WorldWideScience

Sample records for local climate analysis

  1. Enhancement of Local Climate Analysis Tool

    Science.gov (United States)

    Horsfall, F. M.; Timofeyeva, M. M.; Dutton, J.

    2012-12-01

    The National Oceanographic and Atmospheric Administration (NOAA) National Weather Service (NWS) will enhance its Local Climate Analysis Tool (LCAT) to incorporate specific capabilities to meet the needs of various users including energy, health, and other communities. LCAT is an online interactive tool that provides quick and easy access to climate data and allows users to conduct analyses at the local level such as time series analysis, trend analysis, compositing, correlation and regression techniques, with others to be incorporated as needed. LCAT uses principles of Artificial Intelligence in connecting human and computer perceptions on application of data and scientific techniques in multiprocessing simultaneous users' tasks. Future development includes expanding the type of data currently imported by LCAT (historical data at stations and climate divisions) to gridded reanalysis and General Circulation Model (GCM) data, which are available on global grids and thus will allow for climate studies to be conducted at international locations. We will describe ongoing activities to incorporate NOAA Climate Forecast System (CFS) reanalysis data (CFSR), NOAA model output data, including output from the National Multi Model Ensemble Prediction System (NMME) and longer term projection models, and plans to integrate LCAT into the Earth System Grid Federation (ESGF) and its protocols for accessing model output and observational data to ensure there is no redundancy in development of tools that facilitate scientific advancements and use of climate model information in applications. Validation and inter-comparison of forecast models will be included as part of the enhancement to LCAT. To ensure sustained development, we will investigate options for open sourcing LCAT development, in particular, through the University Corporation for Atmospheric Research (UCAR).

  2. A Meta-Analysis of Local Climate Change Adaptation Actions ...

    Science.gov (United States)

    Local governments are beginning to take steps to address the consequences of climate change, such as sea level rise and heat events. However, we do not have a clear understanding of what local governments are doing -- the extent to which they expect climate change to affect their community, the types of actions they have in place to address climate change, and the resources at their disposal for implementation. Several studies have been conducted by academics, non-governmental organizations, and public agencies to assess the status of local climate change adaptation. This project collates the findings from dozens of such studies to conduct a meta-analysis of local climate change adaptation actions. The studies will be characterized along several dimensions, including (a) methods used, (b) timing and geographic scope, (c) topics covered, (d) types of adaptation actions identified, (e) implementation status, and (f) public engagement and environmental justice dimensions considered. The poster presents the project's rationale and approach and some illustrative findings from early analyses. [Note: The document being reviewed is an abstract in which a poster is being proposed. The poster will enter clearance if the abstract is accepted] The purpose of this poster is to present the research framework and approaches I am developing for my ORISE postdoctoral project, and to get feedback on early analyses.

  3. A Meta-Analysis of Local Climate Change Adaptation Actions

    Science.gov (United States)

    Local governments are beginning to take steps to address the consequences of climate change, such as sea level rise and heat events. However, we do not have a clear understanding of what local governments are doing -- the extent to which they expect climate change to affect their...

  4. Climate analysis at local scale in the context of climate change

    International Nuclear Information System (INIS)

    Quenol, H.

    2013-01-01

    Issues related to climate change increasingly concern the functioning of local scale geo-systems. A global change will necessarily affect local climates. In this context, the potential impacts of climate change lead to numerous inter rogations concerning adaptation. Despite numerous studies on the impact of projected global warming on different regions global atmospheric models (GCM) are not adapted to local scales and, as a result, impacts at local scales are still approximate. Although real progress in meso-scale atmospheric modeling was realized over the past years, no operative model is in use yet to simulate climate at local scales (ten or so meters). (author)

  5. Understanding How and Why Cities Engage with Climate Policy: An Analysis of Local Climate Action in Spain and Italy.

    Directory of Open Access Journals (Sweden)

    Sonia De Gregorio Hurtado

    2015-10-01

    The results of the analysis show a trend towards an increasing awareness on climate mitigation (highly focused on energy efficiency and the promotion of cleaner energy sources, while adaptation remains an incipient local policy area in both countries. The analysis identifies also the beneficial influence of national and international climate city networks.

  6. The NOAA Local Climate Analysis Tool - An Application in Support of a Weather Ready Nation

    Science.gov (United States)

    Timofeyeva, M. M.; Horsfall, F. M.

    2012-12-01

    Citizens across the U.S., including decision makers from the local to the national level, have a multitude of questions about climate, such as the current state and how that state fits into the historical context, and more importantly, how climate will impact them, especially with regard to linkages to extreme weather events. Developing answers to these types of questions for locations has typically required extensive work to gather data, conduct analyses, and generate relevant explanations and graphics. Too frequently providers don't have ready access to or knowledge of reliable, trusted data sets, nor sound, scientifically accepted analysis techniques such that they can provide a rapid response to queries they receive. In order to support National Weather Service (NWS) local office forecasters with information they need to deliver timely responses to climate-related questions from their customers, we have developed the Local Climate Analysis Tool (LCAT). LCAT uses the principles of artificial intelligence to respond to queries, in particular, through use of machine technology that responds intelligently to input from users. A user translates customer questions into primary variables and issues and LCAT pulls the most relevant data and analysis techniques to provide information back to the user, who in turn responds to their customer. Most responses take on the order of 10 seconds, which includes providing statistics, graphical displays of information, translations for users, metadata, and a summary of the user request to LCAT. Applications in Phase I of LCAT, which is targeted for the NWS field offices, include Climate Change Impacts, Climate Variability Impacts, Drought Analysis and Impacts, Water Resources Applications, Attribution of Extreme Events, and analysis techniques such as time series analysis, trend analysis, compositing, and correlation and regression techniques. Data accessed by LCAT are homogenized historical COOP and Climate Prediction Center

  7. Climatic Variables and Malaria Morbidity in Mutale Local Municipality, South Africa: A 19-Year Data Analysis.

    Science.gov (United States)

    Adeola, Abiodun M; Botai, Joel O; Rautenbach, Hannes; Adisa, Omolola M; Ncongwane, Katlego P; Botai, Christina M; Adebayo-Ojo, Temitope C

    2017-11-08

    The north-eastern parts of South Africa, comprising the Limpopo Province, have recorded a sudden rise in the rate of malaria morbidity and mortality in the 2017 malaria season. The epidemiological profiles of malaria, as well as other vector-borne diseases, are strongly associated with climate and environmental conditions. A retrospective understanding of the relationship between climate and the occurrence of malaria may provide insight into the dynamics of the disease's transmission and its persistence in the north-eastern region. In this paper, the association between climatic variables and the occurrence of malaria was studied in the Mutale local municipality in South Africa over a period of 19-year. Time series analysis was conducted on monthly climatic variables and monthly malaria cases in the Mutale municipality for the period of 1998-2017. Spearman correlation analysis was performed and the Seasonal Autoregressive Integrated Moving Average (SARIMA) model was developed. Microsoft Excel was used for data cleaning, and statistical software R was used to analyse the data and develop the model. Results show that both climatic variables' and malaria cases' time series exhibited seasonal patterns, showing a number of peaks and fluctuations. Spearman correlation analysis indicated that monthly total rainfall, mean minimum temperature, mean maximum temperature, mean average temperature, and mean relative humidity were significantly and positively correlated with monthly malaria cases in the study area. Regression analysis showed that monthly total rainfall and monthly mean minimum temperature ( R ² = 0.65), at a two-month lagged effect, are the most significant climatic predictors of malaria transmission in Mutale local municipality. A SARIMA (2,1,2) (1,1,1) model fitted with only malaria cases has a prediction performance of about 51%, and the SARIMAX (2,1,2) (1,1,1) model with climatic variables as exogenous factors has a prediction performance of about 72% in

  8. Beyond local climate

    DEFF Research Database (Denmark)

    D'haen, Sarah Ann Lise; Nielsen, Jonas Østergaard; Lambin, Eric F.

    2014-01-01

    At the household level, nonfarm activities are thought to help rural poor households buffer against agricultural risks related to local climate variability by providing them with cash to buy food in the case of harvest shortfalls. Over the recent decades, households in rural Sub-Sahara have been...

  9. A Methodology for Meta-Analysis of Local Climate Change Adaptation Policies

    Science.gov (United States)

    Local governments are beginning to take steps to address the consequences of climate change, such as sea level rise and heat events. However, we donot have a clear understanding of what local governments are doing -- the extent to which they expect climate change to affect their ...

  10. Local government and climate policy

    International Nuclear Information System (INIS)

    Burger, H.; Menkveld, M.; Coenen, F.H.J.M.

    2000-01-01

    Local government in the Netherlands could play a greater role than they currently do in reducing greenhouse gas emissions in the country. This fact formed the motivation for initiating the research project on Local Government and Climate Policy. Many local climate options are known in theory. Options for reduction that lie within the sphere of influence of Dutch local government are, for example, sustainable building or encouraging the utilisation of sustainable energy. But actual practice turns out to be rather refractory. If such options are to be implemented, then one has to overcome institutional barriers, such as the co-operation between different departments in the same local authority. The objective of this research is to improve the contribution that local government makes to climate policy

  11. Climate - saved locally

    International Nuclear Information System (INIS)

    1993-01-01

    Since 1990, more than 350 towns and communities from six European contries have joined the ''Climate Groups of European towns with the indigenous peoples of the rainforest to support the Earth's atmosphere''. The given goals are the halving of CO 2 emissions by the year 2000, the reduction of greenhouse gases and stopping use of tropical wood. The text shows how far the communes have gone in their own obligations for the protection of the world climate in the areas of energy, transport and town development. The work and organisation of the Indian group- partners is also portrayed. (orig.) [de

  12. E-participation and Climate Change in Europe: An analysis of local government practices

    Directory of Open Access Journals (Sweden)

    Ana Yetano

    2013-10-01

    Full Text Available Citizens are demanding greater transparency and accountability from their governments, and seek to participate in shaping the policies that affect their lives. The diffusion of the Internet has raised expectations that electronic tools may increase citizen participation in government decision-making and stop the decline of trust in political institutions. This paper brings together two relevant topics, e-participation and climate change, analyzing the websites of the environment departments of European local governments that have signed the Aalborg+10 commitments, in order to establish to what extent European local governments are making use of the Internet to promote e-participation and environmentally-friendly behaviors among their citizens. Our results show that the developments on e-participation are higher in transparency than interactivity. The Internet as a tool to revitalize the public sphere is still limited to those countries with higher levels of transparency, and penetration of ICTs and a culture of citizen engagement.

  13. Uncertainty Analysis of Coupled Socioeconomic-Cropping Models: Building Confidence in Climate Change Decision-Support Tools for Local Stakeholders

    Science.gov (United States)

    Malard, J. J.; Rojas, M.; Adamowski, J. F.; Gálvez, J.; Tuy, H. A.; Melgar-Quiñonez, H.

    2015-12-01

    While cropping models represent the biophysical aspects of agricultural systems, system dynamics modelling offers the possibility of representing the socioeconomic (including social and cultural) aspects of these systems. The two types of models can then be coupled in order to include the socioeconomic dimensions of climate change adaptation in the predictions of cropping models.We develop a dynamically coupled socioeconomic-biophysical model of agricultural production and its repercussions on food security in two case studies from Guatemala (a market-based, intensive agricultural system and a low-input, subsistence crop-based system). Through the specification of the climate inputs to the cropping model, the impacts of climate change on the entire system can be analysed, and the participatory nature of the system dynamics model-building process, in which stakeholders from NGOs to local governmental extension workers were included, helps ensure local trust in and use of the model.However, the analysis of climate variability's impacts on agroecosystems includes uncertainty, especially in the case of joint physical-socioeconomic modelling, and the explicit representation of this uncertainty in the participatory development of the models is important to ensure appropriate use of the models by the end users. In addition, standard model calibration, validation, and uncertainty interval estimation techniques used for physically-based models are impractical in the case of socioeconomic modelling. We present a methodology for the calibration and uncertainty analysis of coupled biophysical (cropping) and system dynamics (socioeconomic) agricultural models, using survey data and expert input to calibrate and evaluate the uncertainty of the system dynamics as well as of the overall coupled model. This approach offers an important tool for local decision makers to evaluate the potential impacts of climate change and their feedbacks through the associated socioeconomic system.

  14. Local governing of climate change in Denmark

    DEFF Research Database (Denmark)

    Berthou, Sara Kristine Gløjmar; Ebbesen, Betina Vind

    2016-01-01

    This paper is concerned with the ways in which Danish municipalities seek to mitigate climate change through a range of governance strategies. Through the analysis of ten municipal climate plans using the framework of Mitchell Dean, as well as extensive ethnographic fieldwork in two municipalities......, this paper explores how local climate change mitigation is shaped by particular rationalities and technologies of government, and thus seeks to illustrate how the strategies set out in the plans construe climate change mitigation from a certain perspective, thereby rendering some solutions more likely than...

  15. Local and regional interactions between air quality and climate in New Delhi- A sector based analysis

    Science.gov (United States)

    Marrapu, Pallavi

    control efforts should take a regional perspective. Air quality projections in Delhi for 2030 are investigated. The Greenhouse Gas and Air Pollution I nteractions and Synergies (GAINS) model is used to generate a 2030 future emission scenario for Delhi using projections of air quality control measures and energy demands. Net reductions in CO concentrations by 50%, and increases of 140% and 40% in BC and NOx concentrations, respectively, are predicted. The net changes in concentration are associated with increases in transport and industry sectors. The domestic sector still has a significant contribution to air pollutant levels. The air quality levels show a profound effect under this scenario on the environment and human health. The increase in pollution from 2010 to 2030 is predicted to cause an increase in surface temperature by ˜0.65K. These increasing pollution levels also show effects on the radiative forcing. The high aerosols loading i.e. BC, PM2.5 and PM10 levels show strong influence on the short and longwave fluxes causing strong surface dimming and strong atmosphere heating due to BC. These results indicate transport and domestic sectors should be targeted for air quality and climate mitigations.

  16. Localized climate control in greenhouses

    NARCIS (Netherlands)

    Booij, P.S.; Sijs, J.; Fransman, J.E.

    2012-01-01

    Strategies for controlling the indoor climate in greenhouses are based on a few sensors and actuators in combination with an assumption that climate variables, such as temperature, are uniform throughout the greenhouse. While this is already an improper assumption for conventional greenhouses, it

  17. FUTURE CLIMATE ANALYSIS

    International Nuclear Information System (INIS)

    R.M. Forester

    2000-01-01

    This Analysis/Model Report (AMR) documents an analysis that was performed to estimate climatic variables for the next 10,000 years by forecasting the timing and nature of climate change at Yucca Mountain (YM), Nevada (Figure l), the site of a potential repository for high-level radioactive waste. The future-climate estimates are based on an analysis of past-climate data from analog meteorological stations, and this AMR provides the rationale for the selection of these analog stations. The stations selected provide an upper and a lower climate bound for each future climate, and the data from those sites will provide input to the infiltration model (USGS 2000) and for the total system performance assessment for the Site Recommendation (TSPA-SR) at YM. Forecasting long-term future climates, especially for the next 10,000 years, is highly speculative and rarely attempted. A very limited literature exists concerning the subject, largely from the British radioactive waste disposal effort. The discussion presented here is one method, among many, of establishing upper and lower bounds for future climate estimates. The method used here involves selecting a particular past climate from many past climates, as an analog for future climate. Other studies might develop a different rationale or select other past climates resulting in a different future climate analog

  18. FUTURE CLIMATE ANALYSIS

    Energy Technology Data Exchange (ETDEWEB)

    R.M. Forester

    2000-03-14

    This Analysis/Model Report (AMR) documents an analysis that was performed to estimate climatic variables for the next 10,000 years by forecasting the timing and nature of climate change at Yucca Mountain (YM), Nevada (Figure l), the site of a potential repository for high-level radioactive waste. The future-climate estimates are based on an analysis of past-climate data from analog meteorological stations, and this AMR provides the rationale for the selection of these analog stations. The stations selected provide an upper and a lower climate bound for each future climate, and the data from those sites will provide input to the infiltration model (USGS 2000) and for the total system performance assessment for the Site Recommendation (TSPA-SR) at YM. Forecasting long-term future climates, especially for the next 10,000 years, is highly speculative and rarely attempted. A very limited literature exists concerning the subject, largely from the British radioactive waste disposal effort. The discussion presented here is one method, among many, of establishing upper and lower bounds for future climate estimates. The method used here involves selecting a particular past climate from many past climates, as an analog for future climate. Other studies might develop a different rationale or select other past climates resulting in a different future climate analog.

  19. Future Climate Analysis

    International Nuclear Information System (INIS)

    James Houseworth

    2001-01-01

    This Analysis/Model Report (AMR) documents an analysis that was performed to estimate climatic variables for the next 10,000 years by forecasting the timing and nature of climate change at Yucca Mountain (YM), Nevada (Figure 1), the site of a potential repository for high-level radioactive waste. The future-climate estimates are based on an analysis of past-climate data from analog meteorological stations, and this AMR provides the rationale for the selection of these analog stations. The stations selected provide an upper and a lower climate bound for each future climate, and the data from those sites will provide input to the infiltration model (USGS 2000) and for the total system performance assessment for the Site Recommendation (TSPA-SR) at YM. Forecasting long-term future climates, especially for the next 10,000 years, is highly speculative and rarely attempted. A very limited literature exists concerning the subject, largely from the British radioactive waste disposal effort. The discussion presented here is one method, among many, of establishing upper and lower bounds for future climate estimates. The method used here involves selecting a particular past climate from many past climates, as an analog for future climate. Other studies might develop a different rationale or select other past climates resulting in a different future climate analog. Revision 00 of this AMR was prepared in accordance with the ''Work Direction and Planning Document for Future Climate Analysis'' (Peterman 1999) under Interagency Agreement DE-AI08-97NV12033 with the U.S. Department of Energy (DOE). The planning document for the technical scope, content, and management of ICN 01 of this AMR is the ''Technical Work Plan for Unsaturated Zone (UZ) Flow and Transport Process Model Report'' (BSC 2001a). The scope for the TBV resolution actions in this ICN is described in the ''Technical Work Plan for: Integrated Management of Technical Product Input Department''. (BSC 2001b, Addendum B

  20. Coupled socioeconomic-crop modelling for the participatory local analysis of climate change impacts on smallholder farmers in Guatemala

    Science.gov (United States)

    Malard, J. J.; Adamowski, J. F.; Wang, L. Y.; Rojas, M.; Carrera, J.; Gálvez, J.; Tuy, H. A.; Melgar-Quiñonez, H.

    2015-12-01

    The modelling of the impacts of climate change on agriculture requires the inclusion of socio-economic factors. However, while cropping models and economic models of agricultural systems are common, dynamically coupled socio-economic-biophysical models have not received as much success. A promising methodology for modelling the socioeconomic aspects of coupled natural-human systems is participatory system dynamics modelling, in which stakeholders develop mental maps of the socio-economic system that are then turned into quantified simulation models. This methodology has been successful in the water resources management field. However, while the stocks and flows of water resources have also been represented within the system dynamics modelling framework and thus coupled to the socioeconomic portion of the model, cropping models are ill-suited for such reformulation. In addition, most of these system dynamics models were developed without stakeholder input, limiting the scope for the adoption and implementation of their results. We therefore propose a new methodology for the analysis of climate change variability on agroecosystems which uses dynamically coupled system dynamics (socio-economic) and biophysical (cropping) models to represent both physical and socioeconomic aspects of the agricultural system, using two case studies (intensive market-based agricultural development versus subsistence crop-based development) from rural Guatemala. The system dynamics model component is developed with relevant governmental and NGO stakeholders from rural and agricultural development in the case study regions and includes such processes as education, poverty and food security. Common variables with the cropping models (yield and agricultural management choices) are then used to dynamically couple the two models together, allowing for the analysis of the agroeconomic system's response to and resilience against various climatic and socioeconomic shocks.

  1. Future Climate Analysis

    International Nuclear Information System (INIS)

    Cambell, C. G.

    2004-01-01

    This report documents an analysis that was performed to estimate climatic variables for the next 10,000 years by forecasting the timing and nature of climate change at Yucca Mountain, Nevada, the site of a repository for spent nuclear fuel and high-level radioactive waste. The future-climate estimates are based on an analysis of past-climate data from analog meteorological stations, and this report provides the rationale for the selection of these analog stations. The stations selected provide an upper and a lower climate bound for each future climate, and the data from those sites will provide input to the following reports: ''Simulation of Net Infiltration for Present-Day and Potential Future Climates'' (BSC 2004 [DIRS 170007]), ''Total System Performance Assessment (TSPA) Model/Analysis for the License Application'' (BSC 2004 [DIRS 168504]), ''Features, Events, and Processes in UZ Flow and Transport'' (BSC 2004 [DIRS 170012]), and ''Features, Events, and Processes in SZ Flow and Transport'' (BSC 2004 [DIRS 170013]). Forecasting long-term future climates, especially for the next 10,000 years, is highly speculative and rarely attempted. A very limited literature exists concerning the subject, largely from the British radioactive waste disposal effort. The discussion presented here is one available forecasting method for establishing upper and lower bounds for future climate estimates. The selection of different methods is directly dependent on the available evidence used to build a forecasting argument. The method used here involves selecting a particular past climate from many past climates, as an analog for future climate. While alternative analyses are possible for the case presented for Yucca Mountain, the evidence (data) used would be the same and the conclusions would not be expected to drastically change. Other studies might develop a different rationale or select other past climates resulting in a different future climate analog. Other alternative

  2. Future Climate Analysis

    Energy Technology Data Exchange (ETDEWEB)

    C. G. Cambell

    2004-09-03

    This report documents an analysis that was performed to estimate climatic variables for the next 10,000 years by forecasting the timing and nature of climate change at Yucca Mountain, Nevada, the site of a repository for spent nuclear fuel and high-level radioactive waste. The future-climate estimates are based on an analysis of past-climate data from analog meteorological stations, and this report provides the rationale for the selection of these analog stations. The stations selected provide an upper and a lower climate bound for each future climate, and the data from those sites will provide input to the following reports: ''Simulation of Net Infiltration for Present-Day and Potential Future Climates'' (BSC 2004 [DIRS 170007]), ''Total System Performance Assessment (TSPA) Model/Analysis for the License Application'' (BSC 2004 [DIRS 168504]), ''Features, Events, and Processes in UZ Flow and Transport'' (BSC 2004 [DIRS 170012]), and ''Features, Events, and Processes in SZ Flow and Transport'' (BSC 2004 [DIRS 170013]). Forecasting long-term future climates, especially for the next 10,000 years, is highly speculative and rarely attempted. A very limited literature exists concerning the subject, largely from the British radioactive waste disposal effort. The discussion presented here is one available forecasting method for establishing upper and lower bounds for future climate estimates. The selection of different methods is directly dependent on the available evidence used to build a forecasting argument. The method used here involves selecting a particular past climate from many past climates, as an analog for future climate. While alternative analyses are possible for the case presented for Yucca Mountain, the evidence (data) used would be the same and the conclusions would not be expected to drastically change. Other studies might develop a different rationale or select other past

  3. Approaches to local climate action in Colorado

    Science.gov (United States)

    Huang, Y. D.

    2011-12-01

    Though climate change is a global problem, the impacts are felt on the local scale; it follows that the solutions must come at the local level. Fortunately, many cities and municipalities are implementing climate mitigation (or climate action) policies and programs. However, they face many procedural and institutional barriers to their efforts, such of lack of expertise or data, limited human and financial resources, and lack of community engagement (Krause 2011). To address the first obstacle, thirteen in-depth case studies were done of successful model practices ("best practices") of climate action programs carried out by various cities, counties, and organizations in Colorado, and one outside Colorado, and developed into "how-to guides" for other municipalities to use. Research was conducted by reading documents (e.g. annual reports, community guides, city websites), email correspondence with program managers and city officials, and via phone interviews. The information gathered was then compiled into a series of reports containing a narrative description of the initiative; an overview of the plan elements (target audience and goals); implementation strategies and any indicators of success to date (e.g. GHG emissions reductions, cost savings); and the adoption or approval process, as well as community engagement efforts and marketing or messaging strategies. The types of programs covered were energy action plans, energy efficiency programs, renewable energy programs, and transportation and land use programs. Between the thirteen case studies, there was a range of approaches to implementing local climate action programs, examined along two dimensions: focus on climate change (whether it was direct/explicit or indirect/implicit) and extent of government authority. This benchmarking exercise affirmed the conventional wisdom propounded by Pitt (2010), that peer pressure (that is, the presence of neighboring jurisdictions with climate initiatives), the level of

  4. Future Climate Analysis

    Energy Technology Data Exchange (ETDEWEB)

    James Houseworth

    2001-10-12

    This Analysis/Model Report (AMR) documents an analysis that was performed to estimate climatic variables for the next 10,000 years by forecasting the timing and nature of climate change at Yucca Mountain (YM), Nevada (Figure 1), the site of a potential repository for high-level radioactive waste. The future-climate estimates are based on an analysis of past-climate data from analog meteorological stations, and this AMR provides the rationale for the selection of these analog stations. The stations selected provide an upper and a lower climate bound for each future climate, and the data from those sites will provide input to the infiltration model (USGS 2000) and for the total system performance assessment for the Site Recommendation (TSPA-SR) at YM. Forecasting long-term future climates, especially for the next 10,000 years, is highly speculative and rarely attempted. A very limited literature exists concerning the subject, largely from the British radioactive waste disposal effort. The discussion presented here is one method, among many, of establishing upper and lower bounds for future climate estimates. The method used here involves selecting a particular past climate from many past climates, as an analog for future climate. Other studies might develop a different rationale or select other past climates resulting in a different future climate analog. Revision 00 of this AMR was prepared in accordance with the ''Work Direction and Planning Document for Future Climate Analysis'' (Peterman 1999) under Interagency Agreement DE-AI08-97NV12033 with the U.S. Department of Energy (DOE). The planning document for the technical scope, content, and management of ICN 01 of this AMR is the ''Technical Work Plan for Unsaturated Zone (UZ) Flow and Transport Process Model Report'' (BSC 2001a). The scope for the TBV resolution actions in this ICN is described in the ''Technical Work Plan for: Integrated Management of Technical

  5. Local Climate Experts: The Influence of Local TV Weather Information on Climate Change Perceptions.

    Science.gov (United States)

    Bloodhart, Brittany; Maibach, Edward; Myers, Teresa; Zhao, Xiaoquan

    2015-01-01

    Individuals who identify changes in their local climate are also more likely to report that they have personally experienced global climate change. One way that people may come to recognize that their local climate is changing is through information provided by local TV weather forecasters. Using random digit dialing, 2,000 adult local TV news viewers in Virginia were surveyed to determine whether routine exposure to local TV weather forecasts influences their perceptions of extreme weather in Virginia, and their perceptions about climate change more generally. Results indicate that paying attention to TV weather forecasts is associated with beliefs that extreme weather is becoming more frequent in Virginia, which in turn is associated with stronger beliefs and concerns about climate change. These associations were strongest for individuals who trust their local TV weathercaster as a source of information about climate change, and for those who identify as politically conservative or moderate. The findings add support to the literature suggesting that TV weathercasters can play an important role in educating the public about climate change.

  6. Local Climate Experts: The Influence of Local TV Weather Information on Climate Change Perceptions

    Science.gov (United States)

    Bloodhart, Brittany; Maibach, Edward; Myers, Teresa; Zhao, Xiaoquan

    2015-01-01

    Individuals who identify changes in their local climate are also more likely to report that they have personally experienced global climate change. One way that people may come to recognize that their local climate is changing is through information provided by local TV weather forecasters. Using random digit dialing, 2,000 adult local TV news viewers in Virginia were surveyed to determine whether routine exposure to local TV weather forecasts influences their perceptions of extreme weather in Virginia, and their perceptions about climate change more generally. Results indicate that paying attention to TV weather forecasts is associated with beliefs that extreme weather is becoming more frequent in Virginia, which in turn is associated with stronger beliefs and concerns about climate change. These associations were strongest for individuals who trust their local TV weathercaster as a source of information about climate change, and for those who identify as politically conservative or moderate. The findings add support to the literature suggesting that TV weathercasters can play an important role in educating the public about climate change. PMID:26551357

  7. A new method to detect transitory signatures and local time/space variability structures in the climate system: the scale-dependent correlation analysis

    Science.gov (United States)

    Rodó, Xavier; Rodríguez-Arias, Miquel-Àngel

    2006-10-01

    The study of transitory signals and local variability structures in both/either time and space and their role as sources of climatic memory, is an important but often neglected topic in climate research despite its obvious importance and extensive coverage in the literature. Transitory signals arise either from non-linearities, in the climate system, transitory atmosphere-ocean couplings, and other processes in the climate system evolving after a critical threshold is crossed. These temporary interactions that, though intense, may not last long, can be responsible for a large amount of unexplained variability but are normally considered of limited relevance and often, discarded. With most of the current techniques at hand these typology of signatures are difficult to isolate because the low signal-to-noise ratio in midlatitudes, the limited recurrence of the transitory signals during a customary interval of data considered. Also, there is often a serious problem arising from the smoothing of local or transitory processes if statistical techniques are applied, that consider all the length of data available, rather than taking into account the size of the specific variability structure under investigation. Scale-dependent correlation (SDC) analysis is a new statistical method capable of highlighting the presence of transitory processes, these former being understood as temporary significant lag-dependent autocovariance in a single series, or covariance structures between two series. This approach, therefore, complements other approaches such as those resulting from the families of wavelet analysis, singular-spectrum analysis and recurrence plots. A main feature of SDC is its high-performance for short time series, its ability to characterize phase-relationships and thresholds in the bivariate domain. Ultimately, SDC helps tracking short-lagged relationships among processes that locally or temporarily couple and uncouple. The use of SDC is illustrated in the present

  8. [Modelling the effect of local climatic variability on dengue transmission in Medellin (Colombia) by means of time series analysis].

    Science.gov (United States)

    Rúa-Uribe, Guillermo L; Suárez-Acosta, Carolina; Chauca, José; Ventosilla, Palmira; Almanza, Rita

    2013-09-01

    Dengue fever is a major impact on public health vector-borne disease, and its transmission is influenced by entomological, sociocultural and economic factors. Additionally, climate variability plays an important role in the transmission dynamics. A large scientific consensus has indicated that the strong association between climatic variables and disease could be used to develop models to explain the incidence of the disease. To develop a model that provides a better understanding of dengue transmission dynamics in Medellin and predicts increases in the incidence of the disease. The incidence of dengue fever was used as dependent variable, and weekly climatic factors (maximum, mean and minimum temperature, relative humidity and precipitation) as independent variables. Expert Modeler was used to develop a model to better explain the behavior of the disease. Climatic variables with significant association to the dependent variable were selected through ARIMA models. The model explains 34% of observed variability. Precipitation was the climatic variable showing statistically significant association with the incidence of dengue fever, but with a 20 weeks delay. In Medellin, the transmission of dengue fever was influenced by climate variability, especially precipitation. The strong association dengue fever/precipitation allowed the construction of a model to help understand dengue transmission dynamics. This information will be useful to develop appropriate and timely strategies for dengue control.

  9. The Dutch Approach to Local Climate Action

    International Nuclear Information System (INIS)

    Schellekens, R.

    2008-01-01

    In the Netherlands we are working with municipalities on the subjects of RES and RUE for over 15 years now. Over the last 4 years we worked with 250 out of 430 municipalities on setting up and executing their local climate policies. For this there was a national climate covenant between the national government, the association of municipalities and the association of provinces. The municipalities and provinces were supported through a subsidy scheme and the help of SenterNovem. Products like the climate menu, the climate scan and an organisational assessment were developed to aid the municipalities in their process. Through involvement of different stake holders within the municipality or a region concerning the climate policy and the execution thereof, production of RES is stimulated and goals on energy saving are more likely to be reached. Through the involvement of stake holders and by making climate change an integral part of the municipal organisation an irreversible process is started. Thus economic competitiveness and innovations are stimulated. The municipality and the region will gain economic strength through this. Results in the Netherlands on a municipal level are inspiring. More and more municipalities are developing long-term strategies at the moment. Goals like energy neutrality, climate neutrality and CO 2 neutrality in a set year are usually the basis of these strategies. Through these strategies Dutch municipalities become increasingly less dependent on energy sources outside their boarders. On a European level the Dutch approach ties in with the Covenant of Mayors which is launched by the EU.(author)

  10. Preparing suitable climate scenario data to assess impacts on local food safety

    NARCIS (Netherlands)

    Liu, C.; Hofstra, N.; Leemans, R.

    2015-01-01

    Quantification of climate change impacts on food safety requires food safety assessment with different past and future climate scenario data to compare current and future conditions. This study presents a tool to prepare climate and climate change data for local food safety scenario analysis and

  11. Climate change adaptation strategies by local farmers in Kilombero ...

    African Journals Online (AJOL)

    This article examines current adaptation strategies developed by local farmers against climate change effects in Kilombero District. Research questions guided the study include; what are the past and current climatic stresses? What are local farmers' perception on climate change and response to the adverse climatic ...

  12. Big climate data analysis

    Science.gov (United States)

    Mudelsee, Manfred

    2015-04-01

    The Big Data era has begun also in the climate sciences, not only in economics or molecular biology. We measure climate at increasing spatial resolution by means of satellites and look farther back in time at increasing temporal resolution by means of natural archives and proxy data. We use powerful supercomputers to run climate models. The model output of the calculations made for the IPCC's Fifth Assessment Report amounts to ~650 TB. The 'scientific evolution' of grid computing has started, and the 'scientific revolution' of quantum computing is being prepared. This will increase computing power, and data amount, by several orders of magnitude in the future. However, more data does not automatically mean more knowledge. We need statisticians, who are at the core of transforming data into knowledge. Statisticians notably also explore the limits of our knowledge (uncertainties, that is, confidence intervals and P-values). Mudelsee (2014 Climate Time Series Analysis: Classical Statistical and Bootstrap Methods. Second edition. Springer, Cham, xxxii + 454 pp.) coined the term 'optimal estimation'. Consider the hyperspace of climate estimation. It has many, but not infinite, dimensions. It consists of the three subspaces Monte Carlo design, method and measure. The Monte Carlo design describes the data generating process. The method subspace describes the estimation and confidence interval construction. The measure subspace describes how to detect the optimal estimation method for the Monte Carlo experiment. The envisaged large increase in computing power may bring the following idea of optimal climate estimation into existence. Given a data sample, some prior information (e.g. measurement standard errors) and a set of questions (parameters to be estimated), the first task is simple: perform an initial estimation on basis of existing knowledge and experience with such types of estimation problems. The second task requires the computing power: explore the hyperspace to

  13. Implementation of local climate action plans

    DEFF Research Database (Denmark)

    Damsø, Tue Noa Jacques; Kjær, Tyge; Christensen, Thomas Budde

    2017-01-01

    The purpose of this article is to improve understanding of local climate action plans and their implementation and evaluation. It explores how goal definition and the choice of assessment metrics frame goal attainment and influence implementation behaviour. Using the Danish capital of Copenhagen...... a high overall implementation performance, both in terms of changes in energy supply and emission reductions, these metrics are only partially linked. It also shows that inconsistencies between the system scope of the base year emissions and goal attainment, due to the use of offsetting, may lead...

  14. Local authorities in the context of energy and climate policy

    International Nuclear Information System (INIS)

    Comodi, Gabriele; Cioccolanti, Luca; Polonara, Fabio; Brandoni, Caterina

    2012-01-01

    Several measures to boost the energy system towards a low-carbon future can be planned and implemented by local authorities, such as energy-saving initiatives in public buildings and lighting, information campaigns, and renewable energy pilot projects. This work analyzes the public administration's role in energy and climate policies by assessing carbon-lowering measures for properties and services managed directly by local governments in central Italy. Both short- and long-term schemes were considered in the analysis of local authority energy strategies. The MARKAL-TIMES energy model was applied to long-term energy planning to assess the effect of low-carbon initiatives on public-sector energy consumption up to 2030. Two energy scenarios were built, i.e. a Business As Usual (BAU) scenario based on current or soon-to-be-adopted national policies, and an Exemplary Public Scenario (EPS) including some further virtuous local policies suggested by local authorities. Our results show that a 20% primary energy reduction can be achieved with respect to the baseline year by means of short-term energy policies (5-year time span), while a primary energy saving of about 30% can be reached with longer-term energy policies (25-year time span), even after taking the increase in energy demand into account. This work goes to show the part that local governments can play in energy policy and their contribution to the achievement of climate goals. - Highlights: ► Assessment of Local Administration (LA) role in energy and climate policy. ► Analysis of both short-term and long-term carbon lowering measures. ► Use of MARKAL-TIMES model generator for long-term energy analysis. ► 20% primary energy reduction can be reached with short-term energy policies. ► 30% primary energy reduction can be reached with longer-term energy policies.

  15. Climate change at the coast: from global to local

    International Nuclear Information System (INIS)

    Watkinson, A.R.

    2009-01-01

    The IPCC has recently documented substantial changes in the global heat content of the oceans, salinity, sea level, thermal expansion and biogeochemistry. Over the 21. century anticipated climate related changes include: a rise in sea level of up to 0.6 m or more; increases in sea surface temperatures up to 3 deg. C; an intensification of tropical and extra tropical cyclones; larger extreme waves and storm surges; altered precipitation/ run-off; and ocean acidification. The Tyndall Centre has been exploring how to down-scale the global analysis to the local level within the framework of a coastal simulator. The simulator provides information on possible future states of the coast through the 21. Century under a range of climate and socio-economic futures and shoreline management options. It links models within a nested framework, recognizing three scales: (1) global, (2) regional, and (3) local. The linked models describe a range of processes, including marine climate (waves, surges and mean sea level), sand bank morpho-dynamics, wave transformation, shoreline morpho-dynamics, built environment scenarios, ecosystem change, and erosion and flood risk. Analyses from the simulator reinforce conclusions from IPCC WG2: coasts will be exposed to increasing risks over coming decades due to many compounding climate-change factors; the impact of climate change on coasts will be exacerbated by increasing human induced pressures; the unavoidability of sea-level rise even in the longer-term frequently conflicts with present day human development patterns and trends. (author)

  16. climate change adaptation strategies by local farmers in kilombero

    African Journals Online (AJOL)

    Osondu

    climatic stresses? What are institutions and political structures influencing local farmer's adaptive capacity? ... ability of the systems to adjust to climate change and has three ..... seedlings, and use of improved seed varieties. Political structures ...

  17. Assessing local vulnerability to climate change in Ecuador

    OpenAIRE

    Fernandez, Mario Andres; Bucaram, Santiago J.; Renteria, Willington

    2015-01-01

    Vulnerability assessments have become necessary to increase the understanding of climate-sensitive systems and inform resource allocation in developing countries. Challenges arise when poor economic and social development combines with heterogeneous climatic conditions. Thus, finding and harmonizing good-quality data at local scale may be a significant hurdle for vulnerability research. In this paper we assess vulnerability to climate change at a local level in Ecuador. We take Ecuador as a c...

  18. Local governments in the driving seat? A comparative analysis of public and private responsibilities for adaptation to climate change in European and North-American cities

    NARCIS (Netherlands)

    Mees, Heleen

    The division of responsibilities between public and private actors has become a key governance issue for adaptation to climate change in urban areas. This paper offers a systematic, comparative analysis of three empirical studies which analysed how and why responsibilities were divided between

  19. Uncovering Local Impacts – The Influence of Transnational Municipal Climate Networks on Urban Climate Governance

    OpenAIRE

    Busch, Henner; Bendlin, Lena; Fenton, Paul; Forschungszentrum für Umweltpolitik

    2018-01-01

    In recent years, many cities have joined transnational municipal climate networks (TMCNs), which were set up in response to climate change. Despite the fact that some of these TMCNs have been active for more than two decades, there has been no systematic investigation of the networks’ impact on local climate governance. In this article we attempt to answer if and how local climate governance has been influenced by municipalities’ memberships in TMCNs. Our assessment is based on an online surv...

  20. Motivations for Local Climate Adaptation in Dutch Municipalities: Climate Change Impacts and the Role of Local-Level Government

    NARCIS (Netherlands)

    van den Berg, Maya Marieke

    2009-01-01

    The local government level is considered to be crucial in preparing society for climate change impact. Yet little is known about why local authorities do or do not take action to adapt their community for climate change impacts. In order to implement effective adaptation policy, the motivations for

  1. The Urban Leaders Adaptation Initiative: Climate Resilient Local Governments

    Science.gov (United States)

    Foster, J. G.

    2008-12-01

    Local governments, the first responders to public health, safety and environmental hazards, must act now to lessen vulnerabilities to climate change. They must plan for and invest in "adapting" to inevitable impacts such as flood, fire, and draught that will occur notwithstanding best efforts to mitigate climate change. CCAP's Urban Leaders Adaptation Initiative is developing a framework for informed decision making on climate adaptation. Looking ahead to projected climate impacts and 'back casting' can identify what is needed now to both reduce greenhouse gas emissions and build local resiliency to climate change. CCAP's partnership with King County (WA), Chicago, Los Angeles, Miami-Dade County (FL), Milwaukee, Nassau County (NY), Phoenix, San Francisco, and Toronto is advancing policy discussions to ensure that state and local governments consider climate change when making decisions about infrastructure, transportation, land use, and resource management. Through the Initiative, local leaders will incorporate climate change into daily urban management and planning activities, proactively engage city and county managers and the public in developing solutions, and build community resilience. One goal is to change both institutional and public attitudes and behaviors. Determining appropriate adaptation strategies for each jurisdiction requires Asking the Climate Question: "How does what we are doing increase our resilience to climate change?" Over the next three years, the Initiative will design and implement specific adaptation plans, policies and 'catalytic' projects, collect and disseminate "best practices," and participate in framing national climate policy discussions. In the coming years, policy-makers will have to consider climate change in major infrastructure development decisions. If they are to be successful and have the resources they need, national climate change policy and emerging legislation will have to support these communities. The Urban Leaders

  2. Climate warming drives local extinction: Evidence from observation and experimentation

    Science.gov (United States)

    Panetta, Anne Marie; Stanton, Maureen L.; Harte, John

    2018-01-01

    Despite increasing concern about elevated extinction risk as global temperatures rise, it is difficult to confirm causal links between climate change and extinction. By coupling 25 years of in situ climate manipulation with experimental seed introductions and both historical and current plant surveys, we identify causal, mechanistic links between climate change and the local extinction of a widespread mountain plant (Androsace septentrionalis). Climate warming causes precipitous declines in population size by reducing fecundity and survival across multiple life stages. Climate warming also purges belowground seed banks, limiting the potential for the future recovery of at-risk populations under ameliorated conditions. Bolstered by previous reports of plant community shifts in this experiment and in other habitats, our findings not only support the hypothesis that climate change can drive local extinction but also foreshadow potentially widespread species losses in subalpine meadows as climate warming continues. PMID:29507884

  3. Climate warming drives local extinction: Evidence from observation and experimentation.

    Science.gov (United States)

    Panetta, Anne Marie; Stanton, Maureen L; Harte, John

    2018-02-01

    Despite increasing concern about elevated extinction risk as global temperatures rise, it is difficult to confirm causal links between climate change and extinction. By coupling 25 years of in situ climate manipulation with experimental seed introductions and both historical and current plant surveys, we identify causal, mechanistic links between climate change and the local extinction of a widespread mountain plant ( Androsace septentrionalis ). Climate warming causes precipitous declines in population size by reducing fecundity and survival across multiple life stages. Climate warming also purges belowground seed banks, limiting the potential for the future recovery of at-risk populations under ameliorated conditions. Bolstered by previous reports of plant community shifts in this experiment and in other habitats, our findings not only support the hypothesis that climate change can drive local extinction but also foreshadow potentially widespread species losses in subalpine meadows as climate warming continues.

  4. Global Climate Change, Food Security, and Local Sustainability: Increasing Climate Literacy in Urban Students

    Science.gov (United States)

    Boger, R. A.; Low, R.; Gorokhovich, Y.

    2011-12-01

    Three higher education institutions, University of Nebraska-Lincoln (UNL), Brooklyn College, and Lehman College, are working together to share expertise and resources to expand climate change topics offered to undergraduate and graduate students in New York City (NYC). This collaboration combines existing UNL educational learning resources and infrastructure in virtual coursework. It will supply global climate change education and locally-based research experiences to the highly diverse undergraduate students of Brooklyn and Lehman Colleges and to middle and high school teachers in NYC. Through the university partnership, UNL materials are being adapted and augmented to include authentic research experiences for undergraduates and teachers using NASA satellite data, geographic information system (GIS) tools, and/or locally collected microclimate data from urban gardens. Learners download NASA data, apply an Earth system approach, and employ GIS in the analysis of food production landscapes in a dynamically changing climate system. The resulting course will be offered via Blackboard courseware, supported by Web 2.0 technologies designed specifically to support dialogue, data, and web publication sharing between partners, teachers and middle school, high school and undergraduate student researchers. NYC is in the center of the urban farming movement. By exploring water and food topics of direct relevance to students' lives and community, we anticipate that students will be motivated and more empowered to make connections between climate change and potential impacts on the health and happiness of people in their community, in the United States and around the world. Final course will be piloted in 2012.

  5. Climate change and local pollution effects. An integrated approach

    International Nuclear Information System (INIS)

    Aaheim, H.A.; Kristin, A.; Seip, H.M.

    1999-01-01

    Few studies on measures for mitigation of damage caused by man-made emissions to the environment have tried to consider all major effects. We illustrate the importance of an integrated approach by estimating costs and benefits of a proposed energy saving program for Hungary, originally designed to reduce CO 2 emissions. The dominant benefit of implementing the program is likely to be reduced health damage from local pollutants. Also reduced costs of material damage and to a lesser extent vegetation damage contribute to make the net benefit considerable. Compared to the reduction in these local and regional effects, the benefits from reducing greenhouse gases are likely to be minor. Since local effects in general occur much earlier after measures have been implemented than effects of increased emissions of greenhouse gases, inclusion of local effects makes evaluation of climate policy less dependent on the choice of discount rate. In our opinion, similar results are likely for many measures originally designed to reduce emissions of greenhouse gases particularly in some areas in developing countries with high local pollution levels. Main uncertainties in the analysis, e.g. in the relationships between damage and pollution level, are discussed. 72 refs

  6. Local climate change policy in the United Kingdom and Germany

    OpenAIRE

    Bulkeley, Harriet; Kern, Kristine

    2004-01-01

    "For over a decade climate change has been considered one of the most significant political issues facing the international community. In order to address this challenge, attention needs to be focused not only at the international level of treaties and conventions, but also on how climate protection policy is taking shape at the local level. Germany and the UK have been leading countries for international action on climate change. However, the reductions in domestic emissions of greenhouse ga...

  7. Local climate protection programmes in Australia and New Zealand

    DEFF Research Database (Denmark)

    Hoff, Jens Villiam

    about climate change broadly in the involved councils/local communities. • The CCP programme gave councils a strong focus, which led to the formulation of a coherent program on climate change, and allowed them to take on a leadership role in the local community. The leadership role was important...... in aligning the agendas of different stakeholders, and in local efforts to achieve attitude- and culture changes towards a more environmentally sustainable local community. • The CCP programme created a network among participating councils for sharing experiences and motivating each other. It also provided...

  8. Local climate policy in Alkmaar, Netherlands. Policy analysis from A to Z; Lokaal Klimaatbeleid in Alkmaar. Beleidsanalyse van A tot Z

    Energy Technology Data Exchange (ETDEWEB)

    Burger, H.; Heinink, H. [ECN Beleidsstudies, Petten (Netherlands)

    2002-04-01

    This report describes the results of the final phase of a research project about local climate policy. An ideal model of a climate management system was tested by practise for the municipality of Alkmaar. In this case study ECN analysed numerous policy documents as well as the process of building a new soccer stadium. We looked if the municipal organisation passed through all the steps of this climate management system and if it used any mechanisms through which the external integration of climate policy in policies other than environmental policy fields could be enhanced. The report shows that though the model was not running effectively in Alkmaar, the municipal organisation still managed to partly integrate climate policy in non-environment policy areas. For the major part this can be contributed to enthusiastic and hard-working sustainability coordinators. Had the systematic approach been in place, the municipality would clearly be more accurate in its network policy steering which proved necessary to realise the new soccer stadium. [Dutch] Dit rapport doet verslag van een onderzoek naar lokaal klimaatbeleid in Alkmaar. Het onderzoek heeft plaatsgevonden in de eerste maanden van 2001. Het is onderdeel van het onderzoeksproject 'Lokale overheden en klimaatbeleid' dat is uitgevoerd in opdracht van het Nationaal Onderzoek Programma Mondiale Luchtverontreiniging en Klimaatverandering (NOP-MLK). Doelstelling van het onderzoek is te analyseren in hoeverre er in de dagelijkse Alkmaarse beleidspraktijk sprake is van integraal klimaatbeleid. Daartoe is er een analyse gemaakt van beleidsdocumenten en het proces rond de bouw van het nieuwe AZ-voetbalstadion. De conclusies hebben betrekking op de stand van zaken op het moment van onderzoek. In de periode tussen onderzoek en publicatie is veel gebeurd. Zo is Alkmaar sterk betrokken bij afspraken voor CO2- reductie met de provincie, bij het CO2- servicepunt en bij het bovengenoemde klimaatconvenant. De conclusies

  9. Municipal Climate Governance and Formation of Local Transition places

    DEFF Research Database (Denmark)

    Søndergård, Bent; Stauning, Inger; Holm, Jesper

    for the need of studies of local situated transition arenas and how they by integrating specific local conditions become sites of development of innovative practices. Jesper Holm, Inger Stauning and Jesper Holm, Department of Department of Environmental, Social and Spatial Change, Roskilde University (RUC......Theme: Sustainable spaces Municipal Climate Governance and Formation of Local Transition Places The paper examines how municipalities develop new local governance efforts for climate mitigation and analyses how these efforts contributes to the development of local transition places. It is based...... authorities and policy networks tend to show more willingness for performing experimentation in transition. • Reduction of CO2-emission and transformation of social-technical energy systems has a complexity and a dependency of local context (bio resources, companies, energy systems, technologies, build...

  10. Modeling the effects of local climate change on crop acreage

    Directory of Open Access Journals (Sweden)

    Hyunok Lee

    2016-01-01

    Full Text Available The impacts of climate change on agriculture depend on local conditions and crops grown. For instance, warmer winter temperatures in a given area would reduce chill hours, potentially cutting yields for some crops but extending the growing season for others. Using a century of climate data and six decades of acreage data, we established quantitative economic relationships between the evolution of local climate and acreage of 12 important crops in Yolo County. We then used the historical trend in climate change to project future crop acreages in the county. Only marginal changes in acreage in 2050 were projected for tree and vine crops there, in part because chill hours, although lower, remained above critical values. Walnuts were the most vulnerable tree crop, and the projections indicated some cultivars might be marginal in years with particularly warm winters. Processing tomato acreage might increase, due to a longer growing season, and also alfalfa acreage, if water availability and other factors remain constant.

  11. Impacts of the Three Gorges Project on Local Climate

    Science.gov (United States)

    Song, Z.; Liang, S.; Feng, L.

    2015-12-01

    Three Gorges Project (TGP) is the largest hydroelectric project in the world and has led to significant land cover changes in Three Gorges Reservoir Area (TGRA). Since its construction the debates on its environmental and climatic impacts have never stopped, especially after the extreme drought and flood in Yangtze River Basin these years. TGP reached its final impounding water level in 2010. However, studies on systematically monitoring the long-term variations in surface and atmospheric parameters in TGRA are still lacking. In this study, three important surface parameters - surface albedo, land surface temperature (LST) and evapotranspiration (ET) and two climatic parameters - air temperature and precipitation were investigated from 2000 to 2013 by combining multiple remote sensing data and ground measurements. Results showed that along the reservoir albedo decreased significantly as a result of water impounding. Correspondingly, in the same region daytime LST decreased in spring and summer and nighttime LST increased in autumn and winter. In the western region of TGRA, albedo increased due to resettlement and LST also changed. The average ET increased by 20% in TGR but kept stable in the whole TGRA. In contrast to LST, air temperature showed less apparent spatial and temporal variability. Only in the region near the dam air temperature experienced a decrease at daytime and an increase at nighttime. Further analysis demonstrated precipitation revealed no apparent changes in TGRA and the precipitation anomaly in northwest of TGRA may not be connected with TGP. All of the findings provide a more substantial clues of local climate change caused by TGP.

  12. Assessing local vulnerability to climate change in Ecuador.

    Science.gov (United States)

    Fernandez, Mario Andres; Bucaram, Santiago J; Renteria, Willington

    2015-01-01

    Vulnerability assessments have become necessary to increase the understanding of climate-sensitive systems and inform resource allocation in developing countries. Challenges arise when poor economic and social development combines with heterogeneous climatic conditions. Thus, finding and harmonizing good-quality data at local scale may be a significant hurdle for vulnerability research. In this paper we assess vulnerability to climate change at a local level in Ecuador. We take Ecuador as a case study as socioeconomic data are readily available. To incorporate the spatial and temporal pattern of the climatic variables we use reanalysis datasets and empirical orthogonal functions. Our assessment strategy relies on the statistical behavior of climatic and socioeconomic indicators for the weighting and aggregation mechanism into a composite vulnerability indicator. Rather than assuming equal contribution to the formation of the composite indicator, we assume that the weights of the indicators vary inversely as the variance over the cantons (administrative division of Ecuador). This approach captures the multi-dimensionality of vulnerability in a comprehensive form. We find that the least vulnerable cantons concentrate around Ecuador's largest cities (e.g. Quito and Guayaquil); however, approximately 20 % of the national population lives in other cantons that are categorized as highly and very highly vulnerable to climate change. Results also show that the main determinants of high vulnerability are the lack of land tenure in agricultural areas and the nonexistence of government-funded programs directed to environmental and climate change management.

  13. Health Aspects of Climate Change in Cities with Mediterranean Climate, and Local Adaptation Plans.

    Science.gov (United States)

    Paz, Shlomit; Negev, Maya; Clermont, Alexandra; Green, Manfred S

    2016-04-21

    Cities with a Mediterranean-type climate (Med-cities) are particularly susceptible to health risks from climate change since they are located in biogeographical hot-spots that experience some of the strongest effects of the changing climate. The study aims to highlight health impacts of climate change in Med-cities, analyze local climate adaptation plans and make adaptation policy recommendations for the Med-city level. We identified five Med-cities with a climate change adaptation plan: Adelaide, Barcelona, Cape Town, Los Angeles and Santiago. Beyond their similar Med-climate features (although Santiago's are slightly different), the cities have different socio-economic characteristics in various aspects. We analyzed each plan according to how it addresses climate change-related drivers of health impacts among city dwellers. For each driver, we identified the types of policy adaptation tools that address it in the urban climate adaptation plans. The surveyed cities address most of the fundamental climate change-related drivers of risks to human health, including rising temperatures, flooding and drought, but the policy measures to reduce negative impacts vary across cities. We suggest recommendations for Med-cities in various aspects, depending on their local needs and vulnerability challenges: assessment of health risks, extreme events management and long-term adaptation, among others.

  14. Climate Controls AM Fungal Distributions from Global to Local Scales

    Science.gov (United States)

    Kivlin, S. N.; Hawkes, C.; Muscarella, R.; Treseder, K. K.; Kazenel, M.; Lynn, J.; Rudgers, J.

    2016-12-01

    Arbuscular mycorrhizal (AM) fungi have key functions in terrestrial biogeochemical processes; thus, determining the relative importance of climate, edaphic factors, and plant community composition on their geographic distributions can improve predictions of their sensitivity to global change. Local adaptation by AM fungi to plant hosts, soil nutrients, and climate suggests that all of these factors may control fungal geographic distributions, but their relative importance is unknown. We created species distribution models for 142 AM fungal taxa at the global scale with data from GenBank. We compared climate variables (BioClim and soil moisture), edaphic variables (phosphorus, carbon, pH, and clay content), and plant variables using model selection on models with (1) all variables, (2) climatic variables only (including soil moisture) and (3) resource-related variables only (all other soil parameters and NPP) using the MaxEnt algorithm evaluated with ENMEval. We also evaluated whether drivers of AM fungal distributions were phylogenetically conserved. To test whether global correlates of AM fungal distributions were reflected at local scales, we then surveyed AM fungi in nine plant hosts along three elevation gradients in the Upper Gunnison Basin, Colorado, USA. At the global scale, the distributions of 55% of AM fungal taxa were affected by both climate and soil resources, whereas 16% were only affected by climate and 29% were only affected by soil resources. Even for AM fungi that were affected by both climate and resources, the effects of climatic variables nearly always outweighed those of resources. Soil moisture and isothermality were the main climatic and NPP and soil carbon the main resource related factors influencing AM fungal distributions. Distributions of closely related AM fungal taxa were similarly affected by climate, but not by resources. Local scale surveys of AM fungi across elevations confirmed that climate was a key driver of AM fungal

  15. Arctic Climate Systems Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ivey, Mark D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Robinson, David G. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Boslough, Mark B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Backus, George A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Peterson, Kara J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); van Bloemen Waanders, Bart G. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Swiler, Laura Painton [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Desilets, Darin Maurice [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Reinert, Rhonda Karen [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-03-01

    This study began with a challenge from program area managers at Sandia National Laboratories to technical staff in the energy, climate, and infrastructure security areas: apply a systems-level perspective to existing science and technology program areas in order to determine technology gaps, identify new technical capabilities at Sandia that could be applied to these areas, and identify opportunities for innovation. The Arctic was selected as one of these areas for systems level analyses, and this report documents the results. In this study, an emphasis was placed on the arctic atmosphere since Sandia has been active in atmospheric research in the Arctic since 1997. This study begins with a discussion of the challenges and benefits of analyzing the Arctic as a system. It goes on to discuss current and future needs of the defense, scientific, energy, and intelligence communities for more comprehensive data products related to the Arctic; assess the current state of atmospheric measurement resources available for the Arctic; and explain how the capabilities at Sandia National Laboratories can be used to address the identified technological, data, and modeling needs of the defense, scientific, energy, and intelligence communities for Arctic support.

  16. Think globally, act locally? Local climate change and energy policies in Sweden and the UK

    International Nuclear Information System (INIS)

    Collier, U.; Loefstedt, R.E.

    1997-01-01

    While climate change is obviously a global environmental problem, there is nevertheless potential for policy initiatives at the local level. Although the competences of local authorities vary between countries, they all have some responsibilities in the crucial areas of energy and transport policy. This paper examines local competences in Sweden and the UK and looks at the responses to the climate change issue by six local authorities, focussing on energy related developments. The points of departure are very different in the two countries. Swedish local authorities are much more independent than UK ones, especially through the ownership of local energy companies. Yet, UK local authorities are relatively active in the climate change domain, at least in terms of drawing up response strategies, which they see as an opportunity for reasserting their role, after a long period of erosion of their powers. Furthermore, there is more scope for action in the UK, as in Sweden many potential measures, especially in the energy efficiency field, have already been taken. However, in both countries climate change is only a relatively marginal area of local environmental policy making and the political will, as well as the financial resources, for more radical measures are often absent. (Author)

  17. Barriers in Local Climate Change Adaptation Planning in Nepal

    Czech Academy of Sciences Publication Activity Database

    Dhungana, N.; Chiranjeewee, Khadka; Bhatta, B. P.; Regmi, S.

    2017-01-01

    Roč. 62, jun (2017), s. 20-24 ISSN 2224-3240 Institutional support: RVO:67179843 Keywords : Local Adaptation Plan for Action Framework * Barriers * Climate Change Adaptation * Village Development Committees Subject RIV: EH - Ecology, Behaviour OBOR OECD: Environmental sciences (social aspects to be 5.7) http://www.iiste.org/Journals/index.php/JLPG/article/view/37535

  18. Governance by Diffusion: Transnational Municipal Networks and the Spread of Local Climate Strategies in Europe

    OpenAIRE

    Lukas Hakelberg

    2014-01-01

    Cities have become crucial actors for the global governance of climate change. Their increased activity in this field is reflected by the rising number of adoptions of local climate strategies in an original sample of 274 European cities from 1992 to 2009. Using event history analysis, I find that this spread is promoted by transnational municipal networks (TMNs) successfully deploying strategies for governance by diffusion, their impact exceeding that of most alternative explanatory factors ...

  19. Analysis and detection of climate change

    International Nuclear Information System (INIS)

    Thejll, P.; Stendel, M.

    2001-01-01

    The authors first discuss the concepts 'climate' and 'climate change detection', outlining the difficulties of the latter in terms of the properties of the former. In more detail they then discuss the analysis and detection, carried out at the Danish Climate Centre, of anthropogenic climate change and the nonanthropogenic changes regarding anthropogenic climate change the emphasis is on the improvement of global and regional climate models, and the reconstruction of past climates regarding non-anthropogenic changes the authors describe two case studies of potential solar influence on climate. (LN)

  20. Geographic variation in opinions on climate change at state and local scales in the USA

    Science.gov (United States)

    Howe, Peter D.; Mildenberger, Matto; Marlon, Jennifer R.; Leiserowitz, Anthony

    2015-06-01

    Addressing climate change in the United States requires enactment of national, state and local mitigation and adaptation policies. The success of these initiatives depends on public opinion, policy support and behaviours at appropriate scales. Public opinion, however, is typically measured with national surveys that obscure geographic variability across regions, states and localities. Here we present independently validated high-resolution opinion estimates using a multilevel regression and poststratification model. The model accurately predicts climate change beliefs, risk perceptions and policy preferences at the state, congressional district, metropolitan and county levels, using a concise set of demographic and geographic predictors. The analysis finds substantial variation in public opinion across the nation. Nationally, 63% of Americans believe global warming is happening, but county-level estimates range from 43 to 80%, leading to a diversity of political environments for climate policy. These estimates provide an important new source of information for policymakers, educators and scientists to more effectively address the challenges of climate change.

  1. Using Local Climate Science to Educate "Key Influentials" and their Communities in the San Diego Region

    Science.gov (United States)

    Boudrias, M. A.; Estrada, M.; Anders, S.; Silva-Send, N. J.; Yin, Z.; Schultz, P.; Young, E.

    2012-12-01

    Influentials described themselves as concerned about climate change, they believed only 10% of their peers were equally concerned. Results from a public opinion survey of 1001 San Diego residents exhibited two clear trends: San Diegans were consistently more attuned and concerned about climate change and its impacts than nationwide average; and similar to the KI findings, they do not believe others are as concerned as they are. Further, mediation analysis of results supported TIMSI, showing that climate change education that promotes efficacy, identity and values endorsed by a concerned community are most likely to result in engagement in mitigation and adaptive behaviors. All CCEP-I activities informed and directed the design of our Phase II Strategic plan and will provide baseline data for assessing changes that occur as we implement the educational plan. Implementation strategies for the next Phase will emphasize (1) presenting local climate science and unique climate impacts, (2) working with Key Influentials in diverse ways, including educational both formal and informal dialogues for this non-traditional audience, developing climate education messages to be delivered by KIs to their peers and their communities, and engaging certain KIs to be the portal to their constituents; and (3) using social media to connect educators and their audiences.

  2. Regional climate change mitigation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Rowlands, Ian H [UNEP Collaborating Centre on Energy and Environment, and Univ. of Waterloo (Canada)

    1998-10-01

    The purpose of this paper is to explore some of the key methodological issues that arise from an analysis of regional climate change mitigation options. The rationale for any analysis of regional mitigation activities, emphasising both the theoretical attractiveness and the existing political encouragement and the methodology that has been developed are reviewed. The differences arising from the fact that mitigation analyses have been taken from the level of the national - where the majority of the work has been completed to date - to the level of the international - that is, the `regional` - will be especially highlighted. (EG)

  3. Regional climate change mitigation analysis

    International Nuclear Information System (INIS)

    Rowlands, Ian H.

    1998-01-01

    The purpose of this paper is to explore some of the key methodological issues that arise from an analysis of regional climate change mitigation options. The rationale for any analysis of regional mitigation activities, emphasising both the theoretical attractiveness and the existing political encouragement and the methodology that has been developed are reviewed. The differences arising from the fact that mitigation analyses have been taken from the level of the national - where the majority of the work has been completed to date - to the level of the international - that is, the 'regional' - will be especially highlighted. (EG)

  4. Strong contributions of local background climate to urban heat islands

    Science.gov (United States)

    Zhao, Lei; Lee, Xuhui; Smith, Ronald B.; Oleson, Keith

    2014-07-01

    The urban heat island (UHI), a common phenomenon in which surface temperatures are higher in urban areas than in surrounding rural areas, represents one of the most significant human-induced changes to Earth's surface climate. Even though they are localized hotspots in the landscape, UHIs have a profound impact on the lives of urban residents, who comprise more than half of the world's population. A barrier to UHI mitigation is the lack of quantitative attribution of the various contributions to UHI intensity (expressed as the temperature difference between urban and rural areas, ΔT). A common perception is that reduction in evaporative cooling in urban land is the dominant driver of ΔT (ref. 5). Here we use a climate model to show that, for cities across North America, geographic variations in daytime ΔT are largely explained by variations in the efficiency with which urban and rural areas convect heat to the lower atmosphere. If urban areas are aerodynamically smoother than surrounding rural areas, urban heat dissipation is relatively less efficient and urban warming occurs (and vice versa). This convection effect depends on the local background climate, increasing daytime ΔT by 3.0 +/- 0.3 kelvin (mean and standard error) in humid climates but decreasing ΔT by 1.5 +/- 0.2 kelvin in dry climates. In the humid eastern United States, there is evidence of higher ΔT in drier years. These relationships imply that UHIs will exacerbate heatwave stress on human health in wet climates where high temperature effects are already compounded by high air humidity and in drier years when positive temperature anomalies may be reinforced by a precipitation-temperature feedback. Our results support albedo management as a viable means of reducing ΔT on large scales.

  5. Climate Local Information over the Mediterranean to Respond User Needs

    Science.gov (United States)

    Ruti, P.

