Sample records for local differential geometry

1. Differential geometry

CERN Document Server

Ciarlet, Philippe G

2007-01-01

This book gives the basic notions of differential geometry, such as the metric tensor, the Riemann curvature tensor, the fundamental forms of a surface, covariant derivatives, and the fundamental theorem of surface theory in a selfcontained and accessible manner. Although the field is often considered a classical one, it has recently been rejuvenated, thanks to the manifold applications where it plays an essential role. The book presents some important applications to shells, such as the theory of linearly and nonlinearly elastic shells, the implementation of numerical methods for shells, and

2. Differential Geometry

CERN Document Server

Stoker, J J

2011-01-01

This classic work is now available in an unabridged paperback edition. Stoker makes this fertile branch of mathematics accessible to the nonspecialist by the use of three different notations: vector algebra and calculus, tensor calculus, and the notation devised by Cartan, which employs invariant differential forms as elements in an algebra due to Grassman, combined with an operation called exterior differentiation. Assumed are a passing acquaintance with linear algebra and the basic elements of analysis.

3. Complex differential geometry

CERN Document Server

Zheng, Fangyang

2002-01-01

The theory of complex manifolds overlaps with several branches of mathematics, including differential geometry, algebraic geometry, several complex variables, global analysis, topology, algebraic number theory, and mathematical physics. Complex manifolds provide a rich class of geometric objects, for example the (common) zero locus of any generic set of complex polynomials is always a complex manifold. Yet complex manifolds behave differently than generic smooth manifolds; they are more coherent and fragile. The rich yet restrictive character of complex manifolds makes them a special and interesting object of study. This book is a self-contained graduate textbook that discusses the differential geometric aspects of complex manifolds. The first part contains standard materials from general topology, differentiable manifolds, and basic Riemannian geometry. The second part discusses complex manifolds and analytic varieties, sheaves and holomorphic vector bundles, and gives a brief account of the surface classifi...

4. Local differential geometry of null curves in conformally flat space-time

International Nuclear Information System (INIS)

Urbantke, H.

1989-01-01

The conformally invariant differential geometry of null curves in conformally flat space-times is given, using the six-vector formalism which has generalizations to higher dimensions. This is then paralleled by a twistor description, with a twofold merit: firstly, sometimes the description is easier in twistor terms, sometimes in six-vector terms, which leads to a mutual enlightenment of both; and secondly, the case of null curves in timelike pseudospheres or 2+1 Minkowski space we were only able to treat twistorially, making use of an invariant differential found by Fubini and Cech. The result is the expected one: apart from stated exceptional cases there is a conformally invariant parameter and two conformally invariant curvatures which, when specified in terms of this parameter, serve to characterize the curve up to conformal transformations. 12 refs. (Author)

5. Local analytic geometry

CERN Document Server

Abhyankar, Shreeram Shankar

1964-01-01

This book provides, for use in a graduate course or for self-study by graduate students, a well-motivated treatment of several topics, especially the following: (1) algebraic treatment of several complex variables; (2) geometric approach to algebraic geometry via analytic sets; (3) survey of local algebra; (4) survey of sheaf theory. The book has been written in the spirit of Weierstrass. Power series play the dominant role. The treatment, being algebraic, is not restricted to complex numbers, but remains valid over any complete-valued field. This makes it applicable to situations arising from

6. Symposium on Differential Geometry and Differential Equations

CERN Document Server

Berger, Marcel; Bryant, Robert

1987-01-01

The DD6 Symposium was, like its predecessors DD1 to DD5 both a research symposium and a summer seminar and concentrated on differential geometry. This volume contains a selection of the invited papers and some additional contributions. They cover recent advances and principal trends in current research in differential geometry.

7. The local index formula in noncommutative geometry

International Nuclear Information System (INIS)

Higson, N.

2003-01-01

These notes present a partial account of the local index theorem in non-commutative geometry discovered by Alain Connes and Henri Moscovici. It includes Elliptic partial differential operators, cyclic homology theory, Chern characters, homotopy invariants and the index formulas

8. Advances in discrete differential geometry

CERN Document Server

2016-01-01

This is one of the first books on a newly emerging field of discrete differential geometry and an excellent way to access this exciting area. It surveys the fascinating connections between discrete models in differential geometry and complex analysis, integrable systems and applications in computer graphics. The authors take a closer look at discrete models in differential geometry and dynamical systems. Their curves are polygonal, surfaces are made from triangles and quadrilaterals, and time is discrete. Nevertheless, the difference between the corresponding smooth curves, surfaces and classical dynamical systems with continuous time can hardly be seen. This is the paradigm of structure-preserving discretizations. Current advances in this field are stimulated to a large extent by its relevance for computer graphics and mathematical physics. This book is written by specialists working together on a common research project. It is about differential geometry and dynamical systems, smooth and discrete theories, ...

9. An introduction to differential geometry

CERN Document Server

Willmore, T J

2012-01-01

This text employs vector methods to explore the classical theory of curves and surfaces. Topics include basic theory of tensor algebra, tensor calculus, calculus of differential forms, and elements of Riemannian geometry. 1959 edition.

10. Differential geometry curves, surfaces, manifolds

CERN Document Server

Kohnel, Wolfgang

2002-01-01

This carefully written book is an introduction to the beautiful ideas and results of differential geometry. The first half covers the geometry of curves and surfaces, which provide much of the motivation and intuition for the general theory. Special topics that are explored include Frenet frames, ruled surfaces, minimal surfaces and the Gauss-Bonnet theorem. The second part is an introduction to the geometry of general manifolds, with particular emphasis on connections and curvature. The final two chapters are insightful examinations of the special cases of spaces of constant curvature and Einstein manifolds. The text is illustrated with many figures and examples. The prerequisites are undergraduate analysis and linear algebra.

11. Modern differential geometry for physicists

CERN Document Server

Isham, C J

1989-01-01

These notes are the content of an introductory course on modern, coordinate-free differential geometry which is taken by the first-year theoretical physics PhD students, or by students attending the one-year MSc course "Fundamental Fields and Forces" at Imperial College. The book is concerned entirely with mathematics proper, although the emphasis and detailed topics have been chosen with an eye to the way in which differential geometry is applied these days to modern theoretical physics. This includes not only the traditional area of general relativity but also the theory of Yang-Mills fields

12. Multivariable calculus and differential geometry

CERN Document Server

Walschap, Gerard

2015-01-01

This text is a modern in-depth study of the subject that includes all the material needed from linear algebra. It then goes on to investigate topics in differential geometry, such as manifolds in Euclidean space, curvature, and the generalization of the fundamental theorem of calculus known as Stokes' theorem.

13. Recent topics in differential and analytic geometry

CERN Document Server

Ochiai, T

1990-01-01

Advanced Studies in Pure Mathematics, Volume 18-I: Recent Topics in Differential and Analytic Geometry presents the developments in the field of analytical and differential geometry. This book provides some generalities about bounded symmetric domains.Organized into two parts encompassing 12 chapters, this volume begins with an overview of harmonic mappings and holomorphic foliations. This text then discusses the global structures of a compact Kähler manifold that is locally decomposable as an isometric product of Ricci-positive, Ricci-negative, and Ricci-flat parts. Other chapters con

14. Discrete differential geometry. Consistency as integrability

OpenAIRE

Bobenko, Alexander I.; Suris, Yuri B.

2005-01-01

A new field of discrete differential geometry is presently emerging on the border between differential and discrete geometry. Whereas classical differential geometry investigates smooth geometric shapes (such as surfaces), and discrete geometry studies geometric shapes with finite number of elements (such as polyhedra), the discrete differential geometry aims at the development of discrete equivalents of notions and methods of smooth surface theory. Current interest in this field derives not ...

15. Differential geometry and mathematical physics

CERN Document Server

Rudolph, Gerd

Starting from an undergraduate level, this book systematically develops the basics of • Calculus on manifolds, vector bundles, vector fields and differential forms, • Lie groups and Lie group actions, • Linear symplectic algebra and symplectic geometry, • Hamiltonian systems, symmetries and reduction, integrable systems and Hamilton-Jacobi theory. The topics listed under the first item are relevant for virtually all areas of mathematical physics. The second and third items constitute the link between abstract calculus and the theory of Hamiltonian systems. The last item provides an introduction to various aspects of this theory, including Morse families, the Maslov class and caustics. The book guides the reader from elementary differential geometry to advanced topics in the theory of Hamiltonian systems with the aim of making current research literature accessible. The style is that of a mathematical textbook,with full proofs given in the text or as exercises. The material is illustrated by numerous d...

16. Differential geometry of group lattices

International Nuclear Information System (INIS)

Dimakis, Aristophanes; Mueller-Hoissen, Folkert

2003-01-01

In a series of publications we developed ''differential geometry'' on discrete sets based on concepts of noncommutative geometry. In particular, it turned out that first-order differential calculi (over the algebra of functions) on a discrete set are in bijective correspondence with digraph structures where the vertices are given by the elements of the set. A particular class of digraphs are Cayley graphs, also known as group lattices. They are determined by a discrete group G and a finite subset S. There is a distinguished subclass of ''bicovariant'' Cayley graphs with the property ad(S)S subset of S. We explore the properties of differential calculi which arise from Cayley graphs via the above correspondence. The first-order calculi extend to higher orders and then allow us to introduce further differential geometric structures. Furthermore, we explore the properties of ''discrete'' vector fields which describe deterministic flows on group lattices. A Lie derivative with respect to a discrete vector field and an inner product with forms is defined. The Lie-Cartan identity then holds on all forms for a certain subclass of discrete vector fields. We develop elements of gauge theory and construct an analog of the lattice gauge theory (Yang-Mills) action on an arbitrary group lattice. Also linear connections are considered and a simple geometric interpretation of the torsion is established. By taking a quotient with respect to some subgroup of the discrete group, generalized differential calculi associated with so-called Schreier diagrams are obtained

17. Global affine differential geometry of hypersurfaces

CERN Document Server

Li, An-Min; Zhao, Guosong; Hu, Zejun

2015-01-01

This book draws a colorful and widespread picture of global affine hypersurface theory up to the most recent state. Moreover, the recent development revealed that affine differential geometry- as differential geometry in general- has an exciting intersection area with other fields of interest, like partial differential equations, global analysis, convex geometry and Riemann surfaces.

18. Aspects of differential geometry II

CERN Document Server

Gilkey, Peter

2015-01-01

Differential Geometry is a wide field. We have chosen to concentrate upon certain aspects that are appropriate for an introduction to the subject; we have not attempted an encyclopedic treatment. Book II deals with more advanced material than Book I and is aimed at the graduate level. Chapter 4 deals with additional topics in Riemannian geometry. Properties of real analytic curves given by a single ODE and of surfaces given by a pair of ODEs are studied, and the volume of geodesic balls is treated. An introduction to both holomorphic and Kähler geometry is given. In Chapter 5, the basic properties of de Rham cohomology are discussed, the Hodge Decomposition Theorem, Poincaré duality, and the Künneth formula are proved, and a brief introduction to the theory of characteristic classes is given. In Chapter 6, Lie groups and Lie algebras are dealt with. The exponential map, the classical groups, and geodesics in the context of a bi-invariant metric are discussed. The de Rham cohomology of compact Lie groups an...

19. Differential Geometry Based Multiscale Models

Science.gov (United States)

Wei, Guo-Wei

2010-01-01

Large chemical and biological systems such as fuel cells, ion channels, molecular motors, and viruses are of great importance to the scientific community and public health. Typically, these complex systems in conjunction with their aquatic environment pose a fabulous challenge to theoretical description, simulation, and prediction. In this work, we propose a differential geometry based multiscale paradigm to model complex macromolecular systems, and to put macroscopic and microscopic descriptions on an equal footing. In our approach, the differential geometry theory of surfaces and geometric measure theory are employed as a natural means to couple the macroscopic continuum mechanical description of the aquatic environment with the microscopic discrete atom-istic description of the macromolecule. Multiscale free energy functionals, or multiscale action functionals are constructed as a unified framework to derive the governing equations for the dynamics of different scales and different descriptions. Two types of aqueous macromolecular complexes, ones that are near equilibrium and others that are far from equilibrium, are considered in our formulations. We show that generalized Navier–Stokes equations for the fluid dynamics, generalized Poisson equations or generalized Poisson–Boltzmann equations for electrostatic interactions, and Newton's equation for the molecular dynamics can be derived by the least action principle. These equations are coupled through the continuum-discrete interface whose dynamics is governed by potential driven geometric flows. Comparison is given to classical descriptions of the fluid and electrostatic interactions without geometric flow based micro-macro interfaces. The detailed balance of forces is emphasized in the present work. We further extend the proposed multiscale paradigm to micro-macro analysis of electrohydrodynamics, electrophoresis, fuel cells, and ion channels. We derive generalized Poisson–Nernst–Planck equations that

20. Differential geometry based multiscale models.

Science.gov (United States)

Wei, Guo-Wei

2010-08-01

Large chemical and biological systems such as fuel cells, ion channels, molecular motors, and viruses are of great importance to the scientific community and public health. Typically, these complex systems in conjunction with their aquatic environment pose a fabulous challenge to theoretical description, simulation, and prediction. In this work, we propose a differential geometry based multiscale paradigm to model complex macromolecular systems, and to put macroscopic and microscopic descriptions on an equal footing. In our approach, the differential geometry theory of surfaces and geometric measure theory are employed as a natural means to couple the macroscopic continuum mechanical description of the aquatic environment with the microscopic discrete atomistic description of the macromolecule. Multiscale free energy functionals, or multiscale action functionals are constructed as a unified framework to derive the governing equations for the dynamics of different scales and different descriptions. Two types of aqueous macromolecular complexes, ones that are near equilibrium and others that are far from equilibrium, are considered in our formulations. We show that generalized Navier-Stokes equations for the fluid dynamics, generalized Poisson equations or generalized Poisson-Boltzmann equations for electrostatic interactions, and Newton's equation for the molecular dynamics can be derived by the least action principle. These equations are coupled through the continuum-discrete interface whose dynamics is governed by potential driven geometric flows. Comparison is given to classical descriptions of the fluid and electrostatic interactions without geometric flow based micro-macro interfaces. The detailed balance of forces is emphasized in the present work. We further extend the proposed multiscale paradigm to micro-macro analysis of electrohydrodynamics, electrophoresis, fuel cells, and ion channels. We derive generalized Poisson-Nernst-Planck equations that are

1. Differential geometry in string models

International Nuclear Information System (INIS)

Alvarez, O.

1986-01-01

In this article the author reviews the differential geometric approach to the quantization of strings. A seminal paper demonstrates the connection between the trace anomaly and the critical dimension. The role played by the Faddeev-Popov ghosts has been instrumental in much of the subsequent work on the quantization of strings. This paper discusses the differential geometry of two dimensional surfaces and its importance in the quantization of strings. The path integral quantization approach to strings will be carefully analyzed to determine the correct effective measure for string theories. The choice of measure for the path integral is determined by differential geometric considerations. Once the measure is determined, the manifest diffeomorphism invariance of the theory will have to be broken by using the Faddeev-Popov ansatz. The gauge fixed theory is studied in detail with emphasis on the role of conformal and gravitational anomalies. In the analysis, the path integral formulation of the gauge fixed theory requires summing over all the distinct complex structures on the manifold

2. Foundations of arithmetic differential geometry

CERN Document Server

Buium, Alexandru

2017-01-01

The aim of this book is to introduce and develop an arithmetic analogue of classical differential geometry. In this new geometry the ring of integers plays the role of a ring of functions on an infinite dimensional manifold. The role of coordinate functions on this manifold is played by the prime numbers. The role of partial derivatives of functions with respect to the coordinates is played by the Fermat quotients of integers with respect to the primes. The role of metrics is played by symmetric matrices with integer coefficients. The role of connections (respectively curvature) attached to metrics is played by certain adelic (respectively global) objects attached to the corresponding matrices. One of the main conclusions of the theory is that the spectrum of the integers is "intrinsically curved"; the study of this curvature is then the main task of the theory. The book follows, and builds upon, a series of recent research papers. A significant part of the material has never been published before.

3. On organizing principles of discrete differential geometry. Geometry of spheres

International Nuclear Information System (INIS)

Bobenko, Alexander I; Suris, Yury B

2007-01-01

Discrete differential geometry aims to develop discrete equivalents of the geometric notions and methods of classical differential geometry. This survey contains a discussion of the following two fundamental discretization principles: the transformation group principle (smooth geometric objects and their discretizations are invariant with respect to the same transformation group) and the consistency principle (discretizations of smooth parametrized geometries can be extended to multidimensional consistent nets). The main concrete geometric problem treated here is discretization of curvature-line parametrized surfaces in Lie geometry. Systematic use of the discretization principles leads to a discretization of curvature-line parametrization which unifies circular and conical nets.

4. ON DIFFERENTIAL EQUATIONS, INTEGRABLE SYSTEMS, AND GEOMETRY

OpenAIRE

Enrique Gonzalo Reyes Garcia

2004-01-01

ON DIFFERENTIAL EQUATIONS, INTEGRABLE SYSTEMS, AND GEOMETRY Equations in partial derivatives appeared in the 18th century as essential tools for the analytic study of physical models and, later, they proved to be fundamental for the progress of mathematics. For example, fundamental results of modern differential geometry are based on deep theorems on differential equations. Reciprocally, it is possible to study differential equations through geometrical means just like it was done by o...

5. Canonical differential geometry of string backgrounds

International Nuclear Information System (INIS)

Schuller, Frederic P.; Wohlfarth, Mattias N.R.

2006-01-01

String backgrounds and D-branes do not possess the structure of Lorentzian manifolds, but that of manifolds with area metric. Area metric geometry is a true generalization of metric geometry, which in particular may accommodate a B-field. While an area metric does not determine a connection, we identify the appropriate differential geometric structure which is of relevance for the minimal surface equation in such a generalized geometry. In particular the notion of a derivative action of areas on areas emerges naturally. Area metric geometry provides new tools in differential geometry, which promise to play a role in the description of gravitational dynamics on D-branes

6. Differential geometry of curves and surfaces

CERN Document Server

Banchoff, Thomas F

2010-01-01

Students and professors of an undergraduate course in differential geometry will appreciate the clear exposition and comprehensive exercises in this book that focuses on the geometric properties of curves and surfaces, one- and two-dimensional objects in Euclidean space. The problems generally relate to questions of local properties (the properties observed at a point on the curve or surface) or global properties (the properties of the object as a whole). Some of the more interesting theorems explore relationships between local and global properties. A special feature is the availability of accompanying online interactive java applets coordinated with each section. The applets allow students to investigate and manipulate curves and surfaces to develop intuition and to help analyze geometric phenomena.

7. Topics in modern differential geometry

CERN Document Server

Verstraelen, Leopold

2017-01-01

A variety of introductory articles is provided on a wide range of topics, including variational problems on curves and surfaces with anisotropic curvature. Experts in the fields of Riemannian, Lorentzian and contact geometry present state-of-the-art reviews of their topics. The contributions are written on a graduate level and contain extended bibliographies. The ten chapters are the result of various doctoral courses which were held in 2009 and 2010 at universities in Leuven, Serbia, Romania and Spain.

8. Chiral anomalies and differential geometry

International Nuclear Information System (INIS)

Zumino, B.

1983-10-01

Some properties of chiral anomalies are described from a geometric point of view. Topics include chiral anomalies and differential forms, transformation properties of the anomalies, identification and use of the anomalies, and normalization of the anomalies. 22 references

9. Differential geometry and topology of curves

CERN Document Server

Animov, Yu

2001-01-01

Differential geometry is an actively developing area of modern mathematics. This volume presents a classical approach to the general topics of the geometry of curves, including the theory of curves in n-dimensional Euclidean space. The author investigates problems for special classes of curves and gives the working method used to obtain the conditions for closed polygonal curves. The proof of the Bakel-Werner theorem in conditions of boundedness for curves with periodic curvature and torsion is also presented. This volume also highlights the contributions made by great geometers. past and present, to differential geometry and the topology of curves.

10. The interplay between differential geometry and differential equations

CERN Document Server

Lychagin, V V

1995-01-01

This work applies symplectic methods and discusses quantization problems to emphasize the advantage of an algebraic geometry approach to nonlinear differential equations. One common feature in most of the presentations in this book is the systematic use of the geometry of jet spaces.

11. Differential geometry bundles, connections, metrics and curvature

CERN Document Server

Taubes, Clifford Henry

2011-01-01

Bundles, connections, metrics and curvature are the 'lingua franca' of modern differential geometry and theoretical physics. This book will supply a graduate student in mathematics or theoretical physics with the fundamentals of these objects. Many of the tools used in differential topology are introduced and the basic results about differentiable manifolds, smooth maps, differential forms, vector fields, Lie groups, and Grassmanians are all presented here. Other material covered includes the basic theorems about geodesics and Jacobi fields, the classification theorem for flat connections, the

12. SU-D-BRA-04: Computerized Framework for Marker-Less Localization of Anatomical Feature Points in Range Images Based On Differential Geometry Features for Image-Guided Radiation Therapy

International Nuclear Information System (INIS)

Soufi, M; Arimura, H; Toyofuku, F; Nakamura, K; Hirose, T; Umezu, Y; Shioyama, Y

2016-01-01

Purpose: To propose a computerized framework for localization of anatomical feature points on the patient surface in infrared-ray based range images by using differential geometry (curvature) features. Methods: The general concept was to reconstruct the patient surface by using a mathematical modeling technique for the computation of differential geometry features that characterize the local shapes of the patient surfaces. A region of interest (ROI) was firstly extracted based on a template matching technique applied on amplitude (grayscale) images. The extracted ROI was preprocessed for reducing temporal and spatial noises by using Kalman and bilateral filters, respectively. Next, a smooth patient surface was reconstructed by using a non-uniform rational basis spline (NURBS) model. Finally, differential geometry features, i.e. the shape index and curvedness features were computed for localizing the anatomical feature points. The proposed framework was trained for optimizing shape index and curvedness thresholds and tested on range images of an anthropomorphic head phantom. The range images were acquired by an infrared ray-based time-of-flight (TOF) camera. The localization accuracy was evaluated by measuring the mean of minimum Euclidean distances (MMED) between reference (ground truth) points and the feature points localized by the proposed framework. The evaluation was performed for points localized on convex regions (e.g. apex of nose) and concave regions (e.g. nasofacial sulcus). Results: The proposed framework has localized anatomical feature points on convex and concave anatomical landmarks with MMEDs of 1.91±0.50 mm and 3.70±0.92 mm, respectively. A statistically significant difference was obtained between the feature points on the convex and concave regions (P<0.001). Conclusion: Our study has shown the feasibility of differential geometry features for localization of anatomical feature points on the patient surface in range images. The proposed

13. SU-D-BRA-04: Computerized Framework for Marker-Less Localization of Anatomical Feature Points in Range Images Based On Differential Geometry Features for Image-Guided Radiation Therapy

Energy Technology Data Exchange (ETDEWEB)

Soufi, M; Arimura, H; Toyofuku, F [Kyushu University, Fukuoka, Fukuoka (Japan); Nakamura, K [Hamamatsu University School of Medicine, Hamamatsu, Shizuoka (Japan); Hirose, T; Umezu, Y [Kyushu University Hospital, Fukuoka, Fukuoka (Japan); Shioyama, Y [Saga Heavy Ion Medical Accelerator in Tosu, Tosu, Saga (Japan)

2016-06-15

Purpose: To propose a computerized framework for localization of anatomical feature points on the patient surface in infrared-ray based range images by using differential geometry (curvature) features. Methods: The general concept was to reconstruct the patient surface by using a mathematical modeling technique for the computation of differential geometry features that characterize the local shapes of the patient surfaces. A region of interest (ROI) was firstly extracted based on a template matching technique applied on amplitude (grayscale) images. The extracted ROI was preprocessed for reducing temporal and spatial noises by using Kalman and bilateral filters, respectively. Next, a smooth patient surface was reconstructed by using a non-uniform rational basis spline (NURBS) model. Finally, differential geometry features, i.e. the shape index and curvedness features were computed for localizing the anatomical feature points. The proposed framework was trained for optimizing shape index and curvedness thresholds and tested on range images of an anthropomorphic head phantom. The range images were acquired by an infrared ray-based time-of-flight (TOF) camera. The localization accuracy was evaluated by measuring the mean of minimum Euclidean distances (MMED) between reference (ground truth) points and the feature points localized by the proposed framework. The evaluation was performed for points localized on convex regions (e.g. apex of nose) and concave regions (e.g. nasofacial sulcus). Results: The proposed framework has localized anatomical feature points on convex and concave anatomical landmarks with MMEDs of 1.91±0.50 mm and 3.70±0.92 mm, respectively. A statistically significant difference was obtained between the feature points on the convex and concave regions (P<0.001). Conclusion: Our study has shown the feasibility of differential geometry features for localization of anatomical feature points on the patient surface in range images. The proposed

14. Geometry of the local equivalence of states

Energy Technology Data Exchange (ETDEWEB)

Sawicki, A; Kus, M, E-mail: assawi@cft.edu.pl, E-mail: marek.kus@cft.edu.pl [Center for Theoretical Physics, Polish Academy of Sciences, Al Lotnikow 32/46, 02-668 Warszawa (Poland)

2011-12-09

We present a description of locally equivalent states in terms of symplectic geometry. Using the moment map between local orbits in the space of states and coadjoint orbits of the local unitary group, we reduce the problem of local unitary equivalence to an easy part consisting of identifying the proper coadjoint orbit and a harder problem of the geometry of fibers of the moment map. We give a detailed analysis of the properties of orbits of 'equally entangled states'. In particular, we show connections between certain symplectic properties of orbits such as their isotropy and coisotropy with effective criteria of local unitary equivalence. (paper)

15. Differential geometry connections, curvature, and characteristic classes

CERN Document Server

Tu, Loring W

2017-01-01

This text presents a graduate-level introduction to differential geometry for mathematics and physics students. The exposition follows the historical development of the concepts of connection and curvature with the goal of explaining the Chern–Weil theory of characteristic classes on a principal bundle. Along the way we encounter some of the high points in the history of differential geometry, for example, Gauss' Theorema Egregium and the Gauss–Bonnet theorem. Exercises throughout the book test the reader’s understanding of the material and sometimes illustrate extensions of the theory. Initially, the prerequisites for the reader include a passing familiarity with manifolds. After the first chapter, it becomes necessary to understand and manipulate differential forms. A knowledge of de Rham cohomology is required for the last third of the text. Prerequisite material is contained in author's text An Introduction to Manifolds, and can be learned in one semester. For the benefit of the reader and to establ...

16. Index theory for locally compact noncommutative geometries

CERN Document Server

Carey, A L; Rennie, A; Sukochev, F A

2014-01-01

Spectral triples for nonunital algebras model locally compact spaces in noncommutative geometry. In the present text, the authors prove the local index formula for spectral triples over nonunital algebras, without the assumption of local units in our algebra. This formula has been successfully used to calculate index pairings in numerous noncommutative examples. The absence of any other effective method of investigating index problems in geometries that are genuinely noncommutative, particularly in the nonunital situation, was a primary motivation for this study and the authors illustrate this point with two examples in the text. In order to understand what is new in their approach in the commutative setting the authors prove an analogue of the Gromov-Lawson relative index formula (for Dirac type operators) for even dimensional manifolds with bounded geometry, without invoking compact supports. For odd dimensional manifolds their index formula appears to be completely new.

17. Thin shells joining local cosmic string geometries

Energy Technology Data Exchange (ETDEWEB)

Eiroa, Ernesto F. [Universidad de Buenos Aires, Ciudad Universitaria Pabellon I, Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Buenos Aires (Argentina); Instituto de Astronomia y Fisica del Espacio (IAFE, CONICET-UBA), Buenos Aires (Argentina); Rubin de Celis, Emilio; Simeone, Claudio [Universidad de Buenos Aires, Ciudad Universitaria Pabellon I, Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Buenos Aires (Argentina); Ciudad Universitaria Pabellon I, IFIBA-CONICET, Buenos Aires (Argentina)

2016-10-15

In this article we present a theoretical construction of spacetimes with a thin shell that joins two different local cosmic string geometries. We study two types of global manifolds, one representing spacetimes with a thin shell surrounding a cosmic string or an empty region with Minkowski metric, and the other corresponding to wormholes which are not symmetric across the throat located at the shell. We analyze the stability of the static configurations under perturbations preserving the cylindrical symmetry. For both types of geometries we find that the static configurations can be stable for suitable values of the parameters. (orig.)

18. Thin shells joining local cosmic string geometries

International Nuclear Information System (INIS)

Eiroa, Ernesto F.; Rubin de Celis, Emilio; Simeone, Claudio

2016-01-01

In this article we present a theoretical construction of spacetimes with a thin shell that joins two different local cosmic string geometries. We study two types of global manifolds, one representing spacetimes with a thin shell surrounding a cosmic string or an empty region with Minkowski metric, and the other corresponding to wormholes which are not symmetric across the throat located at the shell. We analyze the stability of the static configurations under perturbations preserving the cylindrical symmetry. For both types of geometries we find that the static configurations can be stable for suitable values of the parameters. (orig.)

19. Introduction to differential geometry for engineers

CERN Document Server

Doolin, Brian F

2013-01-01

This outstanding guide supplies important mathematical tools for diverse engineering applications, offering engineers the basic concepts and terminology of modern global differential geometry. Suitable for independent study as well as a supplementary text for advanced undergraduate and graduate courses, this volume also constitutes a valuable reference for control, systems, aeronautical, electrical, and mechanical engineers.The treatment's ideas are applied mainly as an introduction to the Lie theory of differential equations and to examine the role of Grassmannians in control systems analysis. Additional topics include the fundamental notions of manifolds, tangent spaces, vector fields, exterior algebra, and Lie algebras. An appendix reviews concepts related to vector calculus, including open and closed sets, compactness, continuity, and derivative.

20. Differential geometry of curves and surfaces

CERN Document Server

Tapp, Kristopher

2016-01-01

This is a textbook on differential geometry well-suited to a variety of courses on this topic. For readers seeking an elementary text, the prerequisites are minimal and include plenty of examples and intermediate steps within proofs, while providing an invitation to more excursive applications and advanced topics. For readers bound for graduate school in math or physics, this is a clear, concise, rigorous development of the topic including the deep global theorems. For the benefit of all readers, the author employs various techniques to render the difficult abstract ideas herein more understandable and engaging. Over 300 color illustrations bring the mathematics to life, instantly clarifying concepts in ways that grayscale could not. Green-boxed definitions and purple-boxed theorems help to visually organize the mathematical content. Color is even used within the text to highlight logical relationships. Applications abound! The study of conformal and equiareal functions is grounded in its application to carto...

1. Differential geometry of groups in string theory

International Nuclear Information System (INIS)

Schmidke, W.B. Jr.

1990-09-01

Techniques from differential geometry and group theory are applied to two topics from string theory. The first topic studied is quantum groups, with the example of GL (1|1). The quantum group GL q (1|1) is introduced, and an exponential description is derived. The algebra and coproduct are determined using the invariant differential calculus method introduced by Woronowicz and generalized by Wess and Zumino. An invariant calculus is also introduced on the quantum superplane, and a representation of the algebra of GL q (1|1) in terms of the super-plane coordinates is constructed. The second topic follows the approach to string theory introduced by Bowick and Rajeev. Here the ghost contribution to the anomaly of the energy-momentum tensor is calculated as the Ricci curvature of the Kaehler quotient space Diff(S 1 )/S 1 . We discuss general Kaehler quotient spaces and derive an expression for their Ricci curvatures. Application is made to the string and superstring diffeomorphism groups, considering all possible choices of subgroup. The formalism is extended to associated holomorphic vector bundles, where the Ricci curvature corresponds to the anomaly for different ghost sea levels. 26 refs

2. Global Differential Geometry and Global Analysis

CERN Document Server

Pinkall, Ulrich; Simon, Udo; Wegner, Berd

1991-01-01

All papers appearing in this volume are original research articles and have not been published elsewhere. They meet the requirements that are necessary for publication in a good quality primary journal. E.Belchev, S.Hineva: On the minimal hypersurfaces of a locally symmetric manifold. -N.Blasic, N.Bokan, P.Gilkey: The spectral geometry of the Laplacian and the conformal Laplacian for manifolds with boundary. -J.Bolton, W.M.Oxbury, L.Vrancken, L.M. Woodward: Minimal immersions of RP2 into CPn. -W.Cieslak, A. Miernowski, W.Mozgawa: Isoptics of a strictly convex curve. -F.Dillen, L.Vrancken: Generalized Cayley surfaces. -A.Ferrandez, O.J.Garay, P.Lucas: On a certain class of conformally flat Euclidean hypersurfaces. -P.Gauduchon: Self-dual manifolds with non-negative Ricci operator. -B.Hajduk: On the obstruction group toexistence of Riemannian metrics of positive scalar curvature. -U.Hammenstaedt: Compact manifolds with 1/4-pinched negative curvature. -J.Jost, Xiaowei Peng: The geometry of moduli spaces of stabl...

3. Gravitation, gauge theories and differential geometry

International Nuclear Information System (INIS)

Eguchi, T.; Chicago Univ., IL; Chicago Univ., IL; Gilkey, P.B.; California Univ., Los Angeles; Hanson, A.J.

1980-01-01

The purpose of this article is to outline various mathematical ideas, methods, and results, primarily from differential geometry and topology, and to show where they can be applied to Yang-Mills gauge theories and Einstein's theory of gravitation.We have several goals in mind. The first is to convey to physicists the bases for many mathematical concepts by using intuitive arguments while avoiding the detailed formality of most textbooks. Although a variety of mathematical theorems will be stated, we will generally give simple examples motivating the results instead of presenting abstract proofs. Another goal is to list a wide variety of mathematical terminology and results in a format which allows easy reference. The reader then has the option of supplementing the descriptions given here by consulting standard mathematical references and articles such as those listed in the bibliography. Finally, we intend this article to serve the dual purpose of acquainting mathematicians with some basic physical concepts which have mathematical ramifications; physical problems have often stimuladed new directions in mathematical thought. (orig./WL)

4. Real symplectic formulation of local special geometry

CERN Document Server

Ferrara, Sergio; Ferrara, Sergio; Macia, Oscar

2006-01-01

We consider a formulation of local special geometry in terms of Darboux special coordinates $P^I=(p^i,q_i)$, $I=1,...,2n$. A general formula for the metric is obtained which is manifestly $\\mathbf{Sp}(2n,\\mathbb{R})$ covariant. Unlike the rigid case the metric is not given by the Hessian of the real function $S(P)$ which is the Legendre transform of the imaginary part of the holomorphic prepotential. Rather it is given by an expression that contains $S$, its Hessian and the conjugate momenta $S_I=\\frac{\\partial S}{\\partial P^I}$. Only in the one-dimensional case ($n=1$) is the real (two-dimensional) metric proportional to the Hessian with an appropriate conformal factor.

5. Tensor analysis and elementary differential geometry for physicists and engineers

CERN Document Server

Nguyen-Schäfer, Hung

2017-01-01

This book comprehensively presents topics, such as Dirac notation, tensor analysis, elementary differential geometry of moving surfaces, and k-differential forms. Additionally, two new chapters of Cartan differential forms and Dirac and tensor notations in quantum mechanics are added to this second edition. The reader is provided with hands-on calculations and worked-out examples at which he will learn how to handle the bra-ket notation, tensors, differential geometry, and differential forms; and to apply them to the physical and engineering world. Many methods and applications are given in CFD, continuum mechanics, electrodynamics in special relativity, cosmology in the Minkowski four-dimensional spacetime, and relativistic and non-relativistic quantum mechanics. Tensors, differential geometry, differential forms, and Dirac notation are very useful advanced mathematical tools in many fields of modern physics and computational engineering. They are involved in special and general relativity physics, quantum m...

6. Differential and complex geometry origins, abstractions and embeddings

CERN Document Server

Wells, Jr , Raymond O

2017-01-01

Differential and complex geometry are two central areas of mathematics with a long and intertwined history. This book, the first to provide a unified historical perspective of both subjects, explores their origins and developments from the sixteenth to the twentieth century. Providing a detailed examination of the seminal contributions to differential and complex geometry up to the twentieth century embedding theorems, this monograph includes valuable excerpts from the original documents, including works of Descartes, Fermat, Newton, Euler, Huygens, Gauss, Riemann, Abel, and Nash. Suitable for beginning graduate students interested in differential, algebraic or complex geometry, this book will also appeal to more experienced readers.

7. ICMS Workshop on Differential Geometry and Continuum Mechanics

CERN Document Server

Grinfeld, Michael; Knops, R

2015-01-01

This book examines the exciting interface between differential geometry and continuum mechanics, now recognised as being of increasing technological significance. Topics discussed include isometric embeddings in differential geometry and the relation with microstructure in nonlinear elasticity, the use of manifolds in the description of microstructure in continuum mechanics, experimental measurement of microstructure, defects, dislocations, surface energies, and nematic liquid crystals. Compensated compactness in partial differential equations is also treated. The volume is intended for specialists and non-specialists in pure and applied geometry, continuum mechanics, theoretical physics, materials and engineering sciences, and partial differential equations. It will also be of interest to postdoctoral scientists and advanced postgraduate research students. These proceedings include revised written versions of the majority of papers presented by leading experts at the ICMS Edinburgh Workshop on Differential G...

8. Differential geometry on Hopf algebras and quantum groups

International Nuclear Information System (INIS)

Watts, P.

1994-01-01

The differential geometry on a Hopf algebra is constructed, by using the basic axioms of Hopf algebras and noncommutative differential geometry. The space of generalized derivations on a Hopf algebra of functions is presented via the smash product, and used to define and discuss quantum Lie algebras and their properties. The Cartan calculus of the exterior derivative, Lie derivative, and inner derivation is found for both the universal and general differential calculi of an arbitrary Hopf algebra, and, by restricting to the quasitriangular case and using the numerical R-matrix formalism, the aforementioned structures for quantum groups are determined

9. Cartan for beginners differential geometry via moving frames and exterior differential systems

CERN Document Server

Ivey, Thomas A

2016-01-01

Two central aspects of Cartan's approach to differential geometry are the theory of exterior differential systems (EDS) and the method of moving frames. This book presents thorough and modern treatments of both subjects, including their applications to both classic and contemporary problems in geometry. It begins with the classical differential geometry of surfaces and basic Riemannian geometry in the language of moving frames, along with an elementary introduction to exterior differential systems. Key concepts are developed incrementally, with motivating examples leading to definitions, theorems, and proofs. Once the basics of the methods are established, the authors develop applications and advanced topics. One notable application is to complex algebraic geometry, where they expand and update important results from projective differential geometry. As well, the book features an introduction to G-structures and a treatment of the theory of connections. The techniques of EDS are also applied to obtain explici...

10. Tensor analysis and elementary differential geometry for physicists and engineers

CERN Document Server

Nguyen-Schäfer, Hung

2014-01-01

Tensors and methods of differential geometry are very useful mathematical tools in many fields of modern physics and computational engineering including relativity physics, electrodynamics, computational fluid dynamics (CFD), continuum mechanics, aero and vibroacoustics, and cybernetics. This book comprehensively presents topics, such as bra-ket notation, tensor analysis, and elementary differential geometry of a moving surface. Moreover, authors intentionally abstain from giving mathematically rigorous definitions and derivations that are however dealt with as precisely as possible. The reader is provided with hands-on calculations and worked-out examples at which he will learn how to handle the bra-ket notation, tensors and differential geometry and to use them in the physical and engineering world. The target audience primarily comprises graduate students in physics and engineering, research scientists, and practicing engineers.

11. Differential geometry of quasi-Sasakian manifolds

International Nuclear Information System (INIS)

Kirichenko, V F; Rustanov, A R

2002-01-01

The full system of structure equations of a quasi-Sasakian structure is obtained. The structure of the main tensors on a quasi-Sasakian manifold (the Riemann-Christoffel tensor, the Ricci tensor, and other tensors) is studied on this basis. Interesting characterizations of quasi-Sasakian Einstein manifolds are obtained. Additional symmetry properties of the Riemann-Christoffel tensor are discovered and used for distinguishing a new class of CR 1 quasi-Sasakian manifolds. An exhaustive description of the local structure of manifolds in this class is given. A complete classification (up to the B-transformation of the metric) is obtained for manifolds in this class having additional properties of the isotropy kind

12. Differential geometry the mathematical works of J. H. C. Whitehead

CERN Document Server

James, I M

1962-01-01

The Mathematical Works of J. H. C. Whitehead, Volume 1: Differential Geometry contains all of Whitehead's published work on differential geometry, along with some papers on algebras. Most of these were written in the period 1929-1937, but a few later articles are included. The book begins with a list of Whitehead's works, in chronological order of writing as well as a biographical note by M. H. A. Newman and Barbara Whitehead, and a mathematical appreciation by John Milnor. This is followed by separate chapters on topics such as linear connections; a method of obtaining normal representations

13. Differential forms and the geometry of general relativity

CERN Document Server

Dray, Tevian

2015-01-01

Differential Forms and the Geometry of General Relativity provides readers with a coherent path to understanding relativity. Requiring little more than calculus and some linear algebra, it helps readers learn just enough differential geometry to grasp the basics of general relativity.The book contains two intertwined but distinct halves. Designed for advanced undergraduate or beginning graduate students in mathematics or physics, most of the text requires little more than familiarity with calculus and linear algebra. The first half presents an introduction to general relativity that describes

14. Differential geometry techniques for sets of nonlinear partial differential equations

Science.gov (United States)

Estabrook, Frank B.

1990-01-01

An attempt is made to show that the Cartan theory of partial differential equations can be a useful technique for applied mathematics. Techniques for finding consistent subfamilies of solutions that are generically rich and well-posed and for introducing potentials or other usefully consistent auxiliary fields are introduced. An extended sample calculation involving the Korteweg-de Vries equation is given.

15. Pseudo-differential operators groups, geometry and applications

CERN Document Server

Zhu, Hongmei

2017-01-01

This volume consists of papers inspired by the special session on pseudo-differential operators at the 10th ISAAC Congress held at the University of Macau, August 3-8, 2015 and the mini-symposium on pseudo-differential operators in industries and technologies at the 8th ICIAM held at the National Convention Center in Beijing, August 10-14, 2015. The twelve papers included present cutting-edge trends in pseudo-differential operators and applications from the perspectives of Lie groups (Chapters 1-2), geometry (Chapters 3-5) and applications (Chapters 6-12). Many contributions cover applications in probability, differential equations and time-frequency analysis. A focus on the synergies of pseudo-differential operators with applications, especially real-life applications, enhances understanding of the analysis and the usefulness of these operators.

16. Crossed Module Bundle Gerbes; Classification, String Group and Differential Geometry

OpenAIRE

Jurco, Branislav

2005-01-01

We discuss nonabelian bundle gerbes and their differential geometry using simplicial methods. Associated to any crossed module there is a simplicial group NC, the nerve of the 1-category defined by the crossed module and its geometric realization |NC|. Equivalence classes of principal bundles with structure group |NC| are shown to be one-to-one with stable equivalence classes of what we call crossed module gerbes bundle gerbes. We can also associate to a crossed module a 2-category C'. Then t...

17. System theory as applied differential geometry. [linear system

Science.gov (United States)

Hermann, R.

1979-01-01

The invariants of input-output systems under the action of the feedback group was examined. The approach used the theory of Lie groups and concepts of modern differential geometry, and illustrated how the latter provides a basis for the discussion of the analytic structure of systems. Finite dimensional linear systems in a single independent variable are considered. Lessons of more general situations (e.g., distributed parameter and multidimensional systems) which are increasingly encountered as technology advances are presented.

18. Introduction to Dubois-Violette's non-commutative differential geometry

International Nuclear Information System (INIS)

Djemai, A.E.F.

1994-07-01

In this work, one presents a detailed review of Dubois-Violette et al. approach to non-commutative differential calculus. The non-commutative differential geometry of matrix algebras and the non-commutative Poisson structures are treated in some details. We also present the analog of the Maxwell's theory and the new models of Yang-Mills-Higgs theories that can be constructed in this framework. In particular, some simple models are compared with the standard model. Finally, we discuss some perspectives and open questions. (author). 32 refs

19. Global differential geometry: An introduction for control engineers

Science.gov (United States)

Doolin, B. F.; Martin, C. F.

1982-01-01

The basic concepts and terminology of modern global differential geometry are discussed as an introduction to the Lie theory of differential equations and to the role of Grassmannians in control systems analysis. To reach these topics, the fundamental notions of manifolds, tangent spaces, vector fields, and Lie algebras are discussed and exemplified. An appendix reviews such concepts needed for vector calculus as open and closed sets, compactness, continuity, and derivative. Although the content is mathematical, this is not a mathematical treatise but rather a text for engineers to understand geometric and nonlinear control.

20. Quantum κ-deformed differential geometry and field theory

Science.gov (United States)

Mercati, Flavio

2016-03-01

I introduce in κ-Minkowski noncommutative spacetime the basic tools of quantum differential geometry, namely bicovariant differential calculus, Lie and inner derivatives, the integral, the Hodge-∗ and the metric. I show the relevance of these tools for field theory with an application to complex scalar field, for which I am able to identify a vector-valued four-form which generalizes the energy-momentum tensor. Its closedness is proved, expressing in a covariant form the conservation of energy-momentum.

1. Extended differential geometry as a basis for physical field theory

International Nuclear Information System (INIS)

Bruce, M.H.

1984-01-01

An extension of Riemann differential geometry is considered as a broadened uniform basis for physical field theory. The requirements for such a theory are set and interpreted as a generalized Ricci calculus capable of supporting certain physical affine motions and metric constraints. Both tensor and spinor languages are considered and a variational calculus is formulated within the geometry. The dominant emergent feature is the replacement of ordinary derivatives by generalized differential operators involving the usual Christoffel symbols as well as more general connection parameters. Then the Euler-Lagrange equations with constraints may be regarded as a general differential geometry and an action principle is formulated to give equations of motion in terms of generalized momentum operations. A cononical momentum tensor is employed which yields, by a generalized boundary variations of the action a set of conservation laws. The formulation is then applied to such diverse topics as the generalizing of the Dirac equation, the Lorentz and radiation terms for a charged particle, the relativistic rotator, and considerations on a geometric origin for the the Einstein energy density tensor

2. Modern Differential Geometry For Physicists. 2nd Edn

International Nuclear Information System (INIS)

Chrusciel, P T

2006-01-01

Most of us sometimes have to face a student asking: 'What do I need to get started on this'. (In my case 'this' would typically be a topic in general relativity.) After thinking about it for quite a while, and consulting candidate texts again and again, a few days later I usually end up saying: read this chapter in book I (but without going too much detail), then that chapter in book II (but ignore all those comments), then the first few sections of this review paper (but do not try to work out equations NN to NNN), and then come back to see me. In the unlikely event that the student comes back without changing the topic, there follows quite a bit of explaining on a blackboard over the following weeks. From now on I will say: get acquainted with the material covered by this book. As far as Isham's book is concerned, 'this' in the student's question above can stand for any topic in theoretical physics which touches upon differential geometry (and I can only think of very few which do not). Said plainly: this book contains most of the introductory material necessary to get started in general relativity, or those branches of mathematical physics which require differential geometry. A student who has mastered the notions presented in the book will have a solid basis to continue into specialized topics. I am not aware of any other book which would be as useful as this one in terms of the spectrum of topics covered, stopping at the right place to get sufficient introductory insight. According to the publisher, these lecture notes are the content of an introductory course on differential geometry which is taken by first-year theoretical physics PhD students, or by students attending the one-year MSc course 'Quantum Fields and Fundamental Forces' at Imperial College, London. The volume is divided into six chapters: - An Introduction to Topology; - Differential Manifolds; - Vector Fields and n-Forms; - Lie Groups; - Fibre Bundles; - Connections in a Bundle. It is a sad

3. On the formalism of local variational differential operators

NARCIS (Netherlands)

Igonin, S.; Verbovetsky, A.V.; Vitolo, R.

2002-01-01

The calculus of local variational differential operators introduced by B. L. Voronov, I. V. Tyutin, and Sh. S. Shakhverdiev is studied in the context of jet super space geometry. In a coordinate-free way, we relate these operators to variational multivectors, for which we introduce and compute the

4. Lie groups, differential equations, and geometry advances and surveys

CERN Document Server

2017-01-01

This book collects a series of contributions addressing the various contexts in which the theory of Lie groups is applied. A preliminary chapter serves the reader both as a basic reference source and as an ongoing thread that runs through the subsequent chapters. From representation theory and Gerstenhaber algebras to control theory, from differential equations to Finsler geometry and Lepage manifolds, the book introduces young researchers in Mathematics to a wealth of different topics, encouraging a multidisciplinary approach to research. As such, it is suitable for students in doctoral courses, and will also benefit researchers who want to expand their field of interest.

5. Numerical Simulation of Voltage Electric Field in Complex Geometries for Different Electrode Arrangements using Meshless Local MQ-DQ Method

DEFF Research Database (Denmark)

Jalaal, M.; Soleimani, Soheil; Domairry, G.

2011-01-01

In this paper the meshless Local Multi Quadrics-based Differential Quadrature (MQ-DQ) method is applied to obtain the electric field distribution for different applicable irregular geometries. This method is the combination of Differential Quadrature approximation of derivatives and function...

6. Minimal local Lagrangians for higher-spin geometry

International Nuclear Information System (INIS)

Francia, Dario; Sagnotti, Augusto

2005-01-01

The Fronsdal Lagrangians for free totally symmetric rank-s tensors φ μ 1 ...μ s rest on suitable trace constraints for their gauge parameters and gauge fields. Only when these constraints are removed, however, the resulting equations reflect the expected free higher-spin geometry. We show that geometric equations, in both their local and non-local forms, can be simply recovered from local Lagrangians with only two additional fields, a rank-(s-3) compensator α μ 1 ...μ s-3 and a rank-(s-4) Lagrange multiplier β μ 1 ...μ s-4 . In a similar fashion, we show that geometric equations for unconstrained rank-n totally symmetric spinor-tensors ψ μ 1 ...μ n can be simply recovered from local Lagrangians with only two additional spinor-tensors, a rank-(n-2) compensator ξ μ 1 ...μ n-2 and a rank-(n-3) Lagrange multiplier λ μ 1 ...μ n-3

7. Differential Geometry Applied to Rings and Möbius Nanostructures

DEFF Research Database (Denmark)

Lassen, Benny; Willatzen, Morten; Gravesen, Jens

2014-01-01

Nanostructure shape effects have become a topic of increasing interest due to advancements in fabrication technology. In order to pursue novel physics and better devices by tailoring the shape and size of nanostructures, effective analytical and computational tools are indispensable. In this chap......Nanostructure shape effects have become a topic of increasing interest due to advancements in fabrication technology. In order to pursue novel physics and better devices by tailoring the shape and size of nanostructures, effective analytical and computational tools are indispensable....... In this chapter, we present analytical and computational differential geometry methods to examine particle quantum eigenstates and eigenenergies in curved and strained nanostructures. Example studies are carried out for a set of ring structures with different radii and it is shown that eigenstate and eigenenergy...

8. An application of differential geometry to SSC magnet end winding

International Nuclear Information System (INIS)

Cook, J.M.

