WorldWideScience

Sample records for local defect structures

  1. Localized Retinal Nerve Fiber Layer Defects in Red-free Photographs Versus En Face Structural Optical Coherence Tomography Images.

    Science.gov (United States)

    Jung, Jae Hoon; Park, Ji-Hye; Yoo, Chungkwon; Kim, Yong Yeon

    2018-03-01

    The purpose of this article is to compare the locations of localized retinal nerve fiber layer (RNFL) defects in red-free fundus photographs and optical coherence tomography (OCT) en face images. We performed a retrospective, comparative study on 46 eyes from 46 glaucoma patients with localized RNFL defects observed in red-free fundus photographs. En face structural images were obtained in the superficial and whole retinal layers using OCT and were overlaid on the corresponding red-free fundus photographs. The proximal/distal angular locations and angular width of each RNFL defect in red-free photos (red-free defects) and in en face structural images (en face defects) were compared. In the superficial retinal layer, there were no significant differences between red-free and en face defects on the proximal/distal angular location and angular width. In the whole retinal layer, the degree of the distal angular location of the en face defects was significantly larger than that of the red-free defects (71.85±18.26 vs. 70.87±17.90 degrees, P=0.003). The correlations of clinical variables with the differences in angular parameters between red-free and en face defects were not significant in the superficial retinal layer. The average RNFL thickness was negatively correlated with the difference in the distal angular location in the whole retinal layer (Pearson correlation coefficient=-0.401, P=0.006). Localized RNFL defects detected in OCT en face structural images of the superficial retinal layer showed high topographic correlation with defects detected in red-free photographs. OCT en face structural images in the superficial layer may be an alternative to red-free fundus photography for the identification of localized RNFL defects in glaucomatous eyes.

  2. Birth–death process of local structures in defect turbulence described by the one-dimensional complex Ginzburg–Landau equation

    Energy Technology Data Exchange (ETDEWEB)

    Uchiyama, Yusuke, E-mail: r1230160@risk.tsukuba.ac.jp; Konno, Hidetoshi

    2014-04-01

    Defect turbulence described by the one-dimensional complex Ginzburg–Landau equation is investigated and analyzed via a birth–death process of the local structures composed of defects, holes, and modulated amplitude waves (MAWs). All the number statistics of each local structure, in its stationary state, are subjected to Poisson statistics. In addition, the probability density functions of interarrival times of defects, lifetimes of holes, and MAWs show the existence of long-memory and some characteristic time scales caused by zigzag motions of oscillating traveling holes. The corresponding stochastic process for these observations is fully described by a non-Markovian master equation.

  3. Local structure and defects in ion irradiated KTaO3

    Science.gov (United States)

    Zhang, F. X.; Xi, J.; Zhang, Y.; Tong, Yang; Xue, H.; Huang, R.; Trautmann, C.; Weber, W. J.

    2018-04-01

    The modification of the local structure in cubic perovskite KTaO3 irradiated with 3 MeV and 1.1 GeV Au ions is studied by Raman and x-ray absorption spectroscopy, complemented by density functional theory (DFT) calculations. In the case of irradiation with 3 MeV Au ions where displacement cascade processes are dominant, the Ta L3-edge x-ray absorption measurements suggest that a peak corresponding to the Ta-O bonds in the TaO6 octahedra splits, which is attributed to the formation of TaK antisite defects that are coupled with oxygen vacancies, V O. This finding is consistent with the DFT calculations. Under irradiation with 1.1 GeV ions, the intense ionization and electronic energy deposition lead to a blue shift and an intensity reduction of active Raman bands. In the case of sequential irradiations, extended x-ray absorption fine structure measurements reveal a decrease in concentration of coupled TaK-V O defects under subsequent irradiation with 1.1 GeV Au ions.

  4. Defect Structure of Localized Excitons in a WSe2 Monolayer

    KAUST Repository

    Zhang, Shuai

    2017-07-26

    The atomic and electronic structure of intrinsic defects in a WSe2 monolayer grown on graphite was revealed by low temperature scanning tunneling microscopy and spectroscopy. Instead of chalcogen vacancies that prevail in other transition metal dichalcogenide materials, intrinsic defects in WSe2 arise surprisingly from single tungsten vacancies, leading to the hole (p-type) doping. Furthermore, we found these defects to dominate the excitonic emission of the WSe2 monolayer at low temperature. Our work provided the first atomic-scale understanding of defect excitons and paved the way toward deciphering the defect structure of single quantum emitters previously discovered in the WSe2 monolayer.

  5. Subsurface defects structural evolution in nano-cutting of single crystal copper

    International Nuclear Information System (INIS)

    Wang, Quanlong; Bai, Qingshun; Chen, Jiaxuan; Sun, Yazhou; Guo, Yongbo; Liang, Yingchun

    2015-01-01

    Highlights: • An innovative analysis method is adopted to analyze nano-cutting process accurately. • A characteristic SFT and stair-rod dislocation are found in subsurface defect layer. • The formation mechanism of stair-rod dislocation is investigated. • The local atomic structure of subsurface defects is introduced. - Abstract: In this work, molecular dynamics simulation is performed to study the subsurface defects structural distribution and its evolution during nano-cutting process of single crystal copper. The formation mechanism of chip and machined surface is interviewed by analyzing the dislocation evolution and atomic migration. The centro-symmetry parameter and spherical harmonics method are adopted to characterize the distribution and evolution of the subsurface defect structures and local atomic structures. The results show that stacking faults, dislocation loops, “V-shaped” dislocation loops, and plenty of point defects are formed during the machined surface being formed in shear-slip zone. In subsurface damage layers, stair-rod dislocation, stacking fault tetrahedra, atomic cluster defect, and vacancy defect are formed. And the formation mechanism of stair-rod dislocation is investigated by atomic-scale structure evolution. The local atomic structures of subsurface defects are icosahedrons, hexagonal close packed, body-centered cubic, and defect face center cubic, and the variations of local atomic structures are investigated

  6. Subsurface defects structural evolution in nano-cutting of single crystal copper

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Quanlong [School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001 (China); Center for Precision Engineering, Harbin Institute of Technology, Harbin 150001 (China); Bai, Qingshun [School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001 (China); Chen, Jiaxuan, E-mail: wangquanlong0@hit.edu.cn [Center for Precision Engineering, Harbin Institute of Technology, Harbin 150001 (China); Sun, Yazhou [School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001 (China); Guo, Yongbo [Center for Precision Engineering, Harbin Institute of Technology, Harbin 150001 (China); Liang, Yingchun [School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001 (China)

    2015-07-30

    Highlights: • An innovative analysis method is adopted to analyze nano-cutting process accurately. • A characteristic SFT and stair-rod dislocation are found in subsurface defect layer. • The formation mechanism of stair-rod dislocation is investigated. • The local atomic structure of subsurface defects is introduced. - Abstract: In this work, molecular dynamics simulation is performed to study the subsurface defects structural distribution and its evolution during nano-cutting process of single crystal copper. The formation mechanism of chip and machined surface is interviewed by analyzing the dislocation evolution and atomic migration. The centro-symmetry parameter and spherical harmonics method are adopted to characterize the distribution and evolution of the subsurface defect structures and local atomic structures. The results show that stacking faults, dislocation loops, “V-shaped” dislocation loops, and plenty of point defects are formed during the machined surface being formed in shear-slip zone. In subsurface damage layers, stair-rod dislocation, stacking fault tetrahedra, atomic cluster defect, and vacancy defect are formed. And the formation mechanism of stair-rod dislocation is investigated by atomic-scale structure evolution. The local atomic structures of subsurface defects are icosahedrons, hexagonal close packed, body-centered cubic, and defect face center cubic, and the variations of local atomic structures are investigated.

  7. Modification of electronic structure, magnetic structure, and topological phase of bismuthene by point defects

    Science.gov (United States)

    Kadioglu, Yelda; Kilic, Sevket Berkay; Demirci, Salih; Aktürk, O. Üzengi; Aktürk, Ethem; Ciraci, Salim

    2017-12-01

    This paper reveals how the electronic structure, magnetic structure, and topological phase of two-dimensional (2D), single-layer structures of bismuth are modified by point defects. We first showed that a free-standing, single-layer, hexagonal structure of bismuth, named h-bismuthene, exhibits nontrivial band topology. We then investigated interactions between single foreign adatoms and bismuthene structures, which comprise stability, bonding, electronic structure, and magnetic structures. Localized states in diverse locations of the band gap and resonant states in band continua of bismuthene are induced upon the adsorption of different adatoms, which modify electronic and magnetic properties. Specific adatoms result in reconstruction around the adsorption site. Single vacancies and divacancies can form readily in bismuthene structures and remain stable at high temperatures. Through rebondings, Stone-Whales-type defects are constructed by divacancies, which transform into a large hole at high temperature. Like adsorbed adatoms, vacancies induce also localized gap states, which can be eliminated through rebondings in divacancies. We also showed that not only the optical and magnetic properties, but also the topological features of pristine h-bismuthene can be modified by point defects. The modification of the topological features depends on the energies of localized states and also on the strength of coupling between point defects.

  8. Irradiation of amorphous metallic alloys: defect production and local order evolution

    International Nuclear Information System (INIS)

    Hillairet, J.; Balanzat, E.; Audouard, A.; Jousset, J.C.

    1983-06-01

    This paper deals with the problem of the nature and dynamic characteristics of the ''defects'' which are produced in metallic glasses as a result of irradiation with fast particles. It discusses also the modifications in the state of local order and other structural changes brought by the creation and migration of these defects [fr

  9. Local structure and defect chemistry of [(SnSe)1.15]m(TaSe2) ferecrystals – A new type of layered intergrowth compound

    International Nuclear Information System (INIS)

    Grosse, Corinna; Atkins, Ryan; Kirmse, Holm; Mogilatenko, Anna; Neumann, Wolfgang; Johnson, David C.

    2013-01-01

    Highlights: •The crystal structure of [(SnSe) 1.15 ] m (TaSe 2 ) ferecrystals was analyzed by TEM. •The layers exhibit turbostratic disorder, but we also observed a local ordering. •The structures of the SnSe and TaSe 2 layers are similar to binary SnSe and 2H-TaSe 2 . •An increasing in-plane SnSe grain size with increasing m was observed. •Defect areas with missing, substituted or additional layers were found. -- Abstract: The atomic structure of the family of ferecrystals [(SnSe) 1.15 ] m (TaSe 2 ) (m = 1, 3, and 6) was investigated by means of transmission electron microscopy. The tantalum in the TaSe 2 layers was observed to have trigonal prismatic coordination similar to that found in the 2H polytype of bulk TaSe 2 . The structure of the SnSe constituent was found to be similar to that of orthorhombic α-SnSe. In the compounds with m = 1 and m = 3, regions with a local ordering of the layers along a commensurate axis, similar to the ordering in conventional misfit layer compounds, were observed. However, on a longer range the ferecrystals were found to exhibit a turbostratically disordered structure. Stacking defects were occasionally found in the samples in which a layer is interrupted and the surrounding layers are bent around these defects, while maintaining abrupt interfaces instead of interdiffusing. Volume defects were found in one sample of [(SnSe) 1.15 ] 1 (TaSe 2 ) 1 in which a SnSe layer locally substitutes a part of a TaSe 2 layer without interrupting the surrounding layers

  10. Local defect correction for boundary integral equation methods

    NARCIS (Netherlands)

    Kakuba, G.; Anthonissen, M.J.H.

    2014-01-01

    The aim in this paper is to develop a new local defect correction approach to gridding for problems with localised regions of high activity in the boundary element method. The technique of local defect correction has been studied for other methods as finite difference methods and finite volume

  11. Nanoscale characterization of local structures and defects in photonic crystals using synchrotron-based transmission soft X-ray microscopy

    Science.gov (United States)

    Nho, Hyun Woo; Kalegowda, Yogesh; Shin, Hyun-Joon; Yoon, Tae Hyun

    2016-01-01

    For the structural characterization of the polystyrene (PS)-based photonic crystals (PCs), fast and direct imaging capabilities of full field transmission X-ray microscopy (TXM) were demonstrated at soft X-ray energy. PS-based PCs were prepared on an O2-plasma treated Si3N4 window and their local structures and defects were investigated using this label-free TXM technique with an image acquisition speed of ~10 sec/frame and marginal radiation damage. Micro-domains of face-centered cubic (FCC (111)) and hexagonal close-packed (HCP (0001)) structures were dominantly found in PS-based PCs, while point and line defects, FCC (100), and 12-fold symmetry structures were also identified as minor components. Additionally, in situ observation capability for hydrated samples and 3D tomographic reconstruction of TXM images were also demonstrated. This soft X-ray full field TXM technique with faster image acquisition speed, in situ observation, and 3D tomography capability can be complementally used with the other X-ray microscopic techniques (i.e., scanning transmission X-ray microscopy, STXM) as well as conventional characterization methods (e.g., electron microscopic and optical/fluorescence microscopic techniques) for clearer structure identification of self-assembled PCs and better understanding of the relationship between their structures and resultant optical properties. PMID:27087141

  12. Localization of holes near charged defects in orbitally degenerate, doped Mott insulators

    Science.gov (United States)

    Avella, Adolfo; Oleś, Andrzej M.; Horsch, Peter

    2018-05-01

    We study the role of charged defects, disorder and electron-electron (e-e) interactions in a multiband model for t2g electrons in vanadium perovskites R1-xCaxVO3 (R = La,…,Y). By means of unrestricted Hartree-Fock calculations, we find that the atomic multiplet structure persists up to 50% Ca doping. Using the inverse participation number, we explore the degree of localization and its doping dependence for all electronic states. The observation of strongly localized wave functions is consistent with our conjecture that doped holes form spin-orbital polarons that are strongly bound to the charged Ca2+ defects. Interestingly, the long-range e-e interactions lead to a discontinuity in the wave function size across the chemical potential, where the electron removal states are more localized than the addition states.

  13. Localized topological states in Bragg multihelicoidal fibers with twist defects

    Science.gov (United States)

    Alexeyev, C. N.; Lapin, B. P.; Milione, G.; Yavorsky, M. A.

    2016-06-01

    We have studied the influence of a twist defect in multihelicoidal Bragg fibers on the emerging of localized defect modes. We have shown that if such a fiber is excited with a Gaussian beam this leads to the appearance of a defect-localized topological state, whose topological charge coincides with the order of rotational symmetry of the fiber's refractive index. We have shown that this effect has a pronounced crossover behavior. We have also formulated a principle of creating the systems that can nestle defect-localized topologically charged modes. According to this principle, such systems have to possess topological activity, that is, the ability to change the topological charge of the incoming field, and operate in the Bragg regime.

  14. Localized electromagnetic modes and transmission spectrum of one-dimensional photon crystal with lattice defects

    CERN Document Server

    Vetrov, S Y

    2001-01-01

    The properties of the localized electromagnetic modes in the one-dimensional photon crystal with a structural defective layer are studied. The anisotropic layer of the nematic liquid layer is considered as the defect. It is shown that the frequency and coefficient of the defective modes attenuation essentially depend on the defective layer thickness and nematic optical axis orientation. The spectrum of the photon crystal transmittance with one or two defects in the lattice is studied. The possibility of controlling the the photon crystal transmittance spectrum on the count of changing the orientation of the nematic optical axis, for example, through the external electric field is shown with an account of strong anisotropy of the dielectric permittivity

  15. Thermo-kinetic mechanisms for grain boundary structure multiplicity, thermal instability and defect interactions

    International Nuclear Information System (INIS)

    Burbery, N.J.; Das, R.; Ferguson, W.G.

    2016-01-01

    Grain boundaries (GBs) provide a source and/or a sink for crystal defects and store elastic energy due to the non-uniform atomic bonding structure of the GB core. GB structures are thermodynamically driven to transition to the lowest energy configuration possible; however to date there has been little evidence to explain why specific GB structures have a low energy state. Furthermore, there is little quantitative demonstration of the significance of physical and GB structure characteristics on the GB energy, thermal stability, and the effect of temporary local GB structure transformations on defect interactions. This paper evaluates the defect interactions and structure stability of multiple Σ5(310) GB structures in bi-crystals of pure aluminium, and systematically investigates the features at 0 K to characterise multiple metastable structures. Structure stability is evaluated by utilising unstable vacancy defects to initiate GB transformations, and using nudged elastic band simulations to quantify this with the activation energy. The emission of stable vacancy defects from the ‘stable’ and metastable grain boundaries is also evaluated in the same manner. A detailed analysis of dislocation nucleation at the atomistic scale demonstrates that local transformations of GB structure between stable and metastable intermediates can provide a mechanism to accommodate the generation of crystal defects. Kinetic (time-dependent) effects that compete with energetic driving forces for structural transformations of GBs are shown to cause a significant effect on the activation properties that may exceed the influence of GB potential energy. The results demonstrate that GB structural multiplicity can be associated with the generation and absorption of dislocations and vacancies. This paper demonstrates the suitability of atomistic simulations coupled with nudged elastic band simulations to evaluate fundamental thermodynamic properties of pure FCC metals. Overall, this paper

  16. Thermo-kinetic mechanisms for grain boundary structure multiplicity, thermal instability and defect interactions

    Energy Technology Data Exchange (ETDEWEB)

    Burbery, N.J. [Department of Mechanical Engineering, University of Auckland, Auckland 1010 (New Zealand); Das, R., E-mail: r.das@auckland.ac.nz [Department of Mechanical Engineering, University of Auckland, Auckland 1010 (New Zealand); Ferguson, W.G. [Department of Chemical and Materials Engineering, University of Auckland, Auckland 1010 (New Zealand)

    2016-08-15

    Grain boundaries (GBs) provide a source and/or a sink for crystal defects and store elastic energy due to the non-uniform atomic bonding structure of the GB core. GB structures are thermodynamically driven to transition to the lowest energy configuration possible; however to date there has been little evidence to explain why specific GB structures have a low energy state. Furthermore, there is little quantitative demonstration of the significance of physical and GB structure characteristics on the GB energy, thermal stability, and the effect of temporary local GB structure transformations on defect interactions. This paper evaluates the defect interactions and structure stability of multiple Σ5(310) GB structures in bi-crystals of pure aluminium, and systematically investigates the features at 0 K to characterise multiple metastable structures. Structure stability is evaluated by utilising unstable vacancy defects to initiate GB transformations, and using nudged elastic band simulations to quantify this with the activation energy. The emission of stable vacancy defects from the ‘stable’ and metastable grain boundaries is also evaluated in the same manner. A detailed analysis of dislocation nucleation at the atomistic scale demonstrates that local transformations of GB structure between stable and metastable intermediates can provide a mechanism to accommodate the generation of crystal defects. Kinetic (time-dependent) effects that compete with energetic driving forces for structural transformations of GBs are shown to cause a significant effect on the activation properties that may exceed the influence of GB potential energy. The results demonstrate that GB structural multiplicity can be associated with the generation and absorption of dislocations and vacancies. This paper demonstrates the suitability of atomistic simulations coupled with nudged elastic band simulations to evaluate fundamental thermodynamic properties of pure FCC metals. Overall, this paper

  17. Application of Learning Methods to Local Electric Field Distributions in Defected Dielectric Materials

    Science.gov (United States)

    Ferris, Kim; Jones, Dumont

    2014-03-01

    Local electric fields reflect the structural and dielectric fluctuations in a semiconductor, and affect the material performance both for electron transport and carrier lifetime properties. In this paper, we use the LOCALF methodology with periodic boundary conditions to examine the local electric field distributions and its perturbations for II-VI (CdTe, Cd(1-x)Zn(x)Te) semiconductors, containing Te inclusions and small fluctuations in the local dielectric susceptibility. With inclusion of the induced-field term, the electric field distribution shows enhancements and diminishments compared to the macroscopic applied field, reflecting the microstructure characteristics of the dielectric. Learning methods are applied to these distributions to assess the spatial extent of the perturbation, and determine an electric field defined defect size as compared to its physical dimension. Critical concentrations of defects are assessed in terms of defect formation energies. This work was supported by the US Department of Homeland Security, Domestic Nuclear Detection Office, under competitively awarded contract/IAA HSHQDC-08-X-00872-e. This support does not constitute an express or implied endorsement on the part of the Gov't.

  18. Amplified emission and modified spectral features in an opal hetero-structure mediated by passive defect mode localization

    Science.gov (United States)

    Rout, Dipak; Kumar, Govind; Vijaya, R.

    2018-01-01

    A photonic crystal hetero-structure consisting of a passive planar defect of SiO2 thin film sandwiched between two identical opals grown by inward growing self-assembly method using Rhodamine-B dye-doped polystyrene microspheres is studied for the characteristics of dye emission. The optical properties and the defect mode characteristics of the hetero-structure are studied from the reflection and transmission measurements. Laser-induced fluorescence from the hetero-structure showed amplified and spectrally narrowed emission compared to the photonic crystal emphasizing the role of the defect mode and distributed feedback. The enhanced emission is also complemented by the reduction in fluorescence decay time in the case of the hetero-structure in comparison to the 3D photonic crystals.

  19. Electronic structure of point defects in semiconductors

    International Nuclear Information System (INIS)

    Bruneval, Fabien

    2014-01-01

    trace concentration (of the order of one part per million). However, owing to the heavy burden of the quantum-mechanical electronic structure calculations, which grow very rapidly with the number of electrons, the present day simulations do not easily exceed a few hundred atoms nowadays. This induces effective defect concentrations of the order of one percent which are very far from the diluted defects observed in the experiments. The extrapolation of high concentrations to low concentrations is difficult because defects in semiconductors often bear a net electric charge which induces long-range interactions between the spuriously interacting charged defects. The first part of my work presents the techniques available in this area, improvements in the techniques and some understanding of these spurious interactions. The second topic addressed in this memoir focuses on improving the electronic structure of defects in semiconductors and insulators. Defects in these materials introduce discrete electronic levels within the band gap of the pristine bulk material. These electronic levels correspond to the electrons involved in the defect states. Their wave function is more or less localized around the defect region and the filling of the state may also vary with the thermodynamic conditions (Fermi level). These levels inside the band gap govern the modification of the properties of electronic and optical transport. Unfortunately the standard ab initio approaches, in the context of Density Functional Theory (DFT), are unable to get the correct band gaps of semiconductors and insulators. This is why many defect properties cannot be predicted with certainty within these approaches. This second part demonstrates how the introduction of the many-body perturbation theory in the so-called GW approximation solves the problem of band gaps and thus allows one to obtain more reliable defect properties. Of course, the field of ab initio electronic structure for defects is far from being

  20. Tunable single photonic defect-mode in cholesteric liquid crystals with laser-induced local modifications of helix

    International Nuclear Information System (INIS)

    Yoshida, Hiroyuki; Lee, Chee Heng; Fujii, Akihiko; Ozaki, Masanori

    2006-01-01

    The authors demonstrate a tunable single photonic defect-mode in a single cholesteric liquid crystal material based on a structural defect introduced by local modification of the helix. An unpolymerized region of cholesteric liquid crystal acting as the defect was left between two polymerized regions via a two-photon excitation laser-lithography process. Upon polymerization, the cholesteric liquid crystal helix elongated and became thermally stable, and a single photonic defect mode was exhibited due to the contrast in the helix pitch at the defect. The defect mode showed tunability upon heating, and a 36 nm redshift was seen over a temperature range of 30 deg. C

  1. Ab-initio study of magnetism behavior in TiO{sub 2} semiconductor with structural defects

    Energy Technology Data Exchange (ETDEWEB)

    Zarhri, Z., E-mail: z.zarhri@gmail.com; Houmad, M.; Ziat, Y.; El Rhazouani, O.; Slassi, A.; Benyoussef, A.; El Kenz, A.

    2016-05-15

    Magnetic, electronic and structural properties of titanium dioxide material with different structural defects are studied using the first-principles ab-initio calculations and the Korringa–Kohn–Rostoker method (KKR) combined with the coherent potential approximation (CPA) method in connection with the local density approximation (LDA). We investigated all structural defects in rutile TiO{sub 2} such as Titanium interstitial (Ti{sub i}), Titanium anti-sites (Ti{sub o}), Titanium vacancies (V{sub Ti}), Oxygen interstitial (O{sub i}), Oxygen anti-sites (O{sub Ti}) and oxygen vacancies (V{sub o}). Mechanisms of hybridization and interaction between magnetic atoms are investigated. The transition temperature is computed using the Mean Field Approximation (MFA).Magnetic stability energy of ferromagnetic and disordered local moment states is calculated to determine the most stable state. Titanium anti-sites have a half-metallic aspect. We also studied the change type caused by structural defects in this material. - Highlights: • Green function technique is used to study disordered systems. • We used DFT to study electronic structure of TiO{sub 2} perturbed by defects. • TiO{sub 2} with titanium antisite defect posesses a magnetic behavior. • The transition temperature is computed using the Mean Field Approximation.

  2. Simultaneous large band gaps and localization of electromagnetic and elastic waves in defect-free quasicrystals.

    Science.gov (United States)

    Yu, Tianbao; Wang, Zhong; Liu, Wenxing; Wang, Tongbiao; Liu, Nianhua; Liao, Qinghua

    2016-04-18

    We report numerically large and complete photonic and phononic band gaps that simultaneously exist in eight-fold phoxonic quasicrystals (PhXQCs). PhXQCs can possess simultaneous photonic and phononic band gaps over a wide range of geometric parameters. Abundant localized modes can be achieved in defect-free PhXQCs for all photonic and phononic polarizations. These defect-free localized modes exhibit multiform spatial distributions and can confine simultaneously electromagnetic and elastic waves in a large area, thereby providing rich selectivity and enlarging the interaction space of optical and elastic waves. The simulated results based on finite element method show that quasiperiodic structures formed of both solid rods in air and holes in solid materials can simultaneously confine and tailor electromagnetic and elastic waves; these structures showed advantages over the periodic counterparts.

  3. Safety assessment of pipes with multiple local wall thinning defects under pressure and bending moment

    International Nuclear Information System (INIS)

    Peng Jian; Zhou Changyu; Xue Jilin; Dai Qiao; He Xiaohua

    2011-01-01

    The safety assessment of pipes with local wall thinning defects is highly important in engineering. Most attention has been paid on the safety assessment of pipe with single local wall thinning defect, while the studies about multiple local wall thinning defects are not nearly enough. However, the interaction of multiple local wall thinning defects in some conditions is great, and may have a great impact on the safety assessment. In the present standard API 579/ASME FFS, the safety assessment of pipes with multiple local wall thinning defects is given, while as well as the influence of load condition, the influences of arrangement and relative depth of defects are ignored, which may influence the safety assessment considerably. In this paper, the influence of the interaction between multiple local wall thinning defects on the remaining strength of pipes at different arrangements and depths of defects under different load conditions (pressure, tension-bending moment and compression-bending moment) are studied. A quantified index is defined to describe the interaction between defects quantitatively. For different arrangements and relative depths of defects, based on a limit value 0.05 of the quantified index of the interaction between defects, a relatively systematic safety assessment of pipes with multiple local wall thinning defects under different load conditions has been proposed.

  4. Non-perturbative embedding of local defects in crystalline materials

    International Nuclear Information System (INIS)

    Cances, Eric; Deleurence, Amelie; Lewin, Mathieu

    2008-01-01

    We present a new variational model for computing the electronic first-order density matrix of a crystalline material in the presence of a local defect. A natural way to obtain variational discretizations of this model is to expand the difference Q between the density matrix of the defective crystal and the density matrix of the perfect crystal, in a basis of precomputed maximally localized Wannier functions of the reference perfect crystal. This approach can be used within any semi-empirical or density functional theory framework

  5. Exact correlators on the Wilson loop in N=4 SYM: localization, defect CFT, and integrability

    Science.gov (United States)

    Giombi, Simone; Komatsu, Shota

    2018-05-01

    We compute a set of correlation functions of operator insertions on the 1 /8 BPS Wilson loop in N=4 SYM by employing supersymmetric localization, OPE and the Gram-Schmidt orthogonalization. These correlators exhibit a simple determinant structure, are position-independent and form a topological subsector, but depend nontrivially on the 't Hooft coupling and the rank of the gauge group. When applied to the 1 /2 BPS circular (or straight) Wilson loop, our results provide an infinite family of exact defect CFT data, including the structure constants of protected defect primaries of arbitrary length inserted on the loop. At strong coupling, we show precise agreement with a direct calculation using perturbation theory around the AdS2 string worldsheet. We also explain the connection of our results to the "generalized Bremsstrahlung functions" previously computed from integrability techniques, reproducing the known results in the planar limit as well as obtaining their finite N generalization. Furthermore, we show that the correlators at large N can be recast as simple integrals of products of polynomials (known as Q-functions) that appear in the Quantum Spectral Curve approach. This suggests an interesting interplay between localization, defect CFT and integrability.

  6. Local defect resonance for sensitive non-destructive testing

    Science.gov (United States)

    Adebahr, W.; Solodov, I.; Rahammer, M.; Gulnizkij, N.; Kreutzbruck, M.

    2016-02-01

    Ultrasonic wave-defect interaction is a background of ultrasound activated techniques for imaging and non-destructive testing (NDT) of materials and industrial components. The interaction, primarily, results in acoustic response of a defect which provides attenuation and scattering of ultrasound used as an indicator of defects in conventional ultrasonic NDT. The derivative ultrasonic-induced effects include e.g. nonlinear, thermal, acousto-optic, etc. responses also applied for NDT and defect imaging. These secondary effects are normally relatively inefficient so that the corresponding NDT techniques require an elevated acoustic power and stand out from conventional ultrasonic NDT counterparts for their specific instrumentation particularly adapted to high-power ultrasonic. In this paper, a consistent way to enhance ultrasonic, optical and thermal defect responses and thus to reduce an ultrasonic power required is suggested by using selective ultrasonic activation of defects based on the concept of local defect resonance (LDR). A strong increase in vibration amplitude at LDR enables to reliably detect and visualize the defect as soon as the driving ultrasonic frequency is matched to the LDR frequency. This also provides a high frequency selectivity of the LDR-based imaging, i.e. an opportunity of detecting a certain defect among a multitude of other defects in material. Some examples are shown how to use LDR in non-destructive testing techniques, like vibrometry, ultrasonic thermography and shearography in order to enhance the sensitivity of defect visualization.

  7. Characterizing the relationship between hyperstoichiometry, defect structure and local corrosion kinetics of uranium dioxide

    International Nuclear Information System (INIS)

    He Heming; Qin, Z.; Shoesmith, D.W.

    2010-01-01

    The ability of the UO 2 fluorite structure to accommodate large amounts of interstitial oxygen in various lattice sites leads to the formation of hyper-stoichiometric phases. The defect structures occurring in hyper-stoichiometric UO 2+x over the range 0.02 ≤ x ≤ 0.1 have been characterized by SEM/EDX and Raman analyses. The results demonstrate that as the nominal stoichiometry increases from 2.002 to 2.1, the diversity of defective structures existing on the UO 2+ surface also increases. Scanning electrochemical microscopy (SECM) measurements combined with a theoretical model were used to determine the rate constant for the reduction of the redox mediator ferrocene methanol, acting as a cathodic oxidant to corrode the four UO 2+x specimens. The rate constant was found to vary with location on the surface. Stoichiometric locations, with a well defined fluorite structure, exhibited very low corrosion rates. Higher rates were observed at more non-stoichiometric locations with the highest rates being obtained on locations exhibiting tetragonal distortions as their composition approached UO 2.33 . The distribution of rates increases with the degree of nominal non-stoichiometry as the diversity of microstructures existing on the UO 2+x surface increases.

  8. Ferromagnetically coupled local moments along an extended line defect in graphene

    Science.gov (United States)

    White, Carter T.; Vasudevan, Smitha; Gunlycke, Daniel

    2011-03-01

    Recently an extended line defect was observed composed of octagonal and pentagonal carbon rings embedded in a graphene sheet [Nat. Nanotech. 5, 326 (2010)]. We report results of studies we have made of this defect using both first-principles and semi-empirical methods. Two types of boundary-localized states arising from the defect are identified. The first (second) type has eigenstates with wavefunctions that are anti- symmetric (symmetric) with respect to a mirror plane that is perpendicular to the graphene sheet and passes through the line defect center line. The boundary-localized anti-symmetric states are shown to be intimately connected to the zigzag edge states of semi-infinite graphene. They exhibit little dispersion along the defect line and lie close to the Fermi level giving rise to a spontaneous spin polarization along the defect once electron-electron interactions are included at the level of a mean field approximation to a Hubbard Model. Within this approach, symmetry requires that the principal moments couple ferromagnetically both along and across the line defect leading to approximately 2/3 more up than down spin electrons per defect repeat unit. This work was supported by ONR, directly and through NRL.

  9. Fuel defect detection, localization and removal in Bruce Power units 3 through 8

    International Nuclear Information System (INIS)

    Stone, R.; Armstrong, J.; Iglesias, F.; Oduntan, R.; Lewis, B.

    2005-01-01

    Fuel element defects are occurring in Bruce 'A' and Bruce 'B' Units. A root-cause investigation is ongoing, however, a solution is not yet in-hand. Fuel defect management efforts have been undertaken, therefore, in the interim. Fuel defect management tools are in-place for all Bruce Units. These tools can be categorized as analysis-based or operations-based. Analysis-based tools include computer codes used primarily for fuel defect characterization, while operations-based tools include Unit-specific delayed-neutron ('DN') monitoring systems and gaseous fission product ('GFP') monitoring systems. Operations-based tools are used for fuel defect detection, localization and removal activities. Fuel and Physics staff use defect detection, localization and removal methodologies and guidelines to disposition fuel defects. Methodologies are 'standardized' or 'routine' procedures for implementing analysis-based and operations-based tools to disposition fuel defects during Unit start-up operation and during operation at high steady-state power levels. Guidelines at present serve to supplement fuel defect management methodologies during Unit power raise. (author)

  10. A local environment approach for deep-level defects in semiconductors: Application to the vacancy in silicon

    International Nuclear Information System (INIS)

    Wang Yongliang; Lindefelt, U.

    1987-04-01

    A local environment approach for calculation of the electronic structure of localized defects in semiconductors is described. The method starts out from a description of localized orbitals or tight-binding model for semiconductors and is based on the recursion method of Haydock. A repeated symmetrical supercell containing 686 atoms plus defects is formed, both the translational and point-group symmetry of the crystal are fully exploited. In this paper, we report an application of this approach to an undistorted isolated vacancy by using a self-consistent Hamiltonian. A bound state of T 2 symmetry at 0.87 eV above the valence-band edge and a number of band resonances within the valence-band were extracted using Lanczos algorithm and a continued-fraction representation of the local density of states. It was found that the T 2 symmetry gap state is mainly p-like and most of the wavefunction for one of the A 1 symmetry resonances is concentrated on the vacant site and another concentrated on the first neighbors of the vacancy. From the small shifts of the band edges of silicon with a vacancy, we can conclude that the supercell is big enough and the interaction between the defects of different supercells is negligible. (author). 37 refs, 12 figs

  11. Diffusive, Structural, Optical, and Electrical Properties of Defects in Semiconductors

    CERN Multimedia

    Wagner, F E

    2002-01-01

    Electronic properties of semiconductors are extremely sensitive to defects and impurities that have localized electronic states with energy levels in the band gap of the semiconductor. Spectroscopic techniques like photoluminescence (PL), deep level transient spectroscopy (DLTS), or Hall effect, that are able to detect and characterize band gap states do not reveal direct information about their microscopic origin. To overcome this chemical "blindness", the present approach is to use radioactive isotopes as a tracer. Moreover, the recoil energies involved in $\\beta$ and $\\gamma$-decays can be used to create intrinsic isolated point defects (interstitials, vacancies) in a controlled way. A microscopic insight into the structure and the thermodynamic properties of complexes formed by interacting defects can be gained by detecting the hyperfine interaction between the nuclear moments of radioactive dopants and the electromagnetic fields present at the site of the radioactive nucleus. The understanding and the co...

  12. Local layer structure of smectic liquid crystals by X-ray micro-diffraction

    CERN Document Server

    Takanishi, Y

    2003-01-01

    The local layer structure of smectic liquid crystal has been measured using time-resolved synchrotron X-ray micro-diffraction. Typical layer disorders observed in surface stabilized (anti-) ferroelectric liquid crystals, i.e. a stripe texture, a needed-like defect and a zigzag defect, are directly analyzed. The detailed analysis slows that the surface anchoring force due to the interaction between the liquid crystal molecule and the alignment thin film plays an important role to realize both the static and dynamic local layer structures. The layer structure of the circular domain observed in the liquid crystal of bent-shaped molecules found to depend on the applied electric field though the optical micrograph shows little difference. The frustrated, double and single layer structures of the bent-shaped molecule liquid crystal are determined depending on the terminal alkyl chain length. (author)

  13. Cellular structure formed by ion-implantation-induced point defect

    International Nuclear Information System (INIS)

    Nitta, N.; Taniwaki, M.; Hayashi, Y.; Yoshiie, T.

    2006-01-01

    The authors have found that a cellular defect structure is formed on the surface of Sn + ion implanted GaSb at a low temperature and proposed its formation mechanism based on the movement of the induced point defects. This research was carried out in order to examine the validity of the mechanism by clarifying the effect of the mobility of the point defects on the defect formation. The defect structure on the GaSb surfaces implanted at cryogenic temperature and room temperature was investigated by scanning electron microscopy (SEM) and cross-sectional transmission electron microscopy (TEM) observation. In the sample implanted at room temperature, the sponge-like structure (a pileup of voids) was formed and the cellular structure, as observed at a low temperature, did not develop. This behavior was explained by the high mobility of the vacancies during implantation at room temperature, and the proposed idea that the defect formation process is dominated by the induced point defects was confirmed

  14. Influence of defect size and localization on the engagement of reverse Hill-Sachs lesions.

    Science.gov (United States)

    Moroder, Philipp; Runer, Armin; Kraemer, Manuel; Fierlbeck, Johann; Niederberger, Alfred; Cotofana, Sebastian; Vasvari, Imre; Hettegger, Bernhard; Tauber, Mark; Hurschler, Christof; Resch, Herbert

    2015-03-01

    Reverse Hill-Sachs (RHS) lesions can cause recurrent posterior shoulder instability because of engagement with the posterior glenoid rim; however, the effect of defect size and localization have yet to be determined. Both size and localization are critical for the engagement of an RHS defect with the posterior glenoid rim. Controlled laboratory study. Ten RHS defects with predefined extent and localization were created through an anterolateral rotator cuff sparing approach in 10 fresh-frozen cadaveric shoulder specimens using a custom-made saw guide. Computed tomography scans of all specimens were completed, and standardized measurements were performed to determine the size (alpha angle) and localization (beta angle) of the defect as well as a combination of both parameters (gamma angle). Internal rotation motions were imposed on the shoulder joint in different arm positions and with varying amount of posterior translation by means of a robot-assisted shoulder simulator. The association between engagement of the defects and the defined parameters (alpha, beta, and gamma angles) was analyzed. In 0° of abduction, a cutoff value between engaging and nonengaging defects of 37.5° for the alpha angle (100% sensitivity; 75% specificity; area under the curve [AUC], 0.875; P = .055) and 36.5° for the beta angle (100% sensitivity; 25% specificity; AUC, 0.708; P = .286) was determined. The gamma angle showed the highest discriminatory power (AUC, 0.938; P = .025) with a cutoff value of 85.5° rendering 100% sensitivity and 75% specificity in the prediction of engagement. An increase in the applied posterior translation force decreased the degrees of internal rotation necessary before engagement occurred. No engagement occurred during internal rotation with the arm in 60° of abduction or 60° of flexion. The size and localization of RHS defects are both critical factors for engagement. The combination of both parameters in terms of the gamma angle measurement might be a

  15. Local defect correction for boundary integral equation methods

    NARCIS (Netherlands)

    Kakuba, G.; Anthonissen, M.J.H.

    2013-01-01

    This paper presents a new approach to gridding for problems with localised regions of high activity. The technique of local defect correction has been studied for other methods as ¿nite difference methods and ¿nite volume methods. In this paper we develop the technique for the boundary element

  16. Electronic structure and local distortions in epitaxial ScGaN films

    International Nuclear Information System (INIS)

    Knoll, S M; Zhang, S; Rovezzi, M; Joyce, T B; Moram, M A

    2014-01-01

    High energy resolution fluorescence-detected x-ray absorption spectroscopy and density functional theory calculations were used to investigate the local bonding and electronic structure of Sc in epitaxial wurtzite-structure Sc x Ga 1−x N films with x ≤ 0.059. Sc atoms are found to substitute for Ga atoms, accompanied by a local distortion involving an increase in the internal lattice parameter u around the Sc atoms. The local bonding and electronic structure at Sc are not affected strongly by the strain state or the defect microstructure of the films. These data are consistent with theoretical predictions regarding the electronic structure of dilute Sc x Ga 1−x N alloys. (paper)

  17. Reconstruction of Nasal Skin Cancer Defects with Local Flaps

    Directory of Open Access Journals (Sweden)

    A. C. Salgarelli

    2011-01-01

    Full Text Available Reconstruction of nasal defects must preserve the integrity of complex facial functions and expressions, as well as facial symmetry and a pleasing aesthetic outcome. The reconstructive modality of choice will depend largely on the location, size, and depth of the surgical defect. Individualized therapy is the best course, and numerous flaps have been designed to provide coverage of a variety of nasal-specific defects. We describe our experience in the aesthetic reconstruction of nasal skin defects following oncological surgery. The use of different local flaps for nasal skin cancer defects is reported in 286 patients. Complications in this series were one partial flap dehiscence that healed by secondary intention, two forehead flaps, and one bilobed flap with minimal rim necrosis that resulted in an irregular scar requiring revision. Aesthetic results were deemed satisfactory by all patients and the operating surgeons. The color and texture matches were aesthetically good, and the nasal contour was distinct in all patients. All scars were inconspicuous and symmetrical. No patient had tenting or a flat nose.

  18. Reconstruction of Nasal Skin Cancer Defects with Local Flaps

    International Nuclear Information System (INIS)

    Salgarelli, A. C.; Bellini, P.; Multinu, A.; Consolo, U.; Magnoni, C.; Francomano, M.; Fantini, F.; Seidenari, S.

    2011-01-01

    Reconstruction of nasal defects must preserve the integrity of complex facial functions and expressions, as well as facial symmetry and a pleasing aesthetic outcome. The reconstructive modality of choice will depend largely on the location, size, and depth of the surgical defect. Individualized therapy is the best course, and numerous flaps have been designed to provide coverage of a variety of nasal-specific defects. We describe our experience in the aesthetic reconstruction of nasal skin defects following oncological surgery. The use of different local flaps for nasal skin cancer defects is reported in 286 patients. Complications in this series were one partial flap dehiscence that healed by secondary intention, two forehead flaps, and one bilobed flap with minimal rim necrosis that resulted in an irregular scar requiring revision. Aesthetic results were deemed satisfactory by all patients and the operating surgeons. The color and texture matches were aesthetically good, and the nasal contour was distinct in all patients. All scars were inconspicuous and symmetrical. No patient had tenting or a flat nose.

  19. Electronic structure of defects in semiconductor heterojunctions

    International Nuclear Information System (INIS)

    Haussy, Bernard; Ganghoffer, Jean Francois

    2002-01-01

    Full text.heterojunctions and semiconductors and superlattices are well known and well used by people interested in optoelectronics communications. Components based on the use of heterojunctions are interesting for confinement of light and increase of quantum efficiency. An heterojunction is the contact zone between two different semiconductors, for example GaAs and Ga 1-x Al x As. Superlattices are a succession of heterojunctions (up to 10 or 20). These systems have been the subjects of many experiments ao analyse the contact between semiconductors. They also have been theoretically studied by different types of approach. The main result of those studies is the prediciton of band discontinuities. Defects in heterojunctions are real traps for charge carriers; they can affect the efficiency of the component decreasing the currents and the fluxes in it. the knowledge of their electronic structure is important, a great density of defects deeply modifies the electronic structure of the whole material creating real new bands of energy in the band structure of the component. in the first part of this work, we will describe the heterostructure and the defect in terms of quantum wells and discrete levels. This approach allows us to show the role of the width of the quantum well describing the structure but induces specific behaviours due to the one dimensional modelling. Then a perturbative treatment is proposed using the Green's functions formalism. We build atomic chains with different types of atoms featuring the heterostructure and the defect. Densities of states of a structure with a defect and levels associated to the defect are obtained. Results are comparable with the free electrons work, but the modelling do not induce problems due to a one dimensional approach. To extend our modelling, a three dimensions approach, based on a cavity model, is investigated. The influence of the defect, - of hydrogenoid type - introduced in the structure, is described by a cavity

  20. Macular Ganglion Cell Inner Plexiform Layer Thickness in Glaucomatous Eyes with Localized Retinal Nerve Fiber Layer Defects.

    Directory of Open Access Journals (Sweden)

    Chunwei Zhang

    Full Text Available To investigate macular ganglion cell-inner plexiform layer (mGCIPL thickness in glaucomatous eyes with visible localized retinal nerve fiber layer (RNFL defects on stereophotographs.112 healthy and 149 glaucomatous eyes from the Diagnostic Innovations in Glaucoma Study (DIGS and the African Descent and Glaucoma Evaluation Study (ADAGES subjects had standard automated perimetry (SAP, optical coherence tomography (OCT imaging of the macula and optic nerve head, and stereoscopic optic disc photography. Masked observers identified localized RNFL defects by grading of stereophotographs.47 eyes had visible localized RNFL defects on stereophotographs. Eyes with visible localized RNFL defects had significantly thinner mGCIPL thickness compared to healthy eyes (68.3 ± 11.4 μm versus 79.2 ± 6.6 μm respectively, P<0.001 and similar mGCIPL thickness to glaucomatous eyes without localized RNFL defects (68.6 ± 11.2 μm, P = 1.000. The average mGCIPL thickness in eyes with RNFL defects was 14% less than similarly aged healthy controls. For 29 eyes with a visible RNFL defect in just one hemiretina (superior or inferior mGCIPL was thinnest in the same hemiretina in 26 eyes (90%. Eyes with inferior-temporal RNFL defects also had significantly thinner inferior-temporal mGCIPL (P<0.001 and inferior mGCIPL (P = 0.030 compared to glaucomatous eyes without a visible RNFL defect.The current study indicates that presence of a localized RNFL defect is likely to indicate significant macular damage, particularly in the region of the macular that topographically corresponds to the location of the RNFL defect.

  1. Defect structure of electrodeposited chromium layers

    International Nuclear Information System (INIS)

    Marek, T.; Suevegh, K.; Vertes, A.; El-Sharif, M.; McDougall, J.; Chisolm, C.U.

    2000-01-01

    Positron annihilation spectroscopy was applied to study the effects of pre-treatment and composition of substrates on the quality and defect structure of electrodeposited thick chromium coatings. The results show that both parameters are important, and a scenario is proposed why the mechanically polished substrate gives more defective film than the electro polished one.

  2. Defect structure of electrodeposited chromium layers

    Energy Technology Data Exchange (ETDEWEB)

    Marek, T. E-mail: marek@para.chem.elte.hu; Suevegh, K.; Vertes, A.; El-Sharif, M.; McDougall, J.; Chisolm, C.U

    2000-06-01

    Positron annihilation spectroscopy was applied to study the effects of pre-treatment and composition of substrates on the quality and defect structure of electrodeposited thick chromium coatings. The results show that both parameters are important, and a scenario is proposed why the mechanically polished substrate gives more defective film than the electro polished one.

  3. Local structure reconstruction in hydrogenated amorphous silicon from angular correlation and synchrotron diffraction studies

    International Nuclear Information System (INIS)

    Britton, D.T.; Minani, E.; Knoesen, D.; Schut, H.; Eijt, S.W.H.; Furlan, F.; Giles, C.; Haerting, M.

    2006-01-01

    Hydrogenated amorphous silicon (a-Si:H) is a widely used thin film semiconductor material which is still incompletely understood. It is generally assumed to form a continuous random network, with a high concentration of coordination defects (dangling bonds), which are hydrogen terminated. Neither the exact nature of these sites nor the degree of medium range order has been fully determined. In this paper, we present the first results for the local structure, from a combined study using angular correlation of positron annihilation radiation (ACAR) and synchrotron radiation diffraction. Reciprocal space information is obtained directly, for the mesoscale structure and the local defect structure, from the orientation dependent diffraction and 2D-ACAR patterns, respectively. Furthermore, inversion of both patterns yields a comparison of real space information through maps of the silicon-silicon pair correlation function and the electron-positron autocorrelation function B 2γ (r). From this information, it is possible to identify the dominant structural defect as a vacancy-size dangling bond cluster, around which the network strain is fully relaxed

  4. Transmission electron microscopy of defects and internal fields in GaN structures

    Energy Technology Data Exchange (ETDEWEB)

    Mokhtari, H

    2001-07-01

    The main aim of this study was to understand the microstructure of GaN and InGaN/GaN and to examine electric fields around the defects, and across the quantum wells by electron holography. For this reason different types of GaN and InGaN/GaN samples have been prepared and studied. Conventional transmission electron microscopy has been used for structural study of two MBE grown GaN/GaAs samples, grown at room temperature and at 340 deg C. The structure of the samples were found to be hexagonal polycrystalline in an amorphous GaN matrix, and textured hexagonal polycrystalline material respectively. The experimental results indicate that the higher growth temperature results in a more crystalline material with a higher density of bigger grain sizes. Different types of undoped and Si doped GaN/Sapphire samples were studied, with respect to the defect structure in GaN films. GaN was found to be a highly defective material with a dislocation density of 10{sup 9}/cm{sup 2}. The majority of the dislocations are edge dislocations. It has been found that nanopipes are open core screw dislocations, and the population and size of the nanopipes is proportional to the Si doping concentration. Dislocation structures were found to depend on the Si doping level in the material, with higher Si doping giving a lower density of dislocations with a more random distribution. In addition some EELS, EDX and HRTEM have been performed on the nanopipes and dislocations in order to investigate Si segregation in the defects. In MBE grown GaN/In{sub 0.1}Ga{sub 0.9}N/GaN SQWs and MQWs, V shaped defects were found to be present in the InGaN regions, which locally reduced the width of the InGaN layers. (author)

  5. Transmission electron microscopy of defects and internal fields in GaN structures

    International Nuclear Information System (INIS)

    Mokhtari, H.

    2001-07-01

    The main aim of this study was to understand the microstructure of GaN and InGaN/GaN and to examine electric fields around the defects, and across the quantum wells by electron holography. For this reason different types of GaN and InGaN/GaN samples have been prepared and studied. Conventional transmission electron microscopy has been used for structural study of two MBE grown GaN/GaAs samples, grown at room temperature and at 340 deg C. The structure of the samples were found to be hexagonal polycrystalline in an amorphous GaN matrix, and textured hexagonal polycrystalline material respectively. The experimental results indicate that the higher growth temperature results in a more crystalline material with a higher density of bigger grain sizes. Different types of undoped and Si doped GaN/Sapphire samples were studied, with respect to the defect structure in GaN films. GaN was found to be a highly defective material with a dislocation density of 10 9 /cm 2 . The majority of the dislocations are edge dislocations. It has been found that nanopipes are open core screw dislocations, and the population and size of the nanopipes is proportional to the Si doping concentration. Dislocation structures were found to depend on the Si doping level in the material, with higher Si doping giving a lower density of dislocations with a more random distribution. In addition some EELS, EDX and HRTEM have been performed on the nanopipes and dislocations in order to investigate Si segregation in the defects. In MBE grown GaN/In 0.1 Ga 0.9 N/GaN SQWs and MQWs, V shaped defects were found to be present in the InGaN regions, which locally reduced the width of the InGaN layers. (author)

  6. AACSD: An atomistic analyzer for crystal structure and defects

    Science.gov (United States)

    Liu, Z. R.; Zhang, R. F.

    2018-01-01

    We have developed an efficient command-line program named AACSD (Atomistic Analyzer for Crystal Structure and Defects) for the post-analysis of atomic configurations generated by various atomistic simulation codes. The program has implemented not only the traditional filter methods like the excess potential energy (EPE), the centrosymmetry parameter (CSP), the common neighbor analysis (CNA), the common neighborhood parameter (CNP), the bond angle analysis (BAA), and the neighbor distance analysis (NDA), but also the newly developed ones including the modified centrosymmetry parameter (m-CSP), the orientation imaging map (OIM) and the local crystallographic orientation (LCO). The newly proposed OIM and LCO methods have been extended for all three crystal structures including face centered cubic, body centered cubic and hexagonal close packed. More specially, AACSD can be easily used for the atomistic analysis of metallic nanocomposite with each phase to be analyzed independently, which provides a unique pathway to capture their dynamic evolution of various defects on the fly. In this paper, we provide not only a throughout overview on various theoretical methods and their implementation into AACSD program, but some critical evaluations, specific testing and applications, demonstrating the capability of the program on each functionality.

  7. Defect structure in proton-irradiated copper and nickel

    International Nuclear Information System (INIS)

    Tsukuda, Noboru; Ehrhart, P.; Jaeger, W.; Schilling, W.; Dworschak, F.; Gadalla, A.A.

    1987-01-01

    This single crystals of copper or nickel with a thickness of about 10 μm are irradiated with 3 MeV protons at room temperature and the structures of resultant defects are investigated based on measurements of the effects of irradiation on the electrical resistivity, length, lattice constants, x-ray diffraction line profile and electron microscopic observations. The measurements show that the electrical resistivity increases with irradiation dose, while leveling off at high dose due to overlapping of irradiation cascades. The lattice constants decreases, indicating that many vacancies still remain while most of the interstitial stoms are eliminated, absorbed or consumed for dislocation loop formation. The x-ray line profile undergoes broadening, which is the result of dislocation loops, dislocation networks and SFT's introduced by the proton irradiation. Various defects have different effects though they cannot be identified separately from the profile alone. A satellite peak appears at a low angle, which seems to arise from periodic defect structures that are found in electron microscopic observations. In both copper and nickel, such periodic defect structures are seen over a wide range from high to low dose. Defect-free and defect-rich domains (defect walls), 0.5 to several μm in size, are alingned parallel to the {001} plane at intervals of 60 nm. The defect walls, which consist of dislocations, dislocation loops and SFT's, is 20 - 40 nm thick. (Nogami, K.)

  8. Stringy models of modified gravity: space-time defects and structure formation

    International Nuclear Information System (INIS)

    Mavromatos, Nick E.; Sakellariadou, Mairi; Yusaf, Muhammad Furqaan

    2013-01-01

    Starting from microscopic models of space-time foam, based on brane universes propagating in bulk space-times populated by D0-brane defects (''D-particles''), we arrive at effective actions used by a low-energy observer on the brane world to describe his/her observations of the Universe. These actions include, apart from the metric tensor field, also scalar (dilaton) and vector fields, the latter describing the interactions of low-energy matter on the brane world with the recoiling point-like space-time defect (D-particle). The vector field is proportional to the recoil velocity of the D-particle and as such it satisfies a certain constraint. The vector breaks locally Lorentz invariance, which however is assumed to be conserved on average in a space-time foam situation, involving the interaction of matter with populations of D-particle defects. In this paper we clarify the role of fluctuations of the vector field on structure formation and galactic growth. In particular we demonstrate that, already at the end of the radiation era, the (constrained) vector field associated with the recoil of the defects provides the seeds for a growing mode in the evolution of the Universe. Such a growing mode survives during the matter dominated era, provided the variance of the D-particle recoil velocities on the brane is larger than a critical value. We note that in this model, as a result of specific properties of D-brane dynamics in the bulk, there is no issue of overclosing the brane Universe for large defect densities. Thus, in these models, the presence of defects may be associated with large-structure formation. Although our string inspired models do have (conventional, from a particle physics point of view) dark matter components, nevertheless it is interesting that the role of ''extra'' dark matter is also provided by the population of massive defects. This is consistent with the weakly interacting character of the D-particle defects, which predominantly interact only

  9. Dislocations and related defects in niobium oxide structures

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, J S; Hutchinson, J L; Lincoln, F J [Oxford Univ. (UK). Inorganic Chemistry Lab.

    1977-01-07

    Lattice images of the niobium oxides, structures based on the linkage of octahedral groups in continuous networks, occasionally contain features recognizable as dislocations. Since lattice imaging enables the microstructure to be resolved in greater detail, at the level of local structural organization, it is possible to determine the configuration, and also to infer the chemical composition, of dislocated areas. By treating the niobium oxide 'block' structures as superstructures of the ReO/sub 3/ (DO/sub 9/) type, the topology of dislocations can be expressed by relations between the insertion (or deletion) of one or more half-planes of cations, or of oxygen atoms only, changes in the number of crystallographic shear plane interfaces between blocks or columns, changes in (idealized) dimensions and any requisite distortion in the third dimension. Mapping the structure around a dislocation, from the lattice image, is directly equivalent to plotting the Burgers' circuit. In this way, the precise nature of a dislocating perturbation and its implications for the local chemical composition of the crystal can be directly identified. The method is exemplified by analysis of dislocations and of related extended defects of several types, associated with twinning phenomena, semicoherent intergrowth between different ReO/sub 3/-type superstructures and arrays building up a low angle boundary. The essential features of the analysis are not restricted to structures of the niobium oxide type, but can be extended to other types of polyhedron networks.

  10. Identifying Structural Flow Defects in Disordered Solids Using Machine-Learning Methods

    Science.gov (United States)

    Cubuk, E. D.; Schoenholz, S. S.; Rieser, J. M.; Malone, B. D.; Rottler, J.; Durian, D. J.; Kaxiras, E.; Liu, A. J.

    2015-03-01

    We use machine-learning methods on local structure to identify flow defects—or particles susceptible to rearrangement—in jammed and glassy systems. We apply this method successfully to two very different systems: a two-dimensional experimental realization of a granular pillar under compression and a Lennard-Jones glass in both two and three dimensions above and below its glass transition temperature. We also identify characteristics of flow defects that differentiate them from the rest of the sample. Our results show it is possible to discern subtle structural features responsible for heterogeneous dynamics observed across a broad range of disordered materials.

  11. Defect-induced local variation of crystal phase transition temperature in metal-halide perovskites.

    Science.gov (United States)

    Dobrovolsky, Alexander; Merdasa, Aboma; Unger, Eva L; Yartsev, Arkady; Scheblykin, Ivan G

    2017-06-26

    Solution-processed organometal halide perovskites are hybrid crystalline semiconductors highly interesting for low-cost and efficient optoelectronics. Their properties are dependent on the crystal structure. Literature shows a variety of crystal phase transition temperatures and often a spread of the transition over tens of degrees Kelvin. We explain this inconsistency by demonstrating that the temperature of the tetragonal-to-orthorhombic phase transition in methylammonium lead triiodide depends on the concentration and nature of local defects. Phase transition in individual nanowires was studied by photoluminescence microspectroscopy and super-resolution imaging. We propose that upon cooling from 160 to 140 K, domains of the crystal containing fewer defects stay in the tetragonal phase longer than highly defected domains that readily transform to the high bandgap orthorhombic phase at higher temperatures. The existence of relatively pure tetragonal domains during the phase transition leads to drastic photoluminescence enhancement, which is inhomogeneously distributed across perovskite microcrystals.Understanding crystal phase transition in materials is of fundamental importance. Using luminescence spectroscopy and super-resolution imaging, Dobrovolsky et al. study the transition from the tetragonal to orthorhombic crystal phase in methylammonium lead triiodide nanowires at low temperature.

  12. Ductile failure analysis of API X65 pipes with notch-type defects using a local fracture criterion

    International Nuclear Information System (INIS)

    Oh, Chang-Kyun; Kim, Yun-Jae; Baek, Jong-Hyun; Kim, Young-Pyo; Kim, Woo-Sik

    2007-01-01

    A local failure criterion for API X65 steel is applied to predict ductile failure of full-scale API X65 pipes with simulated corrosion and gouge defects under internal pressure. The local failure criterion is the stress-modified fracture strain as a function of the stress triaxiality (defined by the ratio of the hydrostatic stress to the effective stress). Based on detailed finite element (FE) analyses with the proposed local failure criterion, burst pressures of defective pipes are estimated and compared with experimental data. For pipes with simulated corrosion defects, FE analysis with the proposed local fracture criterion indicates that predicted failure takes place after the defective pipes attain maximum loads for all cases, possibly due to the fact that the material has sufficient ductility. For pipes with simulated gouge defects, on the other hand, it is found that predicted failure takes place before global instability, and the predicted burst pressures are in good agreement with experimental data, providing confidence in the present approach

  13. Non-Destructive Evaluation of Kissing Bonds using Local Defect Resonance (LDR) Spectroscopy: A Simulation Study

    Science.gov (United States)

    Delrue, S.; Tabatabaeipour, M.; Hettler, J.; Van Den Abeele, K.

    With the growing demand from industry to optimize and further develop existing Non-Destructive Testing & Evaluation (NDT&E) techniques or new methods to detect and characterize incipient damage with high sensitivity and increased quality, ample efforts have been devoted to better understand the typical behavior of kissing bonds, such as delaminations and cracks. Recently, it has been shown experimentally that the nonlinear ultrasonic response of kissing bonds could be enhanced by using Local Defect Resonance (LDR) spectroscopy. LDR spectroscopy is an efficient NDT technique that takes advantage of the characteristic fre- quencies of the defect (defect resonances) in order to provide maximum acoustic wave-defect interaction. In fact, for nonlinear methodologies, the ultrasonic excitation of the sample should occur at either multiples or integer ratios of the characteristic defect resonance frequencies, in order to obtain the highest signal-to-noise response in the nonlinear LDR spectroscopy. In this paper, the potential of using LDR spectroscopy for the detection, localization and characterization of kissing bonds is illustrated using a 3D simulation code for elastic wave propagation in materials containing closed but dynamically active cracks or delaminations. Using the model, we are able to define an appropriate method, based on the Scaling Subtraction Method (SSM), to determine the local defect resonance frequencies of a delamination in a composite plate and to illustrate an increase in defect nonlinearity due to LDR. The simulation results will help us to obtain a better understanding of the concept of LDR and to assist in the further design and testing of LDR spectroscopy for the detection, localization and characterization of kissing bonds.

  14. Defects in ZnO, CdTe, and Si: Optical, structural, and electrical characterization

    CERN Multimedia

    Deicher, M; Kronenberg, J; Johnston, K; Roder, J; Byrne, D J

    Electronic and optical properties of semiconductors are extremely sensitive to defects and impurities that have localized electronic states with energy levels in the band gap of the semiconductor. Spectroscopic techniques like photo-luminescence (PL), deep level transient spectroscopy (DLTS), or Hall effect that are able to detect and characterize band gap states do not reveal direct information about their microscopic origin. To overcome this chemical "blindness" radioactive isotopes are used as a tracer. Moreover, the recoil energies involved in ${\\beta}$- and ${\\gamma}$-decays can be used to create intrinsic, isolated point defects (interstitials, vacancies) in a controlled way. A microscopic insight into the structure and the thermodynamic properties of complexes formed by interacting defects can be gained by detecting the hyperfine interaction between the nuclear moments of radioactive dopants and the electromagnetic fields present at the site of the radioactive nucleus. These techniques will be used to...

  15. Localized persistent spin currents in defect-free quasiperiodic rings with Aharonov–Casher effect

    International Nuclear Information System (INIS)

    Qiu, R.Z.; Chen, C.H.; Cheng, Y.H.; Hsueh, W.J.

    2015-01-01

    We propose strongly localized persistent spin current in one-dimensional defect-free quasiperiodic Thue–Morse rings with Aharonov–Casher effect. The results show that the characteristics of these localized persistent currents depend not only on the radius filling factor, but also on the strength of the spin–orbit interaction. The maximum persistent spin currents in systems always appear in the ring near the middle position of the system array whether or not the Thue–Morse rings array is symmetrical. The magnitude of the persistent currents is proportional to the sharpness of the resonance peak, which is dependent on the bandwidth of the allowed band in the band structure. The maximum persistent spin currents also increase exponentially as the generation order of the system increases. - Highlights: • Strongly localized persistent spin current in quasiperiodic AC rings is proposed. • Localized persistent spin currents are much larger than those produced by traditional mesoscopic rings. • Characteristics of the localized persistent currents depend on the radius filling factor and SOI strength. • The maximum persistent current increases exponentially with the system order. • The magnitude of the persistent currents is related to the sharpness of the resonance

  16. Fracture mechanical evaluation of high temperature structure and creep-fatigue defect assessment

    Energy Technology Data Exchange (ETDEWEB)

    Park, Chang Gyu; Kim, Jong Bum; Lee, Jae Han

    2004-02-01

    This study proposed the evaluation procedure of high temperature structures from the viewpoint of fracture mechanics on the cylindrical structure applicable to the KALIMER, which is developed by KAERI. For the evaluation of structural integrity, linear and non-linear fracture mechanics parameters were analyzed. Parameters used in creep defect growth applicable to high temperature structure of liquid metal reactor and the evaluation codes with these parameters were analyzed. The evaluation methods of defect initiation and defect growth which were established in R5/R6 code(UK), JNC method (Japan) and RCC-MR A16(France) code were analyzed respectively. The evaluation procedure of leak before break applicable to KALIMER was preliminarily developed and proposed. As an application example of defect growth, the creep-fatigue defect growth on circumferential throughwall defect in high temperature cylindrical structure was evaluated by RCC-MR A16 and this application technology was established.

  17. Electronic structure properties of deep defects in hBN

    Science.gov (United States)

    Dev, Pratibha; Prdm Collaboration

    In recent years, the search for room-temperature solid-state qubit (quantum bit) candidates has revived interest in the study of deep-defect centers in semiconductors. The charged NV-center in diamond is the best known amongst these defects. However, as a host material, diamond poses several challenges and so, increasingly, there is an interest in exploring deep defects in alternative semiconductors such as hBN. The layered structure of hBN makes it a scalable platform for quantum applications, as there is a greater potential for controlling the location of the deep defect in the 2D-matrix through careful experiments. Using density functional theory-based methods, we have studied the electronic and structural properties of several deep defects in hBN. Native defects within hBN layers are shown to have high spin ground states that should survive even at room temperature, making them interesting solid-state qubit candidates in a 2D matrix. Partnership for Reduced Dimensional Material (PRDM) is part of the NSF sponsored Partnerships for Research and Education in Materials (PREM).

  18. Nonlinear Near-Field Microwave Microscopy for RF Defect Localization in Nb-Based Superconducting Radio Frequency Cavities

    Science.gov (United States)

    Tai, Tamin

    2011-03-01

    Niobium Superconducting Radio Frequency (SRF) cavities are very sensitive to localized defects that give rise to quenches at high accelerating gradients. In order to identify these defects via scanning microscopy, and to further understand the origins of the quench under high radio frequency excitation (1-3 GHz), a scanning probe with localized and up to ~ 200 mT RF magnetic field is required for low temperature microscopy to achieve sub-micron resolution. For this purpose, we developed a micro loop probe on silicon substrate with outer diameter 20 μ m and inner diameter 17 μ m and successfully fabricated it by lithography. The probe has been used to identify a signal arising from the nonlinear Meissner effect in a Nb thin film. In addition, a magnetic write head is another promising candidate to achieve this goal of understanding localized defect behavior under high RF magnetic field at low temperatures. We will discuss and compare both types of probe for nonlinear scanning microscopy and RF defect localization in superconductors. We acknowledge the support of DOE/HEP.

  19. Band Structure Characteristics of Nacreous Composite Materials with Various Defects

    Science.gov (United States)

    Yin, J.; Zhang, S.; Zhang, H. W.; Chen, B. S.

    2016-06-01

    Nacreous composite materials have excellent mechanical properties, such as high strength, high toughness, and wide phononic band gap. In order to research band structure characteristics of nacreous composite materials with various defects, supercell models with the Brick-and-Mortar microstructure are considered. An efficient multi-level substructure algorithm is employed to discuss the band structure. Furthermore, two common systems with point and line defects and varied material parameters are discussed. In addition, band structures concerning straight and deflected crack defects are calculated by changing the shear modulus of the mortar. Finally, the sensitivity of band structures to the random material distribution is presented by considering different volume ratios of the brick. The results reveal that the first band gap of a nacreous composite material is insensitive to defects under certain conditions. It will be of great value to the design and synthesis of new nacreous composite materials for better dynamic properties.

  20. Characterization of point defects in monolayer arsenene

    Science.gov (United States)

    Liang, Xiongyi; Ng, Siu-Pang; Ding, Ning; Wu, Chi-Man Lawrence

    2018-06-01

    Topological defects that are inevitably found in 2D materials can dramatically affect their properties. Using density functional theory (DFT) calculations and ab initio molecular dynamics (AIMD) method, the structural, thermodynamic, electronic and magnetic properties of six types of typical point defects in arsenene, i.e. the Stone-Wales defect, single and double vacancies and adatoms, were systemically studied. It was found that these defects were all more easily generated in arsenene with lower formation energies than those with graphene and silicene. Stone-Wales defects can be transformed from pristine arsenene by overcoming a barrier of 2.19 eV and single vacancy defects tend to coalesce into double vacancy defects by diffusion. However, a type of adatom defect does not exhibit kinetic stability at room temperature. In addition, SV defects and another type of adatom defect can remarkably affect the electronic and magnetic properties of arsenene, e.g. they can introduce localized states near the Fermi level, as well as a strongly local magnetic moment due to dangling bond and unpaired electron. Furthermore, the simulated scanning tunneling microscopy (STM) and Raman spectroscopy were computed and the types of point defects can be fully characterized by correlating the STM images and Raman spectra to the defective atomistic structures. The results provide significant insights to the effect of defects in arsenene for potential applications, as well as identifications of two helpful tools (STM and Raman spectroscopy) to distinguish the type of defects in arsenene for future experiments.

  1. Theoretical studies of defects in insulators within the framework of the local density approximation

    International Nuclear Information System (INIS)

    Pederson, M.R.; Klein, B.M.