    2012-12-01

    CLIM-RUN aims at developing a protocol for applying new methodologies and improved modeling and downscaling tools for the provision of adequate climate information at regional to local scale that is relevant to and usable by different sectors of society (policymakers, industry, cities, etc.). Differently from current approaches, CLIM-RUN will develop a bottom-up protocol directly involving stakeholders early in the process with the aim of identifying well defined needs at the regional to local scale. The improved modeling and downscaling tools will then be used to optimally respond to these specific needs. The protocol is assessed by application to relevant case studies involving interdependent sectors, primarily tourism and energy, and natural hazards (wild fires) for representative target areas (mountainous regions, coastal areas, islands). The region of interest for the project is the Greater Mediterranean area, which is particularly important for two reasons. First, the Mediterranean is a recognized climate change hot-spot, i.e. a region particularly sensitive and vulnerable to global warming. Second, while a number of countries in Central and Northern Europe have already in place well developed climate service networks (e.g. the United Kingdom and Germany), no such network is available in the Mediterranean. CLIM-RUN is thus also intended to provide the seed for the formation of a Mediterranean basin-side climate service network which would eventually converge into a pan-European network. The general time horizon of interest for the project is the future period 2010-2050, a time horizon that encompasses the contributions of both inter-decadal variability and greenhouse-forced climate change. In particular, this time horizon places CLIM-RUN within the context of a new emerging area of research, that of decadal prediction, which will provide a strong potential for novel research.

  6. Act locally, trade globally. Emissions trading for climate policy

    Energy Technology Data Exchange (ETDEWEB)

    none

    2005-07-01

    Climate policy raises a number of challenges for the energy sector, the most significant being the transition from a high to a low-CO2 energy path in a few decades. Emissions trading has become the instrument of choice to help manage the cost of this transition, whether used at international or at domestic level. Act Locally, Trade Globally, offers an overview of existing trading systems, their mechanisms, and looks into the future of the instrument for limiting greenhouse gas emissions. Are current markets likely to be as efficient as the theory predicts? What is, if any, the role of governments in these markets? Can domestic emissions trading systems be broadened to activities other than large stationary energy uses? Can international emissions trading accommodate potentially diverse types of emissions targets and widely different energy realities across countries? Are there hurdles to linking emissions trading systems based on various design features? Can emissions trading carry the entire burden of climate policy, or will other policy instruments remain necessary? In answering these questions, Act Locally, Trade Globally seeks to provide a complete picture of the future role of emissions trading in climate policy and the energy sector.

  7. Climate reconstruction analysis using coexistence likelihood estimation (CRACLE): a method for the estimation of climate using vegetation.

    Science.gov (United States)

    Harbert, Robert S; Nixon, Kevin C

    2015-08-01

    • Plant distributions have long been understood to be correlated with the environmental conditions to which species are adapted. Climate is one of the major components driving species distributions. Therefore, it is expected that the plants coexisting in a community are reflective of the local environment, particularly climate.• Presented here is a method for the estimation of climate from local plant species coexistence data. The method, Climate Reconstruction Analysis using Coexistence Likelihood Estimation (CRACLE), is a likelihood-based method that employs specimen collection data at a global scale for the inference of species climate tolerance. CRACLE calculates the maximum joint likelihood of coexistence given individual species climate tolerance characterization to estimate the expected climate.• Plant distribution data for more than 4000 species were used to show that this method accurately infers expected climate profiles for 165 sites with diverse climatic conditions. Estimates differ from the WorldClim global climate model by less than 1.5°C on average for mean annual temperature and less than ∼250 mm for mean annual precipitation. This is a significant improvement upon other plant-based climate-proxy methods.• CRACLE validates long hypothesized interactions between climate and local associations of plant species. Furthermore, CRACLE successfully estimates climate that is consistent with the widely used WorldClim model and therefore may be applied to the quantitative estimation of paleoclimate in future studies. © 2015 Botanical Society of America, Inc.

  8. Localized Multi-Model Extremes Metrics for the Fourth National Climate Assessment

    Science.gov (United States)

    Thompson, T. R.; Kunkel, K.; Stevens, L. E.; Easterling, D. R.; Biard, J.; Sun, L.

    2017-12-01

    We have performed localized analysis of scenario-based datasets for the Fourth National Climate Assessment (NCA4). These datasets include CMIP5-based Localized Constructed Analogs (LOCA) downscaled simulations at daily temporal resolution and 1/16th-degree spatial resolution. Over 45 temperature and precipitation extremes metrics have been processed using LOCA data, including threshold, percentile, and degree-days calculations. The localized analysis calculates trends in the temperature and precipitation extremes metrics for relatively small regions such as counties, metropolitan areas, climate zones, administrative areas, or economic zones. For NCA4, we are currently addressing metropolitan areas as defined by U.S. Census Bureau Metropolitan Statistical Areas. Such localized analysis provides essential information for adaptation planning at scales relevant to local planning agencies and businesses. Nearly 30 such regions have been analyzed to date. Each locale is defined by a closed polygon that is used to extract LOCA-based extremes metrics specific to the area. For each metric, single-model data at each LOCA grid location are first averaged over several 30-year historical and future periods. Then, for each metric, the spatial average across the region is calculated using model weights based on both model independence and reproducibility of current climate conditions. The range of single-model results is also captured on the same localized basis, and then combined with the weighted ensemble average for each region and each metric. For example, Boston-area cooling degree days and maximum daily temperature is shown below for RCP8.5 (red) and RCP4.5 (blue) scenarios. We also discuss inter-regional comparison of these metrics, as well as their relevance to risk analysis for adaptation planning.

  9. From GCM Output to Local Hydrologic and Ecological Impacts: Integrating Climate Change Projections into Conservation Lands

    Science.gov (United States)

    Weiss, S. B.; Micheli, L.; Flint, L. E.; Flint, A. L.; Thorne, J. H.

    2014-12-01

    Assessment of climate change resilience, vulnerability, and adaptation options require downscaling of GCM outputs to local scales, and conversion of temperature and precipitation forcings into hydrologic and ecological responses. Recent work in the San Francisco Bay Area, and California demonstrate a practical approach to this process. First, climate futures (GCM x Emissions Scenario) are screened using cluster analysis for seasonal precipitation and temperature, to select a tractable subset of projections that still represent the range of climate projections. Second, monthly climate projections are downscaled to 270m and the Basin Characterization Model (BCM) applied, to generate fine-scale recharge, runoff, actual evapotranspiration (AET), and climatic water deficit (CWD) accounting for soils, bedrock geology, topography, and local climate. Third, annual time-series are used to derive 30-year climatologies and recurrence intervals of extreme events (including multi-year droughts) at the scale of small watersheds and conservation parcels/networks. We take a "scenario-neutral" approach where thresholds are defined for system "failure," such as water supply shortfalls or drought mortality/vegetation transitions, and the time-window for hitting those thresholds is evaluated across all selected climate projections. San Francisco Bay Area examples include drought thresholds (CWD) for specific vegetation-types that identify leading/trailing edges and local refugia, evaluation of hydrologic resources (recharge and runoff) provided by conservation lands, and productivity of rangelands (AET). BCM outputs for multiple futures are becoming available to resource managers through on-line data extraction tools. This approach has wide applicability to numerous resource management issues.

  10. Nevada local government revenues analysis

    International Nuclear Information System (INIS)

    1988-06-01

    This report analyzes the major sources of revenue for Nevada local government for purposes of estimating the impacts associated with the siting of a nuclear waste repository at Yucca Mountain. Each major revenue source is analyzed separately to identify relationships between the economic or demographic base, the revenue base and the revenues generated. Trends and changes in the rates and/or base are highlighted. A model is developed for each component to allow impact estimation. This report is a companion to the report Nevada State Revenues Analysis

  11. Evolving local climate adaptation strategies: incorporating influences of socio–economic stress

    OpenAIRE

    Hjerpe, Mattias; Glaas, Erik

    2012-01-01

    Socio-economic and climatic stresses affect local communities’ vulnerability toflooding. Better incorporation of socio-economic stress in local vulnerability assessments isimportant when planning for climate adaptation. This is rarely done due to insufficientunderstanding of their interaction, in both theory and practice. The omission leads to criticalweaknesses in local adaptation strategies. This study analyses how socio-economic stressinteract with climatic stress and shape local vulnerabi...

  12. A local scale assessment of the climate change sensitivity of snow in Pyrenean ski resorts

    Science.gov (United States)

    Pesado, Cristina; Pons, Marc; Vilella, Marc; López-Moreno, Juan Ignacio

    2016-04-01

    The Pyrenees host one of the largest ski area in Europe after the Alps that encompasses the mountain area of the south of France, the north of Spain and the small country of Andorra. In this region, winter tourism is one of the main source of income and driving force of local development on these mountain communities. However, this activity was identified as one of the most vulnerable to a future climate change due to the projected decrease of natural snow and snowmaking capacity. However, within the same ski resorts different areas showed to have a very different vulnerability within the same resort based on the geographic features of the area and the technical management of the slopes. Different areas inside a same ski resort could have very different vulnerability to future climate change based on aspect, steepness or elevation. Furthermore, the technical management of ski resorts, such as snowmaking and grooming were identified to have a significant impact on the response of the snowpack in a warmer climate. In this line, two different ski resorts were deeply analyzed taken into account both local geographical features as well as the effect of the technical management of the runs. Principal Component Analysis was used to classify the main areas of the resort based on the geographic features (elevation, aspect and steepness) and identify the main representative areas with different local features. Snow energy and mass balance was simulated in the different representative areas using the Cold Regions Hydrological Model (CRHM) assuming different magnitudes of climate warming (increases of 2°C and 4°C in the mean winter temperature) both in natural conditions and assuming technical management of the slopes. Theses first results showed the different sensitivity and vulnerability to climate changes based on the local geography of the resort and the management of the ski runs, showing the importance to include these variables when analyzing the local vulnerability

  13. School Climate Measurement and Analysis

    Science.gov (United States)

    Faster, Darlene; Lopez, Daisy

    2013-01-01

    Today, school climate assessment has become an increasingly important and valued aspect of district, state, and federal policy. Recognizing that effective school climate improvement efforts are grounded in valid and reliable data, the Federal Department of Education launched the Safe and Supportive Schools grant in 2010 to provide 11 states with…

  14. Using Local Stories as a Call to Action on Climate Change Adaptation and Mitigation in Minnesota

    Science.gov (United States)

    Phipps, M.

    2015-12-01

    Climate Generation: A Will Steger Legacy and the University of Minnesota's Regional Sustainability Development Partnerships (RSDP) have developed a novel approach to engaging rural Minnesotans on climate change issues. Through the use of personal, local stories about individuals' paths to action to mitigate and or adapt to climate change, Climate Generation and RSDP aim to spur others to action. Minnesota's Changing Climate project includes 12 Climate Convenings throughout rural Minnesota in a range of communities (tourism-based, agrarian, natural resources-based, university towns) to engage local populations in highly local conversations about climate change, its local impacts, and local solutions currently occurring. Climate Generation and RSDP have partnered with Molly Phipps Consulting to evaluate the efficacy of this approach in rural Minnesota. Data include pre and post convening surveys examining participants' current action around climate change, attitudes toward climate change (using questions from Maibach, Roser-Renouf, and Leiserowitz, 2009), and the strength of their social network to support their current and ongoing work toward mitigating and adapting to climate change. Although the Climate Convenings are tailored to each community, all include a resource fair of local organizations already engaging in climate change mitigation and adaptation activities which participants can participate in, a welcome from a trusted local official, a presentation on the science of climate change, sharing of local climate stories, and break-out groups where participants can learn how to get involved in a particular mitigation or adaptation strategy. Preliminary results have been positive: participants feel motivated to work toward mitigating and adapting to climate change, and more local stories have emerged that can be shared in follow-up webinars and on a project website to continue to inspire others to act.

  15. Local governments and climate change: sustainable energy planning and implementation in small and medium sized communities

    National Research Council Canada - National Science Library

    Van Staden, Maryke; Musco, Francesco

    2010-01-01

    The focus of 'Local governments and climate change' is on how small and medium-sized communities in Europe are effectively responding to climate change, with a particular focus on different approaches...

  16. Localizing drought monitoring products to support agricultural climate service advisories in South Asia

    Science.gov (United States)

    Qamer, F. M.; Matin, M. A.; Yadav, N. K.; Bajracharya, B.; Zaitchik, B. F.; Ellenburg, W. L.; Krupnik, T. J.; Hussain, G.

    2017-12-01

    The Fifth Assessment Report of the Intergovernmental Panel on Climate Change identifies drought as one of the major climate risks in South Asia. During past two decades, a large amount of climate data have been made available by the scientific community, but the deployment of climate information for local level and agricultural decision making remains less than optimal. The provisioning of locally calibrated, easily accessible, decision-relevant and user-oriented information, in the form of drought advisory service could help to prepare communities to reduce climate vulnerability and increase resilience. A collaborative effort is now underway to strengthen existing and/or establish new drought monitoring and early warning systems in Afghanistan, Bangladesh, Nepal and Pakistan by incorporating standard ground-based observations, earth observation datasets, and numerical forecast models. ICT-based agriculture drought monitoring platforms, hosted at national agricultural and meteorological institutions, are being developed and coupled with communications and information deployment strategies to enable the rapid and efficient deployment of information that farmers can understand, interpret, and act on to adapt to anticipated droughts. Particular emphasis is being placed on the calibration and validation of data products through retrospective analysis of time series data, in addition to the installation of automatic weather station networks. In order to contextualize monitoring products to that they may be relevant for farmers' primary cropping systems, district level farming practices calendars are being compiled and validated through focus groups and surveys to identify the most important times and situations during which farmers can adapt to drought. High-resolution satellite crop distribution maps are under development and validation to add value to these efforts. This programme also aims to enhance capacity of agricultural extension staff to better understand

  17. A Bibliometric Analysis of Climate Engineering Research

    Science.gov (United States)

    Belter, C. W.; Seidel, D. J.

    2013-12-01

    The past five years have seen a dramatic increase in the number of media and scientific publications on the topic of climate engineering, or geoengineering, and some scientists are increasingly calling for more research on climate engineering as a possible supplement to climate change mitigation and adaptation strategies. In this context, understanding the current state of climate engineering research can help inform policy discussions and guide future research directions. Bibliometric analysis - the quantitative analysis of publications - is particularly applicable to fields with large bodies of literature that are difficult to summarize by traditional review methods. The multidisciplinary nature of the published literature on climate engineering makes it an ideal candidate for bibliometric analysis. Publications on climate engineering are found to be relatively recent (more than half of all articles during 1988-2011 were published since 2008), include a higher than average percentage of non-research articles (30% compared with 8-15% in related scientific disciplines), and be predominately produced by countries located in the Northern Hemisphere and speaking English. The majority of this literature focuses on land-based methods of carbon sequestration, ocean iron fertilization, and solar radiation management and is produced with little collaboration among research groups. This study provides a summary of existing publications on climate engineering, a perspective on the scientific underpinnings of the global dialogue on climate engineering, and a baseline for quantitatively monitoring the development of climate engineering research in the future.

  18. People as sensors: mass media and local temperature influence climate change discussion on Twitter

    Science.gov (United States)

    Kirilenko, A.; Molodtsova, T.; Stepchenkova, S.

    2014-12-01

    We examined whether people living under significant temperature anomalies connect their sensory experiences to climate change and the role that media plays in this process. We used Twitter messages containing words "climate change" and "global warming" as the indicator of attention that public pays to the issue. Specifically, the goals were: (1) to investigate whether people immediately notice significant local weather anomalies and connect them to climate change and (2) to examine the role of mass media in this process. Over 2 million tweets were collected for a two-year period (2012 - 2013) and were assigned to 157 urban areas in the continental USA (Figure 1). Geographical locations of the tweets were identified with a geolocation resolving algorithm based the profile of the users. Daily number of tweets (tweeting rate) was computed for 157 conterminous USA urban areas and adjusted for data acquisition errors. The USHCN daily minimum and maximum temperatures were obtained for the station locations closest to the centers of the urban areas and the 1981-2010 30-year temperature mean and standard deviation were used as the climate normals. For the analysis, we computed the following indices for each day of 2012 - 2013 period: standardized temperature anomaly, absolute standardized temperature anomaly, and extreme cold and hot temperature anomalies for each urban zone. The extreme cold and hot temperature anomalies were then transformed into country-level values that represent the number of people living in extreme temperature conditions. The rate of tweeting on climate change was regressed on the time variables, number of climate change publications in the mass media, and temperature. In the majority of regression models, the mass media and temperature variables were significant at the pmedia acts as a mediator in the relationship between local weather and climate change discourse intensity. Our analysis of Twitter data confirmed that the public is able to

  19. Promoting interactions between local climate change mitigation, sustainable energy development, and rural development policies in Lithuania

    International Nuclear Information System (INIS)

    Streimikiene, Dalia; Baležentis, Tomas; Kriščiukaitienė, Irena

    2012-01-01

    Lithuania has developed several important climate change mitigation policy documents however there are no attempts in Lithuania to develop local climate change mitigation policies or to decentralize climate change mitigation policy. Seeking to achieve harmonization and decentralization of climate change mitigation and energy policies in Lithuania the framework for local climate change mitigation strategy need to be developed taking into account requirements, targets and measures set in national climate change mitigation and energy policy documents. The paper will describe how national climate change mitigation and energy policies can be implemented via local energy and climate change mitigation plans. The aim of the paper is to analyze the climate change mitigation policy and its relationship with policies promoting sustainable energy development in Lithuania and to present a framework for local approaches to climate change mitigation in Lithuania, in the context of the existing national and supra-national energy, climate change, and rural development policies. - Highlights: ► The framework for local energy action plans is offered. ► The structural support possibilities are assessed with respect to the Lithuanian legal base. ► The proposals are given for further promotion of sustainable energy at the local level.

  20. Climate change adapatation response at local government level

    CSIR Research Space (South Africa)

    Mambo, Julia

    2018-03-01

    Full Text Available The climate change response policy gives the mandate to all municipalities and other levels of government to develop and implement climate chnage adaptation response. The availability of appropriate information is essential for this process...

  1. Local Perceptions of Climate Variability and Change in Tropical Forests of Papua, Indonesia

    Directory of Open Access Journals (Sweden)

    Manuel Boissière

    2013-12-01

    Full Text Available People everywhere experience changes and events that impact their lives. Knowing how they perceive, react, and adapt to climatic changes and events is helpful in developing strategies to support adaptation to climate change. Mamberamo in Papua, Indonesia, is a sparsely populated watershed of 7.8 million hectares possessing rich tropical forests. Our study compares scientific and traditional ecological knowledge (TEK on climate, and analyzes how local people in Mamberamo perceive and react to climatic variations. We compared meteorological data for the region with local views gathered through focus group discussions and interviews in six villages. We explored the local significance of seasonality, climate variability, and climate change. Mamberamo is subject to strikingly low levels of climatic variation; nonetheless local people highlighted certain problematic climate-related events such as floods and droughts. As our results illustrate, the implications vary markedly among villages. People currently consider climate variation to have little impact on their livelihoods when contrasted with other factors, e.g., logging, mining, infrastructure development, and political decentralization. Nonetheless, increased salinity of water supplies, crop loss due to floods, and reduced hunting success are concerns in specific villages. To gain local engagement, adaptation strategies should initially focus on factors that local people already judge important. Based on our results we demonstrate that TEK, and an assessment of local needs and concerns, provide practical insights for the development and promotion of locally relevant adaptation strategies. These insights offer a foundation for further engagement.

  2. Development and nationwide scale-up of Climate Matters, a localized climate change education program delivered by TV weathercasters.

    Science.gov (United States)

    Cullen, H. M.; Maibach, E.

    2016-12-01

    Most Americans view climate change as a threat that is distant in space (i.e., not here), time (i.e., not now), and species (i.e., not us). TV weathercasters are ideally positioned to educate Americans about the current and projected impacts of climate change in their community: they have tremendous reach, are trusted sources of climate information, and are highly skilled science communicators. In 2009, we learned that many weathercasters were potentially interested in reporting on climate change, but few actually were, citing significant barriers including a lack of time to prepare and air stories, and lack of access to high quality content. To test the premise that TV weathercasters can be effective climate educators - if supported with high quality localized climate communication content - in 2010 George Mason University, Climate Central and WLTX-TV (Columbia, SC) developed and pilot-tested Climate Matters, a series of short on-air (and online) segments about the local impacts of climate change, delivered by the station's chief meteorologist. During the first year, more than a dozen stories aired. To formally evaluate Climate Matters, we conducted pre- and post-test surveys of local TV news viewers in Columbia. After one year, WLTX viewers had developed a more science-based understanding of climate change than viewers of other local news stations, confirming our premise that when TV weathercasters report on the local implications of climate change, their viewers learn. Through a series of expansions, including the addition of important new partners - AMS, NASA, NOAA & Yale University - Climate Matters has become a comprehensive nationwide climate communication resource program for American TV weathercasters. As of March 2016, a network of 313 local weathercasters nationwide (at 202 stations in 111 media markets) are participating in the program, receiving new content on a weekly basis. This presentation will review the theoretical basis of the program, detail

  3. Training NOAA Staff on Effective Communication Methods with Local Climate Users

    Science.gov (United States)

    Timofeyeva, M. M.; Mayes, B.

    2011-12-01

    Since 2002 NOAA National Weather Service (NWS) Climate Services Division (CSD) offered training opportunities to NWS staff. As a result of eight-year-long development of the training program, NWS offers three training courses and about 25 online distance learning modules covering various climate topics: climate data and observations, climate variability and change, NWS national and local climate products, their tools, skill, and interpretation. Leveraging climate information and expertise available at all NOAA line offices and partners allows delivery of the most advanced knowledge and is a very critical aspect of the training program. NWS challenges in providing local climate services includes effective communication techniques on provide highly technical scientific information to local users. Addressing this challenge requires well trained, climate-literate workforce at local level capable of communicating the NOAA climate products and services as well as provide climate-sensitive decision support. Trained NWS climate service personnel use proactive and reactive approaches and professional education methods in communicating climate variability and change information to local users. Both scientifically-unimpaired messages and amiable communication techniques such as story telling approach are important in developing an engaged dialog between the climate service providers and users. Several pilot projects NWS CSD conducted in the past year applied the NWS climate services training program to training events for NOAA technical user groups. The technical user groups included natural resources managers, engineers, hydrologists, and planners for transportation infrastructure. Training of professional user groups required tailoring the instructions to the potential applications of each group of users. Training technical user identified the following critical issues: (1) Knowledge of target audience expectations, initial knowledge status, and potential use of climate

  4. Regional climate, local climate and ozone air pollution in Tours and Orleans cities

    International Nuclear Information System (INIS)

    Berthelot, M.

    2006-10-01

    The importance of the relations between climate and the air pollution justifies the interest related to the role of the urban heat island of heat with respect to the night persistence of ozone in urban environment. When the days are favourable with important ozone concentrations, the agglomerations of the area observe a dynamics day laborer of ozone different from that observed in rural environment. The study is undertaken on the towns of Turns and Orleans where the observations of Lig'Air revealed a night persistence of ozone whereas the concentrations drop more quickly in periphery. This phenomenon is remarkable during the little broken down anticyclonic days. The region region Centre is a ground of study privileged for ozone because of its situation in the south-west of the Island of France rich in precursors of ozone. When flow is of continental origin, the Centre area is found then under the influence of the Paris area. The investigation of a study of the air pollution must take into account the notes of the regional climate and local climate. Several preliminary studies must intervene to answer our principal problems. First of all a descriptive study of the regional climate is carried out with the participation of Meteo-France. The current absence of climatic atlas as well as the many disparities of the climate related to extended from the territory partly justify the interest of our study. The regional approach of the climate is also essential for the continuation of work on a finer scale on the agglomerations of Turns and Orleans in order to detect the urban heat island of heat there. Collaboration with Meteo-France and Lig'Air made it possible to establish a satisfying network of measurement making it possible to obtain notable thermal differences between the downtown area and the surrounding rural environment. The correlation between meteorology and the proven air pollution leads us to establish the climatology of ozone. Many are the studies having

  5. Providing the Larger Climate Context During Extreme Weather - Lessons from Local Television News

    Science.gov (United States)

    Woods, M.; Cullen, H. M.

    2015-12-01

    Local television weathercasters, in their role as Station Scientists, are often called upon to educate viewers about the science and impacts of climate change. Climate Central supports these efforts through its Climate Matters program. Launched in 2010 with support from the National Science Foundation, the program has grown into a network that includes more than 245 weathercasters from across the country and provides localized information on climate and ready-to-use, broadcast quality graphics and analyses in both English and Spanish. This presentation will focus on discussing best practices for integrating climate science into the local weather forecast as well as advances in the science of extreme event attribution. The Chief Meteorologist at News10 (Sacramento, CA) will discuss local news coverage of the ongoing California drought, extreme weather and climate literacy.

  6. Climate change perceptions and local adaptation strategies of hazard-prone rural households in Bangladesh

    OpenAIRE

    G.M. Monirul Alam; Khorshed Alam; Shahbaz Mushtaq

    2017-01-01

    Adaptation is a key strategy that can alleviate the severity of climate change impacts on agriculture and food production. Adaptation strategies are unlikely to be effective without an understanding of the farmers’ perceptions of climate change. This paper explores the local knowledge of adaptation in response to the perceived impacts of climate change and climatic hazards using a survey of 380 resource-poor riverbank erosion-prone households in Bangladesh. The results indicate that the respo...

  7. Cluster analysis of Southeastern U.S. climate stations

    Science.gov (United States)

    Stooksbury, D. E.; Michaels, P. J.

    1991-09-01

    A two-step cluster analysis of 449 Southeastern climate stations is used to objectively determine general climate clusters (groups of climate stations) for eight southeastern states. The purpose is objectively to define regions of climatic homogeneity that should perform more robustly in subsequent climatic impact models. This type of analysis has been successfully used in many related climate research problems including the determination of corn/climate districts in Iowa (Ortiz-Valdez, 1985) and the classification of synoptic climate types (Davis, 1988). These general climate clusters may be more appropriate for climate research than the standard climate divisions (CD) groupings of climate stations, which are modifications of the agro-economic United States Department of Agriculture crop reporting districts. Unlike the CD's, these objectively determined climate clusters are not restricted by state borders and thus have reduced multicollinearity which makes them more appropriate for the study of the impact of climate and climatic change.

  8. Nordic Analysis of Climate Friendly Buildings

    DEFF Research Database (Denmark)

    Andresen, Inger; Thomsen, Kirsten Engelund; Wahlstrøm, Åsa

    This report summarizes the findings of the work conducted within the project “Nordic Analysis of Climate Friendly Buildings”, financed by the Nordic Council of Ministers. The main goal of the project was to establish a knowledge and decision base for a Nordic innovation program that will promote...... the development and demonstration of low energy and climate friendly buildings. The innovation program should support a development that brings the Nordic countries to an international forefront with respect to business strongholds and market penetration of low energy and climate friendly buildings....

  9. Climate Change Adaptation in Dutch Local Communities. Risk Perception, Institutional Capacity and the Role of Local Government.

    NARCIS (Netherlands)

    van den Berg, Maya Marieke

    2010-01-01

    This report explains the outcomes of the research project Analysing local climate vulnerability and local adaptation strategies which was carried out from 2005 up till 2009 at the Twente Centre for Studies in Technology and Sustainable Development (CSTM), University of Twente. This project is funded

  10. Energy policy design and China’s local climate governance

    DEFF Research Database (Denmark)

    Ting, Guan; Delman, Jørgen

    2017-01-01

    This study probes into climate policy design at city level in China, with Hangzhou’s energy efficiency and renewable energy policies between 2005 and 2014 as a case. The study applies a political action arena approach to accentuate the importance of different normative preferences behind climate...

  11. Single-Locus versus Multilocus Patterns of Local Adaptation to Climate in Eastern White Pine (Pinus strobus, Pinaceae.

    Directory of Open Access Journals (Sweden)

    Om P Rajora

    Full Text Available Natural plant populations are often adapted to their local climate and environmental conditions, and populations of forest trees offer some of the best examples of this pattern. However, little empirical work has focused on the relative contribution of single-locus versus multilocus effects to the genetic architecture of local adaptation in plants/forest trees. Here, we employ eastern white pine (Pinus strobus to test the hypothesis that it is the inter-genic effects that primarily drive climate-induced local adaptation. The genetic structure of 29 range-wide natural populations of eastern white pine was determined in relation to local climatic factors using both a reference set of SSR markers, and SNPs located in candidate genes putatively involved in adaptive response to climate. Comparisons were made between marker sets using standard single-locus outlier analysis, single-locus and multilocus environment association analyses and a novel implementation of Population Graphs. Magnitudes of population structure were similar between the two marker sets. Outlier loci consistent with diversifying selection were rare for both SNPs and SSRs. However, genetic distances based on the multilocus among population covariances (cGD were significantly more correlated to climate, even after correcting for spatial effects, for SNPs as compared to SSRs. Coalescent simulations confirmed that the differences in mutation rates between SSRs and SNPs did not affect the topologies of the Population Graphs, and hence values of cGD and their correlations with associated climate variables. We conclude that the multilocus covariances among populations primarily reflect adaptation to local climate and environment in eastern white pine. This result highlights the complexity of the genetic architecture of adaptive traits, as well as the need to consider multilocus effects in studies of local adaptation.

  12. Social representations of climate change in Swedish lay focus groups: local or distant, gradual or catastrophic?

    Science.gov (United States)

    Wibeck, Victoria

    2014-02-01

    This paper explores social representations of climate change, investigating how climate change is discussed by Swedish laypeople interacting in focus group interviews. The analysis focuses on prototypical examples and metaphors, which were key devices for objectifying climate change representations. The paper analyzes how the interaction of focus group participants with other speakers, ideas, arguments, and broader social representations shaped their representations of climate change. Climate change was understood as a global but distant issue with severe consequences. There was a dynamic tension between representations of climate change as a gradual vs. unpredictable process. Implications for climate change communication are discussed.

  13. Preparing for climate change: a perspective from local public health officers in California.

    Science.gov (United States)

    Bedsworth, Louise

    2009-04-01

    The most recent scientific findings show that even with significant emission reductions, some amount of climate change is likely inevitable. The magnitude of the climate changes will depend on future emissions and climate sensitivity. These changes will have local impacts, and a significant share of coping with these changes will fall on local governmental agencies. Public health is no exception, because local public health agencies are crucial providers of disease prevention, health care, and emergency preparedness services. This article presents the results of a survey of California's local pubic health officers conducted between August and October 2007. The survey gauged health officers' concerns about the public health impacts of climate change, programs in place that could help to mitigate these health effects, and information and resource needs for better coping with a changing climate. The results of this survey show that most public health officers feel that climate change poses a serious threat to public health but that they do not feel well equipped in terms of either resources or information to cope with that threat. Nonetheless, public health agencies currently implement a number of programs that will help these agencies handle some of the challenges posed by a changing climate. Overall, the results suggest that local public health agencies in California are likely in a better position than they perceive to address the threats associated with climate change but that there is a larger role for them to play in climate policy.

  14. Analysis of regional climate strategies in the Barents region

    Energy Technology Data Exchange (ETDEWEB)

    Himanen, S.; Inkeroeinen, J.; Latola, K.; Vaisanen, T.; Alasaarela, E.

    2012-11-15

    Climate change is a global phenomenon with especially harsh effects on the Arctic and northern regions. The Arctic's average temperature has risen at almost twice the rate as elsewhere in the past few decades. Since 1966, the Arctic land area covered by snow in early summer has shrunk by almost a fifth. The Barents Region consists of the northern parts of Norway, Sweden, Finland and Russia (i.e. the European part of Russia). Climate change will cause serious impacts in the Barents Region because of its higher density of population living under harsh climatic conditions, thus setting it apart from other Arctic areas. In many cases, economic activities, like tourism, rely on certain weather conditions. For this reason, climate change and adaptation to it is of special urgency for the region. Regional climate change strategies are important tools for addressing mitigation and adaptation to climate change as they can be used to consolidate the efforts of different stakeholders of the public and private sectors. Regional strategies can be important factors in achieving the national and international goals. The study evaluated how the national climate change goals were implemented in the regional and local strategies and programmes in northern Finland. The specific goal was to describe the processes by which the regional strategies were prepared and implemented, and how the work was expanded to include the whole of northern Finland. Finally, the Finnish preparatory processes were compared to case examples of processes for preparing climate change strategies elsewhere in the Barents Region. This analysis provides examples of good practices in preparing a climate change strategy and implementing it. (orig.)

  15. Human Impacts on the Hydrologic Cycle: Comparing Global Climate Change and Local Water Management

    Science.gov (United States)

    Ferguson, I. M.; Maxwell, R. M.

    2010-12-01

    Anthropogenic climate change is significantly altering the hydrologic cycle at global and regional scales, with potentially devastating impacts on water resources. Recent studies demonstrate that hydrologic response to climate change will depend on local-scale feedbacks between groundwater, surface water, and land surface processes. These studies suggest that local water management practices that alter the quantity and distribution of water in the terrestrial system—e.g., groundwater pumping and irrigation—may also feed back across the hydrologic cycle, with impacts on land-atmosphere fluxes and thus weather and climate. Here we use an integrated hydrologic model to compare the impacts of large-scale climate change and local water management practices on water and energy budgets at local and watershed scales. We consider three climate scenarios (hot, hot+wet, and hot+dry) and three management scenarios (pumping only, irrigation only, and pumping+irrigation). Results demonstrate that impacts of local water management on basin-integrated groundwater storage, evapotranspiration, and stream discharge are comparable to those of changing climate conditions. However, impacts of climate change are shown to have a smaller magnitude and greater spatial extent, while impacts of pumping and irrigation are shown to have a greater magnitude but are local to areas where pumping and irrigation occur. These results have important implications regarding the scales of human impacts on both water resources and climate and the sustainability of water resources.

  16. Municipal climate protection. Possibilities for local governments; Kommunaler Klimaschutz. Moeglichkeiten fuer die Kommunen

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-01-15

    Climate protection is an important aspect of our time. The Federal Government recognized the central role of climate protection. This is reflected in the energy concept, adopted in September 2010. The booklet under consideration published regarding to the amendment of municipal guideline and is a reprint of a previously published paper on local climate protection. Besides conceptual contributions, this brochure provides practical examples of adaptation strategies to climate change, innovative ideas such as the project 'Coaching municipal climate protection' and the presentation of a network of '100 % Renewable Energy Regions'.

  17. Conceptualising national climate change policy through the local lenses: The case of Capricorn District Municipality, Limpopo, South Africa

    CSIR Research Space (South Africa)

    Murambadoro, Miriam D

    2018-01-01

    Full Text Available This poster presents the preliminary findings of a study which seeks to understand the learning systems used for climate change adaptation at local government level. It looks at how the local government officials conceptualise the National Climate...

  18. Presenting a Framework to Analyze Local Climate Policy and Action in Small and Medium-Sized Cities

    NARCIS (Netherlands)

    Hoppe, Thomas; van der Vegt, Arjen; Stegmaier, Peter

    2016-01-01

    Academic attention to local climate policy usually focuses on large-sized cities. Given the climate challenges ahead this seems unjustified. Small and medium-sized cities (SMCs) deserve scholarly attention as well. The main question is: What factors influence climate change policy and local climate

  19. IN SITU COMPARISON OF TREE-RING RESPONSES TO CLIMATE AND POPULATION GENETICS: THE NEED TO CONTROL FOR LOCAL CLIMATE AND SITE VARIABLES

    Directory of Open Access Journals (Sweden)

    Johann Mathias Housset

    2016-10-01

    Full Text Available Tree species responses to climate change will be greatly influenced by their evolutionary potential and their phenotypic plasticity. Investigating tree-rings responses to climate and population genetics at the regional scale is therefore crucial in assessing the tree behaviour to climate change. This study combined in situ dendroclimatology and population genetics over a latitudinal gradient and compared the variations between the two at the intra- and inter-population levels. This approach was applied on the northern marginal populations of Thuja occidentalis (eastern white-cedar in the Canadian boreal forest. We aimed first to assess the radial growth variability (response functional trait within populations across the gradient and to compare it with the genetic diversity (microsatellites. Second, we investigated the variability in the growth response to climate at the regional scale through the radial growth-climate relationships, and tested its correlation with environmental variables and population genetic structure. Model selection based on the Akaike Information Criteria revealed that the growth synchronicity between pairs of trees of a population covariates with both the genetic diversity of this population and the amount of precipitation (inverse correlation, although these variables only explained a small fraction of the observed variance. At the regional scale, variance partitioning and partial redundancy analysis indicate that the growth response to climate was greatly modulated by stand environmental variables, suggesting predominant plastic variations in growth-response to climate. Combining in situ dendroclimatology and population genetics is a promising way to investigate species’ response capacity to climate change in natural stands. We stress the need to control for local climate and site conditions effects on dendroclimatic response to climate to avoid misleading conclusions regarding the associations with genetic variables.

  20. The American Climate Prospectus: a risk-centered analysis of the economic impacts of climate change

    Science.gov (United States)

    Jina, A.; Houser, T.; Hsiang, S. M.; Kopp, R. E., III; Delgado, M.; Larsen, K.; Mohan, S.; Rasmussen, D.; Rising, J.; Wilson, P. S.; Muir-Wood, R.

    2014-12-01

    The American Climate Prospectus (ACP), the analysis underlying the Risky Business project, quantitatively assessed the climate risks posed to the United States' economy in six sectors - crop yields, energy demand, coastal property, crime, labor productivity, and mortality [1]. The ACP is unique in its characterization of the full probability distribution of economic impacts of climate change throughout the 21st century, making it an extremely useful basis for risk assessments. Three key innovations allow for this characterization. First, climate projections from CMIP5 models are scaled to a temperature probability distribution derived from a coarser climate model (MAGICC). This allows a more accurate representation of the whole distribution of future climates (in particular the tails) than a simple ensemble average. These are downscaled both temporally and spatially. Second, a set of local sea level rise and tropical cyclone projections are used in conjunction with the most detailed dataset of coastal property in the US in order to capture the risks of rising seas and storm surge. Third, we base many of our sectors on empirically-derived responses to temperature and precipitation. Each of these dose-response functions is resampled many times to populate a statistical distribution. Combining these with uncertainty in emissions scenario, climate model, and weather, we create the full probability distribution of climate impacts from county up to national levels, as well as model the effects upon the economy as a whole. Results are presented as likelihood ranges, as well as changes to return intervals of extreme events. The ACP analysis allows us to compare between sectors to understand the magnitude of required policy responses, and also to identify risks through time. Many sectors displaying large impacts at the end of the century, like those of mortality, have smaller changes in the near-term, due to non-linearities in the response functions. Other sectors, like

  1. Role of community based local institution for climate change adaptation in the Teesta riverine area of Bangladesh

    Directory of Open Access Journals (Sweden)

    Md. Rezaul Karim

    2017-01-01

    Full Text Available Climate change adaptation is one of the most crucial issues in developing countries like Bangladesh. The main objective was to understand the linkage of participation with Community Based Adaptation (CBA to climate change. Institutional framework following different types of conceptual theories (collective action, group, game and social learning theory was utilized to analyze the participatory process in local community level Village Disaster Mangement Committee (VDMC that works in collaboration with local government. Field level data was collected through interview and group discussion during 25 April to 30 May 2015 in the Teesta riverine area of northern Bangladesh. Results showed that flood and drought were the major climate change impacts in the study area, and various participatory tools were used for risk assessment and undertaking action plans to overcome the climate change challenges by the group VDMC. Participation in VDMC generated both relational and technical outcomes. The relational outcomes are the informal institutional changes through which local community adopt technological adaptation measures. Although, limitations like bargaining problem, free riding or conflict were found in collective decision making, but the initiation of local governance like VDMC has brought various institutional change in the communities in terms of adaptation practices. More than 80% VDMC and around 40–55% non-VDMC household respondents agreed that overall community based adaptation process was successful in the previous year. They believed that some innovative practices had been brought in the community through VDMC action for climate change adaptation. No doubt that the CBA has achieved good progress to achieve the government Comprehensive Disaster Management (CDM strategy of climate change adaptation. But, there is still lack of coordination among local government, NGOs and civil partners in working together. Research related to socio

  2. Analysis of localized damage in creep rupture

    International Nuclear Information System (INIS)

    Wang Zhengdong; Wu Dongdi

    1992-01-01

    Continuum Damage Mechanics studies the effect of distributed defects, whereas the failure of engineering structures is usually caused by local damage. In this paper, an analysis of localized damage in creep rupture is carried out. The material tested is a 2 1/4Cr-1Mo pressure vessel steel and the material constants necessary for damage analysis are evaluated. Notched specimens are used to reflect localized damage in creep rupture and the amount of damage is measured using DCPD method. Through FEM computation, stress components and effective stress in the region of notch root are evaluated and it is found that the von Mises effective stress can represent the damage effective stress in the analysis of localized creep damage. It is possible to develop a method for the assessment of safety of pressure vessels under creep through localized creep damage analysis. (orig.)

  3. Tools for Local and Distributed Climate Data Access

    Science.gov (United States)

    Schweitzer, R.; O'Brien, K.; Burger, E. F.; Smith, K. M.; Manke, A. B.; Radhakrishnan, A.; Balaji, V.

    2017-12-01

    Last year we reported on our efforts to adapt existing tools to facilitate model development. During the lifecycle of a Climate Model Intercomparison Project (CMIP), data must be quality controlled before it can be published and studied. Like previous efforts, the next CMIP6 will produce an unprecedented volume of data. For an institution, modelling group or modeller the volume of data is unmanageable without tools that organize and automate as many processes as possible. Even if a modelling group has tools for data and metadata management, it often falls on individuals to do the initial quality assessment for a model run with bespoke tools. Using individually crafted tools can lead to interruptions when project personnel change and may result in inconsistencies and duplication of effort across groups. This talk will expand on our experiences using available tools (Ferret/PyFerret, the Live Access Server, the GFDL Curator, the GFDL Model Development Database Interface and the THREDDS Data Server) to seamlessly automate the data assembly process to give users "one-click" access to a rich suite of Web-based analysis and comparison tools. On the surface, it appears that this collection of tools is well suited to the task, but our experience of the last year taught us that the data volume and distributed storage adds a number of challenges in adapting the tools for this task. Quality control and initial evaluation add their own set of challenges. We will discuss how we addressed the needs of QC researchers by expanding standard tools to include specialized plots and leveraged the configurability of the tools to add specific user defined analysis operations so they are available to everyone using the system. We also report on our efforts to overcome some of the technical barriers for wide adoption of the tools by providing pre-built containers that are easily deployed in virtual machine and cloud environments. Finally, we will offer some suggestions for added features

  4. Governing Carbon Mitigation and Climate Change within Local Councils: A Case Study of Adelaide, South Australia

    Directory of Open Access Journals (Sweden)

    Heather Zeppel

    2012-08-01

    Full Text Available There is growing concern about climate change impacts on local government areas. In Australia, the federal carbon tax (from 1 July 2012 will also increase costs for local councils. This paper evaluates what carbon mitigation (i.e. energy, water, and waste management actions have been implemented by metropolitan Adelaide councils (n=14 and why (or why not. A survey of environmental officers profiled carbon mitigation actions, emissions auditing, and motives for emissions reduction by Adelaide councils. The main reasons for adopting carbon actions were a climate change plan, climate leadership, and cost savings. Internal council governance of climate change actions was also evaluated. A climate governance framework based on adaptive management, communication, and reflective practice (Nursey-Bray 2010 was applied to assess climate mitigation by Adelaide councils.

  5. Climate-Related Local Extinctions Are Already Widespread among Plant and Animal Species.

    Directory of Open Access Journals (Sweden)

    John J Wiens

    2016-12-01

    Full Text Available Current climate change may be a major threat to global biodiversity, but the extent of species loss will depend on the details of how species respond to changing climates. For example, if most species can undergo rapid change in their climatic niches, then extinctions may be limited. Numerous studies have now documented shifts in the geographic ranges of species that were inferred to be related to climate change, especially shifts towards higher mean elevations and latitudes. Many of these studies contain valuable data on extinctions of local populations that have not yet been thoroughly explored. Specifically, overall range shifts can include range contractions at the "warm edges" of species' ranges (i.e., lower latitudes and elevations, contractions which occur through local extinctions. Here, data on climate-related range shifts were used to test the frequency of local extinctions related to recent climate change. The results show that climate-related local extinctions have already occurred in hundreds of species, including 47% of the 976 species surveyed. This frequency of local extinctions was broadly similar across climatic zones, clades, and habitats but was significantly higher in tropical species than in temperate species (55% versus 39%, in animals than in plants (50% versus 39%, and in freshwater habitats relative to terrestrial and marine habitats (74% versus 46% versus 51%. Overall, these results suggest that local extinctions related to climate change are already widespread, even though levels of climate change so far are modest relative to those predicted in the next 100 years. These extinctions will presumably become much more prevalent as global warming increases further by roughly 2-fold to 5-fold over the coming decades.

  6. Local governments and climate change: sustainable energy planning and implementation in small and medium sized communities

    National Research Council Canada - National Science Library

    Van Staden, Maryke; Musco, Francesco

    2010-01-01

    ...) motivations and actions. The most effective responses are those with a holistic, integrated and lon-term approach, addressing both climate change mitigation and adaptation, based on citizen and other local stakeholder involvement...

  7. Seven Steps in Identifying Local Climate Change Responses for Agriculture in Vietnam

    NARCIS (Netherlands)

    Bosma, R.H.; Ngo, An T.; Huynh, Chuong V.; Le, Huong T.; Dang, Nhan K.; Van, Tri P.D.; Halsema, van G.E.

    2016-01-01

    This study presents a seven-step approach to identify and support local climate change (CC) responses in agriculture. The following seven steps comprise this approach: 1. Analyse past trends on the climatic factors and model the future trends. 2. Simulate the possible impacts of CC on the selected

  8. Adaptation to climate change at local level in Europe: An overview

    NARCIS (Netherlands)

    Aguiar, F.C.; Bentz, J.; Silva, J.M.N.; Fonseca, A.L.; Swart, R.J.; Santos, F.D.; Penha-Lopes, Gil

    2018-01-01

    Europe’s climate change vulnerability pushes for initiatives such as the European Adaptation Strategy and the associated Covenant of Mayors for Climate and Energy. What are the triggers and barriers, for which sectors and for which risks and how is adaptation funded? This paper examines 147 Local

  9. Increasing bioenergy production on arable land: Does the regional and local climate respond? Germany as a case study

    Science.gov (United States)

    Tölle, Merja H.; Gutjahr, Oliver; Busch, Gerald; Thiele, Jan C.

    2014-03-01

    The extent and magnitude of land cover change effect on local and regional future climate during the vegetation period due to different forms of bioenergy plants are quantified for extreme temperatures and energy fluxes. Furthermore, we vary the spatial extent of plant allocation on arable land and simulate alternative availability of transpiration water to mimic both rainfed agriculture and irrigation. We perform climate simulations down to 1 km scale for 1970-1975 C20 and 2070-2075 A1B over Germany with Consortium for Small-Scale Modeling in Climate Mode. Here an impact analysis indicates a strong local influence due to land cover changes. The regional effect is decreased by two thirds of the magnitude of the local-scale impact. The changes are largest locally for irrigated poplar with decreasing maximum temperatures by 1°C in summer months and increasing specific humidity by 0.15 g kg-1. The increased evapotranspiration may result in more precipitation. The increase of surface radiative fluxes Rnet due to changes in latent and sensible heat is estimated by 5 W m-2locally. Moreover, increases in the surface latent heat flux cause strong local evaporative cooling in the summer months, whereas the associated regional cooling effect is pronounced by increases in cloud cover. The changes on a regional scale are marginal and not significant. Increasing bioenergy production on arable land may result in local temperature changes but not in substantial regional climate change in Germany. We show the effect of agricultural practices during climate transitions in spring and fall.

  10. Population, Environment, and Climate in the Albertine Rift: Understanding Local Impacts of Regional Change

    Science.gov (United States)

    Hartter, J.; Ryan, S. J.; Diem, J.; Palace, M. W.

    2012-12-01

    Climate change is of critical concern for conservation and to develop appropriate policies and responses, it is important not only to anticipate the nature of changes, but also how they are perceived, interpreted and adapted to by local people. The Albertine Rift in East Africa is one of the most threatened biodiversity hotspots due to dense settlement, extreme poverty, and land conversion. We synthesize ongoing NSF-CNH research, where Ugandan park landscapes are examined to understand the impacts of climate change on livelihoods. Kibale National Park, the main study site, exemplifies the challenges facing many parks because of its isolation within a densely populated agricultural landscape. Three separate household surveys (n=251, 130, 100) reveal that the most perceived benefits provided by Kibale were ecosystem services and farmers cite rainfall as one of the park's most important benefits, but are also concerned with variable precipitation. Analysis of 30+ years of daily rainfall station data shows total rainfall has not changed significantly, but timing and transitions of seasons and intra-seasonal distribution are highly variable, which may contribute to changes in farming schedules and threaten food security. Further, the contrast between land use/cover change over 25 years around the park and the stability of forest within the park underscores the need to understand this landscape for future sustainability planning and the inevitable population growth outside its boundaries. Understanding climate change impacts and feedbacks to and from socio-ecological systems are important to address the dual challenge of biodiversity conservation and poverty alleviation.

  11. Strengthening Local Capacity for Adaptation to Climate Change in ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Researchers will then couple these scenarios with hydrological models and projected trends in land use and agriculture to identify the areas and populations most vulnerable to water-related climate change. The government of the province of Oruro has expressed an interest in pioneering adaptation plans and has already ...

  12. Safety analysis of accident localization system

    International Nuclear Information System (INIS)

    1999-01-01

    A complex safety analysis of accident localization system of Ignalina NPP was performed. Calculation results obtained, results of non-destruct ing testing and experimental data of reinforced concrete testing of buildings does not revealed deficiencies of buildings of accident localization system at unit 1 of Ignalina NPP. Calculations were performed using codes NEPTUNE, ALGOR, CONTAIN

  13. Climate Informed Low Flow Frequency Analysis Using Nonstationary Modeling

    Science.gov (United States)

    Liu, D.; Guo, S.; Lian, Y.

    2014-12-01

    Stationarity is often assumed for frequency analysis of low flows in water resources management and planning. However, many studies have shown that flow characteristics, particularly the frequency spectrum of extreme hydrologic events,were modified by climate change and human activities and the conventional frequency analysis without considering the non-stationary characteristics may lead to costly design. The analysis presented in this paper was based on the more than 100 years of daily flow data from the Yichang gaging station 44 kilometers downstream of the Three Gorges Dam. The Mann-Kendall trend test under the scaling hypothesis showed that the annual low flows had significant monotonic trend, whereas an abrupt change point was identified in 1936 by the Pettitt test. The climate informed low flow frequency analysis and the divided and combined method are employed to account for the impacts from related climate variables and the nonstationarities in annual low flows. Without prior knowledge of the probability density function for the gaging station, six distribution functions including the Generalized Extreme Values (GEV), Pearson Type III, Gumbel, Gamma, Lognormal, and Weibull distributions have been tested to find the best fit, in which the local likelihood method is used to estimate the parameters. Analyses show that GEV had the best fit for the observed low flows. This study has also shown that the climate informed low flow frequency analysis is able to exploit the link between climate indices and low flows, which would account for the dynamic feature for reservoir management and provide more accurate and reliable designs for infrastructure and water supply.

  14. Local collectivities and climatic change. Are you ready? A guide for the adaptation devoted to the local collectivities

    International Nuclear Information System (INIS)

    2004-01-01

    Facing the climatic change effects, it is necessary to develop a national but also regional adaptation policy to the global warming. This guide aims to give, to the local managers, information on the global warming and bring possible adaptation measures. The sectors of planning, buildings, transports, public health, environment and public information are discussed. (A.L.B.)

  15. 15 local climate-energy plans: regions and districts, local leaders of the struggle against climate change

    International Nuclear Information System (INIS)

    2009-01-01

    This report presents some general information, the sectors addressed by the Climate - Energy Plan, the approaches adopted, the plan elaboration process (organisation, participation and governance, diagnosis and challenges identification, communication actions), the actions and their follow-up, the success factors and the improvement opportunities of the Climate-energy Plans elaborated and adopted by different French regions (Alsace, Aquitaine, Basse-Normandie, Champagne-Ardenne, Franche-Comte, Haute-Normandie, Languedoc-Roussillon, Limousin, Nord-Pas-de-Calais, Poitou-Charentes) and districts (Alpes Maritimes, Bas-Rhin, Eure, Seine-Maritime)

  16. How does one localize climate change? Climate symbols and the case of the Ilulissat Icefjord

    DEFF Research Database (Denmark)

    Bjørst, Lill Rastad

    The former Danish Minister for Climate and Energy, Connie Hedegaard, targeted the UNESCO World Heritage site Ilulissat Icefjord as a prime example of ‘the Greenlandic case’ and called it a strong ‘climate symbol’. Between the years 2005 and 2009, she invited other Ministers and heads of state...

  17. Lessons learnt regarding climate service needs for local government

    CSIR Research Space (South Africa)

    Murambadoro, Miriam D

    2018-02-01

    Full Text Available in the province; Droughts Strong winds Flash floods Thunderstorms Disease outbreaks e.g. diarrhoea Hailstorm High temperatures Drying Changes in land cover Shifts in rainfall season resulting in late rains Frost Increased health risks area – mosquitos, malaria... and other diseases Participants identified the following to be the things they need the most to respond effectively to climate change in Limpopo; • Access to funding at national and international level to implement projects • Improved information...

  18. Local Climate Heterogeneity Shapes Population Genetic Structure of Two Undifferentiated Insular Scutellaria Species.

    Science.gov (United States)

    Hsiung, Huan-Yi; Huang, Bing-Hong; Chang, Jui-Tse; Huang, Yao-Moan; Huang, Chih-Wei; Liao, Pei-Chun

    2017-01-01

    Spatial climate heterogeneity may not only affect adaptive gene frequencies but could also indirectly shape the genetic structure of neutral loci by impacting demographic dynamics. In this study, the effect of local climate on population genetic variation was tested in two phylogenetically close Scutellaria species in Taiwan. Scutellaria taipeiensis , which was originally assumed to be an endemic species of Taiwan Island, is shown to be part of the widespread species S. barbata based on the overlapping ranges of genetic variation and climatic niches as well as their morphological similarity. Rejection of the scenario of "early divergence with secondary contact" and the support for multiple origins of populations of S. taipeiensis from S. barbata provide strong evolutionary evidence for a taxonomic revision of the species combination. Further tests of a climatic effect on genetic variation were conducted. Regression analyses show nonlinear correlations among any pair of geographic, climatic, and genetic distances. However, significantly, the bioclimatic variables that represent the precipitation from late summer to early autumn explain roughly 13% of the genetic variation of our sampled populations. These results indicate that spatial differences of precipitation in the typhoon season may influence the regeneration rate and colonization rate of local populations. The periodic typhoon episodes explain the significant but nonlinear influence of climatic variables on population genetic differentiation. Although, the climatic difference does not lead to species divergence, the local climate variability indeed impacts the spatial genetic distribution at the population level.

  19. Implementing European climate adaptation policy. How local policymakers react to European policy

    Directory of Open Access Journals (Sweden)

    Thomas Hartmann

    2015-04-01

    Full Text Available EU policy and projects have an increasing influence on policymaking for climate adaptation. This is especially evident in the development of new climate adaptation policies in transnational city networks. Until now, climate adaptation literature has paid little attention to the influence that these EU networks have on the adaptive capacity in cities. This paper uses two Dutch cities as an empirical base to evaluate the influence of two EU climate adaptation projects on both the experience of local public officials and the adaptive capacity in the respective cities. The main conclusion is that EU climate adaptation projects do not automatically lead to an increased adaptive capacity in the cities involved. This is due to the political opportunistic use of EU funding, which hampers the implementation of climate adaptation policies. Furthermore, these EU projects draw attention away from local network building focused on the development and implementation of climate adaptation policies. These factors have a negative cumulative impact on the performance of these transnational policy networks at the adaptive capacity level in the cities involved. Therefore, in order to strengthen the adaptive capacity in today’s European cities, a context-specific, integrative approach in urban planning is needed at all spatial levels. Hence, policy entrepreneurs should aim to create linkage between the issues in the transnational city network and the concerns in local politics and local networks.

  20. Stochastic characterization of regional circulation patterns for climate model diagnosis and estimation of local precipitation

    International Nuclear Information System (INIS)

    Zorita, E.; Hughes, J.P.

    1993-01-01

    Two statistical approaches for linking large-scale atmospheric circulation patterns and daily local rainfall are described and applied to several GCM (general circulation model) climate simulations. The ultimate objective is to simulate local precipitation associated with alternative climates. The index stations are located near the West and East North American coasts. The first method is based on CART analysis (Classification and Regression trees). It finds the classification of observed daily SLR (sea level pressure) fields in weather types that are most strongly associated with the presence/absence of rainfall in a set of index stations. The best results were obtained for winter rainfall for the West Coast, where a set of physically reasonable weather types could be identified, whereas for the East Coast the rainfall process seemed to be spatially less coherent. The GCM simulations were validated against observations in terms of probability of occurrence and survival time of these weather states. Some discrepancies werefound but there was no systematic bias, indicating that this behavior depends on the particular dynamics of each model. This classification method was then used for the generation of daily rainfall time series from the daily SLP fields from historical observation and from the GCM simulations. Whereas the mean rainfall and probability distributions were rather well replicated, the simulated dry periods were in all cases shorter than in the rainfall observations. The second rainfall generator is based on the analog method and uses information on the evolution of the SLP field in several previous days. It was found to perform reasonably well, although some downward bias in the simulated rainfall persistence was still present. Rainfall changes in a 2xCO 2 climate were investigated by applying both methods to the output of a greenhouse-gas experiment. The simulated precipitation changes were small. (orig.)

  1. Incorporating Air Quality Improvement at a Local Level into Climate Policy in the Transport Sector: A Case Study in Bandung City, Indonesia

    Directory of Open Access Journals (Sweden)

    Helmi Gunawan

    2017-06-01

    Full Text Available Climate policy has a strong influence on policy processes at national levels in Indonesia, while other policies with a focus on air quality improvement are being implemented at local levels. Indonesia as a developing country has committed to reducing greenhouse gas (GHG emissions by 29 percent by the year 2030. This calls into question the extent to which cities and local governments can cope with the challenges of climate change mitigation. The purpose of the research is to find out the extent to which local air pollution reduction policies can contribute to the climate change mitigation program. The research design involved an empirical case study on governance and policy relevant to climate change efforts to lower GHG in Bandung City, Indonesia. The study evaluated the air quality improvement and the climate change mitigation programs using the actor-based framework of the Contextual Interaction Theory (CIT. The governance and stakeholder characteristic of climate change mitigation were also analysed using the structural context part of the CIT framework. The result shows that air quality improvement policy is implemented separately from climate policy; the latter operates at the national level and the former at the local level. By looking at the actor interaction analysis, the study concludes that a more holistic environmental policy approach would be more efficient at reducing local air pollution and contributing to the mitigation of climate change.

  2. Local variability mediates vulnerability of trout populations to land use and climate change

    Science.gov (United States)

    Brooke E. Penaluna; Jason B. Dunham; Steve F. Railsback; Ivan Arismendi; Sherri L. Johnson; Robert E. Bilby; Mohammad Safeeq; Arne E. Skaugset; James P. Meador

    2015-01-01

    Land use and climate change occur simultaneously around the globe. Fully understanding their separate and combined effects requires a mechanistic understanding at the local scale where their effects are ultimately realized. Here we applied an individual-based model of fish population dynamics to evaluate the role of local stream variability in modifying responses of...

  3. Statistical Downscaling Of Local Climate In The Alpine Region

    Science.gov (United States)

    Kaspar, Severin; Philipp, Andreas; Jacobeit, Jucundus

    2016-04-01

    The impact of climate change on the alpine region was disproportional strong in the past decades compared to the surrounding areas, which becomes manifest in a higher increase in surface air temperature. Beside the thermal changes also implications for the hydrological cycle may be expected, acting as a very important factor not only for the ecosystem but also for mankind, in the form of water security or considering economical aspects like winter tourism etc. Therefore, in climate impact studies, it is necessary to focus on variables with high influence on the hydrological cycle, for example temperature, precipitation, wind, humidity and radiation. The aim of this study is to build statistical downscaling models which are able to reproduce temperature and precipitation at the mountainous alpine weather stations Zugspitze and Sonnblick and to further project these models into the future to identify possible changes in the behavior of these climate variables and with that in the hydrological cycle. Beside facing a in general very complex terrain in this high elevated regions, we have the advantage of a more direct atmospheric influence on the meteorology of the exposed weather stations from the large scale circulation. Two nonlinear statistical methods are developed to model the station-data series on a daily basis: On the one hand a conditional classification approach was used and on the other hand a model based on artificial neural networks (ANNs) was built. The latter is in focus of this presentation. One of the important steps of developing a new model approach is to find a reliable predictor setup with e.g. informative predictor variables or adequate location and size of the spatial domain. The question is: Can we include synoptic background knowledge to identify an optimal domain for an ANN approach? The yet developed ANN setups and configurations show promising results in downscaling both, temperature (up to 80 % of explained variance) and precipitation (up

  4. Performance Analysis of Local Ensemble Kalman Filter

    Science.gov (United States)

    Tong, Xin T.

    2018-03-01

    Ensemble Kalman filter (EnKF) is an important data assimilation method for high-dimensional geophysical systems. Efficient implementation of EnKF in practice often involves the localization technique, which updates each component using only information within a local radius. This paper rigorously analyzes the local EnKF (LEnKF) for linear systems and shows that the filter error can be dominated by the ensemble covariance, as long as (1) the sample size exceeds the logarithmic of state dimension and a constant that depends only on the local radius; (2) the forecast covariance matrix admits a stable localized structure. In particular, this indicates that with small system and observation noises, the filter error will be accurate in long time even if the initialization is not. The analysis also reveals an intrinsic inconsistency caused by the localization technique, and a stable localized structure is necessary to control this inconsistency. While this structure is usually taken for granted for the operation of LEnKF, it can also be rigorously proved for linear systems with sparse local observations and weak local interactions. These theoretical results are also validated by numerical implementation of LEnKF on a simple stochastic turbulence in two dynamical regimes.

  5. Terrain Analysis Procedural Guide for Climate,

    Science.gov (United States)

    1980-09-01

    days a year at many locations. D. HUMID MICROTHERMAL CLIMATES. The humid microthermal climate occurs in the Northern Hemisphere northward from the...subarctic are the principal types of microthermal climate. 71 1. Humid Continental Climates. These climates border the marine west coast climatic regions...frequently occur during summer in prairie regions. Regions on the southern margin of microthermal climates have long, hot and humid summers lasting from

  6. An analysis of the influence of the local effects of climatic and hydrological factors affecting new malaria cases in riverine areas along the Rio Negro and surrounding Puraquequara Lake, Amazonas, Brazil.

    Science.gov (United States)

    Coutinho, Paulo Eduardo Guzzo; Candido, Luiz Antonio; Tadei, Wanderli Pedro; da Silva Junior, Urbano Lopes; Correa, Honorly Katia Mestre

    2018-04-26

    A study was conducted at three sampling regions along the Rio Negro and surrounding Puraquequara Lake, Amazonas, Brazil. The aim was to determine the influence of the local effects of climatic and hydrological variables on new malaria cases. Data was gathered on the river level, precipitation, air temperature, and the number of new cases of autochthonous malaria between January 2003 and December 2013. Monthly averages, time series decompositions, cross-correlations, and multiple regressions revealed different relationships at each location. The sampling region in the upper Rio Negro indicated no statistically significant results. However, monthly averages suggest that precipitation and air temperature correlate positively with the occurrence of new cases of malaria. In the mid Rio Negro and Puraquequara Lake, the river level positively correlated, and temperature negatively correlated with new transmissions, while precipitation correlated negatively in the mid Rio Negro and positively on the lake. Overall, the river level is a key variable affecting the formation of breeding sites, while precipitation may either develop or damage them. A negative temperature correlation is associated with the occurrence of new annual post-peak cases of malaria, when the monthly average exceeds 28.5 °C. This suggests that several factors contribute to the occurrence of new malaria cases as higher temperatures are reached at the same time as precipitation and the river levels are lowest. Differences between signals and correlation lags indicate that local characteristics have an impact on how different variables influence the disease vector's life cycle, pathogens, and consequently, new cases of malaria.

  7. Presenting a framework to analyze local climate policy and action in small and medium-sized cities

    NARCIS (Netherlands)

    Hoppe, T.; van der Vegt, Arjen; Stegmaier, Peter

    2016-01-01

    Academic attention to local climate policy usually focuses on large-sized cities. Given the climate challenges ahead this seems unjustified. Small and medium-sized cities (SMCs) deserve scholarly attention as well. The main question is: What factors influence climate change policy and local

  8. Land Surface Temperature Differences within Local Climate Zones, Based on Two Central European Cities

    Czech Academy of Sciences Publication Activity Database

    Geletič, Jan; Lehnert, M.; Dobrovolný, Petr

    2016-01-01

    Roč. 8, č. 10 (2016), č. článku 788. ISSN 2072-4292 R&D Projects: GA MŠk(CZ) LO1415 Grant - others:UrbanAdapt(XE) EHP-CZ02-OV-1-036-2015 Program:CZ02 Biodiverzita a ekosystémové služby / Monitorování a integrované plánování a kontrola v životním prostředí/ Adaptace na změnu klimatu Institutional support: RVO:67179843 Keywords : land surface temperature * local climate zones * ASTER * LANDSAT * analysis of variance * Prague * Brno * Czech Republic Subject RIV: EH - Ecology, Behaviour Impact factor: 3.244, year: 2016

  9. Effects of local adaptation and interspecific competition on species' responses to climate change.

    Science.gov (United States)

    Bocedi, Greta; Atkins, Katherine E; Liao, Jishan; Henry, Roslyn C; Travis, Justin M J; Hellmann, Jessica J

    2013-09-01

    Local adaptation and species interactions have been shown to affect geographic ranges; therefore, we need models of climate impact that include both factors. To identify possible dynamics of species when including these factors, we ran simulations of two competing species using an individual-based, coupled map-lattice model using a linear climatic gradient that varies across latitude and is warmed over time. Reproductive success is governed by an individual's adaptation to local climate as well as its location relative to global constraints. In exploratory experiments varying the strength of adaptation and competition, competition reduces genetic diversity and slows range change, although the two species can coexist in the absence of climate change and shift in the absence of competitors. We also found that one species can drive the other to extinction, sometimes long after climate change ends. Weak selection on local adaptation and poor dispersal ability also caused surfing of cooler-adapted phenotypes from the expanding margin backwards, causing loss of warmer-adapted phenotypes. Finally, geographic ranges can become disjointed, losing centrally-adapted genotypes. These initial results suggest that the interplay between local adaptation and interspecific competition can significantly influence species' responses to climate change, in a way that demands future research. © 2013 New York Academy of Sciences.

