Sample records for local drought conditions

  1. On-farm yield potential of local seed watermelon landraces under heat- and drought-prone conditions in Mali

    DEFF Research Database (Denmark)

    Nantoume, Aminata Dolo; Christiansen, Jørgen Lindskrog; Andersen, Sven Bode


    On-farm yield experiments were carried out in the Tombouctou region of Mali in 2009/10 under heat- and drought-prone desert conditions with three local landraces of seed-type watermelons. The landraces, named Fombou, Kaneye and Musa Musa by the farmers, exhibited distinct characteristics for fruit...... responsive. The yields obtained suggest that these local landraces of watermelon are valuable plant genetic resources for securing food supply in arid, heat- and drought-prone areas....

  2. Drought effect on growth, gas exchange and yield, in two strains of local barley Ardhaoui, under water deficit conditions in southern Tunisia. (United States)

    Thameur, Afwa; Lachiheb, Belgacem; Ferchichi, Ali


    Two local barley strains cv. Ardhaoui originated from Tlalit and Switir, sourthern Tunisia were grown in pots in a glasshouse assay, under well-watered conditions for a month. Plants were then either subjected to water deficit (treatment) or continually well-watered (control). Control pots were irrigated several times each week to maintain soil moisture near field capacity (FC), while stress pots experienced soil drying by withholding irrigation until they reached 50% of FC. Variation in relative water content, leaf area, leaf appearance rate and leaf gas exchange (i.e. net CO(2) assimilation rate (A), transpiration (E), and stomatal conductance (gs)) in response to water deficit was investigated. High leaf relative water content (RWC) was maintained in Tlalit by stomatal closure and a reduction of leaf area. Reduction in leaf area was due to decline in leaf gas exchange during water deficit. Tlalit was found to be drought tolerant and able to maintain higher leaf RWC under drought conditions. Water deficit treatment reduced stomatal conductance by 43% at anthesis. High net CO(2) assimilation rate under water deficit was associated with high RWC (r = 0.998; P gas exchange parameters were found, which can give some indications on the degree of drought tolerance. Thus, the ability of the low leaf area plants to maintain higher RWC could explain the differences in drought tolerance in studied barley strains. Results showed that Tlalit showed to be more efficient and more productive than Switir. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Groundwater drought in different geological conditions

    International Nuclear Information System (INIS)

    Machlica, A; Stojkovova, M


    The identification of hydrological extremes (drought) is very actual at present. The knowledge of the mechanism of hydrological extremes evolution could be useful at many levels of human society, such as scientific, agricultural, local governmental, political and others. The research was performed in the Upper part of the Nitra River catchment (central part of Slovakia) and in the Topla and Ondava River catchments (eastern part of Slovakia). Lumped hydrological model BILAN was used to identify relationships among compounds of the water balance. Presented results are focused on drought in groundwater storage, soil moisture, base flow and discharges. BFI model for baseflow estimation was used and results were compared with those gained by BILAN model. Another item of the research was to compare results of hydrological balance model application on catchments with different geological conditions.

  4. Precursor conditions related to Zimbabwe's summer droughts (United States)

    Nangombe, Shingirai; Madyiwa, Simon; Wang, Jianhong


    Despite the increasing severity of droughts and their effects on Zimbabwe's agriculture, there are few tools available for predicting these droughts in advance. Consequently, communities and farmers are more exposed, and policy makers are always ill prepared for such. This study sought to investigate possible cycles and precursor meteorological conditions prior to drought seasons that could be used to predict impending droughts in Zimbabwe. The Single Z-Index was used to identify and grade drought years between 1951 and 2010 according to rainfall severity. Spectral analysis was used to reveal the cycles of droughts for possible use of these cycles for drought prediction. Composite analysis was used to investigate circulation and temperature anomalies associated with severe and extreme drought years. Results indicate that severe droughts are more highly correlated with circulation patterns and embedded weather systems in the Indian Ocean and equatorial Pacific Ocean than any other area. This study identified sea surface temperatures in the average period June to August, geopotential height and wind vector in July to September period, and air temperature in September to November period as precursors that can be used to predict a drought occurrence several months in advance. Therefore, in addition to sea surface temperature, which was identified through previous research for predicting Zimbabwean droughts, the other parameters identified in this study can aid in drought prediction. Drought cycles were established at 20-, 12.5-, 3.2-, and 2.7-year cycles. The spectral peaks, 12.5, 3.2, and 2.7, had a similar timescale with the luni-solar tide, El Niño Southern Oscillation and Quasi Biennial Oscillation, respectively, and hence, occurrence of these phenomena have a possibility of indicating when the next drought might be.

  5. Drought timing and local climate determine the sensitivity of eastern temperate forests to drought. (United States)

    D'Orangeville, Loïc; Maxwell, Justin; Kneeshaw, Daniel; Pederson, Neil; Duchesne, Louis; Logan, Travis; Houle, Daniel; Arseneault, Dominique; Beier, Colin M; Bishop, Daniel A; Druckenbrod, Daniel; Fraver, Shawn; Girard, François; Halman, Joshua; Hansen, Chris; Hart, Justin L; Hartmann, Henrik; Kaye, Margot; Leblanc, David; Manzoni, Stefano; Ouimet, Rock; Rayback, Shelly; Rollinson, Christine R; Phillips, Richard P


    Projected changes in temperature and drought regime are likely to reduce carbon (C) storage in forests, thereby amplifying rates of climate change. While such reductions are often presumed to be greatest in semi-arid forests that experience widespread tree mortality, the consequences of drought may also be important in temperate mesic forests of Eastern North America (ENA) if tree growth is significantly curtailed by drought. Investigations of the environmental conditions that determine drought sensitivity are critically needed to accurately predict ecosystem feedbacks to climate change. We matched site factors with the growth responses to drought of 10,753 trees across mesic forests of ENA, representing 24 species and 346 stands, to determine the broad-scale drivers of drought sensitivity for the dominant trees in ENA. Here we show that two factors-the timing of drought, and the atmospheric demand for water (i.e., local potential evapotranspiration; PET)-are stronger drivers of drought sensitivity than soil and stand characteristics. Drought-induced reductions in tree growth were greatest when the droughts occurred during early-season peaks in radial growth, especially for trees growing in the warmest, driest regions (i.e., highest PET). Further, mean species trait values (rooting depth and ψ 50 ) were poor predictors of drought sensitivity, as intraspecific variation in sensitivity was equal to or greater than interspecific variation in 17 of 24 species. From a general circulation model ensemble, we find that future increases in early-season PET may exacerbate these effects, and potentially offset gains in C uptake and storage in ENA owing to other global change factors. © 2018 John Wiley & Sons Ltd.

  6. More than just consumers: Integrating local observations into drought monitoring to better support decision making (United States)

    Ferguson, D. B.; Masayesva, A.; Meadow, A. M.; Crimmins, M.


    Drought monitoring and drought planning are complex endeavors. Measures of precipitation or streamflow provide little context for understanding how social and environmental systems impacted by drought are responding. In arid and semi-arid regions of the world, this challenge is particularly acute since social-ecological systems are already well-adapted to dry conditions. Understanding what drought means in these regions is an important first step in developing a decision-relevant monitoring system. Traditional drought indices may be of some use, but local observations may ultimately be more relevant for informing difficult decisions in response to unusually dry conditions. This presentation will focus on insights gained from a collaborative project between the University of Arizona and the Hopi Tribe-a Native American community in the U.S. Southwest-to develop a drought information system that is responsive to local needs. The primary goal of the project was to develop a system that: is based on how drought is experienced by Hopi citizens and resource managers, can incorporate local observations of drought impacts as well as conventional indicators, and brings together local expertise with conventional science-based observations. This kind of drought monitoring system can harnesses as much available information as possible to inform resource managers, political leaders, and citizens about drought conditions, but such a system can also engage these local drought stakeholders in observing, thinking about, and helping guide planning for drought.

  7. Conditional and unconditional QTL mapping of drought-tolerance ...

    Indian Academy of Sciences (India)


    Aug 12, 2013 ... drought tolerance has been the yield obtained under drought conditions .... loci distributed in 27 linkage groups with six linkage gaps, and it covered ...... time in maize; they identified numerous minor-effect QTLs that were ...

  8. Hydrological Drought in the Anthropocene: Impacts of Local Water Extraction and Reservoir Regulation in the U.S.: Hydrological Drought in the Anthropocene

    Energy Technology Data Exchange (ETDEWEB)

    Wan, Wenhua [State Key Laboratory of Hydro-science and Engineering, Department of Hydraulic Engineering, Tsinghua University, Beijing China; Pacific Northwest National Laboratory, Richland WA USA; Zhao, Jianshi [State Key Laboratory of Hydro-science and Engineering, Department of Hydraulic Engineering, Tsinghua University, Beijing China; Li, Hong-Yi [Pacific Northwest National Laboratory, Richland WA USA; Now at Department of Land Resources and Environmental Sciences and Institute on Ecosystems, Montana State University, Bozeman MT USA; Mishra, Ashok [Glenn Department of Civil Engineering, Clemson University, Clemson SC USA; Ruby Leung, L. [Pacific Northwest National Laboratory, Richland WA USA; Hejazi, Mohamad [Pacific Northwest National Laboratory, Richland WA USA; Wang, Wei [The Ministry of Education Key Laboratory for Earth System Modeling, and Center for Earth System Science, Tsinghua University, Beijing China; Lu, Hui [The Ministry of Education Key Laboratory for Earth System Modeling, and Center for Earth System Science, Tsinghua University, Beijing China; Deng, Zhiqun [Pacific Northwest National Laboratory, Richland WA USA; Demissisie, Yonas [Department of Civil and Environmental Engineering, Washington State University, Pullman WA USA; Wang, Hao [State Key Laboratory of Hydro-science and Engineering, Department of Hydraulic Engineering, Tsinghua University, Beijing China; State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Hydropower and Water Resources, Beijing China


    Hydrological drought is a substantial negative deviation from normal hydrologic conditions and is influenced by climate and human activities such as water management. By perturbing the streamflow regime, climate change and water management may significantly alter drought characteristics in the future. Here we utilize a high-resolution integrated modeling framework that represents water management in terms of both local surface water extraction and reservoir regulation, and use the Standardized Streamflow Index (SSI) to quantify hydrological drought. We explore the impacts of water management on hydrological drought over the contiguous US in a warming climate with and without emissions mitigation. Despite the uncertainty of climate change impacts, local surface water extraction consistently intensifies drought that dominates at the regional to national scale. However, reservoir regulation alleviates drought by enhancing summer flow downstream of reservoirs. The relative dominance of drought intensification or relief is largely determined by the water demand, with drought intensification dominating in regions with intense water demand such as the Great Plains and California, while drought relief dominates in regions with low water demand. At the national level, water management increases the spatial extent of extreme drought despite some alleviations of moderate to severe drought. In an emissions mitigation scenario with increased irrigation demand for bioenergy production, water management intensifies drought more than the business-as-usual scenario at the national level, so the impacts of emissions mitigation must be evaluated by considering its benefit in reducing warming and evapotranspiration against its effects on increasing water demand and intensifying drought.

  9. Evaluation of sorghum genotypes under drought stress conditions ...

    African Journals Online (AJOL)

    Seven genotypes of sorghum (Sorghum bicolour (L.) Moench) were studied in both drought and normal conditions. In each condition, the genotypes were evaluated using a split plot based randomized complete block design with three replications. Drought tolerance indices including stability tolerance index (STI), mean ...

  10. Recent La Plata basin drought conditions observed by satellite gravimetry


    L. Chen , J.; R. Wilson , C.; D. Tapley , B.; Longuevergne , L.; L. Yang , Z.; R. Scanlon , B.


    International audience; The Gravity Recovery and Climate Experiment (GRACE) provides quantitative measures of terrestrial water storage (TWS) change. GRACE data show a significant decrease in TWS in the lower (southern) La Plata river basin of South America over the period 2002-2009, consistent with recognized drought conditions in the region. GRACE data reveal a detailed picture of temporal and spatial evolution of this severe drought event, which suggests that the drought began in lower La ...

  11. Hydrological Drought in the Anthropocene: Impacts of Local Water Extraction and Reservoir Regulation in the U.S. (United States)

    Wan, Wenhua; Zhao, Jianshi; Li, Hong-Yi; Mishra, Ashok; Ruby Leung, L.; Hejazi, Mohamad; Wang, Wei; Lu, Hui; Deng, Zhiqun; Demissisie, Yonas; Wang, Hao


    Hydrological drought is a substantial negative deviation from normal hydrologic conditions and is influenced by climate and human activities such as water management. By perturbing the streamflow regime, climate change and water management may significantly alter drought characteristics in the future. Here we utilize a high-resolution integrated modeling framework that represents water management in terms of both local surface water extraction and reservoir regulation and use the Standardized Streamflow Index to quantify hydrological drought. We explore the impacts of water management on hydrological drought over the contiguous U.S. in a warming climate with and without emissions mitigation. Despite the uncertainty of climate change impacts, local surface water extraction consistently intensifies drought that dominates at the regional to national scale. However, reservoir regulation alleviates drought by enhancing summer flow downstream of reservoirs. The relative dominance of drought intensification or relief is largely determined by the water demand, with drought intensification dominating in regions with intense water demand such as the Great Plains and California, while drought relief dominates in regions with low water demand. At the national level, water management increases the spatial extent of extreme drought despite some alleviations of moderate to severe drought. In an emissions mitigation scenario with increased irrigation demand for bioenergy production, water management intensifies drought more than the business-as-usual scenario at the national level, so the impacts of emissions mitigation must be evaluated by considering its benefit in reducing warming and evapotranspiration against its effects on increasing water demand and intensifying drought.

  12. Novel Digital Features Discriminate Between Drought Resistant and Drought Sensitive Rice Under Controlled and Field Conditions

    Directory of Open Access Journals (Sweden)

    Lingfeng Duan


    Full Text Available Dynamic quantification of drought response is a key issue both for variety selection and for functional genetic study of rice drought resistance. Traditional assessment of drought resistance traits, such as stay-green and leaf-rolling, has utilized manual measurements, that are often subjective, error-prone, poorly quantified and time consuming. To relieve this phenotyping bottleneck, we demonstrate a feasible, robust and non-destructive method that dynamically quantifies response to drought, under both controlled and field conditions. Firstly, RGB images of individual rice plants at different growth points were analyzed to derive 4 features that were influenced by imposition of drought. These include a feature related to the ability to stay green, which we termed greenness plant area ratio (GPAR and 3 shape descriptors [total plant area/bounding rectangle area ratio (TBR, perimeter area ratio (PAR and total plant area/convex hull area ratio (TCR]. Experiments showed that these 4 features were capable of discriminating reliably between drought resistant and drought sensitive accessions, and dynamically quantifying the drought response under controlled conditions across time (at either daily or half hourly time intervals. We compared the 3 shape descriptors and concluded that PAR was more robust and sensitive to leaf-rolling than the other shape descriptors. In addition, PAR and GPAR proved to be effective in quantification of drought response in the field. Moreover, the values obtained in field experiments using the collection of rice varieties were correlated with those derived from pot-based experiments. The general applicability of the algorithms is demonstrated by their ability to probe archival Miscanthus data previously collected on an independent platform. In conclusion, this image-based technology is robust providing a platform-independent tool for quantifying drought response that should be of general utility for breeding and functional

  13. Modelling crop yield in Iberia under drought conditions (United States)

    Ribeiro, Andreia; Páscoa, Patrícia; Russo, Ana; Gouveia, Célia


    The improved assessment of the cereal yield and crop loss under drought conditions are essential to meet the increasing economy demands. The growing frequency and severity of the extreme drought conditions in the Iberian Peninsula (IP) has been likely responsible for negative impacts on agriculture, namely on crop yield losses. Therefore, a continuous monitoring of vegetation activity and a reliable estimation of drought impacts is crucial to contribute for the agricultural drought management and development of suitable information tools. This works aims to assess the influence of drought conditions in agricultural yields over the IP, considering cereal yields from mainly rainfed agriculture for the provinces with higher productivity. The main target is to develop a strategy to model drought risk on agriculture for wheat yield at a province level. In order to achieve this goal a combined assessment was made using a drought indicator (Standardized Precipitation Evapotranspiration Index, SPEI) to evaluate drought conditions together with a widely used vegetation index (Normalized Difference Vegetation Index, NDVI) to monitor vegetation activity. A correlation analysis between detrended wheat yield and SPEI was performed in order to assess the vegetation response to each time scale of drought occurrence and also identify the moment of the vegetative cycle when the crop yields are more vulnerable to drought conditions. The time scales and months of SPEI, together with the months of NDVI, better related with wheat yield were chosen to perform a multivariate regression analysis to simulate crop yield. Model results are satisfactory and highlighted the usefulness of such analysis in the framework of developing a drought risk model for crop yields. In terms of an operational point of view, the results aim to contribute to an improved understanding of crop yield management under dry conditions, particularly adding substantial information on the advantages of combining

  14. Assessing the vegetation condition impacts of the 2011 drought across the U.S. southern Great Plains using the vegetation drought response index (VegDRI) (United States)

    Tadesse, Tsegaye; Wardlow, Brian D.; Brown, Jesslyn F.; Svoboda, Mark; Hayes, Michael; Fuchs, Brian; Gutzmer, Denise


    The vegetation drought response index (VegDRI), which combines traditional climate- and satellite-based approaches for assessing vegetation conditions, offers new insights into assessing the impacts of drought from local to regional scales. In 2011, the U.S. southern Great Plains, which includes Texas, Oklahoma, and New Mexico, was plagued by moderate to extreme drought that was intensified by an extended period of record-breaking heat. The 2011 drought presented an ideal case study to evaluate the performance of VegDRI in characterizing developing drought conditions. Assessment of the spatiotemporal drought patterns represented in the VegDRI maps showed that the severity and patterns of the drought across the region corresponded well to the record warm temperatures and much-below-normal precipitation reported by the National Climatic Data Center and the sectoral drought impacts documented by the Drought Impact Reporter (DIR). VegDRI values and maps also showed the evolution of the drought signal before the Las Conchas Fire (the largest fire in New Mexico’s history). Reports in the DIR indicated that the 2011 drought had major adverse impacts on most rangeland and pastures in Texas and Oklahoma, resulting in total direct losses of more than $12 billion associated with crop, livestock, and timber production. These severe impacts on vegetation were depicted by the VegDRI at subcounty, state, and regional levels. This study indicates that the VegDRI maps can be used with traditional drought indicators and other in situ measures to help producers and government officials with various management decisions, such as justifying disaster assistance, assessing fire risk, and identifying locations to move livestock for grazing.

  15. Global Changes in Drought Conditions Under Different Levels of Warming (United States)

    Naumann, G.; Alfieri, L.; Wyser, K.; Mentaschi, L.; Betts, R. A.; Carrao, H.; Spinoni, J.; Vogt, J.; Feyen, L.


    Higher evaporative demands and more frequent and persistent dry spells associated with rising temperatures suggest that drought conditions could worsen in many regions of the world. In this study, we assess how drought conditions may develop across the globe for 1.5, 2, and 3°C warming compared to preindustrial temperatures. Results show that two thirds of global population will experience a progressive increase in drought conditions with warming. For drying areas, drought durations are projected to rise at rapidly increasing rates with warming, averaged globally from 2.0 month/°C below 1.5°C to 4.2 month/°C when approaching 3°C. Drought magnitudes could double for 30% of global landmass under stringent mitigation. If contemporary warming rates continue, water supply-demand deficits could become fivefold in size for most of Africa, Australia, southern Europe, southern and central states of the United States, Central America, the Caribbean, north-west China, and parts of Southern America. In approximately 20% of the global land surface, drought magnitude will halve with warming of 1.5°C and higher levels, mainly most land areas north of latitude 55°N, but also parts of South America and Eastern and South-eastern Asia. A progressive and significant increase in frequency of droughts is projected with warming in the Mediterranean basin, most of Africa, West and Southern Asia, Central America, and Oceania, where droughts are projected to happen 5 to 10 times more frequent even under ambitious mitigation targets and current 100-year events could occur every two to five years under 3°C of warming.

  16. Agronomic performance of rape seed (brassica napus L.) mutant lines under drought conditions

    International Nuclear Information System (INIS)

    Shah, S.A.; Ali, I.; Shah, S.J.A.; Rehman, K.; Rashid, A.


    Oil seed forms of Brassica napus are not well adapted to drought and the warner environments of Pakistan. Induced mutations were, therefore, utilized for improving drought tolerance efficiency of two napus cultivars. Induction of genetic variability, selection of desirable mutants and stabilization of mutants in acceptable agronomic background were carried out during 1988-1991. Fourteen promising mutants each of cv. Pak-cheen and Tower were evaluated for different agronomic characters in separate yield trials, under extremely drought conditions. The results demonstrated that yield potential of some mutants was very high and 9 mutants of cv. Pak-cheen and 8 mutants of cv. Tower significantly (P<0.05) out yield the local commercial cultivar. Eleven mutants in both the trials matured significantly earlier than the check. Nevertheless, more extensive testing of the drought tolerant lines under diversified environs of the country will help confirm these findings. (author)

  17. The influence of nitric oxide and mercury chloride on leaf mesophyll structure under natural drought conditions

    Directory of Open Access Journals (Sweden)

    Mykola M. Musiyenko


    Full Text Available It is established that under natural drought conditions starch was accumulated in the central part of chloroplasts of mesophyll cells and chloroplasts were localized on the periphery of cells at plasmalemma. After treatment wheat plants by nitric oxide donor the decreasing of starch deposits number and close contacts between chloroplasts were indicated, elongated nucleus was localized in the centre of cells. After treatment wheat plant by mercury chloride chloroplasts in the cells lost their oval shape and contacts, increased eventually deposition of starch, indicating the acceleration of aging tissues. Thus, nitric oxide in drought conditions reduced the destructive effect of drought on mesophyll cells, and mercury chloride caused deformation of the membrane cell.

  18. Bioactive compounds in potatoes: Accumulation under drought stress conditions

    Directory of Open Access Journals (Sweden)

    Christina B. Wegener


    Full Text Available Background: Potato (Solanum tuberosum is a valuable source of bioactive compounds. Besides starch, crude fibre, amino acids (AAS, vitamins and minerals, the tubers contain diverse phenolic compounds. These phenolics and AAS confer anti-oxidant protection against reactiveoxygen species, tissue damage, and diseases like atherosclerosis, renal failure, diabetes mellitus,and cancer. Climate change and drought stress may become a major risk for crop production worldwide, resulting in reduced access for those who depend on the nutritional value of this staple crop. Objective: The aim of this study is to determine the effect of drought stress on water, lipid soluble antioxidants, anthocyanins (Ac, soluble phenols, proteins, free AAS, peroxidase (POD and lipid acyl hydrolase activity (LAH in tuber tissue. Methods: The study was carried out on three potato genotypes comprising one yellow-fleshed cultivar and two purple breeding clones. The plants were grown in pots (from April to September in a glasshouse with sufficient water supply and under drought stress conditions. After harvest, the tubers of both variants were analysed for antioxidants measured as ascorbic acid (ACE and Trolox equivalent (TXE using a photo-chemiluminescent method. Amounts of anthocyanins (Ac, soluble phenols, proteins, as well as POD and LAH activities were analysed using a UV photometer. Finally, free AAS were measured by HPLC. Results: The results revealed that drought stress significantly reduces tuber yield, but has no significant effect on antioxidants, Ac, soluble phenols and POD. Drought stress significantly increased the levels of soluble protein (P < 0.0001 and LAH (P < 0.001. Also, total amounts of free AAS were higher in the drought stressed tubers (+34.2%, on average than in the tubers grown with a sufficient water supply. Above all, proline was elevated due to drought stress.

  19. Conditional and unconditional QTL mapping of drought-tolerance ...

    Indian Academy of Sciences (India)

    For discovering the quantitative trait loci (QTLs) contributing to early seedling growth and drought tolerance during germination, conditional and unconditional analyses of 12 traits of wheat seedlings: coleoptile length, seedling height, longest root length, root number, seedling fresh weight, stem and leaves fresh weight, root ...

  20. Analysis and mapping of present and future drought conditions over Greek areas with different climate conditions (United States)

    Paparrizos, Spyridon; Maris, Fotios; Weiler, Markus; Matzarakis, Andreas


    Estimation of drought in a certain temporal and spatial scale is crucial in climate change studies. The current study targets on three agricultural areas widespread in Greece, Ardas River Basin in Northeastern Greece, Sperchios River Basin in Central Greece, and Geropotamos River Basin in Crete Island in South Greece that are characterized by diverse climates as they are located in various regions. The objective is to assess the spatiotemporal variation of drought conditions prevailing in these areas. The Standardized Precipitation Index (SPI) was used to identify and assess the present and future drought conditions. Future simulated data were derived from a number of Regional Climatic Models (RCMs) from the ENSEMBLES European Project. The analysis was performed for the future periods of 2021-2050 and 2071-2100, implementing A1B and B1 scenarios. The spatial analysis of the drought conditions was performed using a combined downscaling technique and the Ordinary Kriging. The Mann-Kendall test was implemented for trend investigation. During both periods and scenarios, drought conditions will tend to be more severe in the upcoming years. The decrease of the SPI values in the Sperchios River Basin is expected to be the strongest, as it is the only study area that will show a negative balance (in SPI values), regarding the drought conditions. For the Ardas and the Geropotamos River Basins, a great increase of the drought conditions will occur during the 2021-2050 period, while for 2071-2100 period, the decrease will continue but it will be tempered. Nevertheless, the situation in all study areas according to the SPI classification is characterized as "Near-normal", in terms of drought conditions.

  1. Effects of drought stress condition on the yield of spring wheat ...

    African Journals Online (AJOL)

    Effects of drought stress condition on the yield of spring wheat ( Triticum aestivum ) lines. ... Drought stress tolerance is seen in almost all plants but its extent varies from species to species and even within species. ... from 32 Countries:.

  2. Plasticity and stress tolerance override local adaptation in the responses of Mediterranean holm oak seedlings to drought and cold. (United States)

    Gimeno, Teresa E; Pías, Beatriz; Lemos-Filho, José P; Valladares, Fernando


    Plant populations of widely distributed species experience a broad range of environmental conditions that can be faced by phenotypic plasticity or ecotypic differentiation and local adaptation. The strategy chosen will determine a population's ability to respond to climate change. To explore this, we grew Quercus ilex (L.) seedlings from acorns collected at six selected populations from climatically contrasting localities and evaluated their response to drought and late season cold events. Maximum photosynthetic rate (A(max)), instantaneous water use efficiency (iWUE), and thermal tolerance to freeze and heat (estimated from chlorophyll fluorescence versus temperature curves) were measured in 5-month-old seedlings in control (no stress), drought (water-stressed), and cold (low suboptimal temperature) conditions. The observed responses were similar for the six populations: drought decreased A(max) and increased iWUE, and cold reduced A(max) and iWUE. All the seedlings maintained photosynthetic activity under adverse conditions (drought and cold), and rapidly increased their iWUE by closing stomata when exposed to drought. Heat and freeze tolerances were similarly high for seedlings from all the populations, and they were significantly increased by drought and cold, respectively; and were positively related to each other. Differences in seedling performance across populations were primarily induced by maternal effects mediated by seed size and to a lesser extent by idiosyncratic physiologic responses to drought and low temperatures. Tolerance to multiple stresses together with the capacity to physiologically acclimate to heat waves and cold snaps may allow Q. ilex to cope with the increasingly stressful conditions imposed by climate change. Lack of evidence of physiologic seedling adaptation to local climate may reflect opposing selection pressures to complex, multidimensional environmental conditions operating within the distribution range of this species.

  3. Local Perception of Drought Impacts in a Changing Climate: The Mega-Drought in Central Chile

    Directory of Open Access Journals (Sweden)

    Paulina Aldunce


    Full Text Available Droughts are a recurrent and complex natural hazard whose frequency and magnitude are expected to increase with climate change. Despite the advances in responding and adapting to droughts (with the development of new policies, for example, droughts continue to cause serious impacts and suffering. Developing well-targeted public policies requires further research on adaptation. Specifically, understanding the public perception of drought can help to identify drivers of and barriers to adaptation and options. This research seeks to understand the public perception of drought in central Chile in order to inform adaptation-related policies and decision-making processes. This study focused on the Mega-drought, which was a protracted dry spell afflicting central Chile since 2010.

  4. Gene expression analysis of Solanum lycopersicum and Solanum habrochaites under drought conditions

    Directory of Open Access Journals (Sweden)

    Upama Mishra


    Full Text Available Drought is one of the limiting environmental factors that affect crop production worldwide. Understanding the molecular mechanism of drought stress is the key to developing drought tolerant crop. In this experiment we performed expression profiling of tomato plants under water deficit conditions using microarray technology. The data set we generated (available in the NCBI/GEO database under GSE22304 has been analyzed to identify genes that are involved in the regulation of tomato's responses to drought.

  5. An improved method for standardized mapping of drought conditions (United States)

    Frank H. Koch; William D. Smith; John W. Coulston


    Virtually all U.S. forests experience droughts, although the intensity and frequency of the droughts vary widely between, as well as, within forest ecosystems (Hanson and Weltzin 2000). Generally, forests throughout the Western United States are subject to annual seasonal droughts, while forests in the Eastern United States can be characterized by one of two...

  6. Groundwater quality surrounding Lake Texoma during short-term drought conditions

    International Nuclear Information System (INIS)

    Kampbell, Donald H.; An, Youn-Joo; Jewell, Ken P.; Masoner, Jason R.


    Stressors such as nitrates and total salts in ground water could potentially become a health or environmental problem during drought conditions. - Water quality data from 55 monitoring wells during drought conditions surrounding Lake Texoma, located on the border of Oklahoma and Texas, was compared to assess the influence of drought on groundwater quality. During the drought month of October, water table levels were three feet (0.9 m) lower compared with several months earlier under predrought climate conditions. Detection frequencies of nitrate (> 0.1 mg/l), orthophosphates (> 0.1 mg/l), chlorides (> MCL), and sulfates (> MCL) all increased during drought. Orthophosphate level was higher during drought. Largest increases in concentration were nitrate under both agriculture lands and in septic tank areas. An increase in ammonium-nitrogen was only detected in the septic tank area. The study showed that stressors such as nitrate and total salts could potentially become a health or environmental problem during drought

  7. On the local equilibrium condition

    International Nuclear Information System (INIS)

    Hessling, H.


    A physical system is in local equilibrium if it cannot be distinguished from a global equilibrium by ''infinitesimally localized measurements''. This should be a natural characterization of local equilibrium, but the problem is to give a precise meaning to the qualitative phrase ''infinitesimally localized measurements''. A solution is suggested in form of a Local Equilibrium Condition (LEC), which can be applied to linear relativistic quantum field theories but not directly to selfinteracting quantum fields. The concept of local temperature resulting from LEC is compared to an old approach to local temperature based on the principle of maximal entropy. It is shown that the principle of maximal entropy does not always lead to physical states if it is applied to relativistic quantum field theories. (orig.)

  8. Drought

    NARCIS (Netherlands)

    Quevauviller, P.; Lanen, Van Henny A.J.


    Drought is one of the most extreme weather-related natural hazards. It differs from other hydrometeorological extremes in several ways. It develops gradually and usually over large areas (transnational), mostly resulting from a prolonged period (from months to years) of below-normal

  9. valuation of Germination Characteristics for Hedysarum Criniferum Boiss in Alternative Temperature and Drought Stress Conditions

    Directory of Open Access Journals (Sweden)

    A. Shahbazi


    24-26 °C day-night and four drought levels (0, -2, -4, and -6 bar with three replications. According to the results, different levels of drought stress and alternative temperature had significant effects on germination percentage and germination speed of the species seeds (α=5%. The study showed that increasing temperature and drought levels leads to reducing the germination percentage and germination speed of the species. Higher germination percentage of H. criniferum seeds in different drought levels compared to alternative temperature levels of 24-26 °C indicated that this species is more sensitive to higher temperature than high levels of drought condition. Therefore, it could partly be concluded that the H. criniferum is a relatively drought resistance species.

  10. Control of root system architecture by DEEPER ROOTING 1 increases rice yield under drought conditions. (United States)

    Uga, Yusaku; Sugimoto, Kazuhiko; Ogawa, Satoshi; Rane, Jagadish; Ishitani, Manabu; Hara, Naho; Kitomi, Yuka; Inukai, Yoshiaki; Ono, Kazuko; Kanno, Noriko; Inoue, Haruhiko; Takehisa, Hinako; Motoyama, Ritsuko; Nagamura, Yoshiaki; Wu, Jianzhong; Matsumoto, Takashi; Takai, Toshiyuki; Okuno, Kazutoshi; Yano, Masahiro


    The genetic improvement of drought resistance is essential for stable and adequate crop production in drought-prone areas. Here we demonstrate that alteration of root system architecture improves drought avoidance through the cloning and characterization of DEEPER ROOTING 1 (DRO1), a rice quantitative trait locus controlling root growth angle. DRO1 is negatively regulated by auxin and is involved in cell elongation in the root tip that causes asymmetric root growth and downward bending of the root in response to gravity. Higher expression of DRO1 increases the root growth angle, whereby roots grow in a more downward direction. Introducing DRO1 into a shallow-rooting rice cultivar by backcrossing enabled the resulting line to avoid drought by increasing deep rooting, which maintained high yield performance under drought conditions relative to the recipient cultivar. Our experiments suggest that control of root system architecture will contribute to drought avoidance in crops.

  11. Projected climatic changes on drought conditions over Spain (United States)

    García-Valdecasas Ojeda, Matilde; Quishpe-Vásquez, César; Raquel Gámiz-Fortis, Sonia; Castro-Díez, Yolanda; Jesús Esteban-Parra, María


    In a context of global warming, the evapotranspiration processes will have a strong influence on drought severity. For this reason, the Standardized Precipitation Evapotranspiration Index (SPEI) was computed at different timescales in order to explore the projected drought changes for the main watersheds in Spain. For that, the Weather Research and Forecasting (WRF) model has been used in order to obtain current (1980-2010) and future (2021-2050 and 2071-2100) climate output fields. WRF model was used over a domain that spans the Iberian Peninsula with a spatial resolution of 0.088°, and nested in the coarser 0.44° EURO-CORDEX domain, and driving by the global bias-corrected climate model output data from version 1 of NCAR's Community Earth System Model (CESM1), using two different Representative Concentration Pathway (RCP) scenarios: RCP 4.5 and RCP 8.5. Besides, to examine the behavior of this drought index, a comparison with the Standardized Precipitation Index (SPI), which does not consider the evapotranspiration effects, was also performed. Additionally the relationship between the SPEI index and the soil moisture has also been analyzed. The results of this study suggest an increase in the severity and duration of drought, being larger when the SPEI index is used to define drought events. This fact confirms the relevance of taking into account the evapotranspiration processes to detect future drought events. The results also show a noticeable relationship between the SPEI and the simulated soil moisture content, which is more significant at higher timescales. Keywords: Drought, SPEI, SPI, Climatic change, Projections, WRF. Acknowledgements: This work has been financed by the projects P11-RNM-7941 (Junta de Andalucía-Spain) and CGL2013-48539-R (MINECO-Spain, FEDER).

  12. Path analysis of phenotypic traits in young cacao plants under drought conditions. (United States)

    Santos, Emerson Alves Dos; Almeida, Alex-Alan Furtado de; Branco, Marcia Christina da Silva; Santos, Ivanildes Conceição Dos; Ahnert, Dario; Baligar, Virupax C; Valle, Raúl René


    Drought is worldwide considered one of the most limiting factors of Theobroma cacao production, which can be intensified by global climate changes. In this study, we aimed to investigate the phenotypic correlation among morphological characteristics of cacao progenies submitted to irrigation and drought conditions and their partitions into direct and indirect effects. Path analysis with phenotypic plasticity index was used as criteria for estimation of basic and explanatory variables. The experiment was conducted in a greenhouse at the Cacao Research Center (CEPEC), Ilhéus, Bahia, Brazil, in a randomized block 21 x 2 factorial arrangement [21 cacao progenies obtained from complete diallel crosses and two water regimes (control and drought)] and six replications. In general, drought conditions influenced biomass production in most progenies, causing significant reductions in total leaf area, leaf number, leaf biomass, fine-roots length (diameter cacao progenies drought tolerant.

  13. Application of relative drought indices in assessing climate-change impacts on drought conditions in Czechia

    Czech Academy of Sciences Publication Activity Database

    Dubrovský, Martin; Svoboda, M. D.; Trnka, M.; Hayes, M. J.; Wilhite, D. A.; Žalud, Z.; Hlavinka, P.


    Roč. 96, 1-2 (2009), s. 155-171 ISSN 0177-798X R&D Projects: GA ČR GA205/05/2265 Institutional research plan: CEZ:AV0Z30420517 Keywords : climate change * drought * GCM scenarios Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 1.776, year: 2009

  14. Regression-based season-ahead drought prediction for southern Peru conditioned on large-scale climate variables (United States)

    Mortensen, Eric; Wu, Shu; Notaro, Michael; Vavrus, Stephen; Montgomery, Rob; De Piérola, José; Sánchez, Carlos; Block, Paul


    Located at a complex topographic, climatic, and hydrologic crossroads, southern Peru is a semiarid region that exhibits high spatiotemporal variability in precipitation. The economic viability of the region hinges on this water, yet southern Peru is prone to water scarcity caused by seasonal meteorological drought. Meteorological droughts in this region are often triggered during El Niño episodes; however, other large-scale climate mechanisms also play a noteworthy role in controlling the region's hydrologic cycle. An extensive season-ahead precipitation prediction model is developed to help bolster the existing capacity of stakeholders to plan for and mitigate deleterious impacts of drought. In addition to existing climate indices, large-scale climatic variables, such as sea surface temperature, are investigated to identify potential drought predictors. A principal component regression framework is applied to 11 potential predictors to produce an ensemble forecast of regional January-March precipitation totals. Model hindcasts of 51 years, compared to climatology and another model conditioned solely on an El Niño-Southern Oscillation index, achieve notable skill and perform better for several metrics, including ranked probability skill score and a hit-miss statistic. The information provided by the developed model and ancillary modeling efforts, such as extending the lead time of and spatially disaggregating precipitation predictions to the local level as well as forecasting the number of wet-dry days per rainy season, may further assist regional stakeholders and policymakers in preparing for drought.

  15. Projecting climate change, drought conditions and crop productivity in Turkey

    NARCIS (Netherlands)

    Sen, B.; Topcu, S.; Türkes, M.; Warner, J.F.


    This paper focuses on the evaluation of regional climate model simulation for Turkey for the 21st century. A regional climate model, ICTP-RegCM3, with 20 km horizontal resolution, is used to downscale the reference and future climate scenario (IPCC-A2) simulations. Characteristics of droughts as

  16. Anatomy of a local-scale drought: Application of assimilated remote sensing products, crop model, and statistical methods to an agricultural drought study (United States)

    Mishra, Ashok K.; Ines, Amor V. M.; Das, Narendra N.; Prakash Khedun, C.; Singh, Vijay P.; Sivakumar, Bellie; Hansen, James W.


    Drought is of global concern for society but it originates as a local problem. It has a significant impact on water quantity and quality and influences food, water, and energy security. The consequences of drought vary in space and time, from the local scale (e.g. county level) to regional scale (e.g. state or country level) to global scale. Within the regional scale, there are multiple socio-economic impacts (i.e., agriculture, drinking water supply, and stream health) occurring individually or in combination at local scales, either in clusters or scattered. Even though the application of aggregated drought information at the regional level has been useful in drought management, the latter can be further improved by evaluating the structure and evolution of a drought at the local scale. This study addresses a local-scale agricultural drought anatomy in Story County in Iowa, USA. This complex problem was evaluated using assimilated AMSR-E soil moisture and MODIS-LAI data into a crop model to generate surface and sub-surface drought indices to explore the anatomy of an agricultural drought. Quantification of moisture supply in the root zone remains a gray area in research community, this challenge can be partly overcome by incorporating assimilation of soil moisture and leaf area index into crop modeling framework for agricultural drought quantification, as it performs better in simulating crop yield. It was noted that the persistence of subsurface droughts is in general higher than surface droughts, which can potentially improve forecast accuracy. It was found that both surface and subsurface droughts have an impact on crop yields, albeit with different magnitudes, however, the total water available in the soil profile seemed to have a greater impact on the yield. Further, agricultural drought should not be treated equal for all crops, and it should be calculated based on the root zone depth rather than a fixed soil layer depth. We envisaged that the results of

  17. Screening for Osmotic Stress Responses in Rice Varieties under Drought Condition

    Directory of Open Access Journals (Sweden)

    Simon Swapna


    Full Text Available Drought is the major abiotic stress factor that limits rice production worldwide. To evaluate the osmotic stress responses in rice varieties under drought condition, a total of 42 high-yielding rice varieties were collected from various research stations of Kerala Agricultural University in India. The experimental setup comprises of initial hydroponic treatments at different osmotic potentials, artificially induced by desired strengths of polyethylene glycol (PEG6000, and followed by the pot planted experiments in the rain-out-zone. The activities of antioxidant enzymes, relative water content, cell membrane stability, photosynthetic pigments, proline content, along with plant growth parameters of the varieties under drought condition were evaluated. Moreover, the standard scores of these rice varieties were assessed under stress and recovery conditions based on the scoring scale of the Standard Evaluation System for rice. Among the 42 rice varieties, we identified 2 rice varieties, Swarnaprabha and Kattamodan, with less leaf rolling, better drought recovery ability as well as relative water content, increased membrane stability index, osmolyte accumulation, and antioxidant enzyme activities pointed towards their degree of tolerance to drought stress. The positive adaptive responses of these rice varieties towards drought stress can be used in the genetic improvement of rice drought resistance breeding program.

  18. Forests growing under dry conditions have higher hydrological resilience to drought than do more humid forests. (United States)

    Helman, David; Lensky, Itamar M; Yakir, Dan; Osem, Yagil


    More frequent and intense droughts are projected during the next century, potentially changing the hydrological balances in many forested catchments. Although the impacts of droughts on forest functionality have been vastly studied, little attention has been given to studying the effect of droughts on forest hydrology. Here, we use the Budyko framework and two recently introduced Budyko metrics (deviation and elasticity) to study the changes in the water yields (rainfall minus evapotranspiration) of forested catchments following a climatic drought (2006-2010) in pine forests distributed along a rainfall gradient (P = 280-820 mm yr -1 ) in the Eastern Mediterranean (aridity factor = 0.17-0.56). We use a satellite-based model and meteorological information to calculate the Budyko metrics. The relative water yield ranged from 48% to 8% (from the rainfall) in humid to dry forests and was mainly associated with rainfall amount (increasing with increased rainfall amount) and bedrock type (higher on hard bedrocks). Forest elasticity was larger in forests growing under drier conditions, implying that drier forests have more predictable responses to drought, according to the Budyko framework, compared to forests growing under more humid conditions. In this context, younger forests were shown more elastic than older forests. Dynamic deviation, which is defined as the water yield departure from the Budyko curve, was positive in all forests (i.e., less-than-expected water yields according to Budyko's curve), increasing with drought severity, suggesting lower hydrological resistance to drought in forests suffering from larger rainfall reductions. However, the dynamic deviation significantly decreased in forests that experienced relatively cooler conditions during the drought period. Our results suggest that forests growing under permanent dry conditions might develop a range of hydrological and eco-physiological adjustments to drought leading to higher hydrological

  19. Characterizing drought stress and trait influence on maize yield under current and future conditions. (United States)

    Harrison, Matthew T; Tardieu, François; Dong, Zhanshan; Messina, Carlos D; Hammer, Graeme L


    Global climate change is predicted to increase temperatures, alter geographical patterns of rainfall and increase the frequency of extreme climatic events. Such changes are likely to alter the timing and magnitude of drought stresses experienced by crops. This study used new developments in the classification of crop water stress to first characterize the typology and frequency of drought-stress patterns experienced by European maize crops and their associated distributions of grain yield, and second determine the influence of the breeding traits anthesis-silking synchrony, maturity and kernel number on yield in different drought-stress scenarios, under current and future climates. Under historical conditions, a low-stress scenario occurred most frequently (ca. 40%), and three other stress types exposing crops to late-season stresses each occurred in ca. 20% of cases. A key revelation shown was that the four patterns will also be the most dominant stress patterns under 2050 conditions. Future frequencies of low drought stress were reduced by ca. 15%, and those of severe water deficit during grain filling increased from 18% to 25%. Despite this, effects of elevated CO2 on crop growth moderated detrimental effects of climate change on yield. Increasing anthesis-silking synchrony had the greatest effect on yield in low drought-stress seasonal patterns, whereas earlier maturity had the greatest effect in crops exposed to severe early-terminal drought stress. Segregating drought-stress patterns into key groups allowed greater insight into the effects of trait perturbation on crop yield under different weather conditions. We demonstrate that for crops exposed to the same drought-stress pattern, trait perturbation under current climates will have a similar impact on yield as that expected in future, even though the frequencies of severe drought stress will increase in future. These results have important ramifications for breeding of maize and have implications for

  20. Germinaton performance of selected local soybean (Glycine max (L.) Merrills) cultivars during drought stress induced by Polyethylene Glycol (PEG) (United States)

    Pane, R. F.; Damanik, R. I.; Khardinata, E. H.


    Drought stress is one of the factors that can decreased growth and production, so that required a variety that has the ability to sustain cellular metabolism, and growth during the stress. This research was aimed to investigated the involvement of germination performance invitro of five local soybean cultivars, Grobogan, Kaba, Anjasmoro, Argomulyo, and Dering to drought stress induced by polyethylene glycol (PEG) 6000 (0%, 2%, 4%, and 6%). The measurable seedling traits as the day appearance of shoots and roots, total of leaves, shoot length, root length, fresh plant weight, dry plant weight, fresh root weight, and dry root weight under control as well as water stress condition were recorded. The experiment units were arranged in factorial completely randomized design with four replications. The result showed that the value for most parameters was recorded highest for Argomulyo cultivar compared with Dering cultivar which is known to be tolerant to drought. In terms of roots performance, Grobogan and Argomulyo cultivars produced the longest and heaviest of roots, while Grobogan cultivar had no significant different for root length compared with control. In conclusion, the root length and fresh weight root parameters can be used as quick criteria for drought tolerance.

  1. Analysis of agricultural drought using vegetation temperature condition index (VTCI) from Terra/MODIS satellite data. (United States)

    Patel, N R; Parida, B R; Venus, V; Saha, S K; Dadhwal, V K


    The most commonly used normalized difference vegetation index (NDVI) from remote sensing often fall short in real-time drought monitoring due to a lagged vegetation response to drought. Therefore, research recently emphasized on the use of combination of surface temperature and NDVI which provides vegetation and moisture conditions simultaneously. Since drought stress effects on agriculture are closely linked to actual evapotranspiration, we used a vegetation temperature condition index (VTCI) which is more closely related to crop water status and holds a key place in real-time drought monitoring and assessment. In this study, NDVI and land surface temperature (T (s)) from MODIS 8-day composite data during cloud-free period (September-October) were adopted to construct an NDVI-T (s) space, from which the VTCI was computed. The crop moisture index (based on estimates of potential evapotranspiration and soil moisture depletion) was calculated to represent soil moisture stress on weekly basis for 20 weather monitoring stations. Correlation and regression analysis were attempted to relate VTCI with crop moisture status and crop performance. VTCI was found to accurately access the degree and spatial extent of drought stress in all years (2000, 2002, and 2004). The temporal variation of VTCI also provides drought pattern changes over space and time. Results showed significant and positive relations between CMI (crop moisture index) and VTCI observed particularly during prominent drought periods which proved VTCI as an ideal index to monitor terminal drought at regional scale. VTCI had significant positive relationship with yield but weakly related to crop anomalies. Duration of terminal drought stress derived from VTCI has a significant negative relationship with yields of major grain and oilseeds crops, particularly, groundnut.

  2. Observed Local Soil Moisture-Atmosphere Feedbacks within the Context of Remote SST Anomalies: Lessons From Recent Droughts (United States)

    Tawfik, A. B.; Dirmeyer, P.; Lawrence, D. M.


    The existence and possible transition from positive to negative soil moisture-atmosphere feedbacks is explored in this presentation using collocated flux tower measurements (Ameriflux) and atmospheric profiles from reanalysis. The focus is on the series of physical processes that lead to these local feedbacks connecting remote sea surface temperature changes (SST anomalies) to local soil moisture and boundary layer responses. Seasonal and Agricultural droughts are particularly useful test beds for examining these feedback processes because they are typically characterized by prolonged stretches of rain-free days followed by some termination condition. To quantify the full process-chain across these distinct spatial scales, complimentary information from several well-established land-atmosphere coupling metrics are used including, but not limited to, Mixing Diagram approaches, Soil Moisture Memory, and the Heated Condensation Framework. Preliminary analysis shows that there may be transitions from negative and positive soil moisture-atmosphere feedbacks as droughts develop. This is largely instigated by persistent atmospheric forcing that initially promotes increased surface latent heat flux, which limits boundary layer depth and dry air entrainment. However, if stagnant synoptic conditions continue eventually soil moisture is depleted to the point of shutting off surface latent heat flux producing deep boundary layers and increased dry air entrainment thus deepening drought stress. A package of standardized Fortran 90 modules called the Coupling Metrics Toolkit (CoMeT; used to calculate these land-atmosphere coupling metrics is also briefly presented.

  3. Localizing drought monitoring products to support agricultural climate service advisories in South Asia (United States)

    Qamer, F. M.; Matin, M. A.; Yadav, N. K.; Bajracharya, B.; Zaitchik, B. F.; Ellenburg, W. L.; Krupnik, T. J.; Hussain, G.


    The Fifth Assessment Report of the Intergovernmental Panel on Climate Change identifies drought as one of the major climate risks in South Asia. During past two decades, a large amount of climate data have been made available by the scientific community, but the deployment of climate information for local level and agricultural decision making remains less than optimal. The provisioning of locally calibrated, easily accessible, decision-relevant and user-oriented information, in the form of drought advisory service could help to prepare communities to reduce climate vulnerability and increase resilience. A collaborative effort is now underway to strengthen existing and/or establish new drought monitoring and early warning systems in Afghanistan, Bangladesh, Nepal and Pakistan by incorporating standard ground-based observations, earth observation datasets, and numerical forecast models. ICT-based agriculture drought monitoring platforms, hosted at national agricultural and meteorological institutions, are being developed and coupled with communications and information deployment strategies to enable the rapid and efficient deployment of information that farmers can understand, interpret, and act on to adapt to anticipated droughts. Particular emphasis is being placed on the calibration and validation of data products through retrospective analysis of time series data, in addition to the installation of automatic weather station networks. In order to contextualize monitoring products to that they may be relevant for farmers' primary cropping systems, district level farming practices calendars are being compiled and validated through focus groups and surveys to identify the most important times and situations during which farmers can adapt to drought. High-resolution satellite crop distribution maps are under development and validation to add value to these efforts. This programme also aims to enhance capacity of agricultural extension staff to better understand

  4. Screening for Osmotic Stress Responses in Rice Varieties under Drought Condition


    Simon Swapna; Korukkanvilakath Samban Shylaraj


    Drought is the major abiotic stress factor that limits rice production worldwide. To evaluate the osmotic stress responses in rice varieties under drought condition, a total of 42 high-yielding rice varieties were collected from various research stations of Kerala Agricultural University in India. The experimental setup comprises of initial hydroponic treatments at different osmotic potentials, artificially induced by desired strengths of polyethylene glycol (PEG6000), and followed by the pot...

  5. Tolerance of Mycorrhiza infected pistachio (Pistacia vera L.) seedling to drought stress under glasshouse conditions. (United States)

    Abbaspour, H; Saeidi-Sar, S; Afshari, H; Abdel-Wahhab, M A


    The influence of Glomus etunicatum colonization on plant growth and drought tolerance of 3-month-old Pistacia vera seedlings in potted culture was studied in two different water treatments. The arbuscular mycorrhiza (AM) inoculation and plant growth (including plant shoot and root weight, leaf area, and total chlorophyll) were higher for well-watered than for water-stressed plants. The growth of AM-treated seedlings was higher than non-AM-treatment regardless of water status. P, K, Zn and Cu contents in AM-treated shoots were greater than those in non-AM shoots under well-watered conditions and drought stress. N and Ca content were higher under drought stress, while AM symbiosis did not affect the Mg content. The contents of soluble sugars, proteins, flavonoid and proline were higher in mycorrhizal than non-mycorrhizal-treated plants under the whole water regime. AM colonization increased the activities of peroxidase enzyme in treatments, but did not affect the catalase activity in shoots and roots under well-watered conditions and drought stress. We conclude that AM colonization improved the drought tolerance of P. vera seedlings by increasing the accumulation of osmotic adjustment compounds, nutritional and antioxidant enzyme activity. It appears that AM formation enhanced the drought tolerance of pistachio plants, which increased host biomass and plant growth. Copyright © 2012 Elsevier GmbH. All rights reserved.

  6. Molecular Assortment of Lens Species with Different Adaptations to Drought Conditions Using SSR Markers (United States)

    Singh, Dharmendra; Singh, Chandan Kumar; Tomar, Ram Sewak Singh; Taunk, Jyoti; Singh, Ranjeet; Maurya, Sadhana; Chaturvedi, Ashish Kumar; Pal, Madan; Singh, Rajendra; Dubey, Sarawan Kumar


    The success of drought tolerance breeding programs can be enhanced through molecular assortment of germplasm. This study was designed to characterize molecular diversity within and between Lens species with different adaptations to drought stress conditions using SSR markers. Drought stress was applied at seedling stage to study the effects on morpho-physiological traits under controlled condition, where tolerant cultivars and wilds showed 12.8–27.6% and 9.5–23.2% reduction in seed yield per plant respectively. When juxtaposed to field conditions, the tolerant cultivars (PDL-1 and PDL-2) and wild (ILWL-314 and ILWL-436) accessions showed 10.5–26.5% and 7.5%–15.6% reduction in seed yield per plant, respectively under rain-fed conditions. The reductions in seed yield in the two tolerant cultivars and wilds under severe drought condition were 48–49% and 30.5–45.3% respectively. A set of 258 alleles were identified among 278 genotypes using 35 SSR markers. Genetic diversity and polymorphism information contents varied between 0.321–0.854 and 0.299–0.836, with mean value of 0.682 and 0.643, respectively. All the genotypes were clustered into 11 groups based on SSR markers. Tolerant genotypes were grouped in cluster 6 while sensitive ones were mainly grouped into cluster 7. Wild accessions were separated from cultivars on the basis of both population structure and cluster analysis. Cluster analysis has further grouped the wild accessions on the basis of species and sub-species into 5 clusters. Physiological and morphological characters under drought stress were significantly (P = 0.05) different among microsatellite clusters. These findings suggest that drought adaptation is variable among wild and cultivated genotypes. Also, genotypes from contrasting clusters can be selected for hybridization which could help in evolution of better segregants for improving drought tolerance in lentil. PMID:26808306

  7. Impacts of extreme events of drought and flood on local communities of Amazon basin (United States)

    Borma, L. D.; Roballo, S.; Zauner, M.; Nascimento, V. F.


    The analysis of drought events of 1997/98, 2005 and 2010 in terms of discharge anomalies in the Amazon region confirmed previous findings, such as: a) the influence of the El Niño in more than one hydrological year; b) the increase of the influence of the Atlantic Multidecadal Oscillation of 1998, 2005 and 2010 drought events; c) the low levels of discharge observed in the 2010 drought are attributed to the association of discharge anomalies of the northern and southern tributaries of the Amazon river, and d) the 2010 drought lasted around 1 month (August to November) more than the other drought events analized here. The riverine communities located along the river banks of Solimões/Amazonas suit their economic activities to the oscillation of the water level. In general, low water periods favor the access to important sources of food such as fish and livestock, still allowing crop cultivation on fertile agricultural areas of the floodplain. Conversely, periods of drought increases the difficulties of transport and drinking water supply. During the high water, access to the main food supply (described above) are greatly hampered. However, the floods are recognized as an importance process of natural fertilization. Thus, despite the political, social and economic shortcomings, the local community has, since the pre-colonial period, learned to get the best of each season, providing local, regional and national markets with varzea products. During periods of extreme weather, however, the advantages of each season appear to be reduced, and the drawbacks increased. In fact, during flooding extremes, the access to primary sources of food is hampered by a long period of time and families find themselves forced to leave their homes, eventually losing them. Analysis of flow data to the extreme flooding of 2009, indicate a period of about 6 months of positive anomalies discharge (occurring mainly during high water). At the same time, Civil Defense data points to a

  8. Evaluation of drought tolerance and yield capacity of barley (hordeum vulgare) genotypes under irrigated and water-stressed conditions

    International Nuclear Information System (INIS)

    Khokhar, M.I.; Silva, J.A.T.D


    Twelve barley genotypes developed through different selection methods were evaluated under drought and irrigated conditions. The results of a correlation matrix revealed highly significant associations between Grain Yield (Yp) and Mean Productivity (MP), Stress Tolerance Index (STI), Geometric Mean Productivity (GMP) and Yield Index (Yi) under irrigated conditions while the Mean Productivity (MP), Yield Stability Index (Yi), Stress Tolerance Index (STI), Geometric Mean Productivity (GMP) and Yield Index (Yi) had a high response under stressed condition. Based on a principal component analysis, Geometric Mean Productivity (GMP), Mean Productivity (MP) and Stress Tolerance Index (STI) were considered to be the best parameters for selection of drought-tolerant genotypes. The 2-row barley genotypes B-07023 and B-07021 performed better in yield response under drought conditions and were more stable under stress conditions. Furthermore, drought stress reduced the yield of some genotypes while others were tolerant to drought, suggesting genetic variability in this material for drought tolerance. (author)

  9. A Nucleus-localized Long Non-Coding RNA Enhances Drought and Salt Stress Tolerance

    KAUST Repository

    Qin, Tao; Zhao, Huayan; Cui, Peng; Albesher, Nour H.; Xiong, Liming


    stress. DRIR was expressed at a low level under non-stress conditions but can be significantly activated by drought and salt stress as well as by abscisic acid (ABA) treatment. We identified a T-DNA insertion mutant, drirD, which had higher expression

  10. Drought Forecasting with Vegetation Temperature Condition Index Using ARIMA Models in the Guanzhong Plain

    Directory of Open Access Journals (Sweden)

    Miao Tian


    Full Text Available This paper works on the agricultural drought forecasting in the Guanzhong Plain of China using Autoregressive Integrated Moving Average (ARIMA models based on the time series of drought monitoring results of Vegetation Temperature Condition Index (VTCI. About 90 VTCI images derived from Advanced Very High Resolution Radiometer (AVHRR data were selected to develop the ARIMA models from the erecting stage to the maturity stage of winter wheat (early March to late May in each year at a ten-day interval of the years from 2000 to 2009. We take the study area overlying on the administration map around the study area, and divide the study area into 17 parts where at least one weather station is located in each part. The pixels where the 17 weather stations are located are firstly chosen and studied for their fitting models, and then the best models for all pixels of the whole area are determined. According to the procedures for the models’ development, the selected best models for the 17 pixels are identified and the forecast is done with three steps. The forecasting results of the ARIMA models were compared with the monitoring ones. The results show that with reference to the categorized VTCI drought monitoring results, the categorized forecasting results of the ARIMA models are in good agreement with the monitoring ones. The categorized drought forecasting results of the ARIMA models are more severity in the northeast of the Plain in April 2009, which are in good agreements with the monitoring ones. The absolute errors of the AR(1 models are lower than the SARIMA models, both in the frequency distributions and in the statistic results. However, the ability of SARIMA models to detect the changes of the drought situation is better than the AR(1 models. These results indicate that the ARIMA models can better forecast the category and extent of droughts and can be applied to forecast droughts in the Plain.

  11. Responses in young Quercus petraea: coppices and standards under favourable and drought conditions

    Czech Academy of Sciences Publication Activity Database

    Stojanović, Marko; Čater, M.; Pokorný, Radek


    Roč. 76, jan (2016), s. 127-136 ISSN 1641-1307 R&D Projects: GA MŠk(CZ) EE2.3.20.0267 Institutional support: RVO:67179843 Keywords : coppice * standards * comparison * photosynthetic response * quantum yield * light conditions * drought response Subject RIV: EF - Botanics Impact factor: 0.776, year: 2016

  12. Biochemical basis of drought tolerance in hybrid Populus grown under field production conditions. CRADA final report

    Energy Technology Data Exchange (ETDEWEB)

    Tschaplinski, T.J.; Tuskan, G.A. [Oak Ridge National Lab., TN (United States); Wierman, C. [Boise Cascade Corp., Wallula, WA (United States)


    The purpose of this cooperative effort was to assess the use of osmotically active compounds as molecular selection criteria for drought tolerance in Populus in a large-scale field trial. It is known that some plant species, and individuals within a plant species, can tolerate increasing stress associated with reduced moisture availability by accumulating solutes. The biochemical matrix of such metabolites varies among species and among individuals. The ability of Populus clones to tolerate drought has equal value to other fiber producers, i.e., the wood products industry, where irrigation is used in combination with other cultural treatments to obtain high dry weight yields. The research initially involved an assessment of drought stress under field conditions and characterization of changes in osmotic constitution among the seven clones across the six moisture levels. The near-term goal was to provide a mechanistic basis for clonal differences in productivity under various irrigation treatments over time.

  13. Genome-wide Differences in DNA Methylation Changes in Two Contrasting Rice Genotypes in Response to Drought Conditions

    Directory of Open Access Journals (Sweden)

    Wensheng Wang


    Full Text Available Differences in drought stress tolerance within diverse rice genotypes have been attributed to genetic diversity and epigenetic alterations. DNA methylation is an important epigenetic modification that influences diverse biological processes, but its effects on rice drought stress tolerance are poorly understood. In this study, methylated DNA immunoprecipitation sequencing and an Affymetrix GeneChip rice genome array were used to profile the DNA methylation patterns and transcriptomes of the drought-tolerant introgression line DK151 and its drought-sensitive recurrent parent IR64 under drought and control conditions. The introgression of donor genomic DNA induced genome-wide DNA methylation changes in DK151 plants. A total of 1190 differentially methylated regions (DMRs were detected between the two genotypes under normal growth conditions, and the DMR-associated genes in DK151 plants were mainly related to stress response, programmed cell death, and nutrient reservoir activity, which are implicated to constitutive drought stress tolerance. A comparison of the DNA methylation changes in the two genotypes under drought conditions indicated that DK151 plants have a more stable methylome, with only 92 drought-induced DMRs, than IR64 plants with 506 DMRs. Gene ontology analyses of the DMR-associated genes in drought-stressed plants revealed that changes to the DNA methylation status of genotype-specific genes are associated with the epigenetic regulation of drought stress responses. Transcriptome analysis further helped to identify a set of 12 and 23 DMR-associated genes that were differentially expressed in DK151 and IR64, respectively, under drought stress compared with respective controls. Correlation analysis indicated that DNA methylation has various effects on gene expression, implying that it affects gene expression directly or indirectly through diverse regulatory pathways. Our results indicate that drought-induced alterations to DNA

  14. Heightened fire probability in Indonesia in non-drought conditions: the effect of increasing temperatures (United States)

    Fernandes, Kátia; Verchot, Louis; Baethgen, Walter; Gutierrez-Velez, Victor; Pinedo-Vasquez, Miguel; Martius, Christopher


    In Indonesia, drought driven fires occur typically during the warm phase of the El Niño Southern Oscillation. This was the case of the events of 1997 and 2015 that resulted in months-long hazardous atmospheric pollution levels in Equatorial Asia and record greenhouse gas emissions. Nonetheless, anomalously active fire seasons have also been observed in non-drought years. In this work, we investigated the impact of temperature on fires and found that when the July-October (JASO) period is anomalously dry, the sensitivity of fires to temperature is modest. In contrast, under normal-to-wet conditions, fire probability increases sharply when JASO is anomalously warm. This describes a regime in which an active fire season is not limited to drought years. Greater susceptibility to fires in response to a warmer environment finds support in the high evapotranspiration rates observed in normal-to-wet and warm conditions in Indonesia. We also find that fire probability in wet JASOs would be considerably less sensitive to temperature were not for the added effect of recent positive trends. Near-term regional climate projections reveal that, despite negligible changes in precipitation, a continuing warming trend will heighten fire probability over the next few decades especially in non-drought years. Mild fire seasons currently observed in association with wet conditions and cool temperatures will become rare events in Indonesia.

  15. Evaluation of some advanced wheat lines (F7 in normal and drought stress conditions

    Directory of Open Access Journals (Sweden)

    R. Nikseresht


    Full Text Available For assessment of drought stress effects on agro characteristics of 30 lines and 6 wheat cultivars and for introducing of drought tolerant and susceptible ones one trial were established using split plot base of randomized complete block design with two replications, main plots were stress and non-stress condition and sub plots contain 30 lines and six wheat cultivars in the check trial, irrigation the farm was done with the normal regime, but in stress trial for germination of seeds and one irrigation in Isfand to the end of rooting the farm was irrigated. Within and end of growth season we measured some agronomic and morphological characters such as yield and its component, height, peduncle length, and etc. Responses of cultivars under stress and non-stress conditions were' different, for example drought stress reduced yield. In spite of this general yield reducing, we found some line, such as 2, 29, 23 had relatively high yield (in tree levels. In order to final evaluate using Factor Analysis, Principal Component, Cluster Analysis .Factor Analysis indicated that four important factors accounted for about 80.245 and 79.624 percent of the total variation among traits in normal and drought stress conditions. With cluster analysis of 36 lines and cultivar using Ward procedure based on Euclidean distance were grouped in 4 distance cluster.

  16. Differential activity of autochthonous bacteria in controlling drought stress in native Lavandula and Salvia plants species under drought conditions in natural arid soil. (United States)

    Armada, Elisabeth; Roldán, Antonio; Azcon, Rosario


    The effectiveness of autochthonous plant growth-promoting rhizobacteria was studied in Lavandula dentata and Salvia officinalis growing in a natural arid Mediterranean soil under drought conditions. These bacteria identified as Bacillus megaterium (Bm), Enterobacter sp. (E), Bacillus thuringiensis (Bt), and Bacillus sp. (Bsp). Each bacteria has different potential to meliorate water limitation and alleviating drought stress in these two plant species. B. thuringiensis promoted growth and drought avoidance in Lavandula by increasing K content, by depressing stomatal conductance, and it controlled shoot proline accumulation. This bacterial effect on increasing drought tolerance was related to the decrease of glutathione reductase (GR) and ascorbate peroxidase (APX) that resulted sensitive indexes of lower cellular oxidative damage involved in the adaptative drought response in B. thuringiensis-inoculated Lavandula plants. In contrast, in Salvia, having intrinsic lower shoot/root ratio, higher stomatal conductance and lower APX and GR activities than Lavandula, the bacterial effects on nutritional, physiological and antioxidant enzymatic systems were lower. The benefit of bacteria depended on intrinsic stress tolerance of plant involved. Lavadula demonstrated a greater benefit than Salvia to control drought stress when inoculated with B. thuringiensis. The bacterial drought tolerance assessed as survival, proline, and indolacetic acid production showed the potential of this bacteria to help plants to grow under drought conditions. B. thuringiensis may be used for Lavandula plant establishment in arid environments. Particular characteristic of the plant species as low shoot/root ratio and high stomatal conductance are important factors controlling the bacterial effectiveness improving nutritional, physiological, and metabolic plant activities.

  17. A Nucleus-localized Long Non-Coding RNA Enhances Drought and Salt Stress Tolerance

    KAUST Repository

    Qin, Tao


    Long non-coding RNAs (lncRNAs) affect gene expression through a wide range of mechanisms and are considered as important regulators in many essential biological processes. A large number of lncRNA transcripts have been predicted or identified in plants in recent years. However, the biological functions for most of them are still unknown. In this study, we identified an Arabidopsis thaliana lncRNA, Drought induced RNA (DRIR), as a novel positive regulator of plant response to drought and salt stress. DRIR was expressed at a low level under non-stress conditions but can be significantly activated by drought and salt stress as well as by abscisic acid (ABA) treatment. We identified a T-DNA insertion mutant, drirD, which had higher expression of the DRIR gene than the wild type plants. The drirD mutant exhibits increased tolerance to drought and salt stress. Overexpressing DRIR in Arabidopsis also increased tolerance to drought and salt stress of the transgenic plants. The drirD mutant and the overexpressing seedlings are more sensitive to ABA than the wild type in stomata closure and seedling growth. Genome-wide transcriptome analysis demonstrated that the expression of a large number of genes was altered in drirD and the overexpressing plants. These include genes involved in ABA signaling, water transport and other stress-relief processes. Our study reveals a mechanism whereby DRIR regulates plant response to abiotic stress by modulating the expression of a series of genes involved in stress response.

  18. The evolution of the monthly hydrograph under hot drought conditions in the Southwest US (United States)

    Solander, K.; Bennett, K. E.; Middleton, R. S.


    Hydrology will undergo unprecedented changes in the 21st century. In particular, the emergence of the hot drought—an extraordinary combination of recurring droughts coupled with warmer temperatures—will lead to more frequent and widespread droughts of longer duration. This will transform the natural and engineered landscape, with millions of dollars in critical infrastructure and investments in agriculture, municipalities, and energy-water supplies at stake. Here, we investigate how the monthly hydrograph will evolve under hot drought conditions by examining the response of streamflow under historic droughts overlaid with expected temperature increases in the coming decades. We use a suite of Global Climate Models and two emission scenarios coupled to the Variable Infiltration Capacity hydrology model to evaluate these changes under different levels of warming using various sub-basins within the Colorado River Basin as a test case. Results indicate a substantial change in both magnitude (up to 40% decrease) and timing (greater than one-month earlier) in peak flows with spatial differences strongly influenced by elevation. Findings indicate these shifts are being driven by changing snow and snowmelt patterns. Such changes are anticipated to have a substantial impact on food, energy, and water resources within the basin and are important to understand in advance given that they represent the extreme range of conditions likely to occur so we can improve the management of this resource and adapt to these changes during critical periods.

  19. Stomata character and chlorophyll content of tomato in response to Zn application under drought condition (United States)

    Sakya, A. T.; Sulistyaningsih, E.; Indradewa, D.; Purwanto, B. H.


