WorldWideScience

Sample records for local chf limits

  1. Counter-current flow limited CHF in thin rectangular channels

    International Nuclear Information System (INIS)

    Cheng, L.Y.

    1990-01-01

    An analytical expression for counter-current-flow-limitation (CCFL) was used to predict critical heat flux (CHF) for downward flow in thin vertical rectangular channels which are prototypes of coolant channels in test and research nuclear reactors. Top flooding is the mechanism for counter-current flow limited CHF. The CCFL correlation also was used to determine the circulation and flooding-limited CHF. Good agreements were observed between the period the model predictions and data on the CHF for downflow. The minimum CHF for downflow is lower than the flooding-limited CHF and it is predicted to occur at a liquid flow rate higher than that at the flooding limit. 17 refs., 7 figs

  2. A scaling law for the local CHF on the external bottom side of a fully submerged reactor vessel

    International Nuclear Information System (INIS)

    Cheung, F.B.; Haddad, K.H.; Liu, Y.C.

    1997-01-01

    A scaling law for estimating the local critical heat flux on the outer surface of a heated hemispherical vessel that is fully submerged in water has been developed from the results of an advanced hydrodynamic CHF model for pool boiling on a downward facing curved heating surface. The scaling law accounts for the effects of the size of the vessel, the level of liquid subcooling, the intrinsic properties of the fluid, and the spatial variation of the local critical heat flux along the heating surface. It is found that for vessels with diameters considerably larger than the characteristic size of the vapor masses, the size effect on the local critical heat flux is limited almost entirely to the effect of subcooling associated with the local liquid head. When the subcooling effect is accounted for separately, the local CHF limit is nearly independent of the vessel size. Based upon the scaling law developed in this work, it is possible to merge, within the experimental uncertainties, all the available local CHF data obtained for various vessel sizes under both saturated and subcooled boiling conditions into a single curve. Applications of the scaling law to commercial-size vessels have been made for various system pressures and water levels above the heated vessel. Over the range of conditions explored in this study, the local CHF limit is found to increase by a factor of two or more from the bottom center to the upper edge of the vessel. Meanwhile, the critical heat flux at a given angular position of the heated vessel is also found to increase appreciably with the system pressure and the water level

  3. A Validation of Subchannel Based CHF Prediction Model for Rod Bundles

    International Nuclear Information System (INIS)

    Hwang, Dae-Hyun; Kim, Seong-Jin

    2015-01-01

    A large number of CHF data base were procured from various sources which included square and non-square lattice test bundles. CHF prediction accuracy was evaluated for various models including CHF lookup table method, empirical correlations, and phenomenological DNB models. The parametric effect of the mass velocity and unheated wall has been investigated from the experimental result, and incorporated into the development of local parameter CHF correlation applicable to APWR conditions. According to the CHF design criterion, the CHF should not occur at the hottest rod in the reactor core during normal operation and anticipated operational occurrences with at least a 95% probability at a 95% confidence level. This is accomplished by assuring that the minimum DNBR (Departure from Nucleate Boiling Ratio) in the reactor core is greater than the limit DNBR which accounts for the accuracy of CHF prediction model. The limit DNBR can be determined from the inverse of the lower tolerance limit of M/P that is evaluated from the measured-to-predicted CHF ratios for the relevant CHF data base. It is important to evaluate an adequacy of the CHF prediction model for application to the actual reactor core conditions. Validation of CHF prediction model provides the degree of accuracy inferred from the comparison of solution and data. To achieve a required accuracy for the CHF prediction model, it may be necessary to calibrate the model parameters by employing the validation results. If the accuracy of the model is acceptable, then it is applied to the real complex system with the inferred accuracy of the model. In a conventional approach, the accuracy of CHF prediction model was evaluated from the M/P statistics for relevant CHF data base, which was evaluated by comparing the nominal values of the predicted and measured CHFs. The experimental uncertainty for the CHF data was not considered in this approach to determine the limit DNBR. When a subchannel based CHF prediction model

  4. Critical heat flux (CHF) phenomenon on a downward facing curved surface

    Energy Technology Data Exchange (ETDEWEB)

    Cheung, F.B.; Haddad, K.H.; Liu, Y.C. [Pennsylvania State Univ., University Park, PA (United States). Dept. of Mechanical Engineering

    1997-06-01

    This report describes a theoretical and experimental study of the boundary layer boiling and critical heat flux phenomena on a downward facing curved heating surface, including both hemispherical and toroidal surfaces. A subscale boundary layer boiling (SBLB) test facility was developed to measure the spatial variation of the critical heat flux and observe the underlying mechanisms. Transient quenching and steady-state boiling experiments were performed in the SBLB facility under both saturated and subcooled conditions to obtain a complete database on the critical heat flux. To complement the experimental effort, an advanced hydrodynamic CHF model was developed from the conservation laws along with sound physical arguments. The model provides a clear physical explanation for the spatial variation of the CHF observed in the SBLB experiments and for the weak dependence of the CHF data on the physical size of the vessel. Based upon the CHF model, a scaling law was established for estimating the local critical heat flux on the outer surface of a heated hemispherical vessel that is fully submerged in water. The scaling law, which compares favorably with all the available local CHF data obtained for various vessel sizes, can be used to predict the local CHF limits on large commercial-size vessels. This technical information represents one of the essential elements that is needed in assessing the efficacy of external cooling of core melt by cavity flooding as a severe accident management strategy. 83 figs., 3 tabs.

  5. Critical heat flux (CHF) phenomenon on a downward facing curved surface

    International Nuclear Information System (INIS)

    Cheung, F.B.; Haddad, K.H.; Liu, Y.C.

    1997-06-01

    This report describes a theoretical and experimental study of the boundary layer boiling and critical heat flux phenomena on a downward facing curved heating surface, including both hemispherical and toroidal surfaces. A subscale boundary layer boiling (SBLB) test facility was developed to measure the spatial variation of the critical heat flux and observe the underlying mechanisms. Transient quenching and steady-state boiling experiments were performed in the SBLB facility under both saturated and subcooled conditions to obtain a complete database on the critical heat flux. To complement the experimental effort, an advanced hydrodynamic CHF model was developed from the conservation laws along with sound physical arguments. The model provides a clear physical explanation for the spatial variation of the CHF observed in the SBLB experiments and for the weak dependence of the CHF data on the physical size of the vessel. Based upon the CHF model, a scaling law was established for estimating the local critical heat flux on the outer surface of a heated hemispherical vessel that is fully submerged in water. The scaling law, which compares favorably with all the available local CHF data obtained for various vessel sizes, can be used to predict the local CHF limits on large commercial-size vessels. This technical information represents one of the essential elements that is needed in assessing the efficacy of external cooling of core melt by cavity flooding as a severe accident management strategy. 83 figs., 3 tabs

  6. Audit calculation and comments on a new CHF correlation

    Energy Technology Data Exchange (ETDEWEB)

    Auh, Geun Sun [Korea Institute of Nuclear Safety, Daejon (Korea, Republic of); Hwang, Dae Hyun [Korea Atomic Energy Research Institute, Daejon (Korea, Republic of)

    2008-10-15

    An audit calculation was conducted for a local parameter CHF correlation which was intended for the thermal hydraulic design calculations of a new type of fuel assembly, named 17x17 type ACE7. The proposed empirical correlation calculates the CHF as a function of local conditions in a rod bundle which were evaluated by the subchannel analysis code THINC. The CHF data base for this correlation consisted of 4 test bundles with a total of 295 data points. Independent audit calculation was performed in order to substantiate the analyses results for the proposed correlation. Total 295 calculations were performed with a subchannel code MATRA and the results were compared with the results of THINC calculations. A new feature of the proposed correlation is a correction factor for axially non uniform power shapes. The proposed correction factor model contends a decrease of upstream memory effect with a decrease of the grid spacing. The physical background as well as the CHF data base supporting the magnitude of the correction factor was closely investigated. From the results of the investigation, the applicability limitations such as 3.5% penalty factor on the DNBR and 17x17 type ACE7 fuel assembly application only were self imposed on the proposed correlation.