  10. Global and Local Discourses on Climate Change: A Perspective from the Concept of Embeddedness

    Directory of Open Access Journals (Sweden)

    Jailab Kumar Rai

    2011-04-01

    Full Text Available Climate change has been becoming a major order of business of all including researchers and academics. This is known that global, national and local organizations, institutions and even the individuals are partaking into the issues with their own perspectives and skills of negotiations. Despite the series of international efforts and attempts, there are also a series of national concerns, efforts and attempts in combating against the effects of global climate change. This paper is an attempt to draw on the overview of contexts and concerns of international communities for combating global climate change and its discursive influence in national policy discourses. Moreover, the paper attempts to assess the local socio-cultural discourses and dynamics of climate change in relation to global and national discourses. Finally the paper highlights on how global and local climate change knowledge networks and epistemic communities either from political processes or the socio-economic fabrics are interrelated and determinant to each other. Keywords: climate change; discourses; embeddeness; dynamics; global; local DOI: 10.3126/dsaj.v4i0.4518 Dhaulagiri Journal of Sociology and Anthropology Vol.4 2010 pp.143-180

  11. Rapid adjustment of bird community compositions to local climatic variations and its functional consequences.

    Science.gov (United States)

    Gaüzère, Pierre; Jiguet, Frédéric; Devictor, Vincent

    2015-09-01

    The local spatial congruence between climate changes and community changes has rarely been studied over large areas. We proposed one of the first comprehensive frameworks tracking local changes in community composition related to climate changes. First, we investigated whether and how 12 years of changes in the local composition of bird communities were related to local climate variations. Then, we tested the consequences of this climate-induced adjustment of communities on Grinnellian (habitat-related) and Eltonian (function-related) homogenization. A standardized protocol monitoring spatial and temporal trends of birds over France from 2001 to 2012 was used. For each plot and each year, we used the spring temperature and the spring precipitations and calculated three indices reflecting the thermal niche, the habitat specialization, and the functional originality of the species within a community. We then used a moving-window approach to estimate the spatial distribution of the temporal trends in each of these indices and their congruency with local climatic variations. Temperature fluctuations and community dynamics were found to be highly variable in space, but their variations were finely congruent. More interestingly, the community adjustment to temperature variations was nonmonotonous. Instead, unexplained fluctuations in community composition were observed up to a certain threshold of climate change intensity, above which a change in community composition was observed. This shift corresponded to a significant decrease in the relative abundance of habitat specialists and functionally original species within communities, regardless of the direction of temperature change. The investigation of variations in climate and community responses appears to be a central step toward a better understanding of climate change effects on biodiversity. Our results suggest a fine-scale and short-term adjustment of community composition to temperature changes. Moreover

  12. Local climate change data is securing food and livelihoods in ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2015-04-29

    Apr 29, 2015 ... By 2020, crop yields in some countries could be reduced by up to 50%, leaving ... to address information gaps at the local-level, with a focus on select ... These and other factors indicate that maize yields may decrease by as ...

  13. Integrating scientific and local knowledge to inform risk-based management approaches for climate adaptation

    Directory of Open Access Journals (Sweden)

    Nathan P. Kettle

    2014-01-01

    Full Text Available Risk-based management approaches to climate adaptation depend on the assessment of potential threats, and their causes, vulnerabilities, and impacts. The refinement of these approaches relies heavily on detailed local knowledge of places and priorities, such as infrastructure, governance structures, and socio-economic conditions, as well as scientific understanding of climate projections and trends. Developing processes that integrate local and scientific knowledge will enhance the value of risk-based management approaches, facilitate group learning and planning processes, and support the capacity of communities to prepare for change. This study uses the Vulnerability, Consequences, and Adaptation Planning Scenarios (VCAPS process, a form of analytic-deliberative dialogue, and the conceptual frameworks of hazard management and climate vulnerability, to integrate scientific and local knowledge. We worked with local government staff in an urbanized barrier island community (Sullivan’s Island, South Carolina to consider climate risks, impacts, and adaptation challenges associated with sea level rise and wastewater and stormwater management. The findings discuss how the process increases understanding of town officials’ views of risks and climate change impacts to barrier islands, the management actions being considered to address of the multiple impacts of concern, and the local tradeoffs and challenges in adaptation planning. We also comment on group learning and specific adaptation tasks, strategies, and needs identified.

  14. Ecosystem-Based Adaptation to Climate Change in Caribbean Small Island Developing States: Integrating Local and External Knowledge

    Directory of Open Access Journals (Sweden)

    Tiina Kurvits

    2012-08-01

    Full Text Available Caribbean Small Island Developing States (SIDS are vulnerable to climate change impacts including sea level rise, invasive species, ocean acidification, changes in rainfall patterns, increased temperatures, and changing hazard regimes including hurricanes, floods and drought. Given high dependencies in Caribbean SIDS on natural resources for livelihoods, a focus on ecosystems and their interaction with people is essential for climate change adaptation. Increasingly, ecosystem-based adaptation (EbA approaches are being highlighted as an approach to address climate change impacts. Specifically, EbA encourages the use of local and external knowledge about ecosystems to identify climate change adaptation approaches. This paper critically reviews EbA in Caribbean SIDS, focusing on the need to integrate local and external knowledge. An analysis of current EbA in the Caribbean is undertaken alongside a review of methodologies used to integrate local and external expertise for EbA. Finally key gaps, lessons learnt and suggested ways forward for EbA in Caribbean SIDS and potentially further afield are identified.

  15. State of the Climate - Global Analysis

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The State of the Climate is a collection of periodic summaries recapping climate-related occurrences on both a global and national scale. The State of the Climate...

  16. Locally Downscaled and Spatially Customizable Climate Data for Historical and Future Periods for North America.

    Science.gov (United States)

    Wang, Tongli; Hamann, Andreas; Spittlehouse, Dave; Carroll, Carlos

    2016-01-01

    Large volumes of gridded climate data have become available in recent years including interpolated historical data from weather stations and future predictions from general circulation models. These datasets, however, are at various spatial resolutions that need to be converted to scales meaningful for applications such as climate change risk and impact assessments or sample-based ecological research. Extracting climate data for specific locations from large datasets is not a trivial task and typically requires advanced GIS and data management skills. In this study, we developed a software package, ClimateNA, that facilitates this task and provides a user-friendly interface suitable for resource managers and decision makers as well as scientists. The software locally downscales historical and future monthly climate data layers into scale-free point estimates of climate values for the entire North American continent. The software also calculates a large number of biologically relevant climate variables that are usually derived from daily weather data. ClimateNA covers 1) 104 years of historical data (1901-2014) in monthly, annual, decadal and 30-year time steps; 2) three paleoclimatic periods (Last Glacial Maximum, Mid Holocene and Last Millennium); 3) three future periods (2020s, 2050s and 2080s); and 4) annual time-series of model projections for 2011-2100. Multiple general circulation models (GCMs) were included for both paleo and future periods, and two representative concentration pathways (RCP4.5 and 8.5) were chosen for future climate data.

  17. Climate Change Effects and Impacts Assessment. A guidance manual for Local Government in New Zealand

    International Nuclear Information System (INIS)

    Wratt, D.; Mullan, B.; Salinger, J.; Allan, S.; Morgan, T.; Kenny, G.

    2004-05-01

    Climate change is a real and internationally recognised outcome of increased amounts of greenhouse gases in the atmosphere. It will have effects over the next decades that are predictable with some level of certainty, but which will vary from place to place throughout New Zealand. The climate will also change from year to year and decade to decade due to natural processes. For example, some parts of the country often have dry summers and autumns when an El Nino climate pattern is present. Both natural fluctuations and human-induced climate changes need to be considered when developing adaptation plans and policies, rather than just 'greenhouse warming' effects on their own. Councils already address extreme weather events and climate variations as they develop plans and provide services. Climate change effects need also to be considered as part of these regulatory, assessment and planning activities. It is not necessary to develop a set of procedures for dealing separately with effects and impacts of climate change - they can be built into existing practices. Over time, climate change responses will involve iterative planning processes, keeping up-to-date with new information, monitoring changes, and reviewing the effectiveness of responses. The response to climate change involves international, national, regional, district and community consideration and action. The Guidance Manual aims to assist local government in working with its communities and making appropriate decisions.

  18. Architecture of the local spatial data infrastructure for regional climate change research

    Science.gov (United States)

    Titov, Alexander; Gordov, Evgeny

    2013-04-01

    Georeferenced datasets (meteorological databases, modeling and reanalysis results, etc.) are actively used in modeling and analysis of climate change for various spatial and temporal scales. Due to inherent heterogeneity of environmental datasets as well as their size which might constitute up to tens terabytes for a single dataset studies in the area of climate and environmental change require a special software support based on SDI approach. A dedicated architecture of the local spatial data infrastructure aiming at regional climate change analysis using modern web mapping technologies is presented. Geoportal is a key element of any SDI, allowing searching of geoinformation resources (datasets and services) using metadata catalogs, producing geospatial data selections by their parameters (data access functionality) as well as managing services and applications of cartographical visualization. It should be noted that due to objective reasons such as big dataset volume, complexity of data models used, syntactic and semantic differences of various datasets, the development of environmental geodata access, processing and visualization services turns out to be quite a complex task. Those circumstances were taken into account while developing architecture of the local spatial data infrastructure as a universal framework providing geodata services. So that, the architecture presented includes: 1. Effective in terms of search, access, retrieval and subsequent statistical processing, model of storing big sets of regional georeferenced data, allowing in particular to store frequently used values (like monthly and annual climate change indices, etc.), thus providing different temporal views of the datasets 2. General architecture of the corresponding software components handling geospatial datasets within the storage model 3. Metadata catalog describing in detail using ISO 19115 and CF-convention standards datasets used in climate researches as a basic element of the

  19. Innovation of Local Government in Creating Conducive Investment Climate (Study in Lamongan Regency)

    OpenAIRE

    Khoiri, A. Miftakhul

    2016-01-01

    Local government needs innovation to solve public problems, one of them is investment climate. The problems related to investment climate include no security and weak rule of law, lack of infrastructure, las well as ong and complicated bureaucracy. Lamongan Regency is trying to create innovative programs to solve investment problems. Those innovations include Regional Regulation No. 2 of 2015 and Regent Decree number 23 of 2015, proactive service, fast service package, SMS Gateway, facilitati...

  20. The role of local sea surface temperature pattern changes in shaping climate change in the North Atlantic sector

    Science.gov (United States)

    Hand, Ralf; Keenlyside, Noel S.; Omrani, Nour-Eddine; Bader, Jürgen; Greatbatch, Richard J.

    2018-03-01

    Beside its global effects, climate change is manifested in many regionally pronounced features mainly resulting from changes in the oceanic and atmospheric circulation. Here we investigate the influence of the North Atlantic SST on shaping the winter-time response to global warming. Our results are based on a long-term climate projection with the Max Planck Institute Earth System Model (MPI-ESM) to investigate the influence of North Atlantic sea surface temperature pattern changes on shaping the atmospheric climate change signal. In sensitivity experiments with the model's atmospheric component we decompose the response into components controlled by the local SST structure and components controlled by global/remote changes. MPI-ESM simulates a global warming response in SST similar to other climate models: there is a warming minimum—or "warming hole"—in the subpolar North Atlantic, and the sharp SST gradients associated with the Gulf Stream and the North Atlantic Current shift northward by a few a degrees. Over the warming hole, global warming causes a relatively weak increase in rainfall. Beyond this, our experiments show more localized effects, likely resulting from future SST gradient changes in the North Atlantic. This includes a significant precipitation decrease to the south of the Gulf Stream despite increased underlying SSTs. Since this region is characterised by a strong band of precipitation in the current climate, this is contrary to the usual case that wet regions become wetter and dry regions become drier in a warmer climate. A moisture budget analysis identifies a complex interplay of various processes in the region of modified SST gradients: reduced surface winds cause a decrease in evaporation; and thermodynamic, modified atmospheric eddy transports, and coastal processes cause a change in the moisture convergence. The changes in the the North Atlantic storm track are mainly controlled by the non-regional changes in the forcing. The impact of

  1. Local climate activities in co-operation between municipality, civil society and science shop

    DEFF Research Database (Denmark)

    Jørgensen, Michael Søgaard

    The Science Shop at DTU co-operates with the local municipal administration and the local branch of an environmental NGO about climate change. The co-operation was initiated by a proposal to the Science Shop from the municipal administration. Since the Science Shop requests civil society...... involvement in projects it was proposed to involve the local branch of the environmental NGO. The starting point was topics developed by the administration and the NGO together and announced to students as part of the Science Shop project supply. The focus is climate impact of local activities and strategies...... are initiated and co-ordinated by a group with members from municipal administration, the local NGO and the Science Shop. All projects have involved student projects, but most projects have also contributed to ongoing research activities. The projects up till now have focused on the municipal food supply...

  2. An Addendum to "A New Tool for Climatic Analysis Using Köppen Climate Classification"

    Science.gov (United States)

    Larson, Paul R.; Lohrengel, C. Frederick, II

    2014-01-01

    The Köppen climatic classification system in a modified format is the most widely applied system in use today. Mapping and analysis of hundreds of arid and semiarid climate stations has made the use of the additional fourth letter in BW/BS climates essential. The addition of "s," "w," or "f" to the standard…

  3. Climate change perceptions and local adaptation strategies of hazard-prone rural households in Bangladesh

    Directory of Open Access Journals (Sweden)

    G.M. Monirul Alam

    2017-01-01

    Full Text Available Adaptation is a key strategy that can alleviate the severity of climate change impacts on agriculture and food production. Adaptation strategies are unlikely to be effective without an understanding of the farmers’ perceptions of climate change. This paper explores the local knowledge of adaptation in response to the perceived impacts of climate change and climatic hazards using a survey of 380 resource-poor riverbank erosion-prone households in Bangladesh. The results indicate that the respondents’ perceptions of changes in the climate and of extreme climatic events are similar to the observed climate data. Households have recognized the impacts on their livelihood and resources, resulting in an increased sense of vulnerability. To build resilience, households have undertaken a range of farming and non-farming adaptation strategies, which vary significantly among the farming groups. The important adaptation strategies include adopting new crop varieties, changing planting time, homestead gardening, planting trees and migration. Improved access to finance and to information about appropriate strategies appears to be crucial to support adaptation processes locally and thus to enhance the resilience of vulnerable households.

  4. From global framing to local action : translation of climate change impacts in Africa

    Energy Technology Data Exchange (ETDEWEB)

    Ogunseitan, O.A. [Harvard Univ., Cambridge, MA (United States)

    2000-06-01

    There is considerable controversy regarding policy and climate change mitigation in Africa. Its resolution will require integrating local knowledge and values into climate impact assessments. Africa's vulnerability to climate change can be traced to the frequency of socio-ecological devastation that comes from major climate variations on the continent. The incidence of famines, homelessness and disease epidemics that require international assistance are reflections of weak policies and institution action frames used to cope with climate and weather related emergencies. However, the valuation of climate change impacts has a subjective dimension that can be gained only through indigenous experience and an understanding of values associated with life-saving intervention programs. A recent study showed that discount rates applied to future life-saving programs by Africans are very different from the rates applied in developed countries, and that the difference should be reflected in national development programs and transnational initiatives for capacity building. The study suggests that if the boundary institutions responsible for public health security have not been too effective in resolving the policy controversy surrounding Africa's participation in climate change assessments, it is due partly to the limitations imposed by cross-scale issues in framing. It was concluded that efforts to reduce Africa's dependence on global emergency health response systems will necessitate the development of autonomous capacity to adapt to natural disasters. Appropriate frame reflection is needed at the local level. 56 refs., 3 tabs., 1 fig.

  5. Local control on precipitation in a fully coupled climate-hydrology model.

    Science.gov (United States)

    Larsen, Morten A D; Christensen, Jens H; Drews, Martin; Butts, Michael B; Refsgaard, Jens C

    2016-03-10

    The ability to simulate regional precipitation realistically by climate models is essential to understand and adapt to climate change. Due to the complexity of associated processes, particularly at unresolved temporal and spatial scales this continues to be a major challenge. As a result, climate simulations of precipitation often exhibit substantial biases that affect the reliability of future projections. Here we demonstrate how a regional climate model (RCM) coupled to a distributed hydrological catchment model that fully integrates water and energy fluxes between the subsurface, land surface, plant cover and the atmosphere, enables a realistic representation of local precipitation. Substantial improvements in simulated precipitation dynamics on seasonal and longer time scales is seen for a simulation period of six years and can be attributed to a more complete treatment of hydrological sub-surface processes including groundwater and moisture feedback. A high degree of local influence on the atmosphere suggests that coupled climate-hydrology models have a potential for improving climate projections and the results further indicate a diminished need for bias correction in climate-hydrology impact studies.

  6. Is climate change a threat for water uses in the Mediterranean region? Results from a survey at local scale.

    Science.gov (United States)

    La Jeunesse, I; Cirelli, C; Aubin, D; Larrue, C; Sellami, H; Afifi, S; Bellin, A; Benabdallah, S; Bird, D N; Deidda, R; Dettori, M; Engin, G; Herrmann, F; Ludwig, R; Mabrouk, B; Majone, B; Paniconi, C; Soddu, A

    2016-02-01

    Water scarcity and water security are linked, not only through the direct effects of water shortages on each water users' access to water, but also because of water conflicts generated. Climate change is predicted to raise temperatures in the Mediterranean region and reduce rainfall, leading to a reduction in water yield and possibly worsening the situation of water resource shortages that Mediterranean regions are already experiencing. In its dissemination strategy, the EU FP7 CLIMB project addressed water security threats through an analysis of water uses and water use rivalries within a few target catchments distributed over the Mediterranean region. The present work explores whether climate change is locally perceived by stakeholders (water users and managers) as a key issue for their water uses and water security. Individual interviews, meetings, and compilation of questionnaires were conducted at five sites located in the Mediterranean region. The methodology permitted an analysis of water use and its evolution in the water management context, an identification of the state of awareness of local stakeholders and of the pressures on water use and water use rivalries, and a prioritization of water uses. Currently, the main response to increasing water demand in the Mediterranean region, while not yet considering climate change as a driving force, is a progressive externalization of water resources, with limits represented by national borders and technological possibilities. Overall, 'climate change' was not mentioned by stakeholders during both interviews and in answers to the questionnaires. Even the prospect of decreasing precipitation was not considered a relevant or threatening issue in the coming 20years. This confirms the need to continue all efforts to disseminate the state of knowledge on climate change impacts in the Mediterranean region, such as water scarcity, especially to local water managers, as initiated by various research programs of the

  7. Can Perceptions of Environmental and Climate Change in Island Communities Assist in Adaptation Planning Locally?

    Science.gov (United States)

    Aswani, Shankar; Vaccaro, Ismael; Abernethy, Kirsten; Albert, Simon; de Pablo, Javier Fernández-López

    2015-12-01

    Local perceptions of environmental and climate change, as well as associated adaptations made by local populations, are fundamental for designing comprehensive and inclusive mitigation and adaptation plans both locally and nationally. In this paper, we analyze people's perceptions of environmental and climate-related transformations in communities across the Western Solomon Islands through ethnographic and geospatial methods. Specifically, we documented people's observed changes over the past decades across various environmental domains, and for each change, we asked respondents to identify the causes, timing, and people's adaptive responses. We also incorporated this information into a geographical information system database to produce broad-scale base maps of local perceptions of environmental change. Results suggest that people detected changes that tended to be acute (e.g., water clarity, logging intensity, and agricultural diseases). We inferred from these results that most local observations of and adaptations to change were related to parts of environment/ecosystem that are most directly or indirectly related to harvesting strategies. On the other hand, people were less aware of slower insidious/chronic changes identified by scientific studies. For the Solomon Islands and similar contexts in the insular tropics, a broader anticipatory adaptation planning strategy to climate change should include a mix of local scientific studies and local observations of ongoing ecological changes.

  8. Consistent economic cross-sectoral climate change impact scenario analysis: Method and application to Austria

    Directory of Open Access Journals (Sweden)

    Karl W. Steininger

    2016-03-01

    Full Text Available Climate change triggers manifold impacts at the national to local level, which in turn have various economy-wide implications (e.g. on welfare, employment, or tax revenues. In its response, society needs to prioritize which of these impacts to address and what share of resources to spend on each respective adaptation. A prerequisite to achieving that end is an economic impact analysis that is consistent across sectors and acknowledges intersectoral and economy-wide feedback effects. Traditional Integrated Assessment Models (IAMs are usually operating at a level too aggregated for this end, while bottom-up impact models most often are not fully comprehensive, focusing on only a subset of climate sensitive sectors and/or a subset of climate change impact chains. Thus, we develop here an approach which applies climate and socioeconomic scenario analysis, harmonized economic costing, and sector explicit bandwidth analysis in a coupled framework of eleven (biophysical impact assessment models and a uniform multi-sectoral computable general equilibrium model. In applying this approach to the alpine country of Austria, we find that macroeconomic feedbacks can magnify sectoral climate damages up to fourfold, or that by mid-century costs of climate change clearly outweigh benefits, with net costs rising two- to fourfold above current damage cost levels. The resulting specific impact information – differentiated by climate and economic drivers – can support sector-specific adaptation as well as adaptive capacity building. Keywords: climate impact, local impact, economic evaluation, adaptation

  9. Renewable Energy, Climate Action and Resilient Societies: Accelerating the Global and Local Paradigm Shift

    International Nuclear Information System (INIS)

    Spencer, Thomas; Levai, David; Wang, Xin

    2017-07-01

    This report has been commissioned by a group of foundations in G20 countries, which have come together under the F20 platform in order to engage with the issue of climate change and sustainability in the context of the G20. The report analyzes the emerging energy transition towards efficient and renewable energy systems at global level and in specific G20 countries. On the basis of this analysis, and of the country specific case-studies that have also been conducted in the report, it provides recommendations for foundations and the G20 aimed at enhancing climate change mitigation and sustainability. Key Messages: 1. The global transition to renewable energy systems is underway and accelerating, driven by a combination of policy interventions, very rapid innovation, particularly the fall in renewable electricity costs, and changing societal priorities in many areas, such as the importance being placed on clean air, green industrial development, and investments in local communities. 2. This transition creates tremendous opportunities for countries and companies to ramp-up a new kind of job creation and economic development based on renewable, efficient energy systems. At the same time, countries and actors, who do not anticipate the shift, could be left behind and lose out economically. The good news is that the necessary tools are there. The main question is whether the social and political will for change can be developed and harnessed at the speed and scope required. 3. An economic shift on the scale and speed required to mitigate climate change cannot be achieved solely from the 'top-down'; it can only be implemented with the buy-in and participation of civil society. Worrying trends of inequality, economic disruption, and the fragmentation and fractiousness of public discourse make obtaining this social buy-in all the more difficult. Civil society must thus be seen as an essential partner of policies to drive a new paradigm of sustainable economic development

  10. Large Scale EOF Analysis of Climate Data

    Science.gov (United States)

    Prabhat, M.; Gittens, A.; Kashinath, K.; Cavanaugh, N. R.; Mahoney, M.

    2016-12-01

    We present a distributed approach towards extracting EOFs from 3D climate data. We implement the method in Apache Spark, and process multi-TB sized datasets on O(1000-10,000) cores. We apply this method to latitude-weighted ocean temperature data from CSFR, a 2.2 terabyte-sized data set comprising ocean and subsurface reanalysis measurements collected at 41 levels in the ocean, at 6 hour intervals over 31 years. We extract the first 100 EOFs of this full data set and compare to the EOFs computed simply on the surface temperature field. Our analyses provide evidence of Kelvin and Rossy waves and components of large-scale modes of oscillation including the ENSO and PDO that are not visible in the usual SST EOFs. Further, they provide information on the the most influential parts of the ocean, such as the thermocline, that exist below the surface. Work is ongoing to understand the factors determining the depth-varying spatial patterns observed in the EOFs. We will experiment with weighting schemes to appropriately account for the differing depths of the observations. We also plan to apply the same distributed approach to analysis of analysis of 3D atmospheric climatic data sets, including multiple variables. Because the atmosphere changes on a quicker time-scale than the ocean, we expect that the results will demonstrate an even greater advantage to computing 3D EOFs in lieu of 2D EOFs.

  11. Re-framing climate issue by listening to local actors: elements of propaedeutics

    International Nuclear Information System (INIS)

    Bredif, Herve; Bertrand, Francois; Tabeaud, Martine

    2015-01-01

    The disappointing outcomes of international negotiations on climate change are frequently associated with inaction and the consequences of a perceived disconnection between science and politics. However, our experiences and empirical findings based on research carried out in France in highly diverse situations and among very different operators invalidate this thesis. By analysing climate change from the standpoint of territories and local adaptation and mitigation strategies, our article contends that the problem stems instead from a still insufficient fit between local and global levels of expertise and action frameworks. Moreover, we also need to analyse climate change from a new angle and recognise its dual nature in material and objective terms as well as in its cultural, symbolic and subjective components

  12. Civil protection and climate change impacts in the Netherlands: Local risk perceptions and actions

    NARCIS (Netherlands)

    van den Berg, Maya Marieke; Coenen, Franciscus H.J.M.

    2010-01-01

    Being a delta, one third of the Dutch territory consists of flood-prone areas. This article discusses how the local civil protection system in the Netherlands responds to increasing climate change-induced flooding risks in terms of risk perception and action. Case studies on three Safety Regions are

  13. Addressing potential local adaptation in species distribution models: implications for conservation under climate change

    Science.gov (United States)

    Hällfors, Maria Helena; Liao, Jishan; Dzurisin, Jason D. K.; Grundel, Ralph; Hyvärinen, Marko; Towle, Kevin; Wu, Grace C.; Hellmann, Jessica J.

    2016-01-01

    Species distribution models (SDMs) have been criticized for involving assumptions that ignore or categorize many ecologically relevant factors such as dispersal ability and biotic interactions. Another potential source of model error is the assumption that species are ecologically uniform in their climatic tolerances across their range. Typically, SDMs to treat a species as a single entity, although populations of many species differ due to local adaptation or other genetic differentiation. Not taking local adaptation into account, may lead to incorrect range prediction and therefore misplaced conservation efforts. A constraint is that we often do not know the degree to which populations are locally adapted, however. Lacking experimental evidence, we still can evaluate niche differentiation within a species' range to promote better conservation decisions. We explore possible conservation implications of making type I or type II errors in this context. For each of two species, we construct three separate MaxEnt models, one considering the species as a single population and two of disjunct populations. PCA analyses and response curves indicate different climate characteristics in the current environments of the populations. Model projections into future climates indicate minimal overlap between areas predicted to be climatically suitable by the whole species versus population-based models. We present a workflow for addressing uncertainty surrounding local adaptation in SDM application and illustrate the value of conducting population-based models to compare with whole-species models. These comparisons might result in more cautious management actions when alternative range outcomes are considered.

  14. Scientific Data and Its Limits: Rethinking the Use of Evidence in Local Climate Change Policy

    Science.gov (United States)

    Pearce, Warren

    2014-01-01

    Climate policy is typically seen as informed by scientific evidence that anthropogenic carbon emissions require reducing in order to avoid dangerous consequences. However, agreement on these matters has not translated into effective policy. Using interviews with local authority officials in the UK's East Midlands region, this paper argues that the…

  15. Presenting a Framework to Analyze Local Climate Policy and Action in Small and Medium-Sized Cities

    Directory of Open Access Journals (Sweden)

    Thomas Hoppe

    2016-08-01

    Full Text Available Academic attention to local climate policy usually focuses on large-sized cities. Given the climate challenges ahead this seems unjustified. Small and medium-sized cities (SMCs deserve scholarly attention as well. The main question is: What factors influence climate change policy and local climate actions in SMCs? In this article we present an analytical framework to analyze climate change policy and local climate actions of SMCs. The framework addresses different aspects: policy-input, -throughput, -output, -outcome, characteristics of the local environment, local action arenas, influence by higher government levels, and interaction with climate change issue networks. The framework is used to analyze and compare four case studies of SMCs in the Dutch region of Twente (two urban and two rural municipalities, and addresses both adaptation and mitigation. Results show that both ‘localist’, ‘multi-level’ and issue network membership factors influence local climate policy action. Governance modes discerned concern mostly ‘governing by authority’ and ‘self-governing’. When reflecting on the role of SMCs in climate action the study revealed the importance of local capacity building schemes issued by provincial government, inter-municipal network collaboration, and the potential for local governments to mobilize and organize citizen action.

  16. Local Perceptions and Responses to Climate Change and Variability: The Case of Laikipia District, Kenya

    Directory of Open Access Journals (Sweden)

    Sarah Ayeri Ogalleh

    2012-12-01

    Full Text Available Agricultural policies in Kenya aim to improve farmers’ livelihoods. With projected climate change, these policies are short of mechanisms that promote farmers’ adaptation. As a result, smallholders are confronted with a variety of challenges including climate change, which hinders their agricultural production. Local knowledge can be instrumental in assisting smallholders to cope with climate change and variability. In this paper, we present empirical evidence that demonstrates local knowledge, perceptions and adaptations to climate change and variability amongst smallholders of Laikipia district of Kenya. A Palmer Drought Severity Index (PDSI calculated for one station is compared with smallholders’ perceptions. Data was collected using qualitative and quantitative methods in Umande and Muhonia sub-locations. Qualitative data included 46 transcripts from focus group discussions and key informant interviews. Quantitative data is derived from 206 interviewees. We analyzed qualitative and quantitative data using Atlas-ti and SPSS respectively. According to smallholders’ perceptions, climatic variability is increasingly changing. Local perceptions include decreasing rainfalls, increasing temperatures, increasing frosts and increasing hunger. The PDSI shows a trend towards severe droughts in the last four decades, which is in accordance with farmers’ perceptions. Smallholders use a combination of coping and adaptation strategies to respond to variability, including, among others, diversification of crop varieties, migration and sale of livestock. Significant relationships exist between drought perceptions and some adaptations such as migration and sale of livestock. Farmers have an in-depth knowledge of climatic variability, which they use to inform their coping and adaptation strategies. Knowledge of climatic perceptions and adaptations are vital entry points for decision makers and policy makers to learn how and where to enhance the

  17. Local Variability Mediates Vulnerability of Trout Populations to Land Use and Climate Change.

    Directory of Open Access Journals (Sweden)

    Brooke E Penaluna

    Full Text Available Land use and climate change occur simultaneously around the globe. Fully understanding their separate and combined effects requires a mechanistic understanding at the local scale where their effects are ultimately realized. Here we applied an individual-based model of fish population dynamics to evaluate the role of local stream variability in modifying responses of Coastal Cutthroat Trout (Oncorhynchus clarkii clarkii to scenarios simulating identical changes in temperature and stream flows linked to forest harvest, climate change, and their combined effects over six decades. We parameterized the model for four neighboring streams located in a forested headwater catchment in northwestern Oregon, USA with multi-year, daily measurements of stream temperature, flow, and turbidity (2007-2011, and field measurements of both instream habitat structure and three years of annual trout population estimates. Model simulations revealed that variability in habitat conditions among streams (depth, available habitat mediated the effects of forest harvest and climate change. Net effects for most simulated trout responses were different from or less than the sum of their separate scenarios. In some cases, forest harvest countered the effects of climate change through increased summer flow. Climate change most strongly influenced trout (earlier fry emergence, reductions in biomass of older trout, increased biomass of young-of-year, but these changes did not consistently translate into reductions in biomass over time. Forest harvest, in contrast, produced fewer and less consistent responses in trout. Earlier fry emergence driven by climate change was the most consistent simulated response, whereas survival, growth, and biomass were inconsistent. Overall our findings indicate a host of local processes can strongly influence how populations respond to broad scale effects of land use and climate change.

  18. Development of a climate data analysis tool (CDAT)

    Energy Technology Data Exchange (ETDEWEB)

    Marlais, S.M.

    1997-09-01

    The Climate Data Analysis Tool (CDAT) is designed to provide the Program for Climate Model Diagnosis and Intercomparison (PCMDI) at Lawrence Livermore National Laboratory, California, with the capabilities needed to analyze model data with little effort on the part of the scientist, while performing complex mathematical calculations, and graphically displaying the results. This computer software will meet the demanding need of climate scientists by providing the necessary tools to diagnose, validate, and intercompare large observational and global climate model datasets.

  19. Economic analysis and management of climatic risks

    Energy Technology Data Exchange (ETDEWEB)

    Hourcade, J.C. (Centre International de Recherche sur l' Environnement et le Developpement, 92 - Montrouge (France))

    1994-01-01

    This paper aims at framing the collective decision problem in the face of climate change. It shows why it would be irrelevant to handle it in the form of a classical decision under uncertainty framework where a cost-benefit analysis is carried out including probability distribution on damages and risk aversion coefficients. A sequential approach to policy making is then proposed as an alternative in order to account for the inertia of socio-economic dynamics and the value of information. A simple model illustrates the gap between these two approaches; it shows the importance of combining the investments on climatic research, innovation policies and so-called 'no regret' short term decisions. It shows the fact that, even if they can be considered as quantitatively moderate, these potentials have a critical impact on long term viability of development; they embed a very high information value, lengthening the learning time vis-a-vis potentially major but controversial risks. (author). 21 refs., 3 figs.

  20. Efficient and Flexible Climate Analysis with Python in a Cloud-Based Distributed Computing Framework

    Science.gov (United States)

    Gannon, C.

    2017-12-01

    As climate models become progressively more advanced, and spatial resolution further improved through various downscaling projects, climate projections at a local level are increasingly insightful and valuable. However, the raw size of climate datasets presents numerous hurdles for analysts wishing to develop customized climate risk metrics or perform site-specific statistical analysis. Four Twenty Seven, a climate risk consultancy, has implemented a Python-based distributed framework to analyze large climate datasets in the cloud. With the freedom afforded by efficiently processing these datasets, we are able to customize and continually develop new climate risk metrics using the most up-to-date data. Here we outline our process for using Python packages such as XArray and Dask to evaluate netCDF files in a distributed framework, StarCluster to operate in a cluster-computing environment, cloud computing services to access publicly hosted datasets, and how this setup is particularly valuable for generating climate change indicators and performing localized statistical analysis.

  1. Numerical analysis of the Anderson localization

    International Nuclear Information System (INIS)

    Markos, P.

    2006-01-01

    The aim of this paper is to demonstrate, by simple numerical simulations, the main transport properties of disordered electron systems. These systems undergo the metal insulator transition when either Fermi energy crosses the mobility edge or the strength of the disorder increases over critical value. We study how disorder affects the energy spectrum and spatial distribution of electronic eigenstates in the diffusive and insulating regime, as well as in the critical region of the metal-insulator transition. Then, we introduce the transfer matrix and conductance, and we discuss how the quantum character of the electron propagation influences the transport properties of disordered samples. In the weakly disordered systems, the weak localization and anti-localization as well as the universal conductance fluctuation are numerically simulated and discussed. The localization in the one dimensional system is described and interpreted as a purely quantum effect. Statistical properties of the conductance in the critical and localized regimes are demonstrated. Special attention is given to the numerical study of the transport properties of the critical regime and to the numerical verification of the single parameter scaling theory of localization. Numerical data for the critical exponent in the orthogonal models in dimension 2 < d ≤ 5 are compared with theoretical predictions. We argue that the discrepancy between the theory and numerical data is due to the absence of the self-averaging of transmission quantities. This complicates the analytical analysis of the disordered systems. Finally, theoretical methods of description of weakly disordered systems are explained and their possible generalization to the localized regime is discussed. Since we concentrate on the one-electron propagation at zero temperature, no effects of electron-electron interaction and incoherent scattering are discussed in the paper (Author)

  2. A multimodal wave spectrum-based approach for statistical downscaling of local wave climate

    Science.gov (United States)

    Hegermiller, Christie; Antolinez, Jose A A; Rueda, Ana C.; Camus, Paula; Perez, Jorge; Erikson, Li; Barnard, Patrick; Mendez, Fernando J.

    2017-01-01

    Characterization of wave climate by bulk wave parameters is insufficient for many coastal studies, including those focused on assessing coastal hazards and long-term wave climate influences on coastal evolution. This issue is particularly relevant for studies using statistical downscaling of atmospheric fields to local wave conditions, which are often multimodal in large ocean basins (e.g. the Pacific). Swell may be generated in vastly different wave generation regions, yielding complex wave spectra that are inadequately represented by a single set of bulk wave parameters. Furthermore, the relationship between atmospheric systems and local wave conditions is complicated by variations in arrival time of wave groups from different parts of the basin. Here, we address these two challenges by improving upon the spatiotemporal definition of the atmospheric predictor used in statistical downscaling of local wave climate. The improved methodology separates the local wave spectrum into “wave families,” defined by spectral peaks and discrete generation regions, and relates atmospheric conditions in distant regions of the ocean basin to local wave conditions by incorporating travel times computed from effective energy flux across the ocean basin. When applied to locations with multimodal wave spectra, including Southern California and Trujillo, Peru, the new methodology improves the ability of the statistical model to project significant wave height, peak period, and direction for each wave family, retaining more information from the full wave spectrum. This work is the base of statistical downscaling by weather types, which has recently been applied to coastal flooding and morphodynamic applications.

  3. Generating relevant climate adaptation science tools in concert with local natural resource agencies

    Science.gov (United States)

    Micheli, L.; Flint, L. E.; Veloz, S.; Heller, N. E.

    2015-12-01

    To create a framework for adapting to climate change, decision makers operating at the urban-wildland interface need to define climate vulnerabilities in the context of site-specific opportunities and constraints relative to water supply, land use suitability, wildfire risks, ecosystem services and quality of life. Pepperwood's TBC3.org is crafting customized climate vulnerability assessments with selected water and natural resource agencies of California's Sonoma, Marin, Napa and Mendocino counties under the auspices of Climate Ready North Bay, a public-private partnership funded by the California Coastal Conservancy. Working directly with managers from the very start of the process to define resource-specific information needs, we are developing high-resolution, spatially-explicit data products to help local governments and agency staff implement informed and effective climate adaptation strategies. Key preliminary findings for the region using the USGS' Basin Characterization Model (at a 270 m spatial resolution) include a unidirectional trend, independent of greater or lesser precipitation, towards increasing climatic water deficits across model scenarios. Therefore a key message is that managers will be facing an increasingly arid environment. Companion models translate the impacts of shifting climate and hydrology on vegetation composition and fire risks. The combination of drought stress on water supplies and native vegetation with an approximate doubling of fire risks may demand new approaches to watershed planning. Working with agencies we are exploring how to build capacity for protection and enhancement of key watershed functions with a focus on groundwater recharge, facilitating greater drought tolerance in forest and rangeland systems, and considering more aggressive approaches to management of fuel loads. Lessons learned about effective engagement include the need for extended in-depth dialog, translation of key climate adaptation questions into

  4. The influence of climatic variability on local population dynamics of Cercidium microphyllum (foothill paloverde)

    Science.gov (United States)

    Bowers, Janice E.; Turner, R.M.

    2002-01-01

    This study investigated correlations among climatic variability, population age structure, and seedling survival of a dominant Sonoran Desert tree, Cercidium microphyllum (foothill paloverde), at Tucson, Arizona, USA. A major goal was to determine whether wet years promote seedling establishment and thereby determine population structure. Plant age was estimated from basal circumference for a sample of 980 living and dead trees in twelve 0.5-ha plots. Ages ranged from 1 to 181 years. Age frequency distribution showed that the population is in decline. Most (51.2%) of the 814 living trees were 40-80 years old; only 6.5% were younger than 20 years. The average age of the 166 dead trees was 78 years. Fifty-nine percent of dead trees were aged 60-100 years. Survival of newly emerged seedlings was monitored for 7 years in a 557-m2 permanent plot. Mean survival in the 1st year of life was 1.7%. Only 2 of 1,008 seedlings lived longer than 1 year. Length of survival was not correlated with rainfall. Residual regeneration, an index of the difference between predicted and observed cohort size, showed that regeneration was high during the first half of the twentieth century and poor after the mid-1950s. Trends in regeneration did not reflect interannual variation in seasonal temperature or rain before 1950, that is, in the years before urban warming. Taken together, the seedling study and the regeneration analysis suggest that local population dynamics reflect biotic factors to such an extent that population age structure might not always be a reliable clue to past climatic influences.

  5. Multifractal analysis of a GCM climate

    Science.gov (United States)

    Carl, P.

    2003-04-01

    Multifractal analysis using the Wavelet Transform Modulus Maxima (WTMM) approach is being applied to the climate of a Mintz--Arakawa type, coarse resolution, two--layer AGCM. The model shows a backwards running period multiplication scenario throughout the northern summer, subsequent to a 'hard', subcritical Hopf bifurcation late in spring. This 'route out of chaos' (seen in cross sections of a toroidal phase space structure) is born in the planetary monsoon system which inflates the seasonal 'cycle' into these higher order structures and is blamed for the pronounced intraseasonal--to--centennial model climate variability. Previous analyses of the latter using advanced modal decompositions showed regularity based patterns in the time--frequency plane which are qualitatively similar to those obtained from the real world. The closer look here at the singularity structures, as a fundamental diagnostic supplement, aims at both more complete understanding (and quantification) of the model's qualitative dynamics and search for further tools of model intercomparison and verification in this respect. Analysing wavelet is the 10th derivative of the Gaussian which might suffice to suppress regular patterns in the data. Intraseasonal attractors, studied in time series of model precipitation over Central India, show shifting and braodening singularity spectra towards both more violent extreme events (premonsoon--monsoon transition) and weaker events (late summer to postmonsoon transition). Hints at a fractal basin boundary are found close to transition from period--2 to period--1 in the monsoon activity cycle. Interannual analyses are provided for runs with varied solar constants. To address the (in--)stationarity issue, first results are presented with a windowed multifractal analysis of longer--term runs ("singularity spectrogram").

  6. Local climate policy in practice. Use of the playing field, impact of trends and the integration of climate care in municipal policy

    International Nuclear Information System (INIS)

    Menkveld, M.; Burger, H.; Kaal, M.B.T.; Coenen, F.H.J.M.

    2001-10-01

    The result of the first research phase of the project was an outline of the playing field of local climate policy. The use of options and instruments from the playing field is examined on the basis of literature and interviews with local governments. In the process, barriers for the implementation of options are illustrated. The evaluation of the playing field in practise shows that local governments often only use part of their playing field. Even local governments that excel and are familiar throughout the country in relation to one particular task area ignore other task areas. The reasons why options and instruments are not fully utilised vary per task area: not enough internal support; lack of clear policy framework; climate policy must join in with other targets or local governments depend on cooperation of other actors. Nevertheless, generally speaking the success and failure factors in utilising options in the local government playing field are often related to the sphere of cooperation with other parties and the input of knowledge in the organisation of the local government. Moreover, the importance of climate is not made explicit enough in many task areas. The options in climate policy for local governments are influenced by social developments. In the study three trends are examined with respect to their influence: developments in the area of liberalisation of the energy market, the position of local governments in national environmental policy and changes in local democracy. These trends result in a complication of the role of local governments. Local governments must show more initiative than in the past. Liberalisation leads to a more business-oriented relationship with energy companies and probably lower energy prices. Larger freedom of policy results in more space for establishing local priorities, but does not necessarily result in more attention for local climate policy. Participation can result in a larger support for climate policy but also

  7. Gender and climate change in the Indian Hindu-Kush Himalayas: global threats, local vulnerabilities

    Science.gov (United States)

    Ogra, M. V.; Badola, R.

    2014-11-01

    Global climate change has numerous implications for members of mountain communities who feel the impacts in both physical and social dimensions. In the Western Himalayas of India, a majority of residents maintain a livelihood strategy that includes a combination of subsistence or small-scale agriculture, seasonal pastoral migration, male out-migration, and localized natural resource extraction. Particularly under conditions of heavy male outmigration, but throughout the region, mountain women play a key role in providing labor and knowledge related to the management of local natural resources, yet often lack authority in related political and economic decision-making processes. This gap has important implications for addressing the impacts of climate change: while warming temperatures, irregular patterns of precipitation and snowmelt, and changing biological systems present challenges to the viability of these traditional livelihood portfolios throughout the region, mountain women increasingly face new challenges in their roles as household managers that have not adequately been emphasized in larger scale planning for climate change adaptation and mitigation. These challenges are complex in nature, and are shaped not only by gender issues but also interacting factors such as class, caste, ethnicity, and age (among others). In this paper, we review the main arguments behind the discursive gender/climate change nexus, discuss the implications for gendered vulnerabilities and transformation of adaptive capacities in the region, and suggest ways that researchers and policymakers seeking to promote "climate justice" can benefit from the incorporation of gender-based perspectives and frameworks.

  8. Study of Climate Change Impact to Local Rainfall Distribution in Lampung Provinces

    Directory of Open Access Journals (Sweden)

    Tumiar Katarina Manik

    2016-08-01

    Full Text Available Global warming which leads to climate change has potential affect to Indonesia agriculture activities and production. Analyzing rainfall pattern and distribution is important to investigate the impact of global climate change to local climate. This study using rainfall data from 1976-2010 from both lowland and upland area of Lampung Province. The results show that rainfall tends to decrease since the 1990s which related to the years with El Nino event. Monsoonal pattern- having rain and dry season- still excist in Lampung; however, since most rain fell below the average, it could not meet crops water need. Farmers conclude that dry seasons were longer and seasonal pattern has been changed. Global climate change might affect Lampung rainfall distribution through changes on sea surface temperature which could intensify the El Nino effect. Therefore, watching the El Nino phenomena and how global warming affects it, is important in predicting local climate especially the rainfall distribution in order to prevent significant loss in agriculture productivities.

  9. Tailoring the visual communication of climate projections for local adaptation practitioners in Germany and the UK.

    Science.gov (United States)

    Lorenz, Susanne; Dessai, Suraje; Forster, Piers M; Paavola, Jouni

    2015-11-28

    Visualizations are widely used in the communication of climate projections. However, their effectiveness has rarely been assessed among their target audience. Given recent calls to increase the usability of climate information through the tailoring of climate projections, it is imperative to assess the effectiveness of different visualizations. This paper explores the complexities of tailoring through an online survey conducted with 162 local adaptation practitioners in Germany and the UK. The survey examined respondents' assessed and perceived comprehension (PC) of visual representations of climate projections as well as preferences for using different visualizations in communicating and planning for a changing climate. Comprehension and use are tested using four different graph formats, which are split into two pairs. Within each pair the information content is the same but is visualized differently. We show that even within a fairly homogeneous user group, such as local adaptation practitioners, there are clear differences in respondents' comprehension of and preference for visualizations. We do not find a consistent association between assessed comprehension and PC or use within the two pairs of visualizations that we analysed. There is, however, a clear link between PC and use of graph format. This suggests that respondents use what they think they understand the best, rather than what they actually understand the best. These findings highlight that audience-specific targeted communication may be more complex and challenging than previously recognized. © 2015 The Authors.

  10. Localizing Climate Information for Municipal Planning in the Central U.S.

    Science.gov (United States)

    Shulski, M.; Umphlett, N.; Abdel-Monem, T.; Tang, Z.; Uhlarik, F.

    2017-12-01

    The impacts of projected climate change are an ongoing concern for municipalities. Planning at the local level often involves investigations of multiple hazards on decadal timescales. Of particular interest to cities are implications of too much or too little water, snow storms, heat waves, and freeze/thaw cycles on infrastructure, health, energy demands and water quality and availability. A two-year project led by the University of Nebraska - Lincoln has brought together scientist and stakeholder for the purpose of informing municipal planning and climate adaptation for 12 cities in the lower Missouri River Basin states (IA, NE, KS, MO). City-specific climate reports have been developed with municipal input to aid local planning efforts. Surveys to assess municipal climate data usage were distributed to all cities with a population greater than 5,000 in the four-state region. In addition, planning efforts for 18 municipalities have been evaluated for nearly 20 cities in the region to investigate local hazard mitigation, emergency, and comprehensive plans. This presentation will outline key outcomes of the project and discuss decision support tools developed in co-production with city planners.

  11. Climate perceptions of local communities validated through scientific signals in Sikkim Himalaya, India.

    Science.gov (United States)

    Sharma, R K; Shrestha, D G

    2016-10-01

    Sikkim, a tiny Himalayan state situated in the north-eastern region of India, records limited research on the climate change. Understanding the changes in climate based on the perceptions of local communities can provide important insights for the preparedness against the unprecedented consequences of climate change. A total of 228 households in 12 different villages of Sikkim, India, were interviewed using eight climate change indicators. The results from the public opinions showed a significant increase in temperature compared to a decade earlier, winters are getting warmer, water springs are drying up, change in concept of spring-water recharge (locally known as Mul Phutnu), changes in spring season, low crop yields, incidences of mosquitoes during winter, and decrease in rainfall in last 10 years. In addition, study also showed significant positive correlations of increase in temperature with other climate change indicators viz. spring-water recharge concept (R (2) = 0.893), warmer winter (R (2) = 0.839), drying up of water springs (R (2) = 0.76), changes in spring season (R (2) = 0.68), low crop yields (R (2) = 0.68), decrease in rainfall (R (2) = 0.63), and incidences of mosquitoes in winter (R (2) = 0.50). The air temperature for two meteorological stations of Sikkim indicated statistically significant increasing trend in mean minimum temperature and mean minimum winter temperature (DJF). The observed climate change is consistent with the people perceptions. This information can help in planning specific adaptation strategies to cope with the impacts of climate change by framing village-level action plan.

  12. National and Local Vulnerability to Climate-Related Disasters in Latin America

    DEFF Research Database (Denmark)

    Rubin, Olivier; Rossing, Tine

    2012-01-01

    are main determinants of natural disaster mortality in Latin America. Locally, the region's poor are particularly susceptible to climate-related natural hazards. As a result of their limited access to capital, adaptation based on social assets constitutes an effective coping strategy. Evidence from Bolivia......The Latin American region is particularly prone to climate-related natural hazards. However, this article argues that natural hazards are only partly to blame for the region's vulnerability to natural disasters with quantitative evidence suggesting instead that income per capita and inequality...... and Belize illustrates the importance of social assets in protecting the most vulnerable against natural disasters....

  13. Climate change analysis relevant to Jabiluka. Supervising Scientist report 141

    International Nuclear Information System (INIS)

    Jones, R.N.; Abbs, D.J.; Hennessy, K.J.

    1999-01-01

    The aim of the work presented here is to quantify the effects of climate change on rainfall and temperature, and its implications for parameters used in the design of water storage facilities to be used for the next 30 years at the Jabiluka Project, Northern Territory. Changes to average rainfall and temperature, and rainfall variability on decadal to scales of less than one day are investigated. Climate change scenarios have been constructed where projections of climate change can be quantified. Some submissions to the Draft Jabiluka Environmental Impact Statement (EIS) raised concerns about the impact of climate change on the design of hydrologic structures for the Jabiluka project (eg Supplement to the Draft EIS, Kinhill and ERAES 1997, p5-27; Wasson et al 1998). Six General Circulation Model (GCM) simulations were analysed to determine possible temperature and rainfall changes over the region surrounding the Jabiluka mine site: two simulations of the CSIRO GCM, one from the CSIRO limited area model, DARLAM, and single GCM simulations from the Deutsches Klimarechenzentrum (DKRZ), UK Meteorological Office (Hadley Centre) and Canadian Centre for Climate Modelling and Analysis. Due to uncertainties resulting from differing emission scenarios and climate sensitivities these climate models will give different answers. However, under climate change, the hydrological cycle is expected to become more intense (IPCC 1996) through higher evaporation, an increase in the water-holding capacity of the atmosphere and heavier rainfall. GCM output is required to show how this may change on the regional scale, so CSIRO has investigated the models listed above to create scenarios for seasonal rainfall. This involves deriving patterns of local change calculated from the models. The methods used are described in section 2.2. In addition to the enhanced greenhouse effect, natural climatic variability can also have implications for the design of water retention structures. Decadal

  14. An analysis of climatic impacts and adaptation strategies in Tanzania

    CSIR Research Space (South Africa)

    Ojoyi, MM

    2015-03-01

    Full Text Available International Journal of Climate Change Strategies and Management An analysis of climatic impacts and adaptation strategies in Tanzania Mercy M. Ojoyi School of Environmental Sciences, University of KwaZulu-Natal, Pietermaritzburg, South Africa... of feedback results from analysis of variance tests conducted. Major indicators of climate variability and change include: increased dry spells (39.7 per cent), drying of rivers (34.7 per cent), a reduction in water flows (14.6 per cent) and poor economy...

  15. Estimating live fuel status by drought indices: an approach for assessing local impact of climate change on fire danger

    Science.gov (United States)

    Pellizzaro, Grazia; Dubrovsky, Martin; Bortolu, Sara; Ventura, Andrea; Arca, Bachisio; Masia, Pierpaolo; Duce, Pierpaolo

    2014-05-01

    Mediterranean shrubs are an important component of both Mediterranean vegetation communities and understorey vegetation. They also constitute the surface fuels primarily responsible for the ignition and the spread of wildland fires in Mediterranean forests. Although fire spread and behaviour are dependent on several factors, the water content of live fuel plays an important role in determining fire occurrence and spread, especially in the Mediterranean shrubland, where live fuel is often the main component of the available fuel which catches fire. According to projections on future climate, an increase in risk of summer droughts is likely to take place in Southern Europe. More prolonged drought seasons induced by climatic changes are likely to influence general flammability characteristics of fuel, affecting load distribution in vegetation strata, floristic composition, and live and dead fuel ratio. In addition, variations in precipitation and mean temperature could directly affect fuel water status, and consequently flammability, and length of critical periods of high ignition danger for Mediterranean ecosystems. The main aim of this work was to propose a methodology for evaluating possible impacts of future climate change on moisture dynamic and length of fire danger period at local scale. Specific objectives were: i) evaluating performances of meteorological drought indices in describing seasonal pattern of live fuel moisture content (LFMC), and ii) simulating the potential impacts of future climate changes on the duration of fire danger period. Measurements of LFMC seasonal pattern of three Mediterranean shrub species were performed in North Western Sardinia (Italy) for 8 years. Seasonal patterns of LFMC were compared with the Drought Code of the Canadian Forest Fire Weather Index and the Keetch-Byram Drought Index. Analysis of frequency distribution and cumulative distribution curves were carried out in order to evaluate performance of codes and to identify

  16. Climate change adaptation among Tibetan pastoralists: challenges in enhancing local adaptation through policy support.

    Science.gov (United States)

    Fu, Yao; Grumbine, R Edward; Wilkes, Andreas; Wang, Yun; Xu, Jian-Chu; Yang, Yong-Ping

    2012-10-01

    While researchers are aware that a mix of Local Ecological Knowledge (LEK), community-based resource management institutions, and higher-level institutions and policies can facilitate pastoralists' adaptation to climate change, policy makers have been slow to understand these linkages. Two critical issues are to what extent these factors play a role, and how to enhance local adaptation through government support. We investigated these issues through a case study of two pastoral communities on the Tibetan Plateau in China employing an analytical framework to understand local climate adaptation processes. We concluded that LEK and community-based institutions improve adaptation outcomes for Tibetan pastoralists through shaping and mobilizing resource availability to reduce risks. Higher-level institutions and policies contribute by providing resources from outside communities. There are dynamic interrelationships among these factors that can lead to support, conflict, and fragmentation. Government policy could enhance local adaptation through improvement of supportive relationships among these factors. While central government policies allow only limited room for overt integration of local knowledge/institutions, local governments often have some flexibility to buffer conflicts. In addition, government policies to support market-based economic development have greatly benefited adaptation outcomes for pastoralists. Overall, in China, there are still questions over how to create innovative institutions that blend LEK and community-based institutions with government policy making.

  17. Impact of Land Use Change on the Local Climate over the Tibetan Plateau

    Directory of Open Access Journals (Sweden)

    Jiming Jin

    2010-01-01

    Full Text Available Observational data show that the remotely sensed leaf area index (LAI has a significant downward trend over the east Tibetan Plateau (TP, while a warming trend is found in the same area. Further analysis indicates that this warming trend mainly results from the nighttime warming. The Single-Column Atmosphere Model (SCAM version 3.1 developed by the National Center for Atmospheric Research is used to investigate the role of land use change in the TP local climate system and isolate the contribution of land use change to the warming. Two sets of SCAM simulations were performed at the Xinghai station that is located near the center of the TP Sanjiang (three rivers Nature Reserve where the downward LAI trend is largest. These simulations were forced with the high and low LAIs. The modeling results indicate that, when the LAI changes from high to low, the daytime temperature has a slight decrease, while the nighttime temperature increases significantly, which is consistent with the observations. The modeling results further show that the lower surface roughness length plays a significant role in affecting the nighttime temperature increase.

  18. The Local-Level Management of Climate Change: the Case of Urban Passenger Transportation in France

    International Nuclear Information System (INIS)

    Cochran, Ian Thomas

    2012-01-01

    The reduction of GHG emissions is one of the largest and most pressing collective-action problems facing humanity. Addressing this transversal, trans-boundary policy challenge requires action at multiple scales of governance: from behavioral changes by individuals to modifications of local, national and international regulatory frameworks and decision-making processes. Taking an interdisciplinary approach, this project draws on theories on collective action, institutional economics, multilevel governance, and indicators in decision making to analyze what appears to be an increasingly poly-centric governance approach to achieving cross-scale action on GHG mitigation. This dissertation addresses the over-arching question of what governance changes are needed to deliver lasting GHG emissions reductions in the urban passenger transport sector in France? This analysis suggests that achieving greenhouse gas mitigation is dependent not only on the ability of actors to coordinate action, but also on the information tools needed to integrate these issues into decision-making at multiple levels of government and across policy priorities. Thus, GHG mitigation must be linked as an often-complementary issue with existing policy priorities. The findings resulting from this dissertation have a number of contributions to make both to the theoretical literature as well as to general policy practice and the specific decision-making process in France in terms of transport, urban planning and climate governance. (author)

  19. Integrated risk analysis of global climate change

    International Nuclear Information System (INIS)

    Shlyakhter, Alexander; Wilson, Richard; Valverde A, L.J. Jr.

    1995-01-01

    This paper discusses several factors that should be considered in integrated risk analyses of global climate change. We begin by describing how the problem of global climate change can be subdivided into largely independent parts that can be linked together in an analytically tractable fashion. Uncertainty plays a central role in integrated risk analyses of global climate change. Accordingly, we consider various aspects of uncertainty as they relate to the climate change problem. We also consider the impacts of these uncertainties on various risk management issues, such as sequential decision strategies, value of information, and problems of interregional and intergenerational equity. (author)

  20. Policy integration, coherence and governance in Dutch climate policy : a multi-level analysis of mitigation and adoption policy

    NARCIS (Netherlands)

    Bommel, van S.; Kuindersma, W.

    2008-01-01

    This report assesses the integration of climate policy in Dutch public policy at the national, regional, local and area level. The national analysis focuses on the horizontal integration of climate policy in national government programmes, adaptation and mitigation strategies and specific policy

  1. Impact assessment and coastal climate change adaptation in a local transdisciplinary perspective

    DEFF Research Database (Denmark)

    Sørensen, Carlo Sass; Broge, N. H.; Knudsen, Per

    , private and public institutions, and the local communities provides: understanding of the immediate and potential future challenges; appreciation of different stakeholder motives, business agendas, legislative constraints etc., and common focus on how to cost-efficiently adapt to and manage impacts......From an applied point of view, the authors present and discuss inter- and transdisciplinary approaches to assess and deal with natural coastal hazards and climate change impacts. The construction of a shared working platform for knowledge integration across levels of governance and between research...... of climate change. The platform is dynamically updated with additional data and knowledge, e.g. from climate change evidence, or, by provision of updated regional models of future sea level rise. In order to integrate natural hazards and impact development over time, models on hydrology, geology...

  2. Butterfly effect: understanding and mitigating the local consequences of climate change impacts

    International Nuclear Information System (INIS)

    Lorenz, Donna

    2007-01-01

    Full text: The Butterfly Effect is the notion that tiny differences in initial conditions are amplified in the evolution of a dynamic system and directly affect the eventual outcome. In 1963 mathematician and meteorologist Edward Lorenz proposed that the flapping of a butterfly's wing would cause a disturbance that becomes exponentially amplified so as to eventually affect large-scale atmospheric motion. This was to illustrate the 'sensitive dependence on initial conditions'; sensitivity also true in affecting the extent of damages experienced as a result of climate change. In a climate change context, The Butterfly Effect suggests the local consequences of climate change impacts will depend on their interaction with the economic, environmental, institutional, technological and demographic attributes unique to a city or region. It is this mix of factors that will determine the extent, both positively and negatively, to which climate change will be experienced locally. For a truly effective climate change response, it is imperative that regional risk assessments and adaptation strategies take into account not only the projected impacts but the full range of flow-on implications of those impacts and their sensitivity factors. Understanding of the sensitivity factors that will amplify or mitigate climate change impacts and implications enables government and business leaders to calculate the likely extent of localised damages if no adaptation is undertaken. This allows industries and communities to evaluate the likely significance of a particular impact and to consider how to adjust or counter the sensitivity factor to build resilience and reduce vulnerability. Thus, it also assists in the local prioritisation of issues and responses. Such a strategic response can also mean the required adaptation measures may be less extensive and thereby require less cost and time to implement. This paper discusses the flow-on implications of Australia's projected climate change

  3. User and stakeholder involvement for relevant, reliable and robust local-scale climate projections in Norway

    Science.gov (United States)

    Neby, Simon; Sobolowski, Stefan

    2017-04-01

    How can users and stakeholders be actively involved with providing input to and using output from local-scale climate projections? How can the scientific community better understand the needs of local actors? And how should communication and cooperation efforts be organized? These are critical questions we aim to answer in a climate services project funded by the Norwegian Research Council (R3: Relevant, Reliable and Robust local-scale climate projections for Norway). The project takes into consideration not only the scientific issues in establishing useful local-scale climate projections, but also addresses the "usability gap" between climate information and decision-making. The lack of effective communication between scientists and user communities often result in outputs and products that are not matched with decision-relevant climate information. In the R3 project, the scientific participants actively engage with a range of users that have quite different information needs: municipalities, infrastructure developers, agriculture, energy producers, insurance companies, and more. In this particular presentation, we present our experiences concerning three specific issues that relate to the stakeholder-science interface: 1) Preferences are not clear-cut and pre-defined. In practice, this means that stakeholders often do not have precise information about their needs, nor precise information about how, where and whether their needs can be voiced. Similarly, science communities tend to presuppose that stakeholders are interested and have well-articulated needs, which is hardly the case. Collectively, that means that there is a need for an approach that guides the articulation and prioritization of preferences in a manner that integrates both scientific and stakeholder perspectives and takes the integrity of both perspectives seriously. 2) Technologies are unclear. Although information may be produced and used, past experiences, trial and error processes and pragmatic

  4. Climate change impacts on coral reefs: synergies with local effects, possibilities for acclimation, and management implications.

    Science.gov (United States)

    Ateweberhan, Mebrahtu; Feary, David A; Keshavmurthy, Shashank; Chen, Allen; Schleyer, Michael H; Sheppard, Charles R C

    2013-09-30

    Most reviews concerning the impact of climate change on coral reefs discuss independent effects of warming or ocean acidification. However, the interactions between these, and between these and direct local stressors are less well addressed. This review underlines that coral bleaching, acidification, and diseases are expected to interact synergistically, and will negatively influence survival, growth, reproduction, larval development, settlement, and post-settlement development of corals. Interactions with local stress factors such as pollution, sedimentation, and overfishing are further expected to compound effects of climate change. Reduced coral cover and species composition following coral bleaching events affect coral reef fish community structure, with variable outcomes depending on their habitat dependence and trophic specialisation. Ocean acidification itself impacts fish mainly indirectly through disruption of predation- and habitat-associated behavior changes. Zooxanthellate octocorals on reefs are often overlooked but are substantial occupiers of space; these also are highly susceptible to bleaching but because they tend to be more heterotrophic, climate change impacts mainly manifest in terms of changes in species composition and population structure. Non-calcifying macroalgae are expected to respond positively to ocean acidification and promote microbe-induced coral mortality via the release of dissolved compounds, thus intensifying phase-shifts from coral to macroalgal domination. Adaptation of corals to these consequences of CO2 rise through increased tolerance of corals and successful mutualistic associations between corals and zooxanthellae is likely to be insufficient to match the rate and frequency of the projected changes. Impacts are interactive and magnified, and because there is a limited capacity for corals to adapt to climate change, global targets of carbon emission reductions are insufficient for coral reefs, so lower targets should be

  5. Expanding the boundaries of local similarity analysis.

    Science.gov (United States)

    Durno, W Evan; Hanson, Niels W; Konwar, Kishori M; Hallam, Steven J

    2013-01-01

    Pairwise comparison of time series data for both local and time-lagged relationships is a computationally challenging problem relevant to many fields of inquiry. The Local Similarity Analysis (LSA) statistic identifies the existence of local and lagged relationships, but determining significance through a p-value has been algorithmically cumbersome due to an intensive permutation test, shuffling rows and columns and repeatedly calculating the statistic. Furthermore, this p-value is calculated with the assumption of normality -- a statistical luxury dissociated from most real world datasets. To improve the performance of LSA on big datasets, an asymptotic upper bound on the p-value calculation was derived without the assumption of normality. This change in the bound calculation markedly improved computational speed from O(pm²n) to O(m²n), where p is the number of permutations in a permutation test, m is the number of time series, and n is the length of each time series. The bounding process is implemented as a computationally efficient software package, FASTLSA, written in C and optimized for threading on multi-core computers, improving its practical computation time. We computationally compare our approach to previous implementations of LSA, demonstrate broad applicability by analyzing time series data from public health, microbial ecology, and social media, and visualize resulting networks using the Cytoscape software. The FASTLSA software package expands the boundaries of LSA allowing analysis on datasets with millions of co-varying time series. Mapping metadata onto force-directed graphs derived from FASTLSA allows investigators to view correlated cliques and explore previously unrecognized network relationships. The software is freely available for download at: http://www.cmde.science.ubc.ca/hallam/fastLSA/.

