clouds under dust polluted conditions are 11%, 32.8%, and 42% less, respectively, than those derived from ice clouds in dust-free atmospheric environments. The humidity differences are larger in the dusty region than in the dust-free region, and may be caused by removal of moisture by wet dust precipitation. Due to changes in cloud microphysics, the instantaneous net radiative forcing is reduced from -71.2 W/m2 for dust contaminated clouds to -182.7 W/m2 for dust-free clouds. The reduced cooling effects of dusts may lead to a net warming of 1 W/m2, which, if confirmed, would be the strongest aerosol forcing during later winter and early spring dust storm seasons over the studied region.

  6. Red Dawn: Characterizing Iron Oxide Minerals in Atmospheric Dust

    Science.gov (United States)

    Yauk, K.; Ottenfeld, C. F.; Reynolds, R. L.; Goldstein, H.; Cattle, S.; Berquo, T. S.; Moskowitz, B. M.

    2012-12-01

    Atmospheric dust is comprised of many components including small amounts of iron oxide minerals. Although the iron oxides make up a small weight percent of the bulk dust, they are important because of their roles in ocean fertilization, controls on climate, and as a potential health hazard to humans. Here we report on the iron oxide mineralogy in dust from a large dust storm, dubbed Red Dawn, which engulfed eastern Australia along a 3000 km front on 23 September 2009. Red Dawn originated from the lower Lake Eyre Basin of South Australia, western New South Wales (NSW) and southwestern Queensland and was the worst dust storm to have hit the city of Sydney in more than 60 years. Dust samples were collected from various locations across eastern Australia (Lake Cowal, Orange, Hornsby, Sydney) following the Red Dawn event. Our dust collection provides a good opportunity to study the physical and mineralogical properties of iron oxides from Red Dawn using a combination of reflectance spectroscopy, Mössbauer spectroscopy (MB), and magnetic measurements. Magnetization measurements from 20-400 K reveal that magnetite/maghemite, hematite and goethite are present in all samples with magnetite occurring in trace amounts (effects (d< 100 nm). Finally, we compared reflectance with a magnetic parameter (hard isothermal remanent magnetization, HIRM) for ferric oxide abundance to assess the degree to which ferric oxide in these samples might absorb solar radiation. In samples for which both parameters were obtained, HIRM and average reflectance over the visible wavelengths are correlated as a group (r2=0.24). These results indicate that the ferric oxide minerals in Red Dawn dust absorb solar radiation. Much of this ferric oxide occurs likely as grain coatings of nanohematite and nanogoethite, thereby providing high surface area to enhance absorption of solar radiation.

  7. Relationship between substorms and storms

    International Nuclear Information System (INIS)

    Kamide, Y.

    1980-01-01

    In an attempt to deduce a plausible working model of the relationship between magnetospheric substorms and storms, recent relevant studies of various processes occurring during disturbed periods are integrated along with some theoretical suggestions. It has been shown that the main phase of geomagnetic storms is associated with the successive occurrence of intense substorms and with the sustained southward component of the interplanetary magnetic field (IMF). However, these relations are only qualitatively understood, and thus basic questions remain unanswered involving the hypothesis whether a magnetic storm is a non-linear (or linear) superposition of intense substorms, each of which constitutes an elementary storm, or the main phase of magnetic storms occurs as a result of the intense southward IMF which enhances magnetospheric convection and increases occurrence probability of substorms. (Auth.)

  8. Thyroid storm: an updated review.

    Science.gov (United States)

    Chiha, Maguy; Samarasinghe, Shanika; Kabaker, Adam S

    2015-03-01

    Thyroid storm, an endocrine emergency first described in 1926, remains a diagnostic and therapeutic challenge. No laboratory abnormalities are specific to thyroid storm, and the available scoring system is based on the clinical criteria. The exact mechanisms underlying the development of thyroid storm from uncomplicated hyperthyroidism are not well understood. A heightened response to thyroid hormone is often incriminated along with increased or abrupt availability of free hormones. Patients exhibit exaggerated signs and symptoms of hyperthyroidism and varying degrees of organ decompensation. Treatment should be initiated promptly targeting all steps of thyroid hormone formation, release, and action. Patients who fail medical therapy should be treated with therapeutic plasma exchange or thyroidectomy. The mortality of thyroid storm is currently reported at 10%. Patients who have survived thyroid storm should receive definite therapy for their underlying hyperthyroidism to avoid any recurrence of this potentially fatal condition. © The Author(s) 2013.

  9. Dust Evolution in Galaxy Cluster Simulations

    Science.gov (United States)

    Gjergo, Eda; Granato, Gian Luigi; Murante, Giuseppe; Ragone-Figueroa, Cinthia; Tornatore, Luca; Borgani, Stefano

    2018-06-01

    We implement a state-of-the-art treatment of the processes affecting the production and Interstellar Medium (ISM) evolution of carbonaceous and silicate dust grains within SPH simulations. We trace the dust grain size distribution by means of a two-size approximation. We test our method on zoom-in simulations of four massive (M200 ≥ 3 × 1014M⊙) galaxy clusters. We predict that during the early stages of assembly of the cluster at z ≳ 3, where the star formation activity is at its maximum in our simulations, the proto-cluster regions are rich in dusty gas. Compared to the case in which only dust production in stellar ejecta is active, if we include processes occurring in the cold ISM,the dust content is enhanced by a factor 2 - 3. However, the dust properties in this stage turn out to be significantly different from those observationally derived for the average Milky Way dust, and commonly adopted in calculations of dust reprocessing. We show that these differences may have a strong impact on the predicted spectral energy distributions. At low redshift in star forming regions our model reproduces reasonably well the trend of dust abundances over metallicity as observed in local galaxies. However we under-produce by a factor of 2 to 3 the total dust content of clusters estimated observationally at low redshift, z ≲ 0.5 using IRAS, Planck and Herschel satellites data. This discrepancy does not subsist by assuming a lower sputtering efficiency, which erodes dust grains in the hot Intracluster Medium (ICM).

  10. Geomagnetic storm forecasting service StormFocus: 5 years online

    Science.gov (United States)

    Podladchikova, Tatiana; Petrukovich, Anatoly; Yermolaev, Yuri

    2018-04-01

    Forecasting geomagnetic storms is highly important for many space weather applications. In this study, we review performance of the geomagnetic storm forecasting service StormFocus during 2011-2016. The service was implemented in 2011 at SpaceWeather.Ru and predicts the expected strength of geomagnetic storms as measured by Dst index several hours ahead. The forecast is based on L1 solar wind and IMF measurements and is updated every hour. The solar maximum of cycle 24 is weak, so most of the statistics are on rather moderate storms. We verify quality of selection criteria, as well as reliability of real-time input data in comparison with the final values, available in archives. In real-time operation 87% of storms were correctly predicted while the reanalysis running on final OMNI data predicts successfully 97% of storms. Thus the main reasons for prediction errors are discrepancies between real-time and final data (Dst, solar wind and IMF) due to processing errors, specifics of datasets.

  11. Long-term dust aerosol production from natural sources in Iceland.

    Science.gov (United States)

    Dagsson-Waldhauserova, Pavla; Arnalds, Olafur; Olafsson, Haraldur

    2017-02-01

    Iceland is a volcanic island in the North Atlantic Ocean with maritime climate. In spite of moist climate, large areas are with limited vegetation cover where >40% of Iceland is classified with considerable to very severe erosion and 21% of Iceland is volcanic sandy deserts. Not only do natural emissions from these sources influenced by strong winds affect regional air quality in Iceland ("Reykjavik haze"), but dust particles are transported over the Atlantic ocean and Arctic Ocean >1000 km at times. The aim of this paper is to place Icelandic dust production area into international perspective, present long-term frequency of dust storm events in northeast Iceland, and estimate dust aerosol concentrations during reported dust events. Meteorological observations with dust presence codes and related visibility were used to identify the frequency and the long-term changes in dust production in northeast Iceland. There were annually 16.4 days on average with reported dust observations on weather stations within the northeastern erosion area, indicating extreme dust plume activity and erosion within the northeastern deserts, even though the area is covered with snow during the major part of winter. During the 2000s the highest occurrence of dust events in six decades was reported. We have measured saltation and Aeolian transport during dust/volcanic ash storms in Iceland, which give some of the most intense wind erosion events ever measured. Icelandic dust affects the ecosystems over much of Iceland and causes regional haze. It is likely to affect the ecosystems of the oceans around Iceland, and it brings dust that lowers the albedo of the Icelandic glaciers, increasing melt-off due to global warming. The study indicates that Icelandic dust may contribute to the Arctic air pollution. Long-term records of meteorological dust observations from Northeast Iceland indicate the frequency of dust events from Icelandic deserts. The research involves a 60-year period and

  12. Identification of storm surge vulnerable areas in the Philippines through the simulation of Typhoon Haiyan-induced storm surge levels over historical storm tracks

    Science.gov (United States)

    Lapidez, J. P.; Tablazon, J.; Dasallas, L.; Gonzalo, L. A.; Cabacaba, K. M.; Ramos, M. M. A.; Suarez, J. K.; Santiago, J.; Lagmay, A. M. F.; Malano, V.

    2015-07-01

    Super Typhoon Haiyan entered the Philippine Area of Responsibility (PAR) on 7 November 2013, causing tremendous damage to infrastructure and loss of lives mainly due to the storm surge and strong winds. Storm surges up to a height of 7 m were reported in the hardest hit areas. The threat imposed by this kind of natural calamity compelled researchers of the Nationwide Operational Assessment of Hazards (Project NOAH) which is the flagship disaster mitigation program of the Department of Science and Technology (DOST) of the Philippine government to undertake a study to determine the vulnerability of all Philippine coastal communities to storm surges of the same magnitude as those generated by Haiyan. This study calculates the maximum probable storm surge height for every coastal locality by running simulations of Haiyan-type conditions but with tracks of tropical cyclones that entered PAR from 1948-2013. One product of this study is a list of the 30 most vulnerable coastal areas that can be used as a basis for choosing priority sites for further studies to implement appropriate site-specific solutions for flood risk management. Another product is the storm tide inundation maps that the local government units can use to develop a risk-sensitive land use plan for identifying appropriate areas to build residential buildings, evacuation sites, and other critical facilities and lifelines. The maps can also be used to develop a disaster response plan and evacuation scheme.

  13. Identification of storm surge vulnerable areas in the Philippines through the simulation of Typhoon Haiyan-induced storm surge levels over historical storm tracks

    Directory of Open Access Journals (Sweden)

    J. P. Lapidez

    2015-07-01

    Full Text Available Super Typhoon Haiyan entered the Philippine Area of Responsibility (PAR on 7 November 2013, causing tremendous damage to infrastructure and loss of lives mainly due to the storm surge and strong winds. Storm surges up to a height of 7 m were reported in the hardest hit areas. The threat imposed by this kind of natural calamity compelled researchers of the Nationwide Operational Assessment of Hazards (Project NOAH which is the flagship disaster mitigation program of the Department of Science and Technology (DOST of the Philippine government to undertake a study to determine the vulnerability of all Philippine coastal communities to storm surges of the same magnitude as those generated by Haiyan. This study calculates the maximum probable storm surge height for every coastal locality by running simulations of Haiyan-type conditions but with tracks of tropical cyclones that entered PAR from 1948–2013. One product of this study is a list of the 30 most vulnerable coastal areas that can be used as a basis for choosing priority sites for further studies to implement appropriate site-specific solutions for flood risk management. Another product is the storm tide inundation maps that the local government units can use to develop a risk-sensitive land use plan for identifying appropriate areas to build residential buildings, evacuation sites, and other critical facilities and lifelines. The maps can also be used to develop a disaster response plan and evacuation scheme.

  14. Application of wind-profiling radar data to the analysis of dust weather in the Taklimakan Desert.

    Science.gov (United States)

    Wang, Minzhong; Wei, Wenshou; Ruan, Zheng; He, Qing; Ge, Runsheng

    2013-06-01

    The Urumqi Institute of Desert Meteorology of the China Meteorological Administration carried out an atmospheric scientific experiment to detect dust weather using a wind-profiling radar in the hinterland of the Taklimakan Desert in April 2010. Based on the wind-profiling data obtained from this experiment, this paper seeks to (a) analyze the characteristics of the horizontal wind field and vertical velocity of a breaking dust weather in a desert hinterland; (b) calculate and give the radar echo intensity and vertical distribution of a dust storm, blowing sand, and floating dust weather; and (c) discuss the atmosphere dust counts/concentration derived from the wind-profiling radar data. Studies show that: (a) A wind-profiling radar is an upper-air atmospheric remote sensing system that effectively detects and monitors dust. It captures the beginning and ending of a dust weather process as well as monitors the sand and dust being transported in the air in terms of height, thickness, and vertical intensity. (b) The echo intensity of a blowing sand and dust storm weather episode in Taklimakan is about -1~10 dBZ while that of floating dust -1~-15 dBZ, indicating that the dust echo intensity is significantly weaker than that of precipitation but stronger than that of clear air. (c) The vertical shear of horizontal wind and the maintenance of low-level east wind are usually dynamic factors causing a dust weather process in Taklimakan. The moment that the low-level horizontal wind field finds a shear over time, it often coincides with the onset of a sand blowing and dust storm weather process. (d) When a blowing sand or dust storm weather event occurs, the atmospheric vertical velocity tends to be of upward motion. This vertical upward movement of the atmosphere supported with a fast horizontal wind and a dry underlying surface carries dust particles from the ground up to the air to form blown sand or a dust storm.

  15. Reconstructing transport pathways for late Quaternary dust from eastern Australia using the composition of trace elements of long traveled dusts

    Science.gov (United States)

    Petherick, Lynda M.; McGowan, Hamish A.; Kamber, Balz S.

    2009-04-01

    The southeast Australian dust transport corridor is the principal pathway through which continental emissions of dust from central and eastern Australia are carried to the oceans by the prevailing mid-latitude westerly circulation. The analysis of trace elements of aeolian dust, preserved in lake sediment on North Stradbroke Island, southeast Queensland, is used to reconstruct variation in the intensity and position of dust transport to the island over the past 25,000 yrs. Separation of local and long traveled dust content of lake sediments is achieved using a unique, four-element (Ga, Ni, Tl and Sc) separation method. The local and continental chronologies of aeolian deposition developed by this study show markedly different records, and indicate varied responses to climate variability on North Stradbroke Island (local aeolian sediment component) and in eastern and central Australia (long traveled dust component). The provenance of the continental component of the record to sub-geologic catchment scales was accomplished using a ternary mixing model in which the chemical identification of dusts extracted, from the lake sediments, was compared to potential chemical characteristics of surface dust from the source areas using 16 trace elements. The results indicate that the position and intensity of dust transport pathways during the late Quaternary varied considerably in response to changing atmospheric circulation patterns as well as to variations in sediment supply to dust source areas, which include the large anabranching river systems of the Lake Eyre and Murray-Darling Basins.

  16. Interplanetary radio storms. II - Emission levels and solar wind speed in the range 0.05-0.8 AU

    Science.gov (United States)

    Bougeret, J.-L.; Fainberg, J.; Stone, R. G.

    1984-01-01

    Storms of interplanetary type III radio bursts (IP storms) are commonly observed in the interplanetary medium by the ISEE-3 radio instrument. This instrument has the capability of accurately determining the arrival direction of the radio emission. At each observing frequency, the storm radio sources are tracked as they cross the line-of-sight to the sun. Using a simple model, the emission levels are determined at a number of radio frequencies for four separate storms. The IP storm radiation is found to occur in regions of enhanced density at levels of 0.05 to 0.8 AU. The density in these enhancements falls off faster than R(-2). The solar wind speed in the storm region is also measured. The analysis is consistent with steady conditions in the storm region during a few days around the III storm burst radio emission at the harmonic of the local plasma frequency.

  17. Overview of the ARkStorm scenario

    Science.gov (United States)

    Porter, Keith; Wein, Anne; Alpers, Charles N.; Baez, Allan; Barnard, Patrick L.; Carter, James; Corsi, Alessandra; Costner, James; Cox, Dale; Das, Tapash; Dettinger, Mike; Done, James; Eadie, Charles; Eymann, Marcia; Ferris, Justin; Gunturi, Prasad; Hughes, Mimi; Jarrett, Robert; Johnson, Laurie; Le-Griffin, Hanh Dam; Mitchell, David; Morman, Suzette; Neiman, Paul; Olsen, Anna; Perry, Suzanne; Plumlee, Geoffrey; Ralph, Martin; Reynolds, David; Rose, Adam; Schaefer, Kathleen; Serakos, Julie; Siembieda, William; Stock, Jonathan; Strong, David; Wing, Ian Sue; Tang, Alex; Thomas, Pete; Topping, Ken; Wills, Chris; Jones, Lucile

    2011-01-01

    coastal communities. Windspeeds in some places reach 125 miles per hour, hurricane-force winds. Across wider areas of the state, winds reach 60 miles per hour. Hundreds of landslides damage roads, highways, and homes. Property damage exceeds $300 billion, most from flooding. Demand surge (an increase in labor rates and other repair costs after major natural disasters) could increase property losses by 20 percent. Agricultural losses and other costs to repair lifelines, dewater (drain) flooded islands, and repair damage from landslides, brings the total direct property loss to nearly $400 billion, of which $20 to $30 billion would be recoverable through public and commercial insurance. Power, water, sewer, and other lifelines experience damage that takes weeks or months to restore. Flooding evacuation could involve 1.5 million residents in the inland region and delta counties. Business interruption costs reach $325 billion in addition to the $400 property repair costs, meaning that an ARkStorm could cost on the order of $725 billion, which is nearly 3 times the loss deemed to be realistic by the ShakeOut authors for a severe southern California earthquake, an event with roughly the same annual occurrence probability. The ARkStorm has several public policy implications: (1) An ARkStorm raises serious questions about the ability of existing federal, state, and local disaster planning to handle a disaster of this magnitude. (2) A core policy issue raised is whether to pay now to mitigate, or pay a lot more later for recovery. (3) Innovative financing solutions are likely to be needed to avoid fiscal crisis and adequately fund response and recovery costs from a similar, real, disaster. (4) Responders and government managers at all levels could be encouraged to conduct risk assessments, and devise the full spectrum of exercises, to exercise ability of their plans to address a similar event. (5) ARkStorm can be a reference point for application of Federal Emergency Ma

  18. Thromboembolic complications of thyroid storm.

    Science.gov (United States)

    Min, T; Benjamin, S; Cozma, L

    2014-01-01

    Thyroid storm is a rare but potentially life-threatening complication of hyperthyroidism. Early recognition and prompt treatment are essential. Atrial fibrillation can occur in up to 40% of patients with thyroid storm. Studies have shown that hyperthyroidism increases the risk of thromboembolic events. There is no consensus with regard to the initiation of anticoagulation for atrial fibrillation in severe thyrotoxicosis. Anticoagulation is not routinely initiated if the risk is low on a CHADS2 score; however, this should be considered in patients with thyroid storm or severe thyrotoxicosis with impending storm irrespective of the CHADS2 risk, as it appears to increase the risk of thromboembolic episodes. Herein, we describe a case of thyroid storm complicated by massive pulmonary embolism. Diagnosis of thyroid storm is based on clinical findings. Early recognition and prompt treatment could lead to a favourable outcome.Hypercoagulable state is a recognised complication of thyrotoxicosis.Atrial fibrillation is strongly associated with hyperthyroidism and thyroid storm.Anticoagulation should be considered for patients with severe thyrotoxicosis and atrial fibrillation irrespective of the CHADS2 score.Patients with severe thyrotoxicosis and clinical evidence of thrombosis should be immediately anticoagulated until hyperthyroidism is under control.

  19. IRI STORM validation over Europe

    Science.gov (United States)

    Haralambous, Haris; Vryonides, Photos; Demetrescu, Crişan; Dobrică, Venera; Maris, Georgeta; Ionescu, Diana

    2014-05-01

    The International Reference Ionosphere (IRI) model includes an empirical Storm-Time Ionospheric Correction Model (STORM) extension to account for storm-time changes of the F layer peak electron density (NmF2) during increased geomagnetic activity. This model extension is driven by past history values of the geomagnetic index ap (The magnetic index applied is the integral of ap over the previous 33 hours with a weighting function deduced from physically based modeling) and it adjusts the quiet-time F layer peak electron density (NmF2) to account for storm-time changes in the ionosphere. In this investigation manually scaled hourly values of NmF2 measured during the main and recovery phases of selected storms for the maximum solar activity period of the current solar cycle are compared with the predicted IRI-2012 NmF2 over European ionospheric stations using the STORM model option. Based on the comparison a subsequent performance evaluation of the STORM option during this period is quantified.

  20. Effects of dust grain charge fluctuation on obliquely propagating dust-acoustic potential in magnetized dusty plasmas

    International Nuclear Information System (INIS)

    Mamun, A.A.; Hassan, M.H.A.

    1999-05-01

    Effects of dust grain charge fluctuation, obliqueness and external magnetic field on finite amplitude dust-acoustic solitary potential in a magnetized dusty plasma, consisting of electrons, ions and charge fluctuating dust grains, have been investigated by the reductive perturbation method. It has been shown that such a magnetized dusty plasma system may support dust-acoustic solitary potential on a very slow time scale involving the motion of dust grains, whose charge is self-consistently determined by local electron and ion currents. The effects of dust grain charge fluctuation, external magnetic field and obliqueness are found to modify the properties of this dust-acoustic solitary potential significantly. The implications of these results to some space and astrophysical dusty plasma systems, especially to planetary ring-systems and cometary tails, are briefly mentioned. (author)

  1. Red Storm usage model :Version 1.12.

    Energy Technology Data Exchange (ETDEWEB)

    Jefferson, Karen L.; Sturtevant, Judith E.

    2005-12-01

    Red Storm is an Advanced Simulation and Computing (ASC) funded massively parallel supercomputer located at Sandia National Laboratories (SNL). The Red Storm Usage Model (RSUM) documents the capabilities and the environment provided for the FY05 Tri-Lab Level II Limited Availability Red Storm User Environment Milestone and the FY05 SNL Level II Limited Availability Red Storm Platform Milestone. This document describes specific capabilities, tools, and procedures to support both local and remote users. The model is focused on the needs of the ASC user working in the secure computing environments at Los Alamos National Laboratory (LANL), Lawrence Livermore National Laboratory (LLNL), and SNL. Additionally, the Red Storm Usage Model maps the provided capabilities to the Tri-Lab ASC Computing Environment (ACE) requirements. The ACE requirements reflect the high performance computing requirements for the ASC community and have been updated in FY05 to reflect the community's needs. For each section of the RSUM, Appendix I maps the ACE requirements to the Limited Availability User Environment capabilities and includes a description of ACE requirements met and those requirements that are not met in that particular section. The Red Storm Usage Model, along with the ACE mappings, has been issued and vetted throughout the Tri-Lab community.