  7. CHF considerations for highly moderated 100% MOX fuels PWRs

    Energy Technology Data Exchange (ETDEWEB)

    Saphier, D.; Raymond, P. [CEA Saclay, DMT/SERMA/LETR, Gif-sur-Yvette (France)

    1995-09-01

    A feasibility study on using 100% MOX fuel in a PWR with increased moderating ratio, RMA, was initiated. In the proposed design all the parameters were chosen identical to the French 1450MW PWR, except the fuel pin diameter which was reduced to achieve higher moderating ratios, V{sub M}/V{sub F}, where V{sub M} and V{sub F} are the moderator and fuel volume respectively. Moderating ratios from 2 to 4 were considered. In the present study the thermal-hydraulic feasibility of using fuel assemblies with smaller diameter fuel pins was investigated. The major design constrain in this study was the critical heat flux (CHF). In order to maintain the fuel pin integrity under nominal operating and transient conditions, the minimum DNBR, (Departure from Nucleate Boiling Ratio given by CHF/q{close_quotes}{sub local}, where q{close_quotes}{sub local} is the local heat flux), has to be above a given value. The limitations of the existing CHF correlations for the present study are outlined. Two designs based on the conventional 17x17 fuel assembly and on the advanced 19x19 assembly meeting the MDNBR criteria and satisfying the control margin requirements, are proposed.

  8. The 2005 CHF look-up table

    International Nuclear Information System (INIS)

    Groeneveld, D.C.; Vasic, A.Z.; Leung, L.K.H.; Durmayaz, A.; Shan, J.Q.; Yang, J.; Cheng, S.C.

    2005-01-01

    Full text of publication follows: CHF Look-up tables have been used widely for the prediction of the Critical Heat Flux (CHF) The CHF look-up table is basically a normalized data bank. The first CHF look-up table was constructed by Doroshchuk et al. (1975), using a limited database of 5 000 data points. This table, and all subsequent tables, contain normalized CHF values for a vertical 8 mm water-cooled tube for various pressures, mass fluxes and qualities. The CHF table development work has since been in progress at various institutions (e.g. CENG-Grenoble, University of Ottawa (UO), Ottawa, IPPE, Obninsk, and AECL, Chalk River) using an ever increasing data base. The 1995 CHF look-up table employs a data base containing about 30 000 CHF points and provides CHF values for an 8 mm ID, water-cooled tube, for 19 pressures, 20 mass fluxes, and 23 qualities. covering the full range of conditions of practical interest. The 2005 CHF LUT is an update to the 1995 LUT and addresses several concerns raised in the literature. The major improvements made are: - enhancement of the quality of the data base of the CHF look-up table (identify outliers, improve screening procedures); - increase in the data base by adding recently obtained data; - employment of greater subdivision of the look-up table by using smaller intervals in the independent parameters (pressure, mass flux and quality) at conditions where the variation in CHF is significant; - improvement of the smoothness of the CHF look-up table. This was done by the use of logarithmic functions for CHF, using optimum Spline functions etc. A discussion of the impact of these changes on the prediction accuracy and table smoothness is presented. It will be shown that the 2005 CHF look-up table is characterized by a significant improvement in accuracy and smoothness. [1] D. Groeneveld is the corresponding author. He is an Adjunct Professor at the University of Ottawa. (authors)

  9. Establishment and assessment of CHF data base for square-lattice rod bundles

    International Nuclear Information System (INIS)

    Hwang, Dae Hyun; Seo, K. W.; Kim, K. K.; Zee, S. Q.

    2002-02-01

    A CHF data base is constructed for square-lattice rod bundles, and assessed with various existing CHF prediction models. The CHF data base consists of 10725 data points obtained from 147 test bundles with uniform axial power distributions and 29 test bundles with non-uniform axial power distributions. The local thermal-hydraulic conditions in the subchannels are calculated by employing a subchannel analysis code MATRA. The influence of turbulent mixing parameter on CHF is evaluated quantitatively for selected test bundles with representative cross sectional configurations. The performance of various CHF prediction models including empirical correlations for round tubes or rod bundles, theoretical DNB models such as sublayer dryout model and bubble crowding model, and CHF lookup table for round tubes, are assessed for the localized rod bundle CHF data base. In view of the analysis result, it reveals that the 1995 AECL-IPPE CHF lookup table method is one of promising models in the aspect of the prediction accuracy and the applicable range. As the result of analysis employing the CHF lookup table for 9113 data points with uniform axial heat profile, the mean and the standard deviation of P/M are calculated as 1.003 and 0.115 by HBM, 1.022 and 0.319 by DSM respectively

  10. Theoretical and experimental investigations of CHF in round tubes and rod bundles

    International Nuclear Information System (INIS)

    Hwang, Dae Hyun

    1994-02-01

    A knowledge of the condition leading to critical heat flux (CHF) is of great importance in the design of nuclear reactors. Although many efforts have been devoted to the subject of CHF during the last few decades, information on the burnout phenomenon at low velocity condition is very limited. Furthermore, in most cases, the applicable range of a bundle CHF correlation is restricted to a narrow region mainly due to the limitation of the CHF data base used in the correlation development. In view of these points, theoretical and experimental investigations are performed in this study for round tubes and rod bundles. A CHF prediction model for low velocity conditions is proposed throughout the assessment of CHF data from various sources with mass velocities less than 500 kg/m 2 s. The CHF data base is classified into seven groups with respect to the flow pattern characteristics at CHF conditions. CHF data for each group is analyzed by several CHF prediction models including; the flooding correlations, the flow regime transition criteria, the complete evaporation model, and the empirical correlations. At zero inlet flow or extremely low mass velocity conditions, the flooding correlation can be used for predicting CHF employing appropriate constant. In the slug or churn-turbulent flow regime, CHF seems to occur at the annular flow transition conditions. When CHF occurs at the annular flow region, the empirical correlation such as AECL CHF lookup table gives accurate predictions except for the ranges where density-wave instability is expected. A phenomenological model for the prediction of dryout locations under flooding-limited CHF condition is developed based on the liquid film dryout model and the two-phase mixture level theory. The mass and energy conservation equations are applicable to the liquid film considering no entrainment of liquid droplets from the film region. The variation of the two-phase mixture level after the onset of flooding is calculated based on

  11. Experimental result of BWR post-CHF tests. Critical heat flux and post-CHF heat transfer coefficient. Contract research

    International Nuclear Information System (INIS)

    Iguchi, Tadashi; Anoda, Yoshinari

    2002-02-01

    Authors performed post-CHF experiments under wider pressure ranges of 2 MPa - 18 MPa, wider mass flux ranges of 33 kg/m 2 s - 1651 kg/m 2 s and wider superheat of heaters up to 500 K in comparison to experimental ranges at previous post-CHF experiments. Data on boiling transition, critical heat flux and post-CHF heat transfer coefficient were obtained. Used test section was 4x4-rod bundle with heaters, which diameter and length were the same as those of BWR nuclear fuels. As the result of the experiments, it was found that the boiling transition occurred just below several grid spacers, and that the fronts of the boiling transition region proceeded lower with increase of heated power. Heat transfer was due to nucleate boiling above grid spacers, while it was due to film boiling below grid spacers. Consequently, critical heat flux is affected on the distance from the grid spacers. Critical heat flux above the grid spacers was about 15% higher than that below the grid spacers, by comparing them under the same local condition. Heat transfer by steam turbulent flow was dominant to post-CHF heat transfer, when superheat of heaters was sufficiently high. Then, post-CHF heat transfer coefficient was predicted with heat transfer correlations for single-phase flow. On the other hand, when superhead of heaters was not sufficiently high, post-CHF heat transfer coefficient was higher than the prediction with heat transfer correlations for single-phase flow. Mass flux effect on post-CHF heat transfer coefficient was described by standardization of post-CHF heat transfer coefficient with the prediction for single-phase flow. However, pressure effect, superheat effect and effect of position were not described. Authors clarified that those effects could be described with functions of heater temperature and position. Post-CHF heat transfer coefficient was lowest just blow the grid spacers, and it increased with the lower positions. It increased by about 30% in one span of the grid

  12. Experimental result of BWR post-CHF tests. Critical heat flux and post-CHF heat transfer coefficient. Contract research

    Energy Technology Data Exchange (ETDEWEB)

    Iguchi, Tadashi; Anoda, Yoshinari [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Iwaki, Chikako [Toshiba Corp., Tokyo (Japan)