    1989-01-01

    The muffin-tin Green's function method and a linear combination of atomic orbitals cluster method for defect studies are discussed. These methods have been used to carry out calculations on F-like centers in MgO, CaO and LiF. Although the local density approximation leads to qualitatively correct information pertaining to the occupied states, in addition to the usual perfect-crystal band gap problem, the unoccupied defect levels are found to lie above the onset of the conducting band, in disagreement with the experimental measurements. Results using two methods for incorporating many-electron corrections into an LDA-like computational algorithm are discussed. These methods are the 'scissor-operator' approach to the band gap problem, and the self-interaction-correction (SIC) framework for improving the local spin density approximation. SIC results for the defect excitation spectra are in very good agreement with experiment. This method, when fully developed, should give an excellent ab initio description of defects in insulators. (author) 29 refs., 3 figs., 1 tab

  2. Assessment of local variability by high-throughput e-beam metrology for prediction of patterning defect probabilities

    Science.gov (United States)

    Wang, Fuming; Hunsche, Stefan; Anunciado, Roy; Corradi, Antonio; Tien, Hung Yu; Tang, Peng; Wei, Junwei; Wang, Yongjun; Fang, Wei; Wong, Patrick; van Oosten, Anton; van Ingen Schenau, Koen; Slachter, Bram

    2018-03-01

    We present an experimental study of pattern variability and defectivity, based on a large data set with more than 112 million SEM measurements from an HMI high-throughput e-beam tool. The test case is a 10nm node SRAM via array patterned with a DUV immersion LELE process, where we see a variation in mean size and litho sensitivities between different unique via patterns that leads to a seemingly qualitative differences in defectivity. The large available data volume enables further analysis to reliably distinguish global and local CDU variations, including a breakdown into local systematics and stochastics. A closer inspection of the tail end of the distributions and estimation of defect probabilities concludes that there is a common defect mechanism and defect threshold despite the observed differences of specific pattern characteristics. We expect that the analysis methodology can be applied for defect probability modeling as well as general process qualification in the future.

  3. Nonlinear defect localized modes and composite gray and anti-gray solitons in one-dimensional waveguide arrays with dual-flip defects

    Science.gov (United States)

    Liu, Yan; Guan, Yefeng; Li, Hai; Luo, Zhihuan; Mai, Zhijie

    2017-08-01

    We study families of stationary nonlinear localized modes and composite gray and anti-gray solitons in a one-dimensional linear waveguide array with dual phase-flip nonlinear point defects. Unstaggered fundamental and dipole bright modes are studied when the defect nonlinearity is self-focusing. For the fundamental modes, symmetric and asymmetric nonlinear modes are found. Their stable areas are studied using different defect coefficients and their total power. For the nonlinear dipole modes, the stability conditions of this type of mode are also identified by different defect coefficients and the total power. When the defect nonlinearity is replaced by the self-defocusing one, staggered fundamental and dipole bright modes are created. Finally, if we replace the linear waveguide with a full nonlinear waveguide, a new type of gray and anti-gray solitons, which are constructed by a kink and anti-kink pair, can be supported by such dual phase-flip defects. In contrast to the usual gray and anti-gray solitons formed by a single kink, their backgrounds on either side of the gray hole or bright hump have the same phase.

  4. Graphene materials having randomly distributed two-dimensional structural defects

    Science.gov (United States)

    Kung, Harold H; Zhao, Xin; Hayner, Cary M; Kung, Mayfair C

    2013-10-08

    Graphene-based storage materials for high-power battery applications are provided. The storage materials are composed of vertical stacks of graphene sheets and have reduced resistance for Li ion transport. This reduced resistance is achieved by incorporating a random distribution of structural defects into the stacked graphene sheets, whereby the structural defects facilitate the diffusion of Li ions into the interior of the storage materials.

  5. Stress fields and energy of disclination-type defects in zones of localized elastic distortions

    Science.gov (United States)

    Sukhanov, Ivan I.; Tyumentsev, Alexander N.; Ditenberg, Ivan A.

    2016-11-01

    This paper studies theoretically the elastically deformed state and analyzes deformation mechanisms in nanocrystals in the zones of localized elastic distortions and related disclination-type defects, such as dipole, quadrupole and multipole of partial disclinations. Significant differences in the energies of quadrupole and multipole configurations in comparison with nanodipole are revealed. The mechanism of deformation localization in the field of elastic distortions is proposed, which is a quasi-periodic sequence of formation and relaxation of various disclination ensembles with a periodic change in the energy of the defect.

  6. Vibration of carbon nanotubes with defects: order reduction methods

    Science.gov (United States)

    Hudson, Robert B.; Sinha, Alok

    2018-03-01

    Order reduction methods are widely used to reduce computational effort when calculating the impact of defects on the vibrational properties of nearly periodic structures in engineering applications, such as a gas-turbine bladed disc. However, despite obvious similarities these techniques have not yet been adapted for use in analysing atomic structures with inevitable defects. Two order reduction techniques, modal domain analysis and modified modal domain analysis, are successfully used in this paper to examine the changes in vibrational frequencies, mode shapes and mode localization caused by defects in carbon nanotubes. The defects considered are isotope defects and Stone-Wales defects, though the methods described can be extended to other defects.

  7. Comprehensive Study of Solar Cell Structure Defects by Means of Noise and Light Emission Analysis

    Directory of Open Access Journals (Sweden)

    Robert Macku

    2012-01-01

    Full Text Available This paper discusses the issue of silicon solar cells localized defects from metrological and physical points of view. Structure imperfections represent the real problem because of solar cells long-term degradation and conversion efficiency decreasing. To this aim we pay our attention to research relating to the defect light emission and correlation with rectangular microplasma fluctuation. A sensitive CCD camera has been used for mapping of surface photon emission. The operation point of the samples has been set to reverse bias mode, and different electric field intensity was applied. We managed to get interesting information using a combination of optical investigation and electrical noise measurement in time and spectral domain. It will be revealed that a direct correlation between noise and photon emission exists and the results related to several defect spots are presented in detail in this paper.

  8. Detecting wood surface defects with fusion algorithm of visual saliency and local threshold segmentation

    Science.gov (United States)

    Wang, Xuejuan; Wu, Shuhang; Liu, Yunpeng

    2018-04-01

    This paper presents a new method for wood defect detection. It can solve the over-segmentation problem existing in local threshold segmentation methods. This method effectively takes advantages of visual saliency and local threshold segmentation. Firstly, defect areas are coarsely located by using spectral residual method to calculate global visual saliency of them. Then, the threshold segmentation of maximum inter-class variance method is adopted for positioning and segmenting the wood surface defects precisely around the coarse located areas. Lastly, we use mathematical morphology to process the binary images after segmentation, which reduces the noise and small false objects. Experiments on test images of insect hole, dead knot and sound knot show that the method we proposed obtains ideal segmentation results and is superior to the existing segmentation methods based on edge detection, OSTU and threshold segmentation.

  9. Algebra of 2D periodic operators with local and perpendicular defects

    DEFF Research Database (Denmark)

    Kutsenko, Anton

    2016-01-01

    We show that 2D periodic operators with local and perpendicular defects form an algebra. We provide an algorithm for finding spectrum for such operators. While the continuous spectral components can be computed by simple algebraic operations on some matrix-valued functions and a few number...

  10. Phononic crystals with one-dimensional defect as sensor materials

    Science.gov (United States)

    Aly, Arafa H.; Mehaney, Ahmed

    2017-09-01

    Recently, sensor technology has attracted great attention in many fields due to its importance in many engineering applications. In the present work, we introduce a study using the innovative properties of phononic crystals in enhancing a new type of sensors based on the intensity of transmitted frequencies inside the phononic band gaps. Based on the transfer matrix method and Bloch theory, the expressions of the reflection coefficient and dispersion relation are presented. Firstly, the influences of filling fraction ratio and the angle of incidence on the band gap width are discussed. Secondly, the localization of waves inside band gaps is discussed by enhancing the properties of the defected phononic crystal. Compared to the periodic structure, localization modes involved within the band structure of phononic crystals with one and two defect layers are presented and compared. Trapped localized modes can be detected easily and provide more information about defected structures. Such method could increase the knowledge of manufacturing defects by measuring the intensity of propagated waves in the resonant cavities and waveguides. Moreover, several factors enhance the role of the defect layer on the transmission properties of defected phononic crystals are presented. The acoustic band gap can be used to detect or sense the type of liquids filling the defect layer. The liquids make specific resonant modes through the phononic band gaps that related to the properties of each liquid. The frequency where the maximum resonant modes occur is correlated to material properties and allows to determine several parameters such as the type of an unknown material.

  11. Related Structure Characters and Stability of Structural Defects in a Metallic Glass.

    Science.gov (United States)

    Niu, Xiaofeng; Feng, Shidong; Pan, Shaopeng

    2018-03-22

    Structural defects were investigated by a recently proposed structural parameter, quasi-nearest atom (QNA), in a modeled Zr 50 Cu 50 metallic glass through molecular dynamics simulations. More QNAs around an atom usually means that more defects are located near the atom. Structural analysis reveals that the spatial distribution of the numbers of QNAs displays to be clearly heterogeneous. Furthermore, QNA is closely correlated with cluster connections, especially four-atom cluster connections. Atoms with larger coordination numbers usually have less QNAs. When two atoms have the same coordination number, the atom with larger five-fold symmetry has less QNAs. The number of QNAs around an atom changes rather frequently and the change of QNAs might be correlated with the fast relaxation metallic glasses.

  12. Related Structure Characters and Stability of Structural Defects in a Metallic Glass

    Science.gov (United States)

    Niu, Xiaofeng; Feng, Shidong; Pan, Shaopeng

    2018-01-01

    Structural defects were investigated by a recently proposed structural parameter, quasi-nearest atom (QNA), in a modeled Zr50Cu50 metallic glass through molecular dynamics simulations. More QNAs around an atom usually means that more defects are located near the atom. Structural analysis reveals that the spatial distribution of the numbers of QNAs displays to be clearly heterogeneous. Furthermore, QNA is closely correlated with cluster connections, especially four-atom cluster connections. Atoms with larger coordination numbers usually have less QNAs. When two atoms have the same coordination number, the atom with larger five-fold symmetry has less QNAs. The number of QNAs around an atom changes rather frequently and the change of QNAs might be correlated with the fast relaxation metallic glasses. PMID:29565298

  13. Local and average structure of Mn- and La-substituted BiFeO3

    Science.gov (United States)

    Jiang, Bo; Selbach, Sverre M.

    2017-06-01

    The local and average structure of solid solutions of the multiferroic perovskite BiFeO3 is investigated by synchrotron X-ray diffraction (XRD) and electron density functional theory (DFT) calculations. The average experimental structure is determined by Rietveld refinement and the local structure by total scattering data analyzed in real space with the pair distribution function (PDF) method. With equal concentrations of La on the Bi site or Mn on the Fe site, La causes larger structural distortions than Mn. Structural models based on DFT relaxed geometry give an improved fit to experimental PDFs compared to models constrained by the space group symmetry. Berry phase calculations predict a higher ferroelectric polarization than the experimental literature values, reflecting that structural disorder is not captured in either average structure space group models or DFT calculations with artificial long range order imposed by periodic boundary conditions. Only by including point defects in a supercell, here Bi vacancies, can DFT calculations reproduce the literature results on the structure and ferroelectric polarization of Mn-substituted BiFeO3. The combination of local and average structure sensitive experimental methods with DFT calculations is useful for illuminating the structure-property-composition relationships in complex functional oxides with local structural distortions.

  14. Transfer-matrix approach for modulated structures with defects

    International Nuclear Information System (INIS)

    Kostyrko, T.

    2000-01-01

    We consider scattering of electrons by defects in a periodically modulated, quasi-one-dimensional structure, within a tight-binding model. Combining a transfer matrix method and a Green function method we derive a formula for a Landauer conductance and show its equivalence to the result of Kubo linear response theory. We obtain explicitly unperturbed lattice Green functions from their equations of motion, using the transfer matrices. We apply the presented formalism in computations of the conductance of several multiband modulated structures with defects: (a) carbon nanotubes (b) two-dimensional (2D) superlattice (c) modulated leads with 1D wire in the tunneling regime. (c) 2000 The American Physical Society

  15. Tuning the reactivity of Ru nanoparticles by defect engineering of the reduced graphene oxide support

    KAUST Repository

    Liu, Xin

    2014-01-01

    We systematically investigated the electronic structure of Ru nanoparticles supported on various local structures on reduced graphene oxide (rGO) by first-principles-based calculations. We showed that Ru nanoparticles prefer to nucleate at these localized defect structures on rGO, which act as strong trapping sites for Ru nanoparticles and inhibit their aggregation. The binding of Ru nanoparticles to rGO, which is dependent on these local defect structures and correlates with the interfacial charge transfer, determines the electronic structure of the composites. Further study reveals that the performance of these composites against oxygen adsorption changes proportionally with the shift of the d-band center of the nanoparticles. The correlation between the defect structures on rGO and the reactivity of the composites suggests that controlled modification of the graphenic support by defect engineering would be an efficient way to fabricate new transition metal/rGO composites with high stability and desired reactivity. This journal is © the Partner Organisations 2014.

  16. Extracting and identifying concrete structural defects in GPR images

    Science.gov (United States)

    Ye, Qiling; Jiao, Liangbao; Liu, Chuanxin; Cao, Xuehong; Huston, Dryver; Xia, Tian

    2018-03-01

    Traditionally most GPR data interpretations are performed manually. With the advancement of computing technologies, how to automate GPR data interpretation to achieve high efficiency and accuracy has become an active research subject. In this paper, analytical characterizations of major defects in concrete structures, including delamination, air void and moisture in GPR images, are performed. In the study, the image features of different defects are compared. Algorithms are developed for defect feature extraction and identification. For validations, both simulation results and field test data are utilized.

  17. Point defect properties of ternary fcc Fe-Cr-Ni alloys

    Energy Technology Data Exchange (ETDEWEB)

    Wróbel, J.S., E-mail: jan.wrobel@inmat.pw.edu.pl [Faculty of Materials Science and Engineering, Warsaw University of Technology, Woloska 141, 02-507 Warsaw (Poland); Nguyen-Manh, D.; Dudarev, S.L. [CCFE, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Kurzydłowski, K.J. [Faculty of Materials Science and Engineering, Warsaw University of Technology, Woloska 141, 02-507 Warsaw (Poland)

    2017-02-15

    Highlights: • Properties of point defects depend on the local atomic environment. • As the degree of chemical order increases, the formation energies increase, too. • Relaxation volumes are larger for the more ordered structures. - Abstract: The properties of point defects in Fe-Cr-Ni alloys are investigated, using density functional theory (DFT), for two alloy compositions, Fe{sub 50}Cr{sub 25}Ni{sub 25} and Fe{sub 55}Cr{sub 15}Ni{sub 30}, assuming various degrees of short-range order. DFT-based Monte Carlo simulations are applied to explore short-range order parameters and generate representative structures of alloys. Chemical potentials for the relevant structures are estimated from the minimum of the substitutional energy at representative atoms sites. Vacancies and 〈1 0 0〉 dumbbells are introduced in the Fe{sub 2}CrNi intermetallic phase as well as in two Fe{sub 55}Cr{sub 15}Ni{sub 30} alloy structures: the disordered and short range-ordered structures, generated using Monte Carlo simulations at 2000 K and 300 K, respectively. Formation energies and relaxation volumes of defects as well as changes of magnetic moments caused by the presence of defects are investigated as functions of the local environment of a defect.

  18. Interactions of structural defects with metallic impurities in multicrystalline silicon

    International Nuclear Information System (INIS)

    McHugo, S.A.; Thompson, A.C.; Hieslmair, H.

    1997-01-01

    Multicrystalline silicon is one of the most promising materials for terrestrial solar cells. It is critical to getter impurities from the material as well as inhibit contamination during growth and processing. Standard processing steps such as, phosphorus in-diffusion for p-n junction formation and aluminum sintering for backside ohmic contact fabrication, intrinsically possess gettering capabilities. These processes have been shown to improve L n values in regions of multicrystalline silicon with low structural defect densities but not in highly dislocated regions. Recent Deep Level Transient Spectroscopy (DLTS) results indirectly reveal higher concentrations of iron in highly dislocated regions while further work suggests that the release of impurities from structural defects, such as dislocations, is the rate limiting step for gettering in multicrystalline silicon. The work presented here directly demonstrates the relationship between metal impurities, structural defects and solar cell performance in multicrystalline silicon. Edge-defined Film-fed Growth (EFG) multicrystalline silicon in the as-grown state and after full solar cell processing was used in this study. Standard solar cell processing steps were carried out at ASE Americas Inc. Metal impurity concentrations and distributions were determined by use of the x-ray fluorescence microprobe (beamline 10.3.1) at the Advanced Light Source, Lawrence Berkeley National Laboratory. The sample was at atmosphere so only elements with Z greater than silicon could be detected, which includes all metal impurities of interest. Structural defect densities were determined by preferential etching and surface analysis using a Scanning Electron Microscope (SEM) in secondary electron mode. Mapped areas were exactly relocated between the XRF and SEM to allow for direct comparison of impurity and structural defect distributions

  19. Correlation between local glaucomatous visual field defects and loss of nerve fiber layer thickness measured with polarimetry and spectral domain OCT.

    Science.gov (United States)

    Horn, Folkert K; Mardin, Christian Y; Laemmer, Robert; Baleanu, Delia; Juenemann, Anselm M; Kruse, Friedrich E; Tornow, Ralf P

    2009-05-01

    To study the correlation between local perimetric field defects and glaucoma-induced thickness reduction of the nerve layer measured in the peripapillary area with scanning laser polarimetry (SLP) and spectral domain optical coherence tomography (SOCT) and to compare the results with those of a theoretical model. The thickness of the retinal nerve fiber layer was determined in 32 sectors (11.25 degrees each) by using SLP with variable cornea compensation (GDxVCC; Laser Diagnostics, San Diego, CA) and the newly introduced high-resolution SOCT (Spectralis; Heidelberg Engineering, Heidelberg, Germany). Eighty-eight healthy subjects served as control subjects, to determine the thickness deviation in patients with glaucoma. The relationship between glaucomatous nerve fiber reduction and visual field losses was calculated in six nerve fiber bundle-related areas. Sixty-four patients at different stages of open-angle glaucoma and 26 patients with ocular hypertension underwent perimetry (Octopus G1; Haag-Streit, Köniz, Switzerland) and measurements with the two morphometric techniques. Sector-shaped analyses between local perimetric losses and reduction of the retinal nerve fiber layer thickness showed a significant association for corresponding areas except for the central visual field in SLP. Correlation coefficients were highest in the area of the nasal inferior visual field (SOCT, -0.81; SLP, -0.57). A linear model describes the association between structural and functional damage. Localized perimetric defects can be explained by reduced nerve fiber layer thickness. The data indicate that the present SOCT is useful for determining the functional-structural relationship in peripapillary areas and that association between perimetric defects and corresponding nerve fiber losses is stronger for SOCT than for the present SLP. (ClinicalTrials.gov number, NCT00494923.).

  20. Methods of the Detection and Identification of Structural Defects in Saturated Metallic Composite Castings

    Directory of Open Access Journals (Sweden)

    Gawdzińska K.

    2017-09-01

    Full Text Available Diagnostics of composite castings, due to their complex structure, requires that their characteristics are tested by an appropriate description method. Any deviation from the specific characteristic will be regarded as a material defect. The detection of defects in composite castings sometimes is not sufficient and the defects have to be identified. This study classifies defects found in the structures of saturated metallic composite castings and indicates those stages of the process where such defects are likely to be formed. Not only does the author determine the causes of structural defects, describe methods of their detection and identification, but also proposes a schematic procedure to be followed during detection and identification of structural defects of castings made from saturated reinforcement metallic composites. Alloys examination was conducted after technological process, while using destructive (macroscopic tests, light and scanning electron microscopy and non-destructive (ultrasonic and X-ray defectoscopy, tomography, gravimetric method methods. Research presented in this article are part of author’s work on castings quality.

  1. Investigation of defect structures in solids

    Energy Technology Data Exchange (ETDEWEB)

    Dienel, G; Hubrig, W H; Schenk, M; Syhre, H [Zentralinstitut fuer Kernforschung, Rossendorf bei Dresden (German Democratic Republic)

    1976-01-01

    Some central points of interest of research in the field of defect structures in solids dealt with at the Central Institute of Nuclear Research at Rossendorf in the last years are presented. Studies on f.c.c. and b.c.c. metals, radiation-induced phase transitions in perovskites and ion-implanted silicon are described in some detail.

  2. Study of reticular defects in V3Si (A15 structure)

    International Nuclear Information System (INIS)

    Ben Lamine, Abdelmottaleb

    1980-01-01

    The A15 crystal structure is that of superconductive compounds with high critical temperature. This research thesis aims at studying its possible reticular defects. In a first part, the author presents this structure and more particularly its crystallographic properties, reports the indexing of electronic diffraction diagrams (point diagrams and line diagrams of Kikuchi) in the case of V 3 Si. Then, after having described the sample preparation technique, the author reports the study of reticular defects by high voltage electronic microscopy on a raw V 3 Si crystal. The existence of a specific defect is highlighted and the crystallographic study of this defect is reported. It has been performed by means of computer-based simulation of contrast (TWODIS software). Results are then discussed

  3. Effects of local defect growth in direct-drive cryogenic implosions on OMEGA

    Energy Technology Data Exchange (ETDEWEB)

    Igumenshchev, I. V.; Shmayda, W. T.; Harding, D. R.; Sangster, T. C. [Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623-1299 (United States); Goncharov, V. N. [Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623-1299 (United States); Department of Mechanical Engineering, University of Rochester, Rochester, New York 14623 (United States); Meyerhofer, D. D. [Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623-1299 (United States); Department of Mechanical Engineering, University of Rochester, Rochester, New York 14623 (United States); Department of Physics and Astronomy, University of Rochester, Rochester, New York 14623 (United States)

    2013-08-15

    Spherically symmetric, low-adiabat (adiabat α ≲ 3) cryogenic direct-drive-implosion experiments on the OMEGA laser [T. R. Boehly et al., Opt. Commun. 133, 495 (1995)] yield less than 10% of the neutrons predicted in one-dimensional hydrodynamic simulations. Two-dimensional hydrodynamic simulations suggest that this performance degradation can be explained assuming perturbations from isolated defects of submicron to tens-of-micron scale on the outer surface or inside the shell of implosion targets. These defects develop during the cryogenic filling process and typically number from several tens up to hundreds for each target covering from about 0.2% to 1% of its surface. The simulations predict that such defects can significantly perturb the implosion and result in the injection of about 1 to 2 μg of the hot ablator (carbon-deuterium) and fuel (deuterium-tritium) materials from the ablation surface into the targets. Both the hot mass injection and perturbations of the shell reduce the final shell convergence ratio and implosion performance. The injected carbon ions radiatively cool the hot spot, reducing the fuel temperature, and further reducing the neutron yield. The negative effect of local defects can be minimized by decreasing the number and size of these defects and/or using more hydrodynamically stable implosion designs with higher shell adiabat.

  4. Plasma-based localized defect for switchable coupling applications

    International Nuclear Information System (INIS)

    Varault, Stefan; Gabard, Benjamin; Sokoloff, Jerome; Bolioli, Sylvain

    2011-01-01

    We report in this paper experimental measurements in order to validate the concept of switchable electromagnetic band gap filters based on plasma capillaries in the microwave regime. The plasma tube is embedded inside the structure to create a bistable (plasma on or off) punctual defect. We first investigate two kinds of discharge tubes: Ar-Hg and pure Ne, which we then use to experimentally achieve plasma-based reconfigurable applications, namely, a two-port coupler and a two-port demultiplexer.

  5. Defects and defect generation in oxide layer of ion implanted silicon-silicon dioxide structures

    CERN Document Server

    Baraban, A P

    2002-01-01

    One studies mechanism of generation of defects in Si-SiO sub 2 structure oxide layer as a result of implantation of argon ions with 130 keV energy and 10 sup 1 sup 3 - 3.2 x 10 sup 1 sup 7 cm sup - sup 2 doses. Si-SiO sub 2 structures are produced by thermal oxidation of silicon under 950 deg C temperature. Investigations were based on electroluminescence technique and on measuring of high-frequency volt-farad characteristics. Increase of implantation dose was determined to result in spreading of luminosity centres and in its maximum shifting closer to boundary with silicon. Ion implantation was shown, as well, to result in increase of density of surface states at Si-SiO sub 2 interface. One proposed model of defect generation resulting from Ar ion implantation into Si-SiO sub 2

  6. New fundamental defects in a-SiO2

    International Nuclear Information System (INIS)

    Karna, S.P.; Kurtz, H.A.; Shedd, W.M.; Pugh, R.D.; Singaraju, B.K.

    1999-01-01

    Throughout the three decades of research into radiation-induced degradation of metal-oxide-semiconductor (MOS) devices, investigators understood that point defects in the Si-SiO 2 structure (localized deviations from stoichiometrically pure Si and SiO 2 ) are responsible for many observed anomalies. Basic research in this area has progressed along two tracks: (i) differentiating the anomalies based upon subtle differences in their characteristic behavior, and (ii) precise description of the defects responsible for the anomalous behavior. These two research tracks are complementary since often a discovery in one area provides insight and ultimately leads to discoveries in the other. Here, the atomic structure and spin properties of two previously undescribed amorphous silicon dioxide fundamental point defects have been characterized for the first time by ab initio quantum mechanical calculations. Both defects are electrically neutral trivalent silicon centers in the oxide. One of the defects, the X-center, is determined to have an O 2 Sitriple b ondSi ↑ atomic structure. The other defect, called the Y-center, is found to have an OSi 2 triple b ondSi ↑ structure. Calculated electronic and electrical properties of the new defect centers are consistent with the published characteristics of the oxide switching trap or border trap precursors

  7. Experimental study of defect power reactor fuel. Final report

    International Nuclear Information System (INIS)

    Forsyth, R.S.; Jonsson, T.

    1982-01-01

    Two BWR fuel rods, one intact and one defect, with the same manufacturing and irradiation data have been examined in a comparative study. The defect rod has been irradiated in a defect condition during approximately one reactor cycle and has consequently some secondary defects. The defect rod has two penetrating defects at a distance of about 1.5 meters from each other. Comparison with the intact rod shows a large Cs loss from the defect rod, especially between the cladding defects, where the loss is measured to about 30 %. The leachibility in deionized water is higher for Cs, U and Cm for fuel from the defect rod. The leaching results are more complex for Sr-90, Pu and Am. The fuel in the defect rod has undergone a change of structure with gain growth and formation of oriented fuel structure. The cladding of the defect rod is hydrided locally in some parts of the lower part of the rod and furthermore over a more extended region near the end of the rod. (Authors)

  8. Binding energetics of substitutional and interstitial helium and di-helium defects with grain boundary structure in α-Fe

    International Nuclear Information System (INIS)

    Tschopp, M. A.; Gao, F.; Yang, L.; Solanki, K. N.

    2014-01-01

    The formation/binding energetics and length scales associated with the interaction between He atoms and grain boundaries in BCC α-Fe were explored. Ten different low Σ grain boundaries from the 〈100〉 and 〈110〉 symmetric tilt grain boundary systems were used. In this work, we then calculated formation/binding energies for 1–2 He atoms in the substitutional and interstitial sites (HeV, He 2 V, HeInt, He 2 Int) at all potential grain boundary sites within 15 Å of the boundary (52 826 simulations total). The present results provide detailed information about the interaction energies and length scales of 1–2 He atoms with grain boundaries for the structures examined. A number of interesting new findings emerge from the present study. For instance, the Σ3(112) twin boundary in BCC Fe possesses a much smaller binding energy than other boundaries, which corresponds in long time dynamics simulations to the ability of an interstitial He defect to break away from the boundary in simulations on the order of nanoseconds. Additionally, positive correlations between the calculated formation/binding energies of the He defects (R > 0.9) asserts that the local environment surrounding each site strongly influences the He defect energies and that highly accurate quantum mechanics calculations of lower order defects may be an adequate predictor of higher order defects. Various metrics to quantify or classify the local environment were compared with the He defect binding energies. The present work shows that the binding and formation energies for He defects are important for understanding the physics of He diffusion and trapping by grain boundaries, which can be important for modeling He interactions in polycrystalline steels

  9. Binding energetics of substitutional and interstitial helium and di-helium defects with grain boundary structure in α-Fe

    Energy Technology Data Exchange (ETDEWEB)

    Tschopp, M. A., E-mail: mark.tschopp@gatech.edu [Dynamic Research Corporation, (on site at) U.S. Army Research Laboratory, Aberdeen Proving Ground, Maryland 21005 (United States); Center for Advanced Vehicular Systems, Mississippi State University, Starkville, Mississippi 39762 (United States); Gao, F.; Yang, L. [Pacific Northwest National Laboratory, Richland, Washington 99352 (United States); Solanki, K. N. [Arizona State University, School for Engineering of Matter, Transport and Energy, Tempe, Arizona 85287 (United States)

    2014-01-21

    The formation/binding energetics and length scales associated with the interaction between He atoms and grain boundaries in BCC α-Fe were explored. Ten different low Σ grain boundaries from the 〈100〉 and 〈110〉 symmetric tilt grain boundary systems were used. In this work, we then calculated formation/binding energies for 1–2 He atoms in the substitutional and interstitial sites (HeV, He{sub 2}V, HeInt, He{sub 2}Int) at all potential grain boundary sites within 15 Å of the boundary (52 826 simulations total). The present results provide detailed information about the interaction energies and length scales of 1–2 He atoms with grain boundaries for the structures examined. A number of interesting new findings emerge from the present study. For instance, the Σ3(112) twin boundary in BCC Fe possesses a much smaller binding energy than other boundaries, which corresponds in long time dynamics simulations to the ability of an interstitial He defect to break away from the boundary in simulations on the order of nanoseconds. Additionally, positive correlations between the calculated formation/binding energies of the He defects (R > 0.9) asserts that the local environment surrounding each site strongly influences the He defect energies and that highly accurate quantum mechanics calculations of lower order defects may be an adequate predictor of higher order defects. Various metrics to quantify or classify the local environment were compared with the He defect binding energies. The present work shows that the binding and formation energies for He defects are important for understanding the physics of He diffusion and trapping by grain boundaries, which can be important for modeling He interactions in polycrystalline steels.

  10. Application of Ultrasonic Phased Array Technology to the Detection of Defect in Composite Stiffened-structures

    Science.gov (United States)

    Zhou, Yuan-Qi; Zhan, Li-Hua

    2016-05-01

    Composite stiffened-structure consists of the skin and stringer has been widely used in aircraft fuselage and wings. The main purpose of the article is to detect the composite material reinforced structure accurately and explore the relationship between defect formation and structural elements or curing process. Based on ultrasonic phased array inspection technology, the regularity of defects in the manufacture of composite materials are obtained, the correlation model between actual defects and nondestructive testing are established. The article find that the forming quality of deltoid area in T-stiffened structure is obviously improved by pre-curing, the defects of hat-stiffened structure are affected by the mandrel. The results show that the ultrasonic phased array inspection technology can be an effectively way for the detection of composite stiffened-structures, which become an important means to control the defects of composite and improve the quality of the product.

  11. Structural defects in cubic semiconductors characterized by aberration-corrected scanning transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Arroyo Rojas Dasilva, Yadira; Kozak, Roksolana; Erni, Rolf; Rossell, Marta D., E-mail: marta.rossell@empa.ch

    2017-05-15

    The development of new electro-optical devices and the realization of novel types of transistors require a profound understanding of the structural characteristics of new semiconductor heterostructures. This article provides a concise review about structural defects which occur in semiconductor heterostructures on the basis of micro-patterned Si substrates. In particular, one- and two-dimensional crystal defects are being discussed which are due to the plastic relaxation of epitaxial strain caused by the misfit of crystal lattices. Besides a few selected examples from literature, we treat in particular crystal defects occurring in GaAs/Si, Ge/Si and β-SiC/Si structures which are studied by high-resolution annular dark-field scanning transmission electron microscopy. The relevance of this article is twofold; firstly, it should provide a collection of data which are of help for the identification and characterization of defects in cubic semiconductors by means of atomic-resolution imaging, and secondly, the experimental data shall provide a basis for advancing the understanding of device characteristics with the aid of theoretical modelling by considering the defective nature of strained semiconductor heterostructures. - Highlights: • The heterogeneous integration of high-quality compound semiconductors remains a challenge. • Lattice defects cause severe degradation of the semiconductor device performances. • Aberration-corrected HAADF-STEM allows atomic-scale characterization of defects. • An overview of lattice defects found in cubic semiconductors is presented. • Theoretical modelling and calculations are needed to determine the defect properties.

  12. A systematic study of ball passing frequencies based on dynamic modeling of rolling ball bearings with localized surface defects

    Science.gov (United States)

    Niu, Linkai; Cao, Hongrui; He, Zhengjia; Li, Yamin

    2015-11-01

    Ball passing frequencies (BPFs) are very important features for condition monitoring and fault diagnosis of rolling ball bearings. The ball passing frequency on outer raceway (BPFO) and the ball passing frequency on inner raceway (BPFI) are usually calculated by two well-known kinematics equations. In this paper, a systematic study of BPFs of rolling ball bearings is carried out. A novel method for accurately calculating BPFs based on a complete dynamic model of rolling ball bearings with localized surface defects is proposed. In the used dynamic model, three-dimensional motions, relative slippage, cage effects and localized surface defects are all considered. Moreover, localized surface defects are modeled accurately with consideration of the finite size of the ball, the additional clearance due to material absence, and changes of contact force directions. The reasonability of the proposed method for the prediction of dynamic behaviors of actual ball bearings with localized surface defects and for the calculation of BPFs is discussed by investigating the motion characteristics of a ball when it rolls through a defect. Parametric investigation shows that the shaft speed, external loads, the friction coefficient, raceway groove curvature factors, the initial contact angle, and defect sizes have great effects on BPFs. For a loaded ball bearing, the combination of rolling and sliding in contact region occurs, and the BPFs calculated by simple kinematical relationships are inaccurate, especially for high speed, low external load, and large initial contact angle conditions where severe skidding occurs. The hypothesis that the percentage variation of the spacing between impulses in a defective ball bearing was about 1-2% reported in previous investigations can be satisfied only for the conditions where the skidding effect in a bearing is slight. Finally, the proposed method is verified with two experiments.

  13. Trace Element Compositions and Defect Structures of High-Purity Quartz from the Southern Ural Region, Russia

    Directory of Open Access Journals (Sweden)

    Jens Götze

    2017-10-01

    Full Text Available Quartz samples of different origin from 10 localities in the Southern Ural region, Russia have been investigated to characterize their trace element compositions and defect structures. The analytical combination of cathodoluminescence (CL microscopy and spectroscopy, electron paramagnetic resonance (EPR spectroscopy, and trace-element analysis by inductively coupled plasma mass spectrometry (ICP-MS revealed that almost all investigated quartz samples showed very low concentrations of trace elements (cumulative concentrations of <50 ppm with <30 ppm Al and <10 ppm Ti and low abundances of paramagnetic defects, defining them economically as “high-purity” quartz (HPQ suitable for high-tech applications. EPR and CL data confirmed the low abundances of substitutional Ti and Fe, and showed Al to be the only significant trace element structurally bound in the investigated quartz samples. CL microscopy revealed a heterogeneous distribution of luminescence centres (i.e., luminescence active trace elements such as Al as well as features of deformation and recrystallization. It is suggested that healing of defects due to deformation-related recrystallization and reorganization processes of the quartz lattice during retrograde metamorphism resulted in low concentrations of CL activator and other trace elements or vacancies, and thus are the main driving processes for the formation of HPQ deposits in the investigated area.

  14. Shallow nitrogen ion implantation: Evolution of chemical state and defect structure in titanium

    Energy Technology Data Exchange (ETDEWEB)

    Manojkumar, P.A., E-mail: manoj@igcar.gov.in [Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India); Chirayath, V.A.; Balamurugan, A.K.; Krishna, Nanda Gopala; Ilango, S.; Kamruddin, M.; Amarendra, G.; Tyagi, A.K. [Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India); Raj, Baldev [National Institute of Advanced Studies, Bangalore 560 012 (India)

    2016-09-15

    Highlights: • Low energy nitrogen ion implantation in titanium was studied. • Chemical and defect states were analyzed using SIMS, XPS and PAS. • SIMS and depth resolved XPS data showed good agreement. • Depth resolved defect and chemical states information were revealed. • Formation of 3 layers of defect states proposed to fit PAS results. - Abstract: Evolution of chemical states and defect structure in titanium during low energy nitrogen ion implantation by Plasma Immersion Ion Implantation (PIII) process is studied. The underlying process of chemical state evolution is investigated using secondary ion mass spectrometry and X-ray photoelectron spectroscopy. The implantation induced defect structure evolution as a function of dose is elucidated using variable energy positron annihilation Doppler broadening spectroscopy (PAS) and the results were corroborated with chemical state. Formation of 3 layers of defect state was modeled to fit PAS results.

  15. Structural defects in monocrystalline silicon: from radiation ones to growing and technological

    International Nuclear Information System (INIS)

    Gerasimenko, N.N.; Pavlyuchenko, M.N.; Dzhamanbalin, K.K.

    2001-01-01

    The systematical review of properties and conditions of radiation structures in monocrystalline silicon including own defects (elementary and complex, disordered fields) as well as defect-impurity formations is presented. The most typical examples of principle effects influence of known defects on radiation-induced processes (phase transformations, diffusion and heteration and others are considered. Experimental facts and models of silicon radiation amorphization have been analyzed in comparison of state of the radiation amorphization radiation problem of metals and alloys. The up-to-date status of the problem of the radiation defects physics are discussed, including end-of-range -, n+-, rod-like- defects. The phenomenon self-organization in crystals with defects has been considered. The examples of directed using radiation defects merged in independent trend - defects engineering - are given

  16. An all-silicon laser by coupling between electronic localized states and defect states of photonic crystal

    Energy Technology Data Exchange (ETDEWEB)

    Huang Weiqi, E-mail: WQHuang2001@yahoo.com [Institute of Nanophotonic Physics, Key Laboratory of Photoelectron Technology and Application, Guizhou University, Guiyang 550025 (China); Huang Zhongmei; Miao Xinjiang; Cai Chenlan; Liu Jiaxin; Lue Quan [Institute of Nanophotonic Physics, Key Laboratory of Photoelectron Technology and Application, Guizhou University, Guiyang 550025 (China); Liu Shirong, E-mail: Shirong@yahoo.com [State Key Laboratory of Ore Deposit Geochemistry Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550003 (China); Qin Chaojian [State Key Laboratory of Ore Deposit Geochemistry Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550003 (China)

    2012-01-15

    In a nano-laser of Si quantum dots (QD), the smaller QD fabricated by nanosecond pulse laser can form the pumping level tuned by the quantum confinement (QC) effect. Coupling between the active centers formed by localized states of surface bonds and the two-dimensional (2D) photonic crystal is used to select model in the nano-laser. The experimental demonstration is reported in which the peaks of stimulated emission at about 600 nm and 700 nm were observed on the Si QD prepared in oxygen after annealing which improves the stimulated emission. It is interesting to make a comparison between the localized electronic states in gap due to defect formed by surface bonds and the localized photonic states in gap of photonic band due to defect of 2D photonic crystal.

  17. Enhancement of spin polarization induced by Coulomb on-site repulsion between localized pz electrons in graphene embedded with line defects.

    Science.gov (United States)

    Ren, Ji-Chang; Wang, Zhigang; Zhang, Rui-Qin; Ding, Zejun; Van Hove, Michel A

    2015-11-11

    It is well known that the effect of Coulomb on-site repulsion can significantly alter the physical properties of the systems that contain localized d and/or f electrons. However, little attention has been paid to the Coulomb on-site repulsion between localized p electrons. In this study, we demonstrated that Coulomb on-site repulsion between localized pz electrons also plays an important role in graphene embedded with line defects. It is shown that the magnetism of the system largely depends on the choice of the effective Coulomb on-site parameter Ueff. Ueff at the edges of the defect enhances the exchange splitting, which increases the magnetic moment and stabilizes a ferromagnetic state of the system. In contrast, Ueff at the center of the defect weakens the spin polarization of the system. The behavior of the magnetism is explained with the Stoner criterion and the charge accumulation at the edges of the defect. Based on the linear response approach, we estimate reasonable values of Ueff to be 2.55 eV (2.3 eV) at the center (edges) of the defects. More importantly, using a DFT+U+J method, we find that exchange interactions between localized p electrons also play an important role in the spin polarization of the system. These results imply that Coulomb on-site repulsion is necessary to describe the strong interaction between localized pz electrons of carbon related materials.

  18. Identification of equilibrium and irradiation-induced defects in nuclear ceramics: electronic structure calculations of defect properties and positron annihilation characteristics

    International Nuclear Information System (INIS)

    Wiktor, Julia

    2015-01-01

    During in-pile irradiation the fission of actinide nuclei causes the creation of large amounts of defects, which affect the physical and chemical properties of materials inside the reactor, in particular the fuel and structural materials. Positron annihilation spectroscopy (PAS) can be used to characterize irradiation induced defects, empty or containing fission products. This non-destructive experimental technique involves detecting the radiation generated during electron-positron annihilation in a sample and deducing the properties of the material studied. As positrons get trapped in open volume defects in solids, by measuring their lifetime and momentum distributions of the annihilation radiation, one can obtain information on the open and the chemical environments of the defects. In this work electronic structure calculations of positron annihilation characteristics were performed using two-component density functional theory (TCDFT). To calculate the momentum distributions of the annihilation radiation, we implemented the necessary methods in the open-source ABINIT program. The theoretical results have been used to contribute to the identification of the vacancy defects in two nuclear ceramics, silicon carbide (SiC) and uranium dioxide (UO 2 ). (author) [fr

  19. Local administration of autologous platelet-rich plasma in a female patient with skin ulcer defect

    Directory of Open Access Journals (Sweden)

    S M Noskov

    2011-01-01

    Full Text Available The paper describes a clinical observation of the efficiency of local therapy with autologous platelet-rich plasma for .skin ulcer defect in a female with chronic lymphocytic leukemia

  20. Understanding the defect structure of solution grown zinc oxide

    Energy Technology Data Exchange (ETDEWEB)

    Liew, Laura-Lynn [Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A-STAR), 3 Research Link, Singapore 117602 (Singapore); School of Materials Science and Engineering, Nanyang Technological University, Block N4.1 Nanyang Avenue, Singapore 639798 (Singapore); Sankar, Gopinathan, E-mail: g.sankar@ucl.ac.uk [Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ (United Kingdom); Handoko, Albertus D. [Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A-STAR), 3 Research Link, Singapore 117602 (Singapore); Goh, Gregory K.L., E-mail: g-goh@imre.a-star.edu.sg [Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A-STAR), 3 Research Link, Singapore 117602 (Singapore); School of Materials Science and Engineering, Nanyang Technological University, Block N4.1 Nanyang Avenue, Singapore 639798 (Singapore); Kohara, Shinji [Japan Synchrotron Radiation Research Institute (JASRI), Mikazuki, Sayo, Hyogo 679-5198 (Japan)

    2012-05-15

    Zinc oxide (ZnO) is a wide bandgap semiconducting oxide with many potential applications in various optoelectronic devices such as light emitting diodes (LEDs) and field effect transistors (FETs). Much effort has been made to understand the ZnO structure and its defects. However, one major issue in determining whether it is Zn or O deficiency that provides ZnO its unique properties remains. X-ray absorption spectroscopy (XAS) is an ideal, atom specific characterization technique that is able to probe defect structure in many materials, including ZnO. In this paper, comparative studies of bulk and aqueous solution grown ({<=}90 Degree-Sign C) ZnO powders using XAS and x-ray pair distribution function (XPDF) techniques are described. The XAS Zn-Zn correlation and XPDF results undoubtedly point out that the solution grown ZnO contains Zn deficiency, rather than the O deficiency that were commonly reported. This understanding of ZnO short range order and structure will be invaluable for further development of solid state lighting and other optoelectronic device applications. - Graphical abstract: Highlights: Black-Right-Pointing-Pointer ZnO powders have been synthesized through an aqueous solution method. Black-Right-Pointing-Pointer Defect structure studied using XAS and XPDF. Black-Right-Pointing-Pointer Zn-Zn correlations are less in the ZnO powders synthesized in solution than bulk. Black-Right-Pointing-Pointer Zn vacancies are present in the powders synthesized. Black-Right-Pointing-Pointer EXAFS and XPDF, when used complementary, are useful characterization techniques.

  1. Effect of potential barrier growth of auto-localized excitons decay on radiation defects in AHC at low lattice symmetry

    International Nuclear Information System (INIS)

    Shunkeev, K.; Sagimbaeva, Sh.; Shunkeev, S.

    2007-01-01

    Effect of auto-localized excitons (ALE) luminescence strengthening is conditioned by two mechanisms: either decrease of potential barrier divided of quasi-free states and auto-localized states or decrease of emission-less channel effectiveness of exciton decay on primary radiation defects. In considered range (80 K) all excitons are only in auto-localized state. Therefore a realization of the first mechanism is improbable, For instant, in KI crystal at 80-100 K luminescence of free exciton is completely putting out, and ALE luminescence has maximal intensity. It is known that in the temperature range when ALE luminescence putting out is beginning an effectiveness of radiation defects is beginning to grow. This effect is related with predominating at that time emission-less exciton decay on radiation defects (F-H pairs). Experimentally by luminescence spectroscopy method activation energy of temperature putting out of ALE in AHC under uniaxial deformation. It is revealed, that increase of activation energy value has observed in a number of crystals: KBr→NaCl→KI→Na Br→CsBr→RbI. It is concluded, that effect of ALE intensity building-up and decrease of effectiveness of radiation defect formation are interpreted by growth of potential barrier of ALE decay into radiation defects under low symmetry of AHC lattice of low-temperature uniaxial deformation

  2. Modeling local structure using crystal field and spin Hamiltonian parameters: the tetragonal FeK3+-OI2- defect center in KTaO3 crystal

    International Nuclear Information System (INIS)

    Gnutek, P; Rudowicz, C; Yang, Z Y

    2009-01-01

    The local structure and the spin Hamiltonian (SH) parameters, including the zero-field-splitting (ZFS) parameters D and (a+2F/3), and the Zeeman g factors g || and g perpendicular , are theoretically investigated for the Fe K 3+ -O I 2- center in KTaO 3 crystal. The microscopic SH (MSH) parameters are modeled within the framework of the crystal field (CF) theory employing the CF analysis (CFA) package, which also incorporates the MSH modules. Our approach takes into account the spin-orbit interaction as well as the spin-spin and spin-other-orbit interactions omitted in previous studies. The superposition model (SPM) calculations are carried out to provide input CF parameters for the CFA/MSH package. The combined SPM-CFA/MSH approach is used to consider various structural models for the Fe K 3+ -O I 2- defect center in KTaO 3 . This modeling reveals that the off-center displacement of the Fe 3+ ions, Δ 1 (Fe 3+ ), combined with an inward relaxation of the nearest oxygen ligands, Δ 2 (O 2- ), and the existence of the interstitial oxygen O I 2- give rise to a strong tetragonal crystal field. This finding may explain the large ZFS experimentally observed for the Fe K 3+ -O I 2- center in KTaO 3 . Matching the theoretical MSH predictions with the available structural data as well as electron magnetic resonance (EMR) and optical spectroscopy data enables predicting reasonable ranges of values of Δ 1 (Fe 3+ ) and Δ 2 (O 2- ) as well as the possible location of O I 2- ligands around Fe 3+ ions in KTaO 3 . The defect structure model obtained using the SPM-CFA/MSH approach reproduces very well the ranges of the experimental SH parameters D, g || and g perpendicular and importantly yields not only the correct magnitude of D but also the sign, unlike previous studies. More reliable predictions may be achieved when experimental data on (a+2F/3) and/or crystal field energy levels become available. Comparison of our results with those arising from alternative models existing

  3. Packing defects into ordered structures

    DEFF Research Database (Denmark)

    Bechstein, R.; Kristoffersen, Henrik Høgh; Vilhelmsen, L.B.

    2012-01-01

    . With the help of density functional theory calculations we develop a complete structural model for the entire strand and demonstrate these adstructures to be more stable than an equivalent amount of bulk defects such as Ti interstitials. We argue that strands can form particularly easy on stepped surfaces......We have studied vicinal TiO2(110) surfaces by high-resolution scanning tunneling microscopy and density functional theory calculations. On TiO2 surfaces characterized by a high density of ⟨11̅ 1⟩ steps, scanning tunneling microscopy reveals a high density of oxygen-deficient strandlike adstructures...

  4. The effect of defects on structural failure: A two-criteria approach

    International Nuclear Information System (INIS)

    Dowling, A.R.; Townley, C.H.A.

    1976-01-01

    The two-criteria approach to the study of defects in structures assumes that failure occurs when the applied load reaches the lower of either a load to cause brittle failure in accordance with the theories of linear elastic fracture mechanics or a collapse load dependent on the ultimate stress of the material and the structural geometry. This simple approach is described and compared with previously published experimental results for various geometries and materials. The simplicity of this method of defect analysis lies in the fact that each criterion is sufficiently well understood to permit scaling and geometry changes to be accommodated readily. It becomes apparent that a sizeable transition region exists between the two criteria but this can be described in an expression relating the criteria. This expression adequately predicts the behaviour of cracked structures of both simple and complex geometry. A design curve for defect assessment is proposed for which it is unnecessary to consider the transition region. (author)

  5. Exotic Non-Abelian Topological Defects in Lattice Fractional Quantum Hall States

    Science.gov (United States)

    Liu, Zhao; Möller, Gunnar; Bergholtz, Emil J.

    2017-09-01

    We investigate extrinsic wormholelike twist defects that effectively increase the genus of space in lattice versions of multicomponent fractional quantum Hall systems. Although the original band structure is distorted by these defects, leading to localized midgap states, we find that a new lowest flat band representing a higher genus system can be engineered by tuning local single-particle potentials. Remarkably, once local many-body interactions in this new band are switched on, we identify various Abelian and non-Abelian fractional quantum Hall states, whose ground-state degeneracy increases with the number of defects, i.e, with the genus of space. This sensitivity of topological degeneracy to defects provides a "proof of concept" demonstration that genons, predicted by topological field theory as exotic non-Abelian defects tied to a varying topology of space, do exist in realistic microscopic models. Specifically, our results indicate that genons could be created in the laboratory by combining the physics of artificial gauge fields in cold atom systems with already existing holographic beam shaping methods for creating twist defects.

  6. Residual Defect Density in Random Disks Deposits.

    Science.gov (United States)

    Topic, Nikola; Pöschel, Thorsten; Gallas, Jason A C

    2015-08-03

    We investigate the residual distribution of structural defects in very tall packings of disks deposited randomly in large channels. By performing simulations involving the sedimentation of up to 50 × 10(9) particles we find all deposits to consistently show a non-zero residual density of defects obeying a characteristic power-law as a function of the channel width. This remarkable finding corrects the widespread belief that the density of defects should vanish algebraically with growing height. A non-zero residual density of defects implies a type of long-range spatial order in the packing, as opposed to only local ordering. In addition, we find deposits of particles to involve considerably less randomness than generally presumed.

  7. THORACO - ABDOMINAL FLAP FOR RESURFACING LARGE POST MASTECTOMY DEFECTS IN LOCALLY ADVANCED CA. BREAST

    Directory of Open Access Journals (Sweden)

    Srinivasa Rao

    2015-02-01

    Full Text Available Covering of large wounds after mastectomy in locally advanced Ca breast with skin that can withstand radiotherapy is a challenge to the surgeon. Here this study we used a local advancement flap from the adjacent area called Thoraco - A bdominal F la p (TA flap for such giant defects. This is based on superficial and lumbar arteries and is thick to with stand consequent RT . MATERIALS AND METHODS: Of the total 107 cases of LABC 32 had post mastectomy defects of larger than 12 cm and could not be closed by simple approximation. Among the 32 cases 17 cases are covered by split thickness skin grafting. 15 cases are covered by TA flap. These cases are assessed for mean operating time, mean blood loss, post - operative stay, flap necrosis and viability of the f lap after radiotherapy. RESULTS: There is minimal extra time or blood loss in these cases . All the flaps healed well except for small edge necrosis in 4 cases. In all the patients we could start radiotherapy in the fourth week of surgery and all the flaps withstood RT well. After further evaluation probably this can be recommended as procedure for giant post mastectomy defects particularly for those who require RT early

  8. First Trimester Influenza Vaccination and Risks for Major Structural Birth Defects in Offspring.

    Science.gov (United States)

    Kharbanda, Elyse Olshen; Vazquez-Benitez, Gabriela; Romitti, Paul A; Naleway, Allison L; Cheetham, T Craig; Lipkind, Heather S; Klein, Nicola P; Lee, Grace; Jackson, Michael L; Hambidge, Simon J; McCarthy, Natalie; DeStefano, Frank; Nordin, James D

    2017-08-01

    To examine risks for major structural birth defects in infants after first trimester inactivated influenza vaccine (IIV) exposures. In this observational study, we used electronic health data from 7 Vaccine Safety Datalink sites to examine risks for selected major structural defects in infants after maternal IIV exposure. Vaccine exposures for women with continuous insurance enrollment through pregnancy who delivered singleton live births between 2004 and 2013 were identified from standardized files. Infants with continuous insurance enrollment were followed to 1 year of age. We excluded mother-infant pairs with other exposures that potentially increased their background risk for birth defects. Selected cardiac, orofacial or respiratory, neurologic, ophthalmologic or otologic, gastrointestinal, genitourinary and muscular or limb defects were identified from diagnostic codes in infant medical records using validated algorithms. Propensity score adjusted generalized estimating equations were used to estimate prevalence ratios (PRs). We identified 52 856 infants with maternal first trimester IIV exposure and 373 088 infants whose mothers were unexposed to IIV during first trimester. Prevalence (per 100 live births) for selected major structural birth defects was 1.6 among first trimester IIV exposed versus 1.5 among unexposed mothers. The adjusted PR was 1.02 (95% CI 0.94-1.10). Organ system-specific PRs were similar to the overall PR. First trimester maternal IIV exposure was not associated with an increased risk for selected major structural birth defects in this large cohort of singleton live births. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. How the Method of Synthesis Governs the Local and Global Structure of Zinc Aluminum Layered Double Hydroxides

    DEFF Research Database (Denmark)

    Puschparaj, Suraj S. C.; Forano, Claude; Prevot, Vanessa

    2015-01-01

    the LDH particles or separate phase(s) associated with LDHs. In contrast, samples prepared by co-precipitation with careful pH control and hydrothermal treated have high local order and good crystallinity (large particle size). Our results show that both local (NMR) and bulk techniques are needed...... to assess the composition of LDHs, as the conventional PXRD and TEM analysis of LDHs failed to identify the many structural defects and/or amorphous phases present....

  10. Lamin B Receptor: Interplay between Structure, Function and Localization

    Directory of Open Access Journals (Sweden)

    Eleni Nikolakaki

    2017-08-01

    Full Text Available Lamin B receptor (LBR is an integral protein of the inner nuclear membrane, containing a hydrophilic N-terminal end protruding into the nucleoplasm, eight hydrophobic segments that span the membrane and a short, nucleoplasmic C-terminal tail. Two seemingly unrelated functions have been attributed to LBR. Its N-terminal domain tethers heterochromatin to the nuclear periphery, thus contributing to the shape of interphase nuclear architecture, while its transmembrane domains exhibit sterol reductase activity. Mutations within the transmembrane segments result in defects in cholesterol synthesis and are associated with diseases such as the Pelger–Huët anomaly and Greenberg skeletal dysplasia, whereas no such harmful mutations related to the anchoring properties of LBR have been reported so far. Recent evidence suggests a dynamic regulation of LBR expression levels, structural organization, localization and function, in response to various signals. The molecular mechanisms underlying this dynamic behavior have not yet been fully unraveled. Here, we provide an overview of the current knowledge of the interplay between the structure, function and localization of LBR, and hint at the interconnection of the two distinct functions of LBR.

  11. Quantum computing with defects

    Science.gov (United States)

    Varley, Joel

    2011-03-01

    The development of a quantum computer is contingent upon the identification and design of systems for use as qubits, the basic units of quantum information. One of the most promising candidates consists of a defect in diamond known as the nitrogen-vacancy (NV-1) center, since it is an individually-addressable quantum system that can be initialized, manipulated, and measured with high fidelity at room temperature. While the success of the NV-1 stems from its nature as a localized ``deep-center'' point defect, no systematic effort has been made to identify other defects that might behave in a similar way. We provide guidelines for identifying other defect centers with similar properties. We present a list of physical criteria that these centers and their hosts should meet and explain how these requirements can be used in conjunction with electronic structure theory to intelligently sort through candidate systems. To elucidate these points, we compare electronic structure calculations of the NV-1 center in diamond with those of several deep centers in 4H silicon carbide (SiC). Using hybrid functionals, we report formation energies, configuration-coordinate diagrams, and defect-level diagrams to compare and contrast the properties of these defects. We find that the NC VSi - 1 center in SiC, a structural analog of the NV-1 center in diamond, may be a suitable center with very different optical transition energies. We also discuss how the proposed criteria can be translated into guidelines to discover NV analogs in other tetrahedrally coordinated materials. This work was performed in collaboration with J. R. Weber, W. F. Koehl, B. B. Buckley, A. Janotti, C. G. Van de Walle, and D. D. Awschalom. This work was supported by ARO, AFOSR, and NSF.

  12. Classification of defects in honeycomb composite structure of helicopter rotor blades

    International Nuclear Information System (INIS)

    Balasko, M.; Svab, E.; Molnar, Gy.; Veres, I.

    2005-01-01

    The use of non-destructive testing methods to qualify the state of rotor blades with respect to their expected flight hours, with the aim to extend their lifetime without any risk of breakdown, is an important financial demand. In order to detect the possible defects in the composite structure of Mi-8 and Mi-24 type helicopter rotor blades used by the Hungarian Army, we have performed combined neutron- and X-ray radiography measurements at the Budapest Research Reactor. Several types of defects were detected, analysed and typified. Among the most frequent and important defects observed were cavities, holes and or cracks in the sealing elements on the interface of the honeycomb structure and the section boarders. Inhomogeneities of the resin materials (resin-rich or starved areas) at the core-honeycomb surfaces proved to be an other important point. Defects were detected at the adhesive filling, and water percolation was visualized at the sealing interfaces of the honeycomb sections. Corrosion effects, and metal inclusions have also been detected

  13. Classification of defects in honeycomb composite structure of helicopter rotor blades

    Science.gov (United States)

    Balaskó, M.; Sváb, E.; Molnár, Gy.; Veres, I.

    2005-04-01

    The use of non-destructive testing methods to qualify the state of rotor blades with respect to their expected flight hours, with the aim to extend their lifetime without any risk of breakdown, is an important financial demand. In order to detect the possible defects in the composite structure of Mi-8 and Mi-24 type helicopter rotor blades used by the Hungarian Army, we have performed combined neutron- and X-ray radiography measurements at the Budapest Research Reactor. Several types of defects were detected, analysed and typified. Among the most frequent and important defects observed were cavities, holes and/or cracks in the sealing elements on the interface of the honeycomb structure and the section boarders. Inhomogeneities of the resin materials (resin-rich or starved areas) at the core-honeycomb surfaces proved to be an other important point. Defects were detected at the adhesive filling, and water percolation was visualized at the sealing interfaces of the honeycomb sections. Corrosion effects, and metal inclusions have also been detected.

  14. Electron beam generation and structure of defects in carbon and boron nitride nano-tubes

    Energy Technology Data Exchange (ETDEWEB)

    Zobelli, A

    2007-10-15

    The nature and role of defects is of primary importance to understand the physical properties of C and BN (boron nitride) single walled nano-tubes (SWNTs). Transmission electron microscopy (TEM) is a well known powerful tool to study the structure of defects in materials. However, in the case of SWNTs, the electron irradiation of the TEM may knock out atoms. This effect may alter the native structure of the tube, and has also been proposed as a potential tool for nano-engineering of nano-tubular structures. Here we develop a theoretical description of the irradiation mechanism. First, the anisotropy of the emission energy threshold is obtained via density functional based calculations. Then, we numerically derive the total Mott cross section for different emission sites of carbon and boron nitride nano-tubes with different chiralities. Using a dedicated STEM (Scanning Transmission Electron Microscope) microscope with experimental conditions optimised on the basis of derived cross-sections, we are able to control the generation of defects in nano-tubular systems. Either point or line defects can be obtained with a spatial resolution of a few nanometers. The structure, energetics and electronics of point and line defects in BN systems have been investigated. Stability of mono- and di- vacancy defects in hexagonal boron nitride layers is investigated, and their activation energies and reaction paths for diffusion have been derived using the nudged elastic band method (NEB) combined with density functional based techniques. We demonstrate that the appearance of extended linear defects under electron irradiation is more favorable than a random distribution of point defects and this is due to the existence of preferential sites for atom emission in the presence of pre-existing defects, rather than thermal vacancy nucleation and migration. (author)

  15. Electron beam generation and structure of defects in carbon and boron nitride nano-tubes

    International Nuclear Information System (INIS)

    Zobelli, A.

    2007-10-01

    The nature and role of defects is of primary importance to understand the physical properties of C and BN (boron nitride) single walled nano-tubes (SWNTs). Transmission electron microscopy (TEM) is a well known powerful tool to study the structure of defects in materials. However, in the case of SWNTs, the electron irradiation of the TEM may knock out atoms. This effect may alter the native structure of the tube, and has also been proposed as a potential tool for nano-engineering of nano-tubular structures. Here we develop a theoretical description of the irradiation mechanism. First, the anisotropy of the emission energy threshold is obtained via density functional based calculations. Then, we numerically derive the total Mott cross section for different emission sites of carbon and boron nitride nano-tubes with different chiralities. Using a dedicated STEM (Scanning Transmission Electron Microscope) microscope with experimental conditions optimised on the basis of derived cross-sections, we are able to control the generation of defects in nano-tubular systems. Either point or line defects can be obtained with a spatial resolution of a few nanometers. The structure, energetics and electronics of point and line defects in BN systems have been investigated. Stability of mono- and di- vacancy defects in hexagonal boron nitride layers is investigated, and their activation energies and reaction paths for diffusion have been derived using the nudged elastic band method (NEB) combined with density functional based techniques. We demonstrate that the appearance of extended linear defects under electron irradiation is more favorable than a random distribution of point defects and this is due to the existence of preferential sites for atom emission in the presence of pre-existing defects, rather than thermal vacancy nucleation and migration. (author)

  16. Local administration of calcitriol positively influences bone remodeling and maturation during restoration of mandibular bone defects in rats

    International Nuclear Information System (INIS)

    Liu, Hongrui; Cui, Jian; Feng, Wei; Lv, Shengyu; Du, Juan; Sun, Jing; Han, Xiuchun; Wang, Zhenming; Lu, Xiong; Yimin; Oda, Kimimitsu; Amizuka, Norio; Li, Minqi

    2015-01-01

    The aim of this study was to investigate the influence of calcitriol on osteoinduction following local administration into mandibular bone defects. Calcitriol-loaded absorbable collagen membrane scaffolds were prepared using the polydopamine coating method and characterized by scanning electron microscopy. Composite scaffolds were implanted into rat mandibular bone defects in the following groups: no graft material (control), bare collagen membrane (CM group), collagen membrane bearing polydopamine coating (DOP/CM group), and collagen membrane bearing polydopamine coating absorbed with calcitriol (CAL/DOP/CM group). At 1, 2, 4 and 8 weeks post-surgery, the osteogenic potential of calcitriol was examined by histological and immunohistochemical methods. Following in vivo implantation, calcitriol-loaded composite scaffolds underwent rapid degradation with pronounced replacement by new bone and induced reunion of the bone marrow cavity. Calcitriol showed strong potential in inhibiting osteoclastogenesis and promotion of osteogenic differentiation at weeks 1, and 2. Furthermore, statistical analysis revealed that the newly formed bone volume in the CAL/DOP/CM group was significantly higher than other groups at weeks 1, and 2. At weeks 4, and 8, the CAL/DOP/CM group showed more mineralized bone and uniform collagen structure. These data suggest that local administration of calcitriol is promising in promoting osteogenesis and mineralization for restoration of mandibular bone defects. - Highlights: • More information on collagen material was added in the revised manuscript. • Masson–Goldner trichrome stain was performed for histomorphometry. • More specific information on calcitriol was supplemented in the Discussion section. • The MOD of ALP and Runx2 was explained in more detail. • The inhibition of osteoclastogenesis was described more accurately in the second paragraph of the discussion

  17. Local administration of calcitriol positively influences bone remodeling and maturation during restoration of mandibular bone defects in rats

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hongrui; Cui, Jian; Feng, Wei; Lv, Shengyu; Du, Juan; Sun, Jing; Han, Xiuchun [Department of Bone Metabolism, School of Stomatology Shandong University, Shandong Provincial Key Laboratory of Oral Biomedicine, Jinan (China); Wang, Zhenming; Lu, Xiong [Key Lab of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan (China); Yimin [Department of Advanced Medicine, Graduate School of Medicine, Hokkaido University, Sapporo (Japan); Oda, Kimimitsu [Division of Biochemistry, Niigata University Graduate School of Medical and Dental Sciences, Niigata (Japan); Amizuka, Norio [Department of Developmental Biology of Hard Tissue, Graduate School of Dental Medicine, Hokkaido University, Sapporo (Japan); Li, Minqi, E-mail: liminqi@sdu.edu.cn [Department of Bone Metabolism, School of Stomatology Shandong University, Shandong Provincial Key Laboratory of Oral Biomedicine, Jinan (China)

    2015-04-01

    The aim of this study was to investigate the influence of calcitriol on osteoinduction following local administration into mandibular bone defects. Calcitriol-loaded absorbable collagen membrane scaffolds were prepared using the polydopamine coating method and characterized by scanning electron microscopy. Composite scaffolds were implanted into rat mandibular bone defects in the following groups: no graft material (control), bare collagen membrane (CM group), collagen membrane bearing polydopamine coating (DOP/CM group), and collagen membrane bearing polydopamine coating absorbed with calcitriol (CAL/DOP/CM group). At 1, 2, 4 and 8 weeks post-surgery, the osteogenic potential of calcitriol was examined by histological and immunohistochemical methods. Following in vivo implantation, calcitriol-loaded composite scaffolds underwent rapid degradation with pronounced replacement by new bone and induced reunion of the bone marrow cavity. Calcitriol showed strong potential in inhibiting osteoclastogenesis and promotion of osteogenic differentiation at weeks 1, and 2. Furthermore, statistical analysis revealed that the newly formed bone volume in the CAL/DOP/CM group was significantly higher than other groups at weeks 1, and 2. At weeks 4, and 8, the CAL/DOP/CM group showed more mineralized bone and uniform collagen structure. These data suggest that local administration of calcitriol is promising in promoting osteogenesis and mineralization for restoration of mandibular bone defects. - Highlights: • More information on collagen material was added in the revised manuscript. • Masson–Goldner trichrome stain was performed for histomorphometry. • More specific information on calcitriol was supplemented in the Discussion section. • The MOD of ALP and Runx2 was explained in more detail. • The inhibition of osteoclastogenesis was described more accurately in the second paragraph of the discussion.

  18. Alpha-particle irradiation induced defects in SiO2 films of Si-SiO2 structures

    International Nuclear Information System (INIS)

    Koman, B.P.; Gal'chynskyy, O.V.; Kovalyuk, R.O.; Shkol'nyy, A.K.

    1996-01-01

    The aim of the work was to investigate alpha-particle irradiation induced defects in Si-SiO 2 structures by means of the thermostimulated discharge currents (TSDC) analysis. The object of investigation were (p-Si)-SiO 2 structures formed by a combined oxidation of the industrial p-Si wafers in dry and wet oxygen at temperature of 1150 C. The TSD currents were investigated in the temperature range between 90 and 500 K under linear heating rate. Pu 238 isotopes were the source of alpha-particles with an energy of 4-5 MeV and a density of 5.10 7 s -1 cm -2 . The TSD current curves show two peculiar maxima at about 370 and 480 K. Alpha-particle irradiation doesn't affect the general shape of the TSDC curves but leads to a shift of the maximum at 370 K and reduces the total electret charge which is accumulated in the Si-SiO 2 structures during polarization. The energy distribution function of the defects which are involved in SiO 2 polarization has been calculated. It showes that defects with activation energies of about 0.8 and 1.0 eV take part in forming the electret state, and these activation energies have certain energy distributions. It has been found that the TSDC maximum at 370 K has space charge nature and is caused by migration of hydrogen ions. In irradiated samples hydrogen and natrium ions localize on deeper trapping centres induced by alpha-particle irradiation. (orig.)

  19. Calculation of the heat flow peak in case of local defect of the fuel plate of a nuclear reactor

    International Nuclear Information System (INIS)

    Fabrega, Serge

    1965-11-01

    The author reports the calculation of the local thermal flow which exits a fuel plate in a nuclear reactor, where a fabrication defect creates a much localized peak of the power density released in the plate. He first reports the development of the problem equations: hypotheses and data, equation elaboration, simplification and resolution. He presents the results of a numeric application to actual cases, and describes how the conduction in the sheath is taken into account (study of the influence of peak width and shape), and gives a synthetic presentation of the formula for the approximate calculation of the heat flow in case of local defect [fr

  20. Local and average structure of Mn- and La-substituted BiFeO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Bo; Selbach, Sverre M., E-mail: selbach@ntnu.no

    2017-06-15

    The local and average structure of solid solutions of the multiferroic perovskite BiFeO{sub 3} is investigated by synchrotron X-ray diffraction (XRD) and electron density functional theory (DFT) calculations. The average experimental structure is determined by Rietveld refinement and the local structure by total scattering data analyzed in real space with the pair distribution function (PDF) method. With equal concentrations of La on the Bi site or Mn on the Fe site, La causes larger structural distortions than Mn. Structural models based on DFT relaxed geometry give an improved fit to experimental PDFs compared to models constrained by the space group symmetry. Berry phase calculations predict a higher ferroelectric polarization than the experimental literature values, reflecting that structural disorder is not captured in either average structure space group models or DFT calculations with artificial long range order imposed by periodic boundary conditions. Only by including point defects in a supercell, here Bi vacancies, can DFT calculations reproduce the literature results on the structure and ferroelectric polarization of Mn-substituted BiFeO{sub 3}. The combination of local and average structure sensitive experimental methods with DFT calculations is useful for illuminating the structure-property-composition relationships in complex functional oxides with local structural distortions. - Graphical abstract: The experimental and simulated partial pair distribution functions (PDF) for BiFeO{sub 3}, BiFe{sub 0.875}Mn{sub 0.125}O{sub 3}, BiFe{sub 0.75}Mn{sub 0.25}O{sub 3} and Bi{sub 0.9}La{sub 0.1}FeO{sub 3}.