  2. Movie-maps of low-latitude magnetic storm disturbance

    Science.gov (United States)

    Love, Jeffrey J.; Gannon, Jennifer L.

    2010-06-01

    We present 29 movie-maps of low-latitude horizontal-intensity magnetic disturbance for the years 1999-2006: 28 recording magnetic storms and 1 magnetically quiescent period. The movie-maps are derived from magnetic vector time series data collected at up to 25 ground-based observatories. Using a technique similar to that used in the calculation of Dst, a quiet time baseline is subtracted from the time series from each observatory. The remaining disturbance time series are shown in a polar coordinate system that accommodates both Earth rotation and the universal time dependence of magnetospheric disturbance. Each magnetic storm recorded in the movie-maps is different. While some standard interpretations about the storm time equatorial ring current appear to apply to certain moments and certain phases of some storms, the movie-maps also show substantial variety in the local time distribution of low-latitude magnetic disturbance, especially during storm commencements and storm main phases. All movie-maps are available at the U.S. Geological Survey Geomagnetism Program Web site (http://geomag.usgs.gov).

  3. Dust modelling and forecasting in the Barcelona Supercomputing Center: Activities and developments

    Energy Technology Data Exchange (ETDEWEB)

    Perez, C; Baldasano, J M; Jimenez-Guerrero, P; Jorba, O; Haustein, K; Basart, S [Earth Sciences Department. Barcelona Supercomputing Center. Barcelona (Spain); Cuevas, E [Izanaa Atmospheric Research Center. Agencia Estatal de Meteorologia, Tenerife (Spain); Nickovic, S [Atmospheric Research and Environment Branch, World Meteorological Organization, Geneva (Switzerland)], E-mail: carlos.perez@bsc.es

    2009-03-01

    The Barcelona Supercomputing Center (BSC) is the National Supercomputer Facility in Spain, hosting MareNostrum, one of the most powerful Supercomputers in Europe. The Earth Sciences Department of BSC operates daily regional dust and air quality forecasts and conducts intensive modelling research for short-term operational prediction. This contribution summarizes the latest developments and current activities in the field of sand and dust storm modelling and forecasting.

  4. Dust modelling and forecasting in the Barcelona Supercomputing Center: Activities and developments

    International Nuclear Information System (INIS)

    Perez, C; Baldasano, J M; Jimenez-Guerrero, P; Jorba, O; Haustein, K; Basart, S; Cuevas, E; Nickovic, S

    2009-01-01

    The Barcelona Supercomputing Center (BSC) is the National Supercomputer Facility in Spain, hosting MareNostrum, one of the most powerful Supercomputers in Europe. The Earth Sciences Department of BSC operates daily regional dust and air quality forecasts and conducts intensive modelling research for short-term operational prediction. This contribution summarizes the latest developments and current activities in the field of sand and dust storm modelling and forecasting.

  5. Physical properties of suspended dust during moist and low wind conditions in Iceland

    Czech Academy of Sciences Publication Activity Database

    Dagsson-Waldhauserova, P.; Arnalds, O.; Olafsson, H.; Škrabalová, L.; Sigurdardottir, G. M.; Braniš, M.; Hladil, Jindřich; Skála, Roman; Navrátil, Tomáš; Chadimová, Leona; Lowis of Menar, S.; Thorsteinsson, T.; Carlsen, H. K.; Jonsdottir, I.

    2014-01-01

    Roč. 27, č. 1 (2014), s. 25-39 ISSN 1670-567X Institutional support: RVO:67985831 Keywords : atmospheric measurements * dust storm event * surface heating * dust aerosol * climate aspects Subject RIV: DB - Geology ; Mineralogy Impact factor: 0.188, year: 2014 http://www.ias.is/landbunadur/wgsamvef.nsf/Attachment/IAS%20-%204%20kafli%20Pavla/$file/IAS%20-%204%20kafli%20Pavla.pdf

  6. A Regional GPS Receiver Network For Monitoring Mid-latitude Total Electron Content During Storms

    Science.gov (United States)

    Vernon, A.; Cander, Lj. R.

    A regional GPS receiver network has been used for monitoring mid-latitude total elec- tron content (TEC) during ionospheric storms at the current solar maximum. Differ- ent individual storms were examined to study how the temporal patterns of changes develop and how they are related to solar and geomagnetic activity for parameter de- scriptive of plasmaspheric-ionospheric ionisation. Use is then made of computer con- touring techniques to produce snapshot maps of TEC for different study cases. Com- parisons with the local ionosonde data at different phases of the storms enable the storm developments to be studied in detail.

  7. Thyroid Storm Triggered by Strangulation in a Patient with Undiagnosed Graves’ Disease

    Directory of Open Access Journals (Sweden)

    Jorge I. Conte

    2018-01-01

    Full Text Available Thyroid storm is the life-threatening end-organ manifestation of severe thyrotoxicosis. If left untreated, thyroid storm may cause acute heart failure, multiorgan dysfunction, and death. A high degree of suspicion is necessary to make the diagnosis and start antithyroid medications to decrease mortality. Thyroid storm is generally seen in patients with Graves’ disease but should also be suspected in patients with fever, tachycardia, altered mental status, and risk factors including local trauma to the neck, such as strangulation. Based on our review, we report the first case of thyroid storm after strangulation as the presentation of previously undiagnosed Graves’ disease.

  8. He Puff System For Dust Detector Upgrade

    International Nuclear Information System (INIS)

    Rais, B.; Skinner, C.H.; Roquemore, A.L.

    2010-01-01

    Local detection of surface dust is needed for the safe operation of next-step magnetic fusion devices such as ITER. An electrostatic dust detector, based on a 5 cm x 5 cm grid of interlocking circuit traces biased to 50 V, has been developed to detect dust on remote surfaces and was successfully tested for the first time on the National Spherical Torus Experiment (NSTX). We report on a helium puff system that clears residual dust from this detector and any incident debris or fibers that might cause a permanent short circuit. The entire surface of the detector was cleared of carbon particles by two consecutive helium puffs delivered by three nozzles of 0.45 mm inside diameter. The optimal configuration was found to be with the nozzles at an angle of 30o with respect to the surface of the detector and a helium backing pressure of 6 bar.

  9. Simulating galactic dust grain evolution on a moving mesh

    Science.gov (United States)

    McKinnon, Ryan; Vogelsberger, Mark; Torrey, Paul; Marinacci, Federico; Kannan, Rahul

    2018-05-01

    Interstellar dust is an important component of the galactic ecosystem, playing a key role in multiple galaxy formation processes. We present a novel numerical framework for the dynamics and size evolution of dust grains implemented in the moving-mesh hydrodynamics code AREPO suited for cosmological galaxy formation simulations. We employ a particle-based method for dust subject to dynamical forces including drag and gravity. The drag force is implemented using a second-order semi-implicit integrator and validated using several dust-hydrodynamical test problems. Each dust particle has a grain size distribution, describing the local abundance of grains of different sizes. The grain size distribution is discretised with a second-order piecewise linear method and evolves in time according to various dust physical processes, including accretion, sputtering, shattering, and coagulation. We present a novel scheme for stochastically forming dust during stellar evolution and new methods for sub-cycling of dust physics time-steps. Using this model, we simulate an isolated disc galaxy to study the impact of dust physical processes that shape the interstellar grain size distribution. We demonstrate, for example, how dust shattering shifts the grain size distribution to smaller sizes resulting in a significant rise of radiation extinction from optical to near-ultraviolet wavelengths. Our framework for simulating dust and gas mixtures can readily be extended to account for other dynamical processes relevant in galaxy formation, like magnetohydrodynamics, radiation pressure, and thermo-chemical processes.

  10. Edge plasma fluctuations in STOR-M

    International Nuclear Information System (INIS)

    Zhang, W.; Hirose, A.; Zhang, L.; Xiao, C.; Conway, G.D.; Skarsgard, H.M.

    1993-01-01

    In the STOR-M tokamak, the coherence and propagation nature of the density (n e ) and magnetic (B r ) fluctuations are investigated both in the scrape-off layer (SOL, r/a > 1) and at the plasma edge (r/a -2 is of the order of the reverse electron skin depth kθ ≅ ω pe /c. In terms of the hybrid ion Larmor radius ρ s = c s /Ω i , it corresponds to k θρ s ≅ 0.1. These observations support the skin size electromagnetic drift mode which predicts that a low β tokamak discharge is unstable against the skin size electromagnetic instability with a phase velocity significantly smaller than the electron diamagnetic drift velocity. Edge fluctuations observed in STOR-M appear to propagate at the local E x B drift, and the phase velocity in the plasma from is υ theta ≅ 5 x 10 4 cm/sec, compared with the local electron diamagnetic drift, υ e ≅ 2.5 x 10 5 cm/sec. In the SOL region, the density fluctuations propagate in the ion diamagnetic drift, but still with the local E x B drift because E r changes its sign at r/a ≅ 1

  11. The flow of interstellar dust through the solar system: the role of dust charging

    International Nuclear Information System (INIS)

    Sterken, V. J.; Altobelli, N.; Schwehm, G.; Kempf, S.; Srama, R.; Strub, P.; Gruen, E.

    2011-01-01

    Interstellar dust can enter the solar system through the relative motion of the Sun with respect to the Local Interstellar Cloud. The trajectories of the dust through the solar system are not only influenced by gravitation and solar radiation pressure forces, but also by the Lorentz forces due to the interaction of the interplanetary magnetic field with the charged dust particles. The interplanetary magnetic field changes on two major time scales: 25 days (solar rotation frequency) and 22 years (solar cycle). The short-term variability averages out for regions that are not too close (>∼2 AU) to the Sun. This interplanetary magnetic field variability causes a time-variability in the interstellar dust densities, that is correlated to the solar cycle.In this work we characterize the flow of interstellar dust through the solar system using simulations of the dust trajectories. We start from the simple case without Lorentz forces, and expand to the full simulation. We pay attention to the different ways of modeling the interplanetary magnetic field, and discuss the influence of the dust parameters on the resulting flow patterns. We also discuss the possibilities of using this modeling for prediction of dust fluxes for different space missions or planets, and we pay attention to where simplified models are justified, and where or when a full simulation, including all forces is necessary. One of the aims of this work is to understand measurements of spacecraft like Ulysses, Cassini and Stardust.

  12. US Weather Bureau Storm Reports

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Weather Bureau and US Army Corps and other reports of storms from 1886-1955. Hourly precipitation from recording rain gauges captured during heavy rain, snow,...

  13. Toward an integrated storm surge application: ESA Storm Surge project

    Science.gov (United States)

    Lee, Boram; Donlon, Craig; Arino, Olivier

    2010-05-01

    Storm surges and their associated coastal inundation are major coastal marine hazards, both in tropical and extra-tropical areas. As sea level rises due to climate change, the impact of storm surges and associated extreme flooding may increase in low-lying countries and harbour cities. Of the 33 world cities predicted to have at least 8 million people by 2015, at least 21 of them are coastal including 8 of the 10 largest. They are highly vulnerable to coastal hazards including storm surges. Coastal inundation forecasting and warning systems depend on the crosscutting cooperation of different scientific disciplines and user communities. An integrated approach to storm surge, wave, sea-level and flood forecasting offers an optimal strategy for building improved operational forecasts and warnings capability for coastal inundation. The Earth Observation (EO) information from satellites has demonstrated high potential to enhanced coastal hazard monitoring, analysis, and forecasting; the GOCE geoid data can help calculating accurate positions of tide gauge stations within the GLOSS network. ASAR images has demonstrated usefulness in analysing hydrological situation in coastal zones with timely manner, when hazardous events occur. Wind speed and direction, which is the key parameters for storm surge forecasting and hindcasting, can be derived by using scatterometer data. The current issue is, although great deal of useful EO information and application tools exist, that sufficient user information on EO data availability is missing and that easy access supported by user applications and documentation is highly required. Clear documentation on the user requirements in support of improved storm surge forecasting and risk assessment is also needed at the present. The paper primarily addresses the requirements for data, models/technologies, and operational skills, based on the results from the recent Scientific and Technical Symposium on Storm Surges (www

  14. Water quality of storm runoff and comparison of procedures for estimating storm-runoff loads, volume, event-mean concentrations, and the mean load for a storm for selected properties and constituents for Colorado Springs, southeastern Colorado, 1992

    Science.gov (United States)

    Von Guerard, Paul; Weiss, W.B.

    1995-01-01

    to 1,400 micrograms per liter. The data for 30 storms representing rainfall runoff from 5 drainage basins were used to develop single-storm local-regression models. The response variables, storm-runoff loads, volume, and event-mean concentrations were modeled using explanatory variables for climatic, physical, and land-use characteristics. The r2 for models that use ordinary least-squares regression ranged from 0.57 to 0.86 for storm-runoff loads and volume and from 0.25 to 0.63 for storm-runoff event-mean concentrations. Except for cadmium, standard errors of estimate ranged from 43 to 115 percent for storm- runoff loads and volume and from 35 to 66 percent for storm-runoff event-mean concentrations. Eleven of the 30 concentrations collected during rainfall runoff for total-recoverable cadmium were censored (less than) concentrations. Ordinary least-squares regression should not be used with censored data; however, censored data can be included with uncensored data using tobit regression. Standard errors of estimate for storm-runoff load and event-mean concentration for total-recoverable cadmium, computed using tobit regression, are 247 and 171 percent. Estimates from single-storm regional-regression models, developed from the Nationwide Urban Runoff Program data base, were compared with observed storm-runoff loads, volume, and event-mean concentrations determined from samples collected in the study area. Single-storm regional-regression models tended to overestimate storm-runoff loads, volume, and event-mean con-centrations. Therefore, single-storm local- and regional-regression models were combined using model-adjustment procedures to take advantage of the strengths of both models while minimizing the deficiencies of each model. Procedures were used to develop single-stormregression equations that were adjusted using local data and estimates from single-storm regional-regression equations. Single-storm regression models developed using model- adjustment proce

  15. Magnetic storms and induction hazards

    Science.gov (United States)

    Love, Jeffrey J.; Rigler, E. Joshua; Pulkkinen, Antti; Balch, Christopher

    2014-01-01

    Magnetic storms are potentially hazardous to the activities and technological infrastructure of modern civilization. This reality was dramatically demonstrated during the great magnetic storm of March 1989, when surface geoelectric fields, produced by the interaction of the time-varying geomagnetic field with the Earth's electrically conducting interior, coupled onto the overlying Hydro-Québec electric power grid in Canada. Protective relays were tripped, the grid collapsed, and about 9 million people were temporarily left without electricity [Bolduc, 2002].

  16. [Thyroid Storm and Myxedema Coma].

    Science.gov (United States)

    Milkau, Malte; Sayk, Friedhelm

    2018-03-01

    Thyroid storm and myxedema coma are the most severe clinical forms of thyroid dysfunction. While both hyper- and hypothyroidsm are common diseases, thyroid storm and myxedema coma are rare. Due to their unspecific signs and symptoms they are often difficult to diagnose. Both disorders are medical emergencies, which still show a significant mortality. The following article summarizes diagnostic tools and treatment options for these disorders. © Georg Thieme Verlag KG Stuttgart · New York.

  17. Dust Devil Tracks

    Science.gov (United States)

    2002-01-01

    (Released 8 May 2002) The Science This image, centered near 50.0 S and 17.7 W displays dust devil tracks on the surface. Most of the lighter portions of the image likely have a thin veneer of dust settled on the surface. As a dust devil passes over the surface, it acts as a vacuum and picks up the dust, leaving the darker substrate exposed. In this image there is a general trend of many of the tracks running from east to west or west to east, indicating the general wind direction. There is often no general trend present in dust devil tracks seen in other images. The track patterns are quite ephemeral and can completely change or even disappear over the course of a few months. Dust devils are one of the mechanisms that Mars uses to constantly pump dust into the ubiquitously dusty atmosphere. This atmospheric dust is one of the main driving forces of the present Martian climate. The Story Vrrrrooooooooom. Think of a tornado, the cartoon Tasmanian devil, or any number of vacuum commercials that powerfully suck up swirls of dust and dirt. That's pretty much what it's like on the surface of Mars a lot of the time. Whirlpools of wind called

  18. Coastal Storm Surge Analysis: Storm Forcing. Report 3. Intermediate Submission No. 1.3

    Science.gov (United States)

    2013-07-01

    The storm surge study considers both tropical storms and extratropical cyclones for determination of return period storm surge elevations. The...Appendix B: Extratropical Cyclone Selection in Support of FEMA Region III Storm Surge Modeling...stations applied in the storm selection process. ............................................. 56  Table B2. Extratropical cyclones selected from the

  19. Development of A Microbalance System For Water and Dust Detection In Mars

    Science.gov (United States)

    Battaglia, R.; Palomba, E.; Palumbo, P.; Colangeli, L.

    .e. the caps, the regolith and the ice hazes. Ice hazes, in fact, provide a mechanism for scavenging water vapor in the thin Mars atmosphere and may play a key role in the seasonal cycle of water on Mars. A focused investigation, made in different regions, possibly in different seasons, and spanning several days is desirable for solving the question of linkage of water cycle with these sources. The objective of our research program is the development and pro- duction of a microbalance measurement system . It will be able to measure in situ, for the first time, directly and quantitatively, the cumulative dust mass flux and the water vapour abundance in a Martian environment. A preliminary study of this process at Mars average conditions showed that available microbalances can detect water ice condensed on their surface in few seconds, after dew or frost point is reached and similar evaluations have been made with respect to expected dust deposition rate on Mars surface, based on data from MAE experiment onboard the Sojourner rover. The measuring system will be devoted to study the dynamic of the Martian water and dust cycles. In detail, our goals are: - Study of the Martian water and dust cycles (seasonal, diurnal) and their links; - Investigation of the brines formation and evaporation mech- anisms and their interaction with the regolith; - Investigation of mechanism of diurnal water release by the regolith and its weight as water atmospheric reservoir; - Study of the dust settling rates and their possible correlation with environmental conditions at the landing sites (temperature, pressure, winds); - Study of the local dust storm and devils raising mechanisms; - Investigation of the main modes of aeolian transport of grains and dust raising. We discuss the use of microbalances for the scientific applica- tions to Martian environment studies

  20. madSTORM: a superresolution technique for large-scale multiplexing at single-molecule accuracy

    Science.gov (United States)

    Yi, Jason; Manna, Asit; Barr, Valarie A.; Hong, Jennifer; Neuman, Keir C.; Samelson, Lawrence E.

    2016-01-01

    Investigation of heterogeneous cellular structures using single-molecule localization microscopy has been limited by poorly defined localization accuracy and inadequate multiplexing capacity. Using fluorescent nanodiamonds as fiducial markers, we define and achieve localization precision required for single-molecule accuracy in dSTORM images. Coupled with this advance, our new multiplexing strategy, madSTORM, allows accurate targeting of multiple molecules using sequential binding and elution of fluorescent antibodies. madSTORM is used on an activated T-cell to localize 25 epitopes, 14 of which are on components of the same multimolecular T-cell receptor complex. We obtain an average localization precision of 2.6 nm, alignment error of 2.0 nm, and molecules within structures. Probing the molecular topology of complex signaling cascades and other heterogeneous networks is feasible with madSTORM. PMID:27708141

  1. Dust Studies in DIII-D and TEXTOR

    International Nuclear Information System (INIS)

    Rudakov, D.; Litnovsky, A.; West, W.; Yu, J.; Boedo, J.; Bray, B.; Brezinsek, S.; Brooks, N.; Fenstermacher, M.; Groth, M.; Hollmann, E.; Huber, A.; Hyatt, A.; Krasheninnikov, S.; Lasnier, C.; Moyer, R.; Pigarov, A.; Philipps, V.; Pospieszezyk, A.; Smirnov, R.; Sharpe, J.; Solomon, W.; Watkins, J.; Wong, C.

    2008-01-01

    Studies of naturally occurring and artificially introduced carbon dust are conducted in DIII-D and TEXTOR. In DIII-D, dust does not present operational concerns except immediately after entry vents. Energetic plasma disruptions produce significant amounts of dust. However, dust production by disruptions alone is insufficient to account for the estimated in-vessel dust inventory in DIII-D. Submicron sized dust is routinely observed using Mie scattering from a Nd:Yag laser. The source is strongly correlated with the presence of Type I edge localized modes (ELMs). Larger size (0.005-1 mm diameter) dust is observed by optical imaging, showing elevated dust levels after entry vents. Inverse dependence of the dust velocity on the inferred dust size is found from the imaging data. Migration of pre-characterized carbon dust is studied in DIII-D and TEXTOR by injecting micron-size dust in plasma discharges. In DIII-D, a sample holder filled with ∼30 mg of dust is introduced in the lower divertor and exposed to high-power ELMing H-mode discharges with strike points swept across the divertor floor. After a brief exposure (∼0.1 s) at the outer strike point, part of the dust is injected into the plasma, raising the core carbon density by a factor of 2-3 and resulting in a twofold increase of the radiated power. Individual dust particles are observed moving at velocities of 10-100 m/s, predominantly in the toroidal direction, consistent with the drag force from the deuteron flow and in agreement with modeling by the 3D DustT code. In TEXTOR, instrumented dust holders with 1-45 mg of dust are exposed in the scrape-off layer 0-2 cm radially outside of the last closed flux surface in discharges heated with neutral beam injection (NBI) power of 1.4 MW. Dust is launched either in the beginning of a discharge or at the initiation of NBI, preferentially in a direction perpendicular to the toroidal magnetic field. At the given configuration of the launch, the dust did not penetrate

  2. Developing an early warning system for storm surge inundation in the Philippines

    Science.gov (United States)

    Tablazon, J.; Caro, C. V.; Lagmay, A. M. F.; Briones, J. B. L.; Dasallas, L.; Lapidez, J. P.; Santiago, J.; Suarez, J. K.; Ladiero, C.; Gonzalo, L. A.; Mungcal, M. T. F.; Malano, V.