    This experiment was performed in order to evaluate the effects of Zn application under drought condition on tomato, especially its chlorophyll content and stomata character. This experiment was arranged in factorial using randomized complete block design with three replications. The treatment consisted of the Zn application method, namely: soil and foliar, the Zn dosage, namely: 0, 40 and 60 mg ZnSO4 kg-1 soil and two cultivars of tomato, namely: ‘Tyrana’ F1 and ‘Permata’ F1. The stress condition was induced by watering every 12 days of 3 weeks after transplanting until harvesting. The results showed that the soil with a Zn application under drought conditions increased the aperture stomata, chlorophyll b and chlorophyll a/b ratio. The response of stomata character, chlorophyll a and total chlorophyll in both cultivars was similar.

  20. Evaluation of Grain Quality in Bread Wheat Recombinant Inbred Lines Under Drought Stress Conditions

    Directory of Open Access Journals (Sweden)

    H. Shahbazi


    Full Text Available To study drought stress effect on grain quality properties of wheat, an experiment was conductedusing 169 recombinant inbreed lines (RILS under water stress and non-stress condition and with two separated lattice designs. Grain yield, protein yield, protein content, volume of Zeleny sediment, grain hardness, water absorption, grain moisture content and grain dry matter were evaluated. Analysis of variance showed that there were significant differences among the lines for all traits. Moreover, comparison between two lines in two environmental conditions showed, the quality in bread wheat under drought stress conditions due to increment of protein yield is improved. Protein yield in both irrigation regimes has a significant and negative correlation with grain moisture and in the other hand, significant and positive correlation with the grain hardiness dry matter, Zeleny sedimentation and water intake in both conditions. The results showed that the identification of favorable quality characteristics in optimum and stressed conditions were possible and the lines with high grain quality can be used in breeding programs for improving of baking quality. Although some drought sensitive genotypes possessed a favorable baking quality but their grain yield was low.

  1. Expression profiles of sugarcane under drought conditions: Variation in gene regulation

    Directory of Open Access Journals (Sweden)

    Júlio César Farias de Andrade


    Full Text Available AbstractDrought is a major factor in decreased sugarcane productivity because of the resulting morphophysiological effects that it causes. Gene expression studies that have examined the influence of water stress in sugarcane have yielded divergent results, indicating the absence of a fixed pattern of changes in gene expression. In this work, we investigated the expression profiles of 12 genes in the leaves of a drought-tolerant genotype (RB72910 of sugarcane and compared the results with those of other studies. The genotype was subjected to 80–100% water availability (control condition and 0–20% water availability (simulated drought. To analyze the physiological status, the SPAD index, Fv/Fm ratio, net photosynthesis (A, stomatal conductance (gs and stomatal transpiration (E were measured. Total RNA was extracted from leaves and the expression of SAMDC, ZmPIP2-1 protein, ZmTIP4-2 protein, WIP protein, LTP protein, histone H3, DNAj, ferredoxin I, β-tubulin, photosystem I, gene 1 and gene 2 was analyzed by quantitative real-time PCR (RT-PCR. Important differences in the expression profiles of these genes were observed when compared with other genotypes, suggesting that complex defense mechanisms are activated in response to water stress. However, there was no recognizable pattern for the changes in expression of the different proteins associated with tolerance to drought stress.


    Directory of Open Access Journals (Sweden)

    Yosep S. Mau


    Full Text Available Groundnut is the most important pulse crop in East Nusa Tenggara (ENT; however, the crop yield in ENT is low due to erratic climatic condition, drought stress, and low yielding ability of most cultivated genotypes. Local Rote is a well-known local groundnut variety in ENT, which is a potential superior variety and parental source due its large seed size and high yielding ability. Information on its resistance to abiotic and biotic stresses is important for its future development. Five groundnut genotypes, Local Rote and check varieties were elucidated to identify drought resistant genotypes. The study was carried out in a split-plot design with three replicates in two locations during dry season 2013. Two irrigation regimes (optimum and stress conditions were assigned as main plot and 5 groundnut geno-types as sub-plot. Research results revealed significant effect of irrigation by genotype interaction on observed yield and yield compo-nent characters in both locations. Seed yields of most tested genotypes were below their yield potential. Local Rote yielded best over two locations (1.26 t.ha-1 seed yield. Yields of check varieties were below 1.0 t.ha-1. Local Rote was considered tolerant to drought based on STI, GMP, SSI and YL selection indices.

  3. Foliar potassium nitrate application improves the tolerance of Citrus macrophylla L. seedlings to drought conditions. (United States)

    Gimeno, V; Díaz-López, L; Simón-Grao, S; Martínez, V; Martínez-Nicolás, J J; García-Sánchez, F


    Scarcity of water is a severe limitation in citrus tree productivity. There are few studies that consider how to manage nitrogen (N) nutrition in crops suffering water deficit. A pot experiment under controlled-environment chambers was conducted to explore if additional N supply via foliar application could improve the drought tolerance of Citrus macrophylla L. seedlings under dry conditions. Two-month-old seedlings were subjected to a completely random design with two water treatments (drought stress and 100% water/field capacity). Plants under drought stress (DS) received three different N supplies via foliar application (DS: 0, DS + NH4NO3: 2% NH4NO3, DS + KNO3: 2% KNO3). KNO3-spraying increased leaf and stem DW as compared with DS + NH4NO3 and DS treatments. Leaf water potential (Ψw) was decreased by drought stress in all the treatments. However, in plants from DS + NH4NO and DS + KNO3, this was due to a decrease in the leaf osmotic potential, whereas the decrease in those from the DS treatment was due to a decrease in the leaf turgor potential. These responses were correlated with the leaf proline and K concentrations. DS + KNO3-treated plants had a higher leaf proline and K concentration than DS-treated plants. In terms of leaf gas exchange parameters, it was observed that net assimilation of CO2 [Formula: see text] was decreased by drought stress, but this reduction was much lower in DS + KNO3-treated plants. Thus, when all results are taken into account, it can be concluded that a 2% foliar-KNO3 application can enhance the tolerance of citrus plants to water stress by increasing the osmotic adjustment process. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  4. USGS integrated drought science (United States)

    Ostroff, Andrea C.; Muhlfeld, Clint C.; Lambert, Patrick M.; Booth, Nathaniel L.; Carter, Shawn L.; Stoker, Jason M.; Focazio, Michael J.


    Project Need and OverviewDrought poses a serious threat to the resilience of human communities and ecosystems in the United States (Easterling and others, 2000). Over the past several years, many regions have experienced extreme drought conditions, fueled by prolonged periods of reduced precipitation and exceptionally warm temperatures. Extreme drought has far-reaching impacts on water supplies, ecosystems, agricultural production, critical infrastructure, energy costs, human health, and local economies (Milly and others, 2005; Wihlite, 2005; Vörösmarty and others, 2010; Choat and others, 2012; Ledger and others, 2013). As global temperatures continue to increase, the frequency, severity, extent, and duration of droughts are expected to increase across North America, affecting both humans and natural ecosystems (Parry and others, 2007).The U.S. Geological Survey (USGS) has a long, proven history of delivering science and tools to help decision-makers manage and mitigate effects of drought. That said, there is substantial capacity for improved integration and coordination in the ways that the USGS provides drought science. A USGS Drought Team was formed in August 2016 to work across USGS Mission Areas to identify current USGS drought-related research and core capabilities. This information has been used to initiate the development of an integrated science effort that will bring the full USGS capacity to bear on this national crisis.

  5. Local Tensor Radiation Conditions For Elastic Waves

    DEFF Research Database (Denmark)

    Krenk, S.; Kirkegaard, Poul Henning


    A local boundary condition is formulated, representing radiation of elastic waves from an arbitrary point source. The boundary condition takes the form of a tensor relation between the stress at a point on an arbitrarily oriented section and the velocity and displacement vectors at the point....... The tensor relation generalizes the traditional normal incidence impedance condition by accounting for the angle between wave propagation and the surface normal and by including a generalized stiffness term due to spreading of the waves. The effectiveness of the local tensor radiation condition...

  6. Fires in Non-drought Conditions in Indonesia: the Role of Increasing Temperatures (United States)

    Fernandes, K.; Verchot, L. V.; Baethgen, W.; Gutierrez-Velez, V.; Pinedo-Vasquez, M.; Martius, C.


    In Indonesia, drought driven fires occur typically during the warm phase of the El Niño Southern Oscillation (ENSO), such as those of 1997 and 2015 that resulted in months-long hazardous atmospheric pollution levels in Equatorial Asia and record greenhouse gas emissions. Nonetheless, anomalously active fire seasons have also been observed in non-drought years. In this work, we investigated whether fires are impacted by temperature anomalies and if so, if the responses differ under contrasting precipitation regimes. Our findings show that when the July-October dry-season is anomalously dry, the sensitivity of fires to temperature anomalies is similar regardless of the sign of the anomalies. In contrast, in wet condition, fire risk increases sharply when the dry season is anomalously warm. We also present a characterization of near-term regional climate projections over the next few decades and the implications of continuing global temperature increase in future fire probability in Indonesia.

  7. Molecular markers validation to drought resistance in wheat meal (Triticum aestivum L. under greenhouse conditions

    Directory of Open Access Journals (Sweden)

    Gabriel Julio


    Full Text Available With the aim to study the genetic resistance to drought and validate molecular markers co-localized with genes/QTLs for this factor, 16 varieties were evaluated as well as advanced lines of wheat meal (Triticum aestivum in two stages of crop development. Physiological parameters were considered: amount of chlorophyll (clo, wilting or severity degree (SEV and recovery (reco, morphological parameters: foliage dry matter (FDM and root dry matter (RDM, the integrated resistance mechanisms: water use efficiency (WUE, other parameters: number of grains (Ngrain and grain weight (Wgrain, biochemical parameters: Catalaza (CAT, Ascorbate Peroxidase (APX and Guaiacol Peroxidase (POX and three microsatellite markers (Xwmc603, Xwmc596, Xwmc9. Results showed significant differences for MSR and Ngrain. It was observed that Anzaldo, ERR2V.L-20, EARII2V.L-5, EARIZV.L-11, ERR2V.L-11 and EE2V.L-19 were the most resistant to drough water stress. There was a highly significant negative correlation between the MSR and Ngrain. All other variables showed low and non-significant correlations. In biochemical analyzes, the Anzaldo variety showed an increased enzymatic activity compared to controls in all cases (CAT-APX and POX, being the most resistant to water stress by drought. Finally, it was found that SSR markers (Xwmc596 and Xwmc9 are co-located with the gene / QTL of drought resistance and can be used for marker-assisted selection.

  8. Selection of tomato mutants (lycopersicon esculentum mill) under conditions of drought stress

    International Nuclear Information System (INIS)

    Gonzalez, Maria Caridad; Mansoor, Ali; Suarez, Lorenzo; Mukandama, Jean P.; Rodriguez, Yanet


    At the National Institute of Agricultural Sciences were evaluated under conditions of drought estres an M5 population obtained starting from the irradiation of seeds of the Amalia and INCA 9-1varieties with dose of 300 and 500 Gy of rays gamma of 60 Co. The number of clusters for plant, mass average of the fruits, number of fruits for plant and yield for plant, the content of total soluble solids and the acidity of the fruits was evaluated observing differ highly significant among the different ones lines and the respective donating studied. Promissory genotipos of high productive potential was selected under this condition

  9. Evaluation of Drought Stress Thresholds in Ornamental Barberry (Berberis thunbergii cv. Atropurpurea Shrub in Mashhad Condition

    Directory of Open Access Journals (Sweden)

    Reyhane Setayesh


    Full Text Available Introduction: The population growth and water requirement for domestic consumption, industry, agriculture and urban development in Mashhad megacity, increase pressures on freshwater resources. Therefore, planning for water use optimization is necessary. The new allocation of water resources for landscape greenish, especially in arid and semi-arid is difficult. Therefore, water allocation to landscape is valuable and should be used efficiently. According to water resource limitation, using drought-tolerant plant species and determine threshold of drought tolerance in landscape can improve water use management. Plants that naturally survive in your area are the ones best adapted to your soil, climate and rainfall. By selecting plants that either avoid or tolerate dry conditions, a beautiful, thriving landscape can be made possible. Drought-tolerant plants survive long periods of drought by storing water internally or by developing extensive root systems that sink deep into the soil. Many drought-tolerant plants have additional protection through a waxy coating that reduces evaporation or hairs on the leaf surface that reflect some of the light, insulating the plant. Most drought-tolerant plants use several of these features to survive on low amounts of precipitation. Japanese barberry is a compact woody deciduous shrub with arching branches. Leaf colours include green, bluish-green to dark red and purple. B. thunbergii's progress in the United States has, to date, been held in check to the south by, probably, its need for cold winter temperatures for stratification of the seeds, and to the west by, probably, drought conditions. Although very drought tolerant once established, a very dry terrain would tend to discourage its incursion. Rugged, adaptable, no serious problems or pests, easy to maintain, transplants readily, shade and drought tolerant, deer resistant is typical ad copy found at any site offering this shrub of colourful fall foliage. In

  10. Resistance strategies of Phragmites australis (common reed to Pb pollution in flood and drought conditions

    Directory of Open Access Journals (Sweden)

    Na Zhang


    Full Text Available Resistance strategies of clonal organs, and parent and offspring shoots of Phragmites australis (common reed to heavy metal pollution in soils are not well known. To clarify the tolerance or resistance strategies in reeds, we conducted a pot experiment with five levels of Pb concentration (0∼4,500 mg kg−1 in flood and drought conditions. Lead toxicity had no inhibitory effect on the number of offspring shoots in flood environment; however, biomass accumulation, and photosynthetic and clonal growth parameters were inhibited in both water environment. At each treatment of Pb concentration, offspring shoots had greater biomass and higher photosynthesis indicators than parent shoots. The lowest Pb allocation was found in rhizomes. More of the Pb transported to above-ground parts tended to accumulate in parent shoots rather than in offspring shoots. Biomass and photosynthesis of offspring shoots, rhizome length, and the number of buds, rhizomes and offspring shoots in the flooded treatment were significantly greater than those in the drought treatment. Our results indicated that the tolerance strategies used by reeds, including higher biomass accumulation and photosynthesis in offspring shoots, low allocation of Pb in rhizomes and offspring shoots, and stable clonal growth, maintained the stability of population propagation and productivity, improving the resistance of reeds to Pb pollution in flood environment. However, the resistance or tolerance was significantly reduced by the synergistic effect of Pb and drought, which significantly inhibited biomass accumulation, photosynthesis, and clonal growth of reeds.

  11. Morphological evaluation of buffelgrass cultivar “Lucero INTA-PEMAN” in drought conditions

    Directory of Open Access Journals (Sweden)

    GRIFFA, S.


    Full Text Available In searching for new cultivars that are better adapted to edapho-climatic constraints existing in northwestern Argentina, mainly drought and salinity stress, a hybrid of buffelgrass (Cenchrus ciliaris L. named Lucero INTA PEMAN was obtained by controlled crosses at the Instituto de Fitopatología y Fisiología Vegetal, INTA. The objective was to morphologically evaluate and compare Cenchrus ciliaris cv Lucero with Texas-4464, Biloela and Molopo cultivars in Dean Funes (North of the Province of Córdoba, Argentina under drought field conditions using a randomized complete block design with three replications in two crop cycles (2006/2007 and 2007/2008 considering one-year plant and re-growth as ontogenic stages of the plant, respectively. Thirteen morphological characters were analyzed by ANOVA and DGC testing (p <0.05. Although most of the thirteen morphological characters evaluated showed decreased re-growth over one-year plants, Lucero was least affected by low water availability, showed highest values for seed production components in both ontogenic stages and was superior to Texas-4464 in biomass production characters and to Biloela and Molopo cultivars in most of them. Lucero showed a promising and considerable forage value for drought-affected regions, such as northwestern Argentina.

  12. Spider foraging strategy affects trophic cascades under natural and drought conditions. (United States)

    Liu, Shengjie; Chen, Jin; Gan, Wenjin; Schaefer, Douglas; Gan, Jianmin; Yang, Xiaodong


    Spiders can cause trophic cascades affecting litter decomposition rates. However, it remains unclear how spiders with different foraging strategies influence faunal communities, or present cascading effects on decomposition. Furthermore, increased dry periods predicted in future climates will likely have important consequences for trophic interactions in detritus-based food webs. We investigated independent and interactive effects of spider predation and drought on litter decomposition in a tropical forest floor. We manipulated densities of dominant spiders with actively hunting or sit-and-wait foraging strategies in microcosms which mimicked the tropical-forest floor. We found a positive trophic cascade on litter decomposition was triggered by actively hunting spiders under ambient rainfall, but sit-and-wait spiders did not cause this. The drought treatment reversed the effect of actively hunting spiders on litter decomposition. Under drought conditions, we observed negative trophic cascade effects on litter decomposition in all three spider treatments. Thus, reduced rainfall can alter predator-induced indirect effects on lower trophic levels and ecosystem processes, and is an example of how such changes may alter trophic cascades in detritus-based webs of tropical forests.

  13. A chloroplast-localized and auxin-induced glutathione S-transferase from phreatophyte Prosopis juliflora confer drought tolerance on tobacco. (United States)

    George, Suja; Venkataraman, Gayatri; Parida, Ajay


    Plant growth and productivity are adversely affected by various abiotic stress factors. In our previous study, we used Prosopis juliflora, a drought-tolerant tree species of Fabaceae, as a model plant system for mining genes functioning in abiotic stress tolerance. Large-scale random EST sequencing from a cDNA library obtained from drought-stressed leaves of 2-month-old P. juliflora plants resulted in identification of three different auxin-inducible glutathione S-transferases. In this paper, we report the cellular localization and the ability to confer drought tolerance in transgenic tobacco of one of these GSTs (PjGSTU1). PjGSTU1 was overexpressed in Escherichia coli and GST and GPX activities in total protein samples were assayed and compared with controls. The results indicated that PjGSTU1 protein forms a functional homo-dimer in recombinant bacteria with glutathione transferase as well as glutathione peroxidase activities. PjGSTU1 transgenic tobacco lines survived better under conditions of 15% PEG stress compared with control un-transformed plants. In vivo localization studies for PjGSTU1 using GFP fusion revealed protein localization in chloroplasts of transgenic plants. The peroxidase activity of PjGSTU1 and its localization in the chloroplast indicates a possible role for PjGSTU1 in ROS removal. Copyright 2009 Elsevier GmbH. All rights reserved.

  14. Cytokinins induce transcriptional reprograming and improve Arabidopsis plant performance under drought and salt stress conditions.

    Directory of Open Access Journals (Sweden)

    Natali Shirron


    Full Text Available In nature, annual plants respond to abiotic stresses by activating a specific genetic program leading to early flowering and accelerated senescence. Although, in nature, this phenomenon supports survival under unfavorable environmental conditions, it may have negative agro-economic impacts on crop productivity. Overcoming this genetic programing by cytokinins (CK has recently been shown in transgenic plants that overproduce CK. These transgenic plants displayed a significant increase in plant productivity under drought stress conditions. We investigated the role of CK in reverting the transcriptional program that is activated under abiotic stress conditions and allowing sustainable plant growth. We employed 2 complementary approaches: Ectopic overexpression of CK, and applying exogenous CK to detached Arabidopsis leaves. Transgenic Arabidopsis plants transformed with the isopentyltransferase (IPT gene under the regulation of the senescence associated receptor kinase (SARK promoter displayed a significant drought resistance. A transcriptomic analysis using RNA sequencing was performed to explore the response mechanisms under elevated CK levels during salinity stress. This analysis showed that under such stress, CK triggered transcriptional reprograming that resulted in attenuated stress-dependent inhibition of vegetative growth and delayed premature plant senescence. Our data suggest that elevated CK levels led to stress tolerance by retaining the expression of genes associated with plant growth and metabolism whose expression typically decreases under stress conditions. In conclusion, we hypothesize that CK allows sustainable plant growth under unfavorable environmental conditions by activating gene expression related to growth processes and by preventing the expression of genes related to the activation of premature senescence.

  15. Satellite-based hybrid drought monitoring tool for prediction of vegetation condition in Eastern Africa: A case study for Ethiopia (United States)

    Tadesse, Tsegaye; Demisse, Getachew Berhan; Zaitchik, Ben; Dinku, Tufa


    An experimental drought monitoring tool has been developed that predicts the vegetation condition (Vegetation Outlook) using a regression-tree technique at a monthly time step during the growing season in Eastern Africa. This prediction tool (VegOut-Ethiopia) is demonstrated for Ethiopia as a case study. VegOut-Ethiopia predicts the standardized values of the Normalized Difference Vegetation Index (NDVI) at multiple time steps (weeks to months into the future) based on analysis of "historical patterns" of satellite, climate, and oceanic data over historical records. The model underlying VegOut-Ethiopia capitalizes on historical climate-vegetation interactions and ocean-climate teleconnections (such as El Niño and the Southern Oscillation (ENSO)) expressed over the 24 year data record and also considers several environmental characteristics (e.g., land cover and elevation) that influence vegetation's response to weather conditions to produce 8 km maps that depict future general vegetation conditions. VegOut-Ethiopia could provide vegetation monitoring capabilities at local, national, and regional levels that can complement more traditional remote sensing-based approaches that monitor "current" vegetation conditions. The preliminary results of this case study showed that the models were able to predict the vegetation stress (both spatial extent and severity) in drought years 1-3 months ahead during the growing season in Ethiopia. The correlation coefficients between the predicted and satellite-observed vegetation condition range from 0.50 to 0.90. Based on the lessons learned from past research activities and emerging experimental forecast models, future studies are recommended that could help Eastern Africa in advancing knowledge of climate, remote sensing, hydrology, and water resources.

  16. Effect of drought stress on water status, electrolyte leakage and enzymatic antioxidants of kochia (kochia scoparia) under saline condition

    International Nuclear Information System (INIS)

    Masoumi, A.; Kafi, M.; Khazaei, Z.; Davari, K.


    Drought stress is considered as the main factor of yield limitations in arid and semi-arid areas, where drought and salinity stresses are usually combined. Kochia species have recently attracted the attention of researchers as forage and fodder crop in marginal lands worldwide due to its drought and salt tolerant characters. This field experiment was performed at the Salinity Research Station (36 deg. 15'N, 59 deg. 28' E) of Ferdowsi University, ashhad, Iran in 2008, in a split plot based on randomized complete block design with three replications. Three levels of drought stress (control, no irrigation in vegetative stage (recovery treatment) and no irrigation at reproductive stage for one month (stress treatment)), and two Kochia ecotypes (Birjand and Borujerd) were allocated as main and sub-plots, respectively. Relative water content (RWC), membrane permeability and antioxidant enzymes were assayed at the beginning of anthesis. Stress treatment caused a significant decrease in the leaf RWC and increase in electrolyte leakage compared with control and recovered conditions. Furthermore, stress treatment caused a significant increase in antioxidant enzyme activities except of superoxide dismutase (SOD) and peroxidase (POX). The Birjand ecotype was significantly more tolerant to drought than Borujerd ecotype. According to the results, there were no difference between recovered plants and control treatment, therefore, Kochia can recover quickly after removing drought stress. Kochia showed high tolerance against drought and salinity stresses and different antioxidant enzymes had different behavior under stress conditions. (author)

  17. Local adaptations to frost in marginal and central populations of the dominant forest tree Fagus sylvatica L. as affected by temperature and extreme drought in common garden experiments. (United States)

    Kreyling, Juergen; Buhk, Constanze; Backhaus, Sabrina; Hallinger, Martin; Huber, Gerhard; Huber, Lukas; Jentsch, Anke; Konnert, Monika; Thiel, Daniel; Wilmking, Martin; Beierkuhnlein, Carl


    Local adaptations to environmental conditions are of high ecological importance as they determine distribution ranges and likely affect species responses to climate change. Increased environmental stress (warming, extreme drought) due to climate change in combination with decreased genetic mixing due to isolation may lead to stronger local adaptations of geographically marginal than central populations. We experimentally observed local adaptations of three marginal and four central populations of Fagus sylvaticaL., the dominant native forest tree, to frost over winter and in spring (late frost). We determined frost hardiness of buds and roots by the relative electrolyte leakage in two common garden experiments. The experiment at the cold site included a continuous warming treatment; the experiment at the warm site included a preceding summer drought manipulation. In both experiments, we found evidence for local adaptation to frost, with stronger signs of local adaptation in marginal populations. Winter frost killed many of the potted individuals at the cold site, with higher survival in the warming treatment and in those populations originating from colder environments. However, we found no difference in winter frost tolerance of buds among populations, implying that bud survival was not the main cue for mortality. Bud late frost tolerance in April differed between populations at the warm site, mainly because of phenological differences in bud break. Increased spring frost tolerance of plants which had experienced drought stress in the preceding summer could also be explained by shifts in phenology. Stronger local adaptations to climate in geographically marginal than central populations imply the potential for adaptation to climate at range edges. In times of climate change, however, it needs to be tested whether locally adapted populations at range margins can successfully adapt further to changing conditions.

  18. Local bumble bee decline linked to recovery of honey bees, drought effects on floral resources. (United States)

    Thomson, Diane M


    Time series of abundances are critical for understanding how abiotic factors and species interactions affect population dynamics, but are rarely linked with experiments and also scarce for bee pollinators. This gap is important given concerns about declines in some bee species. I monitored honey bee (Apis mellifera) and bumble bee (Bombus spp.) foragers in coastal California from 1999, when feral A. mellifera populations were low due to Varroa destructor, until 2014. Apis mellifera increased substantially, except between 2006 and 2011, coinciding with declines in managed populations. Increases in A. mellifera strongly correlated with declines in Bombus and reduced diet overlap between them, suggesting resource competition consistent with past experimental results. Lower Bombus numbers also correlated with diminished floral resources. Declines in floral abundances were associated with drought and reduced spring rainfall. These results illustrate how competition with an introduced species may interact with climate to drive local decline of native pollinators. © 2016 John Wiley & Sons Ltd/CNRS.

  19. Effect on Quality Characteristics of Tomatoes Grown Under Well-Watered and Drought Stress Conditions. (United States)

    Klunklin, Warinporn; Savage, Geoffrey


    Tomatoes are one of the most nutritionally and economically important crops in New Zealand and around the world. Tomatoes require large amounts of water to grow well and are adversely affected by drought stress. However, few studies have evaluated the physicochemical characteristics of commercial tomatoes grown under water stress conditions. Four tomato cultivars (Incas, Marmande, Scoresby Dwarf, and Window Box Red) were grown in a greenhouse under well-watered and drought stress conditions and the tomatoes were harvested when ripe. The physicochemical properties and antioxidant contents of the fruits were compared. There were significant differences between cultivars in quality characteristics-such as dry matter, total soluble solids, and pH parameters-but there were no differences in the quality characteristics between the two treatments of the fruits ( p > 0.05); however, there were significant differences ( p < 0.05) in the antioxidant compositions (lycopene, total phenolics, and flavonoids) and antioxidant activities (DPPH and ABTS) of the fruits of both cultivars and treatments. Overall, these results indicated that tomatoes increased their bioactive compounds without changing any quality characteristics when exposed to water stress conditions.

  20. Field Performance of Five Soybean Mutants Under Drought Stress Conditions and Molecular Analysis Using SSR Markers

    Directory of Open Access Journals (Sweden)

    Y Yuliasti


    Full Text Available The objectives of this research wereto evaluate (1 the performance of soybean mutant lines under drought stress conditions, and(2 the genetic diversity and relationship among the mutant lines using SSR markers.The field evaluation was conducted during the dry season of 2011 and 2012 at the experimental Farm of Mataram University, West Nusa Tenggara, Indonesia. The field experiment was set up in a randomized block design. Ten mutant lines and two control varieties were evaluated in four replications. Genetic distance among evaluated lines were determined based on allelic diversity analysis using 40 simple sequence repeat (SSR loci. Under drought stress conditions, two mutant lines, Kdl3 and Kdl8,showed a better performance compared to the other ones. The high yielding mutant lines were Kdl3and Kdl8, which yielded 1.75 t ha-1and 1.69 t ha-1, respectively, compared to the parent and national control, Panderman 1.43 t ha-1 and Muria 1.32 t ha-1. These mutant linesrequired 30.75 to 32days to flower and 79.75 to 83.75 day to harvest with relatively short plant height 28.25 and 23.35 cmrespectively. Those mutant characters were better than those of the other three mutants, the original parents, and the control soybean species. Since the evaluated soybean mutant lines yielded more under drought stress conditions than the standard varieties, they can be used and registered as drought-tolerant soybean mutants. Moreover, the evaluated soybean accessions showed a wide genetic distance. The accessions were clustered into two groups according to their genetic background, namelygroup I (the Panderman with three mutant lines and group II (the Muria with two mutant lines. Twenty-three out of 40 evaluated SSR loci, including AW31, BE806, CMAC7L, S080, S126, S57, S171, S224, S285, S294, S393, S294, S383, S511, S511, S520, S540, S547, S551, S571, S577, and S578, provided polymorphic alleles between the parents and their mutants and could be used to differentiate

  1. The role of ecophysiology in determining monoterpene concentrations and emissions from pinyon pine under drought conditions (United States)

    Trowbridge, A. M.; Adams, H. D.; Breshears, D. D.; Stoy, P.; Monson, R. K.


    While much research has focused on the primary metabolic mechanisms underlying pinyon pine's sensitivity to severe and abrupt drought conditions, there remains a gap in our knowledge concerning how the resulting shift in carbon allocation toward plant secondary compounds, particularly monoterpenes, affects both atmospheric process and ecological species interactions. Because of the large global emission rate of monoterpenes and their effect on atmospheric chemistry, identifying the primary controls over and sensitivities to environmental change is critical for global emission models. Furthermore, monoterpenes are also known to impact insect behavior and act as defense compounds against herbivores, contributing to fluctuations in the population densities of herbivores either directly through toxicity, or indirectly by influencing an insect's susceptibility to parasitism. While pinyon mortality events are thought to be exacerbated by their susceptibility to herbivores resulting from weakened secondary chemical defenses, the impact of current and predicted drought on the chemical defense status of pinyons and the potential consequences for atmospheric composition and ecological interactions remains unknown. We performed a manipulative field study to untangle the effects of drought on plant carbon assimilation, growth, and defense throughout the year. Transplanting pinyons from their natural habitat into a desert environment, we were able to increase mean annual temperature by ~4 degrees C. Throughout the growing season, we measured pinyon physiology and monoterpene composition and emissions under different water (well-watered, ambient, or drought-stresed) and temperature (natural pinyon habitat or desert transplants) regimes. We hypothesized that increased drought would increase tissue concentrations in accordance with the carbon-nutrient balance hypothesis (CNBH). Furthermore, we predicted that higher temperatures and lower water availability together would influence

  2. Evaluation of some chemical and technological properties of induced erect chickpea mutant lines developed under drought stressed conditions

    International Nuclear Information System (INIS)

    Moustafa, R.A.K.; Ali, H.G.M.


    Seeds of the chickpea variety Flip 99-47 C were treated with gamma rays at doses of 0, 50 and 75 Gy and sown in the winter season of 2004/2005 to raise M1 generation under ordinary (normal) irrigation conditions. Bulked seeds from each treatment were planted in the subsequent growing seasons of 2005/2006 and 2006/2007 to advance M2 and M3 generations, respectively under either ordinary (normal) irrigation or drought stress condition. In the third generation, three erect mutant lines were derived from 75 Gy mutagenic treatment under drought stress compared to semi spreading growth habit of the initiated variety Flip 99-47 C. In the winter season of 2007/2008, M4 bulked seeds from the three erect lines as well as unirradiated seeds of the original variety grown under either ordinary (normal) irrigation (2152.5 m 3 /fad.) or drought (1159.2 m 3 /fad.) conditions were analyzed for the chemical composition and nutritional values. Obtained results indicated that there were slight decreases in protein and fat contents accompanied with marginal increases in both ash and carbohydrates in seed samples of the erect mutant developed under drought stress as compared to unirradiated seeds of the original variety grown under ordinary (normal) irrigation treatment. An opposite trend was noticed between seed samples derived from the erect lines compared to seeds of the parent variety developed under drought condition. Negligible changes in levels of the minerals (iron, magnesium, calcium and phosphorus) were detected between seeds of the erect lines and the original variety that grown under either ordinary (normal) irrigation or drought conditions. Cooking time (min) and hydration coefficient values did not much differ between the three tested seed samples. Marginal differences in essential and non-essential amino acids were detected between seeds of the erect mutants and those of the initial variety grown under ordinary (normal) irrigation or drought stressed conditions

  3. Modelling Danish local CHP on market conditions

    DEFF Research Database (Denmark)

    Ravn, Hans V.; Riisom, Jannik; Schaumburg-Müller, Camilla


    with the liberalisation process of the energy sectors of the EU countries, it is however anticipated that Danish local CHP are to begin operating on market conditions within the year 2005. This means that the income that the local CHPs previously gained from selling electricity at the feed-in tariff is replaced in part...... the consequences of acting in a liberalised market for a given CHP plant, based on the abovementioned bottom-up model. The key assumption determining the bottom line is the electricity spot price. The formation of the spot price in the Nordic area depends heavily upon the state of the water reservoirs in Norway...

  4. Experience of inundation or drought alters the responses of plants to subsequent water conditions

    DEFF Research Database (Denmark)

    Wang, Shu; Callaway, Ragan M.; Zhou, Dao-Wei


    had the strongest drought tolerance after early drought; (iii) mesic species were more likely to suffer reduced later growth after either inundation or drought experience. Invasive species benefitted more from early inundation than did native species, but native species grew better after experiencing...

  5. Expression of an Arabidopsis molybdenum cofactor sulphurase gene in soybean enhances drought tolerance and increases yield under field conditions. (United States)

    Li, Yajun; Zhang, Jiachang; Zhang, Juan; Hao, Ling; Hua, Jinping; Duan, Liusheng; Zhang, Mingcai; Li, Zhaohu


    LOS5/ABA3 gene encoding molybdenum cofactor sulphurase is involved in aldehyde oxidase (AO) activity in Arabidopsis, which indirectly regulates ABA biosynthesis and increased stress tolerance. Here, we used a constitutive super promoter to drive LOS5/ABA3 overexpression in soybean (Glycine max L.) to enhance drought tolerance in growth chamber and field conditions. Expression of LOS5/ABA3 was up-regulated by drought stress, which led to increasing AO activity and then a notable increase in ABA accumulation. Transgenic soybean under drought stress had reduced water loss by decreased stomatal aperture size and transpiration rate, which alleviated leaf wilting and maintained higher relative water content. Exposed to drought stress, transgenic soybean exhibited reduced cell membrane damage by reducing electrolyte leakage and production of malondialdehyde and promoting proline accumulation and antioxidant enzyme activities. Also, overexpression of LOS5/ABA3 enhanced expression of stress-up-regulated genes. Furthermore, the seed yield of transgenic plants is at least 21% higher than that of wide-type plants under drought stress conditions in the field. These data suggest that overexpression of LOS5/ABA3 could improve drought tolerance in transgenic soybean via enhanced ABA accumulation, which could activate expression of stress-up-regulated genes and cause a series of physiological and biochemical resistant responses. © 2013 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  6. Anatomic and physiological modifications in seedlings of Coffea arabica cultivar Siriema under drought conditions

    Directory of Open Access Journals (Sweden)

    Emanuelle Ferreira Melo


    Full Text Available Due to the weather changes prognostic for the coming years, the understanding of water deficit and physiological responses of plants to drought becomes an important requirement in order to develop technologies such as mechanisms to assist plants to cope with longer drought periods, which will be essential to maintenance of Brazilian and worldwide production. This study aimed to evaluate ecophysiological and anatomical aspects as well as the nitrate reductase activity in Siriema coffee seedlings subjected to four treatments: Daily irrigated, non-irrigated, re-irrigated 24 hours and re-irrigated 48 hours after different stress periods. Non-irrigation promoted a reduction in leaf water potential being accented from the ninth day of evaluation onwards. Re-irrigation promoted a partial recovery of the plant water potential. Non-irrigated plants showed an increase in stomatal resistance and reduction of transpiration and nitrate reductase activity. In the roots, there was a decrease in nitrate reductase activity under water stress. Leaf anatomical modifications were significant only for the adaxial surface epidermis and palisade parenchyma thickness, this latter characteristic being higher in control plants. Stomatal density and polar and equatorial diameter ratios showed the highest values in plants under water stress. In the roots, differences only in the cortex thickness being bigger in the non-irrigated treatment could be observed. Therefore, Siriema coffee plants under water stress show physiological, biochemical and anatomical modifications that contribute to the tolerance of this genotype to these conditions.

  7. Effect of silicon application on physiological characteristics and growth of wheat (Triticum aestivum L. under drought stress condition

    Directory of Open Access Journals (Sweden)

    A. Karmollachaab


    Full Text Available In order to investigate the effect of silicon application on some physiological characteristics and growth of Wheat (Triticum aestivum L. under late drought stress condition, an experiment was conducted at the Agriculture and Natural Resources University of Ramin, Khuzestan during year 2012. The experiment was conducted in the open environment as factorial randomized complete block design with three levels of drought stress (irrigation after 25, 50 and 75% depletion of available water content as the first factor and four levels of silicon (0, 10, 20 and 30 mg soil as the second factor with three replications. The results showed that drought stress imposed a negative significant effect on all traits. The drought stress led to increased electrolyte leakage and proline content, cuticular wax, leaf silicon concentration, superoxide dismutase activity (SOD and grain potassium were decreased. The severe drought stress has most effect on electrolyte leakage (up to 53%. The application of silicon except the shoot/root parameter, on all characters have been affected so that application of 30 mg soil led to decrease electrolyte leakage up to 22.5% and increased SOD activity, proline content, cuticular wax grain K and flag leaf Si concentration, 25, 12.8, 21, 17 and 30% compared to control, respectively. In general, the results showed a positive effect of silicon on wheat plant under stress conditions that were higher than no stress condition.

  8. Characterization of future drought conditions in the Lower Mekong River Basin

    Directory of Open Access Journals (Sweden)

    Madusanka Thilakarathne


    Full Text Available This study evaluates future changes to drought characteristics in the Lower Mekong River Basin using climate model projections. The Lower Mekong Basin (LMB, covering Thailand, Cambodia, Laos and Vietnam, is vulnerable to increasing droughts. Univariate analysis was employed in this study to compare drought characteristics associated with different return periods for the historical period 1964–2005 and future scenarios (RCP 4.5 2016–2057, RCP 4.5 2058–2099, RCP 8.5 2016–2057 and RCP 8.5 2058–2099. Because a single drought event is defined by several correlated characteristics, drought risk assessment by a multivariate analysis was deemed appropriate, and a multivariate analysis of droughts was conducted using copula functions to investigate the differences in the trivariate joint occurrence probabilities of the historical period and future scenarios. The Standardized Precipitation Index (SPI was selected as the drought index because of its ability to detect and compare metrological droughts across time and space scales. Historical precipitation data from 1964 to 2005 and future precipitation projections from 2016 to 2099 for 15 global circulation models (GCMs obtained from the NASA Earth Exchange Global Daily Downscaled Projections (NEX-GDDP dataset were employed. In all future scenarios, the Lower LMB and 3S subbasins were expected to experience more severe and intense droughts. The multivariate drought risk assessment revealed an increase in drought risks in the LMB. However, the Chi-Mun subbasin may experience an alleviation of future drought characteristics. Because the basin was expected to experience an increase in average monthly precipitation in most months, the variability in magnitude suggested that the LMB region requires adaptation strategies to address future drought occurrences.

  9. Reevaluation of the plant "gemstones": Calcium oxalate crystals sustain photosynthesis under drought conditions. (United States)

    Tooulakou, Georgia; Giannopoulos, Andreas; Nikolopoulos, Dimosthenis; Bresta, Panagiota; Dotsika, Elissavet; Orkoula, Malvina G; Kontoyannis, Christos G; Fasseas, Costas; Liakopoulos, Georgios; Klapa, Maria I; Karabourniotis, George


    Land plants face the perpetual dilemma of using atmospheric carbon dioxide for photosynthesis and losing water vapors, or saving water and reducing photosynthesis and thus growth. The reason behind this dilemma is that this simultaneous exchange of gases is accomplished through the same minute pores on leaf surfaces, called stomata. In a recent study we provided evidence that pigweed, an aggressive weed, attenuates this problem exploiting large crystals of calcium oxalate as dynamic carbon pools. This plant is able to photosynthesize even under drought conditions, when stomata are closed and water losses are limited, using carbon dioxide from crystal decomposition instead from the atmosphere. Abscisic acid, an alarm signal that causes stomatal closure seems to be implicated in this function and for this reason we named this path "alarm photosynthesis." The so-far "enigmatic," but highly conserved and widespread among plant species calcium oxalate crystals seem to play a crucial role in the survival of plants.

  10. Evaluation Physiological Characteristics and Grain Yield Canola Cultivars under end Seasonal Drought Stress in Weather Condition of Ahvaz

    Directory of Open Access Journals (Sweden)

    A Seyed Ahmadi


    Full Text Available To evaluate canola cultivars response to physiological characteristics and grain yield end seasonal drought stress in weather condition of Ahvaz, farm experiments were done at research farm of Khuzestan agriculture and natural resources center. During 2007-2008 and 2008-2009 crop years. Farm test comprised drought stress was done as split plot form with randomize complete block design with four replication, treatments consist of drought stress (main factor including 50, 60 and 70 percent of water use content, which was applied from early heading stage until physiological maturity, and three spring canola cultivar including Shirali, Hayola 401 and R.G.S. were considered as sub plots. Measurements include biological yield, grain yield, harvesting index, number of pod per plant 1000 grain weight, number of grain in pod, plant height, and stem diameter, oil and protein percentage. Results showed that drought stress reduced significantly grain yield, biological yield, harvest index and the average of reduction of them during 2 years for per unit reduce moisture from 50% to 70% were 2, 1.35, and 0.81 percent, respectively. During two years, 1000 grain weight, number of pods per plant and number of grain per pod reduced 27, 36 and 20 percent, respectively. Terminal Drought stress reduced significantly plant height, stem diameter, stem number per plant and pod length, this reduced were 12, 46, 36 and 14 percent, respectively. Stem diameter, and stem number per plant reduced more than other characteristics. In this study oil grain decreased 12 % and protein grain increased 18.5% but oil and protein yield decreased 44.9% and 27.1% respectively..Finally, in weather condition of Khuzestan, terminal drought stress on February and March in which has simultaneous with early flowering stage and filling seed, significantly, reduced yield and compounded yield and affects on stem growth and qualities oil and protein negatively. Therefore, with irrigation

  11. Heterosis in some crosses of bread wheat under irrigation and drought conditions. (United States)

    Abdel-Moneam, M A


    Five bread wheat varieties with different characteristics were crossed in a half-diallel model in 2005/2006 season. The five parents and their 10 F1 hybrids were evaluated under normal and water stress conditions during 2006/2007 season, to estimate heterosis of some wheat crosses for drought tolerance and selecting the crosses which could be useful in breeding programs for drought tolerance. The results indicated that, the best crosses over their mid parents at water stress condition for days to heading was Sakha-61 x Sakha-93; for flag leaf area were Giza-168 x Gemmeiza-9 and Sakha-61 x Gemmeiza-9 and for plant height was Sakha-61 x Sakha-93. The best crosses over their mid parents at both normal and stress conditions for days to maturity was Sakha-61 x Gemmeiza-9; for flag leaf area were Giza-168 x Sakha-61, Sakha-8 x Gemmeiza-9 and Sakha-93 x Gemmeiza-9; for spikes/plant were Sakha-8 x Sakha-61, Sakha-8 x Gemmeiza-9 and Sakha-61 x Sakha-93; for kernels/spike were Giza-168 x Sakha-8, Giza-168 x Sakha-61, Giza-168 x Sakha-93 and Sakha-8 x Gemmeiza-9; for 100-kernel weight were Giza-168 x Gemmeiza-9, Sakha-61 x Sakha-93 and Sakha-93 x Gemmeiza-9 and for grain yield/plant were Giza-168 x Sakha-93, Sakha-8 x Gemmeiza-9 and Sakha-93 x Gemmeiza-9. The best crosses over their better parents at water stress condition for flag leaf area were Giza-168 x Sakha-8, Giza-168 x Gemmeiza-9 and Sakha-8 x Gemmeiza-9; for plant height were Giza-168 x Gemmeiza-9 and Sakha-8 x Sakha-61. The best crosses over better parents at both normal and stress conditions for plant height were Giza-168 x Sakha-8, Sakha-8 x Gemmeiza-9 and Sakha-93 x Gemmeiza-9; for spikes/plant were Sakha-8xSakha-61, Sakha-61 x Sakha-93 and Sakha-8 x Gemmeiza-9; forkernels/spike were Giza-168 x Sakha-61 and Giza-168 x Sakha-93 and for grain yield/plant were Sakha-61 x Sakha-93 and Sakha-93 x Gemmeiza-9. Estimation of useful heterosis over better parent for grain yield/plant proved that it never exceeds 10.16% at

  12. A new multi-sensor integrated index for drought monitoring (United States)

    Jiao, W.; Wang, L.; Tian, C.


    Drought is perceived as one of the most expensive and least understood natural disasters. The remote-sensing-based integrated drought indices, which integrate multiple variables, could reflect the drought conditions more comprehensively than single drought indices. However, most of current remote-sensing-based integrated drought indices focus on agricultural drought (i.e., deficit in soil moisture), their application in monitoring meteorological drought (i.e., deficit in precipitation) was limited. More importantly, most of the remote-sensing-based integrated drought indices did not take into consideration of the spatially non-stationary nature of the related variables, so such indices may lose essential local details when integrating multiple variables. In this regard, we proposed a new mathematical framework for generating integrated drought index for meteorological drought monitoring. The geographically weighted regression (GWR) model and principal component analysis were used to composite Moderate-resolution Imaging Spectroradiometer (MODIS) based temperature condition index (TCI), the Vegetation Index based on the Universal Pattern Decomposition method (VIUPD) based vegetation condition index (VCI), tropical rainfall measuring mission (TRMM) based Precipitation Condition Index (PCI) and Advanced Microwave Scanning Radiometer-EOS (AMSR-E) based soil moisture condition index (SMCI). We called the new remote-sensing-based integrated drought index geographical-location-based integrated drought index (GLIDI). We examined the utility of the GLIDI for drought monitoring in various climate divisions across the continental United States (CONUS). GLIDI showed high correlations with in-situ drought indices and outperformed most other existing drought indices. The results also indicate that the performance of GLIDI is not affected by environmental factors such as land cover, precipitation, temperature and soil conditions. As such, the GLIDI has considerable potential for

  13. Exceptional Drought and Unconventional Energy Production

    Directory of Open Access Journals (Sweden)

    Reid B. Stevens


    Full Text Available The hydraulic fracturing boom in Texas required massive water flows. Beginning in the summer of 2011, water became scarce as a prolonged heat wave and subsequent severe drought spread across the state. Oil and gas producers working in drought areas needed to purchase expensive local water or transport water from a non-drought county far from the drill site. In response to decreased water availability in drought areas, these producers completed fewer wells and completed wells that used less water. This decrease in well-level water use had a measurable effect on the amount of oil and gas produced by wells completed during exceptional conditions.

  14. Effect of Filter Cake on Morphophysiological and Yield of Sweet Corn Under Late Season Drought Stress Condition

    Directory of Open Access Journals (Sweden)

    S. A. Siadat


    Full Text Available In order to investigate the effect of Filter Cake application on some morpho-physiological characteristics and yield of sweet corn (Zea mays var saccharata under different irrigation regimes, an experiment was conducted in Ramin Agriculture and Natural Resources University, Khuzestan, in 2012. The experiment was arranged in split-plot design in RCBD (Completely Randomized Block Design with three replications. Treatments were drought stress (irrigation after 25, 50 and 75% depletion of available water content in main plots and Filter Cake (0, 10, 20 and 30 tonha-1 arranged in sub-plots. Results showed that drought stress increased electrolyte leakage (EL and proline content (PC while height of plant, relative water content (RWC, chlorophyll stability index and ear and grain yield were decreased. The intensive drought stress had the greatest effect on EL and PC (54% increase, and decreased ear and grain yield by21 and 37% compared to control, respectively. Application of filter cake on non-stress condition increased height of plant and economic yield. But Filter Cake in intensive stress reduced RWC and yield and increased EL compared to control. Also, the application of 30 tonha-1 of Filter Cake in intensive stress condition decreased ear and grain yield by 14.5 and 10.7% respectively. Thus, positive effect of Filter Cake application was clear on non-stress condition, but on drought stress condition it decreased the economic yield.

  15. Desiccation and Mortality Dynamics in Seedlings of Different European Beech (Fagus sylvatica L.) Populations under Extreme Drought Conditions (United States)

    Bolte, Andreas; Czajkowski, Tomasz; Cocozza, Claudia; Tognetti, Roberto; de Miguel, Marina; Pšidová, Eva; Ditmarová, Ĺubica; Dinca, Lucian; Delzon, Sylvain; Cochard, Hervè; Ræbild, Anders; de Luis, Martin; Cvjetkovic, Branislav; Heiri, Caroline; Müller, Jürgen


    European beech (Fagus sylvatica L., hereafter beech), one of the major native tree species in Europe, is known to be drought sensitive. Thus, the identification of critical thresholds of drought impact intensity and duration are of high interest for assessing the adaptive potential of European beech to climate change in its native range. In a common garden experiment with one-year-old seedlings originating from central and marginal origins in six European countries (Denmark, Germany, France, Romania, Bosnia-Herzegovina, and Spain), we applied extreme drought stress and observed desiccation and mortality processes among the different populations and related them to plant water status (predawn water potential, ΨPD) and soil hydraulic traits. For the lethal drought assessment, we used a critical threshold of soil water availability that is reached when 50% mortality in seedling populations occurs (LD50SWA). We found significant population differences in LD50SWA (10.5–17.8%), and mortality dynamics that suggest a genetic difference in drought resistance between populations. The LD50SWA values correlate significantly with the mean growing season precipitation at population origins, but not with the geographic margins of beech range. Thus, beech range marginality may be more due to climatic conditions than to geographic range. The outcome of this study suggests the genetic variation has a major influence on the varying adaptive potential of the investigated populations. PMID:27379105

  16. The diel imprint of leaf metabolism on the δ13 C signal of soil respiration under control and drought conditions. (United States)

    Barthel, Matthias; Hammerle, Albin; Sturm, Patrick; Baur, Thomas; Gentsch, Lydia; Knohl, Alexander


    Recent (13) CO(2) canopy pulse chase labeling studies revealed that photosynthesis influences the carbon isotopic composition of soil respired CO(2) (δ(13) C(SR)) even on a diel timescale. However, the driving mechanisms underlying these short-term responses remain unclear, in particular under drought conditions. The gas exchange of CO(2) isotopes of canopy and soil was monitored in drought/nondrought-stressed beech (Fagus sylvatica) saplings after (13) CO(2) canopy pulse labeling. A combined canopy/soil chamber system with gas-tight separated soil and canopy compartments was coupled to a laser spectrometer measuring mixing ratios and isotopic composition of CO(2) in air at high temporal resolution. The measured δ(13) C(SR) signal was then explained and substantiated by a mechanistic carbon allocation model. Leaf metabolism had a strong imprint on diel cycles in control plants, as a result of an alternating substrate supply switching between sugar and transient starch. By contrast, diel cycles in drought-stressed plants were determined by the relative contributions of autotrophic and heterotrophic respiration throughout the day. Drought reduced the speed of the link between photosynthesis and soil respiration by a factor of c. 2.5, depending on the photosynthetic rate. Drought slows the coupling between photosynthesis and soil respiration and alters the underlying mechanism causing diel variations of δ(13) C(SR). © 2011 The Authors. New Phytologist © 2011 New Phytologist Trust.

  17. Effects of experimental drought on microbial processes in two temperate heathlands at contrasting water conditions

    DEFF Research Database (Denmark)

    Jensen, K.D.; Beier, C.; Michelsen, A.


    by a 27% reduced below ground CO(2) emission, and reduced microbial and soil solution carbon (C) and nitrogen (N) levels. In contrast, microbial activity at the wetter UK site seemed to benefit from the drought as indicated by a 22% increase in below ground CO(2) emission caused by the drought treatment...

  18. The Drought Monitor. (United States)

    Svoboda, Mark; Lecomte, Doug; Hayes, Mike; Heim, Richard; Gleason, Karin; Angel, Jim; Rippey, Brad; Tinker, Rich; Palecki, Mike; Stooksbury, David; Miskus, David; Stephens, Scott


    information about drought and to receive regional and local input that is in turn incorporated into the product. This paper describes the Drought Monitor and the interactive process through which it is created.

  19. The Effect of Drought Stress on Grain Yield and Oil Rate and Protein Percentage of Four Varieties Castor in Climatic Conditions of Damghan

    Directory of Open Access Journals (Sweden)

    Gh. Laei


    Full Text Available In this study theeffect ofdrought stress was investigated on grain yield and oil rate and protein percentage of four varieties of castor in the climatic conditions of Damghan. The experiment was done in the research farm of Damghan Islamic Azad University(Iranin 2011 assplit plots in a randomized complete block design with three replications. The main plots of drought stress were 5, 10 and15 days and another factor included four varities of castor ( one-flower, two- flower, local and red-flower which were performed in stable density of fivebushes per cultured square meter. Therefore, after gremination, the amount of irrigation water was recorded using volumetric meters. The traits evaluated included oil rate,seed protein percentage, andgrainyield. The results show that two-flower variety with 1241 kg per hectare on 5-day drought stress has the most grain yield. Most oil rate was observed in two-flower variety on 5 day drought stress with 496.4 kg/ha.

  20. Climate conditions and drought assessment with the Palmer Drought Severity Index in Iran: evaluation of CORDEX South Asia climate projections (2070-2099) (United States)

    Senatore, Alfonso; Hejabi, Somayeh; Mendicino, Giuseppe; Bazrafshan, Javad; Irannejad, Parviz


    Climate change projections were evaluated over both the whole Iran and six zones having different precipitation regimes considering the CORDEX South Asia dataset, for assessing space-time distribution of drought occurrences in the future period 2070-2099 under RCP4.5 scenario. Initially, the performances of eight available CORDEX South Asia Regional Climate Models (RCMs) were assessed for the baseline period 1970-2005 through the GPCC v.7 precipitation dataset and the CFSR temperature dataset, which were previously selected as the most reliable within a set of five global datasets compared to 41 available synoptic stations. Though the CCLM RCM driven by the MPI-ESM-LR General Circulation Model is in general the most suitable for temperature and, together with the REMO 2009 RCM also driven by MPI-ESM-LR, for precipitation, their performances do not overwhelm other models for every season and zone in which Iranian territory was divided according to a principal component analysis approach. Hence, a weighting approach was tested and adopted to take into account useful information from every RCM in each of the six zones. The models resulting more reliable compared to current climate show a strong precipitation decrease. Weighted average predicts an overall yearly precipitation decrease of about 20%. Temperature projections provide a mean annual increase of 2.4 °C. Future drought scenarios were depicted by means of the self-calibrating version of the Palmer drought severity index (SC-PDSI) model. Weighted average predicts a sharp drying that can be configured as a real shift in mean climate conditions, drastically affecting water resources of the country.

  1. Phenotypic Correlation Between Yield and Yield components of Read wheat (Triticum Aestivum L) in Drought Simulated Conditions in Kenya

    International Nuclear Information System (INIS)

    Kimurto, P.K.


    Establishing the presence and magnitude of x watering regimes interaction and stability of yield under drought simulated conditions would allow plant breeders select the drought tolerant wheat genotypes based on their performance at different rainfall patterns in different locations, not on overall mean yield. Development of drought tolerant wheat varieties in Kenya in an easier, cheaper and more efficient way is required most of it's land area is marginal. Four moisture stress regimes which simulated terminal, early, mid and late drought were created under rain shelter by supplying 70, 82, 94, 106 mm of moisture up to seedling stage, tillering, anthesis and grain filling, respectively. control had 118 mm of moisture applied at all stages. Four test genotypes R748, R830, R831 and R833 were tested together with one check variety, Duma. Yields for each genotype in two seasons were analysed using ANOVA and genotype x watering regimes assessed. Yield stability was also analysed using regression analysis. The result showed that genotype x watering regimes interaction was highly significant, suggesting that genotypes responded differently to increases water levels in each season. This indicated that selecting of drought tolerant genotypes for marginal areas under rain shelter should be based on those rainfall regimes. Yield stability across watering regimes varied among genotypes with Duma and R830 being the most stable cultivars, indicating that they only do well in low water levels. Genotypes R748 and R831 were the most unstable among all the test cultivars. R748 was the most responsive to increasing levels, indicating that it can be grown in low and high rainfall areas. The study showed that selection of stable drought tolerant cultivars using mobile rain shelters is possible

  2. The study of salinity and drought tolerance of Sinorhizobium meliloti isolated from province of Kerman in vivo condition

    Directory of Open Access Journals (Sweden)

    mahboobe abolhasani zeraatkar


    Full Text Available It is well known that the host plant inoculation by native strains with high efficiency has a positive effect on plant yield and biological nitrogen fixation process. The main aim of this investigation was to based on salinity and drought experiments, four isolates of Sinorhizobium meliloti (S27K and S36K tolerant isolates, S109K semi-sensitive isolate, S56K sensitive isolate were selected for plant inoculation which was under drought stress in greenhouse condition. This experiment was carried out by using a factorial model in completely randomized design. Results showed that inoculation of alfalfa plants with high salinity and drought tolerant of Sinorhizobium meliloti bacteria could increased biological nitrogen fixation process (symbiotic efficiency, percent crude protein and yield of alfalfa under salinity and drought conditions significantly. There were not any significant differences between S27K and S36K isolates and positive control (no nitrogen limitation. Symbiotic efficiency increased 3.4 times higher than alfalfa plants were inoculated by sensitive isolates S56K when alfalfa plants were inoculated by S27K and S36K isolates.

  3. Human water consumption intensifies hydrological drought worldwide

    International Nuclear Information System (INIS)

    Wada, Yoshihide; Van Beek, Ludovicus P H; Wanders, Niko; Bierkens, Marc F P


    Over the past 50 years, human water use has more than doubled and affected streamflow over various regions of the world. However, it remains unclear to what degree human water consumption intensifies hydrological drought (the occurrence of anomalously low streamflow). Here, we quantify over the period 1960–2010 the impact of human water consumption on the intensity and frequency of hydrological drought worldwide. The results show that human water consumption substantially reduced local and downstream streamflow over Europe, North America and Asia, and subsequently intensified the magnitude of hydrological droughts by 10–500%, occurring during nation- and continent-wide drought events. Also, human water consumption alone increased global drought frequency by 27 (±6)%. The intensification of drought frequency is most severe over Asia (35 ± 7%), but also substantial over North America (25 ± 6%) and Europe (20 ± 5%). Importantly, the severe drought conditions are driven primarily by human water consumption over many parts of these regions. Irrigation is responsible for the intensification of hydrological droughts over the western and central US, southern Europe and Asia, whereas the impact of industrial and households’ consumption on the intensification is considerably larger over the eastern US and western and central Europe. Our findings reveal that human water consumption is one of the more important mechanisms intensifying hydrological drought, and is likely to remain as a major factor affecting drought intensity and frequency in the coming decades. (letter)

  4. Reevaluation of the plant “gemstones”: Calcium oxalate crystals sustain photosynthesis under drought conditions (United States)

    Tooulakou, Georgia; Giannopoulos, Andreas; Nikolopoulos, Dimosthenis; Bresta, Panagiota; Dotsika, Elissavet; Orkoula, Malvina G.; Kontoyannis, Christos G.; Fasseas, Costas; Liakopoulos, Georgios; Klapa, Maria I.; Karabourniotis, George


    ABSTRACT Land plants face the perpetual dilemma of using atmospheric carbon dioxide for photosynthesis and losing water vapors, or saving water and reducing photosynthesis and thus growth. The reason behind this dilemma is that this simultaneous exchange of gases is accomplished through the same minute pores on leaf surfaces, called stomata. In a recent study we provided evidence that pigweed, an aggressive weed, attenuates this problem exploiting large crystals of calcium oxalate as dynamic carbon pools. This plant is able to photosynthesize even under drought conditions, when stomata are closed and water losses are limited, using carbon dioxide from crystal decomposition instead from the atmosphere. Abscisic acid, an alarm signal that causes stomatal closure seems to be implicated in this function and for this reason we named this path “alarm photosynthesis.” The so-far “enigmatic,” but highly conserved and widespread among plant species calcium oxalate crystals seem to play a crucial role in the survival of plants. PMID:27471886

  5. Variable coupling between sap-flow and transpiration in pine trees under drought conditions (United States)

    Preisler, Yakir; Tatarinov, Fyodor; Rohatyn, Shani; Rotenberg, Eyal; Grunzweig, Jose M.; Yakir, Dan


    Changes in diurnal patterns in water transport and physiological activities in response to changes in environmental conditions are important adjustments of trees to drought. The rate of sap flow (SF) in trees is expected to be in agreement with the rate of tree-scale transpiration (T) and provides a powerful measure of water transport in the soil-plant-atmosphere system. The aim of this five-years study was to investigate the temporal links between SF and T in Pinus halepensis exposed to extreme seasonal drought in the Yatir forest in Israel. We continuously measured SF (20 trees), the daily variations in stem diameter (ΔDBH, determined with high precision dendrometers; 8 trees), and ecosystem evapotranspiration (ET; eddy covariance), which were complemented with short-term campaigns of leaf-scale measurements of H2O and CO2 gas exchange, water potentials, and hydraulic conductivity. During the rainy season, tree SF was well synchronized with ecosystem ET, reaching maximum rates during midday in all trees. However, during the dry season, the daily SF trends greatly varied among trees, allowing a classification of trees into three classes: 1) Trees that remain with SF maximum at midday, 2) trees that advanced their SF peak to early morning, and 3) trees that delayed their SF peak to late afternoon hours. This classification remained valid for the entire study period (2010-2015), and strongly correlated with tree height and DBH, and to a lower degree with crown size and competition index. In the dry season, class 3 trees (large) tended to delay the timing of SF maximum to the afternoon, and to advance their maximum diurnal DBH to early morning, while class 2 trees (smaller) advanced their SF maximum to early morning and had maximum daily DBH during midday and afternoon. Leaf-scale transpiration (T), measurements showed a typical morning peak in all trees, irrespective of classification, and a secondary peak in the afternoon in large trees only. Water potential and

  6. Non-enzymatic antioxidant accumulations in BR-deficient and BR-insensitive barley mutants under control and drought conditions. (United States)

    Gruszka, Damian; Janeczko, Anna; Dziurka, Michal; Pociecha, Ewa; Fodor, Jozsef


    Drought is one of the most adverse stresses that affect plant growth and yield. Disturbances in metabolic activity resulting from drought cause overproduction of reactive oxygen species. It is postulated that brassinosteroids (BRs) regulate plant tolerance to the stress conditions, but the underlying mechanisms remain largely unknown. An involvement of endogenous BRs in regulation of the antioxidant homeostasis is not fully clarified either. Therefore, the aim of this study was to elucidate the role of endogenous BRs in regulation of non-enzymatic antioxidants in barley (Hordeum vulgare) under control and drought conditions. The plant material included the 'Bowman' cultivar and a group of semi-dwarf near-isogenic lines (NILs), representing mutants deficient in BR biosynthesis or signaling. In general, accumulations of 11 compounds representing various types of non-enzymatic antioxidants were analyzed under both conditions. The analyses of accumulations of reduced and oxidized forms of ascorbate indicated that the BR mutants contain significantly higher contents of dehydroascorbic acid under drought conditions when compared with the 'Bowman' cultivar. The analysis of glutathione accumulation indicated that under the control conditions the BR-insensitive NILs contained significantly lower concentrations of this antioxidant when compared with the rest of genotypes. Therefore, we postulate that BR sensitivity is required for normal accumulation of glutathione. A complete accumulation profile of various tocopherols indicated that functional BR biosynthesis and signaling are required for their normal accumulation under both conditions. Results of this study provided an insight into the role of endogenous BRs in regulation of the non-enzymatic antioxidant homeostasis. © 2017 Scandinavian Plant Physiology Society.

  7. Ectomycorrhizal fungi enhance nitrogen and phosphorus nutrition of Nothofagus dombeyi under drought conditions by regulating assimilative enzyme activities. (United States)

    Alvarez, Maricel; Huygens, Dries; Olivares, Erick; Saavedra, Isabel; Alberdi, Miren; Valenzuela, Eduardo


    Drought stress conditions (DC) reduce plant growth and nutrition, restraining the sustainable reestablishment of Nothofagus dombeyi in temperate south Chilean forest ecosystems. Ectomycorrhizal symbioses have been documented to enhance plant nitrogen (N) and phosphorus (P) uptake under drought, but the regulation of involved assimilative enzymes remains unclear. We studied 1-year-old N. dombeyi (Mirb.) Oerst. plants in association with the ectomycorrhizal fungi Pisolithus tinctorius (Pers.) Coker & Couch. and Descolea antartica Sing. In greenhouse experiments, shoot and root dry weights, mycorrhizal colonization, foliar N and P concentrations, and root enzyme activities [glutamate synthase (glutamine oxoglutarate aminotransferase (GOGAT), EC, glutamine synthetase (GS, EC, glutamate dehydrogenase (GDH, EC, nitrate reductase (NR, EC, and acid phosphomonoesterase (PME, EC] were determined as a function of soil-water content. Inoculation of N. dombeyi with P. tinctorius and D. antartica significantly stimulated plant growth and increased plant foliar N and P concentrations, especially under DC. Ectomycorrhizal inoculation increased the activity of all studied enzymes relative to non-mycorrhizal plants under drought. We speculate that GDH is a key enzyme involved in the enhancement of ectomycorrhizal carbon (C) availability by fuelling the tricarboxylic acid (TCA) cycle under conditions of drought-induced carbon deficit. All studied assimilative enzymes of the ectomycorrhizal associations, involved in C, N, and P transfers, are closely interlinked and interdependent. The up-regulation of assimilative enzyme activities by ectomycorrhizal fungal root colonizers acts as a functional mechanism to increase seedling endurance to drought. We insist upon incorporating ectomycorrhizal inoculation in existing Chilean afforestation programs.

  8. Abscisic Acid and Cytokinin-Induced Osmotic and Antioxidant Regulation in Two Drought-Tolerant and Drought-Sensitive Cultivars of Wheat During Grain Filling Under Water Deficit in Field Conditions

    Directory of Open Access Journals (Sweden)



    Full Text Available Phytohormones play critical roles in regulating plant responses to stress. The present study investigates the effect of cytokinin, abscisic acid and cytokinin/abscisic acid interaction on some osmoprotectants and antioxidant parameters induced by drought stress in two wheat cultivars (Triticum aestivum L. of ‘Pishgam’ and ‘MV-17’ as tolerant and sensitive to drought during post-anthesis phase, respectively grown in field conditions. The most considerable effect of the treatments was exhibited 21 days after anthesis. Under drought conditions, the flag leaf soluble carbohydrate content increased in both cultivars while starch content was remarkably decreased in ‘Pishgam’ as compared to ‘MV-17’. Abscisic acid increased total soluble sugar and reduced starch more than other hormonal treatments, although it decreased studied monosaccharaides in ‘Pishgam’, especially. Drought stress induced high proportion of gylycinebetain and free proline in ‘Pishgam’ cultivar. Application of abscisic acid and cytokinin/abscisic acid interaction increased gylycinebetain and proline content in both cultivars under irrigation and drought conditions. The tolerant cultivar exhibited less accumulation of hydrogen peroxide and malondialdehyde in relation to significant increase of catalase and peroxidase activities and α-tocpherol content under drought conditions. All hormonal treatments increased the named enzyme activities under both irrigation and drought conditions, while higher accumulation of α-tocopherol was only showed in case of cytokinin application. Also, abscisic acid and cytokinin/abscisic acid could decrease drought-induced hydrogen peroxide and malondialdehyde level to some extent, although abscisic acid increased both of hydrogen peroxide andmalondialdehyde content in irrigation phase, especially.

  9. Mesophyll conductance decreases in the wild type but not in an ABA-deficient mutant (aba1) of Nicotiana plumbaginifolia under drought conditions. (United States)

    Mizokami, Yusuke; Noguchi, Ko; Kojima, Mikiko; Sakakibara, Hitoshi; Terashima, Ichiro


    Under drought conditions, leaf photosynthesis is limited by the supply of CO2 . Drought induces production of abscisic acid (ABA), and ABA decreases stomatal conductance (gs ). Previous papers reported that the drought stress also causes the decrease in mesophyll conductance (gm ). However, the relationships between ABA content and gm are unclear. We investigated the responses of gm to the leaf ABA content [(ABA)L ] using an ABA-deficient mutant, aba1, and the wild type (WT) of Nicotiana plumbaginifolia. We also measured leaf water potential (ΨL ) because leaf hydraulics may be related to gm . Under drought conditions, gm decreased with the increase in (ABA)L in WT, whereas both (ABA)L and gm were unchanged by the drought treatment in aba1. Exogenously applied ABA decreased gm in both WT and aba1 in a dose-dependent manner. ΨL in WT was decreased by the drought treatment to -0.7 MPa, whereas ΨL in aba1 was around -0.8 MPa even under the well-watered conditions and unchanged by the drought treatment. From these results, we conclude that the increase in (ABA)L is crucial for the decrease in gm under drought conditions. We discuss possible relationships between the decrease in gm and changes in the leaf hydraulics. © 2014 John Wiley & Sons Ltd.

  10. Influence of drought conditions on brown trout biomass and size structure in the Black Hills, South Dakota (United States)

    James, Daniel A.; Wilhite, Jerry W.; Chipps, Steven R.