  1. Localized ridge defect augmentation using human pericardium membrane and demineralized bone matrix.

    Science.gov (United States)

    Vidyadharan, Arun Kumar; Ravindran, Anjana

    2014-01-01

    Patient wanted to restore her lost teeth with implants in the lower left first molar and second premolar region. Cone beam computerized tomography (CBCT) revealed inadequate bone width and height around future implant sites. The extraction socket of second premolar area revealed inadequate socket healing with sparse bone fill after 4 months of extraction. To evaluate the clinical feasibility of using a collagen physical resorbable barrier made of human pericardium (HP) to augment localized alveolar ridge defects for the subsequent placement of dental implants. Ridge augmentation was done in the compromised area using Puros® demineralized bone matrix (DBM) Putty with chips and an HP allograft membrane. Horizontal (width) and vertical hard tissue measurements with CBCT were recorded on the day of ridge augmentation surgery, 4 month and 7 months follow-up. Intra oral periapical taken 1 year after implant installation showed minimal crestal bone loss. Bone volume achieved through guided bone regeneration was a gain of 4.8 mm horizontally (width) and 6.8 mm vertically in the deficient ridge within a period of 7 months following the procedure. The results suggested that HP Allograft membrane may be a suitable component for augmentation of localized alveolar ridge defects in conjunction with DBM with bone chips.

  2. Influence of point defects on the near edge structure of hexagonal boron nitride

    Science.gov (United States)

    McDougall, Nicholas L.; Partridge, Jim G.; Nicholls, Rebecca J.; Russo, Salvy P.; McCulloch, Dougal G.

    2017-10-01

    Hexagonal boron nitride (hBN) is a wide-band-gap semiconductor with applications including gate insulation layers in graphene transistors, far-ultraviolet light emitting devices and as hydrogen storage media. Due to its complex microstructure, defects in hBN are challenging to identify. Here, we combine x-ray absorption near edge structure (XANES) spectroscopy with ab initio theoretical modeling to identify energetically favorable defects. Following annealing of hBN samples in vacuum and oxygen, the B and N K edges exhibited angular-dependent peak modifications consistent with in-plane defects. Theoretical calculations showed that the energetically favorable defects all produce signature features in XANES. Comparing these calculations with experiments, the principle defects were attributed to substitutional oxygen at the nitrogen site, substitutional carbon at the boron site, and hydrogen passivated boron vacancies. Hydrogen passivation of defects was found to significantly affect the formation energies, electronic states, and XANES. In the B K edge, multiple peaks above the major 1 s to π* peak occur as a result of these defects and the hydrogen passivated boron vacancy produces the frequently observed doublet in the 1 s to σ* transition. While the N K edge is less sensitive to defects, features attributable to substitutional C at the B site were observed. This defect was also calculated to have mid-gap states in its band structure that may be responsible for the 4.1-eV ultraviolet emission frequently observed from this material.

  3. Ionization-induced rearrangement of defects in silicon

    International Nuclear Information System (INIS)

    Vinetskij, V.L.; Manojlo, M.A.; Matvijchuk, A.S.; Strikha, V.I.; Kholodar', G.A.

    1988-01-01

    Ionizing factor effect on defect rearrangement in silicon including centers with deep local electron levels in the p-n-transition region is considered. Deep center parameters were determined using non-steady-state capacity spectroscopy of deep levels (NCDLS) method. NCDLS spectrum measurement was performed using source p + -n - diodes and after their irradiation with 15 keV energy electrons or laser pulses. It is ascertained that in silicon samples containing point defect clusters defect rearrangement under ionizing factor effect takes place, i.e. deep level spectra are changed. This mechanism is efficient in case of silicon irradiation with subthreshold energy photons and electrons and can cause degradation of silicon semiconducting structures

  4. Local Fine Structural Insight into Mechanism of Electrochemical Passivation of Titanium.

    Science.gov (United States)

    Wang, Lu; Yu, Hongying; Wang, Ke; Xu, Haisong; Wang, Shaoyang; Sun, Dongbai

    2016-07-20

    Electrochemically formed passive film on titanium in 1.0 M H2SO4 solution and its thickness, composition, chemical state, and local fine structure are examined by Auger electron spectroscopy (AES), X-ray photoelectron spectroscopy (XPS), and X-ray absorption fine structure. AES analysis reveals that the thickness and composition of oxide film are proportional to the reciprocal of current density in potentiodynamic polarization. XPS depth profiles of the chemical states of titanium exhibit the coexistence of various valences cations in the surface. Quantitative X-ray absorption near edge structure analysis of the local electronic structure of the topmost surface (∼5.0 nm) shows that the ratio of [TiO2]/[Ti2O3] is consistent with that of passivation/dissolution of electrochemical activity. Theoretical calculation and analysis of extended X-ray absorption fine structure spectra at Ti K-edge indicate that both the structures of passivation and dissolution are distorted caused by the appearance of two different sites of Ti-O and Ti-Ti. And the bound water in the topmost surface plays a vital role in structural disorder confirmed by XPS. Overall, the increase of average Ti-O coordination causes the electrochemical passivation, and the dissolution is due to the decrease of average Ti-Ti coordination. The structural variations of passivation in coordination number and interatomic distance are in good agreement with the prediction of point defect model.

  5. A Design of a Terahertz Microstrip Bandstop Filter with Defected Ground Structure

    Directory of Open Access Journals (Sweden)

    Arjun Kumar

    2013-01-01

    Full Text Available A planar microstrip terahertz (THz bandstop filter has been proposed with defected ground structure with high insertion loss (S21 in a stopband of −25.8 dB at 1.436 THz. The parameters of the circuit model have been extracted from the EM simulation results. A dielectric substrate of Benzocyclobutene (BCB is used to realize a compact bandstop filter using modified hexagonal dumbbell-shape defected ground structure (DB-DGS. In this paper, a defected ground structure topology is used in a λ/4, 50 Ω microstrip line at THz frequency range for compactness. No article has been reported on the microstrip line at terahertz frequency regime using DGS topology. The proposed filter can be used for sensing and detection in biomedical instruments in DNA testing. All the simulations/cosimulations are carried out using a full-wave EM simulator CST V.9 Microwave Studio, HFSS V.10, and Agilent Design Suite (ADS.

  6. Acousto-defect interaction in irradiated and non-irradiated silicon n+-p structures

    Science.gov (United States)

    Olikh, O. Ya.; Gorb, A. M.; Chupryna, R. G.; Pristay-Fenenkov, O. V.

    2018-04-01

    The influence of ultrasound on current-voltage characteristics of non-irradiated silicon n+-p structures as well as silicon structures exposed to reactor neutrons or 60Co gamma radiation has been investigated experimentally. It has been found that the ultrasound loading of the n+-p structure leads to the reversible change of shunt resistance, carrier lifetime, and ideality factor. Specifically, considerable acoustically induced alteration of the ideality factor and the space charge region lifetime was observed in the irradiated samples. The experimental results were described by using the models of coupled defect level recombination, Shockley-Read-Hall recombination, and dislocation-induced impedance. The experimentally observed phenomena are associated with the increase in the distance between coupled defects as well as the extension of the carrier capture coefficient of complex point defects and dislocations. It has been shown that divacancies and vacancy-interstitial oxygen pairs are effectively modified by ultrasound in contrast to interstitial carbon-interstitial oxygen complexes.

  7. Visualization and automatic detection of defect distribution in GaN atomic structure from sampling Moiré phase.

    Science.gov (United States)

    Wang, Qinghua; Ri, Shien; Tsuda, Hiroshi; Kodera, Masako; Suguro, Kyoichi; Miyashita, Naoto

    2017-09-19

    Quantitative detection of defects in atomic structures is of great significance to evaluating product quality and exploring quality improvement process. In this study, a Fourier transform filtered sampling Moire technique was proposed to visualize and detect defects in atomic arrays in a large field of view. Defect distributions, defect numbers and defect densities could be visually and quantitatively determined from a single atomic structure image at low cost. The effectiveness of the proposed technique was verified from numerical simulations. As an application, the dislocation distributions in a GaN/AlGaN atomic structure in two directions were magnified and displayed in Moire phase maps, and defect locations and densities were detected automatically. The proposed technique is able to provide valuable references to material scientists and engineers by checking the effect of various treatments for defect reduction. © 2017 IOP Publishing Ltd.

  8. Defect study in ZnO related structures-A multi-spectroscopic approach

    International Nuclear Information System (INIS)

    Ling, C.C.; Cheung, C.K.; Gu, Q.L.; Dai, X.M.; Xu, S.J.; Zhu, C.Y.; Luo, J.M.; Zhu, C.Y.; Tam, K.H.; Djurisic, A.B.; Beling, C.D.; Fung, S.; Lu, L.W.; Brauer, G.; Anwand, W.; Skorupa, W.; Ong, H.C.

    2008-01-01

    ZnO has attracted a great deal of attention in recent years because of its potential applications for fabricating optoelectronic devices. Using a multi-spectroscopic approach including positron annihilation spectroscopy (PAS), deep level transient spectroscopy (DLTS), photoluminescence (PL) and X-ray photoelectron spectroscopy (XPS), we have studied the two observed phenomena from ZnO related structures. They namely included the H 2 O 2 pre-treatment induced ohmic to rectifying contact conversion on Au/n-ZnO contact and the p-type doping by nitrogen ion implantation. The aim of the studies was to offering comprehensive views as to how the defects influenced the structures electrical and optical properties of the structures. It was also shown that PAS measurement using the monoenergetic positron beam could offer valuable information of vacancy type defects in the vertical ZnO nanorod array structure

  9. Defect study in ZnO related structures-A multi-spectroscopic approach

    Energy Technology Data Exchange (ETDEWEB)

    Ling, C.C. [Department of Physics, The University of Hong Kong, Pokfulam Road, Hong Kong (China)], E-mail: ccling@hku.hk; Cheung, C.K.; Gu, Q.L.; Dai, X.M.; Xu, S.J.; Zhu, C.Y.; Luo, J.M.; Zhu, C.Y.; Tam, K.H.; Djurisic, A.B.; Beling, C.D.; Fung, S.; Lu, L.W. [Department of Physics, The University of Hong Kong, Pokfulam Road, Hong Kong (China); Brauer, G.; Anwand, W.; Skorupa, W. [Institut fuer Ionenstrahlphysik und Materialforschung, Forschungszentrum Dresden-Rossendorf, Postfach 510119, D-01314 Dresden (Germany); Ong, H.C. [Department of Physics, Chinese University of Hong Kong, Shatin, Hong Kong (China)

    2008-10-31

    ZnO has attracted a great deal of attention in recent years because of its potential applications for fabricating optoelectronic devices. Using a multi-spectroscopic approach including positron annihilation spectroscopy (PAS), deep level transient spectroscopy (DLTS), photoluminescence (PL) and X-ray photoelectron spectroscopy (XPS), we have studied the two observed phenomena from ZnO related structures. They namely included the H{sub 2}O{sub 2} pre-treatment induced ohmic to rectifying contact conversion on Au/n-ZnO contact and the p-type doping by nitrogen ion implantation. The aim of the studies was to offering comprehensive views as to how the defects influenced the structures electrical and optical properties of the structures. It was also shown that PAS measurement using the monoenergetic positron beam could offer valuable information of vacancy type defects in the vertical ZnO nanorod array structure.

  10. Plain defects and their vortex configuration in dilute Mo-B alloys in dissipative structure

    International Nuclear Information System (INIS)

    Sofronova, R.M.

    1992-01-01

    Electron microscopic study of single crystal of Mo-0.003 mas.% B alloy after zone melting and annealing at 2373 K was conducted to reveal the nature of planar defects and the role of boron in their formation. It was shown that planar defects should be considered as preprecipitations of MoB nonequilibrous phase out of molybdenum base solid solution. A planar defect was found to constitute a monolayer of boron atoms which consisted of B-B zigzag-like chains. Inturn the chains were surrounded by Mo atoms which formed hexagonal prism. The coherency of planar defects with matrix was due to close lattice parameters of Mo, β-MoB and δ-MoB. The planar defects in molybdenum base alloy were considered as elements of dissipative structure. They determined formation of supercellular dislocation structure under deformation

  11. Vertebral defect, anal atresia, cardiac defect, tracheoesophageal fistula/esophageal atresia, renal defect, and limb defect association with Mayer-Rokitansky-Küster-Hauser syndrome in co-occurrence

    DEFF Research Database (Denmark)

    Bjørsum-Meyer, Thomas; Herlin, Morten; Qvist, Niels

    2016-01-01

    Background: The vertebral defect, anal atresia, cardiac defect, tracheoesophageal fistula/esophageal atresia, renal defect, and limb defect association and Mayer-Rokitansky-Küster-Hauser syndrome are rare conditions. We aimed to present two cases with the vertebral defect, anal atresia, cardiac...... defect, tracheoesophageal fistula/esophageal atresia, renal defect, and limb defect association and Mayer-Rokitansky-Küster-Hauser co-occurrence from our local surgical center and through a systematic literature search detect published cases. Furthermore, we aimed to collect existing knowledge...... in the embryopathogenesis and genetics in order to discuss a possible link between the vertebral defect, anal atresia, cardiac defect, tracheoesophageal fistula/esophageal atresia, renal defect, and limb defect association and Mayer-Rokitansky-Küster-Hauser syndrome. Case presentation: Our first case was a white girl...

  12. Structure defects in malachite revealed by positron annihilation

    International Nuclear Information System (INIS)

    Geffroy, B.; Diallo, I.; Paulin, R.

    1984-01-01

    Positron lifetime is measured between 77 and 400 K in two malachite samples with different mineralogical structures. The complex spectrum found in zoned malachite reveals a microporosity which remains stable in this range of temperature. Besides, above 200 K, equilibrium defects appear. Their formation energy is estimated to be Esub(f) = 0.27 +- 0.02 eV [fr

  13. Structure defects in malachite revealed by positron annihilation

    Energy Technology Data Exchange (ETDEWEB)

    Geffroy, B; Diallo, I; Paulin, R [Institut National des Sciences et Techniques Nucleaires, CEN/Saclay, 91 - Gif-sur-Yvette (France)

    1984-01-01

    Positron lifetime is measured between 77 and 400 K in two malachite samples with different mineralogical structures. The complex spectrum found in zoned malachite reveals a microporosity which remains stable in this range of temperature. Besides, above 200 K, equilibrium defects appear. Their formation energy is estimated to be Esub(f) = 0.27 +- 0.02 eV.

  14. Spin helical states and spin transport of the line defect in silicene lattice

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Mou; Chen, Dong-Hai; Wang, Rui-Qiang [Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006 (China); Bai, Yan-Kui, E-mail: ykbai@semi.ac.cn [College of Physical Science and Information Engineering and Hebei Advance Thin Films Laboratory, Hebei Normal University, Shijiazhuang, Hebei 050024 (China)

    2015-02-06

    We investigated the electronic structure of a silicene-like lattice with a line defect under the consideration of spin–orbit coupling. In the bulk energy gap, there are defect related bands corresponding to spin helical states localized beside the defect line: spin-up electrons flow forward on one side near the line defect and move backward on the other side, and vice versa for spin-down electrons. When the system is subjected to random distribution of spin-flipping scatterers, electrons suffer much less spin-flipped scattering when they transport along the line defect than in the bulk. An electric gate above the line defect can tune the spin-flipped transmission, which makes the line defect as a spin-controllable waveguide. - Highlights: • Band structure of silicene with a line defect. • Spin helical states around the line defect and their probability distribution features. • Spin transport along the line defect and that in the bulk silicene.

  15. Thermographic inspection of bond defects in Fiber Reinforced Polymer applied to masonry structures

    Science.gov (United States)

    Masini, N.; Aiello, M. A.; Capozzoli, L.; Vasanelli, E.

    2012-04-01

    Nowadays, externally bonded Fiber Reinforced Polymers (FRP) are extensively used for strengthening and repairing masonry and reinforced concrete existing structures; they have had a rapid spread in the area of rehabilitation for their many advantages over other conventional repair systems, such as lightweight, excellent corrosion and fatigue resistance, high strength, etc. FRP systems applied to masonry or concrete structures are typically installed using a wet-layup technique.The method is susceptible to cause flaws or defects in the bond between the FRP system and the substrate, which may reduce the effectiveness of the reinforcing systems and the correct transfer of load from the structure to the composite. Thus it is of primary importance to detect the presence of defects and to quantify their extension in order to eventually provide correct repair measurements. The IR thermography has been cited by the several guidelines as a good mean to qualitatively evaluate the presence of installation defects and to monitor the reinforcing system with time.The method is non-destructive and does not require contact with the composite or other means except air to detect the reinforcement. Some works in the literature have been published on this topic. Most of the researches aim at using the IR thermography technique to characterize quantitatively the defects in terms of depth, extension and type in order to have an experimental database on defect typology to evaluate the long term performances of the reinforcing system. Nevertheless, most of the works in the literature concerns with FRP applied to concrete structures without considering the case of masonry structures. In the present research artificial bond defects between FRP and the masonry substrate have been reproduced in laboratory and the IR multi temporal thermography technique has been used to detect them. Thermographic analysis has been carried out on two wall samples having limited dimensions (100 x 70 cm) both

  16. Fracture Resistance, Surface Defects and Structural Strength of Glass

    NARCIS (Netherlands)

    Rodichev, Y.M.; Veer, F.A.

    2010-01-01

    This paper poses the theory that the fracture resistance of basic float glass is dependent on it physicochemical properties and the surface defects fonned under the float glass production, glass processing and handling at the service conditions compose the aggregate basis for structural glass

  17. Study of defects and vacancies in structural properties of Mn, co-doped oxides: ZnO

    Science.gov (United States)

    Kumar, Harish; Kaushik, A.; Alvi, P. A.; Dalela, B.; Dalela, S.

    2018-05-01

    The paper deals with the Structural properties on Mn, Co doped oxides ZnO samples using XRD, Positron Annihilation Lifetime (PAL) Spectra and Raman Spectra. The Mn, Co doped ZnO samples crystallize in a wurtzite structure without any impurity phases in XRD Spectra. The defect state of these samples has been investigated by using positron annihilation lifetime (PAL) spectroscopy technique in which all the relevant lifetime parameters are measured for all the spectra. The results are explained in the direction of doping concentration in these samples in terms of defects structure on Zn lattice site VZn and oxygen defects Vo.

  18. Tuning optical properties of opal photonic crystals by structural defects engineering

    Science.gov (United States)

    di Stasio, F.; Cucini, M.; Berti, L.; Comoretto, D.; Abbotto, A.; Bellotto, L.; Manfredi, N.; Marinzi, C.

    2009-06-01

    We report on the preparation and optical characterization of three dimensional colloidal photonic crystal (PhC) containing an engineered planar defect embedding photoactive push-pull dyes. Free standing polystyrene films having thickness between 0.6 and 3 mm doped with different dipolar chromophores were prepared. These films were sandwiched between two artificial opals creating a PhC structure with planar defect. The system was characterized by reflectance at normal incidence angle (R), variable angle transmittance (T) and photoluminescence spectroscopy (PL) Evidence of defect states were observed in T and R spectra which allow the light to propagate for selected frequencies within the pseudogap (stop band).

  19. A comparative study on defect estimation using XPS and Raman spectroscopy in few layer nanographitic structures.

    Science.gov (United States)

    Ganesan, K; Ghosh, Subrata; Gopala Krishna, Nanda; Ilango, S; Kamruddin, M; Tyagi, A K

    2016-08-10

    Defects in planar and vertically oriented nanographitic structures (NGSs) synthesized by plasma enhanced chemical vapor deposition (PECVD) have been investigated using Raman and X-ray photoelectron spectroscopy. While Raman spectra reveal the dominance of vacancy and boundary type defects respectively in vertical and planar NGSs, XPS provides additional information on vacancy related defect peaks in the C 1s spectrum, which originate from non-conjugated carbon atoms in the hexagonal lattice. Although an excellent correlation prevails between these two techniques, our results show that estimation of surface defects by XPS is more accurate than Raman analysis. Nuances of these techniques are discussed in the context of assessing defects in nanographitic structures.

  20. Influences of Stone–Wales defects on the structure, stability and electronic properties of antimonene: A first principle study

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Yonghong, E-mail: hchyh2001@tom.com [School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning 437100 (China); Wu, Yunyi [Department of Energy Materials and Technology, General Research Institute for Nonferrous Metals, Beijing (China); Zhang, Shengli [Institute of Optoelectronics & Nanomaterials, Herbert Gleiter Institute of Nanoscience, College of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094 (China)

    2016-12-15

    Defects are inevitably present in materials, and their existence strongly affects the fundamental physical properties of 2D materials. Here, we performed first-principles calculations to study the structural and electronic properties of antimonene with Stone–Wales defects, highlighting the differences in the structure and electronic properties. Our calculations show that the presence of a SW defect in antimonene changes the geometrical symmetry. And the band gap decreases in electronic band structure with the decrease of the SW defect concentration. The formation energy and cohesive energy of a SW defect in antimonene are studied, showing the possibility of its existence and its good stability, respectively. The difference charge density near the SW defect is explored, by which the structural deformations of antimonene are explained. At last, we calculated the STM images for the SW defective antimonene to provide more information and characters for possible experimental observation. These results may provide meaningful references to the development and design of novel nanodevices based on new 2D materials.

  1. The defect structure of ceramic high Tc superconductors

    International Nuclear Information System (INIS)

    Van Tendeloo, G.; Amelinckx, S.; Zandbergen, H.W.; Verwerft, M.

    1989-01-01

    In this paper an overview is given of electron microscopy studies on the different ceramic superconductors: YBa 2 Cu 3 O 7 , Bi(Tl)-Sr(Ba)- Ca-Cu-O and Pb 2 Sr 2 Y 0.5 Ca 0.5 Cu 3 O x . Planar defects in these materials play an important role in the superconducting properties. Their structural characteristics are discussed

  2. Defect-induced magnetic structure of CuMnSb

    Czech Academy of Sciences Publication Activity Database

    Máca, František; Kudrnovský, Josef; Drchal, Václav; Turek, I.; Stelmakhovych, O.; Beran, Přemysl; Llobet, A.; Martí, Xavier

    2016-01-01

    Roč. 94, č. 9 (2016), 1-9, č. článku 094407. ISSN 2469-9950 R&D Projects: GA ČR GB14-37427G Institutional support: RVO:68378271 ; RVO:61389005 Keywords : CuMnSb * electronic structure * defects * magnetic order * ab initio calculations * neutron diffraction analysis Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.836, year: 2016

  3. Structural Defects of Silver Hollandite, Ag(x)Mn8O(y), Nanorods: Dramatic Impact on Electrochemistry.

    Science.gov (United States)

    Wu, Lijun; Xu, Feng; Zhu, Yimei; Brady, Alexander B; Huang, Jianping; Durham, Jessica L; Dooryhee, Eric; Marschilok, Amy C; Takeuchi, Esther S; Takeuchi, Kenneth J

    2015-08-25

    Hollandites (OMS-2) are an intriguing class of sorbents, catalysts, and energy storage materials with a tunnel structure permitting one-dimensional insertion and deinsertion of ions and small molecules along the c direction. A 7-fold increase in delivered capacity for Li/AgxMn8O16 electrochemical cells (160 versus 23 mAh/g) observed upon a seemingly small change in silver content (x ∼1.1 (L-Ag-OMS-2) and 1.6 (H-Ag-OMS-2)) led us to characterize the structure and defects of the silver hollandite material. Herein, Ag hollandite nanorods are studied through the combined use of local (atomic imaging, electron diffraction, electron energy-loss spectroscopy) and bulk (synchrotron based X-ray diffraction, thermogravimetric analysis) techniques. Selected area diffraction and high resolution transmission electron microscopy show a structure consistent with that refined by XRD; however, the Ag occupancy varies significantly even within neighboring channels. Both local and bulk measurements indicate a greater quantity of oxygen vacancies in L-Ag-OMS-2, resulting in lower average Mn valence relative to H-Ag-OMS-2. Electron energy loss spectroscopy shows a lower Mn oxidation state on the surface relative to the interior of the nanorods, where the average Mn valence is approximately Mn(3.7+) for H-Ag-OMS-2 and Mn(3.5+) for L-Ag-OMS-2 nanorods, respectively. The higher delivered capacity of L-Ag-OMS-2 may be related to more oxygen vacancies compared to H-Ag-OMS-2. Thus, the oxygen vacancies and MnO6 octahedra distortion are assumed to open the MnO6 octahedra walls, facilitating Li diffusion in the ab plane. These results indicate crystallite size and surface defects are significant factors affecting battery performance.

  4. Critical current, pinning and resistive state of superconducting single-crystal niobium with different types of defect structure

    International Nuclear Information System (INIS)

    Sokolenko, V.I.; Starodubov, Ya.D.

    2005-01-01

    Critical current pinning and resistive state of single crystal niobium of texture orientation are studied for different structural states obtained by rolling at 20 K by 42% and polishing the surface layers. It is found that the heterogeneous structures typical of the strained sample even after its thinning down to approx 10% display a lower current-carrying capability due to an increase of the thermomagnetic instability within the fragmented structure sections in the near-surface layers. For a homogeneous defect structure of the sample core with the density of equilibrium distributed dislocations of 1.3 centre dot 10 11 cm -2 , a correlation between the normal current density and the critical current density in the resistive state is found, in agreement with the concepts of flux creep due to the scatter of local values of J c

  5. Surface defects characterization in a quantum wire by coherent phonons scattering

    Energy Technology Data Exchange (ETDEWEB)

    Rabia, M. S. [Laboratoire de Mécanique des Structures et Energétique, Faculté du Génie de la Construction, Université. Mammeri de Tizi-Ouzou, BP 17 RP Hasnaoua II, Tizi-Ouzou 15000, Algérie m2msr@yahoo.fr (Algeria)

    2015-03-30

    The influence of surface defects on the scattering properties of elastic waves in a quasi-planar crystallographic waveguide is studied in the harmonic approximation using the matching method formalism. The structural model is based on three infinite atomic chains forming a perfect lattice surmounted by an atomic surface defect. Following the Landauer approach, we solve directly the Newton dynamical equation with scattering boundary conditions and taking into account the next nearest neighbour’s interaction. A detailed study of the defect-induced fluctuations in the transmission spectra is presented for different adatom masses. As in the electronic case, the presence of localized defect-induced states leads to Fano-like resonances. In the language of mechanical vibrations, these are called continuum resonances. Numerical results reveal the intimate relation between transmission spectra and localized defect states and provide a basis for the understanding of conductance spectroscopy experiments in disordered mesoscopic systems. The results could be useful for the design of phononic devices.

  6. Surface defects characterization in a quantum wire by coherent phonons scattering

    International Nuclear Information System (INIS)

    Rabia, M. S.

    2015-01-01

    The influence of surface defects on the scattering properties of elastic waves in a quasi-planar crystallographic waveguide is studied in the harmonic approximation using the matching method formalism. The structural model is based on three infinite atomic chains forming a perfect lattice surmounted by an atomic surface defect. Following the Landauer approach, we solve directly the Newton dynamical equation with scattering boundary conditions and taking into account the next nearest neighbour’s interaction. A detailed study of the defect-induced fluctuations in the transmission spectra is presented for different adatom masses. As in the electronic case, the presence of localized defect-induced states leads to Fano-like resonances. In the language of mechanical vibrations, these are called continuum resonances. Numerical results reveal the intimate relation between transmission spectra and localized defect states and provide a basis for the understanding of conductance spectroscopy experiments in disordered mesoscopic systems. The results could be useful for the design of phononic devices

  7. Characterization of defects in Si and SiO2-Si using positrons

    International Nuclear Information System (INIS)

    Asoka-Kumar, P.; Lynn, K.G.

    1993-01-01

    Positron annihilation spectroscopy of overlayers, interfaces, and buried regions of semiconductors has seen a rapid growth in recent years. The characteristics of the annihilation gamma rays depend strongly on the local environment of the annihilation sites, and can be used to probe defect concentrations in a range inaccessible to conventional defect probes. Some of the recent success of the technique in examining low concentrations of point defects in technologically important Si-based structures is discussed

  8. Defect Localization Capabilities of a Global Detection Scheme: Spatial Pattern Recognition Using Full-field Vibration Test Data in Plates

    Science.gov (United States)

    Saleeb, A. F.; Prabhu, M.; Arnold, S. M. (Technical Monitor)

    2002-01-01

    Recently, a conceptually simple approach, based on the notion of defect energy in material space has been developed and extensively studied (from the theoretical and computational standpoints). The present study focuses on its evaluation from the viewpoint of damage localization capabilities in case of two-dimensional plates; i.e., spatial pattern recognition on surfaces. To this end, two different experimental modal test results are utilized; i.e., (1) conventional modal testing using (white noise) excitation and accelerometer-type sensors and (2) pattern recognition using Electronic speckle pattern interferometry (ESPI), a full field method capable of analyzing the mechanical vibration of complex structures. Unlike the conventional modal testing technique (using contacting accelerometers), these emerging ESPI technologies operate in a non-contacting mode, can be used even under hazardous conditions with minimal or no presence of noise and can simultaneously provide measurements for both translations and rotations. Results obtained have clearly demonstrated the robustness and versatility of the global NDE scheme developed. The vectorial character of the indices used, which enabled the extraction of distinct patterns for localizing damages proved very useful. In the context of the targeted pattern recognition paradigm, two algorithms were developed for the interrogation of test measurements; i.e., intensity contour maps for the damaged index, and the associated defect energy vector field plots.

  9. Induced defects in neutron irradiated GaN single crystals

    International Nuclear Information System (INIS)

    Park, I. W.; Koh, E. K.; Kim, Y. M.; Choh, S. H.; Park, S. S.; Kim, B. G.; Sohn, J. M.

    2005-01-01

    The local structure of defects in undoped, Si-doped, and neutron irradiated free standing GaN bulk crystals, grown by hydride vapor phase epitaxy, has been investigated by employing Raman scattering and cathodoluminescence. The GaN samples were irradiated to a dose of 2 x 10 17 neutrons in an atomic reactor at Korea Atomic Energy Research Institute. There was no appreciable change in the Raman spectra for undoped GaN samples before and after neutron irradiation. However, a forbidden transition, A 1 (TO) mode, appeared for a neutron irradiated Si-doped GaN crystal. Cathodoluminescence spectrum for the neutron irradiated Si-doped GaN crystal became much more broadened than that for the unirradiated one. The experimental results reveal the generation of defects with locally deformed structure in the wurtzite Si-doped GaN single crystal

  10. Structure, stability and mobility of point defects in hexagonal close packed zirconium: an ab initio study

    International Nuclear Information System (INIS)

    Verite, G.

    2007-09-01

    This research aims at determining, by means of DFT (density functional theory) electronic structure computations, the structure, the stability, and the mobility of isolated point defects, lack defects, auto-interstitial defects, or small aggregate defects in the compact hexagonal zirconium (hc Zr). After a literature survey on the studied materials and a review of computer simulation methods in material science, the author presents and comments the available results from experiments or simulations on point defects in hc Zr. He presents the growth phenomenon under radiation. Then, he briefly described the computing techniques used in this study, reports the determination of the network parameters and elastic constants of each material. He reports and comments the results obtained with the SIESTA code and with a Monte Carlo kinetic simulation. The different types of defects are investigated

  11. Charged Semiconductor Defects Structure, Thermodynamics and Diffusion

    CERN Document Server

    Seebauer, Edmund G

    2009-01-01

    The technologically useful properties of a solid often depend upon the types and concentrations of the defects it contains. Not surprisingly, defects in semiconductors have been studied for many years, in many cases with a view towards controlling their behavior through various forms of "defect engineering." For example, in the bulk, charging significantly affects the total concentration of defects that are available to mediate phenomena such as solid-state diffusion. Surface defects play an important role in mediating surface mass transport during high temperature processing steps such as epitaxial film deposition, diffusional smoothing in reflow, and nanostructure formation in memory device fabrication. Charged Semiconductor Defects details the current state of knowledge regarding the properties of the ionized defects that can affect the behavior of advanced transistors, photo-active devices, catalysts, and sensors. Features: Group IV, III-V, and oxide semiconductors; Intrinsic and extrinsic defects; and, P...

  12. Local coercive force of domain boundaries

    International Nuclear Information System (INIS)

    Kandaurova, G.S.; Vas'kovskij, V.O.

    1980-01-01

    The aim of the present paper is to show the variety of effects resulting from local coercivity using RFeO 3 orthoferrites crystals-plates, to separate factors which are not directly connected with the nature of every single defect but influence significantly Hsub(cw) local coercivity and, at last, to attract attention of physisists-theorists to new tasks of the magnetic hysteresis theory. Measurements have been carried out on a great number of defect of YFeO 3 and PyFeO 3 crystals. Such peculiarities of local coercivity as Hsub(cw) anisotropy and asymmetry, Hsub(cw) nonstability and its dependence on the sample magnetic prehistory. Qualitative explanation of these effects in based on the presumable interaction of the domain wall with magnetic heterogeneities existing in a region of structural defects

  13. A DFT study of Cu nanoparticles adsorbed on defective graphene

    International Nuclear Information System (INIS)

    García-Rodríguez, D.E.; Mendoza-Huizar, L.H.; Díaz, C.

    2017-01-01

    Highlights: • Cu_n supported on graphene may be a promising electrode material for DBFC's cells. • Cu_n/graphene interaction is rather local and size independent. • Cu_1_3 anchors strongly to defects in graphene, while keeping its gas-phase properties. - Abstract: Metal nanoparticles adsorbed on graphene are systems of interest for processes relative to catalytic reactions and alternative energy production. Graphene decorated with Cu-nanoparticles, in particular, could be a good alternative material for electrodes in direct borohydride fuel cells. However our knowledge of this system is still very limited. Based on density functional theory, we have analyzed the interaction of Cu_n nanoparticles (n = 4, 5, 6, 7, 13) with pristine and defective-graphene. We have considered two types of defects, a single vacancy (SV), and an extended lineal structural defect (ELSD), formed by heptagon-pentagon pairs. Our analysis has revealed the covalent character of the Cu_n-graphene interaction for pristine- and ELSD-graphene, and a more ionic-like interaction for SV-graphene. Furthermore, our analysis shows that the interaction between the nanoparticles and the graphene is rather local, i.e., only the nanoparticle atoms close to the contact region are involved in the interaction, being the electronic contact region much higher for defective-graphene than for pristine-graphene. Thus, the higher the particle the lower its average electronic and structural distortion.

  14. Optical transitions in two-dimensional topological insulators with point defects

    Science.gov (United States)

    Sablikov, Vladimir A.; Sukhanov, Aleksei A.

    2016-12-01

    Nontrivial properties of electronic states in topological insulators are inherent not only to the surface and boundary states, but to bound states localized at structure defects as well. We clarify how the unusual properties of the defect-induced bound states are manifested in optical absorption spectra in two-dimensional topological insulators. The calculations are carried out for defects with short-range potential. We find that the defects give rise to the appearance of specific features in the absorption spectrum, which are an inherent property of topological insulators. They have the form of two or three absorption peaks that are due to intracenter transitions between electron-like and hole-like bound states.

  15. Fine structure and analytical quantum-defect wave functions

    International Nuclear Information System (INIS)

    Kostelecky, V.A.; Nieto, M.M.; Truax, D.R.

    1988-01-01

    We investigate the domain of validity of previously proposed analytical wave functions for atomic quantum-defect theory. This is done by considering the fine-structure splitting of alkali-metal and singly ionized alkaline-earth atoms. The Lande formula is found to be naturally incorporated. A supersymmetric-type integer is necessary for finite results. Calculated splittings correctly reproduce the principal features of experimental values for alkali-like atoms

  16. Analyzing the defect structure of CuO-doped PZT and KNN piezoelectrics from electron paramagnetic resonance.

    Science.gov (United States)

    Jakes, Peter; Kungl, Hans; Schierholz, Roland; Eichel, Rüdiger-A

    2014-09-01

    The defect structure for copper-doped sodium potassium niobate (KNN) ferroelectrics has been analyzed with respect to its defect structure. In particular, the interplay between the mutually compensating dimeric (Cu(Nb)'''-V(O)··) and trimeric (V(O)··-Cu(Nb)'''-V(O)··)· defect complexes with 180° and non-180° domain walls has been analyzed and compared to the effects from (Cu'' - V(O)··)(x)× dipoles in CuO-doped lead zirconate titanate (PZT). Attempts are made to relate the rearrangement of defect complexes to macroscopic electromechanical properties.

  17. Structural Health Monitoring Based on Combined Structural Global and Local Frequencies

    Directory of Open Access Journals (Sweden)

    Jilin Hou

    2014-01-01

    Full Text Available This paper presents a parameter estimation method for Structural Health Monitoring based on the combined measured structural global frequencies and structural local frequencies. First, the global test is experimented to obtain the low order modes which can reflect the global information of the structure. Secondly, the mass is added on the member of structure to increase the local dynamic characteristic and to make the member have local primary frequency, which belongs to structural local frequency and is sensitive to local parameters. Then the parameters of the structure can be optimized accurately using the combined structural global frequencies and structural local frequencies. The effectiveness and accuracy of the proposed method are verified by the experiment of a space truss.

  18. Role of the bond defect for structural transformations between crystalline and amorphous silicon: A molecular-dynamics study

    International Nuclear Information System (INIS)

    Stock, D. M.; Weber, B.; Gaertner, K.

    2000-01-01

    The relation between the bond defect, which is a topological defect, and structural transformations between crystalline and amorphous silicon, is studied by molecular-dynamics simulations. The investigation of 1-keV boron implantation into crystalline silicon proves that the bond defect can also be generated directly by collisional-induced bond switching in addition to its formation by incomplete recombination of primary defects. This supports the assumption that the bond defect may play an important role in the amorphization process of silicon by light ions. The analysis of the interface between (001) silicon and amorphous silicon shows that there are two typical defect configurations at the interface which result from two different orientations of the bond defect with respect to the interface. Thus the bond defect appears to be a characteristic structural feature of the interface. Moreover, annealing results indicate that the bond defect acts as a growth site for interface-mediated crystallization

  19. CoCrMo cellular structures made by Electron Beam Melting studied by local tomography and finite element modelling

    Energy Technology Data Exchange (ETDEWEB)

    Petit, Clémence [INSA de Lyon, MATEIS CNRS UMR5510, Université de Lyon, 69621 Villeurbanne (France); Maire, Eric, E-mail: eric.maire@insa-lyon.fr [INSA de Lyon, MATEIS CNRS UMR5510, Université de Lyon, 69621 Villeurbanne (France); Meille, Sylvain; Adrien, Jérôme [INSA de Lyon, MATEIS CNRS UMR5510, Université de Lyon, 69621 Villeurbanne (France); Kurosu, Shingo; Chiba, Akihiko [Institute for Materials Research, Tohoku University, Sendai 980-0812 (Japan)

    2016-06-15

    The work focuses on the structural and mechanical characterization of Co-Cr-Mo cellular samples with cubic pore structure made by Electron Beam Melting (EBM). X-ray tomography was used to characterize the architecture of the sample. High resolution images were also obtained thanks to local tomography in which the specimen is placed close to the X-ray source. These images enabled to observe some defects due to the fabrication process: small pores in the solid phase, partially melted particles attached to the surface. Then, in situ compression tests were performed in the tomograph. The images of the deformed sample show a progressive buckling of the vertical struts leading to final fracture. The deformation initiated where the defects were present in the strut i.e. in regions with reduced local thickness. The finite element modelling confirmed the high stress concentrations of these weak points leading to the fracture of the sample. - Highlights: • CoCrMo samples fabricated by Electron Beam Melting (EBM) process are considered. • X-ray Computed Tomography is used to observe the structure of the sample. • The mechanical properties are tested thanks to an in situ test in the tomograph. • A finite element model is developed to model the mechanical behaviour.

  20. Radiation defect formation in two-barrier structures based on silicon

    International Nuclear Information System (INIS)

    Madatov, R.S.; Abbasov, F.P.; Mustafayev, Yu.M.

    2013-01-01

    It was developed a silicon-based photodetector with high integral sensitivity in low-wave spectrum. It was investigated the effect of gamma radiation on the mechanism of current transport in the structure of Schottky barrier type and in transitions. It is shown that the double-barrier structures can improve the photovoltaic parameters of conventional detectors. For the first time it was obtained and studied the characteristics of two-barrier structures created on the same plane. The advantages over conventional structures are shown. The annealing point is changing the structure of radiation defects and leads to their disappearance

  1. Structural evolution of defective graphene under heat treatment and gamma irradiation

    Science.gov (United States)

    Zhang, Yifei; Shi, Jie; Chen, Cheng; Li, Nan; Xu, Zhiwei; Liu, Liangsen; Zhao, Lihuan; Li, Jing; Jing, Miaolei

    2018-03-01

    We have studied the structural change of defective graphene built by annealing in different temperature under the condition of gamma irradiation. Firstly, we found the heat treatment not only reduced but also striped the graphene. This behavior made defects become more firstly and then become less with the increase of temperature. And then gamma irradiation removed some oxygen-containing groups, by a simultaneous changed over carbon in the graphitic lattice from sp3 to sp2. Also, the gamma irradiation decreased the interlayer spacing between graphene lowest to 3.391 Å and made a crosslink which resulting in the size of the ordered gaining. A variation was detected by Raman spectroscopy that the amorphous carbon was declined after gamma irradiation. Furtherly we found the degree of this decline raised first and then diminished with the increase in the number of defects. The change in repair capacity of gamma irradiation presented a strategy for repairing the defects of graphene.

  2. Precursor defect to the vacancy-dioxygen center in Si

    Science.gov (United States)

    Londos, C. A.; Sarlis, N.; Fytros, L. G.; Papastergiou, K.

    1996-03-01

    In a recent paper [Phys. Rev. B 50, 11 531 (1994)] we have tentatively attributed two new infrared bands at 914 cm -1 and 1000 cm-1, in neutron-irradiated Czochralski-grown silicon, to a [VO+Oi] structure that was considered to develop as an intermediate stage in the process of conversion of a VO center to a VO2 complex upon heat treatment. As a continuation of this work, we further investigate [VO+Oi] structure and the formation of intermediate defects. In addition, we present semiempirical calculations of the localized vibrational mode frequencies of the [VO+Oi] defect. The results are consistent with the experimental observations.

  3. Local coercive force of domain boundaries

    Energy Technology Data Exchange (ETDEWEB)

    Kandaurova, G S; Vas' kovskii, V O [Ural' skij Gosudarstvennyj Univ., Sverdlovsk (USSR)

    1980-04-01

    The aim of the present paper is to show the variety of effects resulting from local coercivity using RFeO/sub 3/ orthoferrites crystals-plates, to separate factors which are not directly connected with the nature of every single defect but influence significantly H/sub cw/ local coercivity and, at last, to attract attention of physisists-theorists to new tasks of the magnetic hysteresis theory. Measurements have been carried out on a great number of defect of YFeO/sub 3/ and PyFeO/sub 3/ crystals. Such peculiarities of local coercivity as H/sub cw/ anisotropy and asymmetry, H/sub cw/ nonstability and its dependence on the sample magnetic prehistory. Qualitative explanation of these effects in based on the presumable interaction of the domain wall with magnetic heterogeneities existing in a region of structural defects.

  4. Point defects and defect clusters examined on the basis of some fundamental experiments

    International Nuclear Information System (INIS)

    Zuppiroli, L.

    1975-01-01

    On progressing from the centre of the defect to the surface the theoretical approach to a point defect passes from electronic theories to elastic theory. Experiments by which the point defect can be observed fall into two categories. Those which detect long-range effects: measurement of dimensional variations in the sample; measurement of the mean crystal parameter variation; elastic X-ray scattering near the nodes of the reciprocal lattice (Huang scattering). Those which detect more local effects: low-temperature resistivity measurement; positron capture and annihilation; local scattering far from the reciprocal lattice nodes. Experiments involving both short and long-range effects can always be found. This is the case for example with the dechanneling of α particles by defects. Certain of the experimental methods quoted above apply also to the study of point defect clusters. These methods are illustrated by some of their most striking results which over the last twenty years have refined our knowledge of point defects and defect clusters: length and crystal parameter measurements; diffuse X-ray scattering; low-temperature resistivity measurements; ion emission microscopy; electron microscopy; elastoresistivity [fr

  5. SrFe1‑xMoxO2+δ : parasitic ferromagnetism in an infinite-layer iron oxide with defect structures induced by interlayer oxygen

    Science.gov (United States)

    Guo, Jianhui; Shi, Lei; Zhao, Jiyin; Wang, Yang; Yuan, Xueyou; Li, Yang; Wu, Liang

    2018-04-01

    The recent discovered compound SrFeO2 is an infinite-layer-structure iron oxide with unusual square-planar coordination of Fe2+ ions. In this study, SrFe1‑xMoxO2+δ (x parasitic ferromagnetism of the compound and its relationship to the defect structures are investigated. It is found that substitution of high-valent Mo6+ for Fe2+ results in excess oxygen anions O2‑ inserted at the interlayer sites for charge compensation, which further causes large atomic displacements along the c-axis. Due to the robust but flexible Fe-O-Fe framework, the samples are well crystallized within the ab-plane, but are significantly poorer crystallized along the c-axis. Defect structures including local lattice distortions and edge dislocations responsible for the lowered crystallinity are observed by high resolution transmission electron microscopy. Both the magnetic measurements and electron spin resonance spectra provide the evidence of a parasitic ferromagnetism (FM). The week FM interaction originated from the imperfect antiferromagnetic (AFM) ordering could be ascribed to the introduction of uncompensated magnetic moments due to substitution of Mo6+ (S = 0) for Fe2+ (S = 2) and the canted/frustrated spins resulted from defect structures.

  6. Influence of structural defects on excitonic photoluminescence of pentacene

    International Nuclear Information System (INIS)

    Piryatins'kij, Yu.P.; Kurik, M.V.

    2011-01-01

    The exciton reflection, absorption, and photoluminescence spectra for single crystals and polycrystalline films have been studied in the temperature range of 4.2-296 K. A significant influence of structural defects arising during phase transitions on the exciton spectra of pentacene has been detected. The mechanisms of photoluminescence in single crystals and crystalline films of pentacene have been considered.

  7. Atomistic simulations of divacancy defects in armchair graphene nanoribbons: Stability, electronic structure, and electron transport properties

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Jun [College of Physical Science and Technology, Yangtze University, Jingzhou, Hubei 434023 (China); Zeng, Hui, E-mail: zenghui@yangtzeu.edu.cn [College of Physical Science and Technology, Yangtze University, Jingzhou, Hubei 434023 (China); Wei, Jianwei [College of Optoelectronic Information, Chongqing University of Technology, Chongqing 400054 (China); Li, Biao; Xu, Dahai [College of Physical Science and Technology, Yangtze University, Jingzhou, Hubei 434023 (China)

    2014-01-17

    Using the first principles calculations associated with nonequilibrium Green's function, we have studied the electronic structures and quantum transport properties of defective armchair graphene nanoribbon (AGNR) in the presence of divacancy defects. The triple pentagon–triple heptagon (555–777) defect in the defective AGNR is energetically more favorable than the pentagon–octagon–pentagon (5–8–5) defect. Our calculated results reveal that both 5–8–5-like defect and 555–777-like defect in AGNR could improve the electron transport. It is anticipated that defective AGNRs can exhibit large range variations in transport behaviors, which are strongly dependent on the distributions of the divacancy defect.

  8. A DFT study of Cu nanoparticles adsorbed on defective graphene

    Energy Technology Data Exchange (ETDEWEB)

    García-Rodríguez, D.E. [Universidad Politécnica de Aguascalientes, Calle Paseo San Gerardo No. 297 Fracc. San Gerardo, 20342 Aguascalientes, Ags. (Mexico); Mendoza-Huizar, L.H. [Universidad Autónoma del Estado de Hidalgo, Área Académica de Química, Ciudad del Conocimiento. Carretera Pachuca-Tulancigo Km. 4.5 Mineral de la Reforma, 42186 Hidalgo (Mexico); Díaz, C., E-mail: cristina.diaz@uam.es [Departamento de Química, Módulo 13, Universidad Autónoma de Madrid, 28049 Madrid (Spain); Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 28049 Madrid (Spain); Institute for Advanced Research in Chemical Science (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid (Spain)

    2017-08-01

    Highlights: • Cu{sub n} supported on graphene may be a promising electrode material for DBFC's cells. • Cu{sub n}/graphene interaction is rather local and size independent. • Cu{sub 13} anchors strongly to defects in graphene, while keeping its gas-phase properties. - Abstract: Metal nanoparticles adsorbed on graphene are systems of interest for processes relative to catalytic reactions and alternative energy production. Graphene decorated with Cu-nanoparticles, in particular, could be a good alternative material for electrodes in direct borohydride fuel cells. However our knowledge of this system is still very limited. Based on density functional theory, we have analyzed the interaction of Cu{sub n} nanoparticles (n = 4, 5, 6, 7, 13) with pristine and defective-graphene. We have considered two types of defects, a single vacancy (SV), and an extended lineal structural defect (ELSD), formed by heptagon-pentagon pairs. Our analysis has revealed the covalent character of the Cu{sub n}-graphene interaction for pristine- and ELSD-graphene, and a more ionic-like interaction for SV-graphene. Furthermore, our analysis shows that the interaction between the nanoparticles and the graphene is rather local, i.e., only the nanoparticle atoms close to the contact region are involved in the interaction, being the electronic contact region much higher for defective-graphene than for pristine-graphene. Thus, the higher the particle the lower its average electronic and structural distortion.

  9. Structure and flux pinning properties of irradiation defects in YBa2Cu3O7-x

    International Nuclear Information System (INIS)

    Kirk, M.A.

    1992-06-01

    We review our investigations of defects produced in YBa 2 Cu 3 O 7-x by various forms of irradiation. The defect microstructure has been studied by transmission electron microscopy (TEM). Irradiation enhancements of flux pinning have been studied by SQUID magnetometry on single crystals. In many cases the same single crystals were used in both TEM and SQUID investigations. The primary atom recoil spectra for all the irradiations studied have been carefully calculated and used to correlate the TEM and magnetization results for the different types of irradiation. Correlation of annealing experiments, employing both TEM and SQUID measurements, among several types of irradiation has also yielded information on the different defect structures present. Defect densities, sizes and strain field anisotropies have been determined by TEM. Defect flux pinning anisotropies have been determined for two field orientations in twinned single crystals. The temperature dependences of the flux pinning have been measured. The maximum field of irreversibility at 70 K is shown to change markedly upon both neutron and proton irradiations in some crystals and not others. The defect structure, chemistry and location in the unit cell has been determined in some cases. Some interaction with existing defect structure has been observed in proton and electron irradiations. The damage character and directionality has been determined in GeV ion irradiated crystals

  10. Defect-Induced Hedgehog Polarization States in Multiferroics

    Science.gov (United States)

    Li, Linze; Cheng, Xiaoxing; Jokisaari, Jacob R.; Gao, Peng; Britson, Jason; Adamo, Carolina; Heikes, Colin; Schlom, Darrell G.; Chen, Long-Qing; Pan, Xiaoqing

    2018-03-01

    Continuous developments in nanotechnology require new approaches to materials synthesis that can produce novel functional structures. Here, we show that nanoscale defects, such as nonstoichiometric nanoregions (NSNRs), can act as nano-building blocks for creating complex electrical polarization structures in the prototypical multiferroic BiFeO3 . An array of charged NSNRs are produced in BiFeO3 thin films by tuning the substrate temperature during film growth. Atomic-scale scanning transmission electron microscopy imaging reveals exotic polarization rotation patterns around these NSNRs. These polarization patterns resemble hedgehog or vortex topologies and can cause local changes in lattice symmetries leading to mixed-phase structures resembling the morphotropic phase boundary with high piezoelectricity. Phase-field simulations indicate that the observed polarization configurations are mainly induced by charged states at the NSNRs. Engineering defects thus may provide a new route for developing ferroelectric- or multiferroic-based nanodevices.

  11. Thermodynamic quantities and defect equilibrium in La2-xSrxNiO4+δ

    International Nuclear Information System (INIS)

    Nakamura, Takashi; Yashiro, Keiji; Sato, Kazuhisa; Mizusaki, Junichiro

    2009-01-01

    In order to elucidate the relation between thermodynamic quantities, the defect structure, and the defect equilibrium in La 2-x Sr x NiO 4+δ , statistical thermodynamic calculation is carried out and calculated results are compared to those obtained from experimental data. Partial molar enthalpy of oxygen and partial molar entropy of oxygen are obtained from δ-P(O 2 )-T relation by using Gibbs-Helmholtz equation. Statistical thermodynamic model is derived from defect equilibrium models proposed before by authors, localized electron model and delocalized electron model which could well explain the variation of oxygen content of La 2-x Sr x NiO 4+δ . Although assumed defect species and their equilibrium are different, the results of thermodynamic calculation by localized electron model and delocalized electron model show minor difference. Calculated results by the both models agree with the thermodynamic quantities obtained from oxygen nonstoichiometry of La 2-x Sr x NiO 4+δ . - Graphical abstract: In order to elucidate the relation between thermodynamic quantities, the defect structure, and the defect equilibrium in La 2-x Sr x NiO 4+δ , statistics thermodynamic calculation is carried out and calculated results are compared to those obtained from experimental data.

  12. Influence on ultrasonic incident angle and defect detection sensitivity by cast stainless steel structure

    International Nuclear Information System (INIS)

    Kurozumi, Y.

    2004-01-01

    It is well known that ultrasonic waves are affected strongly by macro-structures in cast stainless steel, as in the primary pipe or other components in pressurized water reactors (PWRs). In this work, ultrasonic refractive angles and defect detection sensitivities are investigated at different incident angles to cast stainless steel. The aims of the investigation are to clarify the transmission of ultrasonic waves in cast stainless steel and to contribute to the transducer design. The results are that ultrasonic refractive angles in cast stainless steel shift towards the 45-degree direction with respect to the direction of dendritic structures by 11.8 degrees at the maximum and that the sensitivity of transducer for inner surface breaking cracks increases with decreasing incident angle. However, in an ultrasonic inspection of actual welds at smaller incident angles, a trade-off occurs between increased defect detection sensitivity and decreased defect discrimination capability due to intense false signals produced by non-defective features. (orig.)

  13. Re-entrant lithium local environments and defect driven electrochemistry of Li- and Mn-rich Li-ion battery cathodes.

    Science.gov (United States)

    Dogan, Fulya; Long, Brandon R; Croy, Jason R; Gallagher, Kevin G; Iddir, Hakim; Russell, John T; Balasubramanian, Mahalingam; Key, Baris

    2015-02-18

    Direct observations of structure-electrochemical activity relationships continue to be a key challenge in secondary battery research. (6)Li magic angle spinning (MAS) nuclear magnetic resonance (NMR) spectroscopy is the only structural probe currently available that can quantitatively characterize local lithium environments on the subnanometer scale that dominates the free energy for site occupation in lithium-ion (Li-ion) intercalation materials. In the present study, we use this local probe to gain new insights into the complex electrochemical behavior of activated 0.5(6)Li2MnO3·0.5(6)LiMn(0.5)Ni(0.5)O2, lithium- and manganese-rich transition-metal (TM) oxide intercalation electrodes. We show direct evidence of path-dependent lithium site occupation, correlated to structural reorganization of the metal oxide and the electrochemical hysteresis, during lithium insertion and extraction. We report new (6)Li resonances centered at ∼1600 ppm that are assigned to LiMn6-TM(tet) sites, specifically, a hyperfine shift related to a small fraction of re-entrant tetrahedral TMs (Mn(tet)), located above or below lithium layers, coordinated to LiMn6 units. The intensity of the TM layer lithium sites correlated with tetrahedral TMs loses intensity after cycling, indicating limited reversibility of TM migrations upon cycling. These findings reveal that defect sites, even in dilute concentrations, can have a profound effect on the overall electrochemical behavior.

  14. Defect structures in YBa2Cu3O/sub 7-x/ produced by electron irradiation

    International Nuclear Information System (INIS)

    Kirk, M.A.; Baker, M.C.; Liu, J.Z.; Lam, D.J.; Weber, H.W.

    1987-12-01

    Defect structures in YBa 2 Cu 3 O/sub 7-x/ produced by electron irradiation at 300 0 K were investigated by transmission electron microscopy. Threshold energies for the production of visible defects were determined to be 152 keV and 131 keV (+- 7 keV) in directions near the a and b (b > a) axes (both perpendicular to c, the long axis in the orthorhombic structure), respectively. During above threshold irradiations in an electron flux of 3 x 10 18 cm -2 s -1 , extended defects were observed to form and grow to sizes of 10 to 50 nm over 1000 s in material thicknesses 20 to 200 nm. Such low electron threshold energies suggest oxygen atom displacements with recoil energies near 20 eV. The observation of movement of twin boundaries during irradiation just above threshold suggests movement of the basal plane oxygen atoms by direct displacement or defect migration processes. Crystals irradiated above threshold were observed after about 24 hours to have transformed to a structure heavily faulted on planes perpendicular to the c axis. 3 refs., 3 figs

  15. Towards structural controllability of local-world networks

    International Nuclear Information System (INIS)

    Sun, Shiwen; Ma, Yilin; Wu, Yafang; Wang, Li; Xia, Chengyi

    2016-01-01

    Controlling complex networks is of vital importance in science and engineering. Meanwhile, local-world effect is an important ingredient which should be taken into consideration in the complete description of real-world complex systems. In this letter, structural controllability of a class of local-world networks is investigated. Through extensive numerical simulations, firstly, effects of local world size M and network size N on structural controllability are examined. For local-world networks with sparse topological configuration, compared to network size, local-world size can induce stronger influence on controllability, however, for dense networks, controllability is greatly affected by network size and local-world effect can be neglected. Secondly, relationships between controllability and topological properties are analyzed. Lastly, the robustness of local-world networks under targeted attacks regarding structural controllability is discussed. These results can help to deepen the understanding of structural complexity and connectivity patterns of complex systems. - Highlights: • Structural controllability of a class of local-world networks is investigated. • For sparse local-world networks, compared to network size, local-world size can bring stronger influence on controllability. • For dense networks, controllability is greatly affected by network size and the effect of local-world size can be neglected. • Structural controllability against targeted node attacks is discussed.

  16. Towards structural controllability of local-world networks

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Shiwen, E-mail: sunsw80@126.com [Tianjin Key Laboratory of Intelligence Computing and Novel Software Technology, Tianjin University of Technology, Tianjin 300384 (China); Key Laboratory of Computer Vision and System (Tianjin University of Technology), Ministry of Education, Tianjin 300384 (China); Ma, Yilin; Wu, Yafang; Wang, Li; Xia, Chengyi [Tianjin Key Laboratory of Intelligence Computing and Novel Software Technology, Tianjin University of Technology, Tianjin 300384 (China); Key Laboratory of Computer Vision and System (Tianjin University of Technology), Ministry of Education, Tianjin 300384 (China)

    2016-05-20

    Controlling complex networks is of vital importance in science and engineering. Meanwhile, local-world effect is an important ingredient which should be taken into consideration in the complete description of real-world complex systems. In this letter, structural controllability of a class of local-world networks is investigated. Through extensive numerical simulations, firstly, effects of local world size M and network size N on structural controllability are examined. For local-world networks with sparse topological configuration, compared to network size, local-world size can induce stronger influence on controllability, however, for dense networks, controllability is greatly affected by network size and local-world effect can be neglected. Secondly, relationships between controllability and topological properties are analyzed. Lastly, the robustness of local-world networks under targeted attacks regarding structural controllability is discussed. These results can help to deepen the understanding of structural complexity and connectivity patterns of complex systems. - Highlights: • Structural controllability of a class of local-world networks is investigated. • For sparse local-world networks, compared to network size, local-world size can bring stronger influence on controllability. • For dense networks, controllability is greatly affected by network size and the effect of local-world size can be neglected. • Structural controllability against targeted node attacks is discussed.

  17. Probing defect and magnetic structures on the nanoscale

    OpenAIRE

    Kallis, Alexis

    2010-01-01

    This thesis reports on experimental research on structural defects and magnetic species on the nanoscale. The latter project involved considerable development work on the production of a spin-polarised mono-energetic positron beam. The construction of the system is described through various trial steps with emphasis on the methods of maximum practical polarization of the positron beam and of electrons in the sample with the smallest possible loss of beam intensity. A new sodium-22 source caps...

  18. Defective pyrite (100) surface: An ab initio study

    International Nuclear Information System (INIS)

    Stirling, Andras; Bernasconi, Marco; Parrinello, Michele

    2007-01-01

    The structural and electronic properties of sulfur monomeric defects at the FeS 2 (100) surface have been studied by periodic density-functional calculations. We have shown that for a monomeric sulfur bound to an originally fivefold coordinated surface Fe site, the defect core features a triplet electronic ground state with unpaired spins localized on the exposed Fe-S unit. At this site, the iron and sulfur ions have oxidation states +4 and -2, respectively. This defect can be seen as produced via heterolytic bond breaking of the S-S sulfur dimer followed by a Fe-S redox reaction. The calculated sulfur 2p core-level shifts of the monomeric defects are in good agreement with experimental photoemission spectra, which allow a compelling assignment of the different spectroscopic features. The effect of water on the stability of the defective surface has also been studied, and it has been shown that the triplet state is stable against the wetting of the surface. The most important implications of the presence of the monomeric sulfur defect on the reactivity are also discussed

  19. Research Trends on Defect and Life Assessment of High Temperature Structure

    International Nuclear Information System (INIS)

    Lee, Hyeong Yeon; Lee Jae Han

    2008-01-01

    This report presents the analysis on the state-of-the-art research trends on defect assessment and life evaluation of high temperature structure based on the papers presented in the two international conferences of ASME PVP 2007 / CREEP 8 which was held in 2007 and ICFDSM VI(International Conference on Fatigue Damage of Structural Materials VI) which was held in 2006

  20. Extrusion product defects: a statistical study

    International Nuclear Information System (INIS)

    Qamar, S.Z.; Arif, A.F.M.; Sheikh, A.K.

    2003-01-01

    In any manufacturing environment, defects resulting in rework or rejection are directly related to product cost and quality, and indirectly linked with process, tooling and product design. An analysis of product defects is therefore integral to any attempt at improving productivity, efficiency and quality. Commercial aluminum extrusion is generally a hot working process and consists of a series of different but integrated operations: billet preheating and sizing, die set and container preheating, billet loading and deformation, product sizing and stretching/roll-correction, age hardening, and painting/anodizing. Product defects can be traced back to problems in billet material and preparation, die and die set design and maintenance, process variable aberrations (ram speed, extrusion pressure, container temperature, etc), and post-extrusion treatment (age hardening, painting/anodizing, etc). The current paper attempts to analyze statistically the product defects commonly encountered in a commercial hot aluminum extrusion setup. Real-world rejection data, covering a period of nine years, has been researched and collected from a local structural aluminum extrusion facility. Rejection probabilities have been calculated for all the defects studied. The nine-year rejection data have been statistically analyzed on the basis of (i) an overall breakdown of defects, (ii) year-wise rejection behavior, (iii) breakdown of defects in each of three cost centers: press, anodizing, and painting. (author)

  1. Dynamic properties of interstitial carbon and carbon-carbon pair defects in silicon

    International Nuclear Information System (INIS)

    Leary, P.; Jones, R.; Oeberg, S.; Torres, V.J.

    1997-01-01

    Interstitial carbon, C i , defects in Si exhibit a number of unexplained features. The C i defect in the neutral charge state gives rise to two almost degenerate vibrational modes at 920 and 931 cm -1 whose 2:1 absorption intensity ratio naturally suggests a trigonal defect in conflict with uniaxial stress measurements. The dicarbon, C s -C i , defect is bistable, and the energy difference between its A and B forms is surprisingly small even though the bonding is very different. In the B form appropriate to the neutral charge state, a silicon interstitial is believed to be located near a bond-centered site between two C s atoms. This must give rise to vibrational modes which involve the motion of both C atoms in apparent conflict with the results of photoluminescence experiments. We use an ab initio local density functional cluster method, AIMPRO, to calculate the structure and vibrational modes of these defects and find that the ratio of the absorption intensities of the local modes of C i is in reasonable agreement with experiment even though the structure of the defect is not trigonal. We also show that modes in the vicinity of those detected by photoluminescence for the B form of the dicarbon center involve independent movements of the two C atoms. Finally, the trends in the relative energies of the A and B forms in three charge states are investigated. copyright 1996 The American Physical Society

  2. First-Principles Investigations of Defects in Minerals

    Science.gov (United States)

    Verma, Ashok K.

    2011-07-01

    ions vary largely among different types of defects. In particular, the O-defects introduce localized electronic states. For Mg2SiO4 polymorphs native and protonic point defects were investigated upto 30 GPa. The Mg2+-Frenkel defects in forsterite and MgO pseudo-Schottky defects in wadsleyite and ringwoodite are energetically most favorable. Mg migration is easiest in forsterite and ringwoodite whereas Si migration is easiest in wadsleyite. Protons show substantially effect on structural transition pressures and PV equations-of-states. In our work on MgO, we showed that the point defect formation is easier in grain boundary interfacial regions than in bulk and pressure increasingly stabilizes interfacial vacancies relative to bulk thereby causing as enhancement in the vacancy concentrations. Symmetric tilt grain boundaries show structural phase transitions to asymmetric tilt grain boundaries under pressure.

  3. Precursor defect to the vacancy-dioxygen center in Si

    International Nuclear Information System (INIS)

    Londos, C.A.; Sarlis, N.; Fytros, L.G.; Papastergiou, K.

    1996-01-01

    In a recent paper [Phys. Rev. B 50, 11531 (1994)] we have tentatively attributed two new infrared bands at 914 cm -1 and 1000 cm -1 , in neutron-irradiated Czochralski-grown silicon, to a [VO+O i ] structure that was considered to develop as an intermediate stage in the process of conversion of a VO center to a VO 2 complex upon heat treatment. As a continuation of this work, we further investigate [VO+O i ] structure and the formation of intermediate defects. In addition, we present semiempirical calculations of the localized vibrational mode frequencies of the [VO+O i ] defect. The results are consistent with the experimental observations. copyright 1996 The American Physical Society

  4. Local order dynamics: its application to the study of atomic mobility, of point defects in crystalline alloys, and of structural relaxation in amorphous alloys

    International Nuclear Information System (INIS)

    Balanzat, Emmanuel

    1983-01-01

    This research thesis addressed the study of the atomic mobility mechanism and of the atom movement dynamics in the case of crystalline alloys and of amorphous alloys. The first part is based on a previous study performed on an α-Cu 70 -Zn 30 crystalline alloy, and addresses the case of an α-Au 70 -Ni 30 alloy. The specificity of this case relies in the fact that the considered solid solution is metastable and susceptible to de-mixing in the considered temperature range. This case of off-equilibrium crystalline alloy is at the crossroad between steady crystalline alloys and metallic glasses which are studied in the second part. The third part addresses the irradiation of metallic amorphous alloys by fast particles (neutrons or electrons). The author tried to characterise atomic defects induced by irradiation and to compare them with pre-existing ones. He studied how these defects may change atomic mobility, and, more generally, to which extent the impact of energetic particles could modify local order status

  5. A comparative study of density functional and density functional tight binding calculations of defects in graphene

    Energy Technology Data Exchange (ETDEWEB)

    Zobelli, Alberto [Laboratoire de Physique des Solides, Univ. Paris Sud, CNRS UMR, Orsay (France); Ivanovskaya, Viktoria; Wagner, Philipp; Yaya, Abu; Ewels, Chris P. [Institut des Materiaux Jean Rouxel (IMN), CNRS UMR, University of Nantes (France); Suarez-Martinez, Irene [Nanochemistry Research Institute, Curtin University of Technology, Perth, Western Australia (Australia)

    2012-02-15

    The density functional tight binding approach (DFTB) is well adapted for the study of point and line defects in graphene based systems. After briefly reviewing the use of DFTB in this area, we present a comparative study of defect structures, energies, and dynamics between DFTB results obtained using the dftb+ code, and density functional results using the localized Gaussian orbital code, AIMPRO. DFTB accurately reproduces structures and energies for a range of point defect structures such as vacancies and Stone-Wales defects in graphene, as well as various unfunctionalized and hydroxylated graphene sheet edges. Migration barriers for the vacancy and Stone-Wales defect formation barriers are accurately reproduced using a nudged elastic band approach. Finally we explore the potential for dynamic defect simulations using DFTB, taking as an example electron irradiation damage in graphene. DFTB-MD derived sputtering energy threshold map for a carbon atom in a graphene plane. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. Elastic interaction energies of defect structures

    International Nuclear Information System (INIS)

    Seitz, E.; de Fontaine, D.

    1976-01-01

    The elastic strain energy between point defects and small disk-shaped clusters of defects are calculated to determine stable configurations. A distortion tensor of tetragonal symmetry is assigned to each impurity atom. The tetragonality ratio t is varied to cover needle-type (t greater than 1), spherical (t = 1) and disk-type (t less than 0) strain fields. To vary the elastic properties of the host material, Fe, Cu, Al, and V were chosen as examples. Computer calculations are based on the microscopic theory of elasticity which emphasizes calculations in discrete Fourier space. Pairs of point defects order along [001] for t less than 1 and along (001) for t = 1 for all host elements. For t greater than 1 fcc lattices and bcc lattices behave differently. It is shown that only certain three dimensional periodic arrangements of parallel and perpendicular disk-like defect clusters are realized for given tetragonality ratio t and host element

  7. A first principles study of native defects in alpha-quartz

    CERN Document Server

    Roma, G

    2003-01-01

    We present a study of several neutral and charged oxygen and silicon defects in alpha-quartz. We performed plane waves pseudopotential calculations in the framework of density functional theory in the local density approximation. We will show the structures that we obtained for vacancies and interstitials in several charge states and the corresponding formation energies. We discuss the reciprocal dependence of formation energies of charged defects (and thus concentrations) and the electron chemical potential on each other and we determine the latter by iterative self-consistent solution of the equation imposing charge neutrality. Results on defect concentrations, their dependence on oxygen partial pressure, and self-doping effects are presented.

  8. Electron damage and defects in organic crystals

    International Nuclear Information System (INIS)

    Howitt, D.G.