    2002-02-01

    Authors performed post-CHF experiments under wider pressure ranges of 2 MPa - 18 MPa, wider mass flux ranges of 33 kg/m{sup 2}s - 1651 kg/m{sup 2}s and wider superheat of heaters up to 500 K in comparison to experimental ranges at previous post-CHF experiments. Data on boiling transition, critical heat flux and post-CHF heat transfer coefficient were obtained. Used test section was 4x4-rod bundle with heaters, which diameter and length were the same as those of BWR nuclear fuels. As the result of the experiments, it was found that the boiling transition occurred just below several grid spacers, and that the fronts of the boiling transition region proceeded lower with increase of heated power. Heat transfer was due to nucleate boiling above grid spacers, while it was due to film boiling below grid spacers. Consequently, critical heat flux is affected on the distance from the grid spacers. Critical heat flux above the grid spacers was about 15% higher than that below the grid spacers, by comparing them under the same local condition. Heat transfer by steam turbulent flow was dominant to post-CHF heat transfer, when superheat of heaters was sufficiently high. Then, post-CHF heat transfer coefficient was predicted with heat transfer correlations for single-phase flow. On the other hand, when superhead of heaters was not sufficiently high, post-CHF heat transfer coefficient was higher than the prediction with heat transfer correlations for single-phase flow. Mass flux effect on post-CHF heat transfer coefficient was described by standardization of post-CHF heat transfer coefficient with the prediction for single-phase flow. However, pressure effect, superheat effect and effect of position were not described. Authors clarified that those effects could be described with functions of heater temperature and position. Post-CHF heat transfer coefficient was lowest just blow the grid spacers, and it increased with the lower positions. It increased by about 30% in one span of

  13. Development and Assessment of a Bundle Correction Method for CHF

    International Nuclear Information System (INIS)

    Hwang, Dae Hyun; Chang, Soon Heung

    1993-01-01

    A bundle correction method, based on the conservation laws of mass, energy, and momentum in an open subchannel, is proposed for the prediction of the critical heat flux (CHF) in rod bundles from round tube CHF correlations without detailed subchannel analysis. It takes into account the effects of the enthalpy and mass velocity distributions at subchannel level using the first dericatives of CHF with respect to the independent parameters. Three different CHF correlations for tubes (Groeneveld's CHF table, Katto correlation, and Biasi correlation) have been examined with uniformly heated bundle CHF data collected from various sources. A limited number of GHE data from a non-uniformly heated rod bundle are also evaluated with the aid of Tong's F-factor. The proposed method shows satisfactory CHF predictions for rod bundles both uniform and non-uniform power distributions. (Author)

  14. Assessment of a non-uniform heat flux correction model to predicting CHF in PWR rod bundles

    International Nuclear Information System (INIS)

    Dae-Hyun, Hwang; Sung-Quun, Zee

    2001-01-01

    The full text follows. The prediction of CHF (critical heat flux) has been, in most cases, based on the empirical correlation. For PWR fuel assemblies the local parameter correlation requires the local thermal-hydraulic conditions usually calculated by a subchannel analysis code. The cross-sectional averaged fluid conditions of the subchannel, however, are not sufficient for determining CHF, especially for the cases of non-uniform axial heat flux distributions. Many investigators have studied the effect of the upstream heat flux on the CHF. In terms of the upstream memory effect, two different approaches have been considered as the limiting cases. The 'local conditions' hypothesis assumes that there is a unique relationship between the CHF and the local thermal-hydraulic conditions, and consequently there is no memory effect. In the 'overall power' hypothesis, on the other hand, it is assumed that the total power which can be fed into the tube with nonuniform heating will be the same as that for a uniformly heated tube of the same heated length with the same inlet conditions. Thus the CHF is totally influenced by the upstream heat flux distribution. In view of some experimental investigations such as the DeBortoli's test, it revealed that the two approaches are inadequate in general. It means that the local critical heat flux may be affected to some extent by the heat flux distribution upstream of the CHF location. Some correction-factor models have been suggested to take into account the upstream memory effect. Typically, Tong devised a correction factor on the basis of the heat balance of the superheated liquid layer that is spread underneath a highly viscous bubbly layer along the heated surface. His physical model suggested that the fluid enthalpy obtained from an energy balance of the superheated liquid layer is a representative quantity for the onset of DNB (departure nucleate boiling). A theoretically based correction factor model has been proposed by the

  15. Experimental Study on CHF in a Hemispherical Narrow Gap

    International Nuclear Information System (INIS)

    Jeong, J.H.; Park, R.J.; Kang, K.H.; Kim, S.B.; Kim, H.D.

    1999-01-01

    As a part of the SONATA-IV program, KAERI is conducting an experimental investigation of critical heat flux(CHF) in hemispherical narrow gaps. A visualization experiment, VISU-II, was done as the first step to get a visual observation of the flow behaviour inside a hemispherical gap and to understand the CHF-triggering mechanism. It was observed that the counter-current flow limitation (CCFL) phenomenon prevented water from wetting the heater surface and induced CHF. The CHFG (Critical Heat Flux in Gap) test is now being performed to measure the CHF and to investigate the inherent cooling mechanism in hemispherical narrow gaps. Temperature measurements over the heater surface show that the two-phase flow behaviour inside the gaps could be quite different from the other usual CHF experiments. The measured CHF points are lower than the predictions by existing empirical correlations based on the data measured with small-scale horizontal plates and vertical annulus. (authors)

  16. Post CHF heat transfer and quenching

    International Nuclear Information System (INIS)

    Nelson, R.A.; Condie, K.G.

    1980-01-01

    This paper describes quantitatively new mechanisms in the post-CHF regime which provide understanding and predictive capability for several current two-phase forced convective heat transfer problems. These mechanisms are important in predicting rod temperature turnaround and quenching during the reflood phase of either a hypothetical loss-of-coolant accident (LOCA) or the FLECHT and Semiscale experiments. The mechanisms are also important to the blowdown phase of a LOCA or the recent Loss-of-Fluid Test (LOFT) experiments L2-2 and L2-3, which were 200% cold leg break transients. These LOFT experiments experienced total core quenching in the early part of the blowdown phase at high (1000 psia) pressures. The mechanisms are also important to certain pressurized water reactor (PWR) operational transients where the reactor may operate in the post-CHF regime for short periods of time. Accurate prediction of the post-CHF heat transfer including core quench during these transients is of prime importance to limit maximum cladding temperatures and prevent cladding deformation

  17. Fundamental approach to TRIGA steady-state thermal-hydraulic CHF analysis

    International Nuclear Information System (INIS)

    Feldman, E.

    2008-01-01

    Methods are investigated for predicting the power at which critical heat flux (CHF) occurs in TRIGA reactors that rely on natural convection for primary flow. For a representative TRIGA reactor, two sets of functions are created. For the first set, the General Atomics STAT code and the more widely-used RELAP5-3D code are each employed to obtain reactor flow rate as a function of power. For the second set, the Bernath correlation, the 2006 Groeneveld table, the Hall and Mudawar outlet correlation, and each of the four PG-CHF correlations for rod bundles are used to predict the power at which CHF occurs as a function of channel flow rate. The two sets of functions are combined to yield predictions of the power at which CHF occurs in the reactor. A combination of the RELAP5-3D code and the 2006 Groeneveld table predicts 67% more CHF power than does a combination of the STAT code and the Bernath correlation. Replacing the 2006 Groeneveld table with the Bernath CHF correlation (while using the RELAP5-3D code flow solution) causes the increase to be 23% instead of 67%. Additional RELAP5-3D flow-versus-power solutions obtained from Reference 1 and presented in Appendix B for four specific TRIGA reactors further demonstrates that the Bernath correlation predicts CHF to occur at considerably lower power levels than does the 2006 Groeneveld table. Because of the lack of measured CHF data in the region of interest to TRIGA reactors, none of the CHF correlations considered can be assumed to provide the definitive CHF power. It is recommended, however, to compare the power levels of the potential limiting rods with the power levels at which the Bernath and 2006 Groeneveld CHF correlations predict CHF to occur

  18. Influence of stiffness on CHF for horizontal tubes under LPLF conditions

    Energy Technology Data Exchange (ETDEWEB)

    Baburajan, P.K. [Nuclear Safety Analysis Division, AERB, Niyamak Bhavan, 400094 (India); Bisht, Govind Singh [Department of Mechanical Engineering, IIT Bombay, 400076 (India); Gaikwad, Avinash J. [Nuclear Safety Analysis Division, AERB, Niyamak Bhavan, 400094 (India); Prabhu, S.V., E-mail: svprabhu@iitb.ac.in [Department of Mechanical Engineering, IIT Bombay, 400076 (India)