1990-04-01

It is expected that a large fraction of the total cost of the proposed Superconducting Supercollider will be spent on magnets, and, as Leon Lederman has remarked, ''most of the cost of making a magnet is in the ends.'' Among the mechanical problems to be solved there is the construction of an end-configuration for the superconducting cables which will minimize their strain energy. The purpose of this paper is to promote the use of differential geometry in this minimization. The use will be illustrated by a specific application to the winding of dipole ends. The cables are assumed to be clamped so firmly that their strain is not altered by Lorentz stresses. 15 refs

9. Differential geometry based solvation model II: Lagrangian formulation.

Science.gov (United States)

Chen, Zhan; Baker, Nathan A; Wei, G W

2011-12-01

Solvation is an elementary process in nature and is of paramount importance to more sophisticated chemical, biological and biomolecular processes. The understanding of solvation is an essential prerequisite for the quantitative description and analysis of biomolecular systems. This work presents a Lagrangian formulation of our differential geometry based solvation models. The Lagrangian representation of biomolecular surfaces has a few utilities/advantages. First, it provides an essential basis for biomolecular visualization, surface electrostatic potential map and visual perception of biomolecules. Additionally, it is consistent with the conventional setting of implicit solvent theories and thus, many existing theoretical algorithms and computational software packages can be directly employed. Finally, the Lagrangian representation does not need to resort to artificially enlarged van der Waals radii as often required by the Eulerian representation in solvation analysis. The main goal of the present work is to analyze the connection, similarity and difference between the Eulerian and Lagrangian formalisms of the solvation model. Such analysis is important to the understanding of the differential geometry based solvation model. The present model extends the scaled particle theory of nonpolar solvation model with a solvent-solute interaction potential. The nonpolar solvation model is completed with a Poisson-Boltzmann (PB) theory based polar solvation model. The differential geometry theory of surfaces is employed to provide a natural description of solvent-solute interfaces. The optimization of the total free energy functional, which encompasses the polar and nonpolar contributions, leads to coupled potential driven geometric flow and PB equations. Due to the development of singularities and nonsmooth manifolds in the Lagrangian representation, the resulting potential-driven geometric flow equation is embedded into the Eulerian representation for the purpose of

10. Indoor localization using unsupervised manifold alignment with geometry perturbation

KAUST Repository

Majeed, Khaqan

2014-04-01

11. Indoor localization using unsupervised manifold alignment with geometry perturbation

KAUST Repository

Majeed, Khaqan; Sorour, Sameh; Al-Naffouri, Tareq Y.; Valaee, Shahrokh

2014-01-01

NARCIS (Netherlands)

Put, Marius van der; Taelman, Lenny

2006-01-01

This paper studies divergence in solutions of p-adic linear local differential equations. Such divergence is related to the notion of p-adic Liouville numbers. Also, the influence of the divergence on the differential Galois groups of such differential equations is explored. A complete result is

13. Ordinary differential equation for local accumulation time.

Science.gov (United States)

Berezhkovskii, Alexander M

2011-08-21

Cell differentiation in a developing tissue is controlled by the concentration fields of signaling molecules called morphogens. Formation of these concentration fields can be described by the reaction-diffusion mechanism in which locally produced molecules diffuse through the patterned tissue and are degraded. The formation kinetics at a given point of the patterned tissue can be characterized by the local accumulation time, defined in terms of the local relaxation function. Here, we show that this time satisfies an ordinary differential equation. Using this equation one can straightforwardly determine the local accumulation time, i.e., without preliminary calculation of the relaxation function by solving the partial differential equation, as was done in previous studies. We derive this ordinary differential equation together with the accompanying boundary conditions and demonstrate that the earlier obtained results for the local accumulation time can be recovered by solving this equation. © 2011 American Institute of Physics

14. Geometries

CERN Document Server

Sossinsky, A B

2012-01-01

The book is an innovative modern exposition of geometry, or rather, of geometries; it is the first textbook in which Felix Klein's Erlangen Program (the action of transformation groups) is systematically used as the basis for defining various geometries. The course of study presented is dedicated to the proposition that all geometries are created equal--although some, of course, remain more equal than others. The author concentrates on several of the more distinguished and beautiful ones, which include what he terms "toy geometries", the geometries of Platonic bodies, discrete geometries, and classical continuous geometries. The text is based on first-year semester course lectures delivered at the Independent University of Moscow in 2003 and 2006. It is by no means a formal algebraic or analytic treatment of geometric topics, but rather, a highly visual exposition containing upwards of 200 illustrations. The reader is expected to possess a familiarity with elementary Euclidean geometry, albeit those lacking t...

15. Geometry

. In the previous article we looked at the origins of synthetic and analytic geometry. More practical minded people, the builders and navigators, were studying two other aspects of geometry- trigonometry and integral calculus. These are actually ...

16. Differential geometry for physicists and mathematicians moving frames and differential forms : from Euclid past Riemann

CERN Document Server

Vargas, José G

2014-01-01

This is a book that the author wishes had been available to him when he was student. It reflects his interest in knowing (like expert mathematicians) the most relevant mathematics for theoretical physics, but in the style of physicists. This means that one is not facing the study of a collection of definitions, remarks, theorems, corollaries, lemmas, etc. but a narrative - almost like a story being told - that does not impede sophistication and deep results. It covers differential geometry far beyond what general relativists perceive they need to know. And it introduces readers to other areas

17. On the influence of microphone array geometry on HRTF-based Sound Source Localization

DEFF Research Database (Denmark)

Farmani, Mojtaba; Pedersen, Michael Syskind; Tan, Zheng-Hua

2015-01-01

The direction dependence of Head Related Transfer Functions (HRTFs) forms the basis for HRTF-based Sound Source Localization (SSL) algorithms. In this paper, we show how spectral similarities of the HRTFs of different directions in the horizontal plane influence performance of HRTF-based SSL...... algorithms; the more similar the HRTFs of different angles to the HRTF of the target angle, the worse the performance. However, we also show how the microphone array geometry can assist in differentiating between the HRTFs of the different angles, thereby improving performance of HRTF-based SSL algorithms....... Furthermore, to demonstrate the analysis results, we show the impact of HRTFs similarities and microphone array geometry on an exemplary HRTF-based SSL algorithm, called MLSSL. This algorithm is well-suited for this purpose as it allows to estimate the Direction-of-Arrival (DoA) of the target sound using any...

18. Geometry

CERN Document Server

Prasolov, V V

2015-01-01

This book provides a systematic introduction to various geometries, including Euclidean, affine, projective, spherical, and hyperbolic geometries. Also included is a chapter on infinite-dimensional generalizations of Euclidean and affine geometries. A uniform approach to different geometries, based on Klein's Erlangen Program is suggested, and similarities of various phenomena in all geometries are traced. An important notion of duality of geometric objects is highlighted throughout the book. The authors also include a detailed presentation of the theory of conics and quadrics, including the theory of conics for non-Euclidean geometries. The book contains many beautiful geometric facts and has plenty of problems, most of them with solutions, which nicely supplement the main text. With more than 150 figures illustrating the arguments, the book can be recommended as a textbook for undergraduate and graduate-level courses in geometry.

19. Some questions of differential geometry in the large

CERN Document Server

Shikin, E V

1996-01-01

This collection contains articles that present recent results by geometers in Russia and the Ukraine. Papers in the collection deal with various questions related to the structure, symmetries, and embeddings of submanifolds in Euclidean and pseudo-Euclidian spaces. This collection offers a review of the challenges facing specialists in geometry in the large and features current research in the field.

20. Topics of differential geometry in hamiltonian and lagrangian mechanics and relativity

International Nuclear Information System (INIS)

Rodrigues, P.R.

1982-01-01

A little introduction to the tensor and exterior algebra just as to the differential geometry is made. Such a geometry is used in order to study the hamiltonian and lagrangian mechanics stressing their geometrical aspects. Some applications are done in relativity theory. (L.C.) [pt

1. Average methods and their applications in Differential Geometry I

OpenAIRE

Vincze, Csaba

2013-01-01

In Minkowski geometry the metric features are based on a compact convex body containing the origin in its interior. This body works as a unit ball with its boundary formed by the unit vectors. Using one-homogeneous extension we have a so-called Minkowski functional to measure the lenght of vectors. The half of its square is called the energy function. Under some regularity conditions we can introduce an average Euclidean inner product by integrating the Hessian matrix of the energy function o...

2. The differential geometry of higher order jets and tangent bundles

International Nuclear Information System (INIS)

De Leon, M.; Rodrigues, P.R.

1985-01-01

This chapter is devoted to the study of basic geometrical notions required for the development of the main object of the text. Some facts about Jet theory are reviewed. A particular case of Jet manifolds is considered: the tangent bundle of higher order. It is shown that this jet bundle possesses in a canonical way a certain kind of geometric structure, the so called almost tangent structure of higher order, and which is a generalization of the almost tangent geometry of the tangent bundle. Another important fact examined is the extension of the notion of 'spray' to higher order tangent bundles. (Auth.)

3. Geometry

CERN Document Server

Pedoe, Dan

1988-01-01

""A lucid and masterly survey."" - Mathematics Gazette Professor Pedoe is widely known as a fine teacher and a fine geometer. His abilities in both areas are clearly evident in this self-contained, well-written, and lucid introduction to the scope and methods of elementary geometry. It covers the geometry usually included in undergraduate courses in mathematics, except for the theory of convex sets. Based on a course given by the author for several years at the University of Minnesota, the main purpose of the book is to increase geometrical, and therefore mathematical, understanding and to he

4. Tensor and vector analysis with applications to differential geometry

CERN Document Server

Springer, C E

2012-01-01

Concise and user-friendly, this college-level text assumes only a knowledge of basic calculus in its elementary and gradual development of tensor theory. The introductory approach bridges the gap between mere manipulation and a genuine understanding of an important aspect of both pure and applied mathematics.Beginning with a consideration of coordinate transformations and mappings, the treatment examines loci in three-space, transformation of coordinates in space and differentiation, tensor algebra and analysis, and vector analysis and algebra. Additional topics include differentiation of vect

5. Differential geometry and topology with a view to dynamical systems

CERN Document Server

Burns, Keith

2005-01-01

MANIFOLDSIntroductionReview of topological conceptsSmooth manifoldsSmooth mapsTangent vectors and the tangent bundleTangent vectors as derivationsThe derivative of a smooth mapOrientationImmersions, embeddings and submersionsRegular and critical points and valuesManifolds with boundarySard's theoremTransversalityStabilityExercisesVECTOR FIELDS AND DYNAMICAL SYSTEMSIntroductionVector fieldsSmooth dynamical systemsLie derivative, Lie bracketDiscrete dynamical systemsHyperbolic fixed points and periodic orbitsExercisesRIEMANNIAN METRICSIntroductionRiemannian metricsStandard geometries on surfacesExercisesRIEMANNIAN CONNECTIONS AND GEODESICSIntroductionAffine connectionsRiemannian connectionsGeodesicsThe exponential mapMinimizing properties of geodesicsThe Riemannian distanceExercisesCURVATUREIntroductionThe curvature tensorThe second fundamental formSectional and Ricci curvaturesJacobi fieldsManifolds of constant curvatureConjugate pointsHorizontal and vertical sub-bundlesThe geodesic flowExercisesTENSORS AND DI...

6. Quantum groups, non-commutative differential geometry and applications

International Nuclear Information System (INIS)

Schupp, P.; California Univ., Berkeley, CA

1993-01-01

The topic of this thesis is the development of a versatile and geometrically motivated differential calculus on non-commutative or quantum spaces, providing powerful but easy-to-use mathematical tools for applications in physics and related sciences. A generalization of unitary time evolution is proposed and studied for a simple 2-level system, leading to non-conservation of microscopic entropy, a phenomenon new to quantum mechanics. A Cartan calculus that combines functions, forms, Lie derivatives and inner derivations along general vector fields into one big algebra is constructed for quantum groups and then extended to quantum planes. The construction of a tangent bundle on a quantum group manifold and an BRST type approach to quantum group gauge theory are given as further examples of applications. The material is organized in two parts: Part I studies vector fields on quantum groups, emphasizing Hopf algebraic structures, but also introducing a ''quantum geometric'' construction. Using a generalized semi-direct product construction we combine the dual Hopf algebras A of functions and U of left-invariant vector fields into one fully bicovariant algebra of differential operators. The pure braid group is introduced as the commutant of Δ(U). It provides invariant maps A → U and thereby bicovariant vector fields, casimirs and metrics. This construction allows the translation of undeformed matrix expressions into their less obvious quantum algebraic counter parts. We study this in detail for quasitriangular Hopf algebras, giving the determinant and orthogonality relation for the ''reflection'' matrix. Part II considers the additional structures of differential forms and finitely generated quantum Lie algebras -- it is devoted to the construction of the Cartan calculus, based on an undeformed Cartan identity

7. Triple differential cross-sections of Ne (2s2) in coplanar to perpendicular plane geometry

Science.gov (United States)

Chen, L. Q.; Khajuria, Y.; Chen, X. J.; Xu, K. Z.

2003-10-01

The distorted wave Born approximation (DWBA) with the spin averaged static exchange potential has been used to calculate the triple differential cross-sections (TDCSs) for Ne (2s^2) ionization by electron impact in coplanar to perpendicular plane symmetric geometry at 110.5 eV incident electron energy. The present theoretical results at gun angles Psi = 0^circ (coplanar symmetric geometry) and Psi = 90^circ (perpendicular plane geometry) are in satisfactory agreement with the available experimental data. A deep interference minimum appears in the TDCS in the coplanar symmetric geometry and a strong peak at scattering angle xi = 90^circ caused by the single collision mechanism has been observed in the perpendicular plane geometry. The TDCSs at the gun angles Psi = 30^circ, and Psi = 60^circ are predicted.

8. The SUSY oscillator from local geometry: Dynamics and coherent states

International Nuclear Information System (INIS)

Thienel, H.P.

1994-01-01

The choice of a coordinate chart on an analytical R n (R a n ) provides a representation of the n-dimensional SUSY oscillator. The corresponding Hilbert space is Cartan's exterior algebra endowed with a suitable scalar product. The exterior derivative gives rise to the algebra of the n-dimensional SUSY oscillator. Its euclidean dynamics is an inherent consequence of the geometry imposed by the Lie derivative generating the dilations, i.e. evolution of the quantum system corresponds to parametrization of a sequence of charts by euclidean time. Coherent states emerge as a natural structure related to the Lie derivative generating the translations. (orig.)

9. Geometry optimization of molecules within an LCGTO local-density functional approach

International Nuclear Information System (INIS)

Mintmire, J.W.

1990-01-01

We describe our implementation of geometry optimization techniques within the linear combination of Gaussian-type orbitals (LCGTO) approach to local-density functional theory. The algorithm for geometry optimization is based on the evaluation of the gradient of the total energy with respect to internal coordinates within the local-density functional scheme. We present optimization results for a range of small molecules which serve as test cases for our approach

10. Nilpotent algebras of the generalized differential forms and the geometry of superfield theories

International Nuclear Information System (INIS)

Zupnik, B.M.

1991-01-01

We consider a new algebraic approach in the geometry of supergauge theories and supergravity. An introduction of nilpotent algebras simplifies significantly the analysis of D = 3, 4, N = 1 supergravity constraints. Different terms in the invariant action functionals of SG- and SYM-theories are constructed as the integrals of corresponding generalized differential forms. (orig.)

11. The Weakly Nonlinear Magnetorotational Instability in a Local Geometry

Science.gov (United States)

Clark, S. E.; Oishi, Jeffrey S.

2017-05-01

The magnetorotational instability (MRI) is a fundamental process of accretion disk physics, but its saturation mechanism remains poorly understood despite considerable theoretical and computational effort. We present a multiple-scales analysis of the non-ideal MRI in the weakly nonlinear regime—that is, when the most unstable MRI mode has a growth rate asymptotically approaching zero from above. Here, we develop our theory in a local, Cartesian channel. Our results confirm the finding by Umurhan et al. that the perturbation amplitude follows a Ginzburg-Landau equation. We further find that the Ginzburg-Landau equation will arise for the local MRI system with shear-periodic boundary conditions, when the effects of ambipolar diffusion are considered. A detailed force balance for the saturated azimuthal velocity and vertical magnetic field demonstrates that, even when diffusive effects are important, the bulk flow saturates via the combined processes of reducing the background shear and rearranging and strengthening the background vertical magnetic field. We directly simulate the Ginzburg-Landau amplitude evolution for our system, and demonstrate the pattern formation our model predicts on long scales of length- and timescales. We compare the weakly nonlinear theory results to a direct numerical simulation of the MRI in a thin-gap Taylor Couette flow.

12. The Weakly Nonlinear Magnetorotational Instability in a Local Geometry

Energy Technology Data Exchange (ETDEWEB)

Clark, S. E. [Department of Astronomy, Columbia University, New York, NY 10027 (United States); Oishi, Jeffrey S., E-mail: seclark@astro.columbia.edu [Department of Physics and Astronomy, Bates College, Lewiston, ME 04240 (United States)

2017-05-20

The magnetorotational instability (MRI) is a fundamental process of accretion disk physics, but its saturation mechanism remains poorly understood despite considerable theoretical and computational effort. We present a multiple-scales analysis of the non-ideal MRI in the weakly nonlinear regime—that is, when the most unstable MRI mode has a growth rate asymptotically approaching zero from above. Here, we develop our theory in a local, Cartesian channel. Our results confirm the finding by Umurhan et al. that the perturbation amplitude follows a Ginzburg–Landau equation. We further find that the Ginzburg–Landau equation will arise for the local MRI system with shear-periodic boundary conditions, when the effects of ambipolar diffusion are considered. A detailed force balance for the saturated azimuthal velocity and vertical magnetic field demonstrates that, even when diffusive effects are important, the bulk flow saturates via the combined processes of reducing the background shear and rearranging and strengthening the background vertical magnetic field. We directly simulate the Ginzburg–Landau amplitude evolution for our system, and demonstrate the pattern formation our model predicts on long scales of length- and timescales. We compare the weakly nonlinear theory results to a direct numerical simulation of the MRI in a thin-gap Taylor Couette flow.

13. Theory of liquid crystal elastomers and polymer networks : Connection between neoclassical theory and differential geometry.

Science.gov (United States)

Nguyen, Thanh-Son; Selinger, Jonathan V

2017-09-01

In liquid crystal elastomers and polymer networks, the orientational order of liquid crystals is coupled with elastic distortions of crosslinked polymers. Previous theoretical research has described these materials through two different approaches: a neoclassical theory based on the liquid crystal director and the deformation gradient tensor, and a geometric elasticity theory based on the difference between the actual metric tensor and a reference metric. Here, we connect those two approaches using a formalism based on differential geometry. Through this connection, we determine how both the director and the geometry respond to a change of temperature.

14. Unusual metastatic localizations of differentiated thyroid carcinoma

International Nuclear Information System (INIS)

Ben Rais, N.; Ghfir, I.

2007-01-01

Full text: Introduction: The majority of thyroid cancers have a slow evolution, a more often loco-regional extension, and a good forecast. Remote metastases, when they exist, generally touch the osseous skeleton and/or pulmonary tissue. However, unusual metastatic localizations much more exceptional are possible. The authors report through these work five cases of atypical metastasis of differentiated thyroid carcinoma followed in Nuclear Medicine department of Ibn Sina hospital in Rabat under the directives of Professor N Ben Rais. Materials and methods: Our five patients had initially undergone a total thyroidectomy for differentiated thyroid carcinoma histologically confirmed. They had profited 4 weeks after the surgical gesture from a reference isotopic exploration (131 Iodine whole body scan and thyroglobulin dosage). The paraclinic assessment was supplemented by a computed tomography (CT). Results: Revealing symptomatology in the first 69 year old patient was dominated by blindness associated with an elective up-take of radioactive 131-Iodine on the level of hypophyseal gland extending to the sphenoid bone. The second 55 year old patient reported right basithoracic pains resisting to the usual antalgic treatment with a bulky mass driving back the kidney right to the bottom at CT with and important up-take 131-Iodine at whole body scan; a surrenalectomy was thus carried out with conservation of the kidney. The three other patients presented at the clinical examination dermohypodermic nodular lesions of various localizations whose anatomopathologic study had confirmed their thyroid metastatic origin. In the 5 patients the rate of thyroglobulin was considerably high. An activity of 3,7 GBq 131-Iodine was managed with the 5 patients. The evolution was marked, in the short run, at the first patient by a recovery partial of the sight, the disappearance of pain in the second patient and a remarkable reduction of thyroglobulin level for all our patients. Conclusion

15. A fast direct solver for boundary value problems on locally perturbed geometries

Science.gov (United States)

2018-03-01

Many applications including optimal design and adaptive discretization techniques involve solving several boundary value problems on geometries that are local perturbations of an original geometry. This manuscript presents a fast direct solver for boundary value problems that are recast as boundary integral equations. The idea is to write the discretized boundary integral equation on a new geometry as a low rank update to the discretized problem on the original geometry. Using the Sherman-Morrison formula, the inverse can be expressed in terms of the inverse of the original system applied to the low rank factors and the right hand side. Numerical results illustrate for problems where perturbation is localized the fast direct solver is three times faster than building a new solver from scratch.

16. Reduced differential transform method for partial differential equations within local fractional derivative operators

Directory of Open Access Journals (Sweden)

Hossein Jafari

2016-04-01

Full Text Available The non-differentiable solution of the linear and non-linear partial differential equations on Cantor sets is implemented in this article. The reduced differential transform method is considered in the local fractional operator sense. The four illustrative examples are given to show the efficiency and accuracy features of the presented technique to solve local fractional partial differential equations.

17. A Qualitative Comparison between the Proportional Navigation and Differential Geometry Guidance Algorithms

Directory of Open Access Journals (Sweden)

Yunes Sh. ALQUDSI

2018-06-01

Full Text Available This paper discusses and presents an overview of the proportional navigation (PN guidance law as well as the differential geometry (DG guidance algorithm that are used to develop the intercept course of a certain target. The intent of this study is to illustrate the advantages of the guidance algorithm generated based on the concepts of differential geometry against the well-known PN guidance law. The basic principles behind the both algorithms are mentioned. Moreover, the different versions of the PN approach is briefly clarified to show the essential improvement from one version to the other. The paper terminated with numerous two-dimension simulation figures to give a great value of visual aids, illustrating the significant relations and main features and properties of both algorithms.

18. The Abel symposium 2008 on differential equations: geometry, symmetries and integrability

CERN Document Server

Lychagin, Valentin; Straume, Eldar; Abel symposium 2008; Differential equations; Geometry, symmetries and integrability

2008-01-01

The Abel Symposium 2008 focused on the modern theory of differential equations and their applications in geometry, mechanics, and mathematical physics. Following the tradition of Monge, Abel and Lie, the scientific program emphasized the role of algebro-geometric methods, which nowadays permeate all mathematical models in natural and engineering sciences. The ideas of invariance and symmetry are of fundamental importance in the geometric approach to differential equations, with a serious impact coming from the area of integrable systems and field theories. This volume consists of original contributions and broad overview lectures of the participants of the Symposium. The papers in this volume present the modern approach to this classical subject.

19. Elementary excitations of biomembranes: Differential geometry of undulations in elastic surfaces

Energy Technology Data Exchange (ETDEWEB)

Hemmen, J. Leo van [Physik Department, Technical University of Munich, 85747 Garching (Germany)]. E-mail: lvh@tum.de; Leibold, Christian [Physik Department, Technical University of Munich, 85747 Garching (Germany)

2007-06-15

Biomembrane undulations are elementary excitations in the elastic surfaces of cells and vesicles. As such they can provide surprising insights into the mechanical processes that shape and stabilize biomembranes. We explain how naturally these undulations can be described by classical differential geometry. In particular, we apply the analytical formalism of differential-geometric calculus to the surfaces generated by a cell membrane and underlying cytoskeleton. After a short derivation of the energy due to a membrane's elasticity, we show how undulations arise as elementary excitations originating from the second derivative of an energy functional. Furthermore, we expound the efficiency of classical differential-geometric formalism to understand the effect of differential operators that characterize processes involved in membrane physics. As an introduction to concepts the paper is self-contained and rarely exceeds calculus level.

20. Elementary excitations of biomembranes: Differential geometry of undulations in elastic surfaces

International Nuclear Information System (INIS)

Hemmen, J. Leo van; Leibold, Christian

2007-01-01

Biomembrane undulations are elementary excitations in the elastic surfaces of cells and vesicles. As such they can provide surprising insights into the mechanical processes that shape and stabilize biomembranes. We explain how naturally these undulations can be described by classical differential geometry. In particular, we apply the analytical formalism of differential-geometric calculus to the surfaces generated by a cell membrane and underlying cytoskeleton. After a short derivation of the energy due to a membrane's elasticity, we show how undulations arise as elementary excitations originating from the second derivative of an energy functional. Furthermore, we expound the efficiency of classical differential-geometric formalism to understand the effect of differential operators that characterize processes involved in membrane physics. As an introduction to concepts the paper is self-contained and rarely exceeds calculus level

1. Riemann-Christoffel Tensor in Differential Geometry of Fractional Order Application to Fractal Space-Time

Science.gov (United States)

Jumarie, Guy

2013-04-01

By using fractional differences, one recently proposed an alternative to the formulation of fractional differential calculus, of which the main characteristics is a new fractional Taylor series and its companion Rolle's formula which apply to non-differentiable functions. The key is that now we have at hand a differential increment of fractional order which can be manipulated exactly like in the standard Leibniz differential calculus. Briefly the fractional derivative is the quotient of fractional increments. It has been proposed that this calculus can be used to construct a differential geometry on manifold of fractional order. The present paper, on the one hand, refines the framework, and on the other hand, contributes some new results related to arc length of fractional curves, area on fractional differentiable manifold, covariant fractal derivative, Riemann-Christoffel tensor of fractional order, fractional differential equations of fractional geodesic, strip modeling of fractal space time and its relation with Lorentz transformation. The relation with Nottale's fractal space-time theory then appears in quite a natural way.

2. On some methods of achieving a continuous and differentiated assessment in Linear Algebra and Analytic and Differential Geometry courses and seminars

Directory of Open Access Journals (Sweden)

M. A.P. PURCARU

2017-12-01

Full Text Available This paper aims at highlighting some aspects related to assessment as regards its use as a differentiated training strategy for Linear Algebra and Analytic and Differential Geometry courses and seminars. Thus, the following methods of continuous differentiated assessment are analyzed and exemplified: the portfolio, the role play, some interactive methods and practical examinations.

3. Nonlocality, no-signalling, and Bellʼs theorem investigated by Weyl conformal differential geometry

Science.gov (United States)

De Martini, Francesco; Santamato, Enrico

2014-12-01

The principles and methods of conformal quantum geometrodynamics based on Weyl differential geometry are presented. The theory applied to the case of the relativistic single quantum spin-\\frac{1}{2} leads to a novel and unconventional derivation of the Dirac equation. The further extension of the theory to the case of two-spins-\\frac{1}{2} in the EPR entangled state and to the related violation of Bell inequalities leads, by an exact non-relativistic analysis, to an insightful resolution of all paradoxes implied by quantum nonlocality.

4. Nonlocality, no-signalling, and Bell's theorem investigated by Weyl conformal differential geometry

International Nuclear Information System (INIS)

Martini, Francesco De; Santamato, Enrico

2014-01-01

The principles and methods of conformal quantum geometrodynamics based on Weyl differential geometry are presented. The theory applied to the case of the relativistic single quantum spin-(1/2) leads to a novel and unconventional derivation of the Dirac equation. The further extension of the theory to the case of two-spins-(1/2) in the EPR entangled state and to the related violation of Bell inequalities leads, by an exact non-relativistic analysis, to an insightful resolution of all paradoxes implied by quantum nonlocality. (paper)

5. Localized excitations and the geometry of the 1nπ* excited states of pyrazine

International Nuclear Information System (INIS)

Kleier, D.A.; Martin, R.L.; Wadt, W.R.; Moomaw, W.R.

1982-01-01

Previous theoretical work has shown that the lowest excited singlet state of pyrazine, the π* 1 B 3 u state, is best described in terms of interacting excitations localized on each nitrogen. The present work refines the localized excitation model and considers its implications for the geometry of the 1 B 3 u state. Hartree-Fock calculations show that the best single configuration description of the nπ* state has broken ( 1 B 1 ) symmetry with the excitation strongly localized at one end of the molcule. If the symmetry-restricted hf result is used for reference, this localization describes an important correlation effect. The excited-state geometry was probed using configuration interaction wave functions based on the symmetry-restricted orbitals, as well as properly symmetrized ''valance-bond'' wave functions based on the broken symmetry solutions. Both descriptions lead to a very flat potential for a b/sub 1u/ vibrational mode. This mode reduces the molecular geometry from D/sub 2h/ to C/sub 2v/. We present spectroscopic evidence of our own and of other workers which is consistent with such a flat potential

6. Product Differentiation in Local Television News.

Science.gov (United States)

Atwater, Tony

A study was conducted to investigate the extent to which local television stations exhibited diversity in newscast content within three midwest broadcast markets. A second objective was to describe the nature of the news content characteristic of local news stories that were broadcast by only one station within a market (or unique news stories). A…

7. On the Approximate Solutions of Local Fractional Differential Equations with Local Fractional Operators

Directory of Open Access Journals (Sweden)

Hossein Jafari

2016-04-01

Full Text Available In this paper, we consider the local fractional decomposition method, variational iteration method, and differential transform method for analytic treatment of linear and nonlinear local fractional differential equations, homogeneous or nonhomogeneous. The operators are taken in the local fractional sense. Some examples are given to demonstrate the simplicity and the efficiency of the presented methods.

8. Geometry of convex polygons and locally minimal binary trees spanning these polygons

International Nuclear Information System (INIS)

Ivanov, A O; Tuzhilin, A A

1999-01-01

In previous works the authors have obtained an effective classification of planar locally minimal binary trees with convex boundaries. The main aim of the present paper is to find more subtle restrictions on the possible structure of such trees in terms of the geometry of the given boundary set. Special attention is given to the case of quasiregular boundaries (that is, boundaries that are sufficiently close to regular ones in a certain sense). In particular, a series of quasiregular boundaries that cannot be spanned by a locally minimal binary tree is constructed

9. A new approach for gravity localization in six-dimensional geometries

International Nuclear Information System (INIS)

Santos, Victor Pereira do Nascimento; Almeida, Carlos Alberto Santos de

2011-01-01

Full text: The idea that spacetime may have more than four dimensions is old, originally presented as an attempt to unify Maxwell's theory of Electromagnetism with the brand-new gravitation theory of Einstein. Such extra dimensions are in principle unobservable to the energy scales currently available. However, its effects can be seen in short distance gravity experiments and in observations in cosmology. Also, it is used as a mechanism to explain the difference between the energy scales of the weak force and gravity, which is called the hierarchy problem. The current framework for the extra dimension scenario is consider the four-dimensional known universe as embedded in a higher dimensional space called bulk. The form of this bulk determines how we perceive gravity in our universe; then, the behaviour of gravitational field depends on the geometry of the bulk. Metric solutions were already presented for string-like defect, with and without matter sources, where was shown that the gravity Newtonian potential grows with the inverse cube of distance. Such correction arises from a very particular mass spectrum for the gravitational field, which already contains the orbital angular momentum contributions. In this work we study the behaviour of gravitational field in a extra-dimensional braneworld scenario, using non-factorizable geometries (which preserves Poincare symmetry) and setting suitable matter distributions in order to verify its localization, for several geometries. For such geometries it is possible to find explicit solutions for the tensor fluctuations of the metric. (author)

10. Effect of conductor geometry on source localization: Implications for epilepsy studies

International Nuclear Information System (INIS)

Schlitt, H.; Heller, L.; Best, E.; Ranken, D.; Aaron, R.

1994-01-01

We shall discuss the effects of conductor geometry on source localization for applications in epilepsy studies. The most popular conductor model for clinical MEG studies is a homogeneous sphere. However, several studies have indicated that a sphere is a poor model for the head when the sources are deep, as is the case for epileptic foci in the mesial temporal lobe. We believe that replacing the spherical model with a more realistic one in the inverse fitting procedure will improve the accuracy of localizing epileptic sources. In order to include a realistic head model in the inverse problem, we must first solve the forward problem for the realistic conductor geometry. We create a conductor geometry model from MR images, and then solve the forward problem via a boundary integral equation for the electric potential due to a specified primary source. One the electric potential is known, the magnetic field can be calculated directly. The most time-intensive part of the problem is generating the conductor model; fortunately, this needs to be done only once for each patient. It takes little time to change the primary current and calculate a new magnetic field for use in the inverse fitting procedure. We present the results of a series of computer simulations in which we investigate the localization accuracy due to replacing the spherical model with the realistic head model in the inverse fitting procedure. The data to be fit consist of a computer generated magnetic field due to a known current dipole in a realistic head model, with added noise. We compare the localization errors when this field is fit using a spherical model to the fit using a realistic head model. Using a spherical model is comparable to what is usually done when localizing epileptic sources in humans, where the conductor model used in the inverse fitting procedure does not correspond to the actual head

11. Local Fractional Laplace Variational Iteration Method for Solving Linear Partial Differential Equations with Local Fractional Derivative

Directory of Open Access Journals (Sweden)

Ai-Min Yang

2014-01-01

Full Text Available The local fractional Laplace variational iteration method was applied to solve the linear local fractional partial differential equations. The local fractional Laplace variational iteration method is coupled by the local fractional variational iteration method and Laplace transform. The nondifferentiable approximate solutions are obtained and their graphs are also shown.

12. Rapid Fourier space solution of linear partial integro-differential equations in toroidal magnetic confinement geometries

International Nuclear Information System (INIS)

McMillan, B.F.; Jolliet, S.; Tran, T.M.; Villard, L.; Bottino, A.; Angelino, P.

2010-01-01

Fluctuating quantities in magnetic confinement geometries often inherit a strong anisotropy along the field lines. One technique for describing these structures is the use of a certain set of Fourier components on the tori of nested flux surfaces. We describe an implementation of this approach for solving partial differential equations, like Poisson's equation, where a different set of Fourier components may be chosen on each surface according to the changing safety factor profile. Allowing the resolved components to change to follow the anisotropy significantly reduces the total number of degrees of freedom in the description. This can permit large gains in computational performance. We describe, in particular, how this approach can be applied to rapidly solve the gyrokinetic Poisson equation in a particle code, ORB5 (Jolliet et al. (2007) [5]), with a regular (non-field-aligned) mesh. (authors)

13. Intercept Algorithm for Maneuvering Targets Based on Differential Geometry and Lyapunov Theory

Directory of Open Access Journals (Sweden)

Yunes Sh. ALQUDSI

2018-03-01

Full Text Available Nowadays, the homing guidance is utilized in the existed and under development air defense systems (ADS to effectively intercept the targets. The targets became smarter and capable to fly and maneuver professionally and the tendency to design missile with a small warhead became greater, then there is a pressure to produce a more precise and accurate missile guidance system based on intelligent algorithms to ensure effective interception of highly maneuverable targets. The aim of this paper is to present an intelligent guidance algorithm that effectively and precisely intercept the maneuverable and smart targets by virtue of the differential geometry (DG concepts. The intercept geometry and engagement kinematics, in addition to the direct intercept condition are developed and expressed in DG terms. The guidance algorithm is then developed by virtue of DG and Lyapunov theory. The study terminates with 2D engagement simulation with illustrative examples, to demonstrate that, the derived DG guidance algorithm is a generalized guidance approach and the well-known proportional navigation (PN guidance law is a subset of this approach.

14. On 3d bulk geometry of Virasoro coadjoint orbits: orbit invariant charges and Virasoro hair on locally AdS{sub 3} geometries

Energy Technology Data Exchange (ETDEWEB)

Sheikh-Jabbari, M.M. [Institute for Research in Fundamental Sciences (IPM), School of Physics, Tehran (Iran, Islamic Republic of); Yavartanoo, H. [Institute of Theoretical Physics, Chinese Academy of Sciences, State Key Laboratory of Theoretical Physics, Beijing (China)

2016-09-15

Expanding upon [arXiv:1404.4472, arXiv:1511.06079], we provide a further detailed analysis of Banados geometries, the most general solutions to the AdS{sub 3} Einstein gravity with Brown-Henneaux boundary conditions. We analyze in some detail the causal, horizon, and boundary structure, and the geodesic motion on these geometries, as well as the two classes of symplectic charges one can associate with these geometries: charges associated with the exact symmetries and the Virasoro charges. We elaborate on the one-to-one relation between the coadjoint orbits of two copies of the Virasoro group and Banados geometries. We discuss that the information as regards the Banados geometries falls into two categories: ''orbit invariant'' information and ''Virasoro hairs''. The former concerns geometric quantities, while the latter are specified by the non-local surface integrals. We elaborate on multi-BTZ geometries which have a number of disconnected pieces at the horizon bifurcation curve. We study multi-BTZ black hole thermodynamics and discuss that the thermodynamic quantities are orbit invariants. We also comment on the implications of our analysis for a 2d CFT dual which could possibly be dual to AdS{sub 3} Einstein gravity. (orig.)

15. Differential evolution to enhance localization of mobile robots

DEFF Research Database (Denmark)

Lisowski, Michal; Fan, Zhun; Ravn, Ole

2011-01-01

. In addition, a novel mechanism for effective robot kidnap detection was proposed. Experiments were performed using computer simulations based on the odometer data and laser range finder measurements collected in advance by a robot in real-life. Experimental results showed that integrating DE enables MCL...... to provide more accurate robot pose estimations in shorter time while using fewer particles.......This paper focuses on the mobile robot localization problems: pose tracking, global localization and robot kidnap. Differential Evolution (DE) applied to extend Monte Carlo Localization (MCL) was investigated to better solve localization problem by increasing localization reliability and speed...

16. Torso geometry reconstruction and body surface electrode localization using three-dimensional photography.

Science.gov (United States)

Perez-Alday, Erick A; Thomas, Jason A; Kabir, Muammar; Sedaghat, Golriz; Rogovoy, Nichole; van Dam, Eelco; van Dam, Peter; Woodward, William; Fuss, Cristina; Ferencik, Maros; Tereshchenko, Larisa G

We conducted a prospective clinical study (n=14; 29% female) to assess the accuracy of a three-dimensional (3D) photography-based method of torso geometry reconstruction and body surface electrodes localization. The position of 74 body surface electrocardiographic (ECG) electrodes (diameter 5mm) was defined by two methods: 3D photography, and CT (marker diameter 2mm) or MRI (marker size 10×20mm) imaging. Bland-Altman analysis showed good agreement in X (bias -2.5 [95% limits of agreement (LoA) -19.5 to 14.3] mm), Y (bias -0.1 [95% LoA -14.1 to 13.9] mm), and Z coordinates (bias -0.8 [95% LoA -15.6 to 14.2] mm), as defined by the CT/MRI imaging, and 3D photography. The average Hausdorff distance between the two torso geometry reconstructions was 11.17±3.05mm. Thus, accurate torso geometry reconstruction using 3D photography is feasible. Body surface ECG electrodes coordinates as defined by the CT/MRI imaging, and 3D photography, are in good agreement. Copyright © 2017 Elsevier Inc. All rights reserved.

17. Application of stochastic differential geometry to the term structure of interst rates in developed markets

Energy Technology Data Exchange (ETDEWEB)

Taranenko, Y.; Barnes, C.

1996-12-31

This paper deals with further developments of the new theory that applies stochastic differential geometry (SDG) to dynamics of interest rates. We examine mathematical constraints on the evolution of interest rate volatilities that arise from stochastic differential calculus under assumptions of an arbitrage free evolution of zero coupon bonds and developed markets (i.e., none of the party/factor can drive the whole market). The resulting new theory incorporates the Heath-Jarrow-Morton (HJM) model of interest rates and provides new equations for volatilities which makes the system of equations for interest rates and volatilities complete and self consistent. It results in much smaller amount of volatility data that should be guessed for the SDG model as compared to the HJM model. Limited analysis of the market volatility data suggests that the assumption of the developed market is violated around maturity of two years. Such maturities where the assumptions of the SDG model are violated are suggested to serve as boundaries at which volatilities should be specified independently from the model. Our numerical example with two boundaries (two years and five years) qualitatively resembles the market behavior. Under some conditions solutions of the SDG model become singular that may indicate market crashes. More detail comparison with the data is needed before the theory can be established or refuted.

18. Graphic constructions of characteristic diagrams in chemical engineering and the application of differential geometry

Directory of Open Access Journals (Sweden)

Pejović Branko B.

2012-01-01

Full Text Available Starting from the experimental concentration-time ( cA,t diagram this work gives the construction of the rate of reaction-time (rA,t diagram using the pure graphic method. The diagram was constructed based on the constructed tangents in arbitrary points of the starting diagram by drawing lines parallel to them in the predetermined pole. The evidence of the construction was derived using differential geometry, i.e. the main theorem of differential calculus. Differential properties between the observed values were used in the method. Starting from the analytic relations rA = rA(t and cA = cA(t, which can be very complex (polynomes of the n-th order, and, eliminating time t in order to give a full description of the process, we obtain the analytical relation rA = rA(cA, which is then graphically represented. Hoewever, this elimination of time can also be done graphically, in a relatively simple way. After that, through the use of the integral calculus, it was shown that concentration increase in a time interval is proportional to the (rA,t diagram surface area. Using a similar procedure, further in the paper, it was shown that the time increase is proportional to the (1/rA, cA diagram surface area. In order for the method to be applicable in practice, we have derived relations for appropriate coefficients of proportionality. Verification of the method is illustrated by the two characteristic examples from chemical kinetics at different monotonies of the starting experimental functions.

19. Indoor Localization and Radio Map Estimation using Unsupervised Manifold Alignment with Geometry Perturbation

KAUST Repository

Majeed, Khaqan; Sorour, Sameh; Al-Naffouri, Tareq Y.; Valaee, Shahrokh

2015-01-01

20. Indoor Localization and Radio Map Estimation using Unsupervised Manifold Alignment with Geometry Perturbation

KAUST Repository

Majeed, Khaqan

2015-12-22

1. Ionic diffusion through confined geometries: from Langevin equations to partial differential equations

International Nuclear Information System (INIS)

Nadler, Boaz; Schuss, Zeev; Singer, Amit; Eisenberg, R S

2004-01-01

Ionic diffusion through and near small domains is of considerable importance in molecular biophysics in applications such as permeation through protein channels and diffusion near the charged active sites of macromolecules. The motion of the ions in these settings depends on the specific nanoscale geometry and charge distribution in and near the domain, so standard continuum type approaches have obvious limitations. The standard machinery of equilibrium statistical mechanics includes microscopic details, but is also not applicable, because these systems are usually not in equilibrium due to concentration gradients and to the presence of an external applied potential, which drive a non-vanishing stationary current through the system. We present a stochastic molecular model for the diffusive motion of interacting particles in an external field of force and a derivation of effective partial differential equations and their boundary conditions that describe the stationary non-equilibrium system. The interactions can include electrostatic, Lennard-Jones and other pairwise forces. The analysis yields a new type of Poisson-Nernst-Planck equations, that involves conditional and unconditional charge densities and potentials. The conditional charge densities are the non-equilibrium analogues of the well studied pair correlation functions of equilibrium statistical physics. Our proposed theory is an extension of equilibrium statistical mechanics of simple fluids to stationary non-equilibrium problems. The proposed system of equations differs from the standard Poisson-Nernst-Planck system in two important aspects. First, the force term depends on conditional densities and thus on the finite size of ions, and second, it contains the dielectric boundary force on a discrete ion near dielectric interfaces. Recently, various authors have shown that both of these terms are important for diffusion through confined geometries in the context of ion channels

2. Twistor geometry

NARCIS (Netherlands)

van den Broek, P.M.

1984-01-01

The aim of this paper is to give a detailed exposition of the relation between the geometry of twistor space and the geometry of Minkowski space. The paper has a didactical purpose; no use has been made of differential geometry and cohomology.

3. Local first integrals for systems of differential equations

International Nuclear Information System (INIS)

Zhang Xiang

2003-01-01

The main purpose of this paper is to provide some sufficient conditions for a system of differential equations to have local first integrals in a certain neighbourhood of a singularity. Our results generalize those given in Kwek et al (2003 Z. Angew. Math. Phys. 54 26) and Li et al (2003 Z. Angew. Math. Phys. 54 235)

4. Local conformal symmetry in non-Riemannian geometry and the origin of physical scales

Energy Technology Data Exchange (ETDEWEB)

De Cesare, Marco [King' s College London, Theoretical Particle Physics and Cosmology Group, Department of Physics, London (United Kingdom); Moffat, John W. [Perimeter Institute for Theoretical Physics, Waterloo, ON (Canada); Sakellariadou, Mairi [King' s College London, Theoretical Particle Physics and Cosmology Group, Department of Physics, London (United Kingdom); Perimeter Institute for Theoretical Physics, Waterloo, ON (Canada)

2017-09-15

We introduce an extension of the Standard Model and General Relativity built upon the principle of local conformal invariance, which represents a generalization of a previous work by Bars, Steinhardt and Turok. This is naturally realized by adopting as a geometric framework a particular class of non-Riemannian geometries, first studied by Weyl. The gravitational sector is enriched by a scalar and a vector field. The latter has a geometric origin and represents the novel feature of our approach. We argue that physical scales could emerge from a theory with no dimensionful parameters, as a result of the spontaneous breakdown of conformal and electroweak symmetries. We study the dynamics of matter fields in this modified gravity theory and show that test particles follow geodesics of the Levi-Civita connection, thus resolving an old criticism raised by Einstein against Weyl's original proposal. (orig.)

5. Compounding local invariant features and global deformable geometry for medical image registration.

Directory of Open Access Journals (Sweden)

Jianhua Zhang

Full Text Available Using deformable models to register medical images can result in problems of initialization of deformable models and robustness and accuracy of matching of inter-subject anatomical variability. To tackle these problems, a novel model is proposed in this paper by compounding local invariant features and global deformable geometry. This model has four steps. First, a set of highly-repeatable and highly-robust local invariant features, called Key Features Model (KFM, are extracted by an effective matching strategy. Second, local features can be matched more accurately through the KFM for the purpose of initializing a global deformable model. Third, the positional relationship between the KFM and the global deformable model can be used to precisely pinpoint all landmarks after initialization. And fourth, the final pose of the global deformable model is determined by an iterative process with a lower time cost. Through the practical experiments, the paper finds three important conclusions. First, it proves that the KFM can detect the matching feature points well. Second, the precision of landmark locations adjusted by the modeled relationship between KFM and global deformable model is greatly improved. Third, regarding the fitting accuracy and efficiency, by observation from the practical experiments, it is found that the proposed method can improve 6~8% of the fitting accuracy and reduce around 50% of the computational time compared with state-of-the-art methods.

6. Relative-locality distant observers and the phenomenology of momentum-space geometry

International Nuclear Information System (INIS)

Amelino-Camelia, Giovanni; Rosati, Giacomo; Trevisan, Gabriele; Arzano, Michele; Kowalski-Glikman, Jerzy

2012-01-01

We study the translational invariance of the relative-locality framework proposed in Amelino-Camelia et al (2011 Phys. Rev. D 84 084010), which had been previously established only for the case of a single interaction. We provide an explicit example of boundary conditions at endpoints of worldlines, which indeed ensures the desired translational invariance for processes involving several interactions, even when some of the interactions are causally connected (particle exchange). We illustrate the properties of the associated relativistic description of distant observers within the example of a κ-Poincare-inspired momentum-space geometry, with de Sitter metric and parallel transport governed by a non-metric and torsionful connection. We find that in such a theory, simultaneously emitted massless particles do not reach simultaneously a distant detector, as expected in light of the findings of Freidel and Smolin (2011 arXiv:1103.5626) on the implications of non-metric connections. We also show that the theory admits a free-particle limit, where the relative-locality results of Amelino-Camelia et al (2011 Phys. Lett. B 700 150) are reproduced. We establish that the torsion of the κ-Poincare connection introduces a small (but observably large) dependence of the time of detection, for simultaneously emitted particles, on some properties of the interactions producing the particles at the source. (paper)

7. Relative-locality distant observers and the phenomenology of momentum-space geometry

Science.gov (United States)

Amelino-Camelia, Giovanni; Arzano, Michele; Kowalski-Glikman, Jerzy; Rosati, Giacomo; Trevisan, Gabriele

2012-04-01

We study the translational invariance of the relative-locality framework proposed in Amelino-Camelia et al (2011 Phys. Rev. D 84 084010), which had been previously established only for the case of a single interaction. We provide an explicit example of boundary conditions at endpoints of worldlines, which indeed ensures the desired translational invariance for processes involving several interactions, even when some of the interactions are causally connected (particle exchange). We illustrate the properties of the associated relativistic description of distant observers within the example of a κ-Poincaré-inspired momentum-space geometry, with de Sitter metric and parallel transport governed by a non-metric and torsionful connection. We find that in such a theory, simultaneously emitted massless particles do not reach simultaneously a distant detector, as expected in light of the findings of Freidel and Smolin (2011 arXiv:1103.5626) on the implications of non-metric connections. We also show that the theory admits a free-particle limit, where the relative-locality results of Amelino-Camelia et al (2011 Phys. Lett. B 700 150) are reproduced. We establish that the torsion of the κ-Poincaré connection introduces a small (but observably large) dependence of the time of detection, for simultaneously emitted particles, on some properties of the interactions producing the particles at the source.

8. Differential geometry of CR-submanifolds of a normal almost para contact manifold

International Nuclear Information System (INIS)

Shahid, M.H.

1992-12-01

The aim of this paper is to study the geometry of CR-submanifolds of a normal almost para contact manifold. We discuss the integrability conditions of distributions involved in the definition and geometry of leaves of CR-submanifolds, some results on CR-submanifolds with parallel structures and contact CR-product are also given. (author). 10 refs

9. Local bifurcations in differential equations with state-dependent delay.

Science.gov (United States)

Sieber, Jan

2017-11-01

A common task when analysing dynamical systems is the determination of normal forms near local bifurcations of equilibria. As most of these normal forms have been classified and analysed, finding which particular class of normal form one encounters in a numerical bifurcation study guides follow-up computations. This paper builds on normal form algorithms for equilibria of delay differential equations with constant delay that were developed and implemented in DDE-Biftool recently. We show how one can extend these methods to delay-differential equations with state-dependent delay (sd-DDEs). Since higher degrees of regularity of local center manifolds are still open for sd-DDEs, we give an independent (still only partial) argument which phenomena from the truncated normal must persist in the full sd-DDE. In particular, we show that all invariant manifolds with a sufficient degree of normal hyperbolicity predicted by the normal form exist also in the full sd-DDE.

10. Local bifurcations in differential equations with state-dependent delay

Science.gov (United States)

Sieber, Jan

2017-11-01

A common task when analysing dynamical systems is the determination of normal forms near local bifurcations of equilibria. As most of these normal forms have been classified and analysed, finding which particular class of normal form one encounters in a numerical bifurcation study guides follow-up computations. This paper builds on normal form algorithms for equilibria of delay differential equations with constant delay that were developed and implemented in DDE-Biftool recently. We show how one can extend these methods to delay-differential equations with state-dependent delay (sd-DDEs). Since higher degrees of regularity of local center manifolds are still open for sd-DDEs, we give an independent (still only partial) argument which phenomena from the truncated normal must persist in the full sd-DDE. In particular, we show that all invariant manifolds with a sufficient degree of normal hyperbolicity predicted by the normal form exist also in the full sd-DDE.

11. Partial Differential Equations

CERN Document Server

1988-01-01

The volume contains a selection of papers presented at the 7th Symposium on differential geometry and differential equations (DD7) held at the Nankai Institute of Mathematics, Tianjin, China, in 1986. Most of the contributions are original research papers on topics including elliptic equations, hyperbolic equations, evolution equations, non-linear equations from differential geometry and mechanics, micro-local analysis.

12. Local Instruction Theory (LIT) on spherical geometry for enhancement students’ strategic competence

Science.gov (United States)

Nuraida, I.; Kusumah, Y. S.; Kartasasmita, B. G.

2018-03-01

This research focused on the analysis of the materials spherical geometry of the wake in an attempt to enhancemet the strategic competence of students and to produce learning trajectory. That is because the materials that are used less catchy concept gives students. Learning materials with Local Instructional Theory (LIT) can enhancemet the strategic competence of the students. This research aims to study the difference of achievement and improving the strategic competence of the students who got the Realistics Mathematics Education (RME) and (LIT) with conventional learning. This research is the Design Research with two cycles. This research has three phases i.e. 1) preparing for the experiment/preliminary; 2) teaching eksperiment; 3) retrospective analysis. The population of the research was the whole IX group junior high school 1 Rajapolah with samples of IXg and IXj group. Results of the analysis of the data shows that students based on Mathematical Prior Knowledge (MPK) acquire learning achievement have RME and LIT and enhancement strategic competence of the mathematical that are higher than those of students who obtain the conventional learning.

13. Local transport method for hybrid diffusion-transport calculations in 2-D cylindrical (R, THETA) geometry

International Nuclear Information System (INIS)

Zhang, Dingkang; Rahnema, Farzad; Ougouag, Abderrfi M.

2011-01-01

A response-based local transport method has been developed in 2-D (r, θ) geometry for coupling to any coarse-mesh (nodal) diffusion method/code. Monte Carlo method is first used to generate a (pre-computed) the response function library for each unique coarse mesh in the transport domain (e.g., the outer reflector region of the Pebble Bed Reactor). The scalar flux and net current at the diffusion/transport interface provided by the diffusion method are used as an incoming surface source to the transport domain. A deterministic iterative sweeping method together with the response function library is utilized to compute the local transport solution within all transport coarse meshes. After the partial angular currents crossing the coarse mesh surfaces are converged, albedo coefficients are computed as boundary conditions for the diffusion methods. The iteration on the albedo boundary condition (for the diffusion method via transport) and the incoming angular flux boundary condition (for the transport via diffusion) is continued until convergence is achieved. The method was tested for in a simplified 2-D (r, θ) pebble bed reactor problem consisting of an inner reflector, an annular fuel region and a controlled outer reflector. The comparisons have shown that the results of the response-function-based transport method agree very well with a direct MCNP whole core solution. The agreement in coarse mesh averaged flux was found to be excellent: relative difference of about 0.18% and a maximum difference of about 0.55%. Note that the MCNP uncertainty was less than 0.1%. (author)

14. An Enhanced Differential Evolution with Elite Chaotic Local Search

Directory of Open Access Journals (Sweden)

Zhaolu Guo

2015-01-01

Full Text Available Differential evolution (DE is a simple yet efficient evolutionary algorithm for real-world engineering problems. However, its search ability should be further enhanced to obtain better solutions when DE is applied to solve complex optimization problems. This paper presents an enhanced differential evolution with elite chaotic local search (DEECL. In DEECL, it utilizes a chaotic search strategy based on the heuristic information from the elite individuals to promote the exploitation power. Moreover, DEECL employs a simple and effective parameter adaptation mechanism to enhance the robustness. Experiments are conducted on a set of classical test functions. The experimental results show that DEECL is very competitive on the majority of the test functions.