    1976-06-01

    The nature of the defects discernable from and the radiation damage that is induced by high resolution electron microscopy is reported. The structural aspects of the radiation damage process can be correlated to the expected radiochemical decomposition of these materials and these effects identified. The types of local defect formed by radiation damage are often clearly distinguishable, in high resolution images, from those inherent in the microstructure. Techniques used in this type of electron microscopy and the limitations imposed by radiation damage are described as are the relevant radiochemical characteristics of these processes. In copper pthalocyanine, microstructural features distinct from those induced by radiation damage were identified which are consistent with those predicted and described by other workers in similar materials. The high resolution studies indicate that some of the microstructures observed are caused by structural rearrangements that can account, to some extent, for additional crystallographic forms that have been identified in this material and the photochemical behaviour of related structures

  9. Defect of the Eyelids.

    Science.gov (United States)

    Lu, Guanning Nina; Pelton, Ron W; Humphrey, Clinton D; Kriet, John David

    2017-08-01

    Eyelid defects disrupt the complex natural form and function of the eyelids and present a surgical challenge. Detailed knowledge of eyelid anatomy is essential in evaluating a defect and composing a reconstructive plan. Numerous reconstructive techniques have been described, including primary closure, grafting, and a variety of local flaps. This article describes an updated reconstructive ladder for eyelid defects that can be used in various permutations to solve most eyelid defects. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Defect production at exciton decay in ionic crystals

    International Nuclear Information System (INIS)

    Lushchik, Ch.B.

    1984-01-01

    On the example of alkali halide crystals experimentally detected phenomenon of structural point defect production in wide-gap nonmetallic solids at low-temperature radiationless decay of self-localizing excitons and recombination of electrons with self-localized holes is considered. Factors promoting radiationless transformation of electron excitations to not small oscillations of many atoms (heat release), but to separate ion large shifts, that determine one of the most important mechanisms of radiation instability of solids, used, in particular, for data recording, are discussed

  11. Defect structure of TiS{sub 3} single crystals of the A-ZrSe{sub 3} type

    Energy Technology Data Exchange (ETDEWEB)

    Bolotina, N. B., E-mail: nb-bolotina@mail.ru [Russian Academy of Sciences, Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics,” (Russian Federation); Gorlova, I. G. [Russian Academy of Sciences, Kotel’nikov Institute of Radioengineering and Electronics (Russian Federation); Verin, I. A. [Russian Academy of Sciences, Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics,” (Russian Federation); Titov, A. N. [Russian Academy of Sciences, Mikheev Institute of Metal Physics, Ural Branch (Russian Federation); Arakcheeva, A. V. [Phase Solutions, Co Ltd. (Switzerland)

    2016-11-15

    The defect structure of TiS{sub 3} single crystals of the A-ZrSe{sub 3} type has been determined based on X-ray diffraction data. Shear defects manifest themselves as displacements of ab layers (which can imitate a twin) by ∼0.5a. Regular shears facilitate the formation of a superstructure along the c axis. A model of defect in the layer structure is proposed to explain the atomic displacements at an angle to the layer plane.

  12. Structural and electronic properties of zigzag InP nanoribbons with Stone–Wales type defects

    International Nuclear Information System (INIS)

    Longo, R C; Carrete, J; Varela, L M; Gallego, L J

    2016-01-01

    By means of density-functional-theoretic calculations, we investigate the structural and electronic properties of a hexagonal InP sheet and of hydrogen-passivated zigzag InP nanoribbons (ZInPNRs) with Stone–Wales (SW)-type defects. Our results show that the influence of this kind of defect is not limited to the defected region but it leads to the formation of ripples that extend across the systems, in keeping with the results obtained recently for graphene and silicene sheets. The presence of SW defects in ZInPNRs causes an appreciable broadening of the band gap and transforms the indirect-bandgap perfect ZInPNR into a direct-bandgap semiconductor. An external transverse electric field, regardless of its direction, reduces the gap in both the perfect and defective ZInPNRs. (paper)

  13. On holographic defect entropy

    International Nuclear Information System (INIS)

    Estes, John; Jensen, Kristan; O’Bannon, Andy; Tsatis, Efstratios; Wrase, Timm

    2014-01-01

    We study a number of (3+1)- and (2+1)-dimensional defect and boundary conformal field theories holographically dual to supergravity theories. In all cases the defects or boundaries are planar, and the defects are codimension-one. Using holography, we compute the entanglement entropy of a (hemi-)spherical region centered on the defect (boundary). We define defect and boundary entropies from the entanglement entropy by an appropriate background subtraction. For some (3+1)-dimensional theories we find evidence that the defect/boundary entropy changes monotonically under certain renormalization group flows triggered by operators localized at the defect or boundary. This provides evidence that the g-theorem of (1+1)-dimensional field theories generalizes to higher dimensions

  14. Energetics of intrinsic point defects in uranium dioxide from electronic-structure calculations

    International Nuclear Information System (INIS)

    Nerikar, Pankaj; Watanabe, Taku; Tulenko, James S.; Phillpot, Simon R.; Sinnott, Susan B.

    2009-01-01

    The stability range of intrinsic point defects in uranium dioxide is determined as a function of temperature, oxygen partial pressure, and non-stoichiometry. The computational approach integrates high accuracy ab initio electronic-structure calculations and thermodynamic analysis supported by experimental data. In particular, the density functional theory calculations are performed at the level of the spin polarized, generalized gradient approximation and includes the Hubbard U term; as a result they predict the correct anti-ferromagnetic insulating ground state of uranium oxide. The thermodynamic calculations enable the effects of system temperature and partial pressure of oxygen on defect formation energy to be determined. The predicted equilibrium properties and defect formation energies for neutral defect complexes match trends in the experimental literature quite well. In contrast, the predicted values for charged complexes are lower than the measured values. The calculations predict that the formation of oxygen interstitials becomes increasingly difficult as higher temperatures and reducing conditions are approached

  15. Microstructure evolution of ceramics during sintering: an analysis based on local image analysis measurements in the vicinity of controlled defects

    International Nuclear Information System (INIS)

    Girard, E.; Chaix, J.M.; Carry, C.; Valdivieso, F.; Goeuriot, P.; Lechelle, J.

    2005-01-01

    UO 2 powder containing 5% of almost spherical defects of controlled size have been sintered. The defects were prepared with the same powder by pre-sintering either the natural powder aggregates or partially milled pressed powder. Systematic image analysis was performed to get the local microstructure features inside the defects and in the matrix outside the defects. The set of results is used here as a sintering database with three identified sintering 'constraint' parameters (compaction level C 0 , radial distance r to the defect edge, and sintering 'history' H) and three microstructure 'responses' (pore volume fraction V V P , pore mean diameter D P , and grain mean diameter D G ). Data analysis in the 3D responses space shows that these variables are not independent but define a unique surface, on which each point corresponds to a set of constraints (C 0 ,r,H). (authors)

  16. Localized modes in optics of photonic liquid crystals with local anisotropy of absorption

    Energy Technology Data Exchange (ETDEWEB)

    Belyakov, V. A., E-mail: bel1937@mail.ru, E-mail: bel@landau.ac.ru [Russian Academy of Science, Landau Institute for Theoretical Physics (Russian Federation); Semenov, S. V. [National Research Center “Kurchatov Institute,” (Russian Federation)

    2016-05-15

    The localized optical modes in spiral photonic liquid crystals are theoretically studied for the certainty at the example of chiral liquid crystals (CLCs) for the case of CLC with an anisotropic local absorption. The model adopted here (absence of dielectric interfaces in the structures under investigation) makes it possible to get rid of mixing of polarizations on the surfaces of the CLC layer and of the defect structure and to reduce the corresponding equations to only the equations for light with polarization diffracting in the CLC. The dispersion equations determining connection of the edge mode (EM) and defect mode (DM) frequencies with the CLC layer parameters (anisotropy of local absorption, CLC order parameter) and other parameters of the DMS are obtained. Analytic expressions for the transmission and reflection coefficients of CLC layer and DMS for the case of CLC with an anisotropic local absorption are presented and analyzed. It is shown that the CLC layers with locally anisotropic absorption reduce the EM and DM lifetimes (and increase the lasing threshold) in the way different from the case of CLC with an isotropic local absorption. Due to the Borrmann effect revealing of which is different at the opposite stop-band edges in the case of CLC layers with an anisotropic local absorption the EM life-times for the EM frequencies at the opposite stop-bands edges may be significantly different. The options of experimental observations of the theoretically revealed phenomena are briefly discussed.

  17. Defects of SiC nanowires studied by STM and STS

    International Nuclear Information System (INIS)

    Busiakiewicz, A.; Huczko, A.; Dudziak, T.; Puchalski, M.; Kozlowski, W.; Cichomski, M.; Cudzilo, S.; Klusek, Z.; Olejniczak, W.

    2010-01-01

    For the first time the scanning tunneling microscopy (STM) and scanning tunneling spectroscopy (STS) are employed to investigate the morphology and the surface electronic structure of the defective silicon carbide nanowires (SiCNWs). The SiCNWs produced via combustion synthesis route are studied. The STS measurements are performed in the current imaging tunneling spectroscopy mode (CITS) that allows us to determine the correlation between STM topography and the local density of electronic states (LDOS) around the bend of an isolated SiCNW. The measurements reveal fluctuations of LDOS in the vicinity of the defect. The local graphitisation and the inhomogeneous concentration of doping impurities (e.g. nitrogen, oxygen) are considered to explain these fluctuations of metallic-like LDOS in the vicinity of the SiCNW's deformation.

  18. Experimental and theoretical investigation of lattice defect structures in a series of Zn, Fe-doped nonstoichiometric lithium niobate

    International Nuclear Information System (INIS)

    Guo Fengyun; Lue Qiang; Sun Liang; Li Hongtao; Zhen Xihe; Xu Yuheng; Zhao Liancheng

    2006-01-01

    A series of the double doped lithium niobate (LiNbO 3 , LN) single crystals had been grown by Czochralski method. The Curie temperatures of various concentrations doped or [Li]/[Nb] ratio LN crystals measured by differential thermal analysis (DTA) were discussed to investigate their defect structures with Safaryan et al. new approach about LN lattice defect structure using Curie temperatures calculated. Infrared transmission spectra of various concentrations doped were used to compare the investigation above. The results show that the lithium vacancy model is the more probable to describe the lattice defect structure of the doped LN single crystal

  19. Fracture Resistance, Surface Defects and Structural Strength of Glass

    OpenAIRE

    Rodichev, Y.M.; Veer, F.A.

    2010-01-01

    This paper poses the theory that the fracture resistance of basic float glass is dependent on it physicochemical properties and the surface defects fonned under the float glass production, glass processing and handling at the service conditions compose the aggregate basis for structural glass strength assessment. The effect of loading conditions, constructional and technological factors on the engineering strength of glass can be evaluated in certain cases using fracture mechanics with inform...

  20. Structural defects in electrodeposited Ni studied by positron annihilation

    International Nuclear Information System (INIS)

    Vertes, A.; Szeles, C.; Czako-Nagy, I.; Lakatos-Varsanyi, M.

    1982-01-01

    Structural investigation of electrodeposited Ni was carried out by positron annihilation (PA) technique. Additional Moessbauer effect and X-ray diffraction measurements were also performed. The samples were produced under different plating conditions resulting in stress in the range -100 to +600 N/mm 2 . From the positron lifetime measurements it seems that the defect pattern of electrodeposited Ni samples might be substantially different from sample to sample with different deposition and plating conditions. (Auth.)

  1. Formation, structure and magnetism of the metastable defect fluorite phases AVO3.5+x (A=In, Sc)

    International Nuclear Information System (INIS)

    Shafi, Shahid P.; Lundgren, Rylan J.; Cranswick, Lachlan M.D.; Bieringer, Mario

    2007-01-01

    We report the preparation and stability of ScVO 3.5+x and the novel phase InVO 3.5+x . AVO 3.5+x (A=Sc, In) defect fluorite structures are formed as metastable intermediates during the topotactic oxidation of AVO 3 bixbyites. The oxidation pathway has been studied in detail by means of thermogravimetric/differential thermal analysis and in-situ powder X-ray diffraction. The oxidation of the bixbyite phase follows a topotactic pathway at temperatures between 300 and 400 deg. C in air/carbon dioxide. The range of accessible oxygen stoichiometries for the AVO 3.5+x structures following this pathway are 0.00≤x≤0.22. Rietveld refinements against powder X-ray and neutron data revealed that InVO 3.54 and ScVO 3.70 crystallize in the defect fluorite structure in space group Fm-3 m (227) with a=4.9863(5) and 4.9697(3)A, respectively with A 3+ /V 4+ disorder on the (4a) cation site. Powder neutron diffraction experiments indicate clustering of oxide defects in all samples. Bulk magnetic measurements showed the presence of V 4+ and the absence of magnetic ordering at low temperatures. Powder neutron diffraction experiments confirmed the absence of a long range ordered magnetic ground state. - Graphical abstract: Topotactic oxidation of AVO 3 bixbyite to AVO 3.5 defect fluorite structure followed by in-situ powder X-ray diffraction. The upper structural diagram shows a six coordinated (A/V)-O 6 fragment in bixbyite, the lower structure illustrates the same seven-fold coordinated (A/V)-O 7 cubic environment in the defect fluorite structure

  2. Defect localization, characterization and reliability assessment in emerging photovoltaic devices.

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Benjamin Bing-Yeh [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Cruz-Campa, Jose Luis [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Haase, Gad S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Tangyunyong, Paiboon [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Colr, Edward Isaac [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Okandan, Murat [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Nielson, Gregory N. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-04-01

    Microsystems-enabled photovoltaics (MEPV) can potentially meet increasing demands for light-weight, portable, photovoltaic solutions with high power density and efficiency. The study in this report examines failure analysis techniques to perform defect localization and evaluate MEPV modules. CMOS failure analysis techniques, including electroluminescence, light-induced voltage alteration, thermally-induced voltage alteration, optical beam induced current, and Seabeck effect imaging were successfully adapted to characterize MEPV modules. The relative advantages of each approach are reported. In addition, the effects of exposure to reverse bias and light stress are explored. MEPV was found to have good resistance to both kinds of stressors. The results form a basis for further development of failure analysis techniques for MEPVs of different materials systems or multijunction MEPVs. The incorporation of additional stress factors could be used to develop a reliability model to generate lifetime predictions for MEPVs as well as uncover opportunities for future design improvements.

  3. Electronic structure and STM images simulation of defects on hBN/ black-phosphorene heterostructures: A theoretical study

    Science.gov (United States)

    Ospina, D. A.; Cisternas, E.; Duque, C. A.; Correa, J. D.

    2018-03-01

    By first principles calculations which include van der Waals interactions, we studied the electronic structure of hexagonal boron-nitride/black-phosphorene heterostructures (hBN/BP). In particular the role of several kind of defects on the electronic properties of black-phosphorene monolayer and hBN/BP heterostructure was analyzed. The defects under consideration were single and double vacancies, as well Stone-Wale type defects, all of them present in the phosphorene layer. In this way, we found that the electronic structure of the hBN/BP is modified according the type of defect that is introduced. As a remarkable feature, our results show occupied states at the Fermi Level introduced by a single vacancy in the energy gap of the hBN/BP heterostructure. Additionally, we performed simulations of scanning tunneling microscopy images. These simulations show that is possible to discriminate the kind of defect even when the black-phosphorene monolayer is part of the heterostructure hBN/BP. Our results may help to discriminate among several kind of defects during experimental characterization of these novel materials.

  4. Simulation of pure and defective wurtzite-type ZnO

    Energy Technology Data Exchange (ETDEWEB)

    Maldonado, Frank; Stashans, Arvids [Grupo de FisicoquImica de Materiales, Instituto de Quimica Aplicada, Universidad Tecnica Particular de Loja, Apartado 11-01-608, Loja (Ecuador)], E-mail: arvids@utpl.edu.ec

    2009-12-15

    Changes in the structural and electronic properties of zinc oxide (ZnO) due to the O vacancy and F-centre were studied using a semi-empirical quantum-chemical approach based on Hartree-Fock theory. A periodic supercell of 128 atoms was exploited throughout the study. The semi-empirical parameters for the Zn atom are obtained by reproducing the main properties of the ZnO crystal as well as the first three ionization potentials of the Zn atom. The perturbation imposed by the defect leads to atomic relaxation, which is computed and discussed in detail. It is found that electron density redistribution in the vicinity of defects plays an important role in the determination of atomic movements. The introduction of an oxygen vacancy generates a local one-electron energy level placed below the conduction band while the presence of an F-centre produces a local energy level just above the upper valence band of the material. The deep situation of the local energy level corresponding to the F-centre implies that the F-centre cannot serve as a source of unintentional n-type electrical conductivity in ZnO. Changes in the chemical bonding are observed, showing that it becomes slightly more covalent because of oxygen-vacancy-type defects.

  5. Simulation of pure and defective wurtzite-type ZnO

    International Nuclear Information System (INIS)

    Maldonado, Frank; Stashans, Arvids

    2009-01-01

    Changes in the structural and electronic properties of zinc oxide (ZnO) due to the O vacancy and F-centre were studied using a semi-empirical quantum-chemical approach based on Hartree-Fock theory. A periodic supercell of 128 atoms was exploited throughout the study. The semi-empirical parameters for the Zn atom are obtained by reproducing the main properties of the ZnO crystal as well as the first three ionization potentials of the Zn atom. The perturbation imposed by the defect leads to atomic relaxation, which is computed and discussed in detail. It is found that electron density redistribution in the vicinity of defects plays an important role in the determination of atomic movements. The introduction of an oxygen vacancy generates a local one-electron energy level placed below the conduction band while the presence of an F-centre produces a local energy level just above the upper valence band of the material. The deep situation of the local energy level corresponding to the F-centre implies that the F-centre cannot serve as a source of unintentional n-type electrical conductivity in ZnO. Changes in the chemical bonding are observed, showing that it becomes slightly more covalent because of oxygen-vacancy-type defects.

  6. Defects and Disorder in the Drosophila Eye

    Science.gov (United States)

    Kim, Sangwoo; Carthew, Richard; Hilgenfeldt, Sascha

    Cell division and differentiation tightly control the regular pattern in the normal eye of the Drosophila fruit fly while certain genetic mutations introduce disorder in the form of topological defects. Analyzing data from pupal retinas, we develop a model based on Voronoi construction that explains the defect statistics as a consequence of area variation of individual facets (ommatidia). The analysis reveals a previously unknown systematic long-range area variation that spans the entire eye, with distinct effects on topological disorder compared to local fluctuations. The internal structure of the ommatidia and the stiffness of their interior cells also plays a crucial role in the defect generation. Accurate predictions of the correlation between the area variation and the defect density in both normal and mutant animals are obtained without free parameters. This approach can potentially be applied to cellular systems in many other contexts to identify size-topology correlations near the onset of symmetry breaking. This work has been supported by the NIH (GM098077) and the NSF (Grant No. 1504301).

  7. Analysis of Side-Wall Structure of Grown-in Twin-Type Octahedral Defects in Czochralski Silicon

    Science.gov (United States)

    Ueki, Takemi; Itsumi, Manabu; Takeda, Tadao

    1998-04-01

    We analyzed the side-wall structure of grown-in octahedral defects in Czochralski silicon standard wafers for large-scale integrated circuits. There are two types of twin octahedral defects: an overlapping type and an adjacent type. In the twin octahedral defects of the overlapping type, a hole is formed in the connection part. The side-wall layer in the hole part is formed continually and is the same thickness as the side-wall layers of both octahedrons. In the twin octahedral defects of the adjacent type, a partition layer is formed in the connection part. Our electron energy-loss spectroscopy analyses identified that the side-wall layer includes SiO2.

  8. Tailoring the strain in Si nano-structures for defect-free epitaxial Ge over growth.

    Science.gov (United States)

    Zaumseil, P; Yamamoto, Y; Schubert, M A; Capellini, G; Skibitzki, O; Zoellner, M H; Schroeder, T

    2015-09-04

    We investigate the structural properties and strain state of Ge nano-structures selectively grown on Si pillars of about 60 nm diameter with different SiGe buffer layers. A matrix of TEOS SiO2 surrounding the Si nano-pillars causes a tensile strain in the top part at the growth temperature of the buffer that reduces the misfit and supports defect-free initial growth. Elastic relaxation plays the dominant role in the further increase of the buffer thickness and subsequent Ge deposition. This method leads to Ge nanostructures on Si that are free from misfit dislocations and other structural defects, which is not the case for direct Ge deposition on these pillar structures. The Ge content of the SiGe buffer is thereby not a critical parameter; it may vary over a relatively wide range.

  9. Implications of defect clusters formed in cascades on free defect generation and microstructural development

    International Nuclear Information System (INIS)

    Wiedersich, H.

    1992-12-01

    A large fraction of the defects produced by irradiation with energetic neutrons or heavy ions originates in cascades. Not only increased recombination of vacancy and interstitial defects but also significant clustering of like defects occur. Both processes reduce the number of point defects available for long range migration. Consequences of defect clustering in cascades will be discussed in a semi-quantitative form with the aid of calculations using a very simplified model: Quasi-steady-state distributions of immobile vacancy and/or interstitial clusters develop which, in turn, can become significant sinks for mobile defects, and, therefore reduce their lifetime. Although cluster sinks will cause segregation and, potentially, precipitation of second phases due to local changes of composition, the finite lifetime of clusters will not lead to lasting, local compositional changes. A transition from highly dense interstitial and vacancy cluster distributions to the void swelling regime occurs when the thermal evaporation of vacancies from small vacancy clusters becomes significant at higher temperatures. Unequal clustering of vacancies and interstitials leads to an imbalance of their fluxes of in the matrix and, hence, to unequal contributions to atom transport by interstitials and by vacancies even in the quasi-steady state approximation

  10. Online Surface Defect Identification of Cold Rolled Strips Based on Local Binary Pattern and Extreme Learning Machine

    Directory of Open Access Journals (Sweden)

    Yang Liu

    2018-03-01

    Full Text Available In the production of cold-rolled strip, the strip surface may suffer from various defects which need to be detected and identified using an online inspection system. The system is equipped with high-speed and high-resolution cameras to acquire images from the moving strip surface. Features are then extracted from the images and are used as inputs of a pre-trained classifier to identify the type of defect. New types of defect often appear in production. At this point the pre-trained classifier needs to be quickly retrained and deployed in seconds to meet the requirement of the online identification of all defects in the environment of a continuous production line. Therefore, the method for extracting the image features and the training for the classification model should be automated and fast enough, normally within seconds. This paper presents our findings in investigating the computational and classification performance of various feature extraction methods and classification models for the strip surface defect identification. The methods include Scale Invariant Feature Transform (SIFT, Speeded Up Robust Features (SURF and Local Binary Patterns (LBP. The classifiers we have assessed include Back Propagation (BP neural network, Support Vector Machine (SVM and Extreme Learning Machine (ELM. By comparing various combinations of different feature extraction and classification methods, our experiments show that the hybrid method of LBP for feature extraction and ELM for defect classification results in less training and identification time with higher classification accuracy, which satisfied online real-time identification.

  11. Atomic structure of pyramidal defects in GaN:Mg: Influence of annealing

    Energy Technology Data Exchange (ETDEWEB)

    Liliental-Weber, Z.; Tomaszewicz, T.; Zakharov, D.; O' Keefe, M. [Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Hautakangas, S.; Saarinen, K. [Materials Science and Engineering, University of California, Berkeley, Berkeley, CA 94720 (United States); Freitas, J.A.; Henry, R.L. [ESTD-Electronic Materials Branch, Naval Research Laboratory, Washington, D.C. 20375 (United States)

    2006-05-15

    The atomic structure of the characteristic defects (Mg-rich hexagonal pyramids) in p-doped bulk and MOCVD GaN:Mg thin films grown with Ga polarity was determined at atomic resolution by direct reconstruction of the scattered electron wave in a transmission electron microscope. Small cavities were present inside the defects, confirmed also with positron annihilation. The inside walls of the cavities were covered by GaN of reverse polarity compared to the matrix. Annealing of the MOCVD layers lead to slight increase of the defect size and an increase of the room temperature photoluminescence intensity. Positron annihilation confirms presence of vacancy clusters of different sizes triggered by the Mg doping in as-grown samples and decrease of their concentration upon annealing at 900 and 1000 C. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  12. Core-level photoabsorption study of defects and metastable bonding configurations in boron nitride

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez, I.; Jankowski, A.F.; Terminello, L.J. [Lawrence Berkeley National Lab., CA (United States)] [and others

    1997-04-01

    Boron nitride is an interesting material for technological applications and for fundamental solid state physics investigations. It is a compound isoelectronic with carbon and, like carbon can possess sp{sup 2} and sp{sup 3} bonded phases resembling graphite and diamond. BN crystallizes in the sp{sup 2}-bonded hexagonal (h-BN), rhombohedral (r-BN) and turbostratic phases, and in the sp{sup 3}-bonded cubic (c-BN) and wurtzite (w-BN) phases. A new family of materials is obtained when replacing C-C pairs in graphite with isoelectronic B-N pairs, resulting in C{sub 2}BN compounds. Regarding other boron compounds, BN is exceptional in the sense that it has standard two-center bonds with conventional coordination numbers, while other boron compounds (e.g. B{sub 4}C) are based on the boron icosahedron unit with three-center bonds and high coordination numbers. The existence of several allotropic forms and fullerene-like structures for BN suggests a rich variety of local bonding and poses the questions of how this affects the local electronic structure and how the material accommodates the stress induced in the transition regions between different phases. One would expect point defects to play a crucial role in stress accommodation, but these must also have a strong influence in the electronic structure, since the B-N bond is polar and a point defect will thus be a charged structure. The study of point defects in relationship to the electronic structure is of fundamental interest in these materials. Recently, the authors have shown that Near-Edge X-ray Absorption Fine Structure (NEXAFS) is sensitive to point defects in h-BN, and to the formation of metastable phases even in amorphous materials. This is significant since other phase identification techniques like vibrational spectroscopies or x-ray diffraction yield ambiguous results for nanocrystalline and amorphous samples. Serendipitously, NEXAFS also combines chemical selectivity with point defect sensitivity.

  13. Orange-red emitting Gd2Zr2O7:Sm3+: Structure-property correlation, optical properties and defect spectroscopy

    Science.gov (United States)

    Gupta, Santosh K.; Reghukumar, C.; Sudarshan, K.; Ghosh, P. S.; Pathak, Nimai; Kadam, R. M.

    2018-05-01

    Local structure analysis of dopant ion, understanding host to dopant energy transfer dynamics and defects characterization in a doped material which plays an important role in the designing a highly efficient opto-electronic material. In this connection a new Sm3+ doped Gd2Zr2O7 pyrochlore material was synthesized using gel-combustion technique and was characterized systematically using X-ray diffraction (XRD), time resolved photoluminescence spectroscopy (TRPLS), positron annihilation lifetime spectroscopy (PALS) and density functional theory (DFT) based ab-initio calculation. Based on DFT site selective energetics calculation and luminescence decay measurement, it was observed that the Sm3+ was distributed at both Gd3+ and Zr4+ site with higher Sm3+ fraction at the Gd3+ site. PALS was used to probe the presence of defects in the phosphor. In this work intense orange-red emission is realized through manipulating the energy transfer from host defect emission (oxygen vacancies) to Sm3+ which allows color emission from green in undoped to orange-red in doped samples. Effect of dopant concentration and annealing temperature was probed using TRPLS and PALS. These all information is highly important for researcher looking to achieve pyrochlore based phosphor materials with high quantum yield.

  14. Microvascular free flaps in the management of war wounds with tissue defects

    Directory of Open Access Journals (Sweden)

    Kozarski Jefta

    2003-01-01

    Full Text Available Background. War wounds caused by modern infantry weapons or explosive devices are very often associated with the defects of soft and bone tissue. According to their structure, tissue defects can be simple or complex. In accordance with war surgical doctrine, at the Clinic for Plastic Surgery and Burns of the Military Medical Academy, free flaps were used in the treatment of 108 patients with large tissue defects. With the aim of closing war wounds, covering deep structures, or making the preconditions for reconstruction of deep structures, free flaps were applied in primary, delayed, or secondary term. The main criteria for using free flaps were general condition of the wounded, extent, location, and structure of tissue defects. The aim was also to point out the advantages and disadvantages of the application of free flaps in the treatment of war wounds. Methods. One hundred and eleven microvascular free flaps were applied, both simple and complex, for closing the war wounds with extensive tissue defects. The main criteria for the application of free flaps were: general condition of the wounded, size, localization, and structure of tissue defects. For the extensive defects of the tissue, as well as for severely contaminated wounds latissimus dorsi free flaps were used. For tissue defects of distal parts of the lower extremities, scapular free flaps were preferred. While using free tissue transfer for recompensation of bone defects, free vascularized fibular grafts were applied, and in skin and bone defects complex free osteoseptocutaneous fibular, free osteoseptocutaneous radial forearm, and free skin-bone scapular flaps were used. Results. After free flap transfer 16 (14,4% revisions were performed, and after 8 unsuccessful revisions another free flaps were utilized in 3 (37,5% patients, and cross leg flaps in 5 (62,5% patients. Conclusion. The treatment of war wounds with large tissue defects by the application of free microvascular flaps

  15. Extended deep level defects in Ge-condensed SiGe-on-Insulator structures fabricated using proton and helium implantations

    International Nuclear Information System (INIS)

    Kwak, D.W.; Lee, D.W.; Oh, J.S.; Lee, Y.H.; Cho, H.Y.

    2012-01-01

    SiGe-on-Insulator (SGOI) structures were created using the Ge condensation method, where an oxidation process is performed on the SiGe/Si structure. This method involves rapid thermal chemical vapor deposition and H + /He + ion-implantations. Deep level defects in these structures were investigated using deep level transient spectroscopy (DLTS) by varying the pulse injection time. According to the DLTS measurements, a deep level defect induced during the Ge condensation process was found at 0.28 eV above the valence band with a capture cross section of 2.67 × 10 −17 cm 2 , two extended deep levels were also found at 0.54 eV and 0.42 eV above the valence band with capture cross sections of 3.17 × 10 −14 cm 2 and 0.96 × 10 −15 cm 2 , respectively. In the SGOI samples with ion-implantation, the densities of the newly generated defects as well as the existing defects were decreased effectively. Furthermore, the Coulomb barrier heights of the extended deep level defects were drastically reduced. Thus, we suggest that the Ge condensation method with H + ion implantation could reduce deep level defects generated from the condensation and control the electrical properties of the condensed SiGe layers. - Highlights: ► We have fabricated low-defective SiGe-on-Insulator (SGOI) with implantation method. ► H + and He + -ions are used for ion-implantation method. ► We have investigated the deep level defects of SGOI layers. ► Ge condensation method using H + ion implantation could reduce extended defects. ► They could enhance electrical properties.

  16. The local structure, magnetic, and transport properties of Cr-doped In2O3 films

    International Nuclear Information System (INIS)

    Wang Shiqi; An Yukai; Feng Deqiang; Liu Jiwen; Wu Zhonghua

    2013-01-01

    Cr-doped In 2 O 3 films were deposited on Si (100) substrates by RF-magnetron sputtering technique. The local structure, magnetic, and transport properties of films are investigated by X-ray diffraction, X-ray photoelectron spectroscopy, X-ray absorption fine structure, Hall effect, R-T, and magnetic measurements. Structural analysis clearly indicates that Cr ions substitute for In 3+ sites of the In 2 O 3 lattice in the valence of +2 states and Cr-related secondary phases or clusters as the source of ferromagnetism is safely ruled out. The films with low Cr concentration show a crossover from semiconducting to metallic transport behavior, whereas only semiconducting behavior is observed in high Cr concentration films. The transport property of all films is governed by Mott variable range hopping behavior, suggesting that the carriers are strongly localized. Magnetic characterizations show that the saturated magnetization of films increases first, and then decreases with Cr doping, while carrier concentration n c decreases monotonically, implying that the ferromagnetism is not directly induced by the mediated carriers. It can be concluded the ferromagnetism of films is intrinsic and originates from electrons bound in defect states associated with oxygen vacancies.

  17. Lattice dynamics of local defects in wide-gap semiconductors; Schwingungsverhalten lokaler Defekte in Breitband-Halbleitern

    Energy Technology Data Exchange (ETDEWEB)

    Kaczmarczyk, G.

    2006-07-01

    The group III-nitrides and zinc oxide are in the focus of material research because of their high application potential. The presentation of the first UV laser diode as well as blue light emitting diodes were the preliminary highlights. Although of all technological progress many physical questions are still open. In this work some of these questions are examined experimentally with Raman-scattering and theoretically with valence-force calculations. Many physical properties such as strain and doping concentration affect the lattice dynamics. As a start the phonons of the center of the Brillouin-zone in GaN, AlN, InN and ZnO are studied with first-order Raman-scattering. These results are the basis for advanced investigations. The acoustical and optical modes at the zone boundary and their combinations and overtones are determinated from the second-order Raman-scattering. Using the valence-force calculations the experimental frequencies are assigned to particular phonon branches or points of the Brillouin zone. The second part of this work treats systematically the physics of local vibrational modes. They occur due to intrinsic defects or impurities in the semiconductors. They are investigated with respect to the vibrational properties of the unperturbed crystals. In order to assign new experimentally found structures, calculations of local vibrational modes in GaN:Mg, GaN:As and ZnO:N systems were carried out. Furthermore, the calculations in Si- and C-doped hexagonal GaN suggest the frequency range for local vibrational modes. In the last section the influence of external parameters such as temperature or strain on the phonon frequency is analyzed. It is shown, that the influence on the temperature dependence of host phonons and local vibrational modes are dominated through different effects. In case of the host phonons it is mainly due to the volume effect whereas the local modes are highly affected by the anharmonic decay. Moreover, the calculations verified

  18. Defect structure of ultrafine MgB2 nanoparticles

    International Nuclear Information System (INIS)

    Bateni, Ali; Somer, Mehmet; Repp, Sergej; Erdem, Emre; Thomann, Ralf; Acar, Selçuk

    2014-01-01

    Defect structure of MgB 2 bulk and ultrafine particles, synthesized by solid state reaction route, have been investigated mainly by the aid of X-band electron paramagnetic resonance spectrometer. Two different amorphous Boron (B) precursors were used for the synthesis of MgB 2 , namely, boron 95 (purity 95%–97%, <1.5 μm) and nanoboron (purity >98.5%, <250 nm), which revealed bulk and nanosized MgB 2 , respectively. Scanning and transmission electron microscopy analysis demonstrate uniform and ultrafine morphology for nanosized MgB 2 in comparison with bulk MgB 2 . Powder X-ray diffraction data show that the concentration of the by-product MgO is significantly reduced when nanoboron is employed as precursor. It is observed that a significant average particle size reduction for MgB 2 can be achieved only by using B particles of micron or nano size. The origin and the role of defect centers were also investigated and the results proved that at nanoscale MgB 2 material contains Mg vacancies. Such vacancies influence the connectivity and the conductivity properties which are crucial for the superconductivity applications

  19. Size Effect of Defects on the Mechanical Properties of Graphene

    Science.gov (United States)

    Park, Youngho; Hyun, Sangil

    2018-03-01

    Graphene, a two-dimensional material, has been studied and utilized for its excellent material properties. In reality, achieving a pure single-crystalline structure in graphene is difficult, so usually graphene may have various types of defects in it. Vacancies, Stone-Wales defects, and grain boundaries can drastically change the material properties of graphene. Graphene with vacancy defects has been of interest because it is a two-dimensional analogy of three-dimensional porous materials. It has efficient material properties, and can function as a part of modern devices. The mechanical properties have been studied by using molecular dynamics for either a single vacancy defect with various sizes or multiple vacancy defects with same defect ratios. However, it is not clear which one has more influence on the mechanical properties between the size of the defects and the defect ratio. Therefore, we investigated the hole-size effect on the mechanical properties of single-crystalline graphene at various defect ratios. A void defect with large size can have a rather high tensile modulus with a low fracture strain compared to a void defect with small size. We numerically found that the tensile properties of scattered single vacancies is similar to that of amorphous graphene. We suspect that this is due to the local orbital change of the carbon atoms near the boundary of the void defects, so-called the interfacial phase.

  20. Behavior of duplex stainless steel casting defects under mechanical loadings

    Energy Technology Data Exchange (ETDEWEB)

    Jayet-Gendrot, S [Electricite de France, 77 - Moret-sur-Loing (France). Dept. of Materials Study; Gilles, P; Migne, C [Societe Franco-Americaine de Constructions Atomiques (FRAMATOME), 92 - Paris-La-Defense (France)

    1997-04-01

    Several components in the primary circuit of pressurized water reactors are made of cast duplex stainless steels. This material contains small casting defects, mainly shrinkage cavities, due to the manufacturing process. In safety analyses, the structural integrity of the components is studied. In order to assess the real severity of the casting defects under mechanical loadings, an experimental program was carried out. It consisted of testing, under both cyclic and monotonic solicitations, three-point bend specimens containing either a natural defect (in the form of a localized cluster of cavities) or a machined notch having the dimensions of the cluster`s envelope. The tests are analyzed in order to develop a method that takes into account the behavior of castings defects in a more realistic fashion than by an envelope crack. Various approaches are investigated, including the search of equivalent defects or of criteria based on continuum mechanics concepts, and compared with literature data. This study shows the conservatism of current safety analyses in modelling casting defects by envelope semi-elliptical cracks and contributes to the development of alternative approaches. (author) 18 refs.

  1. Defect structures in YBa/sub 2/Cu/sub 3/O/sub 7-x/ produced by electron irradiation

    International Nuclear Information System (INIS)

    Kirk, M.A.; Baker, M.C.; Liu, J.Z.; Lam, D.J.; Weber, H.W.

    1988-01-01

    Defect structures in YBa/sub 2/Cu/sub 3/O/sub 7-x/ produced by electron irradiation at 300 K were investigated by transmission electron microscopy. Threshold energies for the production of visible defects were determined to be 152 keV and 131 keV (+- 7 keV) in directions near the a and b (b>a) axes (both perpendicular to c, the long axis in the orthorhombic structure), respectively. During above threshold irradiations in an electron flux of 3x10/sup 18/ cm/sup -2/ s/sup -1/, extended defects were observed to form and grow to sizes of 10-50 nm over 1000 s in material thickness 20-200 nm. Such low electron threshold energies suggest oxygen atom displacements with recoil energies near 20 eV. The observation of movement of twin boundaries during irradiation just above threshold suggests movement of the basal plane oxygen atoms by direct displacement or defect migration processes. Crystals irradiated above threshold were observed after about 24 hours to have transformed to a structure heavily faulted on planes perpendicular to the c axis

  2. Neutron scattering from a substitutional mass defect

    International Nuclear Information System (INIS)

    Williams, R.D.; Lovesey, S.W.

    1985-06-01

    The dynamic structure factor is calculated for a low concentration of light mass scatterers substituted in a cubic crystal matrix. A new numerical method for the exact calculation is demonstrated. A local density of states for the low momentum transfer limit, and the shifts and widths of the oscillator peaks in the high momentum transfer limit are derived. The limitations of an approximation which decouples the defect from the lattice is discussed. (author)

  3. Vertebral defect, anal atresia, cardiac defect, tracheoesophageal fistula/esophageal atresia, renal defect, and limb defect association with Mayer-Rokitansky-Küster-Hauser syndrome in co-occurrence: two case reports and a review of the literature.

    Science.gov (United States)

    Bjørsum-Meyer, Thomas; Herlin, Morten; Qvist, Niels; Petersen, Michael B

    2016-12-21

    The vertebral defect, anal atresia, cardiac defect, tracheoesophageal fistula/esophageal atresia, renal defect, and limb defect association and Mayer-Rokitansky-Küster-Hauser syndrome are rare conditions. We aimed to present two cases with the vertebral defect, anal atresia, cardiac defect, tracheoesophageal fistula/esophageal atresia, renal defect, and limb defect association and Mayer-Rokitansky-Küster-Hauser co-occurrence from our local surgical center and through a systematic literature search detect published cases. Furthermore, we aimed to collect existing knowledge in the embryopathogenesis and genetics in order to discuss a possible link between the vertebral defect, anal atresia, cardiac defect, tracheoesophageal fistula/esophageal atresia, renal defect, and limb defect association and Mayer-Rokitansky-Küster-Hauser syndrome. Our first case was a white girl delivered by caesarean section at 37 weeks of gestation; our second case was a white girl born at a gestational age of 40 weeks. A co-occurrence of vertebral defect, anal atresia, cardiac defect, tracheoesophageal fistula/esophageal atresia, renal defect, and limb defect association and Mayer-Rokitansky-Küster-Hauser syndrome was diagnosed in both cases. We performed a systematic literature search in PubMed ((VACTERL) OR (VATER)) AND ((MRKH) OR (Mayer-Rokitansky-Küster-Hauser) OR (mullerian agenesis) OR (mullerian aplasia) OR (MURCS)) without limitations. A similar search was performed in Embase and the Cochrane library. We added two cases from our local center. All cases (n = 9) presented with anal atresia and renal defect. Vertebral defects were present in eight patients. Rectovestibular fistula was confirmed in seven patients. Along with the uterovaginal agenesis, fallopian tube aplasia appeared in five of nine cases and in two cases ovarian involvement also existed. The co-occurrence of the vertebral defect, anal atresia, cardiac defect, tracheoesophageal fistula/esophageal atresia, renal

  4. Band structures of phononic crystal composed of lattices with different periodic constants

    International Nuclear Information System (INIS)

    Hu, Jia-Guang; Xu, Wen

    2014-01-01

    With a square lattice mercury and water system being as the model, the band structures of nesting and compound phononic crystals with two different lattice constants were investigated using the method of the supercell plane wave expansion. It was observed that large band gaps can be achieved in low frequency regions by adjusting one of the lattice constants. Meanwhile, effects similar to interstitial impurity defects can be achieved with the increase of lattice constant of the phononic crystal. The corresponding defect modes can be stimulated in band gaps. The larger the lattice constant, the stronger the localization effect of defect modes on the wave. In addition, the change of the filling fraction of impurity exerts great influence on the frequency and localization of defect modes. Furthermore, the change of the position of impurity has notable influence on the frequency of defect modes and their localization. However, the geometry structure and orientation of impurity have little effect on the frequency of defect modes and their localization in the band gap.

  5. Structural and optical investigations of oxygen defects in zinc oxide nanoparticles

    International Nuclear Information System (INIS)

    Sahai, Anshuman; Goswami, Navendu

    2015-01-01

    ZnO nanoparticles (NPs) were prepared implementing chemical precipitation method. Structural and optical characterizations of synthesized ZnO NPs were thoroughly probed applying X-ray diffraction (XRD), transmission electron microscope (TEM), energy dispersive X-ray (EDX) analysis, X-ray photoelectron spectroscopy (XPS), UV- Visible absorption and fluorescence (FL) spectroscopy. The XRD and TEM analyses revealed hexagonal wurtzite phase with 25-30 nm size. EDX analysis indicated oxygen (O) rich composition of nanoparticles. In accordance with EDX, XPS analysis verifies O i rich stoichiometry of prepared NPs. Furthermore, concurrence of lattice oxygen (O L ), interstitial oxygen (O i ) and oxygen vacancy (V O ) in ZnO NPs was demonstrated through XPS analysis. Size quantization of nanoparticles is evident by blue shift of UV-Visible absorption energy. The FL spectroscopic investigations ascertain the existence of several discrete and defect states and radiative transitions occurring therein. Display of visible emission from oxygen defect states and most importantly, excess of O i defects in prepared ZnO nanoparticles, was well established through FL study

  6. P-N defect in GaNP studied by optically detected magnetic resonance

    International Nuclear Information System (INIS)

    Chen, W.M.; Thinh, N.Q.; Vorona, I.P.; Buyanova, I.A.; Xin, H.P.; Tu, C.W.

    2003-01-01

    We provide experimental evidence for an intrinsic defect in GaNP from optically detected magnetic resonance (ODMR). This defect is identified as a P-N complex, exhibiting hyperfine structure due to interactions with a nuclear spin I=((1)/(2)) of one P atom and also a nuclear spin I=1 due to one N atom. The introduction of the defect is assisted by the incorporation of N within the studied N composition range of up to 3.1%, under non-equilibrium growth conditions during gas-source molecular beam epitaxy. The corresponding ODMR spectrum was found to be isotropic, suggesting an A 1 symmetry of the defect state. The localization of the electron wave function at the P-N defect in GaNP is found to be even stronger than that for the isolated P Ga antisite in its parent binary compound GaP

  7. Effect of grain boundary structures on the behavior of He defects in Ni: An atomistic study

    Institute of Scientific and Technical Information of China (English)

    H F Gong; Y Yan; X S Zhang; W Lv; T Liu; Q S Ren

    2017-01-01

    We investigated the effect of grain boundary structures on the trapping strength of HeN (N is the number of helium atoms) defects in the grain boundaries of nickel.The results suggest that the binding energy of an interstitial helium atom to the grain boundary plane is the strongest among all sites around the plane.The HeN defect is much more stable in nickel bulk than in the grain boundary plane.Besides,the binding energy of an interstitial helium atom to a vacancy is stronger than that to a grain boundary plane.The binding strength between the grain boundary and the HeN defect increases with the defect size.Moreover,the binding strength of the HeN defect to the Σ3 (1 12)[110] grain boundary becomes much weaker than that to other grain boundaries as the defect size increases.

  8. Crystal defect studies using x-ray diffuse scattering

    Energy Technology Data Exchange (ETDEWEB)

    Larson, B.C.

    1980-01-01

    Microscopic lattice defects such as point (single atom) defects, dislocation loops, and solute precipitates are characterized by local electronic density changes at the defect sites and by distortions of the lattice structure surrounding the defects. The effect of these interruptions of the crystal lattice on the scattering of x-rays is considered in this paper, and examples are presented of the use of the diffuse scattering to study the defects. X-ray studies of self-interstitials in electron irradiated aluminum and copper are discussed in terms of the identification of the interstitial configuration. Methods for detecting the onset of point defect aggregation into dislocation loops are considered and new techniques for the determination of separate size distributions for vacancy loops and interstitial loops are presented. Direct comparisons of dislocation loop measurements by x-rays with existing electron microscopy studies of dislocation loops indicate agreement for larger size loops, but x-ray measurements report higher concentrations in the smaller loop range. Methods for distinguishing between loops and three-dimensional precipitates are discussed and possibilities for detailed studies considered. A comparison of dislocation loop size distributions obtained from integral diffuse scattering measurements with those from TEM show a discrepancy in the smaller sizes similar to that described above.

  9. Crystal defect studies using x-ray diffuse scattering

    International Nuclear Information System (INIS)

    Larson, B.C.

    1980-01-01

    Microscopic lattice defects such as point (single atom) defects, dislocation loops, and solute precipitates are characterized by local electronic density changes at the defect sites and by distortions of the lattice structure surrounding the defects. The effect of these interruptions of the crystal lattice on the scattering of x-rays is considered in this paper, and examples are presented of the use of the diffuse scattering to study the defects. X-ray studies of self-interstitials in electron irradiated aluminum and copper are discussed in terms of the identification of the interstitial configuration. Methods for detecting the onset of point defect aggregation into dislocation loops are considered and new techniques for the determination of separate size distributions for vacancy loops and interstitial loops are presented. Direct comparisons of dislocation loop measurements by x-rays with existing electron microscopy studies of dislocation loops indicate agreement for larger size loops, but x-ray measurements report higher concentrations in the smaller loop range. Methods for distinguishing between loops and three-dimensional precipitates are discussed and possibilities for detailed studies considered. A comparison of dislocation loop size distributions obtained from integral diffuse scattering measurements with those from TEM show a discrepancy in the smaller sizes similar to that described above

  10. Localization and Imaging of Integrated Circuit Defect Using Simple Optical Feedback Detection

    Directory of Open Access Journals (Sweden)

    Vernon Julius Cemine

    2004-12-01

    Full Text Available High-contrast microscopy of semiconductor and metal edifices in integrated circuits is demonstrated by combining laser-scanning confocal reflectance microscopy, one-photon optical-beam-induced current (1P-OBIC imaging, and optical feedback detection via a commercially available semiconductor laser that also serves as the excitation source. The confocal microscope has a compact in-line arrangement with no external photodetector. Confocal and 1P-OBIC images are obtained simultaneously from the same focused beam that is scanned across the sample plane. Image pairs are processed to generate exclusive high-contrast distributions of the semiconductor, metal, and dielectric sites in a GaAs photodiode array sample. The method is then utilized to demonstrate defect localization and imaging in an integrated circuit.

  11. Effects of graphene defect on electronic structures of its interface with organic semiconductor

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Qing-Dan; Wang, Chundong; Mo, Hin-Wai; Lo, Ming-Fai; Yuen, Muk Fung; Ng, Tsz-Wai, E-mail: tszwaing@cityu.edu.hk, E-mail: apcslee@cityu.edu.hk; Zhang, Wen-Jun; Lee, Chun-Sing, E-mail: tszwaing@cityu.edu.hk, E-mail: apcslee@cityu.edu.hk [Department of Physics and Materials Science, Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong (Hong Kong); Dou, Wei-Dong [Department of Physics and Materials Science, Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong (Hong Kong); Physics Department, Shaoxing University, Shaoxing 312000 (China); Tsang, Sai-Wing [Department of Physics and Materials Science, City University of Hong Kong (Hong Kong)

    2015-03-30

    Electronic structures of copper hexadecafluorophthalocyanine (F{sub 16}CuPc)/graphene with different defect density were studied with ultra-violet photoelectron spectroscopy. We showed that the charge transfer interaction and charge flow direction can be interestingly tuned by controlling the defect density of graphene through time-controlled H{sub 2} plasma treatment. By increasing the treatment time of H{sub 2} plasma from 30 s to 5 min, both the interface surface dipole and the electron transporting barrier at F{sub 16}CuPc/graphene interface are significantly reduced from 0.86 to 0.56 eV and 0.71 to 0.29 eV, respectively. These results suggested that graphene's defect control is a simple approach for tuning electronic properties of organic/graphene interfaces.

  12. Quantifying hidden defect in multi-layered structures by using eddy current system combined with a scanner

    International Nuclear Information System (INIS)

    Huang Pingjie; Zhou Zekui; Wu Zhaotong

    2005-01-01

    The eddy current testing forward model of scanning inspection of multi-layered structures is introduced and simulation work is carried out to reveal the interaction between the scanning coil and defects with different geometric properties. A multi-frequency ECT experimental instrument combined with a scanner is established and scanning inspections are performed to detect the artificial etched flaws with different geometric parameters in the multi-layered structures. The predicted signals by the forward model are compared with the measured signals and the defects are characterized

  13. Remote defect imaging for plate-like structures based on the scanning laser source technique

    Science.gov (United States)

    Hayashi, Takahiro; Maeda, Atsuya; Nakao, Shogo

    2018-04-01

    In defect imaging with a scanning laser source technique, the use of a fixed receiver realizes stable measurements of flexural waves generated by laser at multiple rastering points. This study discussed the defect imaging by remote measurements using a laser Doppler vibrometer as a receiver. Narrow-band burst waves were generated by modulating laser pulse trains of a fiber laser to enhance signal to noise ratio in frequency domain. Averaging three images obtained at three different frequencies suppressed spurious distributions due to resonance. The experimental system equipped with these newly-devised means enabled us to visualize defects and adhesive objects in plate-like structures such as a plate with complex geometries and a branch pipe.

  14. Resolving Point Defects in the Hydration Structure of Calcite (10.4) with Three-Dimensional Atomic Force Microscopy

    Science.gov (United States)

    Söngen, Hagen; Reischl, Bernhard; Miyata, Kazuki; Bechstein, Ralf; Raiteri, Paolo; Rohl, Andrew L.; Gale, Julian D.; Fukuma, Takeshi; Kühnle, Angelika

    2018-03-01

    It seems natural to assume that defects at mineral surfaces critically influence interfacial processes such as the dissolution and growth of minerals in water. The experimental verification of this claim, however, is challenging and requires real-space methods with utmost spatial resolution, such as atomic force microscopy (AFM). While defects at mineral-water interfaces have been resolved in 2D AFM images before, the perturbation of the surrounding hydration structure has not yet been analyzed experimentally. In this Letter, we demonstrate that point defects on the most stable and naturally abundant calcite (10.4) surface can be resolved using high-resolution 3D AFM—even within the fifth hydration layer. Our analysis of the hydration structure surrounding the point defect shows a perturbation of the hydration with a lateral extent of approximately one unit cell. These experimental results are corroborated by molecular dynamics simulations.

  15. Effect of Hydrostatic Pressure on Defect Structure and Durability of Ultrafine-Grained Aluminum

    Czech Academy of Sciences Publication Activity Database

    Betekhtin, V.I.; Kadomtsev, A. G.; Sklenička, Václav; Narykova, M. V.

    2011-01-01

    Roč. 37, č. 10 (2011), s. 977-979 ISSN 1063-7850 Institutional research plan: CEZ:AV0Z20410507 Keywords : defect structure * ultrafine-grained aluminium * durability Subject RIV: JG - Metallurgy Impact factor: 0.565, year: 2011

  16. Influence of Cast Iron Structure on the Glassmold Equipment Operational Defects

    Directory of Open Access Journals (Sweden)

    I. O. Leushin

    2015-01-01

    Full Text Available The growing demand for glass packaging contributes to the increase in production capacity of glass-container plants. Their equipment (cast iron glass-forming sets operates in continuous mode under complex cyclic thermal loads, which lead to the formation of operational defects on the working surfaces of details: graphite falling, cracks, oxidation, etc. Particular influence on the formation of these defects renders the microstructure of the material at the time of installation of details on the line.The article identifies the causes for formation of operational defects, formulates the ways to remedy them and prevent their occurrence.The authors studied details made from grey cast iron with flake and spherical forms of graphite. It is found that in the process of exploitation of the material is greatly reducing its hardness, strength, resistance to oxidation through of graphitization processes, chemical interaction of glass and iron, shock loads working edges. It is proved that the choice of initial microstructure of cast iron (the metal base, the graphite form, the presence of structural-free cementite exercises a determining influence on the durability of the mold tooling. The article proposes differential (layered arrangement of the graphite phase of cast iron in the alloy matrix (ferrite. This arrangement of high-carbon phase can simultaneously increase the thermal and oxidation resistance of the material. The formation of a layered structure of iron is produced by the intensification of the processes of alloying, modifying and directional freezing the melt.These data can be used to select the material of details by manufacturers glass-molds tooling.

  17. Non-probabilistic defect assessment for structures with cracks based on interval model

    International Nuclear Information System (INIS)

    Dai, Qiao; Zhou, Changyu; Peng, Jian; Chen, Xiangwei; He, Xiaohua

    2013-01-01

    Highlights: • Non-probabilistic approach is introduced to defect assessment. • Definition and establishment of IFAC are put forward. • Determination of assessment rectangle is proposed. • Solution of non-probabilistic reliability index is presented. -- Abstract: Traditional defect assessment methods conservatively treat uncertainty of parameters as safety factors, while the probabilistic method is based on the clear understanding of detailed statistical information of parameters. In this paper, the non-probabilistic approach is introduced to the failure assessment diagram (FAD) to propose a non-probabilistic defect assessment method for structures with cracks. This novel defect assessment method contains three critical processes: establishment of the interval failure assessment curve (IFAC), determination of the assessment rectangle, and solution of the non-probabilistic reliability degree. Based on the interval theory, uncertain parameters such as crack sizes, material properties and loads are considered as interval variables. As a result, the failure assessment curve (FAC) will vary in a certain range, which is defined as IFAC. And the assessment point will vary within a rectangle zone which is defined as an assessment rectangle. Based on the interval model, the establishment of IFAC and the determination of the assessment rectangle are presented. Then according to the interval possibility degree method, the non-probabilistic reliability degree of IFAC can be determined. Meanwhile, in order to clearly introduce the non-probabilistic defect assessment method, a numerical example for the assessment of a pipe with crack is given. In addition, the assessment result of the proposed method is compared with that of the traditional probabilistic method, which confirms that this non-probabilistic defect assessment can reasonably resolve the practical problem with interval variables

  18. Non-probabilistic defect assessment for structures with cracks based on interval model

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Qiao; Zhou, Changyu, E-mail: changyu_zhou@163.com; Peng, Jian; Chen, Xiangwei; He, Xiaohua

    2013-09-15

    Highlights: • Non-probabilistic approach is introduced to defect assessment. • Definition and establishment of IFAC are put forward. • Determination of assessment rectangle is proposed. • Solution of non-probabilistic reliability index is presented. -- Abstract: Traditional defect assessment methods conservatively treat uncertainty of parameters as safety factors, while the probabilistic method is based on the clear understanding of detailed statistical information of parameters. In this paper, the non-probabilistic approach is introduced to the failure assessment diagram (FAD) to propose a non-probabilistic defect assessment method for structures with cracks. This novel defect assessment method contains three critical processes: establishment of the interval failure assessment curve (IFAC), determination of the assessment rectangle, and solution of the non-probabilistic reliability degree. Based on the interval theory, uncertain parameters such as crack sizes, material properties and loads are considered as interval variables. As a result, the failure assessment curve (FAC) will vary in a certain range, which is defined as IFAC. And the assessment point will vary within a rectangle zone which is defined as an assessment rectangle. Based on the interval model, the establishment of IFAC and the determination of the assessment rectangle are presented. Then according to the interval possibility degree method, the non-probabilistic reliability degree of IFAC can be determined. Meanwhile, in order to clearly introduce the non-probabilistic defect assessment method, a numerical example for the assessment of a pipe with crack is given. In addition, the assessment result of the proposed method is compared with that of the traditional probabilistic method, which confirms that this non-probabilistic defect assessment can reasonably resolve the practical problem with interval variables.

  19. Optical manipulation of photonic defect-modes in cholesteric liquid crystals induced by direct laser-lithography

    International Nuclear Information System (INIS)

    Yoshida, Hiroyuki; Lee, Chee Heng; Miura, Yusuke; Fujii, Akihiko; Ozaki, Masanori

    2008-01-01

    Manipulation of photonic defect-modes in cholesteric liquid crystals (ChLCs), which are one-dimensional pseudo photonic band-gap materials have been demonstrated by an external optical field. A structural defect in which the pitch length of the ChLC in the bulk and the defect are different was introduced by inducing local polymerization in a photo-polymerizable ChLC material by a direct laser-lithography process, and infiltrating a different ChLC material as the defect medium. When an azobenzene dye-doped ChLC was infiltrated in the defect, the trans-cis isomerization of the dye upon ultraviolet (UV) exposure caused the pitch to shorten, changing the contrast in the pitch lengths at the bulk and the defect, leading to a consequent shifting of the defect-mode. The all-optical manipulation was reversible and had high reproducibility

  20. Global/local methods for probabilistic structural analysis

    Science.gov (United States)

    Millwater, H. R.; Wu, Y.-T.

    1993-04-01

    A probabilistic global/local method is proposed to reduce the computational requirements of probabilistic structural analysis. A coarser global model is used for most of the computations with a local more refined model used only at key probabilistic conditions. The global model is used to establish the cumulative distribution function (cdf) and the Most Probable Point (MPP). The local model then uses the predicted MPP to adjust the cdf value. The global/local method is used within the advanced mean value probabilistic algorithm. The local model can be more refined with respect to the g1obal model in terms of finer mesh, smaller time step, tighter tolerances, etc. and can be used with linear or nonlinear models. The basis for this approach is described in terms of the correlation between the global and local models which can be estimated from the global and local MPPs. A numerical example is presented using the NESSUS probabilistic structural analysis program with the finite element method used for the structural modeling. The results clearly indicate a significant computer savings with minimal loss in accuracy.

  1. Defect structure of yttria-stabilized zirconia and its influence on the ionic conductivity at elevated temperatures

    DEFF Research Database (Denmark)

    Goff, J.P.; Hayes, W.; Hull, S.

    1999-01-01

    The defect structure of cubic fluorite structured yttria-stabilized zirconia (ZrO2)(1-x)(Y2O3)(x) has been investigated over the composition range 0.100(3)less than or equal to x less than or equal to 0.241 (10) and temperatures T(K) up to 2780(10) K, using single-crystal specimens. Analysis of n......, we propose that the anomalous decrease in the ionic conductivity with increasing x is a consequence of the decreasing mobility of the isolated defects, possibly due to blockage by the increasing number of static aggregates....

  2. TCM Analysis of Defected Ground Structures for MIMO Antenna Designs in Mobile Terminals

    KAUST Repository

    Ghalib, Asim; Sharawi, Mohammad S.

    2017-01-01

    In this paper, the theory of characteristic modes (TCM) is used for the first time to analyze the behavior of defected ground structures (DGS) when added to antenna designs. A properly designed DGS introduces currents opposite in direction

  3. Evaluation of defect density by top-view large scale AFM on metamorphic structures grown by MOVPE

    Energy Technology Data Exchange (ETDEWEB)

    Gocalinska, Agnieszka, E-mail: agnieszka.gocalinska@tyndall.ie; Manganaro, Marina; Dimastrodonato, Valeria; Pelucchi, Emanuele

    2015-09-15

    Highlights: • Metamorphic buffer layers of In{sub x}Ga{sub 1−x}As were grown by MOVPE and characterised by AFM and TEM. • It was found that AFM provides sufficient information to estimate threading defect density in metamorphic structures, even when significant roughness is present. • When planar-view TEM is lacking, a combination of cross-sectional TEM and large scale AFM can provide good evaluation of the material quality. • It is fast, cheap and non-destructive – can be very useful in development process of complicated structures, requiring multiple test growths and characterisation. - Abstract: We demonstrate an atomic force microscopy based method for estimation of defect density by identification of threading dislocations on a non-flat surface resulting from metamorphic growth. The discussed technique can be applied as an everyday evaluation tool for the quality of epitaxial structures and allow for cost reduction, as it lessens the amount of the transmission electron microscopy analysis required at the early stages of projects. Metamorphic structures with low surface defectivities (below 10{sup 6}) were developed successfully with the application of the technique, proving its usefulness in process optimisation.

  4. Irradiation defect structures in YBa2Cu3O7-x and their correlation with superconducting properties

    International Nuclear Information System (INIS)

    Kirk, M.A.

    1990-11-01

    We review our work on irradiation effects in single crystal YBa 2 CU 3 O 7-x . Transmission electron microscopy has been employed to study the defect microstructures produced by irradiations with fast neutrons, MeV ions (Kr, Ne and p), and electrons. The atomic structure within defect cascades was investigated using 50 keV Kr and Xe ion irradiations to low doses. Evidence is shown for an amorphous structure with some incoherent recrystallization within individual cascades. Correlation with enhancements in critical current density produced by neutron irradiations suggest that this cascade structure effectively pins magnetic flux lines. At sufficiently high fluences of fast neutrons or MeV Kr and Ne ions, a cellular microstructure is found. This structure consists of cells or microcrystallites of good cystalline and superconducting material (in the case of neutron irradiation), with cell walls of amorphous material. Full amorphization proceeds with the growth of cell wall volume. The formation of this microstructure coincides with a decrease in critical transport current, but is not observed by magnetization measurements. Increases in critical current density under proton irradiation, comparable to those produced by neutron irradiation, have been reported. The defect structure produced by proton irradiations is examined here and found to differ from that of neutron irradiations. Our most recent measurements of changes in critical temperature and current density, and defect microstructure following electron irradiations will be described. 20 refs., 6 figs

  5. Defective aluminium nitride nanotubes: a new way for spintronics? A density functional study

    International Nuclear Information System (INIS)

    Simeoni, M; Santucci, S; Picozzi, S; Delley, B

    2006-01-01

    The structural and electronic properties (in terms of Mulliken charges, density of states and band structures) of pristine and defective (10,0) AlN nanotubes have been calculated within density functional theory. The results show that, in several defective tubes, a spontaneous spin-polarization arises, due to the presence of spin-split flat bands close to the Fermi level, with a strong localization of the corresponding electronic states and of the magnetic moments. The highest positive spin-magnetization (3 μ B per cell) is found for the vacancy in the Al site, while the other magnetic tubes (the vacancy in N, C and O substitutional for N and Al, respectively) show a magnetization of only 1 μ B per cell. The spontaneous magnetization of some defective tubes might open the way to their use for spintronic applications

  6. Characterization of the structure and chemistry of defects in materials

    International Nuclear Information System (INIS)

    Larson, B.C.; Ruehle, M.; Seidman, D.N.

    1988-01-01

    Research programs, presented at the materials research symposium, on defects in materials are presented. Major areas include: point defects, defect aggregates, and ordering; defects in non-metals and semiconductors; atomic resolution imaging of defects; and gain boundaries, interfaces, and layered materials. Individual projects are processed separately for the data bases

  7. Study on sensing property of one-dimensional ring mirror-defect photonic crystal

    Science.gov (United States)

    Chen, Ying; Luo, Pei; Cao, Huiying; Zhao, Zhiyong; Zhu, Qiguang

    2018-02-01

    Based on the photon localization and the photonic bandgap characteristics of photonic crystals (PCs), one-dimensional (1D) ring mirror-defect photonic crystal structure is proposed. Due to the introduction of mirror structure, a defect cavity is formed in the center of the photonic crystal, and then the resonant transmission peak can be obtained in the bandgap of transmission spectrum. The transfer matrix method is used to establish the relationship model between the resonant transmission peak and the structure parameters of the photonic crystals. Using the rectangular air gate photonic crystal structure, the dynamic monitoring of the detected gas sample parameters can be achieved from the shift of the resonant transmission peak. The simulation results show that the Q-value can attain to 1739.48 and the sensitivity can attain to 1642 nm ṡ RIU-1, which demonstrates the effectiveness of the sensing structure. The structure can provide certain theoretical reference for air pollution monitoring and gas component analysis.

  8. Direct Visualization of Local Electromagnetic Field Structures by Scanning Transmission Electron Microscopy.

    Science.gov (United States)

    Shibata, Naoya; Findlay, Scott D; Matsumoto, Takao; Kohno, Yuji; Seki, Takehito; Sánchez-Santolino, Gabriel; Ikuhara, Yuichi

    2017-07-18

    The functional properties of materials and devices are critically determined by the electromagnetic field structures formed inside them, especially at nanointerface and surface regions, because such structures are strongly associated with the dynamics of electrons, holes and ions. To understand the fundamental origin of many exotic properties in modern materials and devices, it is essential to directly characterize local electromagnetic field structures at such defect regions, even down to atomic dimensions. In recent years, rapid progress in the development of high-speed area detectors for aberration-corrected scanning transmission electron microscopy (STEM) with sub-angstrom spatial resolution has opened new possibilities to directly image such electromagnetic field structures at very high-resolution. In this Account, we give an overview of our recent development of differential phase contrast (DPC) microscopy for aberration-corrected STEM and its application to many materials problems. In recent years, we have developed segmented-type STEM detectors which divide the detector plane into 16 segments and enable simultaneous imaging of 16 STEM images which are sensitive to the positions and angles of transmitted/scattered electrons on the detector plane. These detectors also have atomic-resolution imaging capability. Using these segmented-type STEM detectors, we show DPC STEM imaging to be a very powerful tool for directly imaging local electromagnetic field structures in materials and devices in real space. For example, DPC STEM can clearly visualize the local electric field variation due to the abrupt potential change across a p-n junction in a GaAs semiconductor, which cannot be observed by normal in-focus bright-field or annular type dark-field STEM imaging modes. DPC STEM is also very effective for imaging magnetic field structures in magnetic materials, such as magnetic domains and skyrmions. Moreover, real-time imaging of electromagnetic field structures can

  9. Local product structure for expansive homeomorphisms

    OpenAIRE

    Artigue, Alfonso; Brum, Joaquin; Potrie, Rafael

    2008-01-01

    Let $f\\colon M\\to M$ be an expansive homeomorphism with dense topologically hyperbolic periodic points, $M$ a compact manifold. Then there is a local product structure in an open and dense subset of $M$. Moreover, if some topologically hyperbolic periodic point has codimension one, then this local product structure is uniform. In particular, we conclude that the homeomorphism is conjugated to a linear Anosov diffeomorphism of a torus.

  10. First-principles study of structural, electronic, and optical properties of surface defects in GaAs(001) - β2(2x4)

    Science.gov (United States)

    Bacuyag, Dhonny; Escaño, Mary Clare Sison; David, Melanie; Tani, Masahiko

    2018-06-01

    We performed first-principles calculations based on density functional theory (DFT) to investigate the role of point defects in the structural, electronic, and optical properties of the GaAs(001)- β2(2x4). In terms of structural properties, AsGa is the most stable defect structure, consistent with experiments. With respect to the electronic structure, band structures revealed the existence of sub-band and midgap states for all defects. The induced sub-bands and midgap states originated from the redistributions of charges towards these defects and neighboring atoms. The presence of these point defects introduced deep energy levels characteristic of EB3 (0.97 eV), EL4 (0.52 eV), and EL2 (0.82 eV) for AsGa, GaAs, GaV, respectively. The optical properties are found to be strongly related to these induced gap states. The calculated onset values in the absorption spectra, corresponding to the energy gaps, confirmed the absorption below the known bulk band gap of 1.43 eV. These support the possible two-step photoabsorption mediated by midgap states as observed in experiments.

  11. Defect structure, nonstoichiometry, and phase stability of Ca-doped YCrO3

    International Nuclear Information System (INIS)

    Carini, G.F. II; Anderson, H.U.; Nasrallah, M.M.; Sparlin, D.M.

    1991-01-01

    The dependence of the defect structure of Ca-doped YCrO 3 on oxygen activity and temperature was investigated by high temperature thermogravimetric measurements. Defect models developed from electrical conductivity data obtained in a previous study were used to interpret the thermogravimetric data. A correlation was found between the electrical conductivity and the thermogravimetric data which suggested that these data were concomitantly dependent on the acceptor dopant and oxygen vacancy dependence of the thermodynamic parameters. Kroeger-Vink type diagrams showing the regions of stability with respect to oxygen activity and temperature were constructed. The TGA data show that Ca-doped YCrO 3 is even more stable toward reduction than doped LaCrO 3

  12. Effects of deep impurities and structural defects in polycrystalline silicon for photovoltaic applications

    International Nuclear Information System (INIS)

    Galluzzi, F.; Scafe, E.; Beghi, M.; Fossati, S.; Tincani, M.; Pizzini, S.