    2014-10-01

    Highlights: • Effect of stiffness on the CHF in horizontal tube under LPLF conditions is studied. • CHF increases with the increase in stiffness. • Correlation for the prediction of CHF as a function of stiffness is developed. • Correlation for mass flux at CHF in terms of stiffness and initial mass flux is given. • RELAP5 is capable of predicting the effect of stiffness on CHF. - Abstract: Studies reported in the past on critical heat flux (CHF) are mostly limited to vertical flow, large channel diameter, high pressure and high mass flux. Since horizontal flow is commonly encountered in boiler tubes, refrigerating equipments and nuclear reactor fuel channels (PHWR), there is a need to understand horizontal flow CHF, generate sufficient experimental database and to develop reliable predictive method. Few studies are reported on the effect of upstream flow restrictions on flow instabilities and CHF. The present work investigates the effect of upstream flow restriction on CHF in horizontal flow at near atmospheric pressure conditions. In the present study, stiffness is defined as the ratio of upstream flow restriction pressure drop to the test section pressure drop. The classification of a flow boiling system as soft or stiff on the basis of quantification of the stiffness is attempted. Experimental data shows an increase in the CHF with the increase in the stiffness for a given initial mass flux. A correlation for the prediction of CHF under various stiffness conditions is developed. A correlation is suggested to predict the mass flux at CHF as a function of stiffness and initial mass flux. Modeling and transient analysis of the stiffness effect on CHF is carried out using the thermal hydraulic system code RELAP5. The predicted phenomena are in agreement with the experimental observations.

  19. Assessment of TRACE code against CHF experiments

    International Nuclear Information System (INIS)

    Audrius Jasiulevicius; Rafael Macian-Juan; Paul Coddington

    2005-01-01

    of experiments with varying (non-uniform) axial heat flux were simulated with TRACE. The AEE experiments dealt with forced convection burn-out in high pressure tube configurations both with uniform and non-uniform axial heat flux distributions. The pressure range was 3 to 11 MPa, the mass flux spanned from 1020 to 4070 kg/m 2 s, and the subcooling varied from 2.8 C to 90 C The analysis of the results of TRACE code assessment against the RIT and AEE CHF and post-CHF experiments allowed to evaluate the parameter validity limits, within which the TRACE predictions for the CHF as well as for the heat transfer in transition and film boiling regions are in good agreement with the experimental data. The analysis of the TRACE calculation results shows that CHF is predicted rather well for the higher pressure range (above 10 MPa) for all investigated flow conditions. For the lower pressure region the TRACE predictions were found to be valid only for a narrow range of the coolant mass flux. (authors)

  20. Prediction of critical heat flux in fuel assemblies using a CHF table method

    Energy Technology Data Exchange (ETDEWEB)

    Chun, Tae Hyun; Hwang, Dae Hyun; Bang, Je Geon [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of); Baek, Won Pil; Chang, Soon Heung [Korea Advance Institute of Science and Technology, Taejon (Korea, Republic of)

    1998-12-31

    A CHF table method has been assessed in this study for rod bundle CHF predictions. At the conceptual design stage for a new reactor, a general critical heat flux (CHF) prediction method with a wide applicable range and reasonable accuracy is essential to the thermal-hydraulic design and safety analysis. In many aspects, a CHF table method (i.e., the use of a round tube CHF table with appropriate bundle correction factors) can be a promising way to fulfill this need. So the assessment of the CHF table method has been performed with the bundle CHF data relevant to pressurized water reactors (PWRs). For comparison purposes, W-3R and EPRI-1 were also applied to the same data base. Data analysis has been conducted with the subchannel code COBRA-IV-I. The CHF table method shows the best predictions based on the direct substitution method. Improvements of the bundle correction factors, especially for the spacer grid and cold wall effects, are desirable for better predictions. Though the present assessment is somewhat limited in both fuel geometries and operating conditions, the CHF table method clearly shows potential to be a general CHF predictor. 8 refs., 3 figs., 3 tabs. (Author)

  1. Prediction of critical heat flux in fuel assemblies using a CHF table method

    Energy Technology Data Exchange (ETDEWEB)

    Chun, Tae Hyun; Hwang, Dae Hyun; Bang, Je Geon [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of); Baek, Won Pil; Chang, Soon Heung [Korea Advance Institute of Science and Technology, Taejon (Korea, Republic of)

    1997-12-31

    A CHF table method has been assessed in this study for rod bundle CHF predictions. At the conceptual design stage for a new reactor, a general critical heat flux (CHF) prediction method with a wide applicable range and reasonable accuracy is essential to the thermal-hydraulic design and safety analysis. In many aspects, a CHF table method (i.e., the use of a round tube CHF table with appropriate bundle correction factors) can be a promising way to fulfill this need. So the assessment of the CHF table method has been performed with the bundle CHF data relevant to pressurized water reactors (PWRs). For comparison purposes, W-3R and EPRI-1 were also applied to the same data base. Data analysis has been conducted with the subchannel code COBRA-IV-I. The CHF table method shows the best predictions based on the direct substitution method. Improvements of the bundle correction factors, especially for the spacer grid and cold wall effects, are desirable for better predictions. Though the present assessment is somewhat limited in both fuel geometries and operating conditions, the CHF table method clearly shows potential to be a general CHF predictor. 8 refs., 3 figs., 3 tabs. (Author)

  2. CHF enhancement through Pressurized Intermediate Layer in IVR-ERVC Strategy

    International Nuclear Information System (INIS)

    Park, Seong Dae; Bang, In Cheol

    2014-01-01

    The molten fuel is sequentially relocated to bottom of reactor vessel. In-vessel retention through the external reactor vessel cooling (IVR-ERVC) strategy has been adapted to some reactors at this situation in order to prevent the progression of an accident. The limitation of IVR-ERVC strategy is CHF phenomenon on the outer wall of reactor vessel. The boiling is main heat transfer mode to remove decay heat between the reactor vessel and the coolant surrounding the reactor vessel. Heated molten radioactive material is leaked. The fuel coolant interaction (FCI) phenomenon could cause the steam explosion in a state of fully flooding condition. Therefore, the CHF should be enhanced in order to be a successful IVR-ERVC strategy. Related studies were performed to confirm the CHF limit with UPLU, SBLB, KAIST and UNIST test facilities The recommendations to increase CHF include coating some materials on the vessel outer surface, increasing the reactor cavity flood level and streamlining the gap between the vessel and the vessel insulation. Recently, flooding the liquid metal is proposed to prevent the boiling itself. In this work, the effects of pressurized liquid layer inserted between the reactor vessel and flooded coolant was studied. Suitable reactor geometry was also presented to apple this concept. Generally, CHF is increased as high pressure was applied until about 1/3 of critical pressure. The limit of IVR-ERVC strategy could overcome by using pressurized intermediate layer. The CFD analysis was performed to confirm the feasibility of pressurized IVR-ERVC system. There are enough thermal margins for due to the enlarged heat transfer area and the convection heat transfer

  3. CHF enhancement through Pressurized Intermediate Layer in IVR-ERVC Strategy

    Energy Technology Data Exchange (ETDEWEB)

    Park, Seong Dae; Bang, In Cheol [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)

    2014-05-15

    The molten fuel is sequentially relocated to bottom of reactor vessel. In-vessel retention through the external reactor vessel cooling (IVR-ERVC) strategy has been adapted to some reactors at this situation in order to prevent the progression of an accident. The limitation of IVR-ERVC strategy is CHF phenomenon on the outer wall of reactor vessel. The boiling is main heat transfer mode to remove decay heat between the reactor vessel and the coolant surrounding the reactor vessel. Heated molten radioactive material is leaked. The fuel coolant interaction (FCI) phenomenon could cause the steam explosion in a state of fully flooding condition. Therefore, the CHF should be enhanced in order to be a successful IVR-ERVC strategy. Related studies were performed to confirm the CHF limit with UPLU, SBLB, KAIST and UNIST test facilities The recommendations to increase CHF include coating some materials on the vessel outer surface, increasing the reactor cavity flood level and streamlining the gap between the vessel and the vessel insulation. Recently, flooding the liquid metal is proposed to prevent the boiling itself. In this work, the effects of pressurized liquid layer inserted between the reactor vessel and flooded coolant was studied. Suitable reactor geometry was also presented to apple this concept. Generally, CHF is increased as high pressure was applied until about 1/3 of critical pressure. The limit of IVR-ERVC strategy could overcome by using pressurized intermediate layer. The CFD analysis was performed to confirm the feasibility of pressurized IVR-ERVC system. There are enough thermal margins for due to the enlarged heat transfer area and the convection heat transfer.