    We evaluated the influence of drought conditions on the biomass of brown trout Salmo trutta in Spearfish Creek, upper Rapid Creek, and lower Rapid Creek in the Black Hills of western South Dakota. Stream discharge, mean summer water temperature, the biomass of juvenile and adult brown trout, and brown trout size structure were compared between two time periods: early (2000–2002) and late drought (2005–2007). Mean summer water temperatures were similar between the early- and late-drought periods in Spearfish Creek (12.4°C versus 11.5°C), lower Rapid Creek (19.2°C versus 19.3°C), and upper Rapid Creek (9.8°C in both periods). In contrast, mean annual discharge differed significantly between the two time periods in Spearfish Creek (1.95 versus 1.50 m3/s), lower Rapid Creek (2.01 versus 0.94 m3/s), and upper Rapid Creek (1.41 versus 0.84 m3/s). The mean biomass of adult brown trout in all three stream sections was significantly higher in the early-drought than in the late-drought period (238 versus 69 kg/ha in Spearfish Creek, 272 versus 91 kg/ha in lower Rapid Creek, and 159 versus 32 kg/ha in upper Rapid Creek). The biomass of juvenile brown trout was similar (43 versus 23 kg/ha) in Spearfish Creek in the two periods, declined from 136 to 45 kg/ha in lower Rapid Creek, and increased from 14 to 73 kg/ha in upper Rapid Creek. Size structure did not differ between the early- and late-drought periods in lower Rapid and Spearfish creeks, but it did in upper Rapid Creek. In addition to drought conditions, factors such as angler harvest, fish movements, and the nuisance algal species Didymosphenia geminata are discussed as possible contributors to the observed changes in brown trout biomass and size structure in Black Hills streams.

  11. Germination of rye brome (Bromus secalinus L. seeds under simulated drought and different thermal conditions

    Directory of Open Access Journals (Sweden)

    Małgorzata Haliniarz


    Full Text Available The aim of the present study was to compare the germination of rye brome (Bromus secalinus L. seeds and the initial growth of seedlings under simulated drought and different thermal conditions. The study included two experiments carried out under laboratory conditions in the spring of 2012. The first experiment involved an evaluation of the speed of germination as well as of the biometric characters and weight of seedlings in polyethylene glycol solutions (PEG 8000 in which the water potential was: -0.2; -0.4; -0.65; -0.9 MPa, and in distilled water as the control treatment. The experiment was conducted at the following temperatures: 25/22oC and 18/14oC day/night, at a relative air humidity of 90%. The other experiment, in which lessive soil was used as a germination substrate, was carried out in a plant growth chamber at two levels of air humidity (55–65% and 85–95% and temperature (22/10oC and 16/5oC. The soil moisture content was determined by the gravimetric method and the water potential corresponding to it was as follows: -0.02, -0.07, -0.16, -0.49, -1.55 MPa. The germination capacity and emergence of Bromus secalinus as well as the weight of sprouts produced were significantly dependent on the water potential of the polyethylene glycol solution and on the soil water potential. The emergence of Bromus secalinus was completely inhibited by reducing the soil water potential below -0.16 MPa (the point of strong growth inhibition. The emergence and biometric characters of rye bro- me seedlings were significantly dependent on temperature and air humidity.

  12. Involvement of ascorbate peroxidase and heat shock proteins on citrus tolerance to combined conditions of drought and high temperatures. (United States)

    Balfagón, Damián; Zandalinas, Sara I; Baliño, Pablo; Muriach, María; Gómez-Cadenas, Aurelio


    Usually several environmental stresses occur in nature simultaneously causing a unique plant response. However, most of the studies until now have focused in individually-applied abiotic stress conditions. Carrizo citrange (Poncirus trifoliata L. Raf. X Citrus sinensis L. Osb.) and Cleopatra mandarin (Citrus reshni Hort. ex Tan.) are two citrus rootstocks with contrasting tolerance to drought and heat stress and have been used in this work as a model for the study of plant tolerance to the combination of drought and high temperatures. According to our results, leaf integrity and photosynthetic machinery are less affected in Carrizo than in Cleopatra under combined conditions of drought and heat stress. The pattern of accumulation of three proteins (APX, HSP101 and HSP17.6) involved in abiotic stress tolerance shows that they do not accumulate under water stress conditions individually applied. However, contents of APX and HSP101 are higher in Carrizo than in Cleopatra under stress combination whereas HSP17.6 has a similar behavior in both types of plants. This, together with a better stomatal control and a higher APX activity of Carrizo, contributes to the higher tolerance of Carrizo plants to the combination of stresses and point to it as a better rootstock than Cleopatra (traditionally used in areas with scare water supplies) under the predictable future climatic conditions with frequent periods of drought combined with high temperatures. This work also provides the basis for testing the tolerance of different citrus varieties grafted on these rootstocks and growing under different field conditions. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  13. Effect of Filter Cake on Physiological Traits and Ear Yield of Sweet Corn under Late Drought Stress Condition

    Directory of Open Access Journals (Sweden)

    aziz karmollachaab


    Full Text Available Introduction Environmental stresses are one of the main causes of severe yield reductions. Drought is still a serious agronomic problem and also one of the most important factors contributing to crop yield loss in arid and semi-arid areas in the world. Filter Cake is a byproduct of sugarcane industry and experiments on corn showed that the use of 20 tons per hectare Filter Cake increases crop productivity, total amount of dry matter, protein and forage yield compared with the control. Materials and methods This experiment was conducted at the Research Station of the Ramin Agricultural University of Khuzestan in 2012. The experiment was done as a split plot based on randomized complete block design with three replications. Drought stress at the end of the growth period in three levels, non-stress, mild and severe drought stress, respectively irrigated after 25, 50 and 75% depletion of available water, and was considered as the main factor. Drought stress was applied in early stage of the male inflorescence of plants to maturity for 35 days, due to the critical stage of the plant in late spring. Soil moisture was determined by gravimetric method. Different doses of Filter Cake (0, 10, 20 and 30 tons per hectare were considered as subplot factor and was added to the soil two days before the seeding. The final harvest as green corn was performed in the first phase of dough by hand in three times and two midfields of each subplot was considered as the margin of half a meter for each side. Finally, the data were analyzed using SAS 9.1 and means were compared by Duncan’s multiple range test at probability level of 5%. Results and discussion In non-stress conditions, Filter Cake is significantly increased plant height, So the amounts of 20 and 30 tons per hectare increased by 11.7% and 10.1% of the plant’s height, respectively, but the use of 10 tons of Filter Cake did not have a significant effect on it. In severe stress conditions, the use of

  14. Evaluation of Relationship Between Auxin and Cytokinine Hormones on Yield and Yield Components of Maize under Drought Stress Condition

    Directory of Open Access Journals (Sweden)

    A Mahrokh


    Full Text Available Introduction Drought is one of the major environmental conditions that adversely affects plant growth and crop yield. In the face of a global scarcity of water resources, water stress has already become a primary factor in limiting crop production worldwide. Drought is the major restriction in maize production. The plant growth reduction under drought stress conditions could be an outcome of altered hormonal balance and hence the exogenous application of growth regulators under stress conditions could be the possible means for reversing the effects of abiotic stress. Phytohormones such as auxine and cytokinine are known to be involved in the regulation of plant response to the adverse effects of stress conditions. Previous studies have shown that endogenous hormones are essential regulators for translocation and partitioning of photoassimilates for grain filling in cereal crops, and therefore could be involved in the regulation of grain weight and yield. Materials and Methods The experiment was carried out in three separately environments included non-drought stress environment (irrigation after soil moisture reached to 75% field capacity, drought stress in vegetative stage (irrigation after soil moisture reached to 50% field capacity in V4 to tasseling stage, but irrigation after soil moisture reached to 75% field capacity in pollination to physiological maturity stage and drought stress in reproductive stage (irrigation after soil moisture reached to 75% field capacity in V4 to tasseling stage and irrigation after soil moisture reached to 50% field capacity in pollination to physiological maturity stage. Cytokinin hormone in three levels (control, spraying in V5 –V6 and V8-V10 stages and auxin hormone in three levels (control, spraying in silk emergence stage and 15 days after that were laid out as a factorial design based on randomized complete block with three replications in each environment at Seed and Plant Improvement Institute (SPII

  15. Estimating live fuel status by drought indices: an approach for assessing local impact of climate change on fire danger (United States)

    Pellizzaro, Grazia; Dubrovsky, Martin; Bortolu, Sara; Ventura, Andrea; Arca, Bachisio; Masia, Pierpaolo; Duce, Pierpaolo


    Mediterranean shrubs are an important component of both Mediterranean vegetation communities and understorey vegetation. They also constitute the surface fuels primarily responsible for the ignition and the spread of wildland fires in Mediterranean forests. Although fire spread and behaviour are dependent on several factors, the water content of live fuel plays an important role in determining fire occurrence and spread, especially in the Mediterranean shrubland, where live fuel is often the main component of the available fuel which catches fire. According to projections on future climate, an increase in risk of summer droughts is likely to take place in Southern Europe. More prolonged drought seasons induced by climatic changes are likely to influence general flammability characteristics of fuel, affecting load distribution in vegetation strata, floristic composition, and live and dead fuel ratio. In addition, variations in precipitation and mean temperature could directly affect fuel water status, and consequently flammability, and length of critical periods of high ignition danger for Mediterranean ecosystems. The main aim of this work was to propose a methodology for evaluating possible impacts of future climate change on moisture dynamic and length of fire danger period at local scale. Specific objectives were: i) evaluating performances of meteorological drought indices in describing seasonal pattern of live fuel moisture content (LFMC), and ii) simulating the potential impacts of future climate changes on the duration of fire danger period. Measurements of LFMC seasonal pattern of three Mediterranean shrub species were performed in North Western Sardinia (Italy) for 8 years. Seasonal patterns of LFMC were compared with the Drought Code of the Canadian Forest Fire Weather Index and the Keetch-Byram Drought Index. Analysis of frequency distribution and cumulative distribution curves were carried out in order to evaluate performance of codes and to identify

  16. Inoculation of Brassica oxyrrhina with plant growth promoting bacteria for the improvement of heavy metal phytoremediation under drought conditions. (United States)

    Ma, Ying; Rajkumar, Mani; Zhang, Chang; Freitas, Helena


    The aim of this study was to investigate the effects of drought resistant serpentine rhizobacteria on plant growth and metal uptake by Brassica oxyrrhina under drought stress (DS) condition. Two drought resistant serpentine rhizobacterial strains namely Pseudomonas libanensis TR1 and Pseudomonas reactans Ph3R3 were selected based on their ability to stimulate seedling growth in roll towel assay. Further assessment on plant growth promoting (PGP) parameters revealed their ability to produce indole-3-acetic acid, siderophore and 1-aminocyclopropane-1-carboxylate deaminase. Moreover, both strains exhibited high resistance to various heavy metals, antibiotics, salinity and extreme temperature. Inoculation of TR1 and Ph3R3 significantly increased plant growth, leaf relative water and pigment content of B. oxyrrhina, whereas decreased concentrations of proline and malondialdehyde in leaves under metal stress in the absence and presence of DS. Regardless of soil water conditions, TR1 and Ph3R3 greatly improved organ metal concentrations, translocation and bioconcentration factors of Cu and Zn. The successful colonization and metabolic activities of P. libanensis TR1 and P. reactans Ph3R3 represented positive effects on plant development and metal phytoremediation under DS. These results indicate that these strains could be used as bio-inoculants for the improvement of phytoremediation of metal polluted soils under semiarid conditions. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Application of Glycine, Tufool and Salicylic Acid in Sugar beet (Beta vulgaris L. under Drought Conditions

    Directory of Open Access Journals (Sweden)

    Mohammad Kheirkhah


    Full Text Available Sugar beet is one of strategic products to supply sugar in water limited areas of Iran. Thus, proper managements to supply enouph water in production of sugar beet is very important. To evaluate the effects of some anti stress substances like salicylic acid, tyuful and glycine to irritigate the effect of early water deficit on suger beet, an experiment based on randomized complete block design with three replications was carried out at the Research Farm of Fariman Sugar Factory in 2013. Treatments consisted of control (without using anti stress substances, with three concentration of salicylic acid (0.1, 0.5, and 1 mM, tyuful with three concentration (0.5, 1 and 1.5 liter per thousand and glycine with three concentration (1, 2 and 3 liters per thousand. The results showed that the effects of anti-stress materials significantly affected the sugar content, root yield, white sugar yield and harmful nitrogen. Highest sugar content (15.65%, root yield (83.82 t.ha-1 and white sugar percentage (11.15% were obtained by using tyuful 1.5 lit/1000. While, the lowest levels of these characters were obtained from control (not using anti stress substances. Maximum harmful nitrogen was produced in control treatment (4.38 and highest level of alkalinity with mean of 3.49 was observed by using 3 lit/1000 of glycine. Our results showed that all of the anti stress substances had positive effects on sugar beet under drought stress condition.


    Directory of Open Access Journals (Sweden)

    Paramita Cahyaningrum Kuswandi


    Full Text Available A method used for the development of dry areas/marginal lands is the improvement of soil structure and addition to the media to support the growth and development of crops. Tomatoes have the potential to be developed in marginal lands due to its high nutrition, high in demand and easy to be cultivated. One of the method used to improve planting media is the addition of microorganism such as mycorrhiza which can help the absorbtion of water and nutrition for plants. The interval of irrigation is used as a simulation of drought. This research aim was to observe the effect of mycorrhiza in the soil on the growth and development of tomato with several treatments of irrigation. The method used was the addition of 4 g of mycorrhiza  per polybag (size 30x30 cm2, using Complete Randomized Design. There were 6 combinations of treatments. The treatments were : 3 interval of irrigation (every day, every 7 days and every 14 days, and 2 treatments of mycorrhiza (0 g and 4 g. There were 3 repetition for each combination of treatments. The results showed that the addition of mycorrhiza can increase significantly plant fresh and dry weight and also root length. The difference in plant height, number of branches, number of leaves, plant growth rate and percentage of infection were caused by the difference in irrigation interval. The difference in the varieties used also contribute to a difference in the percentage of infection. Further research must be made on the effect of mycorrhiza with addition of inorganic fertilizer to increase the growth and development of tomato plants in water stressed condition. Keywords:   mycorriza, tomato, draught simulation

  19. The Effects of Foliar Application of Methanol on Morphological Characteristics of Bean (Phaseolus vulgaris L. under Drought Stress Condition

    Directory of Open Access Journals (Sweden)

    N. Armand


    Full Text Available Introduction Available water is an important factor for plant growth in arid environments. Results indicated that foliar application of methanol is believed to be more important than the drought tolerance in C3 plant. Since bean is a C3 plant, it performs light respiration under intense heat, light and water stress due to internal leaf CO2 concentration reduction and oxygen concentration increase. Light respiration can cause up to 20% loss of carbon in plants and decrease the yield. Increasing concentration of carbon dioxide can neutralize the effect caused by drought stress. Thus, the use of substances that can cause an increase in the concentration of carbon dioxide in the plant, leads to improving the yield under the drought conditions. One of the ways of increasing the concentration of carbon dioxide in plants is by using compounds such as methanol, ethanol, propanol, butanol as well as use of the amino acids of glycine, glutamate and aspartate. Plants can easily absorb methanol sprayed on leaves and use it as a carbon source added to atmospheric carbon. Methanol is relatively smaller compared to the CO2 molecules, so it can be easily absorbed and utilized by plants. Materials and Methods In order to evaluate the effects of foliar application of methanol on some morphological characteristics of bean under drought stress, a factorial experiment was conducted based on completely randomized block design with three replications in 2014 at the Khatam Alanbia University of Behbahan. The treatment of spraying methanol was at 4 levels include control (without spraying, 10, 20 and 30% v/v methanol which added 2 g l-1 glycine to each of solutions. Adding glycine to aqueous solution of methanol leads to prevention of damages caused by the toxicity of methanol. The drought factors including control (100% field of capacity, moderate drought stress (50% field of capacity and severe drought stress (25% field of capacity were considered. In this experiment

  20. Agronomic behavior of pseudo cereals genotypes subjected to drought and salinity conditions

    International Nuclear Information System (INIS)

    Cruz T, E. De la; Garcia A, J.M.; Gonzalez R, B.; Laguna C, A.


    With the purpose of evaluating the response to the salinity and drought of 7 genotypes of pseudo cereals that include to the variety of quinua Barandales (M7-0) and to the lines obtained by the radioinduced mutagenesis ININ 110 and ININ 333, two collections of red chia (Opopeo and Huiramangaro) and two collections of 'Huauzontle' of Atlacomulco (H1 and H3), were evaluated under a factorial experimental design two levels of humidity: normal watering and drought and three salinity levels 0, 50 and 100 mMhos. It was found a bigger yield in grams by plant in the drought subjected material (without salinity) and a bigger tolerance to the salinity in the genotypes H3, ININ M7-0, and ININ 110, exhibiting the 'Chia red' bigger susceptibility to the evaluated factors. (Author)

  1. Studies on Screening of Maize (Zea mays L.) Hybrids under Drought Stress Conditions


    Zahoor Ahmad


    Drought is one of the most serious problems posing a grave threat to cereals production including maize. Two experiments (lab and wire house) were conducted to screen out the most tolerant and most sensitive maize hybrids (7386, 6525, Hycorn, 9696, 32B33, 3672, MMRI and 31P41) under artificial imposing drought stress by PEG-6000 and under water stress applied after seedling emergence. In first experiment five water stress levels such as zero (control), -0.2 MPa, -0.4 MPa, -0.6 MPa, and -0.8 M...

  2. Blended Drought Index: Integrated Drought Hazard Assessment in the Cuvelai-Basin

    Directory of Open Access Journals (Sweden)

    Robert Luetkemeier


    Full Text Available Drought is one of the major threats to societies in Sub-Saharan Africa, as the majority of the population highly depends on rain-fed subsistence agriculture and traditional water supply systems. Hot-spot areas of potential drought impact need to be identified to reduce risk and adapt a growing population to a changing environment. This paper presents the Blended Drought Index (BDI, an integrated tool for estimating the impact of drought as a climate-induced hazard in the semi-arid Cuvelai-Basin of Angola and Namibia. It incorporates meteorological and agricultural drought characteristics that impair the population’s ability to ensure food and water security. The BDI uses a copula function to combine common standardized drought indicators that describe precipitation, evapotranspiration, soil moisture and vegetation conditions. Satellite remote sensing products were processed to analyze drought frequency, severity and duration. As the primary result, an integrated drought hazard map was built to spatially depict drought hot-spots. Temporally, the BDI correlates well with millet/sorghum yield (r = 0.51 and local water consumption (r = −0.45 and outperforms conventional indicators. In the light of a drought’s multifaceted impact on society, the BDI is a simple and transferable tool to identify areas highly threatened by drought in an integrated manner.

  3. Optimal conditions for local NQR observation

    International Nuclear Information System (INIS)

    Grechishkin, V.S.; Grechishkina, P.V.


    At last the local NQR is used widely for detection of explosions and narcotics. Two methods are applied usually: one-sided detection and translucent detection (TD). These methods are analyzed in the paper. It is shown that the TD method has the greater sensitivity

  4. Seasonal Drought Prediction: Advances, Challenges, and Future Prospects (United States)

    Hao, Zengchao; Singh, Vijay P.; Xia, Youlong


    Drought prediction is of critical importance to early warning for drought managements. This review provides a synthesis of drought prediction based on statistical, dynamical, and hybrid methods. Statistical drought prediction is achieved by modeling the relationship between drought indices of interest and a suite of potential predictors, including large-scale climate indices, local climate variables, and land initial conditions. Dynamical meteorological drought prediction relies on seasonal climate forecast from general circulation models (GCMs), which can be employed to drive hydrological models for agricultural and hydrological drought prediction with the predictability determined by both climate forcings and initial conditions. Challenges still exist in drought prediction at long lead time and under a changing environment resulting from natural and anthropogenic factors. Future research prospects to improve drought prediction include, but are not limited to, high-quality data assimilation, improved model development with key processes related to drought occurrence, optimal ensemble forecast to select or weight ensembles, and hybrid drought prediction to merge statistical and dynamical forecasts.

  5. Interspecific variation in functional traits of oak seedlings (Quercus ilex, Quercus trojana, Quercus virgiliana) grown under artificial drought and fire conditions. (United States)

    Chiatante, D; Tognetti, R; Scippa, G S; Congiu, T; Baesso, B; Terzaghi, M; Montagnoli, A


    To face summer drought and wildfire in Mediterranean-type ecosystems, plants adopt different strategies that involve considerable rearrangements of biomass allocation and physiological activity. This paper analyses morphological and physiological traits in seedlings of three oak species (Quercus ilex, Quercus trojana and Quercus virgiliana) co-occurring under natural conditions. The aim of this study was to evaluate species-specific characteristics and the response of these oak seedlings to drought stress and fire treatment. Seedlings were kept in a growth chamber that mimicked natural environmental conditions. All three species showed a good degree of tolerance to drought and fire treatments. Differences in specific biomass allocation patterns and physiological traits resulted in phenotypic differences between species. In Q. ilex, drought tolerance depended upon adjustment of the allocation pattern. Q. trojana seedlings undergoing mild to severe drought presented a higher photosystem II (PSII) efficiency than control seedlings. Moreover, Q. trojana showed a very large root system, which corresponded to higher soil area exploitation, and bigger leaf midrib vascular bundles than the other two species. Morphological and physiological performances indicated Q. trojana as the most tolerant to drought and fire. These characteristics contribute to a high recruitment potential of Q. trojana seedlings, which might be the reason for the dominance of this species under natural conditions. Drought increase as a result of climate change is expected to favour Q. trojana, leading to an increase in its spatial distribution.

  6. Development of Forest Drought Index and Forest Water Use Prediction in Gyeonggi Province, Korea Using High-Resolution Weather Research and Forecast Data and Localized JULES Land Surface Model (United States)

    Lee, H.; Park, J.; Cho, S.; Lee, S. J.; Kim, H. S.


    Forest determines the amount of water available to low land ecosystems, which use the rest of water after evapotranspiration by forests. Substantial increase of drought, especially for seasonal drought, has occurred in Korea due to climate change, recently. To cope with this increasing crisis, it is necessary to predict the water use of forest. In our study, forest water use in the Gyeonggi Province in Korea was estimated using high-resolution (spatial and temporal) meteorological forecast data and localized Joint UK Land Environment Simulator (JULES) which is one of the widely used land surface models. The modeled estimation was used for developing forest drought index. The localization of the model was conducted by 1) refining the existing two tree plant functional types (coniferous and deciduous trees) into five (Quercus spp., other deciduous tree spp., Pinus spp., Larix spp., and other coniferous spp.), 2) correcting moderate resolution imaging spectroradiometer (MODIS) leaf area index (LAI) through data assimilation with in situ measured LAI, and 3) optimizing the unmeasured plant physiological parameters (e.g. leaf nitrogen contents, nitrogen distribution within canopy, light use efficiency) based on sensitivity analysis of model output values. The high-resolution (hourly and 810 × 810 m) National Center for AgroMeteorology-Land-Atmosphere Modeling Package (NCAM-LAMP) data were employed as meteorological input data in JULES. The plant functional types and soil texture of each grid cell in the same resolution with that of NCAM-LAMP was also used. The performance of the localized model in estimating forest water use was verified by comparison with the multi-year sapflow measurements and Eddy covariance data of Taehwa Mountain site. Our result can be used as referential information to estimate the forest water use change by the climate change. Moreover, the drought index can be used to foresee the drought condition and prepare to it.

  7. Morphological evaluation of buffelgrass cultivar “Lucero INTA-PEMAN” in drought conditions




    In searching for new cultivars that are better adapted to edapho-climatic constraints existing in northwestern Argentina, mainly drought and salinity stress, a hybrid of buffelgrass (Cenchrus ciliaris L.) named Lucero INTA PEMAN was obtained by controlled crosses at the Instituto de Fitopatología y Fisiología Vegetal, INTA. The objective was to morphologically evaluate and compare Cenchrus ciliaris cv Lucero with Texas-4464, Biloela and Molopo cultivars in Dean Funes (North of the Province of...

  8. Seasonal soil VOC exchange rates in a Mediterranean holm oak forest and their responses to drought conditions (United States)

    Asensio, Dolores; Peñuelas, Josep; Ogaya, Romà; Llusià, Joan

    Available information on soil volatile organic compound (VOC) exchange, emissions and uptake, is very scarce. We here describe the amounts and seasonality of soil VOC exchange during a year in a natural Mediterranean holm oak forest growing in Southern Catalonia. We investigated changes in soil VOC dynamics in drought conditions by decreasing the soil moisture to 30% of ambient conditions by artificially excluding rainfall and water runoff, and predicted the response of VOC exchange to the drought forecasted in the Mediterranean region for the next decades by GCM and ecophysiological models. The annual average of the total (detected) soil VOC and total monoterpene exchange rates were 3.2±3.2 and -0.4±0.3 μg m -2 h -1, respectively, in control plots. These values represent 0.003% of the total C emitted by soil at the study site as CO 2 whereas the annual mean of soil monoterpene exchange represents 0.0004% of total C. Total soil VOC exchange rates in control plots showed seasonal variations following changes in soil moisture and phenology. Maximum values were found in spring (17±8 μg m -2 h -1). Although there was no significant global effect of drought treatment on the total soil VOC exchange rates, annual average of total VOC exchange rates in drought plots resulted in an uptake rate (-0.5±1.8 μg m -2 h -1) instead of positive net emission rates. Larger soil VOC and monoterpene exchanges were measured in drought plots than in control plots in summer, which might be mostly attributable to autotrophic (roots) metabolism. The results show that the diversity and magnitude of monoterpene and VOC soil emissions are low compared with plant emissions, that they are driven by soil moisture, that they represent a very small part of the soil-released carbon and that they may be strongly reduced or even reversed into net uptakes by the predicted decreases of soil water availability in the next decades. In all cases, it seems that VOC fluxes in soil might have greater

  9. Managing water quality under drought conditions in the Llobregat River Basin. (United States)

    Momblanch, Andrea; Paredes-Arquiola, Javier; Munné, Antoni; Manzano, Andreu; Arnau, Javier; Andreu, Joaquín


    The primary effects of droughts on river basins include both depleted quantity and quality of the available water resources, which can render water resources useless for human needs and simultaneously damage the environment. Isolated water quality analyses limit the action measures that can be proposed. Thus, an integrated evaluation of water management and quality is warranted. In this study, a methodology consisting of two coordinated models is used to combine aspects of water resource allocation and water quality assessment. Water management addresses water allocation issues by considering the storage, transport and consumption elements. Moreover, the water quality model generates time series of concentrations for several pollutants according to the water quality of the runoff and the demand discharges. These two modules are part of the AQUATOOL decision support system shell for water resource management. This tool facilitates the analysis of the effects of water management and quality alternatives and scenarios on the relevant variables in a river basin. This paper illustrates the development of an integrated model for the Llobregat River Basin. The analysis examines the drought from 2004 to 2008, which is an example of a period when the water system was quantitative and qualitatively stressed. The performed simulations encompass a wide variety of water management and water quality measures; the results provide data for making informed decisions. Moreover, the results demonstrated the importance of combining these measures depending on the evolution of a drought event and the state of the water resources system. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Evaluation and characterization of advanced rice mutant line of rice (Oryza sativa), MR219-4 and MR219-9 under drought condition

    International Nuclear Information System (INIS)

    Abdul Rahim Harun; Zarith Shafika Kamarudin; Abdullah, M.Z.; Anna, L.P.K.; Sobri Hussain; Rusli Ibrahim; Khairuddin abdul Rahim


    Two advance rice mutant lines, MR219-4 and MR219-9 derived from mutagenesis of Oryza sativa cv. MR219 with gamma radiation at 300 Gy were evaluated in simulated drought condition in the greenhouse at Malaysian Nuclear Agency. The mutants were evaluated simultaneously with ARN1, a drought resistant variety and MR211 a susceptible cultivar as a check. Randomized complete block design with three replicates was used in the experiment. The evaluation and selection were done based on leaf rolling and leaf drying as well as other agronomic traits, such as, number of tillers per plant, plant height, flag leaf area, grain weight per plant, grain yield per plant, 100-grain weight, harvest index, panicle length and plant biomass. The mutants MR219-4 showed moderate tolerance and MR219-9 showed tolerance to drought respectively as compare to the check variety (ARN1, MR211) and control MR219. Leaf rolling, leaf drying, days to flowering and days to maturity are valuable secondary traits that may provide additional information for selection because of associating with the plant survival under water stress. Further research on expression of drought-tolerant lines under different drought conditions is essential in order to identify particular traits that are associated with drought tolerance and high yield potential. Similarly the importance of secondary traits, relative to other putative traits for drought tolerance, needs to be tested in various environments. (author)

  11. The Effect of Mycorrhizal Inoculation of Fenugreek (Trigonella foenum-graecum L. on its Yield and Some Physiological Characteristics Under Drought Conditions

    Directory of Open Access Journals (Sweden)

    Madineh Bijhani


    Full Text Available To study the effects of mycorrhizal inoculation of fenugreek (Trigonella foenum-graecum L. plants and on its growth and yield under drought stress conditions a greenhouse experiment was carried out in split plot using a randomized complete block design at Zabol University green house in 2013. Treatments were three drought stresses: control, mild stress and severe stress (70, 50 and 30% FC assigned to main plots, and three species of mycorrhizal treatments (Glomus intraradices, G. versiform, G. mosseae and non-inoculation as control to sub-plots. The effects of drought on all traits under study were significant, and reduced number of leaves per plant, plant height, root length, chlorophyll b and total chlorophyll by 15.6, 7.6, 10.7, 2.5 and 8.4 % and increased proline and carbohydrates by 38.6 and 17.7 % as compared with the control. Mycorrhizal treatments did not affect the amount of carbohydrates and proline content significantly. Interaction of mycorrhiza and drought stress was significant on grain yield, chlorophyll a and total chlorophyll. Among the mycorrhizal strains G. mosseae affected the traits significantly under drought conditions. The results suggested that mycorrhizal treatments of plants at different drought stresses could improve grain yield of fenugreek and reduce the negative effects of drought by increasing photosynthetic pigments and other quantitative and qualitative traits.

  12. Use of nuclear and biotechnological methods to improve drought tolerance in rice an tomato crops

    International Nuclear Information System (INIS)

    Gonzalez, Maria C.; Suarez, Lorenzo; Mukandama, Jean P.; Mansoor, Mohamed Ali; Cristo, Elizabeth; Perez, Noraida; Fuentes, Jorge L.; Rodriguez, Yanet


    Drought is a limiting factor in the production of different crops and programs for to drought tolerance through mutation inductions are taking place in many countries. At The National Institute of Agricultural Science had been development an Program Breeding in order to obtained new rice an tomato varieties adapted to different drought conditions. For this purposes were irradiated with protons and gamma rays of 60Co different local varieties. Promising line were selected in drought condition during six generation. Was possible to obtain one rice and three tomato drought tolerant genotypes

  13. Favorable Alleles for Stem Water-Soluble Carbohydrates Identified by Association Analysis Contribute to Grain Weight under Drought Stress Conditions in Wheat (United States)

    Li, Runzhi; Chang, Xiaoping; Jing, Ruilian


    Drought is a major environmental constraint to crop distribution and productivity. Stem water-soluble carbohydrates (WSC) buffer wheat grain yield against conditions unfavorable for photosynthesis during the grain filling stage. In this study, 262 winter wheat accessions and 209 genome-wide SSR markers were collected and used to undertake association analysis based on a mixed linear model (MLM). The WSC in different internodes at three growth stages and 1000-grain weight (TGW) were investigated under four environmental regimes (well-watered, drought stress during the whole growth period, and two levels of terminal drought stress imposed by chemical desiccation under the well-watered and drought stress during the whole growth period conditions). Under diverse drought stress conditions, WSC in lower internodes showed significant positive correlations with TGW, especially at the flowering stage under well-watered conditions and at grain filling under drought stress. Sixteen novel WSC-favorable alleles were identified, and five of them contributed to significantly higher TGW. In addition, pyramiding WSC favorable alleles was not only effective for obtaining accessions with higher WSC, but also for enhancing TGW under different water regimes. During the past fifty years of wheat breeding, WSC was selected incidentally. The average number of favorable WSC alleles increased from 1.13 in the pre-1960 period to 4.41 in the post-2000 period. The results indicate a high potential for using marker-assisted selection to pyramid WSC favorable alleles in improving WSC and TGW in wheat. PMID:25768726

  14. Regulation of glutamine synthetase isoforms in two differentially drought-tolerant rice (Oryza sativa L.) cultivars under water deficit conditions. (United States)

    Singh, Kamal Krishna; Ghosh, Shilpi


    KEY MESSAGE : The regulation of GS isoforms by WD was organ specific. Two GS isoforms i.e. OsGS1;1 and OsGS2 were differentially regulated in IR-64 (drought-sensitive) and Khitish (drought-tolerant) cultivars of rice. Water deficit (WD) has adverse effect on rice (Oryza sativa L.) and acclimation requires essential reactions of primary metabolism to continue. Rice plants utilize ammonium as major nitrogen source, which is assimilated into glutamine by the reaction of Glutamine synthetase (GS, EC Rice plants possess one gene (OsGS2) for chloroplastic GS2 and three genes (OsGS1;1, OsGS1;2 and OsGS1;3) for cytosolic GS1. Here, we report the effect of WD on regulation of GS isoforms in drought-sensitive (cv. IR-64) and drought-tolerant (cv. Khitish) rice cultivars. Under WD, total GS activity in root and leaf decreased significantly in IR-64 seedlings in comparison to Khitish seedlings. The reduced GS activity in IR-64 leaf was mainly due to decrease in GS2 activity, which correlated with decrease in corresponding transcript and polypeptide contents. GS1 transcript and polypeptide accumulated in leaf during WD, however, GS1 activity was maintained at a constant level. Total GS activity in stem of both the varieties was insensitive to WD. Among GS1 genes, OsGS1;1 expression was differently regulated by WD in the two rice varieties. Its transcript accumulated more abundantly in IR-64 leaf than in Khitish leaf. Following WD, OsGS1;1 mRNA level in stem and root tissues declined in IR-64 and enhanced in Khitish. A steady OsGS1;2 expression patterns were noted in leaf, stem and root of both the cultivars. Results suggest that OsGS2 and OsGS1;1 expression may contribute to drought tolerance of Khitish cultivar under WD conditions.

  15. Using Satellite Data and Land Surface Models to Monitor and Forecast Drought Conditions in Africa and Middle East (United States)

    Arsenault, K. R.; Shukla, S.; Getirana, A.; Peters-Lidard, C. D.; Kumar, S.; McNally, A.; Zaitchik, B. F.; Badr, H. S.; Funk, C. C.; Koster, R. D.; Narapusetty, B.; Jung, H. C.; Roningen, J. M.


    Drought and water scarcity are among the important issues facing several regions within Africa and the Middle East. In addition, these regions typically have sparse ground-based data networks, where sometimes remotely sensed observations may be the only data available. Long-term satellite records can help with determining historic and current drought conditions. In recent years, several new satellites have come on-line that monitor different hydrological variables, including soil moisture and terrestrial water storage. Though these recent data records may be considered too short for the use in identifying major droughts, they do provide additional information that can better characterize where water deficits may occur. We utilize recent satellite data records of Gravity Recovery and Climate Experiment (GRACE) terrestrial water storage (TWS) and the European Space Agency's Advanced Scatterometer (ASCAT) soil moisture retrievals. Combining these records with land surface models (LSMs), NASA's Catchment and the Noah Multi-Physics (MP), is aimed at improving the land model states and initialization for seasonal drought forecasts. The LSMs' total runoff is routed through the Hydrological Modeling and Analysis Platform (HyMAP) to simulate surface water dynamics, which can provide an additional means of validation against in situ streamflow data. The NASA Land Information System (LIS) software framework drives the LSMs and HyMAP and also supports the capability to assimilate these satellite retrievals, such as soil moisture and TWS. The LSMs are driven for 30+ years with NASA's Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2), and the USGS/UCSB Climate Hazards Group InfraRed Precipitation with Stations (CHIRPS) rainfall dataset. The seasonal water deficit forecasts are generated using downscaled and bias-corrected versions of NASA's Goddard Earth Observing System Model (GEOS-5), and NOAA's Climate Forecast System (CFSv2) forecasts

  16. Evaluation of drought tolerance indices for the selection of Iranian ...

    African Journals Online (AJOL)

    Drought is an important factor limiting crop production in arid and semi-arid conditions. Drought indices which provide a measure of drought based on yield loss under drought condition in comparison to normal condition was used for screening drought-tolerant genotypes. This study was conducted to determine drought ...

  17. Regulation of Plant Growth, Photosynthesis, Antioxidation and Osmosis by an Arbuscular Mycorrhizal Fungus in Watermelon Seedlings under Well-Watered and Drought Conditions (United States)

    Mo, Yanling; Wang, Yongqi; Yang, Ruiping; Zheng, Junxian; Liu, Changming; Li, Hao; Ma, Jianxiang; Zhang, Yong; Wei, Chunhua; Zhang, Xian


    Drought stress has become an increasingly serious environmental issue that influences the growth and production of watermelon. Previous studies found that arbuscular mycorrhizal (AM) colonization improved the fruit yield and water use efficiency (WUE) of watermelon grown under water stress; however, the exact mechanisms remain unknown. In this study, the effects of Glomus versiforme symbiosis on the growth, physio-biochemical attributes, and stress-responsive gene expressions of watermelon seedlings grown under well-watered and drought conditions were investigated. The results showed that AM colonization did not significantly influence the shoot growth of watermelon seedlings under well-watered conditions but did promote root development irrespective of water treatment. Drought stress decreased the leaf relative water content and chlorophyll concentration, but to a lesser extent in the AM plants. Compared with the non-mycorrhizal seedlings, mycorrhizal plants had higher non-photochemical quenching values, which reduced the chloroplast ultrastructural damage in the mesophyll cells and thus maintained higher photosynthetic efficiency. Moreover, AM inoculation led to significant enhancements in the enzyme activities and gene expressions of superoxide dismutase, catalase, ascorbate peroxidase, glutathione reductase, and monodehydroascorbate reductase in watermelon leaves upon drought imposition. Consequently, AM plants exhibited lower accumulation of MDA, H2O2 and O2− compared with non-mycorrhizal plants. Under drought stress, the soluble sugar and proline contents were significantly increased, and further enhancements were observed by pre-treating the drought-stressed plants with AM. Taken together, our findings indicate that mycorrhizal colonization enhances watermelon drought tolerance through a stronger root system, greater protection of photosynthetic apparatus, a more efficient antioxidant system and improved osmoregulation. This study contributes to advances

  18. Regulation of Plant Growth, Photosynthesis, Antioxidation and Osmosis by an Arbuscular Mycorrhizal Fungus in Watermelon Seedlings under Well-Watered and Drought Conditions. (United States)

    Mo, Yanling; Wang, Yongqi; Yang, Ruiping; Zheng, Junxian; Liu, Changming; Li, Hao; Ma, Jianxiang; Zhang, Yong; Wei, Chunhua; Zhang, Xian


    Drought stress has become an increasingly serious environmental issue that influences the growth and production of watermelon. Previous studies found that arbuscular mycorrhizal (AM) colonization improved the fruit yield and water use efficiency (WUE) of watermelon grown under water stress; however, the exact mechanisms remain unknown. In this study, the effects of Glomus versiforme symbiosis on the growth, physio-biochemical attributes, and stress-responsive gene expressions of watermelon seedlings grown under well-watered and drought conditions were investigated. The results showed that AM colonization did not significantly influence the shoot growth of watermelon seedlings under well-watered conditions but did promote root development irrespective of water treatment. Drought stress decreased the leaf relative water content and chlorophyll concentration, but to a lesser extent in the AM plants. Compared with the non-mycorrhizal seedlings, mycorrhizal plants had higher non-photochemical quenching values, which reduced the chloroplast ultrastructural damage in the mesophyll cells and thus maintained higher photosynthetic efficiency. Moreover, AM inoculation led to significant enhancements in the enzyme activities and gene expressions of superoxide dismutase, catalase, ascorbate peroxidase, glutathione reductase, and monodehydroascorbate reductase in watermelon leaves upon drought imposition. Consequently, AM plants exhibited lower accumulation of MDA, H2O2 and [Formula: see text] compared with non-mycorrhizal plants. Under drought stress, the soluble sugar and proline contents were significantly increased, and further enhancements were observed by pre-treating the drought-stressed plants with AM. Taken together, our findings indicate that mycorrhizal colonization enhances watermelon drought tolerance through a stronger root system, greater protection of photosynthetic apparatus, a more efficient antioxidant system and improved osmoregulation. This study contributes

  19. Comprehensive gene expression analysis of the NAC gene family under normal growth conditions, hormone treatment, and drought stress conditions in rice using near-isogenic lines (NILs) generated from crossing Aday Selection (drought tolerant) and IR64. (United States)

    Nuruzzaman, Mohammed; Sharoni, Akhter Most; Satoh, Kouji; Moumeni, Ali; Venuprasad, Ramiah; Serraj, Rachid; Kumar, Arvind; Leung, Hei; Attia, Kotb; Kikuchi, Shoshi


    The NAC (NAM, ATAF1/2 and CUC2) genes are plant-specific transcriptional factors known to play diverse roles in various plant developmental processes. We describe the rice (Oryza sativa) OsNAC genes expression profiles (GEPs) under normal and water-deficit treatments (WDTs). The GEPs of the OsNAC genes were analyzed in 25 tissues covering the entire life cycle of Minghui 63. High expression levels of 17 genes were demonstrated in certain tissues under normal conditions suggesting that these genes may play important roles in specific organs. We determined that 16 genes were differentially expressed under at least 1 phytohormone (NAA, GA3, KT, SA, ABA, and JA) treatment. To investigate the GEPs in the root, leaf, and panicle of three rice genotypes [e.g., 2 near-isogenic lines (NILs) and IR64], we used two NILs from a common genetic combination backcross developed by Aday Selection and IR64. WDTs were applied using the fraction of transpirable soil water at severe, mild, and control conditions. Transcriptomic analysis using a 44K oligoarray from Agilent was performed on all the tissue samples. We identified common and specific genes in all tissues from the two NILs under both WDTs, and the majority of the OsNAC genes that were activated were in the drought-tolerant IR77298-14-1-2-B-10 line compared with the drought-susceptible IR77298-14-1-2-B-13 or IR64. In IR77298-14-1-2-B-10, seventeen genes were very specific in their expression levels. Approximately 70 % of the genes from subgroups SNAC and NAM/CUC3 were activated in the leaf, but 37 % genes from subgroup SND were inactivated in the root compared with the control under severe stress conditions. These results provide a useful reference for the cloning of candidate genes from the specific subgroup for further functional analysis.

  20. Socioeconomic Drought in a Changing Climate: Modeling and Management (United States)

    AghaKouchak, Amir; Mehran, Ali; Mazdiyasni, Omid


    Drought is typically defined based on meteorological, hydrological and land surface conditions. However, in many parts of the world, anthropogenic changes and water management practices have significantly altered local water availability. Socioeconomic drought refers to conditions whereby the available water supply cannot satisfy the human and environmental water needs. Surface water reservoirs provide resilience against local climate variability (e.g., droughts), and play a major role in regional water management. This presentation focuses on a framework for describing socioeconomic drought based on both water supply and demand information. We present a multivariate approach as a measure of socioeconomic drought, termed Multivariate Standardized Reliability and Resilience Index (MSRRI; Mehran et al., 2015). This model links the information on inflow and surface reservoir storage to water demand. MSRRI integrates a "top-down" and a "bottom-up" approach for describing socioeconomic drought. The "top-down" component describes processes that cannot be simply controlled or altered by local decision-makers and managers (e.g., precipitation, climate variability, climate change), whereas the "bottom-up" component focuses on the local resilience, and societal capacity to respond to droughts. The two components (termed, Inflow-Demand Reliability (IDR) indicator and Water Storage Resilience (WSR) indicator) are integrated using a nonparametric multivariate approach. We use this framework to assess the socioeconomic drought during the Australian Millennium Drought (1998-2010) and the 2011-2014 California Droughts. MSRRI provides additional information on socioeconomic drought onset, development and termination based on local resilience and human demand that cannot be obtained from the commonly used drought indicators. We show that MSRRI can be used for water management scenario analysis (e.g., local water availability based on different human water demands scenarios). Finally

  1. Drought and groundwater management

    DEFF Research Database (Denmark)

    Amundsen, Eirik S; Jensen, Frank

    This paper considers the problem of a water management authority faced with the threat of a drought that hits at an uncertain date. Three management policies are investigated: i) a laissez-faire (open-access) policy of automatic adjustment through a zero marginal private net benefit condition, ii......-drought steady-state equilibrium stock size of water under policy iii) is smaller than under policy ii) and, hence, a precautionary stock size should not be built up prior to the drought....

  2. Effects of Methanol Spraying on Qualitative traits, Yield and Yield Components of Soybean (Glycine max L. under Drought Stress Conditions

    Directory of Open Access Journals (Sweden)

    J Esazadeh Panjali Kharabasi


    spraying. By increasing drought stress, proline content increased, while other traits were decreased and 70 percentage of available soil moisture depletion decreased the seed yield by 51.2%over than the control. With increasing of methanol spraying to 21 of volumetric percentage, all the investigate traits, except the proline content increased and increasing the volumetric percentage methanol more than it, was reduces them. The maximum amounts of quantity traits and stomatal conductance of soybean obtained at 21 volumetric percentage of methanol spraying, and the seed yield of this treatment was 25.6%higher than the control . These results are in agreement with those obtained by Purmousavi et al., (2009, Ruhul Amin et al., (2009, Shahmoradi et al., (2009 and Ibrahim and Kandil, (2007, who found that deficit irrigation, caused a significant decrease in yield and yield components of soybean. In general, irrigation decreasing may be lead to reducing photosynthesis activity and induce imbalanced relations between plant hormones and biological processes in the plant organs as a whole. These conditions in the treated soil are undoubtedly of great importance throughout the vegetative growth and dry matter accumulation in soybean plants. Drought stress reduces leaf size, stem extension and root proliferation; it disturbs plant water relations as well as dry matter production (Farooq et al., 2009. Conclusions In general, the results of experiment showed that the maximum amounts of quantitative traits, stomatal conductance and proline content of soybean, obtained by 21 volumetric percentage of methanol spraying and by this treatment, the seed yield was 25.6 % higher than control.

  3. A Look into the National Drought Mitigation Center: Providing 15 Years of Drought Services (Invited) (United States)

    Svoboda, M. D.; Hayes, M. J.; Knutson, C. L.; Wardlow, B. D.


    The National Drought Mitigation Center (NDMC) was formed in 1995 at the University of Nebraska-Lincoln. Over the past 15 years, the NDMC has made it a priority to work with various local, state, tribal and federal entities to provide a suite of drought/climate services, with a goal of bringing research to fruition through applications and operations. Through our research and outreach projects, the NDMC has worked to reduce risk to drought by developing several mitigation strategies, monitoring and decision making tools and other services aimed at enhancing our nation’s capacity to cope with drought. Two of the earliest NDMC activities were the creation of a website and assessing drought conditions around the United States. An electronic drought clearinghouse was built in 1995 at The site was designed, and still concentrates, on the concepts of drought monitoring, planning, and mitigation and also serves as a repository of information from around the world. The NDMC’s electronic quarterly newsletter, DroughtScape, disseminates information about all things drought to people across the country. In addition, the NDMC has developed and is home to websites for the U.S. Drought Monitor (USDM), Drought Impact Reporter (DIR), and the Vegetation Drought Response Index (VegDRI). In an effort to inform decision makers, the NDMC continually pursues ways to raise the awareness and visibility of drought as one of the most costly hazards we face. This began in the mid-1990s with the creation of a state-based drought impact assessment map that would help lead to the formation of the USDM in 1999 and the DIR in 2005. The NDMC plays a key role in producing the weekly USDM and the monthly North American Drought Monitor (NADM). The USDM was created out of collaborations between the NDMC, United States Department of Agriculture (USDA) and National Oceanic and Atmospheric Administration (NOAA) and has quickly become one of the most widely used products in assessing

  4. Drought occurence (United States)

    John W. Coulston


    Why Is Drought Important? Drought is an important forest disturbance that occurs regularly in the Western United States and irregularly in the Eastern United States (Dale and others 2001). Moderate drought stress tends to slow plant growth while severedrought stress can also reduce photosynthesis (Kareiva and others 1993). Drought can also interact with...

  5. Evaluation of growth characters and yield components for six durum wheat lines (triticum durum deaf) selected from M4 and M5 - irradiated population under drought conditions

    International Nuclear Information System (INIS)

    Nesiem, M. R. A.; Kassem, M. K. M.; Basyouny, M. A. E.


    Grain of two durum wheat cultivars, Sohag 3 and Beni Suef 3 were irradiated with gamma ray doses 0, 150, 250 and 350 Gy to obtain new durum wheat lines, characterized by high yielding and drought tolerance. Irradiated grains were cultivated in the field under normal and drought conditions 2005 - 2010 seasons. 20 grain (M 1 ) from each treatment was planed as in the first season. In the second season (M 2 ), grains of 61 plants were selected as thy had the following higher criteria, i.e yield, grain yield / plant, plant height, tillering and 100 grains weight. The selected variants should exceed by 50% or more than control. Grains of the 61 selected plants were individually sown under normal and drought condition. At the end of this season, six selected putative line had superiority over their parents. The S1 and S2 lines had an excellent grain yield per plant under normal condition but S3 and S4 lines had superiority for grain yield per plant under drought condition as compared to parents Sohag3. B1 and B2 lines had the superiority for grain per plant under normal condition comparing with the parent Beni Suef3. In the fourth season (M4),growth, chemical compositions and yield as well as its components of the six putative lines as well as the parents Sohag 3 and Beni Suef 3 were determined under normal and drought conditions. The results showed a significant under normal and drought conditions. The results showed a significant increase in the number of leaves on the main stem and tillering number / plant for S1, S2, B1, B2 as compared with their corresponding parent under normal condition. Also, S3 and S4 line shad the same results comparing with the parent Sohag3 under drought condition. The results of S3 and S4 showed an accumulation of organic protective asmolytes such as sugar, proline and free amino acid. As well as N, P, K, and Ca concentrations in shoots and roots as compared to the parent Sohag 3 . The putative line S1, A2 and B1 showed significant increase

  6. Overexpression of the TaSHN1 transcription factor in bread wheat leads to leaf surface modifications, improved drought tolerance and no yield penalty under controlled growth conditions. (United States)

    Bi, Huihui; Shi, Jianxin; Kovalchuk, Natalia; Luang, Sukanya; Bazanova, Natalia; Chirkova, Larissa; Zhang, Dabing; Shavrukov, Yuri; Stepanenko, Anton; Tricker, Penny; Langridge, Peter; Hrmova, Maria; Lopato, Sergiy; Borisjuk, Nikolai


    Transcription factors regulate multiple networks, mediating the responses of organisms to stresses, including drought. Here we investigated the role of the wheat transcription factor TaSHN1 in crop growth and drought tolerance. TaSHN1, isolated from bread wheat, was characterised for molecular interactions and functionality. The overexpression of TaSHN1 in wheat was followed by the evaluation of T 2 and T 3 transgenic lines for drought tolerance, growth and yield components. Leaf surface changes were analysed by light microscopy, SEM, TEM and GC-MS/GC-FID. TaSHN1 behaves as a transcriptional activator in a yeast transactivation assay and binds stress-related DNA cis-elements, determinants of which were revealed using 3D molecular modelling. The overexpression of TaSHN1 in transgenic wheat did not result in a yield penalty under the controlled plant growth conditions of a glasshouse. Transgenic lines had significantly lower stomatal density and leaf water loss, and exhibited improved recovery after severe drought, compared to control plants. The comparative analysis of cuticular waxes revealed an increased accumulation of alkanes in leaves of transgenic lines. Our data demonstrate that TaSHN1 may operate as a positive modulator of drought stress tolerance. Positive attributes could be mediated through an enhanced accumulation of alkanes and reduced stomatal density. This article is protected by copyright. All rights reserved.

  7. Widespread crown condition decline, food web disruption, and amplified tree mortality with increased climate change-type drought

    NARCIS (Netherlands)

    Carnicer, Jofre; Coll, Marta; Ninyerola, Miquel; Pons, Xavier; Sanchez, Gerardo; Penuelas, Josep


    Climate change is progressively increasing severe drought events in the Northern Hemisphere, causing regional tree die-off events and contributing to the global reduction of the carbon sink efficiency of forests. There is a critical lack of integrated community-wide assessments of drought-induced

  8. A novel gene of Kalanchoe daigremontiana confers plant drought resistance. (United States)

    Wang, Li; Zhu, Chen; Jin, Lin; Xiao, Aihua; Duan, Jie; Ma, Luyi


    Kalanchoe (K.) daigremontiana is important for studying asexual reproduction under different environmental conditions. Here, we describe a novel KdNOVEL41 (KdN41) gene that may confer drought resistance and could thereby affect K. daigremontiana development. The detected subcellular localization of a KdN41/Yellow Fluorescent Protein (YFP) fusion protein was in the nucleus and cell membrane. Drought, salt, and heat stress treatment in tobacco plants containing the KdN41 gene promoter driving β-glucuronidase (GUS) gene transcription revealed that only drought stress triggered strong GUS staining in the vascular tissues. Overexpression (OE) of the KdN41 gene conferred improved drought resistance in tobacco plants compared to wild-type and transformed with empty vector plants by inducing higher antioxidant enzyme activities, decreasing cell membrane damage, increasing abscisic acid (ABA) content, causing reinforced drought resistance related gene expression profiles. The 3,3'-diaminobenzidine (DAB) and nitroblue tetrazolium (NBT) staining results also showed less relative oxygen species (ROS) content in KdN41-overexpressing tobacco leaf during drought stress. Surprisingly, by re-watering after drought stress, KdN41-overexpressing tobacco showed earlier flowering. Overall, the KdN41 gene plays roles in ROS scavenging and osmotic damage reduction to improve tobacco drought resistance, which may increase our understanding of the molecular network involved in developmental manipulation under drought stress in K. daigremontiana.

  9. Impacts of climate change on drought: changes to drier conditions at the beginning of the crop growing season in southern Brazil

    Directory of Open Access Journals (Sweden)

    Vânia Rosa Pereira


    Full Text Available ABSTRACT The intensification of drought incidence is one of the most important threats of the 21st century with significant effects on food security. Accordingly, there is a need to improve the understanding of the regional impacts of climate change on this hazard. This study assessed long-term trends in probability-based drought indices (Standardized Precipitation Index and Standardized Evapotranspiration Index in the State of São Paulo, Brazil. Owing to the multi-scalar nature of both indices, the analyses were performed at 1 to 12-month time scales. The indices were calculated by means of a relativist approach that allowed us to compare drought conditions from different periods. The years 1961-1990 were used as the referential period. To the authors’ best knowledge, this is the first time that such relativist approach is used in historical trend analysis. The results suggest that the evapotranspiration rates have intensified the regional drought conditions. The time scale used to calculate the indices significantly affected the outcomes of drought trend assessments. The reason behind this feature is that the significant changes in the monthly regional patterns are limited to a specific period of the year. More specifically, virtually all significant changes have been observed during the first trimester of the rainy season (October, November and December. Considering that this period corresponds to critical plant growth stages (flowering/regrowth/sprouting of several major crops (e.g. Sugarcane and Citrus, we may conclude that these significant changes have increased the risk of crop yield reductions due to agricultural drought.

  10. Attitudes of livestock farmers and sensitivity of livestock farming systems to drought conditions in the French Alps

    Directory of Open Access Journals (Sweden)

    Laurent Dobremez


    Full Text Available Livestock farming systems in the French Alps are particularly exposed to the predicted climate change and most of them have already experienced periods of drought since the beginning of the 2000s. Faced with this risk, livestock farmers have put in place a certain number of measures and envisage introducing others in the future. For the present study, surveys were conducted among livestock farmers to identify these measures and analyses were carried out to characterise the attitudes of livestock farmers to drought conditions and to evaluate changes in the sensitivity of their livestock farming systems. With the exception of those farms with extensive irrigated areas, all the farms are seeking solutions to deal with the risks arising from droughts. One solution is to purchase fodder to compensate for the decrease in the harvests that normally provide animal feed in the winter; the amounts purchased vary with the length of wintering required. For the grazing periods, the high mountain livestock breeders and the dairy systems of the Northern Alps rely above all on extending and over-sizing the pasture areas in relation to the needs of the herds. The livestock farms of the Southern Alps also rely on the diversity of vegetation areas and a certain flexibility in the practices used to adapt to conditions experienced during the year. A succession of dry years could result in more radical breakdowns in the livestock systems. It should also be remembered that climate change is only one of the factors influencing the types of changes taking place on farms.Les systèmes d'élevage des Alpes françaises sont fortement exposés au changement climatique annoncé et la plupart subissent déjà des épisodes de sécheresse depuis le début des années 2000. Face à ces aléas, les éleveurs ont mis en œuvre un certain nombre de leviers et envisagent d'en activer d'autres à l'avenir. Des enquêtes en exploitation ont permis d’identifier ces leviers. Leur

  11. A non-local computational boundary condition for duct acoustics (United States)

    Zorumski, William E.; Watson, Willie R.; Hodge, Steve L.


    A non-local boundary condition is formulated for acoustic waves in ducts without flow. The ducts are two dimensional with constant area, but with variable impedance wall lining. Extension of the formulation to three dimensional and variable area ducts is straightforward in principle, but requires significantly more computation. The boundary condition simulates a nonreflecting wave field in an infinite duct. It is implemented by a constant matrix operator which is applied at the boundary of the computational domain. An efficient computational solution scheme is developed which allows calculations for high frequencies and long duct lengths. This computational solution utilizes the boundary condition to limit the computational space while preserving the radiation boundary condition. The boundary condition is tested for several sources. It is demonstrated that the boundary condition can be applied close to the sound sources, rendering the computational domain small. Computational solutions with the new non-local boundary condition are shown to be consistent with the known solutions for nonreflecting wavefields in an infinite uniform duct.

  12. Effects of drought stress condition on the yield of spring wheat ...

    African Journals Online (AJOL)



    Dec 14, 2011 ... spikelets to booting stage affected the yield and yield components. Water deficit at this stage considerably decreased the number of spikelets per spike. The spike length reportedly showed stability under different conditions. However, the findings of Iqbal et al. (1999) on durum wheat indicated that the ...

  13. Assessing Agricultural Drought in the Anthropocene: A Modified Palmer Drought Severity Index

    Directory of Open Access Journals (Sweden)

    Mingzhi Yang


    Full Text Available In the current human-influenced era, drought is initiated by natural and human drivers, and human activities are as integral to drought as meteorological factors. In large irrigated agricultural regions with high levels of human intervention, where the natural farmland soil moisture has usually been changed significantly by high-frequency irrigation, the actual severity of agricultural drought is distorted in traditional drought indices. In this work, an agricultural drought index that considering irrigation processes based on the Palmer drought severity index (IrrPDSI was developed to interpret the real agricultural drought conditions in irrigated regions, with a case study in the Haihe River Basin in northeast China. The water balance model in the original PDSI was revised by an auto-irrigation threshold method combined with a local irrigation schedule. The auto-irrigation setting of the index was used by taking irrigation quotas during specific growth stages of specific crops (wheat–corn into consideration. A series of weekly comparative analyses are as follows: (1 The soil moisture analyses showed that soil moisture values calculated by the modified water balance model were close to the real values; (2 The statistical analyses indicated that most of the stations in the study area based on IrrPDSI had nearly normal distributed values; (3 The time series and spatial analyses showed that the results of the IrrPDSI-reported dry-wet evaluation were more consistent with documented real conditions. All the results revealed that IrrPDSI performed well when used to assess agricultural drought. This work has direct significance for agricultural drought management in large irrigated areas heavily disturbed by human activity.

  14. Remodeling of leaf cellular glycerolipid composition under drought and re-hydration conditions in grasses from the Lolium-Festuca complex

    Directory of Open Access Journals (Sweden)

    Dawid Perlikowski


    Full Text Available Drought tolerant plant genotypes are able to maintain stability and integrity of cellular membranes in unfavorable conditions, and to regenerate damaged membranes after stress cessation. The profiling of cellular glycerolipids during drought stress performed on model species such as Arabidopsis thaliana does not fully cover the picture of lipidome in monocots, including grasses. Herein, two closely related introgression genotypes of Lolium multiflorum (Italian ryegrass × Festuca arundinacea (tall fescue were used as a model for other grass species to describe lipid rearrangements during drought and re-hydration. The genotypes differed in their level of photosynthetic capacity during drought, and in their capacity for membrane regeneration after stress cessation. A total of 120 lipids, comprising the classes of monogalactosyldiacyloglycerol, digalactosyldiacyloglycerol, sulfoquinovosyldiacylglycerol, phosphatidylglycerol, phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, phosphatidylinositol, diacylglicerol and triacylglicerol, were analyzed. The results clearly showed that water deficit had a significant impact on lipid metabolism in studied forage grasses. It was revealed that structural and metabolic lipid species changed their abundance during drought and re-watering periods and some crucial genotype-dependent differences were also observed. The introgression genotype characterized by an ability to regenerate membranes after re-hydration demonstrated a higher accumulation level of most chloroplast and numerous extra-chloroplast membrane lipid species at the beginning of drought. Furthermore, this genotype also revealed a significant reduction in the accumulation of most chloroplast lipids after re-hydration, compared with the other introgression genotype without the capacity for membrane regeneration. The potential influence of observed lipidomic alterations on a cellular membrane stability and photosynthetic capacity, are

  15. Soil biochemical properties and microbial resilience in agroforestry systems: effects on wheat growth under controlled drought and flooding conditions. (United States)

    Rivest, David; Lorente, Miren; Olivier, Alain; Messier, Christian


    Agroforestry is increasingly viewed as an effective means of maintaining or even increasing crop and tree productivity under climate change while promoting other ecosystem functions and services. This study focused on soil biochemical properties and resilience following disturbance within agroforestry and conventional agricultural systems and aimed to determine whether soil differences in terms of these biochemical properties and resilience would subsequently affect crop productivity under extreme soil water conditions. Two research sites that had been established on agricultural land were selected for this study. The first site included an 18-year-old windbreak, while the second site consisted in an 8-year-old tree-based intercropping system. In each site, soil samples were used for the determination of soil nutrient availability, microbial dynamics and microbial resilience to different wetting-drying perturbations and for a greenhouse pot experiment with wheat. Drying and flooding were selected as water stress treatments and compared to a control. These treatments were initiated at the beginning of the wheat anthesis period and maintained over 10 days. Trees contributed to increase soil nutrient pools, as evidenced by the higher extractable-P (both sites), and the higher total N and mineralizable N (tree-based intercropping site) found in the agroforestry compared to the conventional agricultural system. Metabolic quotient (qCO2) was lower in the agroforestry than in the conventional agricultural system, suggesting higher microbial substrate use efficiency in agroforestry systems. Microbial resilience was higher in the agroforestry soils compared to soils from the conventional agricultural system (windbreak site only). At the windbreak site, wheat growing in soils from agroforestry system exhibited higher aboveground biomass and number of grains per spike than in conventional agricultural system soils in the three water stress treatments. At the tree

  16. 20th century trends of drought conditions in the Mediterranean: the influence of large-scale circulation patterns. (United States)

    Sousa, Pedro; Trigo, Ricardo; Garcia-Herrera, Ricardo


    Here we have used the Self Calibrated PDSI (scPDSI) proposed by Wells et al (2004) as a more appropriate approach to characterize drought conditions in the Mediterranean area. The scPDSI has been shown to perform better (than the original PDSI) when evaluating spatial and temporal drought characteristics for regions outside the USA (Schrier et al, 2005). Seasonal and annual trends for the 1901-2000, 1901-1950 and 1951-2000 periods were computed using the standard Mann-Kendall test for trend significance evaluation. However, statistical significance obtained with this test can be highly misleading because it does not take into account the low variability nature that dominates the seasonal evolution of scPDSI fields. We have now improved these results by employing a modified Mann-Kendall test for auto-correlated series (Hamed and Ramachandra, 1997), such as the scPDSI case. This development allowed for a better definition of the Mediterranean areas characterized by significant changes in the scPDSI, namely the largely negative trends that dominate the Mediterranean basin, with the exceptions of parts of eastern Turkey and northwestern Iberia, since initially these areas were overestimated. The spatio-temporal variability of these indices was evaluated with an EOF analysis, in order to reduce the large dimensionality of the fields under analysis. Spatial representation of the first EOF patterns shows that EOF 1 covers the entire Mediterranean basin (16.4% of EV), while EOF2 is dominated by a W-E dipole (10% EV). The following EOF patterns present smaller scale features, and explain smaller amounts of variance. The EOF patterns have also facilitated the definition of four sub-regions with large socio-economic relevance: 1) Iberia, 2) Italian Peninsula, 3) Balkans and 4) Turkey. Afterwards we perform a comprehensive analysis on the links between the scPDSI and the large-scale atmospheric circulation indices that affect the Mediterranean basin, namely; NAO, EA, and SCAND

  17. Widespread crown condition decline, food web disruption, and amplified tree mortality with increased climate change-type drought. (United States)

    Carnicer, Jofre; Coll, Marta; Ninyerola, Miquel; Pons, Xavier; Sánchez, Gerardo; Peñuelas, Josep


    Climate change is progressively increasing severe drought events in the Northern Hemisphere, causing regional tree die-off events and contributing to the global reduction of the carbon sink efficiency of forests. There is a critical lack of integrated community-wide assessments of drought-induced responses in forests at the macroecological scale, including defoliation, mortality, and food web responses. Here we report a generalized increase in crown defoliation in southern European forests occurring during 1987-2007. Forest tree species have consistently and significantly altered their crown leaf structures, with increased percentages of defoliation in the drier parts of their distributions in response to increased water deficit. We assessed the demographic responses of trees associated with increased defoliation in southern European forests, specifically in the Iberian Peninsula region. We found that defoliation trends are paralleled by significant increases in tree mortality rates in drier areas that are related to tree density and temperature effects. Furthermore, we show that severe drought impacts are associated with sudden changes in insect and fungal defoliation dynamics, creating long-term disruptive effects of drought on food webs. Our results reveal a complex geographical mosaic of species-specific responses to climate change-driven drought pressures on the Iberian Peninsula, with an overwhelmingly predominant trend toward increased drought damage.

  18. Civil conflict sensitivity to growing-season drought. (United States)

    von Uexkull, Nina; Croicu, Mihai; Fjelde, Hanne; Buhaug, Halvard


    To date, the research community has failed to reach a consensus on the nature and significance of the relationship between climate variability and armed conflict. We argue that progress has been hampered by insufficient attention paid to the context in which droughts and other climatic extremes may increase the risk of violent mobilization. Addressing this shortcoming, this study presents an actor-oriented analysis of the drought-conflict relationship, focusing specifically on politically relevant ethnic groups and their sensitivity to growing-season drought under various political and socioeconomic contexts. To this end, we draw on new conflict event data that cover Asia and Africa, 1989-2014, updated spatial ethnic settlement data, and remote sensing data on agricultural land use. Our procedure allows quantifying, for each ethnic group, drought conditions during the growing season of the locally dominant crop. A comprehensive set of multilevel mixed effects models that account for the groups' livelihood, economic, and political vulnerabilities reveals that a drought under most conditions has little effect on the short-term risk that a group challenges the state by military means. However, for agriculturally dependent groups as well as politically excluded groups in very poor countries, a local drought is found to increase the likelihood of sustained violence. We interpret this as evidence of the reciprocal relationship between drought and conflict, whereby each phenomenon makes a group more vulnerable to the other.

  19. Genetic Analysis for Some of Morphological Traits in Bread Wheat under Drought Stress Condition Using Generations Mean Analysis

    Directory of Open Access Journals (Sweden)

    Jamileh Abedi


    Full Text Available Perception of genes action controlling of quantitative traits is very important in genetic breeding methods the plant populations. to study and estimate the parameters of genetic and appointment the best genetically model for justification the genetic changing some of traits the bread wheat under drought stress condition, parents (P1 & P2 and F3, F4, F5 generations together the four control cultivars (Kharchia, Gaspard, Moghan and Mahuti were evaluated by generation mean analysis using a agoment design including six blocks. Generation mean analysis was performed for all traits with Mather and Jinks model using joint scaling test. Three parameter model [m d h] provided the best fit for all traits expect harvest index, main spike grain weight, number of grain per plant, Total spike weight of plant with significant at 5% and 1% levels . Though additive and dominance effect both had interfered in controlling often the traits but with attention to difference effects and variety component was determined that dominance is more impressive than additive effect for traits of number of tiller, main spike weight, grain yield and grain number of main spike. Therefore will benefit using of these traits in the collection and to improve these traits hybridization would be much efficient than the selection strategies. In this study additive Ч additive epistasis effect only observed for traits of Total spike weight of plant, number of grain per plant, main spike grain weight and harvest index and other traits hadn’t any epistasis effect that it was demonstration lack of existence the genes reciprocal effect in the inheritance studied traits. Therefore we can suggest that the selection strategies perform in terminal generations and additive Ч additive epistasis effect would be confirmed in selection under self-pollination condition.

  20. Patterns of nocturnal rehydration in root tissues of Vaccinium corymbosum L. under severe drought conditions. (United States)

    Valenzuela-Estrada, Luis R; Richards, James H; Diaz, Andres; Eissensat, David M


    Although roots in dry soil layers are commonly rehydrated by internal hydraulic redistribution during the nocturnal period, patterns of tissue rehydration are poorly understood. Rates of nocturnal rehydration were examined in roots of different orders in Vaccinium corymbosum L. 'Bluecrop' (Northern highbush blueberry) grown in a split-pot system with one set of roots in relatively moist soil and the other set of roots in dry soil. Vaccinium is noted for a highly branched and extremely fine root system. It is hypothesized that nocturnal root tissue rehydration would be slow, especially in the distal root orders because of their greater hydraulic constraints (smaller vessel diameters and fewer number of vessels). Vaccinium root hydraulic properties delayed internal water movement. Even when water was readily available to roots in the wet soil and transpiration was minimal, it took a whole night-time period of 12 h for the distal finest roots (1st to 4th order) under dry soil conditions to reach the same water potentials as fine roots in moist soil (1st to 4th order). Even though roots under dry soil equilibrated with roots in moist soil, the equilibrium point reached before sunrise was about -1.2 MPa, indicating that tissues were not fully rehydrated. Using a single-branch root model, it was estimated that individual roots exhibiting the lowest water potentials in dry soil were 1st order roots (distal finest roots of the root system). However, considered at the branch level, root orders with the highest hydraulic resistances corresponded to the lowest orders of the permanent root system (3rd-, 4th-, and 5th-order roots), thus indicating possible locations of hydraulic safety control in the root system of this species.