  6. Enhancing Communication of Climate Impacts Assessments: Examples of Local Stories, Animations and Video.

    Science.gov (United States)

    Fitzpatrick, M. F.; Grigholm, B. O.

    2014-12-01

    Comprehensive climate impacts assessments are important vehicles for conveying salient information to the public and policy makers. However, over the last few decades communication of this important information has been hampered for a number of reasons. Firstly, we have a rapidly changing social media landscape, where there are fewer opportunities for in-depth treatment of issues. To compete in this arena, climate information needs to be packaged in sound bites, and much of the nuance and complexity may be lost. Secondly, scientific literacy among the general U.S. population is not particularly high, which creates a barrier to understanding and limits the audiences that can be reached. Thirdly, climate science has been undermined by misinformation over many years often funded by fossil fuel interests. While this latter obstacle is clearly diminishing - largely in the face of evidence from the undeniable climate impacts that are already being seen by communities - there has been much confusion generated to date. Despite the fact that 97% of active climate scientists agree that the planet is warming as a result of human greenhouse gas emission, only 42% of the U.S. population agrees (Pew Research, 2013). In the face of these challenges, much of the work that the Union of Concerned Scientists does to translate climate impacts assessments has shifted to visuals, animations, and videos that people can relate to and connect with more readily. In this session we will share some of the general design features, discuss target audiences, and outline production limitations of several local stories involving videos and animations, as well as present some recent infographics. One example of this work are case studies that focus on sea level rise and involve a local personality who can speak to climate impacts at the community level. We understand the power of visual images and stories in creating messages that stick, and we use this in designing animations that explain the

  7. Tertiary climatic fluctuations and methods of analysis of tertiary floras

    Science.gov (United States)

    Wolfe, J.A.

    1971-01-01

    On theoretical grounds, an analysis of the physiognomy of a Tertiary leaf assemblage is more direct and reliable than a circuitous floristic analysis in assigning thermal regimes to fossil assemblages. Using primarily foliar physiognomy and secondarily floristic composition, it can be shown that: (1) some middle latitude Tertiary assemblages probably lived under meteoroligically tropical climates; (2) a major and rapid climatic deterioration occurred in the Oligocene; and (3) a major climatic fluctuation probably occurred in the Late Eocene. These analyses thus substantiate the conclusions of several other paleobotanists regarding climatic fluctuations. Recent criticisms of these analyses are shown to be invalid and to be based largely on misinterpretations. ?? 1971.

  8. Climate change and States security: an operational link to develop locally and on the medium term

    International Nuclear Information System (INIS)

    Taithe, Alexandre

    2007-01-01

    The author first notices that climate change and environmental degradations induce new logics in international relationships, and then discusses how consequences of climate change can be factors of instability for States, and how to address them. He recalls and comments the main effects of climate change as they have been described in IPCC reports. He outlines limitations of conventional approaches in terms of direct and indirect impacts on States. Direct effects concern territories (for example, a modification of borders due to sea level rise or to erosion), populations (impact of extreme events on housing, on health) and the economy (more particularly the primary sector and high levels of adaptation costs). The author outlines the limitations of these global models, and proposes additional and corrective approaches: hybrid (regional and global) approaches, local and medium term-based approach (some natural resource management can be assessed and organised only locally). An appendix proposes a contribution of an IPCC work-group in which impacts, adaptation and vulnerabilities of the different regions of the world in front of climate changes are summarized

  9. The Canadian Centre for Climate Modelling and Analysis global coupled model and its climate

    Energy Technology Data Exchange (ETDEWEB)

    Flato, G.M.; Boer, G.J.; Lee, W.G.; McFarlane, N.A.; Ramsden, D.; Reader, M.C. [Canadian Centre for Climate Modelling and Analysis, Victoria, BC (Canada); Weaver, A.J. [School of Earth and Ocean Sciences, University of Victoria, BC (Canada)

    2000-06-01

    A global, three-dimensional climate model, developed by coupling the CCCma second-generation atmospheric general circulation model (GCM2) to a version of the GFDL modular ocean model (MOM1), forms the basis for extended simulations of past, current and projected future climate. The spin-up and coupling procedures are described, as is the resulting climate based on a 200 year model simulation with constant atmospheric composition and external forcing. The simulated climate is systematically compared to available observations in terms of mean climate quantities and their spatial patterns, temporal variability, and regional behavior. Such comparison demonstrates a generally successful reproduction of the broad features of mean climate quantities, albeit with local discrepancies. Variability is generally well-simulated over land, but somewhat underestimated in the tropical ocean and the extratropical storm-track regions. The modelled climate state shows only small trends, indicating a reasonable level of balance at the surface, which is achieved in part by the use of heat and freshwater flux adjustments. The control simulation provides a basis against which to compare simulated climate change due to historical and projected greenhouse gas and aerosol forcing as described in companion publications. (orig.)

  10. Climate change and health: global to local influences on disease risk.

    Science.gov (United States)

    Patz, J A; Olson, S H

    2006-01-01

    The World Health Organization has concluded that the climatic changes that have occurred since the mid 1970s could already be causing annually over 150,000 deaths and five million disability-adjusted life-years (DALY), mainly in developing countries. The less developed countries are, ironically, those least responsible for causing global warming. Many health outcomes and diseases are sensitive to climate, including: heat-related mortality or morbidity; air pollution-related illnesses; infectious diseases, particularly those transmitted, indirectly, via water or by insect or rodent vectors; and refugee health issues linked to forced population migration. Yet, changing landscapes can significantly affect local weather more acutely than long-term climate change. Land-cover change can influence micro-climatic conditions, including temperature, evapo-transpiration and surface run-off, that are key determinants in the emergence of many infectious diseases. To improve risk assessment and risk management of these synergistic processes (climate and land-use change), more collaborative efforts in research, training and policy-decision support, across the fields of health, environment, sociology and economics, are required.

  11. Impacts of East Asian Sulfate Aerosols on Local and Remote Climate

    Science.gov (United States)

    Bartlett, R. E.; Bollasina, M. A.

    2017-12-01

    Anthropogenic aerosols exert significant climate forcing, which increases with emissions following trends of growing population and industry. Globally, aerosols cause a net cooling, counteracting greenhouse gas warming; however, regional impacts vary since emissions are spatially and temporally heterogeneous. While European and North American emissions have decreased in recent decades, Asian, particularly East Asian, emissions continued to rise into the 21st century. In addition to links between Asian anthropogenic aerosols and significant local climate impacts - for example, changes to the Asian monsoon system - studies have also shown influences on remote climate. Sulfate aerosols are particularly important for East Asia, remaining at constant levels higher than column burdens of other aerosol species. If a concerted effort - as laid out by government policies aiming to improve air quality - is made, the effects of anthropogenic aerosols (due to their short atmospheric lifetime) could be quickly reversed. Thus, it is vital to understand the climate impact aerosols have had up to now to aid in determining what will happen in the future. We use transient climate modelling experiments with the Community Earth System Model to investigate the impacts of East Asian sulfate aerosols in the present day compared to 1950 (i.e. before rapid industrialisation in this region), focusing on dynamical mechanisms leading to the occurrence of such impacts, and how their influence can spread to remote regions. We find, in addition to significant monsoon impacts, noticeable shifts in large-scale circulation features such as the ITCZ and the Pacific Walker cell. Through diabatic heating responses, changes to upper-level atmospheric dynamics are evident, leading to downstream effects on surface climate - for example, surface cooling over Europe. Understanding of these impacts is vital when considering how the good intentions of air quality improvement might inadvertently have

  12. Climate risks to agriculture in Amazon arc-of-deforestation create incentives to conserve local forests

    Science.gov (United States)

    Costa, M. H.; Fleck, L. C.; Cohn, A.; Abrahão, G. M.; Brando, P. M.; Coe, M. T.; Fu, R.; Lawrence, D.; Pires, G. F.; Pousa, R.; Soares, B. Filh

    2017-12-01

    Intensification of agriculture is a necessary condition for sustainably meeting global food demands without increasing deforestation. In southern Amazonia, a region that produces 7% of the world's soybeans, double cropping has become the preferred system for the intensification of agriculture, which is essentially rainfed. Rainy season is shortening in the region, due to climate change, and is predicted to become shorter in the future. The climate risks are worsened by the region's land use change. This increases the climate risk and even threat the intensive double-cropping agriculture that is currently practiced in that region, with potential perverse consequences to everyone. Repeated or widespread climate-driven crop failure could prompt a return to the single cropping system or even cropland abandonment. A shift to single cropping could decrease the agriculture output in this critical region, push up global food prices and heighten incentives to convert regional ecosystems to agricultural land. Further agricultural expansion into ecosystems would increase climate change. The more forest lost, the higher the climate risk will be, due to climate feedbacks from deforestation itself, triggering a spiraling decline of the rainforests and rainfall over southern Amazonia and other critical agricultural regions known to depend on the forests of Amazonia for rainfall. We show that there are economic and social reasons to preserve the forests, and it is in the best interest of the agribusiness, local governments and people, to conserve the remaining forests. The adaptation and mitigation needs, and policies to reconcile production and protection while mitigating supply chains risks are also discussed.

  13. The evolving local social contract for managing climate and disaster risk in Vietnam.

    Science.gov (United States)

    Christoplos, Ian; Ngoan, Le Duc; Sen, Le Thi Hoa; Huong, Nguyen Thi Thanh; Lindegaard, Lily Salloum

    2017-07-01

    How do disasters shape local government legitimacy in relation to managing climate- and disaster-related risks? This paper looks at how local authorities in Central Vietnam perceive their social contract for risk reduction, including the partial merging of responsibilities for disaster risk management with new plans for and investments in climate change adaptation and broader socioeconomic development. The findings indicate that extreme floods and storms constitute critical junctures that stimulate genuine institutional change. Local officials are proud of their strengthened role in disaster response and they are eager to boost investment in infrastructure. They have struggled to reinforce their legitimacy among their constituents, but given the shifting roles of the state, private sector, and civil society, and the undiminished emphasis on high-risk development models, their responsibilities for responding to emerging climate change scenarios are increasingly nebulous. The past basis for legitimacy is no longer valid, but tomorrow's social contract is not yet defined. © 2017 The Author(s). Disasters © Overseas Development Institute, 2017.

  14. Future local and remote influences on Mediterranean ozone air quality and climate forcing

    Science.gov (United States)

    Arnold, Steve; Martin, Maria Val; Emmons, Louisa; Rap, Alex; Heald, Colette; Lamarque, Jean-Francois; Tilmes, Simone

    2013-04-01

    The Mediterranean region is expected to display large increases in population over the coming decades, and to exhibit strong sensitivity to projected climate change, with increasing frequency of extreme summer temperatures and decreases in precipitation. Understanding of how these changes will affect atmospheric composition in the region is limited. The eastern Mediterranean basin has been shown to exhibit a pronounced summertime local maximum in tropospheric ozone, which impacts both local air quality and the atmospheric radiation balance. In summer, the region is subject to import of pollution from Northern Europe in the boundary layer and lower troposphere, from North American sources in the large-scale westerly flow of the free mid and upper-troposphere, as well as import of pollution lofted in the Asian monsoon and carried west to the eastern Mediterranean in anticyclonic flow in the upper troposphere over north Africa. In addition, interactions with the land-surface through biogenic emission sources and dry deposition play important roles in the Mediterranean ozone budget. Here we use the NCAR Community Earth System Model (CESM) to investigate how tropospheric ozone in the Mediterranean region responds to climate, land surface and global emissions changes between present day and 2050. We simulate climate and atmospheric composition for the year 2050, based on greenhouse gas abundances, trace gas and aerosol emissions and land cover and use from two representative concentration pathway (RCP) scenarios (RCP4.5 & RCP8.5), designed for use by the Coupled Model Intercomparison Project Phase 5(CMIP5) experiments in support of the IPCC. By comparing these simulations with a present-day scenario, we investigate the effects of predicted changes in climate and emissions on air quality and climate forcing over the Mediterranean region. The simulations suggest decreases in boundary layer ozone and sulfate aerosol throughout the tropospheric column over the Mediterranean

  15. Urban Heat Islands and Their Mitigation vs. Local Impacts of Climate Change

    Science.gov (United States)

    Taha, H.

    2007-12-01

    Urban heat islands and their mitigation take on added significance, both negative and positive, when viewed from a climate-change perspective. In negative terms, urban heat islands can act as local exacerbating factors, or magnifying lenses, to the effects of regional and large-scale climate perturbations and change. They can locally impact meteorology, energy/electricity generation and use, thermal environment (comfort and heat waves), emissions of air pollutants, photochemistry, and air quality. In positive terms, on the other hand, mitigation of urban heat islands (via urban surface modifications and control of man-made heat, for example) can potentially have a beneficial effect of mitigating the local negative impacts of climate change. In addition, mitigation of urban heat islands can, in itself, contribute to preventing regional and global climate change, even if modestly, by helping reduce CO2 emissions from power plants and other sources as a result of decreased energy use for cooling (both direct and indirect) and reducing the rates of meteorology-dependent emissions of air pollutants. This presentation will highlight aspects and characteristics of heat islands, their mitigation, their modeling and quantification techniques, and recent advances in meso-urban modeling of California (funded by the California Energy Commission). In particular, the presentation will focus on results from quantitative, modeling-based analyses of the potential benefits of heat island mitigation in 1) reducing point- and area-source emissions of CO2, NOx, and VOC as a result of reduced cooling energy demand and ambient/surface temperatures, 2) reducing evaporative and fugitive hydrocarbon emissions as a result of lowered temperatures, 3) reducing biogenic hydrocarbon emissions from existing vegetative cover, 4) slowing the rates of tropospheric/ground-level ozone formation and/or accumulation in the urban boundary layer, and 5) helping improve air quality. Quantitative estimates

  16. Urban Heat Wave Vulnerability Analysis Considering Climate Change

    Science.gov (United States)

    JE, M.; KIM, H.; Jung, S.

    2017-12-01

    Much attention has been paid to thermal environments in Seoul City in South Korea since 2016 when the worst heatwave in 22 years. It is necessary to provide a selective measure by singling out vulnerable regions in advance to cope with the heat wave-related damage. This study aims to analyze and categorize vulnerable regions of thermal environments in the Seoul and analyzes and discusses the factors and risk factors for each type. To do this, this study conducted the following processes: first, based on the analyzed various literature reviews, indices that can evaluate vulnerable regions of thermal environment are collated. The indices were divided into climate exposure index related to temperature, sensitivity index including demographic, social, and economic indices, and adaptation index related to urban environment and climate adaptation policy status. Second, significant variables were derived to evaluate a vulnerable region of thermal environment based on the summarized indices in the above. this study analyzed a relationship between the number of heat-related patients in Seoul and variables that affected the number using multi-variate statistical analysis to derive significant variables. Third, the importance of each variable was calculated quantitatively by integrating the statistical analysis results and analytic hierarchy process (AHP) method. Fourth, a distribution of data for each index was identified based on the selected variables and indices were normalized and overlapped. Fifth, For the climate exposure index, evaluations were conducted as same as the current vulnerability evaluation method by selecting future temperature of Seoul predicted through the representative concentration pathways (RCPs) climate change scenarios as an evaluation variable. The results of this study can be utilized as foundational data to establish a countermeasure against heatwave in Seoul. Although it is limited to control heatwave occurrences itself completely, improvements

  17. Global climate change - a feasibility perspective of its effect on human health at a local scale

    Directory of Open Access Journals (Sweden)

    Michele Bernardi

    2008-05-01

    Full Text Available There are two responses to global climate change. First, mitigation, which actions to reduce greenhouse gas emissions and sequester or store carbon in the short-term, and make development choices that will lead to low emissions in the long-term. Second, adaptation, which involves adjustments in natural or human systems and behaviours that reduce the risks posed by climate change to people’s lives and livelihoods. While the two are conceptually distinct, in practice they are very much interdependent, and both are equally urgent from a healthy population perspective. To define the policies to mitigate and to adapt to global climate change, data and information at all scales are the basic requirement for both developed and developing countries. However, as compared to mitigation, adaptation is an immediate concern for low-income countries and for small islands states, where the reduction of the emissions from greenhouse gases is not among their priorities. Adaptation is also highly location specific and the required ground data to assess the impacts of climate change on human health are not available. Climate data at high spatial resolution can be derived by various downscaling methods using historical and real-time meteorological observations but, particularly in low-income countries, the outputs are limited by the lack of ground data at the local level. In many of these countries, a negative trend in the number of meteorological stations as compared as to before 2000 is evident, while remotelysensed imagery becomes more and more available at high spatial and temporal resolution. The final consequence is that climate change policy options in the developing world are greatly jeopardized.

  18. Decision analysis of shoreline protection under climate change uncertainty

    Science.gov (United States)

    Chao, Philip T.; Hobbs, Benjamin F.

    1997-04-01

    If global warming occurs, it could significantly affect water resource distribution and availability. Yet it is unclear whether the prospect of such change is relevant to water resources management decisions being made today. We model a shoreline protection decision problem with a stochastic dynamic program (SDP) to determine whether consideration of the possibility of climate change would alter the decision. Three questions are addressed with the SDP: (l) How important is climate change compared to other uncertainties?, (2) What is the economic loss if climate change uncertainty is ignored?, and (3) How does belief in climate change affect the timing of the decision? In the case study, sensitivity analysis shows that uncertainty in real discount rates has a stronger effect upon the decision than belief in climate change. Nevertheless, a strong belief in climate change makes the shoreline protection project less attractive and often alters the decision to build it.

  19. Interactive Correlation Analysis and Visualization of Climate Data

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Kwan-Liu [Univ. of California, Davis, CA (United States)

    2016-09-21

    The relationship between our ability to analyze and extract insights from visualization of climate model output and the capability of the available resources to make those visualizations has reached a crisis point. The large volume of data currently produced by climate models is overwhelming the current, decades-old visualization workflow. The traditional methods for visualizing climate output also have not kept pace with changes in the types of grids used, the number of variables involved, and the number of different simulations performed with a climate model or the feature-richness of high-resolution simulations. This project has developed new and faster methods for visualization in order to get the most knowledge out of the new generation of high-resolution climate models. While traditional climate images will continue to be useful, there is need for new approaches to visualization and analysis of climate data if we are to gain all the insights available in ultra-large data sets produced by high-resolution model output and ensemble integrations of climate models such as those produced for the Coupled Model Intercomparison Project. Towards that end, we have developed new visualization techniques for performing correlation analysis. We have also introduced highly scalable, parallel rendering methods for visualizing large-scale 3D data. This project was done jointly with climate scientists and visualization researchers at Argonne National Laboratory and NCAR.

  20. Urban local climate zone mapping and apply in urban environment study

    Science.gov (United States)

    He, Shan; Zhang, Yunwei; Zhang, Jili

    2018-02-01

    The city’s local climate zone (LCZ) was considered to be a powerful tool for urban climate mapping. But for cities in different countries and regions, the LCZ division methods and results were different, thus targeted researches should be performed. In the current work, a LCZ mapping method was proposed, which is convenient in operation and city planning oriented. In this proposed method, the local climate zoning types were adjusted firstly, according to the characteristics of Chinese city, that more tall buildings and high density. Then the classification method proposed by WUDAPT based on remote sensing data was performed on Xi’an city, as an example, for LCZ mapping. Combined with the city road network, a reasonable expression of the dividing results was provided, to adapt to the characteristics in city planning that land parcels are usually recognized as the basic unit. The proposed method was validated against the actual land use and construction data that surveyed in Xi’an, with results indicating the feasibility of the proposed method for urban LCZ mapping in China.

  1. CECILIA Regional Climate Simulations for Future Climate: Analysis of Climate Change Signal

    Czech Academy of Sciences Publication Activity Database

    Belda, M.; Skalák, Petr; Farda, Aleš; Halenka, T.; Déqué, M.; Csima, G.; Bartholy, J.; Torma, C.; Boroneant, C.; Caian, M.; Spiridonov, V.

    2015-01-01

    Roč. 2015, č. 2015 (2015), s. 354727 ISSN 1687-9309 Institutional support: RVO:67179843 Keywords : climate change * project Cecilia * modelling activities * aladin Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 1.107, year: 2015

  2. Coastal Hazards and Climate Change. A guidance manual for Local Government in New Zealand

    International Nuclear Information System (INIS)

    Wratt, D.; Mullan, B.; Salinger, J.; Allan, S.; Morgan, T.; Kenny, G.

    2004-05-01

    Climate change will not introduce any new types of coastal hazards, but it will affect existing hazards. Coastal hazards in many areas are expected to increase as a result of the effects of climate change. As development of coastal areas and property values increase, the potential impacts of coastal hazards increase. There is increasing confidence in the predictions of the effects of climate change. Sea level has risen in New Zealand by about 0.25 m since the mid-1800s (historical sea-level rise has been approximately 0.16 m per century), and this rise is expected to accelerate. Under the most likely mid-range projections, sea level is projected to rise a further 0.14 - 0.18 m by 2050, and 0.31 - 0.49 m by 2100. In developing scenarios, it is recommended that at least the most likely mid-range scenario for sea-level rise is used: it is recommended that council staff use a figure of 0.2 m by 2050 and 0.5 m by 2100 when considering sea-level rise in projects or plans. Sea-level rise and other climate change effects, such as increased intensity of storms and changes in sediment supply to coastlines, are expected to modify coastal hazards in many areas around New Zealand. Because climate change effects are very gradual, land-use planning decisions must have long-term horizons to accommodate the lifetimes of structures. It is vital that planning occurs now for climate change effects, particularly where decisions are being made on issues and developments that have planning horizons and life expectancies of 50 years or more. This Guidance Manual is intended to help local authorities manage coastal hazards by: providing information on the effects of climate change on coastal hazards; presenting a decision-making framework to assess the associated risks; providing guidance on appropriate response options. Three main types of coastal hazard are addressed: coastal erosion caused by storms and/or long-term processes; coastal inundation caused by storms or gradual inundation

  3. A new methodology for building local climate change scenarios : A case study of monthly temperature projections for Mexico City

    NARCIS (Netherlands)

    Estrada, Francisco; Guerrero, VíCtor M.

    2014-01-01

    This paper proposes a new methodology for generating climate change scenarios at the local scale based on multivariate time series models and restricted forecasting techniques. This methodology offers considerable advantages over the current statistical downscaling techniques such as: (i) it

  4. Reflections on the uptake of climate change policies by local governments: facing the challenges of mitigation and adaptation

    NARCIS (Netherlands)

    Hoppe, Thomas; van den Berg, Maya Marieke; Coenen, Franciscus H.J.M.

    2014-01-01

    Background: There is a growing body of literature that examines the role of local governments in addressing climate change vis-a-vis mitigation and adaptation. Although it appears that climate change mitigation strategies - in particular those addressing energy issues - are being adopted by a large

  5. Assessing local and regional economic impacts of climatic extremes and feasibility of adaptation measures in Dutch arable farming systems

    NARCIS (Netherlands)

    Diogo, V.; Reidsma, P.; Schaap, B.; Andree, B. P.J.; Koomen, E.

    2017-01-01

    We propose a method that combines local productivity factors, economic factors, crop-specific sensitivity to climatic extremes, and future climate change scenarios, to assess potential impacts of extreme weather events on agricultural production systems. Our assessment is spatially explicit and uses

  6. Climate, migration, and the local food security context: Introducing Terra Populus

    Science.gov (United States)

    Schlak, Allison M.; Kugler, Tracy A.

    2016-01-01

    Studies investigating the connection between environmental factors and migration are difficult to execute because they require the integration of microdata and spatial information. In this article, we introduce the novel, publically available data extraction system Terra Populus (TerraPop), which was designed to facilitate population-environment studies. We showcase the use of TerraPop by exploring variations in the climate-migration association in Burkina Faso and Senegal based on differences in the local food security context. Food security was approximated using anthropometric indicators of child stunting and wasting derived from Demographic and Health Surveys (DHS) and linked to the TerraPop extract of climate and migration information. We find that an increase in heat waves was associated with a decrease in international migration from Burkina Faso, while excessive precipitation increased international moves from Senegal. Significant interactions reveal that the adverse effects of heat waves and droughts are strongly amplified in highly food insecure Senegalese departments. PMID:27974863

  7. Barriers in local practice-oriented teaching networks to organize climate and science teaching

    DEFF Research Database (Denmark)

    Grunwald, Annette

    The poster takes its point of departure from a need to meet primary and lower secondary pupils interest in climate, science and technology by giving them possibilities to learn “in the real world” in a more problem based way. This possibility is given through out-of-school learning organized in co......-operation between educational actors, here primary/lower secondary schools, Aalborg University, and other actors, here Aalborg municipality and companies. The poster will present the first results of an ongoing developing and research project “Learning in reality: Practice-oriented teaching networks strengthen...... primary and lower secondary school pupils’ interest in climate and science”, funded by the Danish Energy Foundation (August 2014 – December 2016). The aim of the project is e.g. to: - Develop, establish and explore new forms of local cooperation between schools, companies, Aalborg University...

  8. Fitness declines towards range limits and local adaptation to climate affect dispersal evolution during climate‐induced range shifts

    DEFF Research Database (Denmark)

    Hargreaves, Anna; Bailey, Susan; Laird, Robert

    2015-01-01

    Dispersal ability will largely determine whether species track their climatic niches during climate change, a process especially important for populations at contracting (low-latitude/low-elevation) range limits that otherwise risk extinction. We investigate whether dispersal evolution....... We simulate a species distributed continuously along a temperature gradient using a spatially explicit, individual-based model. We compare range-wide dispersal evolution during climate stability vs. directional climate change, with uniform fitness vs. fitness that declines towards range limits (RLs...... at contracting range limits is facilitated by two processes that potentially enable edge populations to experience and adjust to the effects of climate deterioration before they cause extinction: (i) climate-induced fitness declines towards range limits and (ii) local adaptation to a shifting climate gradient...

  9. Global and local concerns: what attitudes and beliefs motivate farmers to mitigate and adapt to climate change?

    Science.gov (United States)

    Haden, Van R; Niles, Meredith T; Lubell, Mark; Perlman, Joshua; Jackson, Louise E

    2012-01-01

    In response to agriculture's vulnerability and contribution to climate change, many governments are developing initiatives that promote the adoption of mitigation and adaptation practices among farmers. Since most climate policies affecting agriculture rely on voluntary efforts by individual farmers, success requires a sound understanding of the factors that motivate farmers to change practices. Recent evidence suggests that past experience with the effects of climate change and the psychological distance associated with people's concern for global and local impacts can influence environmental behavior. Here we surveyed farmers in a representative rural county in California's Central Valley to examine how their intention to adopt mitigation and adaptation practices is influenced by previous climate experiences and their global and local concerns about climate change. Perceived changes in water availability had significant effects on farmers' intention to adopt mitigation and adaptation strategies, which were mediated through global and local concerns respectively. This suggests that mitigation is largely motivated by psychologically distant concerns and beliefs about climate change, while adaptation is driven by psychologically proximate concerns for local impacts. This match between attitudes and behaviors according to the psychological distance at which they are cognitively construed indicates that policy and outreach initiatives may benefit by framing climate impacts and behavioral goals concordantly; either in a global context for mitigation or a local context for adaptation.

  10. The effects of phenotypic plasticity and local adaptation on forecasts of species range shifts under climate change.

    Science.gov (United States)

    Valladares, Fernando; Matesanz, Silvia; Guilhaumon, François; Araújo, Miguel B; Balaguer, Luis; Benito-Garzón, Marta; Cornwell, Will; Gianoli, Ernesto; van Kleunen, Mark; Naya, Daniel E; Nicotra, Adrienne B; Poorter, Hendrik; Zavala, Miguel A

    2014-11-01

    Species are the unit of analysis in many global change and conservation biology studies; however, species are not uniform entities but are composed of different, sometimes locally adapted, populations differing in plasticity. We examined how intraspecific variation in thermal niches and phenotypic plasticity will affect species distributions in a warming climate. We first developed a conceptual model linking plasticity and niche breadth, providing five alternative intraspecific scenarios that are consistent with existing literature. Secondly, we used ecological niche-modeling techniques to quantify the impact of each intraspecific scenario on the distribution of a virtual species across a geographically realistic setting. Finally, we performed an analogous modeling exercise using real data on the climatic niches of different tree provenances. We show that when population differentiation is accounted for and dispersal is restricted, forecasts of species range shifts under climate change are even more pessimistic than those using the conventional assumption of homogeneously high plasticity across a species' range. Suitable population-level data are not available for most species so identifying general patterns of population differentiation could fill this gap. However, the literature review revealed contrasting patterns among species, urging greater levels of integration among empirical, modeling and theoretical research on intraspecific phenotypic variation. © 2014 The Authors. Ecology Letters published by John Wiley & Sons Ltd and CNRS.

  11. IDENTIFYING LOCAL SCALE CLIMATE ZONES OF URBAN HEAT ISLAND FROM HJ-1B SATELLITE DATA USING SELF-ORGANIZING MAPS

    Directory of Open Access Journals (Sweden)

    C. Z. Wei

    2016-10-01

    Full Text Available With the increasing acceleration of urbanization, the degeneration of the environment and the Urban Heat Island (UHI has attracted more and more attention. Quantitative delineation of UHI has become crucial for a better understanding of the interregional interaction between urbanization processes and the urban environment system. First of all, our study used medium resolution Chinese satellite data-HJ-1B as the Earth Observation data source to derive parameters, including the percentage of Impervious Surface Areas, Land Surface Temperature, Land Surface Albedo, Normalized Differential Vegetation Index, and object edge detector indicators (Mean of Inner Border, Mean of Outer border in the city of Guangzhou, China. Secondly, in order to establish a model to delineate the local climate zones of UHI, we used the Principal Component Analysis to explore the correlations between all these parameters, and estimate their contributions to the principal components of UHI zones. Finally, depending on the results of the PCA, we chose the most suitable parameters to classify the urban climate zones based on a Self-Organization Map (SOM. The results show that all six parameters are closely correlated with each other and have a high percentage of cumulative (95% in the first two principal components. Therefore, the SOM algorithm automatically categorized the city of Guangzhou into five classes of UHI zones using these six spectral, structural and climate parameters as inputs. UHI zones have distinguishable physical characteristics, and could potentially help to provide the basis and decision support for further sustainable urban planning.

  12. Using ESRI Story Maps for Engaging Tribal Youth in Localized Climate Education

    Science.gov (United States)

    Masters, E. L.; Marsik, F. J.; Sonderegger, C.

    2017-12-01

    A critical step in any climate adaptation initiative is the engagement of the community through educational outreach about the impacts of climate change on vulnerable economic, infrastructure and natural resources within the community. For Tribal communities, such outreach must also highlight connections between these vulnerable assets, such as natural resources, and Tribal cultural practices. For adult members of these communities, the combination of traditional ecological knowledge and western science approaches can prove effective in this regard. For Tribal youth, the often complex and data-heavy nature of western science approaches may prove to be more of an obstacle than an aid in communicating the impacts of our changing climate on their local Tribal community. A collaborative educational effort between the Grand Traverse Band of Ottawa and Chippewa Indians (Peshawbestown, MI) and the University of Michigan seeks to lean upon the rich tradition of storytelling as a method of conveying information to younger generations. The ESRI Story Maps platform provides such a tool through its combined use of narratives, images, maps, and data. The ability to make a Story Map deep and complex, or simple and fun, makes this application ideal for communicating with a range of people, from school-age children to adults. For our project, we created two Story Maps with different complexity levels, with one for elementary to middle school students, and the other targeted at high school students. The project for younger children was aimed at engaging viewers through a series of images and maps, introducing them to the basics of what wetlands are, which types of wetlands can be found locally, Indigenous cultural connections to wetlands, and how to protect wetlands. The more complex project provided a more expansive discussion of these same topics, including threats to these wetlands from human activities, including climate change, as well as an extensive list of references and a

  13. European Climate - Energy Security Nexus. A model based scenario analysis

    International Nuclear Information System (INIS)

    Criqui, Patrick; Mima, Silvana

    2011-01-01

    In this research, we have provided an overview of the climate-security nexus in the European sector through a model based scenario analysis with POLES model. The analysis underline that under stringent climate policies, Europe take advantage of a double dividend in its capacity to develop a new cleaner energy model and in lower vulnerability to potential shocks on the international energy markets. (authors)

  14. Widespread climate change in the Himalayas and associated changes in local ecosystems.

    Science.gov (United States)

    Shrestha, Uttam Babu; Gautam, Shiva; Bawa, Kamaljit S

    2012-01-01

    Climate change in the Himalayas, a biodiversity hotspot, home of many sacred landscapes, and the source of eight largest rivers of Asia, is likely to impact the well-being of ~20% of humanity. However, despite the extraordinary environmental, cultural, and socio-economic importance of the Himalayas, and despite their rapidly increasing ecological degradation, not much is known about actual changes in the two most critical climatic variables: temperature and rainfall. Nor do we know how changes in these parameters might impact the ecosystems including vegetation phenology. By analyzing temperature and rainfall data, and NDVI (Normalized Difference Vegetation Index) values from remotely sensed imagery, we report significant changes in temperature, rainfall, and vegetation phenology across the Himalayas between 1982 and 2006. The average annual mean temperature during the 25 year period has increased by 1.5 °C with an average increase of 0.06 °C yr(-1). The average annual precipitation has increased by 163 mm or 6.52 mmyr(-1). Since changes in temperature and precipitation are immediately manifested as changes in phenology of local ecosystems, we examined phenological changes in all major ecoregions. The average start of the growing season (SOS) seems to have advanced by 4.7 days or 0.19 days yr(-1) and the length of growing season (LOS) appears to have advanced by 4.7 days or 0.19 days yr(-1), but there has been no change in the end of the growing season (EOS). There is considerable spatial and seasonal variation in changes in climate and phenological parameters. This is the first time that large scale climatic and phenological changes at the landscape level have been documented for the Himalayas. The rate of warming in the Himalayas is greater than the global average, confirming that the Himalayas are among the regions most vulnerable to climate change.

  15. Investigation of the effect of sealed surfaces on local climate in urban areas

    Science.gov (United States)

    Weihs, Philipp; Hasel, Stefan; Mursch-Radlgruber, Erich; Gützer, Christian; Krispel, Stefan; Peyerl, Martin; Trimmel, Heidi

    2015-04-01

    Local climate is driven by the interaction between energy balance and energy transported by advected air. Short-wave and long-wave radiation are major components in this interaction. Some few studies (e.g. Santamouris et al.) showed that adjusting the grade of reflection of surfaces is an efficient way to influence temperature. The present study investigates the influence of high albedo concrete surfaces on local climate. The first step of the study consisted of experimental investigations: routine measurements of the short and longwave radiation balance, of the ground and of the air temperature and humidity at different heights above 6 different types of sealed surfaces were performed. During this measurement campaign the above mentioned components were measured over a duration of 4 months above two conventional asphalt surfaces, one conventional concrete and three newly developed concrete surfaces with increased reflectances. Measured albedo values amounted to 0.12±0.02 for the asphalt surfaces and to maximum values of 0.56 for high albedo concrete. The maximum difference in surface temperature between the asphalt surfaces and the high albedo concrete surfaces amounted to 15°C. In addition the emission constants of the different sealed surfaces were also determined and were compared to values from literature.. In a second step the urban energy balance model Envi_Met was used to simulate the surface temperature of the six surfaces. The simulated surface temperatures were compared to the measured surface temperatures and statements as to uncertainties of the model simulations were made In a third step, Envi_Met was used to simulate the local climate of an urban district in Vienna. The surface and air temperature and the SW, LW fluxes were calculated for different types of sealed surfaces. By performing calculations of thermal stress indices (UTCI, PMV), statements as to the influence of the type of sealed surface on thermal stress on humans was made.

  16. Economic impacts of climate change in Australia: framework and analysis

    International Nuclear Information System (INIS)

    Ford, Melanie

    2007-01-01

    Full text: There is growing interest in understanding the potential impacts of climate change in Australia, and especially the economic impacts of 'inaction'. In this study, a preliminary analysis of the possible economic impacts of future climate change in Australia is undertaken using ABARE's general equilibrium model of the global economy, GTEM. In order to understand the potential economy-wide economic impacts, the broad climatic trends that Australia is likely to experience over the next several decades are canvassed and the potential economic and non-economic impacts on key risk areas, such as water resources, agriculture and forests, health, industry and human settlements and the ecosystems, are identified. A more detailed analysis of the economic impacts of climate change are undertaken by developing two case studies. In the first case study, the economic impact of climate change and reduced water availability on the agricultural sector is assessed in the Murray-Darling Basin. In the second case study, the sectoral economic impacts on the Australian resources sector of a projected decline in global economic activity due to climate change is analysed. The key areas of required development to more fully understand the economy-wide and sectoral impacts of climate change are also discussed including issues associated with estimating both non-market and market impacts. Finally, an analytical framework for undertaking integrated assessment of climate change impacts domestically and globally is developed

  17. Communicating Coastal Risk Analysis in an Age of Climate Change

    Science.gov (United States)

    2011-10-01

    extratropical storm systems); the geometry and geomorphology of the area (regional and local bathymetry and topography, including rivers, marshes, and...at risk from coastal hazards including storm surge inundation, precipitation driven flooding, waves, and coastal erosion. This population segment...will likely be exposed to increased risk as impacts of a changing climate are felt through elevated sea levels and potentially increased storm

  18. Local Climate Zones Classification to Urban Planning in the Mega City of São Paulo - SP, Brazil

    Science.gov (United States)

    Gonçalves Santos, Rafael; Saraiva Lopes, António Manuel; Prata-Shimomura, Alessandra

    2017-04-01

    Local Climate Zones Classification to Urban Planning in the Mega city of São Paulo - SP, Brazil Tropical megacities have presented a strong trend in growing urban. Urban management in megacities has as one of the biggest challenges is the lack of integration of urban climate and urban planning to promote ecologically smart cities. Local Climatic Zones (LCZs) are considered as important and recognized tool for urban climate management. Classes are local in scale, climatic in nature, and zonal in representation. They can be understood as regions of uniform surface cover, structure, material and human activity that have to a unique climate response. As an initial tool to promote urban climate planning, LCZs represent a simple composition of different land coverages (buildings, vegetation, soils, rock, roads and water). LCZs are divided in 17 classes, they are based on surface cover (built fraction, soil moisture, albedo), surface structure (sky view factor, roughness height) and cultural activity (anthropogenic heat flux). The aim of this study is the application of the LCZs classification system in the megacity of São Paulo, Brazil. Located at a latitude of 23° 21' and longitude 46° 44' near to the Tropic of Capricorn, presenting humid subtropical climate (Cfa) with diversified topographies. The megacity of São Paulo currently concentrates 11.890.000 inhabitants is characterized by large urban conglomerates with impermeable surfaces and high verticalization, having as result high urban heat island intensity. The result indicates predominance in urban zones of Compact low-rise, Compact Mid-rise, Compact High-rise and Open Low-rise. Non-urban regions are mainly covered by dense vegetation and water. The LCZs classification system promotes significant advantages for climate sensitive urban planning in the megacity of São Paulo. They offers new perspectives to the management of temperature and urban ventilation and allows the formulation of urban planning

  19. Adapting to the Changing Climate: An Assessment of Local Health Department Preparations for Climate Change-Related Health Threats, 2008-2012.

    Science.gov (United States)

    Roser-Renouf, Connie; Maibach, Edward W; Li, Jennifer

    2016-01-01

    Climate change poses a major public health threat. A survey of U.S. local health department directors in 2008 found widespread recognition of the threat, but limited adaptive capacity, due to perceived lack of expertise and other resources. We assessed changes between 2008 and 2012 in local public health departments' preparedness for the public health threats of climate change, in light of increasing national polarization on the issue, and widespread funding cutbacks for public health. A geographically representative online survey of directors of local public health departments was conducted in 2011-2012 (N = 174; response rate = 50%), and compared to the 2008 telephone survey results (N = 133; response rate = 61%). Significant polarization had occurred: more respondents in 2012 were certain that the threat of local climate change impacts does/does not exist, and fewer were unsure. Roughly 10% said it is not a threat, compared to 1% in 2008. Adaptation capacity decreased in several areas: perceived departmental expertise in climate change risk assessment; departmental prioritization of adaptation; and the number of adaptation-related programs and services departments provided. In 2008, directors' perceptions of local impacts predicted the number of adaptation-related programs and services their departments offered, but in 2012, funding predicted programming and directors' impact perceptions did not. This suggests that budgets were constraining directors' ability to respond to local climate change-related health threats. Results also suggest that departmental expertise may mitigate funding constraints. Strategies for overcoming these obstacles to local public health departments' preparations for climate change are discussed.

  20. Changing habits, changing climate : a foundation analysis

    International Nuclear Information System (INIS)

    Enright, W.

    2001-03-01

    If Canada intends to meet its greenhouse gas reduction target of 6 per cent below 1990 levels, a fundamental shift in energy use by Canadians is required. The health sector will also be required to change. Global climate change is expected to affect regions differently, some might get wetter, some might get warmer, and others still might get colder. Climate changes will influence a number of health determinants: the geographical range of disease organisms and vectors; temperature extremes and violent weather events; air, food and water quality; the stability of ecosystems. There is a requirement to strongly regulate the emissions of carbon dioxide, methane and other greenhouse gases to limit health risks. Increased air pollution could negatively affect large numbers of people, especially asthma sufferers and people suffering from chronic respiratory ailments and cardiovascular diseases. Changes in precipitation and temperature could increase insect-borne diseases. Water sources could be badly affected by drought, flooding or increased glacial runoff. The thinning of the ozone layer could result in additional skin cancers, impaired vision and other diseases. The document explores the various impacts resulting from climate change. A chapter is devoted to each topic: air pollution, temperature extremes, extreme weather events, vector borne diseases, drought and increased evaporation, food supply and ecosystem range, sea level rise, stratospheric ozone depletion and describes the health impacts. In addition, a chapter deals with aboriginal communities. The topic of environmental refugees is discussed, followed by an historical perspective into climate change policy in Canada. The author concludes with adaptation measures. Further emphasis must be placed on priority topics such as the estimation of future emissions and modelling of climate processes. refs., tabs., figs

  1. Local farmers' perceptions of climate change and local adaptive strategies: a case study from the Middle Yarlung Zangbo River Valley, Tibet, China.

    Science.gov (United States)

    Li, Chunyan; Tang, Ya; Luo, Han; Di, Baofeng; Zhang, Liyun

    2013-10-01

    Climate change affects the productivity of agricultural ecosystems. Farmers cope with climate change based on their perceptions of changing climate patterns. Using a case study from the Middle Yarlung Zangbo River Valley, we present a new research framework that uses questionnaire and interview methods to compare local farmers' perceptions of climate change with the adaptive farming strategies they adopt. Most farmers in the valley believed that temperatures had increased in the last 30 years but did not note any changes in precipitation. Most farmers also reported sowing and harvesting hulless barley 10-15 days earlier than they were 20 years ago. In addition, farmers observed that plants were flowering and river ice was melting earlier in the season, but they did not perceive changes in plant germination, herbaceous vegetation growth, or other spring seasonal events. Most farmers noticed an extended fall season signified by delays in the freezing of rivers and an extended growing season for grassland vegetation. The study results showed that agricultural practices in the study area are still traditional; that is, local farmers' perceptions of climate change and their strategies to mitigate its impacts were based on indigenous knowledge and their own experiences. Adaptive strategies included adjusting planting and harvesting dates, changing crop species, and improving irrigation infrastructure. However, the farmers' decisions could not be fully attributed to their concerns about climate change. Local farming systems exhibit high adaptability to climate variability. Additionally, off-farm income has reduced the dependence of the farmers on agriculture, and an agricultural subsidy from the Chinese Central Government has mitigated the farmers' vulnerability. Nevertheless, it remains necessary for local farmers to build a system of adaptive climate change strategies that combines traditional experience and indigenous knowledge with scientific research and

  2. A climate trend analysis of Chad

    Science.gov (United States)

    Funk, Christopher C.; Rowland, Jim; Adoum, Alkhalil; Eilerts, Gary; White, Libby

    2012-01-01

    This brief report, drawing from a multi-year effort by the U.S. Agency for International Development (USAID) Famine Early Warning Systems Network (FEWS NET), identifies significant decreases in rainfall and increases in air temperature across Chad, especially in the eastern part of the country. These analyses are based on quality-controlled station observations. Conclusions:* Summer rains have decreased in eastern Chad during the past 20 years. * Temperatures have increased by 0.8 °Celsius since 1975, amplifying the effect of droughts. * Crop yields are very low and stagnant. * The amount of farmland per person is low, and decliningrapidly.* Population growth combined with stagnating yieldscould lead to a 30 percent reduction in per capita cereal production by 2025.* In many cases, areas with changing climate are coincident with zones of substantial conflict, indicating some degree of association; however, the contribution of climate change to these conflicts is not currently understood.

  3. HydroClimATe: hydrologic and climatic analysis toolkit

    Science.gov (United States)

    Dickinson, Jesse; Hanson, Randall T.; Predmore, Steven K.

    2014-01-01

    The potential consequences of climate variability and climate change have been identified as major issues for the sustainability and availability of the worldwide water resources. Unlike global climate change, climate variability represents deviations from the long-term state of the climate over periods of a few years to several decades. Currently, rich hydrologic time-series data are available, but the combination of data preparation and statistical methods developed by the U.S. Geological Survey as part of the Groundwater Resources Program is relatively unavailable to hydrologists and engineers who could benefit from estimates of climate variability and its effects on periodic recharge and water-resource availability. This report documents HydroClimATe, a computer program for assessing the relations between variable climatic and hydrologic time-series data. HydroClimATe was developed for a Windows operating system. The software includes statistical tools for (1) time-series preprocessing, (2) spectral analysis, (3) spatial and temporal analysis, (4) correlation analysis, and (5) projections. The time-series preprocessing tools include spline fitting, standardization using a normal or gamma distribution, and transformation by a cumulative departure. The spectral analysis tools include discrete Fourier transform, maximum entropy method, and singular spectrum analysis. The spatial and temporal analysis tool is empirical orthogonal function analysis. The correlation analysis tools are linear regression and lag correlation. The projection tools include autoregressive time-series modeling and generation of many realizations. These tools are demonstrated in four examples that use stream-flow discharge data, groundwater-level records, gridded time series of precipitation data, and the Multivariate ENSO Index.

  4. Local strains in waste tank deflagration analysis

    International Nuclear Information System (INIS)

    Bryan, B.J.; Flanders, H.E. Jr.

    1993-01-01

    In recent years extensive effort has been expended to qualify buried nuclear waste storage tanks under accident conditions. One of these conditions is deflagration of the combustible gases which may build up over time. While much work has been done to calculate the general strain state, less effort has been made to address the local strains at structural discontinuities. An analytical method is presented for calculating these local strains and combining them with the general strain state. A closed form solution of the local strains is compared to a finite element solution

  5. Beyond Knowledge: Service Learning and Local Climate Change Research Engagement Activities that Foster Action and Behavior Change

    Science.gov (United States)

    Low, R.; Mandryk, C.; Gosselin, D. C.; Haney, C.

    2013-12-01

    Climate change engagement requires individuals to understand an abstract and complex topic and realize the profound implications of climate change for their families and local community. In recent years federal agencies have spent millions of dollars on climate change education to prepare a nation for a warming future. The majority of these education efforts are based on a knowledge deficit model. In this view 'educate' means 'provide information'. However cognitive and behavioral research and current action demonstrate that information alone is not enough; knowledge does not necessarily lead to action. Educators are speaking to deaf ears if we rely on passive and abstract information transfer and neglect more persuasive and affective approaches to communication. When climate change is presented abstractly as something that happens in the future to people, environments, animals somewhere else it is easy to discount. People employ two separate systems for information processing: analytical-rational and intuitive-experiential Authentic local research experiences that engage both analytical and experiential information processing systems not only help individuals understand the abstraction of climate change in a concrete and personally experienced manner, but are more likely to influence behavior. Two on-line, graduate-level courses offered within University of Nebraska's Masters of Applied Science program provide opportunities for participants to engage in authentic inquiry based studies climate change's local impacts, and work with K-12 learners in promoting the scientific awareness and behavioral changes that mitigate against the negative impacts of a changing climate. The courses are specifically designed to improve middle and high school (grades 6-12) teachers' content knowledge of climate processes and climate change science in the context of their own community. Both courses provide data-rich, investigative science experiences in a distributed digital

  6. Local and global effects of climate on dengue transmission in Puerto Rico.

    Directory of Open Access Journals (Sweden)

    Michael A Johansson

    Full Text Available The four dengue viruses, the agents of dengue fever and dengue hemorrhagic fever in humans, are transmitted predominantly by the mosquito Aedes aegypti. The abundance and the transmission potential of Ae. aegypti are influenced by temperature and precipitation. While there is strong biological evidence for these effects, empirical studies of the relationship between climate and dengue incidence in human populations are potentially confounded by seasonal covariation and spatial heterogeneity. Using 20 years of data and a statistical approach to control for seasonality, we show a positive and statistically significant association between monthly changes in temperature and precipitation and monthly changes in dengue transmission in Puerto Rico. We also found that the strength of this association varies spatially, that this variation is associated with differences in local climate, and that this relationship is consistent with laboratory studies of the impacts of these factors on vector survival and viral replication. These results suggest the importance of temperature and precipitation in the transmission of dengue viruses and suggest a reason for their spatial heterogeneity. Thus, while dengue transmission may have a general system, its manifestation on a local scale may differ from global expectations.

  7. An Analysis of the Climate Data Initiative's Data Collection

    Science.gov (United States)

    Ramachandran, R.; Bugbee, K.

    2015-12-01

    The Climate Data Initiative (CDI) is a broad multi-agency effort of the U.S. government that seeks to leverage the extensive existing federal climate-relevant data to stimulate innovation and private-sector entrepreneurship to support national climate-change preparedness. The CDI project is a systematic effort to manually curate and share openly available climate data from various federal agencies. To date, the CDI has curated seven themes, or topics, relevant to climate change resiliency. These themes include Coastal Flooding, Food Resilience, Water, Ecosystem Vulnerability, Human Health, Energy Infrastructure, and Transportation. Each theme was curated by subject matter experts who selected datasets relevant to the topic at hand. An analysis of the entire Climate Data Initiative data collection and the data curated for each theme offers insights into which datasets are considered most relevant in addressing climate resiliency. Other aspects of the data collection will be examined including which datasets were the most visited or popular and which datasets were the most sought after for curation by the theme teams. Results from the analysis of the CDI collection will be presented in this talk.

  8. Impact of Rice Paddy Areas Decrease on Local Climate over Taiwan

    Science.gov (United States)

    Lo, M. H.; Wen, W. H.; Chen, C. C.

    2014-12-01

    Agricultural irrigation practice is one of the important anthropogenic processes in the land surface modeling. Irrigation can decrease local surface temperature with alternating surface energy partitioning. Rice paddy is the major food crop in Asian monsoon region and rice is grown under flooded conditions during the growing season; hence, the rice paddy can be considered as an open water body, which has more impacts on the surface energy budget than other cropland does. In this study, we explore how the rice paddy area changes affect Taiwan's regional climate from both observational data and numerical modeling exercise. The Weather Research and Forecasting (WRF) model is utilized to explore impacts of rice paddy area changes on the regional climate, and energy and water budget changes. In addition, temperature datasets from six automatic weather stations in the northern Taiwan and two stations in the southern Taiwan are analyzed in this study to explore how the Daily Temperature Range (DTR) changes with the decreased rice paddy areas. Previous studies show that due to the urban heat island effect, aerosol direct and indirect effects, and global warming, the DTR has decreased in the past 4 decades observed from most of the weather stations around Taiwan. However, the declined rice paddy area may increase the DTR with higher Bowen ratio during the daytime. Preliminary results show that DTR is decreased in weather stations near the urban area, but increased in weather stations near fallow areas in the past 20 years. It shows that different land use changes may have opposite impacts on local and regional climate.

  9. Vulnerability of Thai rice production to simultaneous climate and socioeconomic changes: a double exposure analysis

    Science.gov (United States)

    Sangpenchan, R.

    2011-12-01

    This research explores the vulnerability of Thai rice production to simultaneous exposure by climate and socioeconomic change -- so-called "double exposure." Both processes influence Thailand's rice production system, but the vulnerabilities associated with their interactions are unknown. To understand this double exposure, I adopts a mixed-method, qualitative-quantitative analytical approach consisting of three phases of analysis involving a Vulnerability Scoping Diagram, a Principal Component Analysis, and the EPIC crop model using proxy datasets collected from secondary data sources at provincial scales.The first and second phases identify key variables representing each of the three dimensions of vulnerability -- exposure, sensitivity, and adaptive capacity indicating that the greatest vulnerability in the rice production system occurs in households and areas with high exposure to climate change, high sensitivity to climate and socioeconomic stress, and low adaptive capacity. In the third phase, the EPIC crop model simulates rice yields associated with future climate change projected by CSIRO and MIROC climate models. Climate change-only scenarios project the decrease in yields by 10% from the current productivity during 2016-2025 and 30% during 2045-2054. Scenarios applying both climate change and improved technology and management practices show that a 50% increase in rice production is possible, but requires strong collaboration between sectors to advance agricultural research and technology and requires strong adaptive capacity in the rice production system characterized by well-developed social capital, social networks, financial capacity, and infrastructure and household mobility at the local scale. The vulnerability assessment and climate and crop adaptation simulations used here provide useful information to decision makers developing vulnerability reduction plans in the face of concurrent climate and socioeconomic change.

  10. Climate change mitigation in developing countries through interregional collaboration by local governments: Japanese citizens' preference

    International Nuclear Information System (INIS)

    Nakamura, Hidenori; Kato, Takaaki

    2011-01-01

    This study explores the motivation of domestic and international interregional collaboration on climate change mitigation through carbon crediting by Japanese local governments, using a social survey. The study finds balanced collaboration with domestic partner regions and developing countries is preferred in the case of collaboration, given that the unit cost of collaboration is assumed lower than that of no collaboration. Appreciation of benefits such as technology transfer and local environmental improvement in developing countries increases the preference of collaboration with developing countries. Two factors hinder Japanese local governments' collaboration with developing countries from the perspective of citizens: a sense of environmental responsibility to reduce greenhouse gas (GHG) emissions within the city and a preference for domestic orientation even if the collaboration with developing countries is less costly and has benefits of technology transfer and local environmental improvement. The preference for a lower total cost of GHG emissions reductions is confirmed except for those with a sense of environmental responsibility. The study also finds that provision of information on mitigation projects and co-benefits would increase the preference for interregional collaboration with developing countries depending on the types of collaborative project, except for those with a sense of environmental responsibility. - Highlights: → We surveyed views of Japanese citizens on interregional/international cooperation of their cities for GHG reduction. → Sense of environmental responsibility is negatively correlated with the needs for cooperation. → Information on co-benefits of collaboration would strengthen preference for cooperation.

  11. Exploring recent and projected climate change in a steep monsoonal catchment in the middle Himalaya through innovative synthesis of local observations, gridded datasets and community engagement

    Science.gov (United States)

    Forsythe, Nathan; Pritchard, Davis; Tiwari, Prakash; Fowler, Hayley; Kumaun, Bhagwati

    2016-04-01

    Under the auspices of an "Innovation Partnerships" programme research exchange grant jointly funded by the India Department of Science and Technology and the British Council, Kumaun University and Newcastle University have been collaboratively exploring the recorded historical and projected future climate change implications for a case study catchment, the Ramgad river, in the Kumaon Lesser Himalaya (Uttarakhand state, India). This work weaves together diverse research strands with the aim of producing a coherent thorough characterisation of the impacts of recent/on-going and likely climate evolution on local communities. Participatory research activities in multiple villages in the case study catchment have yielded a consistent narrative of changes posed by the increasingly erratic monsoonal rainfall as well as upward displacement and replacement crops in their historical elevation ranges due to temperature change. Multi-decadal climate records from both local observations and global meteorological records reveal a more complex picture with strong seasonal asymmetry of changes in both temperature and precipitation: a) trend analysis shows mild weakening of the early phase (May, July) but strengthen in the later stages (August, September); b) temperature trends show much stronger warming in late winter and early spring (February to April) than the rest of the year with additional asymmetry in both sign and magnitude of change between individual components (Tmax, Tmin) of the diurnal temperature cycle. On-going research seeks to associate this asymmetry with causal mechanisms (cloud radiative effect, atmospheric circulation). Analysis of historical records will provide the basis for validation and assessment of individual regional climate model projections from the CORDEX South Asia domain ensemble. For the terraced agricultural communities of the Kumaon Himalaya, the most directly consequential effects of climate variability and change are impacts on crop yields

  12. Regional analysis of ground and above-ground climate

    Science.gov (United States)

    1981-12-01

    The regional suitability of underground construction as a climate control technique is discussed with reference to (1) a bioclimatic analysis of long term weather data for 29 locations in the United States to determine appropriate above ground climate control techniques, (2) a data base of synthesized ground temperatures for the coterminous United States, and (3) monthly dew point ground temperature comparisons for identifying the relative likelihood of condensation from one region to another. It is concluded that the suitability of Earth tempering as a practice and of specific Earth sheltered design stereotypes varies geographically; while the subsurface almost always provides a thermal advantage on its own terms when compared to above ground climatic data, it can, nonetheless, compromise the effectiveness of other, regionally more important climate control techniques. Reviews of above and below ground climate mapping schemes related to human comfort and architectural design, and detailed description of a theoretical model of ground temperature, heat flow, and heat storage in the ground are included. Strategies of passive climate control are presented in a discussion of the building bioclimatic analysis procedure which has been applied in a computer analysis of 30 years of weather data for each of 20 locations in the United States.

  13. Regional analysis of ground and above-ground climate

    Energy Technology Data Exchange (ETDEWEB)

    1981-12-01

    The regional suitability of underground construction as a climate control technique is discussed with reference to (1) a bioclimatic analysis of long-term weather data for 29 locations in the United States to determine appropriate above ground climate control techniques, (2) a data base of synthesized ground temperatures for the coterminous United States, and (3) monthly dew point ground temperature comparisons for identifying the relative likelihood of condensation from one region to another. It is concluded that the suitability of earth tempering as a practice and of specific earth-sheltered design stereotypes varies geographically; while the subsurface almost always provides a thermal advantage on its own terms when compared to above ground climatic data, it can, nonetheless, compromise the effectiveness of other, regionally more important climate control techniques. Also contained in the report are reviews of above and below ground climate mapping schemes related to human comfort and architectural design, and detailed description of a theoretical model of ground temperature, heat flow, and heat storage in the ground. Strategies of passive climate control are presented in a discussion of the building bioclimatic analysis procedure which has been applied in a computer analysis of 30 years of weather data for each of 29 locations in the United States.

  14. Deciphering the spatio-temporal complexity of climate change of the last deglaciation: a model analysis

    Directory of Open Access Journals (Sweden)

    D. M. Roche

    2011-06-01

    Full Text Available Understanding the sequence of events occuring during the last major glacial to interglacial transition (21 ka BP to 9 ka BP is a challenging task that has the potential to unveil the mechanisms behind large scale climate changes. Though many studies have focused on the understanding of the complex sequence of rapid climatic change that accompanied or interrupted the deglaciation, few have analysed it in a more theoretical framework with simple forcings. In the following, we address when and where the first significant temperature anomalies appeared when using slow varying forcing of the last deglaciation. We used here coupled transient simulations of the last deglaciation, including ocean, atmosphere and vegetation components to analyse the spatial timing of the deglaciation. To keep the analysis in a simple framework, we did not include freshwater forcings that potentially cause rapid climate shifts during that time period. We aimed to disentangle the direct and subsequent response of the climate system to slow forcing and moreover, the location where those changes are more clearly expressed. In a data – modelling comparison perspective, this could help understand the physically plausible phasing between known forcings and recorded climatic changes. Our analysis of climate variability could also help to distinguish deglacial warming signals from internal climate variability. We thus are able to better pinpoint the onset of local deglaciation, as defined by the first significant local warming and further show that there is a large regional variability associated with it, even with the set of slow forcings used here. In our model, the first significant hemispheric warming occurred simultaneously in the North and in the South and is a direct response to the obliquity forcing.

  15. Uncertain discount rates in climate policy analysis

    International Nuclear Information System (INIS)

    Newell, R.G.; Pizer, W.A.

    2004-01-01

    Consequences in the distant future - such as those from climate change--have little value today when discounted using conventional rates. This result contradicts our 'gut feeling' about such problems and often leads to ad hoc application of lower rates for valuations over longer horizons - a step facilitated by confusion and disagreement over the correct rate even over short horizons. We review the theory and intuition behind the choice of discount rates now and, importantly, the impact of likely variation in rates in the future. Correlated changes in future rates imply that the distant future should be discounted at much lower rates than suggested by the current rate, thereby raising the value of future consequences - regardless of opinions concerning the current rate. Using historic data to quantity the likely changes and correlation in changes in future rates, we find that future valuations rise by a factor of many thousands at horizons of 300 years or more, almost doubling the expected present value of climate mitigation benefits relative to constant 4% discounting. Ironically, uncertainty about future rates reduces the ratio of valuations based on alternate choices of the current rate

  16. A climate trend analysis of Ethiopia

    Science.gov (United States)

    Funk, Christopher C.; Rowland, Jim; Eilerts, Gary; Kebebe, Emebet; Biru, Nigist; White, Libby; Galu, Gideon

    2012-01-01

    This brief report, drawing from a multi-year effort by the U.S. Agency for International Development (USAID) Famine Early Warning Systems Network (FEWS NET), examines recent trends in March-June, June-September, and March-September rainfall and temperature, identifying significant reductions in rainfall and increases in temperature over time in many areas of Ethiopia. Conclusions: * Spring and summer rains in parts of Ethiopia have declined by 15-20 percent since the mid-1970s. * Substantial warming across the entire country has exacerbated the dryness.* An important pattern of observed existing rainfall declines coincides with heavily populated areas of the Rift Valley in south-central Ethiopia, and is likely already adversely affecting crop yields and pasture conditions. * Rapid population growth and the expansion of farming and pastoralism under a drier, warmer climate regime could dramatically increase the number of at-risk people in Ethiopia during the next 20 years.* Many areas of Ethiopia will maintain moist climate conditions, and agricultural development in these areas could help offset rainfall declines and reduced production in other areas.

  17. Analysis of Non Local Image Denoising Methods

    Science.gov (United States)

    Pardo, Álvaro

    Image denoising is probably one of the most studied problems in the image processing community. Recently a new paradigm on non local denoising was introduced. The Non Local Means method proposed by Buades, Morel and Coll attracted the attention of other researches who proposed improvements and modifications to their proposal. In this work we analyze those methods trying to understand their properties while connecting them to segmentation based on spectral graph properties. We also propose some improvements to automatically estimate the parameters used on these methods.

  18. The relative roles of local climate adaptation and phylogeny in determining leaf-out timing of temperate tree species

    Directory of Open Access Journals (Sweden)

    Elsa Desnoues

    2017-12-01

    Full Text Available Background Leaf out times of temperate forest trees are a prominent determinant of global carbon dynamics throughout the year. Abiotic cues of leaf emergence are well studied but investigation of the relative roles of shared evolutionary history (phylogeny and local adaptation to climate in determining the species-level responses to these cues is needed to better apprehend the effect of global change on leaf emergence. We explored the relative importance of phylogeny and climate in determining the innate leaf out phenology across the temperate biome. Methods We used an extensive dataset of leaf-out dates of 1126 temperate woody species grown in eight Northern Hemisphere common gardens. For these species, information on the native climate and phylogenetic position was collected. Using linear regression analyses, we examine the relative effect of climate variables and phylogeny on leaf out variation among species. Results Climate variables explained twice as much variation in leaf out timing as phylogenetic information, a process that was driven primarily by the complex interactive effects of multiple climate variables. Although the primary climate factors explaining species-level variation in leaf-out timing varied drastically across different families, our analyses reveal that local adaptation plays a stronger role than common evolutionary history in determining tree phenology across the temperate biome. Conclusions In the long-term, the direct effects of physiological adaptation to abiotic effects of climate change on forest phenology are likely to outweigh the indirect effects mediated through changes in tree species composition.

  19. Fungal ABC Transporter Deletion and Localization Analysis

    NARCIS (Netherlands)

    Kovalchuk, A.; Weber, S.S.; Nijland, J.G.; Bovenberg, R.A.L.; Driessen, A.J.M.

    2012-01-01

    Fungal cells are highly complex as their metabolism is compartmentalized harboring various types of subcellular organelles that are bordered by one or more membranes. Knowledge about the intracellular localization of transporter proteins is often required for the understanding of their biological

  20. Development of local TDC model in core thermal hydraulic analysis

    International Nuclear Information System (INIS)

    Kwon, H.S.; Park, J.R.; Hwang, D.H.; Lee, S.K.