  4. Validation of the assert subchannel code: Prediction of CHF in standard and non-standard Candu bundle geometries

    International Nuclear Information System (INIS)

    Carver, M.B.; Kiteley, J.C.; Zhou, R.Q.N.; Junop, S.V.; Rowe, D.S.

    1993-01-01

    The ASSERT code has been developed to address the three-dimensional computation of flow and phase distribution and fuel element surface temperatures within the horizontal subchannels of CANDU PHWR fuel channels, and to provide a detailed prediction of critical heat flux (CHF) distribution throughout the bundle. The ASSERT subchannel code has been validated extensively against a wide repertoire of experiments; its combination of three-dimensional prediction of local flow conditions with a comprehensive method of prediting CHF at these local conditions, makes it a unique tool for predicting CHF for situations outside the existing experimental data base. In particular, ASSERT is an appropriate tool to systematically investigate CHF under conditions of local geometric variations, such as pressure tube creep and fuel element strain. This paper discusses the numerical methodology used in ASSERT, the constitutive relationships incorporated, and the CHF assessment methodology. The evolutionary validation plan is discussed, and early validation exercises are summarized. The paper concentrates, however, on more recent validation exercises in standard and non-standard geometries

  5. Development of CHF models for inner and outer RPV gaps in a meltdown severe accident

    International Nuclear Information System (INIS)

    Wang, J.; Tian, W.X.; Feng, K.; Yu, H.X.; Zhang, Y.P.; Su, G.H.; Qiu, S.Z.

    2013-01-01

    Highlights: • A CHF model was developed to predict the CHF in hemispherical narrow gap. • The computed result was validated by the test data of Park and Köhler. • An analytical CHF model was developed to predict the CHF on the outer surface of the lower head. • The predicted CHF was compared with the experimental data of ULPU-V. • Two CHF models developed for the inner and outer CHF predict the CHF well. - Abstract: During a severe accident, the core melt relocates in the lower head and a hemispherical narrow gap may appear between the crust and the lower head because of the different material expansion ratio. The existence of this gap is very important to the integrity of the lower head. Based on the counter current flow limitation (CCFL) between the vapor phase and the liquid phase, a CHF model was developed to predict the CHF in hemispherical narrow gap. The CHF model developed was validated by the test data of Park and Köhler. The effect of key parameters, including the system pressure, radius of melt, and gap size, on the CHF were investigated. And the TMI-2 accident was also calculated by using the CHF formula. Moreover, based on the interface separation model, an analytical CHF model was developed to predict the CHF on the outer surface of the lower head. The predicted CHF was compared with the experimental data of ULPU-V. It indicated that the CHF models developed for the inner and outer CHF could predict the CHF well

  6. Evaluation of subcooled CHF correlations using the PU-BTPFL CHF database for vertical upflow of water in a uniformly heated round tube

    International Nuclear Information System (INIS)

    Hall, D.D.; Mudawar, I.

    1996-01-01

    A simple methodology for assessing the predictive ability of critical heat flux (CHF) correlations applicable to subcooled flow boiling in a uniformly heated vertical tube was developed. Popular correlations published in handbooks and review articles as well as the most recent correlations were analyzed with a database compiled by the authors. The PU-BTPFL CHF Database, which contains 29,718 CHF data points, is the largest collection of CHF data ever cited in the world literature. The parametric ranges of the CHF database are diameters from 0.3 to 45 mm, length-to-diameter ratios from 2 to 2484, mass velocities from 0.01 x 10 3 to 138 x 10 3 kg m -2 s -1 , pressures from 1 to 223 bars, inlet subcoolings from 0 to 347 C, inlet qualities from -2.63 to 0.00, outlet subcoolings from 0 to 305 C, outlet qualities from -2.13 to 1.00, and critical heat fluxes from 0.05 x 10 6 to 276 x 10 6 W m -2 . The database contained 4357 data points having a subcooled outlet condition at CHF. The correlation published in Caira et al. (1993) was the most accurate in both low and high mass velocity regions having been developed with a larger database than most correlations. In general, CHF correlations developed from data covering a limited range of flow conditions can not be extended to other flow conditions without much uncertainty. Subcooled flow boiling has great potential for accommodating the high heat fluxes in such diverse applications as fusion and fission reactors, manufacturing and materials processing, advanced space thermal management systems, accelerator targets, avionic cold plates, X-ray anodes, and high-density multi-chip modules in supercomputers and other modular electronics

  7. Evaluation of CHF experimental data for non-square lattice 7-rod bundles

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Dae Hyun; Yoo, Y. J.; Kim, K. K.; Zee, S. Q

    2001-01-01

    A series of CHF experiments are conducted for 7-rod hexagonal test bundles in order to investigate the CHF characteristics of self-sustained square finned (SSF) rod bundles. The experiments are performed in the freon-loop and water-loop located at IPPE in Russia, and 609 data of freon-12 and 229 data of water are obtained from 7 kinds of test bundles classified by the combination of heated length and axial/radial power distributions. As the result of the evaluation of four representative CHF correlations, the EPRI-1 correlation reveals good prediction capability for SSF test bundles. The inlet parameter CHF correlation suggested by IPPE calculates the mean and the standard deviation of P/M for uniformly heated test bundles as 1.002 and 0.049, respectively. In spite of its excellent accuracy, the correlation has a discontinuity point at the boundary between the low velocity and high velocity conditions. KAERI's inlet parameter correlation eliminates this defect by introducing the complete evaporation model at low velocity condition, and calculates the mean and standard deviation of P/M as 0.095 and 0.062 for uniformly heated 496 data points, respectively. The mean/standard deviation of local parameter CHF correlations suggested by IPPE and KAERI are evaluated as 1.023/0.178 and 1.002/0.158, respectively. The inlet parameter correlation developed from uniformly heated test bundles tends to under-predict CHF about 3% for axially non-uniformly heated test bundles. On the other hand, the local parameter correlation reveals large scattering of P/M, and requires re-optimization of the correlation for non-uniform axial power distributions. As the result of the analysis of experimental data, it reveals that the correction model of axial power shapes suggested by IPPE is applicable to the inlet parameter correlations. For the test bundle of radial non-uniform power distribution, the physically unexpected results are obtained at some experimental conditions. In addition

  8. Validation of the ASSERT subchannel code for prediction of CHF in standard and non-standard CANDU bundle geometries

    International Nuclear Information System (INIS)

    Kiteley, J.C.; Carver, M.B.; Zhou, Q.N.

    1993-01-01

    The ASSERT code has been developed to address the three-dimensional computation of flow and phase distribution and fuel element surface temperatures within the horizontal subchannels of CANDU PHWR fuel channels, and to provide a detailed prediction of critical heat flux distribution throughout the bundle. The ASSERT subchannel code has been validated extensively against a wide repertoire of experiments; its combination of three-dimensional prediction of local flow conditions with a comprehensive method of predicting critical heat flux (CHF) at these local conditions makes it a unique tool for predicting CHF for situations outside the existing experimental data base. In particular, ASSERT is the only tool available to systematically investigate CHF under conditions of local geometric variations, such as pressure tube creep and fuel element strain. This paper discusses the numerical methodology used in ASSERT, the constitutive relationships incorporated, and the CHF assessment methodology. The evolutionary validation plan is discussed, and early validation exercises are summarized. The paper concentrates, however, on more recent validation exercises in standard and non-standard geometries. 28 refs., 12 figs

  9. Enhanced CHF with Bubble Cutter and Artificial Flow in Nuclear Plants

    International Nuclear Information System (INIS)

    Jung, Chan Hee; Suh, Kune Y.