  1. Anatomy of an interrupted irrigation season: Micro-drought at the Wind River Indian Reservation

    Directory of Open Access Journals (Sweden)

    Shannon M. McNeeley

    Full Text Available Drought is a complex phenomenon manifested through interactions between biophysical and social factors. At the Wind River Indian Reservation (WRIR in west-central Wyoming, water shortages have become increasingly common since the turn of the 21st century. Here we discuss the 2015 water year as an exemplar year, which was characterized by wetter-than-normal conditions across the reservation and, according to the U.S. Drought Monitor, remained drought-free throughout the year. Yet parts of the reservation experienced harmful water shortages, or “micro-drought” conditions, during the growing season in 2015. In this assessment of the 2015 water year at the WRIR we: (1 describe the hydroclimatic and social processes under way that contributed to the 2015 water year micro-drought in the Little Wind Basin; (2 compare water availability conditions within and between other basins at the WRIR to illustrate how micro-droughts can result from social and environmental features unique to local systems; and (3 describe how a collaborative project is supporting drought preparedness at the WRIR. We combine a social science assessment with an analysis of the hydroclimate to deconstruct how shortages manifest at the WRIR. We provide insights from this study to help guide drought assessments at local scales. Keywords: Drought, Climate vulnerability, Drought preparedness, Indigenous adaptation, Co-production

  2. Effect of drought stress, corm size and corm tunic on morphoecophysiological characteristics of saffron (Crocus sativus L. in greenhouse conditions

    Directory of Open Access Journals (Sweden)

    M. Sabet Teimouri


    Full Text Available In order to investigate the effects of corm tunic, corm weight and drought stress on saffron (Crocus sativus L., an experiment was conducted at the greenhouse of Ferdowsi University of Mashhad, Iran. Treatment were combination of four corm weights range (2-4, 4-6, 6-8 and 8-10 g, two levels of water availability (100% field capacity and drought and two levels of corm tunic (natural corm with tunic and without tunic as factorial arrangement based on completely randomized block design with three replications. The corms were divided to four groups based on their weights and removed tunics of corm in tunic free treatment. Results indicated that the highest biomass produced in irrigation, corms with tunic with maximum weight. Both chlorophyll a and b contents decreased significantly under drought stress and chlorophyll b content was 50% of chlorophyll a content. Effect of corm size and corm tunic and interaction of these treatments imposed a significant effect on the leaf number per plant, leaf weight and chlorophyll content. Effect of corm tunic in 8-10 g corm size increased ch (a/ch (b ratio and leaf number. The relative water content was decreased in drought treatment in both tunic and tunicless treatments and the best corm weight in all treatment was 6-8g and could be useful to tolerate drought stress.

  3. Contribution of arbuscular mycorrhizal fungi and/or bacteria to enhancing plant drought tolerance under natural soil conditions: effectiveness of autochthonous or allochthonous strains. (United States)

    Ortiz, N; Armada, E; Duque, E; Roldán, A; Azcón, R


    Autochthonous microorganisms [a consortium of arbuscular-mycorrhizal (AM) fungi and Bacillus thuringiensis (Bt)] were assayed and compared to Rhizophagus intraradices (Ri), Bacillus megaterium (Bm) or Pseudomonas putida (Psp) and non-inoculation on Trifolium repens in a natural arid soil under drought conditions. The autochthonous bacteria Bt and the allochthonous bacteria Psp increased nutrients and the relative water content and decreased stomatal conductance, electrolyte leakage, proline and APX activity, indicating their abilities to alleviate the drought stress. Mycorrhizal inoculation significantly enhanced plant growth, nutrient uptake and the relative water content, particularly when associated with specific bacteria minimizing drought stress-imposed effects. Specific combinations of autochthonous or allochthonous inoculants also contributed to plant drought tolerance by changing proline and antioxidative activities. However, non-inoculated plants had low relative water and nutrients contents, shoot proline accumulation and glutathione reductase activity, but the highest superoxide dismutase activity, stomatal conductance and electrolyte leakage. Microbial activities irrespective of the microbial origin seem to be coordinately functioning in the plant as an adaptive response to modulated water stress tolerance and minimizing the stress damage. The autochthonous AM fungi with Bt or Psp and those allochthonous Ri with Bm or Psp inoculants increased water stress alleviation. The autochthonous Bt showed the greatest ability to survive under high osmotic stress compared to the allochthonous strains, but when single inoculated or associated with Ri or AM fungi were similarly efficient in terms of physiological and nutritional status and in increasing plant drought tolerance, attenuating and compensating for the detrimental effect of water limitation. Copyright © 2014 Elsevier GmbH. All rights reserved.

  4. Decadal variability of drought conditions over the southern part of Europe based on Principal Oscillation Pattern Analysis (United States)

    Ionita-Scholz, Monica; Tallaksen, Lena M.; Scholz, Patrick


    This study introduces a novel method of estimating the decay time, mean period and forcing statistics of drought conditions over large spatial domains, demonstrated here for southern part of Europe (10°E - 40°E, 35°N - 50°N). It uses a two-dimensional stochastically forced damped linear oscillator model with the model parameters estimated from a Principal Oscillation Pattern (POP) analysis and associated observed power spectra. POP is a diagnostic technique that aims to derive the space-time characteristics of a data set objectively. This analysis is performed on an extended observational time series of 114 years (1902 - 2015) of the Standardized Precipitation Evapotranspiration Index for an accumulation period of 12 months (SPEI12), based on the Climate Research Unit (CRU TS v. 3.24) data set. The POP analysis reveals four exceptionally stable modes of variability, which together explain more than 62% of the total explained variance. The most stable POP mode, which explains 16.3% of the total explained variance, is characterized by a period of oscillation of 14 years and a decay time of 31 years. The real part of POP1 is characterized by a monopole-like structure with the highest loadings over Portugal, western part of Spain and Turkey. The second stable mode, which explains 15.9% of the total explained variance, is characterized by a period of oscillation of 20 years and a decay time of 26.4 years. The spatial structure of the real part of POP2 has a dipole-like structure with the highest positive loadings over France, southern Germany and Romania and negative loadings over southern part of Spain. The third POP mode, in terms of stability, explains 14.0% of the total variance and is characterized by a period of oscillation of 33 years and a decay time of 43.5 years. The real part of POP3 is characterized by negative loadings over the eastern part of Europe and positive loadings over Turkey. The fourth stable POP mode, explaining 15.5% of the total variance

  5. Effect of Organic and Chemical Fertilizers on Yield and Essential Oil of Two Ecotypes of Savory (Satureja hortensis L. under Normal and Drought Stress Conditions

    Directory of Open Access Journals (Sweden)

    O Akrami nejad


    Full Text Available Introduction Savory (Satureja hortensis L. is an annual and aromatic plant from Labiatae family, which has plenty of essential oil and is important in medicinal, food, health and beauty industries (6. In comparison with chemical fertilizers, organic fertilizers especially manure have lots of organic material sources, and can be used as nutrients, especially Nitrogen, Phosphor and Potassium. Organic fertilizers also keeps more water in the soil (14. Water deficit is one of the most important boundaries of production in arid and semi-arid regions. Drought stress reduces water content, limits plant growth and changes some physiological and metabolic activities (31. This experiment was conducted as there is a global interest for production of medicinal plants with sustainable agriculture system, and with low input and shortage of information about Savory reaction to fertilization in drought stress condition. The objective of this research was to compare the effects of chemical fertilizers and different organic fertilizers on quantitative and qualitative characteristics of two ecotypes of savory under drought stress condition. Materials and Methods In order to study the effects of organic and mineral (N, P and K fertilizers on quantitative and qualitative characteristics of savory in drought stress condition, two separate split plot designs with three replications were carried out in 2012-2013 year, at the research field of Shahid Bahonar University of Kerman, Iran. In each design fertilizers including cow manure (30 ton per hectare, poultry manure (10 ton per hectare, chemical fertilizers (used equally with macro elements existing in both poultry and cow manure and control (no fertilizer were used as main factor. Kerman and Khuzestan ecotypes were sub-factor. One of the experiments was irrigated to 100% and the other to 50% of field capacity. Two experiments were analyzed as a combined design. The important characteristics of Savory such as plant

  6. Effect of Three Species of Mycorrhiza Inoculation on Yield and Some Physiological properties of Two Potato Cultivars under Drought Stress in Controlled Conditions

    Directory of Open Access Journals (Sweden)

    S. Khaninejad


    Full Text Available Introduction In recent years, rainfall deficiency was an increasing problem in most countries; which limited the production of agricultural crops. Among abiotic stresses the plants encountered, drought stress is considered as the most important limiting factor in plants growth and reproduction in natural and agricultural systems through most parts of the world; while drought stress causes 45% increase in the crops among various stress making factors (biotic and abiotic. A suitable procedure for controlling drought stress in agriculture is making the symbiotic relation between plants and mycorrhizal fungi. Mycorrhizal fungi decrease the plant ability in absorbing nutrients, ion balance, keeping enzyme activity, increasing chlorophyll density and root-soil connection; they decline the hazards caused by stress and decrease the plant tolerance to biotic and abiotic stresses. Potato is one of the most valuable sources to provide human food in the developing countries and is one of the most productive crops, while its production is twofold to rice and wheat. Producing more than 5 million tones potato makes this crop as the first utilizable nutrient after wheat, in this country. Potato is sensitive to soil humidity caused by limited and low-deep root system. Materials and Methods Thus, an investigation was conducted to examine the effect of three of mycorrhizal fungi (Glomus mosseae, Glomus intraradices and Glomus fasciculatum on two potato cultivars (Agria and Fontana under drought stress and control conditions, in factorial experiment based on complete randomize block with three repetitions in research greenhouse of Ferdowsi University in 2012. In control treatment, irrigating was done when field capacity got 80% and it was conducted to 100% field capacity. Stress treatment was done when the field capacity got 60% and continued to 80% field capacity. Fungus treatment was done with a 100g mixture of inoculum including mycorrhizal root sections of corn

  7. The one-sided Ap conditions and local maximal operator

    Czech Academy of Sciences Publication Activity Database

    Bernardis, A.L.; Gogatishvili, Amiran; Martin-Reyes, F. J.; Ortega Salvador, P.; Pick, L.

    Roč. 55, č. 1 ( 2012 ), s. 79-104 ISSN 0013-0915 R&D Projects: GA ČR GA201/08/0383; GA ČR GA201/05/2033 Institutional research plan: CEZ:AV0Z10190503 Keywords : one-sided Ap conditions * one-sided local maximal operator * quasi-Banach function spaces * variable-exponent Lebesgue spaces Subject RIV: BA - General Mathematics Impact factor: 0.561, year: 2012

  8. Improved distorted wave theory with the localized virial conditions (United States)

    Hahn, Y. K.; Zerrad, E.


    The distorted wave theory is operationally improved to treat the full collision amplitude, such that the corrections to the distorted wave Born amplitude can be systematically calculated. The localized virial conditions provide the tools necessary to test the quality of successive approximations at each stage and to optimize the solution. The details of the theoretical procedure are explained in concrete terms using a collisional ionization model and variational trial functions. For the first time, adjustable parameters associated with an approximate scattering solution can be fully determined by the theory. A small number of linear parameters are introduced to examine the convergence property and the effectiveness of the new approach.

  9. Quantitative Trait Loci Associated with Drought Tolerance in Brachypodium distachyon

    Directory of Open Access Journals (Sweden)

    Yiwei Jiang


    Full Text Available The temperate wild grass Brachypodium distachyon (Brachypodium serves as model system for studying turf and forage grasses. Brachypodium collections show diverse responses to drought stress, but little is known about the genetic mechanisms of drought tolerance of this species. The objective of this study was to identify quantitative trait loci (QTLs associated with drought tolerance traits in Brachypodium. We assessed leaf fresh weight (LFW, leaf dry weight (LDW, leaf water content (LWC, leaf wilting (WT, and chlorophyll fluorescence (Fv/Fm under well-watered and drought conditions on a recombinant inbred line (RIL population from two parents (Bd3-1 and Bd1-1 known to differ in their drought adaptation. A linkage map of the RIL population was constructed using 467 single nucleotide polymorphism (SNP markers obtained from genotyping-by-sequencing. The Bd3-1/Bd1-1 map spanned 1,618 cM and had an average distance of 3.5 cM between adjacent single nucleotide polymorphisms (SNPs. Twenty-six QTLs were identified in chromosome 1, 2, and 3 in two experiments, with 14 of the QTLs under well-watered conditions and 12 QTLs under drought stress. In Experiment 1, a QTL located on chromosome 2 with a peak at 182 cM appeared to simultaneously control WT, LWC, and Fv/Fm under drought stress, accounting for 11–18.7% of the phenotypic variation. Allelic diversity of candidate genes DREB2B, MYB, and SPK, which reside in one multi-QTL region, may play a role in the natural variation in whole plant drought tolerance in Brachypodium. Co-localization of QTLs for multiple drought-related traits suggest that the gene(s involved are important regulators of drought tolerance in Brachypodium.

  10. Changes in the frequency and severity of hydrological droughts over Ethiopia from 1960 to 2013

    KAUST Repository

    El Kenawy, A. M.; McCabe, Matthew; Vicente-Serrano, S. M.; Ló pez-Moreno, J. I.; Robaa, S. M.


    Here we present an analysis of drought occurrence and variability in Ethiopia, based on the monthly precipitation data from the Climate Research Unit (CRU-v3.22) over the period from 1960 to 2013. The drought events were characterized by means of the Standardized Precipitation Index (SPI) applied to precipitation data at a temporal scale of 12 months. At the national scale, the results reveal a statistically significant decrease in the severity of droughts over the 54-year period, a pattern that is mostly attributed to a statistically significant decrease in the frequency of high intensity drought episodes (i.e., extreme and very extreme droughts), compared to moderate droughts. To assess the general patterns of drought evolution, a principal component analysis (PCA) was applied to the SPI series. PCA results indicate a high spatial heterogeneity in the SPI variations over the investigated period, with ten different spatially well-defined regions identified. These PCA components accounted for 72.9% of the total variance of drought in the region. These regions also showed considerable differences in the temporal variability of drought, as most of the regions exhibited an increase in wetness conditions in recent decades. In contrast, the regions that receive less than 400 mm of annual precipitation showed a declining  trend, with the largest changes occurring over Afar region. Generally, the highly elevated regions over the central Ethiopian Highlands showed the weakest changes, compared to the lowlands. This study confirms the local character of drought evolution over Ethiopia, providing evidence for policy makers to adopt appropriate local policies to cope with the risks of drought. Over Ethiopia, the detailed spatial assessment of drought evolution is required for a better understanding of the possible impacts of recurrent drought on agriculture, food production, soil degradation, human settlements and migrations, as well as energy production and water resources

  11. Changes in the frequency and severity of hydrological droughts over Ethiopia from 1960 to 2013

    KAUST Repository

    El Kenawy, A. M.


    Here we present an analysis of drought occurrence and variability in Ethiopia, based on the monthly precipitation data from the Climate Research Unit (CRU-v3.22) over the period from 1960 to 2013. The drought events were characterized by means of the Standardized Precipitation Index (SPI) applied to precipitation data at a temporal scale of 12 months. At the national scale, the results reveal a statistically significant decrease in the severity of droughts over the 54-year period, a pattern that is mostly attributed to a statistically significant decrease in the frequency of high intensity drought episodes (i.e., extreme and very extreme droughts), compared to moderate droughts. To assess the general patterns of drought evolution, a principal component analysis (PCA) was applied to the SPI series. PCA results indicate a high spatial heterogeneity in the SPI variations over the investigated period, with ten different spatially well-defined regions identified. These PCA components accounted for 72.9% of the total variance of drought in the region. These regions also showed considerable differences in the temporal variability of drought, as most of the regions exhibited an increase in wetness conditions in recent decades. In contrast, the regions that receive less than 400 mm of annual precipitation showed a declining  trend, with the largest changes occurring over Afar region. Generally, the highly elevated regions over the central Ethiopian Highlands showed the weakest changes, compared to the lowlands. This study confirms the local character of drought evolution over Ethiopia, providing evidence for policy makers to adopt appropriate local policies to cope with the risks of drought. Over Ethiopia, the detailed spatial assessment of drought evolution is required for a better understanding of the possible impacts of recurrent drought on agriculture, food production, soil degradation, human settlements and migrations, as well as energy production and water resources

  12. Correlation Coefficient, Path Analysis and Drought Tolerance Indices for Different Wheat Cultivars under Deficit Irrigation Conditions of Isfahan Region

    Directory of Open Access Journals (Sweden)

    H. R Salemi


    Full Text Available Introduction Water crisis as a main factor of agronomy limitation exists in all over the arid and semiarid regions such as Isfahan province which is located in the central part of the Zayandehrud River Basin. This study aimed to use path analysis and indices of drought to evaluate the correlation coefficients between main physiological parameter (grain yield with yield components and water use efficiency of winter wheat under three water conditions. Materials and Methods The experiment was carried out in Kaboutar Abad Agricultural Research Station, Isfahan in the central region of Iran (32º 31’N, 51º 51’E is located at the altitude of 1545 m above the sea level with a split plot in a randomized complete block design (RCBD with three replications in three cropping seasons on irrigated wheat cultivars. The treatments were included three levels of irrigation (60%FI, 80%FI and full irrigation as main plots and six wheat cultivars (Pishtaz, Shiraz, Sepahan, Marvdasht, Mahdavi and BC-Roshan as sub plots. Grain yield, straw and stubble, biological yield, harvest index (H.I., productivity degree (P.D., water use efficiency (WUE, plant height, grain number per spike, spike number per m2 and TGW were determined. Winter wheat cultivars were sown at the beginning of November and harvested in mid-June of the following year. The seed rate was 400 seed m-2, with a row spacing of 0.75 m. The first irrigation was by furrow method, implemented one day after seeding. Seeds emergence was observed about 5 days later. The N application was 250, 200 and 300 kgha-1 of N (urea at 46% N for each year divided into installments (10 days before planting, 30 days after planting, and every 30 days until the last irrigation. The P2O5 (phosphate ammonium and super-phosphate triple application to soil was 200, 100 and 50 kg ha-1 during the 3 years, respectively. At this stage, cultivation was done to mix the fertilizers with top soil manually. Pests and weeds were

  13. Extragalactic interstellar extinction curves: Indicators of local physical conditions

    Energy Technology Data Exchange (ETDEWEB)

    Cecchi-Pestellini, Cesare [INAF-Osservatorio Astronomico di Palermo, P.zza Parlamento 1, I-90134 Palermo (Italy); Viti, Serena; Williams, David A., E-mail:, E-mail:, E-mail: [Department of Physics and Astronomy, University College London Gower Street, London WC1E 6BT (United Kingdom)


    Normalized interstellar extinction curves (ISECs) in the Milky Way and other galaxies show a variety of shapes. This variety is attributed to differences along different sight lines in the abundances of the several dust and gas components contributing to extinction. In this paper we propose that these abundance differences are not arbitrary but are a specific consequence of the physical conditions on those sight lines. If this proposal is correct, then it implies that ISECs contain information about physical conditions in the regions generating extinction. This may be particularly important for high redshift galaxies where information on the conditions may be difficult to obtain. We adopt a model of extinction carriers in which the solid and gaseous components are not immutable but respond time-dependently to the local physics. We validate this model by fitting extinction curves measured on sight lines in the Magellanic Clouds and obtained for the gamma-ray burst afterglow GRB 080605. We present results for this model as follows: (1) we show that computed ISECs are controlled by a small number of physical parameters, (2) we demonstrate the sensitivity of computed ISECs to these parameters, (3) we compute as examples ISECs for particular galaxy types, and (4) we note that different galaxy types have different shapes of ISEC.

  14. Developing Drought Outlook Forums in Support of a Regional Drought Early Warning Information System (United States)

    Mcnutt, C. A.; Pulwarty, R. S.; Darby, L. S.; Verdin, J. P.; Webb, R. S.


    The National Integrated Drought Information System (NIDIS) Act of 2006 (P.L. 109-430) charged NIDIS with developing the leadership and partnerships necessary to implement an integrated national drought monitoring and forecasting system that creates a drought "early warning system". The drought early warning information system should be capable of providing accurate, timely and integrated information on drought conditions at the relevant spatial scale to facilitate proactive decisions aimed at minimizing the economic, social and ecosystem losses associated with drought. As part of this effort, NIDIS has held Regional Drought Outlook Forums in several regions of the U.S. The purpose of the Forums is to inform practices that reduce vulnerability to drought through an interactive and collaborative process that includes the users of the information. The Forums have focused on providing detailed assessments of present conditions and impacts, comparisons with past drought events, and seasonal predictions including discussion of the state and expected evolution of the El Niño Southern Oscillation phenomena. Regional Climate Outlook Forums (RCOFs) that include close interaction between information providers and users are not a new concept, however. RCOFs started in Africa in the 1990s in response to the 1997-98 El Niño and have since expanded to South America, Asia, the Pacific islands, and the Caribbean. As a result of feedback from the RCOFs a large body of research has gone into improving seasonal forecasts and the capacity of the users to apply the information in a way that improves their decision-making. Over time, it has become clear that more is involved than just improving the interaction between the climate forecasters and decision-makers. NIDIS is using the RCOF approach as one component in a larger effort to develop Regional Drought Early Warning Information Systems (RDEWS) around the U.S. Using what has been learned over the past decade in the RCOF process

  15. Farmer Resettlements and Water Energy Stresses Arising From Aggravating Drought Conditions in Mahaweli River Watershed, Sri Lanka (United States)

    Thabrew, L.


    Climate change is expected to cause significant changes in water quantity and water quality in river basins throughout the world, with particularly significant impacts in developing regions. Climate change effects are often exacerbated by other simultaneous activities in developing countries, such as population growth, reliance on subsistence agriculture, and expanding provision of electricity. Each of these activities requires access to readily-available freshwater. For example, population growth requires more water for irrigation as food production needs increase. Additionally, water is needed for generating electricity in hydropower facilities as well as other facilities, which require water to run steam turbines or to cool facilities. As such, many developing countries face the real and immediate need to anticipate and adapt to climatic stresses on water resources in both the agricultural and residential sectors. Water withdrawal in both of these sectors is largely driven by individual behaviors, such as electricity use in the home and irrigation practices on farmland, aggregated at the household, community, and regional level. Our ongoing project in Sri Lanka focuses on understanding aforementioned issues in coupled natural and human systems in the Mahaweli River Watershed (MWR) to inform decision-makers to streamline policies and strategies for effective adaptation to worsening drought conditions. MWR produces more than 60% of the rice demand and nearly 40% of the energy requirement of the country. Although irrigation is currently the sector that withdraws the most water, with government plans for resettling farmer communities and developing new urban centers in the region by 2030, electricity production is expected to compete for water against irrigation in the future. Thus, understanding the water-energy nexus is crucial to planning for conservation and efficiency. Through a pilot survey conducted by our interdisciplinary research team, in five locations in

  16. Transcriptome Profiling of the Potato (Solanum tuberosum L.) Plant under Drought Stress and Water-Stimulus Conditions. (United States)

    Gong, Lei; Zhang, Hongxia; Gan, Xiaoyan; Zhang, Li; Chen, Yuchao; Nie, Fengjie; Shi, Lei; Li, Miao; Guo, Zhiqian; Zhang, Guohui; Song, Yuxia


    Drought stress can seriously affect tuberization, yield and quality of potato plant. However, the precise molecular mechanisms governing potato stolon's response to drought stress and water supply are not very well understood. In this work, a potato (Solanum tuberosum L.) variant, Ningshu 4, was subjected to severe drought stress treatment (DT) and re-watering treatment (RWT) at tuber bulking stage. Strand-specific cDNA libraries of stolon materials were constructed for paired-end transcriptome sequencing analyses and differentially expressed gene (DEG) examination. In comparison to untreated-control (CT) plants, 3189 and 1797 DEGs were identified in DT and RWT plants and 4154 solely expressed DEGs were screened out from these two comparison groups. Interestingly, 263 genes showed opposite expression patterns in DT and RWT plants. Among them, genes homologous to Protein Phosphatase 2C (PP2C), Aspartic protease in guard cell 1 (ASPG1), auxin-responsive protein, Arabidopsis pseudo response regualtor 2 (APRR2), GA stimulated transcripts in Arabidopsis 6 (GASA6), Calmodulin-like protein 19 (CML19), abscisic acid 8'-hydroxylases and calcium-transporting ATPase, et al. were related with drought-stress and water stimulus response. Sixteen DEGs involved in starch synthesis, accumulation and tuber formation exhibited significantly different expression upon re-watering. In addition, 1630, 1527 and 1596 transcription factor encoding genes were detected in CT, DT and RWT. DEGs of ERF, bHLH, MYB, NAC, WRKY, C2H2, bZIP and HD-ZIP families accounted for 50% in three comparison groups, respectively. Furthermore, characteristics of 565 gene ontology (GO) and 108 Kyoto Encyclopedia of Genes and Genomes pathways (KEGG) were analyzed with the 4154 DEGs. All these results suggest that the drought- and water-stimulus response could be implemented by the regulated expression of metabolic pathway DEGs, and these genes were involved in the endogenous hormone biosynthesis and signal

  17. Transcriptome Profiling of the Potato (Solanum tuberosum L. Plant under Drought Stress and Water-Stimulus Conditions.

    Directory of Open Access Journals (Sweden)

    Lei Gong

    Full Text Available Drought stress can seriously affect tuberization, yield and quality of potato plant. However, the precise molecular mechanisms governing potato stolon's response to drought stress and water supply are not very well understood. In this work, a potato (Solanum tuberosum L. variant, Ningshu 4, was subjected to severe drought stress treatment (DT and re-watering treatment (RWT at tuber bulking stage. Strand-specific cDNA libraries of stolon materials were constructed for paired-end transcriptome sequencing analyses and differentially expressed gene (DEG examination. In comparison to untreated-control (CT plants, 3189 and 1797 DEGs were identified in DT and RWT plants and 4154 solely expressed DEGs were screened out from these two comparison groups. Interestingly, 263 genes showed opposite expression patterns in DT and RWT plants. Among them, genes homologous to Protein Phosphatase 2C (PP2C, Aspartic protease in guard cell 1 (ASPG1, auxin-responsive protein, Arabidopsis pseudo response regualtor 2 (APRR2, GA stimulated transcripts in Arabidopsis 6 (GASA6, Calmodulin-like protein 19 (CML19, abscisic acid 8'-hydroxylases and calcium-transporting ATPase, et al. were related with drought-stress and water stimulus response. Sixteen DEGs involved in starch synthesis, accumulation and tuber formation exhibited significantly different expression upon re-watering. In addition, 1630, 1527 and 1596 transcription factor encoding genes were detected in CT, DT and RWT. DEGs of ERF, bHLH, MYB, NAC, WRKY, C2H2, bZIP and HD-ZIP families accounted for 50% in three comparison groups, respectively. Furthermore, characteristics of 565 gene ontology (GO and 108 Kyoto Encyclopedia of Genes and Genomes pathways (KEGG were analyzed with the 4154 DEGs. All these results suggest that the drought- and water-stimulus response could be implemented by the regulated expression of metabolic pathway DEGs, and these genes were involved in the endogenous hormone biosynthesis and signal

  18. Local couplings, double insertions and the Weyl consistency condition

    International Nuclear Information System (INIS)

    Kraus, E.; Sibold, K.


    Within massless φ 4 4 -theory we set up the formalism which is needed, when the coupling λ is permitted to become an external field, i.e. a function of space-time. In particular we have worked out the action of the corresponding Callan-Symanzik operator and conformal transformations on the vertex functions, and furthermore how the Weyl transformations act on the theory with the energy-momentum tensor invariantly coupled. With the help of the Weyl consistency condition we have shown that in the limit of constant coupling the Weyl braking can entirely be written in terms of differential operators, but that otherwise, for truely local coupling, new breaking terms survive. (orig.)

  19. Identification of spatially-localized initial conditions via sparse PCA (United States)

    Dwivedi, Anubhav; Jovanovic, Mihailo


    Principal Component Analysis involves maximization of a quadratic form subject to a quadratic constraint on the initial flow perturbations and it is routinely used to identify the most energetic flow structures. For general flow configurations, principal components can be efficiently computed via power iteration of the forward and adjoint governing equations. However, the resulting flow structures typically have a large spatial support leading to a question of physical realizability. To obtain spatially-localized structures, we modify the quadratic constraint on the initial condition to include a convex combination with an additional regularization term which promotes sparsity in the physical domain. We formulate this constrained optimization problem as a nonlinear eigenvalue problem and employ an inverse power-iteration-based method to solve it. The resulting solution is guaranteed to converge to a nonlinear eigenvector which becomes increasingly localized as our emphasis on sparsity increases. We use several fluids examples to demonstrate that our method indeed identifies the most energetic initial perturbations that are spatially compact. This work was supported by Office of Naval Research through Grant Number N00014-15-1-2522.

  20. Communities of different plant diversity respond similarly to drought stress: experimental evidence from field non-weeded and greenhouse conditions

    Czech Academy of Sciences Publication Activity Database

    Lanta, V.; Doležal, Jiří; Zemková, D.; Lepš, Jan


    Roč. 99, č. 6 (2012), s. 473-482 ISSN 0028-1042 R&D Projects: GA AV ČR IAA600050802; GA ČR GA206/09/1471; GA ČR GA526/09/0963 Institutional research plan: CEZ:AV0Z60050516; CEZ:AV0Z50070508 Institutional support: RVO:67985939 ; RVO:60077344 Keywords : Biodiversity * Community stability * Drought Subject RIV: EH - Ecology, Behaviour Impact factor: 2.144, year: 2012

  1. Abnormal condition detector for a local power range monitor

    International Nuclear Information System (INIS)

    Akiyama, Takao.


    Object: to permit determination of abnormal condition by a number of local power range monitors (LPRM) to be quickly made through precise estimation of the ratio between the true rate of change in neutron flux and true change in the neutron flux by making use of the fact that the status of the neutron distribution does not widely change with a change in the core flow rate for a short period of time. Structure: While carrying out power control according to the core flow rate, detection values from LPRM which are disposed in a three-dimensional fashion within the reactor core are indicated on an indicator. The average value of rates of change in the indicated values for a group of LPRM under substantially the same fluid dynamic condition as that for each LPRM is determined while measuring time-wise change rate in the indicated value of each of the LPRM. The average value is successively divided by the rate of change in the indicated value for each LPRM and the amplifier gain thereof to obtain the reference value. When the difference between the average value and reference value obtained in this way exceeds a prescribed value, the corresponding LPRM is determined to be defective. (Moriyama, K.)

  2. Sixteen years of agricultural drought assessment of the BioBío region in Chile using a 250 m resolution Vegetation Condition Index (VCI) (United States)

    Zambrano, Francisco; Lillo-Saavedra, Mario; Verbist, Koen; Lagos, Octavio


    Drought is one of the most complex natural hazards because of its slow onset and long-term impact; it has the potential to negatively affect many people. There are several advantages to using remote sensing to monitor drought, especially in developing countries with limited historical meteorological records and a low weather station density. In the present study, we assessed agricultural drought in the croplands of the BioBio Region in Chile. The vegetation condition index (VCI) allows identifying the temporal and spatial variations of vegetation conditions associated with stress because of rainfall deficit. The VCI was derived at a 250m spatial resolution for the 2000-2015 period with the Moderate Resolution Imaging Spectroradiometer (MODIS) MOD13Q1 product. We evaluated VCI for cropland areas using the land cover MCD12Q1 version 5.1 product and compared it to the in situ Standardized Precipitation Index (SPI) for six-time scales (1-6 months) from 26 weather stations. Results showed that the 3-month SPI (SPI-3), calculated for the modified growing season (Nov-Apr) instead of the regular growing season (Sept-Apr), has the best Pearson correlation with VCI values with an overall correlation of 0.63 and between 0.40 and 0.78 for the administrative units. These results show a very short-term vegetation response to rainfall deficit in September, which is reflected in the vegetation in November, and also explains to a large degree the variation in vegetation stress. It is shown that for the last 16 years in the BioBio Region we could identify the 2007/2008, 2008/2009, and 2014/2015 seasons as the three most important drought events; this is reflected in both the overall regional and administrative unit analyses. These results concur with drought emergencies declared by the regional government. Future studies are needed to associate the remote sensing values observed at high resolution (250m) with the measured crop yield to identify more detailed individual crop

  3. Climate Engine - Monitoring Drought with Google Earth Engine (United States)

    Hegewisch, K.; Daudert, B.; Morton, C.; McEvoy, D.; Huntington, J. L.; Abatzoglou, J. T.


    Drought has adverse effects on society through reduced water availability and agricultural production and increased wildfire risk. An abundance of remotely sensed imagery and climate data are being collected in near-real time that can provide place-based monitoring and early warning of drought and related hazards. However, in an era of increasing wealth of earth observations, tools that quickly access, compute, and visualize archives, and provide answers at relevant scales to better inform decision-making are lacking. We have developed, a web application that uses Google's Earth Engine platform to enable users to quickly compute and visualize real-time observations. A suite of drought indices allow us to monitor and track drought from local (30-meters) to regional scales and contextualize current droughts within the historical record. Climate Engine is currently being used by U.S. federal agencies and researchers to develop baseline conditions and impact assessments related to agricultural, ecological, and hydrological drought. Climate Engine is also working with the Famine Early Warning Systems Network (FEWS NET) to expedite monitoring agricultural drought over broad areas at risk of food insecurity globally.

  4. A hot future for European droughts (United States)

    Teuling, Adriaan J.


    Low soil moisture conditions can induce drought but also elevate temperatures. Detailed modelling of the drought-temperature link now shows that rising global temperature will bring drier soils and higher heatwave temperatures in Europe.

  5. What Caused the Winter Drought in Western Nepal during Recent Years?

    Energy Technology Data Exchange (ETDEWEB)

    Wang, S-Y (Simon); Yoon, Jin-Ho; Gillies, R.; Cho, Changrae


    Western Nepal has experienced consecutive and worsened winter drought conditions since 2000 culminating in a severe drought episode during 2008-2009. In this study, the meteorological conditons and a historical pespective of the winter droughts in western Nepal were analyzed using respectively instumental records and a paleoclimatic drought index. Althought decadal-scale drought conditions were found to be recurrent in the paleoclimate record, the severity of the recent decadal drought (since 2000) clearly stands out in the 700 years of record and, this is suggestive of potential anthropogenic influences in the recent decades. Meteorological diagnosis using atmospheric reanalysis in the recent decades revealed that (1) winter drought in western Nepal is linked to the Arctic Oscillation and its decadal variability, which initiates a tropospheric short-wave train across the Europe, Eurasia and South Asia, and that (2) the persistent warming of the Indian Ocean likely contributes to the suppression of rainfall through enhanced local Hadley circultion. It is therefore conceivable that the recent spells of decadal drought in Nepal drought are symptomatic of both natural variability and anthropogenic influences.

  6. Evaluation of Biofertilizer “Myco-green” on Water Relation and Efficiency of Potato Minituber Production in Drought Stress Condition

    Directory of Open Access Journals (Sweden)

    K. Parvizi


    Full Text Available Introduction Today biological fertilizers are suitable substitutes for chemical manure. Hence they can improve soil fertility in sustainable agriculture system (Mandal et al, 2007. Moreover, in some composition they are accompanied with plant growth promoting rhizibacteria (PGPR, namely Pseudomonas and some Bacillus species. These bacteria can improve growth rate of the plants by some physiological aspects namely, cidrophore acid production, increasing endogenously phytohormone and helping more phosphor absorption and fixation of biological nitrogen (Tilack et al., 2005. The symbiosis of mycorrhiza with plants confers numerous benefits to host plants including improved plant growth and mineral nutrient absorption, tolerance to diseases and stresses such as drought, temperature fluctuation, metal toxicity, salinity and other adverse conditions (Fortin et al, 2002. Ryan et al, (2003 and Smith and Reed, (2008.Mycorrhizal plants are capable of absorbing more water in lower potential of water as compared with non-mycorrhizal plants (Sanchez and Blanco, 2001. Micro propagation of potato by micro and mini tubers have been established for improving multiplication rate and possibility of reserving some more stock plants as germplasm. Multiplication of the minitubers already have been accompanied by lower establishment that causes low vigor and performance of the plant. This experiment was performedto study the effect of biological manure accompanied with mycorrhiza and plant growth promoting rhizobacteria on water relationship and vigor of the plantlets derived from minituber in water stress condition. Material and Methods Myco-green is produced by Peat grow company in Malaysia and has been spreading in floriculture, seed beds, vegetable crops, seedling plant of oil palm and many other plants. The experiment was performedatthe University of International Technology Mara Sarawak (UITM. As first step, soil bed composition was combined with peat and perlite

  7. Development of an Experimental African Drought Monitoring and Seasonal Forecasting System: A First Step towards a Global Drought Information System (United States)

    Wood, E. F.; Chaney, N.; Sheffield, J.; Yuan, X.


    Extreme hydrologic events in the form of droughts are a significant source of social and economic damage. Internationally, organizations such as UNESCO, the Group on Earth Observations (GEO), and the World Climate Research Programme (WCRP) have recognized the need for drought monitoring, especially for the developing world where drought has had devastating impacts on local populations through food insecurity and famine. Having the capacity to monitor droughts in real-time, and to provide drought forecasts with sufficient warning will help developing countries and international programs move from the management of drought crises to the management of drought risk. While observation-based assessments, such as those produced by the US Drought Monitor, are effective for monitoring in countries with extensive observation networks (of precipitation in particular), their utility is lessened in areas (e.g., Africa) where observing networks are sparse. For countries with sparse networks and weak reporting systems, remote sensing observations can provide the real-time data for the monitoring of drought. More importantly, these datasets are now available for at least a decade, which allows for the construction of a climatology against which current conditions can be compared. In this presentation we discuss the development of our multi-lingual experimental African Drought Monitor (ADM) (see At the request of UNESCO, the ADM system has been installed at AGRHYMET, a regional climate and agricultural center in Niamey, Niger and at the ICPAC climate center in Nairobi, Kenya. The ADM system leverages off our U.S. drought monitoring and forecasting system ( that uses the NLDAS data to force the VIC land surface model (LSM) at 1/8th degree spatial resolution for the estimation of our soil moisture drought index (Sheffield et al., 2004). For the seasonal forecast of drought, CFSv2 climate

  8. Reconstruction of droughts in India using multiple land-surface models (1951-2015) (United States)

    Mishra, Vimal; Shah, Reepal; Azhar, Syed; Shah, Harsh; Modi, Parth; Kumar, Rohini


    India has witnessed some of the most severe historical droughts in the current decade, and severity, frequency, and areal extent of droughts have been increasing. As a large part of the population of India is dependent on agriculture, soil moisture drought affecting agricultural activities (crop yields) has significant impacts on socio-economic conditions. Due to limited observations, soil moisture is generally simulated using land-surface hydrological models (LSMs); however, these LSM outputs have uncertainty due to many factors, including errors in forcing data and model parameterization. Here we reconstruct agricultural drought events over India during the period of 1951-2015 based on simulated soil moisture from three LSMs, the Variable Infiltration Capacity (VIC), the Noah, and the Community Land Model (CLM). Based on simulations from the three LSMs, we find that major drought events occurred in 1987, 2002, and 2015 during the monsoon season (June through September). During the Rabi season (November through February), major soil moisture droughts occurred in 1966, 1973, 2001, and 2003. Soil moisture droughts estimated from the three LSMs are comparable in terms of their spatial coverage; however, differences are found in drought severity. Moreover, we find a higher uncertainty in simulated drought characteristics over a large part of India during the major crop-growing season (Rabi season, November to February: NDJF) compared to those of the monsoon season (June to September: JJAS). Furthermore, uncertainty in drought estimates is higher for severe and localized droughts. Higher uncertainty in the soil moisture droughts is largely due to the difference in model parameterizations (especially soil depth), resulting in different persistence of soil moisture simulated by the three LSMs. Our study highlights the importance of accounting for the LSMs' uncertainty and consideration of the multi-model ensemble system for the real-time monitoring and prediction of

  9. Effect of Drought Stress on Water Use Efficiency and Root Dry Weight of Wheat (Triticum aesativum L. and Rye (Secale cereale L. in Competition Conditions

    Directory of Open Access Journals (Sweden)

    F Golestani Far


    Full Text Available Introduction Deficiency of water during the plant growth is one of the main factors which reduce the crops production around the world. Drought stress is one of the most important tensions that may occur around the low rainfall, high temperature and wind blowing environments. Plant response to this stress depends on the stage of plant growth and drought intensity. Weeds are unwanted and harmful plants with disturbance in agricultural practices which make increase the cost of crop production and reduce the crop yields. Rye (Secale cereal L. is one of the most important weeds at wheat fields in Iran (Baghestani and Atri, 2003. Low expectations, allelopathic effects and similarity of life cycle and morphology, caused increasing of rye density in winter wheat fields. Water use efficiency (WUE as an important physiological characteristic indicates the ability of plants to water stress. WUE may be affected by climatic and soil or plant factors. In plant communities, competition is one of most important physiological topics (Evans et al, 2003. At Inter-specific competition, weeds interfere to absorbing of light, water and nutrients through the adjacency with crop and so affect the growth and yield of crops. Weeds often compete with crops for soil water and reduce the accessibility of water. Competition between weeds and crops decrease the soil moisture and cause water stress which might decrease the weeds and crops growth. When the supply of water is limited, water drainage overlap areas in soil profile could be occurred relatively fast at early of in the crop life cycle. Materials and Methods In order to study the effects of drought stress on water use efficiency and root dry weight of wheat (Triticum aesativum L. and rye (Secale cereale L. in competition conditions, a pot experiment was conducted in the greenhouse of Agriculture Faculty , University of Birjand in 2012. The experiment was arranged as factorial based on completely randomized design

  10. Physiological factors affecting intrinsic water use efficiency of potato clones within a dihaploid mapping population under well-watered and drought-stressed conditions

    DEFF Research Database (Denmark)

    Topbjerg, Henrik Bak; Kaminski, Kacper Piotr; Markussen, Bo


    ) within a dihaploid potato (Solanum tuberosum L.) mapping population under well-watered (WW) and drought-stress (DS) conditions. The factorial dependency of WUEi on several plant bio-physiological traits was analyzed, and clonal difference of WUEi was compared. Significant differences in WUEi were found......Optimizing crops water use is essential for ensuring food production under future climate scenarios. Therefore, new cultivars that are capable of maintaining production under limited water resource are needed. This study screened for clonal differences in intrinsic water use efficiency (WUEi...

  11. Water resources during drought conditions and postfire water quality in the upper Rio Hondo Basin, Lincoln County, New Mexico, 2010-13 (United States)

    Sherson, Lauren R.; Rice, Steven E.


    Stakeholders and water-resource managers in Lincoln County, New Mexico, have had long-standing concerns over the impact of population growth and groundwater withdrawals. These concerns have been exacerbated in recent years by extreme drought conditions and two major wildfires in the upper Rio Hondo Basin, located in south-central New Mexico. The U.S. Geological Survey (USGS), in cooperation with Lincoln County, initiated a study in 2006 to assess and characterize water resources in the upper Rio Hondo Basin. Data collected during water years 2010–13 are presented and interpreted in this report. All data presented in this report are described in water years unless stated otherwise.

  12. Analysis of future drought characteristics in China using the regional climate model CCLM (United States)

    Huang, Jinlong; Zhai, Jianqing; Jiang, Tong; Wang, Yanjun; Li, Xiucang; Wang, Run; Xiong, Ming; Su, Buda; Fischer, Thomas


    In this paper, the intensity, area and duration of future droughts in China are analyzed using the Standardized Precipitation Index (SPI) and the Standardized Precipitation Evapotranspiration Index (SPEI). The SPI and SPEI are used to evaluate the simulation ability of drought characteristics with the regional climate model COSMO-CLM (CCLM). The projected intensity and duration of future drought events are analyzed for the period 2016-2050 under three different respective concentration pathways (RCPs). The simulated and projected drought events are analyzed by applying the intensity-area-duration method. The results show that CCLM has a robust capability to simulate the average drought characteristics, while some regional disparities are not well captured, mainly the simulation of more drought events of shorter duration in Northwest China. For the future period 2016-2050, more intense dryness conditions are projected for China. An increase in evapotranspiration is found all over China, while a reduction in precipitation is apparent in the southern river basins. The increase in evapotranspiration plays an important role in the changes of future droughts over the northern river basins and southern river basins. Under RCP2.6, drought events of longer duration and with higher frequency are projected for the southwest and southeast of China. Under RCP4.5 and RCP8.5, a continuing tendency to more dry conditions is projected along a dryness band stretching from the southwest to the northeast of China. More frequent drought events of longer duration are projected in the southwestern river basins. For all future droughts, larger extents are projected, especially for events with long-term duration. The projected long-term drought events will occur more often and more severe than during the baseline period, and their central locations will likely shift towards Southeast China. The results of this study can be used to initiate and strengthen drought adaptation measures at

  13. Dendrochronological assessment of drought severity indices for Panola Mountain Research Watershed, Georgia, U.S.A. (United States)

    McKee, A.; Aulenbach, B. T.


    Quantifying the relation between drought severity and tree growth is important to predict future growth rates as climate change effects the frequency and severity of future droughts. Two commonly used metrics of drought severity are the Standardized Precipitation Index (SPI) and the Palmer Drought Severity Index (PDSI). These indices are often calculated from proximal weather station data and therefore may not be very accurate at the local watershed scale. The accuracy of these commonly used measures of drought severity was compared to a recently developed, locally calibrated model of water limitation based on the difference between potential and actual evapotranspiration (ETDIFF). Relative accuracies of the drought indices were assessed on the strength of correlations with a 20-year tree-ring index chronology (1986-2006) developed from 22 loblolly pine (Pinus taeda) trees in water-limited landscape positions at the Panola Mountain Research Watershed (PMRW), a 41-hectare forested watershed located in north-central Georgia. We used SPI and PDSI index values from the weather station located at the Atlanta Airport, approximately 36 kilometers from PMRW. ETDIFF was calculated based on precipitation, temperature, runoff, and solar radiation data collected at PMRW. Annual index values for all three drought indices were calculated as the mean value over the growing season (May to September). All three indices had significant Pearson correlations with the tree-ring index (p = 0.044, 0.007, 0.002 for SPI, PDSI, and ETDIFF, respectively). The ETDIFF method had the strongest correlation (R2 = 0.40) compared to SPI and PDSI results (R2 = 0.19 and 0.32, respectively). Results suggest SPI and PDSI provided a general measure of drought conditions, however, the locally calibrated model of water limitation appears to measure drought severity more accurately. Future studies on the ecological effects of drought may benefit from adopting ETDIFF as a measure of drought severity.

  14. Projection of drought-inducing climate conditions in the Czech Republic according to Euro-CORDEX models

    Czech Academy of Sciences Publication Activity Database

    Štěpánek, Petr; Zahradníček, Pavel; Farda, Aleš; Skalák, Petr; Trnka, Miroslav; Meitner, Jan; Rajdl, Kamil


    Roč. 70, 2-3 (2016), s. 179-193 ISSN 0936-577X R&D Projects: GA MŠk(CZ) LO1415; GA MŠk(CZ) LD14043; GA ČR(CZ) GA14-12262S; GA ČR GA13-19831S; GA ČR(CZ) GA16-16549S Institutional support: RVO:67179843 Keywords : Euro-CORDEX simulations * model bias correction * climate change * drought indices * Czech Republic Subject RIV: DA - Hydrology ; Limnology Impact factor: 1.578, year: 2016

  15. TheEffect of Salicylic Acid Application on Some Morphological and Physiological Characteristics of Grape Cultivars (Vitisvinifera L. Under Drought Stress Conditions

    Directory of Open Access Journals (Sweden)

    Nasser Abbaspour


    Full Text Available Introduction: Water stress is considered as a main environmental factor limiting crop growth and yield, including grape in Mediterranean areas.Selection for drought-tolerantvarieties is possible through investigation of their performance under stress conditions. The estimation of physiological characteristics as reliable indices can be used as a tool to select tolerant plants. For this reason, varieties and genotypes of one plant species are usually investigated through physiological characteristics and its relation to drought tolerance. Investigation of the effects of water stress on some growth and physiological characteristics in grape plants has revealed that plant height, number of leaves and nodes, leaf area and the percentage of dry weightdecreased under increasing drought stress. Salicylic Acid is a naturally occurring plant hormone whichinfluences various morphological and physiological functions in plant. It can act as an important signaling molecule and has diverse effects on biotic and abiotic stresses tolerance capacity. Materials and Methods: In this research, two-yearold grapesplanted in plastic pots containingingredients of humus, soil and sand (1:2:1 were used. The experiment was conducted using a factorial based on randomized complete block design with three factors including irrigation periods (every 5, 10 and 15 days, salicylic acid concentrations (0, 1 and 2 mM and grape cultivars (Rasheh andBidanesefid with 3 replications in thegreenhouse of faculty of agricultureinUrmia University. Plant height, stem diameter and leaf area and chlorophyll indicesweremeasuredby usingruler, digital caliper (Model22855 NO: Z, leaf Area Meter (ModelAM200 and SPAD-502 chlorophyll meter (Minolta Crop, Japan,respectively. In order to determine proline content, malondialdehyde (MDA, total protein and total soluble sugars, spectrophotometric methods [51,25,6and28] were utilized,respectively. Results and Discussion: Based on comparing the averages

  16. Correlation Coefficient, Path Analysis and Drought Tolerance Indices for Wheat under Deficit Irrigation Conditions and Nitrogen Levels

    Directory of Open Access Journals (Sweden)

    A. R Tavakoli


    Full Text Available In order to investigate the indices of drought tolerance, correlation coefficient and path analysis at deficit irrigation and nitrogen experiment, this experiment was conducted as split plot arranged in a randomized complete block design (RCBD with three replications during 2000-2003 for wheat at Maragheh agricultural research station of DARI. The treatments were included four levels of deficit irrigation (Rainfed, 100, 160 and 220mm of water use as main plots and five nitrogen rates (0, 30, 60, 90 and 120 kg.N.ha-1 as sub plots. Grain, straw and biological yield, harvest index, productivity degree, plant height, kernel number per spike, Spike number per square meter and TKW determined from the middle of each plot. There were positive significant correlations due to grain yield with all variables: harvest index (r = 0.969 , Productivity degree (r = 0.952 , straw yield (r = 0.904 , plant height (r = 0.904 , biological yield (r = 0.824 , Spike number per square meter (r = 0.817 , kernel number per spike (r = 0.773 and TKW (r = 0.612 respectively. Results of path analysis showed that increase in grain yield was due to increase spike number per square meter and kernel number per spike respectively. On based of indices of drought tolerance (Tolerance Index, Mean Productivity, Geometric Mean Productivity and Harmonic Mean, treatment of %66full irrigation combined with 90KgN.ha-1 was substantially increased water productivity.

  17. The effect of Piriformospora indica inoculation on salt and drought stress tolerance in Stevia rebaudiana under in vitro conditions

    Directory of Open Access Journals (Sweden)

    Fahimeh Seraj


    Full Text Available In order to investigate the effect of Piriformospora indica under salt and drought stresses on some vegetative characteristics and physiological parameters of stevia (Stevia rebaudiana Bertoni medicinal plant, an experiment was conducted in factorial arrangement based on completely randomized design with three replicates at Genetics and Agricultural Biotechnology Institute in Sari Agricultural Sciences and Natural Resources University. Factors include three levels of osmatic potential (0, -5, and -10 bar and with three osmotic sources including NaCl (Na, Mannitol (M and NaCl+Mannitol (N+M and inoculation of mycorrhizae like fungi at two levels (non-inoculated and inoculation with fungi. The plantlets were treated for 30 days and then some morphological and physiological parameters were measured. Results of ANOVA showed that there was a significant interaction between osmatic source and levels with fungi inoculation for the most determined parameters. Inoculation of stevia plantlets with P. indica at osmatic level of -5 bar caused either by M or M+Na markedly improved dry weight of leaf (112 and 156%, respectively and aerial parts (49 and 144%, respectively as compared to the uninoculated control. Fungi inoculation positively improved vegetative parameters of stevia plant under most osmatic levels and sources. The most ameliorate effect, however, was observed where M as drought stress or M+Na were adjusted to -5 bar. Therefore, the results of this study represented a positive effect of P. indica inoculation in inproving osmotic tolerance of stevia medicinal plant.

  18. Updated numerical model with uncertainty assessment of 1950-56 drought conditions on brackish-water movement within the Edwards aquifer, San Antonio, Texas (United States)

    Brakefield, Linzy K.; White, Jeremy T.; Houston, Natalie A.; Thomas, Jonathan V.


    In 2010, the U.S. Geological Survey, in cooperation with the San Antonio Water System, began a study to assess the brackish-water movement within the Edwards aquifer (more specifically the potential for brackish-water encroachment into wells near the interface between the freshwater and brackish-water transition zones, referred to in this report as the transition-zone interface) and effects on spring discharge at Comal and San Marcos Springs under drought conditions using a numerical model. The quantitative targets of this study are to predict the effects of higher-than-average groundwater withdrawals from wells and drought-of-record rainfall conditions of 1950–56 on (1) dissolved-solids concentration changes at production wells near the transition-zone interface, (2) total spring discharge at Comal and San Marcos Springs, and (3) the groundwater head (head) at Bexar County index well J-17. The predictions of interest, and the parameters implemented into the model, were evaluated to quantify their uncertainty so the results of the predictions could be presented in terms of a 95-percent credible interval.

  19. Exploring the linkage between drought, high temperatures, and hydrologic sensitivities: A case study of the 2012 Great Plains drought. (United States)

    Livneh, B.; Hoerling, M. P.


    The occurrence of drought is associated with agricultural loss, water supply shortfalls, and other economic impacts. Here we explore the physical relationships between precipitation deficits, high temperatures, and hydrologic responses as a pathway to better anticipate drought impacts. Current methodologies to predict hydrologic scarcity include local monitoring of river flows, remote sensing of land-surface wetness, drought indices, expert judgment, climate indices (e.g. SST-relationships) and the application of hydrologic models. At longer lead times, predictions of drought have most frequently been made on the basis of GCM ensembles, with subsequent downscaling of those to scales over which hydrologic predictions can be made. This study focuses on two important aspects of drought. First, we explore the causal hydro-climatic timeline of a drought event, namely (a) the lack of precipitation, which serves to reduce soil moisture and produce (b) a skewed Bowen ratio, i.e. comparatively more sensible heating (warming) with less ET, resulting in (c) anomalously warm conditions. We seek to assess the extent to which the lack of precipitation contributes to warming temperatures, and the further effects of that warming on hydrology and the severity of drought impacts. An ensemble of GCM simulations will be used to explore the evolution of the land surface energy budget during a recent Great Plains drought event, which will subsequently be used to drive a hydrologic model. Second, we examine the impacts of the critical assumptions relating climatic variables with water demand, specifically the relationship between potential evapotranspiration (PET) and temperature. The common oversimplification in relating PET to temperature is explored against a more physically consistent energy balance estimate of PET, using the Penman-Monteith approach and the hydrologic impacts are presented. Results from this work are anticipated to have broad relevance for future water management

  20. Effects of Nano Chelated Zinc and Mycorrhizal Fungi Inoculation on Some Agronomic and Physiological Characteristics of Safflower (Carthamus tinctorius L. under Drought Stress Conditions

    Directory of Open Access Journals (Sweden)

    E Rezaei Chiyaneh


    biotic (root pathogens stress resistance of the host. Materials and Methods In order to evaluate the effects of nano-zinc fertilizer and mycorrhizal fungi symbiosis on some agronomic and physiological characteristics of safflower (Carthamus tinctorius L. under drought stress conditions, an experiment was arranged as split plot based on randomized complete block design with three replications at the Agricultural Research Station, West Azarbaijan Province, Naghadeh city during growing season of 2013-2014. The main factor consisted of four irrigation levels (irrigation after 60, 110, 160 and 210 mm evaporation from pan and sub factor included four fertilizer levels (nano fertilizer, mycorrhizal, mycorrhizal+nano fertilizer and control. Studied traits were number of head per plant, number of seed per head, 1000-seed weight, biological yield, seed yield, oil percentage, soluble sugars and proline contents. For statistical analysis, analysis of variance (ANOVA and Duncan’s multiple range test (DMRT were performed using SAS version 9.9 (SAS Institute Inc., Cary, NC, USA. Results and Discussion The results declared that increasing drought stress decreased yield and yield components (such as number of head per plant, number of seed per head and 1000-seed weight significantly. But, application of fertilizer sources decreased the drought effects, so in irrigation levels, application of nano fertilizer, mycorrhizal and mycorrhizal+nano fertilizer increased these traits. The highest seed yield (2588 kg.ha-1 was obtained in irrigation after 60 mm evaporation of pan with using mycorrhizal+nano fertilizer and the lowest amount (1836.6 kg.ha-1 from irrigation after 210 mm evaporation of pan and control. Oil percentage decreased by increasing drought stress, but oil percentage with application of mycorrhizal+nano fertilizer significantly increased (11% compared to control (without application fertilizers. Increasing drought stress and use of nano zinc fertilizer and mycorrhizal

  1. Quantification of agricultural drought occurrence as an estimate for insurance programs (United States)

    Bannayan, M.; Hoogenboom, G.


    Temporal irregularities of rainfall and drought have major impacts on rainfed cropping systems. The main goal of this study was to develop an approach for realizing drought occurrence based on local winter wheat yield loss and rainfall. The domain study included 11 counties in the state of Washington that actively grow rainfed winter wheat and an uncertainty rainfall evaluation model using daily rainfall values from 1985 to 2007. An application was developed that calculates a rainfall index for insurance that was then used to determine the drought intensity for each study year and for each study site. Evaluation of the drought intensity showed that both the 1999-2000 and 2000-2001 growing seasons were stressful years for most of the study locations, while the 2005-2006 and the 2006-2007 growing seasons experienced the lowest drought intensity for all locations. Our results are consistent with local extension reports of drought occurrences. Quantification of drought intensity based on this application could provide a convenient index for insurance companies for determining the effect of rainfall and drought on crop yield loss under the varying weather conditions of semi-arid regions.

  2. Hydraulic responses to extreme drought conditions in three co-dominant tree species in shallow soil over bedrock. (United States)

    Kukowski, Kelly R; Schwinning, Susanne; Schwartz, Benjamin F


    An important component of the hydrological niche involves the partitioning of water sources, but in landscapes characterized by shallow soils over fractured bedrock, root growth is highly constrained. We conducted a study to determine how physical constraints in the root zone affected the water use of three tree species that commonly coexist on the Edwards Plateau of central Texas; cedar elm (Ulmus crassifolia), live oak (Quercus fusiformis), and Ashe juniper (Juniperus ashei). The year of the study was unusually dry; minimum predawn water potentials measured in August were -8 MPa in juniper, less than -8 MPa in elm, and -5 MPa in oak. All year long, species used nearly identical water sources, based on stable isotope analysis of stem water. Sap flow velocities began to decline simultaneously in May, but the rate of decline was fastest for oak and slowest for juniper. Thus, species partitioned water by time when they could not partition water by source. Juniper lost 15-30 % of its stem hydraulic conductivity, while percent loss for oak was 70-75 %, and 90 % for elm. There was no tree mortality in the year of the study, but 2 years later, after an even more severe drought in 2011, we recorded 34, 14, 6, and 1 % mortality among oak, elm, juniper, and Texas persimmon (Diospyros texana), respectively. Among the study species, mortality rates ranked in the same order as the rate of sap flow decline in 2009. Among the angiosperms, mortality rates correlated with wood density, lending further support to the hypothesis that species with more cavitation-resistant xylem are more susceptible to catastrophic hydraulic failure under acute drought.

  3. Identification of ISSR and RAPD markers linked to yield traits in bread wheat under normal and drought conditions

    Directory of Open Access Journals (Sweden)

    A.G.A. Khaled


    Full Text Available Genetic variability and identification of some molecular markers were studied in twenty promising lines of wheat using agronomic traits, ISSR (inter simple sequences repeats and RAPD (random amplified polymorphic DNA markers. Significant variation was evidenced in all agronomic traits. The lines proved to be superior to the check cultivar Sahel1 in yield and its component traits. Lines L2, L7 and L8 were the best in most yield component traits in both seasons. Moreover, Lines L2, L4, L5, L7 and L8 showed drought tolerance by which they displayed high performance in agronomic traits as well as a low drought susceptibility index. The percentage of polymorphism was 39.3% and 53.2% for ISSRs and RAPDs, respectively. UBC-881 belonged to penta-nucleotide repeat sequences (GGGTG that produced the highest level of polymorphism, while UBC-846 belonged to di-nucleotide repeat sequences (CA that produced the lowest level of polymorphism. Genetic similarities among wheat lines based on ISSR and RAPD markers ranged from 0.81 to 1.00 and from 0.86 to 0.98, respectively. There was a low average of PIC (polymorphism information content values which were 0.10 (ISSR and 0.15 (RAPD. The RAPD technique exhibited a higher marker index (MI = 0.69 compared to ISSR (MI = 0.43. There was insignificant correlation between ISSR and RAPD data (0.168, p > 0.05. There were two markers (UBC-881450bp and OPF-10540bp, on each of which two traits regressed significantly. The associated markers each explained a maximum regression of 18.92–34.95% of the total available variation for individual associated traits.

  4. Characterization of the RAPD for 6 Durum wheat lines (Triticum durum desf.) selected from M4-irradiated population under drought conditions

    International Nuclear Information System (INIS)

    Kalil, M.K.; Nesiem, M.R.A.; Kassem, M.K.M.; Basyouny, M.A.E.


    Grains of two durum wheat cultivars Sohag 3 and Beni Suef 3 were irradiated with different doses of gamma ray 0, 150, 250 and 350 Gy to obtain new durum wheat lines characterized by high yielding and drought tolerance. Irradiated grins were cultivated in the field under normal and drought conditions during 2005-2009 Results of field experiments showed that there were new six putative lines S1, S2, S3, S4, B1 and B2. Each putative line had superiority than its parent in grain yield / plant. The putative lines S1 and S2 had superiority over their parent Sohag 3 under normal conditions in grain yield per plant this increase equal 52 and 60% respectively. The putative lines S3 and S4 had superiority in grain yield per plan as compared to Sohag 3 under drought conditions this increase equal 75 to 58% respectively. The putative lines B1 and B2 had superiority in grain yield per plant than their parent Beni Suef 3 under normal condition this increase equal 46 and 12% respectively. Results for RAPD markers showed that each putative line was characterized by positive and negative unique marker. The putative line S1: characterized by four negative marker amplified by OPM-05, OPN-04, OPA-18 and OPB-12 primers. The putative line S2: characterized by one negative unique marker amplified by OPQ-14 marker. The putative line S3: characterized by two positive markers amplified by OPB-07 and OPG-12 markers and one negative unique marker amplified by OPA-10 marker. The putative line S4: characterized by four negative markers amplified by OPM-05, OPN-13, OPQ-12 and OPQ-14 markers and one positive unique marker amplified by OPC-05 marker. The putative line B1: characterized by four positive markers amplified by OPA-10, OPG-12, OPB-07 and OPA-18 markers and three negative markers amplified with OPM-05, OPC-05 and OPB-12 markers. The putative line B2: characterized by three positive unique marker amplified by OPB-07, OPN-04, OPN-10 markers and four negative markers amplified with OPA-10

  5. Central localization of plasticity involved in appetitive conditioning in Lymnaea


    Straub, Volko A.; Styles, Benjamin J.; Ireland, Julie S.; O'Shea, Michael; Benjamin, Paul R.


    Learning to associate a conditioned (CS) and unconditioned stimulus (US) results in changes in the processing of CS information. Here, we address directly the question whether chemical appetitive conditioning of Lymnaea feeding behavior involves changes in the peripheral and/or central processing of the CS by using extracellular recording techniques to monitor neuronal activity at two stages of the sensory processing pathway. Our data show that appetitive conditioning does not affect signific...

  6. Soil acidification occurs under ambient conditions but is retarded by repeated drought: Results of a field-scale climate manipulation experiment

    Energy Technology Data Exchange (ETDEWEB)

    Kopittke, G.R.; Tietema, A., E-mail:; Verstraten, J.M.


    Acid atmospheric emissions within Europe and North America have decreased strongly since 1985 and most recent acidification studies have focused on the changes occurring within ecosystems as a result of this decreased deposition. This current study documents a soil acidification trend under ambient N deposition conditions over a 13 year period, suggesting that acidification continues to be a process of concern at this Calluna vulgaris dominated heathland with an acidic sandy soil. The annual manipulation of climatic conditions on this heathland simulated the predicted summer rainfall reduction (drought) and resulted in a long term retardation of the soil acidification trend. The pH of the soil solution significantly decreased over the course of the trial for both treatments, however, in the final 2 years the decline continued only in the Control treatment. This retardation is primarily associated with the reduction in rainfall leading to lower drainage rates, reduced loss of cations and therefore reduced lowering of the soil acid neutralizing capacity (ANC). However, a change in the underlying mechanisms also indicated that N transformations became less important in the Drought treatment. This change corresponded to an increase in groundcover of an air-pollution tolerant moss species and it is hypothesized that this increasing moss cover filtered an increasing quantity of deposited N, thus reducing the N available for transformation. A soil acidification lag time is expected to increase between the two treatments due to the cumulative disparity in cation retention and rates of proton formation. To the authors' knowledge, this is the first study in which such acidification trends have been demonstrated in a field-scale climate manipulation experiment. -- Highlights: Black-Right-Pointing-Pointer A unique investigation of acidification on a field-scale climate manipulation trial. Black-Right-Pointing-Pointer Soil acidification occurred over 13 years of ambient N

  7. Joint pattern of seasonal hydrological droughts and floods ...

    Indian Academy of Sciences (India)

    Under the current condition of climate change, droughts and floods occur more frequently, and events in which flooding occurs after a prolonged drought or a drought occurs after an extreme flood may have a more severe impact on natural systems and human lives. This challenges the traditional approach wherein droughts ...

  8. Drought as a natural disaster

    Energy Technology Data Exchange (ETDEWEB)

    Maybank, J. [Agvironics Consulting, SK (Canada); Bonsal, B. [Saskatchewan Univ., Saskatoon, SK (Canada). Dept. of Geography; Jones, K. [Environment Canada, Downsview, ON (Canada). Canadian Climate Centre; Lawford, R. [Canadian Climate Centre, Saskatoon, SK (Canada). National Hydrology Research Centre; O`Brien, E.G. [Agriculture Canada, Ottawa, ON (Canada). Energy Analysis and Policy Div.; Ripley, E.A. [Saskatchewan Univ., Saskatoon, SK (Canada). Dept. of Soil Science; Wheaton, E. [Saskatchewan Research Council, Saskatoon, SK (Canada)


    A discussion of droughts as a major natural disaster in dry areas such as the Canadian Prairies where precipitation patterns are seasonal, was presented. Environmental damages include soil degradation and erosion, vegetation damage, slough and lake deterioration and wildlife loss. The development and application of specific soil moisture and drought indices based on cumulative precipitation deficits have enhanced drought monitoring programs. The identification of precursor conditions raises the possibility that the likelihood of a drought occurring in a particular year or growing season might be predictable. The ability to forecast seasonal temperature and precipitation anomalies is potentially feasible using a suitable merging of precursor parameters and modelling methodologies. Research activity to identify and evaluate new mitigative measure should be increased to keep pace with the prospects of drought predictability. 90 refs., 1 tab., 7 figs.

  9. Effect of Drought Stress onYield and Yield Components of Sesame cultivars under Kerman conditions (Sesamum indicum L.

    Directory of Open Access Journals (Sweden)

    S Farahbakhsh


    Full Text Available To investigate effects of drought stress on yield and yield components of sesame in Kerman region a split-plot experiment based onn compelet randomised block design with three replications was carried out in 1388. Irrigation levels (Normal irrigation in all growth stages, witholding water after 50% flowering, witholding water after 50% pod setting and differen t sesame landraces (Jiroft, Shiraz, Ardestan, Dezful, Shahr babak, Gorgan, Sirjan, Markazi, Birjand and Orzueieh were considered as main plots and sub-plots respectively. Plant height, the biggest pod length, noumber of grain per pod, noumber of pod per plant, grain weight per plant, thousand grain weight and grain yield were the measured traits. Results showed all the measured traits were significantly affected by the irrigation treatments. The effects of different landraces on all traits except noumber of grain per plant were significant. Irrigation × landraces interaction affected all measured traits except the biggest pod length significantly. The highest grain yield was recorde for Markezi landrace (845.2 kg –ha under normal irrigation and the lowest one was obtained from Jiroft landrace (104.8 kg –ha with witholding irrigation after 50% flowering.

  10. Drought in a human-modified world: reframing drought definitions, understanding, and analysis approaches (United States)

    Van Loon, Anne F.; Stahl, Kerstin; Di Baldassarre, Giuliano; Clark, Julian; Rangecroft, Sally; Wanders, Niko; Gleeson, Tom; Van Dijk, Albert I. J. M.; Tallaksen, Lena M.; Hannaford, Jamie; Uijlenhoet, Remko; Teuling, Adriaan J.; Hannah, David M.; Sheffield, Justin; Svoboda, Mark; Verbeiren, Boud; Wagener, Thorsten; Van Lanen, Henny A. J.


    are considered normal or reference conditions) over time? Answering these questions requires exploration of qualitative and quantitative data as well as mixed modelling approaches. The challenges related to drought research and management in the Anthropocene are not unique to drought, but do require urgent attention. We give recommendations drawn from the fields of flood research, ecology, water management, and water resources studies. The framework presented here provides a holistic view on drought in the Anthropocene, which will help improve management strategies for mitigating the severity and reducing the impacts of droughts in future.

  11. Application of Dynamic naïve Bayesian classifier to comprehensive drought assessment (United States)

    Park, D. H.; Lee, J. Y.; Lee, J. H.; KIm, T. W.