    1985-01-01

    An extensive experimental study of minority carrier recombination in CZ grown polycrystalline silicon intentionally doped with metallic impurities (Ti, V, Fe, Cr, Zr) is reported. Experimental values of average diffusion lengths have been compared with values calculated by a simple model of carrier recombination, taking into account the effects of impurities, grain boundaries and intragrain crystal defects. The results are fairly consistent and allow the determination of threshold densities for structural defects and deep impurities. The author's analysis gives a simple quantitative description of recombination processes in solar-grade silicon, as far as the average behaviour is concerned

  13. Effect of vacancy defect on electrical properties of chiral single-walled carbon nanotube under external electrical field

    International Nuclear Information System (INIS)

    Luo Yu-Pin; Tien Li-Gan; Tsai Chuen-Horng; Lee Ming-Hsien; Li Feng-Yin

    2011-01-01

    Ab initio calculations demonstrated that the energy gap modulation of a chiral carbon nanotube with mono-vacancy defect can be achieved by applying a transverse electric field. The bandstructure of this defective carbon nanotube varying due to the external electric field is distinctly different from those of the perfect nanotube and defective zigzag nanotube. This variation in bandstructure strongly depends on not only the chirality of the nanotube and also the applied direction of the transverse electric field. A mechanism is proposed to explain the response of the local energy gap between the valence band maximum state and the local gap state under external electric field. Several potential applications of these phenomena are discussed. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  14. Comparison of the Koster-Slater and the equation-of-motion method for calculation of the electronic structure of defects in compound semiconductors

    International Nuclear Information System (INIS)

    Tit, N.; Halley, J.W.

    1992-01-01

    Traditional methods of calculating the electronic structure of defects in semiconductors rely on matrix-diagonalization methods which use the unperturbed crystalline wave functions as a basis. Equation-of-motion (EOM) methods, on the other hand, give excellent results with strong disorder and many defects and make no use of the basis of unperturbed wave functions, but require self-averaging properties of the wave functions which appear superficially to make them unsuitable for study of local properties. We show here that EOM methods are better than traditional methods for calculating the electronic structure of essentially any finite-range impurity potential. The reason is basically that the numerical cost of the traditional Green's-function methods grows approximately as R 7 o/Iper sitet/P, where R is the range of the potential, whereas the cost of the EOM methods per site is independent of the range of the potential. Our detailed calculations on a model of an oxygen vacancy in rutile TiO 2 show that a crossover occurs very soon, so that equation-of-motion methods are better than the traditional ones in the case of potentials of realistic range

  15. Gap eigenmode of radially localized helicon waves in a periodic structure

    International Nuclear Information System (INIS)

    Chang, L; Hole, M J; Breizman, B N

    2013-01-01

    An ElectroMagnetic Solver (Chen et al 2006 Phys. Plasmas 13 123507) is employed to model a spectral gap and a gap eigenmode in a periodic structure in the whistler frequency range. A radially localized helicon mode (Breizman and Arefiev 2000 Phys. Rev. Lett. 84 3863) is considered. We demonstrate that the computed gap frequency and gap width agree well with a theoretical analysis, and find a discrete eigenmode inside the gap by introducing a defect to the system's periodicity. The axial wavelength of the gap eigenmode is close to twice the system's periodicity, which is consistent with Bragg's law. Such an eigenmode could be excited by energetic electrons, similar to the excitation of toroidal Alfvén eigenmodes by energetic ions in tokamaks. Experimental identification of this mode is conceivable on the large plasma device (Gekelman et al 1991 Rev. Sci. Instrum. 62 2875). (paper)

  16. Thermodynamic properties of nonstoichiometric H-Nb2 Osub(5-x) derived from a statistical model of its defect structure

    International Nuclear Information System (INIS)

    Schilling, O.F.

    1986-01-01

    A statistical method for the treatment of the defect structure of oxides is applied to H-Nb 2 Osub(5-x) and its thermodynamic properties are derived as a function of x and temperature. The results based on a model of Nb O 3 vacancy clusters located at the tetrahedral columns of the structure presented very good agreement with experimental data in the literature [2]. Further, the predicted arrangement of the clusters of vacancies along the columns at the limiting composition of the H-Nb 2 O 5 phase indicates, according to recent electron microscopy experiments [18, 19], that the initial step of the transformation is the collapse of the structure around rows of defective sites along the columns, involving Andersson and Wadsley's [20] cooperative migration of atoms. The limiting compositions of the H-Nb 2 O 5 and Nb 53 O 132 phases are also correctly predicted on the basis of electrostatic interactions among defect units only. Thus elastic interactions among planar defects appear to affect only the arrangement of such defects, and not the compositions of the initial and final compounds. (author)

  17. Transformation between divacancy defects induced by an energy pulse in graphene.

    Science.gov (United States)

    Xia, Jun; Liu, XiaoYi; Zhou, Wei; Wang, FengChao; Wu, HengAn

    2016-07-08

    The mutual transformations among the four typical divacancy defects induced by a high-energy pulse were studied via molecular dynamics simulation. Our study revealed all six possible mutual transformations and found that defects transformed by absorbing energy to overcome the energy barrier with bonding, debonding, and bond rotations. The reversibility of defect transformations was also investigated by potential energy analysis. The energy difference was found to greatly influence the transformation reversibility. The direct transformation path was irreversible if the energy difference was too large. We also studied the correlation between the transformation probability and the input energy. It was found that the transformation probability had a local maxima at an optimal input energy. The introduction of defects and their structural evolutions are important for tailoring the exceptional properties and thereby performances of graphene-based devices, such as nanoporous membranes for the filtration and desalination of water.

  18. Synthesis and structural characterization of defect spinels in the Lithium-Manganese-Oxide system

    CSIR Research Space (South Africa)

    Thackeray, MM

    1993-10-01

    Full Text Available Lithium-manganese-oxides prepared at moderate temperatures are under investigation as insertion electrodes for rechargeable lithium batteries. The structures of two defect-spinel compounds synthesised by the reaction of MnCO3 and Li2CO3 at 400...

  19. Guiding, bending, and splitting of coupled defect surface modes in a surface-wave photonic crystal

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Zhen; Gao, Fei [Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore 637371 (Singapore); Zhang, Baile, E-mail: blzhang@ntu.edu.sg [Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore 637371 (Singapore); Centre for Disruptive Photonic Technologies, Nanyang Technological University, Singapore, Singapore 637371 (Singapore)

    2016-01-25

    We experimentally demonstrate a type of waveguiding mechanism for coupled surface-wave defect modes in a surface-wave photonic crystal. Unlike conventional spoof surface plasmon waveguides, waveguiding of coupled surface-wave defect modes is achieved through weak coupling between tightly localized defect cavities in an otherwise gapped surface-wave photonic crystal, as a classical wave analogue of tight-binding electronic wavefunctions in solid state lattices. Wave patterns associated with the high transmission of coupled defect surface modes are directly mapped with a near-field microwave scanning probe for various structures including a straight waveguide, a sharp corner, and a T-shaped splitter. These results may find use in the design of integrated surface-wave devices with suppressed crosstalk.

  20. Guiding, bending, and splitting of coupled defect surface modes in a surface-wave photonic crystal

    International Nuclear Information System (INIS)

    Gao, Zhen; Gao, Fei; Zhang, Baile

    2016-01-01

    We experimentally demonstrate a type of waveguiding mechanism for coupled surface-wave defect modes in a surface-wave photonic crystal. Unlike conventional spoof surface plasmon waveguides, waveguiding of coupled surface-wave defect modes is achieved through weak coupling between tightly localized defect cavities in an otherwise gapped surface-wave photonic crystal, as a classical wave analogue of tight-binding electronic wavefunctions in solid state lattices. Wave patterns associated with the high transmission of coupled defect surface modes are directly mapped with a near-field microwave scanning probe for various structures including a straight waveguide, a sharp corner, and a T-shaped splitter. These results may find use in the design of integrated surface-wave devices with suppressed crosstalk

  1. Importance of doping, dopant distribution, and defects on electronic band structure alteration of metal oxide nanoparticles: Implications for reactive oxygen species

    International Nuclear Information System (INIS)

    Saleh, Navid B.; Milliron, Delia J.; Aich, Nirupam; Katz, Lynn E.; Liljestrand, Howard M.; Kirisits, Mary Jo

    2016-01-01

    Metal oxide nanoparticles (MONPs) are considered to have the potency to generate reactive oxygen species (ROS), one of the key mechanisms underlying nanotoxicity. However, the nanotoxicology literature demonstrates a lack of consensus on the dominant toxicity mechanism(s) for a particular MONP. Moreover, recent literature has studied the correlation between band structure of pristine MONPs to their ability to introduce ROS and thus has downplayed the ROS-mediated toxicological relevance of a number of such materials. On the other hand, material science can control the band structure of these materials to engineer their electronic and optical properties and thereby is constantly modulating the pristine electronic structure. Since band structure is the fundamental material property that controls ROS-producing ability, band tuning via introduction of dopants and defects needs careful consideration in toxicity assessments. This commentary critically evaluates the existing material science and nanotoxicity literature and identifies the gap in our understanding of the role of important crystal structure features (i.e., dopants and defects) on MONPs' electronic structure alteration as well as their ROS-generation capability. Furthermore, this commentary provides suggestions on characterization techniques to evaluate dopants and defects on the crystal structure and identifies research needs for advanced theoretical predictions of their electronic band structures and ROS-generation abilities. Correlation of electronic band structure and ROS will not only aid in better mechanistic assessment of nanotoxicity but will be impactful in designing and developing ROS-based applications ranging from water disinfection to next-generation antibiotics and even cancer therapeutics. - Highlights: • Metal oxide nanoparticles (MONPs) produce reactive oxygen species (ROS) • Band structure of pristine MONPs is different than those with dopants/defects • Dopants/defects modulate

  2. Importance of doping, dopant distribution, and defects on electronic band structure alteration of metal oxide nanoparticles: Implications for reactive oxygen species

    Energy Technology Data Exchange (ETDEWEB)

    Saleh, Navid B., E-mail: navid.saleh@utexas.edu [Department of Civil, Architectural, and Environmental Engineering, University of Texas, Austin, TX 78712 (United States); Milliron, Delia J. [McKetta Department of Chemical Engineering, University of Texas, Austin, TX 78712 (United States); Aich, Nirupam [Department of Civil, Structural and Environmental Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260 (United States); Katz, Lynn E.; Liljestrand, Howard M.; Kirisits, Mary Jo [Department of Civil, Architectural, and Environmental Engineering, University of Texas, Austin, TX 78712 (United States)

    2016-10-15

    Metal oxide nanoparticles (MONPs) are considered to have the potency to generate reactive oxygen species (ROS), one of the key mechanisms underlying nanotoxicity. However, the nanotoxicology literature demonstrates a lack of consensus on the dominant toxicity mechanism(s) for a particular MONP. Moreover, recent literature has studied the correlation between band structure of pristine MONPs to their ability to introduce ROS and thus has downplayed the ROS-mediated toxicological relevance of a number of such materials. On the other hand, material science can control the band structure of these materials to engineer their electronic and optical properties and thereby is constantly modulating the pristine electronic structure. Since band structure is the fundamental material property that controls ROS-producing ability, band tuning via introduction of dopants and defects needs careful consideration in toxicity assessments. This commentary critically evaluates the existing material science and nanotoxicity literature and identifies the gap in our understanding of the role of important crystal structure features (i.e., dopants and defects) on MONPs' electronic structure alteration as well as their ROS-generation capability. Furthermore, this commentary provides suggestions on characterization techniques to evaluate dopants and defects on the crystal structure and identifies research needs for advanced theoretical predictions of their electronic band structures and ROS-generation abilities. Correlation of electronic band structure and ROS will not only aid in better mechanistic assessment of nanotoxicity but will be impactful in designing and developing ROS-based applications ranging from water disinfection to next-generation antibiotics and even cancer therapeutics. - Highlights: • Metal oxide nanoparticles (MONPs) produce reactive oxygen species (ROS) • Band structure of pristine MONPs is different than those with dopants/defects • Dopants/defects modulate

  3. Bone augmentation procedures in localized defects in the alveolar ridge: clinical results with different bone grafts and bone-substitute materials

    DEFF Research Database (Denmark)

    Jensen, Simon Storgård; Terheyden, Hendrik

    2009-01-01

    PURPOSE: The objective of this review was to evaluate the efficacy of different grafting protocols for the augmentation of localized alveolar ridge defects. MATERIALS AND METHODS: A MEDLINE search and an additional hand search of selected journals were performed to identify all levels of clinical...... evidence except expert opinions. Any publication written in English and including 10 or more patients with at least 12 months of follow-up after loading of the implants was eligible for this review. The results were categorized according to the presenting defect type: (1) dehiscence and fenestration...... periods. The heterogeneity of the available data did not allow identifying one superior grafting protocol for any of the osseous defect types under investigation. However, a series of grafting materials can be considered well-documented for different indications based on this review. There is a high level...

  4. Electron scattering in graphene by defects in underlying h-BN layer: First-principles transport calculations

    Science.gov (United States)

    Kaneko, Tomoaki; Ohno, Takahisa

    2018-03-01

    We investigate the electronic structure and the transport properties of graphene adsorbed onto h-BN with carbon impurities or atomic vacancies using density functional theory and the non-equilibrium Green's function method. We find that the transport properties are degraded due to carrier doping and scattering off of localized defect states in h-BN. When graphene is doped by introducing defects in h-BN, the transmission spectra become asymmetric owing to the reduction of the electronic density of states, which contributes significantly to the degradation of graphene transport properties as compared with the effect of defect levels.

  5. Microstrip linear phase low pass filter based on defected ground structures for partial response modulation

    DEFF Research Database (Denmark)

    Cimoli, Bruno; Johansen, Tom Keinicke; Olmos, Juan Jose Vegas

    2018-01-01

    We report a high performance linear phase low pass filter (LPF) designed for partial response (PR) modulations. For the implementation, we adopted microstrip technology and a variant of the standard stepped‐impedance technique. Defected ground structures (DGS) are used for increasing the characte......We report a high performance linear phase low pass filter (LPF) designed for partial response (PR) modulations. For the implementation, we adopted microstrip technology and a variant of the standard stepped‐impedance technique. Defected ground structures (DGS) are used for increasing...... the characteristic impedance of transmission lines. Experimental results prove that the proposed filter can successfully modulate a non‐return‐to‐zero (NRZ) signal into a five levels PR one....

  6. Synthesis and structural characterization of defect spinels in the lithium-manganese-oxide system

    CSIR Research Space (South Africa)

    Thackeray, MM

    1993-10-01

    Full Text Available Lithium-manganese-oxides prepared at moderate temperatures are under investigation as insertion electrodes for rechargeable lithium batteries. The structures of two defect-spinel compounds synthesized by the reaction of MnCO3 and Li2CO3 at 400°C...

  7. A qualitative study of spin polarization effect in defect tuned Co/graphene/Co nanostructures

    Science.gov (United States)

    Mandal, Sumit; Saha, Shyamal K.

    2014-10-01

    Theoretical reports predict that in contact with a ferromagnetic giant spin, spin polarization evolves in defective graphene since defects in graphene act as local spin moments. We have synthesized different Co/graphene/Co nano spin valve like structures tuning the degree of defect applying ultrasonic vibration and characterized them by Raman spectroscopy. Initially with increasing ID/IG ratio in Raman spectra, antiferromagnetic coupling between the Co nanosheets on either sides of graphene enhances leading to betterment in spin transport through graphene. But for highest ID/IG, a totally new phenomenon called antiferro quadrupolar ordering (AFQ) takes place which eventually reduces the spin polarization effect.

  8. Influence of defect structure on magnetic and electronic properties of Hg1-x Crx Se and Hg1-x Cox Se

    International Nuclear Information System (INIS)

    Prozorovskij, V.D.; Reshidova, I.Yu.; Puzynya, A.I.; Paranchich, Yu.S.

    1996-01-01

    The results of experimental investigations of the Shubnikov-de Haas oscillations at superhigh frequencies, electron spin resonance, magnetic susceptibility, relaxation dielectric losses, and galvanomagnetic measurements in the Hg 1-x Cr x Se and Hg 1-x Co x Se single crystal samples are presented. Analysis of the results Hg 1-x Cr x Se and Hg 1-x Co x Se depend on the defect structure of the substance and the type of defects making this structure. The manifestation of critical phenomena in Hg 1-x Cr x Se also depends on the defect structure

  9. The Effects of Epidermal Neural Crest Stem Cells on Local Inflammation Microenvironment in the Defected Sciatic Nerve of Rats

    Directory of Open Access Journals (Sweden)

    Yue Li

    2017-05-01

    Full Text Available Cell-based therapy is a promising strategy for the repair of peripheral nerve injuries (PNIs. epidermal neural crest stems cells (EPI-NCSCs are thought to be important donor cells for repairing PNI in different animal models. Following PNI, inflammatory response is important to regulate the repair process. However, the effects of EPI-NCSCs on regulation of local inflammation microenviroment have not been investigated extensively. In the present study, these effects were studied by using 10 mm defected sciatic nerve, which was bridged with 15 mm artificial nerve composed of EPI-NCSCs, extracellular matrix (ECM and poly (lactide-co-glycolide (PLGA. Then the expression of pro- and anti-inflammatory cytokines, polarization of macrophages, regulation of fibroblasts and shwann cells (SCs were assessed by western blot, immunohistochemistry, immunofluorescence staining at 1, 3, 7 and 21 days after bridging. The structure and the function of the bridged nerve were determined by observation under light microscope and by examination of right lateral foot retraction time (LFRT, sciatic function index (SFI, gastrocnemius wet weight and electrophysiology at 9 weeks. After bridging with EPI-NCSCs, the expression of anti-inflammatory cytokines (IL-4 and IL-13 was increased, but decreased for pro-inflammatory cytokines (IL-6 and TNF-α compared to the control bridging, which was consistent with increase of M2 macrophages and decrease of M1 macrophages at 7 days after transplantation. Likewise, myelin-formed SCs were significantly increased, but decreased for the activated fibroblasts in their number at 21 days. The recovery of structure and function of nerve bridged with EPI-NCSCs was significantly superior to that of DMEM. These results indicated that EPI-NCSCs could be able to regulate and provide more suitable inflammation microenvironment for the repair of defected sciatic nerve.

  10. Structural and optical studies on mesoscopic defect structure in highly conductive AgI-ZnO composites

    International Nuclear Information System (INIS)

    Fujishiro, Fumito; Mochizuki, Shosuke

    2003-01-01

    The electrical conductivity of (x)AgI-(1-x)ZnO (0≤x≤1) composites at room temperature increases with increasing AgI content and reaches a maximum at about 50% AgI. The results obtained by the scanning electron microscopy, X-ray diffractometry and photoluminescence spectroscopy have clarified high-ionic-conduction pathways related to mesoscopic defect structure at AgI/ZnO interfaces and mesoscopically disordered structure in AgI domain. We have observed also new optical phenomenon, which may arise from excitation energy transfer between AgI-exciton and photoinduced oxygen vacancy at the AgI/ZnO interface

  11. DEEP LEARNING AND IMAGE PROCESSING FOR AUTOMATED CRACK DETECTION AND DEFECT MEASUREMENT IN UNDERGROUND STRUCTURES

    Directory of Open Access Journals (Sweden)

    F. Panella

    2018-05-01

    Full Text Available This work presents the combination of Deep-Learning (DL and image processing to produce an automated cracks recognition and defect measurement tool for civil structures. The authors focus on tunnel civil structures and survey and have developed an end to end tool for asset management of underground structures. In order to maintain the serviceability of tunnels, regular inspection is needed to assess their structural status. The traditional method of carrying out the survey is the visual inspection: simple, but slow and relatively expensive and the quality of the output depends on the ability and experience of the engineer as well as on the total workload (stress and tiredness may influence the ability to observe and record information. As a result of these issues, in the last decade there is the desire to automate the monitoring using new methods of inspection. The present paper has the goal of combining DL with traditional image processing to create a tool able to detect, locate and measure the structural defect.

  12. PDF analysis of PuAl alloys local structure

    Energy Technology Data Exchange (ETDEWEB)

    Platteau, C. [CEA Valduc, 21120 Is-sur-Tille (France)], E-mail: platteau.cyril@yahoo.fr; Bruckel, P.; Ravat, B.; Delaunay, F. [CEA Valduc, 21120 Is-sur-Tille (France)

    2009-03-15

    For understanding singular properties of plutonium, there is a need in studying the average and local atomic structure in Pu alloys. To study the local structure of the {delta} phase, a pair distribution function (PDF) analysis was done and has shown some significant differences with the average structure.

  13. Defect branes as Alice strings

    International Nuclear Information System (INIS)

    Okada, Takashi; Sakatani, Yuho

    2015-01-01

    There exist various defect-brane backgrounds in supergravity theories which arise as the low energy limit of string theories. These backgrounds typically have non-trivial monodromies, and if we move a charged probe around the center of a defect, its charge will be changed by the action of the monodromy. During the process, the charge conservation law seems to be violated. In this paper, to resolve this puzzle, we examine a dynamics of the charge changing process and show that the missing charge of the probe is transferred to the background. We then explicitly construct the resultant background after the charge transfer process by utilizing dualities. This background has the same monodromy as the original defect brane, but has an additional charge which does not have any localized source. In the literature, such a charge without localized source is known to appear in the presence of Alice strings. We argue that defect branes can in fact be regarded as a realization of Alice strings in string theory and examine the charge transfer process from that perspective.

  14. Defect branes as Alice strings

    Energy Technology Data Exchange (ETDEWEB)

    Okada, Takashi [Theoretical Biology Laboratory, RIKEN,Wako 351-0198 (Japan); Sakatani, Yuho [Department of Physics and Astronomy,Seoul National University, Seoul 151-747 (Korea, Republic of)

    2015-03-25

    There exist various defect-brane backgrounds in supergravity theories which arise as the low energy limit of string theories. These backgrounds typically have non-trivial monodromies, and if we move a charged probe around the center of a defect, its charge will be changed by the action of the monodromy. During the process, the charge conservation law seems to be violated. In this paper, to resolve this puzzle, we examine a dynamics of the charge changing process and show that the missing charge of the probe is transferred to the background. We then explicitly construct the resultant background after the charge transfer process by utilizing dualities. This background has the same monodromy as the original defect brane, but has an additional charge which does not have any localized source. In the literature, such a charge without localized source is known to appear in the presence of Alice strings. We argue that defect branes can in fact be regarded as a realization of Alice strings in string theory and examine the charge transfer process from that perspective.

  15. Demonstration for the Applicability of the EPRI ETSS on the SG Tube Wear Defects Formed at the Tube Support Structure

    International Nuclear Information System (INIS)

    Shin, Ki Seok; Cheon, Keun Young; Nam, Min Woo; Min, Kyong Mahn

    2013-01-01

    In this paper, the authorized EPRI ETSS 27906.2 applied to the detection of tapered wear volumetric indications and depth sizing within the free span area, loose part not present was reviewed and applied to the site SG tubes for getting the actual value of the wear depth and providing structural integrity interpretation based on engineering evaluation. The experiment to demonstrate the applicability of EPRI ETSS was performed by the employment of the newly prepared STD tube and resulted in ensuring the effectiveness and equivalency of the EPRI ETSS as well. The authorized EPRI ETSS 27906.2 for getting the actual value of the wear depth and providing structural integrity interpretation based on engineering evaluation was reviewed and applied to the site SG tubes. The testing results were reviewed with the influences of SG tube material and the support structure. The impact of the tube materials was insignificant and that of the tube support structure showed somewhat conservative results. The testing resulted in successful demonstration of applicability of the EPRI ETSS on the SG tube wear defects at the tube support. One of the major flaw mechanisms detected in the currently operating domestic OPR-1000 pressurized water reactors(PWR's) steam generator(SG) tubes is wear defect. In general, wear defect has been constantly detected in the upper tube bundle imposed to the flow induced vibration interaction between tube and its support structure, and the quantity of the affected tubes has also shown the tendency to increase as plant operation life is added. In order to take appropriate measures and maintain the structural integrity for the SG tubes, wear defect is currently categorized as active damage mechanism and the tubes containing 40% or greater wear depth of the nominal tube wall thickness shall be plugged per SGMP(SG Management Program) Recently, a fairly large amplitude of wear defects on the Batwing(BW), one of the upper tube support structures in the SG tubes

  16. Demonstration for the Applicability of the EPRI ETSS on the SG Tube Wear Defects Formed at the Tube Support Structure

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Ki Seok; Cheon, Keun Young; Nam, Min Woo [Korea Hydro and Nuclear Power Co. Ltd, Daejeon (Korea, Republic of); Min, Kyong Mahn [Universal Monitoring and Inspection Inc., Daejeon (Korea, Republic of)

    2013-10-15

    In this paper, the authorized EPRI ETSS 27906.2 applied to the detection of tapered wear volumetric indications and depth sizing within the free span area, loose part not present was reviewed and applied to the site SG tubes for getting the actual value of the wear depth and providing structural integrity interpretation based on engineering evaluation. The experiment to demonstrate the applicability of EPRI ETSS was performed by the employment of the newly prepared STD tube and resulted in ensuring the effectiveness and equivalency of the EPRI ETSS as well. The authorized EPRI ETSS 27906.2 for getting the actual value of the wear depth and providing structural integrity interpretation based on engineering evaluation was reviewed and applied to the site SG tubes. The testing results were reviewed with the influences of SG tube material and the support structure. The impact of the tube materials was insignificant and that of the tube support structure showed somewhat conservative results. The testing resulted in successful demonstration of applicability of the EPRI ETSS on the SG tube wear defects at the tube support. One of the major flaw mechanisms detected in the currently operating domestic OPR-1000 pressurized water reactors(PWR's) steam generator(SG) tubes is wear defect. In general, wear defect has been constantly detected in the upper tube bundle imposed to the flow induced vibration interaction between tube and its support structure, and the quantity of the affected tubes has also shown the tendency to increase as plant operation life is added. In order to take appropriate measures and maintain the structural integrity for the SG tubes, wear defect is currently categorized as active damage mechanism and the tubes containing 40% or greater wear depth of the nominal tube wall thickness shall be plugged per SGMP(SG Management Program) Recently, a fairly large amplitude of wear defects on the Batwing(BW), one of the upper tube support structures in the SG

  17. Structural defect generation in indium antimonide single crystals during electro-erosion cutting

    International Nuclear Information System (INIS)

    Kravetskij, M.Yu.; Matsas, E.P.; Skorokhod, M.Ya.; Fomin, A.V.; Khromyak, K.Ya.

    1990-01-01

    Using X-ray topography structural defects generating during electro-erosion cutting of InSb single crystals are studied. It is shown that dislocations, are introduced into so cut dislocation-free ingot plates, nucleation centers being located on their surfaces. It is detected that foreign phase inclusions in InSb are efficient sources of dislocations during cutting

  18. Point defects in solids

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    The principal properties of point defects are studied: thermodynamics, electronic structure, interactions with etended defects, production by irradiation. Some measuring methods are presented: atomic diffusion, spectroscopic methods, diffuse scattering of neutron and X rays, positron annihilation, molecular dynamics. Then points defects in various materials are investigated: ionic crystals, oxides, semiconductor materials, metals, intermetallic compounds, carbides, nitrides [fr

  19. Novel rattling of K atoms in aluminium-doped defect pyrochlore tungstate

    International Nuclear Information System (INIS)

    Shoko, Elvis; Kearley, Gordon J; Peterson, Vanessa K; Thorogood, Gordon J; Mutka, Hannu; Koza, Michael M; Yamaura, Jun-ichi; Hiroi, Zenji

    2014-01-01

    Rattling dynamics have been identified as fundamental to superconductivity in defect pyrochlore osmates and aluminium vanadium intermetallics, as well as low thermal conductivity in clathrates and filled skutterudites. Combining inelastic neutron scattering (INS) measurements and ab initio molecular dynamics (MD) simulations, we use a new approach to investigate rattling in the Al-doped defect pyrochlore tungstates: AAl 0.33 W 1.67 O 6 (A = K, Rb, Cs). We find that although all the alkali metals rattle, the rattling of the K atoms is unique, not only among the tungstates but also among the analogous defect osmates, KOs 2 O 6 and RbOs 2 O 6 . Detailed analysis of the MD trajectories reveals that two unique features set the K dynamics apart from the rest, namely, (1) quasi one-dimensional local diffusion within a cage, and (2) vibration at a range of frequencies. The local diffusion is driven by strongly anharmonic local potentials around the K atoms exhibiting a double-well structure in the direction of maximum displacement, which is also the direction of local diffusion. On the other hand, vibration at a range of frequencies is a consequence of the strong anisotropy in the local potentials around the K atoms as revealed by directional magnitude spectra. We present evidence to show that it is the smaller size rather than the smaller mass of the K rattler which leads to the unusual dynamics. Finally, we suggest that the occurrence of local diffusion and vibration at a range of frequencies in the dynamics of a single rattler, as found here for the K atoms, may open new possibilities for phonon engineering in thermoelectric materials. (paper)

  20. Spin-wave dispersion of nanostructured magnonic crystals with periodic defects

    Directory of Open Access Journals (Sweden)

    V. L. Zhang

    2016-11-01

    Full Text Available The spin-wave dispersions in nanostructured magnonic crystals with periodic defects have been mapped by Brillouin light scattering. The otherwise perfect crystals are one-dimensional arrays of alternating 460nm-wide Ni80Fe20 stripes and 40nm-wide air gaps, where one in ten Ni80Fe20 stripes is a defect of width other than 460 nm. Experimentally, the defects are manifested as additional Brillouin peaks, lying within the first and second bandgaps of the perfect crystal, whose frequencies decrease with increasing defect stripe width. Finite-element calculations, based on a supercell comprising one defect and nine perfect Py stripes, show that the defect modes are localized about the defects, with the localization exhibiting an approximate U-shaped dependence on defect size. Calculations also reveal extra magnon branches and the opening of mini-bandgaps, within the allowed bands of the perfect crystal, arising from Bragg reflections at the boundaries of the shorter supercell Brillouin zone. Simulated magnetization profiles of the band-edge modes of the major and mini-bandgaps reveal their different symmetries and localization properties. The findings could find application in microwave magnonic devices like single-frequency passband spin-wave filters.

  1. Electrical activation and local structure of Se atoms in ion-implanted indium phosphide

    International Nuclear Information System (INIS)

    Yu, K.M.; Chan, N.; Hsu, L.

    1996-01-01

    The solid phase regrowth, dopant activation, and local environments of Se-implanted InP are investigated with ion-beam techniques and extended x-ray-absorption fine structure spectroscopy. We find that the local Se endash In structure is already established in the as-implanted amorphous InP although the Se atoms have a lower average coordination number (∼3.5) and no long-range order. After high-temperature rapid thermal annealing (950 degree C, 5 s), the amorphous InP regrows, becoming a single crystal with the Se atoms bonded to four In neighbors; however, only ∼50% of the Se becomes electrically active. Part of the Se precipitates in the form of an In endash Se phase, another part is compensated by defects which are not totally removed by annealing. The Se emdash In bond distance for a Se on a P site is 4.5% longer than the matrix In emdash P bond length, introducing large strains in the crystal. The solid solubility of Se in InP is estimated from our results to be ≅8.7x10 19 /cm 3 while the electron concentration saturates at 5.4x10 19 /cm 3 . Se atoms in InP regrown at lower temperatures in a furnace are only ∼7% electrically active and are found to have different local environments (higher coordination number and shorter bond distance) than those in the InP perfectly regrown at higher temperature. copyright 1996 American Institute of Physics

  2. Local atomic structure of α-Pu

    International Nuclear Information System (INIS)

    Espinosa, F. J.; Villella, P.; Lashley, J. C.; Conradson, S. D.; Cox, L. E.; Martinez, R.; Martinez, B.; Morales, L.; Terry, J.; Pereyra, R. A.

    2001-01-01

    The local atomic structure of α-Pu was investigated using x-ray absorption fine structure (XAFS) spectroscopy. XAFS spectra were obtained for a zone-refined α-Pu and the results were compared to 32-year-old and Ce-doped (0.34 at.%) samples. X-ray diffraction (XRD) patterns were also measured for the zone-refined and 32-year-old materials. The extent of the Bragg peaks showed that amorphization of the 32-year-old sample had not occurred despite the prolonged exposure to self-radiation. Analogous to metastable δ-Pu alloys, the local atomic structure around Pu for the zone-refined material shows the possible presence of noncrystallographic Pu-Pu distances. Conversely, the Ce and the 32-year-old sample show no evidence for such noncrystallographic distances. Disorder in the Pu local environment was found to be impurity dependent. The Ce-doped sample presented a larger Pu-Pu nearest neighbor disorder than the aged sample, although the total amount of Am, U, and He impurities was actually higher in the aged sample. The local environment around U and Ce impurities is consistent with these elements being in substitutional lattice sites. In addition, U and Ce do not introduce significant lattice distortion to their nearest neighbors. This is consistent with disorder being more related to the perturbation of the coupling between the electronic and crystal structure, or the Peierls--Jahn-Teller distortion that generates the monoclinic α-Pu structure, and less to strain fields produced in the vicinity of the impurities

  3. Mechanical properties and fracture behaviour of defective phosphorene nanotubes under uniaxial tension

    Science.gov (United States)

    Liu, Ping; Pei, Qing-Xiang; Huang, Wei; Zhang, Yong-Wei

    2017-12-01

    The easy formation of vacancy defects and the asymmetry in the two sublayers of phosphorene nanotubes (PNTs) may result in brand new mechanical properties and failure behaviour. Herein, we investigate the mechanical properties and fracture behaviour of defective PNTs under uniaxial tension using molecular dynamics simulations. Our simulation results show that atomic vacancies cause local stress concentration and thus significantly reduce the fracture strength and fracture strain of PNTs. More specifically, a 1% defect concentration is able to reduce the fracture strength and fracture strain by as much as 50% and 66%, respectively. Interestingly, the reduction in the mechanical properties is found to depend on the defect location: a defect located in the outer sublayer has a stronger effect than one located in the inner layer, especially for PNTs with a small diameter. Temperature is also found to strongly influence the mechanical properties of both defect-free and defective PNTs. When the temperature is increased from 0 K to 400 K, the fracture strength and fracture strain of defective PNTs with a defect concentration of 1% are reduced further by 71% and 61%, respectively. These findings are of great importance for the structural design of PNTs as building blocks in nanodevices.

  4. Structural Defects in Donor-Acceptor Blends: Influence on the Performance of Organic Solar Cells

    Science.gov (United States)

    Sergeeva, Natalia; Ullbrich, Sascha; Hofacker, Andreas; Koerner, Christian; Leo, Karl

    2018-02-01

    Defects play an important role in the performance of organic solar cells. The investigation of trap states and their origin can provide ways to further improve their performance. Here, we investigate defects in a system composed of the small-molecule oligothiophene derivative DCV5T-Me blended with C60 , which shows power conversion efficiencies above 8% when used in a solar cell. From a reconstruction of the density of trap states by impedance spectroscopy, we obtain a Gaussian distribution of trap states with Et=470 meV below the electron transport level, Nt=8 ×1014 cm-3 , and σt=41 meV . From Voc vs illumination intensity and open-circuit corrected charge carrier extraction measurements, we find that these defects lead to trap-assisted recombination. Moreover, drift-diffusion simulations show that the trap states decrease the fill factor by 10%. By conducting degradation measurements and varying the blend ratio, we find that the observed trap states are structural defects in the C60 phase due to the distortion of the natural morphology induced by the mixing.

  5. Secondary defects in non-metallic solids

    International Nuclear Information System (INIS)

    Ashbee, K.H.G.; Hobbs, L.W.

    1977-01-01

    This paper points out features of secondary defect formation which are peculiar to non-metallic solids (excluding elemental semiconductors). Most of the materials of interest are compounds of two or more (usually more or less ionic) atomic species, and immediate consequence of which is a need to maintain both stoichiometry (or accommodate non-stoichiometry) and order. Primary defects in these solids, whether produced thermally, chemically or by irradiation, seldom are present or aggregate in exactly stoichiometric proportions, and the resulting extending defect structures can be quite distinct from those found in metallic solids. Where stoichiometry is maintained, it is often convenient to describe extended defects in terms of alterations in the arrangement of 'molecular' units. The adoption of this procedure enables several novel features of extended defect structures in non-metals to be explained. There are several ways in which a range of non-stoichiometry can be accommodated, which include structural elimination of point defects, nucleation of new coherent phases of altered stoichiometry, and decomposition. (author)

  6. Defects at oxide surfaces

    CERN Document Server

    Thornton, Geoff

    2015-01-01

    This book presents the basics and characterization of defects at oxide surfaces. It provides a state-of-the-art review of the field, containing information to the various types of surface defects, describes analytical methods to study defects, their chemical activity and the catalytic reactivity of oxides. Numerical simulations of defective structures complete the picture developed. Defects on planar surfaces form the focus of much of the book, although the investigation of powder samples also form an important part. The experimental study of planar surfaces opens the possibility of applying the large armoury of techniques that have been developed over the last half-century to study surfaces in ultra-high vacuum. This enables the acquisition of atomic level data under well-controlled conditions, providing a stringent test of theoretical methods. The latter can then be more reliably applied to systems such as nanoparticles for which accurate methods of characterization of structure and electronic properties ha...

  7. Local structure and structural signature underlying properties in metallic glasses and supercooled liquids

    Science.gov (United States)

    Ding, Jun

    Metallic glasses (MGs), discovered five decades ago as a newcomer in the family of glasses, are of current interest because of their unique structures and properties. There are also many fundamental materials science issues that remain unresolved for metallic glasses, as well as their predecessor above glass transition temperature, the supercooled liquids. In particular, it is a major challenge to characterize the local structure and unveil the structure-property relationship for these amorphous materials. This thesis presents a systematic study of the local structure of metallic glasses as well as supercooled liquids via classical and ab initio molecular dynamics simulations. Three typical MG models are chosen as representative candidate, Cu64 Zr36, Pd82Si18 and Mg65Cu 25Y10 systems, while the former is dominant with full icosahedra short-range order and the prism-type short-range order dominate for latter two. Furthermore, we move to unravel the underlying structural signature among several properties in metallic glasses. Firstly, the temperature dependence of specific heat and liquid fragility between Cu-Zr and Mg-Cu-Y (also Pd-Si) in supercooled liquids are quite distinct: gradual versus fast evolution of specific heat and viscosity/relaxation time with undercooling. Their local structural ordering are found to relate with the temperature dependence of specific heat and relaxation time. Then elastic heterogeneity has been studied to correlate with local structure in Cu-Zr MGs. Specifically, this part covers how the degree of elastic deformation correlates with the internal structure at the atomic level, how to quantitatively evaluate the local solidity/liquidity in MGs and how the network of interpenetrating connection of icosahedra determine the corresponding shear modulus. Finally, we have illustrated the structure signature of quasi-localized low-frequency vibrational normal modes, which resides the intriguing vibrational properties in MGs. Specifically, the

  8. Atomic-scale structure and properties of highly stable antiphase boundary defects in Fe3O4.

    Science.gov (United States)

    McKenna, Keith P; Hofer, Florian; Gilks, Daniel; Lazarov, Vlado K; Chen, Chunlin; Wang, Zhongchang; Ikuhara, Yuichi

    2014-12-10

    The complex and intriguing properties of the ferrimagnetic half metal magnetite (Fe 3 O 4 ) are of continuing fundamental interest as well as being important for practical applications in spintronics, magnetism, catalysis and medicine. There is considerable speculation concerning the role of the ubiquitous antiphase boundary (APB) defects in magnetite, however, direct information on their structure and properties has remained challenging to obtain. Here we combine predictive first principles modelling with high-resolution transmission electron microscopy to unambiguously determine the three-dimensional structure of APBs in magnetite. We demonstrate that APB defects on the {110} planes are unusually stable and induce antiferromagnetic coupling between adjacent domains providing an explanation for the magnetoresistance and reduced spin polarization often observed. We also demonstrate how the high stability of the {110} APB defects is connected to the existence of a metastable bulk phase of Fe 3 O 4 , which could be stabilized by strain in films or nanostructures.

  9. Intrinsic point defects in zinc oxide. Modeling of structural, electronic, thermodynamic and kinetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Erhart, P.

    2006-07-01

    The present dissertation deals with the modeling of zinc oxide on the atomic scale employing both quantum mechanical as well as atomistic methods. The first part describes quantum mechanical calculations based on density functional theory of intrinsic point defects in ZnO. To begin with, the geometric and electronic structure of vacancies and oxygen interstitials is explored. In equilibrium oxygen interstitials are found to adopt dumbbell and split interstitial configurations in positive and negative charge states, respectively. Semi-empirical self-interaction corrections allow to improve the agreement between the experimental and the calculated band structure significantly; errors due to the limited size of the supercells can be corrected by employing finite-size scaling. The effect of both band structure corrections and finite-size scaling on defect formation enthalpies and transition levels is explored. Finally, transition paths and barriers for the migration of zinc as well as oxygen vacancies and interstitials are determined. The results allow to interpret diffusion experiments and provide a consistent basis for developing models for device simulation. In the second part an interatomic potential for zinc oxide is derived. To this end, the Pontifix computer code is developed which allows to fit analytic bond-order potentials. The code is subsequently employed to obtain interatomic potentials for Zn-O, Zn-Zn, and O-O interactions. To demonstrate the applicability of the potentials, simulations on defect production by ion irradiation are carried out. (orig.)

  10. Local structure of Iridium organometallic catalysts covalently bonded to carbon nanotubes.

    Science.gov (United States)

    Blasco, J.; Cuartero, V.; Subías, G.; Jiménez, M. V.; Pérez-Torrente, J. J.; Oro, L. A.; Blanco, M.; Álvarez, P.; Blanco, C.; Menéndez, R.

    2016-05-01

    Hybrid catalysts based on Iridium N-heterocyclic carbenes anchored to carbon nanotubes (CNT) have been studied by XAFS spectroscopy. Oxidation of CNT yields a large amount of functional groups, mainly hydroxyl groups at the walls and carboxylic groups at the tips, defects and edges. Different kinds of esterification reactions were performed to functionalize oxidized CNT with imidazolium salts. Then, the resulting products were reacted with an Ir organometallic compound to form hybrid catalysts efficient in hydrogen transfer processes. XANES spectroscopy agree with the presence of Ir(I) in these catalysts and the EXAFS spectra detected differences in the local structure of Ir atoms between the initial Ir organometallic compound and the Ir complexes anchored to the CNT. Our results confirm that the halide atom, present in the Ir precursor, was replaced by oxygen from -OH groups at the CNT wall in the first coordination shell of Ir. The lability of this group accounts for the good recyclability and the good efficiency shown by these hybrid catalysts.

  11. RECONSTRUCTION OF POST ELECTRIC BURN DEFECTS OF UPPER LIMB WITH DIFFERENT FLAPS

    Directory of Open Access Journals (Sweden)

    Satyajit

    2015-08-01

    depth of injury involving full thickness of skin and other structures like neurovascular bundle and bones and tendons. Choice depends on size of defect, availability of local or regional tissue, patient’s acceptance and cooperation

  12. Thermal annealing of carbon nanotubes reveals a toxicological impact of the structural defects

    Energy Technology Data Exchange (ETDEWEB)

    Figarol, Agathe, E-mail: figarol@emse.fr [Ecole Nationale Supérieure des Mines, SPIN-EMSE, CNRS: UMR 5307, LGF (France); Pourchez, Jérémie, E-mail: pourchez@emse.fr [Ecole Nationale Supérieure des Mines, CIS-EMSE, EA 4624, SFR IFRESIS, LINA (France); Boudard, Delphine [Université Jean Monnet Saint-Etienne, EA 4624, SFR IFRESIS, LINA (France); Forest, Valérie [Ecole Nationale Supérieure des Mines, CIS-EMSE, EA 4624, SFR IFRESIS, LINA (France); Berhanu, Sarah [Armines - Mines ParisTech, Centre des Matériaux, CNRS UMR 7633 (France); Tulliani, Jean-Marc [Politecnico di Torino, Department of Applied Science and Technology (Italy); Lecompte, Jean-Pierre [Centre Européen de la céramique CNRS: UMR 7315, SPCTS (France); Cottier, Michèle [Université Jean Monnet Saint-Etienne, EA 4624, SFR IFRESIS, LINA (France); Bernache-Assollant, Didier [Ecole Nationale Supérieure des Mines, CIS-EMSE, EA 4624, SFR IFRESIS, LINA (France); Grosseau, Philippe [Ecole Nationale Supérieure des Mines, SPIN-EMSE, CNRS: UMR 5307, LGF (France)

    2015-04-15

    The biological response to pristine and annealed multi-walled carbon nanotubes (MWCNT) was assessed on murine macrophages (RAW 264.7). First, the physicochemical features of the as-produced MWCNT and annealed at 2125 °C for 1 h were fully characterized. A decrease in structural defects, hydrophobicity and catalytic impurities was detected after annealing. Thereafter, their impact on cytotoxicity, oxidative stress, and pro-inflammatory response was investigated at concentrations ranging from 15 to 120 µg mL{sup −1}. No effect of the 2125 °C treatment was detected on the cytotoxicity. In contrast, the annealed carbon nanotubes showed a significant increase of the pro-inflammatory response. We assumed that this behavior was due to the reduction in structural defects that may modify the layer of adsorbed biomolecules. Surprisingly, the purification of metallic catalysts did not have any significant impact on the oxidative stress. We suggested that the structural improvements from the 2125 °C treatment can decrease the carbon nanotube scavenging capacity and thus allow a higher free radical release which may counterbalance the decrease of oxidative stress due to a lower content of metallic impurities.

  13. Enhancing community detection by using local structural information

    International Nuclear Information System (INIS)

    Xiang, Ju; Bao, Mei-Hua; Tang, Liang; Li, Jian-Ming; Hu, Ke; Chen, Benyan; Hu, Jing-Bo; Zhang, Yan; Tang, Yan-Ni; Gao, Yuan-Yuan

    2016-01-01

    Many real-world networks, such as gene networks, protein–protein interaction networks and metabolic networks, exhibit community structures, meaning the existence of groups of densely connected vertices in the networks. Many local similarity measures in the networks are closely related to the concept of the community structures, and may have a positive effect on community detection in the networks. Here, various local similarity measures are used to extract local structural information, which is then applied to community detection in the networks by using the edge-reweighting strategy. The effect of the local similarity measures on community detection is carefully investigated and compared in various networks. The experimental results show that the local similarity measures are crucial for the improvement of community detection methods, while the positive effect of the local similarity measures is closely related to the networks under study and applied community detection methods. (paper: interdisciplinary statistical mechanics)

  14. Defect-induced ferromagnetism in semiconductors: A controllable approach by particle irradiation

    International Nuclear Information System (INIS)

    Zhou, Shengqiang

    2014-01-01

    Making semiconductors ferromagnetic has been a long dream. One approach is to dope semiconductors with transition metals (TM). TM ions act as local moments and they couple with free carriers to develop collective magnetism. However, there are no fundamental reasons against the possibility of local moment formation from localized sp states. Recently, ferromagnetism was observed in nonmagnetically doped, but defective semiconductors or insulators including ZnO and TiO 2 . This kind of observation challenges the conventional understanding of ferromagnetism. Often the defect-induced ferromagnetism has been observed in samples prepared under non-optimized condition, i.e. by accident or by mistake. Therefore, in this field theory goes much ahead of experimental investigation. To understand the mechanism of the defect-induced ferromagnetism, one needs a better controlled method to create defects in the crystalline materials. As a nonequilibrium and reproducible approach of inducing defects, ion irradiation provides such a possibility. Energetic ions displace atoms from their equilibrium lattice sites, thus creating mainly vacancies, interstitials or antisites. The amount and the distribution of defects can be controlled by the ion fluence and energy. By ion irradiation, we have generated defect-induced ferromagnetism in ZnO, TiO 2 and SiC. In this short review, we also summarize some results by other groups using energetic ions to introduce defects, and thereby magnetism in various materials. Ion irradiation combined with proper characterizations of defects could allow us to clarify the local magnetic moments and the coupling mechanism in defective semiconductors. Otherwise we may have to build a new paradigm to understand the defect-induced ferromagnetism

  15. Assessment of structures and stabilities of defect clusters and surface energies predicted by nine interatomic potentials for UO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Taller, Stephen A. [School of Nuclear Engineering, Purdue University, West Lafayette, IN 47907 (United States); Bai, Xian-Ming, E-mail: xianming.bai@inl.gov [Fuels Modeling and Simulation Department, Idaho National Laboratory, Idaho Falls, ID 83415 (United States)

    2013-11-15

    The irradiation in nuclear reactors creates many point defects and defect clusters in uranium dioxide (UO{sub 2}) and their evolution severely degrades the thermal and mechanical properties of the nuclear fuels. Previously many empirical interatomic potentials have been developed for modeling defect production and evolution in UO{sub 2}. However, the properties of defect clusters and extended defects are usually not fitted into these potentials. In this work nine interatomic potentials for UO{sub 2} are examined by using molecular statics and molecular dynamics to assess their applicability in predicting the properties of various types of defect clusters in UO{sub 2}. The binding energies and structures for these defect clusters have been evaluated for each potential. In addition, the surface energies of voids of different radii and (1 1 0) flat surfaces predicted by these potentials are also evaluated. It is found that both good agreement and significant discrepancies exist for these potentials in predicting these properties. For oxygen interstitial clusters, these potentials predict significantly different defect cluster structures and stabilities; For defect clusters consisting of both uranium and oxygen defects, the prediction is in better agreement; The surface energies predicted by these potentials have significant discrepancies, and some of them are much higher than the experimentally measured values. The results from this work can provide insight on interpreting the outcome of atomistic modeling of defect production using these potentials and may provide guidelines for choosing appropriate potential models to study problems of interest in UO{sub 2}.

  16. Structural peculiarities and point defects of bulk-ZnO single crystals

    International Nuclear Information System (INIS)

    Kaurova, I.A.; Kuz’micheva, G.M.; Rybakov, V.B.; Cousson, A.; Gayvoronsky, V.Ya.

    2014-01-01

    Highlights: • ZnO single crystals of different color were grown by the hydrothermal method. • Point defects in ZnO have been firstly investigated by neutron diffraction. • Presence of additional reflections caused by kinetic growth effects was revealed. • The relationship between the color and zinc and oxygen vacancies was found. • Photoinduced variation of transmittance versus the CW laser intensity was analyzed. - Abstract: ZnO single crystals are related to promising direct wide band gap semiconductor materials belonging to the A II B VI type of compounds with wurtzite structure. “Unintentional” n-type conductivity in ZnO may be caused by zinc and oxygen vacancies, and interstitial zinc atoms. To date, the comprehensive structural investigation and analysis of point defects in ZnO is absent in literature. Green, light green and almost colorless ZnO single crystals grown by the hydrothermal method in concentrated alkali solutions 4M(KOH) + 1M(LiOH) + 0.1M(NH 4 OH) on monohedral seeds [0 0 0 1] at crystallization temperatures in the range of 330–350 °C and pressures in the range of 30–50 MPa have been firstly investigated by neutron diffraction. It was revealed the presence of additional reflections (∼12–∼16%) for all the crystals caused by kinetic growth effects that give grounds to assign them to the space group P3 rather than to P6 3 mc. Analysis of the refined compositions together with the color of ZnO crystals does not rule out the relationship between the color and vacancies in the zinc and oxygen positions whose concentration decreases with the discoloration of the samples. The analysis of the photoinduced variation of the total and on-axis transmittance versus the CW laser intensity showed that the colored samples have profound deep defects related to oxygen vacancies

  17. New structural and functional defects in polyphosphate deficient bacteria: A cellular and proteomic study

    Directory of Open Access Journals (Sweden)

    Chávez Francisco P

    2010-01-01

    Full Text Available Abstract Background Inorganic polyphosphate (polyP, a polymer of tens or hundreds of phosphate residues linked by ATP-like bonds, is found in all organisms and performs a wide variety of functions. PolyP is synthesized in bacterial cells by the actions of polyphosphate kinases (PPK1 and PPK2 and degraded by exopolyphosphatase (PPX. Bacterial cells with polyP deficiencies due to knocking out the ppk1 gene are affected in many structural and important cellular functions such as motility, quorum sensing, biofilm formation and virulence among others. The cause of this pleiotropy is not entirely understood. Results The overexpression of exopolyphosphatase in bacteria mimicked some pleitropic defects found in ppk1 mutants. By using this approach we found new structural and functional defects in the polyP-accumulating bacteria Pseudomonas sp. B4, which are most likely due to differences in the polyP-removal strategy. Colony morphology phenotype, lipopolysaccharide (LPS structure changes and cellular division malfunction were observed. Finally, we used comparative proteomics in order to elucidate the cellular adjustments that occurred during polyP deficiency in this bacterium and found some clues that helped to understand the structural and functional defects observed. Conclusions The results obtained suggest that during polyP deficiency energy metabolism and particularly nucleoside triphosphate (NTP formation were affected and that bacterial cells overcame this problem by increasing the flux of energy-generating metabolic pathways such as tricarboxilic acid (TCA cycle, β-oxidation and oxidative phosphorylation and by reducing energy-consuming ones such as active transporters and amino acid biosynthesis. Furthermore, our results suggest that a general stress response also took place in the cell during polyP deficiency.

  18. On correction of model of stabilization of distribution of concentration of radiation defects in a multilayer structure with account experiment data

    Science.gov (United States)

    Pankratov, E. L.

    2018-05-01

    We introduce a model of redistribution of point radiation defects, their interaction between themselves and redistribution of their simplest complexes (divacancies and diinterstitials) in a multilayer structure. The model gives a possibility to describe qualitatively nonmonotonicity of distributions of concentrations of radiation defects on interfaces between layers of the multilayer structure. The nonmonotonicity was recently found experimentally. To take into account the nonmonotonicity we modify recently used in literature model for analysis of distribution of concentration of radiation defects. To analyze the model we used an approach of solution of boundary problems, which could be used without crosslinking of solutions on interfaces between layers of the considered multilayer structures.

  19. A Novel Method for Surface Defect Detection of Photovoltaic Module Based on Independent Component Analysis

    Directory of Open Access Journals (Sweden)

    Xuewu Zhang

    2013-01-01

    Full Text Available This paper proposed a new method for surface defect detection of photovoltaic module based on independent component analysis (ICA reconstruction algorithm. Firstly, a faultless image is used as the training image. The demixing matrix and corresponding ICs are obtained by applying the ICA in the training image. Then we reorder the ICs according to the range values and reform the de-mixing matrix. Then the reformed de-mixing matrix is used to reconstruct the defect image. The resulting image can remove the background structures and enhance the local anomalies. Experimental results have shown that the proposed method can effectively detect the presence of defects in periodically patterned surfaces.

  20. Computer simulation of defect cluster

    Energy Technology Data Exchange (ETDEWEB)

    Kuramoto, Eiichi [Kyushu Univ., Kasuga, Fukuoka (Japan). Research Inst. for Applied Mechanics

    1996-04-01

    In order to elucidate individual element process of various defects and defect clusters of used materials under irradiation environments, interatomic potential with reliability was investigated. And for comparison with experimental results, it is often required to adopt the temperature effect and to investigate in details mechanism of one dimensional motion of micro conversion loop and so forth using the molecular dynamic (MD) method. Furthermore, temperature effect is also supposed for stable structure of defects and defect clusters, and many problems relating to alloy element are also remained. And, simulation on photon life at the defects and defect clusters thought to be important under comparison with equipment can also be supposed an improvement of effectiveness due to relation to theses products. In this paper, some topics in such flow was extracted to explain them. In particular, future important problems will be potential preparation of alloy, structure, dynamic behavior and limited temperature of intralattice atomic cluster. (G.K.)

  1. Structural defects in laser- and electron-beam annealed silicon

    International Nuclear Information System (INIS)

    Narayan, J.

    1979-01-01

    Laser and electron beam pulses provide almost an ideal source of heat by which thin layers of semiconductors can be rapidly melted and solidified with heating and cooling rates exceeding 10 80 C/sec. Microstructural modifications obtained as a function of laser parameters are examined and it is shown that both laser and electron beam pulses can be used to remove displacement damage, dislocations, dislocation loops and precipitates. Annealing of defects underneath the oxide layers in silicon is possible within a narrow energy window. The formation of cellular structure provides a rather clear evidence of melting which leads to segregation and supercooling, and subsequent cell formation

  2. Structure and strain relaxation effects of defects in InxGa1−xN epilayers

    International Nuclear Information System (INIS)

    Rhode, S. L.; Fu, W. Y.; Massabuau, F. C.-P.; Kappers, M. J.; McAleese, C.; Oehler, F.; Humphreys, C. J.; Sahonta, S.-L.; Moram, M. A.; Dusane, R. O.

    2014-01-01

    The formation of trench defects is observed in 160 nm-thick In x Ga 1−x N epilayers with x ≤ 0.20, grown on GaN on (0001) sapphire substrates using metalorganic vapour phase epitaxy. The trench defect density increases with increasing indium content, and high resolution transmission electron microscopy shows an identical structure to those observed previously in InGaN quantum wells, comprising meandering stacking mismatch boundaries connected to an I 1 -type basal plane stacking fault. These defects do not appear to relieve in-plane compressive strain. Other horizontal sub-interface defects are also observed within the GaN pseudosubstrate layer of these samples and are found to be pre-existing threading dislocations which form half-loops by bending into the basal plane, and not basal plane stacking faults, as previously reported by other groups. The origins of these defects are discussed and are likely to originate from a combination of the small in-plane misorientation of the sapphire substrate and the thermal mismatch strain between the GaN and InGaN layers grown at different temperatures.

  3. Automated Localization of Multiple Pelvic Bone Structures on MRI.

    Science.gov (United States)

    Onal, Sinan; Lai-Yuen, Susana; Bao, Paul; Weitzenfeld, Alfredo; Hart, Stuart

    2016-01-01

    In this paper, we present a fully automated localization method for multiple pelvic bone structures on magnetic resonance images (MRI). Pelvic bone structures are at present identified manually on MRI to locate reference points for measurement and evaluation of pelvic organ prolapse (POP). Given that this is a time-consuming and subjective procedure, there is a need to localize pelvic bone structures automatically. However, bone structures are not easily differentiable from soft tissue on MRI as their pixel intensities tend to be very similar. In this paper, we present a model that combines support vector machines and nonlinear regression capturing global and local information to automatically identify the bounding boxes of bone structures on MRI. The model identifies the location of the pelvic bone structures by establishing the association between their relative locations and using local information such as texture features. Results show that the proposed method is able to locate the bone structures of interest accurately (dice similarity index >0.75) in 87-91% of the images. This research aims to enable accurate, consistent, and fully automated localization of bone structures on MRI to facilitate and improve the diagnosis of health conditions such as female POP.

  4. Hole Defects Affect the Dynamic Fracture Behavior of Nearby Running Cracks

    Directory of Open Access Journals (Sweden)

    R. S. Yang

    2018-01-01

    Full Text Available Effects of defects on the dynamic fracture behavior of engineering materials cannot be neglected. Using the experimental system of digital laser dynamic caustics, the effects of defects on the dynamic fracture behavior of nearby running cracks are studied. When running cracks propagate near to defects, the crack path deflects toward the defect; the degree of deflection is greater for larger defect diameters. When the running crack propagates away from the defect, the degree of deflection gradually reduces and the original crack path is restored. The intersection between the caustic spot and the defect is the direct cause of the running crack deflection; the intersection area determines the degree of deflection. In addition, the defect locally inhibits the dynamic stress intensity factor of running cracks when they propagate toward the defect and locally promotes the dynamic stress intensity factor of running cracks when they propagate away from the defect.

  5. Structural defects in multiferroic BiMnO3 studied by transmission electron microscopy and electron energy-loss spectroscopy

    International Nuclear Information System (INIS)

    Yang, H.; Chi, Z. H.; Yao, L. D.; Zhang, W.; Li, F. Y.; Jin, C. Q.; Yu, R. C.

    2006-01-01

    The multiferroic material BiMnO 3 synthesized under high pressure has been systematically studied by transmission electron microscopy and electron energy-loss spectroscopy, and some important structural defects are revealed in this multiferroic material. The frequently observed defects are characterized to be Σ3(111) twin boundaries, Ruddlesden-Popper [Acta Crystallogr. 11, 54 (1958)] antiphase boundaries, and a p p superdislocations connected with a small segment of Ruddlesden-Popper defect. These defects are present initially in the as-synthesized sample. In addition, we find that ordered voids (oxygen vacancies) are easily introduced into the multiferroic BiMnO 3 by electron-beam irradiation

  6. Influence of crystal orientation on the formation of femtosecond laser-induced periodic surface structures and lattice defects accumulation

    Energy Technology Data Exchange (ETDEWEB)

    Sedao, Xxx; Garrelie, Florence, E-mail: florence.garrelie@univ-st-etienne.fr; Colombier, Jean-Philippe; Reynaud, Stéphanie; Pigeon, Florent [Université de Lyon, CNRS, UMR5516, Laboratoire Hubert Curien, Université de Saint Etienne, Jean Monnet, F-42023 Saint-Etienne (France); Maurice, Claire; Quey, Romain [Ecole Nationale Supérieure des Mines de Saint-Etienne, CNRS, UMR5307, Laboratoire Georges Friedel, F-42023 Saint-Etienne (France)

    2014-04-28

    The influence of crystal orientation on the formation of femtosecond laser-induced periodic surface structures (LIPSS) has been investigated on a polycrystalline nickel sample. Electron Backscatter Diffraction characterization has been exploited to provide structural information within the laser spot on irradiated samples to determine the dependence of LIPSS formation and lattice defects (stacking faults, twins, dislocations) upon the crystal orientation. Significant differences are observed at low-to-medium number of laser pulses, outstandingly for (111)-oriented surface which favors lattice defects formation rather than LIPSS formation.

  7. A Baseline-Free Defect Imaging Technique in Plates Using Time Reversal of Lamb Waves

    International Nuclear Information System (INIS)

    Jeong, Hyunjo; Cho, Sungjong; Wei, Wei

    2011-01-01

    We present an analytical investigation for a baseline-free imaging of a defect in plate-like structures using the time-reversal of Lamb waves. We first consider the flexural wave (A 0 mode) propagation in a plate containing a defect, and reception and time reversal process of the output signal at the receiver. The received output signal is then composed of two parts: a directly propagated wave and a scattered wave from the defect. The time reversal of these waves recovers the original input signal, and produces two additional sidebands that contain the time-of-flight information on the defect location. One of the side-band signals is then extracted as a pure defect signal. A defect localization image is then constructed from a beamforming technique based on the time-frequency analysis of the side band signal for each transducer pair in a network of sensors. The simulation results show that the proposed scheme enables the accurate, baseline-free imaging of a defect. (fundamental areas of phenomenology(including applications))

  8. Local conservation laws and the structure of the many-body localized states.

    Science.gov (United States)

    Serbyn, Maksym; Papić, Z; Abanin, Dmitry A

    2013-09-20

    We construct a complete set of local integrals of motion that characterize the many-body localized (MBL) phase. Our approach relies on the assumption that local perturbations act locally on the eigenstates in the MBL phase, which is supported by numerical simulations of the random-field XXZ spin chain. We describe the structure of the eigenstates in the MBL phase and discuss the implications of local conservation laws for its nonequilibrium quantum dynamics. We argue that the many-body localization can be used to protect coherence in the system by suppressing relaxation between eigenstates with different local integrals of motion.

  9. A qualitative study of spin polarization effect in defect tuned Co/graphene/Co nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Mandal, Sumit, E-mail: smtdone@gmail.com, E-mail: cnssks@iacs.res.in; Saha, Shyamal K., E-mail: smtdone@gmail.com, E-mail: cnssks@iacs.res.in [Department of Materials Science, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032 (India)

    2014-10-15

    Theoretical reports predict that in contact with a ferromagnetic giant spin, spin polarization evolves in defective graphene since defects in graphene act as local spin moments. We have synthesized different Co/graphene/Co nano spin valve like structures tuning the degree of defect applying ultrasonic vibration and characterized them by Raman spectroscopy. Initially with increasing I{sub D}/I{sub G} ratio in Raman spectra, antiferromagnetic coupling between the Co nanosheets on either sides of graphene enhances leading to betterment in spin transport through graphene. But for highest I{sub D}/I{sub G}, a totally new phenomenon called antiferro quadrupolar ordering (AFQ) takes place which eventually reduces the spin polarization effect.

  10. Radiation defect production in quartz crystals with various structure perfectness degree; Radiatsionnoe defektoobrazovanie v kristallakh kvartsa s razlichnoj stepen`yu sovershenstva struktury

    Energy Technology Data Exchange (ETDEWEB)

    Khushvakov, O B

    1992-01-01

    Radiation defects production processes in pure and doped quartz crystals with various structure defectness, caused by preliminary irradiation with neutrons, protons, deuterons and {alpha}-particles, during various electron excitation densities were investigated. The distribution of colour centres along the thickness of irradiated quartz crystals was measured. It was supposed that colour centres are produced on account of inelastic energy losses as the result of collective decay of two or more interacting excitons. It was shown that in quartz crystals under the actions of protons with overthreshold energy 18 MeV and electrons with subthreshold energy 100 keV the same structure defects are formed. It was established that radiation defect production process has two stages. The first stage reveals radiation defects produced by preliminary irradiation. The second one reveals additional intrinsic defects formed under the action of gamma-rays and electrons. The probability dependence of defect production on neutron fluence and masses of incident particles was studied. It was supposed that the creation of additional defects in preliminary irradiated crystals is due to non-radiative decay of electron excitations near radiation-induced defects. It was shown that increase of impurity concentration leads to rate growth of accumulation of radiation induced defects. (A.A.D.) 15 refs. 4 figs.

  11. Development of engineering program for integrity evaluation of pipes with local wall thinned defects

    International Nuclear Information System (INIS)

    Park, Chi Yong; Lee, Sung Ho; Kim, Tae Ryong; Park, Sang Kyu

    2008-01-01

    Integrity evaluation of pipes with local wall thinning by erosion and corrosion is increasingly important in maintenance of wall thinned carbon steel pipes in nuclear power plants. Though a few program for integrity assessment of wall thinned pipes have been developed in domestic nuclear field, however those are limited to straight pipes and methodology proposed in ASME Sec.XI Code Case N-597. Recently, the engineering program for integrity evaluation of pipes with all kinds of local wall defects such as straight, elbow, reducer and branch pipes was developed successfully. The program was designated as PiTEP (Pipe Thinning Evaluation Program), which name was registered as a trademark in the Korea Intellectual Property Office. A developed program is carried out by sequential step of four integrity evaluation methodologies, which are composed of construction code, code case N-597, its engineering method and two developed owner evaluation method. As PiTEP program will be performed through GUI (Graphic User Interface) with user's familiarity, it would be conveniently used by plant engineers with only measured thickness data, basic operation conditions and pipe data

  12. Design and Analysis of a Triple Stop-band Filter Using Ratioed Periodical Defected Microstrip Structure

    Science.gov (United States)

    Jiang, Tao; Wang, Yanyan; Li, Yingsong

    2017-07-01

    In this paper, a triple stop-band filter with a ratioed periodical defected microstrip structure is proposed for wireless communication applications. The proposed ratioed periodical defected microstrip structures are spiral slots, which are embedded into a 50 Ω microstrip line to obtain multiple stop-bands. The performance of the proposed triple stop-band filter is investigated numerically and experimentally. Moreover, the equivalent circuit model of the proposed filter is also established and discussed. The results are given to verify that the proposed triple stop-band filter has three stop bands at 3.3 GHz, 5.2 GHz, 6.8 GHz to reject the unwanted signals, which is promising for integrating into UWB communication systems to efficiently prevent the potential interferences from unexpected narrowband signals such as WiMAX, WLAN and RFID communication systems.

  13. Special Features of Strain Localization and Nanodipoles of Partial Disclinations in the Region of Elastic Distortions

    Science.gov (United States)

    Tyumentsev, A. N.; Ditenberg, I. A.; Sukhanov, I. I.

    2018-02-01

    In the zones of strain localization in the region of elastic distortions and nanodipoles of partial disclinations representing the defects of elastically deformed medium, a theoretical analysis of the elastically stressed state and the energy of these defects, including the cases of their transformation into more complex ensembles of interrelated disclinations, is performed. Using the analytical results, the mechanisms of strain localization are discussed in the stages of nucleation and propagation of the bands of elastic and plastic strain localization formed in these zones (including the cases of nanocrystalline structure formation).

  14. Fine defective structure of silicon carbide powders obtained from different starting materials

    Directory of Open Access Journals (Sweden)

    Tomila T.V.

    2006-01-01

    Full Text Available The fine defective structure of silicon carbide powders obtained from silicic acid-saccharose, aerosil-saccharose, aerosil-carbon black, and hydrated cellulose-silicic acid gel systems was investigated. The relation between IR absorption characteristics and the microstructure of SiC particles obtained from different starting materials was established. The numerical relationship between the lattice parameter a and the frequency νTO is presented.

  15. The effect of phase assemblages, grain boundaries and domain structure on the local switching behavior of rare-earth modified bismuth ferrite ceramics

    International Nuclear Information System (INIS)

    Alikin, Denis O.; Turygin, Anton P.; Walker, Julian; Bencan, Andreja; Malic, Barbara; Rojac, Tadej; Shur, Vladimir Ya.; Kholkin, Andrei L.

    2017-01-01

    Piezoelectric properties and ferroelectric/ferroelastic domain switching behavior of polycrystalline ceramics are strongly influenced by local scale (i.e. <100 nm) phenomena, such as, the phase assemblages, domain structure, and defects. The method of ceramic synthesis strongly effects the local properties and thus plays a critical role in determining the macroscopic ferroelectric and piezoelectric performance. The link between synthesis and local scale properties of ferroelectrics is, however, rarely reported, especially for the emerging lead-free materials systems. In this work, we focus on samarium modified bismuth ferrite ceramics (Bi_0_._8_8Sm_0_._1_2FeO_3, BSFO) prepared by two methods: standard solid state reaction (SSR) and mechanochemi≿ally assisted synthesis (MAS). Each ceramic possesses different properties at the local scale and we used the piezoresponse force microscopy (PFM) complemented by transmission electron microscopy (TEM) to evaluate phase distribution, domain structure and polarization switching to show that an increase in the anti-polar phase assemblages within the polar matrix leads to notable changes in the local polarization switching. SSR ceramics exhibit larger internal bias fields relative to the MAS ceramics, and the grain boundaries produce a stronger effect on the local switching response. MAS ceramics were able to nucleate domains at lower electric-fields and grow them at faster rates, reaching larger final domain sizes than the SSR ceramics. Local evidence of the electric-field induced phase transition from the anti-ferroelectric Pbam to ferroelectric R3c phase was observed together with likely evidence of the existence of head-to-head/tail-to-tail charged domain walls and domain vortex core structures. By comparing the domain structure and local switching behavior of ceramics prepared by two different methods this work brings new insights the synthesis-structure-property relationship in lead-free piezoceramics.