    2014-10-01

    A storm surge is the sudden rise of sea water generated by an approaching storm, over and above the astronomical tides. This event imposes a major threat in the Philippine coastal areas, as manifested by Typhoon Haiyan on 8 November 2013 where more than 6000 people lost their lives. It has become evident that the need to develop an early warning system for storm surges is of utmost importance. To provide forecasts of the possible storm surge heights of an approaching typhoon, the Nationwide Operational Assessment of Hazards under the Department of Science and Technology (DOST-Project NOAH) simulated historical tropical cyclones that entered the Philippine Area of Responsibility. Bathymetric data, storm track, central atmospheric pressure, and maximum wind speed were used as parameters for the Japan Meteorological Agency Storm Surge Model. The researchers calculated the frequency distribution of maximum storm surge heights of all typhoons under a specific Public Storm Warning Signal (PSWS) that passed through a particular coastal area. This determines the storm surge height corresponding to a given probability of occurrence. The storm surge heights from the model were added to the maximum astronomical tide data from WXTide software. The team then created maps of probable area inundation and flood levels of storm surges along coastal areas for a specific PSWS using the results of the frequency distribution. These maps were developed from the time series data of the storm tide at 10 min intervals of all observation points in the Philippines. This information will be beneficial in developing early warnings systems, static maps, disaster mitigation and preparedness plans, vulnerability assessments, risk-sensitive land use plans, shoreline defense efforts, and coastal protection measures. Moreover, these will support the local government units' mandate to raise public awareness, disseminate information about storm surge hazards, and implement appropriate counter

  3. Magnetic storm effect on the occurrence of ionospheric irregularities at an equatorial station in the African sector

    Directory of Open Access Journals (Sweden)

    Olushola Abel Oladipo

    2014-01-01

    Full Text Available Large-scale ionospheric irregularities usually measured by GPS TEC fluctuation indices are regular occurrence at the equatorial region shortly after sunset around solar maximum. Magnetic storm can trigger or inhibit the generation of these irregularities depending on the local time the main phase of a particular storm occurs. We studied the effect of nine (9 distinct storms on the occurrence of ionospheric irregularities at Fraceville in Gabon (Lat = −1.63˚, Long = 13.55˚, dip lat. = −15.94˚, an equatorial station in the African sector. These storms occurred between November 2001 and September 2002. We used TEC fluctuation indices (i.e. ROTI and ROTIAVE estimated from 30 s interval Rinex data and also we used the storm indices (i.e. Dst, dDst/dt, and IMF BZ to predict the likely effect of each storm on the irregularities occurrence at this station. The results obtained showed that most of the storms studied inhibited ionospheric irregularities. Only one out of all the storms studied (i.e. September 4, 2002 storms with the main phase on the night of September 7-8 triggered post-midnight ionospheric irregularities. There are two of the storms during which ionospheric irregularities were observed. However, these may not be solely attributed to the storms event because the level of irregularities observed during these two storms is comparable to that observed during previous days before the storms. For this station and for the storms investigated, it seems like a little modification to the use of Aarons categories in terms of the local time the maximum negative Dst occurs could lead to a better prediction. However, it would require investigating many storms during different level of solar activities and at different latitudes to generalize this modification.

  4. Uncertainty Assessment in Urban Storm Water Drainage Modelling

    DEFF Research Database (Denmark)

    Thorndahl, Søren

    The object of this paper is to make an overall description of the author's PhD study, concerning uncertainties in numerical urban storm water drainage models. Initially an uncertainty localization and assessment of model inputs and parameters as well as uncertainties caused by different model...

  5. Whither Cometary Dust?

    Science.gov (United States)

    Lisse, Carey M.

    2010-10-01

    In this paper I will discuss recent findings that have important implications for our understanding of the formation and evolution of primitive solar system dust, including: - Nesvorny et al. (2010), following up on their dynamical analyses of the zodiacal dust bands as sourced by the breakup of the Karin (5Mya) and Veritas (8Mya) asteroid families, argue that over 90% of the interplanetary dust cloud at 1 AU comes from JFC comets with near-circularized, low inclination orbits. This implies that the noted IPD collections of anhydrous and hydrous dust particles are likely to be from Oort cloud and JFC comets, respectively, not from asteroids and comets as thought in the past. Hydrous dust particles from comets like 85P/Wild2 and 9P/Tempel 1 would be consistent with results from the STARDUST and Deep Impact experiments. - Estimates of the dust particle size distributions (PSDs) in the comae of 85P/Wild2 (Green et al. 2004, 2007) and 73P/SW-3 (Sitko et al. 2010, Vaubaillon & Reach 2010) and in the trails of comets (Reach et al. 2007) have broken power law structure, with a plateau enhancement of particles of 1 mm - 1 cm in size. This size is also the size of most chondritic inclusions, and the predicted size range of the "aggregational barrier", where collisions between dust particles become destructive. - Studies of the albedo and polarization properties of cometary dust (Kolokolova et al. 2007) suggest there are 2 major groupings, one with low scattering capability and one with high. While these families could possibly have been explained by systematics in the PSDs of the emitted dust, independent work by Lisse et al. (2008) on the mineralogy of a number of highly dusty comets has shown evidence for one family of comets with highly crystalline dust and another with highly amorphous dust.

  6. Dust grains from the heart of supernovae

    Science.gov (United States)

    Bocchio, M.; Marassi, S.; Schneider, R.; Bianchi, S.; Limongi, M.; Chieffi, A.

    2016-03-01

    initial dust mass. However, the largest dust mass destruction is predicted to occur between 103 and 105 yr after the explosions. Since the oldest SN in the sample has an estimated age of 4800 yr, current observations can only provide an upper limit to the mass of SN dust that will enrich the interstellar medium, the so-called effective dust yields. We find that only between 1-8% of the currently observed mass will survive, resulting in an average SN effective dust yield of (1.55 ± 1.48) × 10-2M⊙. This agrees well with the values adopted in chemical evolution models that consider the effect of the SN reverse shock. We discuss the astrophysical implications of our results for dust enrichment in local galaxies and at high redshift.

  7. Communication plan for windblown dust.

    Science.gov (United States)

    2015-05-01

    Windblown dust events occur in Arizona, and blowing dust has been considered a contributing factor to serious crashes on the : segment of Interstate 10 (I10) between Phoenix and Tucson, as well as on other Arizona roadways. Arizonas dust events...

  8. Current understanding of magnetic storms: Storm-substorm relationships

    International Nuclear Information System (INIS)

    Kamide, Y.; Gonzalez, W.D.; Baumjohann, W.; Daglis, I.A.; Grande, M.; Joselyn, J.A.; Singer, H.J.; McPherron, R.L.; Phillips, J.L.; Reeves, E.G.; Rostoker, G.; Sharma, A.S.; Tsurutani, B.T.

    1998-01-01

    This paper attempts to summarize the current understanding of the storm/substorm relationship by clearing up a considerable amount of controversy and by addressing the question of how solar wind energy is deposited into and is dissipated in the constituent elements that are critical to magnetospheric and ionospheric processes during magnetic storms. (1) Four mechanisms are identified and discussed as the primary causes of enhanced electric fields in the interplanetary medium responsible for geomagnetic storms. It is pointed out that in reality, these four mechanisms, which are not mutually exclusive, but interdependent, interact differently from event to event. Interplanetary coronal mass ejections (ICMEs) and corotating interaction regions (CIRs) are found to be the primary phenomena responsible for the main phase of geomagnetic storms. The other two mechanisms, i.e., HILDCAA (high-intensity, long-duration, continuous auroral electrojet activity) and the so-called Russell-McPherron effect, work to make the ICME and CIR phenomena more geoeffective. The solar cycle dependence of the various sources in creating magnetic storms has yet to be quantitatively understood. (2) A serious controversy exists as to whether the successive occurrence of intense substorms plays a direct role in the energization of ring current particles or whether the enhanced electric field associated with southward IMF enhances the effect of substorm expansions. While most of the Dst variance during magnetic storms can be solely reproduced by changes in the large-scale electric field in the solar wind and the residuals are uncorrelated with substorms, recent satellite observations of the ring current constituents during the main phase of magnetic storms show the importance of ionospheric ions. This implies that ionospheric ions, which are associated with the frequent occurrence of intense substorms, are accelerated upward along magnetic field lines, contributing to the energy density of the

  9. Optical and microphysical properties of natural mineral dust and anthropogenic soil dust near dust source regions over northwestern China

    Science.gov (United States)

    Wang, Xin; Wen, Hui; Shi, Jinsen; Bi, Jianrong; Huang, Zhongwei; Zhang, Beidou; Zhou, Tian; Fu, Kaiqi; Chen, Quanliang; Xin, Jinyuan

    2018-02-01

    Mineral dust aerosols (MDs) not only influence the climate by scattering and absorbing solar radiation but also modify cloud properties and change the ecosystem. From 3 April to 16 May 2014, a ground-based mobile laboratory was deployed to measure the optical and microphysical properties of MDs near dust source regions in Wuwei, Zhangye, and Dunhuang (in chronological order) along the Hexi Corridor over northwestern China. Throughout this dust campaign, the hourly averaged (±standard deviation) aerosol scattering coefficients (σsp, 550 nm) of the particulates with aerodynamic diameters less than 2.5 µm (PM2.5) at these three sites were sequentially 101.5 ± 36.8, 182.2 ± 433.1, and 54.0 ± 32.0 Mm-1. Correspondingly, the absorption coefficients (σap, 637 nm) were 9.7 ± 6.1, 6.0 ± 4.6, and 2.3 ± 0.9 Mm-1; single-scattering albedos (ω, 637 nm) were 0.902 ± 0.025, 0.931 ± 0.037, and 0.949 ± 0.020; and scattering Ångström exponents (Åsp, 450-700 nm) of PM2.5 were 1.28 ± 0.27, 0.77 ± 0.51, and 0.52 ± 0.31. During a severe dust storm in Zhangye (i.e., from 23 to 25 April), the highest values of σsp2.5 ( ˜ 5074 Mm-1), backscattering coefficient (σbsp2.5, ˜ 522 Mm-1), and ω637 ( ˜ 0.993) and the lowest values of backscattering fraction (b2.5, ˜ 0.101) at 550 nm and Åsp2.5 ( ˜ -0.046) at 450-700 nm, with peak values of aerosol number size distribution (appearing at the particle diameter range of 1-3 µm), exhibited that the atmospheric aerosols were dominated by coarse-mode dust aerosols. It is hypothesized that the relatively higher values of mass scattering efficiency during floating dust episodes in Wuwei and Zhangye are attributed to the anthropogenic soil dust produced by agricultural cultivations.

  10. Dust in planetary nebulae

    International Nuclear Information System (INIS)

    Mathis, J.S.

    1978-01-01

    The author's review concentrates on theoretical aspects of dust in planetary nebulae (PN). He considers the questions: how much dust is there is PN; what is its composition; what effects does it have on the ionization structure, on the dynamics of the nebula. (Auth.)

  11. Toxicity of lunar dust

    NARCIS (Netherlands)

    Linnarsson, D.; Carpenter, J.; Fubini, B.; Gerde, P.; Loftus, D.; Prisk, K.; Staufer, U.; Tranfield, E.; van Westrenen, W.

    2012-01-01

    The formation, composition and physical properties of lunar dust are incompletely characterised with regard to human health. While the physical and chemical determinants of dust toxicity for materials such as asbestos, quartz, volcanic ashes and urban particulate matter have been the focus of

  12. Combustible dust tests

    Science.gov (United States)

    The sugar dust explosion in Georgia on February 7, 2008 killed 14 workers and injured many others (OSHA, 2009). As a consequence of this explosion, OSHA revised its Combustible Dust National Emphasis (NEP) program. The NEP targets 64 industries with more than 1,000 inspections and has found more tha...

  13. Respirable dust measured downwind during rock dust application.

    Science.gov (United States)

    Harris, M L; Organiscak, J; Klima, S; Perera, I E

    2017-05-01

    The Pittsburgh Mining Research Division of the U.S. National Institute for Occupational Safety and Health (NIOSH) conducted underground evaluations in an attempt to quantify respirable rock dust generation when using untreated rock dust and rock dust treated with an anticaking additive. Using personal dust monitors, these evaluations measured respirable rock dust levels arising from a flinger-type application of rock dust on rib and roof surfaces. Rock dust with a majority of the respirable component removed was also applied in NIOSH's Bruceton Experimental Mine using a bantam duster. The respirable dust measurements obtained downwind from both of these tests are presented and discussed. This testing did not measure miners' exposure to respirable coal mine dust under acceptable mining practices, but indicates the need for effective continuous administrative controls to be exercised when rock dusting to minimize the measured amount of rock dust in the sampling device.

  14. The Storm Time Evolution of the Ionospheric Disturbance Plasma Drifts

    Science.gov (United States)

    Zhang, Ruilong; Liu, Libo; Le, Huijun; Chen, Yiding; Kuai, Jiawei

    2017-11-01

    In this paper, we use the C/NOFS and ROCSAT-1 satellites observations to analyze the storm time evolution of the disturbance plasma drifts in a 24 h local time scale during three magnetic storms driven by long-lasting southward IMF Bz. The disturbance plasma drifts during the three storms present some common features in the periods dominated by the disturbance dynamo. The newly formed disturbance plasma drifts are upward and westward at night, and downward and eastward during daytime. Further, the disturbance plasma drifts are gradually evolved to present significant local time shifts. The westward disturbance plasma drifts gradually migrate from nightside to dayside. Meanwhile, the dayside downward disturbance plasma drifts become enhanced and shift to later local time. The local time shifts in disturbance plasma drifts are suggested to be mainly attributed to the evolution of the disturbance winds. The strong disturbance winds arisen around midnight can constantly corotate to later local time. At dayside the westward and equatorward disturbance winds can drive the F region dynamo to produce the poleward and westward polarization electric fields (or the westward and downward disturbance drifts). The present results indicate that the disturbance winds corotated to later local time can affect the local time features of the disturbance dynamo electric field.

  15. Saharan and Arabian Dust Aerosols: A Comparative Case Study of Lidar Ratio

    Directory of Open Access Journals (Sweden)

    Córdoba-Jabonero Carmen

    2016-01-01

    Full Text Available This work presents a first comparative study of the Lidar Ratio (LR values obtained for dust particles in two singular dust-influenced regions: the Canary Islands (Spain, close to the African coast in the North Atlantic Ocean, frequently affected by Saharan dust intrusions, and the Kuwait area (Arabian Peninsula as usually influenced by Arabian dust storms. Synergetic lidar and sun-photometry measurements are carried out in two stations located in these particular regions for that purpose. Several dusty cases were observed during 2014 in both stations and, just for illustration, two specific dusty case studies have been selected and analyzed to be shown in this work. In general, mean LR values of 54 sr and 40 sr were obtained in these studies cases for Saharan and Arabian dust particles, respectively. Indeed, these results are in agreement with other studies performed for dust particles arriving from similar desert areas. In particular, the disparity found in Saharan and Arabian dust LR values can be based on the singular composition of the suspended dust aerosols over each station. These results can be useful for CALIPSO extinction retrievals, where a single LR value (40 sr is assumed for pure dust particles independently on the dust source region.

  16. Lunar Dust Mitigation Screens

    Science.gov (United States)

    Knutson, Shawn; Holloway, Nancy

    With plans for the United States to return to the moon, and establish a sustainable human presence on the lunar surface many issues must be successfully overcome. Lunar dust is one of a number of issues with the potential to create a myriad of problems if not adequately addressed. Samples of dust brought back from Apollo missions show it to be soft, yet sharp and abrasive. The dust consists of a variety of morphologies including spherical, angular blocks, shards, and a number of irregular shapes. One of the main issues with lunar dust is its attraction to stick to anything it comes in contact with (i.e. astronauts, equipment, habitats, etc.). Ionized radiation from the sun strikes the moon's surface and creates an electrostatic charge on the dust. Further, the dust harbors van der Waals forces making it especially difficult to separate once it sticks to a surface. During the Apollo missions, it was discovered that trying to brush the lunar dust from spacesuits was not effective, and rubbing it caused degradation of the suit material. Further, when entering the lunar module after moonwalks, the astronauts noted that the dust was so prolific inside the cabin that they inhaled and ingested it, causing at least one of them, Harrison "Jack" Schmidt, to report irritation of the throat and lungs. It is speculated that the dust could also harm an astronaut's nervous and cardiovascular systems, especially during an extended stay. In addition to health issues, the dust can also cause problems by scouring reflective coatings off of thermal blankets, and roughening surfaces of windows and optics. Further, panels on solar cells and photovoltaics can also be compromised due to dust sticking on the surfaces. Lunar dust has the capacity to penetrate seals, interfere with connectors, as well as mechanisms on digging machines, all of which can lead to problems and failure. To address lunar dust issues, development of electrostatic screens to mitigate dust on sur-faces is currently

  17. Stochastic Modeling of Empirical Storm Loss in Germany

    Science.gov (United States)

    Prahl, B. F.; Rybski, D.; Kropp, J. P.; Burghoff, O.; Held, H.

    2012-04-01

    Based on German insurance loss data for residential property we derive storm damage functions that relate daily loss with maximum gust wind speed. Over a wide range of loss, steep power law relationships are found with spatially varying exponents ranging between approximately 8 and 12. Global correlations between parameters and socio-demographic data are employed to reduce the number of local parameters to 3. We apply a Monte Carlo approach to calculate German loss estimates including confidence bounds in daily and annual resolution. Our model reproduces the annual progression of winter storm losses and enables to estimate daily losses over a wide range of magnitude.

  18. Mineralogy of dust deposited during the Harmattan season in Ghana

    DEFF Research Database (Denmark)

    He, Changling; Breuning-Madsen, Henrik; Awadzi, Theodore W.

    2007-01-01

    Ocean. In this project, we studied samples of dust and topsoils in various agroecological zones, from the north to the south of Ghana, focussing mainly on the mineralogy of these materials. Some data about grain sizes and morphology of the samples are also presented. Feldspars, together with quartz......In Ghana, a dust-laden Harmattan wind blows from the Sahara in the period November to March. Some of the dust is trapped in the vegetation, in lakes and other inland waters, and a little on the bare land, whereas the rest of the dust is blown further away to the Ivory Coast or out into the Atlantic......, are the common minerals found in Harmattan dust, but the relative contents of K-feldspars and plagioclase vary markedly in the different zones. This variation is consistent with changes in the relative content of the feldspars in the topsoil, indicating a substantial local contribution to the Harmattan dust...

  19. Tormenta tiroidea Thyroid storm

    Directory of Open Access Journals (Sweden)

    Lisette Leal Curí

    2012-12-01

    Full Text Available La tormenta tiroidea es una de las situaciones más críticas entre las emergencias endocrinas y tiene una significativa mortalidad. La etiología más común de tirotoxicosis es la enfermedad de Graves y el factor precipitante que predomina es la infección. Clínicamente se caracteriza por la disfunción de varios sistemas (termorregulador, nervioso central, gastrointestinal y cardiovascular, con niveles de hormonas tiroideas libres o totales por encima de los valores normales. El tratamiento debe tener un enfoque multidisciplinario, e incluye medidas de soporte en unidades de cuidados intensivos, normalización de la temperatura corporal, reducción de la producción y liberación de hormonas tiroideas, con antitiroideos de síntesis y yodo respectivamente, bloqueo de los efectos periféricos mediante la administración de beta-bloqueadores, y corrección del factor desencadenante. Una vez que el paciente se encuentra estable es necesario planificar una terapia definitiva que impida la recurrencia futura de la crisis tirotóxica.The thyroid storm is one of the most critical situations in the endocrine emergencies and exhibits a significant mortality rate. The most common etiology of thyrotoxicosis is Graves' disease and the predominant precipitating factor is infection. The clinical characteristics are dysfunction of several systems (heat-regulator, central nervous, gastrointestinal and cardiovascular, and levels of total or free thyroid hormones that exceed the normal values. The treatment must be multidisciplinary and include support measures in intensive care units, normalization of body temperature, reduction of the production and the release of thyroid hormones by using synthesis and iodine anti-thyroid products respectively, blockade of the peripheral effects through administration of Beta-blockers and correction of the unleashing factor. Once the patients are stabilized, it is necessary to plan the final therapy that will prevent the

  20. Continental-Scale Estimates of Runoff Using Future Climate Storm Events

    Science.gov (United States)

    Recent runoff events have had serious repercussions to both natural ecosystems and human infrastructure. Understanding how shifts in storm event intensities are expected to change runoff responses are valuable for local, regional, and landscape planning. To address this challenge...

  1. Changing statistics of storms in the North Atlantic?

    International Nuclear Information System (INIS)

    Storch, H. von; Guddal, J.; Iden, K.A.; Jonsson, T.; Perlwitz, J.; Reistad, M.; Ronde, J. de; Schmidt, H.; Zorita, E.

    1993-01-01

    Problems in the present discussion about increasing storminess in the North Atlantic area are discusesd. Observational data so far available do not indicate a change in the storm statistics. Output from climate models points to an itensified storm track in the North Atlantic, but because of the limited skill of present-day climate models in simulating high-frequency variability and regional details any such 'forecast' has to be considered with caution. A downscaling procedure which relates large-scale time-mean aspects of the state of the atmosphere and ocean to the local statistics of storms is proposed to reconstruct past variations of high-frequency variability in the atmosphere (storminess) and in the sea state (wave statistics). First results are presented. (orig.)

  2. Space weather effects on radio propagation: study of the CEDAR, GEM and ISTP storm events

    Directory of Open Access Journals (Sweden)

    D. V. Blagoveshchensky

    2008-06-01

    Full Text Available The impact of 14 geomagnetic storms from a list of CEDAR, GEM and ISTP storms, that occurred during 1997–1999, on radio propagation conditions has been investigated. The propagation conditions were estimated through variations of the MOF and LOF (the maximum and lowest operation frequencies on three high-latitude HF radio paths in north-west Russia. Geophysical data of Dst, Bz, AE as well as some riometer data from Sodankyla observatory, Finland, were used for the analysis. It was shown that the storm impact on the ionosphere and radio propagation for each storm has an individual character. Nevertheless, there are common patterns in variation of the propagation parameters for all storms. Thus, the frequency range Δ=MOF−LOF increases several hours before a storm, then it narrows sharply during the storm, and expands again several hours after the end of the storm. This regular behaviour should be useful for the HF radio propagation predictions and frequency management at high latitudes. On the trans-auroral radio path, the time interval when the signal is lost through a storm (tdes depends on the local time. For the day-time storms an average value tdes is 6 h, but for night storms tdes is only 2 h. The ionization increase in the F2 layer before storm onset is 3.5 h during the day-time and 2.4 h at night. Mechanisms to explain the observed variations are discussed including some novel possibilities involving energy input through the cusp.

  3. Space weather effects on radio propagation: study of the CEDAR, GEM and ISTP storm events

    Directory of Open Access Journals (Sweden)

    D. V. Blagoveshchensky

    2008-06-01

    Full Text Available The impact of 14 geomagnetic storms from a list of CEDAR, GEM and ISTP storms, that occurred during 1997–1999, on radio propagation conditions has been investigated. The propagation conditions were estimated through variations of the MOF and LOF (the maximum and lowest operation frequencies on three high-latitude HF radio paths in north-west Russia. Geophysical data of Dst, Bz, AE as well as some riometer data from Sodankyla observatory, Finland, were used for the analysis. It was shown that the storm impact on the ionosphere and radio propagation for each storm has an individual character. Nevertheless, there are common patterns in variation of the propagation parameters for all storms. Thus, the frequency range Δ=MOF−LOF increases several hours before a storm, then it narrows sharply during the storm, and expands again several hours after the end of the storm. This regular behaviour should be useful for the HF radio propagation predictions and frequency management at high latitudes. On the trans-auroral radio path, the time interval when the signal is lost through a storm (tdes depends on the local time. For the day-time storms an average value tdes is 6 h, but for night storms tdes is only 2 h. The ionization increase in the F2 layer before storm onset is 3.5 h during the day-time and 2.4 h at night. Mechanisms to explain the observed variations are discussed including some novel possibilities involving energy input through the cusp.