    Drought monitoring has already been extensively studied due to the widespread impacts and complex causes of drought. The most important component of drought monitoring is to estimate the characteristics and extent of drought by quantitatively measuring the characteristics of drought. Drought assessment considering different aspects of the complicated drought condition and uncertainty of drought index is great significance in accurate drought monitoring. This study used the dynamic Naïve Bayesian Classifier (DNBC) which is an extension of the Hidden Markov Model (HMM), to model and classify drought by using various drought indices for integrated drought assessment. To provide a stable model for combined use of multiple drought indices, this study employed the DNBC to perform multi-index drought assessment by aggregating the effect of different type of drought and considering the inherent uncertainty. Drought classification was performed by the DNBC using several drought indices: Standardized Precipitation Index (SPI), Streamflow Drought Index (SDI), and Normalized Vegetation Supply Water Index (NVSWI)) that reflect meteorological, hydrological, and agricultural drought characteristics. Overall results showed that in comparison unidirectional (SPI, SDI, and NVSWI) or multivariate (Composite Drought Index, CDI) drought assessment, the proposed DNBC was able to synthetically classify of drought considering uncertainty. Model provided method for comprehensive drought assessment with combined use of different drought indices.

  12. Conditionally exponential convex functions on locally compact groups

    International Nuclear Information System (INIS)

    Okb El-Bab, A.S.


    The main results of the thesis are: 1) The construction of a compact base for the convex cone of all conditionally exponential convex functions. 2) The determination of the extreme parts of this cone. Some supplementary lemmas are proved for this purpose. (author). 8 refs

  13. Teleportation protocol with non-ideal conditional local operations

    Energy Technology Data Exchange (ETDEWEB)

    Di Franco, C., E-mail: cdifranco@caesar.ucc.i [Department of Physics, University College Cork, Cork (Ireland); Ballester, D. [School of Mathematics and Physics, Queen' s University, Belfast BT7 1NN (United Kingdom)


    We analyze teleportation protocol when some of receiver's conditional operations are more reliable than others and a non-maximally entangled channel is shared by the two parts. We show that the average fidelity of teleportation can be maximized by choosing properly the basis in which the sender performs her two-qubit measurement.

  14. Open or close the gate – stomata action under the control of phytohormones in drought stress conditions

    Directory of Open Access Journals (Sweden)

    Agata eDaszkowska-Golec


    Full Text Available Two highly specialized cells, the guard cells that surround the stomatal pore, are able to integrate environmental and endogenous signals in order to control the stomatal aperture and thereby the gas exchange. The uptake of CO2 is associated with a loss of water by leaves. Control of the size of the stomatal aperture optimizes the efficiency of water use through dynamic changes in the turgor of the guard cells. The opening and closing of stomata is regulated by the integration of environmental signals and endogenous hormonal stimuli. The various different factors to which the guard cells respond translates into the complexity of the network of signaling pathways that control stomatal movements. The perception of an abiotic stress triggers the activation of signal transduction cascades that interact with or are activated by phytohormones. Among these, abscisic acid (ABA, is the best-known stress hormone that closes the stomata, although other phytohormones, such as jasmonic acid, brassinosteroids, cytokinins or ethylene are also involved in the stomatal response to stresses. As a part of the drought response, ABA may interact with jasmonic acid and nitric oxide in order to stimulate stomatal closure. In addition, the regulation of gene expression in response to ABA involves genes that are related to ethylene, cytokinins and auxin signaling. In this paper, recent findings on phytohormone crosstalk, changes in signaling pathways including the expression of specific genes and their impact on modulating stress response through the closing or opening of stomata, together with the highlights of gaps that need to be elucidated in the signaling network of stomatal regulation, are reviewed.

  15. Local Government Units in Indonesia: Demographic Attributes and Differences in Financial Condition

    Directory of Open Access Journals (Sweden)

    Rusmin Rusmin


    Full Text Available This study examines the outcome of decentralisation reforms in Indonesia, focusing on the association between demographic characteristics and differences in the financial condition of local governments units. It investigates cross-sectional data pertaining to demographic characteristics and financial statements audited by the Supreme Audit Body of 419 Indonesian local government units for the fiscal year 2007. It utilises demographic attributes including scope of entity, location, tenure (date of entry, gender, human development index (HDI and size of local governments to explain differences in the financial condition of Indonesia’s local government. Local government financial condition is proxied by quick ratio, debt ratio, services ratio, and ratio of local to total revenues. The results suggest that scope and location of local government units help explain all of the financial condition variables. The findings further infer that local government units domiciled in Java tend to report better financial conditions relative to those domiciled in other islands. Our results also show that local government units with greater female populations and higher HDI are more likely to have a local authority that (1 has better ability to finance their general services from their unrestricted net assets, and (2 has greater ability to earn more revenues from local sources. Finally, this study documents that the larger the population of a local government unit, the higher its liquidity position, the stronger its ability to funding general services, and the greater its possibility earning revenues from its local sources.

  16. Local Stability Conditions for Two Types of Monetary Models with Recursive Utility


    Miyazaki, Kenji; Utsunomiya, Hitoshi


    This paper explores local stability conditions for money-in-utility-function (MIUF) and transaction-costs (TC) models with recursive utility.A monetary variant of the Brock-Gale condition provides a theoretical justification of the comparative statics analysis. One of sufficient conditions for local stability is increasing marginal impatience (IMI) in consumption and money. However, this does not deny the possibility of decreasing marginal impatience (DMI). The local stability with DMI is mor...

  17. Wall conditioning and leak localization in the advanced toroidal facility

    International Nuclear Information System (INIS)

    Langley, R.A.; Glowienka, J.C.; Mioduszewski, P.K.; Murakami, M.; Rayburn, T.F.; Simpkins, J.E.; Schwenterly, S.W.; Yarber, J.L.


    The Advanced Toroidal Facility (ATF) vacuum vessel and its internal components have been conditioned for plasma operation by baking, discharge cleaning with hydrogen and helium, and gettering with chromium and titanium. The plasma-facing surface of ATF consists mainly of stainless steel with some graphite; the outgassing area is dominated by the graphite because of its open porosity. Since this situation is somewhat different from that in other fusion plasma experiments, in which a single material dominates both the outgassing area and the plasma-facing area, different cleaning and conditioning techniques are required. The situation was aggravated by air leaks in the vacuum vessel, presumably resulting from baking and from vibration during plasma operation. The results of the various cleaning and conditioning techniques used are presented and compared on the basis of residual gas analysis and plasma performance. A technique for detecting leaks from the inside of the vacuum vessel is described; this technique was developed because access to the outside of the vessel is severely restricted by external components. 10 refs., 6 figs., 2 tabs

  18. Wall conditioning and leak localization in the Advanced Toroidal Facility

    International Nuclear Information System (INIS)

    Langley, R.A.; Glowienka, J.C.; Mioduszewski, P.K.; Murakami, M.; Rayburn, T.F.; Simpkins, J.E.; Schwenterly, S.W.; Yarber, J.L.


    The Advanced Toroidal Facility (ATF) vacuum vessel and its internal components have been conditioned for plasma operation by baking, discharge cleaning with hydrogen and helium, and gettering with chromium and titanium. The plasma-facing surface of ATF consists mainly of stainless steel with some graphite; the outgassing area is dominated by the graphite because of its open porosity. Since this situation is somewhat different from that in other fusion plasma experiments, in which a single material dominates both the outgassing area and the plasma-facing area, different cleaning and conditioning techniques are required. The situation was aggravated by air leaks in the vacuum vessel, presumably resulting from baking and from vibration during plasma operation. The results of the various cleaning and conditioning techniques used are presented and compared on the basis of residual gas analysis and plasma performance. A technique for detecting leaks from the inside of the vacuum vessel is described. This technique was developed because access to the outside of the vessel is severely restricted by external components

  19. A return to the genetic heritage of durum wheat to cope with drought heightened by climate change. (United States)

    Slama, Amor; Mallek-Maalej, Elhem; Ben Mohamed, Hatem; Rhim, Thouraya; Radhouane, Leila


    The objective of this work was to perform a comparative analysis of the physiological, biochemical and agronomical parameters of recent and heritage durum wheat cultivars (Triticum durum Desf.) under water-deficit conditions. Five cultivars were grown under irrigated (control) and rainfall (stressed) conditions. Different agro-physiological and biochemical parameters were studied: electrolyte leakage, relative water content, chlorophyll fluorescence, proline, soluble sugars, specific peroxidase activity, yield and drought stress indices. It was revealed that a water deficit increased proline content, electrolyte leakage, soluble sugars and specific peroxidase activity and decreased relative water content, fluorescence and grain yield. According to these parameters and drought stress indices, our investigation indicated that old cultivars are the best-adapted to local conditions and showed characteristics of drought tolerance, while recent cultivars showed more drought susceptibility. Therefore, local cultivars of each country should be kept by farmers and plant breeders to preserve their genetic heritage.

  20. Physiological basis of genetic variation in leaf photosynthesis among rice (Oryza sativa L.) introgression lines under drought and well-watered conditions (United States)

    Yin, Xinyou


    To understand the physiological basis of genetic variation and resulting quantitative trait loci (QTLs) for photosynthesis in a rice (Oryza sativa L.) introgression line population, 13 lines were studied under drought and well-watered conditions, at flowering and grain filling. Simultaneous gas exchange and chlorophyll fluorescence measurements were conducted at various levels of incident irradiance and ambient CO2 to estimate parameters of a model that dissects photosynthesis into stomatal conductance (g s), mesophyll conductance (g m), electron transport capacity (J max), and Rubisco carboxylation capacity (V cmax). Significant genetic variation in these parameters was found, although drought and leaf age accounted for larger proportions of the total variation. Genetic variation in light-saturated photosynthesis and transpiration efficiency (TE) were mainly associated with variation in g s and g m. One previously mapped major QTL of photosynthesis was associated with variation in g s and g m, but also in J max and V cmax at flowering. Thus, g s and g m, which were demonstrated in the literature to be responsible for environmental variation in photosynthesis, were found also to be associated with genetic variation in photosynthesis. Furthermore, relationships between these parameters and leaf nitrogen or dry matter per unit area, which were previously found across environmental treatments, were shown to be valid for variation across genotypes. Finally, the extent to which photosynthesis rate and TE can be improved was evaluated. Virtual ideotypes were estimated to have 17.0% higher photosynthesis and 25.1% higher TE compared with the best genotype investigated. This analysis using introgression lines highlights possibilities of improving both photosynthesis and TE within the same genetic background. PMID:22888131

  1. California's Drought - Stress test for the future (United States)

    Lund, J. R.


    The current California drought is in its third dry years, with this year being the third driest years in a 106-year record. This drought occurs at a time when urban, agricultural, and environmental water demands have never been greater. This drought has revealed the importance of more quantitative evaluation and methods for water assessment and management. All areas of water and environmental management are likely to become increasingly stressed, and have essentially drought-like conditions, in the future, as California's urban, agricultural, and environmental demands continue to expand and as the climate changes. In the historical past, droughts have pre-viewed stresses developing in the future and helped focus policy-makers, the public, and stakeholders on preparing for these developing future conditions. Multi-decade water management strategies are often galvinized by drought. Irrigation was galvanized by California droughts in the 1800s, reservoir systems by the 1928-32 drought, urban water conservation by the 1976-77 drought, and water markets by the 1988-92 drought. With each drought, demands for tighter accounting, rights, and management have increased. This talk reviews the prospects and challenges for increased development and use of water data and systems analysis in the service of human and environmental water demands in California's highly decentralized water management system, and the prospects if these challenges are not more successfully addressed.

  2. Instrumentation for localized measurements in two-phase flow conditions

    International Nuclear Information System (INIS)

    Neff, G.G.; Averill, R.H.; Shurts, S.W.


    Three types of instrumentation that have been developed by EG and G Idaho, Inc., and its predecessor, Aerojet Nuclear company, at the Idaho National Engineering Laboratory to investigate two-phase flow phenomenon in a nuclear reactor at the Loss-of-Fluid Test (LOFT) facility are discussed: (a) a combination drag disc-turbine transducer (DTT), (b) a multibeam nuclear hardened gamma densitometer system, and (c) a conductivity sensitive liquid level transducer (LLT). The DTT obtains data on the complex problem of two-phase flow conditions in the LOFT primary coolant system during a loss-os-coolant experiment (LOCE). The discussion of the DTT describes how a turbine, measuring coolant velocity, and a drag disc, measuring coolant momentum flux, can provide valuable mass flow data. The nuclear hardened gamma densitometer is used to obtain density and flow regime information for two-phase flow in the LOFT primary coolant system during a LOCE. The LLT is used to measure water and steam conditions within the LOFT reactor core during a LOCE. The LLT design and the type of data obtained are described

  3. Desiccation and Mortality Dynamics in Seedlings of Different European Beech (Fagus sylvatica L.) Populations under Extreme Drought Conditions

    DEFF Research Database (Denmark)

    Bolte, Andreas; Czajkowski, Tomasz; Cocozza, Claudia


    European beech (Fagus sylvatica L., hereafter beech), one of the major native tree species in Europe, is known to be drought sensitive. Thus, the identification of critical thresholds of drought impact intensity and duration are of high interest for assessing the adaptive potential of European...

  4. Stability of niclosamide in water under local conditions

    International Nuclear Information System (INIS)

    El Hindi, A.M.; Sidra, M.S.


    The stability of 14 C-labelled niclosamide was studied in distilled water at two different pH values and in canal water. 2 mg/1 niclosamide solutions were exposed to direct atmospheric conditions. The activity was followed by radioassay and the concentration of niclosamide was determined by GLC. The total activity was found to decrease to 46.0% in weakly acidic solution (pH 6.5), 45% in neutral solution (pH 7.0) and 16.7% in filtered canal water after three weeks. GLC analysis showed that niclosamide concentration had dropped to 0.05, 0.06 and 0.03 mg/1 in weakly acidic, neutral medium and canal water after the same period. GLC analysis as compared to radioassay indicated the presence of increasing amounts of degradation product(s), in the chloroform extracts of water with time, which were not detected by GLC

  5. Hydrologic and water-quality conditions in the lower Apalachicola-Chattahoochee-Flint and parts of the Aucilla-Suwannee-Ochlockonee River basins in Georgia and adjacent parts of Florida and Alabama during drought conditions, July 2011 (United States)

    Gordon, Debbie W.; Peck, Michael F.; Painter, Jaime A.


    As part of the U.S. Department of the Interior sustainable water strategy, WaterSMART, the U.S. Geological Survey documented hydrologic and water-quality conditions in the lower Apalachicola-Chattahoochee-Flint and western and central Aucilla-Suwannee-Ochlockonee River basins in Alabama, Florida, and Georgia during low-flow conditions in July 2011. Moderate-drought conditions prevailed in this area during early 2011 and worsened to exceptional by June, with cumulative rainfall departures from the 1981-2010 climate normals registering deficits ranging from 17 to 27 inches. As a result, groundwater levels and stream discharges measured below median daily levels throughout most of 2011. Water-quality field properties including temperature, dissolved oxygen, specific conductance, and pH were measured at selected surface-water sites. Record-low groundwater levels measured in 12 of 43 surficial aquifer wells and 128 of 312 Upper Floridan aquifer wells during July 2011 underscored the severity of drought conditions in the study area. Most wells recorded groundwater levels below the median daily statistic, and 7 surficial aquifer wells were dry. Groundwater-level measurements taken in July 2011 were used to determine the potentiometric surface of the Upper Floridan aquifer. Groundwater generally flows to the south and toward streams except in reaches where streams discharge to the aquifer. The degree of connection between the Upper Floridan aquifer and streams decreases east of the Flint River where thick overburden hydraulically separates the aquifer from stream interaction. Hydraulic separation of the Upper Floridan aquifer from streams located east of the Flint River is shown by stream-stage altitudes that differ from groundwater levels measured in close proximity to streams. Most streams located in the study area during 2011 exhibited below normal flows (streamflows less than the 25th percentile), substantiating the severity of drought conditions that year. Streamflow

  6. Description of future drought indices in Virginia

    Directory of Open Access Journals (Sweden)

    Hyunwoo Kang


    Full Text Available This article presents projected future drought occurrences in five river basins in Virginia. The Soil and Water Assessment Tool (SWAT and the Coupled Model Intercomparison Project Phase 5 (CMIP5 climate models were used to derive input variables of multiple drought indices, such as the Standardized Soil Moisture index (SSI, the Multivariate Standardized Drought Index (MSDI, and the Modified Palmer Drought Severity Index (MPDSI for both historic and future periods. The results of SSI indicate that there was an overall increase in agricultural drought occurrences and that these were caused by increases in evapotranspiration and runoff. However, the results of the MSDI and MPDSI projected a decrease in drought occurrences in future periods due to a greater increase in precipitation in the future. Furthermore, GCM-downscaled products (precipitation and temperature were verified using comparisons with historic observations, and the results of uncertainty analyses suggest that the lower and upper bounds of future drought projections agree with historic conditions.

  7. Innovative Radiating Systems for Train Localization in Interference Conditions

    Directory of Open Access Journals (Sweden)

    C. Vegni


    Full Text Available The design of innovative radiating systems based on the metamaterial technology for GNSS (Global Navigation Satellite System applications in radio frequency (RF interference conditions is proposed. To this aim, firstly two typical adaptive array techniques (i.e., nulling and beam-forming are discussed and tradeed off. Secondly, FRPA (Fixed Radiation Pattern Antenna and CRPA (Controlled Radiation Pattern Antenna phased array configurations of miniaturized patch antennas are studied by means of electromagnetic commercial tools and phased array optimization algorithms. This process leads to the identification of a phased array design. Benefits and drawbacks for GNSS applications are highlighted. Finally, the design of the phased array is applied to a GNSS user receiver in a navigation realistic environment. Simulation results are obtained in a realistic scenario for railway applications, comprising of a GNSS satellite constellation, a GNSS user receiver (i.e., on-board train equipment running along a track in Western Australia, and a constellation of interfering satellites. Navigation service performances (i.e., user location accuracy and service availability are computed taking into account the adaptive array radiation pattern in two different modes (i.e., FRPA or CRPA and band-limited white noise interference.

  8. Adaptation of AASHTO Pavement Design Guide for Local Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Hajek, J.J. [Applied Research Associates Inc., Toronto, ON (Canada)


    The methodology used to adapt the 1993 AASHTO Guide for Design of Pavement Structures to Ontario conditions was described. The guide expresses the effect of traffic loads on pavement performance using the concept of axle Load Equivalency Factors (LEF). LEF is regarded as a pavement damage factor assigned to each specific load and axle configuration. The size of LEF is related to the damage that is expected to occur from a standard load of 80 kN carried by a single axle with dual tires. The factors are summarized to yield the number of Equivalent Single Axle Loads (ESALs) a pavement is expected to sustain during its life. A summary was also provided of the additional work done to prepare for the transition to the proposed mechanistically-based 2002 AASHTO Guide. The paper focused only on the design of flexible pavements in terms of load characterization using equivalent single axle loads along with axle load spectra, below grade and material characterization, plus initial and terminal serviceability and reliability. The AASHTO Guide uses two parameters to deal with design reliability: design reliability level and overall standard deviation. Data collected on Ontario highway pavements and materials was used for assessing the design inputs. Other data was also collected from research and development studies, laboratory experiments, and from a survey of experienced pavement design engineers. The end result was a new grouping of Ontario soils for pavement design, recommended values for the resilient modulus of below grade soils, recommendations for structural layer coefficients for Ontario pavement materials and recommendations for the initial pavement serviceability based on Ontario smoothness specifications. Results of calibration and verification processes indicate that for new flexible pavements, the AASHTO-Ontario model is in good agreement with the observed results. It was recommended that the calibration and verification of the AASHTO-Ontario model should be a

  9. GRACE Gravity Satellite Observations of Terrestrial Water Storage Changes for Drought Characterization in the Arid Land of Northwestern China

    Directory of Open Access Journals (Sweden)

    Yanping Cao


    Full Text Available Drought is a complex natural hazard which can have negative effects on agriculture, economy, and human life. In this paper, the primary goal is to explore the application of the Gravity Recovery and Climate Experiment (GRACE gravity satellite data for the quantitative investigation of the recent drought dynamic over the arid land of northwestern China, a region with scarce hydrological and meteorological observation datasets. The spatiotemporal characteristics of terrestrial water storage changes (TWSC were first evaluated based on the GRACE satellite data, and then validated against hydrological model simulations and precipitation data. A drought index, the total storage deficit index (TSDI, was derived on the basis of GRACE-recovered TWSC. The spatiotemporal distributions of drought events from 2003 to 2012 in the study region were obtained using the GRACE-derived TSDI. Results derived from TSDI time series indicated that, apart from four short-term (three months drought events, the study region experienced a severe long-term drought from May 2008 to December 2009. As shown in the spatial distribution of TSDI-derived drought conditions, this long-term drought mainly concentrated in the northwestern area of the entire region, where the terrestrial water storage was in heavy deficit. These drought characteristics, which were detected by TSDI, were consistent with local news reports and other researchers’ results. Furthermore, a comparison between TSDI and Standardized Precipitation Index (SPI implied that GRACE TSDI was a more reliable integrated drought indicator (monitoring agricultural and hydrological drought in terms of considering total terrestrial water storages for large regions. The GRACE-derived TSDI can therefore be used to characterize and monitor large-scale droughts in the arid regions, being of special value for areas with scarce observations.

  10. Understanding abiotic stress tolerance mechanisms in soybean: a comparative evaluation of soybean response to drought and flooding stress. (United States)

    Mutava, Raymond N; Prince, Silvas Jebakumar K; Syed, Naeem Hasan; Song, Li; Valliyodan, Babu; Chen, Wei; Nguyen, Henry T


    Many sources of drought and flooding tolerance have been identified in soybean, however underlying molecular and physiological mechanisms are poorly understood. Therefore, it is important to illuminate different plant responses to these abiotic stresses and understand the mechanisms that confer tolerance. Towards this goal we used four contrasting soybean (Glycine max) genotypes (PI 567690--drought tolerant, Pana--drought susceptible, PI 408105A--flooding tolerant, S99-2281--flooding susceptible) grown under greenhouse conditions and compared genotypic responses to drought and flooding at the physiological, biochemical, and cellular level. We also quantified these variations and tried to infer their role in drought and flooding tolerance in soybean. Our results revealed that different mechanisms contribute to reduction in net photosynthesis under drought and flooding stress. Under drought stress, ABA and stomatal conductance are responsible for reduced photosynthetic rate; while under flooding stress, accumulation of starch granules played a major role. Drought tolerant genotypes PI 567690 and PI 408105A had higher plastoglobule numbers than the susceptible Pana and S99-2281. Drought stress increased the number and size of plastoglobules in most of the genotypes pointing to a possible role in stress tolerance. Interestingly, there were seven fibrillin proteins localized within the plastoglobules that were up-regulated in the drought and flooding tolerant genotypes PI 567690 and PI 408105A, respectively, but down-regulated in the drought susceptible genotype Pana. These results suggest a potential role of Fibrillin proteins, FBN1a, 1b and 7a in soybean response to drought and flooding stress. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  11. Experimental droughts: Are precipitation variability and methodological trends hindering our understanding of ecological sensitivities to drought? (United States)

    Hoover, D. L.; Wilcox, K.; Young, K. E.


    Droughts are projected to increase in frequency and intensity with climate change, which may have dramatic and prolonged effects on ecosystem structure and function. There are currently hundreds of published, ongoing, and new drought experiments worldwide aimed to assess ecosystem sensitivities to drought and identify the mechanisms governing ecological resistance and resilience. However, to date, the results from these experiments have varied widely, and thus patterns of drought sensitivities have been difficult to discern. This lack of consensus at the field scale, limits the abilities of experiments to help improve land surface models, which often fail to realistically simulate ecological responses to extreme events. This is unfortunate because models offer an alternative, yet complementary approach to increase the spatial and temporal assessment of ecological sensitivities to drought that are not possible in the field due to logistical and financial constraints. Here we examined 89 published drought experiments, along with their associated historical precipitation records to (1) identify where and how drought experiments have been imposed, (2) determine the extremity of drought treatments in the context of historical climate, and (3) assess the influence of precipitation variability on drought experiments. We found an overall bias in drought experiments towards short-term, extreme experiments in water-limited ecosystems. When placed in the context of local historical precipitation, most experimental droughts were extreme, with 61% below the 5th, and 43% below the 1st percentile. Furthermore, we found that interannual precipitation variability had a large and potentially underappreciated effect on drought experiments due to the co-varying nature of control and drought treatments. Thus detecting ecological effects in experimental droughts is strongly influenced by the interaction between drought treatment magnitude, precipitation variability, and key

  12. Integrated mapping of groundwater drought risk in the Southern African Development Community (SADC) region

    CSIR Research Space (South Africa)

    Villholth, KG


    Full Text Available Groundwater drought denotes the condition and hazard during a prolonged meteorological drought when groundwater resources decline and become unavailable or inaccessible for human use. Groundwater drought risk refers to the combined physical risk...

  13. Effects of elevated CO2 and drought on wheat : testing crop simulation models for different experimental and climatic conditions

    NARCIS (Netherlands)

    Ewert, F.; Rodriguez, D.; Jamieson, P.; Semenov, M.A.; Mitchell, R.A.C.; Goudriaan, J.; Porter, J.R.; Kimball, B.A.; Pinter, P.J.; Manderscheid, R.; Weigel, H.J.; Fangmeier, A.; Fereres, E.; Villalobos, F.


    Effects of increasing carbon dioxide concentration [CO2] on wheat vary depending on water supply and climatic conditions, which are difficult to estimate. Crop simulation models are often used to predict the impact of global atmospheric changes on food production. However, models have rarely been

  14. Water Storage, Mixing and Transit Times During a Multiyear Drought. (United States)

    Van der Velde, Y.; Visser, A.; Thaw, M.; Safeeq, M.


    From 2012 to 2016, a five year intensive drought occurred in the Californian Sierra Nevada. We use this drought period as an opportunity to investigate how catchment water storage, mixing and transit times changes from wet to dry conditions using long term datasets of river discharge, evapotranspiration, water quality, and multiple cosmogenic radioactive isotopes. Characteristic features of the test catchment (4.6 km2 , altitude 1660-2117 m) include a thick (>5m) unsaturated zone in deeply weathered granite mountain soils, snow melt and events of high intensity rainfall, dry summers and numerous wetland meadows along the stream. Our data and model analysis suggest that under drought conditions, river flow predominantly consist of deep groundwater tapped by deeply incised sections of the stream, while the wetlands hold on to their water just below the root system of its shallow rooting vegetation. In contrast, during wet periods, most runoff is generated on the flat riparian wetland meadows, while the regional groundwater system slowly refills itself as water makes its way through the thick unsaturated zones. Antecedent wet or dry years play an crucial role as antecedent wet years cause a substantial regional groundwater flow towards the riparian wetlands, filling up the riparian wetlands and yielding a much stronger discharge response of the wetlands to rainfall events than under antecedent dry years This interaction between the regional groundwater system and the local wetland systems weakens as the drought progresses and regional groundwater flow to the wetlands lessens. Although, due to the wet events in 2016-2017, the catchment fills up rapidly to pre-drought conditions, we show that water transit times and therefore likely the water quality will contain drought signs for several years to come. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS- XXXXXX

  15. Prediction of critical heat flux by a new local condition hypothesis

    International Nuclear Information System (INIS)

    Im, J. H.; Jun, K. D.; Sim, J. W.; Deng, Zhijian


    Critical Heat Flux(CHF) was predicted for uniformly heated vertical round tube by a new local condition hypothesis which incorporates a local true steam quality. This model successfully overcame the difficulties in predicted the subcooled and quality CHF by the thermodynamic equilibrium quality. The local true steam quality is a dependent variable of the thermodynamic equilibrium quality at the exit and the quality at the Onset of Significant Vaporization(OSV). The exit thermodynamic equilibrium quality was obtained from the heat balance, and the quality at OSV was obtained from the Saha-Zuber correlation. In the past CHF has been predicted by the experimental correlation based on local or non-local condition hypothesis. This preliminary study showed that all the available world data on uniform CHF could be predicted by the model based on the local condition hypothesis

  16. Improving Federal Response to Drought. (United States)

    Wilhite, Donald A.; Rosenberg, Norman J.; Glantz, Michael H.


    Severe and widespread drought occurred over a large portion of the United States between 1974 and 1977. Impacts on agriculture and other industries, as well as local water supplies, were substantial. The federal government responded with forty assistance programs administered by sixteen federal agencies. Assistance was provided primarily in the form of loans and grants to people, businesses and governments experiencing hardship caused by drought. The total cost of the program is estimated at $7-8 billion.Federal response to the mid-1970s drought was largely untimely, ineffective and poorly coordinated. Four recommendations are offered that, if implemented, would improve future drought assessment and response efforts: 1) reliable and timely informational products and dissemination plans; 2) improved impact assessment techniques, especially in the agricultural sector, for use by government to identify periods of enhanced risk and to trigger assistance measures; 3) administratively centralized drought declaration procedures that are well publicized and consistently applied; and 4) standby assistance measures that encourage appropriate levels of risk management by producers and that are equitable, consistent and predictable. The development of a national drought plan that incorporates these four items is recommended. Atmospheric scientists have an important role to play in the collection and interpretation of near-real time weather data for use by government decision makers.

  17. Variations in water status, gas exchange, and growth in Rosmarinus officinalis plants infected with Glomus deserticola under drought conditions. (United States)

    Sánchez-Blanco, Ma Jesús; Ferrández, Trinitario; Morales, Ma Angeles; Morte, Asunción; Alarcón, Juan José


    The influence of the arbuscular mycorrhizal fungus Glomus deserticola on the water relations, gas exchange parameters, and vegetative growth of Rosmarinus officinalis plants under water stress was studied. Plants were grown with and without the mycorrhizal fungus under glasshouse conditions and subjected to water stress by withholding irrigation water for 14 days. Along the experimental period, a significant effect of the fungus on the plant growth was observed, and under water stress, mycorrhizal plants showed an increase in aerial and root biomass compared to non-mycorrhizal plants. The decrease in the soil water potential generated a decrease in leaf water potential (psi(l)) and stem water potential (psi(x)) of mycorrhizal and non-mycorrhizal plants, with this decrease being lower in mycorrhizal water-stressed plants. Mycorrhization also had positive effects on the root hydraulic conductivity (Lp) of water stressed plants. Furthermore, mycorrhizal-stressed plants showed a more important decrease in osmotic potential at full turgor (psi(os)) than did non-mycorrhizal-stressed plants, indicating the capacity of osmotic adjustment. Mycorrhizal infection also improved photosynthetic activity (Pn) and stomatal conductance (g(s)) in plants under water stress compared to the non-mycorrhizal-stressed plants. A similar behaviour was observed in the photochemical efficiency of PSII (Fv/Fm) with this parameter being lower in non-mycorrhizal plants than in mycorrhizal plants under water stress conditions. In the same way, under water restriction, mycorrhizal plants showed higher values of chlorophyll content than did non-mycorrhizal plants. Thus, the results obtained indicated that the mycorrhizal symbiosis had a beneficial effect on the water status and growth of Rosmarinus officinalis plants under water-stress conditions.


    Directory of Open Access Journals (Sweden)

    M. Rusdy


    Full Text Available A field experiment was conducted on Chromolaena odorata dominated pasture with the objectives of evaluating efficacy of integrated of mechanical and cultural control on weed suppression and determining botanical composition of plant species after treatment started. The treatments were, T1 slashing of Chromolaena every month, T2 digging up of Chromolanea, and exposed to dry (mulching, T3 digging up of Chromolaena followed by burning, T4 digging up of Chromolaena followed by burning and sowing with Centrosema pubescens and T5 digging up of Chromolaena followed by burning and planting with Brachiaria decumbens. Results of experiment showed that under drought conditions, digging up Chromolaena was very effective in suppressing regrowth of Chromolaena but it was not effective to other weeds. Among treatments, digging out of Chromolaena followed by burning and planting with Brachiaria decumbens was the most effective and slashing of Chromolaena every month was the least effective in suppressing weeds. Botanical composition was shifted with treatments. Stachytarpheta jamaicensis and Chromolaena were the dominant species in monthly slashed Chromolaena plots, Stachytarpheta and Calopogonium muconoides were the dominant species in mulched plots while Mimosa pudica, Brachiaria and Centrosema were the dominant species in burnt plots.

  19. Trends and variability of meteorological drought over the districts of ...

    Indian Academy of Sciences (India)


    Keywords: Meteorological drought, standardized precipitation index, monsoon, sea ... Drought is one of the most serious problem for human societies and ecosystems. ... They found that SPI satisfactorily explains the development of conditions.

  20. The influence of oceanic basins on drought and ecosystem dynamics in Northeast Brazil

    International Nuclear Information System (INIS)

    Pereira, Marcos Paulo Santos; Justino, Flavio; Malhado, Ana Claudia Mendes; Barbosa, Humberto; Marengo, José


    The 2012 drought in Northeast Brazil was the harshest in decades, with potentially significant impacts on the vegetation of the unique semi-arid caatinga biome and on local livelihoods. Here, we use a coupled climate–vegetation model (CCM3-IBIS) to: (1) investigate the role of the Pacific and Atlantic oceans in the 2012 drought, and; (2) evaluate the response of the caatinga vegetation to the 2012 climate extreme. Our results indicate that anomalous sea surface temperatures (SSTs) in the Atlantic Ocean were the primary factor forcing the 2012 drought, with Pacific Ocean SST having a larger role in sustaining typical climatic conditions in the region. The drought strongly influenced net primary production in the caatinga, causing a reduction in annual net ecosystem exchange indicating a reduction in amount of CO 2 released to the atmosphere. (letter)

  1. Management through decentralisation and local economic development: A condition for sustainable urbanisation in Africa

    Directory of Open Access Journals (Sweden)

    Emmanuel Innocents Edoun


    Full Text Available This paper is based on the premise that, urbanisation could be effective only if decentralisation policy is at the centre of development initiatives. In this way the paper argues, local authorities could utilize local resources to ignite local economic development (LED through for instance trade activities and investments.LED initiatives aim at empowering local stakeholders to utilise business enterprises, labour, capital and other local resources effectively to maximise local benefits in order to contribute to poverty reduction and the uplifting of citizens life conditions. The paper is divided into four major parts. The first part gives a background of the notion of decentralisation, urbanisation and local economic development. The second part provides an overview of the review of the related literature while the third part gives an account on how the above are inter-related. The fourth part provides the challenges faced by urbanisation in achieving local economic development and part five is presented as conclusion and recommendations.

  2. Identification of the influencing factors on groundwater drought in Bangladesh (United States)

    Touhidul Mustafa, Syed Md.; Huysmans, Marijke


    Groundwater drought is a specific type of drought that concerns groundwater bodies. It may have a significant adverse effect on the socio-economic, agricultural, and environmental conditions. Investigating the effect of response different climatic and manmade factors on groundwater drought provides essential information for sustainable planning and management of water resources. The aim of this study is to identify the influencing factors on groundwater drought in a drought prone region in Bangladesh to understand the forcing mechanisms. The Standardised Precipitation Index (SPI) and Reconnaissance Drought Index (RDI) have been used to quantify the aggregated deficit between precipitation and the evaporative demand of the atmosphere. The influence of land use patterns on the groundwater drought has been identified by calculating spatially distributed groundwater recharge as a function of land use. The result shows that drought intensity is more severe during the dry season (November to April) compared to the rainy season (May to October). The evapotranspiration and rainfall deficit has a significant effect on meteorological drought which has a direct relation with groundwater drought. Urbanization results in a decrease of groundwater recharge which increases groundwater drought severity. Overexploitation of groundwater for irrigation and recurrent meteorological droughts are the main causes of groundwater drought in the study area. Efficient irrigation management is essential to reduce the growing pressure on groundwater resources and ensure sustainable water management. More detailed studies on climate change and land use change effects on groundwater drought are recommended. Keywords: Groundwater drought, SPI & RDI, Spatially distributed groundwater recharge, Irrigation, Bangladesh

  3. Research on suitable heating conditions during local PWHT. Pt. 1. Influence of heating conditions on temperature distribution

    International Nuclear Information System (INIS)

    Tanaka, Jinkichi; Horii, Yukihiko; Sato, Masanobu; Murakawa, Hidekazu; Wang Jianhua


    To improve weld joint properties a heat treatment so called post weld heat treatment (PWHT) is often implemented for steel weldment. Generally, the PWHT is conducted in a furnace at a factory. But in site welds such as the girth joint of pipe, a local PWHT is applied using electric heater and so on. In the local PWHT steep temperature gradient occurs depending on the heating condition and it leads to rise of the thermal stress in addition to the welding residual stress. However, heating condition is not always defined the same in some standards. Therefore, suitable heat conditions for the local PWHT were studied supposing the power plant and so on experimentally and theoretically. Temperature distribution and thermal strains under different heating conditions were measured during the local PWHT using carbon steel pipes of 340 mm in diameter and 53 mm in wall thickness. The temperature gradient, thermal strain were also analyzed using Finite Element Method (FEM) as axis-symmetric model. Further, the influences of pipe size and heat transfer coefficient on the temperature distribution were analyzed and suitable heating source widths for various pipe sizes were proposed from the viewpoint of temperature distribution. (orig.)

  4. Assessment of MODIS-derived indices (2001-2013) to drought across Taiwan's forests (United States)

    Chang, Chung-Te; Wang, Hsueh-Ching; Huang, Cho-ying


    Tropical and subtropical ecosystems, the largest terrestrial carbon pools, are very susceptible to the variability of seasonal precipitation. However, the assessment of drought conditions in these regions is often overlooked due to the preconceived notion of the presence of high humidity. Drought indices derived from remotely sensed imagery have been commonly used for large-scale monitoring, but feasibility of drought assessment may vary across regions due to climate regimes and local biophysical conditions. Therefore, this study aims to evaluate the feasibility of 11 commonly used MODIS-derived vegetation/drought index in the forest regions of Taiwan through comparison with the station-based standardized precipitation index with a 3-month time scale (SPI3). The drought indices were further transformed (standardized anomaly, SA) to make them better delineate the spatiotemporal variations of drought conditions. The results showed that the Normalized Difference Infrared Index utilizing the near-infrared and shortwave infrared bands (NDII6) may be more superior to other indices in delineating drought patterns. Overall, the NDII6 SA-SPI3 pair yielded the highest correlation (mean r ± standard deviation = 0.31 ± 0.13) and was most significant in central and south Taiwan (r = 0.50-0.90) during the cold, dry season (January and April). This study illustrated that the NDII6 is suitable to delineate drought conditions in a relatively humid region. The results suggested the better performance of the NDII6 SA-SPI3 across the high climate gradient, especially in the regions with dramatic interannual amplifications of rainfall. This synthesis was conducted across a wide bioclimatic gradient, and the findings could be further generalized to a much broader geographical extent.

  5. 'NTA', a locally named unclear condition that causes failure to thrive ...

    African Journals Online (AJOL)

    'NTA', a locally named unclear condition that causes failure to thrive amongst under five children in southeastern Nigeria: An assessment of mothers' and caregivers' perception of its causes and management.

  6. Network Candidate Genes in Breeding for Drought Tolerant Crops

    Directory of Open Access Journals (Sweden)

    Christoph Tim Krannich


    Full Text Available Climate change leading to increased periods of low water availability as well as increasing demands for food in the coming years makes breeding for drought tolerant crops a high priority. Plants have developed diverse strategies and mechanisms to survive drought stress. However, most of these represent drought escape or avoidance strategies like early flowering or low stomatal conductance that are not applicable in breeding for crops with high yields under drought conditions. Even though a great deal of research is ongoing, especially in cereals, in this regard, not all mechanisms involved in drought tolerance are yet understood. The identification of candidate genes for drought tolerance that have a high potential to be used for breeding drought tolerant crops represents a challenge. Breeding for drought tolerant crops has to focus on acceptable yields under water-limited conditions and not on survival. However, as more and more knowledge about the complex networks and the cross talk during drought is available, more options are revealed. In addition, it has to be considered that conditioning a crop for drought tolerance might require the production of metabolites and might cost the plants energy and resources that cannot be used in terms of yield. Recent research indicates that yield penalty exists and efficient breeding for drought tolerant crops with acceptable yields under well-watered and drought conditions might require uncoupling yield penalty from drought tolerance.

  7. Comparison of Historically Severe Droughts and the Vulnerability of Agroecosystems in Mid-Continent USA: Lessons Learned (United States)

    Olson, C.; Rippey, B.


    Extreme climatic events, drought, flooding, severe storms, tropical cyclones and winter storms have cost the USA billions of dollars. Although among major natural disasters in the last 100 years, severe drought occurrences are lower in terms of discrete events than that for other extreme events, the average cost per drought event exceeds all but those of severe storms and tropical cyclones and has significantly impacted the US agroecosystems upon which much of the domestic and export food markets depend1. The impacts from the 2012, 1988, and 1950's droughts are compared with the effects on cropland in the Mid-Continent US. Drought severity in 2012 and in 1988 were similar in terms of economic agricultural loss, 40 and 31 billion in cost-adjusted dollars, respectively. The 2012 drought covered a geographic areal extent similar to that of an earlier drought in the 1950's; roughly 2/3 of the central USA was impacted. However, the 2012 drought developed relatively rapidly in less than a year whereas the drought of the 1950's was marked by multiple years of extreme heat and lack of precipitation. Each of these severe droughts has resulted in significant losses, but the 2012 drought, while costly, could have been a larger economic disaster had the same conditions occurred in the 1950's or 1988. Investment in new technology, improvements in irrigation efficiency and advanced drainage systems, targeted soil conservation practices, and flexibility to adapt to conditions have improved the resilience of agroecosystems to drought in the intervening years. Droughts continue to occur, so a better understanding of climate and available climate services along with sustained investment in new technology will improve drought tolerance. The recent establishment of USDA Regional Climate Hubs to translate and deliver science-based, region-specific information for individual natural resource managers will enable climate-smart decision-making. Implementation is now possible at scales

  8. Drought Tolerance in Modern and Wild Wheat (United States)

    Budak, Hikmet; Kantar, Melda; Yucebilgili Kurtoglu, Kuaybe


    The genus Triticum includes bread (Triticum aestivum) and durum wheat (Triticum durum) and constitutes a major source for human food consumption. Drought is currently the leading threat on world's food supply, limiting crop yield, and is complicated since drought tolerance is a quantitative trait with a complex phenotype affected by the plant's developmental stage. Drought tolerance is crucial to stabilize and increase food production since domestication has limited the genetic diversity of crops including wild wheat, leading to cultivated species, adapted to artificial environments, and lost tolerance to drought stress. Improvement for drought tolerance can be achieved by the introduction of drought-grelated genes and QTLs to modern wheat cultivars. Therefore, identification of candidate molecules or loci involved in drought tolerance is necessary, which is undertaken by “omics” studies and QTL mapping. In this sense, wild counterparts of modern varieties, specifically wild emmer wheat (T. dicoccoides), which are highly tolerant to drought, hold a great potential. Prior to their introgression to modern wheat cultivars, drought related candidate genes are first characterized at the molecular level, and their function is confirmed via transgenic studies. After integration of the tolerance loci, specific environment targeted field trials are performed coupled with extensive analysis of morphological and physiological characteristics of developed cultivars, to assess their performance under drought conditions and their possible contributions to yield in certain regions. This paper focuses on recent advances on drought related gene/QTL identification, studies on drought related molecular pathways, and current efforts on improvement of wheat cultivars for drought tolerance. PMID:23766697

  9. Drought Tolerance in Modern and Wild Wheat

    Directory of Open Access Journals (Sweden)

    Hikmet Budak


    Full Text Available The genus Triticum includes bread (Triticum aestivum and durum wheat (Triticum durum and constitutes a major source for human food consumption. Drought is currently the leading threat on world's food supply, limiting crop yield, and is complicated since drought tolerance is a quantitative trait with a complex phenotype affected by the plant's developmental stage. Drought tolerance is crucial to stabilize and increase food production since domestication has limited the genetic diversity of crops including wild wheat, leading to cultivated species, adapted to artificial environments, and lost tolerance to drought stress. Improvement for drought tolerance can be achieved by the introduction of drought-grelated genes and QTLs to modern wheat cultivars. Therefore, identification of candidate molecules or loci involved in drought tolerance is necessary, which is undertaken by “omics” studies and QTL mapping. In this sense, wild counterparts of modern varieties, specifically wild emmer wheat (T. dicoccoides, which are highly tolerant to drought, hold a great potential. Prior to their introgression to modern wheat cultivars, drought related candidate genes are first characterized at the molecular level, and their function is confirmed via transgenic studies. After integration of the tolerance loci, specific environment targeted field trials are performed coupled with extensive analysis of morphological and physiological characteristics of developed cultivars, to assess their performance under drought conditions and their possible contributions to yield in certain regions. This paper focuses on recent advances on drought related gene/QTL identification, studies on drought related molecular pathways, and current efforts on improvement of wheat cultivars for drought tolerance.

  10. Flooding During Drought: Learning from Stakeholder Engagement & Partner Coordination in the California-Nevada Drought Early Warning System (DEWS) (United States)

    Sheffield, A. M.


    After more than 5 years of drought, extreme precipitation brought drought relief in California and Nevada and presents an opportunity to reflect upon lessons learned while planning for the future. NOAA's National Integrated Drought Information System (NIDIS) California-Nevada Drought Early Warning System (DEWS) in June 2017 convened a regional coordination workshop to provide a forum to discuss and build upon past drought efforts in the region and increase coordination, collaboration and information sharing across the region as a whole. Participants included federal, tribal, state, academic, and local partners who provided a post-mortem on the recent drought and impacts as well as recent innovations in drought monitoring, forecasts, and decision support tools in response to the historic drought. This presentation will highlight lessons learned from stakeholder outreach and engagement around flooding during drought, and pathways for moving forward coordination and collaboration in the region. Additional focus will be on the potential opportunities from examining California decision making calendars from this drought. Identified gaps and challenges will also be shared, such as the need to connect observations with social impacts, capacity building around available tools and resources, and future drought monitoring needs. Drought will continue to impact California and Nevada, and the CA-NV DEWS works to make climate and drought science readily available, easily understandable and usable for decision makers; and to improve the capacity of stakeholders to better monitor, forecast, plan for and cope with the impacts of drought.

  11. A Mobile Localization Strategy for Wireless Sensor Network in NLOS Conditions

    Institute of Scientific and Technical Information of China (English)

    Long Cheng; Yan Wang; Xingming Sun; Nan Hu; Jian Zhang


    The problem of mobile localization for wireless sensor network has attracted considerable attention in recent years.The localization accuracy will drastically grade in non-line of sight (NLOS) conditions.In this paper,we propose a mobile localization strategy based on Kalman filter.The key technologies for the proposed method are the NLOS identification and mitigation.The proposed method does not need the prior knowledge of the NLOS error and it is independent of the physical measurement ways.Simulation results show that the proposed method owns the higher localization accuracy when compared with other methods.

  12. Hybridization between crops and wild relatives: the contribution of cultivated lettuce to the vigour of crop-wild hybrids under drought, salinity and nutrient deficiency conditions. (United States)

    Uwimana, Brigitte; Smulders, Marinus J M; Hooftman, Danny A P; Hartman, Yorike; van Tienderen, Peter H; Jansen, Johannes; McHale, Leah K; Michelmore, Richard W; van de Wiel, Clemens C M; Visser, Richard G F


    With the development of transgenic crop varieties, crop-wild hybridization has received considerable consideration with regard to the potential of transgenes to be transferred to wild species. Although many studies have shown that crops can hybridize with their wild relatives and that the resulting hybrids may show improved fitness over the wild parents, little is still known on the genetic contribution of the crop parent to the performance of the hybrids. In this study, we investigated the vigour of lettuce hybrids using 98 F(2:3) families from a cross between cultivated lettuce and its wild relative Lactuca serriola under non-stress conditions and under drought, salinity and nutrient deficiency. Using single nucleotide polymorphism markers, we mapped quantitative trait loci associated with plant vigour in the F(2:3) families and determined the allelic contribution of the two parents. Seventeen QTLs (quantitative trait loci) associated with vigour and six QTLs associated with the accumulation of ions (Na(+), Cl(-) and K(+)) were mapped on the nine linkage groups of lettuce. Seven of the vigour QTLs had a positive effect from the crop allele and six had a positive effect from the wild allele across treatments, and four QTLs had a positive effect from the crop allele in one treatment and from the wild allele in another treatment. Based on the allelic effect of the QTLs and their location on the genetic map, we could suggest genomic locations where transgene integration should be avoided when aiming at the mitigation of its persistence once crop-wild hybridization takes place.

  13. Agronomic behavior of pseudo cereals genotypes subjected to drought and salinity conditions; Compotamiento agronomico de genotipos de pseudocereales sometidos a condiciones de sequia y salinidad

    Energy Technology Data Exchange (ETDEWEB)

    Cruz T, E. De la; Garcia A, J.M. [ININ, Carretera Mexico-Toluca, 52750 La Marquesa, Ocoyoacac, (Mexico); Gonzalez R, B.; Laguna C, A. [Centro de Investigacion y Estudios Avanzados en Fitomejoramiento. UAEM, 50200 Toluca (Mexico)]. e-mail:


    With the purpose of evaluating the response to the salinity and drought of 7 genotypes of pseudo cereals that include to the variety of quinua Barandales (M7-0) and to the lines obtained by the radioinduced mutagenesis ININ 110 and ININ 333, two collections of red chia (Opopeo and Huiramangaro) and two collections of 'Huauzontle' of Atlacomulco (H1 and H3), were evaluated under a factorial experimental design two levels of humidity: normal watering and drought and three salinity levels 0, 50 and 100 mMhos. It was found a bigger yield in grams by plant in the drought subjected material (without salinity) and a bigger tolerance to the salinity in the genotypes H3, ININ M7-0, and ININ 110, exhibiting the 'Chia red' bigger susceptibility to the evaluated factors. (Author)

  14. Spatial patterns of drought persistence in East China (United States)

    Meng, L.; Ford, T.


    East China has experienced a number of severe droughts in recent decades. Understanding the characteristics of droughts and their persistence will provide operational guidelines for water resource management and agricultural production. This study uses a logistic regression model to measure the probability of drought occurrence in the current season given the previous season's Standardized Precipitation Index (SPI) and Southern Oscillation Index (SOI) as well as drought persistence. Results reveal large spatial and seasonal variations in the relationship between the previous season's SPI and the drought occurrence probability in a given season. The drought persistence averaged over the entire study area for all the four seasons is approximately 34% with large variations from season to season and from region to region. The East and Northeast regions have the largest summer drought persistence ( 40%) and lowest fall drought persistence ( 28%). The spatial pattern in winter and spring drought persistence is dissimilar with stronger winter and weaker spring drought persistence in the Southwest and Northeast relative to other regions. Logistic regression analysis indicates a stronger negative relationship in summer-to-fall (or between fall drought occurrence and summer SPI) than other inter-season relationships. This study demonstrates that the impact of previous season SPI and SOI on current season drought varies substantially from region to region and from season to season. This study also shows stronger drought persistence in summer than in other seasons. In other words, the probability of fall drought occurrence is closely related to summer moisture conditions in the East China.

  15. The near-term prediction of drought and flooding conditions in the northeastern United States based on extreme phases of AMO and NAO (United States)

    Berton, Rouzbeh; Driscoll, Charles T.; Adamowski, Jan F.


    A series of hydroclimatic teleconnection patterns were identified between variations in either Atlantic or Pacific oceanic indices with precipitation and discharge anomalies in the northeastern United States. We hypothesized that temporal annual or seasonal changes in discharge could be explained by variations in extreme phases of the Atlantic Multi-decadal Oscillation (AMO index, SST: Sea Surface Temperature anomalies) and the North Atlantic Oscillation (NAO index, SLP: Sea-Level Pressure anomalies) up to three seasons in advance. The Merrimack River watershed, the fourth largest basin in New England, with a drainage area of 13,000 km2, is a compelling study site because it not only provides an opportunity to investigate the teleconnection between hydrologic variables and large-scale climate circulation patterns, but also how those patterns may become obscured by anthropogenic disturbances such as river regulation or urban development. We considered precipitation and discharge data of 21 gauging stations within the Merrimack River watershed, including the Hubbard Brook Experimental Forest (HBEF), NH, with a median record length of 55 years beginning as early as 1904. The discharge anomalies were statistically significant (p-value ≤ 0.2) between extreme positive and negative phases of AMO (1857-2011) and NAO (1900-2011) and revealed the potential teleconnectivity of climate circulation patterns with discharge. Annual and seasonal correlations of discharge were examined with the extreme phases of AMO and NAO at zero-, one-, or two- year/season lags (total of 30 scenarios). When AMO was greater than 0.2, the strongest correlations of AMO and NAO with discharge were observed at headwater catchments. This correlation weakened downstream towards larger regulated and/or developed sub-basins. We introduced a simple approach for near-term prediction of drought and flooding events. An exponential decay function was regressed through the historic occurrence of the relative

  16. Condition for unambiguous state discrimination using local operations and classical communication

    International Nuclear Information System (INIS)

    Chefles, Anthony


    We obtain a necessary and sufficient condition for a finite set of states of a finite-dimensional multiparticle quantum system to be amenable to unambiguous discrimination using local operations and classical communication. This condition is valid for states which may be mixed, entangled, or both. When the support of the set of states is the entire multiparticle Hilbert space, this condition is found to have an intriguing connection with the theory of entanglement witnesses

  17. Construction of local boundary conditions for an eigenvalue problem using micro-local analysis: application to optical waveguide problems

    International Nuclear Information System (INIS)

    Barucq, Helene; Bekkey, Chokri; Djellouli, Rabia


    We present a general procedure based on the pseudo-differential calculus for deriving artificial boundary conditions for an eigenvalue problem that characterizes the propagation of guided modes in optical waveguides. This new approach allows the construction of local conditions that (a) are independent of the frequency regime, (b) preserve the sparsity pattern of the finite element discretization, and (c) are applicable to arbitrarily shaped convex artificial boundaries. The last feature has the potential for reducing the size of the computational domain. Numerical results are presented to highlight the potential of conditions of order 1/2 and 1, for improving significantly the computational efficiency of finite element methods for the solution of optical waveguide problems

  18. Local environmental conditions and the stability of protective layers on steel surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, J P [Technical Univ. of Denmark, Lyngby (Denmark); Bursik, A


    Local environmental conditions determine whether the protective layers on steel surfaces are stable. With unfavorable local environmental conditions, the protective layers may be subject to damage. Taking the cation conductivity of all plant cycle streams <0.2 {mu}S/cm for granted, an adequate feed-water and - if applicable - boiler water conditioning is required to prevent such damage. Even if the mentioned conditions are met in a bulk, the local environmental conditions may be inadequate. The reasons for this may be the disregarding of interactions among material, design, and chemistry. The paper presents many possible mechanisms of protective layer damage that are directly influenced or exacerbated by plant cycle chemistry. Two items are discussed in more detail: First, the application of all volatile treatment for boiler water conditioning of drum boiler systems operating at low pressures and, second, the chemistry in the transition zone water/steam in the low pressure turbine. The latter is of major interest for the understanding and prevention of corrosion due to high concentration of impurities in the aqueous liquid phases. This is a typical example showing that local environmental conditions may fundamentally differ from the overall bulk chemistry. (au) 19 refs.

  19. Design and Analysis of Financial Condition Local Government Java and Bali (2013-2014

    Directory of Open Access Journals (Sweden)

    Natrini Nur Dewi


    Full Text Available This research aims to identify financial condition of local government in Java and Bali year 2013-2014. It is due to government financial condition, according to several researchers, provides an image on the ability of a government in fulfilling their obligations whether in the form of debt or service fulfillment in timely manner. According to assessment upon financial condition, local government is able to identify how to fulfill public needs, how to utilize resources and how to proceed resources so that it can be more productive. As for the measurement method of financial condition itself, the standard method cannot be determined. Therefore, indicator used for measuring local government financial condition is Brown's (1993[2] indicator development adjusted to Indonesian government. In order to develop the indicator, this research employs qualitative method by comparing GASB No.34, SAP Government Regulation (“Peraturan Pemerintah” - PP 71 Year 2010, SAP PP 24 year 2005 and literature studies and expert validation. In order to obtain a balanced comparison, this research also employs clusters developed by Baidori (2015[1] for government in Java and Bali. Results of this research showed that among 7 analyzed clusters, there are variations of results, even though each cluster has similar socioeconomic condition to each other. This variation upon Indonesian local government financial condition is caused by regional autonomy.

  20. Potentials of molecular based breeding to enhance drought ...

    African Journals Online (AJOL)

    The ability of plant to sustain itself in limited water conditions is crucial in the world of agriculture. To breed for drought tolerance in wheat, it is essential to clearly understand drought tolerant mechanisms. Conventional breeding is time consuming and labor intensive being inefficient with low heritability traits like drought ...

  1. High transpiration efficiency increases pod yield under intermittent drought in dry and hot atmospheric conditions but less so under wetter and cooler conditions in groundnut (Arachis hypogaea (L.)). (United States)

    Vadez, Vincent; Ratnakumar, Pasala


    Water limitation is a major yield limiting factor in groundnut and transpiration efficiency (TE) is considered the main target for improvement, but TE being difficult to measure it has mostly been screened with surrogates. The paper re-explore the contribution of TE to grain yield in peanut by using a novel experimental approach in which TE is measured gravimetrically throughout the crop life cycle, in addition to measurement of TE surrogates. Experimentation was carried out with the groundnut reference collection (n = 288), across seasons varying for the evaporative demand (vapor pressure deficit, VPD) and across both fully irrigated and intermittent water stress conditions. There was large genotypic variation for TE under water stress in both low and high VPD season but the range was larger (5-fold) in the high- than in the low-VPD season (2-fold). Under water stress in both seasons, yield was closely related to the harvest index (HI) while TE related directly to yield only in the high VPD season. After discounting the direct HI effect on yield, TE explained a large portion of the remaining yield variations in both seasons, although marginally in the low VPD season. By contrast, the total water extracted from the soil profile, which varied between genotypes, did not relate directly to pod yield and neither to the yield residuals unexplained by HI. Surrogates for TE (specific leaf area, SLA, and SPAD chlorophyll meter readings, SCMR) never showed any significant correlation to TE measurements. Therefore, TE is an important factor explaining yield differences in groundnut under high VPD environments, suggesting that stomatal regulation under high VPD, rather than high photosynthetic rate as proposed earlier, may have a key role to play in the large TE differences found, which open new opportunities to breed improved groundnut for high VPD.

  2. Bacterial mediated amelioration of drought stress in drought tolerant ...

    African Journals Online (AJOL)

    Bacterial mediated amelioration of drought stress in drought tolerant and susceptible cultivars of rice ( Oryza sativa L.) ... and IR-64 (drought sensitive) cultivars of rice (Oryza sativa L.) under different level of drought stress. ... from 32 Countries:.

  3. Bacterial mediated amelioration of drought stress in drought tolerant ...

    African Journals Online (AJOL)



    Feb 23, 2015 ... for a beneficial effect of PGPRs application in enhancing drought tolerance of rice under water deficit conditions. ..... involvement of PGPRs in ROS metabolism in rice plants. ... osmoregulatory solute in plants (Kumar et al., 2011). ..... Pseudomonas fluorescens mediated saline resistance in groundnut.

  4. What causes southeast Australia's worst droughts? (United States)

    Ummenhofer, Caroline C.; England, Matthew H.; McIntosh, Peter C.; Meyers, Gary A.; Pook, Michael J.; Risbey, James S.; Gupta, Alexander Sen; Taschetto, Andréa S.


    Since 1995, a large region of Australia has been gripped by the most severe drought in living memory, the so-called ``Big Dry''. The ramifications for affected regions are dire, with acute water shortages for rural and metropolitan areas, record agricultural losses, the drying-out of two of Australia's major river systems and far-reaching ecosystem damage. Yet the drought's origins have remained elusive. For Southeast Australia, we show here that the ``Big Dry'' and other iconic 20th Century droughts, including the Federation Drought (1895-1902) and World War II drought (1937-1945), are driven by Indian Ocean variability, not Pacific Ocean conditions as traditionally assumed. Specifically, a conspicuous absence of Indian Ocean temperature conditions conducive to enhanced tropical moisture transport has deprived southeastern Australia of its normal rainfall quota. In the case of the ``Big Dry'', its unprecedented intensity is also related to recent higher temperatures.

  5. Including local rainfall dynamics and uncertain boundary conditions into a 2-D regional-local flood modelling cascade (United States)

    Bermúdez, María; Neal, Jeffrey C.; Bates, Paul D.; Coxon, Gemma; Freer, Jim E.; Cea, Luis; Puertas, Jerónimo


    Flood inundation models require appropriate boundary conditions to be specified at the limits of the domain, which commonly consist of upstream flow rate and downstream water level. These data are usually acquired from gauging stations on the river network where measured water levels are converted to discharge via a rating curve. Derived streamflow estimates are therefore subject to uncertainties in this rating curve, including extrapolating beyond the maximum observed ratings magnitude. In addition, the limited number of gauges in reach-scale studies often requires flow to be routed from the nearest upstream gauge to the boundary of the model domain. This introduces additional uncertainty, derived not only from the flow routing method used, but also from the additional lateral rainfall-runoff contributions downstream of the gauging point. Although generally assumed to have a minor impact on discharge in fluvial flood modeling, this local hydrological input may become important in a sparse gauge network or in events with significant local rainfall. In this study, a method to incorporate rating curve uncertainty and the local rainfall-runoff dynamics into the predictions of a reach-scale flood inundation model is proposed. Discharge uncertainty bounds are generated by applying a non-parametric local weighted regression approach to stage-discharge measurements for two gauging stations, while measured rainfall downstream from these locations is cascaded into a hydrological model to quantify additional inflows along the main channel. A regional simplified-physics hydraulic model is then applied to combine these inputs and generate an ensemble of discharge and water elevation time series at the boundaries of a local-scale high complexity hydraulic model. Finally, the effect of these rainfall dynamics and uncertain boundary conditions are evaluated on the local-scale model. Improvements in model performance when incorporating these processes are quantified using observed

  6. Drought Monitoring and Forecasting: Experiences from the US and Africa (United States)

    Sheffield, Justin; Chaney, Nate; Yuan, Xing; Wood, Eric


    Drought has important but very different consequences regionally due to differences in vulnerability. These differences derive from variations in exposure related to climate variability and change, sensitivity of local populations, and coping capacity at all levels. Managing the risk of drought impacts relies on a variety of measures to reduce vulnerability that includes forewarning of drought development through early-warning systems. Existing systems rely on a variety of observing systems from satellites to local observers, modeling tools, and data dissemination methods. They range from sophisticated state-of-the-art systems to simple ground reports. In some regions, systems are virtually non-existent due to limited national capacity. This talk describes our experiences in developing and implementing drought monitoring and seasonal forecast systems in the US and sub-Saharan Africa as contrasting examples of the scientific challenges and user needs in developing early warning systems. In particular, early warning can help improve livelihoods based on subsistence farming in sub-Saharan Africa; whist reduction of economic impacts is generally foremost in the US. For the US, our national drought monitoring and seasonal forecast system has been operational for over 8 years and provides near real-time updates on hydrological states at ~12km resolution and hydrological forecasts out to 9 months. Output from the system contributes to national assessments such as from the NOAA Climate Prediction Center (CPC) and the US National Drought Monitor (USDM). For sub-Saharan Africa, our experimental drought monitoring system was developed as a translation of the US system but presents generally greater challenges due to, for example, lack of ground data and unique user needs. The system provides near real-time updates based on hydrological modeling and satellite based precipitation estimates, and has recently been augmented by a seasonal forecast component. We discuss the

  7. The transcriptional regulatory network in the drought response and its crosstalk in abiotic stress responses including drought, cold, and heat


    Nakashima, Kazuo; Yamaguchi-Shinozaki, Kazuko; Shinozaki, Kazuo


    Drought negatively impacts plant growth and the productivity of crops around the world. Understanding the molecular mechanisms in the drought response is important for improvement of drought tolerance using molecular techniques. In plants, abscisic acid (ABA) is accumulated under osmotic stress conditions caused by drought, and has a key role in stress responses and tolerance. Comprehensive molecular analyses have shown that ABA regulates the expression of many genes under osmotic stress cond...

  8. Proteomic responses of drought-tolerant and drought-sensitive cotton varieties to drought stress. (United States)

    Zhang, Haiyan; Ni, Zhiyong; Chen, Quanjia; Guo, Zhongjun; Gao, Wenwei; Su, Xiujuan; Qu, Yanying


    Drought, one of the most widespread factors reducing agricultural crop productivity, affects biological processes such as development, architecture, flowering and senescence. Although protein analysis techniques and genome sequencing have made facilitated the proteomic study of cotton, information on genetic differences associated with proteomic changes in response to drought between different cotton genotypes is lacking. To determine the effects of drought stress on cotton seedlings, we used two-dimensional polyacrylamide gel electrophoresis (2-DE) and matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry to comparatively analyze proteome of drought-responsive proteins during the seedling stage in two cotton (Gossypium hirsutum L.) cultivars, drought-tolerant KK1543 and drought-sensitive Xinluzao26. A total of 110 protein spots were detected on 2-DE maps, of which 56 were identified by MALDI-TOF and MALDI-TOF/TOF mass spectrometry. The identified proteins were mainly associated with metabolism (46.4 %), antioxidants (14.2 %), and transport and cellular structure (23.2 %). Some key proteins had significantly different expression patterns between the two genotypes. In particular, 5-methyltetrahydropteroyltriglutamate-homocysteine methyltransferase, UDP-D-glucose pyrophosphorylase and ascorbate peroxidase were up-regulated in KK1543 compared with Xinluzao26. Under drought stress conditions, the vacuolar H(+)-ATPase catalytic subunit, a 14-3-3g protein, translation initiation factor 5A and pathogenesis-related protein 10 were up-regulated in KK1543, whereas ribosomal protein S12, actin, cytosolic copper/zinc superoxide dismutase, protein disulfide isomerase, S-adenosylmethionine synthase and cysteine synthase were down-regulated in Xinluzao26. This work represents the first characterization of proteomic changes that occur in response to drought in roots of cotton plants. These differentially expressed proteins may be related to

  9. Local intensity area descriptor for facial recognition in ideal and noise conditions (United States)

    Tran, Chi-Kien; Tseng, Chin-Dar; Chao, Pei-Ju; Ting, Hui-Min; Chang, Liyun; Huang, Yu-Jie; Lee, Tsair-Fwu


    We propose a local texture descriptor, local intensity area descriptor (LIAD), which is applied for human facial recognition in ideal and noisy conditions. Each facial image is divided into small regions from which LIAD histograms are extracted and concatenated into a single feature vector to represent the facial image. The recognition is performed using a nearest neighbor classifier with histogram intersection and chi-square statistics as dissimilarity measures. Experiments were conducted with LIAD using the ORL database of faces (Olivetti Research Laboratory, Cambridge), the Face94 face database, the Georgia Tech face database, and the FERET database. The results demonstrated the improvement in accuracy of our proposed descriptor compared to conventional descriptors [local binary pattern (LBP), uniform LBP, local ternary pattern, histogram of oriented gradients, and local directional pattern]. Moreover, the proposed descriptor was less sensitive to noise and had low histogram dimensionality. Thus, it is expected to be a powerful texture descriptor that can be used for various computer vision problems.

  10. Exploring standardized precipitation evapotranspiration index for drought assessment in Bangladesh. (United States)

    Miah, Md Giashuddin; Abdullah, Hasan Muhammad; Jeong, Changyoon


    Drought is a critical issue, and it has a pressing, negative impact on agriculture, ecosystems, livelihoods, food security, and sustainability. The problem has been studied globally, but its regional or even local dimension is sometimes overlooked. Local-level drought assessment is necessary for developing adaptation and mitigation strategies for that particular region. Keeping this in understanding, an attempt was made to create a detailed assessment of drought characteristics at the local scale in Bangladesh. Standardized precipitation evapotranspiration (SPEI) is a new drought index that mainly considers the rainfall and evapotranspiration data set. Globally, SPEI has become a useful drought index, but its local scale application is not common. SPEI base (0.5° grid data) for 110 years (1901-2011) was utilized to overcome the lack of long-term climate data in Bangladesh. Available weather data (1955-2011) from Bangladesh Meteorology Department (BMD) were analyzed to calculate SPEI weather station using the SPEI calculator. The drivers for climate change-induced droughts were characterized by residual temperature and residual rainfall data from different BMD stations. Grid data (SPEI base ) of 26 stations of BMD were used for drought mapping. The findings revealed that the frequency and intensity of drought are higher in the northwestern part of the country which makes it vulnerable to both extreme and severe droughts. Based on the results, the SPEI-based drought intensity and frequency analyses were carried out, emphasizing Rangpur (northwest region) as a hot spot, to get an insight of drought assessment in Bangladesh. The findings of this study revealed that SPEI could be a valuable tool to understand the evolution and evaluation of the drought induced by climate change in the country. The study also justified the immediate need for drought risk reduction strategies that should lead to relevant policy formulations and agricultural innovations for developing

  11. Indicators to measure risk of disaster associated with drought: Implications for the health sector.

    Directory of Open Access Journals (Sweden)

    Aderita Sena

    Full Text Available Brazil has a large semiarid region, which covers part of 9 states, over 20% of the 5565 municipalities in the country and at 22.5 million persons, 12% of the country's population. This region experiences recurrent and extended droughts and is characterized by low economic development, scarcity of natural resources including water, and difficult agricultural and livestock production. Local governments and communities need easily obtainable tools to aid their decision making process in managing risks associated with drought.To inform decision-making at the level of municipalities, we investigated factors contributing to the health risks of drought. We used education and poverty indicators to measure vulnerability, number of drought damage evaluations and historical drought occurrences as indicators of hazard, and access to water as an indicator of exposure, to derive a drought disaster risk index.Indicators such as access to piped water, illiteracy and poverty show marked differences in most states and, in nearly all states, the living conditions of communities in the semiarid region are worse than in the rest of each state. There are municipalities at high drought disaster risk in every state and there are a larger number of municipalities at higher risks from the center to the north of the semiarid region.Understanding local hazards, exposures and vulnerabilities provides the means to understand local communities' risks and develop interventions to reduce them. In addition, communities in these regions need to be empowered to add their traditional knowledge to scientific tools, and to identify the actions most relevant to their needs and realities.

  12. Enforcing the Courant-Friedrichs-Lewy condition in explicitly conservative local time stepping schemes (United States)

    Gnedin, Nickolay Y.; Semenov, Vadim A.; Kravtsov, Andrey V.