    2004-01-01

    The local TDC model consisting of natural mixing and forced mixing part was developed to obtain more realistic local fluid properties in the core subchannel analysis. To evaluate the performance of local TDC model, the CHF prediction capability was tested with the various CHF correlations and local fluid properties at CHF location which are based on the local TDC model. The results show that the standard deviation of measured to predicted CHF ratio (M/P) based on local TDC model can be reduced by about 7% compared to those based on global TDC model when the CHF correlation has no term to account for distance from the spacer grid. (author)

  1. Data Envelopment Analysis of different climate policy scenarios

    International Nuclear Information System (INIS)

    Bosetti, Valentina; Buchner, Barbara

    2009-01-01

    Recent developments in the political, scientific and economic debate on climate change suggest that it is of critical importance to develop new approaches able to compare policy scenarios for their environmental effectiveness, their distributive effects, their enforceability, their costs and many other dimensions. This paper discusses a quantitative methodology to assess the relative performance of different climate policy scenarios when accounting for their long-term economic, social and environmental impacts. The proposed procedure is based on Data Envelopment Analysis, here employed in evaluating the relative efficiency of eleven global climate policy scenarios. The methodology provides a promising comparison framework; it can be seen as a way of setting some basic guidelines to frame further debates and negotiations and can be flexibly adopted and modified by decision makers to obtain relevant information for policy design. Three major findings emerge from this analysis: (1) stringent climate policies can outperform less ambitious proposals if all sustainability dimensions are taken into account; (2) a carefully chosen burden-sharing rule is able to bring together climate stabilisation and equity considerations; and (3) the most inefficient strategy results from the failure to negotiate a post-2012 global climate agreement. (author)

  2. The Climate Data Analysis Tools (CDAT): Scientific Discovery Made Easy

    Science.gov (United States)

    Doutriaux, C. M.; Williams, D. N.; Drach, R. S.; McCoy, R. B.; Mlaker, V.

    2008-12-01

    In recent years, amount of data available to climate scientists has grown exponentially. Whether we're looking at the increasing number of organizations providing data, the finer resolutions of climate models, or the escalating number of experiments and realizations for those experiments, every aspect of climate research leads to an unprecedented growth of the volume of data to analyze. The recent success and visibility of the Intergovernmental Panel on Climate Change Annual Report 4 (IPCC AR4) is boosting the demand to unprecedented levels and keeping the numbers increasing. Meanwhile, technology available for scientists to analyze the data has remained largely unchanged since the early days. One tool, however, has proven itself flexible enough not only to follow the trend of escalating demand, but also to be ahead of the game: the Climate Data Analysis Tools (CDAT) from the Program for Climate Model Diagnosis and Comparison (PCMDI). While providing the cutting edge technology necessary to distribute the IPCC AR4 data via the Earth System Grid, PCMDI has continuously evolved CDAT to handle new grids and higher definitions, and provide new diagnostics. In the near future, in time for AR5, PCMDI will use CDAT for state-of-the-art remote data analysis in a grid computing environment.

  3. Predicting local dengue transmission in Guangzhou, China, through the influence of imported cases, mosquito density and climate variability.

    Directory of Open Access Journals (Sweden)

    Shaowei Sang

    Full Text Available Each year there are approximately 390 million dengue infections worldwide. Weather variables have a significant impact on the transmission of Dengue Fever (DF, a mosquito borne viral disease. DF in mainland China is characterized as an imported disease. Hence it is necessary to explore the roles of imported cases, mosquito density and climate variability in dengue transmission in China. The study was to identify the relationship between dengue occurrence and possible risk factors and to develop a predicting model for dengue's control and prevention purpose.Three traditional suburbs and one district with an international airport in Guangzhou city were selected as the study areas. Autocorrelation and cross-correlation analysis were used to perform univariate analysis to identify possible risk factors, with relevant lagged effects, associated with local dengue cases. Principal component analysis (PCA was applied to extract principal components and PCA score was used to represent the original variables to reduce multi-collinearity. Combining the univariate analysis and prior knowledge, time-series Poisson regression analysis was conducted to quantify the relationship between weather variables, Breteau Index, imported DF cases and the local dengue transmission in Guangzhou, China. The goodness-of-fit of the constructed model was determined by pseudo-R2, Akaike information criterion (AIC and residual test. There were a total of 707 notified local DF cases from March 2006 to December 2012, with a seasonal distribution from August to November. There were a total of 65 notified imported DF cases from 20 countries, with forty-six cases (70.8% imported from Southeast Asia. The model showed that local DF cases were positively associated with mosquito density, imported cases, temperature, precipitation, vapour pressure and minimum relative humidity, whilst being negatively associated with air pressure, with different time lags.Imported DF cases and mosquito

  4. Smoothed Analysis of Local Search Algorithms

    NARCIS (Netherlands)

    Manthey, Bodo; Dehne, Frank; Sack, Jörg-Rüdiger; Stege, Ulrike

    2015-01-01

    Smoothed analysis is a method for analyzing the performance of algorithms for which classical worst-case analysis fails to explain the performance observed in practice. Smoothed analysis has been applied to explain the performance of a variety of algorithms in the last years. One particular class of

  5. Data near processing support for climate data analysis

    Science.gov (United States)

    Kindermann, Stephan; Ehbrecht, Carsten; Hempelmann, Nils

    2016-04-01

    Climate data repositories grow in size exponentially. Scalable data near processing capabilities are required to meet future data analysis requirements and to replace current "data download and process at home" workflows and approaches. On one hand side, these processing capabilities should be accessible via standardized interfaces (e.g. OGC WPS), on the other side a large variety of processing tools, toolboxes and deployment alternatives have to be supported and maintained at the data/processing center. We present a community approach of a modular and flexible system supporting the development, deployment and maintenace of OGC-WPS based web processing services. This approach is organized in an open source github project (called "bird-house") supporting individual processing services ("birds", e.g. climate index calculations, model data ensemble calculations), which rely on basic common infrastructural components (e.g. installation and deployment recipes, analysis code dependencies management). To support easy deployment at data centers as well as home institutes (e.g. for testing and development) the system supports the management of the often very complex package dependency chain of climate data analysis packages as well as docker based packaging and installation. We present a concrete deployment scenario at the German Climate Computing Center (DKRZ). The DKRZ one hand side hosts a multi-petabyte climate archive which is integrated e.g. into the european ENES and worldwide ESGF data infrastructure, and on the other hand hosts an HPC center supporting (model) data production and data analysis. The deployment scenario also includes openstack based data cloud services to support data import and data distribution for bird-house based WPS web processing services. Current challenges for inter-institutionnal deployments of web processing services supporting the european and international climate modeling community as well as the climate impact community are highlighted

  6. Measuring perceptions of climate change in northern Alaska: pairing ethnography with cultural consensus analysis

    Directory of Open Access Journals (Sweden)

    Courtney Carothers

    2014-12-01

    Full Text Available Given current and projected warming trends in the Arctic and the important role played by subsistence hunting and fishing in the life of northern rural communities, it is increasingly important to document local observations of climate change and its impacts on livelihood practices. We describe ethnographic research exploring local observations of climate changes and related impacts on subsistence fisheries in three Iñupiat communities in northwest Alaska and six Athabascan communities in the Yukon River drainage. We found consistent agreement among perceptions concerning a broad range of environmental changes affecting subsistence practices in these communities. These observations of environmental changes are not experienced in isolation but within the context of accompanying social changes that are continually reshaping rural Alaskan communities and subsistence economies. In this paper we reflect on our research approach combining multiple methods of inquiry. Participant observation and semidirected interviews provided the conceptual framework for broadening our focus from climate and environmental change to community residents' understanding of climate change in the context of their holistic human-environment worldview. Cultural consensus analysis allowed us to assess the extent to which perceptions of change are shared among hunters and fishers within and between villages and regions and to identify those phenomena occurring or experienced at smaller scales. Reflecting on this multimethods approach, we highlight important questions that have emerged about how we understand, synthesize, and represent local knowledge, especially as it is used in regulatory or management arenas.

  7. Co-operative planning by utilities and local authorities. A solution to solve climate change?

    International Nuclear Information System (INIS)

    Schlenzing, C.; Steidle, T.

    2001-01-01

    Since the deregulation of German energy markets 1998 we can observe diverging planning interests and priorities of the local communities on one side and the local energy utilities on the other side. This seriously endangers the consensus in local energy planning achieved in the past which will be crucial in order to identify and implement effective greenhouse gas (GHG) mitigation strategies. This paper presents a co-operative planning approach which embeds systems analysis into a well structured communication, mediation and learning process for decision making. This process is supported by the cooperative modeling system MESAP, a software for energy and environmental planning, which integrates different energy models with an energy information system. This allows to combine traditional local energy planning with the more business oriented view of the utilities. The specific design of MESAP allows for a continuous 'sustainable' planning and monitoring similar to business tools for accounting and controlling in companies. (author)

  8. The Tribal Lands Collaboratory: Building partnerships and developing tools to support local Tribal community response to climate change.

    Science.gov (United States)

    Jones, K. D.; Wee, B.; Kuslikis, A.

    2015-12-01

    Response of Tribal nations and Tribal communities to current and emerging climate change challenges requires active participation of stakeholders who have effective access to relevant data, information and analytical tools. The Tribal Lands Collaboratory (TLC), currently under development, is a joint effort between the American Indian Higher Education Consortium (AIHEC), the Environmental Systems Research Institute (Esri), and the National Ecological Observatory Network (NEON). The vision of the TLC is to create an integrative platform that enables coordination between multiple stakeholders (e.g. Tribal resource managers, Tribal College faculty and students, farmers, ranchers, and other local community members) to collaborate on locally relevant climate change issues. The TLC is intended to facilitate the transformation of data into actionable information that can inform local climate response planning. The TLC will provide the technical mechanisms to access, collect and analyze data from both internal and external sources (e.g. NASA's Giovanni climate data portal, Ameriflux or USA National Phenology Network) while also providing the social scaffolds to enable collaboration across Tribal communities and with members of the national climate change research community. The prototype project focuses on phenology, a branch of science focused on relationships between climate and the seasonal timing of biological phenomena. Monitoring changes in the timing and duration of phenological stages in plant and animal co­­­­mmunities on Tribal lands can provide insight to the direct impacts of climate change on culturally and economically significant Tribal resources . The project will leverage existing phenological observation protocols created by the USA-National Phenology Network and NEON to direct data collection efforts and will be tailored to the specific needs and concerns of the community. Phenology observations will be captured and managed within the Collaboratory

  9. SLICEIT and TAHMO Partnerships: Students Local and International Collaboration for Climate and Environmental Monitoring, Technology Development, Education, Adaptation and Mitigation

    Science.gov (United States)

    Aishlin, P. S.; Selker, J. S.

    2015-12-01

    Climate change understanding and impacts vary by community, yet the global nature of climate change requires international collaboration to address education, monitoring, adaptation and mitigation needs. We propose that effective climate change monitoring and education can be accomplished via student-led local and international community partnerships. By empowering students as community leaders in climate-environmental monitoring and education, as well as exploration of adaptation/mitigation needs, well-informed communities and young leadership are developed to support climate change science moving forward. Piloted 2013-2015, the SLICEIT1 program partnered with TAHMO2 to connect student leaders in North America, Europe and Africa. At the international level, schools in the U.S.A and Netherlands were partnered with schools in Ghana, Kenya, and Uganda for science and cultural exchange. Each school was equipped with a climate or other environmental sensing system, real-time data publication and curricula for both formal and informal science, technology, engineering and math education and skill development. African counterparts in TAHMO's School-2-School program collect critically important data for enhanced on-the-ground monitoring of weather conditions in data-scarce regions of Africa. In Idaho, student designed, constructed and installed weather stations provide real time data for classroom and community use. Student-designed formal educational activities are disseminated to project partners, increasing hands-on technology education and peer-based learning. At the local level, schools are partnered with a local agency, research institute, nonprofit organization, industry and/or community partner that supplies a climate science expert mentor to SLICEIT program leaders and teachers. Mentor engagement is facilitated and secured by program components that directly benefit the mentor's organization and local community via climate/environment monitoring, student workforce

  10. Spatial Interpolation of Daily Rainfall Data for Local Climate Impact Assessment over Greater Sydney Region

    Directory of Open Access Journals (Sweden)

    Xihua Yang

    2015-01-01

    Full Text Available This paper presents spatial interpolation techniques to produce finer-scale daily rainfall data from regional climate modeling. Four common interpolation techniques (ANUDEM, Spline, IDW, and Kriging were compared and assessed against station rainfall data and modeled rainfall. The performance was assessed by the mean absolute error (MAE, mean relative error (MRE, root mean squared error (RMSE, and the spatial and temporal distributions. The results indicate that Inverse Distance Weighting (IDW method is slightly better than the other three methods and it is also easy to implement in a geographic information system (GIS. The IDW method was then used to produce forty-year (1990–2009 and 2040–2059 time series rainfall data at daily, monthly, and annual time scales at a ground resolution of 100 m for the Greater Sydney Region (GSR. The downscaled daily rainfall data have been further utilized to predict rainfall erosivity and soil erosion risk and their future changes in GSR to support assessments and planning of climate change impact and adaptation in local scale.

  11. Climatic change and local policy, Amsterdam, Netherlands. Policy options and implementation strategies to reduce emission of CO2

    International Nuclear Information System (INIS)

    Schol, E.; Van den Bosch, A.; Ligthart, F.A.T.M.; Roemer, J.C.; Ruijg, G.J.; Schaeffer, G.J.; Dinkelman, D.H.; Kok, I.C.; De Paauw, K.F.B.

    1998-04-01

    Insight is given into the local policy options with respect to climate change, in this case within the sphere of influence of Amsterdam local authorities. A list of new policy options for CO2-reduction has been made with the assistance of local policy makers and representatives of interest groups. These policy options have been divided into three qualitative scenarios: Institutional Cultural Change, Technological Innovation and Least Regrets. The environmental, economic and other effects have been described for each policy option. The three most interesting policy options have been selected by local policy makers and representatives of interest groups during a workshop. Implementation strategies have been developed for the options selected. These strategies have been discussed during a second workshop. The reduction target, stabilization of CO2-emissions in 2015 compared to 1993, can be realized by a combination of all the new policy options. The three selected policy options count for 40% of this total CO2-emission reduction. Finally, a general outline on the methodology to construct local policies for climate protection has been described. This methodology can also be applied to other cities and municipal administrators, e.g. participants of Cities for Climate Protection, an initiative of the International Council for Local Environmental Initiatives, or the Netherlands Climate Association. 136 refs

  12. Uncertainty in projected point precipitation extremes for hydrological impact analysis of climate change

    Science.gov (United States)

    Van Uytven, Els; Willems, Patrick

    2017-04-01

    Current trends in the hydro-meteorological variables indicate the potential impact of climate change on hydrological extremes. Therefore, they trigger an increased importance climate adaptation strategies in water management. The impact of climate change on hydro-meteorological and hydrological extremes is, however, highly uncertain. This is due to uncertainties introduced by the climate models, the internal variability inherent to the climate system, the greenhouse gas scenarios and the statistical downscaling methods. In view of the need to define sustainable climate adaptation strategies, there is a need to assess these uncertainties. This is commonly done by means of ensemble approaches. Because more and more climate models and statistical downscaling methods become available, there is a need to facilitate the climate impact and uncertainty analysis. A Climate Perturbation Tool has been developed for that purpose, which combines a set of statistical downscaling methods including weather typing, weather generator, transfer function and advanced perturbation based approaches. By use of an interactive interface, climate impact modelers can apply these statistical downscaling methods in a semi-automatic way to an ensemble of climate model runs. The tool is applicable to any region, but has been demonstrated so far to cases in Belgium, Suriname, Vietnam and Bangladesh. Time series representing future local-scale precipitation, temperature and potential evapotranspiration (PET) conditions were obtained, starting from time series of historical observations. Uncertainties on the future meteorological conditions are represented in two different ways: through an ensemble of time series, and a reduced set of synthetic scenarios. The both aim to span the full uncertainty range as assessed from the ensemble of climate model runs and downscaling methods. For Belgium, for instance, use was made of 100-year time series of 10-minutes precipitation observations and daily

  13. Local climate and cultivation, but not ploidy, predict functional trait variation in Bouteloua gracilis (Poaceae)

    Science.gov (United States)

    Butterfield, Bradley J.; Wood, Troy E.

    2015-01-01

    Efforts to improve the diversity of seed 18 resources for important restoration species has become a high priority for land managers in many parts of the world. Relationships between functional trait values and the environment from which seed sources are collected can provide important insights into patterns of local adaptation and guidelines for seed transfer. However, little is known about which functional traits exhibit genetic differentiation across populations of restoration species and thus may contribute to local adaptation. Here, we report the results of a common garden experiment aimed at assessing genetic (including ploidy level) and environmental regulation of several functional traits among populations of Bouteloua gracilis, a dominant C4 grass and the most highly utilized restoration species across much of the Colorado Plateau. We found that leaf size and specific leaf area (SLA) varied significantly among populations, and were strongly correlated with the source population environment from which seeds were collected. However, variation in ploidy level had no significant effect on functional traits. Leaves of plants grown from commercial seed releases were significantly larger and had lower SLA than those from natural populations, a result that is concordant with the overall relation between climate and these two functional traits. We suggest that the patterns of functional trait variation shown here may extend to other grass species in the western USA, and may serve as useful proxies for more extensive genecology research. Furthermore, we argue that care should be taken to develop commercial seed lines with functional trait values that match those of natural populations occupying climates similar to target restoration sites.

  14. A Model for Local Experiential Learning: Teacher Workshop on Mangroves, Oceans & Climate in Kosrae

    Science.gov (United States)

    Maloney, A. E.; Sachs, J. P.; Barros, C.; Low, M.

    2016-02-01

    A curriculum for an intensive one-day workshop about mangroves, oceans, and climate has been developed for school teachers in the Federated States of Micronesia. The goals of the workshop are for teachers/attendees to be able to (i) explain what salinity is and describe how it varies from the ocean to the river, (ii) explain what a mangrove is and describe adaptations mangroves have developed that allow them to live in saline or brackish water and adjust to changing sea level, and (iii) develop a grade-appropriate poster on mangroves or salinity and one interactive activity that uses the poster to engage students in learning. These objectives are accomplished by field trips to the ocean and mangrove swamp, where each participant learns how to measure salinity and identify mangrove species. The hands-on field component is followed by a poster development session where participants design, present, and share feedback on their posters that they will bring back to their classrooms. This experience allows schoolteachers to intimately explore their coastal ecosystems and gain new perspectives about their environment that they can take back to their students. The workshop was designed through a collaborative effort between Pacific Resources for Education and Learning (PREL) NSF Pacific Climate Education Partnership, University of Washington professors, graduate students and undergraduate students, Kosrae Department of Education, Kosrae Island Resource Management Authority (KIRMA), Kosrae Island Conservation and Safety Organization (KCSO), and local Kosraean schoolteachers and administrators. The workshop was offered to elementary school teachers from 4 of 5 school districts in 2013, 2014, and 2015, led by University of Washington scientists and PREL. Local education officials and PREL staff will lead future workshops.

  15. Analysis of Local Financial Management Transparency Based on Websites on Local Government in Java

    Directory of Open Access Journals (Sweden)

    Anissa Adriana

    2018-03-01

    Full Text Available The aim of this research is to analyze financial management transparency of local governments in Java using scoring and rating. The financial management transparency of the local governments is scored based on presentation of local financial information uploaded on each local government’s official website in Jawa in the fiscal years 2016.This research is a qualitative research with the object of research is all local government in Java. Data analysis in two levels, namely the transparency of local government financial management and identification of local government characteristics based on transparency of financial management. Data analysis in two levels, namely the transparency of local government financial management and identification of local government characteristics based on transparency of financial management. The results show that the Special Capital Region of Jakarta obtained the highest transparency index, at 58, 02% whereas Madiun Regency received the lowest transparency index, at 3, 40%. The average transparency index in Jawa for the fiscal years 2016 was still low, at only 19, 59%.The conclusion of this research is that Java regional governments consider the transparency of local financial management using less important websites because it is considered as a better thing not delivered to the public.

  16. Effects of local and large-scale climate patterns on estuarine resident fishes: The example of Pomatoschistus microps and Pomatoschistus minutus

    Science.gov (United States)

    Nyitrai, Daniel; Martinho, Filipe; Dolbeth, Marina; Rito, João; Pardal, Miguel A.

    2013-12-01

    Large-scale and local climate patterns are known to influence several aspects of the life cycle of marine fish. In this paper, we used a 9-year database (2003-2011) to analyse the populations of two estuarine resident fishes, Pomatoschistus microps and Pomatoschistus minutus, in order to determine their relationships with varying environmental stressors operating over local and large scales. This study was performed in the Mondego estuary, Portugal. Firstly, the variations in abundance, growth, population structure and secondary production were evaluated. These species appeared in high densities in the beginning of the study period, with subsequent occasional high annual density peaks, while their secondary production was lower in dry years. The relationships between yearly fish abundance and the environmental variables were evaluated separately for both species using Spearman correlation analysis, considering the yearly abundance peaks for the whole population, juveniles and adults. Among the local climate patterns, precipitation, river runoff, salinity and temperature were used in the analyses, and North Atlantic Oscillation (NAO) index and sea surface temperature (SST) were tested as large-scale factors. For P. microps, precipitation and NAO were the significant factors explaining abundance of the whole population, the adults and the juveniles as well. Regarding P. minutus, for the whole population, juveniles and adults river runoff was the significant predictor. The results for both species suggest a differential influence of climate patterns on the various life cycle stages, confirming also the importance of estuarine resident fishes as indicators of changes in local and large-scale climate patterns, related to global climate change.

  17. On the contribution of local feedback mechanisms to the range of climate sensitivity in two GCM ensembles

    Energy Technology Data Exchange (ETDEWEB)

    Webb, M.J.; Senior, C.A.; Sexton, D.M.H.; Ingram, W.J.; Williams, K.D.; Ringer, M.A. [Hadley Centre for Climate Prediction and Research, Met Office, Exeter (United Kingdom); McAvaney, B.J.; Colman, R. [Bureau of Meteorology Research Centre (BMRC), Melbourne (Australia); Soden, B.J. [University of Miami, Rosenstiel School for Marine and Atmospheric Science, Miami, FL (United States); Gudgel, R.; Knutson, T. [Geophysical Fluid Dynamics Laboratory (GFDL), Princeton, NJ (United States); Emori, S.; Ogura, T. [National Institute for Environmental Studies (NIES), Tsukuba (Japan); Tsushima, Y. [Japan Agency for Marine-Earth Science and Technology, Frontier Research Center for Global Change (FRCGC), Kanagawa (Japan); Andronova, N. [University of Michigan, Department of Atmospheric, Oceanic and Space Sciences, Ann Arbor, MI (United States); Li, B. [University of Illinois at Urbana-Champaign (UIUC), Department of Atmospheric Sciences, Urbana, IL (United States); Musat, I.; Bony, S. [Institut Pierre Simon Laplace (IPSL), Paris (France); Taylor, K.E. [Program for Climate Model Diagnosis and Intercomparison (PCMDI), Livermore, CA (United States)

    2006-07-15

    Global and local feedback analysis techniques have been applied to two ensembles of mixed layer equilibrium CO{sub 2} doubling climate change experiments, from the CFMIP (Cloud Feedback Model Intercomparison Project) and QUMP (Quantifying Uncertainty in Model Predictions) projects. Neither of these new ensembles shows evidence of a statistically significant change in the ensemble mean or variance in global mean climate sensitivity when compared with the results from the mixed layer models quoted in the Third Assessment Report of the IPCC. Global mean feedback analysis of these two ensembles confirms the large contribution made by inter-model differences in cloud feedbacks to those in climate sensitivity in earlier studies; net cloud feedbacks are responsible for 66% of the inter-model variance in the total feedback in the CFMIP ensemble and 85% in the QUMP ensemble. The ensemble mean global feedback components are all statistically indistinguishable between the two ensembles, except for the clear-sky shortwave feedback which is stronger in the CFMIP ensemble. While ensemble variances of the shortwave cloud feedback and both clear-sky feedback terms are larger in CFMIP, there is considerable overlap in the cloud feedback ranges; QUMP spans 80% or more of the CFMIP ranges in longwave and shortwave cloud feedback. We introduce a local cloud feedback classification system which distinguishes different types of cloud feedbacks on the basis of the relative strengths of their longwave and shortwave components, and interpret these in terms of responses of different cloud types diagnosed by the International Satellite Cloud Climatology Project simulator. In the CFMIP ensemble, areas where low-top cloud changes constitute the largest cloud response are responsible for 59% of the contribution from cloud feedback to the variance in the total feedback. A similar figure is found for the QUMP ensemble. Areas of positive low cloud feedback (associated with reductions in low level

  18. Regional aerosol emissions and temperature response: Local and remote climate impacts of regional aerosol forcing

    Science.gov (United States)

    Lewinschal, Anna; Ekman, Annica; Hansson, Hans-Christen

    2017-04-01

    Emissions of anthropogenic aerosols vary substantially over the globe and the short atmospheric residence time of aerosols leads to a highly uneven radiative forcing distribution, both spatially and temporally. Regional aerosol radiative forcing can, nevertheless, exert a large influence on the temperature field away from the forcing region through changes in heat transport or the atmospheric or ocean circulation. Moreover, the global temperature response distribution to aerosol forcing may vary depending on the geographical location of the forcing. In other words, the climate sensitivity in one region can vary depending on the location of the forcing. The surface temperature distribution response to changes in sulphate aerosol forcing caused by sulphur dioxide (SO2) emission perturbations in four different regions is investigated using the Norwegian Earth System Model (NorESM). The four regions, Europe, North America, East and South Asia, are all regions with historically high aerosol emissions and are relevant from both an air-quality and climate policy perspective. All emission perturbations are defined relative to the year 2000 emissions provided for the Coupled Model Intercomparison Project phase 5. The global mean temperature change per unit SO2 emission change is similar for all four regions for similar magnitudes of emissions changes. However, the global temperature change per unit SO2 emission in simulations where regional SO2 emission were removed is substantially higher than that obtained in simulations where regional SO2 emissions were increased. Thus, the climate sensitivity to regional SO2 emissions perturbations depends on the magnitude of the emission perturbation in NorESM. On regional scale, on the other hand, the emission perturbations in different geographical locations lead to different regional temperature responses, both locally and in remote regions. The results from the model simulations are used to construct regional temperature potential

  19. Climate technology transfer at the local, national and global levels: analyzing the relationships between multi-level structures

    NARCIS (Netherlands)

    Tessema Abissa, Fisseha; Tessema Abissa, Fisseha

    2014-01-01

    This thesis examines the relationships between multi-leveled decision structures for climate technology transfer through an analysis of top-down macro-policy and bottom-up micro-implementation. It examines how international climate technology transfer policy under the UNFCCC filters down to the

  20. Job Analysis: A Local Government's Experience.

    Science.gov (United States)

    Urbanek, Steve J.

    1997-01-01

    A county personnel department undertook reclassification of all positions by collecting and using job analysis data to rewrite job descriptions. External pay equity and validated selection procedures resulted with only a modest increase in payroll costs. (SK)

  1. Evaluation of outdoor human thermal sensation of local climate zones based on long-term database

    Science.gov (United States)

    Unger, János; Skarbit, Nóra; Gál, Tamás

    2018-02-01

    This study gives a comprehensive picture on the diurnal and seasonal general outdoor human thermal sensation levels in different urban quarters based on long-term (almost 3 years) data series from urban and rural areas of Szeged, Hungary. It is supplemented with a case study dealing with an extreme heat wave period which is more and more frequent in the last decades in the study area. The intra-urban comparison is based on a thermal aspect classification of the surface, namely, the local climate zone (LCZ) system, on an urban meteorological station network and on the utilization of the physiologically equivalent temperature (PET) comfort index with categories calibrated to the local population. The selected stations represent sunlit areas well inside the LCZ areas. The results show that the seasonal and annual average magnitudes of the thermal load exerted by LCZs in the afternoon and evening follow their LCZ numbers. It is perfectly in line with the LCZ concept originally concentrating only on air temperature ( T air) differences between the zones. Our results justified the subdivision of urban areas into LCZs and give significant support to the application possibilities of the LCZ concept as a broader term covering different thermal phenomena.

  2. MAPPING LOCAL CLIMATE ZONES WITH A VECTOR-BASED GIS METHOD

    Directory of Open Access Journals (Sweden)

    E. Lelovics

    2013-03-01

    Full Text Available In this study we determined Local Climate Zones in a South-Hungarian city, using vector-based and raster-based databases. We calculated seven of the originally proposed ten physical (geometric, surface cover and radiative properties for areas which are based on the mobile temperature measurement campaigns earlier carried out in this city.As input data we applied 3D building database (earlier created with photogrammetric methods, 2D road database, topographic map, aerial photographs, remotely sensed reflectance information from RapidEye satellite image and our local knowledge about the area. The values of the properties were calculated by GIS methods developed for this purpose.We derived for the examined areas and applied for classification sky view factor, mean building height, terrain roughness class, building surface fraction, pervious surface fraction, impervious surface fraction and albedo.Six built and one land cover LCZ classes could be detected with this method on our study area. From each class one circle area was selected, which is representative for that class. Their thermal reactions were examined with the application of mobile temperature measurement dataset. The comparison was made in cases, when the weather was clear and calm and the surface was dry. We found that compact built-in types have more temperature surplus than open ones, and midrise types also have more than lowrise ones. According to our primary results, these categories provide a useful opportunity for intra- and inter-urban comparisons.

  3. Climate Risk Informed Decision Analysis (CRIDA): A novel practical guidance for Climate Resilient Investments and Planning

    Science.gov (United States)

    Jeuken, Ad; Mendoza, Guillermo; Matthews, John; Ray, Patrick; Haasnoot, Marjolijn; Gilroy, Kristin; Olsen, Rolf; Kucharski, John; Stakhiv, Gene; Cushing, Janet; Brown, Casey

    2016-04-01

    over time. They are part of the Dutch adaptive planning approach Adaptive Delta Management, executed and develop by the Dutch Delta program. Both decision scaling and adaptation pathways have been piloted in studies worldwide. The objective of CRIDA is to mainstream effective climate adaptation for professional water managers. The CRIDA publication, due in april 2016, follows the generic water design planning design cycle. At each step, CRIDA describes stepwise guidance for incorporating climate robustness: problem definition, stress test, alternatives formulation and recommendation, evaluation and selection. In the presentation the origin, goal, steps and practical tools available at each step of CRIDA will be explained. In two other abstracts ("Climate Risk Informed Decision Analysis: A Hypothetical Application to the Waas Region" by Gilroy et al., "The Application of Climate Risk Informed Decision Analysis to the Ioland Water Treatment Plant in Lusaka, Zambia, by Kucharski et al.), the application of CRIDA to cases is explained

  4. Integrating economic analysis and the science of climate instability

    International Nuclear Information System (INIS)

    Hall, Darwin C.; Behl, Richard J.

    2006-01-01

    Scientific understanding of climate change and climate instability has undergone a revolution in the past decade with the discovery of numerous past climate transitions so rapid, and so unlike the expectation of smooth climate changes, that they would have previously been unbelievable to the scientific community. Models commonly used by economists to assess the wisdom of adapting to human-induced climate change, rather than averting it, lack the ability to incorporate this new scientific knowledge. Here, we identify and explain the nature of recent scientific advances, and describe the key ways in which failure to reflect new knowledge in economic analysis skews the results of that analysis. This includes the understanding that economic optimization models reliant on convexity are inherently unable to determine an 'optimal' policy solution. It is incumbent on economists to understand and to incorporate the new science in their models, and on climatologists and other scientists to understand the basis of economic models so that they can assist in this essential effort. (author)

  5. Lake and wetland ecosystem services measuring water storage and local climate regulation

    Science.gov (United States)

    Wong, Christina P.; Jiang, Bo; Bohn, Theodore J.; Lee, Kai N.; Lettenmaier, Dennis P.; Ma, Dongchun; Ouyang, Zhiyun

    2017-04-01

    Developing interdisciplinary methods to measure ecosystem services is a scientific priority, however, progress remains slow in part because we lack ecological production functions (EPFs) to quantitatively link ecohydrological processes to human benefits. In this study, we tested a new approach, combining a process-based model with regression models, to create EPFs to evaluate water storage and local climate regulation from a green infrastructure project on the Yongding River in Beijing, China. Seven artificial lakes and wetlands were established to improve local water storage and human comfort; evapotranspiration (ET) regulates both services. Managers want to minimize the trade-off between water losses and cooling to sustain water supplies while lowering the heat index (HI) to improve human comfort. We selected human benefit indicators using water storage targets and Beijing's HI, and the Variable Infiltration Capacity model to determine the change in ET from the new ecosystems. We created EPFs to quantify the ecosystem services as marginal values [Δfinal ecosystem service/Δecohydrological process]: (1) Δwater loss (lake evaporation/volume)/Δdepth and (2) Δsummer HI/ΔET. We estimate the new ecosystems increased local ET by 0.7 mm/d (20.3 W/m2) on the Yongding River. However, ET rates are causing water storage shortfalls while producing no improvements in human comfort. The shallow lakes/wetlands are vulnerable to drying when inflow rates fluctuate, low depths lead to higher evaporative losses, causing water storage shortfalls with minimal cooling effects. We recommend managers make the lakes deeper to increase water storage, and plant shade trees to improve human comfort in the parks.

  6. Carbon-Temperature-Water Change Analysis for Peanut Production Under Climate Change: A Prototype for the AgMIP Coordinated Climate-Crop Modeling Project (C3MP)

    Science.gov (United States)

    Ruane, Alex C.; McDermid, Sonali; Rosenzweig, Cynthia; Baigorria, Guillermo A.; Jones, James W.; Romero, Consuelo C.; Cecil, L. DeWayne

    2014-01-01

    Climate change is projected to push the limits of cropping systems and has the potential to disrupt the agricultural sector from local to global scales. This article introduces the Coordinated Climate-Crop Modeling Project (C3MP), an initiative of the Agricultural Model Intercomparison and Improvement Project (AgMIP) to engage a global network of crop modelers to explore the impacts of climate change via an investigation of crop responses to changes in carbon dioxide concentration ([CO2]), temperature, and water. As a demonstration of the C3MP protocols and enabled analyses, we apply the Decision Support System for Agrotechnology Transfer (DSSAT) CROPGRO-Peanut crop model for Henry County, Alabama, to evaluate responses to the range of plausible [CO2], temperature changes, and precipitation changes projected by climate models out to the end of the 21st century. These sensitivity tests are used to derive crop model emulators that estimate changes in mean yield and the coefficient of variation for seasonal yields across a broad range of climate conditions, reproducing mean yields from sensitivity test simulations with deviations of ca. 2% for rain-fed conditions. We apply these statistical emulators to investigate how peanuts respond to projections from various global climate models, time periods, and emissions scenarios, finding a robust projection of modest (20%) losses and larger uncertainty at the end of the century under the more severe representative concentration pathway (RCP8.5). This projection is not substantially altered by the selection of the AgMERRA global gridded climate dataset rather than the local historical observations, differences between the Third and Fifth Coupled Model Intercomparison Project (CMIP3 and CMIP5), or the use of the delta method of climate impacts analysis rather than the C3MP impacts response surface and emulator approach.

  7. local

    Directory of Open Access Journals (Sweden)

    Abílio Amiguinho

    2005-01-01

    Full Text Available The process of socio-educational territorialisation in rural contexts is the topic of this text. The theme corresponds to a challenge to address it having as main axis of discussion either the problem of social exclusion or that of local development. The reasons to locate the discussion in this last field of analysis are discussed in the first part of the text. Theoretical and political reasons are there articulated because the question is about projects whose intentions and practices call for the political both in the theoretical debate and in the choices that anticipate intervention. From research conducted for several years, I use contributions that aim at discuss and enlighten how school can be a potential locus of local development. Its identification and recognition as local institution (either because of those that work and live in it or because of those that act in the surrounding context are crucial steps to progressively constitute school as a partner for development. The promotion of the local values and roots, the reconstruction of socio-personal and local identities, the production of sociabilities and the equation and solution of shared problems were the dimensions of a socio-educative intervention, markedly globalising. This scenario, as it is argued, was also, intentionally, one of transformation and of deliberate change of school and of the administration of the educative territoires.

  8. Sensitivity of tree ring growth to local and large-scale climate variability in a region of Southeastern Brazil

    Science.gov (United States)

    Venegas-González, Alejandro; Chagas, Matheus Peres; Anholetto Júnior, Claudio Roberto; Alvares, Clayton Alcarde; Roig, Fidel Alejandro; Tomazello Filho, Mario

    2016-01-01

    We explored the relationship between tree growth in two tropical species and local and large-scale climate variability in Southeastern Brazil. Tree ring width chronologies of Tectona grandis (teak) and Pinus caribaea (Caribbean pine) trees were compared with local (Water Requirement Satisfaction Index—WRSI, Standardized Precipitation Index—SPI, and Palmer Drought Severity Index—PDSI) and large-scale climate indices that analyze the equatorial pacific sea surface temperature (Trans-Niño Index-TNI and Niño-3.4-N3.4) and atmospheric circulation variations in the Southern Hemisphere (Antarctic Oscillation-AAO). Teak trees showed positive correlation with three indices in the current summer and fall. A significant correlation between WRSI index and Caribbean pine was observed in the dry season preceding tree ring formation. The influence of large-scale climate patterns was observed only for TNI and AAO, where there was a radial growth reduction in months preceding the growing season with positive values of the TNI in teak trees and radial growth increase (decrease) during December (March) to February (May) of the previous (current) growing season with positive phase of the AAO in teak (Caribbean pine) trees. The development of a new dendroclimatological study in Southeastern Brazil sheds light to local and large-scale climate influence on tree growth in recent decades, contributing in future climate change studies.

  9. Reference evapotranspiration forecasting based on local meteorological and global climate information screened by partial mutual information

    Science.gov (United States)

    Fang, Wei; Huang, Shengzhi; Huang, Qiang; Huang, Guohe; Meng, Erhao; Luan, Jinkai

    2018-06-01

    In this study, reference evapotranspiration (ET0) forecasting models are developed for the least economically developed regions subject to meteorological data scarcity. Firstly, the partial mutual information (PMI) capable of capturing the linear and nonlinear dependence is investigated regarding its utility to identify relevant predictors and exclude those that are redundant through the comparison with partial linear correlation. An efficient input selection technique is crucial for decreasing model data requirements. Then, the interconnection between global climate indices and regional ET0 is identified. Relevant climatic indices are introduced as additional predictors to comprise information regarding ET0, which ought to be provided by meteorological data unavailable. The case study in the Jing River and Beiluo River basins, China, reveals that PMI outperforms the partial linear correlation in excluding the redundant information, favouring the yield of smaller predictor sets. The teleconnection analysis identifies the correlation between Nino 1 + 2 and regional ET0, indicating influences of ENSO events on the evapotranspiration process in the study area. Furthermore, introducing Nino 1 + 2 as predictors helps to yield more accurate ET0 forecasts. A model performance comparison also shows that non-linear stochastic models (SVR or RF with input selection through PMI) do not always outperform linear models (MLR with inputs screen by linear correlation). However, the former can offer quite comparable performance depending on smaller predictor sets. Therefore, efforts such as screening model inputs through PMI and incorporating global climatic indices interconnected with ET0 can benefit the development of ET0 forecasting models suitable for data-scarce regions.

  10. Influence of neighbourhood information on 'Local Climate Zone' mapping in heterogeneous cities

    Science.gov (United States)

    Verdonck, Marie-Leen; Okujeni, Akpona; van der Linden, Sebastian; Demuzere, Matthias; De Wulf, Robert; Van Coillie, Frieke

    2017-10-01

    Local climate zone (LCZ) mapping is an emerging field in urban climate research. LCZs potentially provide an objective framework to assess urban form and function worldwide. The scheme is currently being used to globally map LCZs as a part of the World Urban Database and Access Portal Tools (WUDAPT) initiative. So far, most of the LCZ maps lack proper quantitative assessment, challenging the generic character of the WUDAPT workflow. Using the standard method introduced by the WUDAPT community difficulties arose concerning the built zones due to high levels of heterogeneity. To overcome this problem a contextual classifier is adopted in the mapping process. This paper quantitatively assesses the influence of neighbourhood information on the LCZ mapping result of three cities in Belgium: Antwerp, Brussels and Ghent. Overall accuracies for the maps were respectively 85.7 ± 0.5, 79.6 ± 0.9, 90.2 ± 0.4%. The approach presented here results in overall accuracies of 93.6 ± 0.2, 92.6 ± 0.3 and 95.6 ± 0.3% for Antwerp, Brussels and Ghent. The results thus indicate a positive influence of neighbourhood information for all study areas with an increase in overall accuracies of 7.9, 13.0 and 5.4%. This paper reaches two main conclusions. Firstly, evidence was introduced on the relevance of a quantitative accuracy assessment in LCZ mapping, showing that the accuracies reported in previous papers are not easily achieved. Secondly, the method presented in this paper proves to be highly effective in Belgian cities, and given its open character shows promise for application in other heterogeneous cities worldwide.

  11. Drought timing and local climate determine the sensitivity of eastern temperate forests to drought.

    Science.gov (United States)

    D'Orangeville, Loïc; Maxwell, Justin; Kneeshaw, Daniel; Pederson, Neil; Duchesne, Louis; Logan, Travis; Houle, Daniel; Arseneault, Dominique; Beier, Colin M; Bishop, Daniel A; Druckenbrod, Daniel; Fraver, Shawn; Girard, François; Halman, Joshua; Hansen, Chris; Hart, Justin L; Hartmann, Henrik; Kaye, Margot; Leblanc, David; Manzoni, Stefano; Ouimet, Rock; Rayback, Shelly; Rollinson, Christine R; Phillips, Richard P

    2018-02-20

    Projected changes in temperature and drought regime are likely to reduce carbon (C) storage in forests, thereby amplifying rates of climate change. While such reductions are often presumed to be greatest in semi-arid forests that experience widespread tree mortality, the consequences of drought may also be important in temperate mesic forests of Eastern North America (ENA) if tree growth is significantly curtailed by drought. Investigations of the environmental conditions that determine drought sensitivity are critically needed to accurately predict ecosystem feedbacks to climate change. We matched site factors with the growth responses to drought of 10,753 trees across mesic forests of ENA, representing 24 species and 346 stands, to determine the broad-scale drivers of drought sensitivity for the dominant trees in ENA. Here we show that two factors-the timing of drought, and the atmospheric demand for water (i.e., local potential evapotranspiration; PET)-are stronger drivers of drought sensitivity than soil and stand characteristics. Drought-induced reductions in tree growth were greatest when the droughts occurred during early-season peaks in radial growth, especially for trees growing in the warmest, driest regions (i.e., highest PET). Further, mean species trait values (rooting depth and ψ 50 ) were poor predictors of drought sensitivity, as intraspecific variation in sensitivity was equal to or greater than interspecific variation in 17 of 24 species. From a general circulation model ensemble, we find that future increases in early-season PET may exacerbate these effects, and potentially offset gains in C uptake and storage in ENA owing to other global change factors. © 2018 John Wiley & Sons Ltd.

  12. Local-scale changes in mean and heavy precipitation in Western Europe, climate change or internal variability?

    Science.gov (United States)

    Aalbers, Emma E.; Lenderink, Geert; van Meijgaard, Erik; van den Hurk, Bart J. J. M.

    2017-09-01

    High-resolution climate information provided by e.g. regional climate models (RCMs) is valuable for exploring the changing weather under global warming, and assessing the local impact of climate change. While there is generally more confidence in the representativeness of simulated processes at higher resolutions, internal variability of the climate system—`noise', intrinsic to the chaotic nature of atmospheric and oceanic processes—is larger at smaller spatial scales as well, limiting the predictability of the climate signal. To quantify the internal variability and robustly estimate the climate signal, large initial-condition ensembles of climate simulations conducted with a single model provide essential information. We analyze a regional downscaling of a 16-member initial-condition ensemble over western Europe and the Alps at 0.11° resolution, similar to the highest resolution EURO-CORDEX simulations. We examine the strength of the forced climate response (signal) in mean and extreme daily precipitation with respect to noise due to internal variability, and find robust small-scale geographical features in the forced response, indicating regional differences in changes in the probability of events. However, individual ensemble members provide only limited information on the forced climate response, even for high levels of global warming. Although the results are based on a single RCM-GCM chain, we believe that they have general value in providing insight in the fraction of the uncertainty in high-resolution climate information that is irreducible, and can assist in the correct interpretation of fine-scale information in multi-model ensembles in terms of a forced response and noise due to internal variability.

  13. Local-scale changes in mean and heavy precipitation in Western Europe, climate change or internal variability?

    Science.gov (United States)

    Aalbers, Emma E.; Lenderink, Geert; van Meijgaard, Erik; van den Hurk, Bart J. J. M.

    2018-06-01

    High-resolution climate information provided by e.g. regional climate models (RCMs) is valuable for exploring the changing weather under global warming, and assessing the local impact of climate change. While there is generally more confidence in the representativeness of simulated processes at higher resolutions, internal variability of the climate system—`noise', intrinsic to the chaotic nature of atmospheric and oceanic processes—is larger at smaller spatial scales as well, limiting the predictability of the climate signal. To quantify the internal variability and robustly estimate the climate signal, large initial-condition ensembles of climate simulations conducted with a single model provide essential information. We analyze a regional downscaling of a 16-member initial-condition ensemble over western Europe and the Alps at 0.11° resolution, similar to the highest resolution EURO-CORDEX simulations. We examine the strength of the forced climate response (signal) in mean and extreme daily precipitation with respect to noise due to internal variability, and find robust small-scale geographical features in the forced response, indicating regional differences in changes in the probability of events. However, individual ensemble members provide only limited information on the forced climate response, even for high levels of global warming. Although the results are based on a single RCM-GCM chain, we believe that they have general value in providing insight in the fraction of the uncertainty in high-resolution climate information that is irreducible, and can assist in the correct interpretation of fine-scale information in multi-model ensembles in terms of a forced response and noise due to internal variability.

  14. Etude Climat no. 35 'Delivering REDD+ incentives to local stakeholders: lessons from forest carbon frameworks in developed countries'

    International Nuclear Information System (INIS)

    Deheza, Mariana; Bellassen, Valentin

    2012-01-01

    Among the publications of CDC Climat Research, 'Climate Reports' offer in-depth analyses on a given subject. This issue addresses the following points: Reducing CO 2 emissions from forests was slow to get off the ground as a subject of international climate negotiations, but it has picked up considerable momentum since 2005. In particular, agreement has been reached on the urgency to set up a global REDD+ mechanism. The mechanism aims to provide developing countries with incentives to reduce emissions from deforestation and forest degradation and to increase forest carbon stocks through appropriate forestry practices or through planting. Agreement has also been reached that REDD+ incentives should be result-based and ultimately awarded at the national level. Nevertheless, local initiatives are a useful mean of tackling deforestation. However, when carbon incentives depend on national performance, linking them to local initiatives is a technical and financial challenge. Technically, the national accounting framework must be able to track emissions-reduction initiatives at the sub-national level (regional, local or project level). Financially, investors are likely to be scared away if their reward depends on deforestation occurring outside the area of their investment. Ultimately, the issue of transferring national incentives coming from supranational agreements to the local level can be reduced to a political decision on risk sharing between the State and private stakeholders. Industrialized countries have already faced this issue during the first commitment period under the Kyoto protocol and they have often found it difficult to develop satisfactory solutions. Two notable exceptions are New Zealand, which included its forest sector in its emissions trading scheme, and Australia, which is developing a 'Carbon Farming Initiative' for forestry and agricultural offsets. This study draws lessons from a comparison of the treatment of the Land Use, Land Use Change and

  15. Climate cure 2020 measures and instruments to achieve Norwegian climate goals by 2020. Chapter 10 - the transport sector analysis

    Energy Technology Data Exchange (ETDEWEB)

    2010-11-15

    This document is a translation of Chapter 10, Sector analysis of transport, in the Norwegian report Climate Cure 2020, Measures and Instruments for Achieving Norwegian Climate Goals by 2020. The sector analysis has been prepared by an inter agency working group, conducted by the Norwegian Public Road Administration. (Author)

  16. Climate Change and Coastal Zones. An Overview of the State-of-the-Art on Regional and Local Vulnerability Assessment

    International Nuclear Information System (INIS)

    Sterr, H.; Klein, R.J.T.; Reese, S.

    2000-06-01

    This paper provides an overview of the latest developments in methodologies for assessing the vulnerability of coastal zones to climate change at regional and local scales. The focus of vulnerability assessment in coastal zones used to be on erosion and land loss due to sea-level rise. Methodologies now increasingly consider the wide range of climate and impact variables that play a part in determining coastal vulnerability, as well as non-climatic developments. The paper presents a conceptual framework for vulnerability assessment that identifies a number of system components that can be considered determinants of vulnerability. It then goes on to outline a number of steps that are required for the actual assessment of coastal vulnerability, such as scenario development, data collection and impact assessment. The approach is illustrated using a regional and local case study in Germany

  17. Analysis of Nigerian insurers’ perceptions of climate change

    Directory of Open Access Journals (Sweden)

    Zelda Anne Elum

    2016-11-01

    Full Text Available In recent times, global agricultural productivity has been increasingly affected by climate change. It is believed that societal adoption of insurance as an adaptive response to climate change can have significant implications for insurers. The study investigates empirically insurers’ perceptions of climate change and the challenges they face in Nigeria. It examines the proposition that insurance firms in Nigeria are not mindful of the impact of climate change. The study applied the use of descriptive statistics, Kendall’s coefficient of concordance and principal component analysis on collected primary data. It was found that insurers in Nigeria were highly aware of climate change and its impact but did not believe it affects their operational costs and payments of claims. Although there is great scope for insurers to increase their client base in the Nigerian market, insurers face challenges of insurance rate-cutting, low patronage and environmental factors. The study concludes that there is a need for insurance regulators to enforce a level playing field for all firms. It also advocates for public support of private insurers to enhance insurance coverage for agriculture, the largest employer of labour in the country.

  18. PDF analysis of PuAl alloys local structure

    Energy Technology Data Exchange (ETDEWEB)

    Platteau, C. [CEA Valduc, 21120 Is-sur-Tille (France)], E-mail: platteau.cyril@yahoo.fr; Bruckel, P.; Ravat, B.; Delaunay, F. [CEA Valduc, 21120 Is-sur-Tille (France)

    2009-03-15

    For understanding singular properties of plutonium, there is a need in studying the average and local atomic structure in Pu alloys. To study the local structure of the {delta} phase, a pair distribution function (PDF) analysis was done and has shown some significant differences with the average structure.

  19. High-ambitious local climate policies to reduce CO2 emissions : Municipal strategies to approach homeowners in the Netherlands

    NARCIS (Netherlands)

    Tambach, M.

    2009-01-01

    Municipalities are the constructors of local climate policies and the upholders of building law. But regarding the existing housing stock, they are lacking effective legal instruments to improve the energy efficiency of this stock, which is occupied by different homeowner categories. Regarding

  20. Modelled spatiotemporal variability of outdoor thermal comfort in local climate zones of the city of Brno, Czech Republic

    Czech Academy of Sciences Publication Activity Database

    Geletič, Jan; Lehnert, M.; Savić, S.; Milošević, D.

    2018-01-01

    Roč. 624, 15 May (2018), s. 385-395 ISSN 0048-9697 R&D Projects: GA MŠk(CZ) LO1415 Institutional support: RVO:67985807 Keywords : HUMIDEX * MUKLIMO_3 * air temperature * relative humidity * local climate zones * heat wave Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 4.900, year: 2016

  1. Climate-induced signatures in the zooplankton communities: a meta-analysis at a European scale.

    Directory of Open Access Journals (Sweden)

    Sónia Cotrim Marques

    2014-05-01

    Full Text Available Several recent studies have revealed the impacts of the climate variability in the dynamic of zooplankton in different estuarine ecosystems, imposing a need for more and continued global studies. Presently, there is a growing appreciation in international collaborations to compare and contrast estuarine ecosystem response to climate variability across geographical gradients, including long-term changes in zooplankton. We performed a meta-analysis comprising field data from 7 location (Mondego estuary-Portugal, Seine estuary- France, Sheldt estuary- Belgium, Kiel fjord - Germany, Gulf of Riga- Latvia, Gulf of Bothnia – Sweden and Finland Archipelagos. The use of climatic modes (e.g. NAO, ENSO has proven useful in investigating links between climatic variations and ecological patterns. Therefore, the main focus will be to test the influence of the NAO on abundance of organisms, key species, local environment and whether these relationships are generally positive, whether they are sensitive to methodological differences among studies, between taxonomic group and key species. The knowledge gained will contribute to quantitatively evaluate the multi-scale structure of climate and marine environment and to identify a set of environmental indicators to assess the estuarine ecosystem state and risks for ecological shifts.

  2. Using a community-driven approach to identify local forest and climate change priorities in Teslin, Yukon

    Directory of Open Access Journals (Sweden)

    Joleen Timko

    2015-12-01

    Full Text Available The likelihood of addressing the complex environmental, economic, and social/cultural issues associated with local climate change impacts is enhanced when collaborative partnerships with local people are established. Using a community-centered approach in the Teslin region of Canada’s Yukon Territory, we utilized our research skills to respond to local needs for information by facilitating both an internal community process to clarify traditional and local knowledge, values, and perceptions on locally identified priorities, while gathering external information to enable local people to make sound decisions. Specifically, we sought to clarify local perceptions surrounding climate change impacts on fire risk and wildlife habitat, and the potential adaptation strategies appropriate and feasible within the Teslin Tlingit Traditional Territory. This paper provides a characterization of the study region and our project team; provides background on the interview and data collection process; presents our key results; and discusses the importance of our findings and charts a way forward for our continued work with the people in the Teslin region. This approach presents an excellent opportunity to help people holistically connect a range of local values, including fire risk mitigation, habitat enhancement, economic development, and enhanced social health.

  3. Economic Analysis Of Yam Marketing In Obubra Local Government ...

    African Journals Online (AJOL)

    Economic Analysis Of Yam Marketing In Obubra Local Government Area Of Cross River State, Nigeria. ... Characteristics of the sellers, marketing channels, marketing margin and efficiency were also ... EMAIL FULL TEXT EMAIL FULL TEXT

  4. Local climate change capacity : comparing four municipalities in the Dutch Twente region

    NARCIS (Netherlands)

    van der Vegt, Arjen; Hoppe, Thomas; Stegmaier, Peter

    2015-01-01

    Climate change is seen as a key societal challenge to cities and regions. City governments design and implement policies to cope with climate change: on the one hand by mitigating greenhouse gas emissions and spurring low carbon transition; on the other hand by adapting to climate change, hence

  5. PAVICS: A platform for the Analysis and Visualization of Climate Science - adopting a workflow-based analysis method for dealing with a multitude of climate data sources

    Science.gov (United States)

    Gauvin St-Denis, B.; Landry, T.; Huard, D. B.; Byrns, D.; Chaumont, D.; Foucher, S.

    2017-12-01

    As the number of scientific studies and policy decisions requiring tailored climate information continues to increase, the demand for support from climate service centers to provide the latest information in the format most helpful for the end-user is also on the rise. Ouranos, being one such organization based in Montreal, has partnered with the Centre de recherche informatique de Montreal (CRIM) to develop a platform that will offer climate data products that have been identified as most useful for users through years of consultation. The platform is built as modular components that target the various requirements of climate data analysis. The data components host and catalog NetCDF data as well as geographical and political delimitations. The analysis components are made available as atomic operations through Web Processing Service (WPS) or as workflows, whereby the operations are chained through a simple JSON structure and executed on a distributed network of computing resources. The visualization components range from Web Map Service (WMS) to a complete frontend for searching the data, launching workflows and interacting with maps of the results. Each component can easily be deployed and executed as an independent service through the use of Docker technology and a proxy is available to regulate user workspaces and access permissions. PAVICS includes various components from birdhouse, a collection of WPS initially developed by the German Climate Research Center (DKRZ) and Institut Pierre Simon Laplace (IPSL) and is designed to be highly interoperable with other WPS as well as many Open Geospatial Consortium (OGC) standards. Further connectivity is made with the Earth System Grid Federation (ESGF) nodes and local results are made searchable using the same API terminology. Other projects conducted by CRIM that integrate with PAVICS include the OGC Testbed 13 Innovation Program (IP) initiative that will enhance advanced cloud capabilities, application packaging

  6. Local and cross-seasonal associations of climate and land use with abundance of monarch butterflies Danaus plexippus

    Science.gov (United States)

    Saunders, Sarah P.; Ries, Leslie; Oberhasuer, Karen S.; Thogmartin, Wayne E.; Zipkin, Elise F.

    2017-01-01

    Quantifying how climate and land use factors drive population dynamics at regional scales is complex because it depends on the extent of spatial and temporal synchrony among local populations, and the integration of population processes throughout a species’ annual cycle. We modeled weekly, site-specific summer abundance (1994–2013) of monarch butterflies Danaus plexippus at sites across Illinois, USA to assess relative associations of monarch abundance with climate and land use variables during the winter, spring, and summer stages of their annual cycle. We developed negative binomial regression models to estimate monarch abundance during recruitment in Illinois as a function of local climate, site-specific crop cover, and county-level herbicide (glyphosate) application. We also incorporated cross-seasonal covariates, including annual abundance of wintering monarchs in Mexico and climate conditions during spring migration and breeding in Texas, USA. We provide the first empirical evidence of a negative association between county-level glyphosate application and local abundance of adult monarchs, particularly in areas of concentrated agriculture. However, this association was only evident during the initial years of the adoption of herbicide-resistant crops (1994–2003). We also found that wetter and, to a lesser degree, cooler springs in Texas were associated with higher summer abundances in Illinois, as were relatively cool local summer temperatures in Illinois. Site-specific abundance of monarchs averaged approximately one fewer per site from 2004–2013 than during the previous decade, suggesting a recent decline in local abundance of monarch butterflies on their summer breeding grounds in Illinois. Our results demonstrate that seasonal climate and land use are associated with trends in adult monarch abundance, and our approach highlights the value of considering fine-resolution temporal fluctuations in population-level responses to environmental

  7. A Meta-Analysis of Urban Climate Change Adaptation ...

    Science.gov (United States)

    The concentration of people, infrastructure, and ecosystem services in urban areas make them prime sites for climate change adaptation. While advances have been made in developing frameworks for adaptation planning and identifying both real and potential barriers to action, empirical work evaluating urban adaptation planning processes has been relatively piecemeal. Existing assessments of current experience with urban adaptation provide necessarily broad generalizations based on the available peer-reviewed literature. This paper uses a meta-analysis of U.S. cities’ current experience with urban adaptation planning drawing from 54 sources that include peer-reviewed literature, government reports, white papers, and reports published by non-governmental organizations. The analysis specifically evaluates the institutional support structures being developed for urban climate change adaptation. The results demonstrate that adaptation planning is driven by a desire to reduce vulnerability and often catalyzes new collaborations and coordination mechanisms in urban governance. As a result, building capacity for urban climate change adaptation planning requires a focus not only on city governments themselves but also on the complex horizontal and vertical networks that have arisen around such efforts. Existing adaptation planning often lacks attention to equity issues, social vulnerability, and the influence of non-climatic factors on vulnerability. Engaging city govern

  8. Assessing Climate Risk on Agricultural Production: Insights Using Retrospective Analysis of Crop Insurance and Climatic Trends

    Science.gov (United States)

    Reyes, J. J.; Elias, E.; Eischens, A.; Shilts, M.; Rango, A.; Steele, R.

    2017-12-01

    The collaborative synthesis of existing datasets, such as long-term climate observations and farmers' crop insurance payments, can increase their overall collective value and societal application. The U.S. Department of Agriculture (USDA) Climate Hubs were created to develop and deliver science-based information and technologies to agricultural and natural resource managers to enable climate-informed decision-making. As part of this mission, Hubs work across USDA and other climate service agencies to synthesize existing information. The USDA Risk Management Agency (RMA) is responsible for overseeing the Federal crop insurance program which currently insures over $100 billion in crops annually. RMA hosts data describing the cause for loss (e.g. drought, wind, irrigation failure) and indemnity amount (i.e. total cost of loss) at multiple spatio-temporal scales (i.e. state, county, year, month). The objective of this paper is to link climate information with indemnities, and their associated cause of loss, to assess climate risk on agricultural production and provide regionally-relevant information to stakeholders to promote resilient working landscapes. We performed a retrospective trend analysis at the state-level for the American Southwest (SW). First, we assessed indemnity-only trends by cause of loss and crop type at varying temporal scales. Historical monthly weather data (i.e. precipitation and temperature) and long-term drought indices (e.g. Palmer Drought Severity Index) were then linked with indemnities and grouped by different causes of loss. Climatological ranks were used to integrate historical comparative intensity of acute and long-term climatic events. Heat and drought as causes of loss were most correlated with temperature and drought indicators, respectively. Across all SW states increasing indemnities were correlated with warmer conditions. Multiple statistical trend analyses suggest a framework is necessary to appropriately measure the biophysical

  9. Analysis of local subassembly accident in KALIMER

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Young Min; Jeong, Kwan Seong; Hahn, Do Hee

    2000-10-01

    Subassembly Accidents (S-A) in the Liquid Metal Reactor (LMR) may cause extensive clad and fuel melting and are thus regarded as a potential whole core accident initiator. The possibility of S-A occurrence must be very low frequency by the design features, and reactor must have specific instrumentation to interrupt the S-A sequences by causing a reactor shutdown. The evaluation of the relevant initiators, the event sequences which follow them, and their detection are the essence of the safety issue. Particularly, the phenomena of flow blockage caused by foreign materials and/or the debris from the failed fuel pin have been researched world-widely. The foreign strategies for dealing with the S-A and the associated safety issues with experimental and theoretical R and D results are reviewed. This report aims at obtaining information to reasonably evaluate the thermal-hydraulic effect of S-A for a wire-wrapped LMR fuel pin bundle. The mechanism of blockage formation and growth within a pin bundle and at the subassembly entrance is reviewed in the phenomenological aspect. Knowledge about the recent LMR subassembly design and operation procedure to prevent flow blockage will be reflected for KALIMER design later. The blockage analysis method including computer codes and related analytical models are reviewed. Especially SABRE4 code is discussed in detail. Preliminary analyses of flow blockage within a 271-pin driver subassembly have been performed using the SABRE4 computer code. As a result no sodium boiling occurred for the central 24-subchannel blockage as well as 6-subchannel blockage.

  10. Interglacial climate dynamics and advanced time series analysis

    Science.gov (United States)

    Mudelsee, Manfred; Bermejo, Miguel; Köhler, Peter; Lohmann, Gerrit

    2013-04-01

    Studying the climate dynamics of past interglacials (IGs) helps to better assess the anthropogenically influenced dynamics of the current IG, the Holocene. We select the IG portions from the EPICA Dome C ice core archive, which covers the past 800 ka, to apply methods of statistical time series analysis (Mudelsee 2010). The analysed variables are deuterium/H (indicating temperature) (Jouzel et al. 2007), greenhouse gases (Siegenthaler et al. 2005, Loulergue et al. 2008, L¨ü thi et al. 2008) and a model-co-derived climate radiative forcing (Köhler et al. 2010). We select additionally high-resolution sea-surface-temperature records from the marine sedimentary archive. The first statistical method, persistence time estimation (Mudelsee 2002) lets us infer the 'climate memory' property of IGs. Second, linear regression informs about long-term climate trends during IGs. Third, ramp function regression (Mudelsee 2000) is adapted to look on abrupt climate changes during IGs. We compare the Holocene with previous IGs in terms of these mathematical approaches, interprete results in a climate context, assess uncertainties and the requirements to data from old IGs for yielding results of 'acceptable' accuracy. This work receives financial support from the Deutsche Forschungsgemeinschaft (Project ClimSens within the DFG Research Priority Program INTERDYNAMIK) and the European Commission (Marie Curie Initial Training Network LINC, No. 289447, within the 7th Framework Programme). References Jouzel J, Masson-Delmotte V, Cattani O, Dreyfus G, Falourd S, Hoffmann G, Minster B, Nouet J, Barnola JM, Chappellaz J, Fischer H, Gallet JC, Johnsen S, Leuenberger M, Loulergue L, Luethi D, Oerter H, Parrenin F, Raisbeck G, Raynaud D, Schilt A, Schwander J, Selmo E, Souchez R, Spahni R, Stauffer B, Steffensen JP, Stenni B, Stocker TF, Tison JL, Werner M, Wolff EW (2007) Orbital and millennial Antarctic climate variability over the past 800,000 years. Science 317:793. Köhler P, Bintanja R

  11. The Global and Local Climatic Response to the Collapse of the West Antarctic Ice Sheet

    Science.gov (United States)

    Huybers, K. M.; Singh, H.; Steiger, N. J.; Frierson, D. M.; Steig, E. J.; Bitz, C. M.

    2014-12-01

    Glaciologists have suggested that a relatively small external forcing may compromise the stability of the West Antarctic Ice Sheet (WAIS). Further, there is compelling physical evidence that the WAIS has collapsed in the past, at times when the mean global temperature was only a few degrees warmer than it is today. In addition to a rapid increase in global sea level, the collapse of the WAIS could also affect the global circulation of the atmosphere. Ice sheets are some of the largest topographic features on Earth, causing large regional anomalies in albedo and radiative balance. Our work uses idealized aquaplanet models in tandem with a fully coupled ocean/atmosphere/sea-ice model (CCSM4) to compare the atmospheric, radiative, and oceanic response to a complete loss of the WAIS. Initial findings indicate that the loss of the WAIS leads to a weakening and equator-ward shift of the zonal winds, a development of strong zonal asymmetries in the meridional wind, and a northward migration of the Intertropical Convergence Zone. We aim to characterize how the local and global climate is affected by the presence of the WAIS, and how changes in the distribution of Southern Hemisphere ice may be represented in the proxy record.