15. On some aspects of the geometry of differential equations in physics

OpenAIRE

Gràcia, Xavier; Muñoz-Lecanda, Miguel C.; Román-Roy, Narciso

2004-01-01

In this review paper, we consider three kinds of systems of differential equations, which are relevant in physics, control theory and other applications in engineering and applied mathematics; namely: Hamilton equations, singular differential equations, and partial differential equations in field theories. The geometric structures underlying these systems are presented and commented. The main results concerning these structures are stated and discussed, as well as their influence on the study...

16. Complex analysis and geometry

CERN Document Server

Silva, Alessandro

1993-01-01

The papers in this wide-ranging collection report on the results of investigations from a number of linked disciplines, including complex algebraic geometry, complex analytic geometry of manifolds and spaces, and complex differential geometry.

17. The Cellular Differential Evolution Based on Chaotic Local Search

Directory of Open Access Journals (Sweden)

Qingfeng Ding

2015-01-01

Full Text Available To avoid immature convergence and tune the selection pressure in the differential evolution (DE algorithm, a new differential evolution algorithm based on cellular automata and chaotic local search (CLS or ccDE is proposed. To balance the exploration and exploitation tradeoff of differential evolution, the interaction among individuals is limited in cellular neighbors instead of controlling parameters in the canonical DE. To improve the optimizing performance of DE, the CLS helps by exploring a large region to avoid immature convergence in the early evolutionary stage and exploiting a small region to refine the final solutions in the later evolutionary stage. What is more, to improve the convergence characteristics and maintain the population diversity, the binomial crossover operator in the canonical DE may be instead by the orthogonal crossover operator without crossover rate. The performance of ccDE is widely evaluated on a set of 14 bound constrained numerical optimization problems compared with the canonical DE and several DE variants. The simulation results show that ccDE has better performances in terms of convergence rate and solution accuracy than other optimizers.

18. Lectures on Symplectic Geometry

CERN Document Server

Silva, Ana Cannas

2001-01-01

The goal of these notes is to provide a fast introduction to symplectic geometry for graduate students with some knowledge of differential geometry, de Rham theory and classical Lie groups. This text addresses symplectomorphisms, local forms, contact manifolds, compatible almost complex structures, Kaehler manifolds, hamiltonian mechanics, moment maps, symplectic reduction and symplectic toric manifolds. It contains guided problems, called homework, designed to complement the exposition or extend the reader's understanding. There are by now excellent references on symplectic geometry, a subset of which is in the bibliography of this book. However, the most efficient introduction to a subject is often a short elementary treatment, and these notes attempt to serve that purpose. This text provides a taste of areas of current research and will prepare the reader to explore recent papers and extensive books on symplectic geometry where the pace is much faster. For this reprint numerous corrections and cl...

19. Indium local geometry in In-Sb-Te thin films using XANES and DFT calculations

Science.gov (United States)

Bilovol, V.; Gil Rebaza, A. V.; Mudarra Navarro, A. M.; Errico, L.; Fontana, M.; Arcondo, B.

2017-12-01

In-Sb-Te when is a thin film presents a huge difference in its electrical resistivity when transform from the amorphous (insulating) to the crystalline (conducting) phase. This property made this system one of the main phase-change materials used in the data storage industry. The change in the electrical conductivity is probably associated to a change in the bonding geometry of some of its constituents. To explore this point, we present in this work an study of the bonding geometry of In atoms in In-Sb-Te films by means of In K-edge X-ray absorption near edge structure (XANES) spectroscopy using synchrotron radiation in both as deposited (amorphous) and crystalline thin films obtained as a result of resistance (R) vs temperature (T) measurements. Comparison of the XANES spectra obtained for ternary amorphous films and binary crystalline reference films suggests that in amorphous films the bonding geometry of In atoms is tetrahedral-like. After the thermal annealing has been carried out the differences in the XANES spectra of the as deposited and the annealed films indicate that the bonding geometry of In atoms changes. Based on X-ray diffraction results and ab initio calculations in the framework of the Density Functional Theory (DFT) we show that the new coordination geometry is associated with a tendency of In atoms towards octahedral-like.

20. Chiral-Yang-Mills theory, non commutative differential geometry, and the need for a Lie super-algebra

International Nuclear Information System (INIS)

Thierry-Mieg, Jean

2006-01-01

In Yang-Mills theory, the charges of the left and right massless Fermions are independent of each other. We propose a new paradigm where we remove this freedom and densify the algebraic structure of Yang-Mills theory by integrating the scalar Higgs field into a new gauge-chiral 1-form which connects Fermions of opposite chiralities. Using the Bianchi identity, we prove that the corresponding covariant differential is associative if and only if we gauge a Lie-Kac super-algebra. In this model, spontaneous symmetry breakdown naturally occurs along an odd generator of the super-algebra and induces a representation of the Connes-Lott non commutative differential geometry of the 2-point finite space

1. Ionisation differential cross section measurements for N2 at low incident energy in coplanar and non-coplanar geometries

International Nuclear Information System (INIS)

2016-01-01

Ionisation triple differential cross sections have been determined experimentally and theoretically for the neutral molecule N 2 over a range of geometries from coplanar to the perpendicular plane. Data were obtained at incident electron energies ∼10 and ∼20 eV above the ionisation potential of the 3 σ g , 1 π u and 2 σ g states, using both equal and non-equal outgoing electron energies. The data were taken with the incident electron beam in the scattering plane ( ψ = 0°), at 45° to this plane and orthogonal to the plane ( ψ = 90°). The set of nine measured differential cross sections at a given energy were then inter-normalised to each other. The data are compared to new calculations using various distorted wave methods, and differences between theory and experiment are discussed. (paper)

2. Effect of interior geometry on local climate inside an electronic device enclosure

DEFF Research Database (Denmark)

Joshy, Salil; Jellesen, Morten Stendahl; Ambat, Rajan

2017-01-01

Electronic enclosure design and the internal arrangement of PCBs and components influence microclimate inside the enclosure. This work features a general electronic unit with parallel PCBs. One of the PCB is considered to have heat generating components on it. The humidity and temperature profiles...... geometry of the device and related enclosure design parameters on the humidity and temperature profiles inside the electronic device enclosure....

3. Nonsmooth differential geometry-an approach tailored for spaces with Ricci curvature bounded from below

CERN Document Server

Gigli, Nicola

2018-01-01

The author discusses in which sense general metric measure spaces possess a first order differential structure. Building on this, spaces with Ricci curvature bounded from below a second order calculus can be developed, permitting the author to define Hessian, covariant/exterior derivatives and Ricci curvature.

4. On Fock Space Representations of quantized Enveloping Algebras related to Non-Commutative Differential Geometry

CERN Document Server

Jurco, B; Jurco, B; Schlieker, M

1995-01-01

In this paper we construct explicitly natural (from the geometrical point of view) Fock space representations (contragradient Verma modules) of the quantized enveloping algebras. In order to do so, we start from the Gauss decomposition of the quantum group and introduce the differential operators on the corresponding q-deformed flag manifold (asuumed as a left comodule for the quantum group) by a projection to it of the right action of the quantized enveloping algebra on the quantum group. Finally, we express the representatives of the elements of the quantized enveloping algebra corresponding to the left-invariant vector fields on the quantum group as first-order differential operators on the q-deformed flag manifold.

5. Experimental data and calculation studies of critical heat fluxes at local disturbances of geometry of WWER fuel assemblies

International Nuclear Information System (INIS)

Kobzar, L.L.; Oleksyuk, D.A.

2001-01-01

The results of experiments executed in RRC 'Kurchatov Institute on the thermal-physical critical facility SVD are presented herein. The experiments modeled the drawing of two fuel rods to each other till touching WWER-1000 reactor in FA. The experimental model is a 7-rod bundle with the heated length of 1 m. The primary goal of experiments was to acquire the quantitative factors of the reduction in the critical heat fluxes as contrasted to the basic model (without disturbances of FA geometry) at the expense of local disturbance of a rod bundle geometry. As it follows from the experiment, the effect of decrease of the critical heat rate depends on combination of regime parameters and it makes 15% in the most unfavorable case (Authors)

6. Beam geometry, alignment, and wavefront aberration effects on interferometric differential wavefront sensing

International Nuclear Information System (INIS)

Yu, Xiangzhi; Gillmer, S R; Ellis, J D

2015-01-01

Heterodyne interferometry is a widely accepted methodology with high resolution in many metrology applications. As a functionality enhancement, differential wavefront sensing (DWS) enables simultaneous measurement of displacement, pitch, and yaw using a displacement interferometry system and a single beam incident on a plane mirror target. The angular change is measured using a weighted phase average between symmetrically adjacent quadrant photodiode pairs. In this paper, we present an analytical model to predict the scaling of differential phase signals based on fundamental Gaussian beams. Several numerical models are presented to discuss the effects of physical beam parameters, detector size, system alignment errors, and beam wavefront aberrations on the DWS technique. The results of our modeling predict rotational scaling factors and a usable linear range. Furthermore, experimental results show the analytically predicted scaling factor is in good agreement with empirical calibration. Our three degree-of-freedom interferometer can achieve a resolution of 0.4 nm in displacement and 0.2 μrad in pitch and yaw simultaneously. (paper)

7. Optical geometry

International Nuclear Information System (INIS)

Robinson, I.; Trautman, A.

1988-01-01

The geometry of classical physics is Lorentzian; but weaker geometries are often more appropriate: null geodesics and electromagnetic fields, for example, are well known to be objects of conformal geometry. To deal with a single null congruence, or with the radiative electromagnetic fields associated with it, even less is needed: flag geometry for the first, optical geometry, with which this paper is chiefly concerned, for the second. The authors establish a natural one-to-one correspondence between optical geometries, considered locally, and three-dimensional Cauchy-Riemann structures. A number of Lorentzian geometries are shown to be equivalent from the optical point of view. For example the Goedel universe, the Taub-NUT metric and Hauser's twisting null solution have an optical geometry isomorphic to the one underlying the Robinson congruence in Minkowski space. The authors present general results on the problem of lifting a CR structure to a Lorentz manifold and, in particular, to Minkowski space; and exhibit the relevance of the deviation form to this problem

8. Architectural geometry

KAUST Repository

Pottmann, Helmut; Eigensatz, Michael; Vaxman, Amir; Wallner, Johannes

2014-01-01

Around 2005 it became apparent in the geometry processing community that freeform architecture contains many problems of a geometric nature to be solved, and many opportunities for optimization which however require geometric understanding. This area of research, which has been called architectural geometry, meanwhile contains a great wealth of individual contributions which are relevant in various fields. For mathematicians, the relation to discrete differential geometry is significant, in particular the integrable system viewpoint. Besides, new application contexts have become available for quite some old-established concepts. Regarding graphics and geometry processing, architectural geometry yields interesting new questions but also new objects, e.g. replacing meshes by other combinatorial arrangements. Numerical optimization plays a major role but in itself would be powerless without geometric understanding. Summing up, architectural geometry has become a rewarding field of study. We here survey the main directions which have been pursued, we show real projects where geometric considerations have played a role, and we outline open problems which we think are significant for the future development of both theory and practice of architectural geometry.

9. Architectural geometry

KAUST Repository

Pottmann, Helmut

2014-11-26

Around 2005 it became apparent in the geometry processing community that freeform architecture contains many problems of a geometric nature to be solved, and many opportunities for optimization which however require geometric understanding. This area of research, which has been called architectural geometry, meanwhile contains a great wealth of individual contributions which are relevant in various fields. For mathematicians, the relation to discrete differential geometry is significant, in particular the integrable system viewpoint. Besides, new application contexts have become available for quite some old-established concepts. Regarding graphics and geometry processing, architectural geometry yields interesting new questions but also new objects, e.g. replacing meshes by other combinatorial arrangements. Numerical optimization plays a major role but in itself would be powerless without geometric understanding. Summing up, architectural geometry has become a rewarding field of study. We here survey the main directions which have been pursued, we show real projects where geometric considerations have played a role, and we outline open problems which we think are significant for the future development of both theory and practice of architectural geometry.

10. A local-global problem for linear differential equations

NARCIS (Netherlands)

Put, Marius van der; Reversat, Marc

2008-01-01

An inhomogeneous linear differential equation Ly = f over a global differential field can have a formal solution for each place without having a global solution. The vector space lgl(L) measures this phenomenon. This space is interpreted in terms of cohomology of linear algebraic groups and is

11. A local-global problem for linear differential equations

NARCIS (Netherlands)

Put, Marius van der; Reversat, Marc

An inhomogeneous linear differential equation Ly = f over a global differential field can have a formal solution for each place without having a global solution. The vector space lgl(L) measures this phenomenon. This space is interpreted in terms of cohomology of linear algebraic groups and is

12. Vandetanib in locally advanced or metastatic differentiated thyroid cancer

DEFF Research Database (Denmark)

Leboulleux, Sophie; Bastholt, Lars; Krause, Thomas

2012-01-01

No effective standard treatment exists for patients with radioiodine-refractory, advanced differentiated thyroid carcinoma. We aimed to assess efficacy and safety of vandetanib, a tyrosine kinase inhibitor of RET, VEGFR and EGFR signalling, in this setting....

13. Coupled local facilitation and global hydrologic inhibition drive landscape geometry in a patterned peatland

Science.gov (United States)

Acharya, S.; Kaplan, D. A.; Casey, S.; Cohen, M. J.; Jawitz, J. W.

2015-05-01

Self-organized landscape patterning can arise in response to multiple processes. Discriminating among alternative patterning mechanisms, particularly where experimental manipulations are untenable, requires process-based models. Previous modeling studies have attributed patterning in the Everglades (Florida, USA) to sediment redistribution and anisotropic soil hydraulic properties. In this work, we tested an alternate theory, the self-organizing-canal (SOC) hypothesis, by developing a cellular automata model that simulates pattern evolution via local positive feedbacks (i.e., facilitation) coupled with a global negative feedback based on hydrology. The model is forced by global hydroperiod that drives stochastic transitions between two patch types: ridge (higher elevation) and slough (lower elevation). We evaluated model performance using multiple criteria based on six statistical and geostatistical properties observed in reference portions of the Everglades landscape: patch density, patch anisotropy, semivariogram ranges, power-law scaling of ridge areas, perimeter area fractal dimension, and characteristic pattern wavelength. Model results showed strong statistical agreement with reference landscapes, but only when anisotropically acting local facilitation was coupled with hydrologic global feedback, for which several plausible mechanisms exist. Critically, the model correctly generated fractal landscapes that had no characteristic pattern wavelength, supporting the invocation of global rather than scale-specific negative feedbacks.

14. Geometry Revealed

CERN Document Server

Berger, Marcel

2010-01-01

Both classical geometry and modern differential geometry have been active subjects of research throughout the 20th century and lie at the heart of many recent advances in mathematics and physics. The underlying motivating concept for the present book is that it offers readers the elements of a modern geometric culture by means of a whole series of visually appealing unsolved (or recently solved) problems that require the creation of concepts and tools of varying abstraction. Starting with such natural, classical objects as lines, planes, circles, spheres, polygons, polyhedra, curves, surfaces,

15. Spinning geometry = Twisted geometry

International Nuclear Information System (INIS)

Freidel, Laurent; Ziprick, Jonathan

2014-01-01

It is well known that the SU(2)-gauge invariant phase space of loop gravity can be represented in terms of twisted geometries. These are piecewise-linear-flat geometries obtained by gluing together polyhedra, but the resulting geometries are not continuous across the faces. Here we show that this phase space can also be represented by continuous, piecewise-flat three-geometries called spinning geometries. These are composed of metric-flat three-cells glued together consistently. The geometry of each cell and the manner in which they are glued is compatible with the choice of fluxes and holonomies. We first remark that the fluxes provide each edge with an angular momentum. By studying the piecewise-flat geometries which minimize edge lengths, we show that these angular momenta can be literally interpreted as the spin of the edges: the geometries of all edges are necessarily helices. We also show that the compatibility of the gluing maps with the holonomy data results in the same conclusion. This shows that a spinning geometry represents a way to glue together the three-cells of a twisted geometry to form a continuous geometry which represents a point in the loop gravity phase space. (paper)

16. A non-differentiable solution for the local fractional telegraph equation

Directory of Open Access Journals (Sweden)

Li Jie

2017-01-01

Full Text Available In this paper, we consider the linear telegraph equations with local fractional derivative. The local fractional Laplace series expansion method is used to handle the local fractional telegraph equation. The analytical solution with the non-differentiable graphs is discussed in detail. The proposed method is efficient and accurate.

17. Local Buyer Market Power and Horizontally Differentiated Manufacturers

OpenAIRE

Wang, Shinn-Shyr; Rojas, Christian; Lavoie, Nathalie

2010-01-01

In this paper we study a farmer-processor relationship, where market power is bidirectional: processors have buyer as well as seller market power. Farmers supply a homogeneous raw input to the processors, which, in turn, process it into a horizontally differentiated product. The analysis shows that the spread between prices that both parties receive can be decomposed into two components: one due to buyer market power in the agricultural input market and one due to seller market power in the d...

18. Steady-state, local temperature fields with turbulent sodium flow in nominal and disturbed bundle geometries with spacer grids

International Nuclear Information System (INIS)

Moeller, R.; Tschoeke, H.; Kolodziej, M.

1980-12-01

The operating reliability of nuclear reactors calls for a reliable strength analysis of the highly loaded core elements, one of its prerequisites being the reliable determination of the three-dimensional velocity and temperature fields. To verify thermohydraulics computer programs, extensive local temperature measurements in the rod claddings of the critical bundle zone were performed on a heated 19-rod bundle model with sodium flow and provided with spacer grids (P/D = 1.30; W/D = 1.19). These are the essential results obtained: Outside the spacer grids the azimuthal temperature variations of the side and corner rods are greater by approximately the factor 10 in the bundle geometry under consideration as compared to rods in the central bundle zone. The spacer grids investigated give rise to great local temperature peaks and correspondingly great temperature gradients in the axial and azimuthal directions immediately around the support points. Continuous reduction of a subchannel by rod bowing results in substantial rises of temperature which, however, are limited to the adjacent cladding tube zones. (orig.) [de

19. Foliation theory in algebraic geometry

CERN Document Server

McKernan, James; Pereira, Jorge

2016-01-01

Featuring a blend of original research papers and comprehensive surveys from an international team of leading researchers in the thriving fields of foliation theory, holomorphic foliations, and birational geometry, this book presents the proceedings of the conference "Foliation Theory in Algebraic Geometry," hosted by the Simons Foundation in New York City in September 2013.  Topics covered include: Fano and del Pezzo foliations; the cone theorem and rank one foliations; the structure of symmetric differentials on a smooth complex surface and a local structure theorem for closed symmetric differentials of rank two; an overview of lifting symmetric differentials from varieties with canonical singularities and the applications to the classification of AT bundles on singular varieties; an overview of the powerful theory of the variety of minimal rational tangents introduced by Hwang and Mok; recent examples of varieties which are hyperbolic and yet the Green-Griffiths locus is the whole of X; and a classificati...

20. The Effect of Teaching Geometry Which is Differentiated Based on the Parallel Curriculum for Gifted/Talented Students on Spatial Ability

Directory of Open Access Journals (Sweden)

Basak KOK

2014-06-01

Full Text Available The purpose of this research is to evaluate the effects of teaching geometry which is differentiated based on the parallel curriculum for gifted/talented students on spatial ability. For this purpose; two units as “Polygons” and “Geometric Objects” of 5th grade mathematics book has been taken and formed a new differentiated geometry unit. In this study, pretest and posttest designs of experimental model were used. The study was conducted in Istanbul Science and Art Center, which offers differentiated program to those who are gifted and talented students after school, in the city of İstanbul and participants were 30 students being 15 of them are experimental group and the other 15 are control group. Experimental group students were underwent a differentiated program on “Polygons” and “Geometric Objects” whereas the other group continued their normal program without any differentiation. Spatial Ability Test developed by Talented Youth Center of John Hopkins University was used to collect data. Above mentioned test was presented to both groups of the study. Collected data was analyzed by Mann Whitney-U and Wilcoxon Signed Rank Test which is in the statistics program. It is presented as a result of the study that the program prepared for the gifted and talented students raised their spatial thinking ability.

1. Local and global eulerian gyrokinetic simulations of microturbulence in realistic geometry with applications to the TCV Tokamak

International Nuclear Information System (INIS)

Lapillonne, X.

2010-04-01

In magnetically confined fusion devices, the energy and particle transport is significantly larger than expected from purely collisional processes. This degraded confinement mostly results from small-scale turbulence and prevents from reaching self-sustained burning plasma conditions in present day experiments. A better understanding of these nonlinear phenomena is therefore of key importance on the way towards controlled fusion. The small-scale microinstabilities and associated turbulence are investigated for Tokamak plasmas by means of numerical simulations in the frame of the gyrokinetic theory. This model describes the evolution of the particle distribution functions in phase space together with self-consistent electromagnetic fields, while neglecting the fast motion associated with the Larmor orbit of particles around the magnetic field lines. In the course of this thesis work, substantial modifications to the existing Eulerian gyrokinetic code GENE have been carried out in collaboration with the Max-Planck- Institute f¨ur Plasmaphysik in Garching, Germany. The code has been extended from a local approximation, which only considers a reduced volume of a fusion plasma, to a global version which fully includes radial temperature and density profiles as well as radial magnetic equilibrium variations. To this end, the gyrokinetic equations have been formulated for general magnetic geometry, keeping radial variations of equilibrium quantities, and considering field aligned coordinates, suitable for their numerical implementation. The numerical treatment of the radial direction has been modified from a Fourier representation in the local approach to real space in the global code. This has in particular required to adapt the radial derivatives, the field solver, and to implement a real space dealiasing scheme for the treatment of the nonlinearity. A heat source was in addition introduced to allow for steady state global nonlinear simulations. An important part of

2. The human core exosome interacts with differentially localized processive RNases

DEFF Research Database (Denmark)

Tomecki, Rafal; Kristiansen, Maiken Søndergaard; Lykke-Andersen, Søren

2010-01-01

The eukaryotic RNA exosome is a ribonucleolytic complex involved in RNA processing and turnover. It consists of a nine-subunit catalytically inert core that serves a structural function and participates in substrate recognition. Best defined in Saccharomyces cerevisiae, enzymatic activity comes...... from the associated subunits Dis3p (Rrp44p) and Rrp6p. The former is a nuclear and cytoplasmic RNase II/R-like enzyme, which possesses both processive exo- and endonuclease activities, whereas the latter is a distributive RNase D-like nuclear exonuclease. Although the exosome core is highly conserved......, identity and arrangements of its catalytic subunits in different vertebrates remain elusive. Here, we demonstrate the association of two different Dis3p homologs--hDIS3 and hDIS3L--with the human exosome core. Interestingly, these factors display markedly different intracellular localizations: hDIS3...

3. The non-differentiable solution for local fractional Laplace equation in steady heat-conduction problem

Directory of Open Access Journals (Sweden)

Chen Jie-Dong

2016-01-01

Full Text Available In this paper, we investigate the local fractional Laplace equation in the steady heat-conduction problem. The solutions involving the non-differentiable graph are obtained by using the characteristic equation method (CEM via local fractional derivative. The obtained results are given to present the accuracy of the technology to solve the steady heat-conduction in fractal media.

4. Distributed and localized horizontal tectonic deformation as inferred from drainage network geometry and topology: A case study from Lebanon

Science.gov (United States)

Goren, Liran; Castelltort, Sébastien; Klinger, Yann

2016-04-01

Partitioning of horizontal deformation between localized and distributed modes in regions of oblique tectonic convergence is, in many cases, hard to quantify. As a case study, we consider the Dead Sea Fault System that changes its orientation across Lebanon and forms a restraining bend. The oblique deformation along the Lebanese restraining bend is characterized by a complex suite of tectonic structures, among which, the Yammouneh fault, is believed to be the main strand that relays deformation from the southern section to the northern section of the Dead Sea Fault System. However, uncertainties regarding slip rates along the Yammouneh fault and strain partitioning in Lebanon still prevail. In the current work we use the geometry and topology of river basins together with numerical modeling to evaluate modes and rates of the horizontal deformation in Mount Lebanon that is associated with the Arabia-Sinai relative plate motion. We focus on river basins that drain Mount Lebanon to the Mediterranean and originate close to the Yammouneh fault. We quantify a systematic counterclockwise rotation of these basins and evaluate drainage area disequilibrium using an application of the χ mapping technique, which aims at estimating the degree of geometrical and topological disequilibrium in river networks. The analysis indicates a systematic spatial pattern whereby tributaries of the rotated basins appear to experience drainage area loss or gain with respect to channel length. A kinematic model that is informed by river basin geometry reveals that since the late Miocene, about a quarter of the relative plate motion parallel to the plate boundary has been distributed along a wide band of deformation to the west of the Yammouneh fault. Taken together with previous, shorter-term estimates, the model indicates little variation of slip rate along the Yammouneh fault since the late Miocene. Kinematic model results are compatible with late Miocene paleomagnetic rotations in western

5. Hepatocellular differentiation status is characterized by distinct subnuclear localization and form of the chanzyme TRPM7.

Science.gov (United States)

Ogunrinde, Adenike; Pereira, Robyn D; Beaton, Natalie; Lam, D Hung; Whetstone, Christiane; Hill, Ceredwyn E

The channel-kinase TRPM7 is important for the survival, proliferation, and differentiation, of many cell types. Both plasma membrane channel activity and kinase function are implicated in these roles. Channel activity is greater in less differentiated hepatoma cells compared with non-dividing, terminally differentiated adult hepatocytes, suggesting differences in protein expression and/or localization. We used electrophysiological and immunofluorescence approaches to establish whether hepatocellular differentiation is associated with altered TRPM7 expression. Mean outward current decreased by 44% in WIF-B hepatoma cells incubated with the established hepatic differentiating factors oncostatin M/dexamethasone for 1-8 days. Pre-incubation with pyridone 6, a pan-JAK inhibitor, blocked the current reduction. An antibody targeted to the C-terminus of TRPM7 labelled the cytoplasm in WIF-B cells and intact rat liver. Significant label also localized to the nuclear envelope (NE), with relatively more detected in adult hepatocytes compared with WIF-B cells. Hepatoma cells also exhibited nucleoplasmic labelling with intense signal in the nucleolus. The endogenous labelling pattern closely resembles that of HEK293T cells heterologously expressing a TRPM7 kinase construct containing a putative nucleolar localization sequence. These results suggest that TRPM7 form and distribution between the plasma membrane and nucleus, rather than expression, is altered in parallel with differentiation status in rat hepatic cells. Copyright © 2017 International Society of Differentiation. Published by Elsevier B.V. All rights reserved.

6. Localized decrease of β-catenin contributes to the differentiation of human embryonic stem cells

International Nuclear Information System (INIS)

Lam, Hayley; Patel, Shyam; Wong, Janelle; Chu, Julia; Li, Adrian; Li, Song

2008-01-01

Human embryonic stem cells (hESC) are pluripotent, and can be directed to differentiate into different cell types for therapeutic applications. To expand hESCs, it is desirable to maintain hESC growth without differentiation. As hESC colonies grow, differentiated cells are often found at the periphery of the colonies, but the underlying mechanism is not well understood. Here, we utilized micropatterning techniques to pattern circular islands or strips of matrix proteins, and examined the spatial pattern of hESC renewal and differentiation. We found that micropatterned matrix restricted hESC differentiation at colony periphery but allowed hESC growth into multiple layers in the central region, which decreased hESC proliferation and induced hESC differentiation. In undifferentiated hESCs, β-catenin primarily localized at cell-cell junctions but not in the nucleus. The amount of β-catenin in differentiating hESCs at the periphery of colonies or in multiple layers decreased significantly at cell-cell junctions. Consistently, knocking down β-catenin decreased Oct-4 expression in hESCs. These results indicate that localized decrease of β-catenin contributes to the spatial pattern of differentiation in hESC colonies

7. RDEL: Restart Differential Evolution algorithm with Local Search Mutation for global numerical optimization

Directory of Open Access Journals (Sweden)

Ali Wagdy Mohamed

2014-11-01

Full Text Available In this paper, a novel version of Differential Evolution (DE algorithm based on a couple of local search mutation and a restart mechanism for solving global numerical optimization problems over continuous space is presented. The proposed algorithm is named as Restart Differential Evolution algorithm with Local Search Mutation (RDEL. In RDEL, inspired by Particle Swarm Optimization (PSO, a novel local mutation rule based on the position of the best and the worst individuals among the entire population of a particular generation is introduced. The novel local mutation scheme is joined with the basic mutation rule through a linear decreasing function. The proposed local mutation scheme is proven to enhance local search tendency of the basic DE and speed up the convergence. Furthermore, a restart mechanism based on random mutation scheme and a modified Breeder Genetic Algorithm (BGA mutation scheme is combined to avoid stagnation and/or premature convergence. Additionally, an exponent increased crossover probability rule and a uniform scaling factors of DE are introduced to promote the diversity of the population and to improve the search process, respectively. The performance of RDEL is investigated and compared with basic differential evolution, and state-of-the-art parameter adaptive differential evolution variants. It is discovered that the proposed modifications significantly improve the performance of DE in terms of quality of solution, efficiency and robustness.

8. Special geometry

International Nuclear Information System (INIS)

Strominger, A.

1990-01-01

A special manifold is an allowed target manifold for the vector multiplets of D=4, N=2 supergravity. These manifolds are of interest for string theory because the moduli spaces of Calabi-Yau threefolds and c=9, (2,2) conformal field theories are special. Previous work has given a local, coordinate-dependent characterization of special geometry. A global description of special geometries is given herein, and their properties are studied. A special manifold M of complex dimension n is characterized by the existence of a holomorphic Sp(2n+2,R)xGL(1,C) vector bundle over M with a nowhere-vanishing holomorphic section Ω. The Kaehler potential on M is the logarithm of the Sp(2n+2,R) invariant norm of Ω. (orig.)

9. The algebraic approach to space-time geometry

International Nuclear Information System (INIS)

Heller, M.; Multarzynski, P.; Sasin, W.

1989-01-01

A differential manifold can be defined in terms of smooth real functions carried by it. By rejecting the postulate, in such a definition, demanding the local diffeomorphism of a manifold to the Euclidean space, one obtains the so-called differential space concept. Every subset of R n turns out to be a differential space. Extensive parts of differential geometry on differential spaces, developed by Sikorski, are reviewed and adapted to relativistic purposes. Differential space as a new model of space-time is proposed. The Lorentz structure and Einstein's field equations on differential spaces are discussed. 20 refs. (author)

10. Determination of a basic set of Eigen-functions and of the corresponding norm in the case of the one-velocity integral differential Boltzmann equation in spherical geometry

International Nuclear Information System (INIS)

Lafore, P.

1965-01-01

The object of the present work is to draw up a basic set of orthogonal eigenfunctions; resolution of the one-velocity integral-differential Boltzmann equation; this in the case of a spherical geometry system. (author) [fr

11. Differential equation of transverse vibrations of a beam with local stroke change of stiffness

Directory of Open Access Journals (Sweden)

Stanisław Kasprzyk

2007-01-01

Full Text Available The aim of this paper is to derive a differential equation of transverse vibrations of a beam with a local, stroke change of stiffness, and to solve it. The presented method is based on the theory of distributions.

12. Progression of Intravesical Condyloma Acuminata to Locally Advanced Poorly Differentiated Squamous Cell Carcinoma

Directory of Open Access Journals (Sweden)

A. Khambati

2016-07-01

Full Text Available Condyloma acuminata (CA is a common sexually transmitted disease caused by Human Papilloma Virus (HPV infection. CA of the bladder, however, is an exceedingly rare lesion. We present a rare case of poorly differentiated locally invasive squamous cell carcinoma (SCC arising from recurrent CA of the bladder in an immunocompetent patient and discuss pathophysiology and management of this unusual condition.

13. Seedling traits, plasticity and local differentiation as strategies of invasive species of Impatiens in central Europe

Czech Academy of Sciences Publication Activity Database

Skálová, Hana; Havlíčková, Vendula; Pyšek, Petr

2012-01-01

Roč. 110, č. 7 (2012), s. 1429-1438 ISSN 0305-7364 R&D Projects: GA ČR GA206/07/0668; GA MŠk LC06073 Institutional research plan: CEZ:AV0Z60050516 Keywords : plant invasions * plasticity * local differentiation Subject RIV: EF - Botanics Impact factor: 3.449, year: 2012

14. Estimation of Ordinary Differential Equation Parameters Using Constrained Local Polynomial Regression.

Science.gov (United States)

2014-10-01

We propose a new method to use a constrained local polynomial regression to estimate the unknown parameters in ordinary differential equation models with a goal of improving the smoothing-based two-stage pseudo-least squares estimate. The equation constraints are derived from the differential equation model and are incorporated into the local polynomial regression in order to estimate the unknown parameters in the differential equation model. We also derive the asymptotic bias and variance of the proposed estimator. Our simulation studies show that our new estimator is clearly better than the pseudo-least squares estimator in estimation accuracy with a small price of computational cost. An application example on immune cell kinetics and trafficking for influenza infection further illustrates the benefits of the proposed new method.

15. TIG-dressing of High Strength Steel Butt Welded Connections. Part 1 : Weld Toe Geometry and Local Hardness

NARCIS (Netherlands)

Van Es, S.H.J.; Kolstein, M.H.; Pijpers, R.J.M.; Bijlaard, F.S.K.

2014-01-01

This paper presents the results of extensive measurements on weld toe geometry of as-welded and TIG-dressed butt welded connections in high strength steels S460, S690 and very high strength steels S890 and S1100. Descriptions of the measurement techniques and data analysis are presented. Four weld

16. TIG-dressing of high strength steel butt welded connections - Part 1: weld toe geometry and local hardness

NARCIS (Netherlands)

Es, S.H.J. van; Kolstein, M.H.; Pijpers, R.J.M.; Bijlaard, F.S.K.

2013-01-01

This paper presents the results of extensive measurements on weld toe geometry of as-welded and TIG-dressed butt welded connections in high strength steels S460, S690 and very high strength steels S890 and S1100. Descriptions of the measurement techniques and data analysis are presented. Four weld

17. The geometry of geodesics

CERN Document Server

Busemann, Herbert

2005-01-01

A comprehensive approach to qualitative problems in intrinsic differential geometry, this text examines Desarguesian spaces, perpendiculars and parallels, covering spaces, the influence of the sign of the curvature on geodesics, more. 1955 edition. Includes 66 figures.

18. Ca2+-dependent localization of integrin-linked kinase to cell junctions in differentiating keratinocytes.

Science.gov (United States)

Vespa, Alisa; Darmon, Alison J; Turner, Christopher E; D'Souza, Sudhir J A; Dagnino, Lina

2003-03-28

Integrin complexes are necessary for proper proliferation and differentiation of epidermal keratinocytes. Differentiation of these cells is accompanied by down-regulation of integrins and focal adhesions as well as formation of intercellular adherens junctions through E-cadherin homodimerization. A central component of integrin adhesion complexes is integrin-linked kinase (ILK), which can induce loss of E-cadherin expression and epithelial-mesenchymal transformation when ectopically expressed in intestinal and mammary epithelia. In cultured primary mouse keratinocytes, we find that ILK protein levels are independent of integrin expression and signaling, since they remain constant during Ca(2+)-induced differentiation. In contrast, keratinocyte differentiation is accompanied by marked reduction in kinase activity in ILK immunoprecipitates and altered ILK subcellular distribution. Specifically, ILK distributes in close apposition to actin fibers along intercellular junctions in differentiated but not in undifferentiated keratinocytes. ILK localization to cell-cell borders occurs independently of integrin signaling and requires Ca(2+) as well as an intact actin cytoskeleton. Further, and in contrast to what is observed in other epithelial cells, ILK overexpression in differentiated keratinocytes does not promote E-cadherin down-regulation and epithelial-mesenchymal transition. Thus, novel tissue-specific mechanisms control the formation of ILK complexes associated with cell-cell junctions in differentiating murine epidermal keratinocytes.

19. Local fractional variational iteration algorithm iii for the diffusion model associated with non-differentiable heat transfer

Directory of Open Access Journals (Sweden)

Meng Zhi-Jun

2016-01-01

Full Text Available This paper addresses a new application of the local fractional variational iteration algorithm III to solve the local fractional diffusion equation defined on Cantor sets associated with non-differentiable heat transfer.

20. Developments in special geometry

International Nuclear Information System (INIS)

Mohaupt, Thomas; Vaughan, Owen

2012-01-01

We review the special geometry of N = 2 supersymmetric vector and hypermultiplets with emphasis on recent developments and applications. A new formulation of the local c-map based on the Hesse potential and special real coordinates is presented. Other recent developments include the Euclidean version of special geometry, and generalizations of special geometry to non-supersymmetric theories. As applications we discuss the proof that the local r-map and c-map preserve geodesic completeness, and the construction of four- and five-dimensional static solutions through dimensional reduction over time. The shared features of the real, complex and quaternionic version of special geometry are stressed throughout.

1. Cantor-type cylindrical-coordinate method for differential equations with local fractional derivatives

International Nuclear Information System (INIS)

Yang, Xiao-Jun; Srivastava, H.M.; He, Ji-Huan; Baleanu, Dumitru

2013-01-01

In this Letter, we propose to use the Cantor-type cylindrical-coordinate method in order to investigate a family of local fractional differential operators on Cantor sets. Some testing examples are given to illustrate the capability of the proposed method for the heat-conduction equation on a Cantor set and the damped wave equation in fractal strings. It is seen to be a powerful tool to convert differential equations on Cantor sets from Cantorian-coordinate systems to Cantor-type cylindrical-coordinate systems.

2. Methods of information geometry

CERN Document Server

Amari, Shun-Ichi

2000-01-01

Information geometry provides the mathematical sciences with a new framework of analysis. It has emerged from the investigation of the natural differential geometric structure on manifolds of probability distributions, which consists of a Riemannian metric defined by the Fisher information and a one-parameter family of affine connections called the \\alpha-connections. The duality between the \\alpha-connection and the (-\\alpha)-connection together with the metric play an essential role in this geometry. This kind of duality, having emerged from manifolds of probability distributions, is ubiquitous, appearing in a variety of problems which might have no explicit relation to probability theory. Through the duality, it is possible to analyze various fundamental problems in a unified perspective. The first half of this book is devoted to a comprehensive introduction to the mathematical foundation of information geometry, including preliminaries from differential geometry, the geometry of manifolds or probability d...

3. Wage Differentials between Foreign Multinationals and Local Plants and Worker Quality in Malaysian Manufacturing

OpenAIRE

Eric D. Ramstetter

2014-01-01

Using industrial census data for 2000, and smaller sets of survey data for 2001â€“2004, this paper examines the extent of wage differentials between medium-large (20 or more workers) foreign multinational enterprises (MNEs) and local plants in Malaysia's manufacturing industries. On average, wages in sample MNEs were higher than in local plants by two-fifths or more. In addition to being more capital-intensive and relatively large, MNEs also hired higher shares of workers in highly paid occup...

4. Wage Differentials between Foreign Multinationals and Local Plants and Worker Quality in Malaysian Manufacturing

OpenAIRE

エリック D., ラムステッター; Eric D. , Ramstetter

2013-01-01

Using industrial census data for 2000, and smaller sets of survey data for 2001-2004, this paper examines the extent of wage differentials between medium-large (20 or more workers) foreign multinational enterprises (MNEs) and local plants in Malaysia’s manufacturing industries. On average, wages in sample MNEs were higher than in local plants by two-fifths or more. MNEs also hired higher shares of workers in highly paid occupations and with moderate or high education, in addition to being mor...

5. Re-visioning local biologies: HIV-2 and the pattern of differential valuation in biomedical research.

Science.gov (United States)

Gilbert, Hannah

2013-01-01

The discovery of HIV-2, a distinctly West African variant of HIV, is often portrayed as the result of a straightforward, if serendipitous, error. This article reframes the history of how HIV-2 came to be a knowable scientific identity. Relying on narratives from an African laboratory and clinic, it suggests that the rise and fall of HIV-2 as a viable research entity is indicative of a differential visibility and valuation of both human bodies and viruses. Understanding how HIV-2 emerged as a local biology reveals the complex set of relations that contemporary African scientists face in navigating local moral economies and the mercurial politics of the contemporary global health industry.

6. Collecting and Analyzing Data from Smart Device Users with Local Differential Privacy

OpenAIRE

Nguyên, Thông T.; Xiao, Xiaokui; Yang, Yin; Hui, Siu Cheung; Shin, Hyejin; Shin, Junbum

2016-01-01

Organizations with a large user base, such as Samsung and Google, can potentially benefit from collecting and mining users' data. However, doing so raises privacy concerns, and risks accidental privacy breaches with serious consequences. Local differential privacy (LDP) techniques address this problem by only collecting randomized answers from each user, with guarantees of plausible deniability; meanwhile, the aggregator can still build accurate models and predictors by analyzing large amount...

7. Topics in Riemannian geometry

International Nuclear Information System (INIS)

Ezin, J.P.

1988-08-01

The lectures given at the ''5th Symposium of Mathematics in Abidjan: Differential Geometry and Mechanics'' are presented. They are divided into four chapters: Riemannian metric on a differential manifold, curvature tensor fields on a Riemannian manifold, some classical functionals on Riemannian manifolds and questions. 11 refs

8. Differential influences of local subpopulations on regional diversity and differentiation for greater sage-grouse (Centrocercus urophasianus)

Science.gov (United States)

Row, Jeffery R.; Oyler-McCance, Sara J.; Fedy, Brad C.

2016-01-01

The distribution of spatial genetic variation across a region can shape evolutionary dynamics and impact population persistence. Local population dynamics and among-population dispersal rates are strong drivers of this spatial genetic variation, yet for many species we lack a clear understanding of how these population processes interact in space to shape within-species genetic variation. Here, we used extensive genetic and demographic data from 10 subpopulations of greater sage-grouse to parameterize a simulated approximate Bayesian computation (ABC) model and (i) test for regional differences in population density and dispersal rates for greater sage-grouse subpopulations in Wyoming, and (ii) quantify how these differences impact subpopulation regional influence on genetic variation. We found a close match between observed and simulated data under our parameterized model and strong variation in density and dispersal rates across Wyoming. Sensitivity analyses suggested that changes in dispersal (via landscape resistance) had a greater influence on regional differentiation, whereas changes in density had a greater influence on mean diversity across all subpopulations. Local subpopulations, however, varied in their regional influence on genetic variation. Decreases in the size and dispersal rates of central populations with low overall and net immigration (i.e. population sources) had the greatest negative impact on genetic variation. Overall, our results provide insight into the interactions among demography, dispersal and genetic variation and highlight the potential of ABC to disentangle the complexity of regional population dynamics and project the genetic impact of changing conditions.

9. Muscle activation described with a differential equation model for large ensembles of locally coupled molecular motors.

Science.gov (United States)

Walcott, Sam

2014-10-01

Molecular motors, by turning chemical energy into mechanical work, are responsible for active cellular processes. Often groups of these motors work together to perform their biological role. Motors in an ensemble are coupled and exhibit complex emergent behavior. Although large motor ensembles can be modeled with partial differential equations (PDEs) by assuming that molecules function independently of their neighbors, this assumption is violated when motors are coupled locally. It is therefore unclear how to describe the ensemble behavior of the locally coupled motors responsible for biological processes such as calcium-dependent skeletal muscle activation. Here we develop a theory to describe locally coupled motor ensembles and apply the theory to skeletal muscle activation. The central idea is that a muscle filament can be divided into two phases: an active and an inactive phase. Dynamic changes in the relative size of these phases are described by a set of linear ordinary differential equations (ODEs). As the dynamics of the active phase are described by PDEs, muscle activation is governed by a set of coupled ODEs and PDEs, building on previous PDE models. With comparison to Monte Carlo simulations, we demonstrate that the theory captures the behavior of locally coupled ensembles. The theory also plausibly describes and predicts muscle experiments from molecular to whole muscle scales, suggesting that a micro- to macroscale muscle model is within reach.

10. Nonlinear Methods in Riemannian and Kählerian Geometry

CERN Document Server

Jost, Jürgen

1991-01-01

In this book, I present an expanded version of the contents of my lectures at a Seminar of the DMV (Deutsche Mathematiker Vereinigung) in Düsseldorf, June, 1986. The title "Nonlinear methods in complex geometry" already indicates a combination of techniques from nonlinear partial differential equations and geometric concepts. In older geometric investigations, usually the local aspects attracted more attention than the global ones as differential geometry in its foundations provides approximations of local phenomena through infinitesimal or differential constructions. Here, all equations are linear. If one wants to consider global aspects, however, usually the presence of curvature Ieads to a nonlinearity in the equations. The simplest case is the one of geodesics which are described by a system of second ordernonlinear ODE; their linearizations are the Jacobi fields. More recently, nonlinear PDE played a more and more pro~inent röle in geometry. Let us Iist some of the most important ones: - harmonic maps ...

11. Hyperbolic geometry

CERN Document Server

Iversen, Birger

1992-01-01

Although it arose from purely theoretical considerations of the underlying axioms of geometry, the work of Einstein and Dirac has demonstrated that hyperbolic geometry is a fundamental aspect of modern physics

12. Evolution from the coplanar to the perpendicular plane geometry of helium (e,2e) differential cross sections symmetric in scattering angle and energy

International Nuclear Information System (INIS)

1993-01-01

Experimentally determined differential cross sections are presented for the (e,2e) process in helium, in which the two outgoing electrons have the same energy and the same scattering angle with respect to the incident beam. At four incident energies from 20 to 50 eV above the ionization threshold the detection plane defined by the outgoing electrons was varied from being coplanar with the incident beam to being perpendicular to the beam. The differential cross section evolves from a two-peak structure in coplanar geometry to a three-peak structure in the perpendicular plane. At the lowest energy the forward-scattering coplanar peak is smaller than the backscatter peak, in contrast to the results at higher energies. A deep minimum is seen at an intermediate plane angle of 67.5 degree, this minimum being deepest at 40 eV above the ionization threshold. The results are normalized to an absolute scale using previous coplanar measurements as discussed in the text. The spectrometer used to collect these results is fully computer controlled and real-time computer optimized

13. Geometry and billiards

CERN Document Server

Tabachnikov, Serge

2005-01-01

Mathematical billiards describe the motion of a mass point in a domain with elastic reflections off the boundary or, equivalently, the behavior of rays of light in a domain with ideally reflecting boundary. From the point of view of differential geometry, the billiard flow is the geodesic flow on a manifold with boundary. This book is devoted to billiards in their relation with differential geometry, classical mechanics, and geometrical optics. The topics covered include variational principles of billiard motion, symplectic geometry of rays of light and integral geometry, existence and nonexistence of caustics, optical properties of conics and quadrics and completely integrable billiards, periodic billiard trajectories, polygonal billiards, mechanisms of chaos in billiard dynamics, and the lesser-known subject of dual (or outer) billiards. The book is based on an advanced undergraduate topics course (but contains more material than can be realistically taught in one semester). Although the minimum prerequisit...

14. Harmonic Differential Quadrature Analysis of Soft-Core Sandwich Panels under Locally Distributed Loads

Directory of Open Access Journals (Sweden)

Xinwei Wang

2016-11-01

Full Text Available Sandwich structures are widely used in practice and thus various engineering theories adopting simplifying assumptions are available. However, most engineering theories of beams, plates and shells cannot recover all stresses accurately through their constitutive equations. Therefore, the soft-core is directly modeled by two-dimensional (2D elasticity theory without any pre-assumption on the displacement field. The top and bottom faces act like the elastic supports on the top and bottom edges of the core. The differential equations of the 2D core are then solved by the harmonic differential quadrature method (HDQM. To circumvent the difficulties in dealing with the locally distributed load by point discrete methods such as the HDQM, a general and rigorous way is proposed to treat the locally distributed load. Detailed formulations are provided. The static behavior of sandwich panels under different locally distributed loads is investigated. For verification, results are compared with data obtained by ABAQUS with very fine meshes. A high degree of accuracy on both displacement and stress has been observed.

15. Partial differential equation-based localization of a monopole source from a circular array.

Science.gov (United States)

Ando, Shigeru; Nara, Takaaki; Levy, Tsukassa

2013-10-01

Wave source localization from a sensor array has long been the most active research topics in both theory and application. In this paper, an explicit and time-domain inversion method for the direction and distance of a monopole source from a circular array is proposed. The approach is based on a mathematical technique, the weighted integral method, for signal/source parameter estimation. It begins with an exact form of the source-constraint partial differential equation that describes the unilateral propagation of wide-band waves from a single source, and leads to exact algebraic equations that include circular Fourier coefficients (phase mode measurements) as their coefficients. From them, nearly closed-form, single-shot and multishot algorithms are obtained that is suitable for use with band-pass/differential filter banks. Numerical evaluation and several experimental results obtained using a 16-element circular microphone array are presented to verify the validity of the proposed method.

16. A Lorentzian quantum geometry

Energy Technology Data Exchange (ETDEWEB)

Grotz, Andreas

2011-10-07

In this thesis, a formulation of a Lorentzian quantum geometry based on the framework of causal fermion systems is proposed. After giving the general definition of causal fermion systems, we deduce space-time as a topological space with an underlying causal structure. Restricting attention to systems of spin dimension two, we derive the objects of our quantum geometry: the spin space, the tangent space endowed with a Lorentzian metric, connection and curvature. In order to get the correspondence to classical differential geometry, we construct examples of causal fermion systems by regularizing Dirac sea configurations in Minkowski space and on a globally hyperbolic Lorentzian manifold. When removing the regularization, the objects of our quantum geometry reduce to the common objects of spin geometry on Lorentzian manifolds, up to higher order curvature corrections.

17. A Lorentzian quantum geometry

International Nuclear Information System (INIS)

Grotz, Andreas

2011-01-01

In this thesis, a formulation of a Lorentzian quantum geometry based on the framework of causal fermion systems is proposed. After giving the general definition of causal fermion systems, we deduce space-time as a topological space with an underlying causal structure. Restricting attention to systems of spin dimension two, we derive the objects of our quantum geometry: the spin space, the tangent space endowed with a Lorentzian metric, connection and curvature. In order to get the correspondence to classical differential geometry, we construct examples of causal fermion systems by regularizing Dirac sea configurations in Minkowski space and on a globally hyperbolic Lorentzian manifold. When removing the regularization, the objects of our quantum geometry reduce to the common objects of spin geometry on Lorentzian manifolds, up to higher order curvature corrections.

18. Exact solutions to the time-fractional differential equations via local fractional derivatives

Science.gov (United States)

Guner, Ozkan; Bekir, Ahmet

2018-01-01

This article utilizes the local fractional derivative and the exp-function method to construct the exact solutions of nonlinear time-fractional differential equations (FDEs). For illustrating the validity of the method, it is applied to the time-fractional Camassa-Holm equation and the time-fractional-generalized fifth-order KdV equation. Moreover, the exact solutions are obtained for the equations which are formed by different parameter values related to the time-fractional-generalized fifth-order KdV equation. This method is an reliable and efficient mathematical tool for solving FDEs and it can be applied to other non-linear FDEs.

19. Steady-state, local temperature fields with turbulent liquid sodium flow in nominal and disturbed bundle geometries with spacer grids

International Nuclear Information System (INIS)

Moeller, R.; Tschoeke, H.

1980-01-01

The operating reliability of nuclear reactors calls for a reliable strength analysis of the highly loaded core elements, one of its prerequisites being the reliable determination of the three-dimensional velocity and temperature fields. To verify thermohydraulics computer programs, extensive local temperature measurements in the rod claddings of the critical bundle zone were performed on a heated 19-rod bundle model with sodium flow and provided with spacer grids (P/D = 1.30; W/D = 1.19). The essential results are: - Outside the spacer grids, the azimuthal temperature variations of the side and corner rods are approximately 10-fold those of rods in the central bundle zone. - The spacer grids investigated give rise to great local temperature peaks and correspondingly great temperature gradients in the axial and azimuthal directions immediately around the support points. - Continuous reduction of a subchannel by rod bowing results in substantial rises of temperature which, however, are limited to adjacent cladding tubes. (orig.)