    An optimally efficient explicit numerical scheme for solving fluid dynamics equations, or any other parabolic or hyperbolic system of partial differential equations, should allow local regions to advance in time with their own, locally constrained time steps. However, such a scheme can result in violation of the Courant-Friedrichs-Lewy (CFL) condition, which is manifestly non-local. Although the violations can be considered to be "weak" in a certain sense and the corresponding numerical solution may be stable, such calculation does not guarantee the correct propagation speed for arbitrary waves. We use an experimental fluid dynamics code that allows cubic "patches" of grid cells to step with independent, locally constrained time steps to demonstrate how the CFL condition can be enforced by imposing a constraint on the time steps of neighboring patches. We perform several numerical tests that illustrate errors introduced in the numerical solutions by weak CFL condition violations and show how strict enforcement of the CFL condition eliminates these errors. In all our tests the strict enforcement of the CFL condition does not impose a significant performance penalty.

  13. Comprehensive Characterization of Droughts to Assess the Effectiveness of a Basin-Wide Integrated Water Management in the Yakima River Basin (United States)

    Demissie, Y.; Mortuza, M. R.; Li, H. Y.


    Better characterization and understanding of droughts and their potential links to climate and hydrologic factors are essential for water resources planning and management in drought-sensitive but agriculturally productive regions like the Yakima River Basin (YKB) in Washington State. The basin is semi-arid and heavily relies on a fully appropriated irrigation water for fruit and crop productions that worth more than 3 billion annually. The basin experienced three major droughts since 2000 with estimated 670 million losses in farm revenue. In response to these and expected worsening drought conditions in the future, there is an ongoing multi-agency effort to adopt a basin-wide integrated water management to ensure water security during severe droughts. In this study, the effectiveness of the proposed water management plan to reduce the frequency and severity of droughts was assessed using a new drought index developed based on the seasonal variations of precipitation, temperature, snow accumulation, streamflow, and reservoir storages. In order to uncover the underlying causes of the various types of droughts observed during the 1961-2016, explanatory data analysis using deep learning was conducted for the local climate and hydrologic data including total water supply available, as well as global climatic phenomenon (El Niño/Southern Oscillation, Pacific Decadal Oscillation and North Atlantic Oscillation). The preliminary results showed that besides shortage in annual precipitation, various combinations of climate and hydrologic factors are responsible for the different drought conditions in the basin. Particularly, the winter snowpack, which provides about 2/3 of the surface water in the basin along with the carryover storage from the reservoirs play an important role during both single- and multiple-year drought events. Besides providing the much-needed insights about characteristics of droughts and their contributing factors, the outcome of the study is expected

  14. The potential of SMAP soil moisture data for analyzing droughts (United States)

    Rajasekaran, E.; Das, N. N.; Entekhabi, D.; Yueh, S. H.


    Identification of the onset and the end of droughts are important for socioeconomic planning. Different datasets and tools are either available or being generated for drought analysis to recognize the status of drought. The aim of this study is to understand the potential of the SMAP soil moisture (SM) data for identification of onset, persistence and withdrawal of droughts over the Contiguous United States. We are using the SMAP-passive level 3 soil moisture observations and the United States Drought Monitor ( data for understanding the relation between change in SM and drought severity. The daily observed SM data are temporally averaged to match the weekly drought monitor data and subsequently the weekly, monthly, 3 monthly and 6 monthly change in SM and drought severity were estimated. The analyses suggested that the change in SM and drought severity are correlated especially over the mid-west and west coast of USA at monthly and longer time scales. The spatial pattern of the SM change maps clearly indicated the regions that are moving between different levels of drought severity. Further, the time series of effective saturation [Se =(θ-θr)/(θs-θr)] indicated the temporal dynamics of drought conditions over California which is recovering from a long-term drought. Additional analyses are being carried out to develop statistics between drought severity and soil moisture level.

  15. CreativeDrought: An interdisciplinary approach to building resilience to drought (United States)

    Rangecroft, Sally; Van Loon, Anne; Rohse, Melanie; Day, Rosie; Birkinshaw, Stephen; Makaya, Eugine


    Drought events cause severe water and food insecurities in many developing countries where resilience to natural hazards and change is low due to a number of reasons (including poverty, social and political inequality, and limited access to information). Furthermore, with climate change and increasing pressures from population and societal change, populations are expected to experience future droughts outside of their historic range. Integrated water resources management is an established tool combining natural science, engineering and management to help address drought and associated impacts. However, it often lacks a strong social and cultural aspect, leading to poor implementation on the ground. For a more holistic approach to building resilience to future drought, a stronger interdisciplinary approach is required which can incorporate the local cultural context and perspectives into drought and water management, and communicate information effectively to communities. In this pilot project 'CreativeDrought', we use a novel interdisciplinary approach aimed at building resilience to future drought in rural Africa by combining hydrological modelling with rich local information and engaging communicative approaches from social sciences. The work is conducted through a series of steps in which we i) engage with local rural communities to collect narratives on drought experiences; ii) generate hydrological modelling scenarios based on IPCC projections, existing data and the collected narratives; iii) feed these back to the local community to gather their responses to these scenarios; iv) iteratively adapt them to obtain hypothetical future drought scenarios; v) engage the community with the scenarios to formulate new future drought narratives; and vi) use this new data to enhance local water resource management. Here we present some of the indigenous knowledge gathered through narratives and the hydrological modelling scenarios for a rural community in Southern Africa

  16. Understanding and seasonal forecasting of hydrological drought in the Anthropocene

    Directory of Open Access Journals (Sweden)

    X. Yuan


    Full Text Available Hydrological drought is not only caused by natural hydroclimate variability but can also be directly altered by human interventions including reservoir operation, irrigation, groundwater exploitation, etc. Understanding and forecasting of hydrological drought in the Anthropocene are grand challenges due to complicated interactions among climate, hydrology and humans. In this paper, five decades (1961–2010 of naturalized and observed streamflow datasets are used to investigate hydrological drought characteristics in a heavily managed river basin, the Yellow River basin in north China. Human interventions decrease the correlation between hydrological and meteorological droughts, and make the hydrological drought respond to longer timescales of meteorological drought. Due to large water consumptions in the middle and lower reaches, there are 118–262 % increases in the hydrological drought frequency, up to 8-fold increases in the drought severity, 21–99 % increases in the drought duration and the drought onset is earlier. The non-stationarity due to anthropogenic climate change and human water use basically decreases the correlation between meteorological and hydrological droughts and reduces the effect of human interventions on hydrological drought frequency while increasing the effect on drought duration and severity. A set of 29-year (1982–2010 hindcasts from an established seasonal hydrological forecasting system are used to assess the forecast skill of hydrological drought. In the naturalized condition, the climate-model-based approach outperforms the climatology method in predicting the 2001 severe hydrological drought event. Based on the 29-year hindcasts, the former method has a Brier skill score of 11–26 % against the latter for the probabilistic hydrological drought forecasting. In the Anthropocene, the skill for both approaches increases due to the dominant influence of human interventions that have been implicitly

  17. Modeling drought impact occurrence based on climatological drought indices for four European countries (United States)

    Stagge, James H.; Kohn, Irene; Tallaksen, Lena M.; Stahl, Kerstin


    The relationship between atmospheric conditions and the likelihood of a significant drought impact has, in the past, been difficult to quantify, particularly in Europe where political boundaries and language have made acquiring comprehensive drought impact information difficult. As such, the majority of studies linking meteorological drought with the occurrence or severity of drought impacts have previously focused on specific regions, very detailed impact types, or both. This study describes a new methodology to link the likelihood of drought impact occurrence with climatological drought indices across different European climatic regions and impact sectors using the newly developed European Drought Impact report Inventory (EDII), a collaborative database of drought impact information ( The Standardized Precipitation Index (SPI) and Standardized Precipitation-Evapotranspiration Index (SPEI) are used as predictor variables to quantify meteorological drought severity over prior time periods (here 1, 2, 3, 6, 9, 12, and 24 months are used). The indices are derived using the gridded WATCH Forcing Datasets, covering the period 1958-2012. Analysis was performed using logistic regression to identify the climatological drought index and accumulation period, or linear combination of drought indices, that best predicts the likelihood of a documented drought impact, defined by monthly presence/absence. The analysis was carried out for a subset of four European countries (Germany, UK, Norway, Slovenia) and four of the best documented impact sectors: Public Water Supply, Agriculture and Livestock Farming, Energy and Industry, and Environmental Quality. Preliminary results show that drought impacts in these countries occur most frequently due to a combination of short-term (2-6 month) precipitation deficits and long-term (12-24 month) potential evapotranspiration anomaly, likely associated with increased temperatures. Agricultural drought impacts

  18. Toward Seasonal Forecasting of Global Droughts: Evaluation over USA and Africa (United States)

    Wood, Eric; Yuan, Xing; Roundy, Joshua; Sheffield, Justin; Pan, Ming


    Extreme hydrologic events in the form of droughts are significant sources of social and economic damage. In the United States according to the National Climatic Data Center, the losses from drought exceed US210 billion during 1980-2011, and account for about 24% of all losses from major weather disasters. Internationally, especially for the developing world, drought has had devastating impacts on local populations through food insecurity and famine. Providing reliable drought forecasts with sufficient early warning will help the governments to move from the management of drought crises to the management of drought risk. After working on drought monitoring and forecasting over the USA for over 10 years, the Princeton land surface hydrology group is now developing a global drought monitoring and forecasting system using a dynamical seasonal climate-hydrologic LSM-model (CHM) approach. Currently there is an active debate on the merits of the CHM-based seasonal hydrologic forecasts as compared to Ensemble Streamflow Prediction (ESP). We use NCEP's operational forecast system, the Climate Forecast System version 2 (CFSv2) and its previous version CFSv1, to investigate the value of seasonal climate model forecasts by conducting a set of 27-year seasonal hydrologic hindcasts over the USA. Through Bayesian downscaling, climate models have higher squared correlation (R2) and smaller error than ESP for monthly precipitation averaged over major river basins across the USA, and the forecasts conditional on ENSO show further improvements (out to four months) over river basins in the southern USA. All three approaches have plausible predictions of soil moisture drought frequency over central USA out to six months because of strong soil moisture memory, and seasonal climate models provide better results over central and eastern USA. The R2 of drought extent is higher for arid basins and for the forecasts initiated during dry seasons, but significant improvements from CFSv2 occur

  19. Community Colleges and Labor Market Conditions: How Does Enrollment Demand Change Relative to Local Unemployment Rates? (United States)

    Hillman, Nicholas W.; Orians, Erica Lee


    This study uses fixed-effects panel data techniques to estimate the elasticity of community college enrollment demand relative to local unemployment rates. The findings suggest that community college enrollment demand is counter-cyclical to changes in the labor market, as enrollments rise during periods of weak economic conditions. Using national…

  20. Probing the local, electronic and magnetic structure of matter under extreme conditions of temperature and pressure

    DEFF Research Database (Denmark)

    Torchio, R.; Boccato, S.; Cerantola, V.


    In this paper we present recent achievements in the field of investigation of the local, electronic and magnetic structure of the matter under extreme conditions of pressure and temperature. These results were obtained thanks to the coupling of a compact laser heating system to the energy-dispersive...

  1. Under what conditions can local government nurture indigenous people’s democratic practice?

    DEFF Research Database (Denmark)

    Sareen, Siddharth; Nathan, Iben


    This paper asks whether and under what conditions participatory local government can best nurture indigenous peoples’ democratic practice. Based on fieldwork in two similar Ho communities in the Indian state Jharkhand, we show that their village assemblies function differently with regard...

  2. Necessary and Sufficient Condition for Local Exponential Synchronization of Nonlinear Systems

    NARCIS (Netherlands)

    Andrieu, Vincent; Jayawardhana, Bayu; Tarbouriech, Sophie


    Based on recent works on transverse exponential stability, some necessary and sufficient conditions for the existence of a (locally) exponential synchronizer are established. We show that the existence of a structured synchronizer is equivalent to the existence of a stabilizer for the individual

  3. Assessing Impacts of National Scale Droughts on Cereal Production (United States)

    Udmale, P. D.; Ichikawa, Y.


    Till date, several drought indices have been developed and used to monitor local to regional scale droughts on various temporal scales. However, there are no generalized criteria to define a threshold to declare a national level drought using drought indices. EM-DAT (a global database on natural and technological disasters) lists disasters (including drought) from 1900 until the present confirming one of the following criteria: 10 or more people dead; 100 or more people affected; the declaration of a state of emergency; or a call for international assistance. This data is gathered from various organizations like United Nations Institutes, Governments, etc. and do not cover all disasters or have political limitations that could affect the numbers. These criteria are neither objective nor quantitative, and accordingly may cause uncertainties when the data is used for further investigation on disaster impacts. Here we present a methodology to define drought at a national scale and its impacts on national level crop production (mainly cereals). We define drought based on the percentage of cropland area affected by drought in a country during its seasonal rainfall. For this purpose meteorological definition of drought in combination with country's cropland area is proposed to prepare a drought inventory for major cereal producing countries (1902-2012). This drought inventory together with FAO's Crop data is used to identify the impacts of drought on a national level cereal production (and yield) using Superposed Epoch Analysis for the period 1961-2012.

  4. Vegetation productivity responses to drought on tribal lands in the four corners region of the Southwest USA (United States)

    El-Vilaly, Mohamed Abd Salam; Didan, Kamel; Marsh, Stuart E.; van Leeuwen, Willem J. D.; Crimmins, Michael A.; Munoz, Armando Barreto


    For more than a decade, the Four Corners Region has faced extensive and persistent drought conditions that have impacted vegetation communities and local water resources while exacerbating soil erosion. These persistent droughts threaten ecosystem services, agriculture, and livestock activities, and expose the hypersensitivity of this region to inter-annual climate variability and change. Much of the intermountainWestern United States has sparse climate and vegetation monitoring stations, making fine-scale drought assessments difficult. Remote sensing data offers the opportunity to assess the impacts of the recent droughts on vegetation productivity across these areas. Here, we propose a drought assessment approach that integrates climate and topographical data with remote sensing vegetation index time series. Multisensor Normalized Difference Vegetation Index (NDVI) time series data from 1989 to 2010 at 5.6 km were analyzed to characterize the vegetation productivity changes and responses to the ongoing drought. A multi-linear regression was applied to metrics of vegetation productivity derived from the NDVI time series to detect vegetation productivity, an ecosystem service proxy, and changes. The results show that around 60.13% of the study area is observing a general decline of greenness ( pchallenges to the region's already stressed ecosystems. Whereas the results provide additional insights into this isolated and vulnerable region, the drought assessment approach used in this study may be adapted for application in other regions where surface-based climate and vegetation monitoring record is spatially and temporally limited.

  5. Effect of Foliar Application of Chelate Iron in Common and Nanoparticles Forms on Yield and Yield Components of Cumin (Cuminum cyminum L. under Drought Stress Conditions

    Directory of Open Access Journals (Sweden)

    A Nasiri Dehsorkhi


    Full Text Available Introduction Cumin is a member of Apiaceae family and annual plant which is widely cultivated in arid and semi-arid zone. Iran is one of the main producers of this plant. Water deficit is the major limiting factor in crops production. Proper nutrition management under stress conditions could partly help the plant to tolerate different stresses. Various studies were carried out to understand the effect of nanoparticles on the growth of plants. For example, Hong et al. (2005 and Yang et al. (2006 reported that a proper concentration of nano-TiO2 was found to improve the growth of spinach by promoting photosynthesis and nitrogen metabolism. Iran a country with arid and semi-arid climate, always face water deficiency. Thus the aim of this research was investigate the effect of foliar application of chelate iron in common and nanoparticles forms on yield and yield components of cumin (Cuminum cyminum L. under drought stress conditions. Materials and Methods A field experiment was conducted as a split plot in complete randomized block design with three replications in Esfahan city, during the growing season of 2015-2016. Treatments were included three irrigation intervals (5, 10 and 15 days as main plots and Fe foliar application in four levels (control, 2 g L-1 iron chelate, 2 g L-1 Nano-iron chelate, 4 g L-1 iron chelate, 4 g L-1 nano-iron chelate. Foliar application of Fe chelate on leaves was done two times at before and after flowering stage. The plots were 16 m2 with 4 sowing rows, 4 m long. Seeds were placed at 2 to 4 cm depth in each row. All data collected were subjected of analysis of variance (ANOVA using MSTATC software. Significant differences between means refer to the probability level of 0.05 by LSD test. Results and Discussion The results indicated that drought stress decreased the investigated traits significantly but the effect of irrigation by 15 days interval was more than 10 days. Plots which irrigated by 15 days interval showed

  6. Drought monitoring of Tumen river basin wetlands between 1991 and 2016 using Landsat TM/ETM+ (United States)

    Yu, H.; Zhu, W.; Lee, W. K.; Heo, S.


    Wetlands area described as "the kidney of earth" owing to the importance of functions for stabilizing environment, long-term protection of water sources, as well as effectively minimize sediment loss, purify surface water from industrial and agricultural pollutants, and enhancing aquifer recharge. Drought monitoring in wetlands is vital due to the condition of water supply directly affecting the growth of wetland plants and local biodiversity. In this study, Vegetation Temperature Condition Index derived from Normalized Difference Vegetation Index and Land Surface Temperature is used to observe drought status from 1991 to 2016. For doing this, Landsat TM/ETM+ data for six periods are used to analytical processing. On the other hand, soil moisture maps which are acquired from CMA Land Data Assimilation System Version 1.0 for validating reliability of drought monitoring. As a result, the study shows most of area at normal moist level (decreased 25.8%) became slightly drought (increased 29.7%) in Tumen river basin cross-border (China and North Korea) wetland. The correlation between vegetation temperature condition index and soil moisture are 0.69, 0.32 and 0.2 for the layers of 0 5cm, 0 10cm, and 10 20cm, respectively. Although climate change probably contributes to the process of drought by decreasing precipitation and increasing temperature, human activities are shown as main factor that led to the process in this wetland.

  7. Phenotyping common beans for adaptation to drought (United States)

    Beebe, Stephen E.; Rao, Idupulapati M.; Blair, Matthew W.; Acosta-Gallegos, Jorge A.


    Common beans (Phaseolus vulgaris L.) originated in the New World and are the grain legume of greatest production for direct human consumption. Common bean production is subject to frequent droughts in highland Mexico, in the Pacific coast of Central America, in northeast Brazil, and in eastern and southern Africa from Ethiopia to South Africa. This article reviews efforts to improve common bean for drought tolerance, referring to genetic diversity for drought response, the physiology of drought tolerance mechanisms, and breeding strategies. Different races of common bean respond differently to drought, with race Durango of highland Mexico being a major source of genes. Sister species of P. vulgaris likewise have unique traits, especially P. acutifolius which is well adapted to dryland conditions. Diverse sources of tolerance may have different mechanisms of plant response, implying the need for different methods of phenotyping to recognize the relevant traits. Practical considerations of field management are discussed including: trial planning; water management; and field preparation. PMID:23507928

  8. Screening Pakistani cotton for drought tolerance

    International Nuclear Information System (INIS)

    Soomro, M.H.; Markhand, G.S.


    The drought is one of the biggest abiotic stresses for crop production in arid and semi-arid agriculture. Thus it is a challenge for plant scientists to screen and develop the drought tolerant cotton lines. In this study, 31 cotton genotypes/cultivars were evaluated under two irrigation regimes i. e., seven irrigations (Control) and two irrigations (Stress), using split plot design with four replications. The crop growth, yield and some physiological parameters were studied. There were high inter-varietal differences for all the parameters under control as well as drought stress. Although all the varieties for all parameters were significantly affected by drought but however, CRIS-9, MARVI, CRIS-134, CRIS-126, CRIS-337, CRIS-355 and CRIS-377 maintained highest performance for all the parameters studied under high drought conditions. (author)

  9. Provenance-specific growth responses to drought and air warming in three European oak species

    Energy Technology Data Exchange (ETDEWEB)

    Arend, Matthias; Kuster, Thomas; Gunthardt-Goerg, Madeleine S.; Dobbertin, Matthias


    This study evaluated oak growth responses to air warming through research conducted with species coming from climatically different sites submitted to differing climates including periodic drought and air warming. Results showed different responses to drought and air warming as an adaptation to the conditions, and differences in growth response from one provenance to another were found but local climate factors were not responsible. This study highlighted that provenance was important to growth responses and it will have to be taken into account for regeneration of oaks in a changed climate if these results are confirmed.

  10. Local conditional entropy in measure for covers with respect to a fixed partition (United States)

    Romagnoli, Pierre-Paul


    In this paper we introduce two measure theoretical notions of conditional entropy for finite measurable covers conditioned to a finite measurable partition and prove that they are equal. Using this we state a local variational principle with respect to the notion of conditional entropy defined by Misiurewicz (1976 Stud. Math. 55 176–200) for the case of open covers. This in particular extends the work done in Romagnoli (2003 Ergod. Theor. Dynam. Syst. 23 1601–10), Glasner and Weiss (2006 Handbook of Dynamical Systems vol 1B (Amsterdam: Elsevier)) and Huang et al (2006 Ergod. Theor. Dynam. Syst. 26 219–45).


    Directory of Open Access Journals (Sweden)

    Elza Surmaini


    Full Text Available Indonesia consistently experiences dry climatic conditions and droughts during El Niño, with significant consequences for rice production. To mitigate the impacts of such droughts, robust, simple and timely rainfall forecast is critically important for predicting drought prior to planting time over rice growing areas in Indonesia. The main objective of this study was to predict drought in rice growing areas using ensemble seasonal prediction. The skill of National Oceanic and Atmospheric Administration’s (NOAA’s seasonal prediction model Climate Forecast System version 2 (CFSv2 for predicting rice drought in West Java was investigated in a series of hindcast experiments in 1989-2010. The Constructed Analogue (CA method was employed to produce downscaled local rainfall prediction with stream function (y and velocity potential (c at 850 hPa as predictors and observed rainfall as predictant. We used forty two rain gauges in northern part of West Java in Indramayu, Cirebon, Sumedang and Majalengka Districts. To be able to quantify the uncertainties, a multi-window scheme for predictors was applied to obtain ensemble rainfall prediction. Drought events in dry season planting were predicted by rainfall thresholds. The skill of downscaled rainfall prediction was assessed using Relative Operating Characteristics (ROC method. Results of the study showed that the skills of the probabilistic seasonal prediction for early detection of rice area drought were found to range from 62% to 82% with an improved lead time of 2-4 months. The lead time of 2-4 months provided sufficient time for practical policy makers, extension workers and farmers to cope with drought by preparing suitable farming practices and equipments.

  12. Local conditions and uncertainty bands for Semiscale Test S-02-9

    International Nuclear Information System (INIS)

    Varacalle, D.J. Jr.


    Analysis was performed to derive local conditions heat transfer parameters and their uncertainties using computer codes and experimentally derived boundary conditions for the Semiscale core for LOCA Test S-02-9. Calculations performed consisted of nominal code cases using best-estimate input parameters and cases where the specified input parameters were perturbed in accordance with the response surface method of uncertainty analysis. The output parameters of interest were those that are used in film boiling heat transfer correlations including enthalpy, pressure, quality, and coolant flow rate. Large uncertainty deviations occurred during low core mass flow periods where the relative flow uncertainties were large. Utilizing the derived local conditions and their associated uncertainties, a study was then made which showed the uncertainty in film boiling heat transfer coefficient varied between 5 and 250%

  13. Characteristic of local parameter of bubbly flow in rectangular channel under inclined and rolling conditions

    International Nuclear Information System (INIS)

    Yan Changqi; Jin Guangyuan; Sun Licheng; Wang Yang


    Characteristics of local parameters of bubbly flow were investigated in rectangular channel (40 mm × 3 mm) under inclined and rolling conditions. Under vertical condition, the distribution type 'wall peak' and 'core peak' are observed, and 'core peak' exists when the liquid superficial velocity is low and the gas superficial velocity is high. Under inclined condition, the peaks of two distribution types get strengthened at the top of the channel, and weakened at the bottom. Under rolling condition, the peaks of two distribution types get strengthened compared with the same angle under inclined condition when the angle is getting larger. The influence from rolling motion gets stronger on the peak of two distribution types when the rolling movement is more violent. (authors)

  14. Towards Improved Understanding of Drought and Drought Impacts from Long Term Earth Observation Records (United States)

    Champagne, C.; Wang, S.; Liu, J.; Hadwen, T. A.


    Drought is a complex natural disaster, which often emerges slowly, but can occur at various time scales and have impacts that are not well understood. Long term observations of drought intensity and frequency are often quantified from precipitation and temperature based indices or modelled estimates of soil water storage. The maturity of satellite based observations has created the potential to enhance the understanding of drought and drought impacts, particularly in regions where traditional data sets are limited by remoteness or inaccessibility, and where drought processes are not well-quantified by models. Long term global satellite data records now provide observations of key hydrological variables, including evaporation modelled from thermal sensors, soil moisture from microwave sensors, ground water from gravity sensors and vegetation condition that can be modelled from optical sensors. This study examined trends in drought frequency, intensity and duration over diverse ecoregions in Canada, including agricultural, grassland, forested and wetland areas. Trends in drought were obtained from the Canadian Drought Monitor as well as meteorological based indices from weather stations, and evaluated against satellite derived information on evaporative stress (Anderson et al. 2011), soil moisture (Champagne et al. 2015), terrestrial water storage (Wang and Li 2016) and vegetation condition (Davidson et al. 2009). Data sets were evaluated to determine differences in how different sensors characterize the hydrology and impacts of drought events from 2003 to 2016. Preliminary results show how different hydrological observations can provide unique information that can tie causes of drought (water shortages resulting from precipitation, lack of moisture storage or evaporative stress) to impacts (vegetation condition) that hold the potential to improve the understanding and classification of drought events.

  15. Chimera states and the interplay between initial conditions and non-local coupling (United States)

    Kalle, Peter; Sawicki, Jakub; Zakharova, Anna; Schöll, Eckehard


    Chimera states are complex spatio-temporal patterns that consist of coexisting domains of coherent and incoherent dynamics. We study chimera states in a network of non-locally coupled Stuart-Landau oscillators. We investigate the impact of initial conditions in combination with non-local coupling. Based on an analytical argument, we show how the coupling phase and the coupling strength are linked to the occurrence of chimera states, flipped profiles of the mean phase velocity, and the transition from a phase- to an amplitude-mediated chimera state.

  16. On the Local Type I Conditions for the 3D Euler Equations (United States)

    Chae, Dongho; Wolf, Jörg


    We prove local non blow-up theorems for the 3D incompressible Euler equations under local Type I conditions. More specifically, for a classical solution {v\\in L^∞ (-1,0; L^2 ( B(x_0,r)))\\cap L^∞_{loc} (-1,0; W^{1, ∞} (B(x_0, r)))} of the 3D Euler equations, where {B(x_0,r)} is the ball with radius r and the center at x 0, if the limiting values of certain scale invariant quantities for a solution v(·, t) as {t\\to 0} are small enough, then { \

  17. A technical basis for the flux corrected local conditions critical heat flux correlation

    International Nuclear Information System (INIS)

    Luxat, J.C.


    The so-called 'flux-corrected' local conditions CHF correlation was developed at Ontario Hydro in the 1980's and was demonstrated to successfully correlate the Onset of Intermittent Dryout (OID) CHF data for 37-element fuel with a downstream-skewed axial heat flux distribution. However, because the heat flux correction factor appeared to be an ad-hoc, albeit a successful modifying factor in the correlation, there was reluctance to accept the correlation more generally. This paper presents a thermalhydraulic basis, derived from two-phase flow considerations, that supports the appropriateness of the heat flux correction as a local effects modifying factor. (author)

  18. [Physiological responses of mycorrhizal Pinus massoniana seedlings to drought stress and drought resistance evaluation]. (United States)

    Wang, Yi; Ding, Gui-jie


    A greenhouse pot experiment was conducted to study the effects of inoculating Pisolithus tinctorius, Cenococcum geophilum, Cantharellus cibarius, and Suillus luteus on the physiological characteristics of Pinus massoniana seedlings under the conditions of drought stress and re-watering, with the drought resistance of the mycorrhizal seedlings evaluated. Under drought stress, the MDA content and membrane' s relative permeability of P. massoniana seedlings increased, but these two indices in the inoculated (mycorrhizal) seedlings were significantly lower than these in the un-inoculated (control) seedlings. After re-watering, the MDA content and membrane's relative permeability of mycorrhizal seedlings had a rapid decrease, as compared with the control. In the first 21 days of drought stress, the production rate of superoxide radical of the seedlings increased, and the SOD, POD and NR activities of mycorrhizal seedlings increased significantly. With the extending of drought stress, the seedlings after re-watering had different recovery ability. Under the re-watering after 14 days drought stress, the SOD, POD and NR activities recovered. The drought resistance of the mycorrhizal seedlings was in the order of Suillus luteus 1 > Suillus luteus 7 > Cantharellus cibarius > Cenococcum geophilum > Pisolithus tinctorius. The SOD and MDA activities had a greater correlation with the mycorrhizal seedlings drought resistance, being able to be used as the indicators to evaluate the drought resistance of mycorrhizal seedlings.

  19. Extreme drought decouples silicon and carbon geochemical linkages in lakes. (United States)

    Li, Tianyang; Li, Siyue; Bush, Richard T; Liang, Chuan


    Silicon and carbon geochemical linkages were usually regulated by chemical weathering and organism activity, but had not been investigated under the drought condition, and the magnitude and extent of drought effects remain poorly understood. We collected a comprehensive data set from a total of 13 sampling sites covering the main water body of the largest freshwater lake system in Australia, the Lower Lakes. Changes to water quality during drought (April 2008-September 2010) and post-drought (October 2010-October 2013) were compared to reveal the effects of drought on dissolved silica (DSi) and bicarbonate (HCO 3 - ) and other environmental factors, including sodium (Na + ), pH, electrical conductivity (EC), chlorophyll a (Chl-a), total dissolved solids (TDS), dissolved inorganic nitrogen (DIN), total nitrogen (TN), total phosphorus (TP) and water levels. Among the key observations, concentrations of DSi and DIN were markedly lower in drought than in post-drought period while pH, EC and concentrations of HCO 3 - , Na + , Chl-a, TDS, TN, TP and the ratio TN:TP had inverse trends. Stoichiometric ratios of DSi:HCO 3 - , DSi:Na + and HCO 3 - :Na + were significantly lower in the drought period. DSi exhibited significantly negative relationships with HCO 3 - , and DSi:Na + was strongly correlated with HCO 3 - :Na + in both drought and post-drought periods. The backward stepwise regression analysis that could avoid multicollinearity suggested that DSi:HCO 3 - ratio in drought period had significant relationships with fewer variables when compared to the post-drought, and was better predictable using nutrient variables during post-drought. Our results highlight the drought effects on variations of water constituents and point to the decoupling of silicon and carbon geochemical linkages in the Lower Lakes under drought conditions. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Drought propagation and its relation with catchment biophysical characteristics (United States)

    Alvarez-Garreton, C. D.; Lara, A.; Garreaud, R. D.


    Droughts propagate in the hydrological cycle from meteorological to soil moisture to hydrological droughts. To understand the drivers of this process is of paramount importance since the economic and societal impacts in water resources are directly related with hydrological droughts (and not with meteorological droughts, which have been most studied). This research analyses drought characteristics over a large region and identify its main exogenous (climate forcing) and endogenous (biophysical characteristics such as land cover type and topography) explanatory factors. The study region is Chile, which covers seven major climatic subtypes according to Köppen system, it has unique geographic characteristics, very sharp topography and a wide range of landscapes and vegetation conditions. Meteorological and hydrological droughts (deficit in precipitation and streamflow, respectively) are characterized by their durations and standardized deficit volumes using a variable threshold method, over 300 representative catchments (located between 27°S and 50°S). To quantify the propagation from meteorological to hydrological drought, we propose a novel drought attenuation index (DAI), calculated as the ratio between the meteorological drought severity slope and the hydrological drought severity slope. DAI varies from zero (catchment that attenuates completely a meteorological drought) to one (the meteorological drought is fully propagated through the hydrological cycle). This novel index provides key (and comparable) information about drought propagation over a wide range of different catchments, which has been highlighted as a major research gap. Similar drought indicators across the wide range of catchments are then linked with catchment biophysical characteristics. A thorough compilation of land cover information (including the percentage of native forests, grass land, urban and industrial areas, glaciers, water bodies and no vegetated areas), catchment physical

  1. Local area water removal analysis of a proton exchange membrane fuel cell under gas purge conditions. (United States)

    Lee, Chi-Yuan; Lee, Yu-Ming; Lee, Shuo-Jen


    In this study, local area water content distribution under various gas purging conditions are experimentally analyzed for the first time. The local high frequency resistance (HFR) is measured using novel micro sensors. The results reveal that the liquid water removal rate in a membrane electrode assembly (MEA) is non-uniform. In the under-the-channel area, the removal of liquid water is governed by both convective and diffusive flux of the through-plane drying. Thus, almost all of the liquid water is removed within 30 s of purging with gas. However, liquid water that is stored in the under-the-rib area is not easy to remove during 1 min of gas purging. Therefore, the re-hydration of the membrane by internal diffusive flux is faster than that in the under-the-channel area. Consequently, local fuel starvation and membrane degradation can degrade the performance of a fuel cell that is started from cold.

  2. The influence of inter-annually varying albedo on regional climate and drought

    KAUST Repository

    Meng, Xianhong


    Albedo plays an important role in land-atmosphere interactions and local climate. This study presents the impact on simulating regional climate, and the evolution of a drought, when using the default climatological albedo as is usually done in regional climate modelling, or using the actual observed albedo which is rarely done. Here, time-varying satellite derived albedo data is used to update the lower boundary condition of the Weather Research and Forecasting regional climate model in order to investigate the influence of observed albedo on regional climate simulations and also potential changes to land-atmosphere feedback over south-east Australia. During the study period from 2000 to 2008, observations show that albedo increased with an increasingly negative precipitation anomaly, though it lagged precipitation by several months. Compared to in-situ observations, using satellite observed albedo instead of the default climatological albedo provided an improvement in the simulated seasonal mean air temperature. In terms of precipitation, both simulations reproduced the drought that occurred from 2002 through 2006. Using the observed albedo produced a drier simulation overall. During the onset of the 2002 drought, albedo changes enhanced the precipitation reduction by 20 % on average, over locations where it was active. The area experiencing drought increased 6.3 % due to the albedo changes. Two mechanisms for albedo changes to impact land-atmosphere drought feedback are investigated. One accounts for the increased albedo, leading to reduced turbulent heat flux and an associated decrease of moist static energy density in the planetary boundary layer; the other considers that enhanced local radiative heating, due to the drought, favours a deeper planetary boundary layer, subsequently decreasing the moist static energy density through entrainment of the free atmosphere. Analysis shows that drought related large-scale changes in the regional climate favour a

  3. Subjective quality of video sequences rendered on LCD with local backlight dimming at different lighting conditions (United States)

    Mantel, Claire; Korhonen, Jari; Pedersen, Jesper M.; Bech, Søren; Andersen, Jakob Dahl; Forchhammer, Søren


    This paper focuses on the influence of ambient light on the perceived quality of videos displayed on Liquid Crystal Display (LCD) with local backlight dimming. A subjective test assessing the quality of videos with two backlight dimming methods and three lighting conditions, i.e. no light, low light level (5 lux) and higher light level (60 lux) was organized to collect subjective data. Results show that participants prefer the method exploiting local dimming possibilities to the conventional full backlight but that this preference varies depending on the ambient light level. The clear preference for one method at the low light conditions decreases at the high ambient light, confirming that the ambient light significantly attenuates the perception of the leakage defect (light leaking through dark pixels). Results are also highly dependent on the content of the sequence, which can modulate the effect of the ambient light from having an important influence on the quality grades to no influence at all.

  4. Subjective quality of video sequences rendered on LCD with local backlight dimming at different lighting conditions

    DEFF Research Database (Denmark)

    Mantel, Claire; Korhonen, Jari; Pedersen, Jesper Mørkhøj


    This paper focuses on the influence of ambient light on the perceived quality of videos displayed on Liquid Crystal Display (LCD) with local backlight dimming. A subjective test assessing the quality of videos with two backlight dimming methods and three lighting conditions, i.e. no light, low...... light level (5 lux) and higher light level (60 lux) was organized to collect subjective data. Results show that participants prefer the method exploiting local dimming possibilities to the conventional full backlight but that this preference varies depending on the ambient light level. The clear...... preference for one method at the low light conditions decreases at the high ambient light, confirming that the ambient light significantly attenuates the perception of the leakage defect (light leaking through dark pixels). Results are also highly dependent on the content of the sequence, which can modulate...

  5. Drought tolerance and growth in populations of a wide-ranging tree species indicate climate change risks for the boreal north. (United States)

    Montwé, David; Isaac-Renton, Miriam; Hamann, Andreas; Spiecker, Heinrich


    Choosing drought-tolerant planting stock in reforestation programs may help adapt forests to climate change. To inform such reforestation strategies, we test lodgepole pine (Pinus contorta Doug. ex Loud. var latifolia Englm.) population response to drought and infer potential benefits of a northward transfer of seeds from drier, southern environments. The objective is addressed by combining dendroecological growth analysis with long-term genetic field trials. Over 500 trees originating from 23 populations across western North America were destructively sampled in three experimental sites in southern British Columbia, representing a climate warming scenario. Growth after 32 years from provenances transferred southward or northward over long distances was significantly lower than growth of local populations. All populations were affected by a severe natural drought event in 2002. The provenances from the most southern locations showed the highest drought tolerance but low productivity. Local provenances were productive and drought tolerant. Provenances from the boreal north showed lower productivity and less drought tolerance on southern test sites than all other sources, implying that maladaptation to drought may prevent boreal populations from taking full advantage of more favorable growing conditions under projected climate change. © 2015 John Wiley & Sons Ltd.

  6. Working the Night Shift: The Impact of Compensating Wages and Local Economic Conditions on Shift Choice


    Colene Trent; Walter J. Mayer


    The theory of compensating differentials asserts that night shift workers should receive compensating wage differentials due to undesirable work conditions. In weak local economies, workers may have difficulty finding jobs; thus, these workers might be more likely to accept night shift work and be less concerned with the size of the compensating differential for night shifts. Using CPS data from 2001, this paper employs maximum likelihood estimation of an endogenous switching regression model...

  7. Local power production at the end consumer - legal, political and economical external conditions

    International Nuclear Information System (INIS)

    Grinden, Bjoern; Hunnes, Arngrim; Naesje, Paal; Wangensteen, Ivar; Morch, Andrei Z.


    The report deals with the external conditions for local power production, suggested as a production close to or at the end consumer. The political, legal and economical frame conditions for such production including rating are discussed. The report shall together with a technical report regarding appropriate technologies for such production (A5712), serve as a basis for case studies and monitors later in the project. Through the case studies it will be uncovered how the external conditions are functioning which will make foundations for recommendations concerning possible alterations in the conditions in order to make the local power production more profitable. In the discussion on the political and legal external conditions the system of today is studied. From the political area the general development is described and a short analysis is made of what to expect from case handling procedures, and some challenges are pointed out At present there is a simplified handling of cases of minor and smaller power plants. In order to obtain a more realistic construction of such plants the requirements of license handling may need sharpening. The tariffing of energy deliverance is studied. The regulations for tariffing and income regulation in the distribution network is mainly designed with the consumer and the central power production in mind. A study is made of how the regulations work, to what extent precessions and additional rules are needed and to what extent alterations in the regulations are needed in order to incorporate the local power production in a rational way. While a local power producer at best, will want a price for power which is sold at the power market of the size of 20 oere/kWh, the power will increase in value further down in the voltage level. At the 230 V level the power price will be of the size of 60 oere/kWh all expenses included and the network rent (during normal precipitation conditions). Therefore the production for own consumption will be met

  8. Plasticity in variation of xylem and phloem cell characteristics of Norway spruce under different local conditions

    Directory of Open Access Journals (Sweden)

    Jozica eGricar


    Full Text Available There is limited information on intra-annual plasticity of secondary tissues of tree species growing under different environmental conditions. To increase the knowledge about the plasticity of secondary growth, which allows trees to adapt to specific local climatic regimes, we examined climate–radial growth relationships of Norway spruce (Picea abies (L. H. Karst. from three contrasting locations in the temperate climatic zone by analyzing tree-ring widths for the period 1932–2010, and cell characteristics in xylem and phloem increments formed in the years 2009–2011. Variation in the structure of xylem and phloem increments clearly shows that plasticity in seasonal dynamics of cambial cell production and cell differentiation exists on xylem and phloem sides. Anatomical characteristics of xylem and phloem cells are predominantly site-specific characteristics, because they varied among sites but were fairly uniform among years in trees from the same site. Xylem and phloem tissues formed in the first part of the growing season seemed to be more stable in structure, indicating their priority over latewood and late phloem for tree performance. Long-term climate and radial growth analyses revealed that growth was in general less dependent on precipitation than on temperature; however, growth sensitivity to local conditions differed among the sites. Only partial dependence of radial growth of spruce on climatic factors on the selected sites confirms its strategy to adapt the structure of wood and phloem increments to function optimally in local conditions.

  9. Field Phenotyping of Soybean Roots for Drought Stress Tolerance

    Directory of Open Access Journals (Sweden)

    Berhanu A. Fenta


    Full Text Available Root architecture was determined together with shoot parameters under well watered and drought conditions in the field in three soybean cultivars (A5409RG, Jackson and Prima 2000. Morphology parameters were used to classify the cultivars into different root phenotypes that could be important in conferring drought tolerance traits. A5409RG is a drought-sensitive cultivar with a shallow root phenotype and a root angle of <40°. In contrast, Jackson is a drought-escaping cultivar. It has a deep rooting phenotype with a root angle of >60°. Prima 2000 is an intermediate drought-tolerant cultivar with a root angle of 40°–60°. It has an intermediate root phenotype. Prima 2000 was the best performing cultivar under drought stress, having the greatest shoot biomass and grain yield under limited water availability. It had abundant root nodules even under drought conditions. A positive correlation was observed between nodule size, above-ground biomass and seed yield under well-watered and drought conditions. These findings demonstrate that root system phenotyping using markers that are easy-to-apply under field conditions can be used to determine genotypic differences in drought tolerance in soybean. The strong association between root and nodule parameters and whole plant productivity demonstrates the potential application of simple root phenotypic markers in screening for drought tolerance in soybean.

  10. Temporal and Spatial Variability of Droughts in Southwest China from 1961 to 2012

    Directory of Open Access Journals (Sweden)

    Yaohuan Huang


    Full Text Available Southwest China (SC has suffered a series of super extreme droughts in the last decade. This study analyzed the temporal and spatial variations of drought in SC from 1961 to 2012. Based on precipitation anomaly index (PAI that was derived from 1 km gridded precipitation data, three time scales (month, year and decade for the drought frequency (DF and drought area were applied to estimate the spatio-temporal structure of droughts. A time-series analysis showed that winter droughts and spring droughts occurred frequently for almost half of the year from November to March. Summer droughts occasionally occurred in severe drought decades: the 1960s, 1980s and 2000s. During the period of observation, the percent of drought area in SC increased from the 1960s (<5% to the 2000s (>25%. A total of 57% of the area was affected by drought in 2011, when the area experienced its most severe drought both in terms of area and severity. The spatial analysis, which benefitted from the gridded data, detailed that all of SC is at drought risk except for the central Sichuan Basin. The area at high risk for severe and extreme droughts was localized in the mountains of the junction of Sichuan and Yunnan. The temporal and spatial variability can be prerequisites for drought resistance planning and drought risk management of SC.

  11. Development of a Coastal Drought Index Using Salinity Data (United States)

    Conrads, P. A.; Darby, L. S.


    The freshwater-saltwater interface in surface-water bodies along the coast is an important factor in the ecological and socio-economic dynamics of coastal communities. It influences community composition in freshwater and saltwater ecosystems, determines fisheries spawning habitat, and controls freshwater availability for municipal and industrial water intakes. These dynamics may be affected by coastal drought through changes in Vibrio bacteria impacts on shellfish harvesting and occurrence of wound infection, fish kills, harmful algal blooms, hypoxia, and beach closures. There are many definitions of drought, with most describing a decline in precipitation having negative impacts on water supply and agriculture. Four general types of drought are recognized: hydrological, agricultural, meteorological, and socio-economic. Indices have been developed for these drought types incorporating data such as rainfall, streamflow, soil moisture, groundwater levels, and snow pack. These indices were developed for upland areas and may not be appropriate for characterizing drought in coastal areas. Because of the uniqueness of drought impacts on coastal ecosystems, a need exists to develop a coastal drought index. The availability of real-time and historical salinity datasets provides an opportunity to develop a salinity-based coastal drought index. The challenge of characterizing salinity dynamics in response to drought is excluding responses attributable to occasional saltwater intrusion events. Our approach to develop a coastal drought index modified the Standardized Precipitation Index and applied it to sites in South Carolina and Georgia, USA. Coastal drought indices characterizing 1-, 3-, 6-, 9-, and12-month drought conditions were developed. Evaluation of the coastal drought index indicates that it can be used for different estuary types, for comparison between estuaries, and as an index for wet conditions (high freshwater inflow) in addition to drought conditions.

  12. The electron localization as the information content of the conditional pair density

    Energy Technology Data Exchange (ETDEWEB)

    Urbina, Andres S.; Torres, F. Javier [Universidad San Francisco de Quito (USFQ), Grupo de Química Computacional y Teórica (QCT-USFQ), Departamento de Química e Ingeniería Química, Diego de Robles y Via Interoceanica, Quito 17-1200-841 (Ecuador); Universidad San Francisco de Quito (USFQ), Instituto de Simulación Computacional (ISC-USFQ), Diego de Robles y Via Interoceanica, Quito 17-1200-841 (Ecuador); Rincon, Luis, E-mail:, E-mail: [Universidad San Francisco de Quito (USFQ), Grupo de Química Computacional y Teórica (QCT-USFQ), Departamento de Química e Ingeniería Química, Diego de Robles y Via Interoceanica, Quito 17-1200-841 (Ecuador); Universidad San Francisco de Quito (USFQ), Instituto de Simulación Computacional (ISC-USFQ), Diego de Robles y Via Interoceanica, Quito 17-1200-841 (Ecuador); Departamento de Química, Facultad de Ciencias, Universidad de Los Andes (ULA), La Hechicera, Mérida-5101 (Venezuela, Bolivarian Republic of)


    In the present work, the information gained by an electron for “knowing” about the position of another electron with the same spin is calculated using the Kullback-Leibler divergence (D{sub KL}) between the same-spin conditional pair probability density and the marginal probability. D{sub KL} is proposed as an electron localization measurement, based on the observation that regions of the space with high information gain can be associated with strong correlated localized electrons. Taking into consideration the scaling of D{sub KL} with the number of σ-spin electrons of a system (N{sup σ}), the quantity χ = (N{sup σ} − 1) D{sub KL}f{sub cut} is introduced as a general descriptor that allows the quantification of the electron localization in the space. f{sub cut} is defined such that it goes smoothly to zero for negligible densities. χ is computed for a selection of atomic and molecular systems in order to test its capability to determine the region in space where electrons are localized. As a general conclusion, χ is able to explain the electron structure of molecules on the basis of chemical grounds with a high degree of success and to produce a clear differentiation of the localization of electrons that can be traced to the fluctuation in the average number of electrons in these regions.

  13. Instrumenting the Conifers: A Look at Daily Tree Growth and Locally Observed Environmental Conditions Across Four Mountain Sites in the Central Great Basin, USA (United States)

    Strachan, S.; Biondi, F.; Johnson, B. G.


    Tree growth is often used as a proxy for past environmental conditions or as an indicator of developing trends. Reconstructions of drought, precipitation, temperature, and other phenomena derived from tree-growth indices abound in scientific literature aimed at informing policy makers. Observations of tree recruitment or death in treeline populations are frequently tied to climatic fluctuation in cause-effect hypotheses. Very often these hypotheses are based on statistical relationships between annual-to-seasonal tree growth measurements and some environmental parameter measured or modeled off-site. Observation of daily tree growth in conjunction with in-situ environmental measurements at similar timescales takes us one step closer to quantifying the uncertainty in reconstruction or predictive studies. In four separate sites in two different mountain ranges in the central Great Basin, co-located observations of conifer growth activity and local atmospheric and soils conditions have been initiated. Species include Pinus longaeva (Great Basin bristlecone pine), Pinus flexilis (limber pine), Picea engelmannii (Engelmann spruce), Pinus monophylla (singleleaf pinyon pine), Pinus ponderosa (ponderosa pine), Abies concolor (white fir), and Pseudotsuga menziesii (Douglas-fir). Measurements of sub-hourly tree radial length change and sap flow activity are compared with a suite of in-situ observations including air temperature, precipitation, photosynthetically-active radiation (PAR), relative humidity, soil temperature, and soil moisture/water content. Subalpine study site located at 3360 m elevation in the Snake Range, Nevada

  14. GRACE-Assimilated Drought Indicators for the U.S. Drought Monitor (United States)

    Rui, Hualan; Vollmer, Bruce; Teng, Bill; Loeser, Carlee; Beaudoing, Hiroko; Rodell, Matt


    The Gravity Recovery and Climate Experiment (GRACE) mission detects changes in Earth's gravity field by precisely monitoring the changes in distance between two satellites orbiting the Earth in tandem. Scientists at NASA's Goddard Space Flight Center generate GRACE-assimilated groundwater and soil moisture drought indicators each week, for drought monitor-related studies and applications. The GRACE-assimilated Drought Indicator Version 2.0 data product (GRACE-DA-DM V2.0) is archived at, and distributed by, the NASA GES DISC (Goddard Earth Sciences Data and Information Services Center). More information about the data and data access is available on the data product landing page at /GRACEDADM_CLSM0125US_7D_2.0/summary. The GRACE-DA-DM V2.0 data product contains three drought indicators: Groundwater Percentile, Root Zone Soil Moisture Percentile, and Surface Soil Moisture Percentile. The drought indicators are of wet or dry conditions, expressed as a percentile, indicating the probability of occurrence within the period of record from 1948 to 2012. These GRACE-assimilated drought indicators, with improved spatial and temporal resolutions, should provide a more comprehensive and objective identification of drought conditions. This presentation describes the basic characteristics of the data and data services at NASA GES DISC and collaborative organizations, and uses a few examples to demonstrate the simple ways to explore the GRACE-assimilated drought indicator data.

  15. Forages and Pastures Symposium: assessing drought vulnerability of agricultural production systems in context of the 2012 drought. (United States)

    Kellner, O; Niyogi, D


    Weather and climate events and agronomic enterprise are coupled via crop phenology and yield, which is temperature and precipitation dependent. Additional coupling between weather and climate and agronomic enterprise occurs through agricultural practices such as tillage, irrigation, erosion, livestock management, and forage. Thus, the relationship between precipitation, temperature, and yield is coupled to the relationship between temperature, precipitation, and drought. Unraveling the different meteorological and climatological patterns by comparing different growing seasons provides insight into how drought conditions develop and what agricultural producers can do to mitigate and adapt to drought conditions. The 2012 drought in the United States greatly impacted the agricultural sector of the economy. With comparable severity and spatial extent of the droughts of the 1930s, 1950s, and 1980s, the 2012 drought impacted much of the U.S. crop and livestock producers via decreased forage and feed. This brief summary of drought impacts to agricultural production systems includes 1) the basics of drought; 2) the meteorology and climatology involved in forecasting, predicting, and monitoring drought with attribution of the 2012 drought explored in detail; and 3) comparative analysis completed between the 2011 and 2012 growing season. This synthesis highlights the complex nature of drought in agriculture production systems as producers prepare for future climate variability.

  16. Improved tolerance to post-anthesis drought stress by pre-drought priming at vegetative stages in drought-tolerant and -sensitive wheat cultivars. (United States)

    Abid, Muhammad; Tian, Zhongwei; Ata-Ul-Karim, Syed Tahir; Liu, Yang; Cui, Yakun; Zahoor, Rizwan; Jiang, Dong; Dai, Tingbo


    Wheat crop endures a considerable penalty of yield reduction to escape the drought events during post-anthesis period. Drought priming under a pre-drought stress can enhance the crop potential to tolerate the subsequent drought stress by triggering a faster and stronger defense mechanism. Towards these understandings, a set of controlled moderate drought stress at 55-60% field capacity (FC) was developed to prime the plants of two wheat cultivars namely Luhan-7 (drought tolerant) and Yangmai-16 (drought sensitive) during tillering (Feekes 2 stage) and jointing (Feekes 6 stage), respectively. The comparative response of primed and non-primed plants, cultivars and priming stages was evaluated by applying a subsequent severe drought stress at 7 days after anthesis. The results showed that primed plants of both cultivars showed higher potential to tolerate the post-anthesis drought stress through improved leaf water potential, more chlorophyll, and ribulose-1, 5-bisphosphate carboxylase/oxygenase contents, enhanced photosynthesis, better photoprotection and efficient enzymatic antioxidant system leading to less yield reductions. The primed plants of Luhan-7 showed higher capability to adapt the drought stress events than Yangmai-16. The positive effects of drought priming to sustain higher grain yield were pronounced in plants primed at tillering than those primed at jointing. In consequence, upregulated functioning of photosynthetic apparatus and efficient enzymatic antioxidant activities in primed plants indicated their superior potential to alleviate a subsequently occurring drought stress, which contributed to lower yield reductions than non-primed plants. However, genotypic and priming stages differences in response to drought stress also contributed to affect the capability of primed plants to tolerate the post-anthesis drought stress conditions in wheat. Copyright © 2016. Published by Elsevier Masson SAS.

  17. Changes in drought risk with climate change

    International Nuclear Information System (INIS)

    Mullan, B.; Porteous, A.; Wratt, D.; Hollis, M.


    As human activity adds more greenhouse gases to the atmosphere, most climate change scenarios predict rising temperatures and decreased rainfall in the east of New Zealand. This means eastern parts of the country are expected to experience more droughts as the 21st century goes on. Our report seeks for the first time to define the possible range of changes in future drought risk. This report was commissioned because of the importance of drought for agriculture and water resources. The report aims to give central and local government and the agriculture sector an indication of how big future drought changes could be in the various regions. This information can be relevant in managing long-term water resources and land use, including planning for irrigation schemes.

  18. Mapping Drought Sensitivity of Ecosystem Functioning in Mountainous Watersheds: Spatial Heterogeneity and Geological-Geomorphological Control (United States)

    Wainwright, H. M.; Steefel, C. F.; Williams, K. H.; Hubbard, S. S.; Enquist, B. J.; Steltzer, H.; Sarah, T.


    Mountainous watersheds in the Upper Colorado River Basin play a critical role in supplying water and nutrients to western North America. Ecosystem functioning in those regions - including plant dynamics and biogeochemical cycling - is known to be limited by water availability. Under the climate change, early snowmelt and increasing temperature are expected to intensify the drought conditions in early growing seasons. Although the impact of early-season drought has been documented in plot-scale experiments, ascertaining its significance in mountainous watersheds is challenging given the highly heterogeneous nature of the systems with complex terrain and diverse plant functional types (PFTs). The objectives of this study are (1) to map the regions where the plant dynamics are relatively more sensitive to drought conditions based on historical satellite and climate data, and (2) to identify the environmental controls (e.g., geomorphology, elevation, geology, snow and PFT) on drought sensitivity. We characterize the spatial heterogeneity of drought sensitivity in four watersheds (a 15 x 15 km domain) near the Rocky Mountain Biological Laboratory in Colorado, USA. Following previous plot-scale studies, we first define the drought sensitivity based on annual peak NDVI (Landsat 5) and climatic datasets. Non-parametric tree-based machine learning methods are used to identify the significant environmental controls, using high-resolution LiDAR digital elevation map and peak snow-water-equivalent distribution from NASA airborne snow observatory. Results show that the drought sensitivity is negatively correlated with elevation, suggesting increased water limitations in lower elevation (less snow, higher temperature). The drought sensitivity is more spatially variable in shallow-rooted plant types, affected by local hydrological conditions. We also found geomorphological and geological controls, such as high sensitivity in the steep well-drained glacial moraine regions. Our

  19. The 2010 spring drought reduced primary productivity in southwestern China

    International Nuclear Information System (INIS)

    Zhang Li; Li Jing; Xiao Jingfeng; Wang Kun; Lei Liping; Guo Huadong


    Many parts of the world experience frequent and severe droughts. Summer drought can significantly reduce primary productivity and carbon sequestration capacity. The impacts of spring droughts, however, have received much less attention. A severe and sustained spring drought occurred in southwestern China in 2010. Here we examine the influence of this spring drought on the primary productivity of terrestrial ecosystems using data on climate, vegetation greenness and productivity. We first assess the spatial extent, duration and severity of the drought using precipitation data and the Palmer drought severity index. We then examine the impacts of the drought on terrestrial ecosystems using satellite data for the period 2000–2010. Our results show that the spring drought substantially reduced the enhanced vegetation index (EVI) and gross primary productivity (GPP) during spring 2010 (March–May). Both EVI and GPP also substantially declined in the summer and did not fully recover from the drought stress until August. The drought reduced regional annual GPP and net primary productivity (NPP) in 2010 by 65 and 46 Tg C yr −1 , respectively. Both annual GPP and NPP in 2010 were the lowest over the period 2000–2010. The negative effects of the drought on annual primary productivity were partly offset by the remarkably high productivity in August and September caused by the exceptionally wet conditions in late summer and early fall and the farming practices adopted to mitigate drought effects. Our results show that, like summer droughts, spring droughts can also have significant impacts on vegetation productivity and terrestrial carbon cycling. (letter)

  20. The current California drought through EDDI's eyes: early warning and monitoring of agricultural and hydrologic drought with the new Evaporative Demand Drought Index. (United States)

    Hobbins, M.; McEvoy, D.; Huntington, J. L.; Wood, A. W.; Morton, C.; Verdin, J. P.


    We have developed a physically based, multi-scalar drought index—the Evaporative Demand Drought Index (EDDI)—to improve treatment of evaporative dynamics in drought monitoring. Existing popular drought indices—such as the Palmer Drought Severity Index that informs much of the US Drought Monitor (USDM)—have primarily relyied on precipitation and temperature (T) to represent hydroclimatic anomalies, leaving evaporative demand (E0) most often derived from poorly performing T-based parameterizations then used to derive actual evapotranspiration (ET) from LSMs. Instead, EDDI leverages the inter-relations of E0 and ET, measuring E0's physical response to surface drying anomalies due to two distinct land surface/atmosphere interactions: (i) in sustained drought, limited moisture availability forces E0 and ET into a complementary relation, whereby ET declines as E0 increases; and (ii) in "flash" droughts, E0 increases due to increasing advection or radiation. E0's rise in response to both drought types suggests EDDI's robustness as a monitor and leading indicator of drought. To drive EDDI, we use for E0 daily reference ET from the ASCE Standardized Reference ET equation forced by North American Land Data Assimilation System drivers. EDDI is derived by aggregating E0 anomalies from its long-term mean across a period of interest and normalizing them to a Z-score. Positive EDDI indicates drier than normal conditions (and so drought). We use the current historic California drought as a test-case in which to examine EDDI's performance in monitoring agricultural and hydrologic drought. We observe drought development and decompose the behavior of drought's evaporative drivers during in-drought intensification periods and wetting events. EDDI's performance as a drought leading indicator with respect to the USDM is tested in important agricultural regions. Comparing streamflow from several USGS gauges in the Sierra Nevada to EDDI, we find that EDDI tracks most major

  1. Drought in Africa 2

    Energy Technology Data Exchange (ETDEWEB)

    Dalby, D; Harrison-Church, R J; Berzaz, F [eds.


    The second edition of Drought in Africa is reviewed. The book, which has been greatly expanded, looks at the Sahelian and Ethiopian droughts from a long-term perspective. Among the subjects included are: a description of the meteorological aspects of the drought; changes in animal and human populations; overpopulation of areas of nomadic pastoralism and of crop-producing areas; and mechanisms by which people survived. Cash crops, taxes, the market economy and over-centralized planning receive much of the blame for the effects of the drought.

  2. The U.S./Canadian GEO Bilateral Drought Indices and Definitions Study: Implications for the Canadian Drought Monitor and a Global Drought Early Warning System (United States)

    Hadwen, T.; Heim, R. R.; Howard, A.


    Drought is a difficult phenomenon to define; the way in which it is monitored, measured, assessed and even the very definition of drought vary from location to location based on the regional climate and the potential impacts. Drought is not an absolute condition but an evolving state brought on by relatively dry weather, growing more severe over time. There are many factors that define a drought and many more that define its impacts. Many definitions and indices are based solely on meteorological characteristics. Although this approach has merit, it is often necessary to go further to define those meteorological conditions in a way that is relevant to the land and water use in a region. A Drought Indices and Definitions Study was initiated in 2010 as part of a GEO Bilateral effort to examine drought across the U.S. and Canada. The Study's deliverables will include a survey of the drought indices used to monitor drought, and a bibliography of research addressing the nature of drought, across the diverse climates of the continent. With an increasing pressure to utilize drought monitoring as a primary indicator of need for disaster assistance, the reliability of drought indices must be validated and utilized in appropriate in various regions. In 2009, following over five years of participation in the North American Drought Monitor (NA-DM), the National Agroclimate Information Service of Agriculture and Agri-Food Canada initiated a project to develop a Canadian Drought Monitor (Can-DM), based on primary principles used in the NA-DM and the US Drought Monitor (US-DM). The process of developing an operational monitoring tool and using drought indices in a vast and environmentally diverse country has been challenging. in Canada, many of the commonly used indices are not appropriate in certain regions or data densities do not allow for proper use. This paper will discuss the experiences that the Can-DM team has had dealing with these challenges, how these experiences

  3. Global drought outlook by means of seasonal forecasts (United States)

    Ziese, Markus; Fröhlich, Kristina; Rustemeier, Elke; Becker, Andreas


    Droughts are naturally occurring phenomena which are caused by a shortage of available water due to lower than normal precipitation and/or above normal evaporation. Depending on the length of the droughts, several sectors are affected starting with agriculture, then river and ground water levels and finally socio-economic losses at the long end of the spectrum of drought persistence. Droughts are extreme events that affect much larger areas and last much longer than floods, but are less geared towards media than floods being more short-scale in persistence and impacts. Finally the slow onset of droughts make the detection and early warning of their beginning difficult and time is lost for preparatory measures. Drought indices are developed to detect and classify droughts based on (meteorological) observations and possible additional information tailored to specific user needs, e.g. in agriculture, hydrology and other sectors. Not all drought indices can be utilized for global applications as not all input parameters are available at this scale. Therefore the Global Precipitation Climatology Centre (GPCC) developed a drought index as combination of the Standardized Drought Index (SPI) and the Standardized Precipitation Evapotranspiration Index (SPEI), the GPCC-DI. The GPCC-DI is applied to drought monitoring and retrospective analyses on a global scale. As the Deutscher Wetterdienst (DWD) operates a seasonal forecast system in cooperation with Max-Planck-Institute for Meteorology Hamburg and University of Hamburg, these data are also used for an outlook of drought conditions by means of the GPCC-DI. The reliability of seasonal precipitation forecasts is limited, so the drought outlook is available only for forecast months two to four. Based on the GPCC-DI, DWD provides a retrospective analysis, near-real-time monitoring and outlook of drought conditions on a global scale and regular basis.

  4. The European Drought Observatory (EDO): Current State and Future Directions (United States)

    Vogt, Jürgen; Sepulcre, Guadalupe; Magni, Diego; Valentini, Luana; Singleton, Andrew; Micale, Fabio; Barbosa, Paulo


    Europe has repeatedly been affected by droughts, resulting in considerable ecological and economic damage and climate change studies indicate a trend towards increasing climate variability most likely resulting in more frequent drought occurrences also in Europe. Against this background, the European Commission's Joint Research Centre (JRC) is developing methods and tools for assessing, monitoring and forecasting droughts in Europe and develops a European Drought Observatory (EDO) to complement and integrate national activities with a European view. At the core of the European Drought Observatory (EDO) is a portal, including a map server, a metadata catalogue, a media-monitor and analysis tools. The map server presents Europe-wide up-to-date information on the occurrence and severity of droughts, which is complemented by more detailed information provided by regional, national and local observatories through OGC compliant web mapping and web coverage services. In addition, time series of historical maps as well as graphs of the temporal evolution of drought indices for individual grid cells and administrative regions in Europe can be retrieved and analysed. Current work is focusing on validating the available products, developing combined indicators, improving the functionalities, extending the linkage to additional national and regional drought information systems and testing options for medium-range probabilistic drought forecasting across Europe. Longer-term goals include the development of long-range drought forecasting products, the analysis of drought hazard and risk, the monitoring of drought impact and the integration of EDO in a global drought information system. The talk will provide an overview on the development and state of EDO, the different products, and the ways to include a wide range of stakeholders (i.e. European, national river basin, and local authorities) in the development of the system as well as an outlook on the future developments.

  5. Drought Information Supported by Citizen Scientists (DISCS) (United States)

    Molthan, A.; Maskey, M.; Hain, C.; Meyer, P.; Nair, U. S.; Handyside, C. T.; White, K.; Amin, M.


    Each year, drought impacts various regions of the United States on time scales of weeks, months, seasons, or years, which in turn leads to a need to document these impacts and inform key decisions on land management, use of water resources, and disaster response. Mapping impacts allows decision-makers to understand potential damage to agriculture and loss of production, to communicate and document drought impacts on crop yields, and to inform water management decisions. Current efforts to collect this information includes parsing of media reports, collaborations with local extension offices, and partnerships with the National Weather Service cooperative observer network. As part of a NASA Citizen Science for Earth Systems proposal award, a research and applications team from Marshall Space Flight Center, the University of Alabama in Huntsville, and collaborators within the NWS have developed a prototype smartphone application focused on the collection of citizen science observations of crop health and drought impacts, along with development of innovative low-cost soil moisture sensors to supplement subjective assessments of local soil moisture conditions. Observations provided by citizen scientists include crop type and health, phase of growth, soil moisture conditions, irrigation status, along with an optional photo and comment to provide visual confirmation and other details. In exchange for their participation, users of the app also have access to unique land surface modeling data sets produced at MSFC such as the NASA Land Information System soil moisture and climatology/percentile products from the Short-term Prediction Research and Transition (SPoRT) Center, assessments of vegetation health and stress from NASA and NOAA remote sensing platforms (e.g. MODIS/VIIRS), outputs from a crop stress model developed at the University of Alabama in Huntsville, recent rainfall estimates from the NOAA/NWS network of ground-based weather radars, and other observations made

  6. Drought priming effects on alleviating later damages of heat and drought stress in different wheat cultivars

    DEFF Research Database (Denmark)

    Mendanha, Thayna; Hyldgaard, Benita; Ottosen, Carl-Otto

    The ongoing change is climate; in particular the increase of drought and heat waves episodes are a major challenge in the prospect of food safety. Under many field conditions, plants are usually exposed to mild intermittent stress episodes rather than a terminal stress event. Previous, but limited...... studies suggest that plants subjected to early stress (primed) can be more resistant to future stress exposure than those not stressed during seedling stage. In our experiment we aimed to test if repeated mild drought stresses could improve heat and drought tolerance during anthesis heat and drought...... stresses in wheat cultivars. Two wheat cultivars, Gladius and Paragon, were grown in a fully controlled gravimetric platform and subjected to either no stress (control) or two (P) drought cycles during seedling stage, at three and five complete developed leaves. Each cycle consisted of withholding water...

  7. Exploring the link between meteorological drought and streamflow to inform water resource management (United States)

    Lennard, Amy; Macdonald, Neil; Hooke, Janet


    Drought indicators are an under-used metric in UK drought management. Standardised drought indicators offer a potential monitoring and management tool for operational water resource management. However, the use of these metrics needs further investigation. This work uses statistical analysis of the climatological drought signal based on meteorological drought indicators and observed streamflow data to explore the link between meteorological drought and hydrological drought to inform water resource management for a single water resource region. The region, covering 21,000 km2 of the English Midlands and central Wales, includes a variety of landscapes and climatological conditions. Analysis of the links between meteorological drought and hydrological drought performed using streamflow data from 'natural' catchments indicates a close positive relationship between meteorological drought indicators and streamflow, enhancing confidence in the application of drought indicators for monitoring and management. However, many of the catchments in the region are subject to modification through impoundments, abstractions and discharge. Therefore, it is beneficial to explore how climatological drought signal propagates into managed hydrological systems. Using a longitudinal study of catchments and sub-catchments that include natural and modified river reaches the relationship between meteorological and hydrological drought is explored. Initial statistical analysis of meteorological drought indicators and streamflow data from modified catchments shows a significantly weakened statistical relationship and reveals how anthropogenic activities may alter hydrological drought characteristics in modified catchments. Exploring how meteorological drought indicators link to streamflow across the water supply region helps build an understanding of their utility for operational water resource management.

  8. Autonomous tracked robots in planar off-road conditions modelling, localization, and motion control

    CERN Document Server

    González, Ramón; Guzmán, José Luis


    This monograph is framed within the context of off-road mobile robotics. In particular, it discusses issues related to modelling, localization, and motion control of tracked mobile robots working in planar slippery conditions. Tracked locomotion constitutes a well-known solution for mobile platforms operating over diverse challenging terrains, for that reason, tracked robotics constitutes an important research field with many applications (e.g. agriculture, mining, search and rescue operations, military activities). The specific topics of this monograph are: historical perspective of tracked vehicles and tracked robots; trajectory-tracking model taking into account slip effect; visual-odometry-based localization strategies; and advanced slip-compensation motion controllers ensuring efficient real-time execution. Physical experiments with a real tracked robot are presented showing the better performance of the suggested novel approaches to known techniques.   Keywords: longitudinal slip, visual odometry, slip...