  12. Impact of local adaptation measures and regional climate change on perceived temperature

    Energy Technology Data Exchange (ETDEWEB)

    Schoetter, Robert; Grawe, David; Hoffmann, Peter; Kirschner, Peter; Heinke Schluenzen, K. [Hamburg Univ. (Germany). Meteorological Inst.; Graetz, Angelika [Deutscher Wetterdienst, Freiburg (Germany). Zentrum fuer Medizin-Meteorologische Forschung

    2013-04-15

    The perceived temperature (PT) is a measure for the quantification of human thermal comfort developed by the German Meteorological Service (DWD). In the present article, the sensitivity of PT on air temperature, water vapour pressure, wind speed, mean radiant temperature, street canyon width, and building heights is investigated. The mesoscale atmospheric model METRAS is integrated for a domain covering the city of Hamburg at 250 m horizontal resolution to calculate the meteorological input data for PT. The sensitivities of PT are determined by automatic differentiation of the basic DWD program. The sensitivities show how local adaptation measures and regional climate change can influence PT. The sensitivities also allow to estimate how accurate different input variables need to be known in order to achieve a desired accuracy in PT. The results are discussed in detail for 10 June 2007, a cloudless day with advection of warm air masses from south-east. A comparison with results obtained for different synoptic situations during summer is made. The sensitivities of PT on air temperature, water vapour pressure and mean radiant temperature are higher during warm and humid conditions than in situations with thermal comfort. The sensitivity of PT on wind speed is highest for low wind speeds. Around noon, increasing the building heights by 5 m can reduce PT up to 2.4 K due to shading effects in street canyons with aspect ratios above 0.5. After sunset, increasing the building heights by 5 m tends to moderately increase PT due to increased longwave radiation. (orig.)

  13. Climate for Collaboration: Analysis of US and EU Lessons and Opportunities in Energy and Climate Policy

    Energy Technology Data Exchange (ETDEWEB)

    De Vita, A.; de Connick, H.; McLaren, J.; Cochran, J.

    2009-11-01

    A deepening of cooperation between the United States and the European Union requires mutual trust, and understanding of current policies, challenges and successes. Through providing such understanding among policymakers, industry and other stakeholders in both economies, opportunities for transatlantic cooperation on climate change and energy policy emerge. This paper sets out by discussing the environmental, legislative, and economic contexts of the EU and US as related to climate. This context is essential to understanding how cap-and-trade, renewable energy and sustainable transportation policies have taken shape in the EU and the US, as described in Chapter 3.1. For each of these policies, a barrier analysis and discussion is provided. Chapter 4 builds off this improved understanding to listobservations and possible lessons learned. The paper concludes with recommendations on topics where EU and US interests align, and where further cooperation could prove beneficial.

  14. Using Online Dialogues to Connect Local Leaders and Climate Experts: Methods, Feedback and Lessons Learned from the Resilience Dialogues

    Science.gov (United States)

    Goodwin, M.; Pandya, R.; Weaver, C. P.; Zerbonne, S.; Bennett, N.; Spangler, B.

    2017-12-01

    Inclusive, multi-stakeholder dialogue, participatory planning and actionable science are necessary for just and effective climate resilience outcomes. How can we support that in practice? The Resilience Dialogues launched a public Beta in 2016-2017 to allow scientists and resilience practitioners to engage with local leaders from 10 communities around the US through a series of facilitated, online dialogues. We developed two, one-week dialogues for each community: one to consider ways to respond to observed and anticipated climate impacts through a resilience lens, and one to identify next steps and resources to advance key priorities. We divided the communities into three cohorts and refined the structure and facilitation strategy for these dialogues from one to the next based on participant feedback. This adaptive method helped participants engage in the dialogues more effectively and develop useful results. We distributed a survey to all participants following each cohort to capture feedback on the use and utility of the dialogues. While there was room for improvement in the program's technical interface, survey participants valued the dialogues and the opportunity to engage as equals. Local leaders said the dialogues helped identify new local pathways to approach resilience priorities. They felt they benefited from focused conversation and personalized introductions to best-matched resources. Practitioners learned how local leaders seek to apply climate science, and how to effectively communicate their expertise to community leaders in support of local planning efforts. We learned there is demand for specialized dialogues on issues like communication, financing and extreme weather. Overall, the desire of participants to continue to engage through this program, and others to enter, indicates that facilitated, open conversations between experts and local leaders can break down communication and access barriers between climate services providers and end

  15. A meta-analysis of local adaptation in plants.

    Directory of Open Access Journals (Sweden)

    Roosa Leimu

    Full Text Available Local adaptation is of fundamental importance in evolutionary, population, conservation, and global-change biology. The generality of local adaptation in plants and whether and how it is influenced by specific species, population and habitat characteristics have, however, not been quantitatively reviewed. Therefore, we examined published data on the outcomes of reciprocal transplant experiments using two approaches. We conducted a meta-analysis to compare the performance of local and foreign plants at all transplant sites. In addition, we analysed frequencies of pairs of plant origin to examine whether local plants perform better than foreign plants at both compared transplant sites. In both approaches, we also examined the effects of population size, and of the habitat and species characteristics that are predicted to affect local adaptation. We show that, overall, local plants performed significantly better than foreign plants at their site of origin: this was found to be the case in 71.0% of the studied sites. However, local plants performed better than foreign plants at both sites of a pair-wise comparison (strict definition of local adaption only in 45.3% of the 1032 compared population pairs. Furthermore, we found local adaptation much more common for large plant populations (>1000 flowering individuals than for small populations (<1000 flowering individuals for which local adaptation was very rare. The degree of local adaptation was independent of plant life history, spatial or temporal habitat heterogeneity, and geographic scale. Our results suggest that local adaptation is less common in plant populations than generally assumed. Moreover, our findings reinforce the fundamental importance of population size for evolutionary theory. The clear role of population size for the ability to evolve local adaptation raises considerable doubt on the ability of small plant populations to cope with changing environments.

  16. Fishers’ local knowledge on impact of climate change and anthropogenic interferences on Hilsa fishery in South Asia

    DEFF Research Database (Denmark)

    Jahan, Israt; Ahsan, Dewan; Farque, Md Hasan

    2017-01-01

    fishers’ perceptions on effect of climate change and anthropogenic impact on Hilsa fishery at lower Meghna. Fishers’ ecological knowledge indicates that the stock of Hilsa is declining due to several adverse climatic conditions such as increased water temperature, salinity intrusion and low freshwater....... The study also indicates that the major constraints to adopt with the change situation are low level of human capital and restricted access to the formal credit system. Therefore, incorporation of local knowledge in governmental policy formulation and public support to improve human skill are essential...

  17. Quantifying the effect of Tmax extreme events on local adaptation to climate change of maize crop in Andalusia for the 21st century

    Science.gov (United States)

    Gabaldon, Clara; Lorite, Ignacio J.; Ines Minguez, M.; Lizaso, Jon; Dosio, Alessandro; Sanchez, Enrique; Ruiz-Ramos, Margarita

    2015-04-01

    Agriculture, Food Security and Climate Change (FACCE - JPI) of EU and is financed by MULCLIVAR project (CGL2012-38923-C02-02) and IFAPA project AGR6126 from Junta de Andalucía, Spain. References Dosio A. and Paruolo P., 2011. Bias correction of the ENSEMBLES high-resolution climate change projections for use by impact models: Evaluation on the present climate. Journal of Geophysical Research, VOL. 116, D16106, doi:10.1029/2011JD015934 Dosio A., Paruolo P. and Rojas R., 2012. Bias correction of the ENSEMBLES high resolution climate change projections for use by impact models: Analysis of the climate change signal. Journal of Geophysical Research, Volume 117, D17, doi: 0.1029/2012JD017968 Gabaldón C, Lorite IJ, Mínguez MI, Dosio A, Sánchez-Sánchez E and Ruiz-Ramos M, 2013. Evaluation of local adaptation strategies to climate change of maize crop in Andalusia for the first half of 21st century. Geophysical Research Abstracts. Vol. 15, EGU2013-13625, 2013. EGU General Assembly 2013, April 2013, Vienna, Austria. Jones C.A. and J.R. Kiniry. 1986. CERES-Maize: A simulation model of maize growth and development. Texas A&M Univ. Press, College Station. Ruiz-Ramos M., E. Sanchez, C. Galllardo, and M.I. Minguez. 2011. Impacts of projected maximum temperature extremes for C21 by an ensemble of regional climate models on cereal cropping systems in the Iberian Peninsula. Natural Hazards and Earth System Science 11: 3275-3291. Teixeira EI, Fischer G, van Velthuizen H, Walter C, Ewert F. Global hotspots of heat stress on agricultural crops due to climate change. Agric For Meteorol. 2013;170(15):206-215.

  18. Climate change and transnational corporations. Analysis and trends

    International Nuclear Information System (INIS)

    1992-01-01

    In Economic and Social Council resolution 1989/25, the Council requested an analytic study of the main sectors of activity that have adverse effects on environmental preservation and the factors that determine the allocation of activities between developed and developing countries. The present report, entitled Climate Change and Transnational Corporations: Analysis and Trends, is in response to that request. The problem of global warming and the dangers it presents to global survival are being given high priority by the United Nations. Discussions are under way leading to a convention on global climate change under the auspices of United Nations intergovernmental bodies. The study was designed as a contribution to that process. It focuses on six transnational energy-producing and energy-consuming industrial sectors, in which corporate practices have a direct and major impact on the problems associated with global climate change. The sectors are fossil fuel production, transportation, electricity-generation, energy-intensive metals production, chlorofluorocarbons and other ozone-depleting chemicals, and inorganic nitrogen fertilizers. The study explores the relative differential impacts between industrialized and developing countries of each sector, and asks how each sector would have to be restructured in order to limit global climate change and ozone depletion. It concludes that major changes in the technical processes and investment patterns of the transnational corporations in those sectors would be necessary if catastrophic environmental changes are to be avoided

  19. Climate Innovation Centres. A global instrument with local benefits. Policy brief

    International Nuclear Information System (INIS)

    De Coninck, H.C.; Rivera Tinoco, R.A.

    2010-09-01

    A climate innovation centre is an institution aimed at enabling development through catalyzing climate technology research, development and market creation. What do technologies need to flourish and to contribute to sustainable economic development? Current research suggests that functioning markets, innovative capacities and the availability of appropriate technology in countries such as Ghana are key. In the climate negotiations, climate technology innovation centres, as well as an international network of them is in the process of agreement, providing opportunities for Ghana. This Policy Brief explains the considerations for a climate innovation centre in Ghana. It goes into the climate negotiations context, the practical choices for Ghana, gives examples of other countries, and outlines the next steps in the ECN Technical Assistance project.

  20. Chemical analysis and base-promoted hydrolysis of locally ...

    African Journals Online (AJOL)

    Abstract. The study was on the chemical analysis and base- promoted hydrolysis of extracted shea nut fat. The local method of extraction of the shea nut oil was employed in comparison with literature report. A simple cold-process alkali hydrolysis of the shea nut oil was used in producing the soap. The chemical analysis of ...

  1. Climate

    International Nuclear Information System (INIS)

    Fellous, J.L.

    2005-02-01

    This book starts with a series of about 20 preconceived ideas about climate and climatic change and analyses each of them in the light of the present day knowledge. Using this approach, it makes a status of the reality of the climatic change, of its causes and of the measures to be implemented to limit its impacts and reduce its most harmful consequences. (J.S.)

  2. How the Alliance for Climate Education engages national and local partners to achieve collective impact in climate literacy and action (Invited)

    Science.gov (United States)

    Lappe, M.; Gonzalez, R.; Shanley Hope, S.

    2013-12-01

    The Alliance for Climate Education (ACE) has a mission to educate and inspire young people to break through the challenge of climate change. ACE believes that achieving a safe and stable climate in our lifetime requires the ideas, action and influence of young people. Since 2009, ACE has reached almost 2 million teens in 2,200 schools in over 20 states across the US. In order to support these young people to become leaders in their schools and communities, ACE works closely with local and national partners. In this presentation, ACE will discuss strategic partnerships that have yielded measurable impact and explore how nonprofits, universities, school districts, private companies and government agencies can more effectively align efforts to achieve shared goals. Examples of successful partnerships discussed will include PG&E, Chicago Public Schools, Monterey Bay Aquarium, DC Public Schools, the Climate Literacy and Energy Awareness Network, NOAA, The Next Generation, Los Angeles Public Schools and research universities. ACE will also discuss how research in the field of transformational leadership informs our partnership strategy.

  3. A climate analysis using CORDEX simulations in a cooperation framework: the case of Paraguay

    Science.gov (United States)

    Mercogliano, Paola; Bucchignani, Edoardo; Ciervo, Fabio; Montesarchio, Myriam; Zollo, Alessandra Lucia; Villani, Veronica; Barbato, Giuliana; Vendemia, Rosalba; Polato, Raul; Baez, Julian; Pasten, Max

    2017-04-01

    the acquired climate simulations has been determined by comparison with different observational datasets over the baseline period. Three future periods have been selected for the analysis: 2011-2040, 2041-2070 and 2071-2100. The analysis is carried out in order to address the mean changes in seasonal mean temperature and total precipitation, and of some indicators suitable to quantify the impact of climate extreme events. The analysis is performed in the framework of the Chake Ou project "Strengthening of institutional and community preparedness and coordination capacities for disaster risk reduction in Paraguay" funded by the European Commission's Humanitarian Aid and Civil Protection Department (ECHO), in the context of the Disaster Preparedness Action Plan (DIPECHO) (code ECHO/-SM/BUD/2015/91028). The partners of the project are COOPI (a humanitarian, no-confessional and independent organization that works to support civil, economic and social development of populations struck by emergencies (disasters and conflicts), PLAN International (a child-centered community development organization) and CMCC Foundation (Euro-Mediterranean Center on Climate Change). The consortium works in close collaboration with the local institutions such as the Secretaria de Emergencia Nacional (SEN) and the Dirección de Meteorología e Hidrología (DMH - DINAC).

  4. Local crystallography analysis for atomically resolved scanning tunneling microscopy images

    International Nuclear Information System (INIS)

    Lin, Wenzhi; Li, Qing; Belianinov, Alexei; Gai, Zheng; Baddorf, Arthur P; Pan, Minghu; Jesse, Stephen; Kalinin, Sergei V; Sales, Brian C; Sefat, Athena

    2013-01-01

    Scanning probe microscopy has emerged as a powerful and flexible tool for atomically resolved imaging of surface structures. However, due to the amount of information extracted, in many cases the interpretation of such data is limited to being qualitative and semi-quantitative in nature. At the same time, much can be learned from local atom parameters, such as distances and angles, that can be analyzed and interpreted as variations of local chemical bonding, or order parameter fields. Here, we demonstrate an iterative algorithm for indexing and determining atomic positions that allows the analysis of inhomogeneous surfaces. This approach is further illustrated by local crystallographic analysis of several real surfaces, including highly ordered pyrolytic graphite and an Fe-based superconductor FeTe 0.55 Se 0.45 . This study provides a new pathway to extract and quantify local properties for scanning probe microscopy images. (paper)

  5. Ageing, exposure to pollution, and interactions between climate change and local seasons as oxidant conditions predicting incident hematologic malignancy at KINSHASA University clinics, Democratic Republic of CONGO (DRC).

    Science.gov (United States)

    Nkanga, Mireille Solange Nganga; Longo-Mbenza, Benjamin; Adeniyi, Oladele Vincent; Ngwidiwo, Jacques Bikaula; Katawandja, Antoine Lufimbo; Kazadi, Paul Roger Beia; Nzonzila, Alain Nganga

    2017-08-23

    The global burden of hematologic malignancy (HM) is rapidly rising with aging, exposure to polluted environments, and global and local climate variability all being well-established conditions of oxidative stress. However, there is currently no information on the extent and predictors of HM at Kinshasa University Clinics (KUC), DR Congo (DRC). This study evaluated the impact of bio-clinical factors, exposure to polluted environments, and interactions between global climate changes (EL Nino and La Nina) and local climate (dry and rainy seasons) on the incidence of HM. This hospital-based prospective cohort study was conducted at Kinshasa University Clinics in DR Congo. A total of 105 black African adult patients with anaemia between 2009 and 2016 were included. HM was confirmed by morphological typing according to the French-American-British (FAB) Classification System. Gender, age, exposure to traffic pollution and garages/stations, global climate variability (El Nino and La Nina), and local climate (dry and rainy seasons) were potential independent variables to predict incident HM using Cox regression analysis and Kaplan Meier curves. Out of the total 105 patients, 63 experienced incident HM, with an incidence rate of 60%. After adjusting for gender, HIV/AIDS, and other bio-clinical factors, the most significant independent predictors of HM were age ≥ 55 years (HR = 2.4; 95% CI 1.4-4.3; P = 0.003), exposure to pollution and garages or stations (HR = 4.9; 95% CI 2-12.1; P pollution, combined local dry season + La Nina and combined local dry season + El Nino were the most significant predictors of incident hematologic malignancy. These findings highlight the importance of aging, pollution, the dry season, El Nino and La Nina as related to global warming as determinants of hematologic malignancies among African patients from Kinshasa, DR Congo. Cancer registries in DRC and other African countries will provide more robust database for future researches on

  6. Regional Analysis of Energy, Water, Land and Climate Interactions

    Science.gov (United States)

    Tidwell, V. C.; Averyt, K.; Harriss, R. C.; Hibbard, K. A.; Newmark, R. L.; Rose, S. K.; Shevliakova, E.; Wilson, T.

    2014-12-01

    Energy, water, and land systems interact in many ways and are impacted by management and climate change. These systems and their interactions often differ in significant ways from region-to-region. To explore the coupled energy-water-land system and its relation to climate change and management a simple conceptual model of demand, endowment and technology (DET) is proposed. A consistent and comparable analysis framework is needed as climate change and resource management practices have the potential to impact each DET element, resource, and region differently. These linkages are further complicated by policy and trade agreements where endowments of one region are used to meet demands in another. This paper reviews the unique DET characteristics of land, energy and water resources across the United States. Analyses are conducted according to the eight geographic regions defined in the 2014 National Climate Assessment. Evident from the analyses are regional differences in resources endowments in land (strong East-West gradient in forest, cropland and desert), water (similar East-West gradient), and energy. Demands likewise vary regionally reflecting differences in population density and endowment (e.g., higher water use in West reflecting insufficient precipitation to support dryland farming). The effect of technology and policy are particularly evident in differences in the energy portfolios across the eight regions. Integrated analyses that account for the various spatial and temporal differences in regional energy, water and land systems are critical to informing effective policy requirements for future energy, climate and resource management. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  7. TOWARDS CONSISTENT MAPPING OF URBAN STRUCTURES – GLOBAL HUMAN SETTLEMENT LAYER AND LOCAL CLIMATE ZONES

    Directory of Open Access Journals (Sweden)

    B. Bechtel

    2016-06-01

    Full Text Available Although more than half of the Earth’s population live in urban areas, we know remarkably little about most cities and what we do know is incomplete (lack of coverage and inconsistent (varying definitions and scale. While there have been considerable advances in the derivation of a global urban mask using satellite information, the complexity of urban structures, the heterogeneity of materials, and the multiplicity of spectral properties have impeded the derivation of universal urban structural types (UST. Further, the variety of UST typologies severely limits the comparability of such studies and although a common and generic description of urban structures is an essential requirement for the universal mapping of urban structures, such a standard scheme is still lacking. More recently, there have been two developments in urban mapping that have the potential for providing a standard approach: the Local Climate Zone (LCZ scheme (used by the World Urban Database and Access Portal Tools project and the Global Human Settlement Layer (GHSL methodology by JRC. In this paper the LCZ scheme and the GHSL LABEL product were compared for selected cities. The comparison between both datasets revealed a good agreement at city and coarse scale, while the contingency at pixel scale was limited due to the mismatch in grid resolution and typology. At a 1 km scale, built-up as well as open and compact classes showed very good agreement in terms of correlation coefficient and mean absolute distance, spatial pattern, and radial distribution as a function of distance from town, which indicates that a decomposition relevant for modelling applications could be derived from both. On the other hand, specific problems were found for both datasets, which are discussed along with their general advantages and disadvantages as a standard for UST classification in urban remote sensing.

  8. Smart Control of Air Climatization System in Function on the Values of Mean Local Radiant Temperature

    Directory of Open Access Journals (Sweden)

    Giuseppe Cannistraro

    2015-08-01

    Full Text Available The hygrothermal comfort indoor conditions are defined as: those environmental conditions in which an individual exposed, expresses a state of satisfaction. These conditions cannot always be achieved anywhere in an optimal way and economically; in some cases they can be obtained only in work environments specific areas. This could be explained because of air conditioning systems designing is generally performed both on the basis of the fundamental parameters’ average values, such as temperature, velocity and relative humidity (Ta, va e φa and derived parameters such as operating temperature and mean radiant one (Top eTmr. However, in some specific cases - large open-spaces or in case of radiating surfaces - the descriptors defining indoor comfort conditions, based on average values, do not provide the optimum values required during the air conditioning systems design phase. This is largely due to the variability of real environmental parameters values compared to the average ones taken as input in the calculation. The results obtained in previous scientific papers on the thermal comfort have been the driving element of this work. It offers a simple, original and clever way of thinking about the new domotic systems for air conditioning, based on the “local mean radiant temperature.” This is a very important parameter when one wants to analyze comfort in environments characterized by the presence of radiating surfaces, as will be seen hereinafter. In order to take into account the effects of radiative exchanges in the open-space workplace, where any occupant may find themselves in different temperature and humidity conditions, this paper proposes an action on the domotic climate control, with ducts and vents air distribution placed in different zones. Comparisons were performed between the parameters values representing the punctual thermal comfort, with the Predicted Mean Vote PMV, in an environment marked by radiating surfaces (i

  9. Global/local methods for probabilistic structural analysis

    Science.gov (United States)

    Millwater, H. R.; Wu, Y.-T.

    1993-04-01

    A probabilistic global/local method is proposed to reduce the computational requirements of probabilistic structural analysis. A coarser global model is used for most of the computations with a local more refined model used only at key probabilistic conditions. The global model is used to establish the cumulative distribution function (cdf) and the Most Probable Point (MPP). The local model then uses the predicted MPP to adjust the cdf value. The global/local method is used within the advanced mean value probabilistic algorithm. The local model can be more refined with respect to the g1obal model in terms of finer mesh, smaller time step, tighter tolerances, etc. and can be used with linear or nonlinear models. The basis for this approach is described in terms of the correlation between the global and local models which can be estimated from the global and local MPPs. A numerical example is presented using the NESSUS probabilistic structural analysis program with the finite element method used for the structural modeling. The results clearly indicate a significant computer savings with minimal loss in accuracy.

  10. Adaptation to Climate Change in Risk and Vulnerability Analysis on a Municipal Level, a basis for further work

    International Nuclear Information System (INIS)

    Mossberg Sonnek, Karin; Lindberg, Anna; Lindgren, Johan

    2007-12-01

    The aim of Risk and Vulnerability Analysis (RVA) at local authority level in Sweden is to increase the capacity of local authorities to handle crises and to reduce vulnerability in the community. RVA processes could be an appropriate starting-point for discussions on how the community is influenced by climate change and how its effects could be reduced using various adjustment measures. In the report we present four methods: ROSA, MVA, IBERO and the Car Dun AB method. These have all been developed to support Swedish local authority RVA processes. We also present five international frameworks that have been developed by the organisations UNDP, USAID, UKCIP, C-CIARN and CSIRO to help decision-makers and stakeholders to adapt to climate change. Together, these descriptions form a foundation for continuing the work being done within the project Climatools, in which tools are being produced to be used by local authorities in adapting to climate change. In the report, we also discuss the concepts 'risk', 'vulnerability' and 'adaptation' and how analysis of adaptation to climate change has changed in recent years

  11. Risk-analysis of global climate tipping points

    Energy Technology Data Exchange (ETDEWEB)

    Frieler, Katja; Meinshausen, Malte; Braun, N [Potsdam Institute for Climate Impact Research e.V., Potsdam (Germany). PRIMAP Research Group; and others

    2012-09-15

    vulnerable to climate change impacts. Here we focus on tipping elements within the physical / biological system. In the following two sections, we briefly highlight some of our methodological research regarding global mean precipitation and regional climate change. These methodological developments provided the underpinning for our subsequent analysis of individual large-scale climate impacts, as e.g. mass losses of the Greenland ice sheet, the release of greenhouse gases by the thawing of permafrost regions or the threat of coral reefs by high ocean temperatures.

  12. Climate Change Vulnerability Analysis of Baluran National Park

    Directory of Open Access Journals (Sweden)

    Beny Harjadi

    2016-12-01

    Full Text Available Every ecosystem has a different level of susceptibility to environmental disturbances it receives, both from natural factors or anthropogenic disturbance. National Park (NP Baluran is one national park that has a representation of a complete ecosystem that includes upland forest ecosystems, lowland forests, coastal forests, mangroves, savanna and evergreen forest. The objective of this study is to get a formula calculation of vulnerability analysis of constant and dynamic factors. Baluran NP vulnerability assessment to climate change done by looking at the dynamic and fixed factors. Vulnerability remains a vulnerability factor to the condition of the original (control, whereas vulnerability is the vulnerability of the dynamic change factors which affected the condition from the outside. Constant Vulnerability (CV in  Baluran NP dominated resistant conditions (61%, meaning that the geomorphology and other fixed factors (slope and slope direction/aspect, then the condition in Baluran NP sufficiently resilient to climate change. Dynamic Vulnerability (DV is the vulnerability of an area or areas that change because of pressure from external factors. DV is influenced by climatic factors (WI = Wetness Index, soil (SBI = Soil Brightness Index, and vegetation (GI = Greenness Index. DV in  Baluran NP from 1999 to 2010 shifted from the original category of being (84.76% and shifted to the susceptible (59.88%.  The role of remote sensing for the analysis of raster digital system, while the geographic information system to display the results of cartographic maps.

  13. Acting locally, developing knowledge globally: a transitions perspective on designing climate change adaptation strategies

    NARCIS (Netherlands)

    Grin, J.; Driessen, J.; Leroy, P.; van Vierssen, W.

    2010-01-01

    Climate change, from many perspectives and for many reasons, is a complex issue: scientifically, politically, and in terms of global justice. As such, climate change might be the global societal and political challenge of the 21st century. Dealing with it, either via mitigation or via adaptation,

  14. Observations of Local Positive Low Cloud Feedback Patterns and Their Role in Internal Variability and Climate Sensitivity

    Science.gov (United States)

    Yuan, Tianle; Oreopoulos, Lazaros; Platnick, Steven E.; Meyer, Kerry

    2018-05-01

    Modeling studies have shown that cloud feedbacks are sensitive to the spatial pattern of sea surface temperature (SST) anomalies, while cloud feedbacks themselves strongly influence the magnitude of SST anomalies. Observational counterparts to such patterned interactions are still needed. Here we show that distinct large-scale patterns of SST and low-cloud cover (LCC) emerge naturally from objective analyses of observations and demonstrate their close coupling in a positive local SST-LCC feedback loop that may be important for both internal variability and climate change. The two patterns that explain the maximum amount of covariance between SST and LCC correspond to the Interdecadal Pacific Oscillation and the Atlantic Multidecadal Oscillation, leading modes of multidecadal internal variability. Spatial patterns and time series of SST and LCC anomalies associated with both modes point to a strong positive local SST-LCC feedback. In many current climate models, our analyses suggest that SST-LCC feedback strength is too weak compared to observations. Modeled local SST-LCC feedback strength affects simulated internal variability so that stronger feedback produces more intense and more realistic patterns of internal variability. To the extent that the physics of the local positive SST-LCC feedback inferred from observed climate variability applies to future greenhouse warming, we anticipate significant amount of delayed warming because of SST-LCC feedback when anthropogenic SST warming eventually overwhelm the effects of internal variability that may mute anthropogenic warming over parts of the ocean. We postulate that many climate models may be underestimating both future warming and the magnitude of modeled internal variability because of their weak SST-LCC feedback.

  15. Relative roles of local disturbance, current climate and palaeoclimate in determining phylogenetic and functional diversity in Chinese forests

    DEFF Research Database (Denmark)

    Feng, Gang; Mi, Xiangcheng; Bøcher, Peder Klith

    2014-01-01

    their relative roles in determining woody plant phylogenetic and functional diversity in this important hotspot for woody plant diversity. Local disturbance was the best predictor of functional diversity as represented by maximum canopy height (Hmax), probably reflecting the dominant role of competition...... studied, their relative importance for other aspects of diversity, notably phylogenetic and functional diversity is so far little studied. Here, we link data from large Chinese forest plots to data on current and Last Glacial Maximum (LGM) climate as well as local disturbance regimes to study...

  16. American policy conflict in the greenhouse: Divergent trends in federal, regional, state, and local green energy and climate change policy

    International Nuclear Information System (INIS)

    Byrne, John; Hughes, Kristen; Rickerson, Wilson; Kurdgelashvili, Lado

    2007-01-01

    Climate change threatens significant impacts on global ecosystems and human populations. To address this challenge, industrialized nations have ratified the Kyoto Protocol and undertaken commitments to reduce emissions of greenhouse gases, the primary agents linked to anthropogenic alteration of earth's climate. By contrast, the US government, led by the Bush Administration, has rejected mandatory targets for curbing emissions under the Protocol, and has instead pursued voluntary mitigation measures amid a larger push for clean coal and 'next generation' nuclear technologies. These actions in total have fueled global perceptions that the US is not acting in substantial ways to address climate change. Nevertheless, action within the US is indeed moving forward, with states, cities and regional partnerships filling the federal leadership vacuum. This paper reviews the diverse policies, strategies, and cooperative frameworks that have emerged at regional, state and local levels to guide climate protection, and identifies the environmental and economic benefits linked to such programs. The paper also attempts to explain the existing federal impasse on climate policy, with attention given to how sub-national efforts may ultimately obviate national governmental inaction

  17. "Climate change" and vulnerability analysis: poor will become poorer

    OpenAIRE

    Ozer, Pierre

    2013-01-01

    The recent Intergovernmental Panel on Climate Change’s Fifth Assessment Report (IPCC-AR5) considers new evidence of climate change based on many independent scientific analyses from observations of the climate system, paleoclimate archives, theoretical studies of climate processes and simulations using climate models. “Warming of the climate system is unequivocal, and since the 1950s, many of the observed changes are unprecedented over decades to millennia. The atmosphere and ocean have warme...

  18. Modelling coral reef futures to inform management: can reducing local-scale stressors conserve reefs under climate change?

    Science.gov (United States)

    Gurney, Georgina G; Melbourne-Thomas, Jessica; Geronimo, Rollan C; Aliño, Perry M; Johnson, Craig R

    2013-01-01

    Climate change has emerged as a principal threat to coral reefs, and is expected to exacerbate coral reef degradation caused by more localised stressors. Management of local stressors is widely advocated to bolster coral reef resilience, but the extent to which management of local stressors might affect future trajectories of reef state remains unclear. This is in part because of limited understanding of the cumulative impact of multiple stressors. Models are ideal tools to aid understanding of future reef state under alternative management and climatic scenarios, but to date few have been sufficiently developed to be useful as decision support tools for local management of coral reefs subject to multiple stressors. We used a simulation model of coral reefs to investigate the extent to which the management of local stressors (namely poor water quality and fishing) might influence future reef state under varying climatic scenarios relating to coral bleaching. We parameterised the model for Bolinao, the Philippines, and explored how simulation modelling can be used to provide decision support for local management. We found that management of water quality, and to a lesser extent fishing, can have a significant impact on future reef state, including coral recovery following bleaching-induced mortality. The stressors we examined interacted antagonistically to affect reef state, highlighting the importance of considering the combined impact of multiple stressors rather than considering them individually. Further, by providing explicit guidance for management of Bolinao's reef system, such as which course of management action will most likely to be effective over what time scales and at which sites, we demonstrated the utility of simulation models for supporting management. Aside from providing explicit guidance for management of Bolinao's reef system, our study offers insights which could inform reef management more broadly, as well as general understanding of reef

  19. Modelling coral reef futures to inform management: can reducing local-scale stressors conserve reefs under climate change?

    Directory of Open Access Journals (Sweden)

    Georgina G Gurney

    Full Text Available Climate change has emerged as a principal threat to coral reefs, and is expected to exacerbate coral reef degradation caused by more localised stressors. Management of local stressors is widely advocated to bolster coral reef resilience, but the extent to which management of local stressors might affect future trajectories of reef state remains unclear. This is in part because of limited understanding of the cumulative impact of multiple stressors. Models are ideal tools to aid understanding of future reef state under alternative management and climatic scenarios, but to date few have been sufficiently developed to be useful as decision support tools for local management of coral reefs subject to multiple stressors. We used a simulation model of coral reefs to investigate the extent to which the management of local stressors (namely poor water quality and fishing might influence future reef state under varying climatic scenarios relating to coral bleaching. We parameterised the model for Bolinao, the Philippines, and explored how simulation modelling can be used to provide decision support for local management. We found that management of water quality, and to a lesser extent fishing, can have a significant impact on future reef state, including coral recovery following bleaching-induced mortality. The stressors we examined interacted antagonistically to affect reef state, highlighting the importance of considering the combined impact of multiple stressors rather than considering them individually. Further, by providing explicit guidance for management of Bolinao's reef system, such as which course of management action will most likely to be effective over what time scales and at which sites, we demonstrated the utility of simulation models for supporting management. Aside from providing explicit guidance for management of Bolinao's reef system, our study offers insights which could inform reef management more broadly, as well as general

  20. Modelling Coral Reef Futures to Inform Management: Can Reducing Local-Scale Stressors Conserve Reefs under Climate Change?

    Science.gov (United States)

    Gurney, Georgina G.; Melbourne-Thomas, Jessica; Geronimo, Rollan C.; Aliño, Perry M.; Johnson, Craig R.

    2013-01-01

    Climate change has emerged as a principal threat to coral reefs, and is expected to exacerbate coral reef degradation caused by more localised stressors. Management of local stressors is widely advocated to bolster coral reef resilience, but the extent to which management of local stressors might affect future trajectories of reef state remains unclear. This is in part because of limited understanding of the cumulative impact of multiple stressors. Models are ideal tools to aid understanding of future reef state under alternative management and climatic scenarios, but to date few have been sufficiently developed to be useful as decision support tools for local management of coral reefs subject to multiple stressors. We used a simulation model of coral reefs to investigate the extent to which the management of local stressors (namely poor water quality and fishing) might influence future reef state under varying climatic scenarios relating to coral bleaching. We parameterised the model for Bolinao, the Philippines, and explored how simulation modelling can be used to provide decision support for local management. We found that management of water quality, and to a lesser extent fishing, can have a significant impact on future reef state, including coral recovery following bleaching-induced mortality. The stressors we examined interacted antagonistically to affect reef state, highlighting the importance of considering the combined impact of multiple stressors rather than considering them individually. Further, by providing explicit guidance for management of Bolinao's reef system, such as which course of management action will most likely to be effective over what time scales and at which sites, we demonstrated the utility of simulation models for supporting management. Aside from providing explicit guidance for management of Bolinao's reef system, our study offers insights which could inform reef management more broadly, as well as general understanding of reef

  1. Harnessing cyber-infrastructure for local scale climate change research in Africa

    CSIR Research Space (South Africa)

    Vahed, A

    2012-05-01

    Full Text Available Climate change poses a major threat to environmental sustainability. Africa in particular, is vulnerable with projected worsening food security, increased threats to public health, increased stress on surface water resources and a general increase...

  2. Local perceptions of climate change impacts and migration patterns in Male, Maldives

    Czech Academy of Sciences Publication Activity Database

    Stojanov, R.; Duží, Barbora; Kelman, I.; Němec, D.; Procházka, D.

    -, 18. April 2016 (2016) ISSN 1475-4959 Institutional support: RVO:68145535 Keywords : Maldives * climate change impacts * migration Subject RIV: DE - Earth Magnetism, Geodesy, Geography http://onlinelibrary.wiley.com/doi/10.1111/geoj.12177/full

  3. Towards a Local-Scale Climate Service for Colombian Agriculture: Findings and Future Perspectives

    Science.gov (United States)

    Ramirez-Villegas, J.; Prager, S.; Llanos, L.; Agudelo, D.; Esquivel, A.; Sotelo, S.; Guevara, E.; Howland, F. C.; Munoz, A.; Rodriguez, J.; Ordonez, L.; Fernandes, K.

    2017-12-01

    Globally, interannual climate variability explains roughly a third of the yield variation for major crops. In Colombia, interannual climate variations and specially those driven by ENSO can disrupt production, lower farmers' incomes and increase market prices for both urban and rural consumers alike. Farmers in Colombia, however, often plan for the cropping season based on the immediately prior year's experience, which is unlikely to result in successful crops under high climate variability events. Critical decisions for avoiding total investment loss or to ensure successful harvests, including issues related to planting date, what variety to plant, or whether to plant, are made, at best, intuitively. Here, we demonstrate that the combination of better data, skillful seasonal climate forecasts, calibrated crop models, and a web-based climate services platform tailored to users' needs can prove successful in establishing a sustained climate service for agriculture. Rainfall predictability analyses indicate that statistical seasonal climate forecasts are skillful enough for issuing forecasts reliably in virtually all areas, with dry periods generally showing greater predictability than wet periods. Importantly, we find that a better specification of predictor regions significantly enhances seasonal forecast skill. Rice and maize crop models capture well the growth and development of rice and maize crops in experimental settings, and ably simulate historical (1980-2014) variations in productivity. With skillful climate and crop models, we developed a climate services platform that produces seasonal climate forecasts, and connects these with crop models. A usability study of the forecast platform revealed that, from a population of ca. 200 farmers and professionals, roughly two thirds correctly interpreted information and felt both confident and encouraged to use the platform. Nevertheless, capacity strengthening on key agro-climatology concepts was highlighted by

  4. Storytelling and Technology Combine to Create Student Engagement Around Locally Relevant Climate Change Topics.

    Science.gov (United States)

    Leckey, E.; Littrell-Baez, M.; Tayne, K.; Gold, A. U.; Okochi, C.; Oonk, D.; Smith, L. K.; Lynds, S. E.

    2017-12-01

    Storytelling is a powerful way for students to engage with science topics, particularly topics that may initially seem too broad to impact their lives, like climate change. Empowering students to telling a personal story about climate change's effects and helping them turn their story into a film is powerful approach. Especially because these films can be shared globally and gives students a voice around a complex topic like climate change. Here, we present impacts of the Lens on Climate Change program (LOCC), which engages middle and high school students in producing short films featuring how climate change impacts their communities. LOCC is offered as an intensive week-long summer program and as an extracurricular program during the school year. The majority of student participants are recruited from historically underserved communities and come from ethnical and socioeconomically diverse backgrounds. Survey data revealed that LOCC participants had a significant increase in their belief in the reality of climate change after participation in their program relative to students in a demographically-matched control groups. Furthermore, participant responses on reflection surveys given after the program included statements that suggest that students had begun thinking more deeply about climate change as a serious global challenge and felt empowered to take actions to mitigate climate change and/or spread awareness in their communities. The majority of students in the LOCC program also reported being very proud of their film and intended to share their film with their friends and family. Additionally, we explored the long-term impacts of participation by interviewing students a year after the program and offered them the opportunity to make a subsequent film. Students in this "advanced group" reported being more aware of climate change in their community following making their films and were enthusiastic to increase their filmmaking skills through producing additional

  5. Climate Change and Apple Farming in Indian Himalayas: A Study of Local Perceptions and Responses

    OpenAIRE

    Basannagari, Basavaraj; Kala, Chandra Prakash

    2013-01-01

    Apple farming is an important activity and profession of farmer communities in the Himalayan states of India. At present, the traditional apple farming is under stress due to changes in climate. The present study was undertaken in an Indian Himalayan state, Himachal Pradesh, with the major aim of studying perceptions of farmers on the effects of climate change on apple farming along the altitudinal gradient. Through questionnaire survey, the perceptions of farmers were recorded at low hills (...

  6. Global and Local Sensitivity Analysis Methods for a Physical System

    Science.gov (United States)

    Morio, Jerome

    2011-01-01

    Sensitivity analysis is the study of how the different input variations of a mathematical model influence the variability of its output. In this paper, we review the principle of global and local sensitivity analyses of a complex black-box system. A simulated case of application is given at the end of this paper to compare both approaches.…

  7. Harmonic analysis on local fields and adelic spaces. I

    International Nuclear Information System (INIS)

    Osipov, D V; Parshin, A N

    2008-01-01

    We develop harmonic analysis on the objects of a category C 2 of infinite-dimensional filtered vector spaces over a finite field. This category includes two-dimensional local fields and adelic spaces of algebraic surfaces defined over a finite field. As the main result, we construct the theory of the Fourier transform on these objects and obtain two-dimensional Poisson formulae

  8. A Local Approach Methodology for the Analysis of Ultimate Strength ...

    African Journals Online (AJOL)

    The local approach methodology in contrast to classical fracture mechanics can be used to predict the onset of tearing fracture, and the effects of geometry in tubular joints. Finite element analysis of T-joints plate geometries, and tubular joints has been done. The parameters of constraint, equivalent stress, plastic strain and ...

  9. An analysis of prediction skill of monthly mean climate variability

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Arun; Chen, Mingyue; Wang, Wanqiu [Climate Prediction Center, National Centers for Environmental Prediction (CPC/NCEP), Camp Springs, MD (United States)

    2011-09-15

    In this paper, lead-time and spatial dependence in skill for prediction of monthly mean climate variability is analyzed. The analysis is based on a set of extensive hindcasts from the Climate Forecast System at the National Centers for Environmental Prediction. The skill characteristics of initialized predictions is also compared with the AMIP simulations forced with the observed sea surface temperature (SST) to quantify the role of initial versus boundary conditions in the prediction of monthly means. The analysis is for prediction of monthly mean SST, precipitation, and 200-hPa height. The results show a rapid decay in skill with lead time for the atmospheric variables in the extratropical latitudes. Further, after a lead-time of approximately 30-40 days, the skill of monthly mean prediction is essentially a boundary forced problem, with SST anomalies in the tropical central/eastern Pacific playing a dominant role. Because of the larger contribution from the atmospheric internal variability to monthly time-averages (compared to seasonal averages), skill for monthly mean prediction associated with boundary forcing is also lower. The analysis indicates that the prospects of skillful prediction of monthly means may remain a challenging problem, and may be limited by inherent limits in predictability. (orig.)

  10. Applicability of WRF-Lake System in Studying Reservoir-Induced Impacts on Local Climate: Case Study of Two Reservoirs with Contrasting Characteristics

    Science.gov (United States)

    Wang, F.; Zhu, D.; Ni, G.; Sun, T.

    2017-12-01

    Large reservoirs play a key role in regional hydrological cycles as well as in modulating the local climate. The emerging large reservoirs in concomitant with rapid hydropower exploitation in southwestern China warrant better understanding of their impacts on local and regional climates. One of the crucial pathways through which reservoirs impact the climate is lake-atmospheric interaction. Although such interactions have been widely studied with numeric weather prediction (NWP) models, an outstanding limitation across various NWPs resides on the poor thermodynamic representation of lakes. The recent version of Weather Research and Forecasting (WRF) system has been equipped with a one-dimensional lake model to better represent the thermodynamics of large water body and has been shown to enhance the its predication skill in the lake-atmospheric interaction. In this study, we further explore the applicability of the WRF-Lake system in two reservoirs with contrasting characteristics: Miyun Reservoir with an average depth of 30 meters in North China Plain, and Nuozhadu Reservoir with an average depth of 200 meters in the Tibetan Plateau Region. Driven by the high spatiotemporal resolution meteorological forcing data, the WRF-Lake system is used to simulate the water temperature and surface energy budgets of the two reservoirs after the evaluation against temperature observations. The simulated results show the WRF-Lake model can well predict the vertical profile of water temperature in Miyun Reservoir, but underestimates deep water temperature and overestimates surface temperature in the deeper Nuozhadu Reservoir. In addition, sensitivity analysis indicates the poor performance of the WRF-Lake system in Nuozhadu Reservoir could be attributed to the weak vertical mixing in the model, which can be improved by tuning the eddy diffusion coefficient ke . Keywords: reservoir-induced climatic impact; lake-atmospheric interaction; WRF-Lake system; hydropower exploitation

  11. MECCA coordinated research program: analysis of climate models uncertainties used for climatic changes study

    International Nuclear Information System (INIS)

    Caneill, J.Y.; Hakkarinen, C.

    1992-01-01

    An international consortium, called MECCA, (Model Evaluation Consortium for Climate Assessment) has been created in 1991 by different partners including electric utilities, government and academic groups to make available to the international scientific community, a super-computer facility for climate evolution studies. The first phase of the program consists to assess uncertainties of climate model simulations in the framework of global climate change studies. Fourteen scientific projects have been accepted on an international basis in this first phase. The second phase of the program will consist in the evaluation of a set of long climate simulations realized with coupled ocean/atmosphere models, in order to study the transient aspects of climate changes and the associated uncertainties. A particular attention will be devoted, on the consequences of these assessments on climate impact studies, and on the regional aspects of climate changes

  12. A New Tool for Climatic Analysis Using the Koppen Climate Classification

    Science.gov (United States)

    Larson, Paul R.; Lohrengel, C. Frederick, II

    2011-01-01

    The purpose of climate classification is to help make order of the seemingly endless spatial distribution of climates. The Koppen classification system in a modified format is the most widely applied system in use today. This system may not be the best nor most complete climate classification that can be conceived, but it has gained widespread…

  13. Analysis of Local Chicken Entreprise in DAS Serayu Banyumas

    Directory of Open Access Journals (Sweden)

    N Noor Hidayat

    2000-01-01

    Full Text Available The Objectives of this research was to know income and efficiency level of local chicken entreprise. Beside that, to know potency of local chicken enterprise developing in DAS Serayu, Banyumas and know factors can effect level of that income and efficiency. Methode that used at this research is survey method to farmer families. Take of research data by random sampling.The data is analysed by multiple regression analysis. The results of this research showed that income level of local chicken entreprise at DAS Serayu is Rp 277.375,00 / year and economi efficiency 2.80 , that means the farmers get return Rp 2.80 for every one unit cost addition. The age of farmers and total of chicken possession effect at efficiency of  local chicken entreprise. Potency of local chicken developing very big if showed from power of area and human resources. Very important to increase entreprise capital and increase knowledge for farmer. Beside that more important present motivation and support for develop there enterprise (Animal Production 2(1: 13-17 (2000 Key Words: local chicken, farmers income, economic efficiency

  14. The future of climate science analysis in a coming era of exascale computing

    Science.gov (United States)

    Bates, S. C.; Strand, G.

    2013-12-01

    Projections of Community Earth System Model (CESM) output based on the growth of data archived over 2000-2012 at all of our computing sites (NCAR, NERSC, ORNL) show that we can expect to reach 1,000 PB (1 EB) sometime in the next decade or so. The current paradigms of using site-based archival systems to hold these data that are then accessed via portals or gateways, downloading the data to a local system, and then processing/analyzing the data will be irretrievably broken before then. From a climate modeling perspective, the expertise involved in making climate models themselves efficient on HPC systems will need to be applied to the data as well - providing fast parallel analysis tools co-resident in memory with the data, because the disk I/O bandwidth simply will not keep up with the expected arrival of exaflop systems. The ability of scientists, analysts, stakeholders and others to use climate model output to turn these data into understanding and knowledge will require significant advances in the current typical analysis tools and packages to enable these processes for these vast volumes of data. Allowing data users to enact their own analyses on model output is virtually a requirement as well - climate modelers cannot anticipate all the possibilities for analysis that users may want to do. In addition, the expertise of data scientists, and their knowledge of the model output and their knowledge of best practices in data management (metadata, curation, provenance and so on) will need to be rewarded and exploited to gain the most understanding possible from these volumes of data. In response to growing data size, demand, and future projections, the CESM output has undergone a structure evolution and the data management plan has been reevaluated and updated. The major evolution of the CESM data structure is presented here, along with the CESM experience and role within the CMIP3/CMIP5.

  15. Advancing Collaborative Climate Studies through Globally Distributed Geospatial Analysis

    Science.gov (United States)

    Singh, R.; Percivall, G.

    2009-12-01

    Infrastructure and the broader GEOSS architecture. Of specific interest to this session is the work on geospatial workflows and geo-processing and data discovery and access. CCIP demonstrates standards-based interoperability between geospatial applications in the service of Climate Change analysis. CCIP is planned to be a yearly exercise. It consists of a network of online data services (WCS, WFS, SOS), analysis services (WPS, WCPS, WMS), and clients that exercise those services. In 2009, CCIP focuses on Australia, and the initial application of existing OGC services to climate studies. The results of the 2009 CCIP will serve as requirements for more complex geo-processing services to be developed for CCIP 2010. The benefits of CCIP include accelerating the implementation of the GCOS, and building confidence that implementations using multi-vendor interoperable technologies can help resolve vexing climate change questions. AIP-2: Architecture Implementation Pilot, Phase 2 CCIP: Climate Challenge Integration Plugfest GEO: Group on Earth Observations GEOSS: Global Earth Observing System of Systems GCOS: Global Climate Observing System OGC: Open Geospatial Consortium SOS: Sensor Observation Service WCS: Web Coverage Service WCPS: Web Coverage Processing Service WFS: Web Feature Service WMS: Web Mapping Service

  16. Improving the interpretability of climate landscape metrics: An ecological risk analysis of Japan's Marine Protected Areas.

    Science.gov (United States)

    García Molinos, Jorge; Takao, Shintaro; Kumagai, Naoki H; Poloczanska, Elvira S; Burrows, Michael T; Fujii, Masahiko; Yamano, Hiroya

    2017-10-01

    Conservation efforts strive to protect significant swaths of terrestrial, freshwater and marine ecosystems from a range of threats. As climate change becomes an increasing concern, these efforts must take into account how resilient-protected spaces will be in the face of future drivers of change such as warming temperatures. Climate landscape metrics, which signal the spatial magnitude and direction of climate change, support a convenient initial assessment of potential threats to and opportunities within ecosystems to inform conservation and policy efforts where biological data are not available. However, inference of risk from purely physical climatic changes is difficult unless set in a meaningful ecological context. Here, we aim to establish this context using historical climatic variability, as a proxy for local adaptation by resident biota, to identify areas where current local climate conditions will remain extant and future regional climate analogues will emerge. This information is then related to the processes governing species' climate-driven range edge dynamics, differentiating changes in local climate conditions as promoters of species range contractions from those in neighbouring locations facilitating range expansions. We applied this approach to assess the future climatic stability and connectivity of Japanese waters and its network of marine protected areas (MPAs). We find 88% of Japanese waters transitioning to climates outside their historical variability bounds by 2035, resulting in large reductions in the amount of available climatic space potentially promoting widespread range contractions and expansions. Areas of high connectivity, where shifting climates converge, are present along sections of the coast facilitated by the strong latitudinal gradient of the Japanese archipelago and its ocean current system. While these areas overlap significantly with areas currently under significant anthropogenic pressures, they also include much of the MPA

  17. Visualization and Analysis of Climate Simulation Performance Data

    Science.gov (United States)

    Röber, Niklas; Adamidis, Panagiotis; Behrens, Jörg

    2015-04-01

    Visualization is the key process of transforming abstract (scientific) data into a graphical representation, to aid in the understanding of the information hidden within the data. Climate simulation data sets are typically quite large, time varying, and consist of many different variables sampled on an underlying grid. A large variety of climate models - and sub models - exist to simulate various aspects of the climate system. Generally, one is mainly interested in the physical variables produced by the simulation runs, but model developers are also interested in performance data measured along with these simulations. Climate simulation models are carefully developed complex software systems, designed to run in parallel on large HPC systems. An important goal thereby is to utilize the entire hardware as efficiently as possible, that is, to distribute the workload as even as possible among the individual components. This is a very challenging task, and detailed performance data, such as timings, cache misses etc. have to be used to locate and understand performance problems in order to optimize the model implementation. Furthermore, the correlation of performance data to the processes of the application and the sub-domains of the decomposed underlying grid is vital when addressing communication and load imbalance issues. High resolution climate simulations are carried out on tens to hundreds of thousands of cores, thus yielding a vast amount of profiling data, which cannot be analyzed without appropriate visualization techniques. This PICO presentation displays and discusses the ICON simulation model, which is jointly developed by the Max Planck Institute for Meteorology and the German Weather Service and in partnership with DKRZ. The visualization and analysis of the models performance data allows us to optimize and fine tune the model, as well as to understand its execution on the HPC system. We show and discuss our workflow, as well as present new ideas and

  18. Cluster-based analysis of multi-model climate ensembles

    Science.gov (United States)

    Hyde, Richard; Hossaini, Ryan; Leeson, Amber A.

    2018-06-01

    Clustering - the automated grouping of similar data - can provide powerful and unique insight into large and complex data sets, in a fast and computationally efficient manner. While clustering has been used in a variety of fields (from medical image processing to economics), its application within atmospheric science has been fairly limited to date, and the potential benefits of the application of advanced clustering techniques to climate data (both model output and observations) has yet to be fully realised. In this paper, we explore the specific application of clustering to a multi-model climate ensemble. We hypothesise that clustering techniques can provide (a) a flexible, data-driven method of testing model-observation agreement and (b) a mechanism with which to identify model development priorities. We focus our analysis on chemistry-climate model (CCM) output of tropospheric ozone - an important greenhouse gas - from the recent Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP). Tropospheric column ozone from the ACCMIP ensemble was clustered using the Data Density based Clustering (DDC) algorithm. We find that a multi-model mean (MMM) calculated using members of the most-populous cluster identified at each location offers a reduction of up to ˜ 20 % in the global absolute mean bias between the MMM and an observed satellite-based tropospheric ozone climatology, with respect to a simple, all-model MMM. On a spatial basis, the bias is reduced at ˜ 62 % of all locations, with the largest bias reductions occurring in the Northern Hemisphere - where ozone concentrations are relatively large. However, the bias is unchanged at 9 % of all locations and increases at 29 %, particularly in the Southern Hemisphere. The latter demonstrates that although cluster-based subsampling acts to remove outlier model data, such data may in fact be closer to observed values in some locations. We further demonstrate that clustering can provide a viable and

  19. Local environment rather than past climate determines community composition of mountain stream macroinvertebrates across Europe.

    Science.gov (United States)

    Múrria, Cesc; Bonada, Núria; Vellend, Mark; Zamora-Muñoz, Carmen; Alba-Tercedor, Javier; Sainz-Cantero, Carmen Elisa; Garrido, Josefina; Acosta, Raul; El Alami, Majida; Barquín, Jose; Derka, Tomáš; Álvarez-Cabria, Mario; Sáinz-Bariain, Marta; Filipe, Ana F; Vogler, Alfried P

    2017-11-01

    Community assembly is determined by a combination of historical events and contemporary processes that are difficult to disentangle, but eco-evolutionary mechanisms may be uncovered by the joint analysis of species and genetic diversity across multiple sites. Mountain streams across Europe harbour highly diverse macroinvertebrate communities whose composition and turnover (replacement of taxa) among sites and regions remain poorly known. We studied whole-community biodiversity within and among six mountain regions along a latitudinal transect from Morocco to Scandinavia at three levels of taxonomic hierarchy: genus, species and haplotypes. Using DNA barcoding of four insect families (>3100 individuals, 118 species) across 62 streams, we found that measures of local and regional diversity and intraregional turnover generally declined slightly towards northern latitudes. However, at all hierarchical levels we found complete (haplotype) or high (species, genus) turnover among regions (and even among sites within regions), which counters the expectations of Pleistocene postglacial northward expansion from southern refugia. Species distributions were mostly correlated with environmental conditions, suggesting a strong role of lineage- or species-specific traits in determining local and latitudinal community composition, lineage diversification and phylogenetic community structure (e.g., loss of Coleoptera, but not Ephemeroptera, at northern sites). High intraspecific genetic structure within regions, even in northernmost sites, reflects species-specific dispersal and demographic histories and indicates postglacial migration from geographically scattered refugia, rather than from only southern areas. Overall, patterns were not strongly concordant across hierarchical levels, but consistent with the overriding influence of environmental factors determining community composition at the species and genus levels. © 2017 John Wiley & Sons Ltd.

  20. Local buckling failure analysis of high-strength pipelines

    Institute of Scientific and Technical Information of China (English)

    Yan Li; Jian Shuai; Zhong-Li Jin; Ya-Tong Zhao; Kui Xu

    2017-01-01

    Pipelines in geological disaster regions typically suffer the risk of local buckling failure because of slender structure and complex load.This paper is meant to reveal the local buckling behavior of buried pipelines with a large diameter and high strength,which are under different conditions,including pure bending and bending combined with internal pressure.Finite element analysis was built according to previous data to study local buckling behavior of pressurized and unpressurized pipes under bending conditions and their differences in local buckling failure modes.In parametric analysis,a series of parameters,including pipe geometrical dimension,pipe material properties and internal pressure,were selected to study their influences on the critical bending moment,critical compressive stress and critical compressive strain of pipes.Especially the hardening exponent of pipe material was introduced to the parameter analysis by using the Ramberg-Osgood constitutive model.Results showed that geometrical dimensions,material and internal pressure can exert similar effects on the critical bending moment and critical compressive stress,which have different,even reverse effects on the critical compressive strain.Based on these analyses,more accurate design models of critical bending moment and critical compressive stress have been proposed for high-strength pipelines under bending conditions,which provide theoretical methods for highstrength pipeline engineering.

  1. Climate change in Inner Mongolia from 1955 to 2005-trends at regional, biome and local scales

    Energy Technology Data Exchange (ETDEWEB)

    Lu, N; Wilske, B; John, R; Chen, J [Department of Environmental Sciences, University of Toledo, Toledo, OH 43606 (United States); Ni, J, E-mail: nan.lu@utoledo.ed, E-mail: burkhard.wilske@utoledo.ed, E-mail: jni@ibcas.ac.c, E-mail: ranjeet.john@utoledo.ed, E-mail: jiquan.chen@utoledo.ed [Alfred Wegener Institute for Polar and Marine Research, Telegrafenberg A43, D-14473 Potsdam (Germany)

    2009-10-15

    This study investigated the climate change in Inner Mongolia based on 51 meteorological stations from 1955 to 2005. The climate data was analyzed at the regional, biome (i.e. forest, grassland and desert) and station scales, with the biome scale as our primary focus. The climate records showed trends of warmer and drier conditions in the region. The annual daily mean, maximum and minimum temperature increased whereas the diurnal temperature range (DTR) decreased. The decreasing trend of annual precipitation was not significant. However, the vapor pressure deficit (VPD) increased significantly. On the decadal scale, the warming and drying trends were more significant in the last 30 years than the preceding 20 years. The climate change varied among biomes, with more pronounced changes in the grassland and the desert biomes than in the forest biome. DTR and VPD showed the clearest inter-biome gradient from the lowest rate of change in the forest biome to the highest rate of change in the desert biome. The rates of change also showed large variations among the individual stations. Our findings correspond with the IPCC predictions that the future climate will vary significantly by location and through time, suggesting that adaptation strategies also need to be spatially viable.

  2. Climate change in Inner Mongolia from 1955 to 2005-trends at regional, biome and local scales

    International Nuclear Information System (INIS)

    Lu, N; Wilske, B; John, R; Chen, J; Ni, J

    2009-01-01

    This study investigated the climate change in Inner Mongolia based on 51 meteorological stations from 1955 to 2005. The climate data was analyzed at the regional, biome (i.e. forest, grassland and desert) and station scales, with the biome scale as our primary focus. The climate records showed trends of warmer and drier conditions in the region. The annual daily mean, maximum and minimum temperature increased whereas the diurnal temperature range (DTR) decreased. The decreasing trend of annual precipitation was not significant. However, the vapor pressure deficit (VPD) increased significantly. On the decadal scale, the warming and drying trends were more significant in the last 30 years than the preceding 20 years. The climate change varied among biomes, with more pronounced changes in the grassland and the desert biomes than in the forest biome. DTR and VPD showed the clearest inter-biome gradient from the lowest rate of change in the forest biome to the highest rate of change in the desert biome. The rates of change also showed large variations among the individual stations. Our findings correspond with the IPCC predictions that the future climate will vary significantly by location and through time, suggesting that adaptation strategies also need to be spatially viable.

  3. The relative role of dispersal and local interactions for alpine plant community diversity under simulated climate warming

    Energy Technology Data Exchange (ETDEWEB)

    Klanderud, K.; Totland, Oe. [Norwegian Univ. of Life Science, Dept. of Ecology and Natural Resource Management, Aas (Norway)

    2007-08-15

    Most studies on factors determining diversity are conducted in temperate or warm regions, whereas studies in climatically harsh and low productivity areas, such as alpine regions, are rare. We examined the relative roles of seed availability and different biotic and abiotic factors for the diversity of an alpine plant community in southern Norway. Furthermore, because climate warming is predicted to be an important driver of alpine species diversity, we assessed how the relative impacts of dispersal and local interactions on diversity might change under experimental warming (open top chambers, OTCs). Addition of seeds from 27 regional species increased community diversity. The establishment of the species was negatively related both to the diversity of the existing system and the cover of the abundant dwarf shrub Dryas octopetala. These results show that both species dispersal limitation and local biotic interactions are important factors for alpine plant community diversity. Despite relatively harsh environmental conditions and low productivity, competition from the resident vegetation appeared to have a greater role for species establishment and diversity than facilitation and experimental warming. Higher temperature appeared to increase the negative relationship between resident species diversity and species establishment. This may suggest that climate warming can increase the role of interspecific competition for alpine plant community structure, and thus alter the long-term effects of biotic interactions on diversity. (au)

  4. Climatic Data Integration and Analysis - Regional Approaches to Climate Change for Pacific Northwest Agriculture (REACCH PNA)

    Science.gov (United States)

    Seamon, E.; Gessler, P. E.; Flathers, E.; Sheneman, L.; Gollberg, G.

    2013-12-01

    The Regional Approaches to Climate Change for Pacific Northwest Agriculture (REACCH PNA) is a five-year USDA/NIFA-funded coordinated agriculture project to examine the sustainability of cereal crop production systems in the Pacific Northwest, in relationship to ongoing climate change. As part of this effort, an extensive data management system has been developed to enable researchers, students, and the public, to upload, manage, and analyze various data. The REACCH PNA data management team has developed three core systems to encompass cyberinfrastructure and data management needs: 1) the reacchpna.org portal (https://www.reacchpna.org) is the entry point for all public and secure information, with secure access by REACCH PNA members for data analysis, uploading, and informational review; 2) the REACCH PNA Data Repository is a replicated, redundant database server environment that allows for file and database storage and access to all core data; and 3) the REACCH PNA Libraries which are functional groupings of data for REACCH PNA members and the public, based on their access level. These libraries are accessible thru our https://www.reacchpna.org portal. The developed system is structured in a virtual server environment (data, applications, web) that includes a geospatial database/geospatial web server for web mapping services (ArcGIS Server), use of ESRI's Geoportal Server for data discovery and metadata management (under the ISO 19115-2 standard), Thematic Realtime Environmental Distributed Data Services (THREDDS) for data cataloging, and Interactive Python notebook server (IPython) technology for data analysis. REACCH systems are housed and maintained by the Northwest Knowledge Network project (www.northwestknowledge.net), which provides data management services to support research. Initial project data harvesting and meta-tagging efforts have resulted in the interrogation and loading of over 10 terabytes of climate model output, regional entomological data

  5. Factoring local sequence composition in motif significance analysis.

    Science.gov (United States)

    Ng, Patrick; Keich, Uri

    2008-01-01

    We recently introduced a biologically realistic and reliable significance analysis of the output of a popular class of motif finders. In this paper we further improve our significance analysis by incorporating local base composition information. Relying on realistic biological data simulation, as well as on FDR analysis applied to real data, we show that our method is significantly better than the increasingly popular practice of using the normal approximation to estimate the significance of a finder's output. Finally we turn to leveraging our reliable significance analysis to improve the actual motif finding task. Specifically, endowing a variant of the Gibbs Sampler with our improved significance analysis we demonstrate that de novo finders can perform better than has been perceived. Significantly, our new variant outperforms all the finders reviewed in a recently published comprehensive analysis of the Harbison genome-wide binding location data. Interestingly, many of these finders incorporate additional information such as nucleosome positioning and the significance of binding data.