20. Parareal algorithms with local time-integrators for time fractional differential equations

Science.gov (United States)

Wu, Shu-Lin; Zhou, Tao

2018-04-01

It is challenge work to design parareal algorithms for time-fractional differential equations due to the historical effect of the fractional operator. A direct extension of the classical parareal method to such equations will lead to unbalance computational time in each process. In this work, we present an efficient parareal iteration scheme to overcome this issue, by adopting two recently developed local time-integrators for time fractional operators. In both approaches, one introduces auxiliary variables to localized the fractional operator. To this end, we propose a new strategy to perform the coarse grid correction so that the auxiliary variables and the solution variable are corrected separately in a mixed pattern. It is shown that the proposed parareal algorithm admits robust rate of convergence. Numerical examples are presented to support our conclusions.

1. Local linearization methods for the numerical integration of ordinary differential equations: An overview

International Nuclear Information System (INIS)

Jimenez, J.C.

2009-06-01

Local Linearization (LL) methods conform a class of one-step explicit integrators for ODEs derived from the following primary and common strategy: the vector field of the differential equation is locally (piecewise) approximated through a first-order Taylor expansion at each time step, thus obtaining successive linear equations that are explicitly integrated. Hereafter, the LL approach may include some additional strategies to improve that basic affine approximation. Theoretical and practical results have shown that the LL integrators have a number of convenient properties. These include arbitrary order of convergence, A-stability, linearization preserving, regularity under quite general conditions, preservation of the dynamics of the exact solution around hyperbolic equilibrium points and periodic orbits, integration of stiff and high-dimensional equations, low computational cost, and others. In this paper, a review of the LL methods and their properties is presented. (author)

2. Local fractional variational iteration algorithm II for non-homogeneous model associated with the non-differentiable heat flow

Directory of Open Access Journals (Sweden)

Yu Zhang

2015-10-01

Full Text Available In this article, we begin with the non-homogeneous model for the non-differentiable heat flow, which is described using the local fractional vector calculus, from the first law of thermodynamics in fractal media point view. We employ the local fractional variational iteration algorithm II to solve the fractal heat equations. The obtained results show the non-differentiable behaviors of temperature fields of fractal heat flow defined on Cantor sets.

3. Eps homology domain endosomal transport proteins differentially localize to the neuromuscular junction

Directory of Open Access Journals (Sweden)

Mate Suzanne E

2012-09-01

Full Text Available Abstract Background Recycling of endosomes is important for trafficking and maintenance of proteins at the neuromuscular junction (NMJ. We have previously shown high expression of the endocytic recycling regulator Eps15 homology domain-containing (EHD1 proteinin the Torpedo californica electric organ, a model tissue for investigating a cholinergic synapse. In this study, we investigated the localization of EHD1 and its paralogs EHD2, EHD3, and EHD4 in mouse skeletal muscle, and assessed the morphological changes in EHD1−/− NMJs. Methods Localization of the candidate NMJ protein EHD1 was assessed by confocal microscopy analysis of whole-mount mouse skeletal muscle fibers after direct gene transfer and immunolabeling. The potential function of EHD1 was assessed by specific force measurement and α-bungarotoxin-based endplate morphology mapping in EHD1−/− mouse skeletal muscle. Results Endogenous EHD1 localized to primary synaptic clefts of murine NMJ, and this localization was confirmed by expression of recombinant green fluorescent protein labeled-EHD1 in murine skeletal muscle in vivo. EHD1−/− mouse skeletal muscle had normal histology and NMJ morphology, and normal specific force generation during muscle contraction. The EHD 1–4 proteins showed differential localization in skeletal muscle: EHD2 to muscle vasculature, EHD3 to perisynaptic regions, and EHD4 to perinuclear regions and to primary synaptic clefts, but at lower levels than EHD1. Additionally, specific antibodies raised against mammalian EHD1-4 recognized proteins of the expected mass in the T. californica electric organ. Finally, we found that EHD4 expression was more abundant in EHD1−/− mouse skeletal muscle than in wild-type skeletal muscle. Conclusion EHD1 and EHD4 localize to the primary synaptic clefts of the NMJ. Lack of obvious defects in NMJ structure and muscle function in EHD1−/− muscle may be due to functional compensation by other EHD paralogs.

4. Local environment but not genetic differentiation influences biparental care in ten plover populations.

Directory of Open Access Journals (Sweden)

Orsolya Vincze

Full Text Available Social behaviours are highly variable between species, populations and individuals. However, it is contentious whether behavioural variations are primarily moulded by the environment, caused by genetic differences, or a combination of both. Here we establish that biparental care, a complex social behaviour that involves rearing of young by both parents, differs between closely related populations, and then test two potential sources of variation in parental behaviour between populations: ambient environment and genetic differentiation. We use 2904 hours behavioural data from 10 geographically distinct Kentish (Charadrius alexandrinus and snowy plover (C. nivosus populations in America, Europe, the Middle East and North Africa to test these two sources of behavioural variation. We show that local ambient temperature has a significant influence on parental care: with extreme heat (above 40 °C total incubation (i.e. % of time the male or female incubated the nest increased, and female share (% female share of incubation decreased. By contrast, neither genetic differences between populations, nor geographic distances predicted total incubation or female's share of incubation. These results suggest that the local environment has a stronger influence on a social behaviour than genetic differentiation, at least between populations of closely related species.

5. Molecular geometry

CERN Document Server

Rodger, Alison

1995-01-01

Molecular Geometry discusses topics relevant to the arrangement of atoms. The book is comprised of seven chapters that tackle several areas of molecular geometry. Chapter 1 reviews the definition and determination of molecular geometry, while Chapter 2 discusses the unified view of stereochemistry and stereochemical changes. Chapter 3 covers the geometry of molecules of second row atoms, and Chapter 4 deals with the main group elements beyond the second row. The book also talks about the complexes of transition metals and f-block elements, and then covers the organometallic compounds and trans

6. From capillary condensation to interface localization transitions in colloid-polymer mixtures confined in thin-film geometry.

Science.gov (United States)

De Virgiliis, Andres; Vink, Richard L C; Horbach, Jürgen; Binder, Kurt

2008-10-01

Monte Carlo simulations of the Asakura-Oosawa model for colloid-polymer mixtures confined between two parallel repulsive structureless walls are presented and analyzed in the light of current theories on capillary condensation and interface localization transitions. Choosing a polymer-to-colloid size ratio of q=0.8 and studying ultrathin films in the range of D=3 to D=10 colloid diameters thickness, grand canonical Monte Carlo methods are used; phase transitions are analyzed via finite size scaling, as in previous work on bulk systems and under confinement between identical types of walls. Unlike the latter work, inequivalent walls are used here: While the left wall has a hard-core repulsion for both polymers and colloids, at the right-hand wall an additional square-well repulsion of variable strength acting only on the colloids is present. We study how the phase separation into colloid-rich and colloid-poor phases occurring already in the bulk is modified by such a confinement. When the asymmetry of the wall-colloid interaction increases, the character of the transition smoothly changes from capillary condensation type to interface localization type. For very thin films (i.e., for D=3 ) and a suitable choice of the wall-colloid interactions, evidence is found that the critical behavior falls in the universality class of the two-dimensional Ising model. Otherwise, we observe crossover scaling between different universality classes (namely, the crossover from the three-dimensional to the two-dimensional Ising model universality class). The colloid and polymer density profiles across the film in the various phases are discussed, as well as the correlation of interfacial fluctuations in the direction parallel to the confining walls. The broadening of the interface between the coexisting colloid-rich and polymer-rich phases (located parallel to the confining walls) is understood in terms of capillary wave fluctuations. The experimental observability of all these

7. Geometric control theory and sub-Riemannian geometry

CERN Document Server

Boscain, Ugo; Gauthier, Jean-Paul; Sarychev, Andrey; Sigalotti, Mario

2014-01-01

This volume presents recent advances in the interaction between Geometric Control Theory and sub-Riemannian geometry. On the one hand, Geometric Control Theory used the differential geometric and Lie algebraic language for studying controllability, motion planning, stabilizability and optimality for control systems. The geometric approach turned out to be fruitful in applications to robotics, vision modeling, mathematical physics etc. On the other hand, Riemannian geometry and its generalizations, such as  sub-Riemannian, Finslerian  geometry etc., have been actively adopting methods developed in the scope of geometric control. Application of these methods  has led to important results regarding geometry of sub-Riemannian spaces, regularity of sub-Riemannian distances, properties of the group  of diffeomorphisms of sub-Riemannian manifolds, local geometry and equivalence of distributions and sub-Riemannian structures, regularity of the Hausdorff volume.

8. Current algebra and differential geometry

International Nuclear Information System (INIS)

Alekseev, Anton; Strobl, Thomas

2005-01-01

We show that symmetries and gauge symmetries of a large class of 2-dimensional sigma models are described by a new type of a current algebra. The currents are labeled by pairs of a vector field and a 1-form on the target space of the sigma model. We compute the current-current commutator and analyse the anomaly cancellation condition, which can be interpreted geometrically in terms of Dirac structures, previously studied in the mathematical literature. Generalized complex structures correspond to decompositions of the current algebra into pairs of anomaly free subalgebras. Sigma models that we can treat with our method include both physical and topological examples, with and without Wess-Zumino type terms. (author)

9. Vertebral hemangioma: an important differential in the evaluation of locally aggressive spinal lesions.

Science.gov (United States)

Alexander, Justin; Meir, Adam; Vrodos, Nikitas; Yau, Yun-Hom

2010-08-15

A case report and a discussion of recent published data. To highlight the importance of vertebral hemangioma (VH) as a differential diagnosis in the evaluation of locally aggressive spinal lesions. VH commonly occur as incidental findings, however, locally aggressive VH have been described. Difficulties in diagnosing these lesions are well reported and relate to changes in fat content causing uncharacteristic appearances on imaging. The management options for these lesions include a combination of observation, embolization, sclerotherapy, surgical decompression, or stabilization and radiotherapy. A 45-year-old patient who was previously well presented with back pain and rapidly progressive paraparesis. Imaging confirmed the presence of an extensive lesion centered within the right T3 vertebral pedicle with intrusion into the spinal canal. Urgent surgical decompression was undertaken and was complicated by extensive intraoperative hemorrhage requiring massive transfusion. Histologically, the lesion was shown to be a cavernous VH with no evidence of malignancy. Following radiation oncology review, he was offered adjuvant radiotherapy to minimize the risks of recurrence. He achieved a near full neurologic recovery within 2 weeks and had a full recovery by 12 months. VH should be considered in the evaluation of locally aggressive spinal lesions. Angiography is a useful adjunct in the evaluation of these lesions, both as a diagnostic and therapeutic tool. After diagnosed correctly a wide range of treatment options exist that may prevent the patient from undergoing major surgical resection and reconstruction procedures, which may be associated with high rates of morbidity.

10. Particle Swarm Optimization Based on Local Attractors of Ordinary Differential Equation System

Directory of Open Access Journals (Sweden)

Wenyu Yang

2014-01-01

Full Text Available Particle swarm optimization (PSO is inspired by sociological behavior. In this paper, we interpret PSO as a finite difference scheme for solving a system of stochastic ordinary differential equations (SODE. In this framework, the position points of the swarm converge to an equilibrium point of the SODE and the local attractors, which are easily defined by the present position points, also converge to the global attractor. Inspired by this observation, we propose a class of modified PSO iteration methods (MPSO based on local attractors of the SODE. The idea of MPSO is to choose the next update state near the present local attractor, rather than the present position point as in the original PSO, according to a given probability density function. In particular, the quantum-behaved particle swarm optimization method turns out to be a special case of MPSO by taking a special probability density function. The MPSO methods with six different probability density functions are tested on a few benchmark problems. These MPSO methods behave differently for different problems. Thus, our framework not only gives an interpretation for the ordinary PSO but also, more importantly, provides a warehouse of PSO-like methods to choose from for solving different practical problems.

11. Complementary effect of natural and sexual selection against immigrants maintains differentiation between locally adapted fish

Science.gov (United States)

Plath, Martin; Riesch, Rüdiger; Oranth, Alexandra; Dzienko, Justina; Karau, Nora; Schießl, Angela; Stadler, Stefan; Wigh, Adriana; Zimmer, Claudia; Arias-Rodriguez, Lenin; Schlupp, Ingo; Tobler, Michael

2010-08-01

Adaptation to ecologically heterogeneous environments can drive speciation. But what mechanisms maintain reproductive isolation among locally adapted populations? Using poeciliid fishes in a system with naturally occurring toxic hydrogen sulfide, we show that (a) fish from non-sulfidic sites ( Poecilia mexicana) show high mortality (95 %) after 24 h when exposed to the toxicant, while locally adapted fish from sulfidic sites ( Poecilia sulphuraria) experience low mortality (13 %) when transferred to non-sulfidic water. (b) Mate choice tests revealed that P. mexicana females exhibit a preference for conspecific males in non-sulfidic water, but not in sulfidic water, whereas P. sulphuraria females never showed a preference. Increased costs of mate choice in sulfidic, hypoxic water, and the lack of selection for reinforcement due to the low survival of P. mexicana may explain the absence of a preference in P. sulphuraria females. Taken together, our study may be the first to demonstrate independent—but complementary—effects of natural and sexual selection against immigrants maintaining differentiation between locally adapted fish populations.

12. Somatic stem cell differentiation is regulated by PI3K/Tor signaling in response to local cues.

Science.gov (United States)

Amoyel, Marc; Hillion, Kenzo-Hugo; Margolis, Shally R; Bach, Erika A

2016-11-01

Stem cells reside in niches that provide signals to maintain self-renewal, and differentiation is viewed as a passive process that depends on loss of access to these signals. Here, we demonstrate that the differentiation of somatic cyst stem cells (CySCs) in the Drosophila testis is actively promoted by PI3K/Tor signaling, as CySCs lacking PI3K/Tor activity cannot differentiate properly. We find that an insulin peptide produced by somatic cells immediately outside of the stem cell niche acts locally to promote somatic differentiation through Insulin-like receptor (InR) activation. These results indicate that there is a local 'differentiation' niche that upregulates PI3K/Tor signaling in the early daughters of CySCs. Finally, we demonstrate that CySCs secrete the Dilp-binding protein ImpL2, the Drosophila homolog of IGFBP7, into the stem cell niche, which blocks InR activation in CySCs. Thus, we show that somatic cell differentiation is controlled by PI3K/Tor signaling downstream of InR and that the local production of positive and negative InR signals regulates the differentiation niche. These results support a model in which leaving the stem cell niche and initiating differentiation are actively induced by signaling. © 2016. Published by The Company of Biologists Ltd.

13. An hp-local Discontinuous Galerkin Method for Parabolic Integro-Differential Equations

KAUST Repository

Pani, Amiya K.

2010-06-06

In this article, a priori error bounds are derived for an hp-local discontinuous Galerkin (LDG) approximation to a parabolic integro-differential equation. It is shown that error estimates in L 2-norm of the gradient as well as of the potential are optimal in the discretizing parameter h and suboptimal in the degree of polynomial p. Due to the presence of the integral term, an introduction of an expanded mixed type Ritz-Volterra projection helps us to achieve optimal estimates. Further, it is observed that a negative norm estimate of the gradient plays a crucial role in our convergence analysis. As in the elliptic case, similar results on order of convergence are established for the semidiscrete method after suitably modifying the numerical fluxes. The optimality of these theoretical results is tested in a series of numerical experiments on two dimensional domains. © 2010 Springer Science+Business Media, LLC.

14. An hp-local Discontinuous Galerkin Method for Parabolic Integro-Differential Equations

KAUST Repository

2010-01-01

In this article, a priori error bounds are derived for an hp-local discontinuous Galerkin (LDG) approximation to a parabolic integro-differential equation. It is shown that error estimates in L 2-norm of the gradient as well as of the potential are optimal in the discretizing parameter h and suboptimal in the degree of polynomial p. Due to the presence of the integral term, an introduction of an expanded mixed type Ritz-Volterra projection helps us to achieve optimal estimates. Further, it is observed that a negative norm estimate of the gradient plays a crucial role in our convergence analysis. As in the elliptic case, similar results on order of convergence are established for the semidiscrete method after suitably modifying the numerical fluxes. The optimality of these theoretical results is tested in a series of numerical experiments on two dimensional domains. © 2010 Springer Science+Business Media, LLC.

15. Risk stratification of patients with locally aggressive differentiated thyroid cancer. Results of the MSDS trial

International Nuclear Information System (INIS)

Riemann, B.; Kraemer, J.A.; Schober, O.; Schmid, K.W.; Dralle, H.; Dietlein, M.; Schicha, H.; Sauerland, C.; Frankewitsch, T.

2010-01-01

The Multicentre Study Differentiated Thyroid Cancer (MSDS) collective represents a well defined group of patients with locally aggressive thyroid carcinomas (pT4; AJCC/UICC 1997). The aim of the present study was to compare the survival of patients with minimum and extensive extrathyroidal growth according to the new AJCC/UICC TNM staging system 2009. Patients, methods: The follow-up data of 347 patients were analysed. Patients were reclassified according to the current AJCC/UICC 2009 classification. The event-free and overall survival was evaluated using Kaplan-Meier analysis. In addition, postoperative complications and status of disease were documented. Results: 327 patients were assigned to stage pT3 and 20 patients to stage pT4a, respectively. Median follow-up was 6.1 years (range 0.04-9.8 years). 92.5% of patients reached complete remission. There were 7.8% recurrences in the thyroid bed, in locoregional lymph nodes and/or in distant sites. The overall survival was >98% both in pT3 and pT4a patients (p = n. s.). In contrast, the event-free survival was significantly less favourable in pT4a patients (p < 0.001). Using multivariate analysis the following parameters were significant predictors of event-free survival: histological tumour type, degree of extrathyroidal extension and nodal metastasis (p < 0.05). Conclusions: The MSDS patients with locally aggressive differentiated thyroid cancer showed an excellent overall survival during a median follow-up of 6.1 years. According to the current AJCC/UICC 2009 classification, pT3 patients with minimal extrathyroidal extension revealed a significantly better event-free survival than pT4a patients with extensive extrathyroidal growth. (orig.)

16. Beautiful geometry

CERN Document Server

Maor, Eli

2014-01-01

If you've ever thought that mathematics and art don't mix, this stunning visual history of geometry will change your mind. As much a work of art as a book about mathematics, Beautiful Geometry presents more than sixty exquisite color plates illustrating a wide range of geometric patterns and theorems, accompanied by brief accounts of the fascinating history and people behind each. With artwork by Swiss artist Eugen Jost and text by acclaimed math historian Eli Maor, this unique celebration of geometry covers numerous subjects, from straightedge-and-compass constructions to intriguing configur

17. Non-Perturbative Quantum Geometry III

CERN Document Server

Krefl, Daniel

2016-08-02

The Nekrasov-Shatashvili limit of the refined topological string on toric Calabi-Yau manifolds and the resulting quantum geometry is studied from a non-perturbative perspective. The quantum differential and thus the quantum periods exhibit Stockes phenomena over the combined string coupling and quantized Kaehler moduli space. We outline that the underlying formalism of exact quantization is generally applicable to points in moduli space featuring massless hypermultiplets, leading to non-perturbative band splitting. Our prime example is local P1xP1 near a conifold point in moduli space. In particular, we will present numerical evidence that in a Stockes chamber of interest the string based quantum geometry reproduces the non-perturbative corrections for the Nekrasov-Shatashvili limit of 4d supersymmetric SU(2) gauge theory at strong coupling found in the previous part of this series. A preliminary discussion of local P2 near the conifold point in moduli space is also provided.

18. Analytische Geometrie

Science.gov (United States)

Kemnitz, Arnfried

Der Grundgedanke der Analytischen Geometrie besteht darin, dass geometrische Untersuchungen mit rechnerischen Mitteln geführt werden. Geometrische Objekte werden dabei durch Gleichungen beschrieben und mit algebraischen Methoden untersucht.

19. Algebraic geometry

CERN Document Server

Lefschetz, Solomon

2005-01-01

An introduction to algebraic geometry and a bridge between its analytical-topological and algebraical aspects, this text for advanced undergraduate students is particularly relevant to those more familiar with analysis than algebra. 1953 edition.

20. Information geometry

CERN Document Server

Ay, Nihat; Lê, Hông Vân; Schwachhöfer, Lorenz

2017-01-01

The book provides a comprehensive introduction and a novel mathematical foundation of the field of information geometry with complete proofs and detailed background material on measure theory, Riemannian geometry and Banach space theory. Parametrised measure models are defined as fundamental geometric objects, which can be both finite or infinite dimensional. Based on these models, canonical tensor fields are introduced and further studied, including the Fisher metric and the Amari-Chentsov tensor, and embeddings of statistical manifolds are investigated. This novel foundation then leads to application highlights, such as generalizations and extensions of the classical uniqueness result of Chentsov or the Cramér-Rao inequality. Additionally, several new application fields of information geometry are highlighted, for instance hierarchical and graphical models, complexity theory, population genetics, or Markov Chain Monte Carlo. The book will be of interest to mathematicians who are interested in geometry, inf...

1. Localized gastric amyloidosis differentiated histologically from scirrhous gastric cancer using endoscopic mucosal resection: a case report

Directory of Open Access Journals (Sweden)

Kamata Tsugumasa

2012-08-01

resembling scirrhous gastric carcinoma. This case of localized gastric amyloidosis was differentiated from scirrhous gastric cancer after performing endoscopic mucosal resection without an invasive surgical resection, as endoscopic mucosal resection provided sufficient tissue specimens from the lesion to make an accurate histological evaluation.

2. Symplectic geometry and Fourier analysis

CERN Document Server

Wallach, Nolan R

2018-01-01

Suitable for graduate students in mathematics, this monograph covers differential and symplectic geometry, homogeneous symplectic manifolds, Fourier analysis, metaplectic representation, quantization, Kirillov theory. Includes Appendix on Quantum Mechanics by Robert Hermann. 1977 edition.

3. CMV-specific CD8 T Cell Differentiation and Localization: Implications for Adoptive Therapies

Directory of Open Access Journals (Sweden)

Corinne J Smith

2016-09-01

Full Text Available Human cytomegalovirus (HCMV is a ubiquitous virus that causes chronic infection, and thus is one of the most common infectious complications of immune suppression. Adoptive transfer of HCMV-specific T cells has emerged as an effective method to reduce the risk for HCMV infection and/or reactivation by restoring immunity in transplant recipients. However, the CMV-specific CD8+ T cell response is comprised of a heterogenous mixture of subsets with distinct functions and localization and it is not clear if current adoptive immunotherapy protocols can reconstitute the full spectrum of CD8+ T cell immunity. The aim of this review is to briefly summarize the role of these T cell subsets in CMV immunity and to describe how current adoptive immunotherapy practices might affect their reconstitution in patients. The bulk of the CMV-specific CD8+ T cell population is made up of terminally differentiated effector T cells with immediate effector function and a short life span. Self-renewing memory T cells within the CMV-specific population retain the capacity to expand and differentiate upon challenge and are important for the long-term persistence of the CD8+ T cell response. Finally mucosal organs, which are frequent sites of CMV reactivation, are primarily inhabited by tissue resident memory T cells, which do not recirculate. Future work on adoptive transfer strategies may need to focus on striking a balance between the formation of these subsets to ensure the development of long lasting and protective immune responses that can access the organs affected by CMV disease.

4. The Cx43-like connexin protein Cx40.8 is differentially localized during fin ontogeny and fin regeneration.

Directory of Open Access Journals (Sweden)

Sarah V Gerhart

Full Text Available Connexins (Cx are the subunits of gap junctions, membraneous protein channels that permit the exchange of small molecules between adjacent cells. Cx43 is required for cell proliferation in the zebrafish caudal fin. Previously, we found that a Cx43-like connexin, cx40.8, is co-expressed with cx43 in the population of proliferating cells during fin regeneration. Here we demonstrate that Cx40.8 exhibits novel differential subcellular localization in vivo, depending on the growth status of the fin. During fin ontogeny, Cx40.8 is found at the plasma membrane, but Cx40.8 is retained in the Golgi apparatus during regeneration. We next identified a 30 amino acid domain of Cx40.8 responsible for its dynamic localization. One possible explanation for the differential localization is that Cx40.8 contributes to the regulation of Cx43 in vivo, perhaps modifying channel activity during ontogenetic growth. However, we find that the voltage-gating properties of Cx40.8 are similar to Cx43. Together our findings reveal that Cx40.8 exhibits differential subcellular localization in vivo, dependent on a discrete domain in its carboxy terminus. We suggest that the dynamic localization of Cx40.8 differentially influences Cx43-dependent cell proliferation during ontogeny and regeneration.

5. Higher geometry an introduction to advanced methods in analytic geometry

CERN Document Server

Woods, Frederick S

2005-01-01

For students of mathematics with a sound background in analytic geometry and some knowledge of determinants, this volume has long been among the best available expositions of advanced work on projective and algebraic geometry. Developed from Professor Woods' lectures at the Massachusetts Institute of Technology, it bridges the gap between intermediate studies in the field and highly specialized works.With exceptional thoroughness, it presents the most important general concepts and methods of advanced algebraic geometry (as distinguished from differential geometry). It offers a thorough study

6. Hopf algebras in noncommutative geometry

International Nuclear Information System (INIS)

Varilly, Joseph C.

2001-10-01

We give an introductory survey to the use of Hopf algebras in several problems of non- commutative geometry. The main example, the Hopf algebra of rooted trees, is a graded, connected Hopf algebra arising from a universal construction. We show its relation to the algebra of transverse differential operators introduced by Connes and Moscovici in order to compute a local index formula in cyclic cohomology, and to the several Hopf algebras defined by Connes and Kreimer to simplify the combinatorics of perturbative renormalization. We explain how characteristic classes for a Hopf module algebra can be obtained from the cyclic cohomology of the Hopf algebra which acts on it. Finally, we discuss the theory of non- commutative spherical manifolds and show how they arise as homogeneous spaces of certain compact quantum groups. (author)

7. Esclerodermia localizada: Diagnósticos diferenciales Localized scleroderma: Differential diagnosis

Directory of Open Access Journals (Sweden)

MB Leroux

2011-09-01

8. Analytic geometry

CERN Document Server

Burdette, A C

1971-01-01

Analytic Geometry covers several fundamental aspects of analytic geometry needed for advanced subjects, including calculus.This book is composed of 12 chapters that review the principles, concepts, and analytic proofs of geometric theorems, families of lines, the normal equation of the line, and related matters. Other chapters highlight the application of graphing, foci, directrices, eccentricity, and conic-related topics. The remaining chapters deal with the concept polar and rectangular coordinates, surfaces and curves, and planes.This book will prove useful to undergraduate trigonometric st

9. Vector geometry

CERN Document Server

Robinson, Gilbert de B

2011-01-01

This brief undergraduate-level text by a prominent Cambridge-educated mathematician explores the relationship between algebra and geometry. An elementary course in plane geometry is the sole requirement for Gilbert de B. Robinson's text, which is the result of several years of teaching and learning the most effective methods from discussions with students. Topics include lines and planes, determinants and linear equations, matrices, groups and linear transformations, and vectors and vector spaces. Additional subjects range from conics and quadrics to homogeneous coordinates and projective geom

10. Noncommutative geometry

CERN Document Server

Connes, Alain

1994-01-01

This English version of the path-breaking French book on this subject gives the definitive treatment of the revolutionary approach to measure theory, geometry, and mathematical physics developed by Alain Connes. Profusely illustrated and invitingly written, this book is ideal for anyone who wants to know what noncommutative geometry is, what it can do, or how it can be used in various areas of mathematics, quantization, and elementary particles and fields.Key Features* First full treatment of the subject and its applications* Written by the pioneer of this field* Broad applications in mathemat

11. Locality of Area Coverage on Digital Acoustic Communication in Air using Differential Phase Shift Keying

Science.gov (United States)

Mizutani, Keiichi; Ebihara, Tadashi; Wakatsuki, Naoto; Mizutani, Koichi

2009-07-01

We experimentally evaluate the locality of digital acoustic communication in air. Digital acoustic communication in air is suitable for a small cell system, because acoustic waves have a short propagation distance in air. In this study, optimal cell size is experimentally evaluated. Each base station (BS) transmits different commands. In our experiment, differential phase shift keying (DPSK), especially binary DPSK (DBPSK), is adopted as a modulation and demodulation scheme. The evaluated system consists of a personal computer (PC), a digital-to-analog converter (DAC), an analog-to-digital converter (ADC), a loud speaker (SP), a microphone (MIC), and transceiver software. All experiments are performed in an anechoic room. The cell size of the transmitter can be limited under low signal-to-noise ratio (SNR) condition. If another transmitter works, cell size is limited by the effect of the interference from that transmitter. The cell size-to-distance ratio of transmitter A to transmitter B is 37.5%, if cell edge bit-error-rate (BER) is taken as 10-3.

12. Expression-robust 3D face recognition via weighted sparse representation of multi-scale and multi-component local normal patterns

KAUST Repository

Li, Huibin; Huang, Di; Morvan, Jean-Marie; Chen, Liming; Wang, Yunhong

2014-01-01

In the theory of differential geometry, surface normal, as a first order surface differential quantity, determines the orientation of a surface at each point and contains informative local surface shape information. To fully exploit this kind

13. Geometry and Cloaking Devices

Science.gov (United States)

Ochiai, T.; Nacher, J. C.

2011-09-01

Recently, the application of geometry and conformal mappings to artificial materials (metamaterials) has attracted the attention in various research communities. These materials, characterized by a unique man-made structure, have unusual optical properties, which materials found in nature do not exhibit. By applying the geometry and conformal mappings theory to metamaterial science, it may be possible to realize so-called "Harry Potter cloaking device". Although such a device is still in the science fiction realm, several works have shown that by using such metamaterials it may be possible to control the direction of the electromagnetic field at will. We could then make an object hidden inside of a cloaking device. Here, we will explain how to design invisibility device using differential geometry and conformal mappings.

14. Projective Geometry

mathematicians are trained to use very precise language, and so find it hard to simplify and state .... thing. If you take a plane on which there are two such triangles which enjoy the above ... within this geometry to simplify things if needed.

15. Geometry -----------~--------------RESONANCE

Parallel: A pair of lines in a plane is said to be parallel if they do not meet. Mathematicians were at war ... Subsequently, Poincare, Klein, Beltrami and others refined non-. Euclidean geometry. ... plane divides the plane into two half planes and.

16. Solvability conditions for non-local boundary value problems for two-dimensional half-linear differential systems

Czech Academy of Sciences Publication Activity Database

2011-01-01

Roč. 74, č. 17 (2011), s. 6537-6552 ISSN 0362-546X Institutional research plan: CEZ:AV0Z10190503 Keywords : half-linear differential system * non-local boundary value problem * solvability Subject RIV: BA - General Mathematics Impact factor: 1.536, year: 2011 http://www.sciencedirect.com/science/article/pii/S0362546X11004573

17. Geometry of isotropic convex bodies

CERN Document Server

Brazitikos, Silouanos; Valettas, Petros; Vritsiou, Beatrice-Helen

2014-01-01

The study of high-dimensional convex bodies from a geometric and analytic point of view, with an emphasis on the dependence of various parameters on the dimension stands at the intersection of classical convex geometry and the local theory of Banach spaces. It is also closely linked to many other fields, such as probability theory, partial differential equations, Riemannian geometry, harmonic analysis and combinatorics. It is now understood that the convexity assumption forces most of the volume of a high-dimensional convex body to be concentrated in some canonical way and the main question is whether, under some natural normalization, the answer to many fundamental questions should be independent of the dimension. The aim of this book is to introduce a number of well-known questions regarding the distribution of volume in high-dimensional convex bodies, which are exactly of this nature: among them are the slicing problem, the thin shell conjecture and the Kannan-Lov�sz-Simonovits conjecture. This book prov...

18. Differential inhibitory effect on human nociceptive skin senses induced by local stimulation of thin cutaneous fibers.

Science.gov (United States)

Nilsson, H J; Schouenborg, J

1999-03-01

It is known that stimulation of thin cutaneous nerve fibers can induce long lasting analgesia through both supraspinal and segmental mechanisms, the latter often exhibiting restricted receptive fields. On this basis, we recently developed a new method, termed cutaneous field stimulation (CFS), for localized stimulation of A delta and C fibers in the superficial part of the skin. In the present study, we have evaluated the effects of CFS on non-nociceptive and nociceptive skin senses. We compared the effects of CFS with those of conventional transcutaneous electrical nerve stimulation (TENS), known to preferentially activate coarse myelinated fibers. A battery of sensory tests were made on the right volar forearm of 20 healthy subjects. CFS (16 electrodes, 4 Hz per electrode, 1 ms, up to 0.8 mA) and TENS (100 Hz, 0.2 ms, up to 26 mA) applied either on the right volar forearm (homotopically), or on the lower right leg (heterotopically) were used as conditioning stimulation for 25 min. The tactile threshold was not affected by either homo- or heterotopical CFS or TENS. The mean thresholds for detecting warming or cooling of the skin were increased by 0.4-0.9 degrees C after homo- but not heterotopical CFS and TENS. Regarding nociceptive skin senses, homo- but not heterotopical CFS, markedly reduced CO2-laser evoked A delta- and C fiber mediated heat pain to 75 and 48% of control, respectively, and mechanically evoked pain to 73% of control. Fabric evoked prickle, was not affected by CFS. Neither homo- nor heterotopical TENS induced any marked analgesic effects. It is concluded that different qualities of nociception can be differentially controlled by CFS.

19. Major Chromosomal Breakpoint Intervals in Breast Cancer Co-Localize with Differentially Methylated Regions

Energy Technology Data Exchange (ETDEWEB)

Eric Tang, Man-Hung [Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (United States); Department of Oncology, Clinical Sciences, Lund University, Lund (Sweden); Varadan, Vinay; Kamalakaran, Sitharthan [Philips Research North America, Briarcliff Manor, NY (United States); Zhang, Michael Q. [Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (United States); The University of Texas at Dallas, Richardson, TX (United States); Tsinghua University, Beijing (China); Dimitrova, Nevenka, E-mail: nevenka.dimitrova@philips.com [Philips Research North America, Briarcliff Manor, NY (United States); Hicks, James, E-mail: hicks@cshl.edu [Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (United States)

2012-12-27

Solid tumors exhibit chromosomal rearrangements resulting in gain or loss of multiple chromosomal loci (copy number variation, or CNV), and translocations that occasionally result in the creation of novel chimeric genes. In the case of breast cancer, although most individual tumors each have unique CNV landscape, the breakpoints, as measured over large datasets, appear to be non-randomly distributed in the genome. Breakpoints show a significant regional concentration at genomic loci spanning perhaps several megabases. The proximal cause of these breakpoint concentrations is a subject of speculation, but is, as yet, largely unknown. To shed light on this issue, we have performed a bio-statistical analysis on our previously published data for a set of 119 breast tumors and normal controls (Wiedswang et al., 2003), where each sample has both high-resolution CNV and methylation data. The method examined the distribution of closeness of breakpoint regions with differentially methylated regions (DMR), coupled with additional genomic parameters, such as repeat elements and designated “fragile sites” in the reference genome. Through this analysis, we have identified a set of 93 regional loci called breakpoint enriched DMR (BEDMRs) characterized by altered DNA methylation in cancer compared to normal cells that are associated with frequent breakpoint concentrations within a distance of 1 Mb. BEDMR loci are further associated with local hypomethylation (66%), concentrations of the Alu SINE repeats within 3 Mb (35% of the cases), and tend to occur near a number of cancer related genes such as the protocadherins, AKT1, DUB3, GAB2. Furthermore, BEDMRs seem to deregulate members of the histone gene family and chromatin remodeling factors, e.g., JMJD1B, which might affect the chromatin structure and disrupt coordinate signaling and repair. From this analysis we propose that preference for chromosomal breakpoints is related to genome structure coupled with alterations in DNA

20. Arginine Methylation Regulates MEIS2 Nuclear Localization to Promote Neuronal Differentiation of Adult SVZ Progenitors

Directory of Open Access Journals (Sweden)

Jasmine Kolb

2018-04-01

Full Text Available Summary: Adult neurogenesis is regulated by stem cell niche-derived extrinsic factors and cell-intrinsic regulators, yet the mechanisms by which niche signals impinge on the activity of intrinsic neurogenic transcription factors remain poorly defined. Here, we report that MEIS2, an essential regulator of adult SVZ neurogenesis, is subject to posttranslational regulation in the SVZ olfactory bulb neurogenic system. Nuclear accumulation of MEIS2 in adult SVZ-derived progenitor cells follows downregulation of EGFR signaling and is modulated by methylation of MEIS2 on a conserved arginine, which lies in close proximity to nested binding sites for the nuclear export receptor CRM1 and the MEIS dimerization partner PBX1. Methylation impairs interaction with CRM1 without affecting PBX1 dimerization and thereby allows MEIS2 nuclear accumulation, a prerequisite for neuronal differentiation. Our results describe a form of posttranscriptional modulation of adult SVZ neurogenesis whereby an extrinsic signal fine-tunes neurogenesis through posttranslational modification of a transcriptional regulator of cell fate. : A hallmark of adult neurogenesis is its strong dependence on physiological stimuli and environmental signals. Schulte and colleagues show that the nuclear localization and activity of a transcriptional regulator of adult neurogenesis is controlled by posttranslational modification. Their results link intrinsic control over neuron production to external signals and help to explain how adult neurogenesis can occur “on demand.” Keywords: subventricular zone, stem cell niche, posttranslational modification, controlled nuclear import, TALE-homdomain protein, MEIS2, PBX1, CRM1, neurogenesis, stem cell niche

1. Riemannian geometry

CERN Document Server

Petersen, Peter

2016-01-01

Intended for a one year course, this text serves as a single source, introducing readers to the important techniques and theorems, while also containing enough background on advanced topics to appeal to those students wishing to specialize in Riemannian geometry. This is one of the few Works to combine both the geometric parts of Riemannian geometry and the analytic aspects of the theory. The book will appeal to a readership that have a basic knowledge of standard manifold theory, including tensors, forms, and Lie groups. Important revisions to the third edition include: a substantial addition of unique and enriching exercises scattered throughout the text; inclusion of an increased number of coordinate calculations of connection and curvature; addition of general formulas for curvature on Lie Groups and submersions; integration of variational calculus into the text allowing for an early treatment of the Sphere theorem using a proof by Berger; incorporation of several recent results about manifolds with posit...

2. Complex analysis and CR geometry

CERN Document Server

Zampieri, Giuseppe

2008-01-01

Cauchy-Riemann (CR) geometry is the study of manifolds equipped with a system of CR-type equations. Compared to the early days when the purpose of CR geometry was to supply tools for the analysis of the existence and regularity of solutions to the \\bar\\partial-Neumann problem, it has rapidly acquired a life of its own and has became an important topic in differential geometry and the study of non-linear partial differential equations. A full understanding of modern CR geometry requires knowledge of various topics such as real/complex differential and symplectic geometry, foliation theory, the geometric theory of PDE's, and microlocal analysis. Nowadays, the subject of CR geometry is very rich in results, and the amount of material required to reach competence is daunting to graduate students who wish to learn it. However, the present book does not aim at introducing all the topics of current interest in CR geometry. Instead, an attempt is made to be friendly to the novice by moving, in a fairly relaxed way, f...

3. General Geometry and Geometry of Electromagnetism

OpenAIRE

Shahverdiyev, Shervgi S.

2002-01-01

It is shown that Electromagnetism creates geometry different from Riemannian geometry. General geometry including Riemannian geometry as a special case is constructed. It is proven that the most simplest special case of General Geometry is geometry underlying Electromagnetism. Action for electromagnetic field and Maxwell equations are derived from curvature function of geometry underlying Electromagnetism. And it is shown that equation of motion for a particle interacting with electromagnetic...

4. The Local Brewery: A Project for Use in Differential Equations Courses

Science.gov (United States)

Starling, James K.; Povich, Timothy J.; Findlay, Michael

2016-01-01

We describe a modeling project designed for an ordinary differential equations (ODEs) course using first-order and systems of first-order differential equations to model the fermentation process in beer. The project aims to expose the students to the modeling process by creating and solving a mathematical model and effectively communicating their…

5. Early local differentiation of the cell wall matrix defines the contact sites in lobed mesophyll cells of Zea mays.

Science.gov (United States)

Giannoutsou, E; Sotiriou, P; Apostolakos, P; Galatis, B

2013-10-01

The morphogenesis of lobed mesophyll cells (MCs) is highly controlled and coupled with intercellular space formation. Cortical microtubule rings define the number and the position of MC isthmi. This work investigated early events of MC morphogenesis, especially the mechanism defining the position of contacts between MCs. The distributions of plasmodesmata, the hemicelluloses callose and (1 → 3,1 → 4)-β-d-glucans (MLGs) and the pectin epitopes recognized by the 2F4, JIM5, JIM7 and LM6 antibodies were studied in the cell walls of Zea mays MCs. Matrix cell wall polysaccharides were immunolocalized in hand-made sections and in sections of material embedded in LR White resin. Callose was also localized using aniline blue in hand-made sections. Plasmodesmata distribution was examined by transmission electron microscopy. Before reorganization of the dispersed cortical microtubules into microtubule rings, particular bands of the longitudinal MC walls, where the MC contacts will form, locally differentiate by selective (1) deposition of callose and the pectin epitopes recognized by the 2F4, LM6, JIM5 and JIM7 antibodies, (2) degradation of MLGs and (3) formation of secondary plasmodesmata clusterings. This cell wall matrix differentiation persists in cell contacts of mature MCs. Simultaneously, the wall bands between those of future cell contacts differentiate with (1) deposition of local cell wall thickenings including cellulose microfibrils, (2) preferential presence of MLGs, (3) absence of callose and (4) transient presence of the pectins identified by the JIM5 and JIM7 antibodies. The wall areas between cell contacts expand determinately to form the cell isthmi and the cell lobes. The morphogenesis of lobed MCs is characterized by the early patterned differentiation of two distinct cell wall subdomains, defining the sites of the future MC contacts and of the future MC isthmi respectively. This patterned cell wall differentiation precedes cortical microtubule

6. Utility of COX1 phylogenetics to differentiate between locally acquired and imported Plasmodium knowlesi infections in Singapore

Science.gov (United States)

Loh, Jin Phang; Gao, Qiu Han Christine; Lee, Vernon J; Tetteh, Kevin; Drakeley, Chris

2016-01-01

INTRODUCTION Although there have been several phylogenetic studies on Plasmodium knowlesi (P. knowlesi), only cytochrome c oxidase subunit 1 (COX1) gene analysis has shown some geographical differentiation between the isolates of different countries. METHODS Phylogenetic analysis of locally acquired P. knowlesi infections, based on circumsporozoite, small subunit ribosomal ribonucleic acid (SSU rRNA), merozoite surface protein 1 and COX1 gene targets, was performed. The results were compared with the published sequences of regional isolates from Malaysia and Thailand. RESULTS Phylogenetic analysis of the circumsporozoite, SSU rRNA and merozoite surface protein 1 gene sequences for regional P. knowlesi isolates showed no obvious differentiation that could be attributed to their geographical origin. However, COX1 gene analysis showed that it was possible to differentiate between Singapore-acquired P. knowlesi infections and P. knowlesi infections from Peninsular Malaysia and Sarawak, Borneo, Malaysia. CONCLUSION The ability to differentiate between locally acquired P. knowlesi infections and imported P. knowlesi infections has important utility for the monitoring of P. knowlesi malaria control programmes in Singapore. PMID:26805667

7. Utility of COX1 phylogenetics to differentiate between locally acquired and imported Plasmodium knowlesi infections in Singapore.

Science.gov (United States)

Loh, Jin Phang; Gao, Qiu Han Christine; Lee, Vernon J; Tetteh, Kevin; Drakeley, Chris

2016-12-01

Although there have been several phylogenetic studies on Plasmodium knowlesi (P. knowlesi), only cytochrome c oxidase subunit 1 (COX1) gene analysis has shown some geographical differentiation between the isolates of different countries. Phylogenetic analysis of locally acquired P. knowlesi infections, based on circumsporozoite, small subunit ribosomal ribonucleic acid (SSU rRNA), merozoite surface protein 1 and COX1 gene targets, was performed. The results were compared with the published sequences of regional isolates from Malaysia and Thailand. Phylogenetic analysis of the circumsporozoite, SSU rRNA and merozoite surface protein 1 gene sequences for regional P. knowlesi isolates showed no obvious differentiation that could be attributed to their geographical origin. However, COX1 gene analysis showed that it was possible to differentiate between Singapore-acquired P. knowlesi infections and P. knowlesi infections from Peninsular Malaysia and Sarawak, Borneo, Malaysia. The ability to differentiate between locally acquired P. knowlesi infections and imported P. knowlesi infections has important utility for the monitoring of P. knowlesi malaria control programmes in Singapore. Copyright: © Singapore Medical Association

8. Topology and geometry for physicists

CERN Document Server

Nash, Charles

1983-01-01

Differential geometry and topology are essential tools for many theoretical physicists, particularly in the study of condensed matter physics, gravity, and particle physics. Written by physicists for physics students, this text introduces geometrical and topological methods in theoretical physics and applied mathematics. It assumes no detailed background in topology or geometry, and it emphasizes physical motivations, enabling students to apply the techniques to their physics formulas and research. ""Thoroughly recommended"" by The Physics Bulletin, this volume's physics applications range fr

9. Localization of DNA methyltransferase-1 during oocyte differentiation, in vitro maturation and early embryonic development in cow

Directory of Open Access Journals (Sweden)

A. M. Luciano

2009-12-01

Full Text Available DNA methyltransferase-1 (Dnmt1 is involved in the maintenance of DNA methylation patterns and is crucial for normal mammalian development. The aim of the present study was to assess the localization of Dnmt1 in cow, during the latest phases of oocyte differentiation and during the early stages of segmentation. Dnmt1 expression and localization were assessed in oocytes according to the chromatin configuration, which in turn provides an important epigenetic mechanism for the control of global gene expression and represents a morphological marker of oocyte differentiation.We found that the initial chromatin condensation was accompanied by a slight increase in the level of global DNA methylation, as assessed by 5-methyl-cytosine immunostaining followed by laser scanning confocal microscopy analysis (LSCM. RT-PCR confirmed the presence of Dnmt1 transcripts throughout this phase of oocyte differentiation. Analogously, Dnmt1 immunodetection and LSCM indicated that the protein was always present and localized in the cytoplasm, regardless the chromatin configuration and the level of global DNA methylation. Moreover, our data indicate that while Dnmt1 is retained in the cytoplasm in metaphase II stage oocytes and zygotes, it enters the nuclei of 8-16 cell stage embryos. As suggested in mouse, the functional meaning of the presence of Dnmt1 in the bovine embryo nuclei could be the maintainement of the methylation pattern of imprinted genes. In conclusion, the present work provides useful elements for the study of Dnmt1 function during the late stage of oocyte differentiation, maturation and early embryonic development in mammals.

10. Local adaptation and pronounced genetic differentiation in an extremophile fish, Poecilia mexicana, inhabiting a Mexican cave with toxic hydrogen sulphide.

Science.gov (United States)

Plath, M; Hauswaldt, J S; Moll, K; Tobler, M; García De León, F J; Schlupp, I; Tiedemann, R

2007-03-01

We investigated genetic differentiation and migration patterns in a small livebearing fish, Poecilia mexicana, inhabiting a sulfidic Mexican limestone cave (Cueva del Azufre). We examined fish from three different cave chambers, the sulfidic surface creek draining the cave (El Azufre) and a nearby surface creek without the toxic hydrogen sulphide (Arroyo Cristal). Using microsatellite analysis of 10 unlinked loci, we found pronounced genetic differentiation among the three major habitats: Arroyo Cristal, El Azufre and the cave. Genetic differentiation was also found within the cave between different pools. An estimation of first-generation migrants suggests that (i) migration is unidirectional, out of the cave, and (ii) migration among different cave chambers occurs to some extent. We investigated if the pattern of genetic differentiation is also reflected in a morphological trait, eye size. Relatively large eyes were found in surface habitats, small eyes in the anterior cave chambers, and the smallest eyes were detected in the innermost cave chamber (XIII). This pattern shows some congruence with a previously proposed morphocline in eye size. However, our data do not support the proposed mechanism for this morphocline, namely that it would be maintained by migration from both directions into the middle cave chambers. This would have led to an increased variance in eye size in the middle cave chambers, which we did not find. Restricted gene flow between the cave and the surface can be explained by local adaptations to extreme environmental conditions, namely H2S and absence of light. Within the cave system, habitat properties are patchy, and genetic differentiation between cave chambers despite migration could indicate local adaptation at an even smaller scale.

11. Prospective identification and skeletal localization of cells capable of multilineage differentiation in vivo.

Science.gov (United States)

Taichman, Russell S; Wang, Zhuo; Shiozawa, Yusuke; Jung, Younghun; Song, Junhui; Balduino, Alex; Wang, Jincheng; Patel, Lalit R; Havens, Aaron M; Kucia, Magdalena; Ratajczak, Mariusz Z; Krebsbach, Paul H

2010-10-01

A prospective in vivo assay was used to identify cells with potential for multiple lineage differentiation. With this assay, it was first determined that the 5-fluorouracil resistant cells capable of osseous tissue formation in vivo also migrated toward stromal derived factor-1 (SDF-1) in vitro. In parallel, an isolation method based on fluorescence-activated cell sorting was employed to identify a very small cell embryonic-like Lin-/Sca-1+CD45- cell that with as few as 500 cells was capable of forming bone-like structures in vivo. Differential marrow fractionation studies determined that the majority of the Lin-Sca-1+CD45- cells reside in the subendosteal regions of marrow. To determine whether these cells were capable of differentiating into multiple lineages, stromal cells harvested from Col2.3 Delta TK mice were implanted with a gelatin sponge into SCID mice to generate thymidine kinase sensitive ossicles. At 1.5 months, 2,000 green fluorescent protein (GFP)+ Lin-Sca-1+CD45- cells were injected into the ossicles. At harvest, colocalization of GFP-expressing cells with antibodies to the osteoblast-specific marker Runx-2 and the adipocyte marker PPAP gamma were observed. Based on the ability of the noncultured cells to differentiate into multiple mesenchymal lineages in vivo and the ability to generate osseous tissues at low density, we propose that this population fulfills many of the characteristics of mesenchymal stem cells.

12. Performance and scaling of locally-structured grid methods forpartial differential equations

Energy Technology Data Exchange (ETDEWEB)

Colella, Phillip; Bell, John; Keen, Noel; Ligocki, Terry; Lijewski, Michael; Van Straalen, Brian

2007-07-19

In this paper, we discuss some of the issues in obtaining high performance for block-structured adaptive mesh refinement software for partial differential equations. We show examples in which AMR scales to thousands of processors. We also discuss a number of metrics for performance and scalability that can provide a basis for understanding the advantages and disadvantages of this approach.

13. Conditional estimation of local pooled dispersion parameter in small-sample RNA-Seq data improves differential expression test.

Science.gov (United States)

Gim, Jungsoo; Won, Sungho; Park, Taesung

2016-10-01

High throughput sequencing technology in transcriptomics studies contribute to the understanding of gene regulation mechanism and its cellular function, but also increases a need for accurate statistical methods to assess quantitative differences between experiments. Many methods have been developed to account for the specifics of count data: non-normality, a dependence of the variance on the mean, and small sample size. Among them, the small number of samples in typical experiments is still a challenge. Here we present a method for differential analysis of count data, using conditional estimation of local pooled dispersion parameters. A comprehensive evaluation of our proposed method in the aspect of differential gene expression analysis using both simulated and real data sets shows that the proposed method is more powerful than other existing methods while controlling the false discovery rates. By introducing conditional estimation of local pooled dispersion parameters, we successfully overcome the limitation of small power and enable a powerful quantitative analysis focused on differential expression test with the small number of samples.

14. Differential subcellular localization of insulin receptor substrates depends on C-terminal regions and importin β

International Nuclear Information System (INIS)

Kabuta, Tomohiro; Take, Kazumi; Kabuta, Chihana; Hakuno, Fumihiko; Takahashi, Shin-Ichiro

2008-01-01

Insulin receptor substrates (IRSs) play essential roles in signal transduction of insulin and insulin-like growth factors. Previously, we showed that IRS-3 is localized to the nucleus as well as the cytosol, while IRS-1 and 2 are mainly localized to the cytoplasm. In the present study, we found that importin β directly interacts with IRS-3 and is able to mediate nuclear transport of IRS-3. Importin β interacted with the pleckstrin homology domain, the phosphotyrosine binding domain and the C-terminal region of IRS-3; indeed all of these fragments exhibited predominant nuclear localization. By contrast, almost no interaction of importin β with IRS-1 and -2 was observed, and their C-terminal regions displayed discrete spotty images in the cytosol. In addition, using chimeric proteins between IRS-1 and IRS-3, we revealed that the C-terminal regions are the main determinants of the differing subcellular localizations of IRS-1 and IRS-3.