  9. A Global Drought Observatory for Emergency Response (United States)

    Vogt, Jürgen; de Jager, Alfred; Carrão, Hugo; Magni, Diego; Mazzeschi, Marco; Barbosa, Paulo


    Droughts are occurring on all continents and across all climates. While in developed countries they cause significant economic and environmental damages, in less developed countries they may cause major humanitarian catastrophes. The magnitude of the problem and the expected increase in drought frequency, extent and severity in many, often highly vulnerable regions of the world demand a change from the current reactive, crisis-management approach towards a more pro-active, risk management approach. Such approach needs adequate and timely information from global to local scales as well as adequate drought management plans. Drought information systems are important for continuous monitoring and forecasting of the situation in order to provide timely information on developing drought events and their potential impacts. Against this background, the Joint Research Centre (JRC) is developing a Global Drought Observatory (GDO) for the European Commission's humanitarian services, providing up-to-date information on droughts world-wide and their potential impacts. Drought monitoring is achieved by a combination of meteorological and biophysical indicators, while the societal vulnerability to droughts is assessed through the targeted analysis of a series of social, economic and infrastructural indicators. The combination of the information on the occurrence and severity of a drought, on the assets at risk and on the societal vulnerability in the drought affected areas results in a likelihood of impact, which is expressed by a Likelihood of Drought Impact (LDI) indicator. The location, extent and magnitude of the LDI is then further analyzed against the number of people and land use/land cover types affected in order to provide the decision bodies with information on the potential humanitarian and economic bearings in the affected countries or regions. All information is presented through web-mapping interfaces based on OGC standards and customized reports can be drawn by the

  10. A Bayesian localized conditional autoregressive model for estimating the health effects of air pollution. (United States)

    Lee, Duncan; Rushworth, Alastair; Sahu, Sujit K


    Estimation of the long-term health effects of air pollution is a challenging task, especially when modeling spatial small-area disease incidence data in an ecological study design. The challenge comes from the unobserved underlying spatial autocorrelation structure in these data, which is accounted for using random effects modeled by a globally smooth conditional autoregressive model. These smooth random effects confound the effects of air pollution, which are also globally smooth. To avoid this collinearity a Bayesian localized conditional autoregressive model is developed for the random effects. This localized model is flexible spatially, in the sense that it is not only able to model areas of spatial smoothness, but also it is able to capture step changes in the random effects surface. This methodological development allows us to improve the estimation performance of the covariate effects, compared to using traditional conditional auto-regressive models. These results are established using a simulation study, and are then illustrated with our motivating study on air pollution and respiratory ill health in Greater Glasgow, Scotland in 2011. The model shows substantial health effects of particulate matter air pollution and nitrogen dioxide, whose effects have been consistently attenuated by the currently available globally smooth models. © 2014, The Authors Biometrics published by Wiley Periodicals, Inc. on behalf of International Biometric Society.

  11. Phenotypic Approaches to Drought in Cassava: Review

    Directory of Open Access Journals (Sweden)

    Emmanuel eOkogbenin


    Full Text Available Cassava is an important crop in Africa, Asia, Latin America and the Caribbean. Cassava can be produced adequately in drought conditions making it the ideal food security crop in marginal environments. Although cassava can tolerate drought stress, it can be genetically improved to enhance productivity in such environments. Drought adaptation studies in over three decades in cassava have identified relevant mechanisms which have been explored in conventional breeding. Drought is a quantitative trait and its multigenic nature makes it very challenging to effectively manipulate and combine genes in breeding for rapid genetic gain and selection process. Cassava has a long growth cycle of 12 - 18 months which invariably contributes to a long breeding scheme for the crop. Modern breeding using advances in genomics and improved genotyping, is facilitating the dissection and genetic analysis of complex traits including drought tolerance, thus helping to better elucidate and understand the genetic basis of such traits. A beneficial goal of new innovative breeding strategies is to shorten the breeding cycle using minimized, efficient or fast phenotyping protocols. While high throughput genotyping have been achieved, this is rarely the case for phenotyping for drought adaptation. Some of the storage root phenotyping in cassava are often done very late in the evaluation cycle making selection process very slow. This paper highlights some modified traits suitable for early-growth phase phenotyping that may be used to reduce drought phenotyping cycle in cassava. Such modified traits can significantly complement the high throughput genotyping procedures to fast track breeding of improved drought tolerant varieties. The need for metabolite profiling, improved phenomics to take advantage of next generation sequencing technologies and high throughput phenotyping are basic steps for future direction to improve genetic gain and maximize speed for drought tolerance

  12. Atmospheric dispersion characteristics of radioactive materials according to the local weather and emission conditions

    Energy Technology Data Exchange (ETDEWEB)

    An, Hye Yeon; Kang, Yoon Hee; Kim, Yoo Keun [Pusan National University, Busan (Korea, Republic of); Song, Sang Keun [Jeju National University, Jeju (Korea, Republic of)


    This study evaluated the atmospheric dispersion of radioactive material according to local weather conditions and emission conditions. Local weather conditions were defined as 8 patterns that frequently occur around the Kori Nuclear Power Plant and emission conditions were defined as 6 patterns from a combination of emission rates and the total number of particles of the {sup 137}Cs, using the WRF/HYSPLIT modeling system. The highest mean concentration of {sup 137}Cs occurred at 0900 LST under the ME4{sub 1} (main wind direction: SSW, daily average wind speed: 2.8 ms{sup -1}), with a wide region of its high concentration due to the continuous wind changes between 0000 and 0900 LST; under the ME3 (NE, 4.1 ms{sup -1}), the highest mean concentration of {sup 137}Cs occurred at 1500 and 2100 LST with a narrow dispersion along a strong northeasterly wind. In the case of ME4{sub 4} (S, 2.7 ms{sup -1}), the highest mean concentration of {sup 137}Cs occurred at 0300 LST because {sup 137}Cs stayed around the KNPP under low wind speed and low boundary layer height. As for the emission conditions, EM1{sub 3} and EM2{sub 3} that had the maximum total number of particles showed the widest dispersion of {sup 137}Cs, while its highest mean concentration was estimated under the EM1{sub 1} considering the relatively narrow dispersion and high emission rate. This study showed that even though an area may be located within the same radius around the Kori Nuclear Power Plant, the distribution and levels of {sup 137}Cs concentration vary according to the change in time and space of weather conditions (the altitude of the atmospheric boundary layer, the horizontal and vertical distribution of the local winds, and the precipitation levels), the topography of the regions where {sup 137}Cs is dispersed, the emission rate of {sup 137}Cs, and the number of emitted particles.

  13. A shift in the spatial pattern of Iberian droughts during the 17th century

    Directory of Open Access Journals (Sweden)

    F. Domínguez-Castro


    Full Text Available In this paper, series of drought occurrence and drought extension in the Iberian Peninsula are constructed for the 1600–1750 period from seven rogation series. These rogation ceremony records come from Bilbao, Catalonia, Zamora, Zaragoza, Toledo, Murcia and Seville. They are distributed across the Peninsula and include the areas with the most characteristic Iberian climate types, influenced by the Atlantic and the Mediterranean conditions, described from modern data. A seasonal division of the series shows that spring is a critical season for rogation series in most of Iberia, being Bilbao the only site were the highest number of rogations is detected for a different season. The annual analysis of the series shows a dramatic difference between the first half of the 17th century when droughts are characterized by its local character; and the rest of the period, when they affect to broader regions or even to the whole Peninsula. The analysis of spring series confirms the existence of the two periods detected in the annual analysis. Finally, secondary documentary sources are used to further characterise the two most extended droughts in the period, 1664 and 1680, and to verify the extension of the areas affected by droughts recorded through rogation series.

  14. Evaluation of Drought response in Some Rice Mutant Lines Using Stress Tolerance Indices

    Directory of Open Access Journals (Sweden)

    H Aminpanah


    Full Text Available Introduction Drought is a major problem that limits the adoption of high-yielding rice varieties in drought-prone rainfed rice environments. To improve crop productivity, it is necessary to understand the mechanism of plant responses to drought conditions with the ultimate goal of improving crop performance in the vast areas of the world where rainfall is limiting or unreliable. Safaei Chaeikar et al. (2008 reported that MP, GMP, HM and STI indices, which showed the highest correlation with grain yield under both optimal and stress conditions, can be used as the best indices to introduce drought-tolerant genotypes in rice breeding programs. They also were introduced Nemat, Sepidrood, IR64, IR50 and Bejar genotypes as tolerant varieties. The present study was conducted to determine how drought affects grain yield in rice mutant lines and also to test this hypothesis in order to identify the most suitable indices/genotypes. Materials and Methods A field trial was conducted at Iranian Rice Research Centers in North of Iran, Rasht (latitude 37◦28', longitude 49◦28'E and altitude 7m below the sea level, during the 2014-2015 growing season. The seeds were sown in a nursery on the 10 May and 25 day old seedlings were transplanted to the field. Two separately experiment was carried out under reproductive stage drought stress and controlled conditions based on randomized complete block design with three replications, in four-row plots of three m length. Transplanting was done using 1 seedling per hill; at hill spacing of 25 cm × 25 cm. 18 rice genotypes were consisted 14 M5 mutant lines and their four parental cultivars. Results and Discussion Analysis of variance indicated significant effects of drought stress, genotype and interaction effects of two factors on grain yield, plant height, flag leaf area, tiller number and grain fertility percentage. Drought stress at reproductive stage caused reduction in grain yield (59.47%, grain fertility

  15. Deriving appropriate boundary conditions, and accelerating position-jump simulations, of diffusion using non-local jumping

    International Nuclear Information System (INIS)

    Taylor, P R; Baker, R E; Yates, C A


    In this paper we explore lattice-based position-jump models of diffusion, and the implications of introducing non-local jumping; particles can jump to a range of nearby boxes rather than only to their nearest neighbours. We begin by deriving conditions for equivalence with traditional local jumping models in the continuum limit. We then generalize a previously postulated implementation of the Robin boundary condition for a non-local process of arbitrary maximum jump length, and present a novel implementation of flux boundary conditions, again generalized for a non-local process of arbitrary maximum jump length. In both these cases we validate our results using stochastic simulation. We then proceed to consider two variations on the basic diffusion model: a hybrid local/non-local scheme suitable for models involving sharp concentration gradients, and the implementation of biased jumping. In all cases we show that non-local jumping can deliver substantial time savings for stochastic simulations. (paper)

  16. Foundations of complex analysis in non locally convex spaces function theory without convexity condition

    CERN Document Server

    Bayoumi, A


    All the existing books in Infinite Dimensional Complex Analysis focus on the problems of locally convex spaces. However, the theory without convexity condition is covered for the first time in this book. This shows that we are really working with a new, important and interesting field. Theory of functions and nonlinear analysis problems are widespread in the mathematical modeling of real world systems in a very broad range of applications. During the past three decades many new results from the author have helped to solve multiextreme problems arising from important situations, non-convex and

  17. Reproductive parameters of tropical lesser noddies respond to local variations in oceanographic conditions and weather (United States)

    Monticelli, David; Ramos, Jaime A.; Catry, Teresa; Pedro, Patricia; Paiva, Vitor H.


    Most attempts to link seabirds and climate/oceanographic effects have concerned the Atlantic and Pacific Oceans with comparatively few studies in the tropical Indian Ocean. This paper examines the reproductive response of the lesser noddy Anous tenuirostris to temporal fluctuations in oceanographic and climatic conditions using 8 years of monitoring data from Aride Island (Seychelles), tropical Western Indian Ocean. We tested the hypothesis that breeding parameters (mean hatching date, mean egg size, hatching and fledging successes) and chick growth are influenced by local, seasonal oceanographic conditions as expressed by ocean primary productivity (surface chlorophyll-a concentrations; CC), sea surface temperature (SST) and wind speed. We also examined the relationship between lesser noddy breeding parameters and climate conditions recorded at the basin-wide scale of the Indian Ocean (Indian Ocean Dipole Mode Index, DMI). Our findings suggest that birds had a tendency to lay slightly larger eggs during breeding seasons (years) with higher CC during April-June (pre-laying, laying and incubation periods). Hatching date was positively related to SST in April-June, with the regression parameters suggesting that each 0.5 °C increase in SST meant a delay of approx.10 days in hatching date. A negative linear relationship was also apparent between hatching success and SST in June-August (hatching and chick-rearing periods), while the quadratic regression models detected a significant effect of wind speed in June-August on fledging success. Body mass increments of growing chicks averaged over 7-day periods were positively related with (2-week) lagged CC values and negatively related with (2-week) lagged SST values. No significant relationship between DMI and lesser noddy breeding parameters was found, but DMI indices were strongly correlated with local SST. Altogether, our results indicate that the reproduction of this top marine predator is dictated by fluctuations in

  18. Stabilizing local boundary conditions for two-dimensional shallow water equations

    KAUST Repository

    Dia, Ben Mansour


    In this article, we present a sub-critical two-dimensional shallow water flow regulation. From the energy estimate of a set of one-dimensional boundary stabilization problems, we obtain a set of polynomial equations with respect to the boundary values as a requirement for the energy decrease. Using the Riemann invariant analysis, we build stabilizing local boundary conditions that guarantee the stability of the hydrodynamical state around a given steady state. Numerical results for the controller applied to the nonlinear problem demonstrate the performance of the method.

  19. Drought-associated absence of alien invasive anchorworm, Lernaea cyprinacea (Copepoda: Lernaeidae, is related to changes in fish health

    Directory of Open Access Journals (Sweden)

    Rachel L. Welicky


    Full Text Available Recently, Mozambique tilapia (Oreochromis mossambicus Peters, 1852 were listed on the IUCN Red List as near-threatened as their populations are at risk due to hybridization. Another factor that potentially contributes to their population decline is that they are regularly infected by the invasive parasitic copepod anchorworm, Lernaea cyprinacea Linnaeus, 1758. Considering anchorworm-infected Mozambique tilapia are common, understanding their condition with respect to infection is difficult as uninfected fish from the same localities have been unavailable for comparison. A severe drought in southern Africa has created hypersaline environments in the Phongolo River floodplain of north-eastern South Africa, such that freshwater parasites cannot survive and uninfected fish are now found. To determine how infection influences host health, infected and uninfected Mozambique tilapia were collected before and during drought conditions, from Nyamiti pan of the Phongolo River floodplain. Anchorworm-infected fish prevalence was recorded, and anchorworms were collected from hosts and identified to the species level using molecular data of the 18S rRNA gene. For each fish, intensity of anchorworm infection, total length, and weights of the gutted body, liver, spleen, and gonads were recorded. Gutted condition factor, hepato-, spleeno-, and gonado-somatic index values per fish, and prevalence of infection per collection were determined. A rapid health assessment was also conducted to determine a health score for each fish. Molecular analyses confirmed the anchorworm studied was L. cyprinacea. Prior to and during drought, prevalence of infection was 100%, and 0%, respectively. Before drought, fish had significantly reduced hepato-, spleeno-, and gonado-somatic index values, and higher health assessment scores, yet significantly higher gutted condition. Anchorworm intensity was indirectly correlated with fish liver and gonad condition. This study demonstrates

  20. Banana NAC transcription factor MusaNAC042 is positively associated with drought and salinity tolerance. (United States)

    Tak, Himanshu; Negi, Sanjana; Ganapathi, T R


    Banana is an important fruit crop and its yield is hampered by multiple abiotic stress conditions encountered during its growth. The NAC (NAM, ATAF, and CUC) transcription factors are involved in plant response to biotic and abiotic stresses. In the present study, we studied the induction of banana NAC042 transcription factor in drought and high salinity conditions and its overexpression in transgenic banana to improve drought and salinity tolerance. MusaNAC042 expression was positively associated with stress conditions like salinity and drought and it encoded a nuclear localized protein. Transgenic lines of banana cultivar Rasthali overexpressing MusaNAC042 were generated by Agrobacterium-mediated transformation of banana embryogenic cells and T-DNA insertion was confirmed by PCR and Southern blot analysis. Our results using leaf disc assay indicated that transgenic banana lines were able to tolerate drought and high salinity stress better than the control plants and retained higher level of total chlorophyll and lower level of MDA content (malondialdehyde). Transgenic lines analyzed for salinity (250 mM NaCl) and drought (Soil gravimetric water content 0.15) tolerance showed higher proline content, better Fv/Fm ratio, and lower levels of MDA content than control suggesting that MusaNAC042 may be involved in responses to higher salinity and drought stresses in banana. Expression of several abiotic stress-related genes like those coding for CBF/DREB, LEA, and WRKY factors was altered in transgenic lines indicating that MusaNAC042 is an efficient modulator of abiotic stress response in banana.


    Directory of Open Access Journals (Sweden)

    R. Obringer


    Full Text Available This study aims to integrate environmental data for drought monitoring to reduce uncertainty in urban drought characterization as part of the smart city framework. Currently, drought monitoring in urban areas is a challenge. This is due, in part, to a lack of knowledge on the subject of urban droughts and urban drought vulnerability. A critical part to assessing urban drought and implementing the necessary policies is determining drought conditions. Often the timing and severity of the drought can leave cities to enforce water restrictions, so accuracy of this determination has socioeconomic implications. To determine drought conditions, we need to know the water balance over the urban landscape, of which evapotranspiration (ET is a key variable. However, ET data and models have high uncertainty when compared to other hydrological variables (i.e., precipitation. This is largely due to ill-defined empirical models for characterizing the urban surface resistance parameter (rs that is used in ET calculations. We propose a method to estimate rs values using a combination of the Surface Temperature Initiated Closure (STIC method that calculates regional evapotranspiration data and an inverted version of the Penman-Monteith equation. We use this approach across the region surrounding Indianapolis, IN (USA from 2010-2014. We discuss the potential for this method to be integrated in to smart city framework to improve urban drought assessment.

  2. Comparative proteome analysis of drought-sensitive and drought-tolerant rapeseed roots and their hybrid F1 line under drought stress. (United States)

    Mohammadi, Payam Pour; Moieni, Ahmad; Komatsu, Setsuko


    Rapeseed (Brassica napus L.), which is the third leading source of vegetable oil, is sensitive to drought stress during the early vegetative growth stage. To investigate the initial response of rapeseed to drought stress, changes in the protein expression profiles of drought-sensitive (RGS-003) and drought-tolerant lines (SLM-003), and their F1 hybrid, were analyzed using a proteomics approach. Seven-day-old rapeseed seedlings were treated with drought stress by restricting water for 7 days, and proteins were extracted from roots and separated by two-dimensional polyacrylamide gel electrophoresis. In the sensitive rapeseed line, 35 protein spots were differentially expressed under drought stress, and proteins related to metabolism, energy, disease/defense, and transport were decreased. In the tolerant line, 32 protein spots were differentially expressed under drought stress, and proteins involved in metabolism, disease/defense, and transport were increased, while energy-related proteins were decreased. Six protein spots in F1 hybrid were common among expressed proteins in the drought-sensitive and -tolerant lines. Notably, tubulin beta-2 and heat shock protein 70 were decreased in the drought-sensitive line and hybrid F1 plants, while jasmonate-inducible protein and 20S proteasome subunit PAF1 were increased in the F1 hybrids and drought-tolerant line. These results indicate that (1) V-type H(+) ATPase, plasma-membrane associated cation-binding protein, HSP 90, and elongation factor EF-2 have a role in the drought tolerance of rapeseed; (2) The decreased levels of heat shock protein 70 and tubulin beta-2 in the drought-sensitive and hybrid F1 lines might explain the reduced growth of these lines in drought conditions.

  3. Genetic Variability for Drought Adaptive Traits in A-511 Maize ...

    African Journals Online (AJOL)

    Drought causes considerable yield reduction in maize (Zea mays L.) grown in the moisture stressed areas of Ethiopia. Increased crop production through improvement is expected if the adapted local genotypes possess variability for drought adaptive traits. Randomly taken 196 S1 lines generated from Population A-511 ...

  4. An extended multivariate framework for drought monitoring in Mexico (United States)

    Real-Rangel, Roberto; Pedrozo-Acuña, Adrián; Breña-Naranjo, Agustín; Alcocer-Yamanaka, Víctor


    Around the world, monitoring natural hazards, such as droughts, represents a critical task in risk assessment and management plans. A reliable drought monitoring system allows to identify regions affected by these phenomena so that early response measures can be implemented. In Mexico, this activity is performed using Mexico's Drought Monitor, which is based on a similar methodology as the United States Drought Monitor and the North American Drought Monitor. The main feature of these monitoring systems is the combination of ground-based and remote sensing observations that is ultimately validated by local experts. However, in Mexico in situ records of variables such as precipitation and streamflow are often scarce, or even null, in many regions of the country. Another issue that adds uncertainty in drought monitoring is the arbitrary weight given to each analyzed variable. This study aims at providing an operational framework for drought monitoring in Mexico, based on univariate and multivariate nonparametric standardized indexes proposed in recent studies. Furthermore, the framework has been extended by taking into account the Enhanced Vegetation Index (EVI) for the drought severity assessment. The analyzed variables used for computing the drought indexes are mainly derived from remote sensing (MODIS) and land surface models datasets (NASA MERRA-2). A qualitative evaluation of the results shows that the indexes used are capable of adequately describes the intensity and spatial distribution of past drought documented events.

  5. Tree responses to drought (United States)

    Michael G. Ryan


    With global climate change, drought may become more common in the future (IPCC 2007). Several factors will promote more frequent droughts: earlier snowmelt, higher temperatures and higher variability in precipitation. For ecosystems where the water cycle is dominated by snowmelt, warmer temperatures bring earlier melt (Stewart et al. 2005) and longer, drier snow-free...

  6. Assessing the utility of meteorological drought indices in monitoring summer drought based on soil moisture in Chongqing, China (United States)

    Chen, Hui; Wu, Wei; Liu, Hong-Bin


    Numerous drought indices have been developed to analyze and monitor drought condition, but they are region specific and limited by various climatic conditions. In southwest China, summer drought mainly occurs from June to September, causing destructive and profound impact on agriculture, society, and ecosystems. The current study assesses the availability of meteorological drought indices in monitoring summer drought in this area at 5-day scale. The drought indices include the relative moisture index ( M), the standardized precipitation index (SPI), the standardized precipitation evapotranspiration index (SPEI), the composite index of meteorological drought (CIspi), and the improved composite index of meteorological drought (CIwap). Long-term daily precipitation and temperature from 1970 to 2014 are used to calculate 30-day M ( M 30), SPI (SPI30), SPEI (SPEI30), 90-day SPEI (SPEI90), CIspi, and CIwap. The 5-day soil moisture observations from 2010 to 2013 are applied to assess the performance of these drought indices. Correlation analysis, overall accuracy, and kappa coefficient are utilized to investigate the relationships between soil moisture and drought indices. Correlation analysis indicates that soil moisture is well correlated with CIwap, SPEI30, M 30, SPI30, and CIspi except SPEI90. Moreover, drought classifications identified by M 30 are in agreement with that of the observed soil moisture. The results show that M 30 based on precipitation and potential evapotranspiration is an appropriate indicator for monitoring drought condition at a finer scale in the study area. According to M 30, summer drought during 1970-2014 happened in each year and showed a slightly upward tendency in recent years.

  7. Climatological aspects of drought in Ohio

    International Nuclear Information System (INIS)

    Rogers, J.C.


    Precipitation and Palmer hydrological drought index (PHDI) data have been used to identify past occurrences of Ohio drought, to illustrate the temporal variability occurring statewide within dry periods, and to compare some of the key dry spells to those of 1987-88 and 1991-92. Periods of hydrologic drought and low precipitation generally persist for 2 to 5 years and tend to cluster in time, such as occurred from 1930-1966. It is not uncommon for precipitation to return to normal or near normal conditions while short-term drought persists in terms of streamflow, ground water supply, and runoff, as measured by the PHDI. The period April 1930 to March 1931 is the driest on record in Ohio although longer periods of low precipitation have occurred from 1893-1896, 1952-1955, and 1963-1965. The temporal clusters of droughts are separated by prolonged wet periods, including those extending roughly from 1875-1893, 1905-1924, and 1966-1987. Correlations between Ohio monthly precipitation and mean air temperature suggest that drought is linked to unusually high summer temperatures through mechanisms such as increased evapotranspiration, leading to increased fluxes of sensible heat from dry soil surfaces. In winter, warm conditions tend to favor higher precipitation, soil recharge, and runoff. Variations in mean temperature and atmospheric circulation may also be linked to other observed climatic features such as long-term trends in soil-water recharge season (October-March) precipitation

  8. Earthworms accumulate alanine in response to drought. (United States)

    Holmstrup, Martin; Slotsbo, Stine; Henriksen, Per G; Bayley, Mark


    Earthworms have ecologically significant functions in tropical and temperate ecosystems and it is therefore important to understand how these animals survive during drought. In order to explore the physiological responses to dry conditions, we simulated a natural drought incident in a laboratory trial exposing worms in slowly drying soil for about one month, and then analyzed the whole-body contents of free amino acids (FAAs). We investigated three species forming estivation chambers when soils dry out (Aporrectodea tuberculata, Aporrectodea icterica and Aporrectodea longa) and one species that does not estivate during drought (Lumbricus rubellus). Worms subjected to drought conditions (alanine that was significantly upregulated in all tested species. Alanine was the most important FAA reaching 250-650μmolg(-1) dry weight in dehydrated Aporrectodea species and 300μmolg(-1) dry weight in L. rubellus. Proline was only weakly upregulated in some species as were a few other FAAs. Species forming estivation chambers (Aporrectodea spp.) did not show a better ability to conserve body water than the non-estivating species (L. rubellus) at the same drought level. These results suggest that the accumulation of alanine is an important adaptive trait in drought tolerance of earthworms in general. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Anticipating U.S. severe droughts - A NASA NEWS initiative on extremes (United States)

    Wang, S.; Oglesby, R. J.; Hilburn, K. A.; Barandiaran, D.; Pan, M.; Pinker, R. T.; Wang, H.; Santanello, J. A.


    The 2012-2013 drought may not have been predictable as based on current schemes employed for such purposes, but it may have been anticipatable due to knowledge of key precursors such as favorable (remote) SST patterns, and reduced regional soil moisture and winter snow packs. A working group was assembled under the NASA Energy and Water cycle Study (NEWS) to examine the extent to which the 2012 drought could be anticipated and to put recent severe droughts in perspective. A recent NOAA report analyzing the drought of 2012 in the central US has concluded that the drought was not inherently predictable, representing a very anomalous atmospheric circulation pattern. This ';predictability' is based on what happened in the atmosphere, and further, depends on the capabilities of the predictive schemes currently employed. The current prediction schemes emphasize the role of the large-scale atmospheric circulation, but the extent to which the long wave patterns and subsequent short wave effects can be predicted in advance remains unclear. These schemes generally lack full consideration of the local surface state, especially the effect of precursor anomalies in key elements such as soil moisture and snow pack. It is also not clear how well they account for the effects of either interannual or lower-frequency oceanic anomaly patterns. The role of the aforesaid precursors, combined with knowledge of their state, allow some assessment of the ';likelihood' of drought that is not currently being considered. For example, by late winter of 2012 much of the central US was already experiencing dry conditions, including reduced soil moisture, and the snowpack in the Rockies was well below normal. SST patterns appear to have been largely neutral. While the manifestation of the resultant drought also critically dependent on the large-scale atmospheric circulation that subsequently developed, it is clear that the region was preconditioned towards being dry. The other factor about

  10. Woody plant richness and NDVI response to drought events in Catalonian (northeastern Spain) forests. (United States)

    Lloret, F; Lobo, A; Estevan, H; Maisongrande, P; Vayreda, J; Terradas, J


    The role of species diversity on ecosystem resistance in the face of strong environmental fluctuations has been addressed from both theoretical and experimental viewpoints to reveal a variety of positive and negative relationships. Here we explore empirically the relationship between the richness of forest woody species and canopy resistance to extreme drought episodes. We compare richness data from an extensive forest inventory to a temporal series of satellite imagery that estimated drought impact on forest canopy as NDVI (normalized difference vegetation index) anomalies of the dry summer in 2003 in relation to records of previous years. We considered five different types of forests that are representative of the main climatic and altitudinal gradients of the region, ranging from lowland Mediterranean to mountain boreal-temperate climates. The observed relationship differed among forest types and interacted with the climate, summarised by the Thorntwaite index. In Mediterranean Pinus halepensis forests, NDVI decreased during the drought. This decrease was stronger in forests with lower richness. In Mediterranean evergreen forests of Quercus ilex, drought did not result in an overall NDVI loss, but lower NDVI values were observed in drier localities with lower richness, and in more moist localities with higher number of species. In mountain Pinus sylvestris forests NDVI decreased, mostly due to the drought impact on drier localities, while no relation to species richness was observed. In moist Fagus sylvatica forests, NDVI only decreased in plots with high richness. No effect of drought was observed in the high mountain Pinus uncinata forests. Our results show that a shift on the diversity-stability relationship appears across the regional, climatic gradient. A positive relationship appears in drier localities, supporting a null model where the probability of finding a species able to cope with drier conditions increases with the number of species. However, in

  11. Localized corrosion of Alloy C22 nuclear waste canister material under limiting conditions

    International Nuclear Information System (INIS)

    Lee, S.G.; Solomon, A.A.


    Localized corrosion behavior of Alloy C22 in simulated Yucca Mountain (YM) repository environments was studied at the highest achievable but realistic temperatures under boiling and dripping scenarios. Temperatures measured in concentrated boiling solutions of KCl and NaNO 3 were found to be stable at 140 deg. C, although transient boiling before dryout was observed at temperatures as high as 160 deg. C, as the electrolyte became progressively more concentrated. Experiments that simulated a dripping scenario with simulated J13 well water confirmed the existence of concentrated solutions stable at 142 ± 3 deg. C under controlled drip conditions leading to pit initiation in Alloy C22 after only a few hours. The polarization experiments conducted at 140 deg. C in a solution with 0.5 mol L -1 chloride concentration showed that the critical potential for localized corrosion was 250 mV (versus Ag/AgCl). Potentiostatic tests confirmed that active metal dissolution occurred only in the crevice region at this potential. The crevice corrosion of Alloy C22 required an incubation time to develop a critical crevice solution, and it was triggered by severe local chemistry (enrichment of Cl - and H + ) aided by the high temperature

  12. Local and neighboring patch conditions alter sex-specific movement in banana weevils. (United States)

    Carval, Dominique; Perrin, Benjamin; Duyck, Pierre-François; Tixier, Philippe


    Understanding the mechanisms underlying the movements and spread of a species over time and space is a major concern of ecology. Here, we assessed the effects of an individual's sex and the density and sex ratio of conspecifics in the local and neighboring environment on the movement probability of the banana weevil, Cosmopolites sordidus. In a "two patches" experiment, we used radiofrequency identification tags to study the C. sordidus movement response to patch conditions. We showed that local and neighboring densities of conspecifics affect the movement rates of individuals but that the density-dependent effect can be either positive or negative depending on the relative densities of conspecifics in local and neighboring patches. We demonstrated that sex ratio also influences the movement of C. sordidus, that is, the weevil exhibits nonfixed sex-biased movement strategies. Sex-biased movement may be the consequence of intrasexual competition for resources (i.e., oviposition sites) in females and for mates in males. We also detected a high individual variability in the propensity to move. Finally, we discuss the role of demographic stochasticity, sex-biased movement, and individual heterogeneity in movement on the colonization process.

  13. Evaluation of common bean (Phaseolus vulgaris L. genotypes for drought stress adaptation in Ethiopia

    Directory of Open Access Journals (Sweden)

    Kwabena Darkwa


    Full Text Available Drought stress linked with climate change is one of the major constraints faced by common bean farmers in Africa and elsewhere. Mitigating this constraint requires the selection of resilient varieties that withstand drought threats to common bean production. This study assessed the drought response of 64 small red-seeded genotypes of common bean grown in a lattice design replicated twice under contrasting moisture regimes, terminal drought stress and non-stress, in Ethiopia during the dry season from November 2014 to March 2015. Multiple plant traits associated with drought were assessed for their contribution to drought adaptation of the genotypes. Drought stress determined by a drought intensity index was moderate (0.3. All the assessed traits showed significantly different genotypic responses under drought stress and non-stress conditions. Eleven genotypes significantly (P ≤ 0.05 outperformed the drought check cultivar under both drought stress and non-stress conditions in seed yielding potential. Seed yield showed positive and significant correlations with chlorophyll meter reading, vertical root pulling resistance force, number of pods per plant, and seeds per pod under both soil moisture regimes, indicating their potential use in selection of genotypes yielding well under drought stress and non-stress conditions. Clustering analysis using Mahalanobis distance grouped the genotypes into four groups showing high and significant inter-cluster distance, suggesting that hybridization between drought-adapted parents from the groups will provide the maximum genetic recombination for drought tolerance in subsequent generations.

  14. Evidence for local and global redox conditions at an Early Ordovician (Tremadocian) mass extinction (United States)

    Edwards, Cole T.; Fike, David A.; Saltzman, Matthew R.; Lu, Wanyi; Lu, Zunli


    Profound changes in environmental conditions, particularly atmospheric oxygen levels, are thought to be important drivers of several major biotic events (e.g. mass extinctions and diversifications). The early Paleozoic represents a key interval in the oxygenation of the ocean-atmosphere system and evolution of the biosphere. Global proxies (e.g. carbon (δ13C) and sulfur (δ34S) isotopes) are used to diagnose potential changes in oxygenation and infer causes of environmental change and biotic turnover. The Cambrian-Ordovician contains several trilobite extinctions (some are apparently local, but others are globally correlative) that are attributed to anoxia based on coeval positive δ13C and δ34S excursions. These extinction and excursion events have yet to be coupled with more recently developed proxies thought to be more reflective of local redox conditions in the water column (e.g. I/Ca) to confirm whether these extinctions were associated with oxygen crises over a regional or global scale. Here we examine an Early Ordovician (Tremadocian Stage) extinction event previously interpreted to reflect a continuation of recurrent early Paleozoic anoxic events that expanded into nearshore environments. δ13C, δ34S, and I/Ca trends were measured from three sections in the Great Basin region to test whether I/Ca trends support the notion that anoxia was locally present in the water column along the Laurentian margin. Evidence for anoxia is based on coincident, but not always synchronous, positive δ13C and δ34S excursions (mainly from carbonate-associated sulfate and less so from pyrite data), a 30% extinction of standing generic diversity, and near-zero I/Ca values. Although evidence for local water column anoxia from the I/Ca proxy broadly agrees with intervals of global anoxia inferred from δ13C and δ34S trends, a more complex picture is evident where spatially and temporally variable local trends are superimposed on time-averaged global trends. Stratigraphic

  15. Field calibration and modification of scs design equation for predicting length of border under local conditions

    International Nuclear Information System (INIS)

    Choudhary, M.R.; Mustafa, U.S.


    Field tests were conducted to calibrate the existing SCS design equation in determining field border length using field data of different field lengths during 2nd and 3rd irrigations under local conditions. A single ring infiltrometer was used to estimate the water movement into and through the irrigated soil profile and in estimating the coefficients of Kostiakov infiltration function. Measurements of the unit discharge and time of advance were carried out during different irrigations on wheat irrigated fields having clay loam soil. The collected field data were used to calibrate the existing SCS design equation developed by USDA for testing its validity under local field conditions. SCS equation was modified further to improve its applicability. Results from the study revealed that the Kostiakov model over predicted the coefficients, which in turn overestimated the water advance length for boarder in the selected field using existing SCS design equation. However, the calibrated SCS design equation after parametric modification produced more satisfactory results encouraging the scientists to make its use at larger scale. (author)

  16. Molecular dynamics simulation of the local concentration and structure in multicomponent aerosol nanoparticles under atmospheric conditions. (United States)

    Karadima, Katerina S; Mavrantzas, Vlasis G; Pandis, Spyros N


    Molecular dynamics (MD) simulations were employed to investigate the local structure and local concentration in atmospheric nanoparticles consisting of an organic compound (cis-pinonic acid or n-C 30 H 62 ), sulfate and ammonium ions, and water. Simulations in the isothermal-isobaric (NPT) statistical ensemble under atmospheric conditions with a prespecified number of molecules of the abovementioned compounds led to the formation of a nanoparticle. Calculations of the density profiles of all the chemical species in the nanoparticle, the corresponding radial pair distribution functions, and their mobility inside the nanoparticle revealed strong interactions developing between sulfate and ammonium ions. However, sulfate and ammonium ions prefer to populate the central part of the nanoparticle under the simulated conditions, whereas organic molecules like to reside at its outer surface. Sulfate and ammonium ions were practically immobile; in contrast, the organic molecules exhibited appreciable mobility at the outer surface of the nanoparticle. When the organic compound was a normal alkane (e.g. n-C 30 H 62 ), a well-organized (crystalline-like) phase was rapidly formed at the free surface of the nanoparticle and remained separate from the rest of the species.

  17. A cross-scale approach to understand drought-induced variability of sagebrush ecosystem productivity (United States)

    Assal, T.; Anderson, P. J.


    Sagebrush (Artemisia spp.) mortality has recently been reported in the Upper Green River Basin (Wyoming, USA) of the sagebrush steppe of western North America. Numerous causes have been suggested, but recent drought (2012-13) is the likely mechanism of mortality in this water-limited ecosystem which provides critical habitat for many species of wildlife. An understanding of the variability in patterns of productivity with respect to climate is essential to exploit landscape scale remote sensing for detection of subtle changes associated with mortality in this sparse, uniformly vegetated ecosystem. We used the standardized precipitation index to characterize drought conditions and Moderate Resolution Imaging Spectroradiometer (MODIS) satellite imagery (250-m resolution) to characterize broad characteristics of growing season productivity. We calculated per-pixel growing season anomalies over a 16-year period (2000-2015) to identify the spatial and temporal variability in productivity. Metrics derived from Landsat satellite imagery (30-m resolution) were used to further investigate trends within anomalous areas at local scales. We found evidence to support an initial hypothesis that antecedent winter drought was most important in explaining reduced productivity. The results indicate drought effects were inconsistent over space and time. MODIS derived productivity deviated by more than four standard deviations in heavily impacted areas, but was well within the interannual variability in other areas. Growing season anomalies highlighted dramatic declines in productivity during the 2012 and 2013 growing seasons. However, large negative anomalies persisted in other areas during the 2014 growing season, indicating lag effects of drought. We are further investigating if the reduction in productivity is mediated by local biophysical properties. Our analysis identified spatially explicit patterns of ecosystem properties altered by severe drought which are consistent with

  18. From Drought to Flood: Biological Responses of Large River Salmonids and Emergent Management Challenges Under California's Extreme Hydroclimatic Variability (United States)

    Anderson, C.


    California's hydroclimatic regime is characterized by extreme interannual variability including periodic, multi-year droughts and winter flooding sequences. Statewide, water years 2012-2016 were characterized by extreme drought followed by likely one of the wettest years on record in water year 2017. Similar drought-flood patterns have occurred multiple times both in the contemporary empirical record and reconstructed climate records. Both the extreme magnitude and rapid succession of these hydroclimatic periods pose difficult challenges for water managers and regulatory agencies responsible for providing instream flows to protect and recover threatened and endangered fish species. Principal among these riverine fish species are federally listed winter-run and spring-run Chinook salmon (Oncorhynchus tshawytscha), Central Valley steelhead (Oncorhynchus mykiss), and the pelagic species Delta smelt (Hypomesus transpacificus). Poor instream conditions from 2012-2016 resulted in extremely low abundance estimates and poor overall fish health, and while fish monitoring results from water year 2017 are too preliminary to draw substantive conclusions, early indicators show continued downward population trends despite the historically wet conditions. This poster evaluates California's hydroclimatic conditions over the past decade and quantifies resultant impacts of the 2012-2016 drought and the extremely wet 2017 water year to both adult escapement and juvenile production estimates in California's major inland salmon rivers over that same time span. We will also examine local, state, and federal regulatory actions both in response to the extreme hydroclimatic variability and in preparation for future drought-flood sequences.

  19. Evaluating Yield and Drought Stress Indices under End Season Drought Stress in Promising Genotypes of Barley

    Directory of Open Access Journals (Sweden)

    H. Tajalli


    Full Text Available To study the effects of end season drought stress on yield, yield components and drought stress indices in barley, a split plot experiment arranged in randomized complete block design with three replications was conducted at the Agricultural Research Center of Birjand in 2008-2009 crop years. Drought stress, in 2 levels, consists of control (complete irrigation and stopping irrigation at the 50% of heading stage, and 20 promising genotypes of barley were the treatments of the experiment. Results revealed that stopping irrigation lead to declining of 14.64 and 8.12 percent of seed and forage yields against control condition, respectively. Using stress susceptibility index (SSI indicated that genotypes 2, 3, 7, 9, 10 and 15; using STI and GMP indices, genotypes 5, 8, 18 and 20 using MP, genotypes 8, 18 and 20, and TOL, genotypes 2, 3, 7, 9, and 10, were the most drought tolerant genotypes. Correlation between seed yield and stress evaluation indices showed that MP, GMP and STI are the best indices to be used in selection and introducing drought tolerant genotypes of barley. Considering all indices, and given that the best genotypes are those with high yield under normal condition and minimum yield reduction under drought stress, No. 18 and 20 could be introduced as the most tolerant barley genotypes to drought.

  20. Disaster risk assessment case study: Recent drought on the Navajo Nation, USA (United States)

    Hiza, Margaret; Kelley, Klara B.; Francis, Harris; Block, Debra


    The Navajo Nation is an ecologically sensitive semi-arid to arid section of the southern Colorado Plateau. In this remote part of the United States, located at the Four Corners (Arizona, New Mexico, Colorado, and Utah), traditional people live a subsistence lifestyle that is inextricably tied to, and dependent upon, landscape conditions and water supplies. Soft bedrock lithologies and sand dunes dominate the region, making it highly sensitive to fluctuations in precipitation intensity, percent vegetation cover, and local land use practices. However, this region has sparse and discontinuous meteorological monitoring records. As a complement to the scant long-term meteorological records and historical documentation, we conducted interviews with 50 Native American elders from the Navajo Nation and compiled their lifetime observations on the changes in water availability, weather, and sand or dust storms. We then used these observations to further refine our understanding of the historical trends and impacts of climate change and drought for the region. In addition to altered landscape conditions due to climatic change, drought, and varying land use practices over the last 130 years, the Navajo people have been affected by federal policies and harsh economic conditions which weaken their cultural fabric. We conclude that a long-term drying trend and decreasing snowpack, superimposed on regional drought cycles, will magnify drought impacts on the Navajo Nation and leave its people increasingly vulnerable.

  1. The relationship between local area labor market conditions and the use of Veterans Affairs health services. (United States)

    Wong, Edwin S; Liu, Chuan-Fen


    In the U.S., economic conditions are intertwined with labor market decisions, access to health care, health care utilization and health outcomes. The Veterans Affairs (VA) health care system has served as a safety net provider by supplying free or reduced cost care to qualifying veterans. This study examines whether local area labor market conditions, measured using county-level unemployment rates, influence whether veterans obtain health care from the VA. We used survey data from the Behavioral Risk Factor Surveillance System in years 2000, 2003 and 2004 to construct a random sample of 73,964 respondents self-identified as veterans. VA health service utilization was defined as whether veterans received all, some or no care from the VA. Hierarchical ordered logistic regression was used to address unobserved state and county random effects while adjusting for individual characteristics. Local area labor market conditions were defined as the average 12-month unemployment rate in veterans' county of residence. The mean unemployment rate for veterans receiving all, some and no care was 5.56%, 5.37% and 5.24%, respectively. After covariate adjustment, a one percentage point increase in the unemployment rate in a veteran's county of residence was associated with an increase in the probability of receiving all care (0.34%, p-value = 0.056) or some care (0.29%, p-value = 0.023) from the VA. Our findings suggest that the important role of the VA in providing health care services to veterans is magnified in locations with high unemployment.

  2. Residual Effect of Chemical and Animal Fertilizers and Compost on Yield, YieldComponents, Physiological Characteristics and Essential Oil Content of Matricaria chamomilla L. under Drought Stress conditions

    Directory of Open Access Journals (Sweden)

    a Ahmadian


    Full Text Available Abstract The residual effect of inorganic and organic fertilizers on growth and yield of plants is one of the important problems in nutrition. This study was conducted to determine the residual effect of different fertilizers on yield, yield components, physiological parameters and essential oil percentage of Matricaria chamomilla under drought stress. A split plot arrangement based on randomized completely block design (RCBD with three replication was conducted in 2009, at the University of Zabol. Treatments included W1 (non stress, W2 (75% FC and W3 (50% FC as main plot and three types of residual’s fertilizers: F1 (non fertilizer, F2 (chemical fertilizer, F3 (manure fertilizer and F4 (compost as sub plot. Results showed that water stress at W3 treatment reduced dry flower yield. Low water stress increased essential oil percentage and the highest oil was obtained in W2. In this experiment, free proline and total soluble carbohydrate concentration were increased under water stress. The residual’s manure and compost enhanced flower yield, percentage and yield of essential oil of chamomile at the second year. At a glance, animal manure application and light water stress (75% FC was recommended to obtain best quantitative and qualitative yield. Keywords: Water Stress, Fertilizer, Carbohydrate, Proline, Chamomile

  3. Leaf gas exchange and fluorescence of Phillyrea latifolia, Pistacia lentiscus and Quercus ilex saplings in severe drought and high temperature conditions

    International Nuclear Information System (INIS)

    Filella, I.; Llusià, J.; Pinol, J.; Peñuelas, J.


    Saplings of Phillyrea latifolia, Pistacia lentiscus and Quercus ilex were withheld watering for 7 days, followed by reirrigation. Incident photosynthetic photon flux density (PPFD), leaf temperature, net photosynthetic rates, stomatal conductance, and photochemical efficiency of the photosystem II (ΔF/F'm) were measured three times during the day. The watered plants had higher photosynthetic rates, stomatal conductances, ΔF/F'm and ETR than non-watered plants. However, watered plants were mildly water stressed as shown by low ratio of variable to maximal fluorescence (Fv/Fm) and high non-photochemical fluorescence quenching (qN). Their ΔF/F′m was low in the morning and increased in the evening, following the variations in PPFD. Watered plants of Q. ilex had lower photosynthetic activity, stomatal conductance and photosynthetic radiation use efficiency than Ph. latifolia and P. lentiscus, and, conversely, reached the highest ΔF/F′m and ETR. This seems to indicate a different relationship between photosynthetic activity and electron transport rate in Q. ilex compared to the other two species. Ph. latifolia and P. lentiscus appeared to be better adapted to severe drought than Q. ilex. (author)

  4. Genetic control and combining ability of flag leaf area and relative water content traits of bread wheat cultivars under drought stress condition

    Directory of Open Access Journals (Sweden)

    Golparvar Ahmad Reza


    Full Text Available In order to compare mode of inheritance, combining ability, heterosis and gene action in genetic control of traits flag leaf area, relative water content and grain filling rate of bread wheat under drought stress, a study was conducted on 8 cultivars using of Griffing’s method2 in fixed model. Mean square of general combining ability was significant also for all traits and mean square of specific combining ability was significant also for all traits except relative water content of leaf which show importance of both additive and dominant effects of genes in heredity of these traits under stress. GCA to SCA mean square ratio was significant for none of traits. Results of this study showed that non additive effects of genes were more important than additive effect for all traits. According to results we can understand that genetic improvement of mentioned traits will have low genetic efficiency by selection from the best crosses of early generations. Then it is better to delay selection until advanced generations and increase in heritability of these traits.

  5. Effects of temperature and drought manipulations on seedlings of Scots pine provenances. (United States)

    Taeger, S; Sparks, T H; Menzel, A


    Rising temperatures and more frequent and severe climatic extremes as a consequence of climate change are expected to affect growth and distribution of tree species that are adapted to current local conditions. Species distribution models predict a considerable loss of habitats for Pinus sylvestris. These models do not consider possible intraspecific differences in response to drought and warming that could buffer those impacts. We tested 10 European provenances of P. sylvestris, from the southwestern to the central European part of the species distribution, for their response to warming and to drought using a factorial design. In this common-garden experiment the air surrounding plants was heated directly to prevent excessive soil heating, and drought manipulation, using a rain-out shelter, permitted almost natural radiation, including high light stress. Plant responses were assessed as changes in phenology, growth increment and biomass allocation. Seedlings of P. sylvestris revealed a plastic response to drought by increased taproot length and root-shoot ratios. Strongest phenotypic plasticity of root growth was found for southwestern provenances, indicating a specific drought adaptation at the cost of overall low growth of aboveground structures even under non-drought conditions. Warming had a minor effect on growth but advanced phenological development and had a contrasting effect on bud biomass and diameter increment, depending on water availability. The intraspecific variation of P. sylvestris provenances could buffer climate change impacts, although additional factors such as the adaptation to other climatic extremes have to be considered before assisted migration could become a management option. © 2014 German Botanical Society and The Royal Botanical Society of the Netherlands.

  6. Calculation of local flow conditions in the lower core of a PWR with code-Saturne

    International Nuclear Information System (INIS)

    Fournier, Y.


    to a scale of a few assemblies for practical reasons. We use the calculation result from the lower resolution model to provide realistic inflow conditions for the refined domain, in which much more detail is represented through the mesh, and use of head loss models, is reduced (though not suppressed) as much as possible. Through a series of calculations, using results on coarser meshes as input for boundary conditions on finer meshes, we hope to improve our knowledge of local fluid flow in the lower core, and to better quantify the effects of mixed cores on local fluid flow, especially as regards transverse flow components which may influence vibration and ultimately fuel rod damage through fretting. (author)

  7. A mathematical model for localized corrosion in steam generator crevices under heat transfer conditions

    International Nuclear Information System (INIS)

    Engelhardt, G.; Urquidi-Macdonald, M.; Sikora, J.; Macdonald, D.D.


    A predictive and self-consistent mathematical model has been developed to describe the localized corrosion in steam generators. The model recognizes that the internal and external environment are coupled by the need to conserve charge in the system. Thus, solution of Laplace's equation for the external environment (outside the crevice) provides the boundary condition for the electric potential at the crevice mouth, which is needed for solving the system of mass transfer equations for the internal environment (inside the crevice). Mass transfer by diffusion, ion migration, and convection was considered. Heat and momentum transfer equations are solved simultaneously, with the mass balance equation for each species and the condition of electroneutrality inside the cavity being considered. The model takes into account the porosity and tortuosity in the corrosion product deposit in the crevice. The homogeneous chemical reactions (hydrolysis of the products of the anodic reaction and the autoprotolysis of water) are included in the model. The model, in this preliminary form predicts the solution chemistry, potential drop, and temperature distribution inside the crevice. An order of magnitude estimate of the crevice corrosion rate also obtained. At this point, the model predicts only the steady state solution, but it is recognized that a steady state may not exist under normal conditions

  8. Quantum non-locality vs. quasi-local measurements in the conditions of the Aharonov-Bohm effect

    International Nuclear Information System (INIS)

    Gulian, Armen M


    Theoretical explanation of the Meissner effect involves proportionality between current density and vector potential, which has many deep consequences. As noticed by de Gennes, superconductors in a magnetic field 'find an equilibrium state where the sum of kinetic and magnetic energies is minimum' and this state 'corresponds to the expulsion of the magnetic field'. This statement still leaves an open question: from which source is the superconducting current acquiring its kinetic energy? A naïve answer, perhaps, is from the energy of the magnetic field. However, one can consider situations (Aharonov-Bohm effect), where the classical magnetic field is locally absent in the area occupied by the current. Experiments demonstrate that despite the local absence of the magnetic field, current is, nevertheless, building up. From what source is it acquiring its energy then? Locally, only a vector potential is present. How does the vector potential facilitate the formation of the current? Is the current formation a result of a truly non-local quantum action, or does the local action of the vector potential have experimental consequences? We discuss possible experiments with a hybrid normal-metal superconductor circuitry, which can clarify this puzzling situation. Experimental answers will be important for further developments.

  9. Drought and the risk of hospital admissions and mortality in older adults in western USA from 2000 to 2013: a retrospective study. (United States)

    Berman, Jesse D; Ebisu, Keita; Peng, Roger D; Dominici, Francesca; Bell, Michelle L


    Occurrence, severity and geographic extent of droughts are anticipated to increase under climate change, but the health consequences of drought conditions are unknown. We estimate risks of cardiovascular and respiratory-related hospitalization and mortality associated with drought conditions for the western U.S. elderly population. For counties in the western U.S. (N=618) and for the period 2000 to 2013, we use data from the U.S. Drought Monitor to identify: 1) full drought periods; 2) non-drought periods; and 3) worsening drought periods stratified by low- and high-severity. We use Medicare claims to calculate daily rates of cardiovascular admissions, respiratory admissions, and deaths among adults 65 years or older. Using a two-stage hierarchical model, we estimated the percentage change in health risks when comparing drought to non-drought period days controlling for daily weather and seasonal trends. On average there were 2·1 million days and 0·6 million days classified as non-drought periods and drought periods, respectively. Compared to non-drought periods, respiratory admissions significantly decreased by -1·99% (95% posterior interval (PI): -3·56, -0·38) during the full drought period, but not during worsening drought conditions. Mortality risk significantly increased by 1·55% (95% PI: 0·17, 2·95) during the high-severity worsening drought period, but not the full drought period. Cardiovascular admissions did not differ significantly during either drought or worsening drought periods. In counties where drought occurred less frequently, we found risks for cardiovascular disease and mortality to increase during worsening drought conditions. Drought conditions increased risk of mortality during high-severity worsening drought, but decreased the risk of respiratory admissions during full drought periods among older adults. Counties that experience fewer drought events show larger risk for mortality and cardiovascular disease. This research describes an

  10. A mathematical model for malaria transmission relating global warming and local socioeconomic conditions

    Directory of Open Access Journals (Sweden)

    Hyun M Yang


    Full Text Available OBJECTIVE: Sensitivity analysis was applied to a mathematical model describing malaria transmission relating global warming and local socioeconomic conditions. METHODS: A previous compartment model was proposed to describe the overall transmission of malaria. This model was built up on several parameters and the prevalence of malaria in a community was characterized by the values assigned to them. To assess the control efforts, the model parameters can vary on broad intervals. RESULTS: By performing the sensitivity analysis on equilibrium points, which represent the level of malaria infection in a community, the different possible scenarios are obtained when the parameters are changed. CONCLUSIONS: Depending on malaria risk, the efforts to control its transmission can be guided by a subset of parameters used in the mathematical model.

  11. Losing ground, losing sleep: Local economic conditions, economic vulnerability, and sleep. (United States)

    Perales, Francisco; Plage, Stefanie


    Medical research shows that healthy sleep has benefits for human wellbeing. We contribute to the emerging social-epidemiological literature on the social determinants of sleep by considering how living in an area with poor economic circumstances can result in sleep loss through financial worry, uncertainty and stress. We use multilevel regression models and nationally-representative data from the Household, Income and Labour Dynamics in Australia Survey (n = 9181) and find that individuals who live in areas with high unemployment rates or experience individual-level economic vulnerability sleep less than comparable individuals in areas with low unemployment rates, or who do not experience financial hardships. The negative association between local economic conditions and sleep duration is substantially stronger amongst economically vulnerable individuals. This highlights the importance of considering multiple levels in the analysis of health inequalities, as status and location can intersect to produce and reproduce disadvantage systems. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Evolution PDEs with nonstandard growth conditions existence, uniqueness, localization, blow-up

    CERN Document Server

    Antontsev, Stanislav


    This monograph offers the reader a treatment of the theory of evolution PDEs with nonstandard growth conditions. This class includes parabolic and hyperbolic equations with variable or anisotropic nonlinear structure. We develop methods for the study of such equations and present a detailed account of recent results. An overview of other approaches to the study of PDEs of this kind is provided. The presentation is focused on the issues of existence and uniqueness of solutions in appropriate function spaces, and on the study of the specific qualitative properties of solutions, such as localization in space and time, extinction in a finite time and blow-up, or nonexistence of global in time solutions. Special attention is paid to the study of the properties intrinsic to solutions of equations with nonstandard growth.

  13. Quantifying the local influence at a tall tower site in nocturnal conditions

    Energy Technology Data Exchange (ETDEWEB)

    Werth, David; Buckley, Robert; Zhang, Gengsheng; Kurzeja, Robert; Leclerc, Monique; Duarte, Henrique; Parker, Matthew; Watson, Thomas


    The influence of the local terrestrial environment on nocturnal atmospheric CO2 measurements at a 329-m television transmitter tower (and a component of a CO2 monitoring network) was estimated with a tracer release experiment and a subsequent simulation of the releases. This was done to characterize the vertical transport of emissions from the surface to the uppermost tower level and how it is affected by atmospheric stability. The tracer release experiment was conducted over two nights in May of 2009 near the Department of Energy’s Savannah River Site (SRS) in South Carolina. Tracer was released on two contrasting nights—slightly stable and moderately stable—from several upwind surface locations. Measurements at the 329-m level on both nights indicate that tracer was able to mix vertically within a relatively short (~24 km) distance, implying that nocturnal stable conditions do not necessarily prevent vertical dispersion in the boundary layer and that CO2 measurements at the tower are at least partly influenced by nearby emissions. A simulation of the tracer release is used to calculate the tower footprint on the two nights to estimate the degree to which the local domain affects the tower readings. The effect of the nocturnal boundary layer on the area sampled by the tower can be seen clearly, as the footprints were affected by changes in stability. The contribution of local sources to the measurements at the tower was minimal, however, suggesting that nocturnal concentrations at upper levels are contributed mostly by regional sources.

  14. Biomass production and water use efficiency in perennial grasses during and after drought stress

    DEFF Research Database (Denmark)

    Sørensen, Kirsten Kørup; Lærke, Poul Erik; Sørensen, Helle Baadsgaard


    be suitable for assessment of drought stress. There were indications of positive associations between plants carbon isotope composition and water use efficiency (WUE) as well as DM under well-watered conditions. Compared to control, drought-treated plots showed increased growth in the period after drought...... stress. Thus, the drought events did not affect total biomass production (DMtotal) of the whole growing season. During drought stress and the whole growing season, WUE was higher in drought-treated compared to control plots, so it seems possible to save water without loss of biomass. Across soil types, M......Drought is a great challenge to agricultural production, and cultivation of drought-tolerant or water use-efficient cultivars is important to ensure high biomass yields for bio-refining and bioenergy. Here, we evaluated drought tolerance of four C3 species, Dactylis glomerata cvs. Sevenop and Amba...

  15. Enhanced UV-B radiation alleviates the adverse effects of summer drought in two Mediterranean pines under field conditions [ozone depletion

    International Nuclear Information System (INIS)

    Petropoulou, Y.; Kyparissis, A.; Nikolopoulos, D.; Manetas, Y.


    The effects of enhanced UV-B (290-320 nm) radiation on two native Mediterranean pines (Pinus pinea L., Pinus halepensis Mill.) were recorded during a one-year field study. Plants received ambient or ambient plus supplemental UV-B radiation (simulating a 15% stratospheric ozone depletion over Patras. Greece, 38.3°N. 29.1°E) and only natural precipitation, i.e. they were simultaneously exposed to other natural stresses. particularly water stress during summer. Supplemental UV-B irradiation started in early February, 1993 and up to late June, no effects were observed on growth and photochemical efficiency of photosystem II, as measured by chlorophy II fluorescence induction. Water stress during the summer was manifested in the control plants as a decline in the ratio of variable to maximum fluorescence (F v /F m ), the apparent photon yield for oxygen evolution (φ I ) and the photosynthetic capacity at 5% CO 2 (P m ). In addition, a partial needle loss was evident. Under supplemental UV-B radiation, however, the decreases in F v /F m , φ i , and P m . as well as needle losses were significantly less. Soon after the first heavy autumn rains. photosynthetic parameters in both control and UV-B treated plants recovered to similar values. but the transient summer superiority of UV-B irradiated plants resulted in a significant increase in their dry weight measured at plant harvest. during late January. 1994. Plant height. UV-B absorbing compounds, photosynthetic pigments and relative water content measured at late spring. late summer and at plant harvest, were not significantly affected by supplemental UV-B radiation. The results indicate that enhanced UV-B radiation may be beneficial for Mediterranean pines through a partial alleviation of the adverse effects of summer drought. (author)

  16. Arabidopsis basic leucine zipper transcription factors involved in an abscisic acid-dependent signal transduction pathway under drought and high-salinity conditions. (United States)

    Uno, Y; Furihata, T; Abe, H; Yoshida, R; Shinozaki, K; Yamaguchi-Shinozaki, K


    The induction of the dehydration-responsive Arabidopsis gene, rd29B, is mediated mainly by abscisic acid (ABA). Promoter analysis of rd29B indicated that two ABA-responsive elements (ABREs) are required for the dehydration-responsive expression of rd29B as cis-acting elements. Three cDNAs encoding basic leucine zipper (bZIP)-type ABRE-binding proteins were isolated by using the yeast one-hybrid system and were designated AREB1, AREB2, and AREB3 (ABA-responsive element binding protein). Transcription of the AREB1 and AREB2 genes is up-regulated by drought, NaCl, and ABA treatment in vegetative tissues. In a transient transactivation experiment using Arabidopsis leaf protoplasts, both the AREB1 and AREB2 proteins activated transcription of a reporter gene driven by ABRE. AREB1 and AREB2 required ABA for their activation, because their transactivation activities were repressed in aba2 and abi1 mutants and enhanced in an era1 mutant. Activation of AREBs by ABA was suppressed by protein kinase inhibitors. These results suggest that both AREB1 and AREB2 function as transcriptional activators in the ABA-inducible expression of rd29B, and further that ABA-dependent posttranscriptional activation of AREB1 and AREB2, probably by phosphorylation, is necessary for their maximum activation by ABA. Using cultured Arabidopsis cells, we demonstrated that a specific ABA-activated protein kinase of 42-kDa phosphorylated conserved N-terminal regions in the AREB proteins.

  17. Local conditions for the Pauli potential in order to yield self-consistent electron densities exhibiting proper atomic shell structure

    Energy Technology Data Exchange (ETDEWEB)

    Finzel, Kati, E-mail: [Linköpings University, IFM Department of Physics, 58183 Linköping (Sweden)


    The local conditions for the Pauli potential that are necessary in order to yield self-consistent electron densities from orbital-free calculations are investigated for approximations that are expressed with the help of a local position variable. It is shown that those local conditions also apply when the Pauli potential is given in terms of the electron density. An explicit formula for the Ne atom is given, preserving the local conditions during the iterative procedure. The resulting orbital-free electron density exhibits proper shell structure behavior and is in close agreement with the Kohn-Sham electron density. This study demonstrates that it is possible to obtain self-consistent orbital-free electron densities with proper atomic shell structure from simple one-point approximations for the Pauli potential at local density level.

  18. Arbuscular mycorrhizal symbiosis induces strigolactone biosynthesis under drought and improves drought tolerance in lettuce and tomato. (United States)

    Ruiz-Lozano, Juan Manuel; Aroca, Ricardo; Zamarreño, Ángel María; Molina, Sonia; Andreo-Jiménez, Beatriz; Porcel, Rosa; García-Mina, José María; Ruyter-Spira, Carolien; López-Ráez, Juan Antonio


    Arbuscular mycorrhizal (AM) symbiosis alleviates drought stress in plants. However, the intimate mechanisms involved, as well as its effect on the production of signalling molecules associated with the host plant-AM fungus interaction remains largely unknown. In the present work, the effects of drought on lettuce and tomato plant performance and hormone levels were investigated in non-AM and AM plants. Three different water regimes were applied, and their effects were analysed over time. AM plants showed an improved growth rate and efficiency of photosystem II than non-AM plants under drought from very early stages of plant colonization. The levels of the phytohormone abscisic acid, as well as the expression of the corresponding marker genes, were influenced by drought stress in non-AM and AM plants. The levels of strigolactones and the expression of corresponding marker genes were affected by both AM symbiosis and drought. The results suggest that AM symbiosis alleviates drought stress by altering the hormonal profiles and affecting plant physiology in the host plant. In addition, a correlation between AM root colonization, strigolactone levels and drought severity is shown, suggesting that under these unfavourable conditions, plants might increase strigolactone production in order to promote symbiosis establishment to cope with the stress. © 2015 John Wiley & Sons Ltd.

  19. Early twenty-first-century droughts during the warmest climate

    Directory of Open Access Journals (Sweden)

    Felix Kogan


    Full Text Available The first 13 years of the twenty-first century have begun with a series of widespread, long and intensive droughts around the world. Extreme and severe-to-extreme intensity droughts covered 2%–6% and 7%–16% of the world land, respectively, affecting environment, economies and humans. These droughts reduced agricultural production, leading to food shortages, human health deterioration, poverty, regional disturbances, population migration and death. This feature article is a travelogue of the twenty-first-century global and regional droughts during the warmest years of the past 100 years. These droughts were identified and monitored with the National Oceanic and Atmospheric Administration operational space technology, called vegetation health (VH, which has the longest period of observation and provides good data quality. The VH method was used for assessment of vegetation condition or health, including drought early detection and monitoring. The VH method is based on operational satellites data estimating both land surface greenness (NDVI and thermal conditions. The twenty-first-century droughts in the USA, Russia, Australia and Horn of Africa were intensive, long, covered large areas and caused huge losses in agricultural production, which affected food security and led to food riots in some countries. This research also investigates drought dynamics presenting no definite conclusion about drought intensification or/and expansion during the time of the warmest globe.

  20. Institutional adaptation to drought: the case of Fars Agricultural Organization. (United States)

    Keshavarz, Marzieh; Karami, Ezatollah


    Recurrent droughts in arid and semi-arid regions are already rendering agricultural production, mainstay of subsistence livelihoods, uncertain. In order to mitigate the impact of drought, agricultural organizations must increase their capacity to adapt. Institutional adaptation refers to the creation of an effective, long-term government institution or set of institutions in charge of planning and policy, and its capacity to develop, revise, and execute drought policies. Using the Fars Agricultural Organization in Iran, as a case study, this paper explores the institutional capacities and capabilities, necessary to adapt to the drought conditions. The STAIR model was used as a conceptual tool, and the Bayesian network and Partial Least Squares (PLS) path modeling was applied to explain the mechanisms by which organizational capacities influence drought management. A survey of 309 randomly selected managers and specialists indicated serious weaknesses in the ability of the organization to apply adaptation strategies effectively. Analysis of the causal models illustrated that organizational culture and resources and infrastructure significantly influenced drought management performance. Moreover, managers and specialists perceived human resources and strategy, goals, and action plan, respectively, as the main drivers of institutional adaptation to drought conditions. Recommendations and implications for drought management policy are offered to increase organizational adaptation to drought and reduce the subsequent sufferings. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Aid conditionalities, international Good Manufacturing Practice standards and local production rights: a case study of local production in Nepal. (United States)

    Brhlikova, Petra; Harper, Ian; Subedi, Madhusudan; Bhattarai, Samita; Rawal, Nabin; Pollock, Allyson M


    Local pharmaceutical production has been endorsed by the WHO as a means of addressing health priorities of developing countries. However, local producers of essential medicines must comply with international pharmaceutical standards in order to be eligible to compete in donor tenders. These standards determine production rights for on-patent and off-patent medicines, and guide international procurement of medicines. We reviewed the literature on the impact of Good Manufacturing Practice (GMP) on local production; a gap analysis from the literature review indicated a need for further research. Over sixty interviews were conducted with people involved in the Nepali pharmaceutical production and distribution chain from 2006 to 2009 on the GMP areas of relevance: regulatory capacity, staffing, funding and training, resourcing of GMP, inspectors' interpretation of the rules and compliance. Although Nepal producers have increased their overall share of the domestic market, only the public manufacturer, Royal Drugs, focuses on medicines for public health programmes; private producers engage mainly in brand competition for private markets, not essential medicines. Nepali regulators and producers state that implementation of GMP standards is hindered by low regulatory capacity, insufficient training of staff in the industry, financial constraints and lack of investment for upgrading capital. The transition period to mandatory compliance with WHO GMP rules is lengthy. Less than half of private producers had WHO GMP in 2013. Producers are not directly affected by international harmonisation of standards as they do not export medicines and the Nepali regulator does not enforce the WHO standards strictly. Without an international GMP certificate they cannot tender for donor dependent health programmes. In Nepal, local private manufacturers focus mainly on brand competition for private consumption not essential medicines, the government preferentially procures essential

  2. Application of Regional Drought and Crop Yield Information System to enhance drought monitoring and forecasting in Lower Mekong region (United States)

    Jayasinghe, S.; Dutta, R.; Basnayake, S. B.; Granger, S. L.; Andreadis, K. M.; Das, N.; Markert, K. N.; Cutter, P. G.; Towashiraporn, P.; Anderson, E.


    The Lower Mekong Region has been experiencing frequent and prolonged droughts resulting in severe damage to agricultural production leading to food insecurity and impacts on livelihoods of the farming communities. Climate variability further complicates the situation by making drought harder to forecast. The Regional Drought and Crop Yield Information System (RDCYIS), developed by SERVIR-Mekong, helps decision makers to take effective measures through monitoring, analyzing and forecasting of drought conditions and providing early warnings to farmers to make adjustments to cropping calendars. The RDCYIS is built on regionally calibrated Regional Hydrologic Extreme Assessment System (RHEAS) framework that integrates the Variable Infiltration Capacity (VIC) and Decision Support System for Agro-technology Transfer (DSSAT) models, allowing both nowcast and forecast of drought. The RHEAS allows ingestion of numerus freely available earth observation and ground observation data to generate and customize drought related indices, variables and crop yield information for better decision making. The Lower Mekong region has experienced severe drought in 2016 encompassing the region's worst drought in 90 years. This paper presents the simulation of the 2016 drought event using RDCYIS based on its hindcast and forecast capabilities. The regionally calibrated RDCYIS can help capture salient features of drought through a variety of drought indices, soil variables, energy balance variables and water balance variables. The RDCYIS is capable of assimilating soil moisture data from different satellite products and perform ensemble runs to further reduce the uncertainty of it outputs. The calibrated results have correlation coefficient around 0.73 and NSE between 0.4-0.5. Based on the acceptable results of the retrospective runs, the system has the potential to generate reliable drought monitoring and forecasting information to improve decision-makings at operational, technological and

  3. Climate and drought (United States)

    McNab, Alan L.

    Drought is a complex phenomenon that can be defined from several perspectives [Wilhite and Glantz, 1987]. The common characteristic and central idea of these perspectives is the straightforward notion of a water deficit. Complexity arises because of the need to specify the part of the hydrologic cycle experiencing the deficit and the associated time period. For example, a long-term deficit in deep groundwater storage can occur simultaneously with a short-term surplus of root zone soil water.Figure 1 [Changnon, 1987] illustrates how the definitions of drought are related to specific components of the hydrologic cycle. The dashed lines indicate the delayed translation of two hypothetical precipitation deficits with respect to runoff, soil moisture, streamflow and groundwater. From this perspective, precipitation can be considered as the carrier of the drought signal, and hydrological processes are among the final indicators that reveal the presence of drought [Hare, 1987; Klemes, 1987].

  4. Palmer Drought Severity Index (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — PDSI from the Dai dataset. The Palmer Drought Severity Index (PDSI) is devised by Palmer (1965) to represent the severity of dry and wet spells over the U.S. based...