  4. Contribution of Asian dust to atmospheric deposition of radioactive cesium (137Cs)

    International Nuclear Information System (INIS)

    Fukuyama, Taijiro; Fujiwara, Hideshi

    2008-01-01

    Both Asian dust (kosa) transported from the East Asian continent and locally suspended dust near monitoring sites contribute to the observed atmospheric deposition of 137 Cs in Japan. To estimate the relative contribution of these dust phenomena to the total 137 Cs deposition, we monitored weekly deposition of mineral particles and 137 Cs in spring. Deposition of 137 Cs from a single Asian dust event was 62.3 mBq m -2 and accounted for 67% of the total 137 Cs deposition during the entire monitoring period. Furthermore, we found high 137 Cs specific activity in the Asian dust deposition sample. Although local dust events contributed to 137 Cs deposition, their contribution was considerably smaller than that of Asian dust. We conclude that the primary source of atmospheric 137 Cs in Japan is dust transported from the East Asian continent

  5. Storm runoff analysis using environmental isotopes and major ions

    International Nuclear Information System (INIS)

    Fritz, P.; Cherry, J.A.; Sklash, M.; Weyer, K.U.

    1976-01-01

    At a given locality the oxygen-18 content of rainwater varies from storm to storm but within broad seasonal trends. Very frequently, especially during heavy summer storms, the stable isotope composition of rainwater differs from that of the groundwater in the area. This isotopic difference can be used to differentiate between 'prestorm' and 'rain' components in storm runoff. This approach to the use of natural 18 O was applied in four hydrogeologically very different basins in Canada. Their surface areas range from less than 2km 2 to more than 700km 2 . Before, during and after the storm events samples of stream water, groundwater and rain were analysed for 18 O and in some cases for deuterium, major ions and electrical conductance. The 18 O hydrograph separations show that groundwater was a major component of the runoff in each of the basins, and usually exceeded 50% of the total water discharged. Even at peak stream flow most of discharge was subsurface water. The identification of geographic sources rather than time sources appears possible if isotope techniques are used in conjunction with chemical analyses, hydrological data - such as flow measurements - and visual observations. (author)

  6. The relationship between the Asian dust and Arctic Oscillation: An observational investigation

    Science.gov (United States)

    Lee, Y.; Kim, J.; Cho, H.

    2009-12-01

    The Arctic Oscillation (AO) represents the leading empirical orthogonal function of winter sea level pressure (SLP) fields, which resembles North Atlantic Oscillation, but has a more zonally symmetric structure (Thompson and Wallace, 1998; Wallace, 2000; Wu and Wang, 2002). This primary mode of the internal dynamics in the atmosphere predominates the Extratropical Northern Hemisphere circulation from surface to the lower stratosphere showing an equivalent barotropic structure during cold season(November-April) (Thompson and Wallace, 2000). Also, the Asian dust storms show strong interannual variation (Sun et al., 2001; Yoshino, 2002; Zhao et al., 2006; Hara et al., 2006), which are suggested to be associated with climate indices. Therefore, the purpose of this study is to identify the possible connection for the AO and the Asian dust emission during periods from late winter to spring, based on the observational investigations. In order to examine these complex associations closely, the Aerosol Index (AI) from Total Ozone Mapping Spectrometer (TOMS) are used starting from November 1978 to December 1999, except for data pause from May 1993 to August 1996. SLP and geopotential height at 500hPa (Z500) monthly fields are derived from the European Centre for Medium-Range Weather Forecasts (ECMWF) reanalyses (1958-2001). Also, source regions of Asian dust are mainly focused on three source areas, including the Taklimakan Desert (R1), Badain Jaran Desert (R2), and Mongolia (R3) in this study. In composite study during different phases of AO, the AO exhibits a “negative phase” with relatively high pressure over the polar region and low pressure at mid-latitudes (about 45 degrees North). In strong “negative phase” of AO, decrease of AO is found to be associated with decreases of local tropospheric temperature, U-wind, and geopotential height and strong north-south gradients over the source regions of Asian dust. Therefore, we also notice that a negative index phase

  7. Disturbance to desert soil ecosystems contributes to dust-mediated impacts at regional scales

    Science.gov (United States)

    Pointing, Stephen B.; Belnap, Jayne

    2014-01-01

    This review considers the regional scale of impacts arising from disturbance to desert soil ecosystems. Deserts occupy over one-third of the Earth’s terrestrial surface, and biological soil covers are critical to stabilization of desert soils. Disturbance to these can contribute to massive destabilization and mobilization of dust. This results in dust storms that are transported across inter-continental distances where they have profound negative impacts. Dust deposition at high altitudes causes radiative forcing of snowpack that leads directly to altered hydrological regimes and changes to freshwater biogeochemistry. In marine environments dust deposition impacts phytoplankton diazotrophy, and causes coral reef senescence. Increasingly dust is also recognized as a threat to human health.

  8. Space storms as natural hazards

    Directory of Open Access Journals (Sweden)

    L. I. Dorman

    2008-04-01

    Full Text Available Eruptive activity of the Sun produces a chain of extreme geophysical events: high-speed solar wind, magnetic field disturbances in the interplanetary space and in the geomagnetic field and also intense fluxes of energetic particles. Space storms can potentially destroy spacecrafts, adversely affect astronauts and airline crew and human health on the Earth, lead to pipeline breaking, melt electricity transformers, and discontinue transmission. In this paper we deal with two consequences of space storms: (i rise in failures in the operation of railway devices and (ii rise in myocardial infarction and stroke incidences.

  9. Spirit Feels Dust Gust

    Science.gov (United States)

    2007-01-01

    On sol 1149 (March 28, 2007) of its mission, NASA's Mars Exploration Rover Spirit caught a wind gust with its navigation camera. A series of navigation camera images were strung together to create this movie. The front of the gust is observable because it was strong enough to lift up dust. From assessing the trajectory of this gust, the atmospheric science team concludes that it is possible that it passed over the rover. There was, however, no noticeable increase in power associated with this gust. In the past, dust devils and gusts have wiped the solar panels of dust, making it easier for the solar panels to absorb sunlight.

  10. Numerical study of Asian dust transport during the springtime of 2001 simulated with the Chemical Weather Forecasting System (CFORS) model

    Science.gov (United States)

    Uno, Itsushi; Satake, Shinsuke; Carmichael, Gregory R.; Tang, Youhua; Wang, Zifa; Takemura, Toshihiko; Sugimoto, Nobuo; Shimizu, Atsushi; Murayama, Toshiyuki; Cahill, Thomas A.; Cliff, Steven; Uematsu, Mitsuo; Ohta, Sachio; Quinn, Patricia K.; Bates, Timothy S.

    2004-10-01

    The regional-scale aerosol transport model Chemical Weather Forecasting System (CFORS) is used for analysis of large-scale dust phenomena during the Asian Pacific Regional Characterization Experiment (ACE-Asia) intensive observation. Dust modeling results are examined with the surface weather reports, satellite-derived dust index (Total Ozone Mapping Spectrometer (TOMS) Aerosol Index (AI)), Mie-scattering lidar observation, and surface aerosol observations. The CFORS dust results are shown to accurately reproduce many of the important observed features. Model analysis shows that the simulated dust vertical loading correlates well with TOMS AI and that the dust loading is transported with the meandering of the synoptic-scale temperature field at the 500-hPa level. Quantitative examination of aerosol optical depth shows that model predictions are within 20% difference of the lidar observations for the major dust episodes. The structure of the ACE-Asia Perfect Dust Storm, which occurred in early April, is clarified with the help of the CFORS model analysis. This storm consisted of two boundary layer components and one elevated dust (>6-km height) feature (resulting from the movement of two large low-pressure systems). Time variation of the CFORS dust fields shows the correct onset timing of the elevated dust for each observation site, but the model results tend to overpredict dust concentrations at lower latitude sites. The horizontal transport flux at 130°E longitude is examined, and the overall dust transport flux at 130°E during March-April is evaluated to be 55 Tg.

  11. "Dust Devils": Gardening Agents on the Surface of Mars, and Hidden Hazards to Human Exploration?

    Science.gov (United States)

    Marshall, J.; Smith, P.; White, B.; Farrell, W.

    1999-09-01

    dust devils are to be expected in reasonable abundance. First, from a geological perspective, the vortices will act as "gardening" agents for the top few centimeters of entrainable material. Over time (hundreds of millions, or billions of years being available), they will cover the surface with scouring paths, and the grain sizes that can be lofted by a vortex probably extends over the whole sand to dust range. The depositional paths are, of course, much larger, so that vortex-induced deposition is more widespread than vortex-induced erosion, and will without doubt, affect the whole region in which the dust devils occur (this might explain why rocks at the Viking site seemed oddly capped with dust in a region apparently subject to general aeolian scouring). On Mars, the lift forces in dust devils might be less than on earth owing to the much thinner atmosphere, but this may be counterbalanced by lower gravity and greater vortex velocities. Certainly, when active, other aeolian phenomena on Mars --sand motion and dust storms, seem no less energetic and no less capable of lofting sediments than equivalent terrestrial aeolian phenomena. Every several years, within the current climatic regime, the surface of Mars is subject to light dust fall from global dust storms. Over time, this should develop a very uniform surface layer, with commensurate uniformity in grain size, mineralogy, albedo, color, and general spectroscopic properties. Dust devils will disturb this situation by continually mixing the surface dust with underlying layers, perhaps composed of silt and sand. This size mixing will also involve compositional mixing. After some years, the thin layer of dust that may be difficult to entrain alone, becomes progressively mixed with coarser materials that could reduce the general aeolian threshold of the soil. Certainly the continual disturbance by vorticity will prevent surface stabilization that may bind or indurate grains (caused by slow cementation or ice welding

  12. Simulating southwestern U.S. desert dust influences on supercell thunderstorms

    Science.gov (United States)

    Lerach, David G.; Cotton, William R.

    2018-05-01

    Three-dimensional numerical simulations were performed to evaluate potential southwestern U.S. dust indirect microphysical and direct radiative impacts on a real severe storms outbreak. Increased solar absorption within the dust plume led to modest increases in pre-storm atmospheric stability at low levels, resulting in weaker convective updrafts and less widespread precipitation. Dust microphysical impacts on convection were minor in comparison, due in part to the lofted dust concentrations being relatively few in number when compared to the background (non-dust) aerosol population. While dust preferentially serving as cloud condensation nuclei (CCN) versus giant CCN had opposing effects on warm rain production, both scenarios resulted in ample supercooled water and subsequent glaciation aloft, yielding larger graupel and hail. Associated latent heating from condensation and freezing contributed little to overall updraft invigoration. With reduced rain production overall, the simulations that included dust effects experienced slightly reduced grid-cumulative precipitation and notably warmer and spatially smaller cold pools. Dust serving as ice nucleating particles did not appear to play a significant role. The presence of dust ultimately reduced the number of supercells produced but allowed for supercell evolution characterized by consistently higher values of relative vertical vorticity within simulated mesocyclones. Dust radiative and microphysical effects were relatively small in magnitude when compared to those from altering the background convective available potential energy and vertical wind shear. It is difficult to generalize such findings from a single event, however, due to a number of case-specific environmental factors. These include the nature of the low-level moisture advection and characteristics of the background aerosol distribution.

  13. Dust modeling over East Asia during the summer of 2010 using the WRF-Chem model

    Science.gov (United States)

    Zhang, B.; Huang, J.; Chen, S.

    2017-12-01

    An intense summer dust storm over East Asia during June 24-27, 2010, was systematically analyzed using the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) and a variety of in situ measurements and satellite retrievals. The results showed that the WRF-Chem model captured the spatial and temporal distributions of meteorological factors and dust aerosols over East Asia. This summer dust storm was initiated by the approach of a transverse trough in the northwestern Xinjiang. Because of the passage of the cutoff-low, a large amount of cold air was transported southward and further enhanced in the narrow valleys of the Altai and Tianshan Mountains, which resulted in higher wind speeds and huge dust emissions over the Taklimakan Desert (TD). Dust emission fluxes over the TD were as high as 54 μg m-2 s-1 on June 25th. The dust aerosols from the TD then swept across Inner Mongolia, Ningxia and Mongolia, and some were also transported eastward to Beijing, Tianjin, the Hebei region, and even South Korea and Japan. The simulations further showed that summer dust over East Asia exerts an important influence on the radiation budget in the Earth-atmosphere system. Dust heat the atmosphere at a maximum heating rate of 0.14 k day-1, effectively changing the vertical stability of the atmosphere and affecting climate change at regional and even global scales. The dust event-averaged direct radiative forcing induced by dust particles over the TD at all-sky was -6.0, -16.8 and 10.8 W m-2 at the top of the atmosphere, the surface, and in the atmosphere, respectively.

  14. Patterns of Storm Injury and Tree Response

    Science.gov (United States)

    Kevin Smith; Walter Shortle; Kenneth Dudzik

    2001-01-01

    The ice storm of January 1998 in the northeastern United States and adjacent Canada was an extreme example of severe weather that injures trees every year. Broken branches, split branch forks, and snapped stems are all examples of storm injury.

  15. Short-cut transport path for Asian dust directly to the Arctic: a case study

    International Nuclear Information System (INIS)

    Huang, Zhongwei; Huang, Jianping; Wang, Shanshan; Zhou, Tian; Jin, Hongchun; Hayasaka, Tadahiro

    2015-01-01

    Asian dust can be transported long distances from the Taklimakan or Gobi desert to North America across the Pacific Ocean, and it has been found to have a significant impact on ecosystems, climate, and human health. Although it is well known that Asian dust is transported all over the globe, there are limited observations reporting Asian dust transported to the Arctic. We report a case study of a large-scale heavy dust storm over East Asia on 19 March 2010, as shown by ground-based and space-borne multi-sensor observations, as well as NCEP/NCAR reanalysis data and HYSPLIT trajectories. Our analysis suggests that Asian dust aerosols were transported from northwest China to the Arctic within 5 days, crossing eastern China, Japan and Siberia before reaching the Arctic. The results indicate that Asian dust can be transported for long distances along a previously unreported transport path. Evidence from other dust events over the past decade (2001–2010) also supports our results, indicating that dust from 25.2% of Asian dust events has potentially been transported directly to the Arctic. The transport of Asian dust to the Arctic is due to cyclones and the enhanced East Asia Trough (EAT), which are very common synoptic systems over East Asia. This suggests that many other large dust events would have generated long-range transport of dust to the Arctic along this path in the past. Thus, Asian dust potentially affects the Arctic climate and ecosystem, making climate change in the Arctic much more complex to be fully understood. (letter)

  16. Atmospheric dust events in central Asia: Relationship to wind, soil type, and land use

    Science.gov (United States)

    Pi, Huawei; Sharratt, Brenton; Lei, Jiaqiang

    2017-06-01

    Xinjiang Province in northwest China is one of the most important source regions of atmospheric dust in the world. Spatial-temporal characteristics of dust events in the province were investigated by time series analysis of annual dust event frequency and meteorological data collected at 101 meteorological stations from 1960 to 2007. Blowing dust frequency (BDF) and dust storm frequency (DSF) decreased with time in North, South, and East Xinjiang whereas floating dust frequency (FDF) decreased with time only in South and East Xinjiang. Dust concentrations were lower in North than in South Xinjiang and decreased with time in East Xinjiang. Wind significantly influenced the temporal trend in FDF, BDF, and DSF in South Xinjiang and DSF in North Xinjiang. Frequency of dust events was smaller by an order of magnitude in North (10.9 d yr-1) than in South Xinjiang (111.3 d yr-1), possibly due in part to higher annual precipitation in North Xinjiang. Floating dust was most frequently observed in East and South Xinjiang, while blowing dust was most frequently observed in North Xinjiang. The high frequency of floating dust in East and South Xinjiang is likely due to the enclosed terrain that characterizes these regions. Land use and soil type also influenced dust events. Although climate influences frequency of dust events, the occurrence of these events may be reduced most effectively by imposing better land management practices in deciduous forests or orchards characterized by saline soils in respectively North and East Xinjiang and meadows characterized by Guanyu soils in South Xinjiang.

  17. Galactic dust and extinction

    International Nuclear Information System (INIS)

    Lyngaa, G.

    1979-01-01

    The ratio R between visual extinction and colour excess, is slightly larger than 3 and does not vary much throughout our part of the Galaxy. The distribution of dust in the galactic plane shows, on the large scale, a gradient with higher colour excesses towards l=50 0 than towards l=230 0 . On the smaller scale, much of the dust responsible for extinction is situated in clouds which tend to group together. The correlation between positions of interstellar dust clouds and positions of spiral tracers seems rather poor in our Galaxy. However, concentrated dark clouds as well as extended regions of dust show an inclined distribution similar to the Gould belt of bright stars. (Auth.)

  18. Storm Water Management Model (SWMM)

    Science.gov (United States)

    Stormwater discharges continue to cause impairment of our Nation’s waterbodies. Regulations that require the retention and/or treatment of frequent, small storms that dominate runoff volumes and pollutant loads are becoming more common. The U.S. Environmental Protection Agency (E...

  19. Effect of wind speed and relative humidity on atmospheric dust concentrations in semi-arid climates.

    Science.gov (United States)

    Csavina, Janae; Field, Jason; Félix, Omar; Corral-Avitia, Alba Y; Sáez, A Eduardo; Betterton, Eric A

    2014-07-15

    Atmospheric particulate have deleterious impacts on human health. Predicting dust and aerosol emission and transport would be helpful to reduce harmful impacts but, despite numerous studies, prediction of dust events and contaminant transport in dust remains challenging. In this work, we show that relative humidity and wind speed are both determinants in atmospheric dust concentration. Observations of atmospheric dust concentrations in Green Valley, AZ, USA, and Juárez, Chihuahua, México, show that PM10 concentrations are not directly correlated with wind speed or relative humidity separately. However, selecting the data for high wind speeds (>4m/s at 10 m elevation), a definite trend is observed between dust concentration and relative humidity: dust concentration increases with relative humidity, reaching a maximum around 25% and it subsequently decreases with relative humidity. Models for dust storm forecasting may be improved by utilizing atmospheric humidity and wind speed as main drivers for dust generation and transport. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Radioisotope dust pollution monitor

    International Nuclear Information System (INIS)

    Szepke, R.; Harasimczuk, J.; Dobrowiecki, J.

    1990-01-01

    Measuring principles and specification of two dust monitors: station-type AMIZ and portable-type PIK-10 for ambient air pollution are presented. The first one, a fully automatic instrument is destined for permanent monitoring of air pollution in preset sampling time from .25 to 24 hours. The second one was developed as a portable working model. Both instruments display their results in digital form in dust concentration units. (author)

  1. Coal dust symposium

    Energy Technology Data Exchange (ETDEWEB)

    1981-03-01

    This paper gives a report of the paper presented at the symposium held in Hanover on 9 and 10 February 1981. The topics include: the behaviour of dust and coal dust on combustion and explosion; a report on the accidents which occurred at the Laegerdorf cement works' coal crushing and drying plant; current safety requirements at coal crushing and drying plant; and coal crushing and drying. Four papers are individually abstracted. (In German)

  2. Dust devil generation

    International Nuclear Information System (INIS)

    G Onishchenko, O; A Pokhotelov, O; Horton, W; Stenflo, L

    2014-01-01

    The equations describing axi-symmetric nonlinear internal gravity waves in an unstable atmosphere are derived. A hydrodynamic model of a dust devil generation mechanism in such an atmosphere is investigated. It is shown that in an unstably stratified atmosphere the convective plumes with poloidal motion can grow exponentially. Furthermore, it is demonstrated that these convective plumes in an atmosphere with weak large scale toroidal motion are unstable with respect to three-dimensional dust devil generation. (papers)

  3. Shoreline resilience to individual storms and storm clusters on a meso-macrotidal barred beach

    NARCIS (Netherlands)

    Angnuureng, Donatus Bapentire; Almar, Rafael; Senechal, Nadia; Castelle, Bruno; Addo, Kwasi Appeaning; Marieu, Vincent; Ranasinghe, Roshanka

    2017-01-01

    This study investigates the impact of individual storms and storm clusters on shoreline recovery for the meso-to macrotidal, barred Biscarrosse beach in SW France, using 6 years of daily video observations. While the study area experienced 60 storms during the 6-year study period, only 36 storms

  4. The Ring Current Response to Solar and Interplanetary Storm Drivers

    Science.gov (United States)

    Mouikis, C.; Kistler, L. M.; Bingham, S.; Kronberg, E. A.; Gkioulidou, M.; Huang, C. L.; Farrugia, C. J.

    2014-12-01

    The ring current responds differently to the different solar and interplanetary storm drivers such as coronal mass injections, (CME's), corotating interaction regions (CIR's), high-speed streamers and other structures. The resulting changes in the ring current particle pressure, in turn, change the global magnetic field, controlling the transport of the radiation belts. To quantitatively determine the field changes during a storm throughout the magnetosphere, it is necessary to understand the transport, sources and losses of the particles that contribute to the ring current. Because the measured ring current energy spectra depend not only on local processes, but also on the history of the ions along their entire drift path, measurements of ring current energy spectra at two or more locations can be used to strongly constrain the time dependent magnetic and electric fields. In this study we use data predominantly from the Cluster and the Van Allen Probes, covering more than a full solar cycle (from 2001 to 2014). For the period 2001-2012, the Cluster CODIF and RAPID measurements of the inner magnetosphere are the primary data set used to monitor the storm time ring current variability. After 2012, the Cluster data set complements the data from the Van Allen Probes HOPE and RBSPICE instruments, providing additional measurements from different MLT and L shells. Selected storms from this periods, allow us to study the ring current dynamics and pressure changes, as a function of L shell, magnetic local time, and the type of interplanetary disturbances.

  5. 46 CFR 108.221 - Storm rails.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Storm rails. 108.221 Section 108.221 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Construction and Arrangement Rails § 108.221 Storm rails. Each unit must have a storm rail in the following...

  6. 46 CFR 169.329 - Storm rails.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Storm rails. 169.329 Section 169.329 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS SAILING SCHOOL VESSELS Construction and Arrangement Rails and Guards § 169.329 Storm rails. Suitable storm rails or hand grabs must be...

  7. Er Storm P. en hardcore vagabond?

    DEFF Research Database (Denmark)

    Sortkær, Allan

    2002-01-01

    Den vagabond, som vi kender som Storm P.s, er ikke en figur, der kom fra en guddommelig inspiration eller deslige. Den var en allerede velkendt figur, før Storm P. tog den til sig, og figuren gennemgik radikale forandringer gennem Storm P.s liv: Krads social satire, hypervoldelig eller hyggelig...