    2013-01-01

    The main goal of this paper is to body out the notions of forced convection system for enhanced local streams and air bubbles cutting (and/or pushing, breaking) system to explain how CHF can be improved and how those bubble cutter systems are applicable to NPPs. In this paper, the bubble cutter system and an artificial flow system which can cut (and/or push and break) air bubbles is bodied out to drag bubbles. It also make the surface wet condition of heated surfaces and improve heat transfer and prevent on creation of bubbles on the heated surfaces or heat exchangers or reactor cores. Namely, concepts and application methods to increase CHF are presented for NPPs. Enhanced critical heat flux (CHF) is one of our prospective aims for nuclear power plants (NPPs). Previous work has studied the flow boiling CHF enhancement with surfactant solutions under atmospheric pressure because surfactant solutions or surface conditions have an effect on the behavior of occurrence air bubbles on a heated surface. Another possible improvement is to improve efficiency of heat transfer or to body out some types of bubble breaking (and/or pushing, breaking) systems or an artificial flow of fluid that can tear off air bubbles or push hot liquid and bubbles on a surface of heater. During this study, it will be observed that those possible structures can elicit increased CHF by means of maintenance of contact with a coolant such as water

  10. Reversal of OFI and CHF in Research Reactors Operating at 1 to 50 Bar. Version 1.0

    Energy Technology Data Exchange (ETDEWEB)

    Kalimullah, M. [Argonne National Lab. (ANL), Argonne, IL (United States); Olson, A. P. [Argonne National Lab. (ANL), Argonne, IL (United States); Dionne, B. [Argonne National Lab. (ANL), Argonne, IL (United States); Feldman, E. E. [Argonne National Lab. (ANL), Argonne, IL (United States); Matos, J. E. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2014-02-28

    The conditions at which the critical heat flux (CHF) and the heat flux at the onset of Ledinegg flow instability (OFI) are equal, are determined for a coolant channel with uniform heat flux as a function of five independent parameters: the channel exit pressure (P), heated length (Lh) , heated diameter (Dh), inlet temperature (Tin), and mass flux (G). A diagram is made by plotting the mass flux and heat flux at the OFI-CHF intersection (reversal from CHF > OFI to CHF < OFI as G increases) as a function of P (1 to 50 bar), for 36 combinations of the remaining three parameters (Lh , Dh , Tin): Lh = 0.28, 0.61, 1.18 m; Dh = 3, 4, 6, 8 mm; Tin = 30, 50, 70 °C. The use of the diagram to scope whether a research reactor is OFI-limited (below the curve) or CHF-limited based on the five parameters of its coolant channel is described. Justification for application of the diagram to research reactors with axially non-uniform heat flux is provided. Due to its limitations (uncertainties not included), the diagram cannot replace the detailed thermal-hydraulic analysis required for a reactor safety analysis. In order to make the OFI-CHF intersection diagram, two world-class CHF prediction methods (the Hall-Mudawar correlation and the extended Groeneveld 2006 table) are compared for 216 combinations of the five independent parameters. The two widely used OFI correlations (the Saha- Zuber and the Whittle-Forgan with η = 32.5) are also compared for the same combinations of the five parameters. The extended Groeneveld table and the Whittle-Forgan OFI correlation are selected for use in making the diagram. Using the above five design parameters, a research reactor can be represented by a point on the reversal diagram, and the diagram can be used to scope, without a thermal-hydraulic calculation, whether the OFI will occur before the CHF, or the CHF will occur before the OFI when the reactor power is increased keeping the five parameters fixed.

  11. Echocardiography, spirometry, and systemic acute-phase inflammatory proteins in smokers with COPD or CHF: an observational study.

    Directory of Open Access Journals (Sweden)

    Bianca Beghé

    Full Text Available Chronic obstructive pulmonary disease (COPD and chronic heart failure (CHF may coexist in elderly patients with a history of smoking. Low-grade systemic inflammation induced by smoking may represent the link between these 2 conditions. In this study, we investigated left ventricular dysfunction in patients primarily diagnosed with COPD, and nonreversible airflow limitation in patients primarily diagnosed with CHF. The levels of circulating high-sensitive C-reactive protein (Hs-CRP, pentraxin 3 (PTX3, interleukin-1β (IL-1 β, and soluble type II receptor of IL-1 (sIL-1RII were also measured as markers of systemic inflammation in these 2 cohorts. Patients aged ≥ 50 years and with ≥ 10 pack years of cigarette smoking who presented with a diagnosis of stable COPD (n=70 or stable CHF (n=124 were recruited. All patients underwent echocardiography, N-terminal pro-hormone of brain natriuretic peptide measurements, and post-bronchodilator spirometry. Plasma levels of Hs-CRP, PTX3, IL-1 β, and sIL-1RII were determined by using a sandwich enzyme-linked immuno-sorbent assay in all patients and in 24 healthy smokers (control subjects. Although we were unable to find a single COPD patient with left ventricular dysfunction, we found nonreversible airflow limitation in 34% of patients with CHF. On the other hand, COPD patients had higher plasma levels of Hs-CRP, IL1 β, and sIL-1RII compared with CHF patients and control subjects (p < 0.05. None of the inflammatory biomarkers was different between CHF patients and control subjects. In conclusion, although the COPD patients had no evidence of CHF, up to one third of patients with CHF had airflow limitation, suggesting that routine spirometry is warranted in patients with CHF, whereas echocardiography is not required in well characterized patients with COPD. Only smokers with COPD seem to have evidence of systemic inflammation.

  12. Dicty_cDB: CHF177 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available CH (Link to library) CHF177 (Link to dictyBase) - - - Contig-U11892-1 - (Link to Or...iginal site) - - CHF177Z 395 - - - - Show CHF177 Library CH (Link to library) Clone ID CHF177 (Link to dicty...Base) Atlas ID - NBRP ID - dictyBase ID - Link to Contig Contig-U11892-1 Original site URL http://dictycdb.b...LLLWDVQGFPCXFAVEG GQCIDPSSLKVGGKYSFIAFSTCRXKFDNQKIHDCDWIIQGPTTPSXCANCGKICTSKCT TNYCDRDXQT Translated Amino A...XKFDNQKIHDCDWIIQGPTTPSXCANCGKICTSKCT TNYCDRDXQT Homology vs CSM-cDNA Score E Sequences producing significant

  13. Effect of axial heat flux distribution on CHF

    Energy Technology Data Exchange (ETDEWEB)

    Park, Cheol

    2000-10-01

    Previous investigations for the effect of axial heat flux distributions on CHF and the prediction methods are reviewed and summarized. A total of 856 CHF data in a tube with a non-uniform axial heat flux distribution has been compiled from the articles and analyzed using the 1995 Groeneveld look-up table. The results showed that two representative correction factors, K5 of the look-up table and Tongs F factor, can be applied to describe the axial heat flux distribution effect on CHF. However, they overpredict slightly the measured CHF, depending on the quality and flux peak shape. Hence, a corrected K5 factor, which accounts for the axial heat flux distribution effect is suggested to correct these trends. It predicted the CHF power for the compiled data with an average error of 1.5% and a standard deviation of 10.3%, and also provides a reasonable prediction of CHF locations.

  14. Experimental evidence for the blue-shifted hydrogen-bonded complexes of CHF3 with π-electron donors.

    Science.gov (United States)

    Gopi, R; Ramanathan, N; Sundararajan, K

    2017-06-15

    Blue-shifted hydrogen-bonded complexes of fluoroform (CHF 3 ) with benzene (C 6 H 6 ) and acetylene (C 2 H 2 ) have been investigated using matrix isolation infrared spectroscopy and ab initio computations. For CHF 3 -C 6 H 6 complex, calculations performed at the B3LYP and MP2 levels of theory using 6-311++G (d,p) and aug-cc-pVDZ basis sets discerned two minima corresponding to a 1:1 hydrogen-bonded complex. The global minimum correlated to a structure, where the interaction is between the hydrogen of CHF 3 and the π-electrons of C 6 H 6 and a weak local minimum was stabilized through H…F interaction. For the CHF 3 -C 2 H 2 complex, computation performed at MP2/aug-cc-pVDZ level of theory yielded two minima, corresponding to the cyclic C-H…π complex A (global) and a linear C-H…F (n-σ) complex B (local). Experimentally a blue-shift of 32.3cm -1 and 7.7cm -1 was observed in the ν 1 C-H stretching mode of CHF 3 sub-molecule in Ar matrix for the 1:1 C-H…π complexes of CHF 3 with C 6 H 6 and C 2 H 2 respectively. Natural bond orbital (NBO), Atoms-in-molecule (AIM) and energy decomposition (EDA) analyses were carried out to explain the blue-shifting and the nature of the interaction in these complexes. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. An experimental investigation of the post-CHF enhancement factor for a prototypical ITER divertor plate with water coolant