  6. Water impacts and water-climate goal conflicts of local energy choices - notes from a Swedish perspective

    Science.gov (United States)

    Ericsdotter Engström, Rebecka; Howells, Mark; Destouni, Georgia

    2018-02-01

    To meet both the Paris Agreement on Climate Change and the UN Sustainable Development Goals (SDGs), nations, sectors, counties and cities need to move towards a sustainable energy system in the next couple of decades. Such energy system transformations will impact water resources to varying extents, depending on the transformation strategy and fuel choices. Sweden is considered to be one of the most advanced countries towards meeting the SDGs. This paper explores the geographical origin of and the current water use associated with the supply of energy in the 21 regional counties of Sweden. These energy-related uses of water represent indirect, but still relevant, impacts for water management and the related SDG on clean water and sanitation (SDG 6). These indirect water impacts are here quantified and compared to reported quantifications of direct local water use, as well as to reported greenhouse gas (GHG) emissions, as one example of other types of environmental impacts of local energy choices in each county. For each county, an accounting model is set up based on data for the local energy use in year 2010, and the specific geographical origins and water use associated with these locally used energy carriers (fuels, heat and electricity) are further estimated and mapped based on data reported in the literature and open databases. Results show that most of the water use associated with the local Swedish energy use occurs outside of Sweden. Counties with large shares of liquid biofuel exhibit the largest associated indirect water use in regions outside of Sweden. This indirect water use for energy supply does not unambiguously correlate with either the local direct water use or the local GHG emissions, although for the latter, there is a tendency towards an inverse relation. Overall, the results imply that actions for mitigation of climate change by local energy choices may significantly affect water resources elsewhere. Swedish counties are thus important examples

  7. Water impacts and water-climate goal conflicts of local energy choices – notes from a Swedish perspective

    Directory of Open Access Journals (Sweden)

    R. E. Engström

    2018-02-01

    Full Text Available To meet both the Paris Agreement on Climate Change and the UN Sustainable Development Goals (SDGs, nations, sectors, counties and cities need to move towards a sustainable energy system in the next couple of decades. Such energy system transformations will impact water resources to varying extents, depending on the transformation strategy and fuel choices. Sweden is considered to be one of the most advanced countries towards meeting the SDGs. This paper explores the geographical origin of and the current water use associated with the supply of energy in the 21 regional counties of Sweden. These energy-related uses of water represent indirect, but still relevant, impacts for water management and the related SDG on clean water and sanitation (SDG 6. These indirect water impacts are here quantified and compared to reported quantifications of direct local water use, as well as to reported greenhouse gas (GHG emissions, as one example of other types of environmental impacts of local energy choices in each county. For each county, an accounting model is set up based on data for the local energy use in year 2010, and the specific geographical origins and water use associated with these locally used energy carriers (fuels, heat and electricity are further estimated and mapped based on data reported in the literature and open databases. Results show that most of the water use associated with the local Swedish energy use occurs outside of Sweden. Counties with large shares of liquid biofuel exhibit the largest associated indirect water use in regions outside of Sweden. This indirect water use for energy supply does not unambiguously correlate with either the local direct water use or the local GHG emissions, although for the latter, there is a tendency towards an inverse relation. Overall, the results imply that actions for mitigation of climate change by local energy choices may significantly affect water resources elsewhere. Swedish counties are thus

  8. The analysis of cultural architectural trends in Crisan locality

    Directory of Open Access Journals (Sweden)

    SELA Florentina

    2010-09-01

    Full Text Available The paper presents data about the identification and analyse of the traditional architectural elements in Crisan locality knowing that the tourism activity is in a continuous development. The field research (during November 2007 enabled us to develop a qualitative and quantitative analysis in terms of identification of traditional architecture elements, their conservation status, and frequency of traditional building materials use, decorative elements and specificcolors used in construction architecture. Further, based on collected data, was realized the chart - Distribution for TraditionalArchitecture Index (TAI on the distance from the center of Crisan locality, showing that in Crisan locality the houses were and are built without taking into account any rule, destroying thus traditional architecture.

  9. The influence of climate change on flood risks in France ­- first estimates and uncertainty analysis

    OpenAIRE

    Dumas , Patrice; Hallegatte , Sréphane; Quintana-Seguí , Pere; Martin , Eric

    2013-01-01

    International audience; Abstract. This paper proposes a methodology to project the possible evolution of river flood damages due to climate change, and applies it to mainland France. Its main contributions are (i) to demonstrate a methodology to investigate the full causal chain from global climate change to local economic flood losses; (ii) to show that future flood losses may change in a very significant manner over France; (iii) to show that a very large uncertainty arises from the climate...

  10. A neural network approach to local downscaling of GCM output for assessing wind power implications of climate change

    International Nuclear Information System (INIS)

    Sailor, D.J.; Hu, T.; Li, X.; Rosen, J.N.

    2000-01-01

    A methodology is presented for downscaling General Circulation Model (GCM) output to predict surface wind speeds at scales of interest in the wind power industry under expected future climatic conditions. The approach involves a combination of Neural Network tools and traditional weather forecasting techniques. A Neural Network transfer function is developed to relate local wind speed observations to large scale GCM predictions of atmospheric properties under current climatic conditions. By assuming the invariability of this transfer function under conditions of doubled atmospheric carbon dioxide, the resulting transfer function is then applied to GCM output for a transient run of the National Center for Atmospheric Research coupled ocean-atmosphere GCM. This methodology is applied to three test sites in regions relevant to the wind power industry - one in Texas and two in California. Changes in daily mean wind speeds at each location are presented and discussed with respect to potential implications for wind power generation. (author)

  11. Predicting the impacts of climate change on animal distributions: the importance of local adaptation and species' traits

    Energy Technology Data Exchange (ETDEWEB)

    HELLMANN, J. J.; LOBO, N. F.

    2011-12-20

    The geographic range limits of many species are strongly affected by climate and are expected to change under global warming. For species that are able to track changing climate over broad geographic areas, we expect to see shifts in species distributions toward the poles and away from the equator. A number of ecological and evolutionary factors, however, could restrict this shifting or redistribution under climate change. These factors include restricted habitat availability, restricted capacity for or barriers to movement, or reduced abundance of colonists due the perturbation effect of climate change. This research project examined the last of these constraints - that climate change could perturb local conditions to which populations are adapted, reducing the likelihood that a species will shift its distribution by diminishing the number of potential colonists. In the most extreme cases, species ranges could collapse over a broad geographic area with no poleward migration and an increased risk of species extinction. Changes in individual species ranges are the processes that drive larger phenomena such as changes in land cover, ecosystem type, and even changes in carbon cycling. For example, consider the poleward range shift and population outbreaks of the mountain pine beetle that has decimated millions of acres of Douglas fir trees in the western US and Canada. Standing dead trees cause forest fires and release vast quantities of carbon to the atmosphere. The beetle likely shifted its range because it is not locally adapted across its range, and it appears to be limited by winter low temperatures that have steadily increased in the last decades. To understand range and abundance changes like the pine beetle, we must reveal the extent of adaptive variation across species ranges - and the physiological basis of that adaptation - to know if other species will change as readily as the pine beetle. Ecologists tend to assume that range shifts are the dominant

  12. Analysis of locally controlled esophageal carcinomas treated with radiotherapy

    International Nuclear Information System (INIS)

    Gotoh, Yasuo; Yamada, Shogo; Takai, Yoshihiro; Nemoto, Kenji; Ogawa, Yoshihiro; Hoshi, Akihiko; Ariga, Hisanori; Sakamoto, Kiyohiko

    1996-01-01

    Of 227 esophageal carcinomas treated with a radiation dose of 60 Gy or more, 100 patients had no tumor or ulceration (with or without stenosis) of the esophagus after irradiation. We analyzed local control factors of these 100 patients to determine the need for further treatment. The cumulative local control rate at five years was 40% in all cases, 37% in 21 cases without any stenosis of the esophagus and 40% in 79 cases with stenosis. The presence of stenosis of the esophagus after irradiation was not a critical factor in predicting final local control. Local recurrence of tumors with findings of Borrmann III or Borrmann IV by the pretreatment esophageal barium study, tumors controlled after a total dose of more than 80 Gy, tumors without low dose rate telecobalt therapy (LDRT: 1 Gy/hour, 5 to 7 Gy/day, a total dose of 12 to 15 Gy) as boost therapy, and apparently controlled tumors with a stenotic ratio of 60% or more or with 5 cm or more length of stenosis of the esophagus after irradiation was significantly higher than that of the others (p<0.05). Multivariate analysis revealed that findings of pretreatment barium study, total dose, with or without LDRT, and length of stenosis of the esophagus after irradiation were significantly important factors in local control. Members of the high risk group of apparently controlled tumors should undertake surgical treatment or further intensive chemotherapy. (author)

  13. Local perceptions of climate change impacts and migration patterns in Malé, Maldives

    Czech Academy of Sciences Publication Activity Database

    Stojanov, R.; Duží, Barbora; Kelman, I.; Němec, D.; Procházka, D.

    2017-01-01

    Roč. 183, č. 4 (2017), s. 370-385 ISSN 0016-7398 Institutional support: RVO:68145535 Keywords : Maldives * climate change impacts * migration * risk management * quantitative survey Subject RIV: DE - Earth Magnetism, Geodesy, Geography OBOR OECD: Cultural and economic geography Impact factor: 3.132, year: 2016 http://onlinelibrary.wiley.com/doi/10.1111/geoj.12177/abstract

  14. California forests show early indications of both range shifts and local persistence under climate change

    Science.gov (United States)

    Josep M. Serra-Diaz; Janet Franklin; Whalen W. Dillon; Alexandra D. Syphard; Frank W. Davis; Ross K. Meentemeyer

    2015-01-01

    Aim Forest regeneration data provide an early signal of the persistence and migration of tree species, so we investigated whether species shifts due to climate change exhibit a common signal of response or whether changes vary by species. Location California Floristic Province, United...

  15. Local control on precipitation in a fully coupled climate-hydrology model

    DEFF Research Database (Denmark)

    Larsen, Morten A. D.; Christensen, Jens H.; Drews, Martin

    2016-01-01

    simulations of precipitation often exhibit substantial biases that affect the reliability of future projections. Here we demonstrate how a regional climate model (RCM) coupled to a distributed hydrological catchment model that fully integrates water and energy fluxes between the subsurface, land surface...

  16. Operationalizing analysis of micro-level climate change vulnerability and adaptive capacity

    DEFF Research Database (Denmark)

    Jiao, Xi; Moinuddin, Hasan

    2016-01-01

    This paper explores vulnerability and adaptive capacity of rural communities in Southern Laos, where households are highly dependent on climate-sensitive natural resources and vulnerable to seasonal weather fluctuations. The speed and magnitude of climate-induced changes may seriously challenge...... their ability to adapt. Participatory group discussions and 271 household surveys in three villages highlight the current level of vulnerability and adaptive capacity towards climatic variability and risks. This paper visualizes three dimensions of the vulnerability framework at two levels using the Community...... Climate Vulnerability Index and household climate vulnerability cube. Results show that not only poor households are most at risk from climate change challenges, but also those better-off households highly dependent on specialized agricultural production are locally exposed to climate change risks...

  17. Minimization of local impact of energy systems through exergy analysis

    International Nuclear Information System (INIS)

    Cassetti, Gabriele; Colombo, Emanuela

    2013-01-01

    Highlights: • The model proposed aims at minimizing local impact of energy systems. • The model is meant to minimize the impact starting from system thermodynamics. • The formulation combines exergy analysis and quantitative risk analysis. • The approach of the model is dual to Thermoeconomics. - Abstract: For the acceptability of energy systems, environmental impacts are becoming more and more important. One primary way for reducing impacts related to processes is by improving efficiency of plants. A key instrument currently used to verify such improvements is exergy analysis, extended to include also the environmental externalities generated by systems. Through exergy-based analyses, it is possible indeed to evaluate the overall amount of resources consumed along all the phases of the life cycle of a system, from construction to dismantling. However, resource consumption is a dimension of the impact of a system at global level, while it may not be considered a measure of its local impact. In the paper a complementary approach named Combined Risk and Exergy Analysis (CRExA) to assess impacts from major accidents in energy systems is proposed, based on the combination of classical exergy analysis and quantitative risk analysis (QRA). Impacts considered are focused on effects on human health. The approach leads to the identification of solutions to minimize damages of major accidents by acting on the energy system design

  18. Interaction between Cities and Climate Change: Modelling Urban Morphology and Local Urban Planning Scenarios from Open Datasets across European Cities

    Science.gov (United States)

    Thomas, Bart; Stevens, Catherine; Grommen, Mart

    2015-04-01

    Cities are characterised by a large spatiotemporal diversity of local climates induced by a superposition of various factors and processes interacting at global and regional scales but also at the micro level such as the urban heat island effect. As urban areas are known as 'hot spots' prone to climate and its variability over time leading to changes in the severity and occurrence of extreme events such as heat waves, it is of crucial importance to capture the spatial heterogeneity resulting from variations in land use land cover (LULC) and urban morphology in an effective way to drive local urban climate simulations. The first part of the study conducted in the framework of the NACLIM FP7 project funded by the European Commission focusses on the extraction of land surface parameters linked to urban morphology characteristics from detailed 3D city models and their relationship with openly accessible European datasets such as the degree of soil sealing and disaggregated population densities from the European Environment Agency (EEA) and the Joint Research Centre (JRC). While it has been demonstrated that good correlations can be found between those datasets and the planar and frontal area indices, the present work has expanded the research to other urban morphology parameters including the average and variation of the building height and the sky view factor. Correlations up to 80% have been achieved depending on the considered parameter and the specific urban area including the cities of Antwerp (Belgium), Berlin (Germany) and Almada (Portugal) represented by different climate and urban characteristics. Moreover, the transferability of the established relations has been investigated across the various cities. Secondly, a flexible and scalable approach as a function of the required the level of detail has been elaborated to update the various morphology parameters in case of integration with urban planning data to analyse the local impact of future land use scenarios

  19. Regional climate change trends and uncertainty analysis using extreme indices: A case study of Hamilton, Canada

    OpenAIRE

    Razavi, Tara; Switzman, Harris; Arain, Altaf; Coulibaly, Paulin

    2016-01-01

    This study aims to provide a deeper understanding of the level of uncertainty associated with the development of extreme weather frequency and intensity indices at the local scale. Several different global climate models, downscaling methods, and emission scenarios were used to develop extreme temperature and precipitation indices at the local scale in the Hamilton region, Ontario, Canada. Uncertainty associated with historical and future trends in extreme indices and future climate projectio...

  20. Climate change and apple farming in Indian Himalayas: a study of local perceptions and responses.

    Directory of Open Access Journals (Sweden)

    Basavaraj Basannagari

    Full Text Available Apple farming is an important activity and profession of farmer communities in the Himalayan states of India. At present, the traditional apple farming is under stress due to changes in climate. The present study was undertaken in an Indian Himalayan state, Himachal Pradesh, with the major aim of studying perceptions of farmers on the effects of climate change on apple farming along the altitudinal gradient. Through questionnaire survey, the perceptions of farmers were recorded at low hills (3000 m. At all elevation range the majority of farmers reported that there was increase in atmospheric temperature, and hence at low hills 72% farmers believed that this increase in temperature was responsible for decline in fruit size and so that the quality. Thirty five percent farmers at high hills and 30% at mid hills perceived frost as a major cause for damaging apple farming whereas at low hills 24% farmers perceived hailstorm as the major deterrent for apple farming. The majority of farmers, along the altitude (92% at high hills, 79% at mid hills and 83% at low hills, reported decrease in snowfall. The majority of farmers at low altitude and mid altitude reported decline in apple farming whereas 71% farmers at high hill areas refused decline in apple farming. About 73-83% farmers admitted delay in apple's harvesting period. At mid hills apple scab and at low hills pest attack on apple crops are considered as the indicators of climate change. The change in land use practices was attributed to climate change and in many areas the land under apple farming was replaced for production of coarse grains, seasonal vegetables and other horticulture species. Scientific investigation claiming changes in Indian Himalayan climate corroborates perceptions of farmers, as examined during the present study.

  1. Climate change and apple farming in Indian Himalayas: a study of local perceptions and responses.

    Science.gov (United States)

    Basannagari, Basavaraj; Kala, Chandra Prakash

    2013-01-01

    Apple farming is an important activity and profession of farmer communities in the Himalayan states of India. At present, the traditional apple farming is under stress due to changes in climate. The present study was undertaken in an Indian Himalayan state, Himachal Pradesh, with the major aim of studying perceptions of farmers on the effects of climate change on apple farming along the altitudinal gradient. Through questionnaire survey, the perceptions of farmers were recorded at low hills (3000 m). At all elevation range the majority of farmers reported that there was increase in atmospheric temperature, and hence at low hills 72% farmers believed that this increase in temperature was responsible for decline in fruit size and so that the quality. Thirty five percent farmers at high hills and 30% at mid hills perceived frost as a major cause for damaging apple farming whereas at low hills 24% farmers perceived hailstorm as the major deterrent for apple farming. The majority of farmers, along the altitude (92% at high hills, 79% at mid hills and 83% at low hills), reported decrease in snowfall. The majority of farmers at low altitude and mid altitude reported decline in apple farming whereas 71% farmers at high hill areas refused decline in apple farming. About 73-83% farmers admitted delay in apple's harvesting period. At mid hills apple scab and at low hills pest attack on apple crops are considered as the indicators of climate change. The change in land use practices was attributed to climate change and in many areas the land under apple farming was replaced for production of coarse grains, seasonal vegetables and other horticulture species. Scientific investigation claiming changes in Indian Himalayan climate corroborates perceptions of farmers, as examined during the present study.

  2. Locally-sourced: How climate science can collaborate with arts & humanities museums to achieve widespread public trust and communication

    Science.gov (United States)

    Walker, C. G.

    2017-12-01

    Local history, art and culture museums have a large role to play in climate science communication. Unfortunately, in our current society, scientific evidence and logic is not universally accepted as truth. These messages can be dispersed through trusted institutional allies like humanities and arts museums. There are many reasons for scientific institutions to work with humanities and arts museums of all sizes, especially local museums that have personal, trusted relationships with their communities. First, museums (by definition) are public educators; the work that they do is to disperse challenging information in an understandable way to a wide array of audiences. Museums are located in every state, with over 35,000 museums in the nation; 26% of those are located in rural areas. These museums serve every demographic and age range, inspiring even those with difficulty accepting climate change information to act. Second, in a recent public opinion survey commissioned by the American Alliance of Museums, museums - especially history museums - are considered the most trustworthy source of information in America, rated higher than newspapers, nonprofit researchers, the U.S. government, or academic researchers. Scientific institutions must collaborate with local museums to improve science communication going forward. Not only will important climate and sustainability research be dispersed via trusted sources, but the public will engage with this information in large numbers. In 2012 alone, over 850 million people visited museums - more than the attendance for all major league sports and theme parks combined. A recent impact study shows that history and art museums, especially, are not seen as "having a political agenda," with over 78% of the public seeing these museums as trusted institutions. There are many ways in which the scientific community can collaborate with "the arts." This presentation will speak to the larger benefit of working with sister arts & humanities

  3. Impact of highway construction on land surface energy balance and local climate derived from LANDSAT satellite data.

    Science.gov (United States)

    Nedbal, Václav; Brom, Jakub

    2018-08-15

    Extensive construction of highways has a major impact on the landscape and its structure. They can also influence local climate and heat fluxes in the surrounding area. After the removal of vegetation due to highway construction, the amount of solar radiation energy used for plant evapotranspiration (latent heat flux) decreases, bringing about an increase in landscape surface temperature, changing the local climate and increasing surface run-off. In this study, we evaluated the impact of the D8 highway construction (Central Bohemia, Czech Republic) on the distribution of solar radiation energy into the various heat fluxes (latent, sensible and ground heat flux) and related surface functional parameters (surface temperature and surface wetness). The aim was to describe the severity of the impact and the distance from the actual highway in which it can be observed. LANDSAT multispectral satellite images and field meteorological measurements were used to calculate surface functional parameters and heat balance before and during the highway construction. Construction of a four-lane highway can influence the heat balance of the landscape surface as far as 90m in the perpendicular direction from the highway axis, i.e. up to 75m perpendicular from its edge. During a summer day, the decrease in evapotranspired water can reach up to 43.7m 3 per highway kilometre. This means a reduced cooling effect, expressed as the decrease in latent heat flux, by an average of 29.7MWh per day per highway kilometre and its surroundings. The loss of the cooling ability of the land surface by evaporation can lead to a rise in surface temperature by as much as 7°C. Thus, the results indicate the impact of extensive line constructions on the local climate. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Climate and Lightning: An updated TRMM-LIS Analysis

    Science.gov (United States)

    Petersen, Walter A.; Buechler, D. E.

    2009-01-01

    The TRMM Lightning Imaging Sensor (LIS) has sampled global tropical and sub-tropical lightning flash densities for approximately 11 years. These data were originally processed and results presented by the authors in the 3rd AMS MALD Conference held in 2007 using both pre and post TRMM-boost lightning data. These data were normalized for the orbit boost by scaling the pre-boost data by a fixed constant based on the different swath areas for the pre and post-boost years (post-boost after 2001). Inevitably, one must question this simple approach to accounting for the orbit boost when sampling such a noisy quantity. Hence we are in the process of reprocessing the entire 11-year TRMM LIS dataset to reduce the orbit swath of the post-boost era to that of the pre-boost in order to eliminate sampling bias in the dataset. Study of the diurnal/seasonal/annual sampling suggests that those biases are already minimal and should not contribute to error in examination of annual trends. We will present new analysis of the 11-year annual trends in total lightning flash density for all latitudinal belts and select regions/regimes of the tropics as related to conventional climate signals and precipitation contents in the same period. The results should enable us to address, in some fashion, the sensitivity of the lightning flash density to subtle changes in climate.

  5. Local authorities and greenhouse effect. Analysis and proposals for a mobilization of representatives about the greenhouse effect; Autorites locales et effet de serre. Analyse et propositions pour une mobilisation des elus sur l'effet de serre

    Energy Technology Data Exchange (ETDEWEB)

    Ged, A. [Agora Analyses et Systemes, 13 - Ventabren (France)

    2003-01-01

    The local authorities are essential intermediates for the implementation of environmental policies (Kyoto protocol and European policy) and in particular the fight against the greenhouse effect. This report aims at finding arguments to sensibilize and mobilize the representatives of local authorities about the climatic change and the greenhouse effect problem. The main problem concerns the introduction of the greenhouse effect concern in the decision process of local authorities. Several steps are necessary to carry out this reflection. The analysis must take into consideration the new dimensions of the urban policies and the preoccupations of the representatives. A diagnosis and concrete proposals are deduced from this analysis. (J.S.)

  6. Local climate mitigation and eco-efforts in housing and construction as transition places

    DEFF Research Database (Denmark)

    Holm, Jesper; Stauning, Inger; Søndergård, Bent

    2011-01-01

    the innovative practices undertaken in local Danish arenas of transition concentrating on technology and practice related CO2 reductions within the housing and construction sector. In particular, the paper seeks to identify the various roles of local actors´´ deliberation in situated places of transition, thus...

  7. Integrating climate change adaptation into Dutch local policies and the role of contextual factors.

    NARCIS (Netherlands)

    van den Berg, Maya Marieke; Coenen, Franciscus H.J.M.

    2012-01-01

    Moving towards a more sustainable adaptation process requires closer integration of policies related to the environment. An important actor in this is the local government. This paper examines to what extend adaptation is currently being integrated into Dutch local policies, and what the role is of

  8. Typing Local Control and State Using Flow Analysis

    Science.gov (United States)

    Guha, Arjun; Saftoiu, Claudiu; Krishnamurthi, Shriram

    Programs written in scripting languages employ idioms that confound conventional type systems. In this paper, we highlight one important set of related idioms: the use of local control and state to reason informally about types. To address these idioms, we formalize run-time tags and their relationship to types, and use these to present a novel strategy to integrate typing with flow analysis in a modular way. We demonstrate that in our separation of typing and flow analysis, each component remains conventional, their composition is simple, but the result can handle these idioms better than either one alone.

  9. Analysis of Kerch by Local Indicators of Sustainable Development

    Science.gov (United States)

    Mazygula, E.; Kharlamova, M.; Kozlova, E.

    2017-11-01

    This article presents an analysis of the city of Kerch (Crimea Republic, Kerch Peninsula) in accordance with the local sustainable development indicators. The authors carried out the assessment of the existing environmental problems in the city which was necessary for the further development of the environmentally oriented infrastructure under various development scenarios. Due to the natural and economic factors, Kerch can develop both as an industrial and recreational centre of the peninsula. The analysis of the atmospheric air condition, use of water and energy resources and the waste management system was conducted. The presented results showed the presence of major environmental problems in almost all spheres.

  10. Climate change induced risk analysis of Dar es Salaam city (Tanzania)

    Science.gov (United States)

    Topa, Maria Elena; Herslund, Lise; Cavan, Gina; Printz, Andreas; Simonis, Ingo; Bucchignani, Edoardo; Jean-Baptiste, Nathalie; Hellevik, Siri; Johns, Regina; Kibassa, Deusdedit; Kweka, Clara; Magina, Fredrick; Mangula, Alpha; Mbuya, Elinorata; Uhinga, Guido; Kassenga, Gabriel; Kyessi, Alphonce; Shemdoe, Riziki; Kombe, Wilbard

    2013-04-01

    started to produce research outputs suitable for use in evidence-based planning activities in the case study cities through interdisciplinary methods and analysis. Climate change projections at 8 km resolution are ready for regions containing each of the case study cities; a preliminary hazard assessment for floods, droughts and heat waves has been performed, based on historical data; urban morphology and related green structures have been characterized; preliminary findings in social vulnerability provide insights how communities and households can resist and cope with, as well as recover from climate induced hazards; vulnerability of informal settlements to floods has been assessed for a case study area (Suna sub ward) and a GIS based identification of urban residential hotspots to flooding is completed. Furthermore, a set of indicators has been identified and the most relevant for Dar es Salaam has been selected by local stakeholders to identify particular vulnerable high risk areas and communities. An investigation of the existing urban planning and governance system and its interface with climate risks and vulnerability has inter-alia suggested severe institutional deficits including over-centralized institutions for disaster risk management and climate change adaptation. A multi-risk framework considering climate-related hazards, and physical and social fragilities has been set up.

  11. A data skimming service for locally resident analysis data

    International Nuclear Information System (INIS)

    Cranshaw, J; Gieraltowski, J; Malon, D; May, E; Gardner, R W; Mambelli, M

    2008-01-01

    A Data Skimming Service (DSS) is a site-level service for rapid event filtering and selection from locally resident datasets based on metadata queries to associated 'tag' databases. In US ATLAS, we expect most if not all of the AOD-based datasets to be replicated to each of the five Tier 2 regional facilities in the US Tier 1 'cloud' coordinated by Brookhaven National Laboratory. Entire datasets will consist of on the order of several terabytes of data, and providing easy, quick access to skimmed subsets of these data will be vital to physics working groups. Typically, physicists will be interested in portions of the complete datasets, selected according to event-level attributes (number of jets, missing Et, etc) and content (specific analysis objects for subsequent processing). In this paper we describe methods used to classify data (metadata tag generation) and to store these results in a local database. Next we discuss a general framework which includes methods for accessing this information, defining skims, specifying event output content, accessing locally available storage through a variety of interfaces (SRM, dCache/dccp, gridftp), accessing remote storage elements as specified, and user job submission tools through local or grid schedulers. The advantages of the DSS are the ability to quickly 'browse' datasets and design skims, for example, pre-adjusting cuts to get to a desired skim level with minimal use of compute resources, and to encode these analysis operations in a database for re-analysis and archival purposes. Additionally the framework has provisions to operate autonomously in the event that external, central resources are not available, and to provide, as a reduced package, a minimal skimming service tailored to the needs of small Tier 3 centres or individual users

  12. The impact of FDI and domestic business climate on local entrepreneurship in Transcaucasia: A case of Georgia in the years 2005 – 2015

    Directory of Open Access Journals (Sweden)

    Ucha Surmanidze

    2016-10-01

    Full Text Available The main objective of this paper is to examine the impact of FDI inflow on local entrepreneurship in Georgia. The secondary objective of the article is to determine what effects the business climate in the country has on the growth of local entrepreneurs. To verify the impact of foreign investments on domestic entrepreneurship, dynamics of active local enterprises in Georgia in the years 2005-2014 is used as a dependent variable. In regard with business climate, international business and credit rankings were selected to show how they are interrelated with foreign investments and how they affect domestic entrepreneurs. FDI has no significant effect on local entrepreneurship in Georgia, neither on their growth, nor on their fall, as Its share in the local economy is nominal. It is noteworthy, however, that inflow of foreign capital has positive impact on the country’s business climate, promoting its image and rising international recognition. The favorable business climate can help many local enterprises, especially SMEs, to benefit from liberal environment, financial and tax incentives, less regulation and bureaucracy. This paper intends to enrich relatively poor literature about FDI effects on Transcaucasian countries, providing a clear understanding to what extend the local entrepreneurship are under the influence of FDI and general business climate in the country.

  13. Multi-scale analysis of teleconnection indices: climate noise and nonlinear trend analysis

    Directory of Open Access Journals (Sweden)

    C. Franzke

    2009-02-01

    Full Text Available The multi-scale nature and climate noise properties of teleconnection indices are examined by using the Empirical Mode Decomposition (EMD procedure. The EMD procedure allows for the analysis of non-stationary time series to extract physically meaningful intrinsic mode functions (IMF and nonlinear trends. The climatologically relevant monthly mean teleconnection indices of the North Atlantic Oscillation (NAO, the North Pacific index (NP and the Southern Annular Mode (SAM are analyzed.

    The significance of IMFs and trends are tested against the null hypothesis of climate noise. The analysis of surrogate monthly mean time series from a red noise process shows that the EMD procedure is effectively a dyadic filter bank and the IMFs (except the first IMF are nearly Gaussian distributed. The distribution of the variance contained in IMFs of an ensemble of AR(1 simulations is nearly χ2 distributed. To test the statistical significance of the IMFs of the teleconnection indices and their nonlinear trends we utilize an ensemble of corresponding monthly averaged AR(1 processes, which we refer to as climate noise. Our results indicate that most of the interannual and decadal variability of the analysed teleconnection indices cannot be distinguished from climate noise. The NP and SAM indices have significant nonlinear trends, while the NAO has no significant trend when tested against a climate noise hypothesis.

  14. IPH Submission to Department of the Environment, Heritage and Local Government Climate Change Response Bill 2010

    OpenAIRE

    Institute of Public Health in Ireland

    2011-01-01

    The main purpose of the Clmate Change Bill is to provide for the adoption of a national policy for reducing greenhouse gas (GHG) emissions; to support this through the making of mitigation and adaptation action plans; and to make provision for emission reduction targets to support the objective of transition to a low carbon, climate resilient and environmentally sustainable economy.The remit of the Institute of Public Health in Ireland (IPH) is to promote cooperation for public health between...

  15. Asymptotically optimal data analysis for rejecting local realism

    International Nuclear Information System (INIS)

    Zhang, Yanbao; Glancy, Scott; Knill, Emanuel

    2011-01-01

    Reliable experimental demonstrations of violations of local realism are highly desirable for fundamental tests of quantum mechanics. One can quantify the violation witnessed by an experiment in terms of a statistical p value, which can be defined as the maximum probability according to local realism of a violation at least as high as that witnessed. Thus, high violation corresponds to small p value. We propose a prediction-based-ratio (PBR) analysis protocol whose p values are valid even if the prepared quantum state varies arbitrarily and local realistic models can depend on previous measurement settings and outcomes. It is therefore not subject to the memory loophole [J. Barrett et al., Phys. Rev. A 66, 042111 (2002)]. If the prepared state does not vary in time, the p values are asymptotically optimal. For comparison, we consider protocols derived from the number of standard deviations of violation of a Bell inequality and from martingale theory [R. Gill, e-print arXiv:quant-ph/0110137]. We find that the p values of the former can be too small and are therefore not statistically valid, while those derived from the latter are suboptimal. PBR p values do not require a predetermined Bell inequality and can be used to compare results from different tests of local realism independent of experimental details.

  16. Exploratory Climate Data Visualization and Analysis Using DV3D and UVCDAT

    Science.gov (United States)

    Maxwell, Thomas

    2012-01-01

    Earth system scientists are being inundated by an explosion of data generated by ever-increasing resolution in both global models and remote sensors. Advanced tools for accessing, analyzing, and visualizing very large and complex climate data are required to maintain rapid progress in Earth system research. To meet this need, NASA, in collaboration with the Ultra-scale Visualization Climate Data Analysis Tools (UVCOAT) consortium, is developing exploratory climate data analysis and visualization tools which provide data analysis capabilities for the Earth System Grid (ESG). This paper describes DV3D, a UV-COAT package that enables exploratory analysis of climate simulation and observation datasets. OV3D provides user-friendly interfaces for visualization and analysis of climate data at a level appropriate for scientists. It features workflow inte rfaces, interactive 40 data exploration, hyperwall and stereo visualization, automated provenance generation, and parallel task execution. DV30's integration with CDAT's climate data management system (COMS) and other climate data analysis tools provides a wide range of high performance climate data analysis operations. DV3D expands the scientists' toolbox by incorporating a suite of rich new exploratory visualization and analysis methods for addressing the complexity of climate datasets.

  17. Grassland/atmosphere response to changing climate: Coupling regional and local scales

    International Nuclear Information System (INIS)

    Coughenour, M.B.; Kittel, T.G.F.; Pielke, R.A.; Eastman, J.

    1993-10-01

    The objectives of the study were: to evaluate the response of grassland ecosystems to atmospheric change at regional and site scales, and to develop multiscaled modeling systems to relate ecological and atmospheric models with different spatial and temporal resolutions. A menu-driven shell was developed to facilitate use of models at different temporal scales and to facilitate exchange information between models at different temporal scales. A detailed ecosystem model predicted that C 3 temperate grasslands wig respond more strongly to elevated CO 2 than temperate C 4 grasslands in the short-term while a large positive N-PP response was predicted for a C 4 Kenyan grassland. Long-term climate change scenarios produced either decreases or increases in Colorado plant productivity (NPP) depending on rainfall, but uniform increases in N-PP were predicted in Kenya. Elevated CO 2 is likely to have little effect on ecosystem carbon storage in Colorado while it will increase carbon storage in Kenya. A synoptic climate classification processor (SCP) was developed to evaluate results of GCM climate sensitivity experiments. Roughly 80% agreement was achieved with manual classifications. Comparison of lx and 2xCO 2 GCM Simulations revealed relatively small differences

  18. Climate impact on airborne particulate matter concentrations in California using seven year analysis periods

    Directory of Open Access Journals (Sweden)

    A. Mahmud

    2010-11-01

    Full Text Available The effect of global climate change on the annual average concentration of fine particulate matter (PM2.5 in California was studied using a climate-air quality modeling system composed of global through regional models. Output from the NCAR/DOE Parallel Climate Model (PCM generated under the "business as usual" global emissions scenario was downscaled using the Weather Research and Forecasting (WRF model followed by air quality simulations using the UCD/CIT airshed model. The system represents major atmospheric processes acting on gas and particle phase species including meteorological effects on emissions, advection, dispersion, chemical reaction rates, gas-particle conversion, and dry/wet deposition. The air quality simulations were carried out for the entire state of California with a resolution of 8-km for the years 2000–2006 (present climate with present emissions and 2047–2053 (future climate with present emissions. Each of these 7-year analysis periods was analyzed using a total of 1008 simulated days to span a climatologically relevant time period with a practical computational burden. The 7-year windows were chosen to properly account for annual variability with the added benefit that the air quality predictions under the present climate could be compared to actual measurements. The climate-air quality modeling system successfully predicted the spatial pattern of present climate PM2.5 concentrations in California but the absolute magnitude of the annual average PM2.5 concentrations were under-predicted by ~4–39% in the major air basins. The majority of this under-prediction was caused by excess ventilation predicted by PCM-WRF that should be present to the same degree in the current and future time periods so that the net bias introduced into the comparison is minimized.

    Surface temperature, relative humidity (RH, rain rate, and wind speed were predicted to increase in the future climate

  19. School Climate for Academic Success: A Multilevel Analysis of School Climate and Student Outcomes

    Science.gov (United States)

    Kwong, Darren; Davis, Jonathan Ryan

    2015-01-01

    This multilevel study examined the relationship between school climate and academic achievement. Using the Educational Longitudinal Survey (ELS, 2002), and a sample of 16,258 students and 1954 schools nationwide, we found that student-level perception of school climate--especially the student learning environment--was highly predictive of academic…

  20. Comparative analysis of elements and models of implementation in local-level spatial plans in Serbia

    Directory of Open Access Journals (Sweden)

    Stefanović Nebojša

    2017-01-01

    Full Text Available Implementation of local-level spatial plans is of paramount importance to the development of the local community. This paper aims to demonstrate the importance of and offer further directions for research into the implementation of spatial plans by presenting the results of a study on models of implementation. The paper describes the basic theoretical postulates of a model for implementing spatial plans. A comparative analysis of the application of elements and models of implementation of plans in practice was conducted based on the spatial plans for the local municipalities of Arilje, Lazarevac and Sremska Mitrovica. The analysis includes four models of implementation: the strategy and policy of spatial development; spatial protection; the implementation of planning solutions of a technical nature; and the implementation of rules of use, arrangement and construction of spaces. The main results of the analysis are presented and used to give recommendations for improving the elements and models of implementation. Final deliberations show that models of implementation are generally used in practice and combined in spatial plans. Based on the analysis of how models of implementation are applied in practice, a general conclusion concerning the complex character of the local level of planning is presented and elaborated. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. TR 36035: Spatial, Environmental, Energy and Social Aspects of Developing Settlements and Climate Change - Mutual Impacts and Grant no. III 47014: The Role and Implementation of the National Spatial Plan and Regional Development Documents in Renewal of Strategic Research, Thinking and Governance in Serbia

  1. Building resilience into practical conservation: identifying local management responses to global climate change in the southern Great Barrier Reef

    Science.gov (United States)

    Maynard, J. A.; Marshall, P. A.; Johnson, J. E.; Harman, S.

    2010-06-01

    Climate change is now considered the greatest long-term threat to coral reefs, with some future change inevitable despite mitigation efforts. Managers must therefore focus on supporting the natural resilience of reefs, requiring that resilient reefs and reef regions be identified. We develop a framework for assessing resilience and trial it by applying the framework to target management responses to climate change on the southern Great Barrier Reef. The framework generates a resilience score for a site based on the evaluation of 19 differentially weighted indicators known or thought to confer resilience to coral reefs. Scores are summed, and sites within a region are ranked in terms of (1) their resilience relative to the other sites being assessed, and (2) the extent to which managers can influence their resilience. The framework was applied to 31 sites in Keppel Bay of the southern Great Barrier Reef, which has a long history of disturbance and recovery. Resilience and ‘management influence potential’ were both found to vary widely in Keppel Bay, informing site selection for the staged implementation of resilience-based management strategies. The assessment framework represents a step towards making the concept of resilience operational to reef managers and conservationists. Also, it is customisable, easy to teach and implement and effective in building support among local communities and stakeholders for management responses to climate change.

  2. How school climate relates to chronic absence: A multi-level latent profile analysis.

    Science.gov (United States)

    Van Eck, Kathryn; Johnson, Stacy R; Bettencourt, Amie; Johnson, Sarah Lindstrom

    2017-04-01

    Chronic absence is a significant problem in schools. School climate may play an important role in influencing chronic absence rates among schools, yet little research has evaluated how school climate constructs relate to chronic absence. Using multilevel latent profile analysis, we evaluated how profiles of student perceptions of school climate at both the student and school level differentiated school-level rates of chronic absence. Participants included 25,776 middle and high school students from 106 schools who completed a district administered school climate survey. Students attended schools in a large urban school district where 89% of 6th through 12th grade students were African-American and 61% were eligible for the federally subsidized school meals program. Three student-level profiles of perceptions of school climate emerged that corresponded to "positive," "moderate," and "negative" climate. Two predominant patterns regarding the distribution of these profiles within schools emerged that corresponded to the two school-level profiles of "marginal climate" and "climate challenged" schools. Students reporting "moderate" and "negative" climate in their schools were more likely to attend schools with higher chronic absence rates than students reporting that their school had "positive" climate. Likewise, "climate challenged" schools had significantly higher chronic absence rates than "marginal climate" schools. These results suggest that school climate shares an important relation with chronic absence among adolescent students attending urban schools. Implications for prevention and intervention programs are discussed. Copyright © 2016 Society for the Study of School Psychology. Published by Elsevier Ltd. All rights reserved.

  3. Both life-history plasticity and local adaptation will shape range-wide responses to climate warming in the tundra plant Silene acaulis.

    Science.gov (United States)

    Peterson, Megan L; Doak, Daniel F; Morris, William F

    2018-04-01

    Many predictions of how climate change will impact biodiversity have focused on range shifts using species-wide climate tolerances, an approach that ignores the demographic mechanisms that enable species to attain broad geographic distributions. But these mechanisms matter, as responses to climate change could fundamentally differ depending on the contributions of life-history plasticity vs. local adaptation to species-wide climate tolerances. In particular, if local adaptation to climate is strong, populations across a species' range-not only those at the trailing range edge-could decline sharply with global climate change. Indeed, faster rates of climate change in many high latitude regions could combine with local adaptation to generate sharper declines well away from trailing edges. Combining 15 years of demographic data from field populations across North America with growth chamber warming experiments, we show that growth and survival in a widespread tundra plant show compensatory responses to warming throughout the species' latitudinal range, buffering overall performance across a range of temperatures. However, populations also differ in their temperature responses, consistent with adaptation to local climate, especially growing season temperature. In particular, warming begins to negatively impact plant growth at cooler temperatures for plants from colder, northern populations than for those from warmer, southern populations, both in the field and in growth chambers. Furthermore, the individuals and maternal families with the fastest growth also have the lowest water use efficiency at all temperatures, suggesting that a trade-off between growth and water use efficiency could further constrain responses to forecasted warming and drying. Taken together, these results suggest that populations throughout species' ranges could be at risk of decline with continued climate change, and that the focus on trailing edge populations risks overlooking the largest

  4. Using crowdsourced data from citizen weather stations to analyse air temperature in 'local climate zones' in Berlin, Germany

    Science.gov (United States)

    Fenner, Daniel; Meier, Fred; Bechtel, Benjamin; Otto, Marco; Scherer, Dieter

    2017-04-01

    Provision of observational data with high spatial coverage over extended time periods still remains as one of the biggest challenges in urban climate research. Classical meteorological networks are seldomly designed to monitor atmospheric conditions in a broad variety of urban environments, though the heterogeneity of urban structures leads to distinct thermal characteristics on local scales, i.e., hundreds of metres to several kilometres. One approach to overcome the aforementioned challenges of observation networks is to use data from weather stations that are maintained by citizens. The private company 'netatmo' (www.netatmo.com) produces and distributes such citizen weather stations (CWS) around the world. The stations automatically send their data to the netatmo server, and the user decides if data are publicly shared. Shared data can freely be retrieved via an application programming interface. We collected air temperature (T) data for the year 2015 for the city of Berlin, Germany, and surroundings with more than 1500 'netatmo' CWS in the study area. The entire data set was thoroughly quality checked, and filter techniques, involving data from a reference network, were developed to address different types of errors associated with CWS data. Additionally, the accuracy of 'netatmo' CWS was checked in a climate chamber and in a long-term field experiment. Since the terms 'urban' and 'rural' are ambiguous in urban climate studies, Stewart and Oke (2012) developed the 'local climate zone' (LCZ) concept to enhance understanding and interpretation of air temperature differences in urban regions. LCZ classification for the study region was conducted using the 'WUDAPT' approach by Bechtel et al. (2015). The quality-checked CWS data were used to analyse T characteristics of LCZ classes in Berlin and surroundings. Specifically, we analysed how LCZ classes are represented by CWS in 2015, how T varies within each LCZ class ('intra-LCZ variability'), and if significant

  5. Analysis of local influences in structural details of the bridges

    Directory of Open Access Journals (Sweden)

    Adam RUDZIK

    2015-03-01

    Full Text Available The article analyses the problems of local influences in structural details of bridges as the critical locations, whose damages or excessive force may directly affect the safety of users. These analyses are shown on selected examples. Presented is the example of local changes in the forms of proper vibrations in the node of the truss bridge that can be used in expert issues concerning the causes of damages. The second example are the changes in stresses in the stay cable anchorage element including the nonlinear material models. Models of this type can be successfully used by engineers as they allow for analysis of selected structural details without the need for detailed mapping of the entire structure, but only a selected section.

  6. Spatiotemporal Patterns of Ice Mass Variations and the Local Climatic Factors in the Riparian Zone of Central Valley, California

    Science.gov (United States)

    Inamdar, P.; Ambinakudige, S.

    2016-12-01

    Californian icefields are natural basins of fresh water. They provide irrigation water to the farms in the central valley. We analyzed the ice mass loss rates, air temperature and land surface temperature (LST) in Sacramento and San Joaquin basins in California. The digital elevation models from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) were used to calculate ice mass loss rate between the years 2002 and 2015. Additionally, Landsat TIR data were used to extract the land surface temperature. Data from local weather stations were analyzed to understand the spatiotemporal trends in air temperature. The results showed an overall mass recession of -0.8 ± 0.7 m w.e.a-1. We also noticed an about 60% loss in areal extent of the glaciers in the study basins between 2000 and 2015. Local climatic factors, along with the global climate patterns might have influenced the negative trends in the ice mass loss. Overall, there was an increase in the air temperature by 0.07± 0.02 °C in the central valley between 2000 and 2015. Furthermore, LST increased by 0.34 ± 0.4 °C and 0.55± 0.1 °C in the Sacramento and San Joaquin basins. Our preliminary results show the decrease in area and mass of ice mass in the basins, and changing agricultural practices in the valley.

  7. Preoperative localization strategies for primary hyperparathyroidism: an economic analysis.

    Science.gov (United States)

    Lubitz, Carrie C; Stephen, Antonia E; Hodin, Richard A; Pandharipande, Pari

    2012-12-01

    Strategies for localizing parathyroid pathology preoperatively vary in cost and accuracy. Our purpose was to compute and compare comprehensive costs associated with common localization strategies. A decision-analytic model was developed to evaluate comprehensive, short-term costs of parathyroid localization strategies for patients with primary hyperparathyroidism. Eight strategies were compared. Probabilities of accurate localization were extracted from the literature, and costs associated with each strategy were based on 2011 Medicare reimbursement schedules. Differential cost considerations included outpatient versus inpatient surgeries, operative time, and costs of imaging. Sensitivity analyses were performed to determine effects of variability in key model parameters upon model results. Ultrasound (US) followed by 4D-CT was the least expensive strategy ($5,901), followed by US alone ($6,028), and 4D-CT alone ($6,110). Strategies including sestamibi (SM) were more expensive, with associated expenditures of up to $6,329 for contemporaneous US and SM. Four-gland, bilateral neck exploration (BNE) was the most expensive strategy ($6,824). Differences in cost were dependent upon differences in the sensitivity of each strategy for detecting single-gland disease, which determined the proportion of patients able to undergo outpatient minimally invasive parathyroidectomy. In sensitivity analysis, US alone was preferred over US followed by 4D-CT only when both the sensitivity of US alone for detecting an adenoma was ≥ 94 %, and the sensitivity of 4D-CT following negative US was ≤ 39 %. 4D-CT alone was the least costly strategy when US sensitivity was ≤ 31 %. Among commonly used strategies for preoperative localization of parathyroid pathology, US followed by selective 4D-CT is the least expensive.

  8. New local energy supply as a communal task. Solar statutes between local autonomy and global climatic and resources protection; Neue oertliche Energieversorgung als kommunale Aufgabe. Solarsatzungen zwischen gemeindlicher Selbstverwaltung und globalem Klima- und Ressourcenschutz

    Energy Technology Data Exchange (ETDEWEB)

    Longo, Fabio

    2010-07-01

    Cities and communities have a constitutionally secured autonomy. What means this within the range of the protection of climate and resources? May communities take over global tasks, or are these limited in their local sphere of activity? In the meantime, in most German city halls something is done for the employment of renewable energies. Under this aspect, the author of the contribution under consideration reports at first on a comprehensive jurisprudential answer on the fundamental question which local tasks are entitled to the cities and communities and how this affects the range of climate protection and resources protection. Moreover, up-to-date particularly disputed local solar statutes are evaluated legally.

  9. Guidebook for territories' support in the analysis of their socio-economical vulnerability to climate change

    International Nuclear Information System (INIS)

    2011-01-01

    The work of the inter-ministerial group 'Impacts of Climate Change, Adaptation and Associated Costs for France', which met between March 2007 and October 2009, led to a sector-based assessment of all climate change related impacts and of associated adaptation measures. The aim was to obtain quantified elements that could underpin public policy decision-making and especially development of the National Adaptation Plan. While the sectoral analyses focused on quantifying the costs of adaptation, the approach of the 'Territories' group, co-steered by the Datar (regional development delegation) and Ademe (agency for energy management and environment), addressed the subject of interactions between players and activities, both spatial (sharing of resources between different uses, etc.) and temporal (transition from one situation to another, etc.) and the corresponding means for adjustment. It was in this context that the SOeS proposed a methodology for diagnosis of the socio-economic vulnerability of a given sub-national territory in the face of climate change. This document provides a broad-brush outline of the accompanying guidelines developed by Sogreah Consultants SAS for use by local players. A three step approach is followed to draw up the vulnerability profile of a territory: 1 - characterising the territory by the identification of the priority activities and physical features; 2 - using the analysis tools to produce a matrix of indices of vulnerability to climate change per hazard; 3 - drawing up an initial vulnerability profile by bringing together the information from the matrix and that from feedback, either by activity or group of activities, or by environment, depending on aims. The profile leads to identification of the important issues as well as allowing identification of potential impacts to be studied in more depth. Guidelines were tested in three pilot territories facing different climate change issues: Wateringues, in the Nord - Pas-de-Calais region

  10. Long-term data from a small mammal community reveal loss of diversity and potential effects of local climate change.

    Science.gov (United States)

    Santoro, Simone; Sanchez-Suarez, Cristina; Rouco, Carlos; Palomo, L Javier; Fernández, M Carmen; Kufner, Maura B; Moreno, Sacramento

    2017-10-01

    Climate change affects distribution and persistence of species. However, forecasting species' responses to these changes requires long-term data series that are often lacking in ecological studies. We used 15 years of small mammal trapping data collected between 1978 and 2015 in 3 areas at Doñana National Park (southwest Spain) to (i) describe changes in species composition and (ii) test the association between local climate conditions and size of small mammal populations. Overall, 5 species were captured: wood mouse Apodemus sylvaticus , algerian mouse Mus spretus , greater white-toothed shrew Crocidura russula , garden dormouse Eliomys quercinus , and black rat Rattus rattus . The temporal pattern in the proportion of captures of each species suggests that the small mammal diversity declined with time. Although the larger species (e.g., E. quercinus ), better adapted to colder climate, have disappeared from our trapping records, M. spretus , a small species inhabiting southwest Europe and the Mediterranean coast of Africa, currently is almost the only trapped species. We used 2-level hierarchical models to separate changes in abundance from changes in probability of capture using records of A. sylvaticus in all 3 areas and of M. spretus in 1. We found that heavy rainfall and low temperatures were positively related to abundance of A. sylvaticus , and that the number of extremely hot days was negatively related to abundance of M. spretus . Despite other mechanisms are likely to be involved, our findings support the importance of climate for the distribution and persistence of these species and raise conservation concerns about potential cascading effects in the Doñana ecosystem.

  11. Multi-Scale Entropy Analysis as a Method for Time-Series Analysis of Climate Data

    Directory of Open Access Journals (Sweden)

    Heiko Balzter

    2015-03-01

    Full Text Available Evidence is mounting that the temporal dynamics of the climate system are changing at the same time as the average global temperature is increasing due to multiple climate forcings. A large number of extreme weather events such as prolonged cold spells, heatwaves, droughts and floods have been recorded around the world in the past 10 years. Such changes in the temporal scaling behaviour of climate time-series data can be difficult to detect. While there are easy and direct ways of analysing climate data by calculating the means and variances for different levels of temporal aggregation, these methods can miss more subtle changes in their dynamics. This paper describes multi-scale entropy (MSE analysis as a tool to study climate time-series data and to identify temporal scales of variability and their change over time in climate time-series. MSE estimates the sample entropy of the time-series after coarse-graining at different temporal scales. An application of MSE to Central European, variance-adjusted, mean monthly air temperature anomalies (CRUTEM4v is provided. The results show that the temporal scales of the current climate (1960–2014 are different from the long-term average (1850–1960. For temporal scale factors longer than 12 months, the sample entropy increased markedly compared to the long-term record. Such an increase can be explained by systems theory with greater complexity in the regional temperature data. From 1961 the patterns of monthly air temperatures are less regular at time-scales greater than 12 months than in the earlier time period. This finding suggests that, at these inter-annual time scales, the temperature variability has become less predictable than in the past. It is possible that climate system feedbacks are expressed in altered temporal scales of the European temperature time-series data. A comparison with the variance and Shannon entropy shows that MSE analysis can provide additional information on the

  12. Southern voices on climate policy choices: Analysis of and lessons learned from civil society advocacy on climate change

    Energy Technology Data Exchange (ETDEWEB)

    Reid, Hannah; Ampomah, Gifty; Prera, Maria Isabel Olazabal; Rabbani, Golam; Zvigadza, Shepard

    2012-05-15

    This report provides an analysis of the tools and tactics advocacy groups use to influence policy responses to climate change at international, regional, national and sub-national levels. More than 20 climate networks and their member organisations have contributed to the report with their experiences of advocacy on climate change, including over 70 case studies from a wide range of countries - including many of the poorest - in Africa, Asia, Latin America and the Pacific. These advocacy activities primarily target national governments, but also international and regional processes, donors and the private sector. Analyses and case studies show how civil society plays key roles in pushing for new laws, programmes, policies or strategies on climate change, in holding governments to account on their commitments; in identifying the lack of joined-up government responses to climate change; and in ensuring that national policy making does not forget the poor and vulnerable. The report is the first joint product of the Southern Voices Capacity Building Programme, or for short: Southern Voices on Climate Change.

  13. Local climate determines intra- and interspecific variation in sexual size dimorphism in mountain grasshopper communities.

    Science.gov (United States)

    Laiolo, P; Illera, J C; Obeso, J R

    2013-10-01

    The climate is often evoked to explain broad-scale clines of body size, yet its involvement in the processes that generate size inequality in the two sexes (sexual size dimorphism) remains elusive. Here, we analyse climatic clines of sexual size dimorphism along a wide elevation gradient (i) among grasshopper species in a phylogenetically controlled scenario and (ii) within species differing in distribution and cold tolerance, to highlight patterns generated at different time scales, mainly evolutionary (among species or higher taxa) and ontogenetic or microevolutionary (within species). At the interspecific level, grasshoppers were slightly smaller and less dimorphic at high elevations. These clines were associated with gradients of precipitation and sun exposure, which are likely indicators of other factors that directly exert selective pressures, such as resource availability and conditions for effective thermoregulation. Within species, we found a positive effect of temperature and a negative effect of elevation on body size, especially on condition-dependent measures of body size (total body length rather than hind femur length) and in species inhabiting the highest elevations. In spite of a certain degree of species-specific variation, females tended to adjust their body size more often than males, suggesting that body size in females can evolve faster among species and can be more plastic or dependent on nutritional conditions within species living in adverse climates. Natural selection on female body size may therefore prevail over sexual selection on male body size in alpine environments, and abiotic factors may trigger consistent phenotypic patterns across taxonomic scales. © 2013 The Authors. Journal of Evolutionary Biology © 2013 European Society For Evolutionary Biology.

  14. Electricity Consumption Risk Map - The use of Urban Climate Mapping for smarter analysis: Case study for Birmingham, UK.

    Science.gov (United States)

    Antunes Azevedo, Juliana; Burghardt, René; Chapman, Lee; Katzchner, Lutz; Muller, Catherine L.

    2015-04-01

    Climate is a key driving factor in energy consumption. However, income, vegetation, building mass structure, topography also impact on the amount of energy consumption. In a changing climate, increased temperatures are likely to lead to increased electricity consumption, affecting demand, distribution and generation. Furthermore, as the world population becomes more urbanized, increasing numbers of people will need to deal with not only increased temperatures from climate change, but also from the unintentional modification of the urban climate in the form of urban heat islands. Hence, climate and climate change needs to be taken into account for future urban planning aspects to increase the climate and energy resilience of the community and decrease the future social and economic costs. Geographical Information Systems provide a means to create urban climate maps as part of the urban planning process. Geostatistical analyses linking these maps with demographic and social data, enables a geo-statistical analysis to identify linkages to high-risk groups of the community and vulnerable areas of town and cities. Presently, the climatope classification is oriented towards thermal aspects and the ventilation quality (roughness) of the urban areas but can also be adapted to take into account other structural "environmental factors". This study aims to use the climatope approach to predict areas of potential high electricity consumption in Birmingham, UK. Several datasets were used to produce an average surface temperature map, vegetation map, land use map, topography map, building height map, built-up area roughness calculations, an average air temperature map and a domestic electricity consumption map. From the correlations obtained between the layers it is possible to average the importance of each factor and create a map for domestic electricity consumption to understand the influence of environmental aspects on spatial energy consumption. Based on these results city

  15. Exploring the science–policy interface on climate change: The role of the IPCC in informing local decision-making in the UK

    OpenAIRE

    Candice Howarth; James Painter

    2016-01-01

    Building on the Intergovernmental Panel on Climate Change’s (IPCC) review of\\ud how to make its Assessment Reports (ARs) more accessible in the future, the research\\ud reported here assesses the extent to which the ARs are a useful tool through which scientific\\ud advice informs local decision-making on climate change in the United Kingdom. Results from\\ud interviews with local policy representatives and three workshops with UK academics, practitioners\\ud and local decision makers are present...

  16. Can human local activities worsen the rise of temperature due to Climate Change?

    Science.gov (United States)

    Mateos, E.; Santana, J.; Deeb, A.; Grünwaldt, A.; Prieto, R.

    2013-12-01

    Several studies have shown a global scale temperature rise which in consequence, have brought up the need to propose various impact scenarios for this change on the planet and its life forms. Climate changes have a direct effect on human activities. Particularly these alterations have a negative impact on economy which in turn affects the most vulnerable and marginal population on developing nations. In a recent study based on 30 years climatological observed temperature in ten Mexican watersheds, from the period between 1970 and 1999, positive trend on maximum temperature were found in all watersheds. At each watershed at least 10 climatological stations from the net operated by the National Meteorological Service (Servicio Meterologico Nacional), whose data are maintained in the CLICOM database (Computerized Climate database), were selected. The climatological stations have at least 70% valid data per decade. In eight watersheds a maximum temperature trend oscillates between +0.5 to +1 oC every 30 years with a 95% confidence level. Nonetheless, in Rio Bravo and Rio Verde watersheds the tendencies are +1.75 and +2.75 oC over 30 years. The result in these two last watersheds evinces that: 1) there are fragile systems; 2) the human activities have a strong impact in those places, and 3) a principal anthropogenic influence on temperature rise is the change in land use. Temperature rised on Jalostitlan within Rio Verde watershed

  17. Morphometric and Phylogenic Analysis of Six Population Indonesian Local Goats

    Directory of Open Access Journals (Sweden)

    A. Batubara

    2011-12-01

    Full Text Available The research objectives were to characterize morphometric and genetic distance between populations of Indonesian local goats. The morphological discriminant and canonical analysis were carried out to estimate the phylogenic relationship and determine the discriminant variable between Benggala goats (n= 96, Marica (n= 60, Jawarandu (n= 94, (Kacang (n= 217, Muara (n= 30 and Samosir (n= 42. Discriminant analysis used to clasify body weight and body measurements. In the analysis of variance showed that body weight and body measurement (body length, height at withers, thorax width, thorax height, hert girth, skull width and height, tail length and width, ear length and width of Muara goats was higher (P<0.05 compared to the other groups, and the lowest was in Marica goats. The smallest genetic distance was between Marica and Samosir (11.207 and the highest were between Muara and Benggala (255.110. The highest similarity between individual within population was found in Kacang (99.28% and the lowest in Samosir (82.50%. The canonical analysis showed high correlation on canon circumference, body weight, skull width, skull height, and tail width variables so these six variables can be used as distinguishing variables among population. The result from Mahalonobis distance for phenogram tree and canonical analysis showed that six populations of Indonesian local goats were divided into six breed of goats: the first was Muara, the second was Jawarandu, the third was Kacang, the fourth was Benggala, the fifth was Samosir and the sixth was Marica goats. The diversity of body size and body weight of goats was observed quite large, so the chances of increasing productivity could be made through selection and mating programs.

  18. An analysis of climatic impacts and adaptation strategies in Tanzania

    CSIR Research Space (South Africa)

    Ojoyi, MM

    2015-03-01

    Full Text Available region of Tanzania. Climate change is a vital issue of global concern. Design/methodology/approach - Rain fall data trends collected from different meteorological stations in the region were useful in assessment of climate variability and change... also did not take into consideration institutional arrangements required to successfully implement national adaptation programmes to climate change. Finally, it is important to remember that peoples’ perceptions determine the social mental picture...

  19. Climate change and daily press : Italy vs Usa parallel analysis

    International Nuclear Information System (INIS)

    Borrelli, G.; Mazzotta, V.; Falconi, C.; Grossi, R.; Farabollini, F.

    1996-06-01

    Among ENEA (Italian National Agency for New Technologies, Energy, and the Environment) activities, one deals with analysis and strategies of environmental information. A survey of four daily newspaper coverage, on an issue (Global Climate Change) belonging to this area, has been realized. The involved newspapers are: two Italian ones, namely 'La Repubblica' and 'Il Corriere della Sera', two North-American ones, namely 'New York Times' and 'Washington Post'. Purpose of the work was that of detecting the qualitative and quantitative level of consciousness of the Italian press via a comparison with the North-American press, notoriously sensible and careful on environmental issues. The number of articled analyzed is partitioned in the following numerical data: 319 for the 'New York Times', 309 for the 'Washington Post', 146 for the 'Corriere della Sera', 81 articles for 'La Repubblica'. The time period covered for the analysis spans from 1989, initiatic year for the organization of the 1992 Rio Conference, to December 1994, deadline date for the submission of national

  20. Local energy governance in vermont: an analysis of energy system transition strategies and actor capacity

    Science.gov (United States)

    Rowse, Tarah

    While global, national, and regional efforts to address climate and energy challenges remain essential, local governments and community groups are playing an increasingly stronger and vital role. As an active state in energy system policy, planning and innovation, Vermont offers a testing ground for research into energy governance at the local level. A baseline understanding of the energy planning and energy organizing activities initiated at the local level can support efforts to foster a transition to a sustainable energy system in Vermont. Following an inductive, applied and participatory approach, and grounded in the fields of sustainability transitions, energy planning, and community energy, this research project identifies conditions for change, including opportunities and challenges, within Vermont energy system decision-making and governance at the local level. The following questions are posed: What are the main opportunities and challenges for sustainable energy development at the town level? How are towns approaching energy planning? What are the triggers that will facilitate a faster transition to alternative energy systems, energy efficiency initiatives, and localized approaches? In an effort to answer these questions two studies were conducted: 1) an analysis of municipal energy plans, and 2) a survey of local energy actors. Study 1 examined Vermont energy planning at the state and local level through a review and comparison of 40 municipal plan energy chapters with the state 2011 Comprehensive Energy Plan. On average, municipal plans mentioned just over half of the 24 high-level strategies identified in the Comprehensive Energy Plan. Areas of strong and weak agreement were examined. Increased state and regional interaction with municipal energy planners would support more holistic and coordinated energy planning. The study concludes that while municipalities are keenly aware of the importance of education and partnerships, stronger policy mechanisms

  1. Climate Change, Human Health, and Biomedical Research: Analysis of the National Institutes of Health Research Portfolio

    Science.gov (United States)

    Balbus, John M.; Christian, Carole; Haque, Ehsanul; Howe, Sally E.; Newton, Sheila A.; Reid, Britt C.; Roberts, Luci; Wilhelm, Erin; Rosenthal, Joshua P.

    2013-01-01

    Background: According to a wide variety of analyses and projections, the potential effects of global climate change on human health are large and diverse. The U.S. National Institutes of Health (NIH), through its basic, clinical, and population research portfolio of grants, has been increasing efforts to understand how the complex interrelationships among humans, ecosystems, climate, climate variability, and climate change affect domestic and global health. Objectives: In this commentary we present a systematic review and categorization of the fiscal year (FY) 2008 NIH climate and health research portfolio. Methods: A list of candidate climate and health projects funded from FY 2008 budget appropriations were identified and characterized based on their relevance to climate change and health and based on climate pathway, health impact, study type, and objective. Results: This analysis identified seven FY 2008 projects focused on climate change, 85 climate-related projects, and 706 projects that focused on disease areas associated with climate change but did not study those associations. Of the nearly 53,000 awards that NIH made in 2008, approximately 0.17% focused on or were related to climate. Conclusions: Given the nature and scale of the potential effects of climate change on human health and the degree of uncertainty that we have about these effects, we think that it is helpful for the NIH to engage in open discussions with science and policy communities about government-wide needs and opportunities in climate and health, and about how NIH’s strengths in human health research can contribute to understanding the health implications of global climate change. This internal review has been used to inform more recent initiatives by the NIH in climate and health. PMID:23552460

  2. Climate change, human health, and biomedical research: analysis of the National Institutes of Health research portfolio.

    Science.gov (United States)

    Jessup, Christine M; Balbus, John M; Christian, Carole; Haque, Ehsanul; Howe, Sally E; Newton, Sheila A; Reid, Britt C; Roberts, Luci; Wilhelm, Erin; Rosenthal, Joshua P

    2013-04-01

    According to a wide variety of analyses and projections, the potential effects of global climate change on human health are large and diverse. The U.S. National Institutes of Health (NIH), through its basic, clinical, and population research portfolio of grants, has been increasing efforts to understand how the complex interrelationships among humans, ecosystems, climate, climate variability, and climate change affect domestic and global health. In this commentary we present a systematic review and categorization of the fiscal year (FY) 2008 NIH climate and health research portfolio. A list of candidate climate and health projects funded from FY 2008 budget appropriations were identified and characterized based on their relevance to climate change and health and based on climate pathway, health impact, study type, and objective. This analysis identified seven FY 2008 projects focused on climate change, 85 climate-related projects, and 706 projects that focused on disease areas associated with climate change but did not study those associations. Of the nearly 53,000 awards that NIH made in 2008, approximately 0.17% focused on or were related to climate. Given the nature and scale of the potential effects of climate change on human health and the degree of uncertainty that we have about these effects, we think that it is helpful for the NIH to engage in open discussions with science and policy communities about government-wide needs and opportunities in climate and health, and about how NIH's strengths in human health research can contribute to understanding the health implications of global climate change. This internal review has been used to inform more recent initiatives by the NIH in climate and health.

  3. Local adaptation in brown trout early life-history traits: implications for climate change adaptability

    DEFF Research Database (Denmark)

    Jensen, L.F.; Hansen, Michael Møller; Pertoldi, C.

    2008-01-01

    to adapt. Temperature-related adaptability in traits related to phenology and early life history are expected to be particularly important in salmonid fishes. We focused on the latter and investigated whether four populations of brown trout (Salmo trutta) are locally adapted in early life-history traits...

  4. A systematic review of local vulnerability to climate change: In search of transparency, coherence and comparability

    NARCIS (Netherlands)

    Delaney, A.; Chesterman, S.; Crane, T.A.; Tamas, P.A.; Ericksen, P.J.