  8. 46 CFR 116.920 - Storm rails.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Storm rails. 116.920 Section 116.920 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS CARRYING MORE THAN 150... and Guards § 116.920 Storm rails. Suitable storm rails or hand grabs must be installed where necessary...

  9. 46 CFR 177.920 - Storm rails.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Storm rails. 177.920 Section 177.920 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS (UNDER 100 GROSS TONS) CONSTRUCTION AND ARRANGEMENT Rails and Guards § 177.920 Storm rails. Suitable storm rails or hand grabs must be...

  10. 46 CFR 127.320 - Storm rails.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Storm rails. 127.320 Section 127.320 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OFFSHORE SUPPLY VESSELS CONSTRUCTION AND ARRANGEMENTS Rails and Guards § 127.320 Storm rails. Suitable storm rails must be installed in each passageway and at...

  11. 'Nuisance Dust' - a Case for Recalibration?

    Science.gov (United States)

    Datson, Hugh; Marker, Brian

    2013-04-01

    time). 'Custom and practice' acceptance criteria for dust samples obtained by mass or soiling techniques have been developed and are widely applied even though they were not necessarily calibrated thoroughly and have not been reviewed recently. Furthermore, as sampling techniques have evolved, criteria developed for one method have been adapted for another. Criteria and limit values have sometimes been based on an insufficient knowledge of sampler characteristics. Ideally, limit values should be calibrated for the locality to take differences in dust density and visibility into account. Work is needed on the definition of criteria and limit values, and sampling practices for coarse dust fractions, followed by discussion of good practices for securing effective monitoring that is proportionate and fit for purpose. With social changes and the evolution of environmental controls since the 1960s, the public perception of 'nuisance dust' has changed and needs to be addressed by reviewing existing thresholds in relation to the range of monitoring devices currently in use.

  12. Responses of Hail and Storm Days to Climate Change in the Tibetan Plateau

    Science.gov (United States)

    Zou, Tian; Zhang, Qinghong; Li, Wenhong; Li, Jihong

    2018-05-01

    There is increasing concern that local severe storm occurrence may be changing as a result of climate change. The Tibetan Plateau (TP), one of the world's most sensitive areas to climate change, became significantly warmer during recent decades. Since 1960 (1980), storm (hail) days have been decreasing by 6.2%/decade (18.3%/decade) in the region. However, what caused the frequency changes of storm and hail in the TP is largely unknown. Based on 53-year continuous weather records at 48 TP stations and reanalysis data, we show here for the first time that the consistent decline of storm days is strongly related to a drier midtroposphere since 1960. Further analysis demonstrated that fewer hail days are driven by an elevation of the melting level (thermodynamically) and a weaker wind shear (dynamically) in a warming climate. These results imply that less storm and hail may occur over TP when climate warms.

  13. Development of VLF noise storm and its relation to dynamics of magnetosphere during geomagnetic storms

    International Nuclear Information System (INIS)

    Fedyakina, N.I.; Khorosheva, O.V.

    1989-01-01

    Dependence between the development of geomagnetic storm and VLF noise storm is studied. Two conditions should be met for the development of noise storm in VLF-hiss (f ≅ 0.5-10 kHz): a) threshold intensity of electron fluxes with E e > 40 keV in plasma layers; b) the presence of substorms resulting to widening of electron belt and its collision with cold plasma of plasmasphere. The noise storm at the fixed longitude begins about midnight independently of the phase of magnetic storm; Noise storm duration is connected with geomagnetic storm intensity by direct linear relationship

  14. Geomorphic and land cover identification of dust sources in the eastern Great Basin of Utah, U.S.A.

    Science.gov (United States)

    Hahnenberger, Maura; Nicoll, Kathleen

    2014-01-01

    This study identifies anthropogenically disturbed areas and barren playa surfaces as the two primary dust source types that repeatedly contribute to dust storm events in the eastern Great Basin of western Utah, U.S.A. This semi-arid desert region is an important contributor to dust production in North America, with this study being the first to specifically identify and characterize regional dust sources. From 2004 to 2010, a total of 51 dust event days (DEDs) affected the air quality in Salt Lake City, UT. MODIS satellite imagery during 16 of these DEDs was analyzed to identify dust plumes, and assess the characteristics of dust source areas. A total of 168 plumes were identified, and showed mobilization of dust from Quaternary deposits located within the Bonneville Basin. This analysis identifies 4 major and 5 secondary source areas for dust in this region, which produce dust primarily during the spring and fall months and during moderate or greater drought conditions, with a Palmer Drought Index (PDI) of - 2 or less. The largest number of observed dust plumes (~ 60% of all plumes) originated from playas (ephemeral lakes) and are classified as barren land cover with a silty clay soil sediment surface. Playa surfaces in this region undergo numerous recurrent anthropogenic disturbances, including military operations and anthropogenic water withdrawal. Anthropogenic disturbance is necessary to produce dust from the vegetated landscape in the eastern Great Basin, as evidenced by the new dust source active from 2008 to 2010 in the area burned by the 2007 Milford Flat Fire; this fire was the largest in Utah's history due to extensive cover of invasive cheatgrass (Bromus tectorum) along with drought conditions. However, dust mobilization from the Milford Flat Burned Area was limited to regions that had been significantly disturbed by post-fire land management techniques that consisted of seeding, followed by chaining or tilling of the soil. Dust storms in the eastern

  15. DUST DESTRUCTION RATES AND LIFETIMES IN THE MAGELLANIC CLOUDS

    Energy Technology Data Exchange (ETDEWEB)

    Temim, Tea; Dwek, Eli; Boyer, Martha L. [Observational Cosmology Lab, Code 665, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Tchernyshyov, Kirill; Meixner, Margaret [Department of Physics and Astronomy, The Johns Hopkins University, 366 Bloomberg Center, 3400 North Charles Street, Baltimore, MD 21218 (United States); Gall, Christa [Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C (Denmark); Roman-Duval, Julia, E-mail: tea.temim@nasa.gov [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States)

    2015-02-01

    The dust budget in galaxies depends on the rate at which dust grains are created in different stellar sources and destroyed by interstellar shocks. Because of their extensive wavelength coverage, proximity, and nearly face-on geometry, the Magellanic Clouds (MCs) provide a unique opportunity to study these processes in great detail. In this paper, we use the complete sample of supernova remnants (SNRs) in the MCs to calculate the lifetimes and destruction efficiencies of silicate and carbon dust. We find dust lifetimes of 22 ± 13 Myr (30 ± 17 Myr) for silicate (carbon) grains in the LMC, and 54 ± 32 Myr (72 ± 43 Myr) for silicate (carbon) grains in the SMC. The corresponding dust destruction rates are 2.3 × 10{sup –2} M {sub ☉} yr{sup –1} (5.9 × 10{sup –3} M {sub ☉} yr{sup –1}) and 3.0 × 10{sup –3} M {sub ☉} yr{sup –1} (5.6 × 10{sup –4} M {sub ☉} yr{sup –1}) for silicate (carbon) grains in the LMC and SMC, respectively. The significantly shorter lifetimes in the MCs, as compared to the Milky Way, are explained as the combined effect of their lower total dust mass and preferentially higher dust-to-gas (D2G) mass ratios in the vicinity of the SNRs. We find that the maximum dust injection rates by asymptotic giant branch stars and core collapse supernovae are an order of magnitude lower than the dust destruction rates by the SNRs, suggesting that most of the dust may be reconstituted in dense molecular clouds. We also discuss the dependence of the dust destruction rate on the local D2G mass ratio, ambient gas density, and metallicity, as well as the application of our results to other galaxies and dust evolution models.

  16. DUST DESTRUCTION RATES AND LIFETIMES IN THE MAGELLANIC CLOUDS

    International Nuclear Information System (INIS)

    Temim, Tea; Dwek, Eli; Boyer, Martha L.; Tchernyshyov, Kirill; Meixner, Margaret; Gall, Christa; Roman-Duval, Julia

    2015-01-01

    The dust budget in galaxies depends on the rate at which dust grains are created in different stellar sources and destroyed by interstellar shocks. Because of their extensive wavelength coverage, proximity, and nearly face-on geometry, the Magellanic Clouds (MCs) provide a unique opportunity to study these processes in great detail. In this paper, we use the complete sample of supernova remnants (SNRs) in the MCs to calculate the lifetimes and destruction efficiencies of silicate and carbon dust. We find dust lifetimes of 22 ± 13 Myr (30 ± 17 Myr) for silicate (carbon) grains in the LMC, and 54 ± 32 Myr (72 ± 43 Myr) for silicate (carbon) grains in the SMC. The corresponding dust destruction rates are 2.3 × 10 –2 M ☉  yr –1 (5.9 × 10 –3 M ☉  yr –1 ) and 3.0 × 10 –3 M ☉  yr –1 (5.6 × 10 –4 M ☉  yr –1 ) for silicate (carbon) grains in the LMC and SMC, respectively. The significantly shorter lifetimes in the MCs, as compared to the Milky Way, are explained as the combined effect of their lower total dust mass and preferentially higher dust-to-gas (D2G) mass ratios in the vicinity of the SNRs. We find that the maximum dust injection rates by asymptotic giant branch stars and core collapse supernovae are an order of magnitude lower than the dust destruction rates by the SNRs, suggesting that most of the dust may be reconstituted in dense molecular clouds. We also discuss the dependence of the dust destruction rate on the local D2G mass ratio, ambient gas density, and metallicity, as well as the application of our results to other galaxies and dust evolution models

  17. Effect of an intervention in storm drains to prevent Aedes aegypti reproduction in Salvador, Brazil.

    Science.gov (United States)

    Souza, Raquel Lima; Mugabe, Vánio André; Paploski, Igor Adolfo Dexheimer; Rodrigues, Moreno S; Moreira, Patrícia Sousa Dos Santos; Nascimento, Leile Camila Jacob; Roundy, Christopher Michael; Weaver, Scott C; Reis, Mitermayer Galvão; Kitron, Uriel; Ribeiro, Guilherme Sousa

    2017-07-11

    Aedes aegypti, the principal vector for dengue, chikungunya and Zika viruses, is a synanthropic species that uses stagnant water to complete its reproductive cycle. In urban settings, rainfall water draining structures, such as storm drains, may retain water and serve as a larval development site for Aedes spp. reproduction. Herein, we describe the effect of a community-based intervention on preventing standing water accumulation in storm drains and their consequent infestation by adult and immature Ae. aegypti and other mosquitoes. Between April and May of 2016, local residents association of Salvador, Brazil, after being informed of water accumulation and Ae. aegypti infestation in the storm drains in their area, performed an intervention on 52 storm drains. The intervention consisted of placing concrete at the bottom of the storm drains to elevate their base to the level of the outflow tube, avoiding water accumulation, and placement of a metal mesh covering the outflow tube to avoid its clogging with debris. To determine the impact of the intervention, we compared the frequency at which the 52 storm drains contained water, as well as adult and immature mosquitoes using data from two surveys performed before and two surveys performed after the intervention. During the pre-intervention period, water accumulated in 48 (92.3%) of the storm drains, and immature Ae. aegypti were found in 11 (21.2%) and adults in 10 (19.2%). After the intervention, water accumulated in 5 (9.6%) of the storm drains (P Aedes mosquitoes (mainly Culex spp.) in the storm drains also decreased after the intervention. This study exemplifies how a simple intervention targeting storm drains can result in a major reduction of water retention, and, consequently, impact Ae. aegypti larval populations. Larger and multi-center evaluations are needed to confirm the potential of citywide structural modifications of storm drains to reduce Aedes spp. infestation level.

  18. Probing the Cold Dust Emission in the AB Aur Disk: A Dust Trap in a Decaying Vortex?

    Science.gov (United States)

    Fuente, Asunción; Baruteau, Clément; Neri, Roberto; Carmona, Andrés; Agúndez, Marcelino; Goicoechea, Javier R; Bachiller, Rafael; Cernicharo, José; Berné, Olivier

    2017-09-01

    One serious challenge for planet formation is the rapid inward drift of pebble-sized dust particles in protoplanetary disks. Dust trapping at local maxima in the disk gas pressure has received much theoretical attention but still lacks observational support. The cold dust emission in the AB Aur disk forms an asymmetric ring at a radius of about 120 au, which is suggestive of dust trapping in a gas vortex. We present high spatial resolution (0".58×0".78 ≈ 80×110 au) NOEMA observations of the 1.12 mm and 2.22 mm dust continuum emission from the AB Aur disk. Significant azimuthal variations of the flux ratio at both wavelengths indicate a size segregation of the large dust particles along the ring. Our continuum images also show that the intensity variations along the ring are smaller at 2.22 mm than at 1.12 mm, contrary to what dust trapping models with a gas vortex have predicted. Our two-fluid (gas+dust) hydrodynamical simulations demonstrate that this feature is well explained if the gas vortex has started to decay due to turbulent diffusion, and dust particles are thus losing the azimuthal trapping on different timescales depending on their size. The comparison between our observations and simulations allows us to constrain the size distribution and the total mass of solid particles in the ring, which we find to be of the order of 30 Earth masses, enough to form future rocky planets.

  19. Probing the Cold Dust Emission in the AB Aur Disk: A Dust Trap in a Decaying Vortex?

    Energy Technology Data Exchange (ETDEWEB)

    Fuente, Asunción; Bachiller, Rafael [Observatorio Astronómico Nacional (OAN, IGN), Apdo 112, E-28803 Alcalá de Henares (Spain); Baruteau, Clément; Carmona, Andrés; Berné, Olivier [IRAP, Université de Toulouse, CNRS, UPS, Toulouse (France); Neri, Roberto [Institut de Radioastronomie Millimétrique (IRAM), 300 rue de la Piscine, F-38406 Saint Martin d’Hères (France); Agúndez, Marcelino; Goicoechea, Javier R.; Cernicharo, José, E-mail: a.fuente@oan.es [Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC), E-28049 Cantoblanco, Madrid (Spain)

    2017-09-01

    One serious challenge for planet formation is the rapid inward drift of pebble-sized dust particles in protoplanetary disks. Dust trapping at local maxima in the disk gas pressure has received much theoretical attention but still lacks observational support. The cold dust emission in the AB Aur disk forms an asymmetric ring at a radius of about 120 au, which is suggestive of dust trapping in a gas vortex. We present high spatial resolution (0.″58 × 0.″78 ≈ 80 × 110 au) NOEMA observations of the 1.12 mm and 2.22 mm dust continuum emission from the AB Aur disk. Significant azimuthal variations of the flux ratio at both wavelengths indicate a size segregation of the large dust particles along the ring. Our continuum images also show that the intensity variations along the ring are smaller at 2.22 mm than at 1.12 mm, contrary to what dust trapping models with a gas vortex have predicted. Our two-fluid (gas+dust) hydrodynamical simulations demonstrate that this feature is well explained if the gas vortex has started to decay due to turbulent diffusion, and dust particles are thus losing the azimuthal trapping on different timescales depending on their size. The comparison between our observations and simulations allows us to constrain the size distribution and the total mass of solid particles in the ring, which we find to be of the order of 30 Earth masses, enough to form future rocky planets.

  20. Searching for storm water inflows in foul sewers using fibre-optic distributed temperature sensing.

    Science.gov (United States)

    Schilperoort, Rémy; Hoppe, Holger; de Haan, Cornelis; Langeveld, Jeroen

    2013-01-01

    A major drawback of separate sewer systems is the occurrence of illicit connections: unintended sewer cross-connections that connect foul water outlets from residential or industrial premises to the storm water system and/or storm water outlets to the foul sewer system. The amount of unwanted storm water in foul sewer systems can be significant, resulting in a number of detrimental effects on the performance of the wastewater system. Efficient removal of storm water inflows into foul sewers requires knowledge of the exact locations of the inflows. This paper presents the use of distributed temperature sensing (DTS) monitoring data to localize illicit storm water inflows into foul sewer systems. Data results from two monitoring campaigns in foul sewer systems in the Netherlands and Germany are presented. For both areas a number of storm water inflow locations can be derived from the data. Storm water inflow can only be detected as long as the temperature of this inflow differs from the in-sewer temperatures prior to the event. Also, the in-sewer propagation of storm and wastewater can be monitored, enabling a detailed view on advection.

  1. Influence of Dust Loading on Atmospheric Ionizing Radiation on Mars

    Science.gov (United States)

    Norman, Ryan B.; Gronoff, Guillaume; Mertens, Christopher J.

    2014-01-01

    Measuring the radiation environment at the surface of Mars is the primary goal of the Radiation Assessment Detector on the NASA Mars Science Laboratory's Curiosity rover. One of the conditions that Curiosity will likely encounter is a dust storm. The objective of this paper is to compute the cosmic ray ionization in different conditions, including dust storms, as these various conditions are likely to be encountered by Curiosity at some point. In the present work, the Nowcast of Atmospheric Ionizing Radiation for Aviation Safety model, recently modified for Mars, was used along with the Badhwar & O'Neill 2010 galactic cosmic ray model. In addition to galactic cosmic rays, five different solar energetic particle event spectra were considered. For all input radiation environments, radiation dose throughout the atmosphere and at the surface was investigated as a function of atmospheric dust loading. It is demonstrated that for galactic cosmic rays, the ionization depends strongly on the atmosphere profile. Moreover, it is shown that solar energetic particle events strongly increase the ionization throughout the atmosphere, including ground level, and can account for the radio blackout conditions observed by the Mars Advanced Radar for Subsurface and Ionospheric Sounding instrument on the Mars Express spacecraft. These results demonstrate that the cosmic rays' influence on the Martian surface chemistry is strongly dependent on solar and atmospheric conditions that should be taken into account for future studies.

  2. Measuring Dust Emission from the Mojave Desert (USA) by Daily Remote-Camera Observations and Wind-Erosion Measurements: Bearing on "Unseen" Sources and Global Dust Abundance

    Science.gov (United States)

    Reynolds, R. L.; Urban, F.; Goldstein, H. L.; Fulton, R.

    2017-12-01

    A large gap in understanding the effects of atmospheric dust at all spatial scales is uncertainty about how much and whence dust is emitted annually. Digital recording of dust emission at high spatial and temporal resolution would, together with periodic flux measurements, support improved estimates of local-scale dust flux where infrastructure could support remote internet enabled cameras. Such recording would also elucidate wind-erosion dynamics when combined with meteorological data. Remote camera recording of dust-emitting settings on and around Soda Lake (Mojave Desert) was conducted every 15 minutes during daylight between 10 Nov. 2010 and 31 Dec. 2016 and images uploaded to a web server. Examination of 135,000 images revealed frequent dust events, termed "dust days" when plumes obscured mountains beyond source areas. Such days averaged 68 (sd=10) per year (2011 through 2016). We examined satellite retrievals (MODIS, GOES) for dust events during six cloudless days of highest and longest duration dust emission but none were observed. From Apr. 2000 through May 2013, aeolian sediments collected at three sites were sampled and weighed. Estimates of the emitted mass of silt- and clay-size fractions were made on the basis of measured horizontal mass flux, particle sizes of sediment in collectors, and roughly determined areas of dust generation. Over this period, nearly 4 Tg yr-1 of dust (as particulate matter flood in the basin in late Dec. 2010 that deposited flood sediment across the lake basin. Increased emission was likely related to the availability of fresh, unanchored flood sediment. Within the Mojave and Great Basin deserts of North America, many settings akin to those at Soda Lake similarly emit dust that is rarely detected in satellite retrievals. These findings strongly imply that local and regional dust emissions from western North America are far underestimated and that, by extension to relatively small dust-source areas across all drylands, global

  3. Microphysical and Kinematic Characteristics of Regions of Flash Initiation in a Supercell Storm and a Multicell Storm Observed During the DC3 Field Program

    Science.gov (United States)

    DiGangi, E.; MacGorman, D. R.; Ziegler, C.; Betten, D.; Biggerstaff, M. I.

    2017-12-01

    Lightning initiation in thunderstorms requires that the local electric field magnitude exceed breakdown values somewhere, and this tends to occur between regions of positive and negative charge, where the largest electric field magnitudes tend to occur. Past studies have demonstrated that, near updrafts, storms with very strong updrafts tend to elevate regions of charge and of flash initiations higher, as well as to have more flashes initiated by small pockets of charge, than in storms with much weaker updrafts. In all thunderstorms, the source of these charge regions is generally thought to be microscopic charge separation via the relative growth rate noninductive mechanism, followed by macroscopic charge separation via sedimentation, although other charge generation mechanisms can contribute to charge in some regions. Charge generation and lightning initiation are therefore inherently dependent on the microphysical and kinematic characteristics of a given storm. This study compares the results of a hydrometeor classification algorithm applied to C-band mobile radar data with mixing ratios calculated by a diabatic Lagrangian analysis retrieval from the dual-Doppler wind fields for two storms, the 29-30 May 2012 supercell storm and the 21 June 2012 multicell storm, observed during the Deep Convective Clouds and Chemistry experiment. Using these data, we then compare the inferred microphysical and kinematic characteristics of regions in which the Oklahoma Lightning Mapping Array indicated that flashes were initiated in these two very different storms.

  4. Fractal dust grains in plasma

    International Nuclear Information System (INIS)

    Huang, F.; Peng, R. D.; Liu, Y. H.; Chen, Z. Y.; Ye, M. F.; Wang, L.

    2012-01-01

    Fractal dust grains of different shapes are observed in a radially confined magnetized radio frequency plasma. The fractal dimensions of the dust structures in two-dimensional (2D) horizontal dust layers are calculated, and their evolution in the dust growth process is investigated. It is found that as the dust grains grow the fractal dimension of the dust structure decreases. In addition, the fractal dimension of the center region is larger than that of the entire region in the 2D dust layer. In the initial growth stage, the small dust particulates at a high number density in a 2D layer tend to fill space as a normal surface with fractal dimension D = 2. The mechanism of the formation of fractal dust grains is discussed.