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, T.D. [Rensselaer Polytechnic Institute, Troy, NY (United States); Watson, R.D.; McDonald, J.M. [Sandia National Lab., Albuquerque, NM (United States)] [and others

    1995-09-01

    In an off-normal event, water-cooled copper divertor plates in the International Thermonuclear Experimental Reactor (ITER) may either experience heat loads beyond their design basis, or the normal heat loads may be accompanied by low coolant pressure and velocity. The purpose of this experiment was to illustrate that during one-sided heating, as in ITER, a copper divertor plate with the proper side wall thickness, at low system pressure and velocity can absorb without failing an incident heat flux, q{sub i}, that significantly exceed the value, q{sub i}{sup CHF}, which is associated with local CHF at the wall of the coolant channel. The experiment was performed using a 30 kW electron beam test system for heating of a square cross-section divertor heat sink with a smooth circular channel of 7.63 mm diameter. The heated width, length, and wall thickness were 16, 40, and 3 mm, respectively. Stable surface temperatures were observed at incident heat fluxes greater than the local CHF point, presumably due to circumferential conduction around the thick tube walls when q{sub i}{sup CHF} was exceeded. The Post-CHF enhancement factor, {eta}, is defined as the ratio of the incident burnout heat flux, q{sub i}{sup BO}, to q{sub i}{sup CHF}. For this experiment with water at inlet conditions of 70{degrees}C, 1 m/s, and 1 MPa, q{sub i}{sup CHF} and q{sub i}{sup BO} were 600 and 1100 W/cm{sup 2}, respectively, which gave an {eta} of 1.8.

  16. A CHF Model in Narrow Gaps under Saturated Boiling

    International Nuclear Information System (INIS)

    Park, Suki; Kim, Hyeonil; Park, Cheol

    2014-01-01

    Many researchers have paid a great attention to the CHF in narrow gaps due to enormous industrial applications. Especially, a great number of researches on the CHF have been carried out in relation to nuclear safety issues such as in-vessel retention for nuclear power plants during a severe accident. Analytical studies to predict the CHF in narrow gaps have been also reported. Yu et al. (2012) developed an analytical model to predict the CHF on downward facing and inclined heaters based on the model of Kandlikar et al. (2001) for an upward facing heater. A new theoretical model is developed to predict the CHF in narrow gaps under saturated pool boiling. This model is applicable when one side of coolant channels or both sides are heated including the effects of heater orientation. The present model is compared with the experimental CHF data obtained in narrow gaps. A new analytical CHF model is proposed to predict CHF for narrow gaps under saturated pool boiling. This model can be applied to one-side or two-sides heating surface and also consider the effects of heater orientation on CHF. The present model is compared with the experimental data obtained in narrow gaps with one heater. The comparisons indicate that the present model shows a good agreement with the experimental CHF data in the horizontal annular tubes. However, it generally under-predicts the experimental data in the narrow rectangular gaps except the data obtained in the gap thickness of 10 mm and the horizontal downward facing heater

  17. Implementation of the Westinghouse WRB-2 CHF correlation in VIPRE

    International Nuclear Information System (INIS)

    Klasmier, L.K.; Haksoo Kim

    1992-01-01

    As part of the reload transient and thermal-hydraulic methods development effort within Commonwealth Edison Company (CECo), the WRB-2 critical heat flux (CHF) correlation has been implemented into the VIPRE-01 thermal-hydraulic analysis code to support Westinghouse 17X17 Vantage 5 fuel. CECo is in the process of switching from Westinghouse optimized fuel assembly (OFA) fuel to Vantage 5 fuel at CECo's six pressurized water reactors. CECo performs the neutronic portion of the reload analysis using Westinghouse's ANC/PHOENIX. The transient and thermal-hydraulic analysis will be performed using the RETRAN and VIPRE codes once the Nuclear Regulatory Commission has completed their review of CECo methodology. Previously, CECo had implemented and received NRC approval to use the Westinghouse WRB-1 CHF correlation in the VIPRE-01 code to support 15X15 and 17X17 OFA fuel designs. Since the WRB-1 CHF correlation is not applicable for 17X17 Vantage 5 fuel, it was necessary to implement the WRB-2 CHF correlation in the VIPRE code. The WRB-2 correlation was developed by Westinghouse using a database applicable to 17X17 OFA and Vantage 5 fuel and the THINC thermal-hydraulic analysis code. At CECo, the WRB-2 correlation had been implemented into VIPRE-01/MOD-02. The results produced at CECo have been statistically compared to those produced by Westinghouse. Owen's method was used to determine the VIPRE/WRB-02 thermal limit. The thermal limit for 17X17 OFA and Vantage 5 fuel use in VIPRE/WRB-2 is in excellent agreement with the value calculated by Westinghouse using THINC/WRB-2

  18. Mechanisms and predictions for subcooled flow boiling CHF

    International Nuclear Information System (INIS)

    Liu, Wei; Nariai, Hideki; Inasaka, Fujio

    2000-01-01

    Corresponding to the two kinds of flow pattern reported in literature for subcooled flow boiling, two kinds of CHF triggering mechanism are considered existing with working in different working scope. On the base of a criterion proposed recently by the present authors, subcooled flow boiling data firstly are categorized into two groups by judging whether the first kind or the second kind of flow pattern is established. Possible CHF triggering mechanisms and prediction methods for the two kinds of flow pattern condition are discussed. By considering both the flow pattern development and CHF triggering mechanism, a detailed data categorization is carried out. The corresponding CHF occurrence properties in different data groups are summarized. Parametric trends are reviewed for the first and second kind of data group working condition respectively. Mass flux, pressure, inlet subcooling and inner diameter show almost same effects in the two different working conditions, while the ratio of heated length to diameter's effects on CHF show to be different. Research for the L/D effect on the CHF transverse the interface of the different data groups is carried out. (author)

  19. A study on the effect of the CHF correlations to the LOCA analysis

    International Nuclear Information System (INIS)

    Kim, Ho Kee

    1998-02-01

    the refill(LOCA) or blowdown period (LOFT), which the drastic system transient is notably decreased, because the cladding temperature is governed by the system transient during the initial period of LOCA. From the simulation results using the AECL-UO Lookup Table having the CHF multiplication factors 0.5 and 1.5, it is found that the cladding temperature behaviors during the ECC induced cooling period are exaggerated. Especially in the case using the CHF multiplication factor 0.5; cladding temperature behavior during the blowdown period is relatively well predicted compared to the case using 1.5. This fact can be utilized in the fine tuning of the CHF correlation during the development stage to incorporate into the system transient analysis code like RELAP. It is further found that the KAERI K110 CHF correlation has a good prediction performance and applicability to the system thermal hydraulic analysis code, comparable to those of the AECL-UO look-up table, even though this has not yet been applied to the actual design work. The observation of L. S. Tong, which local parametric effects among quality, pressure, and mass velocity are required to be incorporated into the original W-3 CHF correlation, is also shown in this work

  20. The CHF enhancement on pool boiling using nano-fluids

    International Nuclear Information System (INIS)

    Chang, Won Joon; Jeong, Yong Hoon

    2009-01-01

    A increase of CHF was observed with nano-fluid. The addition of nano-particle helped to increase the wettability. This happens with the decrease in bubble diameter, breakup of bubbles and avoidance of bubble coalescence. CHF increase or decrease depends upon competition between high wettability and high instability. An optimum nano-fluid concentration is needed which must have high crystalline content. When the concentration reaches at a critical value, CHF will tend to a constant value. Deposition of nano-particles increasing the wettability and the rewetting are cause of CHF enhancement. It delay the growth of dry patch by increasing of wettability and lead to CHF enhancement. Now, we must define the wettability of nano-fluids. At case of nano-fluids using metallic particle, the explanation using contact angle using was reasonable. But, at case of nan-fluids using hydrophobic CNT, this explanation can't be acceptable. Moreover, at case of surfactant solution, contact angle was very low. But CHF enhancement was not great. So, wettability about nano-fluids must be defined anew for explanation of CHF enhancement. I suggest the extension of micro layer are acceptable concept for increasing wettability using nano-fluids