15. Open problems in the geometry and analysis of Banach spaces

CERN Document Server

Guirao, Antonio J; Zizler, Václav

2016-01-01

This is a collection of some easily-formulated problems that remain open in the study of the geometry and analysis of Banach spaces. Assuming the reader has a working familiarity with the basic results of Banach space theory, the authors focus on concepts of basic linear geometry, convexity, approximation, optimization, differentiability, renormings, weak compact generating, Schauder bases and biorthogonal systems, fixed points, topology and nonlinear geometry. The main purpose of this work is to help convince young researchers in Functional Analysis that the theory of Banach spaces is a fertile field of research, full of interesting open problems. Inside the Banach space area, the text should help expose young researchers to the depth and breadth of the work that remains, and to provide the perspective necessary to choose a direction for further study. Some of the problems presented herein are longstanding open problems, some are recent, some are more important and some are only "local" problems. Some would ...

16. Adaptive differentiation coincides with local bioclimatic conditions along an elevational cline in populations of a lichen-forming fungus.

Science.gov (United States)

Dal Grande, Francesco; Sharma, Rahul; Meiser, Anjuli; Rolshausen, Gregor; Büdel, Burkhard; Mishra, Bagdevi; Thines, Marco; Otte, Jürgen; Pfenninger, Markus; Schmitt, Imke

2017-03-31

Many fungal species occur across a variety of habitats. Particularly lichens, fungi forming symbioses with photosynthetic partners, have evolved remarkable tolerances for environmental extremes. Despite their ecological importance and ubiquity, little is known about the genetic basis of adaption in lichen populations. Here we studied patterns of genome-wide differentiation in the lichen-forming fungus Lasallia pustulata along an altitudinal gradient in the Mediterranean region. We resequenced six populations as pools and identified highly differentiated genomic regions. We then detected gene-environment correlations while controlling for shared population history and pooled sequencing bias, and performed ecophysiological experiments to assess fitness differences of individuals from different environments. We detected two strongly differentiated genetic clusters linked to Mediterranean and temperate-oceanic climate, and an admixture zone, which coincided with the transition between the two bioclimates. High altitude individuals showed ecophysiological adaptations to wetter and more shaded conditions. Highly differentiated genome regions contained a number of genes associated with stress response, local environmental adaptation, and sexual reproduction. Taken together our results provide evidence for a complex interplay between demographic history and spatially varying selection acting on a number of key biological processes, suggesting a scenario of ecological speciation.

17. GEOMETRY – AN IMPORTANT MEANS OF EDUCATION IN THE CIVILISATION SCOPE

OpenAIRE

Liliana TOCARIU, PhD

2017-01-01

Geometry (from the Greek: γεωμετρία; geo = earth, metria = measure) is a genuine science, rooted in mathematics, which studies the plane and spatial forms of bodies from the objective or conceptual reality and the nature of the relationship that exists between them. Due to its complexity, geometry is divided into: Euclidian geometry, analytical geometry, descriptive geometry, projective geometry, kinematic geometry, surface and curve differential geometry, axiomatic geometry,...

18. Contemporary evolution during invasion: evidence for differentiation, natural selection, and local adaptation.

Science.gov (United States)

Colautti, Robert I; Lau, Jennifer A

2015-05-01

19. Incremental localized boundary-domain integro-differential equations of elastic damage mechanics for inhomogeneous body

OpenAIRE

Mikhailov, SE

2006-01-01

Copyright @ 2006 Tech Science Press A quasi-static mixed boundary value problem of elastic damage mechanics for a continuously inhomogeneous body is considered. Using the two-operator Green-Betti formula and the fundamental solution of an auxiliary homogeneous linear elasticity with frozen initial, secant or tangent elastic coe±cients, a boundary-domain integro-differential formulation of the elasto-plastic problem with respect to the displacement rates and their gradients is derived. Usin...

20. Local Inflammatory Cues Regulate Differentiation and Persistence of CD8+ Tissue-Resident Memory T Cells

Directory of Open Access Journals (Sweden)

Tessa Bergsbaken

2017-04-01

Full Text Available Many pathogens initiate infection at mucosal surfaces, and tissue-resident memory T (Trm cells play an important role in protective immunity, yet the tissue-specific signals that regulate Trm differentiation are poorly defined. During Yersinia infection, CD8+ T cell recruitment to areas of inflammation within the intestine is required for differentiation of the CD103−CD69+ Trm subset. Intestinal proinflammatory microenvironments have elevated interferon (IFN-β and interleukin-12 (IL-12, which regulated Trm markers, including CD103. Type I interferon-receptor- or IL-12-receptor-deficient T cells functioned similarly to wild-type (WT cells during infection; however, the inability of T cells to respond to inflammation resulted in defective differentiation of CD103−CD69+ Trm cells and reduced Trm persistence. Intestinal macrophages were the main producers of IFN-β and IL-12 during infection, and deletion of CCR2+ IL-12-producing cells reduced the size of the CD103− Trm population. These data indicate that intestinal inflammation drives phenotypic diversity and abundance of Trm cells for optimal tissue-specific immunity.

1. Differentiability in density-functional theory: Further study of the locality theorem

International Nuclear Information System (INIS)

Lindgren, Ingvar; Salomonson, Sten

2004-01-01

The locality theorem in density-functional theory (DFT) states that the functional derivative of the Hohenberg-Kohn universal functional can be expressed as a local multiplicative potential function, and this is the basis of DFT and of the successful Kohn-Sham model. Nesbet has in several papers [Phys. Rev. A 58, R12 (1998); ibid.65, 010502 (2001); Adv. Quant. Chem, 43, 1 (2003)] claimed that this theorem is in conflict with fundamental quantum physics, and as a consequence that the Hohenberg-Kohn theory cannot be generally valid. We have commented upon these works [Comment, Phys. Rev. A 67, 056501 (2003)] and recently extended the arguments [Adv. Quantum Chem. 43, 95 (2003)]. We have shown that there is no such conflict and that the locality theorem is inherently exact. In the present work we have furthermore verified this numerically by constructing a local Kohn-Sham potential for the 1s2s 3 S state of helium that generates the many-body electron density and shown that the corresponding 2s Kohn-Sham orbital eigenvalue agrees with the ionization energy to nine digits. Similar result is obtained with the Hartree-Fock density. Therefore, in addition to verifying the locality theorem, this result also confirms the so-called ionization-potential theorem

2. Localization of the eigenvalues of linear integral equations with applications to linear ordinary differential equations.

Science.gov (United States)

Sloss, J. M.; Kranzler, S. K.

1972-01-01

The equivalence of a considered integral equation form with an infinite system of linear equations is proved, and the localization of the eigenvalues of the infinite system is expressed. Error estimates are derived, and the problems of finding upper bounds and lower bounds for the eigenvalues are solved simultaneously.

3. A new approach to non-local boundary value problems for ordinary differential systems

Czech Academy of Sciences Publication Activity Database

Rontó, András; Rontó, M.; Shchobak, N.

2015-01-01

Roč. 250, č. 1 (2015), s. 689-700 ISSN 0096-3003 Institutional support: RVO:67985840 Keywords : non-local problem * parametrisation * successive approximations Subject RIV: BA - General Mathematics Impact factor: 1.345, year: 2015 http://www.sciencedirect.com/science/article/pii/S0096300314015434

4. Thaumatin-like proteins are differentially expressed and localized in phloem tissues of hybrid poplar

Directory of Open Access Journals (Sweden)

Dafoe Nicole J

2010-08-01

Full Text Available Abstract Background Two thaumatin-like proteins (TLPs were previously identified in phloem exudate of hybrid poplar (Populus trichocarpa × P. deltoides using proteomics methods, and their sieve element localization confirmed by immunofluorescence. In the current study, we analyzed different tissues to further understand TLP expression and localization in poplar, and used immunogold labelling to determine intracellular localization. Results Immunofluorescence using a TLP antiserum confirmed the presence of TLP in punctate, organelle-like structures within sieve elements. On western blots, the antiserum labeled two constitutively expressed proteins with distinct expression patterns. Immunogold labelling suggested that TLPs are associated with starch granules and starch-containing plastids in sieve elements and phloem parenchyma cells. In addition, the antiserum recognized TLPs in the inner cell wall and sieve plate region of sieve elements. Conclusions TLP localization in poplar cells and tissues is complex. TLP1 is expressed predominantly in tissues with a prominent vascular system such as midveins, petioles and stems, whereas the second TLP is primarily expressed in starch-storing plastids found in young leaves and the shoot apex.

5. Sorafenib in radioactive iodine-refractory, locally advanced or metastatic differentiated thyroid cancer

DEFF Research Database (Denmark)

Brose, Marcia S; Nutting, Christopher M; Jarzab, Barbara

2014-01-01

cancer that had progressed within the past 14 months. Adult patients (≥18 years of age) with this type of cancer were enrolled from 77 centres in 18 countries. To be eligible for inclusion, participants had to have at least one measurable lesion by CT or MRI according to Response Evaluation Criteria...... cancer. Adverse events were consistent with the known safety profile of sorafenib. These results suggest that sorafenib is a new treatment option for patients with progressive radioactive iodine-refractory differentiated thyroid cancer. FUNDING: Bayer HealthCare Pharmaceuticals and Onyx Pharmaceuticals...

6. Guide to Computational Geometry Processing

DEFF Research Database (Denmark)

Bærentzen, Jakob Andreas; Gravesen, Jens; Anton, François

be processed before it is useful. This Guide to Computational Geometry Processing reviews the algorithms for processing geometric data, with a practical focus on important techniques not covered by traditional courses on computer vision and computer graphics. This is balanced with an introduction...... to the theoretical and mathematical underpinnings of each technique, enabling the reader to not only implement a given method, but also to understand the ideas behind it, its limitations and its advantages. Topics and features: Presents an overview of the underlying mathematical theory, covering vector spaces......, metric space, affine spaces, differential geometry, and finite difference methods for derivatives and differential equations Reviews geometry representations, including polygonal meshes, splines, and subdivision surfaces Examines techniques for computing curvature from polygonal meshes Describes...

7. Optimisation of 20 kHz sonoreactor geometry on the basis of numerical simulation of local ultrasonic intensity and qualitative comparison with experimental results

Czech Academy of Sciences Publication Activity Database

Klíma, Jiří; Frias-Ferrer, A.; González-Garcia, J.; Ludvík, Jiří; Sáez, V.; Iniesta, J.

2007-01-01

Roč. 14, č. 1 (2007), s. 19-28 ISSN 1350-4177 R&D Projects: GA MŠk(CZ) OC D32.001; GA MŠk 1P05OC074; GA AV ČR IAA4040304 Grant - others:Generalidad Valenciana(ES) GV05/104 Institutional research plan: CEZ:AV0Z40400503 Keywords : ultrasound * intensity distribution * cell geometry optimisation * wave equation Subject RIV: CG - Electrochemistry Impact factor: 2.434, year: 2007

8. Mechanisms involved in the differential recovery of CD4 and CD8 T-lymphocytes after local irradiation in mice

International Nuclear Information System (INIS)

De Ruysscher, D; Waer, M.; Vandeputte, M.; Van der Schueren, E.

1990-01-01

The mechanisms involved in the differential recovery of CD4 (helper/inducer phenotype) and CD8 (Cytotoxic/suppressor phenotype) T-lymphocytes after fractionated local irradiation were investigated. In mice, a better recovery of CD4 cells than of CD8 cells was found, while the reverse has been described in humans. Differences in radiosensivitity between CD4 and CD8 mouse splenocytes could not be found. No sequestration of CD8 cells in irradiated tissues could be demonstrated. Irradiation of the thymus did not influence the observed immune changes. Altered thymic production of CD4 and CD8 cells could be excluded by intrathymic injection of FITC (fluorescein isothiocyanate). Hindlimb and tail irradiation did suggest that the differential recovery of CD4 and CD8 T-lymphocytes after local irradiation is determined by extrathymic factors in man and mice, and that the observed differences in immune recovery between man and mice are due to defective thymic function in the former and normal function in the latter. (author). 12 refs.; 5 figs.; 2 tabs

9. Locally adapted fish populations maintain small-scale genetic differentiation despite perturbation by a catastrophic flood event.

Science.gov (United States)

Plath, Martin; Hermann, Bernd; Schröder, Christiane; Riesch, Rüdiger; Tobler, Michael; García de León, Francisco J; Schlupp, Ingo; Tiedemann, Ralph

2010-08-23

Local adaptation to divergent environmental conditions can promote population genetic differentiation even in the absence of geographic barriers and hence, lead to speciation. Perturbations by catastrophic events, however, can distort such parapatric ecological speciation processes. Here, we asked whether an exceptionally strong flood led to homogenization of gene pools among locally adapted populations of the Atlantic molly (Poecilia mexicana, Poeciliidae) in the Cueva del Azufre system in southern Mexico, where two strong environmental selection factors (darkness within caves and/or presence of toxic H2S in sulfidic springs) drive the diversification of P. mexicana. Nine nuclear microsatellites as well as heritable female life history traits (both as a proxy for quantitative genetics and for trait divergence) were used as markers to compare genetic differentiation, genetic diversity, and especially population mixing (immigration and emigration) before and after the flood. Habitat type (i.e., non-sulfidic surface, sulfidic surface, or sulfidic cave), but not geographic distance was the major predictor of genetic differentiation. Before and after the flood, each habitat type harbored a genetically distinct population. Only a weak signal of individual dislocation among ecologically divergent habitat types was uncovered (with the exception of slightly increased dislocation from the Cueva del Azufre into the sulfidic creek, El Azufre). By contrast, several lines of evidence are indicative of increased flood-induced dislocation within the same habitat type, e.g., between different cave chambers of the Cueva del Azufre. The virtual absence of individual dislocation among ecologically different habitat types indicates strong natural selection against migrants. Thus, our current study exemplifies that ecological speciation in this and other systems, in which extreme environmental factors drive speciation, may be little affected by temporary perturbations, as adaptations

10. Differential Subplastidial Localization and Turnover of Enzymes Involved in Isoprenoid Biosynthesis in Chloroplasts.

Directory of Open Access Journals (Sweden)

Catalina Perello

Full Text Available Plastidial isoprenoids are a diverse group of metabolites with roles in photosynthesis, growth regulation, and interaction with the environment. The methylerythritol 4-phosphate (MEP pathway produces the metabolic precursors of all types of plastidial isoprenoids. Proteomics studies in Arabidopsis thaliana have shown that all the enzymes of the MEP pathway are localized in the plastid stroma. However, immunoblot analysis of chloroplast subfractions showed that the first two enzymes of the pathway, deoxyxylulose 5-phosphate synthase (DXS and reductoisomerase (DXR, can also be found in non-stromal fractions. Both transient and stable expression of GFP-tagged DXS and DXR proteins confirmed the presence of the fusion proteins in distinct subplastidial compartments. In particular, DXR-GFP was found to accumulate in relatively large vesicles that could eventually be released from chloroplasts, presumably to be degraded by an autophagy-independent process. Together, we propose that protein-specific mechanisms control the localization and turnover of the first two enzymes of the MEP pathway in Arabidopsis chloroplasts.

11. CT differential diagnosis between hypertensive putaminal hemorrhage and hemorrhagic infarction localized in basal ganglia

International Nuclear Information System (INIS)

Tazawa, Toshiaki; Mizukami, Masahiro; Kawase, Takeshi.

1984-01-01

The symptoms of hypertensive putaminal hemorrhage and of middle cerebral artery occlusion are sometimes similar to each other. Hemorrhage sometimes occurs following cerebral infarction. We experienced 7 patients with hemorrhages localized in the basal ganglia following cerebral infarction. The CT findings of 55 patients with putaminal hemorrhage and 7 patients with hemorrhagic infarction localized at the basal ganglia were investigated retrospectively in order to discuss their characteristics. The high-density area (HD) of a putaminal hemorrhage was homogeneous on a plain CT within a week of the onset. There was a close correlation between the size of the HD and the timing of its disappearance. The HD with a maximum diameter of A cm generally disappeared A weeks after. On the other hand, the HD of a hemorrhagic infarction was lower in density than that of the putaminal hemorrhage. The HD of a hemorrhagic infarction generally disappeared earlier than that of a putaminal hemorrhage. Ring enhancement was visualized on contrast-enhanced CT (CECT) from 2 or 3 weeks after the onset in patients with putaminal hemorrhages except in the case of small hemorrhages (less than 1 cm diameter). Ring enhancement was also visualized in 6 out of 7 patients with hemorrhagic infarction; one of them was recognized within a week of the onset. Contrast enhancement of the cortex in the territory of the middle cerebral artery was visualized in 4 out of 7 patients with hemorrhagic infarction. This finding seems to indicate one characteristic of hemorrhagic infarction. (author)

12. Development of differential quadrature based computational scheme in cylindrical geometry and its application to simulate radionuclide leaching from radioactive waste form

International Nuclear Information System (INIS)

Pal, T.K.; Bajpai, R.K.; Datta, D.

2016-01-01

Differential Quadrature Method (DQM) based computational scheme is developed to solve diffusion equation in cylindrical coordinate. In this scheme, time derivative is approximated using forward difference and the spatial derivatives using polynomial based DQM. This developed scheme is applied to simulate test problem on radionuclide leaching from radioactive waste form. Leach rate is calculated after simulating the leaching process. DQM based results are compared with the analytical solutions and good agreements between the two results are established. The developed tool is used as a numerical tool for computationally intensive calculations, such as regression analysis and correlation analysis etc. Multivariate regression analysis is carried out to establish a linear relationship between leach rate and model parameters e.g., diffusion coefficient, porosity and linear sorption coefficient. Study of correlation analysis carried out in this study shows that diffusion coefficient is positively more correlated with leach rate compared to porosity whereas, K_d is negatively correlated with leach rate. (author)

13. Arginine Methylation Regulates MEIS2 Nuclear Localization to Promote Neuronal Differentiation of Adult SVZ Progenitors.

Science.gov (United States)

Kolb, Jasmine; Anders-Maurer, Marie; Müller, Tanja; Hau, Ann-Christin; Grebbin, Britta Moyo; Kallenborn-Gerhardt, Wiebke; Behrends, Christian; Schulte, Dorothea

2018-04-10

14. Differential modulation of global and local neural oscillations in REM sleep by homeostatic sleep regulation.

Science.gov (United States)

Kim, Bowon; Kocsis, Bernat; Hwang, Eunjin; Kim, Youngsoo; Strecker, Robert E; McCarley, Robert W; Choi, Jee Hyun

2017-02-28

Homeostatic rebound in rapid eye movement (REM) sleep normally occurs after acute sleep deprivation, but REM sleep rebound settles on a persistently elevated level despite continued accumulation of REM sleep debt during chronic sleep restriction (CSR). Using high-density EEG in mice, we studied how this pattern of global regulation is implemented in cortical regions with different functions and network architectures. We found that across all areas, slow oscillations repeated the behavioral pattern of persistent enhancement during CSR, whereas high-frequency oscillations showed progressive increases. This pattern followed a common rule despite marked topographic differences. The findings suggest that REM sleep slow oscillations may translate top-down homeostatic control to widely separated brain regions whereas fast oscillations synchronizing local neuronal ensembles escape this global command. These patterns of EEG oscillation changes are interpreted to reconcile two prevailing theories of the function of sleep, synaptic homeostasis and sleep dependent memory consolidation.

15. Kullback-Leibler Divergence-Based Differential Evolution Markov Chain Filter for Global Localization of Mobile Robots.

Science.gov (United States)

Martín, Fernando; Moreno, Luis; Garrido, Santiago; Blanco, Dolores

2015-09-16

One of the most important skills desired for a mobile robot is the ability to obtain its own location even in challenging environments. The information provided by the sensing system is used here to solve the global localization problem. In our previous work, we designed different algorithms founded on evolutionary strategies in order to solve the aforementioned task. The latest developments are presented in this paper. The engine of the localization module is a combination of the Markov chain Monte Carlo sampling technique and the Differential Evolution method, which results in a particle filter based on the minimization of a fitness function. The robot's pose is estimated from a set of possible locations weighted by a cost value. The measurements of the perceptive sensors are used together with the predicted ones in a known map to define a cost function to optimize. Although most localization methods rely on quadratic fitness functions, the sensed information is processed asymmetrically in this filter. The Kullback-Leibler divergence is the basis of a cost function that makes it possible to deal with different types of occlusions. The algorithm performance has been checked in a real map. The results are excellent in environments with dynamic and unmodeled obstacles, a fact that causes occlusions in the sensing area.

16. Kullback-Leibler Divergence-Based Differential Evolution Markov Chain Filter for Global Localization of Mobile Robots

Directory of Open Access Journals (Sweden)

Fernando Martín

2015-09-01

Full Text Available One of the most important skills desired for a mobile robot is the ability to obtain its own location even in challenging environments. The information provided by the sensing system is used here to solve the global localization problem. In our previous work, we designed different algorithms founded on evolutionary strategies in order to solve the aforementioned task. The latest developments are presented in this paper. The engine of the localization module is a combination of the Markov chain Monte Carlo sampling technique and the Differential Evolution method, which results in a particle filter based on the minimization of a fitness function. The robot’s pose is estimated from a set of possible locations weighted by a cost value. The measurements of the perceptive sensors are used together with the predicted ones in a known map to define a cost function to optimize. Although most localization methods rely on quadratic fitness functions, the sensed information is processed asymmetrically in this filter. The Kullback-Leibler divergence is the basis of a cost function that makes it possible to deal with different types of occlusions. The algorithm performance has been checked in a real map. The results are excellent in environments with dynamic and unmodeled obstacles, a fact that causes occlusions in the sensing area.

17. Non-Riemannian geometry

CERN Document Server

Eisenhart, Luther Pfahler

2005-01-01

This concise text by a prominent mathematician deals chiefly with manifolds dominated by the geometry of paths. Topics include asymmetric and symmetric connections, the projective geometry of paths, and the geometry of sub-spaces. 1927 edition.

18. Whole genome sequencing of the monomorphic pathogen Mycobacterium bovis reveals local differentiation of cattle clinical isolates.

Science.gov (United States)

Lasserre, Moira; Fresia, Pablo; Greif, Gonzalo; Iraola, Gregorio; Castro-Ramos, Miguel; Juambeltz, Arturo; Nuñez, Álvaro; Naya, Hugo; Robello, Carlos; Berná, Luisa

2018-01-02

Bovine tuberculosis (bTB) poses serious risks to animal welfare and economy, as well as to public health as a zoonosis. Its etiological agent, Mycobacterium bovis, belongs to the Mycobacterium tuberculosis complex (MTBC), a group of genetically monomorphic organisms featured by a remarkably high overall nucleotide identity (99.9%). Indeed, this characteristic is of major concern for correct typing and determination of strain-specific traits based on sequence diversity. Due to its historical economic dependence on cattle production, Uruguay is deeply affected by the prevailing incidence of Mycobacterium bovis. With the world's highest number of cattle per human, and its intensive cattle production, Uruguay represents a particularly suited setting to evaluate genomic variability among isolates, and the diversity traits associated to this pathogen. We compared 186 genomes from MTBC strains isolated worldwide, and found a highly structured population in M. bovis. The analysis of 23 new M. bovis genomes, belonging to strains isolated in Uruguay evidenced three groups present in the country. Despite presenting an expected highly conserved genomic structure and sequence, these strains segregate into a clustered manner within the worldwide phylogeny. Analysis of the non-pe/ppe differential areas against a reference genome defined four main sources of variability, namely: regions of difference (RD), variable genes, duplications and novel genes. RDs and variant analysis segregated the strains into clusters that are concordant with their spoligotype identities. Due to its high homoplasy rate, spoligotyping failed to reflect the true genomic diversity among worldwide representative strains, however, it remains a good indicator for closely related populations. This study introduces a comprehensive population structure analysis of worldwide M. bovis isolates. The incorporation and analysis of 23 novel Uruguayan M. bovis genomes, sheds light onto the genomic diversity of this

19. Geometry of the Universe

International Nuclear Information System (INIS)

Gurevich, L.Eh.; Gliner, Eh.B.

1978-01-01

Problems of investigating the Universe space-time geometry are described on a popular level. Immediate space-time geometries, corresponding to three cosmologic models are considered. Space-time geometry of a closed model is the spherical Riemann geonetry, of an open model - is the Lobachevskij geometry; and of a plane model - is the Euclidean geometry. The Universe real geometry in the contemporary epoch of development is based on the data testifying to the fact that the Universe is infinitely expanding

20. local

Directory of Open Access Journals (Sweden)

Abílio Amiguinho

2005-01-01

Full Text Available The process of socio-educational territorialisation in rural contexts is the topic of this text. The theme corresponds to a challenge to address it having as main axis of discussion either the problem of social exclusion or that of local development. The reasons to locate the discussion in this last field of analysis are discussed in the first part of the text. Theoretical and political reasons are there articulated because the question is about projects whose intentions and practices call for the political both in the theoretical debate and in the choices that anticipate intervention. From research conducted for several years, I use contributions that aim at discuss and enlighten how school can be a potential locus of local development. Its identification and recognition as local institution (either because of those that work and live in it or because of those that act in the surrounding context are crucial steps to progressively constitute school as a partner for development. The promotion of the local values and roots, the reconstruction of socio-personal and local identities, the production of sociabilities and the equation and solution of shared problems were the dimensions of a socio-educative intervention, markedly globalising. This scenario, as it is argued, was also, intentionally, one of transformation and of deliberate change of school and of the administration of the educative territoires.

1. Determination of differential cross-sections for the natK(p, p0) and 39K(p, α0) reactions in the backscattering geometry

International Nuclear Information System (INIS)

Kokkoris, M.; Tsaris, A.; Misaelides, P.; Sokaras, D.; Lagoyannis, A.; Harissopulos, S.; Vlastou, R.; Papadopoulos, C.T.

2010-01-01

In the present work, new, differential cross-section values are presented for the nat K(p, p 0 ) reaction in the energy range E lab = 3000-5000 keV (with an energy step of 25 keV) and for detector angles between 140 o and 170 o (with an angular step of 10 o ). A qualitative discussion of the observed cross-section variations through the influence of strong, closely spaced resonances in the p + 39 K system is also presented. Information has also been extracted concerning the 39 K(p,α 0 ) reaction for E lab = 4000-5000 keV in the same angular range. As a result, more than ∼500 data points will soon be available to the scientific community through IBANDL (Ion Beam Analysis Nuclear Data Library - (http://www-nds.iaea.org/ibandl/)) and could thus be incorporated in widely used IBA algorithms (e.g. SIMNRA, WINDF, etc.) for potassium depth profiling at relatively high proton beam energies.

2. A local region of interest image reconstruction via filtered backprojection for fan-beam differential phase-contrast computed tomography

International Nuclear Information System (INIS)

Qi Zhihua; Chen Guanghong

2007-01-01

Recently, x-ray differential phase contrast computed tomography (DPC-CT) has been experimentally implemented using a conventional source combined with several gratings. Images were reconstructed using a parallel-beam reconstruction formula. However, parallel-beam reconstruction formulae are not directly applicable for a large image object where the parallel-beam approximation fails. In this note, we present a new image reconstruction formula for fan-beam DPC-CT. There are two major features in this algorithm: (1) it enables the reconstruction of a local region of interest (ROI) using data acquired from an angular interval shorter than 180 0 + fan angle and (2) it still preserves the filtered backprojection structure. Numerical simulations have been conducted to validate the image reconstruction algorithm. (note)

3. Differential local tissue permissiveness influences the final fate of GPR17-expressing oligodendrocyte precursors in two distinct models of demyelination.

Science.gov (United States)

Coppolino, Giusy T; Marangon, Davide; Negri, Camilla; Menichetti, Gianluca; Fumagalli, Marta; Gelosa, Paolo; Dimou, Leda; Furlan, Roberto; Lecca, Davide; Abbracchio, Maria P

2018-05-01

Promoting remyelination is recognized as a novel strategy to foster repair in neurodegenerative demyelinating diseases, such as multiple sclerosis. In this respect, the receptor GPR17, recently emerged as a new target for remyelination, is expressed by early oligodendrocyte precursors (OPCs) and after a certain differentiation stage it has to be downregulated to allow progression to mature myelinating oligodendrocytes. Here, we took advantage of the first inducible GPR17 reporter mouse line (GPR17-iCreER T2 xCAG-eGFP mice) allowing to follow the final fate of GPR17 + cells by tamoxifen-induced GFP-labeling to unveil the destiny of these cells in two demyelination models: experimental autoimmune encephalomyelitis (EAE), characterized by marked immune cell activation and inflammation, and cuprizone induced demyelination, where myelin dysfunction is achieved by a toxic insult. In both models, demyelination induced a strong increase of fluorescent GFP + cells at damaged areas. However, only in the cuprizone model reacting GFP + cells terminally differentiated to mature oligodendrocytes, thus contributing to remyelination. In EAE, GFP + cells were blocked at immature stages and never became myelinating oligodendrocytes. We suggest these strikingly distinct fates be due to different permissiveness of the local CNS environment. Based on previously reported GPR17 activation by emergency signals (e.g., Stromal Derived Factor-1), we propose that a marked inflammatory milieu, such as that reproduced in EAE, induces GPR17 overactivation resulting in impaired downregulation, untimely and prolonged permanence in OPCs, leading, in turn, to differentiation blockade. Combined treatments with remyelinating agents and anti-inflammatory drugs may represent new potential adequate strategies to halt neurodegeneration and foster recovery. © 2018 The Authors GLIA Published by Wiley Periodicals, Inc.

4. Real algebraic geometry

CERN Document Server

Bochnak, Jacek; Roy, Marie-Françoise

1998-01-01

This book is a systematic treatment of real algebraic geometry, a subject that has strong interrelation with other areas of mathematics: singularity theory, differential topology, quadratic forms, commutative algebra, model theory, complexity theory etc. The careful and clearly written account covers both basic concepts and up-to-date research topics. It may be used as text for a graduate course. The present edition is a substantially revised and expanded English version of the book "Géometrie algébrique réelle" originally published in French, in 1987, as Volume 12 of ERGEBNISSE. Since the publication of the French version the theory has made advances in several directions. Many of these are included in this English version. Thus the English book may be regarded as a completely new treatment of the subject.

5. Information geometry near randomness and near independence

CERN Document Server

2008-01-01

This volume will be useful to practising scientists and students working in the application of statistical models to real materials or to processes with perturbations of a Poisson process, a uniform process, or a state of independence for a bivariate process. We use information geometry to provide a common differential geometric framework for a wide range of illustrative applications including amino acid sequence spacings in protein chains, cryptology studies, clustering of communications and galaxies, cosmological voids, coupled spatial statistics in stochastic fibre networks and stochastic porous media, quantum chaology. Introduction sections are provided to mathematical statistics, differential geometry and the information geometry of spaces of probability density functions.

6. Normal forms in Poisson geometry

NARCIS (Netherlands)

Marcut, I.T.

2013-01-01

The structure of Poisson manifolds is highly nontrivial even locally. The first important result in this direction is Conn's linearization theorem around fixed points. One of the main results of this thesis (Theorem 2) is a normal form theorem in Poisson geometry, which is the Poisson-geometric

7. Requirement of the coiled-coil domain of PML-RARα oncoprotein for localization, sumoylation, and inhibition of monocyte differentiation

International Nuclear Information System (INIS)

Kim, Young-Eui; Kim, Dong-Yeon; Lee, Jang-Mi; Kim, Seong-Tae; Han, Tae-Hee; Ahn, Jin-Hyun

2005-01-01

Homo-oligomerization via a coiled-coil (C-C) domain has been shown to be necessary for the promyelocytic leukemia (PML)-retinoic acid receptor-α (RARα) fusion protein to acquire oncogenic potential in acute promyelocytic leukemia. We show here that PML(ΔC-C)-RARα, which contains a deletion in its C-C domain, is neither localized as characteristic microspeckles nor modified by small ubiquitin-like modifiers (SUMO). The absence of sumoylation of the ΔC-C mutant was due to the lack of binding to Ubc9, a SUMO conjugation enzyme. The integrity of RING finger domain was also needed for both sumoylation and microspeckle formation. In GAL4-DNA tethering assays, the ΔC-C mutant completely lost the inhibitory effect on retinoic acid (RA)-mediated transactivation. Furthermore, the expression of CD14 in U937 cells expressing the ΔC-C mutant in response to vitamin D3 was markedly higher than in cells expressing PML-RARα. However, the RA-mediated induction of C/EBPβ in cells expressing the ΔC-C mutant was comparable to that of control cells. Thus, our results suggest that the C-C domain-associated functions of sumoylation, localization as microspeckles, and the inhibition of monocyte differentiation all contribute to the oncogenic activity of PML-RARα

8. Local angiotensin II promotes adipogenic differentiation of human adipose tissue mesenchymal stem cells through type 2 angiotensin receptor

Directory of Open Access Journals (Sweden)

Veronika Y. Sysoeva

2017-12-01

9. Follicular localization of growth differentiation factor 8 and its receptors in normal and polycystic ovary syndrome ovaries.

Science.gov (United States)

Lin, Ting-Ting; Chang, Hsun-Ming; Hu, Xiao-Ling; Leung, Peter C K; Zhu, Yi-Min

2018-05-01

Polycystic ovary syndrome (PCOS) is the most common endocrine disorder in women of reproductive age and its etiology has not been characterized. Growth differentiation factor 8 (GDF8) is a member of the transforming growth factor-β superfamily that plays a critical role in the regulation of ovarian functions. However, the expression pattern of GDF8 in the human ovary is not yet clear. This study examined the cellular distribution of GDF8 and its putative cellular receptors (ACVR2A, ACVR2B, and ALK5) in a series of normal (n = 34) and PCOS ovaries (n = 14). The immunostaining of GDF8, ACVR2A, ACVR2B, and ALK5 was detected in the oocytes regardless of the developmental stage. All these proteins were localized in antral follicles in normal and PCOS ovaries, and the expression of these proteins increased with increasing follicle diameter. A significantly higher expression of GDF8 was detected in the granulosa cells than in the matched theca cells (TCs). These proteins were also localized in the luteal cells of the corpus luteum. Granulosa cells and TCs of large antral follicles in PCOS ovaries display a higher expression of these proteins. The higher expression levels of GDF8 and its functional receptors (ACVR2A, ACVR2B, and ALK5) in antral follicles of PCOS ovaries than those in normal ovaries suggest the possible involvement of dysregulated GDF8 in the pathogenesis of PCOS.

10. Electrodynamics and Spacetime Geometry: Foundations

Science.gov (United States)

Cabral, Francisco; Lobo, Francisco S. N.

2017-02-01

We explore the intimate connection between spacetime geometry and electrodynamics. This link is already implicit in the constitutive relations between the field strengths and excitations, which are an essential part of the axiomatic structure of electromagnetism, clearly formulated via integration theory and differential forms. We review the foundations of classical electromagnetism based on charge and magnetic flux conservation, the Lorentz force and the constitutive relations. These relations introduce the conformal part of the metric and allow the study of electrodynamics for specific spacetime geometries. At the foundational level, we discuss the possibility of generalizing the vacuum constitutive relations, by relaxing the fixed conditions of homogeneity and isotropy, and by assuming that the symmetry properties of the electro-vacuum follow the spacetime isometries. The implications of this extension are briefly discussed in the context of the intimate connection between electromagnetism and the geometry (and causal structure) of spacetime.

11. Geometry of Quantum States

International Nuclear Information System (INIS)

Hook, D W

2008-01-01

applications of the geometric approach. The first four chapters contain the standard mathematics required to understand the rest of the material presented: specific areas in colour theory, set theory, probability theory, differential geometry and projective geometry are all covered with an eye to the material that follows. Chapter 5 starts the first real discussion of quantum theory in GQS and serves as an elegant, succinct introduction to the geometry which underlies quantum theory. This may be the most worthwhile chapter for the casual reader who wants to understand the key ideas in this field. Chapter 6 builds on the discussion in Chapter 5, introducing a group theoretic approach to understand coherent states and Chapter 7 describes a geometric tool in the form of an approach to complex projective geometry called 'the stellar representation'. Chapter 8 returns to a more purely quantum mechanical discussion as the authors turn to study the space of density matrices. This chapter completes the discussion which started in Chapter 5. Chapter 9 begins the part of the book concerned with applications of the geometric approach. From this point on the book aims, specifically, to prepare the reader for the material in Chapter 15 beginning with a discussion on the purification of mixed quantum states. In the succeeding chapters a definite choice has been made to present a geometric approach to certain quantum information problems. For example, Chapter 10 contains an extremely well formulated discussion of measurement and positive operator-valued measures with several well illustrated examples and Chapter 11 reopens the discussion of density matrices. Entropy and majorization are again revisited in Chapter 12 in much greater detail than in previous chapters. Chapters 13 and 14 concern themselves with a discussion of various metrics and their relation to the problem of distinguishing between probability distributions and their suitability as probability measures. (book review)

12. Connections between algebra, combinatorics, and geometry

CERN Document Server

Sather-Wagstaff, Sean

2014-01-01

Commutative algebra, combinatorics, and algebraic geometry are thriving areas of mathematical research with a rich history of interaction. Connections Between Algebra, Combinatorics, and Geometry contains lecture notes, along with exercises and solutions, from the Workshop on Connections Between Algebra and Geometry held at the University of Regina from May 29-June 1, 2012. It also contains research and survey papers from academics invited to participate in the companion Special Session on Interactions Between Algebraic Geometry and Commutative Algebra, which was part of the CMS Summer Meeting at the University of Regina held June 2–3, 2012, and the meeting Further Connections Between Algebra and Geometry, which was held at the North Dakota State University, February 23, 2013. This volume highlights three mini-courses in the areas of commutative algebra and algebraic geometry: differential graded commutative algebra, secant varieties, and fat points and symbolic powers. It will serve as a useful resou...

13. Second International workshop Geometry and Symbolic Computation

CERN Document Server

Walczak, Paweł; Geometry and its Applications

2014-01-01

This volume has been divided into two parts: Geometry and Applications. The geometry portion of the book relates primarily to geometric flows, laminations, integral formulae, geometry of vector fields on Lie groups, and osculation; the articles in the applications portion concern some particular problems of the theory of dynamical systems, including mathematical problems of liquid flows and a study of cycles for non-dynamical systems. This Work is based on the second international workshop entitled "Geometry and Symbolic Computations," held on May 15-18, 2013 at the University of Haifa and is dedicated to modeling (using symbolic calculations) in differential geometry and its applications in fields such as computer science, tomography, and mechanics. It is intended to create a forum for students and researchers in pure and applied geometry to promote discussion of modern state-of-the-art in geometric modeling using symbolic programs such as Maple™ and Mathematica®, as well as presentation of new results. ...

14. Convection in Slab and Spheroidal Geometries

Science.gov (United States)

Porter, David H.; Woodward, Paul R.; Jacobs, Michael L.

2000-01-01

Three-dimensional numerical simulations of compressible turbulent thermally driven convection, in both slab and spheroidal geometries, are reviewed and analyzed in terms of velocity spectra and mixing-length theory. The same ideal gas model is used in both geometries, and resulting flows are compared. The piecewise-parabolic method (PPM), with either thermal conductivity or photospheric boundary conditions, is used to solve the fluid equations of motion. Fluid motions in both geometries exhibit a Kolmogorov-like k(sup -5/3) range in their velocity spectra. The longest wavelength modes are energetically dominant in both geometries, typically leading to one convection cell dominating the flow. In spheroidal geometry, a dipolar flow dominates the largest scale convective motions. Downflows are intensely turbulent and up drafts are relatively laminar in both geometries. In slab geometry, correlations between temperature and velocity fluctuations, which lead to the enthalpy flux, are fairly independent of depth. In spheroidal geometry this same correlation increases linearly with radius over the inner 70 percent by radius, in which the local pressure scale heights are a sizable fraction of the radius. The effects from the impenetrable boundary conditions in the slab geometry models are confused with the effects from non-local convection. In spheroidal geometry nonlocal effects, due to coherent plumes, are seen as far as several pressure scale heights from the lower boundary and are clearly distinguishable from boundary effects.

15. Geometry, topology, and string theory

Energy Technology Data Exchange (ETDEWEB)

Varadarajan, Uday [Univ. of California, Berkeley, CA (United States)

2003-01-01

A variety of scenarios are considered which shed light upon the uses and limitations of classical geometric and topological notions in string theory. The primary focus is on situations in which D-brane or string probes of a given classical space-time see the geometry quite differently than one might naively expect. In particular, situations in which extra dimensions, non-commutative geometries as well as other non-local structures emerge are explored in detail. Further, a preliminary exploration of such issues in Lorentzian space-times with non-trivial causal structures within string theory is initiated.

16. Geometry, topology, and string theory

International Nuclear Information System (INIS)

2003-01-01

A variety of scenarios are considered which shed light upon the uses and limitations of classical geometric and topological notions in string theory. The primary focus is on situations in which D-brane or string probes of a given classical space-time see the geometry quite differently than one might naively expect. In particular, situations in which extra dimensions, non-commutative geometries as well as other non-local structures emerge are explored in detail. Further, a preliminary exploration of such issues in Lorentzian space-times with non-trivial causal structures within string theory is initiated

17. Commutative algebra with a view toward algebraic geometry

CERN Document Server

Eisenbud, David

1995-01-01

Commutative Algebra is best understood with knowledge of the geometric ideas that have played a great role in its formation, in short, with a view towards algebraic geometry. The author presents a comprehensive view of commutative algebra, from basics, such as localization and primary decomposition, through dimension theory, differentials, homological methods, free resolutions and duality, emphasizing the origins of the ideas and their connections with other parts of mathematics. Many exercises illustrate and sharpen the theory and extended exercises give the reader an active part in complementing the material presented in the text. One novel feature is a chapter devoted to a quick but thorough treatment of Grobner basis theory and the constructive methods in commutative algebra and algebraic geometry that flow from it. Applications of the theory and even suggestions for computer algebra projects are included. This book will appeal to readers from beginners to advanced students of commutative algebra or algeb...

18. Differential manifolds

CERN Document Server

Kosinski, Antoni A

2007-01-01

The concepts of differential topology form the center of many mathematical disciplines such as differential geometry and Lie group theory. Differential Manifolds presents to advanced undergraduates and graduate students the systematic study of the topological structure of smooth manifolds. Author Antoni A. Kosinski, Professor Emeritus of Mathematics at Rutgers University, offers an accessible approach to both the h-cobordism theorem and the classification of differential structures on spheres.""How useful it is,"" noted the Bulletin of the American Mathematical Society, ""to have a single, sho

19. Magneto-thermal-acoustic differential-frequency imaging of magnetic nanoparticle with magnetic spatial localization: a theoretical prediction

Science.gov (United States)

Piao, Daqing

2017-02-01

The magneto-thermo-acoustic effect that we predicted in 2013 refers to the generation of acoustic-pressure wave from magnetic nanoparticle (MNP) when thermally mediated under an alternating magnetic field (AMF) at a pulsed or frequency-chirped application. Several independent experimental studies have since validated magneto-thermoacoustic effect, and a latest report has discovered acoustic-wave generation from MNP at the second-harmonic frequency of the AMF when operating continuously. We propose that applying two AMFs with differing frequencies to MNP will produce acoustic-pressure wave at the summation and difference of the two frequencies, in addition to the two second-harmonic frequencies. Analysis of the specific absorption dynamics of the MNP when exposed to two AMFs of differing frequencies has shown some interesting patterns of acoustic-intensity at the multiple frequency components. The ratio of the acoustic-intensity at the summation-frequency over that of the difference-frequency is determined by the frequency-ratio of the two AMFs, but remains independent of the AMF strengths. The ratio of the acoustic-intensity at the summation- or difference-frequency over that at each of the two second-harmonic frequencies is determined by both the frequency-ratio and the field-strength-ratio of the two AMFs. The results indicate a potential strategy for localization of the source of a continuous-wave magneto-thermalacoustic signal by examining the frequency spectrum of full-field non-differentiating acoustic detection, with the field-strength ratio changed continuously at a fixed frequency-ratio. The practicalities and challenges of this magnetic spatial localization approach for magneto-thermo-acoustic imaging using a simple envisioned set of two AMFs arranged in parallel to each other are discussed.

20. Summary and implications of out-of-pile investigations of local cooling disturbances in LMFBR subassembly geometry under single-phase and boiling conditions

International Nuclear Information System (INIS)

Huber, F.; Peppler, W.

1985-05-01

The consequences of local cooling disturbances in subassemblies of LMFBRs have been investigated out-of-pile at KfK. Flow and temperature distributions in the disturbed region as well as cooling under boiling conditions up to loss of cooling were investigated. Fission gas release was simulated by gas injection. A total of 16 different blockages in 20 test set-ups were used, four of them under sodium and the rest under water conditions. Mainly planar plates of different sizes and arrangements were used as blockages. In some of the experiments performed in water also porous blockages were investigated. The test sections consisted of electrically heated pin bundles with a thermal-hydraulic characteristic corresponding to that of an SNR 300 subassembly. With different parameter settings the single-phase tests in water furnished a multitude of test results on flow and temperature fields and on the behaviour of gas in the recirculation zone. In the experiments involving boiling two boiling patterns were observed: steady-state boiling and oscillating boiling. With increasing boiling intensity the boiling region grew to some extent, but it remained always confined to the blocked zone because of the relatively cold sodium flow around this zone. In the experiments simulating fission gas release it was found that under certain conditions gas accumulates in the reverse flow region behind a blockage and leads to loss of cooling. (orig./GL) [de

1. Changes in localization of human discs large (hDlg) during keratinocyte differentiation is associated with expression of alternatively spliced hDlg variants

International Nuclear Information System (INIS)

Roberts, S.; Calautti, E.; Vanderweil, S.; Nguyen, H.O.; Foley, A.; Baden, H.P.; Viel, A.

2007-01-01

Alternative spliced variants of the human discs large (hDlg) tumour suppressor are characterized by combinations of insertions. Here, using insertions I2- and I3-specific antibodies, we show that I2 and I3 variants have distinct distributions in epidermal and cervical epithelia. In skin and cervix, I3 variants are found in the cytoplasm. Cytoplasmic localization of I3 variants decreases as cervical keratinocytes differentiate, concomitant with relocalization to the cell periphery. I2 variants are found at the cell periphery of differentiated epidermal and cervical keratinocytes. Nuclear localization of I2 variants was evident in both tissues, with concentration of nuclear I2 variants in basal and parabasal cervical keratinocytes. A prominent nuclear localization of hDlg in cells of hyperproliferative layers of psoriatic lesions, but not in mature differentiated keratinocytes, together with I2 redistribution in differentiating keratinocytes, suggests that nuclear hDlg functions may be pertinent to growth of undifferentiated cells. Supporting our findings in squamous tissues, a decrease of nuclear hDlg and an increase of membrane-bound and cytoplasmic hDlg upon calcium-induced keratinocyte differentiation were not concomitant processes. Furthermore, we confirm that the exit of I2 variants from the nucleus is linked to stimulation of epithelial differentiation. The dynamic redistribution of hDlg also correlated with a marked increase in the expression of I3 variants while the level of I2 variants showed only a moderate decrease. Because changes in the intracellular distribution of hDlg splice variants, and in their expression levels, correlate with changes in differentiation state we hypothesize that the different hDlg isoforms play distinct roles at various stages of epithelial differentiation

2. The instantaneous local transition of a stable equilibrium to a chaotic attractor in piecewise-smooth systems of differential equations

Energy Technology Data Exchange (ETDEWEB)

Simpson, D.J.W., E-mail: d.j.w.simpson@massey.ac.nz

2016-09-07

An attractor of a piecewise-smooth continuous system of differential equations can bifurcate from a stable equilibrium to a more complicated invariant set when it collides with a switching manifold under parameter variation. Here numerical evidence is provided to show that this invariant set can be chaotic. The transition occurs locally (in a neighbourhood of a point) and instantaneously (for a single critical parameter value). This phenomenon is illustrated for the normal form of a boundary equilibrium bifurcation in three dimensions using parameter values adapted from of a piecewise-linear model of a chaotic electrical circuit. The variation of a secondary parameter reveals a period-doubling cascade to chaos with windows of periodicity. The dynamics is well approximated by a one-dimensional unimodal map which explains the bifurcation structure. The robustness of the attractor is also investigated by studying the influence of nonlinear terms. - Highlights: • A boundary equilibrium bifurcation involving stable and saddle foci is considered. • A two-dimensional return map is constructed and approximated by a one-dimensional map. • A trapping region and Smale horseshoe are identified for a Rössler-like attractor. • Bifurcation diagrams reveal period-doubling cascades and windows of periodicity.

3. A Novel Differential Time-of-Arrival Estimation Technique for Impact Localization on Carbon Fiber Laminate Sheets

Directory of Open Access Journals (Sweden)

Eugenio Marino Merlo

2017-10-01

Full Text Available Composite material structures are commonly used in many industrial sectors (aerospace, automotive, transportation, and can operate in harsh environments where impacts with other parts or debris may cause critical safety and functionality issues. This work presents a method for improving the accuracy of impact position determination using acoustic source triangulation schemes based on the data collected by piezoelectric sensors attached to the structure. A novel approach is used to estimate the Differential Time-of-Arrival (DToA between the impact response signals collected by a triplet of sensors, overcoming the limitations of classical methods that rely on amplitude thresholds calibrated for a specific sensor type. An experimental evaluation of the proposed technique was performed with specially made circular piezopolymer (PVDF sensors designed for Structural Health Monitoring (SHM applications, and compared with commercial piezoelectric SHM sensors of similar dimensions. Test impacts at low energies from 35 mJ to 600 mJ were generated in a laboratory by free-falling metal spheres on a 500 mm × 500 mm × 1.25 mm quasi-isotropic Carbon Fiber Reinforced Polymer (CFRP laminate plate. From the analysis of many impact signals, the resulting localization error was improved for all types of sensors and, in particular, for the circular PVDF sensor an average error of 20.3 mm and a standard deviation of 8.9 mm was obtained.

4. Concepts from tensor analysus and differential geometry

CERN Document Server

Thomas, Tracy Y

1961-01-01

In this book, we study theoretical and practical aspects of computing methods for mathematical modelling of nonlinear systems. A number of computing techniques are considered, such as methods of operator approximation with any given accuracy; operator interpolation techniques including a non-Lagrange interpolation; methods of system representation subject to constraints associated with concepts of causality, memory and stationarity; methods of system representation with an accuracy that is the best within a given class of models; methods of covariance matrix estimation;methods for low-rank mat

5. Differential geometry and the calculus of variations

CERN Document Server

Hermann, Robert

1968-01-01

In this book, we study theoretical and practical aspects of computing methods for mathematical modelling of nonlinear systems. A number of computing techniques are considered, such as methods of operator approximation with any given accuracy; operator interpolation techniques including a non-Lagrange interpolation; methods of system representation subject to constraints associated with concepts of causality, memory and stationarity; methods of system representation with an accuracy that is the best within a given class of models; methods of covariance matrix estimation;methods for low-rank mat

6. Some problems in differential geometry and topology

International Nuclear Information System (INIS)

Donaldson, S K

2008-01-01

This does not attempt to be a systematic overview or to present a comprehensive list of problems. We outline some questions in three different areas which seem interesting to the author. Experts will learn little that is new; our goal is to give some picture of the fields for non-specialists. (open problem)

7. From Riemann to differential geometry and relativity

CERN Document Server

2017-01-01

This book explores the work of Bernhard Riemann and its impact on mathematics, philosophy and physics. It features contributions from a range of fields, historical expositions, and selected research articles that were motivated by Riemann’s ideas and demonstrate their timelessness. The editors are convinced of the tremendous value of going into Riemann’s work in depth, investigating his original ideas, integrating them into a broader perspective, and establishing ties with modern science and philosophy. Accordingly, the contributors to this volume are mathematicians, physicists, philosophers and historians of science. The book offers a unique resource for students and researchers in the fields of mathematics, physics and philosophy, historians of science, and more generally to a wide range of readers interested in the history of ideas.