    2014-01-01

    Because vulnerability is a conceptual construct rather than a directly observable phenomenon, most vulnerability assessments measure a set of “vulnerability indicators”. In order to identify the core approaches and range of variation in the field, we conducted a systematic literature review on local

  5. Climate change and local policy. Report of the workshop 2 December 1998, KIT, Amsterdam

    International Nuclear Information System (INIS)

    Schol, E.; Van Vuuren, V.C.; Burger, H.

    1999-01-01

    The objective of the title workshop was to exchange knowledge among Dutch experts and local policy makers on the possibilities for cities to reduce their CO 2 -emissions. The workshop was subdivided into three working groups: (1) Monitoring and Benchmarking; (2) Liberalization of the Energy Market; and (3) Mobilization of the Target Groups

  6. Analysis of barriers and levers to the implementation of strategies of adaptation to climate changes - 2014-2015. The case of urban communities. Final report

    International Nuclear Information System (INIS)

    Simonet, Guillaume; Leseur, Alexia

    2015-12-01

    This is the final report of a research project (ABSTRACT-colurba) which aimed at exploring decision mechanisms and organisational dynamics underlying the elaboration of strategies of adaptation to climate changes by using results of a field study among ten previously selected French local communities. The objectives were to determine priority local social and economic challenges associated with expected impacts of climate changes, to identify economic, organisational and cognitive barriers and levers (at the State, representative or collectivity level) to an optimal implementation of measures of reduction of local vulnerabilities to climate changes, to identify possible or already used diagnosis tools for the assessment of costs and of priority investments, and to make comparisons with other referenced cases and to assess possibilities to bypass barriers thanks to a dialogue with stakeholders. After a presentation of the project (objectives, institutional context, guides and methodologies, scientific approach for data acquisition and analysis), the report presents and discusses the obtained results regarding the place given to adaptation in local policies (PCET, the French local climate-energy plans), representations of adaptation, the inclusion of adaptation in the agenda of public climatic action, tools to make adaptation operational, barriers and levers to action implementation

  7. Evolution of climatic niche specialization: a phylogenetic analysis in amphibians.

    Science.gov (United States)

    Bonetti, Maria Fernanda; Wiens, John J

    2014-11-22

    The evolution of climatic niche specialization has important implications for many topics in ecology, evolution and conservation. The climatic niche reflects the set of temperature and precipitation conditions where a species can occur. Thus, specialization to a limited set of climatic conditions can be important for understanding patterns of biogeography, species richness, community structure, allopatric speciation, spread of invasive species and responses to climate change. Nevertheless, the factors that determine climatic niche width (level of specialization) remain poorly explored. Here, we test whether species that occur in more extreme climates are more highly specialized for those conditions, and whether there are trade-offs between niche widths on different climatic niche axes (e.g. do species that tolerate a broad range of temperatures tolerate only a limited range of precipitation regimes?). We test these hypotheses in amphibians, using phylogenetic comparative methods and global-scale datasets, including 2712 species with both climatic and phylogenetic data. Our results do not support either hypothesis. Rather than finding narrower niches in more extreme environments, niches tend to be narrower on one end of a climatic gradient but wider on the other. We also find that temperature and precipitation niche breadths are positively related, rather than showing trade-offs. Finally, our results suggest that most amphibian species occur in relatively warm and dry environments and have relatively narrow climatic niche widths on both of these axes. Thus, they may be especially imperilled by anthropogenic climate change. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  8. Urban field classification by "local climate zones" in a medium-sized Central European city: the case of Olomouc (Czech Republic)

    Science.gov (United States)

    Lehnert, Michal; Geletič, Jan; Husák, Jan; Vysoudil, Miroslav

    2015-11-01

    The stations of the Metropolitan Station Network in Olomouc (Czech Republic) were assigned to local climatic zones, and the temperature characteristics of the stations were compared. The classification of local climatic zones represents an up-to-date concept for the unification of the characterization of the neighborhoods of climate research sites. This study is one of the first to provide a classification of existing stations within local climate zones. Using a combination of GIS-based analyses and field research, the values of geometric and surface cover properties were calculated, and the stations were subsequently classified into the local climate zones. It turned out that the classification of local climatic zones can be efficiently used for representative documentation of the neighborhood of the climate stations. To achieve a full standardization of the description of the neighborhood of a station, the classification procedures, including the methods used for the processing of spatial data and methods used for the indication of specific local characteristics, must be also standardized. Although the main patterns of temperature differences between the stations with a compact rise, those with an open rise and the stations with no rise or sparsely built areas were evident; the air temperature also showed considerable differences within particular zones. These differences were largely caused by various geometric layout of development and by unstandardized placement of the stations. For the direct comparison of temperatures between zones, particularly those stations which have been placed in such a way that they are as representative as possible for the zone in question should be used in further research.

  9. Climate change threatens polar bear populations: a stochastic demographic analysis.

    Science.gov (United States)

    Hunter, Christine M; Caswell, Hal; Runge, Michael C; Regehr, Eric V; Amstrup, Steve C; Stirling, Ian

    2010-10-01

    The polar bear (Ursus maritimus) depends on sea ice for feeding, breeding, and movement. Significant reductions in Arctic sea ice are forecast to continue because of climate warming. We evaluated the impacts of climate change on polar bears in the southern Beaufort Sea by means of a demographic analysis, combining deterministic, stochastic, environment-dependent matrix population models with forecasts of future sea ice conditions from IPCC general circulation models (GCMs). The matrix population models classified individuals by age and breeding status; mothers and dependent cubs were treated as units. Parameter estimates were obtained from a capture-recapture study conducted from 2001 to 2006. Candidate statistical models allowed vital rates to vary with time and as functions of a sea ice covariate. Model averaging was used to produce the vital rate estimates, and a parametric bootstrap procedure was used to quantify model selection and parameter estimation uncertainty. Deterministic models projected population growth in years with more extensive ice coverage (2001-2003) and population decline in years with less ice coverage (2004-2005). LTRE (life table response experiment) analysis showed that the reduction in lambda in years with low sea ice was due primarily to reduced adult female survival, and secondarily to reduced breeding. A stochastic model with two environmental states, good and poor sea ice conditions, projected a declining stochastic growth rate, log lambdas, as the frequency of poor ice years increased. The observed frequency of poor ice years since 1979 would imply log lambdas approximately - 0.01, which agrees with available (albeit crude) observations of population size. The stochastic model was linked to a set of 10 GCMs compiled by the IPCC; the models were chosen for their ability to reproduce historical observations of sea ice and were forced with "business as usual" (A1B) greenhouse gas emissions. The resulting stochastic population

  10. Climate change threatens polar bear populations: A stochastic demographic analysis

    Science.gov (United States)

    Hunter, C.M.; Caswell, H.; Runge, M.C.; Regehr, E.V.; Amstrup, Steven C.; Stirling, I.

    2010-01-01

    The polar bear (Ursus maritimus) depends on sea ice for feeding, breeding, and movement. Significant reductions in Arctic sea ice are forecast to continue because of climate warming. We evaluated the impacts of climate change on polar bears in the southern Beaufort Sea by means of a demographic analysis, combining deterministic, stochastic, environment-dependent matrix population models with forecasts of future sea ice conditions from IPCC general circulation models (GCMs). The matrix population models classified individuals by age and breeding status; mothers and dependent cubs were treated as units. Parameter estimates were obtained from a capture-recapture study conducted from 2001 to 2006. Candidate statistical models allowed vital rates to vary with time and as functions of a sea ice covariate. Model averaging was used to produce the vital rate estimates, and a parametric bootstrap procedure was used to quantify model selection and parameter estimation uncertainty. Deterministic models projected population growth in years with more extensive ice coverage (2001-2003) and population decline in years with less ice coverage (2004-2005). LTRE (life table response experiment) analysis showed that the reduction in ?? in years with low sea ice was due primarily to reduced adult female survival, and secondarily to reduced breeding. A stochastic model with two environmental states, good and poor sea ice conditions, projected a declining stochastic growth rate, log ??s, as the frequency of poor ice years increased. The observed frequency of poor ice years since 1979 would imply log ??s ' - 0.01, which agrees with available (albeit crude) observations of population size. The stochastic model was linked to a set of 10 GCMs compiled by the IPCC; the models were chosen for their ability to reproduce historical observations of sea ice and were forced with "business as usual" (A1B) greenhouse gas emissions. The resulting stochastic population projections showed drastic

  11. Local Perception of Drought Impacts in a Changing Climate: The Mega-Drought in Central Chile

    Directory of Open Access Journals (Sweden)

    Paulina Aldunce

    2017-11-01

    Full Text Available Droughts are a recurrent and complex natural hazard whose frequency and magnitude are expected to increase with climate change. Despite the advances in responding and adapting to droughts (with the development of new policies, for example, droughts continue to cause serious impacts and suffering. Developing well-targeted public policies requires further research on adaptation. Specifically, understanding the public perception of drought can help to identify drivers of and barriers to adaptation and options. This research seeks to understand the public perception of drought in central Chile in order to inform adaptation-related policies and decision-making processes. This study focused on the Mega-drought, which was a protracted dry spell afflicting central Chile since 2010.

  12. ScienceToGo.org: Using 'Ozzie the Ostrich' to Build Local Partnerships around Climate Change Learning

    Science.gov (United States)

    Lustick, D. S.; Lohmeier, J.; Chen, R. F.; Wilson, R.; Rabkin, D.; Thompson, S. R.

    2015-12-01

    How can an informal science learning project about climate change facilitate alliances among unlikely parties? We found a sweet spot of collaboration among private, public, and the non-profit sectors by borrowing strength and leveraging common interests. Using mass transit and out of home media, we created a diverse community around a learning campaign that starred an ostrich named "Ozzie." In 2013-14, ScienceToGo.org ran a series of 12 engaging posters and placards staring 'Ozzie the Ostrich' on the Massachusetts Bay Transit Authority's Red and Orange subway lines targeting a daily audience of 400,000+ riders. The curriculum was divided into three phases: reality, relevance, and hope. Phase I established the reality of climate change (3 months). Phase II helped T-riders appreciate the relevancy of climate change to the local environment of Boston (4 months). Phase III engaged Bostonians with an array of hopeful examples of how people, companies, and organizations are effectively creating a more sustainable future (5 months). The focus of this presentation will be on the relationships that emerged from the work that went into Phase III. Engaging urban populations with climate change science is a difficult challenge since cities seem so removed from the 'natural environment.' However, mass transit provides an inherent means of communicating environmental messages with a cross section of the urban population. Our team felt that any messaging curriculum for an urban subway system must complement the scary reality of a changing climate with hopeful solutions that exist for dealing with it effectively. Urban areas such as Boston must develop adaptation and mitigation strategies that will help them not only survive, but thrive in a changing environment. Making our audience aware of the amazing efforts in this area was the goal of Phase III. There were three parts to our efforts: the signage on the subway, above ground ostriches, and social events. During the presentation

  13. Very small glaciers under climate change: from the local to the global scale

    Science.gov (United States)

    Huss, M.; Fischer, M.

    2015-12-01

    Very small glaciers (climate archive. Very small glaciers have generally shorter response times than valley glaciers and their mass balance is strongly dependent on snow redistribution processes. Worldwide glacier monitoring has focused on medium-sized to large glaciers leaving us with a relatively limited understanding of the behavior of very small glaciers. With warming climate there is an increasing concern that very small glaciers might be the first to disappear. Already in the next decades this might result in the complete deglaciation of mountain ranges with glacier equilibrium lines close to the highest peaks, such as in the Rocky Mountains, the European Alps, the Andes or parts of High Mountain Asia. In this contribution, we present a comprehensive modelling framework to assess past and future changes in very small glaciers at the mountain-range scale. Among other processes our model accounts for snow redistribution, changes in glacier geometry and dynamic changes in debris-coverage, and computes e.g. distributed mass balance, englacial temperature and proglacial runoff. Detailed glacier projections until 2060 are shown for the Swiss Alps based on new data sets, and the 21st century contribution of all very small glaciers worldwide to sea-level rise is quantified using a global model. Grid-based modelling of surface mass balance and retreat for 1133 very small glaciers in Switzerland indicates that 70% of them will completely vanish within the next 25 years. However, a few avalanche-fed glaciers at low elevation might be able to survive even substantial atmospheric warming. We find relatively high static and dynamic sensitivities for gently-sloping glaciers. At the global scale, glaciers presently smaller than 1 km2 make up for only 0.7% of total ice volume but account for 6.7% of sea-level rise contribution during the period 2015-2025. This indicates that very small glaciers are a non-negligible component of global glacier change, at least in the near

  14. Sensitivity of UK butterflies to local climatic extremes: which life stages are most at risk?

    Science.gov (United States)

    McDermott Long, Osgur; Warren, Rachel; Price, Jeff; Brereton, Tom M; Botham, Marc S; Franco, Aldina M A

    2017-01-01

    There is growing recognition as to the importance of extreme climatic events (ECEs) in determining changes in species populations. In fact, it is often the extent of climate variability that determines a population's ability to persist at a given site. This study examined the impact of ECEs on the resident UK butterfly species (n = 41) over a 37-year period. The study investigated the sensitivity of butterflies to four extremes (drought, extreme precipitation, extreme heat and extreme cold), identified at the site level, across each species' life stages. Variations in the vulnerability of butterflies at the site level were also compared based on three life-history traits (voltinism, habitat requirement and range). This is the first study to examine the effects of ECEs at the site level across all life stages of a butterfly, identifying sensitive life stages and unravelling the role life-history traits play in species sensitivity to ECEs. Butterfly population changes were found to be primarily driven by temperature extremes. Extreme heat was detrimental during overwintering periods and beneficial during adult periods and extreme cold had opposite impacts on both of these life stages. Previously undocumented detrimental effects were identified for extreme precipitation during the pupal life stage for univoltine species. Generalists were found to have significantly more negative associations with ECEs than specialists. With future projections of warmer, wetter winters and more severe weather events, UK butterflies could come under severe pressure given the findings of this study. © 2016 The Authors. Journal of Animal Ecology © 2016 British Ecological Society.

  15. ECOLES: a Citizen Observers network engaging communities to map climate change at the local level

    Science.gov (United States)

    Thejll, Peter; Walker, Nicholas; Sandholt, Inge; Brown, Ian; Solberg, Rune; Suwala, Jason; Kelly, Richard; Tangen, Helge; Berglund, Robin; Dean, Andy; Engset, Rune; Siewertsen, Bjarne

    2016-04-01

    Engaging people in environmental studies is an important way to bring across awareness of expected future climate changes, and also a way to measure environmental change in ways that are better or complementary to remote sensing methods. With a hands-on approach, people are more likely to embrace the idea that climate change is occurring, and with modern technologies it is possible to collect quite stunning amounts of relevant data. We suggest several national activities tailored to conditions in each of the participating countries and also to existing national CO-projects. The project focuses on gathering data on biological changes, on weather, and on snow-pack information in Nordic countries as well as Greenland and Canada. Data will be gathered with existing equipment (mobile phones and internet-connected weather stations) and the project provides the means for collation of data into a database for dissemination and quality control. Numerical data collected by small non-professional weather stations or mobile phones with sensors are not directly useful quantitatively for e.g. numerical weather prediction without validation of data quality, but with validation there is a huge untapped potential due to the number of observers. Students are a central part of the project, which also seeks to engage people out and about in nature, and people with their own weather stations or other environmental data-collection activities, as well as passive data collection from mobile phone data sensors in people's bags and pockets. Appropriate software, educational and training materials will be designed with end-users in mind; school-age materials will be produced in the appropriate languages (e.g. Kalaallisut for COs of school age in Greenland).

  16. Interpretation of Climate Change and Agricultural Adaptations by Local Household Farmers: a Case Study at Bin County, Northeast China

    NARCIS (Netherlands)

    Yu, Q.; Wu, W.; Liu, Z.; Verburg, P.H.; Xia, T.; Yang, P.; Lu, Z.; You, L.; Tang, H.

    2014-01-01

    Although climate change impacts and agricultural adaptations have been studied extensively, how smallholder farmers perceive climate change and adapt their agricultural activities is poorly understood. Survey-based data (presents farmers' personal perceptions and adaptations to climate change)

  17. Climate change and food security in Tanzania: analysis of current ...

    African Journals Online (AJOL)

    A review of literature was conducted in order to identify knowledge gaps in climate change and food security research in Tanzania. The review focused on published literature covering the past 20 years addressing climate change effects on various components of the food security. The review of literature reveals, among ...

  18. analysis and mapping of climate change risk and vulnerability

    African Journals Online (AJOL)

    ACSS

    Rift Valley (CRV) of Ethiopia, to determine the degree of climate risk and the relative vulnerability of the districts, to climate .... widely used index for quantifying drought, was extracted from ... semivariogram/Covariance model) in ArcGIS 9.3.

  19. an analysis of the organisational climate in primary schools

    African Journals Online (AJOL)

    There is concern in educational ranks pertaining to the organisational climate in schools in the. North West Province of South ... In the Report of the Task Team on Education Develop- ment (Department of ... establish a more effective organisational climate is therefore of critical importance for the educational leader, in this ...

  20. Correlational Analysis of Servant Leadership and School Climate

    Science.gov (United States)

    Black, Glenda Lee

    2010-01-01

    The purpose of this mixed-method research study was to determine the extent that servant leadership was correlated with perceptions of school climate to identify whether there was a relationship between principals' and teachers' perceived practice of servant leadership and of school climate. The study employed a mixed-method approach by first…

  1. Analysis of farmers' adaptation strategies to climate change in cocoa ...

    African Journals Online (AJOL)

    Changing climate and weather patterns are predicted to have severe negative impacts on food production, food security and natural resources in the immediate and coming years. Climate change alters the development of cocoa pods, insect pests and pathogens which translate into lower crop yields and impact farm ...

  2. Local temperatures inferred from plant communities suggest strong spatial buffering of climate warming across Northern Europe

    DEFF Research Database (Denmark)

    Lenoir, Jonathan; Graae, Bente; Aarrestad, Per

    2013-01-01

    -change impacts. Is this local spatial buffering restricted to topographically complex terrains? To answer this, we here study fine-grained thermal variability across a 2500-km wide latitudinal gradient in Northern Europe encompassing a large array of topographic complexities. We first combined plant community...... data, Ellenberg temperature indicator values, locally measured temperatures (LmT) and globally interpolated temperatures (GiT) in a modelling framework to infer biologically relevant temperature conditions from plant assemblages within community-inferred temperatures: CiT). We...... temperature indicator values in combination with plant assemblages explained 46-72% of variation in LmT and 92-96% of variation in GiT during the growing season (June, July, August). Growing-season CiT range within 1-km(2) units peaked at 60-65°N and increased with terrain roughness, averaging 1.97 °C (SD = 0...

  3. Coupled Ethical-Epistemic Analysis of Climate Change

    Science.gov (United States)

    Vezer, M.

    2015-12-01

    Are there inherent limitations to what we can know about how the climate will change in the years ahead? How can we use what is known about the future climate in a way that promotes ethical decision-making? These questions call for urgent attention because important policy decisions need to be made in order to prepare for climate change in North America and around the world. While the science of climate change is central to this line of inquiry, the fields of epistemology, moral, political and environmental philosophy may provide insights on how these issues should be addressed. Detailing the relationship between evidential and ethical dimensions of climate change, this research aims to improve our understanding of the interconnections among several lines of inquiry and to develop solutions to problems of decision-making under conditions of scientific uncertainty.

  4. Two Contrasting Approaches to Building High School Teacher Capacity to Teach About Local Climate Change Using Powerful Geospatial Data and Visualization Technology

    Science.gov (United States)

    Zalles, D. R.

    2011-12-01

    The presentation will compare and contrast two different place-based approaches to helping high school science teachers use geospatial data visualization technology to teach about climate change in their local regions. The approaches are being used in the development, piloting, and dissemination of two projects for high school science led by the author: the NASA-funded Data-enhanced Investigations for Climate Change Education (DICCE) and the NSF funded Studying Topography, Orographic Rainfall, and Ecosystems with Geospatial Information Technology (STORE). DICCE is bringing an extensive portal of Earth observation data, the Goddard Interactive Online Visualization and Analysis Infrastructure, to high school classrooms. STORE is making available data for viewing results of a particular IPCC-sanctioned climate change model in relation to recent data about average temperatures, precipitation, and land cover for study areas in central California and western New York State. Across the two projects, partner teachers of academically and ethnically diverse students from five states are participating in professional development and pilot testing. Powerful geospatial data representation technologies are difficult to implement in high school science because of challenges that teachers and students encounter navigating data access and making sense of data characteristics and nomenclature. Hence, on DICCE, the researchers are testing the theory that by providing a scaffolded technology-supported process for instructional design, starting from fundamental questions about the content domain, teachers will make better instructional decisions. Conversely, the STORE approach is rooted in the perspective that co-design of curricular materials among researchers and teacher partners that work off of "starter" lessons covering focal skills and understandings will lead to the most effective utilizations of the technology in the classroom. The projects' goals and strategies for student

  5. The JASMIN Analysis Platform - bridging the gap between traditional climate data practicies and data-centric analysis paradigms

    Science.gov (United States)

    Pascoe, Stephen; Iwi, Alan; kershaw, philip; Stephens, Ag; Lawrence, Bryan

    2014-05-01

    The advent of large-scale data and the consequential analysis problems have led to two new challenges for the research community: how to share such data to get the maximum value and how to carry out efficient analysis. Solving both challenges require a form of parallelisation: the first is social parallelisation (involving trust and information sharing), the second data parallelisation (involving new algorithms and tools). The JASMIN infrastructure supports both kinds of parallelism by providing a multi-tennent environment with petabyte-scale storage, VM provisioning and batch cluster facilities. The JASMIN Analysis Platform (JAP) is an analysis software layer for JASMIN which emphasises ease of transition from a researcher's local environment to JASMIN. JAP brings together tools traditionally used by multiple communities and configures them to work together, enabling users to move analysis from their local environment to JASMIN without rewriting code. JAP also provides facilities to exploit JASMIN's parallel capabilities whilst maintaining their familiar analysis environment where ever possible. Modern opensource analysis tools typically have multiple dependent packages, increasing the installation burden on system administrators. When you consider a suite of tools, often with both common and conflicting dependencies, analysis pipelines can become locked to a particular installation simply because of the effort required to reconstruct the dependency tree. JAP addresses this problem by providing a consistent suite of RPMs compatible with RedHat Enterprise Linux and CentOS 6.4. Researchers can install JAP locally, either as RPMs or through a pre-built VM image, giving them the confidence to know moving analysis to JASMIN will not disrupt their environment. Analysis parallelisation is in it's infancy in climate sciences, with few tools capable of exploiting any parallel environment beyond manual scripting of the use of multiple processors. JAP begins to bridge this

  6. A Framework for Benefit-Cost Analysis of Adaptation to Climate Change and Climate Variability

    International Nuclear Information System (INIS)

    Leary, N.A.

    1999-01-01

    The potential damages of climate change and climate variability are dependent upon the responses or adaptations that people make to their changing environment. By adapting the management of resources, the mix and methods of producing goods and services, choices of leisure activities, and other behavior, people can lessen the damages that would otherwise result. A framework for assessing the benefits and costs of adaptation to both climate change and climate variability is described in the paper. The framework is also suitable for evaluating the economic welfare effects of climate change, allowing for autonomous adaptation by private agents. The paper also briefly addresses complications introduced by uncertainty regarding the benefits of adaptation and irreversibility of investments in adaptation. When investment costs are irreversible and there is uncertainty about benefits, the usual net present value criterion for evaluating the investment gives the wrong decision. If delaying an adaptation project is possible, and if delay will permit learning about future benefits of adaptation, it may be preferable to delay the project even if the expected net present value is positive. Implications of this result for adaptation policy are discussed in the paper. 11 refs

  7. Benchmark analysis of forecasted seasonal temperature over different climatic areas

    Science.gov (United States)

    Giunta, G.; Salerno, R.; Ceppi, A.; Ercolani, G.; Mancini, M.

    2015-12-01

    From a long-term perspective, an improvement of seasonal forecasting, which is often exclusively based on climatology, could provide a new capability for the management of energy resources in a time scale of just a few months. This paper regards a benchmark analysis in relation to long-term temperature forecasts over Italy in the year 2010, comparing the eni-kassandra meteo forecast (e-kmf®) model, the Climate Forecast System-National Centers for Environmental Prediction (CFS-NCEP) model, and the climatological reference (based on 25-year data) with observations. Statistical indexes are used to understand the reliability of the prediction of 2-m monthly air temperatures with a perspective of 12 weeks ahead. The results show how the best performance is achieved by the e-kmf® system which improves the reliability for long-term forecasts compared to climatology and the CFS-NCEP model. By using the reliable high-performance forecast system, it is possible to optimize the natural gas portfolio and management operations, thereby obtaining a competitive advantage in the European energy market.

  8. Can climate and soil conditions change the morpho-anatomy among individuals from different localities? A case study in Aldama grandiflora (Asteraceae

    Directory of Open Access Journals (Sweden)

    L. F. Muniz

    2018-02-01

    Full Text Available Abstract Vegetative aerial organs are considerably more exposed to environmental conditions and can reflect the specific adaptations of plants to their local environment. Aldama grandiflora species are known to be widely distributed in Brazil; therefore, individuals from different populations of this species are thought to be exposed to different abiotic and biotic conditions. Several anatomical studies conducted on Brazilian Aldama species have mainly focused on the qualitative anatomical characters or traits of these species, but not on their quantitative traits. In this study, we evaluated whether climate and soil conditions can change the morphometry among individuals of A. grandiflora collected from six sites in the Goiás State, Brazil, by assessing their anatomical characters. Further, soil sampling was performed, and climate data were collected from all the six sites. The analysis indicated few statistical differences among the populations evaluated, showing that A. grandiflora presented consistent leaf and stem anatomical characteristics. The small morpho-anatomical differences found among individuals of the different populations evaluated, reflected the soil conditions in which these populations were grown. Therefore, environmental factors have a significant influence on the morpho-anatomy of Aldama grandiflora.

  9. Impacts of invasive plants on carbon pools depend on both species' traits and local climate.

    Science.gov (United States)

    Martin, Philip A; Newton, Adrian C; Bullock, James M

    2017-04-01

    Invasive plants can alter ecosystem properties, leading to changes in the ecosystem services on which humans depend. However, generalizing about these effects is difficult because invasive plants represent a wide range of life forms, and invaded ecosystems differ in their plant communities and abiotic conditions. We hypothesize that differences in traits between the invader and native species can be used to predict impacts and so aid generalization. We further hypothesize that environmental conditions at invaded sites modify the effect of trait differences and so combine with traits to predict invasion impacts. To test these hypotheses, we used systematic review to compile data on changes in aboveground and soil carbon pools following non-native plant invasion from studies across the World. Maximum potential height (H max ) of each species was drawn from trait databases and other sources. We used meta-regression to assess which of invasive species' H max , differences in this height trait between native and invasive plants, and climatic water deficit, a measure of water stress, were good predictors of changes in carbon pools following invasion. We found that aboveground biomass in invaded ecosystems relative to uninvaded ones increased as the value of H max of invasive relative to native species increased, but that this effect was reduced in more water stressed ecosystems. Changes in soil carbon pools were also positively correlated with the relative H max of invasive species, but were not altered by water stress. This study is one of the first to show quantitatively that the impact of invasive species on an ecosystem may depend on differences in invasive and native species' traits, rather than solely the traits of invasive species. Our study is also the first to show that the influence of trait differences can be altered by climate. Further developing our understanding of the impacts of invasive species using this framework could help researchers to identify not

  10. Relevant climate response tests for stratospheric aerosol injection: A combined ethical and scientific analysis

    Science.gov (United States)

    Lenferna, Georges Alexandre; Russotto, Rick D.; Tan, Amanda; Gardiner, Stephen M.; Ackerman, Thomas P.

    2017-06-01

    In this paper, we focus on stratospheric sulfate injection as a geoengineering scheme, and provide a combined scientific and ethical analysis of climate response tests, which are a subset of outdoor tests that would seek to impose detectable and attributable changes to climate variables on global or regional scales. We assess the current state of scientific understanding on the plausibility and scalability of climate response tests. Then, we delineate a minimal baseline against which to consider whether certain climate response tests would be relevant for a deployment scenario. Our analysis shows that some climate response tests, such as those attempting to detect changes in regional climate impacts, may not be deployable in time periods relevant to realistic geoengineering scenarios. This might pose significant challenges for justifying stratospheric sulfate aerosol injection deployment overall. We then survey some of the major ethical challenges that proposed climate response tests face. We consider what levels of confidence would be required to ethically justify approving a proposed test; whether the consequences of tests are subject to similar questions of justice, compensation, and informed consent as full-scale deployment; and whether questions of intent and hubris are morally relevant for climate response tests. We suggest further research into laboratory-based work and modeling may help to narrow the scientific uncertainties related to climate response tests, and help inform future ethical debate. However, even if such work is pursued, the ethical issues raised by proposed climate response tests are significant and manifold.

  11. How normative interpretations of climate risk assessment affect local decision-making: an exploratory study at the city scale in Cork, Ireland

    Science.gov (United States)

    McDermott, T. K. J.; Surminski, S.

    2018-06-01

    Urban areas already suffer substantial losses in both economic and human terms from climate-related disasters. These losses are anticipated to grow substantially, in part as a result of the impacts of climate change. In this paper, we investigate the process of translating climate risk data into action for the city level. We apply a commonly used decision-framework as our backdrop and explore where in this process climate risk assessment and normative political judgements intersect. We use the case of flood risk management in Cork city in Ireland to investigate what is needed for translating risk assessment into action at the local city level. Evidence presented is based on focus group discussions at two stakeholder workshops, and a series of individual meetings and phone-discussions with stakeholders involved in local decision-making related to flood risk management and adaptation to climate change, in Ireland. Respondents were chosen on the basis of their expertise or involvement in the decision-making processes locally and nationally. Representatives of groups affected by flood risk and flood risk management and climate adaptation efforts were also included. The Cork example highlights that, despite ever more accurate data and an increasing range of theoretical approaches available to local decision-makers, it is the normative interpretation of this information that determines what action is taken. The use of risk assessments for decision-making is a process that requires normative decisions, such as setting `acceptable risk levels' and identifying `adequate' protection levels, which will not succeed without broader buy-in and stakeholder participation. Identifying and embracing those normative views up-front could strengthen the urban adaptation process-this may, in fact, turn out to be the biggest advantage of climate risk assessment: it offers an opportunity to create a shared understanding of the problem and enables an informed evaluation and discussion of

  12. Low-cost multi-vehicle air temperature measurements for heat load assessment in local-scale climate applications

    Science.gov (United States)

    Zuvela-Aloise, Maja; Weyss, Gernot; Aloise, Giulliano; Mifka, Boris; Löffelmann, Philemon; Hollosi, Brigitta; Nemec, Johana; Vucetic, Visnja

    2014-05-01

    In the recent years there has been a strong interest in exploring the potential of low-cost measurement devices as alternative source of meteorological monitoring data, especially in the urban areas where high-density observations become crucial for appropriate heat load assessment. One of the simple, but efficient approaches for gathering large amount of spatial data is through mobile measurement campaigns in which the sensors are attached to driving vehicles. However, non-standardized data collecting procedure, instrument quality, their response-time and design, variable device ventilation and radiation protection influence the reliability of the gathered data. We investigate what accuracy can be expected from the data collected through low-cost mobile measurements and whether the achieved quality of the data is sufficient for validation of the state-of-the-art local-scale climate models. We tested 5 types of temperature sensors and data loggers: Maxim iButton, Lascar EL-USB-2-LCD+ and Onset HOBO UX100-003 as market available devices and self-designed solar powered Arduino-based data loggers combined with the AOSONG AM2315 and Sensirion SHT21 temperature and humidity sensors. The devices were calibrated and tested in stationary mode at the Austrian Weather Service showing accuracy between 0.1°C and 0.8°C, which was mostly within the device specification range. In mobile mode, the best response-time was found for self-designed device with Arduino-based data logger and Sensirion SHT21 sensor. However, the device lacks the mechanical robustness and should be further improved for broad-range applications. We organized 4 measurement tours: two taking place in urban environment (Vienna, Austria in July 2011 and July 2013) and two in countryside with complex terrain of Mid-Adriatic islands (Hvar and Korcula, Croatia in August 2013). Measurements were taken on clear-sky, dry and hot days. We combined multiple devices attached to bicycle and cars with different

  13. Clean Energy Policy Analyses: Analysis of the Status and Impact of Clean Energy Policies at the Local Level

    Energy Technology Data Exchange (ETDEWEB)

    Busche, S.

    2010-12-01

    This report takes a broad look at the status of local clean energy policies in the United States to develop a better understanding of local clean energy policy development and the interaction between state and local policies. To date, the majority of clean energy policy research focuses on the state and federal levels. While there has been a substantial amount of research on local level climate change initiatives, this is one of the first analyses of clean energy policies separate from climate change initiatives. This report is one in a suite of reports analyzing clean energy and climate policy development at the local, state, and regional levels.

  14. Clean Energy Policy Analyses. Analysis of the Status and Impact of Clean Energy Policies at the Local Level

    Energy Technology Data Exchange (ETDEWEB)

    Busche, S. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2010-12-01

    This report takes a broad look at the status of local clean energy policies in the United States to develop a better understanding of local clean energy policy development and the interaction between state and local policies. To date, the majority of clean energy policy research focuses on the state and federal levels. While there has been a substantial amount of research on local level climate change initiatives, this is one of the first analyses of clean energy policies separate from climate change initiatives. This report is one in a suite of reports analyzing clean energy and climate policy development at the local, state, and regional levels.

  15. An Economic Assessment of Local Farm Multi-Purpose Surface Water Retention Systems under Future Climate Uncertainty

    Directory of Open Access Journals (Sweden)

    Pamela Berry

    2017-03-01

    Full Text Available Regions dependent on agricultural production are concerned about the uncertainty associated with climate change. Extreme drought and flooding events are predicted to occur with greater frequency, requiring mitigation strategies to reduce their negative impacts. Multi-purpose local farm water retention systems can reduce water stress during drought periods by supporting irrigation. The retention systems’ capture of excess spring runoff and extreme rainfall events also reduces flood potential downstream. Retention systems may also be used for biomass production and nutrient retention. A sub-watershed scale retention system was analysed using a dynamic simulation model to predict the economic advantages in the future. Irrigated crops using water from the downstream reservoir at Pelly’s Lake, Manitoba, Canada, experienced a net decrease in gross margin in the future due to the associated irrigation and reservoir infrastructure costs. However, the multi-purpose benefits of the retention system at Pelly’s Lake of avoided flood damages, nutrient retention, carbon sequestration, and biomass production provide an economic benefit of $25,507.00/hectare of retention system/year. Multi-purpose retention systems under future climate uncertainty provide economic and environmental gains when used to avoid flood damages, for nutrient retention and carbon sequestration, and biomass production. The revenue gained from these functions can support farmers willing to invest in irrigation while providing economic and environmental benefits to the region.

  16. Time-series analysis of climatologic measurements: a method to distinguish future climatic changes

    International Nuclear Information System (INIS)

    Duband, D.

    1992-01-01

    Time-series analysis of climatic parameters as air temperature, rivers flow rate, lakes or seas level is an indispensable basis to detect a possible significant climatic change. These observations, when they are carefully analyzed and criticized, constitute the necessary reference for testing and validation numerical climatic models which try to simulate the physical and dynamical process of the ocean-atmosphere couple, taking continents into account. 32 refs., 13 figs

  17. Climate change effects on Chikungunya transmission in Europe: geospatial analysis of vector's climatic suitability and virus' temperature requirements.

    Science.gov (United States)

    Fischer, Dominik; Thomas, Stephanie M; Suk, Jonathan E; Sudre, Bertrand; Hess, Andrea; Tjaden, Nils B; Beierkuhnlein, Carl; Semenza, Jan C

    2013-11-12

    Chikungunya was, from the European perspective, considered to be a travel-related tropical mosquito-borne disease prior to the first European outbreak in Northern Italy in 2007. This was followed by cases of autochthonous transmission reported in South-eastern France in 2010. Both events occurred after the introduction, establishment and expansion of the Chikungunya-competent and highly invasive disease vector Aedes albopictus (Asian tiger mosquito) in Europe. In order to assess whether these outbreaks are indicative of the beginning of a trend or one-off events, there is a need to further examine the factors driving the potential transmission of Chikungunya in Europe. The climatic suitability, both now and in the future, is an essential starting point for such an analysis. The climatic suitability for Chikungunya outbreaks was determined by using bioclimatic factors that influence, both vector and, pathogen. Climatic suitability for the European distribution of the vector Aedes albopictus was based upon previous correlative environmental niche models. Climatic risk classes were derived by combining climatic suitability for the vector with known temperature requirements for pathogen transmission, obtained from outbreak regions. In addition, the longest potential intra-annual season for Chikungunya transmission was estimated for regions with expected vector occurrences.In order to analyse spatio-temporal trends for risk exposure and season of transmission in Europe, climate change impacts are projected for three time-frames (2011-2040, 2041-2070 and 2071-2100) and two climate scenarios (A1B and B1) from the Intergovernmental Panel on Climate Change (IPCC). These climatic projections are based on regional climate model COSMO-CLM, which builds on the global model ECHAM5. European areas with current and future climatic suitability of Chikungunya transmission are identified. An increase in risk is projected for Western Europe (e.g. France and Benelux-States) in the

  18. Climate Change, Disaster and Sentiment Analysis over Social Media Mining

    Science.gov (United States)

    Lee, J.; McCusker, J. P.; McGuinness, D. L.

    2012-12-01

    Accelerated climate change causes disasters and disrupts people living all over the globe. Disruptive climate events are often reflected in expressed sentiments of the people affected. Monitoring changes in these sentiments during and after disasters can reveal relationships between climate change and mental health. We developed a semantic web tool that uses linked data principles and semantic web technologies to integrate data from multiple sources and analyze them together. We are converting statistical data on climate change and disaster records obtained from the World Bank data catalog and the International Disaster Database into a Resource Description Framework (RDF) representation that was annotated with the RDF Data Cube vocabulary. We compare these data with a dataset of tweets that mention terms from the Emotion Ontology to get a sense of how disasters can impact the affected populations. This dataset is being gathered using an infrastructure we developed that extracts term uses in Twitter with controlled vocabularies. This data was also converted to RDF structure so that statistical data on the climate change and disasters is analyzed together with sentiment data. To visualize and explore relationship of the multiple data across the dimensions of time and location, we use the qb.js framework. We are using this approach to investigate the social and emotional impact of climate change. We hope that this will demonstrate the use of social media data as a valuable source of understanding on global climate change.

  19. Valuing Precaution in Climate Change Policy Analysis (Invited)

    Science.gov (United States)

    Howarth, R. B.

    2010-12-01

    The U.N. Framework Convention on Climate Change calls for stabilizing greenhouse gas concentrations to prevent “dangerous anthropogenic interference” (DAI) with the global environment. This treaty language emphasizes a precautionary approach to climate change policy in a setting characterized by substantial uncertainty regarding the timing, magnitude, and impacts of climate change. In the economics of climate change, however, analysts often work with deterministic models that assign best-guess values to parameters that are highly uncertain. Such models support a “policy ramp” approach in which only limited steps should be taken to reduce the future growth of greenhouse gas emissions. This presentation will explore how uncertainties related to (a) climate sensitivity and (b) climate-change damages can be satisfactorily addressed in a coupled model of climate-economy dynamics. In this model, capping greenhouse gas concentrations at ~450 ppm of carbon dioxide equivalent provides substantial net benefits by reducing the risk of low-probability, catastrophic impacts. This result formalizes the intuition embodied in the DAI criterion in a manner consistent with rational decision-making under uncertainty.

  20. Regional impacts of climate change and atmospheric CO2 on future ocean carbon uptake: a multi model linear feedback analysis

    International Nuclear Information System (INIS)

    Roy, Tilla; Bopp, Laurent; Gehlen, Marion; Cadule, Patricia; Schneider, Birgit; Frolicher, Thomas L.; Segschneider, Joachim; Tjiputra, Jerry; Heinze, Christoph; Joos, Fortunat

    2011-01-01

    The increase in atmospheric CO 2 over this century depends on the evolution of the oceanic air-sea CO 2 uptake, which will be driven by the combined response to rising atmospheric CO 2 itself and climate change. Here, the future oceanic CO 2 uptake is simulated using an ensemble of coupled climate-carbon cycle models. The models are driven by CO 2 emissions from historical data and the Special Report on Emissions Scenarios (SRES) A2 high-emission scenario. A linear feedback analysis successfully separates the regional future (2010-2100) oceanic CO 2 uptake into a CO 2 -induced component, due to rising atmospheric CO 2 concentrations, and a climate-induced component, due to global warming. The models capture the observation based magnitude and distribution of anthropogenic CO 2 uptake. The distributions of the climate-induced component are broadly consistent between the models, with reduced CO 2 uptake in the sub polar Southern Ocean and the equatorial regions, owing to decreased CO 2 solubility; and reduced CO 2 uptake in the mid-latitudes, owing to decreased CO 2 solubility and increased vertical stratification. The magnitude of the climate-induced component is sensitive to local warming in the southern extra-tropics, to large freshwater fluxes in the extra-tropical North Atlantic Ocean, and to small changes in the CO 2 solubility in the equatorial regions. In key anthropogenic CO 2 uptake regions, the climate-induced component offsets the CO 2 - induced component at a constant proportion up until the end of this century. This amounts to approximately 50% in the northern extra-tropics and 25% in the southern extra-tropics and equatorial regions. Consequently, the detection of climate change impacts on anthropogenic CO 2 uptake may be difficult without monitoring additional tracers, such as oxygen. (authors)

  1. Regional impacts of climate change and atmospheric CO2 on future ocean carbon uptake: a multi model linear feedback analysis

    International Nuclear Information System (INIS)

    Roy, Tilla; Bopp, Laurent; Gehlen, Marion; Cadule, Patricia

    2011-01-01

    The increase in atmospheric CO 2 over this century depends on the evolution of the oceanic air-sea CO 2 uptake, which will be driven by the combined response to rising atmospheric CO 2 itself and climate change. Here, the future oceanic CO 2 uptake is simulated using an ensemble of coupled climate-carbon cycle models. The models are driven by CO 2 emissions from historical data and the Special Report on Emissions Scenarios (SRES) A2 high-emission scenario. A linear feedback analysis successfully separates the regional future (2010-2100) oceanic CO 2 uptake into a CO 2 -induced component, due to rising atmospheric CO 2 concentrations, and a climate-induced component, due to global warming. The models capture the observation based magnitude and distribution of anthropogenic CO 2 uptake. The distributions of the climate-induced component are broadly consistent between the models, with reduced CO 2 uptake in the sub-polar Southern Ocean and the equatorial regions, owing to decreased CO 2 solubility; and reduced CO 2 uptake in the mid latitudes, owing to decreased CO 2 solubility and increased vertical stratification. The magnitude of the climate-induced component is sensitive to local warming in the southern extra tropics, to large freshwater fluxes in the extra tropical North Atlantic Ocean, and to small changes in the CO 2 solubility in the equatorial regions. In key anthropogenic CO 2 uptake regions, the climate-induced component offsets the CO 2 - induced component at a constant proportion up until the end of this century. This amounts to approximately 50% in the northern extra tropics and 25% in the southern extra tropics and equatorial regions. Consequently, the detection of climate change impacts on anthropogenic CO 2 uptake may be difficult without monitoring additional tracers, such as oxygen. (authors)

  2. Climate network analysis of regional precipitation extremes: The true story told by event synchronization

    Science.gov (United States)

    Odenweller, Adrian; Donner, Reik V.

    2017-04-01

    Over the last decade, complex network methods have been frequently used for characterizing spatio-temporal patterns of climate variability from a complex systems perspective, yielding new insights into time-dependent teleconnectivity patterns and couplings between different components of the Earth climate. Among the foremost results reported, network analyses of the synchronicity of extreme events as captured by the so-called event synchronization have been proposed to be powerful tools for disentangling the spatio-temporal organization of particularly extreme rainfall events and anticipating the timing of monsoon onsets or extreme floodings. Rooted in the analysis of spike train synchrony analysis in the neurosciences, event synchronization has the great advantage of automatically classifying pairs of events arising at two distinct spatial locations as temporally close (and, thus, possibly statistically - or even dynamically - interrelated) or not without the necessity of selecting an additional parameter in terms of a maximally tolerable delay between these events. This consideration is conceptually justified in case of the original application to spike trains in electroencephalogram (EEG) recordings, where the inter-spike intervals show relatively narrow distributions at high temporal sampling rates. However, in case of climate studies, precipitation extremes defined by daily precipitation sums exceeding a certain empirical percentile of their local distribution exhibit a distinctively different type of distribution of waiting times between subsequent events. This raises conceptual concerns if event synchronization is still appropriate for detecting interlinkages between spatially distributed precipitation extremes. In order to study this problem in more detail, we employ event synchronization together with an alternative similarity measure for event sequences, event coincidence rates, which requires a manual setting of the tolerable maximum delay between two

  3. Analysis of Local Economic Development Capacity in Hungarian Rural Settlements

    Directory of Open Access Journals (Sweden)

    Ritter Krisztián

    2017-11-01

    Full Text Available Besides local economic development (LED theories, especially LED practices have a growing importance nowadays. By a primary research involving more than 400 actors (local governments, local entrepreneurs, local agencies, the necessary competencies, practical experiences, and the field of further skills and extension concerning cooperation in economic development of localities were analysed. Summing up the research results, both local governments and local entrepreneurs have certain lack of competence that has to be improved, while the need of this exercise (and LED as a whole for an appropriate financial background and a national strategy/policy is well-emphasized by the answers of the actors.

  4. Local climate change induced by groundwater overexploitation in a high Andean arid watershed, Laguna Lagunillas basin, northern Chile

    Science.gov (United States)

    Scheihing, Konstantin; Tröger, Uwe

    2018-05-01

    The Laguna Lagunillas basin in the arid Andes of northern Chile exhibits a shallow aquifer and is exposed to extreme air temperature variations from 20 to -25 °C. Between 1991 and 2012, groundwater levels in the Pampa Lagunillas aquifer fell from near-surface to 15 m below ground level (bgl) due to severe overexploitation. In the same period, local mean monthly minimum temperatures started a declining trend, dropping by 3-8 °C relative to a nearby reference station. Meanwhile, mean monthly maximum summer temperatures shifted abruptly upwards by 2.7 °C on average in around 1996. The observed air temperature downturns and upturns are in accordance with detected anomalies in land-surface temperature imagery. Two major factors may be causing the local climate change. One is related to a water-table decline below the evaporative energy potential extinction depth of 2 m bgl, which causes an up-heating of the bare soil surface and, in turn, influences the lower atmosphere. At the same time, the removal of near-surface groundwater reduces the thermal conductivity of the upper sedimentary layer, which consequently diminishes the heat exchange between the aquifer (constant heat source of 10 °C) and the lower atmosphere during nights, leading to a severe dropping of minimum air temperatures. The observed critical water-level drawdown was 2-3 m bgl. Future and existing water-production projects in arid high Andean basins with shallow groundwater should avoid a decline of near-surface groundwater below 2 m bgl and take groundwater-climate interactions into account when identifying and monitoring potential environmental impacts.

  5. Psychological defense, ideological hideaway, or rational reckoning? The role of uncertainty in local adaptation to climate change

    Science.gov (United States)

    Moser, S. C.

    2011-12-01

    As adaptation planning is rising rapidly on the agenda of decision-makers, the need for adequate information to inform those decisions is growing. Locally relevant climate change (as well as related impacts and vulnerability) information, however, is difficult to obtain and that which can be obtained carries the burden of significant scientific uncertainty. This paper aims to assess how important such uncertainty is in adaptation planning, decision-making, and related stakeholder engagement. Does uncertainty actually hinder adaptation planning? Is scientific uncertainty used to postpone decisions reflecting ideologically agendas? Or is it a convenient defense against cognitive and affective engagement with the emerging and projected - and in some cases daunting - climate change risks? To whom does such uncertainty matter and how important is it relative to other challenges decision-makers and stakeholders face? The paper draws on four sources of information to answer these questions: (1) a statewide survey of California coastal managers conducted in summer 2011, (2) years of continual engagement with, and observation of, decision-makers in local adaptation efforts, (3) findings from focus groups with lay individuals in coastal California; and (4) a review of relevant adaptation literature to guide and contextualize the empirical research. The findings entail some "inconvenient truths" for those claiming critical technical or political importance. Rather, the insights suggest that some uncertainties matter more than others; they matter at certain times, but not at others; and they matter to some decision-makers, but not to others. Implications for scientists communicating and engaging with communities are discussed.

  6. An empirical test of the relative and combined effects of land-cover and climate change on local colonization and extinction.

    Science.gov (United States)

    Yalcin, Semra; Leroux, Shawn James

    2018-04-14

    Land-cover and climate change are two main drivers of changes in species ranges. Yet, the majority of studies investigating the impacts of global change on biodiversity focus on one global change driver and usually use simulations to project biodiversity responses to future conditions. We conduct an empirical test of the relative and combined effects of land-cover and climate change on species occurrence changes. Specifically, we examine whether observed local colonization and extinctions of North American birds between 1981-85 and 2001-05 are correlated with land-cover and climate change and whether bird life history and ecological traits explain interspecific variation in observed occurrence changes. We fit logistic regression models to test the impact of physical land-cover change, changes in net primary productivity, winter precipitation, mean summer temperature, and mean winter temperature on the probability of Ontario breeding bird local colonization and extinction. Models with climate change, land-cover change, and the combination of these two drivers were the top ranked models of local colonization for 30%, 27%, and 29% of species, respectively. Conversely, models with climate change, land-cover change, and the combination of these two drivers were the top ranked models of local extinction for 61%, 7%, and 9% of species, respectively. The quantitative impacts of land-cover and climate change variables also vary among bird species. We then fit linear regression models to test whether the variation in regional colonization and extinction rate could be explained by mean body mass, migratory strategy, and habitat preference of birds. Overall, species traits were weakly correlated to heterogeneity in species occurrence changes. We provide empirical evidence showing that land-cover change, climate change, and the combination of multiple global change drivers can differentially explain observed species local colonization and extinction. This article is protected

  7. A support system for assessing local vulnerability to weather and climate

    Science.gov (United States)

    Coletti, Alex; Howe, Peter D.; Yarnal, Brent; Wood, Nathan J.

    2013-01-01

    The changing number and nature of weather- and climate-related natural hazards is causing more communities to need to assess their vulnerabilities. Vulnerability assessments, however, often require considerable expertise and resources that are not available or too expensive for many communities. To meet the need for an easy-to-use, cost-effective vulnerability assessment tool for communities, a prototype online vulnerability assessment support system was built and tested. This prototype tool guides users through a stakeholder-based vulnerability assessment that breaks the process into four easy-to-implement steps. Data sources are integrated in the online environment so that perceived risks—defined and prioritized qualitatively by users—can be compared and discussed against the impacts that past events have had on the community. The support system is limited in scope, and the locations of the case studies do not provide a sufficiently broad range of sample cases. The addition of more publically available hazard databases combined with future improvements in the support system architecture and software will expand opportunities for testing and fully implementing the support system.

  8. Synergy of climate change and local pressures on saltwater intrusion in heterogeneous coastal aquifers

    Science.gov (United States)

    Abou Najm, M.; Safi, A.; El-Fadel, M.; Doummar, J.; Alameddine, I.

    2016-12-01

    The relative importance of climate change induced sea level rise on the salinization of a highly urbanized karstified coastal aquifers were compared with non-sustainable pumping. A 3D variable-density groundwater flow and solute transport model was used to predict the displacement of the saltwater-freshwater interface in a pilot aquifer located along the Eastern Mediterranean. The results showed that the influence of sea level rise was marginal when compared with the encroachment of salinity associated with anthropogenic abstraction. Model predictions of salinity mass and volumetric displacement of the interface corresponding to a long-term monthly transient model showed that the saltwater intrusion dynamic is highly sensitive to change in the abstraction rates which were estimated based on combinations of water consumption rates and population growth rates. Salinity encroachment, however, appeared to be more sensitive to water consumption rates in comparison to population growth rates, where a 50% increase in the rate of former led to four times more intrusion as compared to an equivalent increase in population growth rate over 20 years. Coupling both increase in population growth and increased consumption rates had a synergistic effect that aggravated the intrusion beyond the sum of the individual impacts. Adaptation strategies targeting a decrease in groundwater exploitation proved to be effective in retarding the intrusion.

  9. Implementing Local Climate Change Adaptation and Mitigation Actions: The Role of Various Policy Instruments in a Multi-Level Governance Context

    Directory of Open Access Journals (Sweden)

    E. Carina H. Keskitalo

    2016-01-01

    Full Text Available Recently, considerable focus, e.g., in the fifth IPCC (Intergovernmental Panel on Climate Change Assessment Report (2014 has been trained on why adaptation and mitigation have not been developed more than at present, with relatively few local government actions taken compared with, for example, more discursive policy agreement on the importance of the issue of climate change. Going beyond a focus on general limits and barriers, this comment suggests that one important issue is that climate change has not yet been sufficiently integrated into the state regulative structure of legislation and policy-making. A comparison between three cases suggests that local developments that are not supported in particular by binding regulation are unlikely to achieve the same general level of implementation as issues for which such regulative demands (and thereby also requirements for prioritization exist. This constitutes an important consideration for the development of adaptation and mitigation as policy areas, including on the local level.

  10. Radiotherapy in desmoid tumors. Treatment response, local control, and analysis of local failures

    Energy Technology Data Exchange (ETDEWEB)

    Santti, Kirsi; Beule, Annette; Tuomikoski, Laura; Jaeaeskelaeinen, Anna-Stina; Saarilahti, Kauko; Tarkkanen, Maija; Blomqvist, Carl [Helsinki University Hospital and University of Helsinki, Comprehensive Cancer Center, Helsinki (Finland); Roenty, Mikko [HUSLAB and University of Helsinki, Department of Pathology, Helsinki (Finland); Ihalainen, Hanna [Helsinki University Hospital and University of Helsinki, Department of Plastic Surgery, Helsinki (Finland)

    2017-04-15

    Desmoid tumors (aggressive fibromatosis) are rare soft tissue tumors which frequently recur after surgery. Desmoid tumors arise from musculoaponeurotic tissue in the extremities, head and neck, abdominal wall, or intra-abdominally. Our aim was to examine the outcome of radiotherapy of desmoid tumors in a single institution series. We evaluated 41 patients with desmoid tumors treated with 49 radiotherapies between 1987 and 2012. Radiologic images for response evaluation were reassessed and responses to treatment registered according to RECIST criteria 1.1. For patients with local failures radiation dose distribution was determined in each local failure volume using image co-registration. Recurrences were classified as in-target, marginal, or out-of-target. Prognostic factors for radiotherapy treatment failure were evaluated. Radiotherapy doses varied from 20-63 Gy (median 50 Gy) with a median fraction size of 2 Gy. The objective response rate to definitive radiotherapy was 55% (12/22 patients). Median time to response was 14 months. A statistically significant dose-response relation for definitive and postoperative radiotherapy was observed both in univariate (p-value 0.002) and in multivariate analysis (p-value 0.02) adjusted for potential confounding factors. Surgery before radiotherapy or surgical margin had no significant effect on time to progression. Nine of 11 (82%) local failures were classified as marginal and two of 11 (18%) in-target. None of the recurrences occurred totally out-of-target. Radiotherapy is a valuable option for treating desmoid tumors. Radiotherapy dose appears to be significantly associated to local control. (orig.) [German] Desmoide (aggressive Fibromatosen) sind seltene Weichteiltumore der muskulaeren Membranen von Kopf, Hals, Extremitaeten und Bauchwand. Ziel war es, die Wirksamkeit der Strahlentherapie bei aggressiver Fibromatose an einer einzelnen Klinik zu untersuchen. Ausgewertet wurden 41 Patienten mit aggressiver Fibromatose, die

  11. Biofuels and climate neutrality - system analysis of production and utilisation

    International Nuclear Information System (INIS)

    Holmgren, Kristina; Eriksson, Erik; Olsson, Olle; Olsson, Mats; Hillring, Bengt; Parikka, Matti

    2007-06-01

    the energy input at production (working machines, chipping and transport) and the expected reduction in soil carbon from utilising the residues. This means that biofuels with a short rotation period will result in lower radiative forcing than fuels with a longer rotation period, assuming all other factors equal. In order to estimate the amount of greenhouse gases emitted from a biofuel chain a life cycle analysis is needed. How system boundaries are set in such a life cycle assessment are of significant importance. Examples of important boundary definitions are whether the fuel is regarded as a bi-product or not and how soil emissions from the production area should be treated. Another important system boundary is the time perspective applied. In its fourth report on climate change the IPCC gives no explicit recommendation on what time perspective should be applied when comparing greenhouse gas emissions by the use of GWP-factors (Global Warming Potentials)Within the Kyoto-framework a 100-year perspective has been chosen. A 100-year perspective will include the thermal inertia of the oceans and their impact on global average temperatures. Carbon cycle models also show that within this time frame a considerable part of an emission of CO 2 has left the atmosphere. These facts speak in favour of a long time perspective when comparing different fuel chains. In this study, net greenhouse gas emissions from imported biofuels have also been analysed. Focus was on emissions related to transports and forest legislation of the exporting countries. Sustainability in fuel production systems is of great importance since that ensures a continuous production potential and a continuous circulation of carbon between growing biomass and the atmosphere, which does not increase the atmospheric concentration of the gas. This makes the question of reforestation and sustainable management important. According to reviewed literature, the reforestation policies in Finland and Lithuania seem

  12. The effects of phenotypic plasticity and local adaptation on forecasts of species range shifts under climate change

    NARCIS (Netherlands)

    Valladares, F.; Matesanz, S.; Guilhaumon, F.; Araujo, M.; Balaguer, L.; Benito-Garzon, M.; Cornwell, W.K.; Gianoli, E.; van Kleunen, M.; Naya, D.E.; Nicotra, A.B.; Poorter, H.; Zavala, M.A.

    2014-01-01

    Species are the unit of analysis in many global change and conservation biology studies; however, species are not uniform entities but are composed of different, sometimes locally adapted, populations differing in plasticity. We examined how intraspecific variation in thermal niches and phenotypic

  13. Rapid Online Analysis of Local Feature Detectors and Their Complementarity

    Directory of Open Access Journals (Sweden)

    Shoaib Ehsan

    2013-08-01

    Full Text Available A vision system that can assess its own performance and take appropriate actions online to maximize its effectiveness would be a step towards achieving the long-cherished goal of imitating humans. This paper proposes a method for performing an online performance analysis of local feature detectors, the primary stage of many practical vision systems. It advocates the spatial distribution of local image features as a good performance indicator and presents a metric that can be calculated rapidly, concurs with human visual assessments and is complementary to existing offline measures such as repeatability. The metric is shown to provide a measure of complementarity for combinations of detectors, correctly reflecting the underlying principles of individual detectors. Qualitative results on well-established datasets for several state-of-the-art detectors are presented based on the proposed measure. Using a hypothesis testing approach and a newly-acquired, larger image database, statistically-significant performance differences are identified. Different detector pairs and triplets are examined quantitatively and the results provide a useful guideline for combining detectors in applications that require a reasonable spatial distribution of image features. A principled framework for combining feature detectors in these applications is also presented. Timing results reveal the potential of the metric for online applications.

  14. Locality-Driven Parallel Static Analysis for Power Delivery Networks

    KAUST Repository

    Zeng, Zhiyu

    2011-06-01

    Large VLSI on-chip Power Delivery Networks (PDNs) are challenging to analyze due to the sheer network complexity. In this article, a novel parallel partitioning-based PDN analysis approach is presented. We use the boundary circuit responses of each partition to divide the full grid simulation problem into a set of independent subgrid simulation problems. Instead of solving exact boundary circuit responses, a more efficient scheme is proposed to provide near-exact approximation to the boundary circuit responses by exploiting the spatial locality of the flip-chip-type power grids. This scheme is also used in a block-based iterative error reduction process to achieve fast convergence. Detailed computational cost analysis and performance modeling is carried out to determine the optimal (or near-optimal) number of partitions for parallel implementation. Through the analysis of several large power grids, the proposed approach is shown to have excellent parallel efficiency, fast convergence, and favorable scalability. Our approach can solve a 16-million-node power grid in 18 seconds on an IBM p5-575 processing node with 16 Power5+ processors, which is 18.8X faster than a state-of-the-art direct solver. © 2011 ACM.

  15. Local porosity analysis of pore structure in cement paste

    International Nuclear Information System (INIS)

    Hu Jing; Stroeven, Piet

    2005-01-01

    Three-dimensional (3-D) local porosity theory (LPT) was originally proposed by Hilfer and recently used for the analysis of pore space geometry in model sandstone. LPT pursues to define the probability density functions of porosity and porosity connectivity. In doing so, heterogeneity differences in various sandstone samples were assessed. However, fundamental issues as to the stochastic concept of geometric heterogeneity are ignored in Hilfer's LPT theory. This paper focuses on proper sampling procedures that should be based on stochastic approaches to multistage sampling and geometric heterogeneity. Standard LPT analysis provides a 3-D microscopic modeling approach to materials. Traditional experimental techniques yield two-dimensional (2-D) section images, however. Therefore, this paper replaces the method for assessing material data in standard LPT theory to a more practical one, based on stereological, 3-D interpretation of quantitative image analysis data. The developed methodology is used to characterize the pore structure in hardened cement paste with various water/cement ratios (w/c) at different hydration stages

  16. The influence of climate change on flood risks in France - first estimates and uncertainty analysis

    Science.gov (United States)

    Dumas, P.; Hallegatte, S.; Quintana-Seguì, P.; Martin, E.

    2013-03-01

    This paper proposes a methodology to project the possible evolution of river flood damages due to climate change, and applies it to mainland France. Its main contributions are (i) to demonstrate a methodology to investigate the full causal chain from global climate change to local economic flood losses; (ii) to show that future flood losses may change in a very significant manner over France; (iii) to show that a very large uncertainty arises from the climate downscaling technique, since two techniques with comparable skills at reproducing reference river flows give very different estimates of future flows, and thus of future local losses. The main conclusion is thus that estimating future flood losses is still out of reach, especially at local scale, but that future national-scale losses may change significantly over this century, requiring policy changes in terms of risk management and land-use planning.

  17. Obtaining local reciprocal lattice vectors from finite-element analysis.

    Science.gov (United States)

    Sutter, John P; Connolley, Thomas; Hill, Tim P; Huang, Houcheng; Sharp, Doug W; Drakopoulos, Michael

    2008-11-01

    Finite-element analysis is frequently used by engineers at synchrotron beamlines to calculate the elastic deformation of a single crystal undergoing mechanical bending or thermal load. ANSYS Workbench software is widely used for such simulations. However, although ANSYS Workbench software provides useful information on the displacements, strains and stresses within the crystal, it does not yield the local reciprocal lattice vectors that would be required for X-ray diffraction calculations. To bridge this gap, a method based on the shape functions and interpolation procedures of the software itself has been developed. An application to the double-crystal bent Laue monochromator being designed for the I12 (JEEP) wiggler beamline at the Diamond Light Source is presented.

  18. Characterizing structural transitions using localized free energy landscape analysis.

    Directory of Open Access Journals (Sweden)

    Nilesh K Banavali

    Full Text Available Structural changes in molecules are frequently observed during biological processes like replication, transcription and translation. These structural changes can usually be traced to specific distortions in the backbones of the macromolecules involved. Quantitative energetic characterization of such distortions can greatly advance the atomic-level understanding of the dynamic character of these biological processes.Molecular dynamics simulations combined with a variation of the Weighted Histogram Analysis Method for potential of mean force determination are applied to characterize localized structural changes for the test case of cytosine (underlined base flipping in a GTCAGCGCATGG DNA duplex. Free energy landscapes for backbone torsion and sugar pucker degrees of freedom in the DNA are used to understand their behavior in response to the base flipping perturbation. By simplifying the base flipping structural change into a two-state model, a free energy difference of upto 14 kcal/mol can be attributed to the flipped state relative to the stacked Watson-Crick base paired state. This two-state classification allows precise evaluation of the effect of base flipping on local backbone degrees of freedom.The calculated free energy landscapes of individual backbone and sugar degrees of freedom expectedly show the greatest change in the vicinity of the flipping base itself, but specific delocalized effects can be discerned upto four nucleotide positions away in both 5' and 3' directions. Free energy landscape analysis thus provides a quantitative method to pinpoint the determinants of structural change on the atomic scale and also delineate the extent of propagation of the perturbation along the molecule. In addition to nucleic acids, this methodology is anticipated to be useful for studying conformational changes in all macromolecules, including carbohydrates, lipids, and proteins.

  19. Adaptations to "Thermal Time" Constraints in Papilio: Latitudinal and Local Size Clines Differ in Response to Regional Climate Change.

    Science.gov (United States)

    Scriber, J Mark; Elliot, Ben; Maher, Emily; McGuire, Molly; Niblack, Marjie

    2014-01-21

    Adaptations to "thermal time" (=Degree-day) constraints on developmental rates and voltinism for North American tiger swallowtail butterflies involve most life stages, and at higher latitudes include: smaller pupae/adults; larger eggs; oviposition on most nutritious larval host plants; earlier spring adult emergences; faster larval growth and shorter molting durations at lower temperatures. Here we report on forewing sizes through 30 years for both the northern univoltine P. canadensis (with obligate diapause) from the Great Lakes historical hybrid zone northward to central Alaska (65° N latitude), and the multivoltine, P. glaucus from this hybrid zone southward to central Florida (27° N latitude). Despite recent climate warming, no increases in mean forewing lengths of P. glaucus were observed at any major collection location (FL to MI) from the 1980s to 2013 across this long latitudinal transect (which reflects the "converse of Bergmann's size Rule", wi