  16. Impurity Role In Mechanically Induced Defects

    International Nuclear Information System (INIS)

    Howell, R.H.; Asoka-Kumar, P.; Hartley, J.; Sterne, P.

    2000-01-01

    An improved understanding of dislocation dynamics and interactions is an outstanding problem in the multi scale modeling of materials properties, and is the current focus of major theoretical efforts world wide. We have developed experimental and theoretical tools that will enable us to measure and calculate quantities defined by the defect structure. Unique to the measurements is a new spectroscopy that determines the detailed elemental composition at the defect site. The measurements are based on positron annihilation spectroscopy performed with a 3 MeV positron beam [1]. Positron annihilation spectroscopy is highly sensitive to dislocations and associated defects and can provide unique elements of the defect size and structure. Performing this spectroscopy with a highly penetrating positron beam enables flexibility in sample handling. Experiments on fatigued and stressed samples have been done and in situ measurement capabilities have been developed. We have recently performed significant upgrades to the accelerator operation and novel new experiments have been performed [2-4] To relate the spectrographic results and the detailed structure of a defect requires detailed calculations. Measurements are coupled with calculated results based on a description of positions of atoms at the defect. This gives an atomistic view of dislocations and associated defects including impurity interactions. Our ability to probe impurity interactions is a unique contribution to defect understanding not easily addressed by other atomistic spectroscopies

  17. Study by electronic structure calculations of the radiation damage in the UO2 nuclear fuel: behaviour of the point defects and fission gases

    International Nuclear Information System (INIS)

    Vathonne, Emerson

    2014-01-01

    Uranium dioxide (UO 2 ) is worldwide the most widely used fuel in nuclear plants in the world and in particular in pressurized water reactors (PWR). In-pile the fission of uranium nuclei creates fission products and point defects in the fuel. The understanding of the evolution of these radiation damages requires a multi-scale modelling approach of the nuclear fuel, from the scale of the pellet to the atomic scale. We used an electronic structure calculation method based on the density functional theory (DFT) to model radiation damage in UO 2 at the atomic scale. A Hubbard-type Coulomb interaction term is added to the standard DFT formalism to take into account the strong correlations of the 5f electrons in UO 2 . This method is used to study point defects with various charge states and the incorporation and diffusion of krypton in uranium dioxide. This study allowed us to obtain essential data for higher scale models but also to interpret experimental results. In parallel of this study, three ways to improve the state of the art of electronic structure calculations of UO 2 have been explored: the consideration of the spin-orbit coupling neglected in current point defect calculations, the application of functionals allowing one to take into account the non-local interactions such as van der Waals interactions important for rare gases and the use of the Dynamical Mean Field Theory combined to the DFT method in order to take into account the dynamical effects in the 5f electron correlations. (author) [fr

  18. Structural defects in natural plastically deformed diamonds: Evidence from EPR spectroscopy

    Science.gov (United States)

    Mineeva, R. M.; Titkov, S. V.; Speransky, A. V.

    2009-06-01

    Structural defects formed as a result of plastic deformation in natural diamond crystals have been studied by EPR spectroscopy. The spectra of brown, pink-brown, black-brown, pink-purple, and gray plastically deformed diamonds of type Ia from deposits in Yakutia and the Urals were recorded. The results of EPR spectroscopy allowed us to identify various deformation centers in the structure of natural diamonds and to show that nitrogen centers were transformed under epigenetic mechanical loading. Abundant A centers, consisting of two isomorphic nitrogen atoms located in neighboring structural sites, were destroyed as a result of this process to form a series of N1, N4, W7, M2, and M3 nitrogen centers. Such centers are characterized by an anisotropic spatial distribution and a positive charge, related to the mechanism of their formation. In addition, N2 centers (probably, deformation-produced dislocations decorated by nitrogen) were formed in all plastically deformed diamonds and W10 and W35 centers (the models have not been finally ascertained) were formed in some of them. It has been established that diamonds with various types of deformation-induced color contain characteristic associations of these deformation centers. The diversity of associations of deformation centers indicates appreciable variations in conditions of disintegration of deep-seated rocks, transfer of diamonds to the Earth’s surface, and formation of kimberlitic deposits. Depending on the conditions of mechanical loading, the diamond crystals were plastically deformed by either dislocation gliding or mechanical twinning. Characteristic features of plastic deformation by dislocation gliding are the substantial prevalence of the N2 centers over other deformation centers and the occurrence of the high-spin W10 and W35 centers. The attributes of less frequent plastic deformation by mechanical twinning are unusual localization of the M2 centers and, in some cases, the N1 centers in microtwinned

  19. Structure and stability of defective silicene on Ag(001) and Ag(111) substrates: A computer experiment

    Science.gov (United States)

    Galashev, A. E.; Ivanichkina, K. A.; Vorob'ev, A. S.; Rakhmanova, O. R.

    2017-06-01

    The structure and stability of a two-layer defective silicene on Ag(001) and Ag(111) substrates have been investigated using the molecular dynamics method. The transformation of the radial distribution function of silicene due to the formation of monovacancies, divacancies, trivacancies, and hexavacancies is reduced primarily to a decrease in the intensity of the peaks and the disappearance of the "shoulder" in the second peak. With the passage of time, multivacancies can undergo coalescence with each other and the fragmentation into smaller vacancies, as well as form vacancy clusters. According to the geometric criterion, the Ag(001) substrate provides a higher stability of a perfect two-layer silicene. It has been found, however, that the defective silicene on this substrate has a lower energy only when it contains monovacancies and divacancies. A change in the size of defects leads to a change in the energy priority when choosing between the Ag(001) and Ag(111) substrates. The motion of a lithium ion inside an extended channel between two silicene sheets results in a further disordering of the defective structure of the silicene, during which the strongest stresses in the silicene are generated by forces directed perpendicular to the external electric field. These forces dominate in the silicene channel, the wall of which is supported by the Ag(001) or Ag(111) substrate.

  20. Defect Structure of High-Temperature-Grown GaMnSb/GaSb

    International Nuclear Information System (INIS)

    Romanowski, P.; Bak-Misiuk, J.; Dynowska, E.; Domagala, J.Z.; Wojciechowski, T.; Jakiela, R.; Sadowski, J.; Barcz, A.; Caliebe, W.

    2010-01-01

    GaMnSb/GaSb(100) layers with embedded MnSb inclusions have been grown at 720 K using MBE technique. This paper presents the investigation of the defect structure of Ga1-xMnxSb layers with different content of manganese (up to x = 0.07). X-ray diffraction method using conventional and synchrotron radiation was applied. Dimensions and shapes of inclusions were detected by scanning electron microscopy. Depth profiles of elements were measured using secondary ion mass spectroscopy technique. (authors)

  1. Antisite Defects of the L12 Structure Determined by the Phase Field Microelasticity Model

    International Nuclear Information System (INIS)

    Jing, Zhang; Zheng, Chen; Yan-Li, Lu; Yong-Xin, Wang; Yan, Zhao

    2009-01-01

    A phase field microelasticity simulation is performed to examine the antisite defect of L1 2 -Ni 3 Al in Ni 75 Al 5.3 V 19.7 ternary alloy. Combinimg strain energy with the phase field model leads to an atom configuration change as time proceeds. For the Ni sublattice, the antisite defect Al Ni , the equilibrium occupancy probability (OP) of which declines, precedes Ni Ni and V Ni in reaching equilibrium; subsequently, Ni Ni and V Ni present a phenomenon of symmetrical rise and decline individually. Similarly, for the Al sublattice, the antisite defect Ni Al , the OP of which eventually rises, takes fewer time steps than Al Ai and V Al to attain equilibrium. Thereafter, Al Al rises while V Al declines symmetrically at the axes of the Ni Al MAI curve. Furthermore, the OP for the Al sublattice is much more sensitive to strain energy than that for the Ni sublattice. (condensed matter: structure, mechanical and thermal properties)

  2. A generative, probabilistic model of local protein structure

    DEFF Research Database (Denmark)

    Boomsma, Wouter; Mardia, Kanti V.; Taylor, Charles C.

    2008-01-01

    Despite significant progress in recent years, protein structure prediction maintains its status as one of the prime unsolved problems in computational biology. One of the key remaining challenges is an efficient probabilistic exploration of the structural space that correctly reflects the relative...... conformational stabilities. Here, we present a fully probabilistic, continuous model of local protein structure in atomic detail. The generative model makes efficient conformational sampling possible and provides a framework for the rigorous analysis of local sequence-structure correlations in the native state...

  3. 3D modeling of missing pellet surface defects in BWR fuel

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, B.W., E-mail: Benjamin.Spencer@inl.gov; Williamson, R.L.; Stafford, D.S.; Novascone, S.R.; Hales, J.D.; Pastore, G.

    2016-10-15

    Highlights: • A global/local analysis procedure for missing pellet surface defects is proposed. • This is applied to defective BWR fuel under blade withdrawal and high power ramp conditions. • Sensitivity of the cladding response to key model parameters is studied. - Abstract: One of the important roles of cladding in light water reactor fuel rods is to prevent the release of fission products. To that end, it is essential that the cladding maintain its integrity under a variety of thermal and mechanical loading conditions. Local geometric irregularities in fuel pellets caused by manufacturing defects known as missing pellet surfaces (MPS) can in some circumstances lead to elevated cladding stresses that are sufficiently high to cause cladding failure. Accurate modeling of these defects can help prevent these types of failures. The BISON nuclear fuel performance code developed at Idaho National Laboratory can be used to simulate the global thermo-mechanical fuel rod behavior, as well as the local response of regions of interest, in either 2D or 3D. In either case, a full set of models to represent the thermal and mechanical properties of the fuel, cladding and plenum gas is employed. A procedure for coupling 2D full-length fuel rod models to detailed 3D models of the region of the rod containing a MPS defect is detailed here. The global and local model each contain appropriate physics and behavior models for nuclear fuel. This procedure is demonstrated on a simulation of a boiling water reactor (BWR) fuel rod containing a pellet with an MPS defect, subjected to a variety of transient events, including a control blade withdrawal and a ramp to high power. The importance of modeling the local defect using a 3D model is highlighted by comparing 3D and 2D representations of the defective pellet region. Parametric studies demonstrate the effects of the choice of gaseous swelling model and of the depth and geometry of the MPS defect on the response of the cladding

  4. Local structure investigation of Ga and Yb dopants in Co4Sb12 skutterudites

    Science.gov (United States)

    Hu, Yanyun; Chen, Ning; Clancy, J. P.; Salvador, James R.; Kim, Chang-Yong; Shi, Xiaoya; Li, Qiang; Kim, Young-June

    2017-12-01

    We report comprehensive x-ray absorption spectroscopy studies at both the Ga K edge and Yb L2 edge to elucidate the local structure of Ga and Yb dopants in YbxGayCo4Sb12 . Our extended x-ray absorption fine structure (EXAFS) data confirm that Ga atoms occupy two crystallographic sites: one is the 24 g site replacing Sb, and the other is the 2 a site in the off-center void position. We find that the occupancy ratio of these two sites varies significantly as a function of the filling fraction of additional Yb, which exclusively occupies the 2 a on-center site. At low concentrations of Yb, Ga24 g and Ga2 a dopants coexist and they form a charge-compensated compound defect proposed by Qiu et al. [Adv. Funct. Mater. 23, 3194 (2013), 10.1002/adfm.201202571]. The Ga24 g occupancy increases gradually with increasing Yb concentration, and almost all Ga occupies the 24 g site for the highest Yb concentration studied (x =0.4 ). In addition to the local structural evidence provided by our EXAFS data, we also present x-ray absorption near-edge structure (XANES) spectra, which show a small Ga K -edge energy shift as a function of Yb concentration consistent with the change from predominantly Ga2 a to Ga24 g states. Our result suggests that the increased solubility of Yb in Yb-Ga co-doped Co4Sb12 skutterudites is due to the increased Ga24 g electron acceptor, and thus provides an important strategy to optimize the carrier concentration in partially filled skutterudites.

  5. Optical transmission properties of an anisotropic defect cavity in one-dimensional photonic crystal

    Science.gov (United States)

    Ouchani, Noama; El Moussaouy, Abdelaziz; Aynaou, Hassan; El Hassouani, Youssef; El Boudouti, El Houssaine; Djafari-Rouhani, Bahram

    2018-01-01

    We investigate theoretically the possibility to control the optical transmission in the visible and infrared regions by a defective one dimensional photonic crystal formed by a combination of a finite isotropic superlattice and an anisotropic defect layer. The Green's function approach has been used to derive the reflection and the transmission coefficients, as well as the densities of states of the optical modes. We evaluate the delay times of the localized modes and we compare their behavior with the total densities of states. We show that the birefringence of an anisotropic defect layer has a significant impact on the behavior of the optical modes in the electromagnetic forbidden bands of the structure. The amplitudes of the defect modes in the transmission and the delay time spectrum, depend strongly on the position of the cavity layer within the photonic crystal. The anisotropic defect layer induces transmission zeros in one of the two components of the transmission as a consequence of a destructive interference of the two polarized waves within this layer, giving rise to negative delay times for some wavelengths in the visible and infrared light ranges. This property is a typical characteristic of the anisotropic photonic layer and is without analogue in their counterpart isotropic defect layers. This structure offers several possibilities for controlling the frequencies, transmitted intensities and the delay times of the optical modes in the visible and infrared regions. It can be a good candidate for realizing high-precision optical filters.

  6. Quantum computing with defects.

    Science.gov (United States)

    Weber, J R; Koehl, W F; Varley, J B; Janotti, A; Buckley, B B; Van de Walle, C G; Awschalom, D D

    2010-05-11

    Identifying and designing physical systems for use as qubits, the basic units of quantum information, are critical steps in the development of a quantum computer. Among the possibilities in the solid state, a defect in diamond known as the nitrogen-vacancy (NV(-1)) center stands out for its robustness--its quantum state can be initialized, manipulated, and measured with high fidelity at room temperature. Here we describe how to systematically identify other deep center defects with similar quantum-mechanical properties. We present a list of physical criteria that these centers and their hosts should meet and explain how these requirements can be used in conjunction with electronic structure theory to intelligently sort through candidate defect systems. To illustrate these points in detail, we compare electronic structure calculations of the NV(-1) center in diamond with those of several deep centers in 4H silicon carbide (SiC). We then discuss the proposed criteria for similar defects in other tetrahedrally coordinated semiconductors.

  7. A coverage and slicing dependencies analysis for seeking software security defects.

    Science.gov (United States)

    He, Hui; Zhang, Dongyan; Liu, Min; Zhang, Weizhe; Gao, Dongmin

    2014-01-01

    Software security defects have a serious impact on the software quality and reliability. It is a major hidden danger for the operation of a system that a software system has some security flaws. When the scale of the software increases, its vulnerability has becoming much more difficult to find out. Once these vulnerabilities are exploited, it may lead to great loss. In this situation, the concept of Software Assurance is carried out by some experts. And the automated fault localization technique is a part of the research of Software Assurance. Currently, automated fault localization method includes coverage based fault localization (CBFL) and program slicing. Both of the methods have their own location advantages and defects. In this paper, we have put forward a new method, named Reverse Data Dependence Analysis Model, which integrates the two methods by analyzing the program structure. On this basis, we finally proposed a new automated fault localization method. This method not only is automation lossless but also changes the basic location unit into single sentence, which makes the location effect more accurate. Through several experiments, we proved that our method is more effective. Furthermore, we analyzed the effectiveness among these existing methods and different faults.

  8. Structure and defect studies of In2O3:Zn,Zr for higher stability TCO

    Science.gov (United States)

    Herwadkar, Aditi; Kim, Kwiseon

    2010-03-01

    The defects structures among the transparent conducting oxides (TCO) plays a major role in determining stability of the oxide over a temperature range and in tuning electrical and optical properties for the different TCO applications In2O3 crystallizes in the cubic bixbyite structure. The structure can be derived from the related fluorite structure by removing one fourth of the anions and allowing for small shifts of the ionic positions. In2O3 has two non-equivalent six-fold coordinated cation sites. For one of the sites, the cation is bounded by two structural vacancy along the body diagonal and for the other non-equivalent site the vacancies lie along the face diagonal. These vacancies are actually empty oxygen vacancy positions. Indium is in +3 charge state. ZnO on the other hand crystallizes to form wurtzite structure with four-fold coordination for Zn and is in +2 charge state where as the crystal structure of ZrO is rulite with Zr in +4 charge state and is four fold coordinated. Co-doping of Zn and Zr with each substituting the In atom satisfies the octet rule and is lower in energy then the individual substitutions with overall neutrality. The formation enthalpy as a function of pair (Zn, Zr) shows a minimum at experimental composition of In2(Zn,Zr)3O24. We in this work present the electronic structure optimization and study the defect states in this material.

  9. Repairing rabbit radial defects by combining bone marrow stroma stem cells with bone scaffold material comprising a core-cladding structure.

    Science.gov (United States)

    Wu, H; Liu, G H; Wu, Q; Yu, B

    2015-10-05

    We prepared a bone scaffold material comprising a PLGA/β-TCP core and a Type I collagen cladding, and recombined it with bone marrow stroma stem cells (BMSCs) to evaluate its potential for use in bone tissue engineering by in vivo and in vitro experiments. PLGA/β-TCP without a cladding was used for comparison. The adherence rate of the BMSCs to the scaffold was determined by cell counting. Cell proliferation rate was determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide method. The osteogenic capability was evaluated by alkaline phosphatase activity. The scaffold materials were recombined with the BMSCs and implanted into a large segmental rabbit radial defect model to evaluate defect repair. Osteogenesis was assessed in the scaffold materials by histological and double immunofluorescence labeling, etc. The adherence number, proliferation number, and alkaline phosphatase expression of the cells on the bone scaffold material with core-cladding structure were significantly higher than the corresponding values in the PLGA/β-TCP composite scaffold material (P structure completely degraded at the bone defect site and bone formation was completed. The rabbit large sentimental radial defect was successfully repaired. The degradation and osteogenesis rates matched well. The bone scaffold with core-cladding structure exhibited better osteogenic activity and capacity to repair a large segmental bone defect compared to the PLGA/β-TCP composite scaffold. The bone scaffold with core-cladding structure has excellent physical properties and biocompatibility. It is an ideal scaffold material for bone tissue engineering.

  10. Diffuse scattering and defect structure simulations a cook book using the program DISCUS

    CERN Document Server

    Neder, Reinhard B

    2009-01-01

    In recent years it has become apparent that knowing the average atomic structure of materials is insufficient to understand their properties. Diffuse scattering in addition to the Bragg scattering holds the key to learning about defects in materials, the topic of many recent books. What has been missing is a detailed step-by-step guide how to simulate disordered materials. The DISCUS cook book fills this need covering simple topics such as building a computer crystal to complextopic such as domain structures, stacking faults or using advanced refinement techniques to adjust parameters on a dis

  11. Study of the defect structure of ''pure'' and doped nonstoichiometric CeO2. Final report, January 1, 1965--May 31, 1977

    International Nuclear Information System (INIS)

    Blumenthal, R.N.

    1977-11-01

    The defect structure and transport properties of defects in nonstoichiometric oxides was studied based on their electrical and thermodynamic behavior. Similar studies were also made on doped-nonstoichiometric oxides to determine the effect of the ionic radii, valence and concentration of the dopant cation on the nonstoichiometric defect structure and the transport properties of these defects. The thermodynamic and electrical property study on ''pure'' and doped-nonstoichiometric CeO 2 /sub -x/ is reviewed. The combined study of the electrical conductivity, ionic transference, and thermodynamic measurements initiated on CaO-doped CeO 2 as a function of temperature, oxygen pressure and CaO content is discussed. The results of similar measurements on CeO 2 doped with other oxides (e.g., ThO 2 , Ta 2 O 5 , etc.) which have cations with different valences and ionic radii are also discussed. The primary objective of these studies was to determine the effect of ionic radii, valence and concentration of the dopant cation on (1) the nonstoichiometric behavior, (2) the thermodynamic quantities ΔantiH/sub O 2 / and ΔantiS/sub O 2 /, (3) the nonstoichiometric defect structure, (4) the electronic and ionic conductivities, and (5) the mobility of electrons and oxygen vacancies in doped CeO 2 /sub -x/

  12. Band gap control in a line-defect magnonic crystal waveguide

    Energy Technology Data Exchange (ETDEWEB)

    Morozova, M. A., E-mail: mamorozovama@yandex.ru; Grishin, S. V.; Sadovnikov, A. V.; Romanenko, D. V.; Sharaevskii, Yu. P.; Nikitov, S. A. [Laboratory ' Metamaterials,' Saratov State University, Astrakhanskaya 83, Saratov 410012 (Russian Federation)

    2015-12-14

    We report on the experimental observation of the spin wave spectrum control in a line-defect magnonic crystal (MC) waveguide. We demonstrate the possibility to control the forbidden frequency band (band gap) for spin waves tuning the line-defect width. In particular, this frequency may be greater or lower than the one of 1D MC waveguide without line-defect. By means of space-resolved Brillouin light scattering technique, we study the localization of magnetization amplitude in the line-defect area. We show that the length of this localization region depends on the line-defect width. These results agree well with theoretical calculations of spin wave spectrum using the proposed model of two coupled magnonic crystal waveguides. The proposed simple geometry of MC with line-defect can be used as a logic and multiplexing block for application in the novel field of magnonic devices.

  13. Defect sink characteristics of specific grain boundary types in 304 stainless steels under high dose neutron environments

    International Nuclear Information System (INIS)

    Field, Kevin G.; Yang, Ying; Allen, Todd R.; Busby, Jeremy T.

    2015-01-01

    Radiation induced segregation (RIS) is a well-studied phenomena which occurs in many structurally relevant nuclear materials including austenitic stainless steels. RIS occurs due to solute atoms preferentially coupling with mobile point defect fluxes that migrate and interact with defect sinks. Here, a 304 stainless steel was neutron irradiated up to 47.1 dpa at 320 °C. Investigations into the RIS response at specific grain boundary types were used to determine the sink characteristics of different boundary types as a function of irradiation dose. A rate theory model built on the foundation of the modified inverse Kirkendall (MIK) model is proposed and benchmarked to the experimental results. This model, termed the GiMIK model, includes alterations in the boundary conditions based on grain boundary structure and expressions for interstitial binding. This investigation, through experiment and modeling, found specific grain boundary structures exhibiting unique defect sink characteristics depending on their local structure. Such interactions were found to be consistent across all doses investigated and to have larger global implications, including precipitation of Ni–Si clusters near different grain boundary types

  14. Determining the dimension of subsurface defects by active infrared thermography – experimental research

    Directory of Open Access Journals (Sweden)

    S. Grys

    2018-03-01

    Full Text Available This paper presents research into a method of processing thermal images aimed at detecting and characterizing material defects, or non-uniformities, of the internal structure of materials. Active thermography was chosen as the NDT method. Hidden defects were revealed by analysing the temperature field of the tested material's front surface which was externally excited with heating lamps. Background removal and image segmentation were applied to the last thermogram in the sequence recorded at the end of the heating phase. The paper focuses on the quality of determining lateral dimensions of subsurface flaws in a polymethylmethacrylate slab with bottom holes drilled to imitate flaws. The following accuracy-affecting factors were taken into account: defect depth, emissivity of the inspected surface as an input, user-set parameter for the IR camera, type of filtering used to eliminate the effect of non-uniformity when heating the object surface with an external source, and global and local thresholding as a segmentation method used for defect detection and sizing.

  15. Effect of single vacancy on the structural, electronic structure and magnetic properties of monolayer graphyne by first-principles

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Jiangni, E-mail: niniyun@nwu.edu.cn; Zhang, Yanni; Xu, Manzhang; Wang, Keyun; Zhang, Zhiyong

    2016-10-01

    The effect of single vacancy on the structural, electronic and magnetic properties of monolayer graphyne is investigated by the first-principles calculations. The calculated results reveal that single vacancy can result in the spin polarization in monolayer graphyne and the spin polarization is sensitive to local geometric structure of the vacancy. In the case of monolayer graphyne with one single vacancy at the sp{sup 2} hybridized C site, the vacancy introduces rather weakly spin-polarized, flat bands in the band gap. Due to the localization nature of the defect-induced bands, the magnetic moment is mainly localized at the vacancy site. As for the monolayer graphyne with one single vacancy at the sp hybridized C site, one defect-induced state which is highly split appears in the band gap. The spin-up band of the defect-induced state is highly dispersive and shows considerable delocalization, suggesting that the magnetic moment is dispersed around the vacancy site. The above magnetization in monolayer graphyne with one single vacancy is possibly explained in terms of the valence-bond theory. - Graphical abstract: Calculated band structure of the monolayer graphyne without (a) and with one single vacancy at Vb site (b) and at Vr site(c), respectively. Blue and red lines represent the spin-up and spin-down bands, respectively. For the sake of clarity, the band structure near the Fermi energy is also presented on the right panel. The Fermi level is set to zero on the energy scale. - Highlights: • A Jahn-Teller distortion occurs in monolayer graphyne with single vacancy. • The spin polarization is sensitive to local geometric structure of the vacancy. • Vacancy lying at sp{sup 2} hybridized C site introduces weakly spin-polarized defect bands. • A strong spin splitting occurs when the vacancy lies at sp hybridized C site. • The magnetization is explained in terms of the valence-bond theory.

  16. Defect engineering: design tools for solid state electrochemical devices

    International Nuclear Information System (INIS)

    Tuller, Harry L.

    2003-01-01

    The interest in solid state electrochemical devices including sensors, fuel cells, batteries, oxygen permeation membranes, etc. has grown rapidly in recent years. Many of the same figures of merit apply to these different applications, the key ones being ionic conduction in solid electrolytes, mixed ionic-electronic conduction (MIEC) in electrodes and permeation membranes, and gas-solid reaction kinetics in sensors and fuel cells. Optimization of device performance often relies on the careful understanding and control of both ionic and electronic defects in the materials that make up the key device components. To date, most materials in use have been discovered serendipitously. A key focus of this paper is on the tools available to scientists and engineers to practice 'defect engineering' for the purpose of optimizing the performance of such materials. Dopants, controlled structural disorder, and interfaces are examined in relation to increasing the conductivity of solid electrolytes. The creation of defect bands is demonstrated as a means for introducing high levels of electronic conductivity into a solid electrolyte for the purpose of creating a mixed conductor and thereby a monolithic fuel cell structure. Dopants are also examined as a means of reducing losses in a high temperature resonant sensor platform. The control of microstructure, down to the nano-scale, is shown capable of inverting the predominant ionic to an electronic charge carrier and thereby markedly modifying electrical properties. Electrochemical bias and light are also discussed in terms of creating defects locally thereby providing means for micromachining a broad range of materials with precise dimensional control, low residual stress and controlled etch rates

  17. Optoelectronics and defect levels in hydroxyapatite by first-principles

    Science.gov (United States)

    Avakyan, Leon A.; Paramonova, Ekaterina V.; Coutinho, José; Öberg, Sven; Bystrov, Vladimir S.; Bugaev, Lusegen A.

    2018-04-01

    Hydroxyapatite (HAp) is an important component of mammal bones and teeth, being widely used in prosthetic implants. Despite the importance of HAp in medicine, several promising applications involving this material (e.g., in photo-catalysis) depend on how well we understand its fundamental properties. Among the ones that are either unknown or not known accurately, we have the electronic band structure and all that relates to it, including the bandgap width. We employ state-of-the-art methodologies, including density hybrid-functional theory and many-body perturbation theory within the dynamically screened single-particle Green's function approximation, to look at the optoelectronic properties of HAp. These methods are also applied to the calculation of defect levels. We find that the use of a mix of (semi-)local and exact exchange in the exchange-correlation functional brings a drastic improvement to the band structure. Important side effects include improvements in the description of dielectric and optical properties not only involving conduction band (excited) states but also the valence. We find that the highly dispersive conduction band bottom of HAp originates from anti-bonding σ* states along the ⋯OH-OH-⋯ infinite chain, suggesting the formation of a conductive 1D-ice phase. The choice of the exchange-correlation treatment to the calculation of defect levels was also investigated by using the OH-vacancy as a testing model. We find that donor and acceptor transitions obtained within semi-local density functional theory (DFT) differ from those of hybrid-DFT by almost 2 eV. Such a large discrepancy emphasizes the importance of using a high-quality description of the electron-electron interactions in the calculation of electronic and optical transitions of defects in HAp.

  18. Deep Defect Detection within Thick Multilayer Aircraft Structures Containing Steel Fasteners Using a Giant-Magneto Resistive (GMR) Sensor (Preprint)

    National Research Council Canada - National Science Library

    Ko, Ray T; Steffes, Gary J

    2007-01-01

    Defect detection within thick multilayer structures containing steel fasteners is a challenging task in eddy current testing due to the magnetic permeability of the fasteners and overall thickness of the structure...

  19. Nonlinear Local Deformations of Red Blood Cell Membranes: Effects of Toxins and Pharmaceuticals (Part 2

    Directory of Open Access Journals (Sweden)

    Alexander M. Chernysh

    2018-01-01

    Full Text Available Modifiers of membranes cause local defects on the cell surface. Measurement of the rigidity at the sites of local defects can provide further information about the structure of defects and mechanical properties of altered membranes.The purpose of the study: a step-by-step study of the process of a nonlinear deformation of red blood cells membranes under the effect of modifiers of different physico-chemical nature.Materials and methods. The membrane deformation of a viscoelastic composite erythrocyte construction inside a cell was studied by the atomic force spectroscopy. Nonlinear deformations formed under the effect of hemin, Zn2+ ions, and verapamil were studied.Results. The process of elastic deformation of the membrane with the indentation of a probe at the sites of local defects caused by modifiers was demonstrated. The probe was inserted during the same step of the piezo scanner z displacement; the probe indentation occured at the different discrete values of h, which are the functions of the membrane structure. At the sites of domains, under the effect of the hemin, tension areas and plasticity areas appeared. A mathematical model of probe indentation at the site of membrane defects is presented.Conclusion. The molecular mechanisms of various types of nonlinear deformations occurring under the effect of toxins are discussed. The results of the study may be of interest both for fundamental researchers of the blood cell properties and for practical reanimatology and rehabilitology. 

  20. Metastable and bistable defects in silicon

    International Nuclear Information System (INIS)

    Mukashev, Bulat N; Abdullin, Kh A; Gorelkinskii, Yurii V

    2000-01-01

    Existing data on the properties and structure of metastable and bistable defects in silicon are analyzed. Primary radiation-induced defects (vacancies, self-interstitial atoms, and Frenkel pairs), complexes of oxygen, carbon, hydrogen, and other impurity atoms and defects with negative correlation energy are considered. (reviews of topical problems)

  1. Calculating the optical properties of defects and surfaces in wide band gap materials

    Science.gov (United States)

    Deák, Peter

    2018-04-01

    The optical properties of a material critically depend on its defects, and understanding that requires substantial and accurate input from theory. This paper describes recent developments in the electronic structure theory of defects in wide band gap materials, where the standard local or semi-local approximations of density functional theory fail. The success of the HSE06 screened hybrid functional is analyzed in case of Group-IV semiconductors and TiO2, and shown that it is the consequence of error compensation between semi-local and non-local exchange, resulting in a proper derivative discontinuity (reproduction of the band gap) and a total energy which is a linear function of the fractional occupation numbers (removing most of the electron self-interaction). This allows the calculation of electronic transitions with accuracy unseen before, as demonstrated on the single-photon emitter NV(-) center in diamond and on polaronic states in TiO2. Having a reliable tool for electronic structure calculations, theory can contribute to the understanding of complicated cases of light-matter interaction. Two examples are considered here: surface termination effects on the blinking and bleaching of the light-emission of the NV(-) center in diamond, and on the efficiency of photocatalytic water-splitting by TiO2. Finally, an outlook is presented for the application of hybrid functionals in other materials, as, e.g., ZnO, Ga2O3 or CuGaS2.

  2. Harmonic Suppressed Slot Antennas Using Rectangular/Circular Defected Ground Structures

    Directory of Open Access Journals (Sweden)

    Mohammad Saeid Ghaffarian

    2012-01-01

    Full Text Available Two wide rectangle-shaped microstrip-fed 2.6-GHz slot antennas using defected ground structures (DGSs with a low design complexity are proposed to achieve wideband harmonic suppression. To accomplish this, two rectangular DGSs (RDGSs in the first antenna and two circular DGSs (CDGSs in the second one with various dimensions are etched into the ground plane, which could have a wideband-stop characteristic. Simulated and measured reflection coefficients indicate that the two proposed structures effectively suppress the second and third harmonics up to 23 dB between 3.5 and 10.5 GHz with a maximum ripple of 2.4 dB. In addition, the radiation patterns and peak gains of the antennas can be suppressed at least 17 dB and 7.1 dBi, respectively, at the third harmonic frequency of 7.86 GHz.

  3. The effect of electron localization on the electronic structure and migration barrier of oxygen vacancies in rutile.

    Science.gov (United States)

    Zhu, Linggang; Hu, Qing-Miao; Yang, Rui

    2014-02-05

    By applying the on-site Coulomb interaction (Hubbard term U) to the Ti d orbital, the influence of electron localization on the electronic structure as well as the transport of oxygen vacancies (VO) in rutile was investigated. With U = 4.5 eV, the positions of defect states in the bandgap were correctly reproduced. The unbonded electrons generated by taking out one neutral oxygen atom are spin parallel and mainly localized on the Ti atoms near VO, giving rise to a magnetic moment of 2 μB, in agreement with the experimental finding. With regard to the migration barrier of VO, surprisingly, we found that U = 4.5 eV only changed the value of the energy barrier by ±0.15 eV, depending on the diffusion path. The most probable diffusion path (along [110]) is the same as that calculated by using the traditional GGA functional. To validate the GGA + U method itself, a hybrid functional with a smaller supercell was used, and the trend of the more probable diffusion path was not changed. In this regard, the traditional GGA functional might still be reliable in the study of intrinsic-defect transportation in rutile. Analyzing the atomic distortion and density of states of the transition states for different diffusion paths, we found that the anisotropy of the diffusion could be rationalized according to the various atomic relaxations and the different positions of the valence bands relative to the Fermi level of the transition states.

  4. Experimental study on slow flexural waves around the defect modes in a phononic crystal beam using fiber Bragg gratings

    Energy Technology Data Exchange (ETDEWEB)

    Chuang, Kuo-Chih, E-mail: chuangkc@zju.edu.cn; Zhang, Zhi-Qiang; Wang, Hua-Xin

    2016-12-09

    Highlights: • Slow waves around the defect modes in a phononic crystal beam are validated. • A fiber Bragg grating displacement sensing system can measure the defect mode. • The defect mode is analyzed by a transfer matrix method with a supercell technique. - Abstract: This work experimentally studies influences of the point defect modes on the group velocity of flexural waves in a phononic crystal Timoshenko beam. Using the transfer matrix method with a supercell technique, the band structures and the group velocities around the defect modes are theoretically obtained. Particularly, to demonstrate the existence of the localized defect modes inside the band gaps, a high-sensitivity fiber Bragg grating sensing system is set up and the displacement transmittance is measured. Slow propagation of flexural waves via defect coupling in the phononic crystal beam is then experimentally demonstrated with Hanning windowed tone burst excitations.

  5. Subsurface defect detection in first layer of pavement structure and reinforced civil engineering structure by FRP bonding using active infrared thermography

    Science.gov (United States)

    Dumoulin, Jean; Ibos, Laurent

    2010-05-01

    In many countries road network ages while road traffic and maintenance costs increase. Nowadays, thousand and thousand kilometers of roads are each year submitted to surface distress survey. They generally lean on pavement surface imaging measurement techniques, mainly in the visible spectrum, coupled with visual inspection or image processing detection of emergent distresses. Nevertheless, optimisation of maintenance works and costs requires an early detection of defects within the pavement structure when they still are hidden from surface. Accordingly, alternative measurement techniques for pavement monitoring are currently under investigation (seismic methods, step frequency radar). On the other hand, strengthening or retrofitting of reinforced concrete structures by externally bonded Fiber Reinforced Polymer (FRP) systems is now a commonly accepted and widespread technique. However, the use of bonding techniques always implies following rigorous installing procedures. To ensure the durability and long-term performance of the FRP reinforcements, conformance checking through an in situ auscultation of the bonded FRP systems is then highly suitable. The quality-control program should involve a set of adequate inspections and tests. Visual inspection and acoustic sounding (hammer tap) are commonly used to detect delaminations (disbonds) but are unable to provide sufficient information about the depth (in case of multilayered composite) and width of debonded areas. Consequently, rapid and efficient inspection methods are also required. Among the non destructive methods under study, active infrared thermography was investigated both for pavement and civil engineering structures through experiments in laboratory and numerical simulations, because of its ability to be also used on field. Pulse Thermography (PT), Pulse Phase Thermography (PPT) and Principal Component Thermography (PCT) approaches have been tested onto pavement samples and CFRP bonding on concrete

  6. Primordial inhomogeneities from massive defects during inflation

    Energy Technology Data Exchange (ETDEWEB)

    Firouzjahi, Hassan; Karami, Asieh; Rostami, Tahereh, E-mail: firouz@ipm.ir, E-mail: karami@ipm.ir, E-mail: t.rostami@ipm.ir [School of Astronomy, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5531, Tehran (Iran, Islamic Republic of)

    2016-10-01

    We consider the imprints of local massive defects, such as a black hole or a massive monopole, during inflation. The massive defect breaks the background homogeneity. We consider the limit that the physical Schwarzschild radius of the defect is much smaller than the inflationary Hubble radius so a perturbative analysis is allowed. The inhomogeneities induced in scalar and gravitational wave power spectrum are calculated. We obtain the amplitudes of dipole, quadrupole and octupole anisotropies in curvature perturbation power spectrum and identify the relative configuration of the defect to CMB sphere in which large observable dipole asymmetry can be generated. We observe a curious reflection symmetry in which the configuration where the defect is inside the CMB comoving sphere has the same inhomogeneous variance as its mirror configuration where the defect is outside the CMB sphere.

  7. Defect Engineering in Few-Layer Phosphorene.

    Science.gov (United States)

    Sharma, Ankur; Wen, Bo; Liu, Boqing; Myint, Ye Win; Zhang, Han; Lu, Yuerui

    2018-04-01

    Defect engineering in 2D phosphorene samples is becoming an important and powerful technique to alter their properties, enabling new optoelectronic applications, particularly at the infrared wavelength region. Defect engineering in a few-layer phosphorene sample via introduction of substrate trapping centers is realized. In a three-layer (3L) phosphorene sample, a strong photoluminescence (PL) emission peak from localized excitons at ≈1430 nm is observed, a much lower energy level than free excitonic emissions. An activation energy of ≈77 meV for the localized excitons is determined in temperature-dependent PL measurements. The relatively high activation energy supports the strong stability of the localized excitons even at elevated temperature. The quantum efficiency of localized exciton emission in 3L phosphorene is measured to be approximately three times higher than that of free excitons. These results could enable exciting applications in infrared optoelectronics. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Defects and the optical absorption in nanocrystalline ZnO

    International Nuclear Information System (INIS)

    Dutta, Sreetama; Chattopadhyay, Sanjay; Sutradhar, Manas; Sarkar, Anindya; Chakrabarti, Mahuya; Sanyal, Dirtha; Jana, Debnarayan

    2007-01-01

    The correlation between the structural and optical properties of mechanically milled high purity ZnO powder is reported in the present work. Reduction of average grain size and enhancement of strain as a result of milling have been estimated from the broadening of x-ray powder diffraction patterns. After milling, the optical bandgap, revealed from absorption spectroscopy, has been red-shifted and the width of the localized states, calculated from the analysis of the Urbach tail below the absorption edge, has been extended more and more into the bandgap. Moreover, the band tailing parameter is seen to vary exponentially with the inverse of the grain size. Finally, the positron annihilation technique has been employed to identify the nature of defects present (or generated due to milling) in the system and thereby to correlate the defect mediated modification of optical absorption in ZnO

  9. Defects and the optical absorption in nanocrystalline ZnO

    Energy Technology Data Exchange (ETDEWEB)

    Dutta, Sreetama [Department of Physics, University of Calcutta, 92 Acharya Prafulla Chandra Road, Kolkata 700 009 (India); Chattopadhyay, Sanjay [Department of Physics, Taki Government College, Taki 743429 (India); Sutradhar, Manas [Department of Chemistry, University of Calcutta, 92 Acharya Prafulla Chandra Road, Kolkata 700 009 (India); Sarkar, Anindya [Department of Physics, Bangabasi Morning College, 19 Rajkumar Chakraborty Sarani, Kolkata 700 009 (India); Chakrabarti, Mahuya [Variable Energy Cyclotron Centre, 1/AF, Bidhannagar, Kolkata 700 064 (India); Sanyal, Dirtha [Variable Energy Cyclotron Centre, 1/AF, Bidhannagar, Kolkata 700 064 (India); Jana, Debnarayan [Department of Physics, University of Calcutta, 92 Acharya Prafulla Chandra Road, Kolkata 700 009 (India)

    2007-06-13

    The correlation between the structural and optical properties of mechanically milled high purity ZnO powder is reported in the present work. Reduction of average grain size and enhancement of strain as a result of milling have been estimated from the broadening of x-ray powder diffraction patterns. After milling, the optical bandgap, revealed from absorption spectroscopy, has been red-shifted and the width of the localized states, calculated from the analysis of the Urbach tail below the absorption edge, has been extended more and more into the bandgap. Moreover, the band tailing parameter is seen to vary exponentially with the inverse of the grain size. Finally, the positron annihilation technique has been employed to identify the nature of defects present (or generated due to milling) in the system and thereby to correlate the defect mediated modification of optical absorption in ZnO.

  10. Boron-substitution and defects in B2-type AlNi compound: Site-preference and influence on structural, thermodynamic and electronic properties

    Energy Technology Data Exchange (ETDEWEB)

    Capaz, Rodrigo B. [Instituto de Física, Universidade Federal do Rio de Janeiro, Caixa Postal 68528, Rio de Janeiro, RJ 21941-972 (Brazil); ElMassalami, M., E-mail: massalam@if.ufrj.br [Instituto de Física, Universidade Federal do Rio de Janeiro, Caixa Postal 68528, Rio de Janeiro, RJ 21941-972 (Brazil); Terrazos, L.A. [Centro de Educação e Saúde, Universidade Federal de Campina Grande, Cuité, PB 58175-000 (Brazil); Elhadi, M. [Instituto de Física, Universidade Federal do Rio de Janeiro, Caixa Postal 68528, Rio de Janeiro, RJ 21941-972 (Brazil); Takeya, H. [National Institute for Materials Science, 1-2-1, Sengen, Tsukuba, 305-0047 (Japan); Ghivelder, L. [Instituto de Física, Universidade Federal do Rio de Janeiro, Caixa Postal 68528, Rio de Janeiro, RJ 21941-972 (Brazil)

    2016-06-05

    Using a combination of theoretical (first-principles total-energy and electronic structure calculations) as well as experimental (structural, thermodynamics) techniques, we systematically investigated the influence of B incorporation on the structural, electronic and thermodynamic properties of a series of technologically-important B-containing AlNi matrix. Special attention was paid to calculating the energy cost of placing B at various sites within the cubic unit cell. The most energetically favorable defects were identified to be, depending on initial stoichiometry, substitutional B at Al site (B{sub Al}), Ni vacancy (V{sub Ni}), or Ni antisite (Ni{sub Al}). We show that the induced variation in the lattice parameters can be correlated with the type and concentration of the involved defects: e.g. the surge of V{sub Ni} defects leads to a stronger lattice-parameter reduction, that of Ni{sub Al} ones to a relatively weaker reduction while that of B{sub Al} defects to a much weaker influence. Both electronic band structure calculations as well as thermodynamics measurements indicate that the 3d bands of Ni are fully occupied and magnetically unpolarized and that the resulting N(E{sub F}) is very small: all studied compounds are normal conductors with no trace of superconductivity or magnetic polarization.

  11. Lectures on cosmic topological defects

    Energy Technology Data Exchange (ETDEWEB)

    Vachaspati, T [Department of Astronomy and Astrophysics, Colaba, Mumbai (India) and Physics Department, Case Western Reserve University, Cleveland (United States)

    2001-11-15

    These lectures review certain topological defects and aspects of their cosmology. Unconventional material includes brief descriptions of electroweak defects, the structure of domain walls in non-Abelian theories, and the spectrum of magnetic monopoles in SU(5) Grand Unified theory. (author)

  12. THz Imaging as a Method to Detect Defects of Aeronautical Coatings

    Science.gov (United States)

    Catapano, I.; Soldovieri, F.; Mazzola, L.; Toscano, C.

    2017-10-01

    Ice adhesion over critical aircraft surfaces is a serious potential hazard that runs the risk of causing accidents. To face this issue, the design and diagnostics of new multifunctional coatings with icephobic and aesthetical properties are demanded. In particular, diagnostic tools, capable of characterizing coating surface finishing and its defects, are needed. In this paper, terahertz (THz) imaging is considered as a high-resolution diagnostic tool useful for contactless surveys providing information on surface defects and material inner structure. Therefore, two composite specimens, one covered by a classical commercial livery coating and the other one by a new multifunctional coating with icephobic properties, are investigated by THz surveys carried out in normal environmental conditions of pressure and temperature. The results, obtained by processing the raw data properly, corroborate that THz imaging allows us to detect variations of the coating thickness, to localize hidden anomalies as well as to characterize surface defects at millimetric scale.

  13. How to 'visualize' lattice defects

    International Nuclear Information System (INIS)

    Doi, Kenji

    1974-01-01

    Methods to recognize objects are discussed. In case of optics, lenses are used, and light from objects passing through the lenses focuses on focal planes. The amplitude of light on the focal planes in given as a function of the structure factor of scattering light from objects, images of objects are made on image planes. In case of X-ray or neutron diffraction, lenses which make images by X-ray or neutrons can not be made, accordingly images cannot be obtained. Images can be seen with electron microscopes. By X-ray or thermal neutron diffraction, intensity on focal planes in observed, and the defects to be studied are recognized as diffuse scattering. Since it is necessary to minimize aberration in case of image observation with electron microscopes, slits are used to utilize electron beam near optical axis exclusively. Therefore large resolving power cannot be expected. The information concerning structure obtained from focal planes is of statistical nature, and that from image planes is local information. The principle of neutron topography, by which the informations concerning local points are obtained, is explained. A photograph of LiF irradiated by 0.5 MeV proton beam was taken by the topographic method, and shown in this paper. (Kato, T.)

  14. Selected topics in high temperature chemistry defect chemistry of solids

    CERN Document Server

    Johannesen, Ø

    2013-01-01

    The properties of materials at high temperature play a vital role in their processing and practical use. The real properties of materials at elevated temperatures are very often governed by defects in their structure. Lattice defects may consist of point defects like vacancies, interstitial atoms or substituted atoms. These classes are discussed in general and specifically for oxides, nitrides, carbides and sulfides. Defect aggregates, shear structures and adaptive structures are also described. Special attention is paid to hydrogen defects which seem to play an important role in several mater

  15. Analysis of Manufacturing-Induced Defects and Structural Deformations in Lithium-Ion Batteries Using Computed Tomography

    Directory of Open Access Journals (Sweden)

    Yi Wu

    2018-04-01

    Full Text Available Premature battery drain, swelling and fires/explosions in lithium-ion batteries have caused wide-scale customer concerns, product recalls, and huge financial losses in a wide range of products including smartphones, laptops, e-cigarettes, hoverboards, cars, and commercial aircraft. Most of these problems are caused by defects which are difficult to detect using conventional nondestructive electrical methods and disassembly-based destructive analysis. This paper develops an effective computed tomography (CT-based nondestructive approach to assess battery quality and identify manufacturing-induced defects and structural deformations in batteries. Several unique case studies from commercial e-cigarette and smartphone applications are presented to show where CT analysis methods work.

  16. Structure of local interactions in complex financial dynamics.

    Science.gov (United States)

    Jiang, X F; Chen, T T; Zheng, B

    2014-06-17

    With the network methods and random matrix theory, we investigate the interaction structure of communities in financial markets. In particular, based on the random matrix decomposition, we clarify that the local interactions between the business sectors (subsectors) are mainly contained in the sector mode. In the sector mode, the average correlation inside the sectors is positive, while that between the sectors is negative. Further, we explore the time evolution of the interaction structure of the business sectors, and observe that the local interaction structure changes dramatically during a financial bubble or crisis.

  17. Atomic structure of defects in GaN:Mg grown with Ga polarity

    International Nuclear Information System (INIS)

    Liliental-Weber, Z.; Tomaszewicz, T.; Zakharov, D.; Jasinski, J.; O'Keefe, M.A.; Hautakangas, S.; Laakso, A.; Saarinen, K.

    2003-01-01

    Electron microscope phase images, produced by direct reconstruction of the scattered electron wave from a focal series of high-resolution images, were used to determine the nature of defects formed in GaN:Mg crystals. We studied bulk crystals grown from dilute solutions of atomic nitrogen in liquid gallium at high pressure and thin films grown by the MOCVD method. All the crystals were grown with Ga-polarity. In both types of samples the majority of defects were three dimensional Mg-rich hexagonal pyramids with bases on the (0001) plane and six walls on {11(und 2)3} planes seen in cross-section as triangulars. Some other defects appear in cross-section as trapezoidal (rectangular) defects as a result of presence of truncated pyramids. Both type of defects have hollow centers. They are decorated by Mg on all six side walls and a base. The GaN which grows inside on the defect walls shows polarity inversion. It is shown that change of polarity starts from the defect tip and propagates to the base, and that the stacking sequence changes from ab in the matrix to bc inside the defect. Exchange of the Ga sublattice with the N sublattice within the defect leads to 0.6 ± 0.2(angstrom) displacement between Ga sublattices outside and inside the defects. It is proposed that lateral overgrowth of the cavities formed within the defect takes place to restore matrix polarity on the defect base

  18. Positron lifetime calculation for defects and defect clusters in graphite

    International Nuclear Information System (INIS)

    Onitsuka, T.; Ohkubo, H.; Takenaka, M.; Tsukuda, N.; Kuramoto, E.

    2000-01-01

    Calculations of positron lifetime have been made for vacancy type defects in graphite and compared with experimental results. Defect structures were obtained in a model graphite lattice after including relaxation of whole lattice as determined by the molecular dynamics method, where the interatomic potential given by Pablo Andribet, Dominguez-Vazguez, Mari Carmen Perez-Martin, Alonso, Jimenez-Rodriguez [Nucl. Instrum. and Meth. 115 (1996) 501] was used. For the defect structures obtained via lattice relaxation positron lifetime was calculated under the so-called atomic superposition method. Positron lifetimes 204 and 222 ps were obtained for the graphite matrix and a single vacancy, respectively, which can be compared with the experimental results 208 and 233 ps. For planar vacancy clusters, e.g., vacancy loops, lifetime calculation was also made and indicated that lifetime increases with the number of vacancies in a cluster. This is consistent with the experimental result in the region of higher annealing temperature (above 1200 deg. C), where the increase of positron lifetime is seen, probably corresponding to the clustering of mobile vacancies

  19. The role of defects in laser damage of multilayer coatings

    International Nuclear Information System (INIS)

    Kozlowski, M.R.; Chow, R.

    1993-01-01

    Laser induced damage to optical coatings is generally a localized phenomenon associated with coating defects. The most common of the defect types are the well-known nodule defect. This paper reviews the use of experiments and modeling to understand the formation of these defects and their interaction with laser light. Of particular interest are efforts to identify which defects are most susceptible to laser damage. Also discussed are possible methods for stabilizing these defects (laser conditioning) or preventing their initiation (source stabilization, spatter particle trapping)

  20. Static electric field enhancement in nanoscale structures

    Energy Technology Data Exchange (ETDEWEB)

    Lepetit, Bruno, E-mail: bruno.lepetit@irsamc.ups-tlse.fr; Lemoine, Didier, E-mail: didier.lemoine@irsamc.ups-tlse.fr [Université de Toulouse, UPS, Laboratoire Collisions Agrégats Réactivité, IRSAMC, F-31062 Toulouse (France); CNRS, UMR 5589, F-31062 Toulouse (France); Márquez-Mijares, Maykel, E-mail: mmarquez@instec.cu [Université de Toulouse, UPS, Laboratoire Collisions Agrégats Réactivité, IRSAMC, F-31062 Toulouse (France); CNRS, UMR 5589, F-31062 Toulouse (France); Instituto Superior de Tecnologías y Ciencias Aplicadas, Avenida Salvador Allende 1110, Quinta de los Molinos, La Habana (Cuba)

    2016-08-28

    We study the effect of local atomic- and nano-scale protrusions on field emission and, in particular, on the local field enhancement which plays a key role as known from the Fowler-Nordheim model of electronic emission. We study atomic size defects which consist of right angle steps forming an infinite length staircase on a tungsten surface. This structure is embedded in a 1 GV/m ambient electrostatic field. We perform calculations based upon density functional theory in order to characterize the total and induced electronic densities as well as the local electrostatic fields taking into account the detailed atomic structure of the metal. We show how the results must be processed to become comparable with those of a simple homogeneous tungsten sheet electrostatic model. We also describe an innovative procedure to extrapolate our results to nanoscale defects of larger sizes, which relies on the microscopic findings to guide, tune, and improve the homogeneous metal model, thus gaining predictive power. Furthermore, we evidence analytical power laws for the field enhancement characterization. The main physics-wise outcome of this analysis is that limited field enhancement is to be expected from atomic- and nano-scale defects.

  1. Local thermal energy as a structural indicator in glasses

    Science.gov (United States)

    Zylberg, Jacques; Lerner, Edan; Bar-Sinai, Yohai; Bouchbinder, Eran

    2017-07-01

    Identifying heterogeneous structures in glasses—such as localized soft spots—and understanding structure-dynamics relations in these systems remain major scientific challenges. Here, we derive an exact expression for the local thermal energy of interacting particles (the mean local potential energy change caused by thermal fluctuations) in glassy systems by a systematic low-temperature expansion. We show that the local thermal energy can attain anomalously large values, inversely related to the degree of softness of localized structures in a glass, determined by a coupling between internal stresses—an intrinsic signature of glassy frustration—anharmonicity and low-frequency vibrational modes. These anomalously large values follow a fat-tailed distribution, with a universal exponent related to the recently observed universal ω4ω4 density of states of quasilocalized low-frequency vibrational modes. When the spatial thermal energy field—a “softness field”—is considered, this power law tail manifests itself by highly localized spots, which are significantly softer than their surroundings. These soft spots are shown to be susceptible to plastic rearrangements under external driving forces, having predictive powers that surpass those of the normal modes-based approach. These results offer a general, system/model-independent, physical/observable-based approach to identify structural properties of quiescent glasses and relate them to glassy dynamics.

  2. X-ray diffuse scattering effects from Coulomb-type defects in multilayered structures

    International Nuclear Information System (INIS)

    Olikhovskii, S.I.; Molodkin, V.B.; Skakunova, E.S.; Kislovskii, E.N.; Fodchuk, I.M.

    2009-01-01

    The theoretical X-ray diffraction model starting from Takagi-Taupin equation has been developed for the description of coherent and diffuse components of the rocking curve (RC) measured from the multilayered crystal structure with randomly distributed Coulomb-type defects in all the layers and substrate. The model describes both diffuse scattering (DS) intensity distribution and influence of DS on attenuation and angular redistribution of the coherent X-ray scattering intensity. By analyzing the total measured RC with using the proposed diffraction model, the chemical compositions, strains, and characteristics of dislocation loops in layers and substrate of the multilayered structure with InGaAsN/GaAs single quantum well have been determined. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  3. Multiband Bandstop Filter using an I-Stub-Loaded Meandered Defected Microstrip Structure

    Directory of Open Access Journals (Sweden)

    G. R. Koirala

    2016-04-01

    Full Text Available This paper presents a compact multiband bandstop filter (BSF that utilizes an I-stub embedded within a meandered defected microstrip structure (MDMS. The proposed design for obtaining a single stopband is analyzed by using a transmission line network model. On the basis of the single stopband structure, we designed and fabricated a dual- and tri-band bandstop filters operating at 2.5/6.78 GHz and 1.98/5.60/7.78 GHz, respectively, thereby exploring the concept of generating as many stopbands by simply adding the same number of I-stubs. The proposed filter also features the possibility of tuning the resonant frequencies by varying the width of the I-stubs.

  4. Various Stone-Wales defects in phagraphene

    Science.gov (United States)

    Openov, L. A.; Podlivaev, A. I.

    2016-08-01

    Various Stone-Wales defects in phagraphene, which is a graphene allotrope, predicted recently are studied in terms of the nonorthogonal tight-binding model. The energies of the defect formation and the heights of energy barriers preventing the formation and annealing of the defects are found. Corresponding frequency factors in the Arrhenius formula are calculated. The evolution of the defect structure is studied in the real-time mode using the molecular dynamics method.

  5. A Hybrid Instance Selection Using Nearest-Neighbor for Cross-Project Defect Prediction

    Institute of Scientific and Technical Information of China (English)

    Duksan Ryu; Jong-In Jang; Jongmoon Baik; Member; ACM; IEEE

    2015-01-01

    Software defect prediction (SDP) is an active research field in software engineering to identify defect-prone modules. Thanks to SDP, limited testing resources can be effectively allocated to defect-prone modules. Although SDP requires suffcient local data within a company, there are cases where local data are not available, e.g., pilot projects. Companies without local data can employ cross-project defect prediction (CPDP) using external data to build classifiers. The major challenge of CPDP is different distributions between training and test data. To tackle this, instances of source data similar to target data are selected to build classifiers. Software datasets have a class imbalance problem meaning the ratio of defective class to clean class is far low. It usually lowers the performance of classifiers. We propose a Hybrid Instance Selection Using Nearest-Neighbor (HISNN) method that performs a hybrid classification selectively learning local knowledge (via k-nearest neighbor) and global knowledge (via na¨ıve Bayes). Instances having strong local knowledge are identified via nearest-neighbors with the same class label. Previous studies showed low PD (probability of detection) or high PF (probability of false alarm) which is impractical to use. The experimental results show that HISNN produces high overall performance as well as high PD and low PF.

  6. The theory of dissipative structures of the kinetic system for defects of nonlinear physical system 'metal+loading+irradiation'. Part 3

    International Nuclear Information System (INIS)

    Tarasov, V.A.; Borikov, T.L.; Kryzhanovskaya, T.V.; Chernezhenko, S.A.; Rusov, V.D.

    2007-01-01

    The kinetic system for defects of physical nonlinear system 'metal + load + irradiation' is specified [1, 2, 3]. Developing the approaches offered in [4], where distinctions of mechanisms of radiating creep and areas of their applicability are formalized (depending on external parameters) for fuel and constructional metals, division of kinetic systems for defects of constructional and fuel metals is carrying out. Thus the accent on the autocatalytic features of kinetic system for defects of reactor fuel metals, resulting from the exoenergic autocatalytic character of nuclear fission reactions being the main point defect source is done. In this part of the article the basic attention is given to the kinetic of sink drains for point defects. For kinetic systems of sinks-sources new approaches for the task of boundary conditions are offered. The possible structure of the computer program modelling kinetic system for defects of nonlinear physical system 'metal + load + irradiation' is considered

  7. Behavior of duplex stainless steel casting defects under mechanical loadings

    International Nuclear Information System (INIS)

    Jayet-Gendrot, S.; Gilles, P.

    2000-01-01

    Several components in the primary circuit of pressurized water reactors are made of cast duplex stainless steels. This material contains small casting defects, mainly shrinkage cavities, due to the manufacturing process. In safety analyses, the structural integrity of the components is studied under the most severe assumptions: presence of a large defect, accidental loadings and end-of-life material properties accounting for its thermal aging embrittlement at the service temperature. The casting defects are idealized as semi-circular surface cracks or notches that have envelope dimensions. In order to assess the real severity of the casting defects under mechanical loadings, an experimental program was carried out. It consisted of testing, under both cyclic and monotonic solicitations, three-point bend specimens containing either a natural defect (in the form of a localized cluster of cavities) or a machined notch having the dimensions of the cluster's envelope. The results show that shrinkage cavities are far less harmful than envelope notches thanks to the metal bridges between cavities. Under fatigue loadings, the generalized initiation of a cluster of cavities (defined when the cluster becomes a crack of the same global size) is reached for a number of cycles that is much higher than the one leading to the initiation of a notch. In the case of monotonic loadings, specimens with casting defects offer a very high resistance to ductile tearing. The tests are analyzed in order to develop a method that takes into account the behavior of casting defects in a more realistic fashion than by an envelope crack. Various approaches are investigated, including the search of equivalent defects or of criteria based on continuum mechanics concepts, and compared with literature data. This study shows the conservatism of current safety analyses in modeling casting defects by envelope semi-elliptical cracks and contributes to the development of alternative approaches. (orig.)

  8. Theoretical analysis of the influence of flexoelectric effect on the defect site in nematic inversion walls

    International Nuclear Information System (INIS)

    Zheng Gui-Li; Xuan Li; Zhang Hui; Ye Wen-Jiang; Zhang Zhi-Dong; Song Hong-Wei

    2016-01-01

    Based on the experimental phenomena of flexoelectric response at defect sites in nematic inversion walls conducted by Kumar et al., we gave the theoretical analysis using the Frank elastic theory. When a direct-current electric field normal to the plane of the substrate is applied to the parallel aligned nematic liquid crystal cell with weak anchoring, the rotation of ±1 defects in the narrow inversion walls can be exhibited. The free energy of liquid crystal molecules around the +1 and –1 defect sites in the nematic inversion walls under the electric field was formulated and the electric-field-driven structural changes at the defect site characterized by polar and azimuthal angles of the local director were simulated. The results reveal that the deviation of azimuthal angle induced by flexoelectric effect are consistent with the switching of extinction brushes at the +1 and −1 defects obtained in the experiment conducted by Kumar et al. (paper)

  9. Altering graphene line defect properties using chemistry

    Science.gov (United States)

    Vasudevan, Smitha; White, Carter; Gunlycke, Daniel

    2012-02-01

    First-principles calculations are presented of a fundamental topological line defect in graphene that was observed and reported in Nature Nanotech. 5, 326 (2010). These calculations show that atoms and smaller molecules can bind covalently to the surface in the vicinity of the graphene line defect. It is also shown that the chemistry at the line defect has a strong effect on its electronic and magnetic properties, e.g. the ferromagnetically aligned moments along the line defect can be quenched by some adsorbates. The strong effect of the adsorbates on the line defect properties can be understood by examining how these adsorbates affect the boundary-localized states in the vicinity of the Fermi level. We also expect that the line defect chemistry will significantly affect the scattering properties of incident low-energy particles approaching it from graphene.

  10. Nanoscale interfacial defect shedding in a growing nematic droplet.

    Science.gov (United States)

    Gurevich, Sebastian; Provatas, Nikolas; Rey, Alejandro

    2017-08-01

    Interfacial defect shedding is the most recent known mechanism for defect formation in a thermally driven isotropic-to-nematic phase transition. It manifests in nematic-isotropic interfaces going through an anchoring switch. Numerical computations in planar geometry established that a growing nematic droplet can undergo interfacial defect shedding, nucleating interfacial defect structures that shed into the bulk as +1/2 point defects. By extending the study of interfacial defect shedding in a growing nematic droplet to larger length and time scales, and to three dimensions, we unveil an oscillatory growth mode involving shape and anchoring transitions that results in a controllable regular distributions of point defects in planar geometry, and complex structures of disclination lines in three dimensions.

  11. Localized structures in vibrated emulsions

    Science.gov (United States)

    Falcón, Claudio; Bruggeman, Jake; Pasquali, Matteo; Deegan, Robert D.

    2012-04-01

    We report our observations of localized structures in a thin layer of an emulsion subjected to vertical oscillations. We observe persistent holes, which are voids that span the layer depth, and kinks, which are fronts between regions with and without fluid. These structures form in response to a finite amplitude perturbation. Combining experimental and rheological measurements, we argue that the ability of these structures to withstand the hydrostatic pressure of the surrounding fluid is due to convection within their rim. For persistent holes the oscillatory component of the convection generates a normal stress which opposes contraction, while for kinks the steady component of the convection generates a shear stress which opposes the hydrostatic stress of the surrounding fluid.

  12. Defect Characterization, Imaging, and Control in Wide-Bandgap Semiconductors and Devices

    Science.gov (United States)

    Brillson, L. J.; Foster, G. M.; Cox, J.; Ruane, W. T.; Jarjour, A. B.; Gao, H.; von Wenckstern, H.; Grundmann, M.; Wang, B.; Look, D. C.; Hyland, A.; Allen, M. W.

    2018-03-01

    Wide-bandgap semiconductors are now leading the way to new physical phenomena and device applications at nanoscale dimensions. The impact of defects on the electronic properties of these materials increases as their size decreases, motivating new techniques to characterize and begin to control these electronic states. Leading these advances have been the semiconductors ZnO, GaN, and related materials. This paper highlights the importance of native point defects in these semiconductors and describes how a complement of spatially localized surface science and spectroscopy techniques in three dimensions can characterize, image, and begin to control these electronic states at the nanoscale. A combination of characterization techniques including depth-resolved cathodoluminescence spectroscopy, surface photovoltage spectroscopy, and hyperspectral imaging can describe the nature and distribution of defects at interfaces at both bulk and nanoscale surfaces, their metal interfaces, and inside nanostructures themselves. These features as well as temperature and mechanical strain inside wide-bandgap device structures at the nanoscale can be measured even while these devices are operating. These advanced capabilities enable several new directions for describing defects at the nanoscale, showing how they contribute to device degradation, and guiding growth processes to control them.

  13. Structure-aware Local Sparse Coding for Visual Tracking

    KAUST Repository

    Qi, Yuankai

    2018-01-24

    Sparse coding has been applied to visual tracking and related vision problems with demonstrated success in recent years. Existing tracking methods based on local sparse coding sample patches from a target candidate and sparsely encode these using a dictionary consisting of patches sampled from target template images. The discriminative strength of existing methods based on local sparse coding is limited as spatial structure constraints among the template patches are not exploited. To address this problem, we propose a structure-aware local sparse coding algorithm which encodes a target candidate using templates with both global and local sparsity constraints. For robust tracking, we show local regions of a candidate region should be encoded only with the corresponding local regions of the target templates that are the most similar from the global view. Thus, a more precise and discriminative sparse representation is obtained to account for appearance changes. To alleviate the issues with tracking drifts, we design an effective template update scheme. Extensive experiments on challenging image sequences demonstrate the effectiveness of the proposed algorithm against numerous stateof- the-art methods.

  14. Defect-Tolerant Monolayer Transition Metal Dichalcogenides

    DEFF Research Database (Denmark)

    Pandey, Mohnish; Rasmussen, Filip Anselm; Kuhar, Korina

    2016-01-01

    Localized electronic states formed inside the band gap of a semiconductor due to crystal defects can be detrimental to the material's optoelectronic properties. Semiconductors with a lower tendency to form defect induced deep gap states are termed defect-tolerant. Here we provide a systematic first...... the gap. These ideas are made quantitative by introducing a descriptor that measures the degree of similarity of the conduction and valence band manifolds. Finally, the study is generalized to nonpolar nanoribbons of the TMDs where we find that only the defect sensitive materials form edge states within......-principles investigation of defect tolerance in 29 monolayer transition metal dichalcogenides (TMDs) of interest for nanoscale optoelectronics. We find that the TMDs based on group VI and X metals form deep gap states upon creation of a chalcogen (S, Se, Te) vacancy, while the TMDs based on group IV metals form only...

  15. Sampling Realistic Protein Conformations Using Local Structural Bias

    DEFF Research Database (Denmark)

    Hamelryck, Thomas Wim; Kent, John T.; Krogh, A.

    2006-01-01

    The prediction of protein structure from sequence remains a major unsolved problem in biology. The most successful protein structure prediction methods make use of a divide-and-conquer strategy to attack the problem: a conformational sampling method generates plausible candidate structures, which...... are subsequently accepted or rejected using an energy function. Conceptually, this often corresponds to separating local structural bias from the long-range interactions that stabilize the compact, native state. However, sampling protein conformations that are compatible with the local structural bias encoded...... in a given protein sequence is a long-standing open problem, especially in continuous space. We describe an elegant and mathematically rigorous method to do this, and show that it readily generates native-like protein conformations simply by enforcing compactness. Our results have far-reaching implications...

  16. Structure and strain relaxation effects of defects in In{sub x}Ga{sub 1–x}N epilayers

    Energy Technology Data Exchange (ETDEWEB)

    Rhode, S. L., E-mail: sr583@cam.ac.uk; Fu, W. Y.; Massabuau, F. C.-P.; Kappers, M. J.; McAleese, C.; Oehler, F.; Humphreys, C. J.; Sahonta, S.-L. [Department of Materials Science and Metallurgy, University of Cambridge, Charles Babbage Road, Cambridge CB3 0FS (United Kingdom); Moram, M. A. [Department of Materials Science and Metallurgy, University of Cambridge, Charles Babbage Road, Cambridge CB3 0FS (United Kingdom); Department of Materials, Imperial College London, Exhibition Road, London SW7 2AZ (United Kingdom); Dusane, R. O. [Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Mumbai 400076 (India)

    2014-09-14

    The formation of trench defects is observed in 160 nm-thick In{sub x}Ga{sub 1–x}N epilayers with x≤0.20, grown on GaN on (0001) sapphire substrates using metalorganic vapour phase epitaxy. The trench defect density increases with increasing indium content, and high resolution transmission electron microscopy shows an identical structure to those observed previously in InGaN quantum wells, comprising meandering stacking mismatch boundaries connected to an I₁-type basal plane stacking fault. These defects do not appear to relieve in-plane compressive strain. Other horizontal sub-interface defects are also observed within the GaN pseudosubstrate layer of these samples and are found to be pre-existing threading dislocations which form half-loops by bending into the basal plane, and not basal plane stacking faults, as previously reported by other groups. The origins of these defects are discussed and are likely to originate from a combination of the small in-plane misorientation of the sapphire substrate and the thermal mismatch strain between the GaN and InGaN layers grown at different temperatures.