8. Distinct pools of cdc25C are phosphorylated on specific TP sites and differentially localized in human mitotic cells.

Directory of Open Access Journals (Sweden)

Celine Franckhauser

Full Text Available BACKGROUND: The dual specificity phosphatase cdc25C was the first human cdc25 family member found to be essential in the activation of cdk1/cyclin B1 that takes place at the entry into mitosis. Human cdc25C is phosphorylated on Proline-dependent SP and TP sites when it becomes active at mitosis and the prevalent model is that this phosphorylation/activation of cdc25C would be part of an amplification loop with cdk1/cyclin B1. METHODOLOGY/PRINCIPAL FINDINGS: Using highly specific antibodies directed against cdc25C phospho-epitopes, pT67 and pT130, we show here that these two phospho-forms of cdc25C represent distinct pools with differential localization during human mitosis. Phosphorylation on T67 occurs from prophase and the cdc25C-pT67 phospho-isoform closely localizes with condensed chromosomes throughout mitosis. The phospho-T130 form of cdc25C arises in late G2 and associates predominantly with centrosomes from prophase to anaphase B where it colocalizes with Plk1. As shown by immunoprecipitation of each isoform, these two phospho-forms are not simultaneously phosphorylated on the other mitotic TP sites or associated with one another. Phospho-T67 cdc25C co-precipitates with MPM2-reactive proteins while pT130-cdc25C is associated with Plk1. Interaction and colocalization of phosphoT130-cdc25C with Plk1 demonstrate in living cells, that the sequence around pT130 acts as a true Polo Box Domain (PBD binding site as previously identified from in vitro peptide screening studies. Overexpression of non-phosphorylatable alanine mutant forms for each isoform, but not wild type cdc25C, strongly impairs mitotic progression showing the functional requirement for each site-specific phosphorylation of cdc25C at mitosis. CONCLUSIONS/SIGNIFICANCE: These results show for the first time that in human mitosis, distinct phospho-isoforms of cdc25C exist with different localizations and interacting partners, thus implying that the long-standing model of a cdc25C

9. Geometry and its applications

CERN Document Server

Meyer, Walter J

2006-01-01

Meyer''s Geometry and Its Applications, Second Edition, combines traditional geometry with current ideas to present a modern approach that is grounded in real-world applications. It balances the deductive approach with discovery learning, and introduces axiomatic, Euclidean geometry, non-Euclidean geometry, and transformational geometry. The text integrates applications and examples throughout and includes historical notes in many chapters. The Second Edition of Geometry and Its Applications is a significant text for any college or university that focuses on geometry''s usefulness in other disciplines. It is especially appropriate for engineering and science majors, as well as future mathematics teachers.* Realistic applications integrated throughout the text, including (but not limited to): - Symmetries of artistic patterns- Physics- Robotics- Computer vision- Computer graphics- Stability of architectural structures- Molecular biology- Medicine- Pattern recognition* Historical notes included in many chapters...

10. Algebraic geometry in India

algebraic geometry but also in related fields like number theory. ... every vector bundle on the affine space is trivial. (equivalently ... les on a compact Riemann surface to unitary rep- ... tial geometry and topology and was generalised in.

11. Spinorial Geometry and Branes

International Nuclear Information System (INIS)

Sloane, Peter

2007-01-01

We adapt the spinorial geometry method introduced in [J. Gillard, U. Gran and G. Papadopoulos, 'The spinorial geometry of supersymmetric backgrounds,' Class. Quant. Grav. 22 (2005) 1033 [ (arXiv:hep-th/0410155)

12. Spinorial Geometry and Branes

Energy Technology Data Exchange (ETDEWEB)

Sloane, Peter [Department of Mathematics, King' s College, University of London, Strand, London WC2R 2LS (United Kingdom)

2007-09-15

We adapt the spinorial geometry method introduced in [J. Gillard, U. Gran and G. Papadopoulos, 'The spinorial geometry of supersymmetric backgrounds,' Class. Quant. Grav. 22 (2005) 1033 [ (arXiv:hep-th/0410155)

13. Application of a local linearization technique for the solution of a system of stiff differential equations associated with the simulation of a magnetic bearing assembly

Science.gov (United States)

Kibler, K. S.; Mcdaniel, G. A.

1981-01-01

A digital local linearization technique was used to solve a system of stiff differential equations which simulate a magnetic bearing assembly. The results prove the technique to be accurate, stable, and efficient when compared to a general purpose variable order Adams method with a stiff option.

14. Geometry of surfaces a practical guide for mechanical engineers

CERN Document Server

2012-01-01

Presents an in-depth analysis of geometry of part surfaces and provides the tools for solving complex engineering problems Geometry of Surfaces: A Practical Guide for Mechanical Engineers is a comprehensive guide to applied geometry of surfaces with focus on practical applications in various areas of mechanical engineering. The book is divided into three parts on Part Surfaces, Geometry of Contact of Part Surfaces and Mapping of the Contacting Part Surfaces. Geometry of Surfaces: A Practical Guide for Mechanical Engineers combines differential geometry and gearing theory and presents new developments in the elementary theory of enveloping surfaces. Written by a leading expert of the field, this book also provides the reader with the tools for solving complex engineering problems in the field of mechanical engineering. Presents an in-depth analysis of geometry of part surfaces Provides tools for solving complex engineering problems in the field of mechanical engineering Combines differential geometry an...

15. Integrable systems, geometry, and topology

CERN Document Server

Terng, Chuu-Lian

2006-01-01

The articles in this volume are based on lectures from a program on integrable systems and differential geometry held at Taiwan's National Center for Theoretical Sciences. As is well-known, for many soliton equations, the solutions have interpretations as differential geometric objects, and thereby techniques of soliton equations have been successfully applied to the study of geometric problems. The article by Burstall gives a beautiful exposition on isothermic surfaces and their relations to integrable systems, and the two articles by Guest give an introduction to quantum cohomology, carry out explicit computations of the quantum cohomology of flag manifolds and Hirzebruch surfaces, and give a survey of Givental's quantum differential equations. The article by Heintze, Liu, and Olmos is on the theory of isoparametric submanifolds in an arbitrary Riemannian manifold, which is related to the n-wave equation when the ambient manifold is Euclidean. Mukai-Hidano and Ohnita present a survey on the moduli space of ...

16. Geometry essentials for dummies

CERN Document Server

Ryan, Mark

2011-01-01

Just the critical concepts you need to score high in geometry This practical, friendly guide focuses on critical concepts taught in a typical geometry course, from the properties of triangles, parallelograms, circles, and cylinders, to the skills and strategies you need to write geometry proofs. Geometry Essentials For Dummies is perfect for cramming or doing homework, or as a reference for parents helping kids study for exams. Get down to the basics - get a handle on the basics of geometry, from lines, segments, and angles, to vertices, altitudes, and diagonals Conque

17. Optimal geometries and harmonic vibrational frequencies of the global minima of water clusters (H2O)n, n = 2–6, and several hexamer local minima at the CCSD(T) level of theory

Energy Technology Data Exchange (ETDEWEB)

Miliordos, Evangelos; Aprà, Edoardo; Xantheas, Sotiris S.

2013-01-01

We report the first optimum geometries and harmonic vibrational frequencies for the ring pentamer and several water hexamer (prism, cage, cyclic and two book) at the CCSD(T)/aug-cc-pVDZ level of theory. All five hexamer isomer minima previously reported by MP2 are also minima on the CCSD(T) potential energy surface (PES). In addition, all CCSD(T) minimum energy structures for the n=2-6 cluster isomers are quite close to the ones previously obtained by MP2 on the respective PESs, as confirmed by a modified Procrustes analysis that quantifies the difference between any two cluster geometries. The CCSD(T) results confirm the cooperative effect of the homodromic ring networks (systematic contraction of the nearest-neighbor (nn) intermolecular separations with cluster size) previously reported by MP2, albeit with O-O distances shorter by ~0.02 Å, indicating that MP2 overcorrects this effect. The harmonic frequencies at the minimum geometries were obtained by the double differentiation of the CCSD(T) energy using an efficient scheme based on internal coordinates that reduces the number of required single point energy evaluations by ~15% when compared to the corresponding double differentiation using Cartesian coordinates. Negligible differences between MP2 and CCSD(T) are found for the librational modes, while uniform increases of ~15 and ~25 cm-1 are observed for the bending and “free” OH harmonic frequencies. The largest differences between MP2 and CCSD(T) are observed for the harmonic hydrogen bonded frequencies. The CCSD(T) red shifts from the monomer frequencies (Δω) are smaller than the MP2 ones, due to the fact that the former produces shorter elongations (ΔR) of the respective hydrogen bonded OH lengths from the monomer value with respect to the latter. Both the MP2 and CCSD(T) results for the hydrogen bonded frequencies were found to closely follow the relation - Δω = s · ΔR, with a rate of s = 20.3 cm-1 / 0.001 Å. The CCSD

18. Local differentiation of cell wall matrix polysaccharides in sinuous pavement cells: its possible involvement in the flexibility of cell shape.

Science.gov (United States)

Sotiriou, P; Giannoutsou, E; Panteris, E; Galatis, B; Apostolakos, P

2018-03-01

The distribution of homogalacturonans (HGAs) displaying different degrees of esterification as well as of callose was examined in cell walls of mature pavement cells in two angiosperm and two fern species. We investigated whether local cell wall matrix differentiation may enable pavement cells to respond to mechanical tension forces by transiently altering their shape. HGA epitopes, identified with 2F4, JIM5 and JIM7 antibodies, and callose were immunolocalised in hand-made or semithin leaf sections. Callose was also stained with aniline blue. The structure of pavement cells was studied with light and transmission electron microscopy (TEM). In all species examined, pavement cells displayed wavy anticlinal cell walls, but the waviness pattern differed between angiosperms and ferns. The angiosperm pavement cells were tightly interconnected throughout their whole depth, while in ferns they were interconnected only close to the external periclinal cell wall and intercellular spaces were developed between them close to the mesophyll. Although the HGA epitopes examined were located along the whole cell wall surface, the 2F4- and JIM5- epitopes were especially localised at cell lobe tips. In fern pavement cells, the contact sites were impregnated with callose and JIM5-HGA epitopes. When tension forces were applied on leaf regions, the pavement cells elongated along the stretching axis, due to a decrease in waviness of anticlinal cell walls. After removal of tension forces, the original cell shape was resumed. The presented data support that HGA epitopes make the anticlinal pavement cell walls flexible, in order to reversibly alter their shape. Furthermore, callose seems to offer stability to cell contacts between pavement cells, as already suggested in photosynthetic mesophyll cells. © 2017 German Society for Plant Sciences and The Royal Botanical Society of the Netherlands.

19. Use of intraoperative local field potential spectral analysis to differentiate basal ganglia structures in Parkinson's disease patients.

Science.gov (United States)

Kolb, Rachel; Abosch, Aviva; Felsen, Gidon; Thompson, John A

2017-06-01

Identification of brain structures traversed during implantation of deep brain-stimulating (DBS) electrodes into the subthalamic nucleus (STN-DBS) for the treatment of Parkinson's disease (PD) frequently relies on subjective correspondence between kinesthetic response and multiunit activity. However, recent work suggests that local field potentials (LFP) could be used as a more robust signal to objectively differentiate subcortical structures. The goal of this study was to analyze the spectral properties of LFP collected during STN-DBS in order to objectively identify commonly traversed brain regions and improve our understanding of aberrant oscillations in the PD-related pathophysiological cortico-basal ganglia network. In 21 PD patients, LFP were collected and analyzed during STN-DBS implantation surgery. Spectral power for delta-, theta-, alpha-, low-beta-, and high-beta-frequency bands was assessed at multiple depths throughout the subcortical structures traversed on the trajectory to the ventral border of STN. Similar to previous findings, beta-band oscillations had an increased magnitude within the borders of the motor-related area of STN, however, across several subjects, we also observed increased high-beta magnitude within the borders of thalamus. Comparing across all patients using relative power, we observed a gradual increase in the magnitude of both low- and high-beta-frequency bands as the electrode descended from striatum to STN. These results were also compared with frequency bands below beta, and similar trends were observed. Our results suggest that LFP signals recorded during the implantation of a DBS electrode evince distinct oscillatory signatures that distinguish subcortical structures. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

20. Differential gene expression responses distinguish contact and respiratory sensitizers and nonsensitizing irritants in the local lymph node assay.

Science.gov (United States)

2012-04-01

Genomic approaches have the potential to enhance the specificity and predictive accuracy of existing toxicology endpoints, including those for chemical sensitization. The present study was conducted to determine whether gene expression responses can distinguish contact sensitizers (1-chloro-2,4-dinitrobenzene [DNCB] and hexyl cinnamic aldehyde [HCA]), respiratory sensitizers (ortho-phthalaldehyde and trimellitic anhydride [TMA]), and nonsensitizing irritants (methyl salicylate [MS] and nonanoic acid [NA]) in the local lymph node assay (LLNA). Female Balb/c mice received doses of each chemical as per the standard LLNA dosing regimen on days 1, 2, and 3. Auricular lymph nodes were analyzed for tritiated thymidine ((3)HTdR) incorporation on day 6 and for gene expression responses on days 6 and 10. All chemicals induced dose-dependent increases in stimulation index, which correlated strongly with the number of differentially expressed genes. A majority of genes modulated by the irritants were similarly altered by the sensitizers, consistent with the irritating effects of the sensitizers. However, a select number of responses involved with immune-specific functions, such as dendritic cell activation, were unique to the sensitizers and may offer the ability to distinguish sensitizers from irritants. Genes for the mast cell proteases 1 and 8, Lgals7, Tim2, Aicda, Il4, and Akr1c18 were more strongly regulated by respiratory sensitizers compared with contact sensitizers and may represent potential biomarkers for discriminating between contact and respiratory sensitizers. Collectively, these data suggest that gene expression responses may serve as useful biomarkers to distinguish between respiratory and contact sensitizers and nonsensitizing irritants in the LLNA.

1. Arithmetic noncommutative geometry

CERN Document Server

Marcolli, Matilde

2005-01-01

Arithmetic noncommutative geometry denotes the use of ideas and tools from the field of noncommutative geometry, to address questions and reinterpret in a new perspective results and constructions from number theory and arithmetic algebraic geometry. This general philosophy is applied to the geometry and arithmetic of modular curves and to the fibers at archimedean places of arithmetic surfaces and varieties. The main reason why noncommutative geometry can be expected to say something about topics of arithmetic interest lies in the fact that it provides the right framework in which the tools of geometry continue to make sense on spaces that are very singular and apparently very far from the world of algebraic varieties. This provides a way of refining the boundary structure of certain classes of spaces that arise in the context of arithmetic geometry, such as moduli spaces (of which modular curves are the simplest case) or arithmetic varieties (completed by suitable "fibers at infinity"), by adding boundaries...

2. FINAL REPORT: GEOMETRY AND ELEMENTARY PARTICLE PHYSICS

Energy Technology Data Exchange (ETDEWEB)

2008-03-04

The effect on mathematics of collaborations between high-energy theoretical physics and modern mathematics has been remarkable. Mirror symmetry has revolutionized enumerative geometry, and Seiberg-Witten invariants have greatly simplified the study of four manifolds. And because of their application to string theory, physicists now need to know cohomology theory, characteristic classes, index theory, K-theory, algebraic geometry, differential geometry, and non-commutative geometry. Much more is coming. We are experiencing a deeper contact between the two sciences, which will stimulate new mathematics essential to the physicists’ quest for the unification of quantum mechanics and relativity. Our grant, supported by the Department of Energy for twelve years, has been instrumental in promoting an effective interaction between geometry and string theory, by supporting the Mathematical Physics seminar, postdoc research, collaborations, graduate students and several research papers.

3. Final Report: Geometry And Elementary Particle Physics

International Nuclear Information System (INIS)

2008-01-01

The effect on mathematics of collaborations between high-energy theoretical physics and modern mathematics has been remarkable. Mirror symmetry has revolutionized enumerative geometry, and Seiberg-Witten invariants have greatly simplified the study of four manifolds. And because of their application to string theory, physicists now need to know cohomology theory, characteristic classes, index theory, K-theory, algebraic geometry, differential geometry, and non-commutative geometry. Much more is coming. We are experiencing a deeper contact between the two sciences, which will stimulate new mathematics essential to the physicists quest for the unification of quantum mechanics and relativity. Our grant, supported by the Department of Energy for twelve years, has been instrumental in promoting an effective interaction between geometry and string theory, by supporting the Mathematical Physics seminar, postdoc research, collaborations, graduate students and several research papers.

4. Special metrics and group actions in geometry

CERN Document Server

Fino, Anna; Musso, Emilio; Podestà, Fabio; Vezzoni, Luigi

2017-01-01

The volume is a follow-up to the INdAM meeting “Special metrics and quaternionic geometry” held in Rome in November 2015. It offers a panoramic view of a selection of cutting-edge topics in differential geometry, including 4-manifolds, quaternionic and octonionic geometry, twistor spaces, harmonic maps, spinors, complex and conformal geometry, homogeneous spaces and nilmanifolds, special geometries in dimensions 5–8, gauge theory, symplectic and toric manifolds, exceptional holonomy and integrable systems. The workshop was held in honor of Simon Salamon, a leading international scholar at the forefront of academic research who has made significant contributions to all these subjects. The articles published here represent a compelling testimony to Salamon’s profound and longstanding impact on the mathematical community. Target readership includes graduate students and researchers working in Riemannian and complex geometry, Lie theory and mathematical physics.

5. Needle decompositions in Riemannian geometry

CERN Document Server

Klartag, Bo'az

2017-01-01

The localization technique from convex geometry is generalized to the setting of Riemannian manifolds whose Ricci curvature is bounded from below. In a nutshell, the author's method is based on the following observation: When the Ricci curvature is non-negative, log-concave measures are obtained when conditioning the Riemannian volume measure with respect to a geodesic foliation that is orthogonal to the level sets of a Lipschitz function. The Monge mass transfer problem plays an important role in the author's analysis.

6. Geometry Dependence of Stellarator Turbulence

International Nuclear Information System (INIS)

Mynick, H.E.; Xanthopoulos, P.; Boozer, A.H.

2009-01-01

Using the nonlinear gyrokinetic code package GENE/GIST, we study the turbulent transport in a broad family of stellarator designs, to understand the geometry-dependence of the microturbulence. By using a set of flux tubes on a given flux surface, we construct a picture of the 2D structure of the microturbulence over that surface, and relate this to relevant geometric quantities, such as the curvature, local shear, and effective potential in the Schrodinger-like equation governing linear drift modes

7. Superbanana orbits in stellarator geometries

International Nuclear Information System (INIS)

Derr, J.A.; Shohet, J.L.

1979-04-01

The presence of superbanana orbit types localized to either the interior or the exterior of stellarators and torsatrons is numerically investigated for 3.5 MeV alpha particles. The absence of the interior superbanana in both geometries is found to be due to non-conservation of the action. Exterior superbananas are found in the stellarator only, as a consequence of the existence of closed helical magnetic wells. No superbananas of either type are found in the torsatron

8. Unique solvability of a non-linear non-local boundary-value problem for systems of non-linear functional differential equations

Czech Academy of Sciences Publication Activity Database

Dilna, N.; Rontó, András

2010-01-01

Roč. 60, č. 3 (2010), s. 327-338 ISSN 0139-9918 R&D Projects: GA ČR(CZ) GA201/06/0254 Institutional research plan: CEZ:AV0Z10190503 Keywords : non-linear boundary value-problem * functional differential equation * non-local condition * unique solvability * differential inequality Subject RIV: BA - General Mathematics Impact factor: 0.316, year: 2010 http://link.springer.com/article/10.2478%2Fs12175-010-0015-9

9. Geometry of superspace and local supersymmetry

International Nuclear Information System (INIS)

Gates, S.J. Jr.

1978-01-01

We briefly review the theory of general relativity in superspace and show how the theory may be interpreted from the view of a superfiber bundle. It is shown that this superfiber, however, does not possess, as its structural group, the fourteen-parameter group of global supersymmetry, the super Poincare group. Starting from an ansatz which is suggested by superspace general relativity, a second superfiber bundle theory is constructed which does possess the super Poincare group as its structural group

10. The Geometry Conference

CERN Document Server

Bárány, Imre; Vilcu, Costin

2016-01-01

This volume presents easy-to-understand yet surprising properties obtained using topological, geometric and graph theoretic tools in the areas covered by the Geometry Conference that took place in Mulhouse, France from September 7–11, 2014 in honour of Tudor Zamfirescu on the occasion of his 70th anniversary. The contributions address subjects in convexity and discrete geometry, in distance geometry or with geometrical flavor in combinatorics, graph theory or non-linear analysis. Written by top experts, these papers highlight the close connections between these fields, as well as ties to other domains of geometry and their reciprocal influence. They offer an overview on recent developments in geometry and its border with discrete mathematics, and provide answers to several open questions. The volume addresses a large audience in mathematics, including researchers and graduate students interested in geometry and geometrical problems.

11. Numerical Solution of Stokes Flow in a Circular Cavity Using Mesh-free Local RBF-DQ

DEFF Research Database (Denmark)

Kutanaai, S Soleimani; Roshan, Naeem; Vosoughi, A

2012-01-01

This work reports the results of a numerical investigation of Stokes flow problem in a circular cavity as an irregular geometry using mesh-free local radial basis function-based differential quadrature (RBF-DQ) method. This method is the combination of differential quadrature approximation of der...... in solution of partial differential equations (PDEs).......This work reports the results of a numerical investigation of Stokes flow problem in a circular cavity as an irregular geometry using mesh-free local radial basis function-based differential quadrature (RBF-DQ) method. This method is the combination of differential quadrature approximation...... is applied on a two-dimensional geometry. The obtained results from the numerical simulations are compared with those gained by previous works. Outcomes prove that the current technique is in very good agreement with previous investigations and this fact that RBF-DQ method is an accurate and flexible method...

12. Granular flows in constrained geometries

Science.gov (United States)

Murthy, Tejas; Viswanathan, Koushik

Confined geometries are widespread in granular processing applications. The deformation and flow fields in such a geometry, with non-trivial boundary conditions, determine the resultant mechanical properties of the material (local porosity, density, residual stresses etc.). We present experimental studies of deformation and plastic flow of a prototypical granular medium in different nontrivial geometries- flat-punch compression, Couette-shear flow and a rigid body sliding past a granular half-space. These geometries represent simplified scaled-down versions of common industrial configurations such as compaction and dredging. The corresponding granular flows show a rich variety of flow features, representing the entire gamut of material types, from elastic solids (beam buckling) to fluids (vortex-formation, boundary layers) and even plastically deforming metals (dead material zone, pile-up). The effect of changing particle-level properties (e.g., shape, size, density) on the observed flows is also explicitly demonstrated. Non-smooth contact dynamics particle simulations are shown to reproduce some of the observed flow features quantitatively. These results showcase some central challenges facing continuum-scale constitutive theories for dynamic granular flows.

13. Geometry of supersymmetric gauge theories

International Nuclear Information System (INIS)

Gieres, F.

1988-01-01

This monograph gives a detailed and pedagogical account of the geometry of rigid superspace and supersymmetric Yang-Mills theories. While the core of the text is concerned with the classical theory, the quantization and anomaly problem are briefly discussed following a comprehensive introduction to BRS differential algebras and their field theoretical applications. Among the treated topics are invariant forms and vector fields on superspace, the matrix-representation of the super-Poincare group, invariant connections on reductive homogeneous spaces and the supermetric approach. Various aspects of the subject are discussed for the first time in textbook and are consistently presented in a unified geometric formalism

14. Clustering in Hilbert simplex geometry

KAUST Repository

Nielsen, Frank

2017-04-03

Clustering categorical distributions in the probability simplex is a fundamental primitive often met in applications dealing with histograms or mixtures of multinomials. Traditionally, the differential-geometric structure of the probability simplex has been used either by (i) setting the Riemannian metric tensor to the Fisher information matrix of the categorical distributions, or (ii) defining the information-geometric structure induced by a smooth dissimilarity measure, called a divergence. In this paper, we introduce a novel computationally-friendly non-Riemannian framework for modeling the probability simplex: Hilbert simplex geometry. We discuss the pros and cons of those three statistical modelings, and compare them experimentally for clustering tasks.

15. An invitation to noncommutative geometry

CERN Document Server

Marcolli, Matilde

2008-01-01

This is the first existing volume that collects lectures on this important and fast developing subject in mathematics. The lectures are given by leading experts in the field and the range of topics is kept as broad as possible by including both the algebraic and the differential aspects of noncommutative geometry as well as recent applications to theoretical physics and number theory. Sample Chapter(s). A Walk in the Noncommutative Garden (1,639 KB). Contents: A Walk in the Noncommutative Garden (A Connes & M Marcolli); Renormalization of Noncommutative Quantum Field Theory (H Grosse & R Wulke

16. Algorithms in Algebraic Geometry

CERN Document Server

Dickenstein, Alicia; Sommese, Andrew J

2008-01-01

In the last decade, there has been a burgeoning of activity in the design and implementation of algorithms for algebraic geometric computation. Some of these algorithms were originally designed for abstract algebraic geometry, but now are of interest for use in applications and some of these algorithms were originally designed for applications, but now are of interest for use in abstract algebraic geometry. The workshop on Algorithms in Algebraic Geometry that was held in the framework of the IMA Annual Program Year in Applications of Algebraic Geometry by the Institute for Mathematics and Its

17. Revolutions of Geometry

CERN Document Server

O'Leary, Michael

2010-01-01

Guides readers through the development of geometry and basic proof writing using a historical approach to the topic. In an effort to fully appreciate the logic and structure of geometric proofs, Revolutions of Geometry places proofs into the context of geometry's history, helping readers to understand that proof writing is crucial to the job of a mathematician. Written for students and educators of mathematics alike, the book guides readers through the rich history and influential works, from ancient times to the present, behind the development of geometry. As a result, readers are successfull

18. Fundamental concepts of geometry

CERN Document Server

Meserve, Bruce E

1983-01-01

Demonstrates relationships between different types of geometry. Provides excellent overview of the foundations and historical evolution of geometrical concepts. Exercises (no solutions). Includes 98 illustrations.

19. Introduction to global variational geometry

CERN Document Server

Krupka, Demeter

2015-01-01

The book is devoted to recent research in the global variational theory on smooth manifolds. Its main objective is an extension of the classical variational calculus on Euclidean spaces to (topologically nontrivial) finite-dimensional smooth manifolds; to this purpose the methods of global analysis of differential forms are used. Emphasis is placed on the foundations of the theory of variational functionals on fibered manifolds - relevant geometric structures for variational principles in geometry, physical field theory and higher-order fibered mechanics. The book chapters include: - foundations of jet bundles and analysis of differential forms and vector fields on jet bundles, - the theory of higher-order integral variational functionals for sections of a fibred space, the (global) first variational formula in infinitesimal and integral forms- extremal conditions and the discussion of Noether symmetries and generalizations,- the inverse problems of the calculus of variations of Helmholtz type- variational se...

Energy Technology Data Exchange (ETDEWEB)

Bjorken, J.D.

1994-10-01

This summary talk only reviews a small sample of topics featured at this symposium: Introduction; The Geometry and Geography of Phase space; Space-Time Geometry and HBT; Multiplicities, Intermittency, Correlations; Disoriented Chiral Condensate; Deep Inelastic Scattering at HERA; and Other Contributions.

1. Designs and finite geometries

CERN Document Server

1996-01-01

Designs and Finite Geometries brings together in one place important contributions and up-to-date research results in this important area of mathematics. Designs and Finite Geometries serves as an excellent reference, providing insight into some of the most important research issues in the field.

International Nuclear Information System (INIS)

Bjorken, J.D.

1994-10-01

This summary talk only reviews a small sample of topics featured at this symposium: Introduction; The Geometry and Geography of Phase space; Space-Time Geometry and HBT; Multiplicities, Intermittency, Correlations; Disoriented Chiral Condensate; Deep Inelastic Scattering at HERA; and Other Contributions

3. The Beauty of Geometry

Science.gov (United States)

Morris, Barbara H.

2004-01-01

This article describes a geometry project that used the beauty of stained-glass-window designs to teach middle school students about geometric figures and concepts. Three honors prealgebra teachers and a middle school mathematics gifted intervention specialist created a geometry project that covered the curriculum and also assessed students'…

4. Euclidean distance geometry an introduction

CERN Document Server

Liberti, Leo

2017-01-01

This textbook, the first of its kind, presents the fundamentals of distance geometry:  theory, useful methodologies for obtaining solutions, and real world applications. Concise proofs are given and step-by-step algorithms for solving fundamental problems efficiently and precisely are presented in Mathematica®, enabling the reader to experiment with concepts and methods as they are introduced. Descriptive graphics, examples, and problems, accompany the real gems of the text, namely the applications in visualization of graphs, localization of sensor networks, protein conformation from distance data, clock synchronization protocols, robotics, and control of unmanned underwater vehicles, to name several.  Aimed at intermediate undergraduates, beginning graduate students, researchers, and practitioners, the reader with a basic knowledge of linear algebra will gain an understanding of the basic theories of distance geometry and why they work in real life.

5. Donaldson invariants in algebraic geometry

International Nuclear Information System (INIS)

Goettsche, L.

2000-01-01

In these lectures I want to give an introduction to the relation of Donaldson invariants with algebraic geometry: Donaldson invariants are differentiable invariants of smooth compact 4-manifolds X, defined via moduli spaces of anti-self-dual connections. If X is an algebraic surface, then these moduli spaces can for a suitable choice of the metric be identified with moduli spaces of stable vector bundles on X. This can be used to compute Donaldson invariants via methods of algebraic geometry and has led to a lot of activity on moduli spaces of vector bundles and coherent sheaves on algebraic surfaces. We will first recall the definition of the Donaldson invariants via gauge theory. Then we will show the relation between moduli spaces of anti-self-dual connections and moduli spaces of vector bundles on algebraic surfaces, and how this makes it possible to compute Donaldson invariants via algebraic geometry methods. Finally we concentrate on the case that the number b + of positive eigenvalues of the intersection form on the second homology of the 4-manifold is 1. In this case the Donaldson invariants depend on the metric (or in the algebraic geometric case on the polarization) via a system of walls and chambers. We will study the change of the invariants under wall-crossing, and use this in particular to compute the Donaldson invariants of rational algebraic surfaces. (author)

6. Exosomes from bulk and stem cells from human prostate cancer have a differential microRNA content that contributes cooperatively over local and pre-metastatic niche.

Science.gov (United States)

Sánchez, Catherine A; Andahur, Eliana I; Valenzuela, Rodrigo; Castellón, Enrique A; Fullá, Juan A; Ramos, Christian G; Triviño, Juan C

2016-01-26

The different prostate cancer (PCa) cell populations (bulk and cancer stem cells, CSCs) release exosomes that contain miRNAs that could modify the local or premetastatic niche. The analysis of the differential expression of miRNAs in exosomes allows evaluating the differential biological effect of both populations on the niche, and the identification of potential biomarkers and therapeutic targets. Five PCa primary cell cultures were established to originate bulk and CSCs cultures. From them, exosomes were purified by precipitation for miRNAs extraction to perform a comparative profile of miRNAs by next generation sequencing in an Illumina platform. 1839 miRNAs were identified in the exosomes. Of these 990 were known miRNAs, from which only 19 were significantly differentially expressed: 6 were overexpressed in CSCs and 13 in bulk cells exosomes. miR-100-5p and miR-21-5p were the most abundant miRNAs. Bioinformatics analysis indicated that differentially expressed miRNAs are highly related with PCa carcinogenesis, fibroblast proliferation, differentiation and migration, and angiogenesis. Besides, miRNAs from bulk cells affects osteoblast differentiation. Later, their effect was evaluated in normal prostate fibroblasts (WPMY-1) where transfection with miR-100-5p, miR-21-5p and miR-139-5p increased the expression of metalloproteinases (MMPs) -2, -9 and -13 and RANKL and fibroblast migration. The higher effect was achieved with miR21 transfection. As conclusion, miRNAs have a differential pattern between PCa bulk and CSCs exosomes that act collaboratively in PCa progression and metastasis. The most abundant miRNAs in PCa exosomes are interesting potential biomarkers and therapeutic targets.

7. Geometry on the space of geometries

International Nuclear Information System (INIS)

Christodoulakis, T.; Zanelli, J.

1988-06-01

We discuss the geometric structure of the configuration space of pure gravity. This is an infinite dimensional manifold, M, where each point represents one spatial geometry g ij (x). The metric on M is dictated by geometrodynamics, and from it, the Christoffel symbols and Riemann tensor can be found. A ''free geometry'' tracing a geodesic on the manifold describes the time evolution of space in the strong gravity limit. In a regularization previously introduced by the authors, it is found that M does not have the same dimensionality, D, everywhere, and that D is not a scalar, although it is covariantly constant. In this regularization, it is seen that the path integral measure can be absorbed in a renormalization of the cosmological constant. (author). 19 refs

8. Geometry and dynamics of integrable systems

CERN Document Server

2016-01-01

Based on lectures given at an advanced course on integrable systems at the Centre de Recerca Matemàtica in Barcelona, these lecture notes address three major aspects of integrable systems: obstructions to integrability from differential Galois theory; the description of singularities of integrable systems on the basis of their relation to bi-Hamiltonian systems; and the generalization of integrable systems to the non-Hamiltonian settings. All three sections were written by top experts in their respective fields. Native to actual problem-solving challenges in mechanics, the topic of integrable systems is currently at the crossroads of several disciplines in pure and applied mathematics, and also has important interactions with physics. The study of integrable systems also actively employs methods from differential geometry. Moreover, it is extremely important in symplectic geometry and Hamiltonian dynamics, and has strong correlations with mathematical physics, Lie theory and algebraic geometry (including mir...

9. A non-local variable for general relativity

International Nuclear Information System (INIS)

Kozameh, C.N.; Newman, E.T.

1983-01-01

The usual description of differential geometry and general relativity is in terms of local fields, e.g. the metric, the curvature tensor, etc, which satisfy local differential equations. The authors introduce a new non-local field (Z) from which the local fields can be derived. Basically Z, though it is non-local, should be thought of as a function on the bundle of null directions on a space-time. The program can be divided into two parts; first the authors want to show the geometric meaning of and the relationship between Z and the local field. Then they want to provide field equations (non-local) for Z which will be equivalent to the vacuum Einstein equations for the local field. (Auth.)

10. Algebra, Geometry and Mathematical Physics Conference

CERN Document Server

Paal, Eugen; Silvestrov, Sergei; Stolin, Alexander

2014-01-01

This book collects the proceedings of the Algebra, Geometry and Mathematical Physics Conference, held at the University of Haute Alsace, France, October 2011. Organized in the four areas of algebra, geometry, dynamical symmetries and conservation laws and mathematical physics and applications, the book covers deformation theory and quantization; Hom-algebras and n-ary algebraic structures; Hopf algebra, integrable systems and related math structures; jet theory and Weil bundles; Lie theory and applications; non-commutative and Lie algebra and more. The papers explore the interplay between research in contemporary mathematics and physics concerned with generalizations of the main structures of Lie theory aimed at quantization, and discrete and non-commutative extensions of differential calculus and geometry, non-associative structures, actions of groups and semi-groups, non-commutative dynamics, non-commutative geometry and applications in physics and beyond. The book benefits a broad audience of researchers a...

11. VIII International Meeting on Lorentzian Geometry

CERN Document Server

Flores, José; Palomo, Francisco; GeLoMa 2016; Lorentzian geometry and related topics

2017-01-01

This volume contains a collection of research papers and useful surveys by experts in the field which provide a representative picture of the current status of this fascinating area. Based on contributions from the VIII International Meeting on Lorentzian Geometry, held at the University of Málaga, Spain, this volume covers topics such as distinguished (maximal, trapped, null, spacelike, constant mean curvature, umbilical...) submanifolds, causal completion of spacetimes, stationary regions and horizons in spacetimes, solitons in semi-Riemannian manifolds, relation between Lorentzian and Finslerian geometries and the oscillator spacetime. In the last decades Lorentzian geometry has experienced a significant impulse, which has transformed it from just a mathematical tool for general relativity to a consolidated branch of differential geometry, interesting in and of itself. Nowadays, this field provides a framework where many different mathematical techniques arise with applications to multiple parts of mathem...

12. Complex and symplectic geometry

CERN Document Server

2017-01-01

This book arises from the INdAM Meeting "Complex and Symplectic Geometry", which was held in Cortona in June 2016. Several leading specialists, including young researchers, in the field of complex and symplectic geometry, present the state of the art of their research on topics such as the cohomology of complex manifolds; analytic techniques in Kähler and non-Kähler geometry; almost-complex and symplectic structures; special structures on complex manifolds; and deformations of complex objects. The work is intended for researchers in these areas.

13. Non-Euclidean geometry

CERN Document Server

Kulczycki, Stefan

2008-01-01

This accessible approach features two varieties of proofs: stereometric and planimetric, as well as elementary proofs that employ only the simplest properties of the plane. A short history of geometry precedes a systematic exposition of the principles of non-Euclidean geometry.Starting with fundamental assumptions, the author examines the theorems of Hjelmslev, mapping a plane into a circle, the angle of parallelism and area of a polygon, regular polygons, straight lines and planes in space, and the horosphere. Further development of the theory covers hyperbolic functions, the geometry of suff

14. Geometry of physical dispersion relations

International Nuclear Information System (INIS)

Raetzel, Dennis; Rivera, Sergio; Schuller, Frederic P.

2011-01-01

To serve as a dispersion relation, a cotangent bundle function must satisfy three simple algebraic properties. These conditions are derived from the inescapable physical requirements that local matter field dynamics must be predictive and allow for an observer-independent notion of positive energy. Possible modifications of the standard relativistic dispersion relation are thereby severely restricted. For instance, the dispersion relations associated with popular deformations of Maxwell theory by Gambini-Pullin or Myers-Pospelov are not admissible. Dispersion relations passing the simple algebraic checks derived here correspond to physically admissible Finslerian refinements of Lorentzian geometry.

15. Lectures on coarse geometry

CERN Document Server

Roe, John

2003-01-01

Coarse geometry is the study of spaces (particularly metric spaces) from a 'large scale' point of view, so that two spaces that look the same from a great distance are actually equivalent. This point of view is effective because it is often true that the relevant geometric properties of metric spaces are determined by their coarse geometry. Two examples of important uses of coarse geometry are Gromov's beautiful notion of a hyperbolic group and Mostow's proof of his famous rigidity theorem. The first few chapters of the book provide a general perspective on coarse structures. Even when only metric coarse structures are in view, the abstract framework brings the same simplification as does the passage from epsilons and deltas to open sets when speaking of continuity. The middle section reviews notions of negative curvature and rigidity. Modern interest in large scale geometry derives in large part from Mostow's rigidity theorem and from Gromov's subsequent 'large scale' rendition of the crucial properties of n...

16. Complex algebraic geometry

CERN Document Server

Kollár, János

1997-01-01

This volume contains the lectures presented at the third Regional Geometry Institute at Park City in 1993. The lectures provide an introduction to the subject, complex algebraic geometry, making the book suitable as a text for second- and third-year graduate students. The book deals with topics in algebraic geometry where one can reach the level of current research while starting with the basics. Topics covered include the theory of surfaces from the viewpoint of recent higher-dimensional developments, providing an excellent introduction to more advanced topics such as the minimal model program. Also included is an introduction to Hodge theory and intersection homology based on the simple topological ideas of Lefschetz and an overview of the recent interactions between algebraic geometry and theoretical physics, which involve mirror symmetry and string theory.

17. Geometry and Combinatorics

DEFF Research Database (Denmark)

Kokkendorff, Simon Lyngby

2002-01-01

The subject of this Ph.D.-thesis is somewhere in between continuous and discrete geometry. Chapter 2 treats the geometry of finite point sets in semi-Riemannian hyperquadrics,using a matrix whose entries are a trigonometric function of relative distances in a given point set. The distance...... to the geometry of a simplex in a semi-Riemannian hyperquadric. In chapter 3 we study which finite metric spaces that are realizable in a hyperbolic space in the limit where curvature goes to -∞. We show that such spaces are the so called leaf spaces, the set of degree 1 vertices of weighted trees. We also...... establish results on the limiting geometry of such an isometrically realized leaf space simplex in hyperbolic space, when curvature goes to -∞. Chapter 4 discusses negative type of metric spaces. We give a measure theoretic treatment of this concept and related invariants. The theory developed...

18. Introduction to tropical geometry

CERN Document Server

Maclagan, Diane

2015-01-01

Tropical geometry is a combinatorial shadow of algebraic geometry, offering new polyhedral tools to compute invariants of algebraic varieties. It is based on tropical algebra, where the sum of two numbers is their minimum and the product is their sum. This turns polynomials into piecewise-linear functions, and their zero sets into polyhedral complexes. These tropical varieties retain a surprising amount of information about their classical counterparts. Tropical geometry is a young subject that has undergone a rapid development since the beginning of the 21st century. While establishing itself as an area in its own right, deep connections have been made to many branches of pure and applied mathematics. This book offers a self-contained introduction to tropical geometry, suitable as a course text for beginning graduate students. Proofs are provided for the main results, such as the Fundamental Theorem and the Structure Theorem. Numerous examples and explicit computations illustrate the main concepts. Each of t...

19. Rudiments of algebraic geometry

CERN Document Server

Jenner, WE

2017-01-01

Aimed at advanced undergraduate students of mathematics, this concise text covers the basics of algebraic geometry. Topics include affine spaces, projective spaces, rational curves, algebraic sets with group structure, more. 1963 edition.

20. SOX2 and OCT4 mRNA-expressing cells, detected by molecular beacons, localize to the center of neurospheres during differentiation.

Directory of Open Access Journals (Sweden)

Mirolyuba Ilieva

Full Text Available Neurospheres are used as in vitro assay to measure the properties of neural stem cells. To investigate the molecular and phenotypic heterogeneity of neurospheres, molecular beacons (MBs targeted against the stem cell markers OCT4 and SOX2 were designed, and synthesized with a 2'-O-methyl RNA backbone. OCT4 and SOX2 MBs were transfected into human embryonic mesencephalon derived cells, which spontaneously form neurospheres when grown on poly-L-ornitine/fibronectin matrix and medium complemented with bFGF. OCT4 and SOX2 gene expression were tracked in individual cell using the MBs. Quantitative image analysis every day for seven days showed that the OCT4 and SOX2 mRNA-expressing cells clustered in the centre of the neurospheres cultured in differentiation medium. By contrast, cells at the periphery of the differentiating spheres developed neurite outgrowths and expressed the tyrosine hydroxylase protein, indicating terminal differentiation. Neurospheres cultured in growth medium contained OCT4 and SOX2-positive cells distributed throughout the entire sphere, and no differentiating neurones. Gene expression of SOX2 and OCT4 mRNA detected by MBs correlated well with gene and protein expression measured by qRT-PCR and immunostaining, respectively. These experimental data support the theoretical model that stem cells cluster in the centre of neurospheres, and demonstrate the use of MBs for the spatial localization of specific gene-expressing cells within heterogeneous cell populations.

1. Implosions and hypertoric geometry

DEFF Research Database (Denmark)

Dancer, A.; Kirwan, F.; Swann, A.

2013-01-01

The geometry of the universal hyperkahler implosion for SU (n) is explored. In particular, we show that the universal hyperkahler implosion naturally contains a hypertoric variety described in terms of quivers. Furthermore, we discuss a gauge theoretic approach to hyperkahler implosion.......The geometry of the universal hyperkahler implosion for SU (n) is explored. In particular, we show that the universal hyperkahler implosion naturally contains a hypertoric variety described in terms of quivers. Furthermore, we discuss a gauge theoretic approach to hyperkahler implosion....

2. Intermediate algebra & analytic geometry

CERN Document Server

Gondin, William R

1967-01-01

Intermediate Algebra & Analytic Geometry Made Simple focuses on the principles, processes, calculations, and methodologies involved in intermediate algebra and analytic geometry. The publication first offers information on linear equations in two unknowns and variables, functions, and graphs. Discussions focus on graphic interpretations, explicit and implicit functions, first quadrant graphs, variables and functions, determinate and indeterminate systems, independent and dependent equations, and defective and redundant systems. The text then examines quadratic equations in one variable, system

3. d-geometries revisited

CERN Document Server

Ceresole, Anna; Gnecchi, Alessandra; Marrani, Alessio

2013-01-01

We analyze some properties of the four dimensional supergravity theories which originate from five dimensions upon reduction. They generalize to N>2 extended supersymmetries the d-geometries with cubic prepotentials, familiar from N=2 special K\\"ahler geometry. We emphasize the role of a suitable parametrization of the scalar fields and the corresponding triangular symplectic basis. We also consider applications to the first order flow equations for non-BPS extremal black holes.

4. Quantum symplectic geometry. 1. The matrix Hamiltonian formalism

International Nuclear Information System (INIS)

Djemai, A.E.F.

1994-07-01

The main purpose of this work is to describe the quantum analogue of the usual classical symplectic geometry and then to formulate the quantum mechanics as a (quantum) non-commutative symplectic geometry. In this first part, we define the quantum symplectic structure in the context of the matrix differential geometry by using the discrete Weyl-Schwinger realization of the Heisenberg group. We also discuss the continuous limit and give an expression of the quantum structure constants. (author). 42 refs

5. CMS geometry through 2020

International Nuclear Information System (INIS)

Osborne, I; Brownson, E; Eulisse, G; Jones, C D; Sexton-Kennedy, E; Lange, D J

2014-01-01

CMS faces real challenges with upgrade of the CMS detector through 2020 and beyond. One of the challenges, from the software point of view, is managing upgrade simulations with the same software release as the 2013 scenario. We present the CMS geometry description software model, its integration with the CMS event setup and core software. The CMS geometry configuration and selection is implemented in Python. The tools collect the Python configuration fragments into a script used in CMS workflow. This flexible and automated geometry configuration allows choosing either transient or persistent version of the same scenario and specific version of the same scenario. We describe how the geometries are integrated and validated, and how we define and handle different geometry scenarios in simulation and reconstruction. We discuss how to transparently manage multiple incompatible geometries in the same software release. Several examples are shown based on current implementation assuring consistent choice of scenario conditions. The consequences and implications for multiple/different code algorithms are discussed.

6. Software Geometry in Simulations

Science.gov (United States)

Alion, Tyler; Viren, Brett; Junk, Tom

2015-04-01

The Long Baseline Neutrino Experiment (LBNE) involves many detectors. The experiment's near detector (ND) facility, may ultimately involve several detectors. The far detector (FD) will be significantly larger than any other Liquid Argon (LAr) detector yet constructed; many prototype detectors are being constructed and studied to motivate a plethora of proposed FD designs. Whether it be a constructed prototype or a proposed ND/FD design, every design must be simulated and analyzed. This presents a considerable challenge to LBNE software experts; each detector geometry must be described to the simulation software in an efficient way which allows for multiple authors to easily collaborate. Furthermore, different geometry versions must be tracked throughout their use. We present a framework called General Geometry Description (GGD), written and developed by LBNE software collaborators for managing software to generate geometries. Though GGD is flexible enough to be used by any experiment working with detectors, we present it's first use in generating Geometry Description Markup Language (GDML) files to interface with LArSoft, a framework of detector simulations, event reconstruction, and data analyses written for all LAr technology users at Fermilab. Brett is the other of the framework discussed here, the General Geometry Description (GGD).

7. Introduction to combinatorial geometry

International Nuclear Information System (INIS)

Gabriel, T.A.; Emmett, M.B.

1985-01-01

The combinatorial geometry package as used in many three-dimensional multimedia Monte Carlo radiation transport codes, such as HETC, MORSE, and EGS, is becoming the preferred way to describe simple and complicated systems. Just about any system can be modeled using the package with relatively few input statements. This can be contrasted against the older style geometry packages in which the required input statements could be large even for relatively simple systems. However, with advancements come some difficulties. The users of combinatorial geometry must be able to visualize more, and, in some instances, all of the system at a time. Errors can be introduced into the modeling which, though slight, and at times hard to detect, can have devastating effects on the calculated results. As with all modeling packages, the best way to learn the combinatorial geometry is to use it, first on a simple system then on more complicated systems. The basic technique for the description of the geometry consists of defining the location and shape of the various zones in terms of the intersections and unions of geometric bodies. The geometric bodies which are generally included in most combinatorial geometry packages are: (1) box, (2) right parallelepiped, (3) sphere, (4) right circular cylinder, (5) right elliptic cylinder, (6) ellipsoid, (7) truncated right cone, (8) right angle wedge, and (9) arbitrary polyhedron. The data necessary to describe each of these bodies are given. As can be easily noted, there are some subsets included for simplicity

8. Differential Regulation of Disheveled in a Novel Vegetal Cortical Domain in Sea Urchin Eggs and Embryos: Implications for the Localized Activation of Canonical Wnt Signaling

Science.gov (United States)

Peng, ChiehFu Jeff; Wikramanayake, Athula H.

2013-01-01

Pattern formation along the animal-vegetal (AV) axis in sea urchin embryos is initiated when canonical Wnt (cWnt) signaling is activated in vegetal blastomeres. The mechanisms that restrict cWnt signaling to vegetal blastomeres are not well understood, but there is increasing evidence that the egg’s vegetal cortex plays a critical role in this process by mediating localized “activation” of Disheveled (Dsh). To investigate how Dsh activity is regulated along the AV axis, sea urchin-specific Dsh antibodies were used to examine expression, subcellular localization, and post-translational modification of Dsh during development. Dsh is broadly expressed during early sea urchin development, but immunolocalization studies revealed that this protein is enriched in a punctate pattern in a novel vegetal cortical domain (VCD) in the egg. Vegetal blastomeres inherit this VCD during embryogenesis, and at the 60-cell stage Dsh puncta are seen in all cells that display nuclear β-catenin. Analysis of Dsh post-translational modification using two-dimensional Western blot analysis revealed that compared to Dsh pools in the bulk cytoplasm, this protein is differentially modified in the VCD and in the 16-cell stage micromeres that partially inherit this domain. Dsh localization to the VCD is not directly affected by disruption of microfilaments and microtubules, but unexpectedly, microfilament disruption led to degradation of all the Dsh pools in unfertilized eggs over a period of incubation suggesting that microfilament integrity is required for maintaining Dsh stability. These results demonstrate that a pool of differentially modified Dsh in the VCD is selectively inherited by the vegetal blastomeres that activate cWnt signaling in early embryos, and suggests that this domain functions as a scaffold for localized Dsh activation. Localized cWnt activation regulates AV axis patterning in many metazoan embryos. Hence, it is possible that the VCD is an evolutionarily conserved

9. Intercellular Communication between Keratinocytes and Fibroblasts Induces Local Osteoclast Differentiation: a Mechanism Underlying Cholesteatoma-Induced Bone Destruction.

Science.gov (United States)

Iwamoto, Yoriko; Nishikawa, Keizo; Imai, Ryusuke; Furuya, Masayuki; Uenaka, Maki; Ohta, Yumi; Morihana, Tetsuo; Itoi-Ochi, Saori; Penninger, Josef M; Katayama, Ichiro; Inohara, Hidenori; Ishii, Masaru

2016-06-01

Bone homeostasis is maintained by a balance in activity between bone-resorbing osteoclasts and bone-forming osteoblasts. Shifting the balance toward bone resorption causes osteolytic bone diseases such as rheumatoid arthritis and periodontitis. Osteoclast differentiation is regulated by receptor activator of nuclear factor κB ligand (RANKL), which, under some pathological conditions, is produced by T and B lymphocytes and synoviocytes. However, the mechanism underlying bone destruction in other diseases is little understood. Bone destruction caused by cholesteatoma, an epidermal cyst in the middle ear resulting from hyperproliferation of keratinizing squamous epithelium, can lead to lethal complications. In this study, we succeeded in generating a model for cholesteatoma, epidermal cyst-like tissue, which has the potential for inducing osteoclastogenesis in mice. Furthermore, an in vitro coculture system composed of keratinocytes, fibroblasts, and osteoclast precursors was used to demonstrate that keratinocytes stimulate osteoclast differentiation through the induction of RANKL in fibroblasts. Thus, this study demonstrates that intercellular communication between keratinocytes and fibroblasts is involved in the differentiation and function of osteoclasts, which may provide the molecular basis of a new therapeutic strategy for cholesteatoma-induced bone destruction. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

10. A geometry calibration method for rotation translation trajectory

International Nuclear Information System (INIS)

Zhang Jun; Yan Bin; Li Lei; Lu Lizhong; Zhang Feng

2013-01-01

In cone-beam CT imaging system, it is difficult to directly measure the geometry parameters. In this paper, a geometry calibration method for rotation translation trajectory is proposed. Intrinsic parameters are solved from the relationship built on geometry parameter of the system and projection trajectory of calibration object. Parameters of rotation axis are extrapolated from the unified intrinsic parameter, and geometry parameters of the idle trajectory are acquired too. The calibration geometry can be analytically determined using explicit formulae, it can avoid getting into local optimum in iterative way. Simulation experiments are carried out on misaligned geometry, experiment results indicate that geometry artifacts due to misaligned geometry are effectively depressed by the proposed method, and the image quality is enhanced. (authors)

11. Weyl geometry and the nonlinear mechanics of distributed point defects

KAUST Repository

Yavari, A.; Goriely, A.

2012-01-01

The residual stress field of a nonlinear elastic solid with a spherically symmetric distribution of point defects is obtained explicitly using methods from differential geometry. The material manifold of a solid with distributed point defects

12. A variational solution of transport equation based on spherical geometry

International Nuclear Information System (INIS)

Liu Hui; Zhang Ben'ai

2002-01-01

A variational method with differential forms gives better precision for numerical solution of transport critical problem based on spherical geometry, and its computation seems simple than other approximate methods

13. Global aspects of complex geometry

CERN Document Server

Catanese, Fabrizio; Huckleberry, Alan T

2006-01-01

Present an overview of developments in Complex Geometry. This book covers topics that range from curve and surface theory through special varieties in higher dimensions, moduli theory, Kahler geometry, and group actions to Hodge theory and characteristic p-geometry.