  5. Storm wave deposits in southern Istria (Croatia)

    Science.gov (United States)

    Biolchi, Sara; Furlani, Stefano; Devoto, Stefano; Scicchitano, Giovanni

    2017-04-01

    The accumulation of large boulders related to extreme waves are well documented in different areas of the Mediterranean coasts, such as in Turkey, Algeria, Egypt, Greece (Lesbos and Crete islands), France, Spain, Malta, Italy (Sicily and Apulia regions). These deposits have been associated to storm or tsunami events or both, depending on the local history. If compared to the Mediterranean Sea, the Adriatic Sea is considered a shallow basin, with very low wave energy. In particular the NE Adriatic, where Istria Peninsula (Croatia) is located, geological and geomorphological evidences of extreme wave events have never been described, as well as no tsunamis have been registered. We present the boulder deposits that have been recently found out in southern Istria, at Premantura and Marlera localities and we discuss the mechanisms that could have been responsible of the detachment and movement of these large rocky blocks from the emerged part of the coast and from the sea bottom inland. A multidisciplinary approach was adopted: geological and geomorphological surveyings, UAV and digital photogrammetric analysis, applying of the hydrodynamic equations as well as underwater profiles were carried out between 2012 and 2016. The southern Istrian coasts are composed of Cretaceous bedded limestones, sub-horizontal or gently inclined toward the sea and are exposed to southern winds, Scirocco and Libeccio, with wide fetch. The boulder deposits occur in correspondence of flat promontories or ancient quarry pavements, where the topography, together with the bedding planes and a dense fracture pattern constitute the predisposing factors of the boulder sizing and detachment. Boulder sizes, density, position and elevation have been measured in order to apply the hydrodynamic equations, which provide wave height values that can discriminate a storm from a tsunami origin. Biogenic marine encrustations, sometimes very recent, have been observed on large part of the boulders, attesting

  6. [Diagnosis and treatment of thyroid storm].

    Science.gov (United States)

    Akamizu, Takashi

    2012-11-01

    Thyrotoxic storm is a life-threatening condition requiring emergency treatment. Neither its epidemiological data nor diagnostic criteria have been fully established. We clarified the clinical and epidemiological characteristics of thyroid storm using nationwide surveys and then formulate diagnostic criteria for thyroid storm. To perform the nationwide survey on thyroid storm, we first developed tentative diagnostic criteria for thyroid storm, mainly based upon the literature (the first edition). We analyzed the relationship of the major features of thyroid storm to mortality and to certain other features. Finally, based upon the findings of these surveys, we revised the diagnostic criteria. Thyrotoxic storm is still a life-threatening disorder with over 10% mortality in Japan.

  7. Magnetic Storms at Mars and Earth

    DEFF Research Database (Denmark)

    Vennerstrøm, Susanne; Falkenberg, Thea Vilstrup

    In analogy with magnetic storms at the Earth, periods of significantly enhanced global magnetic activity also exist at Mars. The extensive database of magnetic measurements from Mars Global Surveyor (MGS), covering almost an entire solar cycle, is used in combination with geomagnetic activity...... indices at Earth to compare the occurrence of magnetic storms at Mars and Earth. Based on superposed epochs analysis the time-development of typical magnetic storms at Mars and Earth is described. In contradiction to storms at Earth, most magnetic storms at Mars are found to be associated...... with heliospheric current sheet crossings, where the IMF changes polarity. While most storms at the Earth occur due to significant southward excursions of the IMF associated with CMEs, at Mars most storms seem to be associated with the density enhancement of the heliospheric current sheet. Density enhancements...

  8. Thermospheric storms and related ionospheric effects

    International Nuclear Information System (INIS)

    Chandra, S.; Spencer, N.W.

    1976-01-01

    A comparative study of thermospheric storms for the equinox and winter conditions is presented based on the neutral composition measurements from the Aeros-A Nate (Neutral Atmosphere Temperature Experiment) experiment. The main features of the two storms as inferred from the changes in N 2 , Ar, He, and O are described, and their implications to current theories of thermospheric storms are discussed. On the basis of the study of the F region critical frequency measured from a chain of ground-based ionospheric stations during the two storm periods, the general characteristics of the ionospheric storms and the traveling ionospheric disturbances are described. It is suggested that the positive and negative phases of ionospheric storms are the various manifestations of thermospheric storms

  9. Thyroid storm precipitated by duodenal ulcer perforation.

    Science.gov (United States)

    Natsuda, Shoko; Nakashima, Yomi; Horie, Ichiro; Ando, Takao; Kawakami, Atsushi

    2015-01-01

    Thyroid storm is a rare and life-threatening complication of thyrotoxicosis that requires prompt treatment. Thyroid storm is also known to be associated with precipitating events. The simultaneous treatment of thyroid storm and its precipitant, when they are recognized, in a patient is recommended; otherwise such disorders, including thyroid storm, can exacerbate each other. Here we report the case of a thyroid storm patient (a 55-year-old Japanese male) complicated with a perforated duodenal ulcer. The patient was successfully treated with intensive treatment for thyroid storm and a prompt operation. Although it is believed that peptic ulcer rarely coexists with hyperthyroidism, among patients with thyroid storm, perforation of a peptic ulcer has been reported as one of the causes of fatal outcome. We determined that surgical intervention was required in this patient, reported despite ongoing severe thyrotoxicosis, and reported herein a successful outcome.

  10. Thyroid Storm Precipitated by Duodenal Ulcer Perforation

    Directory of Open Access Journals (Sweden)

    Shoko Natsuda

    2015-01-01

    Full Text Available Thyroid storm is a rare and life-threatening complication of thyrotoxicosis that requires prompt treatment. Thyroid storm is also known to be associated with precipitating events. The simultaneous treatment of thyroid storm and its precipitant, when they are recognized, in a patient is recommended; otherwise such disorders, including thyroid storm, can exacerbate each other. Here we report the case of a thyroid storm patient (a 55-year-old Japanese male complicated with a perforated duodenal ulcer. The patient was successfully treated with intensive treatment for thyroid storm and a prompt operation. Although it is believed that peptic ulcer rarely coexists with hyperthyroidism, among patients with thyroid storm, perforation of a peptic ulcer has been reported as one of the causes of fatal outcome. We determined that surgical intervention was required in this patient, reported despite ongoing severe thyrotoxicosis, and reported herein a successful outcome.

  11. Sahara Dust Cloud

    Science.gov (United States)

    2005-01-01

    [figure removed for brevity, see original site] Dust Particles Click on the image for Quicktime movie from 7/15-7/24 A continent-sized cloud of hot air and dust originating from the Sahara Desert crossed the Atlantic Ocean and headed towards Florida and the Caribbean. A Saharan Air Layer, or SAL, forms when dry air and dust rise from Africa's west coast and ride the trade winds above the Atlantic Ocean. These dust clouds are not uncommon, especially during the months of July and August. They start when weather patterns called tropical waves pick up dust from the desert in North Africa, carry it a couple of miles into the atmosphere and drift westward. In a sequence of images created by data acquired by the Earth-orbiting Atmospheric Infrared Sounder ranging from July 15 through July 24, we see the distribution of the cloud in the atmosphere as it swirls off of Africa and heads across the ocean to the west. Using the unique silicate spectral signatures of dust in the thermal infrared, AIRS can detect the presence of dust in the atmosphere day or night. This detection works best if there are no clouds present on top of the dust; when clouds are present, they can interfere with the signal, making it much harder to detect dust as in the case of July 24, 2005. In the Quicktime movie, the scale at the bottom of the images shows +1 for dust definitely detected, and ranges down to -1 for no dust detected. The plots are averaged over a number of AIRS observations falling within grid boxes, and so it is possible to obtain fractional numbers. [figure removed for brevity, see original site] Total Water Vapor in the Atmosphere Around the Dust Cloud Click on the image for Quicktime movie The dust cloud is contained within a dry adiabatic layer which originates over the Sahara Desert. This Saharan Air Layer (SAL) advances Westward over the Atlantic Ocean, overriding the cool, moist air nearer the surface. This burst of very dry air is visible in the AIRS retrieved total water

  12. Identification of Storm Surge Vulnerable Areas in the Philippines Through Simulations of Typhoon Haiyan-Induced Storm Surge Using Tracks of Historical Tropical Cyclones

    Science.gov (United States)

    Lapidez, John Phillip; Suarez, John Kenneth; Tablazon, Judd; Dasallas, Lea; Gonzalo, Lia Anne; Santiago, Joy; Cabacaba, Krichi May; Ramos, Michael Marie Angelo; Mahar Francisco Lagmay, Alfredo; Malano, Vicente

    2014-05-01

    Super Typhoon Haiyan entered the Philippine Area of Responsibility (PAR) 07 November 2013, causing tremendous damage to infrastructure and loss of lives mainly due to the typhoon's storm surge and strong winds. Storm surges up to a height of 7 meters were reported in the hardest hit areas. The threat imposed by this kind of natural calamity compelled researchers of the Nationwide Operational Assessment of Hazards, the flagship disaster mitigation program of the Department of Science and Technology, Government of the Philippines, to undertake a study to determine the vulnerability of all Philippine coastal communities to storm surges of the same magnitude as those generated by Haiyan. This study calculates the maximum probable storm surge height for every coastal locality by running simulations of Haiyan-type conditions but with tracks of tropical cyclones that entered PAR from 1948-2013. DOST-Project NOAH used the Japan Meteorological Agency (JMA) Storm Surge Model, a numerical code that simulates and predicts storm surges spawned by tropical cyclones. Input parameters for the storm surge model include bathymetric data, storm track, central atmospheric pressure, and maximum wind speed. The simulations were made using Haiyan's pressure and wind speed as the forcing parameters. The simulated storm surge height values were added to the maximum tide level obtained from WXTide, software that contains a catalogue of worldwide astronomical tides, to come up with storm tide levels. The resulting water level was used as input to FLO-2D to generate the storm tide inundation maps. One product of this study is a list of the most vulnerable coastal areas that can be used as basis for choosing priority sites for further studies to implement appropriate site-specific solutions. Another product is the storm tide inundation maps that the local government units can use to develop a Risk-Sensitive Land Use Plan for identifying appropriate areas to build residential buildings

  13. Applications of high-speed dust injection to magnetic fusion

    International Nuclear Information System (INIS)

    Wang, Zhehui; Li, Yangfang

    2012-01-01

    It is now an established fact that a significant amount of dust is produced in magnetic fusion devices due to plasma-wall interactions. Dust inventory must be controlled, in particular for the next-generation steady-state fusion machines like ITER, as it can pose significant safety hazards and degrade performance. Safety concerns are due to tritium retention, dust radioactivity, toxicity, and flammability. Performance concerns include high-Z impurities carried by dust to the fusion core that can reduce plasma temperature and may even induce sudden termination of the plasma. We have recognized that dust transport, dust-plasma interactions in magnetic fusion devices can be effectively studied experimentally by injection of dust with known properties into fusion plasmas. Other applications of injected dust include diagnosis of fusion plasmas and edge localized mode (ELM)'s pacing. In diagnostic applications, dust can be regarded as a source of transient neutrals before complete ionization. ELM's pacing is a promising scheme to prevent disruptions and type I ELM's that can cause catastrophic damage to fusion machines. Different implementation schemes are available depending on applications of dust injection. One of the simplest dust injection schemes is through gravitational acceleration of dust in vacuum. Experiments at Los Alamos and Princeton will be described, both of which use piezoelectric shakers to deliver dust to plasma. In Princeton experiments, spherical particles (40 micron) have been dropped in a systematic and reproducible manner using a computer-controlled piezoelectric bending actuator operating at an acoustic (0,2) resonance. The circular actuator was constructed with a 2.5 mm diameter central hole. At resonance (∼ 2 kHz) an applied sinusoidal voltage has been used to control the flux of particles exiting the hole. A simple screw throttle located ∼1mm above the hole has been used to set the magnitude of the flux achieved for a given voltage

  14. Modelling soil dust aerosol in the Bodélé depression during the BoDEx campaign

    Science.gov (United States)

    Tegen, I.; Heinold, B.; Todd, M.; Helmert, J.; Washington, R.; Dubovik, O.

    2006-09-01

    We present regional model simulations of the dust emission events during the Bodélé Dust Experiment (BoDEx) that was carried out in February and March 2005 in Chad. A box model version of the dust emission model is used to test different input parameters for the emission model, and to compare the dust emissions computed with observed wind speeds to those calculated with wind speeds from the regional model simulation. While field observations indicate that dust production occurs via self-abrasion of saltating diatomite flakes in the Bodélé, the emission model based on the assumption of dust production by saltation and using observed surface wind speeds as input parameters reproduces observed dust optical thicknesses well. Although the peak wind speeds in the regional model underestimate the highest wind speeds occurring on 10-12 March 2005, the spatio-temporal evolution of the dust cloud can be reasonably well reproduced by this model. Dust aerosol interacts with solar and thermal radiation in the regional model; it is responsible for a decrease in maximum daytime temperatures by about 5 K at the beginning the dust storm on 10 March 2005. This direct radiative effect of dust aerosol accounts for about half of the measured temperature decrease compared to conditions on 8 March. Results from a global dust model suggest that the dust from the Bodélé is an important contributor to dust crossing the African Savannah region towards the Gulf of Guinea and the equatorial Atlantic, where it can contribute up to 40% to the dust optical thickness.

  15. Modelling soil dust aerosol in the Bodélé depression during the BoDEx campaign

    Directory of Open Access Journals (Sweden)

    I. Tegen

    2006-01-01

    Full Text Available We present regional model simulations of the dust emission events during the Bodélé Dust Experiment (BoDEx that was carried out in February and March 2005 in Chad. A box model version of the dust emission model is used to test different input parameters for the emission model, and to compare the dust emissions computed with observed wind speeds to those calculated with wind speeds from the regional model simulation. While field observations indicate that dust production occurs via self-abrasion of saltating diatomite flakes in the Bodélé, the emission model based on the assumption of dust production by saltation and using observed surface wind speeds as input parameters reproduces observed dust optical thicknesses well. Although the peak wind speeds in the regional model underestimate the highest wind speeds occurring on 10–12 March 2005, the spatio-temporal evolution of the dust cloud can be reasonably well reproduced by this model. Dust aerosol interacts with solar and thermal radiation in the regional model; it is responsible for a decrease in maximum daytime temperatures by about 5 K at the beginning the dust storm on 10 March 2005. This direct radiative effect of dust aerosol accounts for about half of the measured temperature decrease compared to conditions on 8 March. Results from a global dust model suggest that the dust from the Bodélé is an important contributor to dust crossing the African Savannah region towards the Gulf of Guinea and the equatorial Atlantic, where it can contribute up to 40% to the dust optical thickness.

  16. Geochemical evidence for diversity of dust sources in the southwestern United States

    Science.gov (United States)

    Reheis, M.C.; Budahn, J.R.; Lamothe, P.J.

    2002-01-01

    Several potential dust sources, including generic sources of sparsely vegetated alluvium, playa deposits, and anthropogenic emissions, as well as the area around Owens Lake, California, affect the composition of modern dust in the southwestern United States. A comparison of geochemical analyses of modern and old (a few thousand years) dust with samples of potential local sources suggests that dusts reflect four primary sources: (1) alluvial sediments (represented by Hf, K, Rb, Zr, and rare-earth elements, (2) playas, most of which produce calcareous dust (Sr, associated with Ca), (3) the area of Owens (dry) Lake, a human-induced playa (As, Ba, Li, Pb, Sb, and Sr), and (4) anthropogenic and/or volcanic emissions (As, Cr, Ni, and Sb). A comparison of dust and source samples with previous analyses shows that Owens (dry) Lake and mining wastes from the adjacent Cerro Gordo mining district are the primary sources of As, Ba, Li, and Pb in dusts from Owens Valley. Decreases in dust contents of As, Ba, and Sb with distance from Owens Valley suggest that dust from southern Owens Valley is being transported at least 400 km to the east. Samples of old dust that accumulated before European settlement are distinctly lower in As, Ba, and Sb abundances relative to modern dust, likely due to modern transport of dust from Owens Valley. Thus, southern Owens Valley appears to be an important, geochemically distinct, point source for regional dust in the southwestern United States. Copyright ?? 2002 Elsevier Science Ltd.

  17. Studies of 212Pb storm

    International Nuclear Information System (INIS)

    Yunoki, E.; Kataoka, T.; Michihiro, K.; Sugiyama, H.; Shimizu, M.; Mori, T.

    1996-01-01

    212 Pb which reached its equilibrium state with its daughters in the air was measured around small uranium mines in Japan. Environmental. 212 Pb concentrations rose suddenly and reached a value ten times as high as usual values. These Phenomena were observed many times during the past six Years. We called these Phenomena 212 Pb storms. Meteorological conditions lead to the variations of 220 Rn progeny concentrations. These phenomena have been studied in the point of meteorology. (author)

  18. Size-segregated fluxes of mineral dust from a desert area of northern China by eddy covariance

    Directory of Open Access Journals (Sweden)

    G. Fratini

    2007-06-01

    Full Text Available Mineral dust emission accounts for a substantial portion of particles present in the troposphere. It is emitted mostly from desert areas, mainly through intense storm episodes. The aim of this work was to quantify size-segregated fluxes of mineral dust particles emitted during storm events occurring in desert areas of northern China (Alashan desert, Inner Mongolia, known to act as one of the strongest sources of mineral dust particles in the Asian continent. Long-range transport of mineral dust emitted in this area is responsible for the high particle concentrations reached in densely populated areas, including the city of Beijing. Based on a theoretical analysis, an eddy covariance system was built to get size-segregated fluxes of mineral dust particles with optical diameters ranging between 0.26 and 7.00 µm. The system was optimised to measure fluxes under intense storm event conditions. It was tested in two sites located in the Chinese portion of the Gobi desert. During the field campaign, an intense wind erosion event, classified as a "weak dust storm", was recorded in one of them. Data obtained during this event indicate that particle number fluxes were dominated by the finer fraction, whereas in terms of mass, coarser particle accounted for the largest portion. It was found that during the storm event, ratios of size-segregated particle mass fluxes remained substantially constant and a simple parameterization of particle emission from total mass fluxes was possible. A strong correlation was also found between particle mass fluxes and the friction velocity. This relationship is extremely useful to investigate mechanisms of particle formation by wind erosion.

  19. Inclined Zenith Aurora over Kyoto on 17 September 1770: Graphical Evidence of Extreme Magnetic Storm

    Science.gov (United States)

    Kataoka, Ryuho; Iwahashi, Kiyomi

    2017-10-01

    Red auroras were observed in Japan during an extreme magnetic storm that occurred on 17 September 1770. We show new evidence that the red aurora extended toward the zenith of Kyoto around midnight. The basic appearance of the historical painting of the red aurora is geometrically reproduced based on the inclination of the local magnetic field and a detailed description in a newly discovered diary. The presence of the inclined zenith aurora over Kyoto suggests that the intensity of the September 1770 magnetic storm is comparable to, or slightly larger than that of the September 1859 Carrington storm.

  20. nuSTORM Costing document

    Energy Technology Data Exchange (ETDEWEB)

    Bross, Alan D. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2013-10-01

    Detailed costing of the nuSTORM conventional facilities has been done by the Fermilab Facilities Engineering Services Section (FESS) and is reported on in the nuSTORM Project Definition Report (PDR) 6-13-1. Estimates for outfitting the primary proton beam line, the target station, the pion capture/transport line and decay ring are based on either experience from existing Fermilab infrastructure (NuMI) or is based on the detailed costing exercises for DOE CD-1 approval for future experiments (mu2e and LBNE). The detector costing utilized the Euronu costing for the Neutrino Factory Magnetized Iron Neutrino Detector (MIND), extrapolations from MINOS as-built costs and from recent vendor quotes. Costs included all manpower and are fully burdened (FY2013 dollars). The costs are not escalated, however, beyond the 5-year project timeline, since a project start for nuSTORM is unknown. Escalation can be estimated from various models (see Figure 1). LBNE has used the Jacob’s model to determine their cost escalation.

  1. Dust in planetary nebulae

    International Nuclear Information System (INIS)

    Kwok, S.

    1980-01-01

    A two-component dust model is suggested to explain the infrared emission from planetary nebulae. A cold dust component located in the extensive remnant of the red-giant envelope exterior to the visible nebula is responsible for the far-infrared emission. A ward dust component, which is condensed after the formation of the planetary nebula and confined within the ionized gas shell, emits most of the near- and mid-infrared radiation. The observations of NGC 7027 are shown to be consisten with such a model. The correlation of silicate emission in several planetary nebulae with an approximately +1 spectral index at low radio frequencies suggests that both the silicate and radio emissions originate from the remnant of the circumstellar envelope of th precursor star and are observable only while the planetary nebula is young. It is argued that oxygen-rich stars as well as carbon-rich stars can be progenitors of planetary nebulae

  2. Interstellar dust and extinction

    International Nuclear Information System (INIS)

    Mathis, J.S.

    1990-01-01

    It is noted that the term interstellar dust refers to materials with rather different properties, and that the mean extinction law of Seaton (1979) or Savage and Mathis (1979) should be replaced by the expression given by Cardelli et al. (1989), using the appropriate value of total-to-selective extinction. The older laws were appropriate for the diffuse ISM but dust in clouds differs dramatically in its extinction law. Dust is heavily processed while in the ISM by being included within clouds and cycled back into the diffuse ISM many times during its lifetime. Hence, grains probably reflect only a trace of their origin, although meteoritic inclusions with isotopic anomalies demonstrate that some tiny particles survive intact from a supernova origin to the present. 186 refs

  3. Dust control for draglines

    Energy Technology Data Exchange (ETDEWEB)

    Grad, P.

    2009-09-15

    Monitoring dust levels inside draglines reveals room for improvement in how filtration systems are used and maintained. The Australian firm BMT conducted a field test program to measure airflow parameters, dust fallout rates and dust concentrations, inside and outside the machine house, on four draglines and one shovel. The study involved computational fluid dynamics (CFD) simulations. The article describes how the tests were made and gives results. It was not possible to say which of the two main filtration systems currently used on Australian draglines - Dynavane or Floseps - performs better. It would appear that more frequent maintenance and cleaning would increase the overall filtration performance and systems could be susceptible to repeat clogging in a short time. 2 figs., 1 photos.

  4. DustEM: Dust extinction and emission modelling

    Science.gov (United States)

    Compiègne, M.; Verstraete, L.; Jones, A.; Bernard, J.-P.; Boulanger, F.; Flagey, N.; Le Bourlot, J.; Paradis, D.; Ysard, N.

    2013-07-01

    DustEM computes the extinction and the emission of interstellar dust grains heated by photons. It is written in Fortran 95 and is jointly developed by IAS and CESR. The dust emission is calculated in the optically thin limit (no radiative transfer) and the default spectral range is 40 to 108 nm. The code is designed so dust properties can easily be changed and mixed and to allow for the inclusion of new grain physics.

  5. Dust-Plasma Interactions

    International Nuclear Information System (INIS)

    Rosenberg, M.

    2010-01-01

    The objective of our theoretical research under this grant over the past 3 years was to develop new understanding in a range of topics in the physics of dust-plasma interactions, with application to space and the laboratory. We conducted studies related to the physical properties of dust, waves and instabilities in both weakly coupled and strongly coupled dusty plasmas, and innovative possible applications. A major consideration in our choice of topics was to compare theory with experiments or observations, and to motivate new experiments, which we believe is important for developing this relatively new field. Our research is summarized, with reference to our list of journal publications.