  17. Structural integrity evaluation of X52 gas pipes subjected to external corrosion defects using the SINTAP procedure

    Energy Technology Data Exchange (ETDEWEB)

    Adib-Ramezani, H. [Ecole Polytechnique de l' Universite d' Orleans, CNRS-CRMD, 8 rue Leonard de Vinci, 45072 Orleans Cedex 2 (France)]. E-mail: hradib_2000@yahoo.com; Jeong, J. [Ecole Polytechnique de l' Universite d' Orleans, CNRS-CRMD, 8 rue Leonard de Vinci, 45072 Orleans Cedex 2 (France); Pluvinage, G. [Laboratoire de Fiabilite Mecanique (LFM), Universite de Metz-ENIM, 57045 Metz (France)

    2006-06-15

    In the present study, the SINTAP procedure has been proposed as a general structural integrity tool for semi-spherical, semi-elliptical and long blunt notch defects. The notch stress intensity factor concept and SINTAP structural integrity procedure are employed to assess gas pipelines integrity. The external longitudinal defects have been investigated via elastic-plastic finite element method results. The notch stress intensity concept is implemented into SINTAP procedure. The safety factor is calculated via SINTAP procedure levels 0B and 1B. The extracted evaluations are compared with the limit load analysis based on ASME B31G, modified ASME B31G, DNV RP-F101 and recent proposed formulation [Choi JB, Goo BK, Kim JC, Kim YJ, Kim WS. Development of limit load solutions for corroded gas pipelines. Int J Pressure Vessel Piping 2003;80(2):121-128]. The comparison among extracted safety factors exhibits that SINTAP predictions are located between lower and upper safety factor bounds. The SINTAP procedure including notch-based assessment diagram or so-called 'NFAD' involves wide range of defect geometries with low, moderate and high stress concentrations and relative stress gradients. Finally, some inspired and advanced viewpoints have been investigated.

  18. Structural integrity evaluation of X52 gas pipes subjected to external corrosion defects using the SINTAP procedure

    International Nuclear Information System (INIS)

    Adib-Ramezani, H.; Jeong, J.; Pluvinage, G.

    2006-01-01

    In the present study, the SINTAP procedure has been proposed as a general structural integrity tool for semi-spherical, semi-elliptical and long blunt notch defects. The notch stress intensity factor concept and SINTAP structural integrity procedure are employed to assess gas pipelines integrity. The external longitudinal defects have been investigated via elastic-plastic finite element method results. The notch stress intensity concept is implemented into SINTAP procedure. The safety factor is calculated via SINTAP procedure levels 0B and 1B. The extracted evaluations are compared with the limit load analysis based on ASME B31G, modified ASME B31G, DNV RP-F101 and recent proposed formulation [Choi JB, Goo BK, Kim JC, Kim YJ, Kim WS. Development of limit load solutions for corroded gas pipelines. Int J Pressure Vessel Piping 2003;80(2):121-128]. The comparison among extracted safety factors exhibits that SINTAP predictions are located between lower and upper safety factor bounds. The SINTAP procedure including notch-based assessment diagram or so-called 'NFAD' involves wide range of defect geometries with low, moderate and high stress concentrations and relative stress gradients. Finally, some inspired and advanced viewpoints have been investigated

  19. Defects in doped LaGaO3 anionic conductors: linking NMR spectral features, local environments, and defect thermodynamics.

    Science.gov (United States)

    Blanc, Frédéric; Middlemiss, Derek S; Gan, Zhehong; Grey, Clare P

    2011-11-09

    Doped lanthanum gallate perovskites (LaGaO(3)) constitute some of the most promising electrolyte materials for solid oxide fuel cells operating in the intermediate temperature regime. Here, an approach combining experimental multinuclear NMR spectroscopy with density functional theory total energy and GIPAW NMR calculations yields a comprehensive understanding of the structural and defect chemistries of Sr- and Mg-doped LaGaO(3) anionic conductors. The DFT energetics demonstrate that Ga-V(O)-Ga (V(O) = oxygen vacancy) environments are favored (vs Ga-V(O)-Mg, Mg-V(O)-Mg and Mg-O-Mg-V(O)-Ga) across a range y = 0.0625, 0.125, and 0.25 of fractional Mg contents in LaGa(1-y)Mg(y)O(3-y/2). The results are interpreted in terms of doping and mean phase formation energies (relative to binary oxides) and are compared with previous calculations and experimental calorimetry data. Experimental multinuclear NMR data reveal that while Mg sites remain six-fold coordinated across the range of phase stoichiometries, albeit with significant structural disorder, a stoichiometry-dependent minority of the Ga sites resonate at a shift consistent with Ga(V) coordination, demonstrating that O vacancies preferentially locate in the first anion coordination shell of Ga. The strong Mg-V(O) binding inferred by previous studies is not observed here. The (17)O NMR spectra reveal distinct resonances that can be assigned by using the GIPAW NMR calculations to anions occupying equatorial and axial positions with respect to the Ga(V)-V(O) axis. The disparate shifts displayed by these sites are due to the nature and extent of the structural distortions caused by the O vacancies.

  20. Structural integrity evaluation of SG tube with surface wear-type defects

    International Nuclear Information System (INIS)

    Kim, Jong Min; Huh, Nam Su; Chang, Yoon Suk; Kim, Young Jin; Hwang, Seong Sik; Kim, Joung Soo

    2006-01-01

    During the last two decades, several guidelines have been developed and used for assessing the integrity of a defective Steam Generator (SG) tube that is generally caused by stress corrosion cracking or wall-thinning phenomenon. However, as some of SG tubes are also failed due to fretting and so on, alternative failure estimation schemes are required for relevant defects. In this paper, parametric three-dimensional Finite Element (FE) analyses are carried out under internal pressure condition to simulate the failure behavior of SG tubes with different defect configurations; elliptical wear, tapered and flat wear type defects. Maximum pressures based on material strengths are obtained from more than a hundred FE results to predict the failure of SG tube. After investigating the effect of key parameters such as defect depth, defect length and wrap angle, simplified failure estimation equations are proposed in relation to the equivalent stress at the deepest point in wear region. Comparison of failure pressures predicted by the proposed estimation scheme with corresponding burst test data showed a good agreement

  1. Topological defects in extended inflation

    International Nuclear Information System (INIS)

    Copeland, E.J.; Kolb, E.W.; Chicago Univ., IL; Liddle, A.R.

    1990-04-01

    We consider the production of topological defects, especially cosmic strings, in extended inflation models. In extended inflation, the Universe passes through a first-order phase transition via bubble percolation, which naturally allows defects to form at the end of inflation. The correlation length, which determines the number density of the defects, is related to the mean size of bubbles when they collide. This mechanism allows a natural combination of inflation and large-scale structure via cosmic strings. 18 refs

  2. Topological defects in extended inflation

    International Nuclear Information System (INIS)

    Copeland, E.J.; Kolb, E.W.; Liddle, A.R.

    1990-01-01

    We consider the production of topological defects, especially cosmic strings, in extended-inflation models. In extended inflation, the Universe passes through a first-order phase transition via bubble percolation, which naturally allows defects to form at the end of inflation. The correlation length, which determines the number density of the defects, is related to the mean size of the bubbles when they collide. This mechanism allows a natural combination of inflation and large-scale structure via cosmic strings

  3. Effects of intrinsic defects on the electronic structure and magnetic properties of CoFe{sub 2}O{sub 4}: A first-principles study

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Y.L.; Fan, W.B. [School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063 (China); Hou, Y.H., E-mail: hyhhyl@163.com [School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063 (China); Guo, K.X. [School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063 (China); Ouyang, Y.F. [Department of Physics, Guangxi University, Nanning 530004 (China); Liu, Z.W. [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640 (China)

    2017-05-01

    The cobalt ferrite (CoFe{sub 2}O{sub 4}) with spinel structure has achieved a great interest as a very important magnetic material which has covered a wide range of applications. The formation condition and energy of possible intrinsic point defects have been investigated by the first-principles calculations, and the effects of the intrinsic point defects on the electronic and magnetic properties of CoFe{sub 2}O{sub 4} have been analyzed. It is found that the growth conditions have a great effect on the formation energy of intrinsic point defects, and each point defect with its fully ionized state is the most stable for the intrinsic point defects with various charge states. In an oxygen rich environment, the cation vacancies are easy to form shallow acceptors, which is conducive to the strength of the p-type conductivity. While in the metal rich environment, the oxygen vacancies tend to form donors which lead to the n-type conductivity. There exists extra levels in the band gap when point defects are present, resulting in a reduction of the band gap. The net magnetic moment depends highly on the defects. - Highlights: • The intrinsic defects in CoFe{sub 2}O{sub 4} were investigated by first-principles calculation. • The effects of intrinsic defects on the electronic structures and magnetic properties of CoFe{sub 2}O{sub 4} were analyzed.

  4. Analysis of structure and defects in thin silicon films deposited from hydrogen diluted silane

    International Nuclear Information System (INIS)

    Elzakker, G. van; Nadazdy, V.; Tichelaar, F.D.; Metselaar, J.W.; Zeman, M.

    2006-01-01

    Thin silicon layers have been deposited from silane diluted with hydrogen. The dilution ratio R (R = [H 2 ]/[SiH 4 ]) has been varied between R = 0 and R = 40. The structural properties of Si:H films have been studied using transmission electron microscopy imaging and Raman spectroscopy. The phase evolution from the amorphous phase into the mixed and eventually microcrystalline phase strongly depends on the hydrogen dilution. The initiation of the microcrystalline growth occurs between R = 20 and R = 25. The phase transition becomes more abrupt with increasing hydrogen dilution. Optoelectronic properties of the layers have been determined. Increasing hydrogen dilution results in films with increasing effective defect density and Urbach energy, which is related to inhomogeneous growth. The charge deep-level transient spectroscopy technique (Q-DLTS) was applied for the first time on hydrogen diluted thin silicon films in order to investigate the energy distribution of the defect states in these layers as a function of the dilution ratio R. The Q-DLTS spectra indicate a difference in defect-state distribution when the films evolve from the amorphous phase into the microcrystalline phase

  5. Defect grating modes as superimposed grating states

    NARCIS (Netherlands)

    van Groesen, Embrecht W.C.; Sopaheluwakan, A.; Andonowati, A.; de Ridder, R.M; de Ridder, R.M.; Altena, G; Altena, G.; Geuzebroek, D.H.; Geuzenboek, D.; Dekker, R.; Dekker, R

    2003-01-01

    For a symmetric grating structure with a defect, we show that a fully transmitted defect mode in the band gap can be obtained as a superposition of two steady states: an amplified and an attenuated defect state. Without scanning the whole band gap by transmission calculations, this simplifies the

  6. Enhancement of p-type mobility in tin monoxide by native defects

    KAUST Repository

    Granato, D. B.

    2013-05-31

    Transparent p-type materials with good mobility are needed to build completely transparent p-n junctions. Tin monoxide (SnO) is a promising candidate. A recent study indicates great enhancement of the hole mobility of SnO grown in Sn-rich environment [E. Fortunato et al., Appl. Phys. Lett. 97, 052105 (2010)]. Because such an environment makes the formation of defects very likely, we study defect effects on the electronic structure to explain the increased mobility. We find that Sn interstitials and O vacancies modify the valence band, inducing higher contributions of the delocalized Sn 5p orbitals as compared to the localized O 2p orbitals, thus increasing the mobility. This mechanism of valence band modification paves the way to a systematic improvement of transparent p-type semiconductors.

  7. Radiation defects in SrB4O7:Eu2+ crystals

    International Nuclear Information System (INIS)

    Yavetskiy, R.P.; Dolzhenkova, E.F.; Tolmachev, A.V.; Parkhomenko, S.V.; Baumer, V.N.; Prosvirnin, A.L.

    2007-01-01

    Radiation-induced defects in SrB 4 O 7 :Eu 2+ (0.033 at.%) single crystal irradiated with γ and X-ray quanta has been studied. The induced optical absorption in the 400-700 nm region has been ascribed to F + centers. The Eu 2+ ions have been shown to act simultaneously as traps and as radiative recombination centers of charge carriers. Basing on the thermally stimulated luminescence (TSL), optical absorption and photoluminescence studies of SrB 4 O 7 :Eu 2+ crystals, a TSL mechanism has been proposed associated with the decay of F + centers being in non-equivalent crystallographic positions followed by radiative recombination of charge carriers on europium ions. Various positions of localization of the radiation-induced defects in the SrB 4 O 7 crystal structure have been discussed

  8. The local structure of high-temperature superconductors

    International Nuclear Information System (INIS)

    Mustre de Leon, J.; Conradson, S.D.; Bishop, A.R.; Raistrick, I.D.

    1992-01-01

    We show how x-ray absorption fine structure (XAFS) has been successfully used in the determination of the local crystal structure of high-temperature superconductors, with advantages over traditional diffraction techniques. We review the experimental results that yielded the first evidence for an axial-oxygen-centered lattice instability connected with the superconductivity transition. The interpretation of this instability in terms of a dynamical tunneling model suggests the presence of polarons in these materials. XAFS on Tl 2 Ba 2 CuO 6 and other Tl-based superconductors indicate the presence of local instabilities in the CuO 2 planes of these materials, in addition to axial-oxygen instabilities

  9. Effect of manufacturing method on the magnetic properties and formation of structural defects in Fe61Co10Y8Zr1B20 amorphous alloy

    International Nuclear Information System (INIS)

    Nabialek, M.G.; Pietrusiewicz, P.; Dospial, M.J.; Szota, M.; Błoch, K.; Gruszka, K.; Oźga, K.; Garus, S.

    2014-01-01

    Highlights: • Influence of manufacturing method on structural defects was studied. • Samples were obtained by the use of injection-casting and melt-spinning techniques. • The defects have been indirectly analyzed by approach to ferromagnetic saturation. • Prolonged solidification time allows recombination of atoms arrangement in a volume. • That reduce internal stress and leads to increase in the packing density of atoms. - Abstract: Soft magnetic properties of amorphous alloys are determined by their structure, which strongly depends on their manufacturing method. Alloys obtained in the form of conventional amorphous alloys (tapes) are cooled with a much higher rate than the material obtained in the form of tiles by the injection casting method. The cooling rate and production method determines the type and number of structural defects created in the volume of produced samples. The paper presents an indirect method for the analysis of structural defects and their effect on the magnetic properties of studied alloys. Basing on initial magnetization curve analysis in the area of so-called approach to ferromagnetic saturation was found that point defects were forming in the samples in the form of tapes. The magnetization process of tiles were influenced by the presence of conglomerates of point defects called quasidislocation dipoles

  10. The effects of synchrotron x-rays on the local structure and the recrystallization of ion-damaged Si

    Energy Technology Data Exchange (ETDEWEB)

    Kin Man Yu; Lei Wang; Walukiewicz, W. [Lawrence Berkeley National Lab., CA (United States)

    1997-04-01

    Ion implantation is used extensively as a routine, controllable and reproducible doping technique for semiconductor processing. In Si, the amorphization by ion beams as well as the subsequent thermally induced solid phase epitaxy (SPE) and the electrical activation of the implanted dopants have been studied extensively. It has been well established that the SPE of amorphous Si ({alpha}-Si) layers created by implantation is initiated by thermal annealing at temperatures {ge} 400{degrees}C and proceeds in a planar fashion. The kinetics of the SPE process was found to follow an Arrhenius equation with an activation energy of 2.7eV. Various models have been proposed to explain the SPE process. In most cases, the mechanism leading to SPE is expected to involve the formation and/or motion of defects at or near the amorphous/crystalline interface. In this work the authors explore the effects of an intense x-ray beam generated by a synchrotron source on the SPE process of ion amorphized Si layers. A layer of amorphous Si was created near the surface of a single crystal Si to a depth of {approximately}2000{Angstrom} by 180keV Zn ion implantation. The sample was then irradiated at beam line 10-3 (microprobe beamline) at the Advance Light Source (ALS) for 5-16 hours. For 5-16 hours irradiation, the total photons absorbed by the {alpha}-Si film was {approximately}0.3-1 photon/Si atom (for 4keV photons). The authors find that in ion amorphized Si layers, although the ion dose is well above the amorphization threshold, small crystallites are still present. The absorption of x-ray by the Si atoms provides enough energy to disperse the small crystallites in the amorphous Si, reducing the number of interfacial defects as well as locally re-arrange the atoms to form a homogeneously amorphous layer with close to four-fold coordinated environment. This rearrangement in local structure of the {alpha}-Si results in nearly a defect-free crystal after SPE.

  11. Molecular-dynamics simulation of defect formation energy in boron nitride nanotubes

    International Nuclear Information System (INIS)

    Moon, W.H.; Hwang, H.J.

    2004-01-01

    We investigate the defect formation energy of boron nitride nanotubes (BNNTs) using molecular dynamics simulation. Although the defect with tetragon-octagon pairs (TOP) is favored in the flat BNNTs cap, BN clusters, and the growth of BNNTs, the formation energy of the TOP defect is significantly higher than that of the pentagon-heptagon pairs (PHP) defect in BNNTs. The PHP defect reduces the effect of the structural distortion caused by the TOP defect, in spite of homoelemental bonds. The instability of the TOP defect generates the structural transformation into BNNTs with no defect at about 1500 K. This mechanism shows that the TOP defect is less favored in case of BNNTs

  12. Notes from the Field: Zika Virus-Associated Neonatal Birth Defects Surveillance - Texas, January 2016-July 2017.

    Science.gov (United States)

    Hall, Noemi Borsay; Broussard, Kelly; Evert, Nicole; Canfield, Mark

    2017-08-11

    On November 28, 2016, the Texas Department of State Health Services (Texas DSHS) reported its first confirmed case of local mosquitoborne Zika virus transmission in the city of Brownsville, located in south Texas along the U.S.-Mexico border. Zika virus infection during pregnancy has been linked to adverse congenital outcomes including microcephaly, neural tube defects, early brain malformations, structural eye abnormalities, congenital deafness, and limb contractures (1). On January 1, 2016, Texas DSHS established enhanced surveillance to identify women with laboratory evidence of possible Zika virus infection during pregnancy and suspected cases of Zika virus-associated birth defects among completed pregnancies.

  13. Taking advantage of local structure descriptors to analyze interresidue contacts in protein structures and protein complexes.

    Science.gov (United States)

    Martin, Juliette; Regad, Leslie; Etchebest, Catherine; Camproux, Anne-Claude

    2008-11-15

    Interresidue protein contacts in proteins structures and at protein-protein interface are classically described by the amino acid types of interacting residues and the local structural context of the contact, if any, is described using secondary structures. In this study, we present an alternate analysis of interresidue contact using local structures defined by the structural alphabet introduced by Camproux et al. This structural alphabet allows to describe a 3D structure as a sequence of prototype fragments called structural letters, of 27 different types. Each residue can then be assigned to a particular local structure, even in loop regions. The analysis of interresidue contacts within protein structures defined using Voronoï tessellations reveals that pairwise contact specificity is greater in terms of structural letters than amino acids. Using a simple heuristic based on specificity score comparison, we find that 74% of the long-range contacts within protein structures are better described using structural letters than amino acid types. The investigation is extended to a set of protein-protein complexes, showing that the similar global rules apply as for intraprotein contacts, with 64% of the interprotein contacts best described by local structures. We then present an evaluation of pairing functions integrating structural letters to decoy scoring and show that some complexes could benefit from the use of structural letter-based pairing functions.

  14. Failure assessments of corroded pipelines with axial defects using stress-based criteria: Numerical studies and verification analyses

    International Nuclear Information System (INIS)

    Chiodo, Mario S.G.; Ruggieri, Claudio

    2009-01-01

    Conventional procedures used to assess the integrity of corroded piping systems with axial defects generally employ simplified failure criteria based upon a plastic collapse failure mechanism incorporating the tensile properties of the pipe material. These methods establish acceptance criteria for defects based on limited experimental data for low strength structural steels which do not necessarily address specific requirements for the high grade steels currently used. For these cases, failure assessments may be overly conservative or provide significant scatter in their predictions, which lead to unnecessary repair or replacement of in-service pipelines. Motivated by these observations, this study examines the applicability of a stress-based criterion based upon plastic instability analysis to predict the failure pressure of corroded pipelines with axial defects. A central focus is to gain additional insight into effects of defect geometry and material properties on the attainment of a local limit load to support the development of stress-based burst strength criteria. The work provides an extensive body of results which lend further support to adopt failure criteria for corroded pipelines based upon ligament instability analyses. A verification study conducted on burst testing of large-diameter pipe specimens with different defect length shows the effectiveness of a stress-based criterion using local ligament instability in burst pressure predictions, even though the adopted burst criterion exhibits a potential dependence on defect geometry and possibly on material's strain hardening capacity. Overall, the results presented here suggests that use of stress-based criteria based upon plastic instability analysis of the defect ligament is a valid engineering tool for integrity assessments of pipelines with axial corroded defects

  15. Failure assessments of corroded pipelines with axial defects using stress-based criteria: Numerical studies and verification analyses

    Energy Technology Data Exchange (ETDEWEB)

    Chiodo, Mario S.G. [Department of Naval Architecture and Ocean Engineering, University of Sao Paulo, Av. Prof. Mello Moraes, 2231 (PNV-EPUSP), Sao Paulo, SP 05508-030 (Brazil); Ruggieri, Claudio [Department of Naval Architecture and Ocean Engineering, University of Sao Paulo, Av. Prof. Mello Moraes, 2231 (PNV-EPUSP), Sao Paulo, SP 05508-030 (Brazil)], E-mail: claudio.ruggieri@poli.usp.br

    2009-02-15

    Conventional procedures used to assess the integrity of corroded piping systems with axial defects generally employ simplified failure criteria based upon a plastic collapse failure mechanism incorporating the tensile properties of the pipe material. These methods establish acceptance criteria for defects based on limited experimental data for low strength structural steels which do not necessarily address specific requirements for the high grade steels currently used. For these cases, failure assessments may be overly conservative or provide significant scatter in their predictions, which lead to unnecessary repair or replacement of in-service pipelines. Motivated by these observations, this study examines the applicability of a stress-based criterion based upon plastic instability analysis to predict the failure pressure of corroded pipelines with axial defects. A central focus is to gain additional insight into effects of defect geometry and material properties on the attainment of a local limit load to support the development of stress-based burst strength criteria. The work provides an extensive body of results which lend further support to adopt failure criteria for corroded pipelines based upon ligament instability analyses. A verification study conducted on burst testing of large-diameter pipe specimens with different defect length shows the effectiveness of a stress-based criterion using local ligament instability in burst pressure predictions, even though the adopted burst criterion exhibits a potential dependence on defect geometry and possibly on material's strain hardening capacity. Overall, the results presented here suggests that use of stress-based criteria based upon plastic instability analysis of the defect ligament is a valid engineering tool for integrity assessments of pipelines with axial corroded defects.

  16. Anisotropic bias dependent transport property of defective phosphorene layer

    Science.gov (United States)

    Umar Farooq, M.; Hashmi, Arqum; Hong, Jisang

    2015-01-01

    Phosphorene is receiving great research interests because of its peculiar physical properties. Nonetheless, no systematic studies on the transport properties modified due to defects have been performed. Here, we present the electronic band structure, defect formation energy and bias dependent transport property of various defective systems. We found that the defect formation energy is much less than that in graphene. The defect configuration strongly affects the electronic structure. The band gap vanishes in single vacancy layers, but the band gap reappears in divacancy layers. Interestingly, a single vacancy defect behaves like a p-type impurity for transport property. Unlike the common belief, we observe that the vacancy defect can contribute to greatly increasing the current. Along the zigzag direction, the current in the most stable single vacancy structure was significantly increased as compared with that found in the pristine layer. In addition, the current along the armchair direction was always greater than along the zigzag direction and we observed a strong anisotropic current ratio of armchair to zigzag direction. PMID:26198318

  17. Defects and oxidation of group-III monochalcogenide monolayers

    Science.gov (United States)

    Guo, Yu; Zhou, Si; Bai, Yizhen; Zhao, Jijun

    2017-09-01

    Among various two-dimensional (2D) materials, monolayer group-III monochalcogenides (GaS, GaSe, InS, and InSe) stand out owing to their potential applications in microelectronics and optoelectronics. Devices made of these novel 2D materials are sensitive to environmental gases, especially O2 molecules. To address this critical issue, here we systematically investigate the oxidization behaviors of perfect and defective group-III monochalcogenide monolayers by first-principles calculations. The perfect monolayers show superior oxidation resistance with large barriers of 3.02-3.20 eV for the dissociation and chemisorption of O2 molecules. In contrast, the defective monolayers with single chalcogen vacancy are vulnerable to O2, showing small barriers of only 0.26-0.36 eV for the chemisorption of an O2 molecule. Interestingly, filling an O2 molecule to the chalcogen vacancy of group-III monochalcogenide monolayers could preserve the electronic band structure of the perfect system—the bandgaps are almost intact and the carrier effective masses are only moderately disturbed. On the other hand, the defective monolayers with single vacancies of group-III atoms carry local magnetic moments of 1-2 μB. These results help experimental design and synthesis of group-III monochalcogenides based 2D devices with high performance and stability.

  18. Structural defects in cilia of the choroid plexus, subfornical organ and ventricular ependyma are associated with ventriculomegaly

    Directory of Open Access Journals (Sweden)

    Swiderski Ruth E

    2012-10-01

    Full Text Available Abstract Background Hydrocephalus is a heterogeneous disorder with multiple etiologies that are not yet fully understood. Animal models have implicated dysfunctional cilia of the ependyma and choroid plexus in the development of the disorder. In this report, we sought to determine the origin of the ventriculomegaly in four Bardet Biedl syndrome (BBS mutant mouse strains as models of a ciliopathy. Methods Evans Blue dye was injected into the lateral ventricle of wild- type and BBS mutant mice to determine whether obstruction of intra- or extra-ventricular CSF flow contributed to ventriculomegaly. Transmission electron microscopy (TEM was used to examine the ultrastructure of the choroid plexus, subfornical organ (SFO, subcommisural organ (SCO, and ventricular ependyma to evaluate their ultrastructure and the morphology of their primary and motile cilia. Results and discussion No obstruction of intra- or extra-ventricular CSF flow was observed, implying a communicating form of hydrocephalus in BBS mutant mice. TEM analyses of the mutants showed no evidence of choroidal papillomas or breakdown of the blood:CSF barrier. In contrast, structural defects were observed in a subpopulation of cilia lining the choroid plexus, SFO, and ventricular ependyma. These included disruptions of the microtubular structure of the axoneme and the presence of electron-dense vesicular-like material along the ciliary shaft and at the tips of cilia. Conclusions Abnormalities in cilia structure and function have the potential to influence ciliary intraflagellar transport (IFT, cilia maintenance, protein trafficking, and regulation of CSF production. Ciliary structural defects are the only consistent pathological features associated with CSF-related structures in BBS mutant mice. These defects are observed from an early age, and may contribute to the underlying pathophysiology of ventriculomegaly.

  19. Simulation of pattern and defect detection in periodic amplitude and phase structures using photorefractive four-wave mixing

    Science.gov (United States)

    Nehmetallah, Georges; Banerjee, Partha; Khoury, Jed

    2015-03-01

    The nonlinearity inherent in four-wave mixing in photorefractive (PR) materials is used for adaptive filtering. Examples include script enhancement on a periodic pattern, scratch and defect cluster enhancement, periodic pattern dislocation enhancement, etc. through intensity filtering image manipulation. Organic PR materials have large space-bandwidth product, which makes them useful in adaptive filtering techniques in quality control systems. For instance, in the case of edge enhancement, phase conjugation via four-wave mixing suppresses the low spatial frequencies of the Fourier spectrum of an aperiodic image and consequently leads to image edge enhancement. In this work, we model, numerically verify, and simulate the performance of a four wave mixing setup used for edge, defect and pattern detection in periodic amplitude and phase structures. The results show that this technique successfully detects the slightest defects clearly even with no enhancement. This technique should facilitate improvements in applications such as image display sharpness utilizing edge enhancement, production line defect inspection of fabrics, textiles, e-beam lithography masks, surface inspection, and materials characterization.

  20. Closure of Myelomeningocele Defects Using a Limberg Flap or Direct Repair

    Directory of Open Access Journals (Sweden)

    Jung-Hwan Shim

    2016-01-01

    Full Text Available BackgroundThe global prevalence of myelomeningocele has been reported to be 0.8–1 per 1,000 live births. Early closure of the defect is considered to be the standard of care. Various surgical methods have been reported, such as primary skin closure, local skin flaps, musculocutaneous flaps, and skin grafts. The aim of this study was to describe the clinical characteristics of myelomeningocele defects and present the surgical outcomes of recent cases of myelomeningocele at our institution.MethodsPatients who underwent surgical closure of myelomeningocele at our institution from January 2004 to December 2013 were included in this study. A retrospective chart review of their medical records was performed, and comorbidities, defect size, location, surgical procedures, complications, and the final results were analyzed.ResultsA total of 14 patients underwent surgical closure for myelomeningocele defects. Twelve cases were closed with direct skin repair, while two cases required local skin flaps to cover the skin defects. Three cases of infection occurred, requiring incision and either drainage or removal of allogenic materials. One case of partial flap necrosis occurred, requiring secondary revision using a rotational flap and a full-thickness skin graft. Despite these complications, all wounds eventually healed completely.ConclusionsMost myelomeningocele defects can be managed by direct skin repair alone. In cases of large defects, in which direct repair is not possible, local flaps may be used to cover the defect. Complications such as wound dehiscence and partial flap necrosis occurred in this study; however, all such complications were successfully managed with simple ancillary procedures.

  1. Characterization of the local layer structure of a broad wall in a surface stabilized ferroelectric liquid crystal using synchrotron X-ray micro-diffraction

    International Nuclear Information System (INIS)

    Iida, Atsuo; Noma, Takashi; Miyata, Hirokatsu.

    1996-01-01

    The local layer structure of the broad wall of a zig-zag defect in a thin-surface stabilized ferroelectric liquid crystal cell was characterized using a synchrotron X-ray microbeam of less than 5 μm spatial resolution. By using a rocking curve measurement at the broad wall, multiple or broad peaks were observed between a pair of peaks due to a chevron structure. These new peaks are clear evidence of a modified pseudo-bookshelf structure at the wall. For 1.5 μm thick cells, a bookshelf layer is relatively flat, but is accompanied by small areas of inclined layer connecting the bookshelf and the chevron structures. For 10 μm thick cells, the pseudo-bookshelf structure bends or undulates both perpendicular and parallel to the rubbing direction. No appreciable change in the layer spacing was observed in the modified pseudo-bookshelf structure. The temperature dependence of the broad wall layer structure was also measured. (author)

  2. Characterization of the local layer structure of a broad wall in a surface stabilized ferroelectric liquid crystal using synchrotron X-ray micro-diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Iida, Atsuo [National Lab. for High Energy Physics, Tsukuba, Ibaraki (Japan); Noma, Takashi; Miyata, Hirokatsu

    1996-01-01

    The local layer structure of the broad wall of a zig-zag defect in a thin-surface stabilized ferroelectric liquid crystal cell was characterized using a synchrotron X-ray microbeam of less than 5 {mu}m spatial resolution. By using a rocking curve measurement at the broad wall, multiple or broad peaks were observed between a pair of peaks due to a chevron structure. These new peaks are clear evidence of a modified pseudo-bookshelf structure at the wall. For 1.5 {mu}m thick cells, a bookshelf layer is relatively flat, but is accompanied by small areas of inclined layer connecting the bookshelf and the chevron structures. For 10 {mu}m thick cells, the pseudo-bookshelf structure bends or undulates both perpendicular and parallel to the rubbing direction. No appreciable change in the layer spacing was observed in the modified pseudo-bookshelf structure. The temperature dependence of the broad wall layer structure was also measured. (author)

  3. Constitutional and thermal point defects in B2 NiAl

    DEFF Research Database (Denmark)

    Korzhavyi, P. A.; Ruban, Andrei; Lozovoi, A. Y.

    2000-01-01

    The formation energies of point defects and the interaction energies of various defect pairs in NiAl are calculated from first principles within an order N, locally self-consistent Green's-function method in conjunction with multipole electrostatic corrections to the atomic sphere approximation...... distance on their sublattice. The dominant thermal defects in Ni-rich and stoichiometric NiAl are calculated to be triple defects. In Al-rich alloys another type of thermal defect dominates, where two Ni vacancies are replaced by one antisite Al atom. As a result, the vacancy concentration decreases...

  4. Global/local methods research using a common structural analysis framework

    Science.gov (United States)

    Knight, Norman F., Jr.; Ransom, Jonathan B.; Griffin, O. H., Jr.; Thompson, Danniella M.

    1991-01-01

    Methodologies for global/local stress analysis are described including both two- and three-dimensional analysis methods. These methods are being developed within a common structural analysis framework. Representative structural analysis problems are presented to demonstrate the global/local methodologies being developed.

  5. Analysis of the local structure of InN with a bandgap energy of 0.8 and 1.9 eV and annealed InN using X-ray absorption fine structure measurements

    International Nuclear Information System (INIS)

    Miyajima, Takao; Kudo, Yoshihiro; Wakahara, Akihiro; Yamaguchi, Tomohiro; Araki, Tsutomu; Nanishi, Yasushi

    2006-01-01

    We compared the local structure around In atoms in microwave-excited MOCVD- and MBE-grown InN film which indicates an absorption edge at 1.9 and 0.8 eV, respectively. The co-ordination numbers of the 1st-nearest neighbor N atoms and the 2nd-nearest neighbor In atoms for MBE-grown InN were n(N)=3.9±0.5 and n(In)=12.4±0.9, which are close to the ideal value of n(N)=4 and n(In)=12 for InN without defects, respectively. By thermal annealing, the structure of MBE-grown InN was changed from InN to In 2 O 3 , and the absorption edge was changed from 0.8 to 3.5 eV. However, the microwave-excited MOCVD-grown InN had no structure of In 2 O 3 , and had the reduced co-ordination numbers of the 2nd-nearest neighbor In atoms of n(In)=10.6-11.7. From these results, we conclude that the origin of the 1.9-eV absorption edge of InN is the imperfections (defects) of the In lattice sites of InN, rather than the generation of In 2 O 3 , which has a bandgap energy of 3.5 eV. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  6. Effect of defects, magnetocrystalline anisotropy, and shape anisotropy on magnetic structure of iron thin films by magnetic force microscopy

    Directory of Open Access Journals (Sweden)

    Ke Xu

    2017-05-01

    Full Text Available Microstructures of magnetic materials, including defects and crystallographic orientations, are known to strongly influence magnetic domain structures. Measurement techniques such as magnetic force microscopy (MFM thus allow study of correlations between microstructural and magnetic properties. The present work probes effects of anisotropy and artificial defects on the evolution of domain structure with applied field. Single crystal iron thin films on MgO substrates were milled by Focused Ion Beam (FIB to create different magnetically isolated squares and rectangles in [110] crystallographic orientations, having their easy axis 45° from the sample edge. To investigate domain wall response on encountering non-magnetic defects, a 150 nm diameter hole was created in the center of some samples. By simultaneously varying crystal orientation and shape, both magnetocrystalline anisotropy and shape anisotropy, as well as their interaction, could be studied. Shape anisotropy was found to be important primarily for the longer edge of rectangular samples, which exaggerated the FIB edge effects and provided nucleation sites for spike domains in non-easy axis oriented samples. Center holes acted as pinning sites for domain walls until large applied magnetic fields. The present studies are aimed at deepening the understanding of the propagation of different types of domain walls in the presence of defects and different crystal orientations.

  7. Defect-driven interfacial electronic structures at an organic/metal-oxide semiconductor heterojunction.

    Science.gov (United States)

    Winget, Paul; Schirra, Laura K; Cornil, David; Li, Hong; Coropceanu, Veaceslav; Ndione, Paul F; Sigdel, Ajaya K; Ginley, David S; Berry, Joseph J; Shim, Jaewon; Kim, Hyungchui; Kippelen, Bernard; Brédas, Jean-Luc; Monti, Oliver L A

    2014-07-16

    The electronic structure of the hybrid interface between ZnO and the prototypical organic semiconductor PTCDI is investigated via a combination of ultraviolet and X-ray photoelectron spectroscopy (UPS/XPS) and density functional theory (DFT) calculations. The interfacial electronic interactions lead to a large interface dipole due to substantial charge transfer from ZnO to 3,4,9,10-perylenetetracarboxylicdiimide (PTCDI), which can be properly described only when accounting for surface defects that confer ZnO its n-type properties. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Time Localisation of Surface Defects on Optical Discs

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Wickerhauser, M.V.

    2004-01-01

    Many have experienced problems with their Compact Disc Player when a disc with a scratch or a fingerprint is tried played. One way to improve the playability of discs with such a defect, is to locate the defect in time and then handle it in a special way. As a consequence this time localization...

  9. THE STRUCTURE OF THE LOCAL HOT BUBBLE

    Energy Technology Data Exchange (ETDEWEB)

    Liu, W.; Galeazzi, M.; Uprety, Y.; Ursino, E. [Department of Physics, University of Miami, Coral Gables, FL, 33124 (United States); Chiao, M.; Collier, M. R.; Porter, F. S.; Snowden, S. L.; Thomas, N. E. [NASA Goddard Space Flight Center, Greenbelt, MD, 20771 (United States); Cravens, T. [Department of Physics and Astronomy, University of Kansas, Lawrence, KS 66045 (United States); Koutroumpa, D. [Universite Versailles St-Quentin (France); Sorbonne Universites, UPMC Univ. Paris 06 (France); CNRS/INSU, LATMOS-IPSL, F-78280 (France); Kuntz, K. D. [The Henry A. Rowland Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218 (United States); Lallement, R. [GEPI Observatoire de Paris, CNRS, Universite Paris Diderot, F-92190, Meudon (France); Lepri, S. T. [Department of Atmospheric, Oceanic, and Space Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); McCammon, D.; Morgan, K. [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); Walsh, B. M., E-mail: galeazzi@physics.miami.edu [Department of Mechanical Engineering, Boston University, Boston, MA 02215 (United States)

    2017-01-01

    Diffuse X-rays from the Local Galaxy ( DXL ) is a sounding rocket mission designed to quantify and characterize the contribution of Solar Wind Charge eXchange (SWCX) to the Diffuse X-ray Background and study the properties of the Local Hot Bubble (LHB). Based on the results from the DXL mission, we quantified and removed the contribution of SWCX to the diffuse X-ray background measured by the ROSAT All Sky Survey. The “cleaned” maps were used to investigate the physical properties of the LHB. Assuming thermal ionization equilibrium, we measured a highly uniform temperature distributed around kT  = 0.097 keV ± 0.013 keV (FWHM) ± 0.006 keV (systematic). We also generated a thermal emission measure map and used it to characterize the three-dimensional (3D) structure of the LHB, which we found to be in good agreement with the structure of the local cavity measured from dust and gas.

  10. An engineering assessment methodology for non-sharp defects in steel structures – Part I: Procedure development

    International Nuclear Information System (INIS)

    Horn, A.J.; Sherry, A.H.

    2012-01-01

    This Part I paper describes a new engineering assessment methodology for ferritic steel structures containing non-sharp defects within the context of a Failure Assessment Diagram (FAD) approach. Although the modification of the FAD for non-sharp defects can be applied whether the initiating failure mechanism is cleavage or ductile tearing, this paper focuses on cleavage fracture. The parameters describing the sensitivity of the material toughness to the notch effect can either be measured by testing notched specimens of the same thickness as the structure, or for cleavage fracture they can be obtained using look-up tables generated using the Weibull stress toughness scaling model. The other parameters in the procedure can either be conservatively estimated using simple equations or they can be determined more accurately using finite element analysis. Validation of the new method is presented in the companion Part II paper: this shows that assessments of U-notched SE(B) specimens have significantly reduced conservatism when using the new assessment methodology compared to the standard FAD approach for sharp cracks. - Highlights: ► Development of a new procedure for predicting failure from non-sharp defects. ► Based on a modification of the Failure Assessment Diagram (FAD) approach. ► Applicable to cleavage and ductile tearing initiation although paper focuses on cleavage. ► Validation provided in a companion Part II paper.

  11. XAFS Analysis of Local Structure around Ce in Ca3Sc2Si3O12:Ce Phosphor for White LEDs

    International Nuclear Information System (INIS)

    Akai, Toshio; Shigeiwa, Motoyuki; Okamoto, Kaoru; Shimomura, Yasuo; Kijima, Naoto; Honma, Tetsuo

    2007-01-01

    We have studied the local structure around Ce atom in Ca3Sc2Si3O12 host crystal, which has been developed as a new green phosphor for white light emitting diodes (LEDs). As the local structure and chemical environment of the dopant atom are very important to improve the performance of the phosphor, we have used XAFS to get chemical and structural information around the Ce dopant. The XANES spectrum of the Ce LIII-edge reveals that the Ce atom is trivalent in Ca3Sc2Si3O12. There are two kinds of possible Ce substitution sites, Ca site and Sc site, in garnet type Ca3Sc2Si3O12 crystal structure. The Ce atom is found to be at the Ca site in the host crystal by the comparison of the Fourier transform of Ce K-edge EXAFS spectrum with those of Ca and Sc K-edge EXAFS spectra. The theoretical analysis with FEFF also clarified the Ce substitution at the Ca site. Furthermore, the result of the analysis indicates the structural disorder around Ca and Si atoms at 3.75 A. It is possible that there are some defects around the Ca and Si atoms at 3.75 A to compensate the excess positive charge by introduced Ce3+ at the Ca2+ site

  12. Electronic transport of bilayer graphene with asymmetry line defects

    International Nuclear Information System (INIS)

    Zhao Xiao-Ming; Chen Chan; Liang Ying; Kou Su-Peng; Wu Ya-Jie

    2016-01-01

    In this paper, we study the quantum properties of a bilayer graphene with (asymmetry) line defects. The localized states are found around the line defects. Thus, the line defects on one certain layer of the bilayer graphene can lead to an electric transport channel. By adding a bias potential along the direction of the line defects, we calculate the electric conductivity of bilayer graphene with line defects using the Landauer–Büttiker theory, and show that the channel affects the electric conductivity remarkably by comparing the results with those in a perfect bilayer graphene. This one-dimensional line electric channel has the potential to be applied in nanotechnology engineering. (paper)

  13. Rectifiability of Line Defects in Liquid Crystals with Variable Degree of Orientation

    Science.gov (United States)

    Alper, Onur

    2018-04-01

    In [2], H ardt, L in and the author proved that the defect set of minimizers of the modified Ericksen energy for nematic liquid crystals consists locally of a finite union of isolated points and Hölder continuous curves with finitely many crossings. In this article, we show that each Hölder continuous curve in the defect set is of finite length. Hence, locally, the defect set is rectifiable. For the most part, the proof closely follows the work of D e L ellis et al. (Rectifiability and upper minkowski bounds for singularities of harmonic q-valued maps, arXiv:1612.01813, 2016) on harmonic Q-valued maps. The blow-up analysis in A lper et al. (Calc Var Partial Differ Equ 56(5):128, 2017) allows us to simplify the covering arguments in [11] and locally estimate the length of line defects in a geometric fashion.

  14. Band structures and localization properties of aperiodic layered phononic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Yan Zhizhong, E-mail: zzyan@bit.edu.cn [Department of Applied Mathematics, Beijing Institute of Technology, Beijing 100081 (China); Zhang Chuanzeng [Department of Civil Engineering, University of Siegen, D-57078 Siegen (Germany)

    2012-03-15

    The band structures and localization properties of in-plane elastic waves with coupling of longitudinal and transverse modes oblique propagating in aperiodic phononic crystals based on Thue-Morse and Rudin-Shapiro sequences are studied. Using transfer matrix method, the concept of the localization factor is introduced and the correctness is testified through the Rytov dispersion relation. For comparison, the perfect periodic structure and the quasi-periodic Fibonacci system are also considered. In addition, the influences of the random disorder, local resonance, translational and/or mirror symmetries on the band structures of the aperiodic phononic crystals are analyzed in this paper.

  15. Defects improved photocatalytic ability of TiO2

    International Nuclear Information System (INIS)

    Li, Lei; Tian, Hong-Wei; Meng, Fan-Ling; Hu, Xiao-Ying; Zheng, Wei-Tao; Sun, Chang Q.

    2014-01-01

    Highlights: • Defect improves the photocatalytic ability by band gap narrowing and carrier life prolonging. • Atomic undercoordination shortens the local bonds, entraps, and polarizes electrons. • Polarization lowers the local workfunction and lengthens carrier life. • Entrapment and polarization narrows the band gap tuning the wavelength of absorption. - Abstract: Defect generation forms an important means modulating the photocatalytic ability of TiO 2 with mechanisms that remain yet unclear. Here we show that a spectral distillation clarifies the impact of defect on modulating the band gap, electroaffinity, and work function of the substance. Firstly, by analyzing XPS measurements, we calibrated the 2p 3/2 level of 451.47 eV for an isolated Ti atom and its shifts by 2.14 and 6.94 eV, respectively, upon Ti and TiO 2 bulk formation. Spectral difference between the defected and the un-defected TiO 2 skin revealed then that the 2p 3/2 level shifts further from 6.94 to 9.67 eV due to the defect-induced quantum entrapment. This entrapment is associated with an elevation of the upper edges of both the 2p 3/2 and the conduction band by polarization. The shortening and strengthening of bonds between undercoordinated atoms densify and entrap the core electrons, which in turn polarize the dangling bond electrons of defect atoms. The entrapment and polarization mediate thus the band gap, the electroaffinity, the work function, and the photocatalytic ability of TiO 2

  16. Di-interstitial defect in silicon revisited

    International Nuclear Information System (INIS)

    Londos, C. A.; Antonaras, G.; Chroneos, A.

    2013-01-01

    Infrared spectroscopy was used to study the defect spectrum of Cz-Si samples following fast neutron irradiation. We mainly focus on the band at 533 cm −1 , which disappears from the spectra at ∼170 °C, exhibiting similar thermal stability with the Si-P6 electron paramagnetic resonance (EPR) spectrum previously correlated with the di-interstitial defect. The suggested structural model of this defect comprises of two self-interstitial atoms located symmetrically around a lattice site Si atom. The band anneals out following a first-order kinetics with an activation energy of 0.88 ± 0.3 eV. This value does not deviate considerably from previously quoted experimental and theoretical values for the di-interstitial defect. The present results indicate that the 533 cm −1 IR band originates from the same structure as that of the Si-P6 EPR spectrum

  17. Electron paramagnetic resonance parameters and local structure for ...

    Indian Academy of Sciences (India)

    HUA-MING ZHANG. 1. , GUANG-DUO LU. 1 ... the above ZFSs, the local structure information for the impurity Gd. 3+ is obtained, i.e., .... parameters, extended X-ray absorption fine-structure (EXAFS) measurements and crystal-field spectrum ...

  18. Theoretical study using electronic structure calculations of uranium and cerium dioxides containing defects and impurities

    International Nuclear Information System (INIS)

    Shi, Lei

    2016-01-01

    Uranium dioxide (UO_2) is the most widely used nuclear fuel in existing nuclear reactors around the world. While in service for energy supply, UO_2 is submitted to the neutron flux and undergoes nuclear fission chain reactions, which create large number of fission products and point defects. The study of the behavior of the fission products and point defects is important to understand the fuel properties under irradiation. We conduct electronic structure calculations based on the density functional theory (DFT) to model this radiation damage at the atomic scale. The DFT+U method is used to describe the strong correlation of the 4f electrons of cerium and 5f electrons of uranium in the materials studied (UO_2, CeO_2 and (U, Ce)O_2). (U, Ce)O_2 is studied because it is considered as a low radioactive model material of mixed actinide oxides such as the MOX fuel (U, Pu)O_2 used in light water reactors and fast neutron reactors. Cerium dioxide (CeO_2) is studied to provide reference data of (U, Ce)O_2. We perform a DFT+U study of point defects and gaseous fission products (Xe and Kr) in CeO_2 and compare our results to the existing ones of UO_2. We study the bulk properties as well as the behavior of defects for (U, Ce)O_2, and compare our results to the ones of (U, Pu)O_2. Furthermore, for the study of defects in UO_2, methodological improvements are explored considering the spin-orbit coupling effect and the finite-size effect of the simulation supercell. (author) [fr

  19. Investigation of anisotropy in EPR spectra of radiation defects in irradiated beryllium ceramics

    International Nuclear Information System (INIS)

    Polyakov, A.I.; Ryabikin, Yu.A.; Zashkvara, O. V.; Bitenbaev, M.I.; Petukhov, Yu. V.

    2004-01-01

    Full text: In this work results of analysis of anisotropy and hyperfine structure in EPR spectra of paramagnetic defects in irradiated samples of beryllium ceramics are presented. To explain peculiarities in a shape and parameters of the EPR spectrum hyperfine structure in beryllium ceramics, we have analyzed several versions of model representations for the radiation-induced paramagnetic defects uniformly distributed in a sample as well as for cluster defects which hyperfine structure is determined by interactions between electrons and nuclei of impurity atoms (S=1/2) and which are characterized by anisotropy in the g factors. Calculations of a shape of the uniformly widened EPR spectra are carried out by the model of random interactions between electron spins. The EPR spectra, widened at the expense of anisotropy in the g factors, are calculated by the following equation: g(Δ)=[2(ω-ω 0 )+α] -1/2 , where ω 0 =γH 0 , α is the quantify proportional to the anisotropy shift. To describe wings of spectral lines, where the equation doesn't work, we use the Gaussian function. To determine the frequency of precession of electron spins packages with local concentration N loc , the following expression is used: ω=ω 0 +1/2α(3cos 2 θ-1), where θ is an angle between the symmetry axis and the direction of the external magnetic field. It is shown that the best agreement between the calculated and experimental EPR spectra is observed with the following computational model: paramagnetic radiation defects are distributed uniformly over a ceramics sample, and the g factors of its EPR spectra have the anisotropy typical for dipole-dipole interaction in powder samples. By results of the data we obtained, it's clear that in future we'll need in more detailed information than that published in scientific journals about formation of the paramagnetic defect EPR spectra structure in beryllium oxides and ceramics at the expense of resonance line hyperfine splitting on atoms of

  20. Investigation of anisotropy in EPR spectra of radiation defects in irradiated beryllium ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Polyakov, A I; Ryabikin, Yu A; Zashkvara, O V; Bitenbaev, M I; Petukhov, Yu V [Inst. of Physics and Technology, Almaty (Kazakhstan)

    2004-07-01

    Full text: In this work results of analysis of anisotropy and hyperfine structure in EPR spectra of paramagnetic defects in irradiated samples of beryllium ceramics are presented. To explain peculiarities in a shape and parameters of the EPR spectrum hyperfine structure in beryllium ceramics, we have analyzed several versions of model representations for the radiation-induced paramagnetic defects uniformly distributed in a sample as well as for cluster defects which hyperfine structure is determined by interactions between electrons and nuclei of impurity atoms (S=1/2) and which are characterized by anisotropy in the g factors. Calculations of a shape of the uniformly widened EPR spectra are carried out by the model of random interactions between electron spins. The EPR spectra, widened at the expense of anisotropy in the g factors, are calculated by the following equation: g({delta})=[2({omega}-{omega}{sub 0})+{alpha}]{sup -1/2}, where {omega}{sub 0}={gamma}H{sub 0}, {alpha} is the quantify proportional to the anisotropy shift. To describe wings of spectral lines, where the equation doesn't work, we use the Gaussian function. To determine the frequency of precession of electron spins packages with local concentration N{sub loc}, the following expression is used: {omega}={omega}{sub 0}+1/2{alpha}(3cos{sup 2}{theta}-1), where {theta} is an angle between the symmetry axis and the direction of the external magnetic field. It is shown that the best agreement between the calculated and experimental EPR spectra is observed with the following computational model: paramagnetic radiation defects are distributed uniformly over a ceramics sample, and the g factors of its EPR spectra have the anisotropy typical for dipole-dipole interaction in powder samples. By results of the data we obtained, it's clear that in future we'll need in more detailed information than that published in scientific journals about formation of the paramagnetic defect EPR spectra structure in

  1. Fiber-Optic Defect and Damage Locator System for Wind Turbine Blades

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Vahid Sotoudeh; Dr. Richard J. Black; Dr. Behzad Moslehi; Mr. Aleks Plavsic

    2010-10-30

    IFOS in collaboration with Auburn University demonstrated the feasibility of a Fiber Bragg Grating (FBG) integrated sensor system capable of providing real time in-situ defect detection, localization and quantification of damage. In addition, the system is capable of validating wind turbine blade structural models, using recent advances in non-contact, non-destructive dynamic testing of composite structures. This new generation method makes it possible to analyze wind turbine blades not only non-destructively, but also without physically contacting or implanting intrusive electrical elements and transducers into the structure. Phase I successfully demonstrated the feasibility of the technology with the construction of a 1.5 kHz sensor interrogator and preliminary instrumentation and testing of both composite material coupons and a wind turbine blade.

  2. Hydrogen trapping by VC precipitates and structural defects in a high strength Fe–Mn–C steel studied by small-angle neutron scattering

    International Nuclear Information System (INIS)

    Malard, B.; Remy, B.; Scott, C.; Deschamps, A.; Chêne, J.; Dieudonné, T.; Mathon, M.H.

    2012-01-01

    Highlights: ► SANS was used to study the interaction between H and a Fe–Mn–C steel containing V. ► No interaction between H and V in solid solution has been detected. ► A reversible interaction between H and structural defects has been measured. ► 5 ppm wt. of H can be trapped in the VC nanoprecipitates. - Abstract: The trapping of hydrogen by VC precipitates and structural defects in high strength Fe–Mn–C steel was studied by small angle neutron scattering. No interaction between H and V in solid solution has been detected but a significant interaction between H and structural defects introduced by plastic deformation has been measured. This last effect was reversible upon outgassing of the H. Moreover a significant interaction between H and VC precipitates has been measured; 5 ppm wt. of H could be trapped in the precipitates. This is consistent with the homogeneous trapping of H within the precipitates rather than at the precipitate/matrix interface.

  3. Evolution of MBE HgCdTe defect structure studied with ion milling method

    Directory of Open Access Journals (Sweden)

    Pociask-Bialy Malgorzata

    2017-01-01

    Full Text Available In this paper, is shown how ion milling can assist in assessing the defect structure of MCT by revealing the residual doping, and establishing the minimum level of donor concentration Nmd, which is needed for obtaining n-regions with a reproducible n value. For this purpose, a study of the electrical properties of ion-milled LWIR n-type MCT films, un-doped and doped with indium with the concentration NIn = 5 × 1014–1017 cm−3 is proposed.

  4. Compare local pocket and global protein structure models by small structure patterns

    KAUST Repository

    Cui, Xuefeng

    2015-09-09

    Researchers proposed several criteria to assess the quality of predicted protein structures because it is one of the essential tasks in the Critical Assessment of Techniques for Protein Structure Prediction (CASP) competitions. Popular criteria include root mean squared deviation (RMSD), MaxSub score, TM-score, GDT-TS and GDT-HA scores. All these criteria require calculation of rigid transformations to superimpose the the predicted protein structure to the native protein structure. Yet, how to obtain the rigid transformations is unknown or with high time complexity, and, hence, heuristic algorithms were proposed. In this work, we carefully design various small structure patterns, including the ones specifically tuned for local pockets. Such structure patterns are biologically meaningful, and address the issue of relying on a sufficient number of backbone residue fragments for existing methods. We sample the rigid transformations from these small structure patterns; and the optimal superpositions yield by these small structures are refined and reported. As a result, among 11; 669 pairs of predicted and native local protein pocket models from the CASP10 dataset, the GDT-TS scores calculated by our method are significantly higher than those calculated by LGA. Moreover, our program is computationally much more efficient. Source codes and executables are publicly available at http://www.cbrc.kaust.edu.sa/prosta/

  5. Remote sensing image segmentation using local sparse structure constrained latent low rank representation

    Science.gov (United States)

    Tian, Shu; Zhang, Ye; Yan, Yimin; Su, Nan; Zhang, Junping

    2016-09-01

    Latent low-rank representation (LatLRR) has been attached considerable attention in the field of remote sensing image segmentation, due to its effectiveness in exploring the multiple subspace structures of data. However, the increasingly heterogeneous texture information in the high spatial resolution remote sensing images, leads to more severe interference of pixels in local neighborhood, and the LatLRR fails to capture the local complex structure information. Therefore, we present a local sparse structure constrainted latent low-rank representation (LSSLatLRR) segmentation method, which explicitly imposes the local sparse structure constraint on LatLRR to capture the intrinsic local structure in manifold structure feature subspaces. The whole segmentation framework can be viewed as two stages in cascade. In the first stage, we use the local histogram transform to extract the texture local histogram features (LHOG) at each pixel, which can efficiently capture the complex and micro-texture pattern. In the second stage, a local sparse structure (LSS) formulation is established on LHOG, which aims to preserve the local intrinsic structure and enhance the relationship between pixels having similar local characteristics. Meanwhile, by integrating the LSS and the LatLRR, we can efficiently capture the local sparse and low-rank structure in the mixture of feature subspace, and we adopt the subspace segmentation method to improve the segmentation accuracy. Experimental results on the remote sensing images with different spatial resolution show that, compared with three state-of-the-art image segmentation methods, the proposed method achieves more accurate segmentation results.

  6. Analysis of localized damage in creep rupture

    International Nuclear Information System (INIS)

    Wang Zhengdong; Wu Dongdi

    1992-01-01

    Continuum Damage Mechanics studies the effect of distributed defects, whereas the failure of engineering structures is usually caused by local damage. In this paper, an analysis of localized damage in creep rupture is carried out. The material tested is a 2 1/4Cr-1Mo pressure vessel steel and the material constants necessary for damage analysis are evaluated. Notched specimens are used to reflect localized damage in creep rupture and the amount of damage is measured using DCPD method. Through FEM computation, stress components and effective stress in the region of notch root are evaluated and it is found that the von Mises effective stress can represent the damage effective stress in the analysis of localized creep damage. It is possible to develop a method for the assessment of safety of pressure vessels under creep through localized creep damage analysis. (orig.)

  7. Route to strong localization of light: The role of disorder

    KAUST Repository

    Molinari, Diego P.; Fratalocchi, Andrea

    2012-01-01

    By employing Random Matrix Theory (RMT) and firstprinciple calculations, we investigated the behavior of Anderson localization in 1D, 2D and 3D systems characterized by a varying disorder. In particular, we considered random binary layer sequences in 1D and structurally disordered photonic crystals in two and three dimensions. We demonstrated the existence of a unique optimal degree of disorder that yields the strongest localization possible. In this regime, localized modes are constituted by defect states, which can show subwavelength confinement properties. These results suggest that disorder offers a new avenue for subwavelength light localization in purely dielectric media. © 2012 Optical Society of America.

  8. Predicting the Occurrence of Cosmetic Defects in Automotive Skin Panels

    International Nuclear Information System (INIS)

    Hazra, S.; Williams, D.; Roy, R.; Aylmore, R.; Allen, M.; Hollingdale, D.

    2011-01-01

    The appearance of defects such as 'hollows' and 'shock lines' can affect the perceived quality and attractiveness of automotive skin panels. These defects are the result of the stamping process and appear as small, localized deviations from the intended styling of the panels. Despite their size, they become visually apparent after the application of paint and the perceived quality of a panel may become unacceptable. Considerable time is then dedicated to minimizing their occurrence through tool modifications. This paper will investigate the use of the wavelet transform as a tool to analyze physically measured panels. The transform has two key aspects. The first is its ability to distinguish small scale local defects from large scale styling curvature. The second is its ability to characterize the shape of a defect in terms of its wavelength and a 'correlation value'. The two features of the transform enable it to be used as a tool for locating and predicting the severity of defects. The paper will describe the transform and illustrate its application on test cases.

  9. Studies on intrinsic defects related to Zn vacancy in ZnO nanoparticles

    International Nuclear Information System (INIS)

    Singh, V.P.; Das, D.; Rath, Chandana

    2013-01-01

    Graphical abstract: Display Omitted Highlights: ► Williamson–Hall analysis of ZnO indicates strain in the lattice and size is of 20 nm. ► PL shows a broad emission peak in visible range due to native defects. ► Raman active modes corresponding to P6 3 mc and a few additional modes are observed. ► FTIR detects few local vibrational modes of hydrogen attached to zinc vacancies. ► V Zn -H and Zn + O divacancies are confirmed by PAS. -- Abstract: ZnO being a well known optoelectronic semiconductor, investigations related to the defects are very promising. In this report, we have attempted to detect the defects in ZnO nanoparticles synthesized by the conventional coprecipitation route using various spectroscopic techniques. The broad emission peak observed in photoluminescence spectrum and the non zero slope in Williamson–Hall analysis indicate the defects induced strain in the ZnO lattice. A few additional modes observed in Raman spectrum could be due to the breakdown of the translation symmetry of the lattice caused by defects and/or impurities. The presence of impurities can be ruled out as XRD pattern shows pure wurtzite structure. The presence of the vibrational band related to the Zn vacancies (V Zn ), unintentional hydrogen dopants and their complex defects confirm the defects in ZnO lattice. Positron life time components τ 1 and τ 2 additionally support V Zn attached to hydrogen and to a cluster of Zn and O di-vacancies respectively.

  10. Defect-induced transitions in synchronous asymmetric exclusion processes

    International Nuclear Information System (INIS)

    Liu Mingzhe; Wang Ruili; Jiang Rui; Hu Maobin; Gao Yang

    2009-01-01

    The effects of a single local defect in synchronous asymmetric exclusion processes are investigated via theoretical analysis and Monte Carlo simulations. Our theoretical analysis shows that there are four possible stationary phases, i.e., the (low density, low density), (low density, high density), (high density, low density) and (high density, high density) in the system. In the (high density, low density) phase, the system can reach a maximal current which is determined by the local defect, but independent of boundary conditions. A phenomenological domain wall approach is developed to predict dynamic behavior at phase boundaries. The effects of defective hopping probability p on density profiles and currents are investigated. Our investigation shows that the value of p determines phase transitions when entrance rate α and exit rate β are fixed. Density profiles and currents obtained from theoretical calculations are in agreement with Monte Carlo simulations

  11. The defect chemistry of UO2 ± x from atomistic simulations

    Science.gov (United States)

    Cooper, M. W. D.; Murphy, S. T.; Andersson, D. A.

    2018-06-01

    Control of the defect chemistry in UO2 ± x is important for manipulating nuclear fuel properties and fuel performance. For example, the uranium vacancy concentration is critical for fission gas release and sintering, while all oxygen and uranium defects are known to strongly influence thermal conductivity. Here the point defect concentrations in thermal equilibrium are predicted using defect energies from density functional theory (DFT) and vibrational entropies calculated using empirical potentials. Electrons and holes have been treated in a similar fashion to other charged defects allowing for structural relaxation around the localized electronic defects. Predictions are made for the defect concentrations and non-stoichiometry of UO2 ± x as a function of oxygen partial pressure and temperature. If vibrational entropy is omitted, oxygen interstitials are predicted to be the dominant mechanism of excess oxygen accommodation over only a small temperature range (1265 K-1350 K), in contrast to experimental observation. Conversely, if vibrational entropy is included oxygen interstitials dominate from 1165 K to 1680 K (Busker potential) or from 1275 K to 1630 K (CRG potential). Below these temperature ranges, excess oxygen is predicted to be accommodated by uranium vacancies, while above them the system is hypo-stoichiometric with oxygen deficiency accommodated by oxygen vacancies. Our results are discussed in the context of oxygen clustering, formation of U4O9, and issues for fuel behavior. In particular, the variation of the uranium vacancy concentrations as a function of temperature and oxygen partial pressure will underpin future studies into fission gas diffusivity and broaden the understanding of UO2 ± x sintering.

  12. Defect and structural imperfection effects on the electronic properties of BiTeI surfaces

    International Nuclear Information System (INIS)

    Fiedler, Sebastian; Seibel, Christoph; Lutz, Peter; Bentmann, Hendrik; Reinert, Friedrich; El-Kareh, Lydia; Bode, Matthias; Eremeev, Sergey V; Tereshchenko, Oleg E; Kokh, Konstantin A; Chulkov, Evgueni V; Kuznetsova, Tatyana V; Grebennikov, Vladimir I

    2014-01-01

    The surface electronic structure of the narrow-gap seminconductor BiTeI exhibits a large Rashba-splitting which strongly depends on the surface termination. Here we report on a detailed investigation of the surface morphology and electronic properties of cleaved BiTeI single crystals by scanning tunneling microscopy, photoelectron spectroscopy (ARPES, XPS), electron diffraction (SPA-LEED) and density functional theory calculations. Our measurements confirm a previously reported coexistence of Te- and I-terminated surface areas originating from bulk stacking faults and find a characteristic length scale of ∼100 nm for these areas. We show that the two terminations exhibit distinct types of atomic defects in the surface and subsurface layers. For electronic states resided on the I terminations we observe an energy shift depending on the time after cleavage. This aging effect is successfully mimicked by depositon of Cs adatoms found to accumulate on top of the I terminations. As shown theoretically on a microscopic scale, this preferential adsorbing behaviour results from considerably different energetics and surface diffusion lengths at the two terminations. Our investigations provide insight into the importance of structural imperfections as well as intrinsic and extrinsic defects on the electronic properties of BiTeI surfaces and their temporal stability. (paper)

  13. The impact of trench defects in InGaN/GaN light emitting diodes and implications for the “green gap” problem

    Energy Technology Data Exchange (ETDEWEB)

    Massabuau, F. C.-P., E-mail: fm350@cam.ac.uk; Oehler, F.; Pamenter, S. K.; Thrush, E. J.; Kappers, M. J.; Humphreys, C. J.; Oliver, R. A. [Department of Materials Science and Metallurgy, University of Cambridge, 22 Charles Babbage Road, Cambridge CB3 0FS (United Kingdom); Davies, M. J.; Dawson, P. [Photon Science Institute, School of Physics and Astronomy, Alan Turing Building, University of Manchester, Manchester M13 9PL (United Kingdom); Kovács, A.; Dunin-Borkowski, R. E. [Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons, Forschungszentrum Jülich GmbH, Leo-Brandt- Straße, D-52425 Jülich (Germany); Williams, T.; Etheridge, J. [Monash Centre for Electron Microscopy, Monash University, Clayton Campus, VIC 3800 (Australia); Hopkins, M. A.; Allsopp, D. W. E. [Department of Electronic and Electrical Engineering, University of Bath, Bath BA2 7AY (United Kingdom)

    2014-09-15

    The impact of trench defects in blue InGaN/GaN light emitting diodes (LEDs) has been investigated. Two mechanisms responsible for the structural degradation of the multiple quantum well (MQW) active region were identified. It was found that during the growth of the p-type GaN capping layer, loss of part of the active region enclosed within a trench defect occurred, affecting the top-most QWs in the MQW stack. Indium platelets and voids were also found to form preferentially at the bottom of the MQW stack. The presence of high densities of trench defects in the LEDs was found to relate to a significant reduction in photoluminescence and electroluminescence emission efficiency, for a range of excitation power densities and drive currents. This reduction in emission efficiency was attributed to an increase in the density of non-radiative recombination centres within the MQW stack, believed to be associated with the stacking mismatch boundaries which form part of the sub-surface structure of the trench defects. Investigation of the surface of green-emitting QW structures found a two decade increase in the density of trench defects, compared to its blue-emitting counterpart, suggesting that the efficiency of green-emitting LEDs may be strongly affected by the presence of these defects. Our results are therefore consistent with a model that the “green gap” problem might relate to localized strain relaxation occurring through defects.

  14. The impact of trench defects in InGaN/GaN light emitting diodes and implications for the “green gap” problem

    International Nuclear Information System (INIS)

    Massabuau, F. C.-P.; Oehler, F.; Pamenter, S. K.; Thrush, E. J.; Kappers, M. J.; Humphreys, C. J.; Oliver, R. A.; Davies, M. J.; Dawson, P.; Kovács, A.; Dunin-Borkowski, R. E.; Williams, T.; Etheridge, J.; Hopkins, M. A.; Allsopp, D. W. E.

    2014-01-01

    The impact of trench defects in blue InGaN/GaN light emitting diodes (LEDs) has been investigated. Two mechanisms responsible for the structural degradation of the multiple quantum well (MQW) active region were identified. It was found that during the growth of the p-type GaN capping layer, loss of part of the active region enclosed within a trench defect occurred, affecting the top-most QWs in the MQW stack. Indium platelets and voids were also found to form preferentially at the bottom of the MQW stack. The presence of high densities of trench defects in the LEDs was found to relate to a significant reduction in photoluminescence and electroluminescence emission efficiency, for a range of excitation power densities and drive currents. This reduction in emission efficiency was attributed to an increase in the density of non-radiative recombination centres within the MQW stack, believed to be associated with the stacking mismatch boundaries which form part of the sub-surface structure of the trench defects. Investigation of the surface of green-emitting QW structures found a two decade increase in the density of trench defects, compared to its blue-emitting counterpart, suggesting that the efficiency of green-emitting LEDs may be strongly affected by the presence of these defects. Our results are therefore consistent with a model that the “green gap” problem might relate to localized strain relaxation occurring through defects.

  15. In-situ volumetric topography of IC chips for defect detection using infrared confocal measurement with active structured light

    International Nuclear Information System (INIS)

    Chen, Liang-Chia; Le, Manh-Trung; Phuc, Dao Cong; Lin, Shyh-Tsong

    2014-01-01

    The article presents the development of in-situ integrated circuit (IC) chip defect detection techniques for automated clipping detection by proposing infrared imaging and full-field volumetric topography. IC chip inspection, especially held during or post IC packaging, has become an extremely critical procedure in IC fabrication to assure manufacturing quality and reduce production costs. To address this, in the article, microscopic infrared imaging using an electromagnetic light spectrum that ranges from 0.9 to 1.7 µm is developed to perform volumetric inspection of IC chips, in order to identify important defects such as silicon clipping, cracking or peeling. The main difficulty of infrared (IR) volumetric imaging lies in its poor image contrast, which makes it incapable of achieving reliable inspection, as infrared imaging is sensitive to temperature difference but insensitive to geometric variance of materials, resulting in difficulty detecting and quantifying defects precisely. To overcome this, 3D volumetric topography based on 3D infrared confocal measurement with active structured light, as well as light refractive matching principles, is developed to detect defects the size, shape and position of defects in ICs. The experimental results show that the algorithm is effective and suitable for in-situ defect detection of IC semiconductor packaging. The quality of defect detection, such as measurement repeatability and accuracy, is addressed. Confirmed by the experimental results, the depth measurement resolution can reach up to 0.3 µm, and the depth measurement uncertainty with one standard deviation was verified to be less than 1.0% of the full-scale depth-measuring range. (paper)

  16. Computer simulation and implementation of defected ground structure on a microstrip antenna

    Science.gov (United States)

    Adrian, H.; Rambe, A. H.; Suherman

    2018-03-01

    Defected Ground Structure (DGS) is a method reducing etching area on antenna ground to form desirable antenna’s ground field. This paper reports the method impact on microstrip antennas working on 1800 and 2400 MHz. These frequencies are important as many radio network applications such mobile phones and wireless devices working on these channels. The assessments were performed by simulating and fabricating the evaluated antennas. Both simulation data and implementation measurements show that DGS successfully improves antenna performances by increasing bandwidth up to 19%, reducing return loss up to 109% and increasing gain up to 33%.