14. Re-distribution of brachytherapy dose using a differential dose prescription adapted to risk of local failure in low-risk prostate cancer patients

DEFF Research Database (Denmark)

Rylander, Susanne; Polders, Daniel; Steggerda, Marcel J

2015-01-01

BACKGROUND AND PURPOSE: We investigated the application of a differential target- and dose prescription concept for low-dose-rate prostate brachytherapy (LDR-BT), involving a re-distribution of dose according to risk of local failure and treatment-related morbidity. MATERIAL AND METHODS: Our study......- and dose prescription concept of prescribing a lower dose to the whole gland and an escalated dose to the GTV using LDR-BT seed planning was technically feasible and resulted in a significant dose-reduction to urethra and bladder neck....

15. Rural wood consumption patterns of local and immigrant households with differentiated access to resources in Xishuangbanna, Yunnan, China

International Nuclear Information System (INIS)

Mertens, Charlotte Filt; Bruun, Thilde Bech; Schmidt-Vogt, Dietrich; He, Jun; Neergaard, Andreas de

2015-01-01

In Xishuangbanna, China, rubber production has spread rapidly, resulting in extensive land use changes and an increasing influx of migrant workers who have come to find work on the plantations. These migrant workers have limited access to subsidies and the local collective forest due to the household registration system in China called hukou. To assess how these policy-based restrictions on access affect wood consumption and local communities, a case study was conducted in Manlin village, Xishuangbanna, undertaking a household and weight survey with local and immigrant households. The results show no significant difference in firewood consumption between the subpopulations, despite predominantly more local than immigrant households have access to subsidised alternative energy sources. On the other hand, limited access to the collective forest is found to influence the choice of housing materials and living standards in immigrant households as they cannot access timber or afford brick houses. This paper highlights rural issues connected to the hukou system and suggests that rural energy and resource policies should take the growing population of immigrant workers into consideration in future to expand the reach of the polices to the de facto and not only de jure rural population and thus optimise policy efficiency. - Highlights: • The hukou system directly affects rural wood access and consumption. • Immigrant households have little or no access to timber. • Registration status does not have a significant effect on firewood consumption. • Excluding immigrant households will limit policy outreach and efficiency

16. Differential expression and localization of lipid transporters in the bovine mammary gland during the pregnancy-lactation cycle

DEFF Research Database (Denmark)

Mani, O; Sørensen, M T; Sejrsen, K

2009-01-01

biopsies and blood samples were taken from 10 animals at 7 stages of the pregnancy-lactation cycle. Expression levels of the specific mRNAs were determined by quantitative reverse transcription-PCR, whereas ABCA1 was localized by immunohistochemistry. Blood serum metabolites were determined by common...

17. Sources of hyperbolic geometry

CERN Document Server

Stillwell, John

1996-01-01

This book presents, for the first time in English, the papers of Beltrami, Klein, and Poincaré that brought hyperbolic geometry into the mainstream of mathematics. A recognition of Beltrami comparable to that given the pioneering works of Bolyai and Lobachevsky seems long overdue-not only because Beltrami rescued hyperbolic geometry from oblivion by proving it to be logically consistent, but because he gave it a concrete meaning (a model) that made hyperbolic geometry part of ordinary mathematics. The models subsequently discovered by Klein and Poincaré brought hyperbolic geometry even further down to earth and paved the way for the current explosion of activity in low-dimensional geometry and topology. By placing the works of these three mathematicians side by side and providing commentaries, this book gives the student, historian, or professional geometer a bird's-eye view of one of the great episodes in mathematics. The unified setting and historical context reveal the insights of Beltrami, Klein, and Po...

18. Generalizing optical geometry

International Nuclear Information System (INIS)

Jonsson, Rickard; Westman, Hans

2006-01-01

We show that by employing the standard projected curvature as a measure of spatial curvature, we can make a certain generalization of optical geometry (Abramowicz M A and Lasota J-P 1997 Class. Quantum Grav. A 14 23-30). This generalization applies to any spacetime that admits a hypersurface orthogonal shearfree congruence of worldlines. This is a somewhat larger class of spacetimes than the conformally static spacetimes assumed in standard optical geometry. In the generalized optical geometry, which in the generic case is time dependent, photons move with unit speed along spatial geodesics and the sideways force experienced by a particle following a spatially straight line is independent of the velocity. Also gyroscopes moving along spatial geodesics do not precess (relative to the forward direction). Gyroscopes that follow a curved spatial trajectory precess according to a very simple law of three-rotation. We also present an inertial force formalism in coordinate representation for this generalization. Furthermore, we show that by employing a new sense of spatial curvature (Jonsson R 2006 Class. Quantum Grav. 23 1)) closely connected to Fermat's principle, we can make a more extensive generalization of optical geometry that applies to arbitrary spacetimes. In general this optical geometry will be time dependent, but still geodesic photons move with unit speed and follow lines that are spatially straight in the new sense. Also, the sideways experienced (comoving) force on a test particle following a line that is straight in the new sense will be independent of the velocity

19. Differential Localization of Pain-Related and Pain-Unrelated Neural Responses for Acupuncture at BL60 Using BOLD fMRI

Directory of Open Access Journals (Sweden)

Na-Hee Kim

2013-01-01

Full Text Available The objective of this study was to differentiate between pain-related and pain-unrelated neural responses of acupuncture at BL60 to investigate the specific effects of acupuncture. A total of 19 healthy volunteers were evaluated. fMRI was performed with sham or verum acupuncture stimulation at the left BL60 before and after local anesthesia. To investigate the relative BOLD signal effect for each session, a one-sample t-test was performed for individual contrast maps, and a paired t-test to investigate the differences between the pre- and post-anesthetic signal effects. Regarding verum acupuncture, areas that were more activated before local anesthesia included the superior, middle, and medial frontal gyri, inferior parietal lobule, superior temporal gyrus, thalamus, middle temporal gyrus, cingulate gyrus, culmen, and cerebellar tonsil. The postcentral gyrus was more deactivated before local anesthesia. After local anesthesia, the middle occipital gyrus, inferior temporal gyrus, postcentral gyrus, precuneus, superior parietal lobule, and declive were deactivated. Pre-anesthetic verum acupuncture at BL60 activated areas of vision and pain transmission. Post-anesthetic verum acupuncture deactivated brain areas of visual function, which is considered to be a pain-unrelated acupuncture response. It indicates that specific effects of acupoint BL60 are to control vision sense as used in the clinical setting.

20. Some Progress in Conformal Geometry

Directory of Open Access Journals (Sweden)

Sun-Yung A. Chang

2007-12-01

Full Text Available This is a survey paper of our current research on the theory of partial differential equations in conformal geometry. Our intention is to describe some of our current works in a rather brief and expository fashion. We are not giving a comprehensive survey on the subject and references cited here are not intended to be complete. We introduce a bubble tree structure to study the degeneration of a class of Yamabe metrics on Bach flat manifolds satisfying some global conformal bounds on compact manifolds of dimension 4. As applications, we establish a gap theorem, a finiteness theorem for diffeomorphism type for this class, and diameter bound of the $sigma_2$-metrics in a class of conformal 4-manifolds. For conformally compact Einstein metrics we introduce an eigenfunction compactification. As a consequence we obtain some topological constraints in terms of renormalized volumes.

1. Use of Local Electrochemical Methods (SECM, EC-STM) and AFM to Differentiate Microstructural Effects (EBSD) on Very Pure Copper

Energy Technology Data Exchange (ETDEWEB)

Martinez-Lombardia, Esther; Graeve, Iris De; Terryn, Herman [Vrije Universiteit Brussel, Brussels (Belgium); Lapeire, Linsey; Verbeken, Kim; Kestens, Leo [Ghent University, Zwijnaarde (Ghent) (Belgium); Maurice, Vincent; Klein, Lorena; Marcus, Philippe [Institut de Recherche de Chimie Paris, Paris (France); Gonzalez-Garcia, Yaiza; Mol, Arjan [Delft University of Technology, Delft (Netherlands)

2017-02-15

When aiming for an increased and more sustainable use of metals a thorough knowledge of the corrosion phenomenon as function of the local metal microstructure is of crucial importance. In this work, we summarize the information presented in our previous publications and present an overview of the different local (electrochemical) techniques that have been proven to be effective in studying the relation between different microstructural variables and their different electrochemical behavior. Atomic force microscopy (AFM), scanning electrochemical microscopy (SECM), and electrochemical scanning tunneling microscopy (EC-STM) were used in combination with electron backscatter diffraction (EBSD). Consequently, correlations could be identified between the grain orientation and grain boundary characteristics, on the one hand, and the electrochemical behavior on the other hand. The grain orientation itself has an influence on the corrosion, and the orientation of the neighboring grains also seems to play a decisive role in the dissolution rate. With respect to intergranular corrosion, only coherent twin boundaries seem to be resistant.

2. Computational synthetic geometry

CERN Document Server

Bokowski, Jürgen

1989-01-01

Computational synthetic geometry deals with methods for realizing abstract geometric objects in concrete vector spaces. This research monograph considers a large class of problems from convexity and discrete geometry including constructing convex polytopes from simplicial complexes, vector geometries from incidence structures and hyperplane arrangements from oriented matroids. It turns out that algorithms for these constructions exist if and only if arbitrary polynomial equations are decidable with respect to the underlying field. Besides such complexity theorems a variety of symbolic algorithms are discussed, and the methods are applied to obtain new mathematical results on convex polytopes, projective configurations and the combinatorics of Grassmann varieties. Finally algebraic varieties characterizing matroids and oriented matroids are introduced providing a new basis for applying computer algebra methods in this field. The necessary background knowledge is reviewed briefly. The text is accessible to stud...

3. Discrete and computational geometry

CERN Document Server

2011-01-01

Discrete geometry is a relatively new development in pure mathematics, while computational geometry is an emerging area in applications-driven computer science. Their intermingling has yielded exciting advances in recent years, yet what has been lacking until now is an undergraduate textbook that bridges the gap between the two. Discrete and Computational Geometry offers a comprehensive yet accessible introduction to this cutting-edge frontier of mathematics and computer science. This book covers traditional topics such as convex hulls, triangulations, and Voronoi diagrams, as well as more recent subjects like pseudotriangulations, curve reconstruction, and locked chains. It also touches on more advanced material, including Dehn invariants, associahedra, quasigeodesics, Morse theory, and the recent resolution of the Poincaré conjecture. Connections to real-world applications are made throughout, and algorithms are presented independently of any programming language. This richly illustrated textbook also fe...

4. Lectures on discrete geometry

CERN Document Server

2002-01-01

Discrete geometry investigates combinatorial properties of configurations of geometric objects. To a working mathematician or computer scientist, it offers sophisticated results and techniques of great diversity and it is a foundation for fields such as computational geometry or combinatorial optimization. This book is primarily a textbook introduction to various areas of discrete geometry. In each area, it explains several key results and methods, in an accessible and concrete manner. It also contains more advanced material in separate sections and thus it can serve as a collection of surveys in several narrower subfields. The main topics include: basics on convex sets, convex polytopes, and hyperplane arrangements; combinatorial complexity of geometric configurations; intersection patterns and transversals of convex sets; geometric Ramsey-type results; polyhedral combinatorics and high-dimensional convexity; and lastly, embeddings of finite metric spaces into normed spaces. Jiri Matousek is Professor of Com...

5. Two-way regulation between cells and aligned collagen fibrils: local 3D matrix formation and accelerated neural differentiation of human decidua parietalis placental stem cells.

Science.gov (United States)

Li, Wen; Zhu, Bofan; Strakova, Zuzana; Wang, Rong

2014-08-08

It has been well established that an aligned matrix provides structural and signaling cues to guide cell polarization and cell fate decision. However, the modulation role of cells in matrix remodeling and the feedforward effect on stem cell differentiation have not been studied extensively. In this study, we report on the concerted changes of human decidua parietalis placental stem cells (hdpPSCs) and the highly ordered collagen fibril matrix in response to cell-matrix interaction. With high-resolution imaging, we found the hdpPSCs interacted with the matrix by deforming the cell shape, harvesting the nearby collagen fibrils, and reorganizing the fibrils around the cell body to transform a 2D matrix to a localized 3D matrix. Such a unique 3D matrix prompted high expression of β-1 integrin around the cell body that mediates and facilitates the stem cell differentiation toward neural cells. The study offers insights into the coordinated, dynamic changes at the cell-matrix interface and elucidates cell modulation of its matrix to establish structural and biochemical cues for effective cell growth and differentiation. Copyright © 2014 Elsevier Inc. All rights reserved.

6. Geometry and symmetry

CERN Document Server

Yale, Paul B

2012-01-01

This book is an introduction to the geometry of Euclidean, affine, and projective spaces with special emphasis on the important groups of symmetries of these spaces. The two major objectives of the text are to introduce the main ideas of affine and projective spaces and to develop facility in handling transformations and groups of transformations. Since there are many good texts on affine and projective planes, the author has concentrated on the n-dimensional cases.Designed to be used in advanced undergraduate mathematics or physics courses, the book focuses on ""practical geometry,"" emphasi

7. On the geometry of fracture and frustration

NARCIS (Netherlands)

Koning, Vinzenz

2014-01-01

Geometric frustration occurs when local order cannot propagate through space. A common example is the surface of a soccer ball, which cannot be tiled with hexaganons only. Geometric frustration can also be present in materials. In fact, geometry can act as an instrument to design the mechanical,

8. Remarks on Hamiltonian structures in G2-geometry

International Nuclear Information System (INIS)

Cho, Hyunjoo; Salur, Sema; Todd, A. J.

2013-01-01

In this article, we treat G 2 -geometry as a special case of multisymplectic geometry and make a number of remarks regarding Hamiltonian multivector fields and Hamiltonian differential forms on manifolds with an integrable G 2 -structure; in particular, we discuss existence and make a number of identifications of the spaces of Hamiltonian structures associated to the two multisymplectic structures associated to an integrable G 2 -structure. Along the way, we prove some results in multisymplectic geometry that are generalizations of results from symplectic geometry

9. Geometry of curves and surfaces with Maple

CERN Document Server

2000-01-01

This concise text on geometry with computer modeling presents some elementary methods for analytical modeling and visualization of curves and surfaces. The author systematically examines such powerful tools as 2-D and 3-D animation of geometric images, transformations, shadows, and colors, and then further studies more complex problems in differential geometry. Well-illustrated with more than 350 figures---reproducible using Maple programs in the book---the work is devoted to three main areas: curves, surfaces, and polyhedra. Pedagogical benefits can be found in the large number of Maple programs, some of which are analogous to C++ programs, including those for splines and fractals. To avoid tedious typing, readers will be able to download many of the programs from the Birkhauser web site. Aimed at a broad audience of students, instructors of mathematics, computer scientists, and engineers who have knowledge of analytical geometry, i.e., method of coordinates, this text will be an excellent classroom resource...

10. International conference on Algebraic and Complex Geometry

CERN Document Server

Kloosterman, Remke; Schütt, Matthias

2014-01-01

Several important aspects of moduli spaces and irreducible holomorphic symplectic manifolds were highlighted at the conference “Algebraic and Complex Geometry” held September 2012 in Hannover, Germany. These two subjects of recent ongoing progress belong to the most spectacular developments in Algebraic and Complex Geometry. Irreducible symplectic manifolds are of interest to algebraic and differential geometers alike, behaving similar to K3 surfaces and abelian varieties in certain ways, but being by far less well-understood. Moduli spaces, on the other hand, have been a rich source of open questions and discoveries for decades and still continue to be a hot topic in itself as well as with its interplay with neighbouring fields such as arithmetic geometry and string theory. Beyond the above focal topics this volume reflects the broad diversity of lectures at the conference and comprises 11 papers on current research from different areas of algebraic and complex geometry sorted in alphabetic order by the ...

11. Towards relativistic quantum geometry

Energy Technology Data Exchange (ETDEWEB)

Ridao, Luis Santiago [Instituto de Investigaciones Físicas de Mar del Plata (IFIMAR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mar del Plata (Argentina); Bellini, Mauricio, E-mail: mbellini@mdp.edu.ar [Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Funes 3350, C.P. 7600, Mar del Plata (Argentina); Instituto de Investigaciones Físicas de Mar del Plata (IFIMAR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mar del Plata (Argentina)

2015-12-17

We obtain a gauge-invariant relativistic quantum geometry by using a Weylian-like manifold with a geometric scalar field which provides a gauge-invariant relativistic quantum theory in which the algebra of the Weylian-like field depends on observers. An example for a Reissner–Nordström black-hole is studied.

12. Multiplicity in difference geometry

OpenAIRE

Tomasic, Ivan

2011-01-01

We prove a first principle of preservation of multiplicity in difference geometry, paving the way for the development of a more general intersection theory. In particular, the fibres of a \\sigma-finite morphism between difference curves are all of the same size, when counted with correct multiplicities.

13. Spacetime and Euclidean geometry

Science.gov (United States)

Brill, Dieter; Jacobson, Ted

2006-04-01

Using only the principle of relativity and Euclidean geometry we show in this pedagogical article that the square of proper time or length in a two-dimensional spacetime diagram is proportional to the Euclidean area of the corresponding causal domain. We use this relation to derive the Minkowski line element by two geometric proofs of the spacetime Pythagoras theorem.

14. Physics and geometry

International Nuclear Information System (INIS)

Konopleva, N.P.

2009-01-01

The basic ideas of description methods of physical fields and elementary particle interactions are discussed. One of such ideas is the conception of space-time geometry. In this connection experimental measurement methods are analyzed. It is shown that measure procedures are the origin of geometrical axioms. The connection between space symmetry properties and the conservation laws is considered

15. Origami, Geometry and Art

Science.gov (United States)

Wares, Arsalan; Elstak, Iwan

2017-01-01

The purpose of this paper is to describe the mathematics that emanates from the construction of an origami box. We first construct a simple origami box from a rectangular sheet and then discuss some of the mathematical questions that arise in the context of geometry and algebra. The activity can be used as a context for illustrating how algebra…

16. Gravity is Geometry.

Science.gov (United States)

MacKeown, P. K.

1984-01-01

Clarifies two concepts of gravity--those of a fictitious force and those of how space and time may have geometry. Reviews the position of Newton's theory of gravity in the context of special relativity and considers why gravity (as distinct from electromagnetics) lends itself to Einstein's revolutionary interpretation. (JN)

17. Towards a Nano Geometry?

DEFF Research Database (Denmark)

Booss-Bavnbek, Bernhelm

2011-01-01

This paper applies I.M. Gelfand's distinction between adequate and non-adequate use of mathematical language in different contexts to the newly opened window of model-based measurements of intracellular dynamics. The specifics of geometry and dynamics on the mesoscale of cell physiology are elabo...

18. Diophantine geometry an introduction

CERN Document Server

Hindry, Marc

2000-01-01

This is an introduction to diophantine geometry at the advanced graduate level. The book contains a proof of the Mordell conjecture which will make it quite attractive to graduate students and professional mathematicians. In each part of the book, the reader will find numerous exercises.

19. Sliding vane geometry turbines

Science.gov (United States)

Sun, Harold Huimin; Zhang, Jizhong; Hu, Liangjun; Hanna, Dave R

2014-12-30

Various systems and methods are described for a variable geometry turbine. In one example, a turbine nozzle comprises a central axis and a nozzle vane. The nozzle vane includes a stationary vane and a sliding vane. The sliding vane is positioned to slide in a direction substantially tangent to an inner circumference of the turbine nozzle and in contact with the stationary vane.

20. History of analytic geometry

CERN Document Server

Boyer, Carl B

2012-01-01

Designed as an integrated survey of the development of analytic geometry, this study presents the concepts and contributions from before the Alexandrian Age through the eras of the great French mathematicians Fermat and Descartes, and on through Newton and Euler to the "Golden Age," from 1789 to 1850.

1. Non-euclidean geometry

CERN Document Server

Coxeter, HSM

1965-01-01

This textbook introduces non-Euclidean geometry, and the third edition adds a new chapter, including a description of the two families of 'mid-lines' between two given lines and an elementary derivation of the basic formulae of spherical trigonometry and hyperbolic trigonometry, and other new material.

2. Geometry Euclid and beyond

CERN Document Server

Hartshorne, Robin

2000-01-01

In recent years, I have been teaching a junior-senior-level course on the classi­ cal geometries. This book has grown out of that teaching experience. I assume only high-school geometry and some abstract algebra. The course begins in Chapter 1 with a critical examination of Euclid's Elements. Students are expected to read concurrently Books I-IV of Euclid's text, which must be obtained sepa­ rately. The remainder of the book is an exploration of questions that arise natu­ rally from this reading, together with their modern answers. To shore up the foundations we use Hilbert's axioms. The Cartesian plane over a field provides an analytic model of the theory, and conversely, we see that one can introduce coordinates into an abstract geometry. The theory of area is analyzed by cutting figures into triangles. The algebra of field extensions provides a method for deciding which geometrical constructions are possible. The investigation of the parallel postulate leads to the various non-Euclidean geometries. And ...

3. Systemic distribution, subcellular localization and differential expression of sphingosine-1-phosphate receptors in benign and malignant human tissues.

Science.gov (United States)

Wang, Chunyi; Mao, Jinghe; Redfield, Samantha; Mo, Yinyuan; Lage, Janice M; Zhou, Xinchun

2014-10-01

Five sphingosine-1-phosphate receptors (S1PR): S1PR1, S1PR2, S1PR3, S1PR4 and S1PR5 (S1PR1-5) have been shown to be involved in the proliferation and progression of various cancers. However, none of the S1PRs have been systemically investigated. In this study, we performed immunohistochemistry (IHC) for S1PR1-S1PR5 on different tissues, in order to simultaneously determine the systemic distribution, subcellular localization and expression level of all five S1PRs. We constructed tissue microarrays (TMAs) from 384 formalin-fixed paraffin-embedded (FFPE) blocks containing 183 benign and 201 malignant tissues from 34 human organs/systems. Then we performed IHC for all five S1PRs simultaneously on these TMA slides. The distribution, subcellular localization and expression of each S1PR were determined for each tissue. The data in benign and malignant tissues from the same organ/tissue were then compared using the Student's t-test. In order to reconfirm the subcellular localization of each S1PR as determined by IHC, immunocytochemistry (ICC) was performed on several malignant cell lines. We found that all five S1PRs are widely distributed in multiple human organs/systems. All S1PRs are expressed in both the cytoplasm and nucleus, except S1PR3, whose IHC signals are only seen in the nucleus. Interestingly, the S1PRs are rarely expressed on cellular membranes. Each S1PR is unique in its organ distribution, subcellular localization and expression level in benign and malignant tissues. Among the five S1PRs, S1PR5 has the highest expression level (in either the nucleus or cytoplasm), with S1PR1, 3, 2 and 4 following in descending order. Strong nuclear expression was seen for S1PR1, S1PR3 and S1PR5, whereas S1PR2 and S1PR4 show only weak staining. Four organs/tissues (adrenal gland, liver, brain and colon) show significant differences in IHC scores for the multiple S1PRs (nuclear and/or cytoplasmic), nine (stomach, lymphoid tissues, lung, ovary, cervix, pancreas, skin, soft

4. On Theories of Superalgebras of Differentiable Functions

NARCIS (Netherlands)

Carchedi, D.J.; Roytenberg, D.

2013-01-01

This is the first in a series of papers laying the foundations for a differential graded approach to derived differential geometry (and other geometries in characteristic zero). In this paper, we study theories of supercommutative algebras for which infinitely differentiable functions can be

5. Expression and Localization of Cathepsins B, D, and G in Two Cancer Stem Cell Subpopulations in Moderately Differentiated Oral Tongue Squamous Cell Carcinoma

Directory of Open Access Journals (Sweden)

Therese Featherston

2017-07-01

Full Text Available AimWe have previously demonstrated the putative presence of two cancer stem cell (CSC subpopulations within moderately differentiated oral tongue squamous cell carcinoma (MDOTSCC, which express components of the renin–angiotensin system (RAS. In this study, we investigated the expression and localization of cathepsins B, D, and G in relation to these CSC subpopulations within MDOTSCC.Methods3,3-Diaminobenzidine (DAB and immunofluorescent (IF immunohistochemical (IHC staining was performed on MDOTSCC samples to determine the expression and localization of cathepsins B, D, and G in relation to the CSC subpopulations. NanoString mRNA analysis and colorimetric in situ hybridization (CISH were used to study their transcripts expression. Enzyme activity assays were performed to determine the activity of these cathepsins in MDOTSCC.ResultsIHC staining demonstrated expression of cathepsins B, D, and G in MDOTSCC. Cathepsins B and D were localized to CSCs within the tumor nests, while cathepsin B was localized to the CSCs within the peri-tumoral stroma, and cathepsin G was localized to the tryptase+ phenotypic mast cells within the peri-tumoral stroma. NanoString and CISH mRNA analyses confirmed transcription activation of cathepsins B, D, and G. Enzyme activity assays confirmed active cathepsins B and D, but not cathepsin G.ConclusionThe presence of cathepsins B and D on the CSCs and cathspsin G on the phenotypic mast cells suggest the presence of bypass loops for the RAS which may be a potential novel therapeutic target for MDOTSCC.

6. Macroscopic flux-creep magnetization of superconductors in applied magnetic field and local change peculiarities of their differential resistivity

International Nuclear Information System (INIS)

Romanovskii, V.R.

2003-01-01

The physical peculiarities of the flux-creep dynamics of low- and high-temperature superconductors placed in external varying magnetic field are studied. The flux-creep problem was studied for the partial penetration state. The proposed analysis was based on the macroscopic description of the flux creep by power and exponential equations of current-voltage characteristics of superconductors. It is shown that during flux creep the screening current penetrates into the superconductor at a finite velocity. Therefore, inside the superconductor a moving boundary of a magnetization region appears like in the critical state model. The time-dependent equations of screening current front have been written. However, unlike the critical state model nontrivial conditions are fulfilled at the moving boundary. They describe the smooth transition of the electromagnetic field induced by external perturbation to the undisturbed ones. A flux-creep distribution of the differential resistivity of the superconductor has been discussed. The performed analysis reveals that it monotonically decreases toward the moving boundary and depends on the magnetic ramp rate. In accordance with these flux-creep conditions the energy dissipation in the superconductors and their magnetic moment depend on the propagation law of the screening current moving boundary. The applicability of the Bean model for describing the flux-creep states is investigated

7. Population differentiation in a Mediterranean relict shrub: the potential role of local adaptation for coping with climate change.

Science.gov (United States)

Lázaro-Nogal, Ana; Matesanz, Silvia; Hallik, Lea; Krasnova, Alisa; Traveset, Anna; Valladares, Fernando

2016-04-01

Plants can respond to climate change by either migrating, adapting to the new conditions or going extinct. Relict plant species of limited distribution can be especially vulnerable as they are usually composed of small and isolated populations, which may reduce their ability to cope with rapidly changing environmental conditions. The aim of this study was to assess the vulnerability of Cneorum tricoccon L. (Cneoraceae), a Mediterranean relict shrub of limited distribution, to a future drier climate. We evaluated population differentiation in functional traits related to drought tolerance across seven representative populations of the species' range. We measured morphological and physiological traits in both the field and the greenhouse under three water availability levels. Large phenotypic differences among populations were found under field conditions. All populations responded plastically to simulated drought, but they differed in mean trait values as well as in the slope of the phenotypic response. Particularly, dry-edge populations exhibited multiple functional traits that favored drought tolerance, such as more sclerophyllous leaves, strong stomatal control but high photosynthetic rates, which increases water use efficiency (iWUE), and an enhanced ability to accumulate sugars as osmolytes. Although drought decreased RGR in all populations, this reduction was smaller for populations from the dry edge. Our results suggest that dry-edge populations of this relict species are well adapted to drought, which could potentially mitigate the species' extinction risk under drier scenarios. Dry-edge populations not only have a great conservation value but can also change expectations from current species' distribution models.

8. Solution of multigroup diffusion equations in cylindrical configuration by local polynomial approximation

International Nuclear Information System (INIS)

Jakab, J.

1979-05-01

Local approximations of neutron flux density by 2nd degree polynomials are used in calculating light water reactors. The calculations include spatial kinetics tasks for the models of two- and three-dimensional reactors in the Cartesian geometry. The resulting linear algebraic equations are considered to be formally identical to the results of the differential method of diffusion equation solution. (H.S.)

9. Geometry and Hamiltonian mechanics on discrete spaces

International Nuclear Information System (INIS)

Talasila, V; Clemente-Gallardo, J; Schaft, A J van der

2004-01-01

Numerical simulation is often crucial for analysing the behaviour of many complex systems which do not admit analytic solutions. To this end, one either converts a 'smooth' model into a discrete (in space and time) model, or models systems directly at a discrete level. The goal of this paper is to provide a discrete analogue of differential geometry, and to define on these discrete models a formal discrete Hamiltonian structure-in doing so we try to bring together various fundamental concepts from numerical analysis, differential geometry, algebraic geometry, simplicial homology and classical Hamiltonian mechanics. For example, the concept of a twisted derivation is borrowed from algebraic geometry for developing a discrete calculus. The theory is applied to a nonlinear pendulum and we compare the dynamics obtained through a discrete modelling approach with the dynamics obtained via the usual discretization procedures. Also an example of an energy-conserving algorithm on a simple harmonic oscillator is presented, and its effect on the Poisson structure is discussed

10. Differentiated long term projections of the hourly electricity consumption in local areas. The case of Denmark West

DEFF Research Database (Denmark)

Møller Andersen, Frits; Larsen, Helge V.; Juul, Nina

2014-01-01

.000 and 100.000 customers. Data for the hourly electricity consumption at transformer stations shows that the profile of consumption differs considerably between local areas, and this is partly due to a different weight of categories of customers in the different areas. Categories of customers have quite...... distinct consumption profiles and contribute quite differently to the aggregated load profile. In forecasts, demand by categories of customers is expected to develop differently implying that both the level and the profile of consumption at each transformer stations are expected to change differently...... consumption by categories of customers and data for the hourly consumption at each transformer station for the years 2009–2011. Applying the model for load forecasts, a major conclusion is that different transformer stations will experience different changes both in the level - and in the hourly profile...

11. The geometry of population genetics

CERN Document Server

Akin, Ethan

1979-01-01

The differential equations which model the action of selection and recombination are nonlinear equations which are impossible to It is even difficult to describe in general the solve explicitly. Recently, Shahshahani began using qualitative behavior of solutions. differential geometry to study these equations [28]. with this mono­ graph I hope to show that his ideas illuminate many aspects of pop­ ulation genetics. Among these are his proof and clarification of Fisher's Fundamental Theorem of Natural Selection and Kimura's Maximum Principle and also the effect of recombination on entropy. We also discover the relationship between two classic measures of 2 genetic distance: the x measure and the arc-cosine measure. There are two large applications. The first is a precise definition of the biological concept of degree of epistasis which applies to general (i.e. frequency dependent) forms of selection. The second is the unexpected appearance of cycling. We show that cycles can occur in the two-locus-two-allele...

12. Some geometry and topology

International Nuclear Information System (INIS)

Marmo, G.; Morandi, G.

1995-01-01

In this lecture some mathematical problems that arise when one deals with low-dimensional field theories, such as homotopy and topological invariants, differential calculus on Lie groups and coset spaces, fiber spaces and parallel transport, differential calculus on fiber bundles, sequences on principal bundles and Chern-Simons terms are discussed

13. Seesaw mechanism in warped geometry

International Nuclear Information System (INIS)

Huber, S.J.; Shafi, Q.

2003-09-01

We show how the seesaw mechanism for neutrino masses can be realized within a five dimensional (5D) warped geometry framework. Intermediate scale standard model (SM) singlet neutrino masses, needed to explain the atmospheric and solar neutrino oscillations, are shown to be proportional to M P1 .exp((2c-1)πkR), where c denotes the coefficient of the 5D Dirac mass term for the singlet neutrino which also has a Planck scale Majorana mass localized on the Planck-brane, and kR∼11 in order to resolve the gauge hierarchy problem. The case with a bulk 5D Majorana mass term for the singlet neutrino is briefly discussed. (orig.)

14. Seesaw mechanism in warped geometry

International Nuclear Information System (INIS)

Huber, Stephan J.; Shafi, Qaisar

2004-01-01

We show how the seesaw mechanism for neutrino masses can be realized within a five-dimensional (5D) warped geometry framework. Intermediate scale standard model (SM) singlet neutrino masses, needed to explain the atmospheric and solar neutrino oscillations, are shown to be proportional to M Pl exp((2c-1)πkR), where c denotes the coefficient of the 5D Dirac mass term for the singlet neutrino which also has a Planck scale Majorana mass localized on the Planck-brane, and kR∼11 in order to resolve the gauge hierarchy problem. The case with a bulk 5D Majorana mass term for the singlet neutrino is briefly discussed

15. Differentiating local and regional sources of Chinese urban air pollution based on the effect of the Spring Festival

Science.gov (United States)

Wang, Chuan; Huang, Xiao-Feng; Zhu, Qiao; Cao, Li-Ming; Zhang, Bin; He, Ling-Yan

2017-07-01

The emission of pollutants is extremely reduced during the annual Chinese Spring Festival (SF) in Shenzhen, China. During the SF, traffic flow drops by ˜ 50 % and the industrial plants are almost entirely shut down in Shenzhen. To characterize the variation in ambient air pollutants due to the Spring Festival effect, various gaseous and particulate pollutants were measured in real time in urban Shenzhen over three consecutive winters (2014-2016). The results indicate that the concentrations of NOx, volatile organic compounds (VOCs), black carbon (BC), primary organic aerosols, chloride, and nitrate in submicron aerosols decrease by 50-80 % during SF periods relative to non-Spring Festival periods, regardless of meteorological conditions. This decrease suggests that these pollutants are mostly emitted or secondarily formed from urban local emissions. The concentration variation in species mostly from regional or natural sources, however, is found to be much less, such as for bulk fine particulate matter (PM2. 5). More detailed analysis of the Spring Festival effect reveals an urgent need to reduce emissions of SO2 and VOCs on a regional scale rather than on an urban scale to reduce urban PM2. 5 in Shenzhen, which can also be useful as a reference for other megacities in China.

16. Multivariate calculus and geometry

CERN Document Server

Dineen, Seán

2014-01-01

Multivariate calculus can be understood best by combining geometric insight, intuitive arguments, detailed explanations and mathematical reasoning. This textbook has successfully followed this programme. It additionally provides a solid description of the basic concepts, via familiar examples, which are then tested in technically demanding situations. In this new edition the introductory chapter and two of the chapters on the geometry of surfaces have been revised. Some exercises have been replaced and others provided with expanded solutions. Familiarity with partial derivatives and a course in linear algebra are essential prerequisites for readers of this book. Multivariate Calculus and Geometry is aimed primarily at higher level undergraduates in the mathematical sciences. The inclusion of many practical examples involving problems of several variables will appeal to mathematics, science and engineering students.

17. Transformational plane geometry

CERN Document Server

Umble, Ronald N

2014-01-01

Axioms of Euclidean Plane Geometry The Existence and Incidence Postulates The Distance and Ruler Postulates The Plane Separation Postulate The Protractor Postulate The Side-Angle-Side Postulate and the Euclidean Parallel Postulate Theorems of Euclidean Plane Geometry The Exterior Angle Theorem Triangle Congruence Theorems The Alternate Interior Angles Theorem and the Angle Sum Theorem Similar Triangles Introduction to Transformations, Isometries, and Similarities Transformations Isometries and SimilaritiesAppendix: Proof of Surjectivity Translations, Rotations, and Reflections Translations Rotations Reflections Appendix: Geometer's Sketchpad Commands Required by Exploratory Activities Compositions of Translations, Rotations, and Reflections The Three Points Theorem Rotations as Compositions of Two Reflections Translations as Compositions of Two Halfturns or Two Reflections The Angle Addition Theorem Glide Reflections Classification of Isometries The Fundamental Theorem and Congruence Classification of Isometr...

18. Multilevel geometry optimization

Science.gov (United States)

Rodgers, Jocelyn M.; Fast, Patton L.; Truhlar, Donald G.

2000-02-01

Geometry optimization has been carried out for three test molecules using six multilevel electronic structure methods, in particular Gaussian-2, Gaussian-3, multicoefficient G2, multicoefficient G3, and two multicoefficient correlation methods based on correlation-consistent basis sets. In the Gaussian-2 and Gaussian-3 methods, various levels are added and subtracted with unit coefficients, whereas the multicoefficient Gaussian-x methods involve noninteger parameters as coefficients. The multilevel optimizations drop the average error in the geometry (averaged over the 18 cases) by a factor of about two when compared to the single most expensive component of a given multilevel calculation, and in all 18 cases the accuracy of the atomization energy for the three test molecules improves; with an average improvement of 16.7 kcal/mol.

19. Multilevel geometry optimization

Energy Technology Data Exchange (ETDEWEB)

Rodgers, Jocelyn M. [Department of Chemistry and Supercomputer Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431 (United States); Fast, Patton L. [Department of Chemistry and Supercomputer Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431 (United States); Truhlar, Donald G. [Department of Chemistry and Supercomputer Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431 (United States)

2000-02-15

Geometry optimization has been carried out for three test molecules using six multilevel electronic structure methods, in particular Gaussian-2, Gaussian-3, multicoefficient G2, multicoefficient G3, and two multicoefficient correlation methods based on correlation-consistent basis sets. In the Gaussian-2 and Gaussian-3 methods, various levels are added and subtracted with unit coefficients, whereas the multicoefficient Gaussian-x methods involve noninteger parameters as coefficients. The multilevel optimizations drop the average error in the geometry (averaged over the 18 cases) by a factor of about two when compared to the single most expensive component of a given multilevel calculation, and in all 18 cases the accuracy of the atomization energy for the three test molecules improves; with an average improvement of 16.7 kcal/mol. (c) 2000 American Institute of Physics.

20. Polygons, Pillars and Pavilions: Discovering Connections between Geometry and Architecture

Science.gov (United States)

2017-01-01

Crowning the second semester of geometry, taught within a Catholic middle school, the author's students explored connections between the geometry of regular polygons and architecture of local buildings. They went on to explore how these principles apply famous buildings around the world such as the monuments of Washington, D.C. and the elliptical…

1. Geometry and Destiny

OpenAIRE

Krauss, Lawrence M.; Turner, Michael S.

1999-01-01

The recognition that the cosmological constant may be non-zero forces us to re-evaluate standard notions about the connection between geometry and the fate of our Universe. An open Universe can recollapse, and a closed Universe can expand forever. As a corollary, we point out that there is no set of cosmological observations we can perform that will unambiguously allow us to determine what the ultimate destiny of the Universe will be.

2. Complex geometries in wood

DEFF Research Database (Denmark)

Tamke, Martin; Ramsgaard Thomsen, Mette; Riiber Nielsen, Jacob

2009-01-01

The versatility of wood constructions and traditional wood joints for the production of non standard elements was in focus of a design based research. Herein we established a seamless process from digital design to fabrication. A first research phase centered on the development of a robust...... parametric model and a generic design language a later explored the possibilities to construct complex shaped geometries with self registering joints on modern wood crafting machines. The research was carried out as collaboration with industrial partners....

3. Electroweak vacuum geometry

International Nuclear Information System (INIS)

Lepora, N.; Kibble, T.

1999-01-01

We analyse symmetry breaking in the Weinberg-Salam model paying particular attention to the underlying geometry of the theory. In this context we find two natural metrics upon the vacuum manifold: an isotropic metric associated with the scalar sector, and a squashed metric associated with the gauge sector. Physically, the interplay between these metrics gives rise to many of the non-perturbative features of Weinberg-Salam theory. (author)

4. W-geometry

International Nuclear Information System (INIS)

Hull, C.M.

1993-01-01

The geometric structure of theories with gauge fields of spins two and higher should involve a higher spin generalisation of Riemannian geometry. Such geometries are discussed and the case of W ∝ -gravity is analysed in detail. While the gauge group for gravity in d dimensions is the diffeomorphism group of the space-time, the gauge group for a certain W-gravity theory (which is W ∝ -gravity in the case d=2) is the group of symplectic diffeomorphisms of the cotangent bundle of the space-time. Gauge transformations for W-gravity gauge fields are given by requiring the invariance of a generalised line element. Densities exist and can be constructed from the line element (generalising √detg μν ) only if d=1 or d=2, so that only for d=1,2 can actions be constructed. These two cases and the corresponding W-gravity actions are considered in detail. In d=2, the gauge group is effectively only a subgroup of the symplectic diffeomorphisms group. Some of the constraints that arise for d=2 are similar to equations arising in the study of self-dual four-dimensional geometries and can be analysed using twistor methods, allowing contact to be made with other formulations of W-gravity. While the twistor transform for self-dual spaces with one Killing vector reduces to a Legendre transform, that for two Killing vectors gives a generalisation of the Legendre transform. (orig.)

5. Integral geometry and valuations

CERN Document Server

Solanes, Gil

2014-01-01

Valuations are finitely additive functionals on the space of convex bodies. Their study has become a central subject in convexity theory, with fundamental applications to integral geometry. In the last years there has been significant progress in the theory of valuations, which in turn has led to important achievements in integral geometry. This book originated from two courses delivered by the authors at the CRM and provides a self-contained introduction to these topics, covering most of the recent advances. The first part, by Semyon Alesker, is devoted to the theory of convex valuations, with emphasis on the latest developments. A special focus is put on the new fundamental structures of the space of valuations discovered after Alesker's irreducibility theorem. Moreover, the author describes the newly developed theory of valuations on manifolds. In the second part, Joseph H. G. Fu gives a modern introduction to integral geometry in the sense of Blaschke and Santaló, based on the notions and tools presented...

6. CBM RICH geometry optimization

Energy Technology Data Exchange (ETDEWEB)

Mahmoud, Tariq; Hoehne, Claudia [II. Physikalisches Institut, Giessen Univ. (Germany); Collaboration: CBM-Collaboration

2016-07-01

The Compressed Baryonic Matter (CBM) experiment at the future FAIR complex will investigate the phase diagram of strongly interacting matter at high baryon density and moderate temperatures in A+A collisions from 2-11 AGeV (SIS100) beam energy. The main electron identification detector in the CBM experiment will be a RICH detector with a CO{sub 2} gaseous-radiator, focusing spherical glass mirrors, and MAPMT photo-detectors being placed on a PMT-plane. The RICH detector is located directly behind the CBM dipole magnet. As the final magnet geometry is now available, some changes in the RICH geometry become necessary. In order to guarantee a magnetic field of 1 mT at maximum in the PMT plane for effective operation of the MAPMTs, two measures have to be taken: The PMT plane is moved outwards of the stray field by tilting the mirrors by 10 degrees and shielding boxes have been designed. In this contribution the results of the geometry optimization procedure are presented.

7. Differential local tissue permissiveness influences the final fate of GPR17‐expressing oligodendrocyte precursors in two distinct models of demyelination

Science.gov (United States)

Coppolino, Giusy T.; Marangon, Davide; Negri, Camilla; Menichetti, Gianluca; Fumagalli, Marta; Gelosa, Paolo; Dimou, Leda; Furlan, Roberto; Lecca, Davide

2018-01-01

Abstract Promoting remyelination is recognized as a novel strategy to foster repair in neurodegenerative demyelinating diseases, such as multiple sclerosis. In this respect, the receptor GPR17, recently emerged as a new target for remyelination, is expressed by early oligodendrocyte precursors (OPCs) and after a certain differentiation stage it has to be downregulated to allow progression to mature myelinating oligodendrocytes. Here, we took advantage of the first inducible GPR17 reporter mouse line (GPR17‐iCreERT2xCAG‐eGFP mice) allowing to follow the final fate of GPR17+ cells by tamoxifen‐induced GFP‐labeling to unveil the destiny of these cells in two demyelination models: experimental autoimmune encephalomyelitis (EAE), characterized by marked immune cell activation and inflammation, and cuprizone induced demyelination, where myelin dysfunction is achieved by a toxic insult. In both models, demyelination induced a strong increase of fluorescent GFP+ cells at damaged areas. However, only in the cuprizone model reacting GFP+ cells terminally differentiated to mature oligodendrocytes, thus contributing to remyelination. In EAE, GFP+ cells were blocked at immature stages and never became myelinating oligodendrocytes. We suggest these strikingly distinct fates be due to different permissiveness of the local CNS environment. Based on previously reported GPR17 activation by emergency signals (e.g., Stromal Derived Factor‐1), we propose that a marked inflammatory milieu, such as that reproduced in EAE, induces GPR17 overactivation resulting in impaired downregulation, untimely and prolonged permanence in OPCs, leading, in turn, to differentiation blockade. Combined treatments with remyelinating agents and anti‐inflammatory drugs may represent new potential adequate strategies to halt neurodegeneration and foster recovery. PMID:29424466

8. The muscle contraction mode determines lymphangiogenesis differentially in rat skeletal and cardiac muscles by modifying local lymphatic extracellular matrix microenvironments.

Science.gov (United States)

Greiwe, L; Vinck, M; Suhr, F

2016-05-01

Lymphatic vessels are of special importance for tissue homeostasis, and increases of their density may foster tissue regeneration. Exercise could be a relevant tool to increase lymphatic vessel density (LVD); however, a significant lack of knowledge remains to understand lymphangiogenesis in skeletal muscles upon training. Interestingly, training-induced lymphangiogenesis has never been studied in the heart. We studied lymphangiogenesis and LVD upon chronic concentric and chronic eccentric muscle contractions in both rat skeletal (Mm. Edl and Sol) and cardiac muscles. We found that LVD decreased in both skeletal muscles specifically upon eccentric training, while this contraction increased LVD in cardiac tissue. These observations were supported by opposing local remodelling of lymphatic vessel-specific extracellular matrix components in skeletal and cardiac muscles and protein levels of lymphatic markers (Lyve-1, Pdpn, Vegf-C/D). Confocal microscopy further revealed transformations of lymphatic vessels into vessels expressing both blood (Cav-1) and lymphatic (Vegfr-3) markers upon eccentric training specifically in skeletal muscles. In addition and phenotype supportive, we found increased inflammation (NF-κB/p65, Il-1β, Ifn-γ, Tnf-α and MPO(+) cells) in eccentrically stressed skeletal, but decreased levels in cardiac muscles. Our data provide novel mechanistic insights into lymphangiogenic processes in skeletal and cardiac muscles upon chronic muscle contraction modes and demonstrate that both tissues adapt in opposing manners specifically to eccentric training. These data are highly relevant for clinical applications, because eccentric training serves as a sufficient strategy to increase LVD and to decrease inflammation in cardiac tissue, for example in order to reduce tissue abortion in transplantation settings. © 2015 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.

9. The influence of differential processing of procathepsin H on its aminopeptidase activity, secretion and subcellular localization in human cell lines.

Science.gov (United States)

Rojnik, Matija; Jevnikar, Zala R; Doljak, Bojan; Turk, Samo; Zidar, Nace; Kos, Janko

2012-10-01

Cathepsin H is a unique member of the cysteine cathepsins that acts primarily as an aminopeptidase. Like other cysteine cathepsins, it is synthesized as an inactive precursor and activated by proteolytic removal of its propeptide. Here we demonstrate that, in human cells, the processing of the propeptide is an autocatalytic, multistep process proceeding from an inactive 41kDa pro-form, through a 30kDa intermediate form, to the 28kDa mature form. Tyr87P and Gly90P were identified as the two major endopeptidase cleavage sites, converting the 30kDa form into the mature 28kDa form. The level of processing differs significantly in different human cell lines. In monocyte-derived macrophages U937 and prostate cancer cells PC-3, the 28kDa form is predominant, whereas in osteoblasts HOS the processing from the 30kDa form to the 28kDa form is significantly lower. The aminopeptidase activity of the enzyme and its subcellular localization are independent of the product, however the 30kDa form was not secreted in HOS cells. The activity of the resulting cathepsin H in U937 cells was significantly lower than that in HOS cells, presumably due to the high levels of endogenous cysteine protease inhibitor cystatin F present specifically in this cell line. These results provide an insight into the dependence of human cathepsin H processing and regulation on cell type. Copyright © 2012 Elsevier GmbH. All rights reserved.

10. Introducing geometry concept based on history of Islamic geometry

Science.gov (United States)

Maarif, S.; Wahyudin; Raditya, A.; Perbowo, K. S.

2018-01-01

Geometry is one of the areas of mathematics interesting to discuss. Geometry also has a long history in mathematical developments. Therefore, it is important integrated historical development of geometry in the classroom to increase’ knowledge of how mathematicians earlier finding and constructing a geometric concept. Introduction geometrical concept can be started by introducing the Muslim mathematician who invented these concepts so that students can understand in detail how a concept of geometry can be found. However, the history of mathematics development, especially history of Islamic geometry today is less popular in the world of education in Indonesia. There are several concepts discovered by Muslim mathematicians that should be appreciated by the students in learning geometry. Great ideas of mathematicians Muslim can be used as study materials to supplement religious character values taught by Muslim mathematicians. Additionally, by integrating the history of geometry in teaching geometry are expected to improve motivation and geometrical understanding concept.

11. Pseudo-differential operators and generalized functions

CERN Document Server

Toft, Joachim

2015-01-01

This book gathers peer-reviewed contributions representing modern trends in the theory of generalized functions and pseudo-differential operators. It is dedicated to Professor Michael Oberguggenberger (Innsbruck University, Austria) in honour of his 60th birthday. The topics covered were suggested by the ISAAC Group in Generalized Functions (GF) and the ISAAC Group in Pseudo-Differential Operators (IGPDO), which met at the 9th ISAAC congress in Krakow, Poland in August 2013. Topics include Columbeau algebras, ultra-distributions, partial differential equations, micro-local analysis, harmonic analysis, global analysis, geometry, quantization, mathematical physics, and time-frequency analysis. Featuring both essays and research articles, the book will be of great interest to graduate students and researchers working in analysis, PDE and mathematical physics, while also offering a valuable complement to the volumes on this topic previously published in the OT series.

12. Two lectures on D-geometry and noncommutative geometry

International Nuclear Information System (INIS)

Douglas, M.R.

1999-01-01

This is a write-up of lectures given at the 1998 Spring School at the Abdus Salam ICTP. We give a conceptual introduction to D-geometry, the study of geometry as seen by D-branes in string theory, and to noncommutative geometry as it has appeared in D-brane and Matrix theory physics. (author)

13. Differential topology

CERN Document Server

Margalef-Roig, J

1992-01-01

...there are reasons enough to warrant a coherent treatment of the main body of differential topology in the realm of Banach manifolds, which is at the same time correct and complete. This book fills the gap: whenever possible the manifolds treated are Banach manifolds with corners. Corners add to the complications and the authors have carefully fathomed the validity of all main results at corners. Even in finite dimensions some results at corners are more complete and better thought out here than elsewhere in the literature. The proofs are correct and with all details. I see this book as a reliable monograph of a well-defined subject; the possibility to fall back to it adds to the feeling of security when climbing in the more dangerous realms of infinite dimensional differential geometry. Peter W. Michor

14. On Degenerate Partial Differential Equations

OpenAIRE

Chen, Gui-Qiang G.

2010-01-01

Some of recent developments, including recent results, ideas, techniques, and approaches, in the study of degenerate partial differential equations are surveyed and analyzed. Several examples of nonlinear degenerate, even mixed, partial differential equations, are presented, which arise naturally in some longstanding, fundamental problems in fluid mechanics and differential geometry. The solution to these fundamental problems greatly requires a deep understanding of nonlinear degenerate parti...

15. The Persistification of the ATLAS Geometry

CERN Document Server

AUTHOR|(INSPIRE)INSPIRE-00068562; The ATLAS collaboration; Bianchi, Riccardo-Maria

2016-01-01

The complex geometry of the whole detector of the ATLAS experiment at LHC is currently stored only in custom online databases, from which it is built on-the- y on request. Accessing the online geometry guarantees accessing the latest version of the detector description, but requires the setup of the full ATLAS so ware framework “Athena”, which provides the online services and the tools to retrieve the data from the database. is operation is cumbersome and slows down the applications that need to access the geometry. Moreover, all applications that need to access the detector geom- etry need to be built and run on the same platform as the ATLAS framework, preventing the usage of the actual detector geometry in stand-alone applications. Here we propose a new mechanism to persistify and serve the geometry of HEP experiments. e new mechanism is composed by a new le format and a REST API. e new le format allows to store the whole detector description locally in a at le, and it is especially optimized to descri...

16. Functional integration over geometries

International Nuclear Information System (INIS)

Mottola, E.