  5. Charged hadrons in local finite-volume QED+QCD with C* boundary conditions

    CERN Document Server

    Lucini, Biagio; Ramos, Alberto; Tantalo, Nazario


    In order to calculate QED corrections to hadronic physical quantities by means of lattice simulations, a coherent description of electrically-charged states in finite volume is needed. In the usual periodic setup, Gauss's law and large gauge transformations forbid the propagation of electrically-charged states. A possible solution to this problem, which does not violate the axioms of local quantum field theory, has been proposed by Wiese and Polley, and is based on the use of C* boundary conditions. We present a thorough analysis of the properties and symmetries of QED in isolation and QED coupled to QCD, with C* boundary conditions. In particular we learn that a certain class of electrically-charged states can be constructed in this setup in a fully consistent fashion, without relying on gauge fixing. We argue that this class of states covers most of the interesting phenomenological applications in the framework of numerical simulations. We also calculate finite-volume corrections to the mass of stable charg...

  6. Insulation resistance abnormal condition detector for a local power range monitor

    International Nuclear Information System (INIS)

    Akiyama, Takao; Mizuno, Katsuhiro; Kai, Takaaki.


    Object: To permit determination of abnormal condition by a number of local power range monitors (LPRM ) to be quickly made through estimation of the leakage current value by precisely estimating the ratio between the true rate of change in neutron flux and true change in the neutron flux by making use of the fact that the status of the neutron distribution does not widely change with a change of the core flow rate for a short period of time. Structure: While carrying out power control according to the core flow rate, detection values from LPRM which are disposed in a three-dimensional fashion within the reactor core are indicated on an indicator. The average value of rates of change in the indicated values for a group of LPRM under substantially the same fluid dynamic condition as that for each LPRM is determined by measuring the ratio before and after the alteration of the power of the indicated value. Further, the estimation of leakage current is determined by using the ratio of the indicated value, average value thereof and amplifier gain of each LPRM. When the estimation leakage current exceeds a prescribed value, the corresponding LPRM is determined to be defective. (Moriyama, K.)

  7. Drought, ecological crisis and famine in late nineteenth century south-eastern Africa (United States)

    Pribyl, Kathleen; Nash, David J.; Klein, Jørgen; Endfield, Georgina H.


    In the second half of the 1890s a drought-driven ecological crisis took hold in the region of modern-day Botswana, Zimbabwe and northern, central and eastern South Africa. A number of years of very late rainy seasons had severe repercussions for the rain-fed agriculture. Sowing was delayed and the young crops suffered from below average summer rainfall levels. Drawing on a wide variety of documentary sources - administrative records, writings by members of missionary societies and local newspapers - this paper outlines how the drought drove the ecological crisis and aggravated a locust infestation and the cattle plague (rinderpest). Whereas the locusts found better breeding conditions in areas that were normally too humid for them, the drought also facilitated the spread of rinderpest by reducing the number of watering holes and by forcing the cattle into an immunodepressed state due to malnutrition. The locusts contributed to the loss of grain crops, and the rinderpest decimated cattle herds by more than 90 per cent in areas where the disease coincided with the drought. As agriculture as well as the pastoral sector were hit hard, famine conditions developed in the interior of the region.

  8. QTLs for tolerance of drought and breeding for tolerance of abiotic and biotic stress: an integrated approach.

    Directory of Open Access Journals (Sweden)

    Shalabh Dixit

    Full Text Available BACKGROUND: The coupling of biotic and abiotic stresses leads to high yield losses in rainfed rice (Oryza sativa L. growing areas. While several studies target these stresses independently, breeding strategies to combat multiple stresses seldom exist. This study reports an integrated strategy that combines QTL mapping and phenotypic selection to develop rice lines with high grain yield (GY under drought stress and non-stress conditions, and tolerance of rice blast. METHODOLOGY: A blast-tolerant BC2F3-derived population was developed from the cross of tropical japonica cultivar Moroberekan (blast- and drought-tolerant and high-yielding indica variety Swarna (blast- and drought-susceptible through phenotypic selection for blast tolerance at the BC2F2 generation. The population was studied for segregation distortion patterns and QTLs for GY under drought were identified along with study of epistatic interactions for the trait. RESULTS: Segregation distortion, in favour of Moroberekan, was observed at 50 of the 59 loci. Majority of these marker loci co-localized with known QTLs for blast tolerance or NBS-LRR disease resistance genes. Despite the presence of segregation distortion, high variation for DTF, PH and GY was observed and several QTLs were identified under drought stress and non-stress conditions for the three traits. Epistatic interactions were also detected for GY which explained a large proportion of phenotypic variance observed in the population. CONCLUSIONS: This strategy allowed us to identify QTLs for GY along with rapid development of high-yielding purelines tolerant to blast and drought with considerably reduced efforts. Apart from this, it also allowed us to study the effects of the selection cycle for blast tolerance. The developed lines were screened at IRRI and in the target environment, and drought and blast tolerant lines with high yield were identified. With tolerance to two major stresses and high yield potential, these

  9. Defining Drought Characteristics for Natural Resource Management (United States)

    Ojima, D. S.; Senay, G. B.; McNeeley, S.; Morisette, J. T.


    In the north central region of the US, on-going drought studies are investigating factors determining how drought impacts various ecosystem services and challenge natural resource management decisions. The effort reported here stems from research sponsored by the USGS North Central Climate Science Center, to deal with ecosystem response to drought with the goal to see if there are indicators of drought emerging from the ecosystem interactions with various weather patterns, soil moisture dynamics, and the structural aspects of the ecosystem in question. The North Central domain covers a region from the headwaters of the Missouri River Basin to the northern Great Plains. Using spatial and temporal analysis of remote sensing products and mechanistic daily time-step ecosystem model simulations across the northern Great Plains and northern Rockies, analysis of recent drought conditions over the region will be provided. Drought characteristics will be analyzed related to resource management targets, such as water supply, landscape productivity, or habitat needs for key species. Analysis of ecosystem and landscape patterns of drought relative to net primary productivity, surface temperatures, soil moisture content, evaporation, transpiration, and water use efficiency from 2000 through 2014 will be analyzed for different drought and non-drought events. Comparisons between satellite-derived ET and NPP of different Great Plains ecosystems related to simulated ET and NPP will be presented. These comparisons provide indications of the role that soil moisture dynamics, groundwater recharge and rooting depth of different ecosystems have on determining the sensitivity to water stress due to seasonal warming and reduced precipitation across the region. In addition, indications that average annual rainfall levels over certain ecosystems may result in reduced production due to higher rates of water demand under the observed warmer temperatures and the prolonged warming in the spring

  10. Improving Multi-Sensor Drought Monitoring, Prediction and Recovery Assessment Using Gravimetry Information (United States)

    Aghakouchak, Amir; Tourian, Mohammad J.


    Development of reliable drought monitoring, prediction and recovery assessment tools are fundamental to water resources management. This presentation focuses on how gravimetry information can improve drought assessment. First, we provide an overview of the Global Integrated Drought Monitoring and Prediction System (GIDMaPS) which offers near real-time drought information using remote sensing observations and model simulations. Then, we present a framework for integration of satellite gravimetry information for improving drought prediction and recovery assessment. The input data include satellite-based and model-based precipitation, soil moisture estimates and equivalent water height. Previous studies show that drought assessment based on one single indicator may not be sufficient. For this reason, GIDMaPS provides drought information based on multiple drought indicators including Standardized Precipitation Index (SPI), Standardized Soil Moisture Index (SSI) and the Multivariate Standardized Drought Index (MSDI) which combines SPI and SSI probabilistically. MSDI incorporates the meteorological and agricultural drought conditions and provides composite multi-index drought information for overall characterization of droughts. GIDMaPS includes a seasonal prediction component based on a statistical persistence-based approach. The prediction component of GIDMaPS provides the empirical probability of drought for different severity levels. In this presentation we present a new component in which the drought prediction information based on SPI, SSI and MSDI are conditioned on equivalent water height obtained from the Gravity Recovery and Climate Experiment (GRACE). Using a Bayesian approach, GRACE information is used to evaluate persistence of drought. Finally, the deficit equivalent water height based on GRACE is used for assessing drought recovery. In this presentation, both monitoring and prediction components of GIDMaPS will be discussed, and the results from 2014

  11. On the sufficient conditions of the localization of the Fourier-Laplace series of distributions from liouville classes

    International Nuclear Information System (INIS)

    Ahmedov, Anvarjon A; Nurullah bin Rasedee, Ahmad Fadly; Rakhimov, Abdumalik


    In this work we investigate the localization principle of the Fourier-Laplace series of the distribution. Here we prove the sufficient conditions of the localization of the Riesz means of the spectral expansions of the Laplace-Beltrami operator on the unit sphere.

  12. Drought vulnerability assesssment and mapping in Morocco (United States)

    Imani, Yasmina; Lahlou, Ouiam; Bennasser Alaoui, Si; Naumann, Gustavo; Barbosa, Paulo; Vogt, Juergen


    Drought vulnerability assessment and mapping in Morocco Authors: Yasmina Imani 1, Ouiam Lahlou 1, Si Bennasser Alaoui 1 Paulo Barbosa 2, Jurgen Vogt 2, Gustavo Naumann 2 1: Institut Agronomique et Vétérinaire Hassan II (IAV Hassan II), Rabat Morocco. 2: European Commission, Joint Research Centre (JRC), Institute for Environment and Sustainability (IES), Ispra, Italy. In Morocco, nearly 50% of the population lives in rural areas. They are mostly small subsistent farmers whose production depends almost entirely on rainfall. They are therefore very sensitive to drought episodes that may dramatically affect their incomes. Although, as a consequence of the increasing frequency, length and severity of drought episodes in the late 90's, the Moroccan government decided, to move on from a crisis to a risk management approach, drought management remains in practice mainly reactive and often ineffective. The lack of effectiveness of public policy is in part a consequence of the poor understanding of drought vulnerability at the rural community level, which prevents the development of efficient mitigation actions and adaptation strategies, tailored to the needs and specificities of each rural community. Thus, the aim of this study is to assess and map drought vulnerability at the rural commune level in the Oum Er-Rbia basin which is a very heterogeneous basin, showing a big variability of climates, landscapes, cropping systems and social habits. Agricultural data collected from the provincial and local administrations of Agriculture and socio-economic data from the National Department of Statistics were used to compute a composite vulnerability index (DVI) integrating four different components: (i) the renewable natural capacity, (ii) the economic capacity, (iii) human and civic resources, and (iv) infrastructure and technology. The drought vulnerability maps that were derived from the computation of the DVI shows that except very specific areas, most of the Oum er Rbia

  13. Drought Water Rationing Necessitates an Equitable and Multidimensional Approach: Evidence from California (United States)

    Ponce de Leon Barido, D.; Fildier, B.; Cucchi, K.


    Since 2011 many areas across California have experienced their driest years on record, with conditions barely improving since then. Reservoirs and snowpack water content have recorded some of the lowest measurements ever, with users (individuals, towns and cities) using groundwater to buffer the potentially devastating effects of the drought. Among other strategies, rationing has been one of they key interventions that the state has adopted to better manage its water resources. April 1st 2015 marked the first day in California's history when mandatory water reductions were instated statewide. By executive order, Governor Brown directed the State Water Resources Control Board to impose a 25% reduction on California's 400 local water supply agencies, which serve 90% of California residents. Since then, local agencies have been responsible for allocating restrictions to reduce water consumption and monitor compliance. A variety of research organizations and media outlets have begun exploring the equity considerations of the drought, but their analyses are often one-dimensional (water consumption per capita). Here we explore the multi-dimensional dynamics of rationing and drought in California using Census and California Water Resources Board data for over 300 communities in the state. We use data mining, parallel coordinates, and a nearest neighbors clustering algorithm to explore relationships between rationing and community spatial distribution, weather, drought related climate variables, economic sector employment, race, localized income inequality, household size, and income. The data suggests that there are nine distinct rationing groups across the state, that rationing was performed without taking into account the localized effects of the drought (hard hit communities rationing as much as less affected communities), that severely drought affected low-income communities (using SPI and SPEI 3 year indices) were asked to ration as much (and sometimes more) than

  14. Drought-related tree mortality in drought-resistant semi-arid Aleppo pine forest (United States)

    Preisler, Yakir; Grünzweig, José M.; Rotenberg, Eyal; Rohatyn, Shani; Yakir, Dan


    The frequency and intensity of drought events are expected to increase as part of global climate change. In fact, drought related tree mortality had become a widespread phenomenon in forests around the globe in the past decades. This study was conducted at the Yatir FLUXNET site, located in a 45 years old Pinus halepensis dominated forest that successfully sustained low mean annual precipitation (276mm) and extended seasonal droughts (up to 340 days between rain events). However, five recent non-consecutive drought years led to enhanced tree mortality in 2010 (5-10% of the forest population, which was not observed hitherto). The Tree mortality was characterized by patchiness, showing forest zones with either >80% mortality or no mortality at all. Areas of healthy trees were associated with deeper root distribution and increased stoniness (soil pockets & cracks). To help identify possible causes of the increased mortality and its patterns, four tree stress levels were identified based on visual appearance, and studied in more detail. This included examining from spring 2011 to summer 2013 the local trees density, root distribution, annual growth rings, needle length and chlorophyll content, rates of leaf gas exchange, and branch predawn water potential. Tree phenotypic stress level correlated with the leaf predawn water potential (-1.8 and -3.0 in healthy and stressed trees, respectively), which likely reflected tree-scale water availability. These below ground characteristics were also associated, in turn, with higher rate of assimilation (3.5 and 0.8 μmol CO2 m-2s1 in healthy and stress trees, respectively), longer needles (8.2cm and 3.4 cm in healthy and stressed trees, respectively). Annual ring widths showed differences between stress classes, with stressed trees showing 30% narrower rings on average than unstressed trees. Notably, decline in annual ring widths could be identified in currently dead or severely stressed trees 15-20 years prior to mortality or

  15. Possibility of Localized Corrosion of PWR primary side materials in oxidative decontamination condition

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sang Yoon; Jung, Jun Young; Won, Huijun; Kim, Seon Byeong; Choi, Wangkyu; Moon, Jeikwon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)


    Primary circuit of a PWR (radionuclides uptake in the inner oxide layer and oxide/metal interface occurred inevitably. Therefore, it is necessary to remove the inner oxide layer as well as the outer oxide layer to achieve excellent decontamination effects. It is known that the outer oxide layers are typically composed of Fe{sub 3}O{sub 4} and NiFe{sub 2}O{sub 4}. On the other hand, the inner oxide layers are composed of Cr{sub 2}O{sub 3}, (Ni{sub 1-x}Ni{sub x})(Cr{sub 1-y}Fe{sub y}){sub 2}O{sub 4}, and FeCr{sub 2}O{sub 4}. Because of chromium in the trivalent oxidation state which is difficult to dissolve, the oxide layer has an excellent protectiveness and is hard to decontaminate. For the dissolution of chromium-rich oxide, there have been developed an alkaline permanganate (AP) or nitric permanganate (NP). A disadvantage of the AP process is the generation of a large volume of secondary waste. On the other hand, NP process is highly incompatible to the corrosion of the structure materials. In this study as a part of developing decontamination process, we investigated the corrosion behavior of the structure materials such as Inconel-600 and type 304 stainless steel in NP and AP oxidative decontamination conditions for the safe use of an oxidative phase in PWR system decontamination. The corrosion behavior was analyzed through the potential-pH equilibrium for the system of Cr-H{sub 2}O / Mn-H{sub 2}O at 90 .deg. C and potentiodynamic polarization in a typical AP and NP solution were evaluated. The AP or NP treated specimen surface was observed using an optical microscope and scanning electron microscopy (SEM) for an evaluation of the localized corrosion. The possibility of localized corrosion of PWR primary side materials under oxidative decontamination condition was evaluated using a potentiodynamic polarization technique, observation of localized corrosion morphology, and consideration of potential-pH diagrams at 90 .deg. C. From the results of these tests, we

  16. Pathways Into and Out of the 2012-2016 California-Nevada Drought—Lessons for Future Drought and Drought Termination (United States)

    Dettinger, M. D.


    Droughts in California have historically been a function of prolonged deficits of precipitation from the largest storms (much more so than from medium to weak storms), and drought endings typically reflect the return of those same large storms and more. The recent 2012-2016 drought in California followed this pattern, being bracketed by the extremely wet 2011 and 2017 water years, both brought about by the arrival of multiple major atmospheric river storms, and was marked by one of the episodic multi-year periods when these storms are diverted from the State by anomalous atmospheric circulations over the northeastern Pacific Ocean. The 2012-2016 episode was also marked by conditions that have been much less "normal" for California droughts, with record warm temperatures adding significantly to the drought and its impacts. Except in the highest mountains, these temperatures contributed as much to the drought potential as did precipitation deficits. The temperatures also led to record snow droughts that focused most in the low to middle altitude snowfields. Together the persistent precipitation deficits and high temperatures of this drought are a prescient example of a major drought with precipitation deficits emphasized at higher altitudes and temperature effects at lower altitudes. This drought ended with the remarkably wet 2017 water year, due to the arrival of a record number of large atmospheric river storms and associated precipitation. But this termination of precipitation drought was marked by its own flirtation with record-breaking "warm" snow drought conditions in late 2016 as well as by an eventual springtime snowpack that was very large but nowhere near as large as in other historical years with correspondingly large precipitation totals, especially at low to middle altitudes. These patterns of temperature-accentuated drought emphasized at lower altitudes and precipitation-driven droughts and drought endings emphasized at higher altitudes, both delineated

  17. Colwellia psychrerythraea strains from distant deep sea basins show adaptation to local conditions

    Directory of Open Access Journals (Sweden)

    Stephen M Techtmann


    Full Text Available Many studies have shown that microbes, which share nearly identical 16S rRNA genes, can have highly divergent genomes. Microbes from distinct parts of the ocean also exhibit biogeographic patterning. Here we seek to better understand how certain microbes from the same species have adapted for growth under local conditions. The phenotypic and genomic heterogeneity of three strains of Colwellia psychrerythraea was investigated in order to understand adaptions to local environments. Colwellia are psychrophilic heterotrophic marine bacteria ubiquitous in cold marine ecosystems. We have recently isolated two Colwellia strains: ND2E from the Eastern Mediterranean and GAB14E from the Great Australian Bight. The 16S rRNA sequence of these two strains were greater than 98.2% identical to the well-characterized C. psychrerythraea 34H, which was isolated from arctic sediments. Salt tolerance, and carbon source utilization profiles for these strains were determined using Biolog Phenotype Microarrays’. These strains exhibited distinct salt tolerance, which was not associated with the salinity of sites of isolation. The carbon source utilization profiles were distinct with less than half of the tested carbon sources being metabolized by all three strains. Whole genome sequencing revealed that the genomes of these three strains were quite diverse with some genomes having up to 1600 strain-specific genes. Many genes involved in degrading strain-specific carbon sources were identified. There appears to be a link between carbon source utilization and location of isolation with distinctions observed between the Colwellia isolate recovered from sediment compared to water column isolates.

  18. Induction of drought tolerant mutants of rice

    International Nuclear Information System (INIS)

    El-Hissewy, A.A.; Abd Allah, A.


    The ultimate goal of crop breeding is to develop varieties with a high yield potential and desirable agronomic characteristics. In Egypt, the most important qualities sought by breeders have been high yield potential, resistance to major diseases and insects, and improved grain and eating quality. However, breeding efforts should concentrate on varieties with the potential to minimize yield losses under unfavorable conditions such as drought, and to maximize yields when conditions are favorable. Rice (Oryza sativa L.) in Egypt is completely irrigated and a significant portion of the rice cultivated area is subject to water deficit resulting from an inadequate or insufficient irrigation supply. Drought tolerance is a complex trait in that it results from the interaction of histological and physiological characters of plant with environmental factors, both above-ground and under-ground. Accordingly, root characters are closely related to drought tolerance. Little attention has been paid in Egyptian breeding programs to root characters and their relation to shoot characters. Furthermore, induced mutations are considered as one of the most important methods to induce useful mutants, especially with improved root characters, to overcome the drought problem. The present investigation aimed to study the effect of different doses of gamma rays on several characters of three Egyptian rice varieties, i.e. 'Giza 171', 'Giza 175' and 'Giza 176' and to induce one or more mutants possessing drought tolerance

  19. Breeding sunflower for drought tolerance: genetic variability for drought torrance in sunflower (Helianthus Annuus L.)

    International Nuclear Information System (INIS)

    Hussain, M.K.; Ilyas, M.; Rehman, O.U.


    Five inbred lines and their all possible crosses excluding reciprocals were evaluated for tolerance to drought and effect of drought adversely influenced the traits of leaf area, days to maturity, head diameter, 100-achene weight and achene yield per plant, whereas number of leaves per plant and plant height were comparatively less affected. Average performance of sunflower cross/hybrids was far more better than parental lines. Inbred lines GIMSUN-420x-431 and GIMSUN-498x-477 produced higher achene yield under drought conditions and showed less loses than other. Effect of drought on various growth stages showed that button (R1 stage) was the most critical as compared to 50% flowering (R5 stage) and seed formation (R6 stage) which reduced leaf area, head diameter, 100-achene weight and achene yield per plant by 40-59, 32-14 and 31-07 percent respectively. (author)

  20. Human influences on streamflow drought characteristics in England and Wales

    Directory of Open Access Journals (Sweden)

    E. Tijdeman


    Full Text Available Human influences can affect streamflow drought characteristics and propagation. The question is where, when and why? To answer these questions, the impact of different human influences on streamflow droughts were assessed in England and Wales, across a broad range of climate and catchments conditions. We used a dataset consisting of catchments with near-natural flow as well as catchments for which different human influences have been indicated in the metadata (Factors Affecting Runoff of the UK National River Flow Archive (NRFA. A screening approach was applied on the streamflow records to identify human-influenced records with drought characteristics that deviated from those found for catchments with near-natural flow. Three different deviations were considered, specifically deviations in (1 the relationship between streamflow drought duration and the base flow index, BFI (specifically, BFIHOST, the BFI predicted from the hydrological properties of soils, (2 the correlation between streamflow and precipitation and (3 the temporal occurrence of streamflow droughts compared to precipitation droughts, i.e. an increase or decrease in streamflow drought months relative to precipitation drought months over the period of record. The identified deviations were then related to the indicated human influences. Results showed that the majority of catchments for which human influences were indicated did not show streamflow drought characteristics that deviated from those expected under near-natural conditions. For the catchments that did show deviating streamflow drought characteristics, prolonged streamflow drought durations were found in some of the catchments affected by groundwater abstractions. Weaker correlations between streamflow and precipitation were found for some of the catchments with reservoirs, water transfers or groundwater augmentation schemes. An increase in streamflow drought occurrence towards the end of their records was found for

  1. Human influences on streamflow drought characteristics in England and Wales (United States)

    Tijdeman, Erik; Hannaford, Jamie; Stahl, Kerstin


    Human influences can affect streamflow drought characteristics and propagation. The question is where, when and why? To answer these questions, the impact of different human influences on streamflow droughts were assessed in England and Wales, across a broad range of climate and catchments conditions. We used a dataset consisting of catchments with near-natural flow as well as catchments for which different human influences have been indicated in the metadata (Factors Affecting Runoff) of the UK National River Flow Archive (NRFA). A screening approach was applied on the streamflow records to identify human-influenced records with drought characteristics that deviated from those found for catchments with near-natural flow. Three different deviations were considered, specifically deviations in (1) the relationship between streamflow drought duration and the base flow index, BFI (specifically, BFIHOST, the BFI predicted from the hydrological properties of soils), (2) the correlation between streamflow and precipitation and (3) the temporal occurrence of streamflow droughts compared to precipitation droughts, i.e. an increase or decrease in streamflow drought months relative to precipitation drought months over the period of record. The identified deviations were then related to the indicated human influences. Results showed that the majority of catchments for which human influences were indicated did not show streamflow drought characteristics that deviated from those expected under near-natural conditions. For the catchments that did show deviating streamflow drought characteristics, prolonged streamflow drought durations were found in some of the catchments affected by groundwater abstractions. Weaker correlations between streamflow and precipitation were found for some of the catchments with reservoirs, water transfers or groundwater augmentation schemes. An increase in streamflow drought occurrence towards the end of their records was found for some of the

  2. Multisource Data-Based Integrated Agricultural Drought Monitoring in the Huai River Basin, China (United States)

    Sun, Peng; Zhang, Qiang; Wen, Qingzhi; Singh, Vijay P.; Shi, Peijun


    Drought monitoring is critical for early warning of drought hazard. This study attempted to develop an integrated remote sensing drought monitoring index (IRSDI), based on meteorological data for 2003-2013 from 40 meteorological stations and soil moisture data from 16 observatory stations, as well as Moderate Resolution Imaging Spectroradiometer data using a linear trend detection method, and standardized precipitation evapotranspiration index. The objective was to investigate drought conditions across the Huai River basin in both space and time. Results indicate that (1) the proposed IRSDI monitors and describes drought conditions across the Huai River basin reasonably well in both space and time; (2) frequency of drought and severe drought are observed during April-May and July-September. The northeastern and eastern parts of Huai River basin are dominated by frequent droughts and intensified drought events. These regions are dominated by dry croplands, grasslands, and highly dense population and are hence more sensitive to drought hazards; (3) intensified droughts are detected during almost all months except January, August, October, and December. Besides, significant intensification of droughts is discerned mainly in eastern and western Huai River basin. The duration and regions dominated by intensified drought events would be a challenge for water resources management in view of agricultural and other activities in these regions in a changing climate.

  3. Global patterns of drought recovery

    Energy Technology Data Exchange (ETDEWEB)

    Schwalm, Christopher R.; Anderegg, William R. L.; Michalak, Anna M.; Fisher, Joshua B.; Biondi, Franco; Koch, George; Litvak, Marcy; Ogle, Kiona; Shaw, John D.; Wolf, Adam; Huntzinger, Deborah N.; Schaefer, Kevin; Cook, Robert; Wei, Yaxing; Fang, Yuanyuan; Hayes, Daniel; Huang, Maoyi; Jain, Atul; Tian, Hanqin


    Drought is a recurring multi-factor phenomenon with major impacts on natural and human systems1-3. Drought is especially important for land carbon sink variability, influencing climate regulation of the terrestrial biosphere4. While 20th Century trends in drought regime are ambiguous, “more extreme extremes” as well as more frequent and severe droughts3,7 are expected in the 21st Century. Recovery time, the length of time an ecosystem requires to revert to its pre-drought functional state, is a critical metric of drought impact. Yet the spatiotemporal patterning and controls of drought recovery are largely unknown. Here we use three distinct global datasets of gross primary productivity to show that across diverse terrestrial ecosystems drought recovery times are driven by biological productivity and biodiversity, with drought length and severity of secondary importance. Recovery time, especially for extreme droughts, and the areal extent of ecosystems in recovery from drought generally increase over the 20th Century, supporting an increase globally in drought impact8. Our results indicate that if future Anthropocene droughts become more widespread as expected, that droughts will become more frequent relative to recovery time. This increases the risk of entering a new regime where vegetation never recovers to its original state and widespread degradation of the land carbon sink ensues.

  4. Integrating Multi-Sensor Remote Sensing and In-situ Measurements for Africa Drought Monitoring and Food Security Assessment (United States)

    Hao, X.; Qu, J. J.; Motha, R. P.; Stefanski, R.; Malherbe, J.


    Drought is one of the most complicated natural hazards, and causes serious environmental, economic and social consequences. Agricultural production systems, which are highly susceptible to weather and climate extremes, are often the first and most vulnerable sector to be affected by drought events. In Africa, crop yield potential and grazing quality are already nearing their limit of temperature sensitivity, and, rapid population growth and frequent drought episodes pose serious complications for food security. It is critical to promote sustainable agriculture development in Africa under conditions of climate extremes. Soil moisture is one of the most important indicators for agriculture drought, and is a fundamentally critical parameter for decision support in crop management, including planting, water use efficiency and irrigation. While very significant technological advances have been introduced for remote sensing of surface soil moisture from space, in-situ measurements are still critical for calibration and validation of soil moisture estimation algorithms. For operational applications, synergistic collaboration is needed to integrate measurements from different sensors at different spatial and temporal scales. In this presentation, a collaborative effort is demonstrated for drought monitoring in Africa, supported and coordinated by WMO, including surface soil moisture and crop status monitoring. In-situ measurements of soil moisture, precipitation and temperature at selected sites are provided by local partners in Africa. Measurements from the Soil Moisture and Ocean Salinity (SMOS) and the Moderate Resolution Imaging Spectroradiometer (MODIS) are integrated with in-situ observations to derive surface soil moisture at high spatial resolution. Crop status is estimated through temporal analysis of current and historical MODIS measurements. Integrated analysis of soil moisture data and crop status provides both in-depth understanding of drought conditions and

  5. Drought impacts on cereal yields in Iberia (United States)

    Gouveia, Célia; Liberato, Margarida L. R.; Russo, Ana; Montero, Irene


    In the present context of climate change, land degradation and desertification it becomes crucial to assess the impact of droughts to determine the environmental consequences of a potential change of climate. Large drought episodes in Iberian Peninsula have widespread ecological and environmental impacts, namely in vegetation dynamics, resulting in significant crop yield losses. During the hydrological years of 2004/2005 and 2011/2012 Iberia was affected by two extreme drought episodes (Garcia-Herrera et al., 2007; Trigo et al., 2013). This work aims to analyze the spatial and temporal behavior of climatic droughts at different time scales using spatially distributed time series of drought indicators, such as the Standardized Precipitation Evapotranspiration Index (SPEI) (Vicente-Serrano et al., 2010). This climatic drought index is based on the simultaneous use of precipitation and temperature. We have used CRU TS3 dataset to compute SPEI and the Standardized Precipitation Index (SPI). Results will be analyzed in terms of the mechanisms that are responsible by these drought events and will also be used to assess the impact of droughts in crops. Accordingly an analysis is performed to evaluate the large-scale conditions required for a particular extreme anomaly of long-range transport of water vapor from the subtropics. We have used the European Centre for Medium-Range Weather Forecasts (ECMWF) ERA Interim reanalyses, namely, the geopotential height fields, temperature, wind, divergence data and the specific humidity at all pressure levels and mean sea level pressure (MSLP) and total column water vapor (TCWV) for the Euro-Atlantic sector (100°W to 50°E, 0°N-70°N) at full temporal (six hourly) and spatial (T255; interpolated to 0.75° regular horizontal grid) resolutions available to analyse the large-scale conditions associated with the drought onset. Our analysis revealed severe impacts on cereals crop productions and yield (namely wheat) for Portugal and

  6. Development and assessment of Transpirative Deficit Index (D-TDI) for agricultural drought monitoring (United States)

    Borghi, Anna; Rienzner, Michele; Gandolfi, Claudio; Facchi, Arianna


    Drought is a major cause of crop yield loss, both in rainfed and irrigated agroecosystems. In past decades, many approaches have been developed to assess agricultural drought, usually based on the monitoring or modelling of the soil water content condition. All these indices show weaknesses when applied for a real time drought monitoring and management at the local scale, since they do not consider explicitly crops and soil properties at an adequate spatial resolution. This work describes a newly developed agricultural drought index, called Transpirative Deficit Index (D-TDI), and assesses the results of its application over a study area of about 210 km2 within the Po River Plain (northern Italy). The index is based on transforming the interannual distribution of the transpirative deficit (potential crop transpiration minus actual transpiration), calculated daily by means of a spatially distributed conceptual hydrological model and cumulated over user-selected time-steps, to a standard normal distribution (following the approach proposed by the meteorological index SPI - Standard Precipitation Index). For the application to the study area a uniform maize crop cover (maize is the most widespread crop in the area) and 22-year (1993-2014) meteorological data series were considered. Simulation results consist in maps of the index cumulated over 10-day time steps over a mesh with cells of 250 m. A correlation analysis was carried out (1) to study the characteristics and the memory of D-TDI and to assess its intra- and inter-annual variability, (2) to assess the response of the agricultural drought (i.e., the information provided by D-TDI) to the meteorological drought computed through the SPI over different temporal steps. The D-TDI is positively auto-correlated with a persistence of 30 days, and positively cross-correlated to the SPI with a persistence of 40 days, demonstrating that D-TDI responds to meteorological forcing. Correlation analyses demonstrate that soils

  7. Modelling stream-fish functional traits in reference conditions: regional and local environmental correlates.

    Directory of Open Access Journals (Sweden)

    João M Oliveira

    Full Text Available Identifying the environmental gradients that control the functional structure of biological assemblages in reference conditions is fundamental to help river management and predict the consequences of anthropogenic stressors. Fish metrics (density of ecological guilds, and species richness from 117 least disturbed stream reaches in several western Iberia river basins were modelled with generalized linear models in order to investigate the importance of regional- and local-scale abiotic gradients to variation in functional structure of fish assemblages. Functional patterns were primarily associated with regional features, such as catchment elevation and slope, rainfall, and drainage area. Spatial variations of fish guilds were thus associated with broad geographic gradients, showing (1 pronounced latitudinal patterns, affected mainly by climatic factors and topography, or (2 at the basin level, strong upstream-downstream patterns related to stream position in the longitudinal gradient. Maximum native species richness was observed in midsize streams in accordance with the river continuum concept. The findings of our study emphasized the need to use a multi-scale approach in order to fully assess the factors that govern the functional organization of biotic assemblages in 'natural' streams, as well as to improve biomonitoring and restoration of fluvial ecosystems.

  8. The performance evaluation of fabricated solar still in local environmental conditions

    International Nuclear Information System (INIS)

    Memon, A.H.; Akhund, M.A.; Leghari, A.N.


    To investigate the effectiveness and performance of the fabricated solar distill unit in local environmental conditions of Nawabshah within the temperature range of 23 deg. C to 28 deg. C in terms of quantity and quality of distilled water, an experimental based study was carried out during the month of March. Various samples of water with different degrees of hardness were collected from the different areas in the vicinity of Nawabshah University and supplied to the unit in order to desalinize the saline water. All samples after distillation were chemically analyzed at laboratory; the concentrations of salts were reduced at remarkable level and performance of unit was excellent especially in terms of quality. The chemical composition of analyzed samples shows that the TDS value is decreased from 2259 ppm to 378 ppm, EC (micro s/cm) value from 3.53 to 0.59, pH value from 8.4 to 7.7. The values of other parameters (i.e. Ca, Mg, Na, K, HCO/sub 3/, SO/sub 4/, Cl, SAR, and RSC) were also reduced at significant level. By comparing results, it is evident that the water is purified to the satisfactory level, which indicated that the fabricated unit has a good capability of desalination. The results indicate that the distilled water can be used for the drinking purposes as well as for the irrigation purposes also. All values of various parameters are within range of standard values. (author)

  9. Simplified model for determining local heat flux boundary conditions for slagging wall

    Energy Technology Data Exchange (ETDEWEB)

    Bingzhi Li; Anders Brink; Mikko Hupa [Aabo Akademi University, Turku (Finland). Process Chemistry Centre


    In this work, two models for calculating heat transfer through a cooled vertical wall covered with a running slag layer are investigated. The first one relies on a discretization of the velocity equation, and the second one relies on an analytical solution. The aim is to find a model that can be used for calculating local heat flux boundary conditions in computational fluid dynamics (CFD) analysis of such processes. Two different cases where molten deposits exist are investigated: the black liquor recovery boiler and the coal gasifier. The results show that a model relying on discretization of the velocity equation is more flexible in handling different temperature-viscosity relations. Nevertheless, a model relying on an analytical solution is the one fast enough for a potential use as a CFD submodel. Furthermore, the influence of simplifications to the heat balance in the model is investigated. It is found that simplification of the heat balance can be applied when the radiation heat flux is dominant in the balance. 9 refs., 7 figs., 10 tabs.

  10. Downwind evolution of transpiration by two irrigated crops under conditions of local advection (United States)

    McAneney, K. J.; Brunet, Y.; Itier, B.


    Previous measurements of water loss from small-dish evaporimeters mounted at the height of irrigated crops grown under conditions of extreme local advection in the Sudan are reexamined. From these evaporimeter measurements, it is possible to calculate fractional changes in the saturation deficit. Relationships between canopy conductance and saturation deficit are briefly reviewed and introduced into the Penman-Monteith equation to calculate transpiration rates as a function of distance downwind of the boundary between the upwind desert and the irrigated crop. In contradiction to most theoretical predictions, these new calculations show rates of transpiration to undergo only modest changes with increasing fetch. This occurs because of the feedback interaction between saturation deficit and stomatal conductance. This result is in good accord with a recent study suggesting that a dry-moist boundary transition may be best modelled as a simple step change in surface fluxes and further that the advective enhancement of evaporation may have been overestimated by many advection models. Larger effects are expected on dry matter yields because of the direct influence of saturation deficit on the yield-transpiration ratio.

  11. Extreme wildfire events are linked to global-change-type droughts in the northern Mediterranean (United States)

    Ruffault, Julien; Curt, Thomas; Martin-StPaul, Nicolas K.; Moron, Vincent; Trigo, Ricardo M.


    Increasing drought conditions under global warming are expected to alter the frequency and distribution of large and high-intensity wildfires. However, our understanding of the impact of increasing drought on extreme wildfires events remains incomplete. Here, we analyzed the weather conditions associated with the extreme wildfires events that occurred in Mediterranean France during the exceptionally dry summers of 2003 and 2016. We identified that these fires were related to two distinct shifts in the fire weather space towards fire weather conditions that had not been explored before and resulting from specific interactions between different types of drought and different fire weather types. In 2016, a long-lasting press drought intensified wind-driven fires. In 2003, a hot drought combining a heat wave with a press drought intensified heat-induced fires. Our findings highlight that increasing drought conditions projected by climate change scenarios might affect the dryness of fuel compartments and lead to a higher frequency of extremes wildfires events.

  12. Informing recovery in a human-transformed landscape: Drought-mediated coexistence alters population trends of an imperiled salamander and invasive predators (United States)

    Hossack, Blake R.; Honeycutt, Richard; Sigafus, Brent H.; Muths, Erin L.; Crawford, Catherine L.; Jones, Thomas R.; Sorensen, Jeff A.; Rorabaugh, James C.; Chambert, Thierry


    Understanding the additive or interactive threats of habitat transformation and invasive species is critical for conservation, especially where climate change is expected to increase the severity or frequency of drought. In the arid southwestern USA, this combination of stressors has caused widespread declines of native aquatic and semi-aquatic species. Achieving resilience to drought and other effects of climate change may depend upon continued management, so understanding the combined effects of stressors is important. We used Bayesian hierarchical models fitted with 10-years of pond-based monitoring surveys for the federally-endangered Sonoran Tiger Salamander (Ambystoma mavortium stebbinsi) and invasive predators (fishes and American Bullfrogs, Lithobates catesbeianus) that threaten native species. We estimated trends in occupancy of salamanders and invasive predators while accounting for hydrological dynamics of ponds, then used a two-species interaction model to directly estimate how invasive predators affected salamander occupancy. We also tested a conceptual model that predicted that drought, by limiting the distribution of invasive predators, could ultimately benefit native species. Even though occupancy of invasive predators was stationary and their presence in a pond reduced the probability of salamander presence by 23%, occupancy of Sonoran Tiger Salamanders increased, annually, by 2.2%. Occupancy of salamanders and invasive predators both declined dramatically following the 5th consecutive year of drought. Salamander occupancy recovered quickly after return to non-drought conditions, while occupancy of invasive predators remained suppressed. Models that incorporated three time-lagged periods (1 to 4 years) of local moisture conditions confirmed that salamanders and invasive predators responded differently to drought, reflecting how life-history strategies shape responses to disturbances. The positive 10-year trend in salamander occupancy and their

  13. Experimental investigation on local parameter measurement using optical probes in two-phase flow under rolling condition

    International Nuclear Information System (INIS)

    Tian Daogui; Sun Licheng; Yan Changqi; Liu Guoqiang


    In order to get more local interfacial information as well as to further comprehend the intrinsic mechanism of two-phase flow under rolling condition, a method was proposed to measure the local parameters by using optical probes under rolling condition in this paper. An experimental investigation of two-phase flow under rolling condition was conducted using the probe fabricated by the authors. It is verified that the probe method is feasible to measure the local parameters in two'-phase flow under rolling condition. The results show that the interfacial parameters distribution near wall region has a distinct periodicity due to the rolling motion. The averaged deviation of the void fraction measured by the probe from that obtained from measured pressure drop is about 8%. (authors)

  14. Assessment of existing local houses condition as analysis tools for shore housing improvement program in Weriagar district, Bintuni Bay (United States)

    Firmansyah, F.; Fernando, A.; Allo, I. P. R.


    The housing assessment is a part of the pre-feasibility study inThe Shore Housing Improvement Program in Weriagar District, West Papua. The housing assessment was conducted to identify the physical condition of existing houses. The parameters of assessment formulated from local references, practices and also national building regulation that covers each building system components, such as building structure/frame, building floor, building cover, and building roof. This study aims to explains lessons from local practices and references, used as the formula to generate assessment parameter, elaborate with Indonesia building regulation. The result of housing assessment were used as a basis to develop the house improvement strategy, the design alternative for housing improvement and further planning recommendations. The local knowledges involved in housing improvement program expected that the local-based approach could respect to the local build culture, respect the local environment, and the most important can offer best suitable solutions for functional utility and livability.

  15. A Comparison of Satellite Data-Based Drought Indicators in Detecting the 2012 Drought in the Southeastern US (United States)

    Yagci, Ali Levent; Santanello, Joseph A.; Rodell, Matthew; Deng, Meixia; Di, Liping


    The drought of 2012 in the North America devastated agricultural crops and pastures, further damaging agriculture and livestock industries and leading to great losses in the economy. The drought maps of the United States Drought Monitor (USDM) and various drought monitoring techniques based on the data collected by the satellites orbiting in space such as the Gravity Recovery and Climate Experiment (GRACE) and the Moderate Resolution Imaging Spectroradiometer (MODIS) are inter-compared during the 2012 drought conditions in the southeastern United States. The results indicated that spatial extent of drought reported by USDM were in general agreement with those reported by the MODIS-based drought maps. GRACE-based drought maps suggested that the southeastern US experienced widespread decline in surface and root-zone soil moisture and groundwater resources. Disagreements among all drought indicators were observed over irrigated areas, especially in Lower Mississippi region where agriculture is mainly irrigated. Besides, we demonstrated that time lag of vegetation response to changes in soil moisture and groundwater partly contributed to these disagreements, as well.

  16. Study of local winds over Tehran using WRF in ideal conditions

    Directory of Open Access Journals (Sweden)

    I Soltanzadeh


    Full Text Available   Wind is the carrier of pollutants and any other gaseous or particle matters in the atmosphere. Stable atmosphere with low wind provides favourable conditions for high contamination of pollutants in urban areas. The importance of mesoscale atmospheric flows in air pollution dispersion has been recognized in the past three decades and has been the focus of intensive research; both observational and numerical. Mesoscale or local scale circulations are more prominent when the synoptic pressure gradients are weak, allowing horizontal temperature contrasts to develop, which in turn lead to mesoscale pressure perturbations. Tehran, a city which is situated at the southern foothills of the Alborz Mountain chain has an average elevation of 1500m, and covers an area of 864 km2. Alborz Mountains have a significant influence on the dynamics and thermodynamic modification of wind regime over the city. At the same time, the Urban Heat Island effect (UHI can cause its own mesoscale flow, complicating an already complex local scale flow. The topography and the urban fabric can cause slope flows, mountain flows, and valley flows amongst many other factors. Th is paper focuses on the use of state-of-the-art atmospheric numerical model – The Weather Research and Forecasting (WRF – in an ideal situation to study the characteristics of the mesoscale flow systems that prevail over Tehran when air quality is unfavourable. So average sound of Radiosonde at Mehrabad station, for almost all the fair days of cold seasons from 2005 to 2008 was selected as an ideal initial condition and boundary condition with 10 × 10 km spatial and 12-hour temporal resolution. The simulations were carried out for a 3-day period in December 2005 when an aircraft , due to low visibility caused by high concentration of air pollution, crashed 2 miles away from the end of runway into an inhabited area. Three simulations were prepared. For the first experiment, called control run, we

  17. Drought, Climate Change and the Canadian Prairies (United States)

    Stewart, R. E.


    The occurrence of drought is a ubiquitous feature of the global water cycle. Such an extreme does not necessarily lead to an overall change in the magnitude of the global water cycle but it of course affects the regional cycling of water. Droughts are recurring aspects of weather and climate extremes as are floods and tornadoes, but they differ substantially since they have long durations and lack easily identified onsets and terminations. Drought is a relatively common feature of the North American and Canadian climate system and all regions of the continent are affected from time-to-time. However, it tends to be most common and severe over the central regions of the continent. The Canadian Prairies are therefore prone to drought. Droughts in the Canadian Prairies are distinctive in North America. The large scale atmospheric circulations are influenced by blocking from intense orography to the west and long distances from all warm ocean-derived atmospheric water sources; growing season precipitation is generated by a highly complex combination of frontal and convective systems; seasonality is severe and characterized by a relatively long snow-covered and short growing seasons; local surface runoff is primarily produced by snowmelt water; there is substantial water storage potential in the poorly drained, post-glacial topography; and aquifers are overlain by impermeable glacial till, but there are also important permeable aquifers. One example of Prairie drought is the recent one that began in 1999 with cessation of its atmospheric component in 2004/2005 and many of its hydrological components in 2005. This event produced the worst drought for at least a hundred years in parts of the Canadian Prairies. Even in the dust bowl of the 1930s, no single year over the central Prairies were drier than in 2001. The drought affected agriculture, recreation, tourism, health, hydro-electricity, and forestry in the Prairies. Gross Domestic Product fell some 5.8 billion and

  18. local

    Directory of Open Access Journals (Sweden)

    Abílio Amiguinho


    Full Text Available The process of socio-educational territorialisation in rural contexts is the topic of this text. The theme corresponds to a challenge to address it having as main axis of discussion either the problem of social exclusion or that of local development. The reasons to locate the discussion in this last field of analysis are discussed in the first part of the text. Theoretical and political reasons are there articulated because the question is about projects whose intentions and practices call for the political both in the theoretical debate and in the choices that anticipate intervention. From research conducted for several years, I use contributions that aim at discuss and enlighten how school can be a potential locus of local development. Its identification and recognition as local institution (either because of those that work and live in it or because of those that act in the surrounding context are crucial steps to progressively constitute school as a partner for development. The promotion of the local values and roots, the reconstruction of socio-personal and local identities, the production of sociabilities and the equation and solution of shared problems were the dimensions of a socio-educative intervention, markedly globalising. This scenario, as it is argued, was also, intentionally, one of transformation and of deliberate change of school and of the administration of the educative territoires.

  19. Permafrost conditions at the Upper Kuskokwim river area and its influence on local communities. (United States)

    Kholodov, A. L.; Panda, S. K.; Hanson, T.


    Research area located within the zone of discontinuous permafrost distribution. Recent mean annual air temperature here is close to the 0C. It means, that taking in consideration warming influence of the snow cower during winter, mean annual temperature at the ground surface is well above freezing point. It means that presence or absence of permafrost here completely controlled by the ecological conditions. Based on remote sensing data and the surveys conducted in 2016-17 we selected 6 main ecotypes typical for this area: black spruce boreal forest, wetlands, low and tall shrubs, deciduous and mixed forest. Most of them (low shrubs, deciduous and mixed forest) represent different stages of area recovering after forest fires that was confirmed by the presence of ashy layer close to ground surface in soil pits had been dug within these landscapes. Permafrost was observed only within 2 of them: low shrubs and black spruce boreal forest. Within these types of terrain temperature at the bottom of active layer varies from -0.2/-0.5C at the areas of low shrubs, recovered after relatively recent (approximately 30-50 years old) fires to -1/-1.5 within black spruce forest. Active (seasonally thawed) layer as thick as 0.6 to 0.8 m. Warmest ecotypes for the area are tall shrubs and deciduous forest, temperature at the depth close to 1 m is about +3C. At the mixed forest temperature at the same depth consists of +1/+2C. Active (seasonally frozen) layer thickness within permafrost free areas is 1-1.5 m at the drained sites and about 0.5 within wetlands. Ice-rich permafrost underlying the active layer was noticed only within the black spruce forest. Areas which are free of permafrost are much better drained, typical moisture of mineral soil is less than 30% versus 45-50% in seasonally thawed layer. The current state of permafrost and the fact that it presence completely depends on ecosystems limits land use abilities of local inhabitants. Any changes of forest coverage or organic

  20. Evaluation of the Performance of Multiple Drought Indices for Tunisia (United States)

    Geli, H. M. E.; Jedd, T.; Svoboda, M.; Wardlow, B.; Hayes, M. J.; Neale, C. M. U.; Hain, C.; Anderson, M. C.


    The recent and frequent drought events in the Middle East and Northern Africa (MENA) create an urgent need for scientists, stakeholders, and decision makers to improve the understanding of drought in order to mitigate its effects. It is well documented that drought is not caused by meteorological or hydrological conditions alone; social, economic, and political governance factors play a large part in whether the components in a water supply system are balanced. In the MENA region, for example, agricultural production can place a significant burden on water supply systems. Understanding the connection between drought and agricultural production is an important first step in developing a sound drought monitoring and mitigation system that links physical indicators with on-the-ground impacts. Drought affect crop yield, livestock health, and water resources availability, among others. A clear depiction of drought onset, duration and severity is essential to provide valuable information to adapt and mitigate drought impact. Therefore, it is important that to be able to connect and evaluate scientific drought data and informational products with societal impact data to more effectively initiate mitigation actions. This approach will further the development of drought maps that are tailored and responsive to immediate and specific societal needs for a region or country. Within the context of developing and evaluating drought impacts maps for the MENA region, this analysis investigates the use of different drought indices and indicators including the Standardized Precipitation Index (SPI), Normalized Difference Vegetation Index (NDVI) anomaly, land surface temperature (LST), and Evaporative Stress Index (ESI) for their ability to characterize historic drought events in Tunisia. Evaluation of a "drought map" product is conducted using data at the county level including crop yield, precipitation, in-country interviews with drought monitoring experts and agricultural

  1. Investigation of Spatiotemporal Pattern of Drought in North Korea Using Remote Sensing and GIS (United States)

    Yu, J.; Lee, K. S.


    Drought, as one of the severest disasters in the world, have attracted the attention of researchers and general public. Sometimes even short, intense droughts can cause significant damages to the natural environment as well as the economy. In recent years, North Korea (NK) has been suffering severe droughts. Yet, the thorough field investigation of drought disaster conditions in NK is impossible now. Thus, it is necessary to get more information of drought conditions to restore the damaged environment in NK after unification. RS data can be used to monitor vegetation, bare soil conditions, especially in inaccessible regions. This information can be used to derive spatial variation of drought conditions. Thus, the spatiotemporal pattern of drought conditions in NK using multi-sensor RS data and available meteorological data were investigated in this study. The RS data---MODIS NDVI (MOD13A3) and LST (Land Surface Temperature) (MOD11A2) from 2000 to 2014 which obtain the vegetation health conditions were used to derive two operationally used agricultural drought indices: Vegetation Condition Index (VCI) and Temperature Condition Index (TCI). The in-situ precipitation data from 27 weather stations from 1981 to 2014 were used for identifying the relative dry/wet years and acquiring meteorological drought index Standardized Precipitation Index (SPI). The correlations between the agricultural drought indices and metrological drought index were derived. These data were stored in GIS and used for spatial analysis to figure out the spatiotemporal pattern of drought in NK. The spatiotemporal information of NK drought in this study can provide the basic information for restoring the drought damaged field after the unification of Korea.

  2. Evaluation of physiological screening techniques for drought ...

    African Journals Online (AJOL)

    This paper summarizes the results of a project aimed to evaluate the use of physiological traits (such as canopy temperature and chlorophyll content) in determining drought tolerance of durum wheat genotypes under a variety of environmental conditions. Six durum wheat genotypes were planted in rainfed and ...

  3. How 21st century droughts affect food and environmental security (United States)

    Kogan, Felix

    The first 13th years of the 21st century has begun with a series of widespread, long and intensive droughts around the world. Extreme and severe-to-extreme intensity droughts covered 2-6% and 7-16% of the world land, respectively, affecting environment, economies and humans. These droughts reduced agricultural production, leading to food shortages, human health deterioration, poverty, regional disturbances, population migration and death. This presentation is a travelogue of the 21st century global and regional droughts during the warmest years of the past 100 years. These droughts were identified and monitored with the NOAA operational space technology, called Vegetation Health (VH), which has the longest period of observation and provide good data quality. The VH method was used for assessment of vegetation condition or health, including drought early detection and monitoring. The VH method is based on operational satellites data estimating both land surface greenness (NDVI) and thermal conditions. The 21st century droughts in the USA, Russia, Australia Argentina, Brazil, China, India and other principal grain producing countries were intensive, long, covered large areas and caused huge losses in agricultural production, which affected food and environmental security and led to food riots in some countries. This presentation investigate how droughts affect food and environmental security, if they can be detected earlier, how to monitor their area, intensity, duration and impacts and also their dynamics during the climate warming era with satellite-based vegetation health technology.

  4. A Novel WRKY Transcription Factor, MuWRKY3 (Macrotyloma uniflorum Lam. Verdc. Enhances Drought Stress Tolerance in Transgenic Groundnut (Arachis hypogaea L. Plants

    Directory of Open Access Journals (Sweden)

    Kurnool Kiranmai


    Full Text Available Drought stress has adverse effects on growth, water relations, photosynthesis and yield of groundnut. WRKY transcription factors (TFs are the plant-specific TFs which regulate several down-stream stress-responsive genes and play an essential role in plant biotic and abiotic stress responses. We found that WRKY3 gene is highly up-regulated under drought stress conditions and therefore isolated a new WRKY3TF gene from a drought-adapted horsegram (Macrotyloma uniflorum Lam. Verdc.. Conserved domain studies revealed that protein encoded by this gene contains highly conserved regions of two WRKY domains and two C2H2 zinc-finger motifs. The fusion protein localization studies of transient MuWRKY3-YFP revealed its nuclear localization. Overexpression of MuWRKY3 TF gene in groundnut (Arachis hypogaea L. showed increased tolerance to drought stress compared to wild-type (WT plants. MuWRKY3 groundnut transgenics displayed lesser and delayed wilting symptoms than WT plants after 10-days of drought stress imposition. The transgenic groundnut plants expressing MuWRKY3 showed less accumulation of malondialdehyde, hydrogen peroxide (H2O2, and superoxide anion (O2∙-, accompanied by more free proline, total soluble sugar content, and activities of antioxidant enzymes than WT plants under drought stress. Moreover, a series of stress-related LEA, HSP, MIPS, APX, SOD, and CAT genes found up-regulated in the transgenic groundnut plants. The study demonstrates that nuclear-localized MuWRKY3 TF regulates the expression of stress-responsive genes and the activity of ROS scavenging enzymes which results in improved drought tolerance in groundnut. We conclude that MuWRKY3 may serve as a new putative candidate gene for the improvement of stress resistance in plants.

  5. A Novel WRKY Transcription Factor, MuWRKY3 (Macrotyloma uniflorum Lam. Verdc.) Enhances Drought Stress Tolerance in Transgenic Groundnut (Arachis hypogaea L.) Plants. (United States)

    Kiranmai, Kurnool; Lokanadha Rao, Gunupuru; Pandurangaiah, Merum; Nareshkumar, Ambekar; Amaranatha Reddy, Vennapusa; Lokesh, Uppala; Venkatesh, Boya; Anthony Johnson, A M; Sudhakar, Chinta


    Drought stress has adverse effects on growth, water relations, photosynthesis and yield of groundnut. WRKY transcription factors (TFs) are the plant-specific TFs which regulate several down-stream stress-responsive genes and play an essential role in plant biotic and abiotic stress responses. We found that WRKY3 gene is highly up-regulated under drought stress conditions and therefore isolated a new WRKY3TF gene from a drought-adapted horsegram ( Macrotyloma uniflorum Lam. Verdc.). Conserved domain studies revealed that protein encoded by this gene contains highly conserved regions of two WRKY domains and two C2H2 zinc-finger motifs. The fusion protein localization studies of transient MuWRKY 3-YFP revealed its nuclear localization. Overexpression of MuWRKY3 TF gene in groundnut ( Arachis hypogaea L.) showed increased tolerance to drought stress compared to wild-type (WT) plants. MuWRKY3 groundnut transgenics displayed lesser and delayed wilting symptoms than WT plants after 10-days of drought stress imposition. The transgenic groundnut plants expressing MuWRKY3 showed less accumulation of malondialdehyde, hydrogen peroxide (H 2 O 2 ), and superoxide anion (O 2 ∙- ), accompanied by more free proline, total soluble sugar content, and activities of antioxidant enzymes than WT plants under drought stress. Moreover, a series of stress-related LEA, HSP, MIPS, APX, SOD , and CAT genes found up-regulated in the transgenic groundnut plants. The study demonstrates that nuclear-localized MuWRKY3 TF regulates the expression of stress-responsive genes and the activity of ROS scavenging enzymes which results in improved drought tolerance in groundnut. We conclude that MuWRKY3 may serve as a new putative candidate gene for the improvement of stress resistance in plants.

  6. Coping With Droughts (United States)

    Zaporozec, Alexander

    This book is a collection of selected papers from the NATO Advanced Study Institute on Droughts entitled “Drought Impact Control Technology,” held at the National Laboratory of Civil Engineering in Lisbon, Portugal, in June 1980. The editors of the book have chosen a nontraditional but successful approach to presenting the papers. Instead of including a verbatim proceedings of the institute, they assembled 21 papers presented by 14 of the institute's lecturers, reshaped and synthesized them, and supplemented them by five new papers that cover obvious gaps in topics. The result is enlightening reading and a more or less complete presentation of the subject. The edited material in the book was arranged around three central themes related to efforts needed to cope with or manage the droughts. In the process, the identity of individual contributors has been preserved.

  7. Genome-wide functional analysis of cotton (Gossypium hirsutum in response to drought.

    Directory of Open Access Journals (Sweden)

    Yun Chen

    Full Text Available Cotton is one of the most important crops for its natural textile fibers in the world. However, it often suffered from drought stress during its growth and development, resulting in a drastic reduction in cotton productivity. Therefore, study on molecular mechanism of cotton drought-tolerance is very important for increasing cotton production. To investigate molecular mechanism of cotton drought-resistance, we employed RNA-Seq technology to identify differentially expressed genes in the leaves of two different cultivars (drought-resistant cultivar J-13 and drought-sensitive cultivar Lu-6 of cotton. The results indicated that there are about 13.38% to 18.75% of all the unigenes differentially expressed in drought-resistant sample and drought-sensitive control, and the number of differentially expressed genes was increased along with prolonged drought treatment. DEG (differentially expression gene analysis showed that the normal biophysical profiles of cotton (cultivar J-13 were affected by drought stress, and some cellular metabolic processes (including photosynthesis were inhibited in cotton under drought conditions. Furthermore, the experimental data revealed that there were significant differences in expression levels of the genes related to abscisic acid signaling, ethylene signaling and jasmonic acid signaling pathways between drought-resistant cultivar J-13 and drought-sensitive cultivar Lu-6, implying that these signaling pathways may participate in cotton response and tolerance to drought stress.

  8. Overexpression of a maize plasma membrane intrinsic protein ZmPIP1;1 confers drought and salt tolerance in Arabidopsis. (United States)

    Zhou, Lian; Zhou, Jing; Xiong, Yuhan; Liu, Chaoxian; Wang, Jiuguang; Wang, Guoqiang; Cai, Yilin


    Drought and salt stress are major abiotic stress that inhibit plants growth and development, here we report a plasma membrane intrinsic protein ZmPIP1;1 from maize and identified its function in drought and salt tolerance in Arabidopsis. ZmPIP1;1 was localized to the plasma membrane and endoplasmic reticulum in maize protoplasts. Treatment with PEG or NaCl resulted in induced expression of ZmPIP1;1 in root and leaves. Constitutive overexpression of ZmPIP1;1 in transgenic Arabidopsis plants resulted in enhanced drought and salt stress tolerance compared to wild type. A number of stress responsive genes involved in cellular osmoprotection in ZmPIP1;1 overexpression plants were up-regulated under drought or salt condition. ZmPIP1;1 overexpression plants showed higher activities of reactive oxygen species (ROS) scavenging enzymes such as catalase and superoxide dismutase, lower contents of stress-induced ROS such as superoxide, hydrogen peroxide and malondialdehyde, and higher levels of proline under drought and salt stress than did wild type. ZmPIP1;1 may play a role in drought and salt stress tolerance by inducing of stress responsive genes and increasing of ROS scavenging enzymes activities, and could provide a valuable gene for further plant breeding.

  9. Drought in the Emerald City

    International Nuclear Information System (INIS)

    Babcock, S.D.


    This paper discusses a drought preparedness study being conducted for the Cedar River and Green River basins in western Washington state. The study is one of four regional case studies being managed by the U.S. Army Corps of Engineers as part of the National Study of Water Management During Drought. The overriding objective of the drought preparedness study is to leave the region better prepared for drought, through demonstration and test of drought preparedness tools and strategies. The study has served as a vehicle to promote a greater regional focus on drought related water supply problem solving. The 1992 drought in the Seattle/Tacoma metropolitan area provided a unique opportunity for the study team to demonstrate approaches to drought management being researched and tested as part of the study

  10. Drought-induced changes in Amazon forest structure from repeat airborne lidar (United States)

    Morton, D. C.; Leitold, V.; Longo, M.; Keller, M.; dos-Santos, M. N.; Scaranello, M. A., Sr.


    Drought events in tropical forests, including the 2015-2016 El Niño, may reduce net primary productivity and increase canopy tree mortality, thereby altering the short and long-term net carbon balance of tropical forests. Given the broad extent of drought impacts, forest inventory plots or eddy flux towers may not capture regional variability in forest response to drought. Here, we analyzed repeat airborne lidar data to evaluate canopy turnover from branch and tree fall before (2013-2014) and during (2014-2016) the recent El Niño drought in the eastern and central Brazilian Amazon. Coincident field surveys for a 16-ha subset of the lidar coverage provided complementary information to classify turnover areas by mechanism (branch, multiple branch, tree fall, multiple tree fall) and estimate the total coarse woody debris volume from canopy and understory tree mortality. Annualized rates of canopy turnover increased by 50%, on average, during the drought period in both intact and fragmented forests near Santarém, Pará. Turnover increased uniformly across all size classes, and there was limited evidence that taller trees contributed a greater proportion of turnover events in any size class in 2014-2016 compared to 2013-2014. This short-term increase in canopy turnover differs from findings in multi-year rainfall exclusion experiments that large trees were more sensitive to drought impacts. Field measurements confirmed the separability of the smallest (single branch) and largest damage classes (multiple tree falls), but single tree and multiple branch fall events generated similar coarse woody debris production and lidar-derived changes in canopy volume. Large-scale sampling possible with repeat airborne lidar data also captured strong local and regional gradients in canopy turnover. Differences in slope partially explained the north-south gradient in canopy turnover dynamics near Santarém, with larger increases in turnover on flatter terrain. Regional variability

  11. Predicting the release of metals from ombrotrophic peat due to drought-induced acidification

    Energy Technology Data Exchange (ETDEWEB)

    Tipping, E.; Smith, E.J.; Lawlor, A.J.; Hughes, S.; Stevens, P.A


    Metals stored in peats can be remobilised by sulphuric acid, generated by the drought-induced oxidation of reduced sulphur. - Ombrotrophic peats in northern England and Scotland, close to industrial areas, have substantial contents of potentially toxic metals (Al, Ni, Cu, Zn, Cd and Pb) and of pollutant sulphur, all derived from atmospheric deposition. The peat sulphur, ordinarily in reduced form, may be converted to sulphuric acid under drought conditions, due to the entry of oxygen into the peats. The consequent lowering of soil solution pH is predicted to cause the release of metals held on ligand sites of the peat organic matter. The purpose of the present study was to explore, by simulation modelling, the extent of the metal response. Chemical variables (elemental composition, pH, metal contents) were measured for samples of ombrotrophic peats from three locations. Water extracts of the peats, and samples of local surface water, were also analysed, for pH, dissolved organic carbon (DOC) and metals. Metal release from peats due to acidification was demonstrated experimentally, and could be accounted for reasonably well using a speciation code (WHAM/Model VI). These data, together with information on metal and S deposition, and meteorology, were used to construct a simple description of peat hydrochemistry, based on WHAM/Model VI, that takes into account ion-binding by humic substances (assumed to be the 'active' constituents of the peat with respect to ion-binding). The model was used to simulate steady state situations that approximated the observed soil pH, metal pools and dissolved metal concentrations. Then, drought conditions were imposed, to generate increased concentrations of H{sub 2}SO{sub 4}, in line with those observed during the drought of 1995. The model calculations suggest that the pH will decrease from the initial steady state value of 4.3 to 3.3-3.6 during rewetting periods following droughts, depending upon assumptions about the

  12. Drought Risk Identification: Early Warning System of Seasonal Agrometeorological Drought (United States)

    Dalecios, Nicolas; Spyropoulos, Nicos V.; Tarquis, Ana M.


    By considering drought as a hazard, drought types are classified into three categories, namely meteorological or climatological, agrometeorological or agricultural and hydrological drought and as a fourth class the socioeconomic impacts can be considered. This paper addresses agrometeorological drought affecting agriculture within the risk management framework. Risk management consists of risk assessment, as well as a feedback on the adopted risk reduction measures. And risk assessment comprises three distinct steps, namely risk identification, risk estimation and risk evaluation. This paper deals with the quantification and monitoring of agrometeorological drought, which constitute part of risk identification. For the quantitative assessment of agrometeorological or agricultural drought, as well as the computation of spatiotemporal features, one of the most reliable and widely used indices is applied, namely the Vegetation Health Index (VHI). The computation of VHI is based on satellite data of temperature and the Normalized Difference Vegetation Index (NDVI). The spatiotemporal features of drought, which are extracted from VHI are: areal extent, onset and end time, duration and severity. In this paper, a 20-year (1981-2001) time series of NOAA/AVHRR satellite data is used, where monthly images of VHI are extracted. Application is implemented in Thessaly, which is the major agricultural region of Greece characterized by vulnerable and drought-prone agriculture. The results show that every year there is a seasonal agrometeorological drought with a gradual increase in the areal extent and severity with peaks appearing usually during the summer. Drought monitoring is conducted by monthly remotely sensed VHI images. Drought early warning is developed using empirical relationships of severity and areal extent. In particular, two second-order polynomials are fitted, one for low and the other for high severity drought, respectively. The two fitted curves offer a seasonal

  13. Introduction 'Governance for Drought Resilience'

    NARCIS (Netherlands)

    Bressers, Nanny; Bressers, Johannes T.A.; Larrue, Corinne; Bressers, Hans; Bressers, Nanny; Larrue, Corinne


    This book is about governance for drought resilience. But that simple sentence alone might rouse several questions. Because what do we mean with drought, and how does that relate to water scarcity? And what do we mean with resilience, and why is resilience needed for tackling drought? And how does

  14. Multilevel and multiscale drought reanalysis over France with the Safran-Isba-Modcou hydrometeorological suite

    Directory of Open Access Journals (Sweden)

    J.-P. Vidal


    Full Text Available Physically-based droughts can be defined as a water deficit in at least one component of the land surface hydrological cycle. The reliance of different activity domains (water supply, irrigation, hydropower, etc. on specific components of this cycle requires drought monitoring to be based on indices related to meteorological, agricultural, and hydrological droughts. This paper describes a high-resolution retrospective analysis of such droughts in France over the last fifty years, based on the Safran-Isba-Modcou (SIM hydrometeorological suite. The high-resolution 1958–2008 Safran atmospheric reanalysis was used to force the Isba land surface scheme and the hydrogeological model Modcou. Meteorological droughts are characterized with the Standardized Precipitation Index (SPI at time scales varying from 1 to 24 months. Similar standardizing methods were applied to soil moisture and streamflow for identifying multiscale agricultural droughts – through the Standardized Soil Wetness Index (SSWI – and multiscale hydrological droughts, through the Standardized Flow Index (SFI. Based on a common threshold level for all indices, drought event statistics over the 50-yr period – number of events, duration, severity and magnitude – have been derived locally in order to highlight regional differences at multiple time scales and at multiple levels of the hydrological cycle (precipitation, soil moisture, streamflow. Results show a substantial variety of temporal drought patterns over the country that are highly dependent on both the variable and time scale considered. Independent spatio-temporal drought events have then been identified and described by combining local characteristics with the evolution of area under drought. Summary statistics have finally been used to compare past severe drought events, from multi-year precipitation deficits (1989–1990 to short hot and dry periods (2003. Results show that the ranking of drought events depends highly

  15. Measurement of local flow pattern in boiling R12 simulating PWR conditions with multiple optical probes

    International Nuclear Information System (INIS)

    Garnier, J.


    For a comprehensive approach of boiling crisis phenomenon in order to get more reliable predictions of critical heat flux in PWR core, a flow pattern study is under progress at CEA GRENOBLE (in a joint program with Electricite de France: EdF). The first aim is to get experimental results on flow structure in the range of thermal hydraulic parameters involved in the core of a PWR (pressure up to 16 MPa, heat flux about 1 MW/m 2 , mass velocity up to 5000 kg/s/m 2 . As critical heat flux is a local phenomenon and is the result of the flow development, the data has to be measured from the beginning of boiling until boiling crisis, and from the bulk flow until the boundary layer close to the heating walls. Therefore, these results will be useful in modeling not only boiling crisis phenomenon but also condensation in subcooled boiling, coalescence, splitting up, mass and energy transfers at interfaces, and so on. In a first step, the test section is a vertical tube 19.2 mm internal diameter with an axial uniform heat flux over a 3.5m length. The study is performed on the DEBORA loop with Freon 12 as coolant fluid. We assume that basic boiling phenomena (and the knowledge we get about them) only depend on the fluid properties by means of dimensionless parameters but not on the fluid itself. In a first part, we briefly recall that interfacial detection is the most important parameter of a flow pattern study. Therefore, the use of probes able to measure the Phase Indicator Function (P.I.F.) is necessary. A first study of flow conditions shows that the flow pattern is essentially a bubbly one with vapor particles of low diameter (about 300 clm) and high velocity (up to 7 m/s). These crit