  17. Indoor footstep localization from structural dynamics instrumentation

    Science.gov (United States)

    Poston, Jeffrey D.; Buehrer, R. Michael; Tarazaga, Pablo A.

    2017-05-01

    Measurements from accelerometers originally deployed to measure a building's structural dynamics can serve a new role: locating individuals moving within a building. Specifically, this paper proposes measurements of footstep-generated vibrations as a novel source of information for localization. The complexity of wave propagation in a building (e.g., dispersion and reflection) limits the utility of existing algorithms designed to locate, for example, the source of sound in a room or radio waves in free space. This paper develops enhancements for arrival time determination and time difference of arrival localization in order to address the complexities posed by wave propagation within a building's structure. Experiments with actual measurements from an instrumented public building demonstrate the potential of locating footsteps to sub-meter accuracy. Furthermore, this paper explains how to forecast performance in other buildings with different sensor configurations. This localization capability holds the potential to assist public safety agencies in building evacuation and incidence response, to facilitate occupancy-based optimization of heating or cooling and to inform facility security.

  18. Using the methods of radiospectroscopy (EPR, NMR) to study the nature of the defect structure of solid solutions based on lead zirconate titanate (PZT).

    Science.gov (United States)

    Bykov, Igor; Zagorodniy, Yuriy; Yurchenko, Lesya; Korduban, Alexander; Nejezchleb, Karel; Trachevsky, Vladimir; Dimza, Vilnis; Jastrabik, Lubomir; Dejneka, Alexander

    2014-08-01

    The nature of intrinsic and impurity point defects in lead zirconate titanate (PZT) ceramics has been explored. Using electron paramagnetic resonance (EPR), nuclear magnetic resonance (NMR), and X-ray photoelectron spectroscopy (XPS) methods, several impurity sites have been identified in the materials, including the Fe(3+)-oxygen vacancy (VO) complex and Pb ions. Both of these centers are incorporated into the PZT lattice. The Fe(3+) –VО paramagnetic complex serves as a sensitive probe of the local crystal field in the ceramic; the symmetry of this defect roughly correlates with PZT phase diagram as the composition is varied from PbTiO3 to PbZrO3. NMR spectra (207)Pb in PbTiO3, PbZrO3, and PZT with iron content from 0 to 0.4 wt% showed that increasing the iron concentration leads to a distortion of the crystal structure and to improvement of the electrophysical parameters of the piezoceramics. This is due to the formation of a phase which has a higher symmetry, but at high concentrations of iron (>0.4 wt%), it leads to sharp degradation of electrophysical parameters.

  19. Stochastic annealing simulations of defect interactions among subcascades

    Energy Technology Data Exchange (ETDEWEB)

    Heinisch, H.L. [Pacific Northwest National Lab., Richland, WA (United States); Singh, B.N.

    1997-04-01

    The effects of the subcascade structure of high energy cascades on the temperature dependencies of annihilation, clustering and free defect production are investigated. The subcascade structure is simulated by closely spaced groups of lower energy MD cascades. The simulation results illustrate the strong influence of the defect configuration existing in the primary damage state on subsequent intracascade evolution. Other significant factors affecting the evolution of the defect distribution are the large differences in mobility and stability of vacancy and interstitial defects and the rapid one-dimensional diffusion of small, glissile interstitial loops produced directly in cascades. Annealing simulations are also performed on high-energy, subcascade-producing cascades generated with the binary collision approximation and calibrated to MD results.

  20. Left-right correlation in coupled F-center defects.

    Science.gov (United States)

    Janesko, Benjamin G

    2016-08-07

    This work explores how left-right correlation, a textbook problem in electronic structure theory, manifests in a textbook example of electrons trapped in crystal defects. I show that adjacent F-center defects in lithium fluoride display symptoms of "strong" left-right correlation, symptoms similar to those seen in stretched H2. Simulations of UV/visible absorption spectra qualitatively fail to reproduce experiment unless left-right correlation is taken into account. This is of interest to both the electronic structure theory and crystal-defect communities. Theorists have a new well-behaved system to test their methods. Crystal-defect groups are cautioned that the approximations that successfully model single F-centers may fail for adjacent F-centers.

  1. Left-right correlation in coupled F-center defects

    International Nuclear Information System (INIS)

    Janesko, Benjamin G.

    2016-01-01

    This work explores how left-right correlation, a textbook problem in electronic structure theory, manifests in a textbook example of electrons trapped in crystal defects. I show that adjacent F-center defects in lithium fluoride display symptoms of “strong” left-right correlation, symptoms similar to those seen in stretched H 2 . Simulations of UV/visible absorption spectra qualitatively fail to reproduce experiment unless left-right correlation is taken into account. This is of interest to both the electronic structure theory and crystal-defect communities. Theorists have a new well-behaved system to test their methods. Crystal-defect groups are cautioned that the approximations that successfully model single F-centers may fail for adjacent F-centers.

  2. Norwegian Pitched Roof Defects

    Directory of Open Access Journals (Sweden)

    Lars Gullbrekken

    2016-06-01

    Full Text Available The building constructions investigated in this work are pitched wooden roofs with exterior vertical drainpipes and wooden load-bearing system. The aim of this research is to further investigate the building defects of pitched wooden roofs and obtain an overview of typical roof defects. The work involves an analysis of the building defect archive from the research institute SINTEF Building and Infrastructure. The findings from the SINTEF archive show that moisture is a dominant exposure factor, especially in roof constructions. In pitched wooden roofs, more than half of the defects are caused by deficiencies in design, materials, or workmanship, where these deficiencies allow moisture from precipitation or indoor moisture into the structure. Hence, it is important to increase the focus on robust and durable solutions to avoid defects both from exterior and interior moisture sources in pitched wooden roofs. Proper design of interior ventilation and vapour retarders seem to be the main ways to control entry from interior moisture sources into attic and roof spaces.

  3. Cooperative RNP assembly: Complementary rescue of structural defects by protein and RNA subunits of archaeal RNase P

    Science.gov (United States)

    Chen, Wen-Yi; Xu, Yiren; Cho, I-Ming; Oruganti, Sri Vidya; Foster, Mark P.; Gopalan, Venkat

    2011-01-01

    RNase P is a ribonucleoprotein (RNP) complex that utilizes a Mg2+-dependent RNA catalyst to cleave the 5′-leader of precursor tRNAs (pre-tRNAs) and generate mature tRNAs. The bacterial RNase P protein (RPP) aids RNase P RNA (RPR) catalysis by promoting substrate binding, Mg2+ coordination, and product release. Archaeal RNase P comprises an RPR and at least four RPPs, which have eukaryal homologs and function as two binary complexes (POP5•RPP30 and RPP21•RPP29). In this study, we employed a previously characterized substrate-enzyme conjugate [pre-tRNATyr-Methanocaldococcus jannaschii (Mja) RPR] to investigate the functional role of a universally conserved uridine in a bulge-helix structure in archaeal RPRs. Deletion of this bulged uridine resulted in an 80-fold decrease in the self-cleavage rate of pre-tRNATyr-MjaΔU RPR compared to the wildtype, and this defect was partially ameliorated upon addition of either RPP pair. The catalytic defect in the archaeal mutant RPR mirrors that reported in a bacterial RPR and highlights a parallel in their active sites. Furthermore, an N-terminal deletion mutant of Pyrococcus furiosus (Pfu) RPP29 that is defective in assembling with its binary partner RPP21, as assessed by isothermal titration calorimetry and NMR spectroscopy, is functional when reconstituted with the cognate Pfu RPR. Collectively, these results indicate that archaeal RPPs are able to compensate for structural defects in their cognate RPR and vice-versa, and provide striking examples of the cooperative subunit interactions critical for driving archaeal RNase P towards its functional conformation. (236 words) PMID:21683084

  4. Influence of Structural Defects on Biomineralized ZnS Nanoparticle Dissolution: An In-Situ Electron Microscopy Study

    Energy Technology Data Exchange (ETDEWEB)

    Eskelsen, Jeremy R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Environmental Sciences Division; Xu, Jie [Univ. of Texas, El Paso, TX (United States). Geological Sciences; Chiu, Michelle Y. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Environmental Sciences Division; Moon, Ji-Won [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Biosciences Division; Wilkins, Branford O. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Environmental Sciences Division; Graham, David E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Biosciences Division; Gu, Baohua [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Environmental Sciences Division; Pierce, Eric M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Environmental Sciences Division

    2017-12-19

    The dissolution of metal sulfides, such as ZnS, plays an important role in the fate of metal contaminants in the environment. Here we have examined the dissolution behavior of ZnS nanoparticles synthesized via several abiotic and biological pathways. Specifically, the biogenic ZnS nanoparticles were produced by an anaerobic, metal-reducing bacterium Thermoanaerobacter sp. X513 in a Zn-amended, thiosulfate-containing growth medium, whereas the abiogenic ZnS nanoparticles were produced by mixing an aqueous Zn solution with either H2S-rich gas or Na2S solution. For biogenic synthesis, we prepared two types of samples, in the presence or absence of trace silver (Ag). The size distribution, crystal structure, aggregation behavior, and internal defects of the synthesized ZnS nanoparticles were primarily examined using high-resolution transmission electron microscopy coupled with X-ray energy dispersive spectroscopy. The characterization results show that both the biogenic and abiogenic samples were dominantly composed of sphalerite. In the absence of Ag, the biogenic ZnS nanoparticles were significantly larger (i.e., ~10 nm) than the abiogenic ones (i.e., ~3–5 nm) and contained structural defects (e.g., twins and stacking faults). The presence of trace Ag showed a restraining effect on the particle size of the biogenic ZnS, resulting in quantum-dot-sized nanoparticles (i.e., ~3 nm). In situ dissolution experiments for the synthesized ZnS were conducted with a liquid-cell coupled to a transmission electron microscope (LCTEM), and the primary factors (i.e., the presence or absence structural defects) were evaluated for their effects on the dissolution behavior using the biogenic and abiogenic ZnS nanoparticle samples with the largest average particle size. Analysis of the dissolution results (i.e., change in particle radius with time) using the Kelvin equation shows that the defect-bearing biogenic ZnS nanoparticles (γ = 0.799 J/m2) have

  5. Phosphorous–vacancy–oxygen defects in silicon

    KAUST Repository

    Wang, Hao

    2013-07-30

    Electronic structure calculations employing the hybrid functional approach are used to gain fundamental insight in the interaction of phosphorous with oxygen interstitials and vacancies in silicon. It recently has been proposed, based on a binding energy analysis, that phosphorous–vacancy–oxygen defects may form. In the present study we investigate the stability of this defect as a function of the Fermi energy for the possible charge states. Spin polarization is found to be essential for the charge neutral defect.

  6. Topological Defects in a Living Nematic Ensnare Swimming Bacteria

    Science.gov (United States)

    Genkin, Mikhail M.; Sokolov, Andrey; Lavrentovich, Oleg D.; Aranson, Igor S.

    2017-01-01

    Active matter exemplified by suspensions of motile bacteria or synthetic self-propelled particles exhibits a remarkable propensity to self-organization and collective motion. The local input of energy and simple particle interactions often lead to complex emergent behavior manifested by the formation of macroscopic vortices and coherent structures with long-range order. A realization of an active system has been conceived by combining swimming bacteria and a lyotropic liquid crystal. Here, by coupling the well-established and validated model of nematic liquid crystals with the bacterial dynamics, we develop a computational model describing intricate properties of such a living nematic. In faithful agreement with the experiment, the model reproduces the onset of periodic undulation of the director and consequent proliferation of topological defects with the increase in bacterial concentration. It yields a testable prediction on the accumulation of bacteria in the cores of +1 /2 topological defects and depletion of bacteria in the cores of -1 /2 defects. Our dedicated experiment on motile bacteria suspended in a freestanding liquid crystalline film fully confirms this prediction. Our findings suggest novel approaches for trapping and transport of bacteria and synthetic swimmers in anisotropic liquids and extend a scope of tools to control and manipulate microscopic objects in active matter.

  7. Lithium niobate. Defects, photorefraction and ferroelectric switching

    Energy Technology Data Exchange (ETDEWEB)

    Volk, Tatyana [Russian Academy of Sciences, Inst. for Crystallography, Moscow (Russian Federation); Woehlecke, Manfred [Osnabrueck Univ. (Germany). Fachbereich Physik

    2008-07-01

    The book presents the current state of studies of point defects, both intrinsic and extrinsic (impurities, radiation centers, etc.), in LiNbO{sub 3}. The contribution of intrinsic defects to photoinduced charge transport, i.e. to the photorefraction, is explained. The photorefractive and optical properties of LiNbO{sub 3} crystals with different stoichiometry and of those doped with so-called ''optical-damage resistant'' impurities controlling the intrinsic defect structure are described in detail. Applications included are to the problem of non-erasable recording of photorefractive holograms in LiNbO{sub 3} and the current situation of studies in the ferroelectric switching and domain structure of LiNbO{sub 3}, as well as the creation of periodically-poled structures for the optical frequency conversion. (orig.)

  8. Investigation of intrinsic defect magnetic properties in wurtzite ZnO materials

    Science.gov (United States)

    Fedorov, A. S.; Visotin, M. A.; Kholtobina, A. S.; Kuzubov, A. A.; Mikhaleva, N. S.; Hsu, Hua Shu

    2017-10-01

    Theoretical and experimental investigations of the ferromagnetism induced by intrinsic defects inside wurtzite zinc oxide structures are performed using magnetic field-dependent circular dichroism (MCD-H), direct magnetization measurement (M-H) by superconducting quantum interference device (SQUID) as well as by generalized gradient density functional theory (GGA-DFT). To investigate localized magnetic moments of bulk material intrinsic defects - vacancies, interstitial atoms and Frenkel defects, various-size periodic supercells are calculated. It is shown that oxygen interstitial atoms (Oi) or zinc vacancies (Znv) generate magnetic moments of 1,98 и 1,26 μB respectively, however, the magnitudes are significantly reduced when the distance between defects increases. At the same time, the magnetic moments of oxygen Frenkel defects are large ( 1.5-1.8 μB) and do not depend on the distance between the defects. It is shown that the origin of the induced ferromagnetism in bulk ZnO is the extra spin density on the oxygen atoms nearest to the defect. Also dependence of the magnetization of ZnO (10 1 ̅ 0) and (0001) thin films on the positions of Oi and Znv in subsurface layers were investigated and it is shown that the magnetic moments of both defects are significantly different from the values inside bulk material. In order to check theoretical results regarding the defect induced ferromagnetism in ZnO, two thin films doped by carbon (C) and having Zn interstitials and oxygen vacancies were prepared and annealed in vacuum and air, respectively. According to the MCD-H and M-H measurements, the film, which was annealed in air, exhibits a ferromagnetic behavior, while the other does not. One can assume annealing of ZnO in vacuum should create oxygen vacancies or Zn interstitial atoms. At that annealing of the second C:ZnO film in air leads to essential magnetization, probably by annihilation of oxygen vacancies, formation of interstitial oxygen atoms or zinc vacancies

  9. Distortion of Local Atomic Structures in Amorphous Ge-Sb-Te Phase Change Materials

    Science.gov (United States)

    Hirata, A.; Ichitsubo, T.; Guan, P. F.; Fujita, T.; Chen, M. W.

    2018-05-01

    The local atomic structures of amorphous Ge-Sb-Te phase-change materials have yet to be clarified and the rapid crystal-amorphous phase change resulting in distinct optical contrast is not well understood. We report the direct observation of local atomic structures in amorphous Ge2Sb2Te5 using "local" reverse Monte Carlo modeling dedicated to an angstrom-beam electron diffraction analysis. The results corroborated the existence of local structures with rocksalt crystal-like topology that were greatly distorted compared to the crystal symmetry. This distortion resulted in the breaking of ideal octahedral atomic environments, thereby forming local disordered structures that basically satisfied the overall amorphous structure factor. The crystal-like distorted octahedral structures could be the main building blocks in the formation of the overall amorphous structure of Ge-Sb-Te.

  10. Ab initio study of point defects in PbSe and PbTe: Bulk and nanowire

    Energy Technology Data Exchange (ETDEWEB)

    Wrasse, E. O. [Instituto de Física, Universidade Federal de Uberlândia, 38408-100, Uberlândia, MG, Brazil and Departamento de Física, Universidade Federal de Santa Maria, 97105-900, Santa Maria, RS (Brazil); Venezuela, P. [Instituto de Física, Universidade Federal Fluminense, 24210-346, Niteroi, RJ (Brazil); Baierle, R. J., E-mail: rbaierle@smail.ufsm.br [Departamento de Física, Universidade Federal de Santa Maria, 97105-900, Santa Maria, RS (Brazil)

    2014-11-14

    First principles investigations, within the spin-polarized density functional theory, are performed to study energetic stability and electronic properties of point defects (vacancies and antisites) in PbSe and PbTe: bulk and nanowire (NW). Our results show that the energetic stability of these defects is ruled by relaxation process. These defects have lower formation energies in the nanowire structures as compared to the bulk, being more stable in the surface of the NWs. We also show that in the bulk system only one charge state is stable, otherwise, due to the larger band gaps, more than one charge state may be stable in the NWs. In addition, we have investigated how the presence of intrinsic defects affects the electronic properties of bulk and NW systems. Vacancies give rise to new electronic states near to the edges of the valence and conduction bands while the energetic position of the electronic states from antisites depends on the charge state, being localized inside the band gap or near the edges of the valence or conduction bands. We discuss how these changes in the electronic properties due to intrinsic defects may affect the thermoelectric properties of PbSe and PbTe NWs.

  11. Discriminating a deep defect from shallow acceptors in supercell calculations: gallium antisite in GaAs

    Science.gov (United States)

    Schultz, Peter

    To make reliable first principles predictions of defect energies in semiconductors, it is crucial to discriminate between effective-mass-like defects--for which existing supercell methods fail--and deep defects--for which density functional theory calculations can yield reliable predictions of defect energy levels. The gallium antisite GaAs is often associated with the 78/203 meV shallow double acceptor in Ga-rich gallium arsenide. Within a framework of level occupation patterns, analyses of structure and spin stabilization can be used within a supercell approach to distinguish localized deep defect states from shallow acceptors such as BAs. This systematic analysis determines that the gallium antisite is inconsistent with a shallow state, and cannot be the 78/203 shallow double acceptor. The properties of the Ga antisite in GaAs are described, predicting that the Ga antisite is a deep double acceptor and has two donor states, one of which might be accidentally shallow. -- Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.

  12. Local electromagnetic waves in layered superconductors

    International Nuclear Information System (INIS)

    Gvozdikov, V.M.; Vega-Monroy, R.

    1999-01-01

    A dispersion equation for electromagnetic waves localized on a defect layer of a layered superconductor is obtained in the frame of a model which neglects electron hopping between layers but assumes an arbitrary current-current response function within the layers. The defect layer differs from the rest of the layers by density and mass of charge carriers. It is shown that near the critical temperature in the London limit the local mode lies within the superconducting gap and has a wave vector threshold depending on the layered crystal and defect layer parameters. In the case of highly anisotropic layered superconductors, like Bi- or Tl-based high-T c cuprates, the local mode exists within a narrow range of positive variations of the mass and charge carriers. (author)

  13. Crack initiation and growth in welded structures

    International Nuclear Information System (INIS)

    Assire, A.

    2000-01-01

    This work concerns the remaining life assessment of a structure containing initial defects of manufacturing. High temperature crack initiation and growth are studied for austenitic stainless steels, and defect assessment methods are improved in order to take into account welded structures. For these one, the probability to have a defect is significant. Two kinds of approaches are commonly used for defect assessment analysis. Fracture mechanics global approach with an energetic criterion, and local approach with a model taking into account the physical damage mechanism. For both approaches mechanical fields (stress and strain) have to be computed everywhere within the structure. Then, Finite Element computation is needed. The first part of the thesis concerns the identification of non linear kinematic and isotropic constitutive models. A pseudo-analytical method is proposed for a 'Two Inelastic Strain' model. This method provides a strategy of identification with a mechanical meaning, and this enables to associate each parameter to a physical phenomenon. Existing identifications are improved for cyclic plasticity and creep on a large range of stress levels. The second part concerns high temperature crack initiation and growth in welded structures. Finite Element analysis on plate and tube experimental configuration enable to understand the phenomenons of interaction between base metal and weld metal under mechanical and thermal loading. Concerning global approach, criteria based on C* parameter (Rice integral for visco-plasticity) are used. Finite Element computations underline the fact that for a defect located in the weld metal, C* values strongly depend on the base metal creep strain rate, because widespread visco-plasticity is located in both metals. A simplified method, based on the reference stress approach, is proposed and validated with Finite Element results. Creep crack growth simplified assessment is a quite good validation of the experimental results

  14. Vacancy-type defects in Al2O3/GaN structure probed by monoenergetic positron beams

    Science.gov (United States)

    Uedono, Akira; Nabatame, Toshihide; Egger, Werner; Koschine, Tönjes; Hugenschmidt, Christoph; Dickmann, Marcel; Sumiya, Masatomo; Ishibashi, Shoji

    2018-04-01

    Defects in the Al2O3(25 nm)/GaN structure were probed by using monoenergetic positron beams. Al2O3 films were deposited on GaN by atomic layer deposition at 300 °C. Temperature treatment above 800 °C leads to the introduction of vacancy-type defects in GaN due to outdiffusion of atoms from GaN into Al2O3. The width of the damaged region was determined to be 40-50 nm from the Al2O3/GaN interface, and some of the vacancies were identified to act as electron trapping centers. In the Al2O3 film before and after annealing treatment at 300-900 °C, open spaces with three different sizes were found to coexist. The density of medium-sized open spaces started to decrease above 800 °C, which was associated with the interaction between GaN and Al2O3. Effects of the electron trapping/detrapping processes of interface states on the flat band voltage and the defects in GaN were also discussed.

  15. Structural and defects induced phenomena in γ-rays irradiated 6H-SiC

    International Nuclear Information System (INIS)

    Sibuyi, P.; Ngom, B.D.; Kotsedi, L.

    2016-01-01

    Damages and/or defects induced by γ-rays irradiation on 6H-SiC single crystals in channeled configuration towards 〈006〉/〈0012〉 crystallographic directions are reported in the range of 0–1200 kGy. Atomic force microscopy, X-rays diffraction, Raman and photoluminescence investigations were used to obtain a comprehensive set of informations on the nature and population distribution of the induced defects. Primarily, there was no carbon clusterization upon γ-rays irradiation and hence no formation of others SiC polytypes. In contrast, the γ-rays irradiation has induced an increase of the surface roughness at higher doses, which indicates a structural degradation. Larger doses induced an emergence of deeper shallow traps at energies greater than 350 meV below the bandgap. - Highlights: • No formation of others SiC polytypes. • The gamma rays irradiation has induced a slight surface amorphization. • A re-crystallization at lower and higher doses is noticed. • Larger doses induced a substantial internal stress.

  16. Treatment of osteomyelitis defects by a vancomycin-loaded gelatin/β-tricalcium phosphate composite scaffold

    Science.gov (United States)

    Zhou, J.; Zhou, X. G.; Wang, J. W.; Zhou, H.; Dong, J.

    2018-01-01

    Objective In the present study, we aimed to assess whether gelatin/β-tricalcium phosphate (β-TCP) composite porous scaffolds could be used as a local controlled release system for vancomycin. We also investigated the efficiency of the scaffolds in eliminating infections and repairing osteomyelitis defects in rabbits. Methods The gelatin scaffolds containing differing amounts of of β-TCP (0%, 10%, 30% and 50%) were prepared for controlled release of vancomycin and were labelled G-TCP0, G-TCP1, G-TCP3 and G-TCP5, respectively. The Kirby-Bauer method was used to examine the release profile. Chronic osteomyelitis models of rabbits were established. After thorough debridement, the osteomyelitis defects were implanted with the scaffolds. Radiographs and histological examinations were carried out to investigate the efficiency of eliminating infections and repairing bone defects. Results The prepared gelatin/β-TCP scaffolds exhibited a homogeneously interconnected 3D porous structure. The G-TCP0 scaffold exhibited the longest duration of vancomycin release with a release duration of eight weeks. With the increase of β-TCP contents, the release duration of the β-TCP-containing composite scaffolds was decreased. The complete release of vancomycin from the G-TCP5 scaffold was achieved within three weeks. In the treatment of osteomyelitis defects in rabbits, the G-TCP3 scaffold showed the most efficacious performance in eliminating infections and repairing bone defects. Conclusions The composite scaffolds could achieve local therapeutic drug levels over an extended duration. The G-TCP3 scaffold possessed the optimal porosity, interconnection and controlled release performance. Therefore, this scaffold could potentially be used in the treatment of chronic osteomyelitis defects. Cite this article: J. Zhou, X. G. Zhou, J. W. Wang, H. Zhou, J. Dong. Treatment of osteomyelitis defects by a vancomycin-loaded gelatin/β-tricalcium phosphate composite scaffold. Bone Joint Res

  17. Defect properties from X-ray scattering experiments

    International Nuclear Information System (INIS)

    Peisl, H.

    1976-01-01

    Lattice distortions due to defects in crystals can be studied most directly by elastic X-ray or neutron scattering experiments. The 'size' of the defects can be determined from the shift of the Bragg reflections. Defect induced diffuse scattering intensity close to and between Bragg reflections gives information on the strength and symmetry of the distortion fields and yields the atomic structure of point defects (interstitials, vacancies, small aggregates). Diffuse scattering is a very sensitive method to decide whether defects are present as isolated point defects or have formed aggregates. X-ray scattering has been used to study defects produced in various ionic crystals by γ- and neutron irradiation. After an introduction to the principles of the method the experimental results will be reviewed and discussed in some detail. (orig.) [de

  18. Compton imaging tomography for nondestructive evaluation of large multilayer aircraft components and structures

    Science.gov (United States)

    Romanov, Volodymyr; Grubsky, Victor; Zahiri, Feraidoon

    2017-02-01

    We present a novel NDT/NDE tool for non-contact, single-sided 3D inspection of aerospace components, based on Compton Imaging Tomography (CIT) technique, which is applicable to large, non-uniform, and/or multilayer structures made of composites or lightweight metals. CIT is based on the registration of Compton-scattered X-rays, and permits the reconstruction of the full 3D (tomographic) image of the inspected objects. Unlike conventional computerized tomography (CT), CIT requires only single-sided access to objects, and therefore can be applied to large structures without their disassembly. The developed tool provides accurate detection, identification, and precise 3D localizations and measurements of any possible internal and surface defects (corrosions, cracks, voids, delaminations, porosity, and inclusions), and also disbonds, core and skin defects, and intrusion of foreign fluids (e.g., fresh and salt water, oil) inside of honeycomb sandwich structures. The NDE capabilities of the system were successfully demonstrated on various aerospace structure samples provided by several major aerospace companies. Such a CIT-based tool can detect and localize individual internal defects with dimensions about 1-2 mm3, and honeycomb disbond defects less than 6 mm by 6 mm area with the variations in the thickness of the adhesive by 100 m. Current maximum scanning speed of aircraft/spacecraft structures is about 5-8 min/ft2 (50-80 min/m2).

  19. Lattice vibrations and thermal properties of carbon nitride with defect ZnS structure from first-principles calculations

    NARCIS (Netherlands)

    Fang, C.M.; Wijs, G.A. de

    2004-01-01

    The phonon spectrum Of C3N4 with defect zincblende-type structure (deltaC(3)N(4)) was calculated by density functional theory (DFT) techniques. The results permit an assessment of important mechanical and thermodynamical properties such as the bulk modulus, lattice specific heat, vibration energy,

  20. Analysis of the local structure of InN with a bandgap energy of 0.8 and 1.9 eV and annealed InN using X-ray absorption fine structure measurements

    Energy Technology Data Exchange (ETDEWEB)

    Miyajima, Takao [Materials Laboratories, Sony Corporation, 4-14-1 Asahi-cho, Atsugi, Kanagawa 243-0014 (Japan); Kudo, Yoshihiro [Materials Analysis Lab., Sony Corporation, 4-18-1 Okada, Atsugi, Kanagawa 243-0021 (Japan); Wakahara, Akihiro [Deptm. of Electrical and Electronic Engineering, Toyohashi Univ. of Tech., Toyohashi 441-8580 (Japan); Yamaguchi, Tomohiro; Araki, Tsutomu; Nanishi, Yasushi [Deptm. of Photonics, Ritsumeikan Univ., 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577 (Japan)

    2006-06-15

    We compared the local structure around In atoms in microwave-excited MOCVD- and MBE-grown InN film which indicates an absorption edge at 1.9 and 0.8 eV, respectively. The co-ordination numbers of the 1st-nearest neighbor N atoms and the 2nd-nearest neighbor In atoms for MBE-grown InN were n(N)=3.9{+-}0.5 and n(In)=12.4{+-}0.9, which are close to the ideal value of n(N)=4 and n(In)=12 for InN without defects, respectively. By thermal annealing, the structure of MBE-grown InN was changed from InN to In{sub 2}O{sub 3}, and the absorption edge was changed from 0.8 to 3.5 eV. However, the microwave-excited MOCVD-grown InN had no structure of In{sub 2}O{sub 3}, and had the reduced co-ordination numbers of the 2nd-nearest neighbor In atoms of n(In)=10.6-11.7. From these results, we conclude that the origin of the 1.9-eV absorption edge of InN is the imperfections (defects) of the In lattice sites of InN, rather than the generation of In{sub 2}O{sub 3}, which has a bandgap energy of 3.5 eV. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  1. Defect-vectors and path integrals in fracture mechanics

    International Nuclear Information System (INIS)

    Roche, R.L.

    1979-01-01

    It seems necessary to introduce the J integral without hypothesis on material behavior. The aim of this paper is this introduction and its consequences. Successively are presented: introduction to defect-vectors and defect-momentum, definition of J(K) and J(L) integrals, equilibrium and energy momentum tensor, energetic signification of the path J and L integrals, and local aspects of the criteria based on path integrals [fr

  2. A new fundamental hydrogen defect in alkali halides

    International Nuclear Information System (INIS)

    Morato, S.P.; Luety, F.

    1978-01-01

    Atom hydrogen in neutral (H 0 ) and negative (H - ) form on substitutional and interstitial lattice sites gives rise to well characterized model defects in alkali-halides (U,U 1 ,U 2 ,U 3 centers), which have been extensively investigated in the past. When studying the photo-decomposition of OH - defects, a new configuration of atomic charged hidrogen was discovered, which can be produced in large quantities in the crystal and is apparently not connected to any other impurity. This new hidrogen defect does not show any pronounced electronic absorption, but displays a single sharp local mode band (at 1114cm -1 in KCl) with a perfect isotope shift. The defect can be produced by various UV or X-ray techniques in crystais doped with OH - , Sh - or H - defects. A detailed study of its formation kinetics at low temperature shows that it is primarily formed by the reaction of a mobile CI 2 - crowdion (H-center) with hidrogen defects [pt

  3. Intrinsic electronic defects and multiple-atom processes in the oxidic semiconductor Ga2O3

    Science.gov (United States)

    Schmeißer, Dieter; Henkel, Karsten

    2018-04-01

    We report on the electronic structure of gallium oxide (Ga2O3) single crystals as studied by resonant photoelectron spectroscopy (resPES). We identify intrinsic electronic defects that are formed by mixed-atomic valence states. We differentiate three coexisting defect states that differ in their electronic correlation energy and their spatial localization lengths. Their relative abundance is described by a fractional ionicity with covalent and ionic bonding contributions. For Ga2O3, our analyses of the resPES data enable us to derive two main aspects: first, experimental access is given to determine the ionicity based on the original concepts of Pauling and Phillips. Second, we report on multi-atomic energy loss processes in the Ga2p core level and X-ray absorption data. The two experimental findings can be explained consistently in the same context of mixed-atomic valence states and intrinsic electronic defects.

  4. Contribute to quantitative identification of casting defects based on computer analysis of X-ray images

    Directory of Open Access Journals (Sweden)

    Z. Ignaszak

    2007-12-01

    Full Text Available The forecast of structure and properties of casting is based on results of computer simulation of physical processes which are carried out during the casting processes. For the effective using of simulation system it is necessary to validate mathematica-physical models describing process of casting formation and the creation of local discontinues, witch determinate the casting properties.In the paper the proposition for quantitative validation of VP system using solidification casting defects by information sources of II group (methods of NDT was introduced. It was named the VP/RT validation (virtual prototyping/radiographic testing validation. Nowadays identification of casting defects noticeable on X-ray images bases on comparison of X-ray image of casting with relates to the ASTM. The results of this comparison are often not conclusive because based on operator’s subjective assessment. In the paper the system of quantitative identification of iron casting defects on X-ray images and classification this defects to ASTM class is presented. The methods of pattern recognition and machine learning were applied.

  5. Point defects as a test ground for the local density approximation +U theory: Mn, Fe, and V{sub Ga} in GaN

    Energy Technology Data Exchange (ETDEWEB)

    Volnianska, O.; Zakrzewski, T. [Institute of Physics PAS, 02-668 Warsaw (Poland); Boguslawski, P. [Institute of Physics PAS, 02-668 Warsaw (Poland); Institute of Physics, Kazimierz Wielki University, 85-072 Bydgoszcz (Poland)

    2014-09-21

    Electronic structure of the Mn and Fe ions and of the gallium vacancy V{sub Ga} in GaN was analysed within the GGA + U approach. First, the +U term was treated as a free parameter, and applied to p(N), d(Mn), and d(Fe). The band gap of GaN is reproduced for U(N) ≈ 4 eV. The electronic structure of defect states was found to be more sensitive to the value of U than that of the bulk states. Both the magnitude and the sign of the U-induced energy shifts of levels depend on occupancies, and thus on the defect charge state. The energy shifts also depend on the hybridization between defect and host states, and thus are different for different level symmetries. In the case of V{sub Ga}, these effects lead to stabilization of spin polarization and the “negative-U{sub eff}” behavior. The values of Us were also calculated using the linear response approach, which gives U(Fe) ≈ U(Mn) ≈ 4 eV. This reproduces well the results of previous hybrid functionals calculations. However, the best agreement with the experimental data is obtained for vanishing or even negative U(Fe) and U(Mn)

  6. Influence of irradiation on defects creation in pin diode structure

    International Nuclear Information System (INIS)

    Sopko, V.; Dammer, J.; Sopko, B.; Chren, D.

    2012-01-01

    In this paper the manufacture of type S1 PIN diodes and radiation defect induce by fast neutrons were studied. A shift from VV"- to VV (neutral) is observed in neutron irradiated diodes. From the results obtained, an explanation that clearly offers itself is that the nature of the defects produced by irradiation of material exhibiting N type conductivity is different from those for type P material. Given that the experiments were conducted with the same material, i.e., the dopant present in the material remained unchanged, it can be stated that simply by changing the type of conductivity with increasing dose, a different kind of defects is produced, having different activation energies in the forbidden band. All these results are consistent with the ongoing RD 50 experiments at CERN.

  7. Skull defect reconstruction based on a new hybrid level set.

    Science.gov (United States)

    Zhang, Ziqun; Zhang, Ran; Song, Zhijian

    2014-01-01

    Skull defect reconstruction is an important aspect of surgical repair. Historically, a skull defect prosthesis was created by the mirroring technique, surface fitting, or formed templates. These methods are not based on the anatomy of the individual patient's skull, and therefore, the prosthesis cannot precisely correct the defect. This study presented a new hybrid level set model, taking into account both the global optimization region information and the local accuracy edge information, while avoiding re-initialization during the evolution of the level set function. Based on the new method, a skull defect was reconstructed, and the skull prosthesis was produced by rapid prototyping technology. This resulted in a skull defect prosthesis that well matched the skull defect with excellent individual adaptation.

  8. Conference Analysis Report of Assessments on Defect and Damage for a High Temperature Structure

    International Nuclear Information System (INIS)

    Lee, Hyeong Yeon

    2008-11-01

    This report presents the analysis on the state-of-the-art research trends on creep-fatigue damage, defect assessment of high temperature structure, development of heat resistant materials and their behavior at high temperature based on the papers presented in the two international conferences of ASME PVP 2008 which was held in Chicago in July 2008 and CF-5(5th International Conference on Creep, Fatigue and Creep-Fatigue) which was held in Kalpakkam, India in September 2008

  9. Conference Analysis Report of Assessments on Defect and Damage for a High Temperature Structure

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyeong Yeon

    2008-11-15

    This report presents the analysis on the state-of-the-art research trends on creep-fatigue damage, defect assessment of high temperature structure, development of heat resistant materials and their behavior at high temperature based on the papers presented in the two international conferences of ASME PVP 2008 which was held in Chicago in July 2008 and CF-5(5th International Conference on Creep, Fatigue and Creep-Fatigue) which was held in Kalpakkam, India in September 2008.

  10. Tuning the band structure of graphene nanoribbons through defect-interaction-driven edge patterning

    Science.gov (United States)

    Du, Lin; Nguyen, Tam N.; Gilman, Ari; Muniz, André R.; Maroudas, Dimitrios

    2017-12-01

    We report a systematic analysis of pore-edge interactions in graphene nanoribbons (GNRs) and their outcomes based on first-principles calculations and classical molecular-dynamics simulations. We find a strong attractive interaction between nanopores and GNR edges that drives the pores to migrate toward and coalesce with the GNR edges, which can be exploited to form GNR edge patterns that impact the GNR electronic band structure and tune the GNR band gap. Our analysis introduces a viable physical processing strategy for modifying GNR properties by combining defect engineering and thermal annealing.

  11. Steady distribution structure of point defects near crystal-melt interface under pulling stop of CZ Si crystal

    Science.gov (United States)

    Abe, T.; Takahashi, T.; Shirai, K.

    2017-02-01

    In order to reveal a steady distribution structure of point defects of no growing Si on the solid-liquid interface, the crystals were grown at a high pulling rate, which Vs becomes predominant, and the pulling was suddenly stopped. After restoring the variations of the crystal by the pulling-stop, the crystals were then left in prolonged contact with the melt. Finally, the crystals were detached and rapidly cooled to freeze point defects and then a distribution of the point defects of the as-grown crystals was observed. As a result, a dislocation loop (DL) region, which is formed by the aggregation of interstitials (Is), was formed over the solid-liquid interface and was surrounded with a Vs-and-Is-free recombination region (Rc-region), although the entire crystals had been Vs rich in the beginning. It was also revealed that the crystal on the solid-liquid interface after the prolonged contact with the melt can partially have a Rc-region to be directly in contact with the melt, unlike a defect distribution of a solid-liquid interface that has been growing. This experimental result contradicts a hypothesis of Voronkov's diffusion model, which always assumes the equilibrium concentrations of Vs and Is as the boundary condition for distribution of point defects on the growth interface. The results were disscussed from a qualitative point of view of temperature distribution and thermal stress by the pulling-stop.

  12. Strength through structure: visualization and local assessment of the trabecular bone structure

    International Nuclear Information System (INIS)

    Raeth, C; Monetti, R; Bauer, J; Sidorenko, I; Mueller, D; Matsuura, M; Lochmueller, E-M; Zysset, P; Eckstein, F

    2008-01-01

    The visualization and subsequent assessment of the inner human bone structures play an important role for better understanding the disease- or drug-induced changes of bone in the context of osteoporosis giving prospect for better predictions of bone strength and thus of the fracture risk of osteoporotic patients. In this work, we show how the complex trabecular bone structure can be visualized using μCT imaging techniques at an isotropic resolution of 26 μm. We quantify these structures by calculating global and local topological and morphological measures, namely Minkowski functionals (MFs) and utilizing the (an-)isotropic scaling index method (SIM) and by deriving suitable texture measures based on MF and SIM. Using a sample of 151 specimens taken from human vertebrae in vitro, we correlate the texture measures with the mechanically measured maximum compressive strength (MCS), which quantifies the strength of the bone probe, by using Pearson's correlation coefficient. The structure parameters derived from the local measures yield good correlations with the bone strength as measured in mechanical tests. We investigate whether the performance of the texture measures depends on the MCS value by selecting different subsamples according to MCS. Considering the whole sample the results for the newly defined parameters are better than those obtained for the standard global histomorphometric parameters except for bone volume/total volume (BV/TV). If a subsample consisting only of weak bones is analysed, the local structural analysis leads to similar and even better correlations with MCS as compared to BV/TV. Thus, the MF and SIM yield additional information about the stability of the bone especially in the case of weak bones, which corroborates the hypothesis that the bone structure (and not only its mineral mass) constitutes an important component of bone stability.

  13. Dipolar and quadrupolar defects in a transport line

    International Nuclear Information System (INIS)

    Leleux, G.; Nghiem, P.

    1991-01-01

    The defects on a transport line of linear accelerator are studied. A transport line where the elements are influenced by the design or position defects is analyzed. Only dipolar and quadrupolar defects are considered, and the coupling betwen transversal motions are excluded. The data from the literature and those calculated by transfer matrices are compared. The defects on a line are considered from an analytical point of view. Closed optical structures are also studied [fr

  14. Magnetic and optical holonomic manipulation of colloids, structures and topological defects in liquid crystals for characterization of mesoscale self-assembly and dynamics

    Science.gov (United States)

    Varney, Michael C. M.

    Colloidal systems find important applications ranging from fabrication of photonic crystals to direct probing of phenomena encountered in atomic crystals and glasses; topics of great interest for physicists exploring a broad range of scientific, industrial and biomedical fields. The ability to accurately control particles of mesoscale size in various liquid host media is usually accomplished through optical trapping methods, which suffer limitations intrinsic to trap laser intensity and force generation. Other limitations are due to colloid properties, such as optical absorptivity, and host properties, such as viscosity, opacity and structure. Therefore, alternative and/or novel methods of colloidal manipulation are of utmost importance in order to advance the state of the art in technical applications and fundamental science. In this thesis, I demonstrate a magnetic-optical holonomic control system to manipulate magnetic and optical colloids in liquid crystals and show that the elastic structure inherent to nematic and cholesteric liquid crystals may be used to assist in tweezing of particles in a manner impossible in other media. Furthermore, I demonstrate the utility of this manipulation in characterizing the structure and microrheology of liquid crystals, and elucidating the energetics and dynamics of colloids interacting with these structures. I also demonstrate the utility of liquid crystal systems as a table top model system to probe topological defects in a manner that may lead to insights into topologically related phenomena in other fields, such as early universe cosmology, sub-atomic and high energy systems, or Skrymionic structures. I explore the interaction of colloid surface anchoring with the structure inherent in cholesteric liquid crystals, and how this affects the periodic dynamics and localization metastability of spherical colloids undergoing a "falling" motion within the sample. These so called "metastable states" cause colloidal dynamics to

  15. Deficiency of RITA results in multiple mitotic defects by affecting microtubule dynamics.

    Science.gov (United States)

    Steinhäuser, K; Klöble, P; Kreis, N-N; Ritter, A; Friemel, A; Roth, S; Reichel, J M; Michaelis, J; Rieger, M A; Louwen, F; Oswald, F; Yuan, J

    2017-04-01

    Deregulation of mitotic microtubule (MT) dynamics results in defective spindle assembly and chromosome missegregation, leading further to chromosome instability, a hallmark of tumor cells. RBP-J interacting and tubulin-associated protein (RITA) has been identified as a negative regulator of the Notch signaling pathway. Intriguingly, deregulated RITA is involved in primary hepatocellular carcinoma and other malignant entities. We were interested in the potential molecular mechanisms behind its involvement. We show here that RITA binds to tubulin and localizes to various mitotic MT structures. RITA coats MTs and affects their structures in vitro as well as in vivo. Tumor cell lines deficient of RITA display increased acetylated α-tubulin, enhanced MT stability and reduced MT dynamics, accompanied by multiple mitotic defects, including chromosome misalignment and segregation errors. Re-expression of wild-type RITA, but not RITA Δtub ineffectively binding to tubulin, restores the phenotypes, suggesting that the role of RITA in MT modulation is mediated via its interaction with tubulin. Mechanistically, RITA interacts with tubulin/histone deacetylase 6 (HDAC6) and its suppression decreases the binding of the deacetylase HDAC6 to tubulin/MTs. Furthermore, the mitotic defects and increased MT stability are also observed in RITA -/- mouse embryonic fibroblasts. RITA has thus a novel role in modulating MT dynamics and its deregulation results in erroneous chromosome segregation, one of the major reasons for chromosome instability in tumor cells.

  16. BDA: A novel method for identifying defects in body-centered cubic crystals.

    Science.gov (United States)

    Möller, Johannes J; Bitzek, Erik

    2016-01-01

    The accurate and fast identification of crystallographic defects plays a key role for the analysis of atomistic simulation output data. For face-centered cubic (fcc) metals, most existing structure analysis tools allow for the direct distinction of common defects, such as stacking faults or certain low-index surfaces. For body-centered cubic (bcc) metals, on the other hand, a robust way to identify such defects is currently not easily available. We therefore introduce a new method for analyzing atomistic configurations of bcc metals, the BCC Defect Analysis (BDA). It uses existing structure analysis algorithms and combines their results to uniquely distinguish between typical defects in bcc metals. In essence, the BDA method offers the following features:•Identification of typical defect structures in bcc metals.•Reduction of erroneously identified defects by iterative comparison to the defects in the atom's neighborhood.•Availability as ready-to-use Python script for the widespread visualization tool OVITO [http://ovito.org].

  17. Electronic structure of the actinides and their dioxides. Application to the defect formation energy and krypton solubility in uranium dioxide

    International Nuclear Information System (INIS)

    Petit, T.; CEA Centre d'Etudes de Grenoble, 38

    1996-01-01

    Uranium dioxide is the standard nuclear fuel used in French h power plants. During irradiation, fission products such as krypton and xenon are created inside fuel pellets. So, gas release could become, at very high burnup, a limiting factor in the reactor exploitation. To study this subject, we have realised calculations using the Density Functional Theory (DFT) into the Local Density Approximation (LDA) and the Atomic Sphere Approximation (ASA). First, we have validated our approach by calculating cohesive properties of thorium, protactinium and uranium metals. The good agreement between our results and experimental values implies that 5f electrons are itinerant. Calculated lattice parameter, cohesive energy and bulk modulus for uranium and thorium dioxides are in very good agreement with experiment. We show that binding between uranium and oxygen atoms is not completely ionic but partially covalent. The question of the electrical conductivity still remains an open problem. We have been able to calculate punctual defect formation energies in uranium dioxide. Accordingly to experimental observations, we find that it is easier to create a defect in the oxygen sublattice than in the uranium sublattice. Finally, we have been able to predict a probable site of krypton atoms in nuclear fuel: the Schottky trio. Experiences of Extended X-ray Absorption Fine structure Spectroscopy (EXAFS) and X-ray Photoelectron Spectroscopy (XPS) on uranium dioxide doped by ionic implantation will help us in the comprehension of the studied phenomena and the interpretation of our calculations. (author)

  18. Localized structures of electromagnetic waves in hot electron-positron plasma

    International Nuclear Information System (INIS)

    Kartal, S.; Tsintsadze, L.N.; Berezhiani, V.I.

    1995-08-01

    The dynamics of relatively strong electromagnetic (EM) wave propagation in hot electron-positron plasma is investigated. The possibility of finding localized stationary structures of EM waves is explored. It it shown that under certain conditions the EM wave forms a stable localized soliton-like structures where plasma is completely expelled from the region of EM field location. (author). 9 refs, 2 figs

  19. Thermophysical spectroscopy of defect states in silicon

    International Nuclear Information System (INIS)

    Igamberdyev, Kh.T.; Mamadalimov, A.T.; Khabibullaev, P.K.

    1989-01-01

    The present work deals with analyzing the possibilities of using the non-traditional thermophysical methods to study a defect structure in silicon. For this purpose, the temperature dependences of thermophysical properties of defect silicon are investigated. A number of new, earlier unknown physical phenomena in silicon are obtained, and their interpretation has enabled one to establish the main physical mechanisms of formation of deep defect states in silicon

  20. Carbon related defects in irradiated silicon revisited

    KAUST Repository

    Wang, H.

    2014-05-09

    Electronic structure calculations employing hybrid functionals are used to gain insight into the interaction of carbon (C) atoms, oxygen (O) interstitials, and self-interstitials in silicon (Si). We calculate the formation energies of the C related defects Ci (SiI), Ci O i, Ci Cs, and Ci Oi (SiI) with respect to the Fermi energy for all possible charge states. The Ci (SiL) 2+ state dominates in almost the whole Fermi energy range. The unpaired electron in the Ci O i + state is mainly localized on the C interstitial so that spin polarization is able to lower the total energy. The three known atomic configurations of the Ci Cs pair are reproduced and it is demonstrated that hybrid functionals yield an improved energetic order for both the A and B-types as compared to previous theoretical studies. Different structures of the Ci Oi (SiL) cluster result for positive charge states in dramatically distinct electronic states around the Fermi energy and formation energies.

  1. Carbon related defects in irradiated silicon revisited

    KAUST Repository

    Wang, H.; Chroneos, A.; Londos, C.A.; Sgourou, E.N.; Schwingenschlö gl, Udo

    2014-01-01

    Electronic structure calculations employing hybrid functionals are used to gain insight into the interaction of carbon (C) atoms, oxygen (O) interstitials, and self-interstitials in silicon (Si). We calculate the formation energies of the C related defects Ci (SiI), Ci O i, Ci Cs, and Ci Oi (SiI) with respect to the Fermi energy for all possible charge states. The Ci (SiL) 2+ state dominates in almost the whole Fermi energy range. The unpaired electron in the Ci O i + state is mainly localized on the C interstitial so that spin polarization is able to lower the total energy. The three known atomic configurations of the Ci Cs pair are reproduced and it is demonstrated that hybrid functionals yield an improved energetic order for both the A and B-types as compared to previous theoretical studies. Different structures of the Ci Oi (SiL) cluster result for positive charge states in dramatically distinct electronic states around the Fermi energy and formation energies.

  2. A Compact Narrow-Band Bandstop Filter Using Spiral-Shaped Defected Microstrip Structure

    Directory of Open Access Journals (Sweden)

    J. Wang

    2014-04-01

    Full Text Available A novel compact narrow-band bandstop filter is implemented by using the proposed spiral-shaped defected microstrip structure (SDMS in this paper. Compared with other DMSs, the presented SDMS exhibits the advantage of compact size and narrow stopband. Meanwhile, an approximate design rule of the SDMS is achieved and the effects of the dimensions on the resonant frequency and 3 dB fractional bandwidth (FBW are analyzed in detail. Both the simulation and measurement results of the fabricated bandstop filter show that it has a 10 dB stopband from 3.4 GHz to 3.6 GHz with more than 45 dB rejection at the center frequency.

  3. A semi-mechanistic approach to calculate the probability of fuel defects

    International Nuclear Information System (INIS)

    Tayal, M.; Millen, E.; Sejnoha, R.

    1992-10-01

    In this paper the authors describe the status of a semi-mechanistic approach to the calculation of the probability of fuel defects. This approach expresses the defect probability in terms of fundamental parameters such as local stresses, local strains, and fission product concentration. The calculations of defect probability continue to reflect the influences of the conventional parameters like power ramp, burnup and CANLUB. In addition, the new approach provides a mechanism to account for the impacts of additional factors involving detailed fuel design and reactor operation, for example pellet density, pellet shape and size, sheath diameter and thickness, pellet/sheath clearance, and coolant temperature and pressure. The approach has been validated against a previous empirical correlation. AN illustrative example shows how the defect thresholds are influenced by changes in the internal design of the element and in the coolant pressure. (Author) (7 figs., tab., 12 refs.)

  4. Characterisation of point defects in SiC by microscopic optical spectroscopy

    International Nuclear Information System (INIS)

    Evans, G.A.

    2001-09-01

    Defects have a dramatic effect on the properties of semiconductors. In SiC, intrinsic defects can be introduced during growth or device-processing steps such as implantation. In this work electron irradiation has been used for the controlled generation of defects in SiC. The irradiated material has been annealed and subsequent low temperature photoluminescence (LTPL) measurements have been performed. A key element in this work has been the ability to perform both the irradiation and characterisation on a microscopic scale. These results have allowed a variety of new optical centres to be discovered, and have also significantly enhanced the pool of knowledge about other defect centres. Utilising low voltage irradiations has enabled the electron irradiation voltage displacement thresholds for Carbon and Silicon displacements to be investigated. In 4H-SiC the electron irradiation voltage displacement thresholds were found to be 88kV for C displacement and 225kV for Si displacement. A large number of previously unreported luminescence features have been measured in 4H, 6H and 15R-SiC material. The criteria used for comparison are the voltage threshold, annealing characteristics, spatial distribution with respect to the irradiated region, and the characteristics of associated local modes and vibronic structures. Compelling evidence has been found to support the assignment of centres in 4H and 6H-SiC to a C-C dumbbell split interstitial defect. Two high energy local modes at 133meV and 180meV are associated with these centres. In 13 C enriched 6H-SiC material the 180meV local mode splits into three components whilst the 133meV local mode splits into two components. This splitting is interpreted as being caused by isotopic substitutions between the components of the C-C dumbbell. The high energy local mode corresponds to the bonding between the two constituent atoms of the dumbbell whilst the low energy local mode is associated with the bonding between either a C 13 or 12

  5. FOREWORD International Conference on Defects in Insulating Materials

    Science.gov (United States)

    Valerio, Mário Ernesto Giroldo; Jackson, R. A.

    2010-11-01

    These proceedings represent a sample of the scientific works presented during ICDIM2008, the 16th International Conference on Defects in Insulating Materials, held at the Federal University of Sergipe, Aracaju, Brazil from 24-29 August 2008. The conference was the latest in a series which began at Argonne in 1956, and which has been held most recently in Riga, Latvia (2004) and Johannesburg, South Africa (2000). The conference was also related scientifically to the EURODIM series, which have been held most recently in Milan, Italy (2006), Wroclaw, Poland (2002) and Pecs, Hungary (2010). The aim of the conference was to bring together physicists, chemists and materials scientist to discuss defects in insulating materials and their effect on materials, including their optical, mass/charge transport, energy storage and sensor properties. The conference featured 6 plenary lectures, 60 contributed lectures and about 130 posters. The posters were displayed for the whole conference, but discussed in two three-hour sessions. We are grateful to the International Advisory Committee for suggesting invited speakers and to the Programme Committee for their help in refereeing all the abstracts and choosing the contributed oral contributions. We would also like to thank the Local Organising Committee and the Brazilian Physical Society for their help with local organisation and the online registration/payment process respectively. The chairpersons would like to specially thanks all the sponsors listed below for financial support. The Federal University of Sergipe, one of the public and 'free tuition' Universities of the Country, run by the Brazilian Ministry of Education, were pleased to host this 16th meeting, the first one in Latin America. Mario E G Valerio Conference Chair Robert A Jackson Programme Chair Conference Scope Scope of the Conference was the presentation of the latest investigations on point and extended defects in bulk materials and thin films. Technological

  6. Extended defects and hydrogen interactions in ion implanted silicon

    Science.gov (United States)

    Rangan, Sanjay

    The structural and electrical properties of extended defects generated because of ion implantation and the interaction of hydrogen with these defects have been studied in this work. Two distinct themes have been studied, the first where defects are a detrimental and the second where they are useful. In the first scenario, transient enhanced diffusion of boron has been studied and correlated with defect evolution studies due to silicon and argon ion implants. Spreading resistance profiles (SRP) correlated with deep level transient spectroscopy (DLTS) measurements, reveal that a low anneal temperatures (TED at low anneal temperatures (550°C, the effect of hydrogen is lost, due to its out-diffusion. Moreover, due to catastrophic out-diffusion of hydrogen, additional damage is created resulting in deeper junctions in hydrogenated samples, compared to the non-hydrogenated ones. Comparing defect evolution due to Si and Ar ion implants at different anneal temperatures, while the type of defects is the same in the two cases, their (defect) dissolution occurs at lower anneal temperatures (˜850°C) for Si implants. Dissolution for Ar implants seems to occur at higher anneal temperatures. The difference has been attributed to the increased number of vacancies created by Ar to that of silicon implant. In second aspect, nano-cavity formation due to vacancy agglomeration has been studied by helium ion implantation and furnace anneal, where the effect of He dose, implant energy and anneal time have been processing parameters that have been varied. Cavities are formed only when the localized concentration of He is greater than 3 x 1020 cm-3. While at high implant doses, a continuous cavity layer is formed, at low implant doses a discontinuous layer is observed. The formation of cavities at low doses has been observed for the first time. Variation of anneal times reveal that cavities are initially facetted (for short anneal times) and tend to become spherical when annealed for

  7. Evaluation of the effect of corrosion defects on the structural integrity of X52 gas pipelines using the SINTAP procedure and notch theory

    International Nuclear Information System (INIS)

    Adib, H.; Jallouf, S.; Schmitt, C.; Carmasol, A.; Pluvinage, G.

    2007-01-01

    The notch stress intensity factor concept and the structural integrity assessment procedure for European industry (SINTAP) structural integrity procedure are used to assess gas pipeline integrity using deterministic and probabilistic methods. These pipes have external longitudinal semi-elliptical corrosion defects. Stress concentration at a defect tip is investigated via elastic-plastic finite element method analysis. The notch stress intensity concept is implemented into the SINTAP procedure and a notch-based failure assessment diagram is proposed. The safety factor and security factor are calculated through the SINTAP basic level

  8. Evaluation of the effect of corrosion defects on the structural integrity of X52 gas pipelines using the SINTAP procedure and notch theory

    Energy Technology Data Exchange (ETDEWEB)

    Adib, H. [ENIM, Laboratoire de Fiabilite Mecanique (LFM) Ile du Saulcy, 57045 Metz Cedex (France); Jallouf, S. [ENIM, Laboratoire de Fiabilite Mecanique (LFM) Ile du Saulcy, 57045 Metz Cedex (France); Schmitt, C. [ENIM, Laboratoire de Fiabilite Mecanique (LFM) Ile du Saulcy, 57045 Metz Cedex (France)]. E-mail: schmitt@enim.fr; Carmasol, A. [ENIM, Laboratoire de Fiabilite Mecanique (LFM) Ile du Saulcy, 57045 Metz Cedex (France); Pluvinage, G. [ENIM, Laboratoire de Fiabilite Mecanique (LFM) Ile du Saulcy, 57045 Metz Cedex (France)

    2007-03-15

    The notch stress intensity factor concept and the structural integrity assessment procedure for European industry (SINTAP) structural integrity procedure are used to assess gas pipeline integrity using deterministic and probabilistic methods. These pipes have external longitudinal semi-elliptical corrosion defects. Stress concentration at a defect tip is investigated via elastic-plastic finite element method analysis. The notch stress intensity concept is implemented into the SINTAP procedure and a notch-based failure assessment diagram is proposed. The safety factor and security factor are calculated through the SINTAP basic level.

  9. An online substructure identification method for local structural health monitoring

    International Nuclear Information System (INIS)

    Hou, Jilin; Ou, Jinping; Jankowski, Łukasz

    2013-01-01

    This paper proposes a substructure isolation method, which uses time series of measured local response for online monitoring of substructures. The proposed monitoring process consists of two key steps: construction of the isolated substructure, and its identification. The isolated substructure is an independent virtual structure, which is numerically isolated from the global structure by placing virtual supports on the interface. First, the isolated substructure is constructed by a specific linear combination of time series of its measured local responses. Then, the isolated substructure is identified using its local natural frequencies extracted from the combined responses. The substructure is assumed to be linear; the outside part of the global structure can have any characteristics. The method has no requirements on the initial state of the structure, and so the process can be carried out repetitively for online monitoring. Online isolation and monitoring is illustrated in a numerical example with a frame model, and then verified in a cantilever beam experiment. (paper)

  10. Local atomic structure inheritance in Ag50Sn50 melt

    International Nuclear Information System (INIS)

    Bai, Yanwen; Bian, Xiufang; Qin, Jingyu; Hu, Lina; Yang, Jianfei; Zhang, Kai; Zhao, Xiaolin; Yang, Chuncheng; Zhang, Shuo; Huang, Yuying

    2014-01-01

    Local structure inheritance signatures were observed during the alloying process of the Ag 50 Sn 50 melt, using high-temperature X-ray diffraction and ab initio molecular dynamics simulations. The coordination number N m around Ag atom is similar in the alloy and in pure Ag melts (N m  ∼ 10), while, during the alloying process, the local structure around Sn atoms rearranges. Sn-Sn covalent bonds were substituted by Ag-Sn chemical bonds, and the total coordination number around Sn increases by about 70% as compared with those in the pure Sn melt. Changes in the electronic structure of the alloy have been studied by Ag and Sn K-edge X-ray absorption spectroscopy, as well as by calculations of the partial density of states. We propose that a leading mechanism for local structure inheritance in Ag 50 Sn 50 is due to s-p dehybridization of Sn and to the interplay between Sn-s and Ag-d electrons

  11. Local magnetic structure determination using polarized neutron holography

    International Nuclear Information System (INIS)

    Szakál, Alex; Markó, Márton; Cser, László

    2015-01-01

    A unique and important property of the neutron is that it possesses magnetic moment. This property is widely used for determination of magnetic structure of crystalline samples observing the magnetic components of the diffraction peaks. Investigations of diffraction patterns give information only about the averaged structure of a crystal but for discovering of local spin arrangement around a specific (e.g., impurity) nucleus remains still a challenging problem. Neutron holography is a useful tool to investigate the local structure around a specific nucleus embedded in a crystal lattice. The method has been successfully applied experimentally in several cases using non-magnetic short range interaction of the neutron and the nucleus. A mathematical model of the hologram using interaction between magnetic moment of the atom and the neutron spin for polarized neutron holography is provided. Validity of a polarized neutron holographic experiment is demonstrated by applying the proposed method on model systems

  12. "Palmar pivot flap" for resurfacing palmar lateral defects of the fingers.

    Science.gov (United States)

    Yam, Andrew; Peng, Yeong-Pin; Pho, Robert Wan-Heng

    2008-12-01

    Soft tissue defects on the lateral borders of the digits are difficult to reconstruct using local or local-regional flaps. We describe a "palmar pivot flap" to resurface an adjacent defect on the palmar-lateral aspect of the digit. The surgical technique is described. This flap is an axial pattern flap based on the subcutaneous transverse branches of the digital artery. The flap is pivoted up to 90 degrees on the neurovascular bundle in its base, into an adjacent defect. The flap can be raised from either the proximal or the middle phalangeal segments. It can cover defects sited from the level of the proximal interphalangeal joint up to the fingertip. The donor defect is limited to the same digit and is covered with a full-thickness skin graft. We have used this flap on 3 patients with defects at the middle phalangeal segment, the distal interphalangeal joint, and the fingertip. All healed primarily. One patient had a mild flexion contracture of the proximal interphalangeal joint, whereas the other 2 had no complications. The patients with distal interphalangeal joint and fingertip defects had excellent sensation in the flap (2-point discrimination of 5-6 mm). The palmar pivot flap is useful for resurfacing otherwise difficult defects on the lateral borders of the digits around and distal to the proximal interphalangeal joint, including those at the fingertip. It provides sensate, glabrous skin. The donor defect is on the same digit and is well hidden, producing an aesthetic and functional reconstruction.

  13. Full transmission modes and steady states in defect gratings,

    NARCIS (Netherlands)

    van Groesen, Embrecht W.C.; Sopaheluwakan, A.; Andonowati, A.; de Ridder, R.M; Altena, G; Geuzebroek, D.H.; Dekker, R

    2003-01-01

    For a symmetric grating structure with a defect, we show that a fully transmitted defect mode in the band gap can be obtained as a superposition of two steady states: an amplified and an attenuated defect state. Without scanning the whole band gap by transmission calculations, this simplifies the

  14. Shaped input distributions for structural damage localization

    DEFF Research Database (Denmark)

    Ulriksen, Martin Dalgaard; Bernal, Dionisio; Damkilde, Lars

    2018-01-01

    localization method is cast that operates on the premise of shaping inputs—whose spatial distribution is fixed—by use of a model, such that these inputs, in one structural subdomain at a time, suppress certain steady-state vibration quantities (depending on the type of damage one seeks to interrogate for......). Accordingly, damage is localized when the vibration signature induced by the shaped inputs in the damaged state corresponds to that in the reference state, hereby implying that the approach does not point directly to damage. Instead, it operates with interrogation based on postulated damage patterns...

  15. DFT+U study of defects in bulk rutile TiO2

    DEFF Research Database (Denmark)

    Stausholm-Møller, Jess; Kristoffersen, Henrik Høgh; Hinnemann, Berit

    2010-01-01

    phase of bulk titanium dioxide. We find that by applying a sufficiently large value for the Hubbard-U parameter of the Ti 3d states, the excess electrons localize spatially at the Ti sites and appear as states in the band gap. At U = 2.5 eV, the position in energy of these gap states are in fair...... is that regardless of which structural defect is the origin of the gap states, at U = 2.5 eV, these states are found to have their mean energies within a few hundredths of an eV from 0.94 eV below the conduction band minimum.......We present a systematic study of electronic gap states in defected titania using our implementation of the Hubbard-U approximation in the grid-based projector-augmented wave density functional theory code, GPAW. The defects considered are Ti interstitials, O vacancies, and H dopants in the rutile...

  16. Characterization of point defects in CdTe by positron annihilation spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Elsharkawy, M. R. M. [Carnegie Laboratory of Physics, SUPA, School of Science and Engineering, University of Dundee, Dundee DD1 4HN (United Kingdom); Physics Department, Faculty of Science, Minia University, P.O. Box 61519, Minia (Egypt); Kanda, G. S.; Keeble, D. J., E-mail: d.j.keeble@dundee.ac.uk [Carnegie Laboratory of Physics, SUPA, School of Science and Engineering, University of Dundee, Dundee DD1 4HN (United Kingdom); Abdel-Hady, E. E. [Physics Department, Faculty of Science, Minia University, P.O. Box 61519, Minia (Egypt)

    2016-06-13

    Positron lifetime measurements on CdTe 0.15% Zn-doped by weight are presented, trapping to monovacancy defects is observed. At low temperatures, localization at shallow binding energy positron traps dominates. To aid defect identification density functional theory, calculated positron lifetimes and momentum distributions are obtained using relaxed geometry configurations of the monovacancy defects and the Te antisite. These calculations provide evidence that combined positron lifetime and coincidence Doppler spectroscopy measurements have the capability to identify neutral or negative charge states of the monovacancies, the Te antisite, A-centers, and divacancy defects in CdTe.

  17. Cranial Defects and Cranioplasty. Part 8. Chapter 194,

    Science.gov (United States)

    1984-01-01

    scalp incision is outlined on the skin outside the area of the defect and infiltrated with a local anesthetic containing adrenalin. (c) Margins of the...plate to repair cleft palates in the first instance of an alloplastic material to repair a defect. J. van 14eekren in 1670 is credited with the first...osteomyelitis, infected skull flaps), aseptic necrosis of skull flaps, radionecrosis and electrical burns of skull, con- genital absences of skull

  18. Repairing Nanoparticle Surface Defects.

    Science.gov (United States)

    Marino, Emanuele; Kodger, Thomas E; Crisp, Ryan W; Timmerman, Dolf; MacArthur, Katherine E; Heggen, Marc; Schall, Peter

    2017-10-23

    Solar devices based on semiconductor nanoparticles require the use of conductive ligands; however, replacing the native, insulating ligands with conductive metal chalcogenide complexes introduces structural defects within the crystalline nanostructure that act as traps for charge carriers. We utilized atomically thin semiconductor nanoplatelets as a convenient platform for studying, both microscopically and spectroscopically, the development of defects during ligand exchange with the conductive ligands Na 4 SnS 4 and (NH 4 ) 4 Sn 2 S 6 . These defects can be repaired via mild chemical or thermal routes, through the addition of L-type ligands or wet annealing, respectively. This results in a higher-quality, conductive, colloidally stable nanomaterial that may be used as the active film in optoelectronic devices. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  19. Guided Bone Regeneration in Long-Bone Defects with a Structural Hydroxyapatite Graft and Collagen Membrane

    Science.gov (United States)

    2013-01-01

    Original Articles Guided Bone Regeneration in Long-Bone Defects with a Structural Hydroxyapatite Graft and Collagen Membrane Teja Guda, PhD,1,2 John...Joint Surg Br 90-B, 1617, 2008. 6. Carlo Reis, E.C., Borges AaPB, Araujo, M.V.F., Mendes, V.C., Guan, L., and Davies, J.E. Periodontal regeneration...Regeneration of periodontal tissues: combinations of barrier membranes and grafting materials–biological foundation and preclinical evi- dence: a

  20. Relations between anisotropic defects, structural evolution, and van der Waals bonding in 2H-NbSe2

    International Nuclear Information System (INIS)

    Gavarri, J.R.; Mokrani, R.; Boulesteix, C.; Vacquier, G.

    1988-01-01

    Correlations between anisotropic defects and van der Waals interactions have been established for the layer compound 2H-NbSe 2 which is investigated by low temperature X-ray diffraction techniques. Thermal expansion coefficients and anisotropic Debye temperatures are determined. A diffraction profile analysis reveals the existence of lattice distortions independent of the temperature. They are due to layer defects. To interpret the structural evolution data, the thermal expansion functions, α a (T) and α c (T) are simulated in the low temperature range which yield the elastic constants and the Grueneisen parameters. Using bond energy models, the Van der Waals nature of interlayer Se-Se interactions is confirmed by a model of thermal expansion of bonds and connected with the C 13 component of the elastic tensor. Such interactions can explain the presence of some layer defects that can be 4H-NbSe 2 nuclei in the 2H host lattice. In addition, no strong change in the Grueneisen parameters is clearly shown to occur at the 35 K transition of 2H-NbSe 2 . (author)