1995-01-01

The geometric construction of the functional integral over coset spaces M/G is reviewed. The inner product on the cotangent space of infinitesimal deformations of M defines an invariant distance and volume form, or functional integration measure on the full configuration space. Then, by a simple change of coordinates parameterizing the gauge fiber G, the functional measure on the coset space M/G is deduced. This change of integration variables leads to a Jacobian which is entirely equivalent to the Faddeev--Popov determinant of the more traditional gauge fixed approach in non-abelian gauge theory. If the general construction is applied to the case where G is the group of coordinate reparameterizations of spacetime, the continuum functional integral over geometries, i.e. metrics modulo coordinate reparameterizations may be defined. The invariant functional integration measure is used to derive the trace anomaly and effective action for the conformal part of the metric in two and four dimensional spacetime. In two dimensions this approach generates the Polyakov--Liouville action of closed bosonic non-critical string theory. In four dimensions the corresponding effective action leads to novel conclusions on the importance of quantum effects in gravity in the far infrared, and in particular, a dramatic modification of the classical Einstein theory at cosmological distance scales, signaled first by the quantum instability of classical de Sitter spacetime. Finite volume scaling relations for the functional integral of quantum gravity in two and four dimensions are derived, and comparison with the discretized dynamical triangulation approach to the integration over geometries are discussed. Outstanding unsolved problems in both the continuum definition and the simplicial approach to the functional integral over geometries are highlighted

17. Kinematic geometry of gearing

CERN Document Server

Dooner, David B

2012-01-01

Building on the first edition published in 1995 this new edition of Kinematic Geometry of Gearing has been extensively revised and updated with new and original material. This includes the methodology for general tooth forms, radius of torsure', cylinder of osculation, and cylindroid of torsure; the author has also completely reworked the '3 laws of gearing', the first law re-written to better parallel the existing 'Law of Gearing" as pioneered by Leonard Euler, expanded from Euler's original law to encompass non-circular gears and hypoid gears, the 2nd law of gearing describing a unique relat

18. From geometry to topology

CERN Document Server

Flegg, H Graham

2001-01-01

This excellent introduction to topology eases first-year math students and general readers into the subject by surveying its concepts in a descriptive and intuitive way, attempting to build a bridge from the familiar concepts of geometry to the formalized study of topology. The first three chapters focus on congruence classes defined by transformations in real Euclidean space. As the number of permitted transformations increases, these classes become larger, and their common topological properties become intuitively clear. Chapters 4-12 give a largely intuitive presentation of selected topics.

19. Torsional heterotic geometries

International Nuclear Information System (INIS)

Becker, Katrin; Sethi, Savdeep

2009-01-01

We construct new examples of torsional heterotic backgrounds using duality with orientifold flux compactifications. We explain how duality provides a perturbative solution to the type I/heterotic string Bianchi identity. The choice of connection used in the Bianchi identity plays an important role in the construction. We propose the existence of a much larger landscape of compact torsional geometries using string duality. Finally, we present some quantum exact metrics that correspond to NS5-branes placed on an elliptic space. These metrics describe how torus isometries are broken by NS flux.

20. Geometrie verstehen: statisch - kinematisch

Science.gov (United States)

Kroll, Ekkehard

Dem Allgemeinen steht begrifflich das Besondere gegenüber. In diesem Sinne sind allgemeine Überlegungen zum Verstehen von Mathematik zu ergänzen durch Untersuchungen hinsichtlich des Verstehens der einzelnen mathematischen Disziplinen, insbesondere der Geometrie. Hier haben viele Schülerinnen und Schüler Probleme. Diese rühren hauptsächlich daher, dass eine fertige geometrische Konstruktion in ihrer statischen Präsentation auf Papier nicht mehr die einzelnen Konstruktionsschritte erkennen lässt; zum Nachvollzug müssen sie daher ergänzend in einer Konstruktionsbeschreibung festgehalten werden.

1. Elementary algebraic geometry

CERN Document Server

Kendig, Keith

2015-01-01

Designed to make learning introductory algebraic geometry as easy as possible, this text is intended for advanced undergraduates and graduate students who have taken a one-year course in algebra and are familiar with complex analysis. This newly updated second edition enhances the original treatment's extensive use of concrete examples and exercises with numerous figures that have been specially redrawn in Adobe Illustrator. An introductory chapter that focuses on examples of curves is followed by a more rigorous and careful look at plane curves. Subsequent chapters explore commutative ring th

2. Geometry of conics

CERN Document Server

Akopyan, A V

2007-01-01

The book is devoted to the properties of conics (plane curves of second degree) that can be formulated and proved using only elementary geometry. Starting with the well-known optical properties of conics, the authors move to less trivial results, both classical and contemporary. In particular, the chapter on projective properties of conics contains a detailed analysis of the polar correspondence, pencils of conics, and the Poncelet theorem. In the chapter on metric properties of conics the authors discuss, in particular, inscribed conics, normals to conics, and the Poncelet theorem for confoca

3. Geometry and trigonometry

CERN Document Server

2015-01-01

This stimulating volume offers a broad collection of the principles of geometry and trigonometry and contains colorful diagrams to bring mathematical principles to life. Subjects are enriched by references to famous mathematicians and their ideas, and the stories are presented in a very comprehensible way. Readers investigate the relationships of points, lines, surfaces, and solids. They study construction methods for drawing figures, a wealth of facts about these figures, and above all, methods to prove the facts. They learn about triangle measure for circular motion, sine and cosine, tangent

4. Geometry I essentials

CERN Document Server

REA, The Editors of

2012-01-01

REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Geometry I includes methods of proof, points, lines, planes, angles, congruent angles and line segments, triangles, parallelism, quadrilaterals, geometric inequalities, and geometric

5. Graded geometry and Poisson reduction

OpenAIRE

Cattaneo, A S; Zambon, M

2009-01-01

The main result of [2] extends the Marsden-Ratiu reduction theorem [4] in Poisson geometry, and is proven by means of graded geometry. In this note we provide the background material about graded geometry necessary for the proof in [2]. Further, we provide an alternative algebraic proof for the main result. ©2009 American Institute of Physics

6. Conformal, Riemannian and Lagrangian geometry the 2000 Barrett lectures

CERN Document Server

Chang, Sun-Yung A; Grove, Karsten; Yang, Paul C; Freire, Alexandre

2002-01-01

Recent developments in topology and analysis have led to the creation of new lines of investigation in differential geometry. The 2000 Barrett Lectures present the background, context and main techniques of three such lines by means of surveys by leading researchers. The first chapter (by Alice Chang and Paul Yang) introduces new classes of conformal geometric invariants, and then applies powerful techniques in nonlinear differential equations to derive results on compactifications of manifolds and on Yamabe-type variational problems for these invariants. This is followed by Karsten Grove's lectures, which focus on the use of isometric group actions and metric geometry techniques to understand new examples and classification results in Riemannian geometry, especially in connection with positive curvature. The chapter written by Jon Wolfson introduces the emerging field of Lagrangian variational problems, which blends in novel ways the structures of symplectic geometry and the techniques of the modern calculus...

7. Quantum groups: Geometry and applications

International Nuclear Information System (INIS)

Chu, C.S.

1996-01-01

The main theme of this thesis is a study of the geometry of quantum groups and quantum spaces, with the hope that they will be useful for the construction of quantum field theory with quantum group symmetry. The main tool used is the Faddeev-Reshetikhin-Takhtajan description of quantum groups. A few content-rich examples of quantum complex spaces with quantum group symmetry are treated in details. In chapter 1, the author reviews some of the basic concepts and notions for Hopf algebras and other background materials. In chapter 2, he studies the vector fields of quantum groups. A compact realization of these vector fields as pseudodifferential operators acting on the linear quantum spaces is given. In chapter 3, he describes the quantum sphere as a complex quantum manifold by means of a quantum stereographic projection. A covariant calculus is introduced. An interesting property of this calculus is the existence of a one-form realization of the exterior differential operator. The concept of a braided comodule is introduced and a braided algebra of quantum spheres is constructed. In chapter 4, the author considers the more general higher dimensional quantum complex projective spaces and the quantum Grassman manifolds. Differential calculus, integration and braiding can be introduced as in the one dimensional case. Finally, in chapter 5, he studies the framework of quantum principal bundle and construct the q-deformed Dirac monopole as a quantum principal bundle with a quantum sphere as the base and a U(1) with non-commutative calculus as the fiber. The first Chern class can be introduced and integrated to give the monopole charge

8. Intrinsic geometry of biological surface growth

CERN Document Server

Todd, Philip H

1986-01-01

1.1 General Introduction The work which comprises this essay formed part of a multidiscip­ linary project investigating the folding of the developing cerebral cortex in the ferret. The project as a whole combined a study, at the histological level, of the cytoarchitectural development concom­ itant with folding and a mathematical study of folding viewed from the perspective of differential geometry. We here concentrate on the differential geometry of brain folding. Histological results which have some significance to the geometry of the cortex are re­ ferred to, but are not discussed in any depth. As with any truly multidisciplinary work, this essay has objectives which lie in each of its constituent disciplines. From a neuroana­ tomical point of view, the work explores the use of the surface geo­ metry of the developing cortex as a parameter for the underlying growth process. Geometrical parameters of particular interest and theoretical importance are surface curvatures. Our experimental portion reports...

9. Geometry of lattice field theory

International Nuclear Information System (INIS)

Honan, T.J.

1986-01-01

Using some tools of algebraic topology, a general formalism for lattice field theory is presented. The lattice is taken to be a simplicial complex that is also a manifold and is referred to as a simplicial manifold. The fields on this lattice are cochains, that are called lattice forms to emphasize the connections with differential forms in the continuum. This connection provides a new bridge between lattice and continuum field theory. A metric can be put onto this simplicial manifold by assigning lengths to every link or I-simplex of the lattice. Regge calculus is a way of defining general relativity on this lattice. A geometric discussion of Regge calculus is presented. The Regge action, which is a discrete form of the Hilbert action, is derived from the Hilbert action using distribution valued forms. This is a new derivation that emphasizes the underlying geometry. Kramers-Wannier duality in statistical mechanics is discussed in this general setting. Nonlinear field theories, which include gauge theories and nonlinear sigma models are discussed in the continuum and then are put onto a lattice. The main new result here is the generalization to curved spacetime, which consists of making the theory compatible with Regge calculus

10. Unique mitochondrial localization of arginase 1 and 2 in hepatocytes of air-breathing walking catfish, Clarias batrachus and their differential expression patterns under hyper-ammonia stress.

Science.gov (United States)

Banerjee, Bodhisattwa; Koner, Debaprasad; Lal, Priyanka; Saha, Nirmalendu

2017-07-30

Arginase (ARG) catalyzes the final step of ornithine-urea cycle (OUC) leading to a conversion of L-arginine to L-ornithine and urea. Several isoforms of ARG have been reported in vertebrates, out of which the two predominant isoforms are the cytosolic ARG1 and the mitochondrial ARG2. The air-breathing walking catfish (Clarias batrachus) is frequently being challenged by different environmental insults such as hyper-ammonia, dehydration and osmotic stresses in their natural habitats throughout the year. The present study investigated the active presence of ARG1 and ARG2 isoforms in hepatocytes along with unique localization of both the isoforms inside the mitochondria, and also their specific expression patterns under hyper-ammonia stress (5mM NH 4 Cl) in isolated hepatocytes of walking catfish. Initially, full length sequences of both arg1 and arg2 genes were obtained by RACE-PCR. Studies on molecular characterization demonstrated the presence of all the conserved amino acids required for stability and activity of binuclear metal center in both the isoforms. Phylogenetic analysis of the amino acid sequences of ARG isoforms showed a differentiation of the ARG1 and ARG2 into two distinct clusters with their respective isoforms from other species. Most interestingly, both the isoforms of ARG in hepatocytes were found to be localized inside the mitochondria as evidenced by the presence of mitochondrial target peptide (mTP) in N-terminal of the derived amino acid sequences, and exclusive localization of ARG activity in the mitochondrial fraction. This was additionally confirmed by Western blot analysis of ARGs in mitochondrial and cytosolic fractions, and by immunocytochemical analysis in isolated hepatocytes. Although the possible reasons associated with the presence of both the isoforms of ARGs inside the mitochondria is not clearly understood, perhaps this mitochondrial localization of ARG is functionally advantageous in this catfish for the synthesis of N

11. Cubical version of combinatorial differential forms

DEFF Research Database (Denmark)

Kock, Anders

2010-01-01

The theory of combinatorial differential forms is usually presented in simplicial terms. We present here a cubical version; it depends on the possibility of forming affine combinations of mutual neighbour points in a manifold, in the context of synthetic differential geometry.......The theory of combinatorial differential forms is usually presented in simplicial terms. We present here a cubical version; it depends on the possibility of forming affine combinations of mutual neighbour points in a manifold, in the context of synthetic differential geometry....

12. Local supertwistors

International Nuclear Information System (INIS)

Merkulov, S.A.

1987-01-01

Geometry of local supertwistors is investigated. It is proved that the Yang-Mills equations for the introduced ansatz for supertwistor connection are equivalent to free bach equations, describing the dynamics of N=1 conformal supergravity. Analogous interpretation of the dynamics of N=1 conformal supergravity coupled to a vector superfield is proposed. It is proved that any complex conformally right or left flat superspace automatically satisfies the Bach equations

13. Critique of information geometry

International Nuclear Information System (INIS)

Skilling, John

2014-01-01

As applied to probability, information geometry fails because probability distributions do not form a metric space. Probability theory rests on a compelling foundation of elementary symmetries, which also support information (aka minus entropy, Kullback-Leibler) H(p;q) as the unique measure of divergence from source probability distribution q to destination p. Because the only compatible connective H is from≠to asymmetric, H(p;q)≠H(q;p), there can be no compatible geometrical distance (which would necessarily be from=to symmetric). Hence there is no distance relationship compatible with the structure of probability theory. Metrics g and densities sqrt(det(g)) interpreted as prior probabilities follow from the definition of distance, and must fail likewise. Various metrics and corresponding priors have been proposed, Fisher's being the most popular, but all must behave unacceptably. This is illustrated with simple counter-examples

14. Geometry from Gauge Theory

International Nuclear Information System (INIS)

Correa, Diego H.; Silva, Guillermo A.

2008-01-01

We discuss how geometrical and topological aspects of certain (1/2)-BPS type IIB geometries are captured by their dual operators in N = 4 Super Yang-Mills theory. The type IIB solutions are characterized by arbitrary droplet pictures in a plane and we consider, in particular, axially symmetric droplets. The 1-loop anomalous dimension of the dual gauge theory operators probed with single traces is described by some bosonic lattice Hamiltonians. These Hamiltonians are shown to encode the topology of the droplets. In appropriate BMN limits, the Hamiltonians spectrum reproduces the spectrum of near-BPS string excitations propagating along each of the individual edges of the droplet. We also study semiclassical regimes for the Hamiltonians. For droplets having disconnected constituents, the Hamiltonian admits different complimentary semiclassical descriptions, each one replicating the semiclassical description for closed strings extending in each of the constituents

15. Emergent geometry of membranes

Energy Technology Data Exchange (ETDEWEB)

Badyn, Mathias Hudoba de; Karczmarek, Joanna L.; Sabella-Garnier, Philippe; Yeh, Ken Huai-Che [Department of Physics and Astronomy, University of British Columbia,6224 Agricultural Road, Vancouver (Canada)

2015-11-13

In work http://dx.doi.org/10.1103/PhysRevD.86.086001, a surface embedded in flat ℝ{sup 3} is associated to any three hermitian matrices. We study this emergent surface when the matrices are large, by constructing coherent states corresponding to points in the emergent geometry. We find the original matrices determine not only shape of the emergent surface, but also a unique Poisson structure. We prove that commutators of matrix operators correspond to Poisson brackets. Through our construction, we can realize arbitrary noncommutative membranes: for example, we examine a round sphere with a non-spherically symmetric Poisson structure. We also give a natural construction for a noncommutative torus embedded in ℝ{sup 3}. Finally, we make remarks about area and find matrix equations for minimal area surfaces.

16. Overlapping and differential localization of Bmp-2, Bmp-4, Msx-2 and apoptosis in the endocardial cushion and adjacent tissues of the developing mouse heart.

Science.gov (United States)

Abdelwahid, E; Rice, D; Pelliniemi, L J; Jokinen, E

2001-07-01

The bone morphogenetic proteins BMP-2 and BMP-4 and the homeobox gene MSX-2 are required for normal development of many embryonic tissues. To elucidate their possible roles during the remodeling of the tubular heart into a fully septated four-chambered heart, we have localized the mRNA of Bmp-2, Bmp-4, Msx-2 and apoptotic cells in the developing mouse heart from embryonic day (E)11 to E17. mRNA was localized by in situ hybridization, and apoptotic cells by TUNEL (TDT-mediated dUTP-biotin nick end-labeling) as well as by transmission electron microscopy. By analyzing adjacent serial sections, we demonstrated that the expression of Msx-2 and Bmp-2 strikingly overlapped in the atrioventricular canal myocardium, in the atrioventricular junctional myocardium, and in the maturing myocardium of the atrioventricular valves. Bmp-4 was expressed in the outflow tract myocardium and in the endocardial cushion of the outflow tract ridges from E12 to E14. Msx-2 appeared in the mesenchyme of the atrioventricular endocardial cushion from E11 to E14, while Bmp-2 and Bmp-4 were detected between E11 and E14. Apoptotic cells were also detected in the mesenchyme of the endocardial cushion between E12 and E14. Our results suggest that BMP-2 and MSX-2 are tightly linked to the formation of the atrioventricular junction and valves and that BMP-4 is involved in the development of the outflow tract myocardium and of the endocardial cushion. In addition, BMP-2, BMP-4 and MSX-2 and apoptosis seem to be associated with differentiation of the endocardial cushion.

17. Plateau's problem an invitation to varifold geometry

CERN Document Server

Frederick J Almgren, Jr

2001-01-01

There have been many wonderful developments in the theory of minimal surfaces and geometric measure theory in the past 25 to 30 years. Many of the researchers who have produced these excellent results were inspired by this little book--or by Fred Almgren himself. The book is indeed a delightful invitation to the world of variational geometry. A central topic is Plateau's Problem, which is concerned with surfaces that model the behavior of soap films. When trying to resolve the problem, however, one soon finds that smooth surfaces are insufficient: Varifolds are needed. With varifolds, one can obtain geometrically meaningful solutions without having to know in advance all their possible singularities. This new tool makes possible much exciting new analysis and many new results. Plateau's problem and varifolds live in the world of geometric measure theory, where differential geometry and measure theory combine to solve problems which have variational aspects. The author's hope in writing this book was to encour...

18. Geometry through history Euclidean, hyperbolic, and projective geometries

CERN Document Server

Dillon, Meighan I

2018-01-01

Presented as an engaging discourse, this textbook invites readers to delve into the historical origins and uses of geometry. The narrative traces the influence of Euclid’s system of geometry, as developed in his classic text The Elements, through the Arabic period, the modern era in the West, and up to twentieth century mathematics. Axioms and proof methods used by mathematicians from those periods are explored alongside the problems in Euclidean geometry that lead to their work. Students cultivate skills applicable to much of modern mathematics through sections that integrate concepts like projective and hyperbolic geometry with representative proof-based exercises. For its sophisticated account of ancient to modern geometries, this text assumes only a year of college mathematics as it builds towards its conclusion with algebraic curves and quaternions. Euclid’s work has affected geometry for thousands of years, so this text has something to offer to anyone who wants to broaden their appreciation for the...

19. Introduction to differentiable manifolds

CERN Document Server

Auslander, Louis

2009-01-01

The first book to treat manifold theory at an introductory level, this text surveys basic concepts in the modern approach to differential geometry. The first six chapters define and illustrate differentiable manifolds, and the final four chapters investigate the roles of differential structures in a variety of situations.Starting with an introduction to differentiable manifolds and their tangent spaces, the text examines Euclidean spaces, their submanifolds, and abstract manifolds. Succeeding chapters explore the tangent bundle and vector fields and discuss their association with ordinary diff

20. Highly differentiated keratinizing squamous cell cancer of the cervix: a rare, locally aggressive tumor not associated with human papillomavirus or squamous intraepithelial lesions.

Science.gov (United States)

Morrison, C; Catania, F; Wakely, P; Nuovo, G J

2001-10-01

The purpose of this study is to report an unusual variant of cervical squamous cell carcinoma, not associated with either human papillomavirus infection or antecedent squamous intraepithelial lesions. Five women had a diagnosis of invasive cervical cancer discovered at hysterectomy performed for prolapse (two cases), leiomyoma (one case), or a vaginal fistula (two cases). The women ranged in age from 47 to 78 years (mean 59 years). Four of the five had a history of normal Papanicolaou (Pap) smears; the other had a Pap smear diagnosis of atypical squamous cells of undetermined significance (ASCUS). All had large cervical tumors (two with parametrial involvement and one with vaginal involvement) that showed extensive keratin formation, an inverted pattern of growth, and, except for one case, minimal cytologic atypia. There was extensive hyperkeratosis and parakeratosis adjacent to each tumor; none had evidence of squamous intraepithelial lesion. Human papillomavirus testing by polymerase chain reaction in situ hybridization and reverse-transcribed polymerase chain reaction in situ was negative in each case, compared with a detection rate of 107 of 108 (99%) for squamous intraepithelial lesion-associated cervical squamous cell and adenocarcinomas. Two of the women died of extensive local recurrence; two other women were recently diagnosed. We conclude that highly differentiated keratinizing squamous cell carcinoma of the cervix is a rare entity not associated with human papillomavirus infection or squamous intraepithelial lesion and thus difficult to detect on routine cervical cancer screening.

1. Comparison between two differential graded algebras in ...

76

A differential calculus on a “space” means the specification of a differential graded algebra (dga), often interpreted as space of forms. In classical geometry the “space” is a manifold and we have the de-Rham dga, whereas in noncommutative geometry a “space” is described by a triple called spectral triple. A spectral triple is ...

2. PREFACE: Nonlinearity and Geometry: connections with integrability Nonlinearity and Geometry: connections with integrability

Science.gov (United States)

Cieslinski, Jan L.; Ferapontov, Eugene V.; Kitaev, Alexander V.; Nimmo, Jonathan J. C.

2009-10-01

-component dispersionless Boussinesq-type system. T E Kouloukas and V G Papageorgiou introduce a family of nonparametric Yang-Baxter maps obtained by re-factorization of matrix polynomials of first degree. These maps are Poisson with respect to the Sklyanin bracket, and their degenerations are connected to known integrable systems on quad-graphs. S V Manakov and P M Santini apply a novel version of the inverse scattering transform based on Lax pairs in multidimensional commuting vector fields to the heavenly and Pavlov equations, establishing that their localized solutions evolve without breaking, and constructing the long-time behaviour of the corresponding Cauchy problems. Discretizations of integrable geometric models depend heavily on the coordinates used. M Nieszporski and A Sym show how to discretize Bianchi surfaces (associated with an elliptic version of the Ernst equation) in arbitrary parametrization. C Rogers and A Szereszewski study the Bäcklund transformation for L-isothermic surfaces in the original Bianchi formulation. They establish a connection between this transformation and a nonhomogeneous linear Schrödinger equation and construct a class of generalized Dupin cyclides. W K Schief, A Szereszewski and C Rogers study a classical system of equilibrium equations for shell membranes. Various examples of viable membrane geometries lead to remarkable geometric configurations such as generalized Dupin cyclides and L-minimal surfaces. A Sergyeyev constructs infinite hierarchies of nonlocal higher symmetries for the oriented associativity equations using the spectral problem. The hierarchies in question generalize those constructed by Chen, Kontsevich and Schwarz for the WDVV equations. J Shiraishi and Y Tutiya study an integro-differential equation which generalizes the periodic intermediate long wave equation. The kernel of the singular integral involved is a second order difference of the Weierstrass ζ-function. Using Sato's formulation, the authors

3. Geometry, algebra and applications from mechanics to cryptography

CERN Document Server

Encinas, Luis; Gadea, Pedro; María, Mª

2016-01-01

This volume collects contributions written by different experts in honor of Prof. Jaime Muñoz Masqué. It covers a wide variety of research topics, from differential geometry to algebra, but particularly focuses on the geometric formulation of variational calculus; geometric mechanics and field theories; symmetries and conservation laws of differential equations, and pseudo-Riemannian geometry of homogeneous spaces. It also discusses algebraic applications to cryptography and number theory. It offers state-of-the-art contributions in the context of current research trends. The final result is a challenging panoramic view of connecting problems that initially appear distant.

4. Classification of digital affine noncommutative geometries

Science.gov (United States)

Majid, Shahn; Pachoł, Anna

2018-03-01

It is known that connected translation invariant n-dimensional noncommutative differentials dxi on the algebra k[x1, …, xn] of polynomials in n-variables over a field k are classified by commutative algebras V on the vector space spanned by the coordinates. These data also apply to construct differentials on the Heisenberg algebra "spacetime" with relations [xμ, xν] = λΘμν, where Θ is an antisymmetric matrix, as well as to Lie algebras with pre-Lie algebra structures. We specialise the general theory to the field k =F2 of two elements, in which case translation invariant metrics (i.e., with constant coefficients) are equivalent to making V a Frobenius algebra. We classify all of these and their quantum Levi-Civita bimodule connections for n = 2, 3, with partial results for n = 4. For n = 2, we find 3 inequivalent differential structures admitting 1, 2, and 3 invariant metrics, respectively. For n = 3, we find 6 differential structures admitting 0, 1, 2, 3, 4, 7 invariant metrics, respectively. We give some examples for n = 4 and general n. Surprisingly, not all our geometries for n ≥ 2 have zero quantum Riemann curvature. Quantum gravity is normally seen as a weighted "sum" over all possible metrics but our results are a step towards a deeper approach in which we must also "sum" over differential structures. Over F2 we construct some of our algebras and associated structures by digital gates, opening up the possibility of "digital geometry."

5. An introduction to incidence geometry

CERN Document Server

De Bruyn, Bart

2016-01-01

This book gives an introduction to the field of Incidence Geometry by discussing the basic families of point-line geometries and introducing some of the mathematical techniques that are essential for their study. The families of geometries covered in this book include among others the generalized polygons, near polygons, polar spaces, dual polar spaces and designs. Also the various relationships between these geometries are investigated. Ovals and ovoids of projective spaces are studied and some applications to particular geometries will be given. A separate chapter introduces the necessary mathematical tools and techniques from graph theory. This chapter itself can be regarded as a self-contained introduction to strongly regular and distance-regular graphs. This book is essentially self-contained, only assuming the knowledge of basic notions from (linear) algebra and projective and affine geometry. Almost all theorems are accompanied with proofs and a list of exercises with full solutions is given at the end...

6. Casimir forces and geometry

International Nuclear Information System (INIS)

Buescher, R.

2005-01-01

Casimir interactions are interactions induced by quantum vacuum fluctuations and thermal fluctuations of the electromagnetic field. Using a path integral quantization for the gauge field, an effective Gaussian action will be derived which is the starting point to compute Casimir forces between macroscopic objects analytically and numerically. No assumptions about the independence of the material and shape dependent contributions to the interaction are made. We study the limit of flat surfaces in further detail and obtain a concise derivation of Lifshitz' theory of molecular forces. For the case of ideally conducting boundaries, the Gaussian action will be calculated explicitly. Both limiting cases are also discussed within the framework of a scalar field quantization approach, which is applicable for translationally invariant geometries. We develop a non-perturbative approach to calculate the Casimir interaction from the Gaussian action for periodically deformed and ideally conducting objects numerically. The obtained results reveal two different scaling regimes for the Casimir force as a function of the distance between the objects, their deformation wavelength and -amplitude. The results confirm that the interaction is non-additive, especially in the presence of strong geometric deformations. Furthermore, the numerical approach is extended to calculate lateral Casimir forces. The results are consistent with the results of the proximity-force approximation for large deformation wavelengths. A qualitatively different behaviour between the normal and lateral force is revealed. We also establish a relation between the boundary induced change of the of the density of states for the scalar Helmholtz equation and the Casimir interaction using the path integral method. For statically deformed boundaries, this relation can be expressed as a novel trace formula, which is formally similar to the so-called Krein-Friedel-Lloyd formula. While the latter formula describes the

7. Planetary Image Geometry Library

Science.gov (United States)

Deen, Robert C.; Pariser, Oleg

2010-01-01

The Planetary Image Geometry (PIG) library is a multi-mission library used for projecting images (EDRs, or Experiment Data Records) and managing their geometry for in-situ missions. A collection of models describes cameras and their articulation, allowing application programs such as mosaickers, terrain generators, and pointing correction tools to be written in a multi-mission manner, without any knowledge of parameters specific to the supported missions. Camera model objects allow transformation of image coordinates to and from view vectors in XYZ space. Pointing models, specific to each mission, describe how to orient the camera models based on telemetry or other information. Surface models describe the surface in general terms. Coordinate system objects manage the various coordinate systems involved in most missions. File objects manage access to metadata (labels, including telemetry information) in the input EDRs and RDRs (Reduced Data Records). Label models manage metadata information in output files. Site objects keep track of different locations where the spacecraft might be at a given time. Radiometry models allow correction of radiometry for an image. Mission objects contain basic mission parameters. Pointing adjustment ("nav") files allow pointing to be corrected. The object-oriented structure (C++) makes it easy to subclass just the pieces of the library that are truly mission-specific. Typically, this involves just the pointing model and coordinate systems, and parts of the file model. Once the library was developed (initially for Mars Polar Lander, MPL), adding new missions ranged from two days to a few months, resulting in significant cost savings as compared to rewriting all the application programs for each mission. Currently supported missions include Mars Pathfinder (MPF), MPL, Mars Exploration Rover (MER), Phoenix, and Mars Science Lab (MSL). Applications based on this library create the majority of operational image RDRs for those missions. A

8. Topography printing to locally control wettability.

Science.gov (United States)

Zheng, Zijian; Azzaroni, Omar; Zhou, Feng; Huck, Wilhelm T S

2006-06-21

This paper reports a new patterning method, which utilizes NaOH to facilitate the irreversible binding between the PDMS stamp and substrates and subsequent cohesive mechanical failure to transfer the PDMS patterns. Our method shows high substrate tolerance and can be used to "print" various PDMS geometries on a wide range of surfaces, including Si100, glass, gold, polymers, and patterned SU8 photoresist. Using this technique, we are able to locally change the wettability of substrate surfaces by printing well-defined PDMS architectures on the patterned SU8 photoresist. It is possible to generate differential wetting and dewetting properties in microchannels and in the PDMS printed area, respectively.

9. Initiation to global Finslerian geometry

CERN Document Server

2006-01-01

After a brief description of the evolution of thinking on Finslerian geometry starting from Riemann, Finsler, Berwald and Elie Cartan, the book gives a clear and precise treatment of this geometry. The first three chapters develop the basic notions and methods, introduced by the author, to reach the global problems in Finslerian Geometry. The next five chapters are independent of each other, and deal with among others the geometry of generalized Einstein manifolds, the classification of Finslerian manifolds of constant sectional curvatures. They also give a treatment of isometric, affine, p

10. Determination of differential cross-sections for the {sup nat}K(p, p{sub 0}) and {sup 39}K(p, {alpha}{sub 0}) reactions in the backscattering geometry

Energy Technology Data Exchange (ETDEWEB)

Kokkoris, M., E-mail: kokkoris@central.ntua.g [Department of Physics, National Technical University of Athens, Zografou Campus, 157 80 Athens (Greece); Tsaris, A. [Department of Physics, National Technical University of Athens, Zografou Campus, 157 80 Athens (Greece); Misaelides, P. [Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki (Greece); Sokaras, D.; Lagoyannis, A.; Harissopulos, S. [Institute of Nuclear Physics, TANDEM Accelerator, N.C.S.R. ' Demokritos' , Aghia Paraskevi, 153 10 Athens (Greece); Vlastou, R.; Papadopoulos, C.T. [Department of Physics, National Technical University of Athens, Zografou Campus, 157 80 Athens (Greece)

2010-06-15

In the present work, new, differential cross-section values are presented for the {sup nat}K(p, p{sub 0}) reaction in the energy range E{sub lab} = 3000-5000 keV (with an energy step of 25 keV) and for detector angles between 140{sup o} and 170{sup o} (with an angular step of 10{sup o}). A qualitative discussion of the observed cross-section variations through the influence of strong, closely spaced resonances in the p + {sup 39}K system is also presented. Information has also been extracted concerning the {sup 39}K(p,{alpha}{sub 0}) reaction for E{sub lab} = 4000-5000 keV in the same angular range. As a result, more than {approx}500 data points will soon be available to the scientific community through IBANDL (Ion Beam Analysis Nuclear Data Library - (http://www-nds.iaea.org/ibandl/)) and could thus be incorporated in widely used IBA algorithms (e.g. SIMNRA, WINDF, etc.) for potassium depth profiling at relatively high proton beam energies.

11. Ostrich eggs geometry

Directory of Open Access Journals (Sweden)

Šárka Nedomová

2013-01-01

Full Text Available Precise quantification of the profile of egg can provide a powerful tool for the analysis of egg shape for various biological problems. A new approach to the geometry of a Ostrich’s egg profile is presented here using an analysing the egg’s digital photo by edge detection techniques. The obtained points on the eggshell counter are fitted by the Fourier series. The obtained equations describing an egg profile have been used to calculate radii of curvature. The radii of the curvature at the important point of the egg profile (sharp end, blunt end and maximum thickness are independent on the egg shape index. The exact values of the egg surface and the egg volume have been obtained. These quantities are also independent on the egg shape index. These quantities can be successively estimated on the basis of simplified equations which are expressed in terms of the egg length, L¸ and its width, B. The surface area of the eggshells also exhibits good correlation with the egg long circumference length. Some limitations of the most used procedures have been also shown.

12. Nonperturbative quantum geometries

International Nuclear Information System (INIS)

Jacobson, T.; California Univ., Santa Barbara; Smolin, L.; California Univ., Santa Barbara

1988-01-01

Using the self-dual representation of quantum general relativity, based on Ashtekar's new phase space variables, we present an infinite dimensional family of quantum states of the gravitational field which are exactly annihilated by the hamiltonian constraint. These states are constructed from Wilson loops for Ashtekar's connection (which is the spatial part of the left handed spin connection). We propose a new regularization procedure which allows us to evaluate the action of the hamiltonian constraint on these states. Infinite linear combinations of these states which are formally annihilated by the diffeomorphism constraints as well are also described. These are explicit examples of physical states of the gravitational field - and for the compact case are exact zero eigenstates of the hamiltonian of quantum general relativity. Several different approaches to constructing diffeomorphism invariant states in the self dual representation are also described. The physical interpretation of the states described here is discussed. However, as we do not yet know the physical inner product, any interpretation is at this stage speculative. Nevertheless, this work suggests that quantum geometry at Planck scales might be much simpler when explored in terms of the parallel transport of left-handed spinors than when explored in terms of the three metric. (orig.)

13. Matrix Information Geometry

CERN Document Server

Bhatia, Rajendra

2013-01-01

This book is an outcome of the Indo-French Workshop on Matrix Information Geometries (MIG): Applications in Sensor and Cognitive Systems Engineering, which was held in Ecole Polytechnique and Thales Research and Technology Center, Palaiseau, France, in February 23-25, 2011. The workshop was generously funded by the Indo-French Centre for the Promotion of Advanced Research (IFCPAR).  During the event, 22 renowned invited french or indian speakers gave lectures on their areas of expertise within the field of matrix analysis or processing. From these talks, a total of 17 original contribution or state-of-the-art chapters have been assembled in this volume. All articles were thoroughly peer-reviewed and improved, according to the suggestions of the international referees. The 17 contributions presented  are organized in three parts: (1) State-of-the-art surveys & original matrix theory work, (2) Advanced matrix theory for radar processing, and (3) Matrix-based signal processing applications.

14. Nonlinear poisson brackets geometry and quantization

CERN Document Server

Karasev, M V

2012-01-01

This book deals with two old mathematical problems. The first is the problem of constructing an analog of a Lie group for general nonlinear Poisson brackets. The second is the quantization problem for such brackets in the semiclassical approximation (which is the problem of exact quantization for the simplest classes of brackets). These problems are progressively coming to the fore in the modern theory of differential equations and quantum theory, since the approach based on constructions of algebras and Lie groups seems, in a certain sense, to be exhausted. The authors' main goal is to describe in detail the new objects that appear in the solution of these problems. Many ideas of algebra, modern differential geometry, algebraic topology, and operator theory are synthesized here. The authors prove all statements in detail, thus making the book accessible to graduate students.

15. The Finsler spacetime framework. Backgrounds for physics beyond metric geometry

Energy Technology Data Exchange (ETDEWEB)

Pfeifer, Christian

2013-11-15

The fundamental structure on which physics is described is the geometric spacetime background provided by a four dimensional manifold equipped with a Lorentzian metric. Most importantly the spacetime manifold does not only provide the stage for physical field theories but its geometry encodes causality, observers and their measurements and gravity simultaneously. This threefold role of the Lorentzian metric geometry of spacetime is one of the key insides of general relativity. During this thesis we extend the background geometry for physics from the metric framework of general relativity to our Finsler spacetime framework and ensure that the threefold role of the geometry of spacetime in physics is not changed. The geometry of Finsler spacetimes is determined by a function on the tangent bundle and includes metric geometry. In contrast to the standard formulation of Finsler geometry our Finsler spacetime framework overcomes the differentiability and existence problems of the geometric objects in earlier attempts to use Finsler geometry as an extension of Lorentzian metric geometry. The development of our nonmetric geometric framework which encodes causality is one central achievement of this thesis. On the basis of our well-defined Finsler spacetime geometry we are able to derive dynamics for the non-metric Finslerian geometry of spacetime from an action principle, obtained from the Einstein-Hilbert action, for the first time. We can complete the dynamics to a non-metric description of gravity by coupling matter fields, also formulated via an action principle, to the geometry of our Finsler spacetimes. We prove that the combined dynamics of the fields and the geometry are consistent with general relativity. Furthermore we demonstrate how to define observers and their measurements solely through the non-metric spacetime geometry. Physical consequence derived on the basis of our Finsler spacetime are: a possible solution to the fly-by anomaly in the solar system; the

16. The Finsler spacetime framework. Backgrounds for physics beyond metric geometry

International Nuclear Information System (INIS)

Pfeifer, Christian

2013-11-01

The fundamental structure on which physics is described is the geometric spacetime background provided by a four dimensional manifold equipped with a Lorentzian metric. Most importantly the spacetime manifold does not only provide the stage for physical field theories but its geometry encodes causality, observers and their measurements and gravity simultaneously. This threefold role of the Lorentzian metric geometry of spacetime is one of the key insides of general relativity. During this thesis we extend the background geometry for physics from the metric framework of general relativity to our Finsler spacetime framework and ensure that the threefold role of the geometry of spacetime in physics is not changed. The geometry of Finsler spacetimes is determined by a function on the tangent bundle and includes metric geometry. In contrast to the standard formulation of Finsler geometry our Finsler spacetime framework overcomes the differentiability and existence problems of the geometric objects in earlier attempts to use Finsler geometry as an extension of Lorentzian metric geometry. The development of our nonmetric geometric framework which encodes causality is one central achievement of this thesis. On the basis of our well-defined Finsler spacetime geometry we are able to derive dynamics for the non-metric Finslerian geometry of spacetime from an action principle, obtained from the Einstein-Hilbert action, for the first time. We can complete the dynamics to a non-metric description of gravity by coupling matter fields, also formulated via an action principle, to the geometry of our Finsler spacetimes. We prove that the combined dynamics of the fields and the geometry are consistent with general relativity. Furthermore we demonstrate how to define observers and their measurements solely through the non-metric spacetime geometry. Physical consequence derived on the basis of our Finsler spacetime are: a possible solution to the fly-by anomaly in the solar system; the

17. GPS: Geometry, Probability, and Statistics

Science.gov (United States)

Field, Mike

2012-01-01

It might be said that for most occupations there is now less of a need for mathematics than there was say fifty years ago. But, the author argues, geometry, probability, and statistics constitute essential knowledge for everyone. Maybe not the geometry of Euclid, but certainly geometrical ways of thinking that might enable us to describe the world…

18. Surrogate Modeling for Geometry Optimization

DEFF Research Database (Denmark)

Rojas Larrazabal, Marielba de la Caridad; Abraham, Yonas; Holzwarth, Natalie

2009-01-01

A new approach for optimizing the nuclear geometry of an atomic system is described. Instead of the original expensive objective function (energy functional), a small number of simpler surrogates is used.......A new approach for optimizing the nuclear geometry of an atomic system is described. Instead of the original expensive objective function (energy functional), a small number of simpler surrogates is used....

19. Kaehler geometry and SUSY mechanics

International Nuclear Information System (INIS)

Bellucci, Stefano; Nersessian, Armen

2001-01-01

We present two examples of SUSY mechanics related with Kaehler geometry. The first system is the N = 4 supersymmetric one-dimensional sigma-model proposed in hep-th/0101065. Another system is the N = 2 SUSY mechanics whose phase space is the external algebra of an arbitrary Kaehler manifold. The relation of these models with antisymplectic geometry is discussed

20. A prediction for bubbling geometries

OpenAIRE

Okuda, Takuya

2007-01-01

We study the supersymmetric circular Wilson loops in N=4 Yang-Mills theory. Their vacuum expectation values are computed in the parameter region that admits smooth bubbling geometry duals. The results are a prediction for the supergravity action evaluated on the bubbling geometries for Wilson loops.

1. Molecular motion in restricted geometries

Molecular dynamics in restricted geometries is known to exhibit anomalous behaviour. Diffusion, translational or rotational, of molecules is altered significantly on confinement in restricted geometries. Quasielastic neutron scattering (QENS) offers a unique possibility of studying molecular motion in such systems. Both time ...

2. Stages as models of scene geometry.

Science.gov (United States)

Nedović, Vladimir; Smeulders, Arnold W M; Redert, André; Geusebroek, Jan-Mark

2010-09-01

Reconstruction of 3D scene geometry is an important element for scene understanding, autonomous vehicle and robot navigation, image retrieval, and 3D television. We propose accounting for the inherent structure of the visual world when trying to solve the scene reconstruction problem. Consequently, we identify geometric scene categorization as the first step toward robust and efficient depth estimation from single images. We introduce 15 typical 3D scene geometries called stages, each with a unique depth profile, which roughly correspond to a large majority of broadcast video frames. Stage information serves as a first approximation of global depth, narrowing down the search space in depth estimation and object localization. We propose different sets of low-level features for depth estimation, and perform stage classification on two diverse data sets of television broadcasts. Classification results demonstrate that stages can often be efficiently learned from low-dimensional image representations.

3. KENO-IV/CG, the combinatorial geometry version of the KENO Monte Carlo criticality safety program

International Nuclear Information System (INIS)

West, J.T.; Petrie, L.M.; Fraley, S.K.

1979-09-01

KENO-IV/CG was developed to merge the simple geometry input description utilized by combinatorial geometry with the repeating lattice feature of the original KENO geometry package. The result is a criticality code with the ability to model a complex system of repeating rectangular lattices inside a complicated three-dimensional geometry system. Furthermore, combinatorial geometry was modified to differentiate between combinatorial zones describing a particular KENO BOX to be repeated in a KENO array and those combinatorial zones describing geometry external to an array. This allows the user to maintain a simple coordinate system without any geometric conflict due to spatial overlap. Several difficult criticality design problems have been solved with the new geometry package in KENO-IV/CG, thus illustrating the power of the code to model difficult geometries with a minimum of effort

4. Basic algebraic geometry, v.2

CERN Document Server

Shafarevich, Igor Rostislavovich

1994-01-01

Shafarevich Basic Algebraic Geometry 2 The second edition of Shafarevich's introduction to algebraic geometry is in two volumes. The second volume covers schemes and complex manifolds, generalisations in two different directions of the affine and projective varieties that form the material of the first volume. Two notable additions in this second edition are the section on moduli spaces and representable functors, motivated by a discussion of the Hilbert scheme, and the section on Kähler geometry. The book ends with a historical sketch discussing the origins of algebraic geometry. From the Zentralblatt review of this volume: "... one can only respectfully repeat what has been said about the first part of the book (...): a great textbook, written by one of the leading algebraic geometers and teachers himself, has been reworked and updated. As a result the author's standard textbook on algebraic geometry has become even more important and valuable. Students, teachers, and active researchers using methods of al...

5. Optical geometry across the horizon

International Nuclear Information System (INIS)

Jonsson, Rickard

2006-01-01

In a recent paper (Jonsson and Westman 2006 Class. Quantum Grav. 23 61), a generalization of optical geometry, assuming a non-shearing reference congruence, is discussed. Here we illustrate that this formalism can be applied to (a finite four-volume) of any spherically symmetric spacetime. In particular we apply the formalism, using a non-static reference congruence, to do optical geometry across the horizon of a static black hole. While the resulting geometry in principle is time dependent, we can choose the reference congruence in such a manner that an embedding of the geometry always looks the same. Relative to the embedded geometry the reference points are then moving. We discuss the motion of photons, inertial forces and gyroscope precession in this framework

6. Methodology for wind turbine blade geometry optimization

Energy Technology Data Exchange (ETDEWEB)

Perfiliev, D.

2013-11-01

7. The theory of pseudo-differential operators on the noncommutative n-torus

Science.gov (United States)

Tao, J.

2018-02-01

The methods of spectral geometry are useful for investigating the metric aspects of noncommutative geometry and in these contexts require extensive use of pseudo-differential operators. In a foundational paper, Connes showed that, by direct analogy with the theory of pseudo-differential operators on finite-dimensional real vector spaces, one may derive a similar pseudo-differential calculus on noncommutative n-tori, and with the development of this calculus came many results concerning the local differential geometry of noncommutative tori for n=2,4, as shown in the groundbreaking paper in which the Gauss-Bonnet theorem on the noncommutative two-torus is proved and later papers. Certain details of the proofs in the original derivation of the calculus were omitted, such as the evaluation of oscillatory integrals, so we make it the objective of this paper to fill in all the details. After reproving in more detail the formula for the symbol of the adjoint of a pseudo-differential operator and the formula for the symbol of a product of two pseudo-differential operators, we extend these results to finitely generated projective right modules over the noncommutative n-torus. Then we define the corresponding analog of Sobolev spaces and prove equivalents of the Sobolev and Rellich lemmas.

8. Surfaces in classical geometries a treatment by moving frames

CERN Document Server

Jensen, Gary R; Nicolodi, Lorenzo

2016-01-01

Designed for intermediate graduate studies, this text will broaden students' core knowledge of differential geometry providing foundational material to relevant topics in classical differential geometry. The method of moving frames, a natural means for discovering and proving important results, provides the basis of treatment for topics discussed. Its application in many areas helps to connect the various geometries and to uncover many deep relationships, such as the Lawson correspondence. The nearly 300 problems and exercises range from simple applications to open problems. Exercises are embedded in the text as essential parts of the exposition. Problems are collected at the end of each chapter; solutions to select problems are given at the end of the book. Mathematica®, Matlab™, and Xfig are used to illustrate selected concepts and results. The careful selection of results serves to show the reader how to prove the most important theorems in the subject, which may become the foundation of future progress...

9. Smooth functors vs. differential forms

NARCIS (Netherlands)

Schreiber, U.; Waldorf, K.

2011-01-01

We establish a relation between smooth 2-functors defined on the path 2-groupoid of a smooth manifold and differential forms on this manifold. This relation can be understood as a part of a dictionary between fundamental notions from category theory and differential geometry. We show that smooth

10. Expository lectures on topology, geometry, and gauge theories

International Nuclear Information System (INIS)

Akyildiz, Y.

1983-01-01

The article provides an extremely useful and clear explanation of applications of topology and differential geometry in modern gauge theories. Basic concepts like invariants, manifolds, (co)homology, etc. are explained. The author has prepared this lecture with physicists in mind and the level of mathematical sophistication has been kept to a minimum. (S.J.P.)

11. An introduction to the geometry of singularities on general relativity

International Nuclear Information System (INIS)

Canarutto, D.

1988-01-01

The aim of this paper is the introduction of many ideas in differential geometry by adopting an abstract and general framework. Such a clearness permits to obtain a powerful and simple theory of connection on fibred manifolds allowing a clearer understanding and easier handling (C.P.)

12. The geometry description markup language

International Nuclear Information System (INIS)

Chytracek, R.

2001-01-01

Currently, a lot of effort is being put on designing complex detectors. A number of simulation and reconstruction frameworks and applications have been developed with the aim to make this job easier. A very important role in this activity is played by the geometry description of the detector apparatus layout and its working environment. However, no real common approach to represent geometry data is available and such data can be found in various forms starting from custom semi-structured text files, source code (C/C++/FORTRAN), to XML and database solutions. The XML (Extensible Markup Language) has proven to provide an interesting approach for describing detector geometries, with several different but incompatible XML-based solutions existing. Therefore, interoperability and geometry data exchange among different frameworks is not possible at present. The author introduces a markup language for geometry descriptions. Its aim is to define a common approach for sharing and exchanging of geometry description data. Its requirements and design have been driven by experience and user feedback from existing projects which have their geometry description in XML

CERN Document Server

Fallow), Stray

2009-01-01

Having trouble with geometry? Do Pi, The Pythagorean Theorem, and angle calculations just make your head spin? Relax. With Head First 2D Geometry, you'll master everything from triangles, quads and polygons to the time-saving secrets of similar and congruent angles -- and it'll be quick, painless, and fun. Through entertaining stories and practical examples from the world around you, this book takes you beyond boring problems. You'll actually use what you learn to make real-life decisions, like using angles and parallel lines to crack a mysterious CSI case. Put geometry to work for you, and

14. A first course in geometry

CERN Document Server

Walsh, Edward T

2014-01-01

This introductory text is designed to help undergraduate students develop a solid foundation in geometry. Early chapters progress slowly, cultivating the necessary understanding and self-confidence for the more rapid development that follows. The extensive treatment can be easily adapted to accommodate shorter courses. Starting with the language of mathematics as expressed in the algebra of logic and sets, the text covers geometric sets of points, separation and angles, triangles, parallel lines, similarity, polygons and area, circles, space geometry, and coordinate geometry. Each chapter incl

15. Geometry and analysis on manifolds in memory of professor Shoshichi Kobayashi

CERN Document Server

Mabuchi, Toshiki; Maeda, Yoshiaki; Noguchi, Junjiro; Weinstein, Alan

2015-01-01

This volume is dedicated to the memory of Shoshichi Kobayashi, and gathers contributions from distinguished researchers working on topics close to his research areas. The book is organized into three parts, with the first part presenting an overview of Professor Shoshichi Kobayashi’s career. This is followed by two expository course lectures (the second part) on recent topics in extremal Kähler metrics and value distribution theory, which will be helpful for graduate students in mathematics interested in new topics in complex geometry and complex analysis. Lastly, the third part of the volume collects authoritative research papers on differential geometry and complex analysis. Professor Shoshichi Kobayashi was a recognized international leader in the areas of differential and complex geometry. He contributed crucial ideas that are still considered fundamental in these fields. The book will be of interest to researchers in the fields of differential geometry, complex geometry, and several complex variables ...

16. Local supertwistors

International Nuclear Information System (INIS)

Merkulov, S.A.

1987-01-01

The geometry of local supertwistors is investigated. An ansatz on the form of the supertwistor superconnection is introduced. Because of this restriction on the form of such a superconnection the Yang-Mills equations for the superconnection turn out to be equivalent to the free Bach equations describing the dynamics of simple conformal supergravity. It is shown that the equations of motion of conformal supergravity interacting with a vector superfield admit an analogous interpretation. It is proved that an arbitrary conformally right-flat or left-flat superspace is automatically a solution of the Bach equations

17. Hyperbolic Metamaterials with Complex Geometry

DEFF Research Database (Denmark)

Lavrinenko, Andrei; Andryieuski, Andrei; Zhukovsky, Sergei

2016-01-01

We investigate new geometries of hyperbolic metamaterialssuch as highly corrugated structures, nanoparticle monolayer assemblies, super-structured or vertically arranged multilayersand nanopillars. All structures retain basic propertiesof hyperbolic metamaterials, but have functionality improved...

18. Differential Calculus on Quantum Spheres

OpenAIRE

Welk, Martin

1998-01-01

We study covariant differential calculus on the quantum spheres S_q^2N-1. Two classification results for covariant first order differential calculi are proved. As an important step towards a description of the noncommutative geometry of the quantum spheres, a framework of covariant differential calculus is established, including a particular first order calculus obtained by factorization, higher order calculi and a symmetry concept.

19. Treating locally advanced lung cancer with a 1.5T MR-Linac - Effects of the magnetic field and irradiation geometry on conventionally fractionated and isotoxic dose-escalated radiotherapy.

Science.gov (United States)

Bainbridge, Hannah E; Menten, Martin J; Fast, Martin F; Nill, Simeon; Oelfke, Uwe; McDonald, Fiona

2017-11-01