  6. Exploring Dust Impacts on Tropical Systems from the NASA HS-3 Field Campaign

    Science.gov (United States)

    Nowottnick, Ed; Colarco, Pete; da Silva, Arlindo; Barahona, Donifan; Hlavka, Dennis

    2015-01-01

    One of the overall scientific goals of the NASA Hurricane and Severe Storm Sentinel (HS-3) field campaign is to better understand the role of the Saharan Air Layer (SAL) in tropical storm development. During the 2012 HS-3 deployment, the Cloud Physics Lidar (CPL) observed dust within SAL air in close proximity to a developing Nadine (September 11, 2012). Throughout the mission, the NASA GEOS-5 modeling system supported HS-3 by providing 0.25 degrees resolution 5-day global forecasts of aerosols, which were used to support mission planning. The aerosol module was radiatively interactive within the GEOS-5 model, but aerosols were not directly coupled to cloud and precipitation processes. In this study we revisit the aerosol forecasts with an updated version of the GEOS-5 model. For the duration of Hurricane Nadine, we run multiday climate simulations leading up to each respective Global Hawk flight with and without aerosol direct interaction. For each set of simulations, we compare simulated dust mass fluxes to identify differences in SAL entrainment related to the interaction between dust aerosols and the atmosphere. We find that the direct effects of dust induce a low level anticyclonic circulation that temporarily shields Nadine from the intrusion of dry air, leading to a more intense storm.

  7. Airborne transport of Saharan dust to the Mediterranean and to the Atlantic

    Energy Technology Data Exchange (ETDEWEB)

    Pericleous, K.A.; Plainiotis, S. [Greenwich Univ., London (United Kingdom); Fisher, B.E.A. [Environment Agency, Reading (United Kingdom)

    2006-07-01

    A Lagrangian particle dispersion (LPD) model was used to predict the transport of sand particles and particulate matter (PM{sub 10}) exceedances attributed to Saharan storms in the Atlantic ocean near the United Kingdom, and in the Mediterranean Sea near Crete. Forward and reverse receptor modes were used to confirm the discovery of conflicting emission sources. Outputs were compared with satellite images and receptor data from multiple ground-based sites. Two models were used, notably the hybrid single particle Lagrangian integrated trajectory (HYSPLIT) model, and FLEXPART, an open source model. The emission model used to simulate dust emissions caused in a Sahara dust storm was based on the concept that threshold friction velocity was dependent on surface roughness. Case studies were presented for various Saharan dust episodes in the studied regions. Results of the study showed that the model accurately characterized sand entrainment in the atmosphere due to wind shear. It was concluded that coupled with advanced weather forecasting, the model can be used to predict the onset of desert dust storms well before their effects are felt. 15 refs., 6 figs.

  8. Seasonal provenance changes in present-day Saharan dust collected in and off Mauritania

    Directory of Open Access Journals (Sweden)

    C. A. Friese

    2017-08-01

    Full Text Available Saharan dust has a crucial influence on the earth climate system and its emission, transport and deposition are intimately related to, e.g., wind speed, precipitation, temperature and vegetation cover. The alteration in the physical and chemical properties of Saharan dust due to environmental changes is often used to reconstruct the climate of the past. However, to better interpret possible climate changes the dust source regions need to be known. By analysing the mineralogical composition of transported or deposited dust, potential dust source areas can be inferred. Summer dust transport off northwest Africa occurs in the Saharan air layer (SAL. In continental dust source areas, dust is also transported in the SAL; however, the predominant dust input occurs from nearby dust sources with the low-level trade winds. Hence, the source regions and related mineralogical tracers differ with season and sampling location. To test this, dust collected in traps onshore and in oceanic sediment traps off Mauritania during 2013 to 2015 was analysed. Meteorological data, particle-size distributions, back-trajectory and mineralogical analyses were compared to derive the dust provenance and dispersal. For the onshore dust samples, the source regions varied according to the seasonal changes in trade-wind direction. Gibbsite and dolomite indicated a Western Saharan and local source during summer, while chlorite, serpentine and rutile indicated a source in Mauritania and Mali during winter. In contrast, for the samples that were collected offshore, dust sources varied according to the seasonal change in the dust transporting air layer. In summer, dust was transported in the SAL from Mauritania, Mali and Libya as indicated by ferroglaucophane and zeolite. In winter, dust was transported with the trades from Western Sahara as indicated by, e.g., fluellite.

  9. Dust Quantization and Effects on Agriculture Over Uttar Pradesh, India

    Science.gov (United States)

    Munshi, Pavel; Tiwari, Shubhansh

    2017-01-01

    Dust plays a very important role in the atmosphere and the biosphere. In this communication, the effect of atmospheric dust on the yields of certain crops grown in Uttar Pradesh, India is assessed. Coherent physical and thermodynamic fingerprints of dust parameters such as from Satellite data- KALPANA-1, MODIS, OMI, CALIPSO; Model data- DREAM, HYSPLIT, ECMWF; have been considered to run the APSIM model to derive the impacts. This paper assesses dust as a physical atmospheric phenomenon including its Long Range Transport (LRT) and dispersion along with considerable variations of Aerosol Optical Depths (AODs) over the subcontinent of India. While AODs significantly increase by more dust concentration, the local dispersion of pollutants is a major concern with deposition of atmospheric dust such as sulphates and other chemical constituents that affect agricultural land. An approach in atmospheric physics is also taken to parameterize the model outputs. This communication indicates dust to be a positive factor for the cultivation of certain crops such as wheat, maize in the experimental location. Initial results suggest that LRT dust is a viable counterpart to decrease the concentration of soil acidity and related parameters thus enhancing the vitality of crops.

  10. Impact of Dust Radiative Forcing upon Climate. Chapter 13

    Science.gov (United States)

    Miller, Ronald L.; Knippertz, Peter; Perez Garcia-Pando, Carlos; Perlwitz, Jan P.; Tegan, Ina

    2014-01-01

    Dust aerosols perturb the atmospheric radiative flux at both solar and thermal wavelengths, altering the energy and water cycles. The climate adjusts by redistributing energy and moisture, so that local temperature perturbations, for example, depend upon the forcing over the entire extent of the perturbed circulation. Within regions frequently mixed by deep convection, including the deep tropics, dust particles perturb the surface air temperature primarily through radiative forcing at the top of the atmosphere (TOA). Many models predict that dust reduces global precipitation. This reduction is typically attributed to the decrease of surface evaporation in response to dimming of the surface. A counterexample is presented, where greater shortwave absorption by dust increases evaporation and precipitation despite greater dimming of the surface. This is attributed to the dependence of surface evaporation upon TOA forcing through its influence upon surface temperature and humidity. Perturbations by dust to the surface wind speed and vegetation (through precipitation anomalies) feed back upon the dust aerosol concentration. The current uncertainty of radiative forcing attributed to dust and the resulting range of climate perturbations calculated by models remain a useful test of our understanding of the mechanisms relating dust radiative forcing to the climate response.

  11. Biological response to coastal upwelling and dust deposition in the area off Northwest Africa

    Science.gov (United States)

    Ohde, T.; Siegel, H.

    2010-05-01

    Nutrient supply in the area off Northwest Africa is mainly regulated by two processes, coastal upwelling and deposition of Saharan dust. In the present study, both processes were analyzed and evaluated by different methods, including cross-correlation, multiple correlation, and event statistics, using remotely sensed proxies of the period from 2000 to 2008 to investigate their influence on the marine environment. The remotely sensed chlorophyll- a concentration was used as a proxy for the phytoplankton biomass stimulated by nutrient supply into the euphotic zone from deeper water layers and from the atmosphere. Satellite-derived alongshore wind stress and sea-surface temperature were applied as proxies for the strength and reflection of coastal upwelling processes. The westward wind and the dust component of the aerosol optical depth describe the transport direction of atmospheric dust and the atmospheric dust column load. Alongshore wind stress and induced upwelling processes were most significantly responsible for the surface chlorophyll- a variability, accounting for about 24% of the total variance, mainly in the winter and spring due to the strong north-easterly trade winds. The remotely sensed proxies allowed determination of time lags between biological response and its forcing processes. A delay of up to 16 days in the surface chlorophyll- a concentration due to the alongshore wind stress was determined in the northern winter and spring. Although input of atmospheric iron by dust storms can stimulate new phytoplankton production in the study area, only 5% of the surface chlorophyll- a variability could be ascribed to the dust component in the aerosol optical depth. All strong desert storms were identified by an event statistics in the time period from 2000 to 2008. The 57 strong storms were studied in relation to their biological response. Six events were clearly detected in which an increase of chlorophyll- a was caused by Saharan dust input and not by

  12. Semi-analytic variable charge solitary waves involving dust phase-space vortices (holes)

    Energy Technology Data Exchange (ETDEWEB)

    Tribeche, Mouloud; Younsi, Smain; Amour, Rabia; Aoutou, Kamel [Plasma Physics Group, Faculty of Sciences-Physics, Theoretical Physics Laboratory, University of Bab-Ezzouar, USTHB BP 32, El Alia, Algiers 16111 (Algeria)], E-mail: mtribeche@usthb.dz

    2009-09-15

    A semi-analytic model for highly nonlinear solitary waves involving dust phase-space vortices (holes) is outlined. The variable dust charge is expressed in terms of the Lambert function and we take advantage of this transcendental function to investigate the localized structures that may occur in a dusty plasma with variable charge trapped dust particles. Our results which complement the previously published work on this problem (Schamel et al 2001 Phys. Plasmas 8 671) should be of basic interest for experiments that involve the trapping of dust particles in ultra-low-frequency dust acoustic modes.

  13. Semi-analytic variable charge solitary waves involving dust phase-space vortices (holes)

    International Nuclear Information System (INIS)

    Tribeche, Mouloud; Younsi, Smain; Amour, Rabia; Aoutou, Kamel

    2009-01-01

    A semi-analytic model for highly nonlinear solitary waves involving dust phase-space vortices (holes) is outlined. The variable dust charge is expressed in terms of the Lambert function and we take advantage of this transcendental function to investigate the localized structures that may occur in a dusty plasma with variable charge trapped dust particles. Our results which complement the previously published work on this problem (Schamel et al 2001 Phys. Plasmas 8 671) should be of basic interest for experiments that involve the trapping of dust particles in ultra-low-frequency dust acoustic modes.

  14. [Influence of traffic restriction on road and construction fugitive dust].

    Science.gov (United States)

    Tian, Gang; Li, Gang; Qin, Jian-Ping; Fan, Shou-Bin; Huang, Yu-Hu; Nie, Lei

    2009-05-15

    By monitoring the road and construction dust fall continuously during the "Good Luck Beijing" sport events, the reduction of road and construction dust fall caused by traffic restriction was studied. The contribution rate of road and construction dust to particulate matter of Beijing atmosphere environment, and the emission ratio of it to total local PM10 emission were analyzed. The results show that the traffic restriction reduces road and construction dust fall significantly. The dust fall average value of ring roads was 0.27 g x (m2 x d)(-1) in the "traffic restriction" period, and the values were 0.81 and 0.59 g x (m2 x d)(-1) 1 month and 7 days before. The dust fall average value of major arterial and minor arterial was 0.21 g x (m2 x d)(-1) in the "traffic restriction" period, and the values were 0.54 and 0.58 g x (m2 x d)(-1) 1 month and 7 days before. The roads emission reduced 60%-70% compared with before traffic restriction. The dust fall average values of civil architecture and utility architecture were 0.61 and 1.06 g x (m2 x d)(-1) in the "traffic restriction" period, and the values were 1.15 and 1.55 g x (m2 x d)(-1) 20 days before. The construction dust reduced 30%-47% compared with 20 days before traffic restriction. Road and construction dust emission are the main source of atmosphere particulate matter in Beijing, and its contribution to ambient PM10 concentration is 21%-36%. PM10 emitted from roads and constructions account for 42%-72% and 30%-51% of local emission while the local PM10 account for 50% and 70% of the total emission.

  15. Storm-surge flooding on the Yukon-Kuskokwim Delta, Alaska

    Science.gov (United States)

    Terenzi, John; Ely, Craig R.; Jorgenson, M. Torre

    2014-01-01

    Coastal regions of Alaska are regularly affected by intense storms of ocean origin, the frequency and intensity of which are expected to increase as a result of global climate change. The Yukon-Kuskokwim Delta (YKD), situated in western Alaska on the eastern edge of the Bering Sea, is one of the largest deltaic systems in North America. Its low relief makes it especially susceptible to storm-driven flood tides and increases in sea level. Little information exists on the extent of flooding caused by storm surges in western Alaska and its effects on salinization, shoreline erosion, permafrost thaw, vegetation, wildlife, and the subsistence-based economy. In this paper, we summarize storm flooding events in the Bering Sea region of western Alaska during 1913 – 2011 and map both the extent of inland flooding caused by autumn storms on the central YKD, using Radarsat-1 and MODIS satellite imagery, and the drift lines, using high-resolution IKONOS satellite imagery and field surveys. The largest storm surges occurred in autumn and were associated with high tides and strong (> 65 km hr-1) southwest winds. Maximum inland extent of flooding from storm surges was 30.3 km in 2005, 27.4 km in 2006, and 32.3 km in 2011, with total flood area covering 47.1%, 32.5%, and 39.4% of the 6730 km2 study area, respectively. Peak stages for the 2005 and 2011 storms were 3.1 m and 3.3 m above mean sea level, respectively—almost as high as the 3.5 m amsl elevation estimated for the largest storm observed (in November 1974). Several historically abandoned village sites lie within the area of inundation of the largest flood events. With projected sea level rise, large storms are expected to become more frequent and cover larger areas, with deleterious effects on freshwater ponds, non-saline habitats, permafrost, and landscapes used by nesting birds and local people.

  16. Properties and effects of dust particles suspended in the martian atmosphere

    International Nuclear Information System (INIS)

    Pollack, J.B.; Colburn, D.S.; Flasar, M.; Kahn, R.; Carlston, C.E.; Pidek, D.

    1979-01-01

    Direct measurements of the optical depth above the two Viking landers are reported for a period of covering the summer, fall, and winter seasons in the northern hemisphere, a time period during which two global dust storms occurred. The optical depth had a value of about 1 just before the onset of each storm; it increased very rapidly, on a time scale of a few days, to peak values of about 3 and 6 with the arrival of the first and second storms, respectively; and its steadily decreased shortly thereafter (> or approx. = few days to few weeks) for both storms, with the decay occurring more rapidly during the initial period of decay. We have also carried out further analyses of observations of the sky brightness made with the lander cameras during the summer season to obtain improved estimates of other dust particle parameters, including the cross section weighted mean particle radius, several shape factors, and the imaginary indices of refraction. These results have been used to define the radiative properties of the suspended dust particles at solar wavelenths. The derived radiative properties of the dust were incorporated into a 1D radiative convective model. Satisfactory agreement with the temperature structure determined during the descent of the landers to the surface. Is achieved when allowance is made for the effects of vertical motions induced by large scale atmospheric dynamics. The diurnal temperature variations predicted by the 1D calculations for the observed optical depths are also in crude agreement with values inferred from orbiter and lander measurements. The 1D model predicts that the diurnal temperature change and daily mean temperature, averaged over the entire atmospheric vertical column, steadily increase as the optical depth of the dust increases to a value of several, and then subsequently change little

  17. Control of harmful dust in coal mines

    Energy Technology Data Exchange (ETDEWEB)

    Goddard, B; Bower, K; Mitchell, D

    1973-01-01

    This handbook consists of a series of short chapters devoted to: sources of airborne dust; dust standards and methods of sampling; dust prevention on mechanized faces; ventilation and dust extraction; distribution and use of water; dust control on mechanized faces; dust control in drivages and headings; drilling and shotfiring; dust control in transport; some outbye dust control techniques (hygroscopic salts, impingement curtains); water infusion; personal protective equipment. (CIS Abstr.)

  18. Dust evolution in protoplanetary disks

    OpenAIRE

    Gonzalez , Jean-François; Fouchet , Laure; T. Maddison , Sarah; Laibe , Guillaume

    2007-01-01

    6 pages, 5 figures, to appear in the Proceedings of IAU Symp. 249: Exoplanets: Detection, Formation and Dynamics (Suzhou, China); International audience; We investigate the behaviour of dust in protoplanetary disks under the action of gas drag using our 3D, two-fluid (gas+dust) SPH code. We present the evolution of the dust spatial distribution in global simulations of planetless disks as well as of disks containing an already formed planet. The resulting dust structures vary strongly with pa...

  19. Respirable versus inhalable dust sampling

    International Nuclear Information System (INIS)

    Hondros, J.

    1987-01-01

    The ICRP uses a total inhalable dust figure as the basis of calculations on employee lung dose. This paper was written to look at one aspect of the Olympic Dam dust situation, namely, the inhalable versus respirable fraction of the dust cloud. The results of this study will determine whether it is possible to use respirable dust figures, as obtained during routine monitoring to help in the calculations of employee exposure to internal radioactive contaminants

  20. Paleo-dust insights onto dust-climate interactions

    Science.gov (United States)

    Albani, S.; Mahowald, N. M.

    2017-12-01

    Mineral dust emissions are affected by changing climate conditions, and in turn dust impacts the atmospheric radiation budget, clouds and biogeochemical cycles. Climate and public health dust-related issues call for attention on the fate of the dust cycle in the future, and the representation of the dust cycle is now part of the strategy of the Paleoclimate Modelling Intercomparison Project phase 4 and the Coupled Model Intercomparison Project phase 6 (PMIP4-CMIP6). Since mineral aerosols are one of the most important natural aerosols, understanding past dust responses to climate in the paleoclimate will allow us to better understand mineral aerosol feedbacks with climate and biogeochemistry in the Anthropocene. Modern observations and paleoclimate records offer the possibility of multiple, complementary views on the global dust cycle, and allow to validate and/or constrain the numerical representation of dust in climate and Earth system models. We present our results from a set of simulations with the Community Earth System Model for different climate states, including present and past climates such as the pre-industrial, the mid-Holocene and the Last Glacial Maximum. A set of simulations including a prognostic dust cycle was thoroughly compared with a wide set of present day observations from different platforms and regions, in order to realistically constrain the magnitude of dust load, surface concentration, deposition, optical properties, and particle size distributions. The magnitude of emissions for past climate regimes was constrained based on compilations of paleodust mass accumulation rates and size distributions, as well as based on information on dust provenance. The comparison with a parallel set of simulations without dust allows estimating the impacts of dust on surface climate. We analyze impacts of dust on the mean and variability of surface temperature and precipitation in each climate state, as well as the impacts that changing dust emissions had

  1. Airborne Dust, "The Good Guy or the Bad Guy": How Much do We Know?

    Science.gov (United States)

    Tsay, Si-Chee

    2010-01-01

    Processes in generating, transporting, and dissipating the airborne dust particles are global phenomena -African dust regularly reaching the Alps; Asian dust seasonally crossing the Pacific into North America, and ultimately the Atlantic into Europe. One of the vital biogeochemical roles dust storms play in Earth's ecosystem is routinely mobilizing mineral dust, as a source of iron, from deserts into oceans for fertilizing the growth of phytoplankton -the basis of the oceanic food chain. Similarly, these dust-laden airs also supply crucial nutrients for the soil of tropical rain forests, the so-called womb of life that hosts 50-90% of the species on Earth. With massive amounts of dust lifted from desert regions and injected into the atmosphere, however, these dust storms often affect daily activities in dramatic ways: pushing grit through windows and doors, forcing people to stay indoors, causing breathing problems, reducing visibility and delaying flights, and by and large creating chaos. Thus, both increasing and decreasing concentrations of doses result in harmful biological effects; so do the airborne dust particles to our Living Earth. Since 1997 NASA has been successfully launching a series of satellites - the Earth Observing System - to intensively study, and gain a better understanding of, the Earth as an integrated system. Through participation in many satellite remote-sensing/retrieval and validation projects over the years, we have gradually developed and refined the SMART (Surface-sensing Measurements for Atmospheric Radiative Transfer) and COMMIT (Chemical, Optical & Microphysical Measurements of In-situ Troposphere) mobile observatories, a suite of surface remote sensing and in-situ instruments that proved to be vital in providing high temporal measurements, which complement the satellite observations. In this talk, we will present SMART-COMMIT which has played key roles, serving as network or supersite, in major international research projects such

  2. Original deep convection in the atmosphere of Mars driven by the radiative impact of dust and water-ice particles

    Science.gov (United States)

    Spiga, A.; Madeleine, J. B.; Hinson, D.; Millour, E.; Forget, F.; Navarro, T.; Määttänen, A.; Montmessin, F.

    2017-09-01

    We unveil two examples of deep convection on Mars - in dust storms and water-ice clouds - to demonstrate that the radiative effect of aerosols and clouds can lead to powerful convective motions just as much as the release of latent heat in moist convection

  3. Erosion of dust aggregates

    NARCIS (Netherlands)

    Seizinger, A.; Krijt, S.; Kley, W.

    2013-01-01

    Aims: The aim of this work is to gain a deeper insight into how much different aggregate types are affected by erosion. Especially, it is important to study the influence of the velocity of the impacting projectiles. We also want to provide models for dust growth in protoplanetary disks with simple

  4. Dust-Plasma Interactions

    International Nuclear Information System (INIS)

    Rosenberg, Marelene

    2005-01-01

    Our theoretical research on dust-plasma interactions has concentrated on three main areas: (a)studies of grain charging and applications; (b) waves and instabilities in weakly correlated dusty plasma with applications to space and laboratory plasmas; (c) waves in strongly coupled dusty plasmas.

  5. From dust to life

    Science.gov (United States)

    Wickramasinghe, Chandra

    After initially challenging the dirty-ice theory of interstellar grains, Fred Hoyle and the present author proposed carbon (graphite) grains, mixtures of refractory grains, organic polymers, biochemicals and finally bacterial grains as models of interstellar dust. The present contribution summarizes this trend and reviews the main arguments supporting a modern version of panspermia.

  6. Modeling the Transport and Radiative Forcing of Taklimakan Dust over the Tibetan Plateau: A case study in the summer of 2006

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Siyu; Huang, J.; Zhao, Chun; Qian, Yun; Leung, Lai-Yung R.; Yang, Ben

    2013-01-30

    The Weather Research and Forecasting model with chemistry (WRF-Chem) is used to investigate an intense dust storm event during 26 to 30 July 2006 that originated over the Taklimakan Desert (TD) and transported to the northern slope of Tibetan Plateau (TP). The dust storm is initiated by the approach of a strong cold frontal system over the TD. In summer, the meridional transport of TD dust to the TP is favored by the thermal effect of the TP and the weakening of the East Asian westerly winds. During this dust storm, the transport of TD dust over the TP is further enhanced by the passage of the cold front. As a result, TD dust breaks through the planetary boundary layer and extends to the upper troposphere over the northern TP. TD dust flux arrived at the TP with a value of 6.6 Gg/day in this 5 day event but decays quickly during the southward migration over the TP due to dry deposition. The simulations show that TD dust cools the atmosphere near the surface and heats the atmosphere above with a maximum heating rate of 0.11 K day-1 at ~7 km over the TP. The event-averaged net radiative forcings of TD dust over the TP are -3.97, 1.61, and -5.58 Wm-2 at the top of the atmosphere (TOA), in the atmosphere, and at the surface, respectively. The promising performance of WRF-Chem in simulating dust and its radiative forcing provides confidence for use in further investigation of climatic impact of TD dust over the TP.

  7. The storm-time ring current: a statistical analysis at two widely separated low-latitude stations

    Directory of Open Access Journals (Sweden)

    P. Francia

    2004-11-01

    Full Text Available We conducted a statistical analysis of the geomagnetic field variations during the storm main phase at two low-latitude stations, separated by several hours in magnetic local time, in order to investigate the asymmetry and longitudinal extent of the storm-time ring current. The results show evidence for an asymmetric current which typically extends from evening to noon and, during moderate solar wind electric field conditions, up to the early morning, confirming the important role of the magnetospheric convection in the ring current energization. We also analyzed a possible relationship between the local current intensity during the storm main phase and the substorm activity observed at different time delays τ with respect to the storm onset. The results show a significant anticorrelation for τ =-1h, indicating that if the substorm activity is high just before the storm, a weaker ring current develops.

  8. The electric storm of November 1882

    Science.gov (United States)

    Love, Jeffrey J.

    2018-01-01

    In November 1882, an intense magnetic storm related to a large sunspot group caused widespread interference to telegraph and telephone systems and provided spectacular and unusual auroral displays. The (ring current) storm time disturbance index for this storm reached maximum −Dst ≈ 386 nT, comparable to Halloween storm of 29–31 October 2003, but from 17 to 20 November the aa midlatitude geomagnetic disturbance index averaged 214.25 nT, the highest 4 day level of disturbance since the beginning of aa index in 1868. This storm contributed to scientists' understanding of the reality of solar‐terrestrial interaction. Past occurrences of magnetic storms, like that of November 1882, can inform modern evaluations of the deleterious effects that a magnetic superstorm might have on technological systems of importance to society.

  9. Extreme Geomagnetic Storms – 1868–2010

    DEFF Research Database (Denmark)

    Vennerstrøm, Susanne; Lefèvre, L.; Dumbović, M.

    2016-01-01

    presents our investigation of the corresponding solar eventsand their characteristics. The storms were selected based on their intensity in the aa index,which constitutes the longest existing continuous series of geomagnetic activity. They areanalyzed statistically in the context of more well...... occurring in May 1921 and the Quebec storm from March 1989. We identifykey characteristics of the storms by combining several different available data sources, listsof storm sudden commencements (SSCs) signifying occurrence of interplanetary shocks,solar wind in-situ measurements, neutron monitor data...... %), Forbushdecreases (100 %), and energetic solar proton events (70 %). A quantitative comparison ofthese associations relative to less intense storms is also presented. Most notably, we findthat most often the extreme storms are characterized by a complexity that is associated with multiple, often interacting, solar...

  10. Alternative salvage technique during postcardiotomy electrical storm.

    Science.gov (United States)

    Ryu, Y G; Baek, M J; Kim, H J

    2010-08-01

    Cardiac electrical storm is generally treated with antiarrhythmic drugs, electrical cardioversion, or catheter ablation. However, these conservative treatment modalities are considered neither curative nor preventive with regard to recurrent arrhythmias in postoperative electrical storm after open heart surgery. We present a case of surgical ventricular assist device placement for postcardiotomy electrical storm in a 38-year-old patient. Copyright (c) Georg Thieme Verlag KG Stuttgart-New York.

  11. New storm water regulations impact industry

    International Nuclear Information System (INIS)

    Gemar, C.

    1991-01-01

    In November 1990, new Environmental Protection Agency (EPA) regulations aimed at governing the discharge of storm water from industrial facilities became effective. Because some industrial runoff contains toxics and other pollutants, the EPA considers storm water a major source of water contamination. The new regulations will have a profound impact on the National Pollutant Discharge Elimination System (NPDES) permit requirements for industry. This paper summarizes the new storm water regulations, focusing on the requirements for industrial facilities. It also presents suggestions for compliance

  12. Coastal Storm Hazards from Virginia to Maine

    Science.gov (United States)

    2015-11-01

    secondary terms • integration of joint probability of storm responses, including extratropical events. A diagram summarizing the JPM methodology is... Extratropical Cyclones. The GPD- based approach defined above was used to compute the final storm response statistics for XCs. ERDC/CHL TR-15-5 39...from the numerical modeling of all storms , tropical and extratropical . As discussed in Section 2.1.2, JPM methodology generally consists of the

  13. Validation of Storm Water Management Model Storm Control Measures Modules

    Science.gov (United States)

    Simon, M. A.; Platz, M. C.

    2017-12-01

    EPA's Storm Water Management Model (SWMM) is a computational code heavily relied upon by industry for the simulation of wastewater and stormwater infrastructure performance. Many municipalities are relying on SWMM results to design multi-billion-dollar, multi-decade infrastructure upgrades. Since the 1970's, EPA and others have developed five major releases, the most recent ones containing storm control measures modules for green infrastructure. The main objective of this study was to quantify the accuracy with which SWMM v5.1.10 simulates the hydrologic activity of previously monitored low impact developments. Model performance was evaluated with a mathematical comparison of outflow hydrographs and total outflow volumes, using empirical data and a multi-event, multi-objective calibration method. The calibration methodology utilized PEST++ Version 3, a parameter estimation tool, which aided in the selection of unmeasured hydrologic parameters. From the validation study and sensitivity analysis, several model improvements were identified to advance SWMM LID Module performance for permeable pavements, infiltration units and green roofs, and these were performed and reported herein. Overall, it was determined that SWMM can successfully simulate low impact development controls given accurate model confirmation, parameter measurement, and model calibration.

  14. Topographic Correction Module at Storm (TC@Storm)

    Science.gov (United States)

    Zaksek, K.; Cotar, K.; Veljanovski, T.; Pehani, P.; Ostir, K.

    2015-04-01

    Different solar position in combination with terrain slope and aspect result in different illumination of inclined surfaces. Therefore, the retrieved satellite data cannot be accurately transformed to the spectral reflectance, which depends only on the land cover. The topographic correction should remove this effect and enable further automatic processing of higher level products. The topographic correction TC@STORM was developed as a module within the SPACE-SI automatic near-real-time image processing chain STORM. It combines physical approach with the standard Minnaert method. The total irradiance is modelled as a three-component irradiance: direct (dependent on incidence angle, sun zenith angle and slope), diffuse from the sky (dependent mainly on sky-view factor), and diffuse reflected from the terrain (dependent on sky-view factor and albedo). For computation of diffuse irradiation from the sky we assume an anisotropic brightness of the sky. We iteratively estimate a linear combination from 10 different models, to provide the best results. Dependent on the data resolution, we mask shades based on radiometric (image) or geometric properties. The method was tested on RapidEye, Landsat 8, and PROBA-V data. Final results of the correction were evaluated and statistically validated based on various topography settings and land cover classes. Images show great improvements in shaded areas.

  15. Ice storm 1998 : lessons learned

    Energy Technology Data Exchange (ETDEWEB)

    McCready, J. [Eastern Ontario Model Forest, Kemptville, ON (Canada)

    2006-07-01

    This paper presented details of a partnership formed in response to the ice storm of 1998, which caused extensive damage to trees in woodlots and urban settings in eastern Ontario and western Quebec. The aim of the Ice Storm Forest Recovery Group was to assist in the recovery of eastern forests, collect information on the extent of the damage to trees as well as contribute to the development of assistance programs for woodlot owners and municipalities. In response to the group's request, an initial aerial survey was conducted by the Ontario Ministry of Natural Resources to map the extent of the damage in eastern Ontario, which was followed by a more scientific survey with the Canadian Forest Service through the development of a flying grid pattern to observe the status of trees, followed by extensive ground checks. Damage was variable, depending on tree species, stand age and composition, management practices, wind direction, topography and ice deposition patterns. A summary of the severity of damage indicated that conifers suffered less than hardwoods. Consultants were hired to prepare news releases and extension notes to the public in order to provide information for the caring of trees. Various educational workshops were held which attracted large numbers of landowners and homeowners. A literature review was undertaken to produce a summary of current published knowledge covering the effects of storms and ice damage to trees and forests. Science efforts were published in a series of papers, and financial assistance programs were then organized by governmental agencies. It was concluded that cooperation between all agencies, groups and levels of government is needed in order to coordinate effective emergency strategies. 7 refs., 1 tab., 1 fig.

  16. Desert Dust and Health: A Central Asian Review and Steppe Case Study

    Directory of Open Access Journals (Sweden)

    Troy Sternberg

    2017-11-01

    Full Text Available In Asian deserts environmental and anthropomorphic dust is a significant health risk to rural populations. Natural sources in dry landscapes are exacerbated by human activities that increase the vulnerability to dust and dust-borne disease vectors. Today in Central and Inner Asian drylands, agriculture, mining, and rapid development contribute to dust generation and community exposure. Thorough review of limited dust investigation in the region implies but does not quantify health risks. Anthropogenic sources, such as the drying of the Aral Sea, highlight the shifting dust dynamics across the Central EurAsian steppe. In the Gobi Desert, our case study in Khanbogd, Mongolia addressed large-scale mining’s potential dust risk to the health of the local population. Dust traps showed variable exposure to particulates among herder households and town residents; dust density distribution indicated that sources beyond the mine need to be considered when identifying particulate sources. Research suggests that atmospheric dust from multiple causes may enhance human particulate exposure. Greater awareness of dust in greater Central Asia reflects community concern about related health implications. Future human well-being in the region will require more thorough information on dust emissions in the changing environment.

  17. Desert Dust and Health: A Central Asian Review and Steppe Case Study.

    Science.gov (United States)

    Sternberg, Troy; Edwards, Mona

    2017-11-03

    In Asian deserts environmental and anthropomorphic dust is a significant health risk to rural populations. Natural sources in dry landscapes are exacerbated by human activities that increase the vulnerability to dust and dust-borne disease vectors. Today in Central and Inner Asian drylands, agriculture, mining, and rapid development contribute to dust generation and community exposure. Thorough review of limited dust investigation in the region implies but does not quantify health risks. Anthropogenic sources, such as the drying of the Aral Sea, highlight the shifting dust dynamics across the Central EurAsian steppe. In the Gobi Desert, our case study in Khanbogd, Mongolia addressed large-scale mining's potential dust risk to the health of the local population. Dust traps showed variable exposure to particulates among herder households and town residents; dust density distribution indicated that sources beyond the mine need to be considered when identifying particulate sources. Research suggests that atmospheric dust from multiple causes may enhance human particulate exposure. Greater awareness of dust in greater Central Asia reflects community concern about related health implications. Future human well-being in the region will require more thorough information on dust emissions in the changing environment.

  18. Aging and Curing Temperature Effects on Compressive Strength of Mortar Containing Lime Stone Quarry Dust and Industrial Granite Sludge

    Directory of Open Access Journals (Sweden)

    Muhammad Nasir Amin

    2017-06-01

    Full Text Available In this study, the researchers investigated the potential use of locally available waste materials from the lime stone quarry and the granite industry as a partial replacement of cement. Quarry sites and granite industry in the eastern province of Saudi Arabia produces tons of powder wastes in the form of quarry dust (QD and granite sludge (GS, respectively, causing serious environmental problems along with frequent dust storms in the area. According to ASTM C109, identical 50-mm3 specimens were cast throughout this study to evaluate the compressive strength development of mortars (7, 28 and 91 days containing these waste materials. Experimental variables included different percentage replacement of cement with waste materials (GS, QD, fineness of GS, various curing temperatures (20, 40 and 60 °C as local normal and hot environmental temperatures and curing moisture (continuously moist and partially moist followed by air curing. Finally, the results of mortar containing waste materials were compared to corresponding results of control mortar (CM and mortar containing fly ash (FA. The test results indicated that under normal curing (20 °C, moist cured, the compressive strength of mortar containing the different percentage of waste materials (QD, GS, FA and their combinations remained lower than that of CM at all ages. However, the compressive strength of mortar containing waste materials slightly increased with increased fineness of GS and significantly increased under high curing temperatures. It was recommended that more fineness of GS be achieved to use its high percentage replacement with cement (30% or more incorporating local environmental conditions.

  19. The structure of the big magnetic storms

    International Nuclear Information System (INIS)

    Mihajlivich, J. Spomenko; Chop, Rudi; Palangio, Paolo

    2010-01-01

    The records of geomagnetic activity during Solar Cycles 22 and 23 (which occurred from 1986 to 2006) indicate several extremely intensive A-class geomagnetic storms. These were storms classified in the category of the Big Magnetic Storms. In a year of maximum solar activity during Solar Cycle 23, or more precisely, during a phase designated as a post-maximum phase in solar activity (PPM - Phase Post maximum), near the autumn equinox, on 29, October 2003, an extremely strong and intensive magnetic storm was recorded. In the first half of November 2004 (7, November 2004) an intensive magnetic storm was recorded (the Class Big Magnetic Storm). The level of geomagnetic field variations which were recorded for the selected Big Magnetic Storms, was ΔD st=350 nT. For the Big Magnetic Storms the indicated three-hour interval indices geomagnetic activity was Kp = 9. This study presents the spectral composition of the Di - variations which were recorded during magnetic storms in October 2003 and November 2004. (Author)

  20. [Thyrotoxic storm and myxedema coma].

    Science.gov (United States)

    Takasu, N

    1999-08-01

    Thyrotoxic or hyperthyroid storm is a grave, life-threatening, but relatively infrequent medical emergency. Immediate causes of death in this emergency are severe hyperpyrexia and pulmonary edema associated with arrhythmias, shock, and coma. This emergency is found in Graves' patients most frequently. Myxedema coma is an emergency clinical state caused by severe deficiency of thyroid hormones. This crisis represents the extreme expression of hypothyroidism. While it is quite useful to elicit a history of previous hypothyroidism, thyroid surgery, or radioactive iodine treatment, it is not obtainable.

  1. Optical and microphysical properties of natural mineral dust and anthropogenic soil dust near dust source regions over northwestern China

    Directory of Open Access Journals (Sweden)

    X. Wang

    2018-02-01

    Full Text Available Mineral dust aerosols (MDs not only influence the climate by scattering and absorbing solar radiation but also modify cloud properties and change the ecosystem. From 3 April to 16 May 2014, a ground-based mobile laboratory was deployed to measure the optical and microphysical properties of MDs near dust source regions in Wuwei, Zhangye, and Dunhuang (in chronological order along the Hexi Corridor over northwestern China. Throughout this dust campaign, the hourly averaged (±standard deviation aerosol scattering coefficients (σsp, 550 nm of the particulates with aerodynamic diameters less than 2.5 µm (PM2.5 at these three sites were sequentially 101.5 ± 36.8, 182.2 ± 433.1, and 54.0 ± 32.0 Mm−1. Correspondingly, the absorption coefficients (σap, 637 nm were 9.7 ± 6.1, 6.0 ± 4.6, and 2.3 ± 0.9 Mm−1; single-scattering albedos (ω, 637 nm were 0.902 ± 0.025, 0.931 ± 0.037, and 0.949 ± 0.020; and scattering Ångström exponents (Åsp, 450–700 nm of PM2.5 were 1.28 ± 0.27, 0.77 ± 0.51, and 0.52 ± 0.31. During a severe dust storm in Zhangye (i.e., from 23 to 25 April, the highest values of σsp2.5 ( ∼  5074 Mm−1, backscattering coefficient (σbsp2.5,  ∼  522 Mm−1, and ω637 ( ∼  0.993 and the lowest values of backscattering fraction (b2.5,  ∼  0.101 at 550 nm and Åsp2.5 ( ∼  −0.046 at 450–700 nm, with peak values of aerosol number size distribution (appearing at the particle diameter range of 1–3 µm, exhibited that the atmospheric aerosols were dominated by coarse-mode dust aerosols. It is hypothesized that the relatively higher values of mass scattering efficiency during floating dust episodes in Wuwei and Zhangye are attributed to the anthropogenic soil dust produced by agricultural cultivations.

  2. Modelling dust transport in tokamaks

    International Nuclear Information System (INIS)

    Martin, J.D.; Martin, J.D.; Bacharis, M.; Coppins, M.; Counsell, G.F.; Allen, J.E.; Counsell, G.F.

    2008-01-01

    The DTOKS code, which models dust transport through tokamak plasmas, is described. The floating potential and charge of a dust grain in a plasma and the fluxes of energy to and from it are calculated. From this model, the temperature of the dust grain can be estimated. A plasma background is supplied by a standard tokamak edge modelling code (B2SOLPS5.0), and dust transport through MAST (the Mega-Amp Spherical Tokamak) and ITER plasmas is presented. We conclude that micron-radius tungsten dust can reach the separatrix in ITER. (authors)

  3. Possible influences of Asian dust aerosols on cloud properties and radiative forcing observed from MODIS and CERES

    Science.gov (United States)

    Huang, Jianping; Minnis, Patrick; Lin, Bing; Wang, Tianhe; Yi, Yuhong; Hu, Yongxiang; Sun-Mack, Sunny; Ayers, Kirk

    2006-03-01

    The effects of dust storms on cloud properties and Radiative Forcing (RF) are analyzed over Northwestern China from April 2001 to June 2004 using data collected by the MODerate Resolution Imaging Spectroradiometer (MODIS) and Clouds and the Earth's Radiant Energy System (CERES) instruments on the Aqua and Terra satellites. On average, ice cloud effective particle diameter, optical depth and ice water path of cirrus clouds under dust polluted conditions are 11%, 32.8%, and 42% less, respectively, than those derived from ice clouds in dust-free atmospheric environments. Due to changes in cloud microphysics, the instantaneous net RF is increased from -161.6 W/m2 for dust-free clouds to -118.6 W/m2 for dust-contaminated clouds.

  4. Computer simulation of dust grain evolution

    Science.gov (United States)

    Liffman, K.

    1989-01-01

    The latest results are reported from a Monte Carlo code that is being developed at NASA Ames. The goal of this program, is to derive from the observed and presumed properties of the interstellar medium (ISM) the following information: (1) the size spectrum of interstellar dust; (2) the chemical structure of interstellar dust; (3) interstellar abundances; and (4) the lifetime of a dust grain in the ISM. Presently this study is restricted to refractory interstellar material, i.e., the formation and destruction of ices are not included in the program. The program is embedded in an analytic solution for the bulk chemical evolution of a two-phase interstellar medium in which stars are born in molecular clouds, but new nucleosynthesis products and stellar return are entered into a complementary intercloud medium. The well-mixed matter of each interstellar phase is repeatedly cycled stochastically through the complementary phase and back. Refractory dust is created by thermal condensation as stellar matter flows away from sites of nucleosynthesis such as novae and supernovae and/or from the matter returned from evolved intermediate stars. The history of each particle is traced by standard Monte Carlo techniques as it is sputtered and fragmented by supernova shock waves in the intercloud medium. It also accretes an amorphous mantle of gaseous refractory atoms when its local medium joins with the molecular cloud medium. Finally it encounters the possibility of astration (destruction by star formation) within the molecular clouds.

  5. Proxy records of Holocene storm events in coastal barrier systems: Storm-wave induced markers

    Science.gov (United States)

    Goslin, Jérôme; Clemmensen, Lars B.

    2017-10-01

    Extreme storm events in the coastal zone are one of the main forcing agents of short-term coastal system behavior. As such, storms represent a major threat to human activities concentrated along the coasts worldwide. In order to better understand the frequency of extreme events like storms, climate science must rely on longer-time records than the century-scale records of instrumental weather data. Proxy records of storm-wave or storm-wind induced activity in coastal barrier systems deposits have been widely used worldwide in recent years to document past storm events during the last millennia. This review provides a detailed state-of-the-art compilation of the proxies available from coastal barrier systems to reconstruct Holocene storm chronologies (paleotempestology). The present paper aims (I) to describe the erosional and depositional processes caused by storm-wave action in barrier and back-barrier systems (i.e. beach ridges, storm scarps and washover deposits), (ii) to understand how storm records can be extracted from barrier and back-barrier sedimentary bodies using stratigraphical, sedimentological, micro-paleontological and geochemical proxies and (iii) to show how to obtain chronological control on past storm events recorded in the sedimentary successions. The challenges that paleotempestology studies still face in the reconstruction of representative and reliable storm-chronologies using these various proxies are discussed, and future research prospects are outlined.

  6. In the Eye of the Storm: A Participatory Course on Coastal Storms

    Science.gov (United States)

    Curtis, Scott

    2013-01-01

    Storm disasters are amplified in the coastal environment due to population pressures and the power of the sea. The upper-division/graduate university course "Coastal Storms" was designed to equip future practitioners with the skills necessary to understand, respond to, and mitigate for these natural disasters. To accomplish this, "Coastal Storms"…

  7. Interplanetary radio storms. 2: Emission levels and solar wind speed in the range 0.05-0.8 AU

    Science.gov (United States)

    Bougeret, J. L.; Fainberg, J.; Stone, R. G.

    1982-01-01

    Storms of interplanetary type III radio bursts (IP storms) are commonly observed in the interplanetry medium by the ISEE-3 radio instrument. This instrument has the capability of accurately determining the arrival direction of the radio emission. At each observing frequency, the storm radio sources are tracked as they cross the line-of-sight to the Sun. Usng a simple model, the emission levels are determined at a number of radio frequencies for four separate storms. The IP storm radiation is found to occur in regions of enhanced density at levels of 0.05 to 0.8 AU. The density in these enhancements falls off faster than R(-2). The solar wind speed in the storm region is also measured. The analysis is consistent with steady conditions in the storm region during a few days around the central meridian passage of the storm. The comparison with average in situ density measurements compiled from the HELIOS 1-2 observations favors type III storm burst radio emission at the harmonic of the local plasma frequency.

  8. From Desert to Dessert: Why Australian Dust Matters.

    Science.gov (United States)

    Hunter, K. A.; Mackie, D. S.; Boyd, P. W.; McTainsh, G. H.

    2006-12-01

    The growth of some types of phytoplankton in several parts of the world ocean, including much of the Southern Ocean, is limited by the supply of iron. Large Australian dust storms uplift, transport and abrade soils, to produce aeolian dust that is a significant source iron to the Southern Ocean. Atmospheric processes that enhance the dissolution of iron from aeolian dusts are of interest and have been studied for material from major dust producing regions like the Sahara, Gobi and Australian deserts; the reported solubility of iron from aeolian dusts ranges from <0.01% to 80%. The characteristic red soils, sands and dusts from Australia are generally believed to consist of quartz grains with a coating of fine grains and crystals of iron oxides, primarily hematite and goethite. The precise mineralogy of soil and