  1. Pool Boiling CHF in Inclined Narrow Annuli

    International Nuclear Information System (INIS)

    Kang, Myeong Gie

    2010-01-01

    Pool boiling heat transfer has been studied extensively since it is frequently encountered in various heat transfer equipment. Recently, it has been widely investigated in nuclear power plants for application to the advanced light water reactors designs. Through the review on the published results it can be concluded that knowledge on the combined effects of the surface orientation and a confined space on pool boiling heat transfer is of great practical importance and also of great academic interest. Fujita et al. investigated pool boiling heat transfer, from boiling inception to the critical heat flux (CHF, q' CHF ), in a confined narrow space between heated and unheated parallel rectangular plates. They identified that both the confined space and the surface orientation changed heat transfer much. Kim and Suh changed the surface orientation angles of a downward heating rectangular channel having a narrow gap from the downward-facing position (180 .deg.) to the vertical position (90 .deg.). They observed that the CHF generally decreased as the inclination angle (θ ) increased. Yao and Chang studied pool boiling heat transfer in a confined heat transfer for vertical narrow annuli with closed bottoms. They observed that when the gap size ( s ) of the annulus was decreased the effect of space confinement to boiling heat transfer increased. The CHF was occurred at much lower value for the confined space comparing to the unconfined pool boiling. Pool boiling heat transfer in narrow horizontal annular crevices was studied by Hung and Yao. They concluded that the CHF decreased with decreasing gap size of the annuli and described the importance of the thin film evaporation to explain the lower CHF of narrow crevices. The effect of the inclination angle on the CHF on countercurrent boiling in an inclined uniformly heated tube with closed bottoms was also studied by Liu et al. They concluded that the CHF reduced with the inclination angle decrease. A study was carried out

  2. Theoretical prediction method of subcooled flow boiling CHF

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Young Min; Chang, Soon Heung [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1999-12-31

    A theoretical critical heat flux (CHF ) model, based on lateral bubble coalescence on the heated wall, is proposed to predict the subcooled flow boiling CHF in a uniformly heated vertical tube. The model is based on the concept that a single layer of bubbles contacted to the heated wall prevents a bulk liquid from reaching the wall at near CHF condition. Comparisons between the model predictions and experimental data result in satisfactory agreement within less than 9.73% root-mean-square error by the appropriate choice of the critical void fraction in the bubbly layer. The present model shows comparable performance with the CHF look-up table of Groeneveld et al.. 28 refs., 11 figs., 1 tab. (Author)

  3. Theoretical prediction method of subcooled flow boiling CHF

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Young Min; Chang, Soon Heung [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1998-12-31

    A theoretical critical heat flux (CHF ) model, based on lateral bubble coalescence on the heated wall, is proposed to predict the subcooled flow boiling CHF in a uniformly heated vertical tube. The model is based on the concept that a single layer of bubbles contacted to the heated wall prevents a bulk liquid from reaching the wall at near CHF condition. Comparisons between the model predictions and experimental data result in satisfactory agreement within less than 9.73% root-mean-square error by the appropriate choice of the critical void fraction in the bubbly layer. The present model shows comparable performance with the CHF look-up table of Groeneveld et al.. 28 refs., 11 figs., 1 tab. (Author)

  4. Current Needs for the Experimental Investigation of the CHF Phenomenon Relevant to LWR Core Conditions

    International Nuclear Information System (INIS)

    Le Corre, J.M.

    2009-01-01

    The current achievements and needs toward the investigation, understanding and mechanistic prediction of the Critical Heat Flux (CHF) event, under PWR and BWR core conditions, are addressed in this paper. It is shown that, even when using advanced 3-D CFD simulation tools, the current approach to CHF mechanistic modeling has serious limitations. This is mainly due to the lack of information regarding the relevant two-phase flow pattern(s) (in particular near the heated wall) and associated mechanisms (at the meso and micro-scale) leading to the CHF event. Areas of current experimental needs are identified in order to address these shortcomings. In addition, the use of 1-D and 3-D numerical tools to mechanistically predict the CHF is discussed. It is shown that 3-D two-phase CFD codes may not be superior to 1-D codes without proper consideration of relevant constitutive relations. (author)

  5. Assessment of CHF characteristics at subcooled conditions for the CANFLEX bundle

    International Nuclear Information System (INIS)

    Onder, E.N.; Leung, L.K.H.

    2013-01-01

    Boiling-Length-Average (BLA) Critical Heat Flux (CHF) values for the CANFLEX bundle at cross-sectional average subcooled conditions have been evaluated using the ASSERT-PV subchannel code. The predicted BLA CHF values supplement experimental BLA CHF values obtained with full-scale bundle simulators at saturated conditions in developing a BLA CHF correlation applicable over the interested range of cross-sectional average thermodynamic quality in regional overpower protection (ROP) trip and safety analyses. The BLA CHF correlation exhibits similar characteristics to those observed in tubes at subcooled and saturated conditions. Applying this correlation has led to similar prediction accuracy in dryout power to that using the BLA CHF-data-based correlation at saturated conditions. However, it provides improved prediction accuracy in dryout power at dryout conditions near saturation compared to the BLA CHF-data-based correlation (which tends to underpredict the dryout power)

  6. CHF multiplier of subcooled flow boiling for non-uniform heating conditions in swirl tube

    International Nuclear Information System (INIS)

    Inasaka, F.; Nariai, H.

    1994-01-01

    The high heat flux components of fusion reactors, such as divertor plates and beam dumps of neutral beam injectors, are estimated to be subjected to very high heat loads more than 10 MW/m 2 . Critical heat flux (CHF), which determines the upper limit of heat removal, is one of the most important problems in designing cooling systems. For practical applications in cooling systems, subcooled flow boiling in water combined with swirl-flow in tubes with internal twisted tape is thought to be the most superior for CHF characteristics in fusion reactor components, heat by irradiation comes in from one side of the wall, and cooling channel is then under circumferentially non-uniform heating condition. Authors have conducted the experiments on the CHF with internal twisted tapes under circumferentially non-uniform heating conditions and showed that when the intensity of non-uniformity increased, q cH (peak heat flux at burnout under nonuniform heating condition) in tube with internal twisted tape increased above the q c,unif (CHF under uniform heating condition), though the average qualities were the same for both cases. They also showed that this CHF enhancement was not seen in smooth tubes without tape under the same average qualities

  7. Neurohumoral blockade in CHF management

    Directory of Open Access Journals (Sweden)

    Roland Willenbrock

    2000-03-01

    Full Text Available Is heart failure an endocrine disease? Historically, congestive heart failure (CHF has often been regarded as a mechanical and haemodynamic condition. However, there is now strong evidence that the activation of neuroendocrine systems, like the renin-angiotensin-aldosterone system (RAAS and sympathetic nervous system, as well as the activation of natriuretic peptides, endothelin and vasopressin, play key roles in the progression of CHF. In this context, agents targeting neurohormones offer a highly rational approach to CHF management, with ACE inhibitors, aldosterone antagonists and beta-adrenergic blockade improving the prognosis for many patients. Although relevant improvements in clinical status and survival can be achieved with these drug classes, mortality rates for patients with CHF are still very high. Moreover, most patients do not receive these proven life-prolonging drugs, partially due to fear of adverse events, such as hypotension (with ACE inhibitors, gynaecomastia (with spironolactone and fatigue (with beta-blockers.New agents that combine efficacy with better tolerability are therefore needed. The angiotensin II type 1 (AT1-receptor blockers have the potential to fulfil both these requirements, by blocking the deleterious cardiovascular and haemodynamic effects of angiotensin II while offering placebo-like tolerability. As shown with candesartan, AT1-receptor blockers also modulate the levels of other neurohormones, including aldosterone and atrial natriuretic peptide (ANP. Combined with its tight, long-lasting binding to AT1-receptors, this characteristic gives candesartan the potential for complete blockade of the RAAS-neurohormonal axis, along with the great potential to improve clinical outcomes.

  8. Accuracy improvement of SPACE code using the optimization for CHF subroutine

    International Nuclear Information System (INIS)

    Yang, Chang Keun; Kim, Yo Han; Park, Jong Eun; Ha, Sang Jun

    2010-01-01

    Typically, a subroutine to calculate the CHF (Critical Heat Flux) is loaded in code for safety analysis of nuclear power plant. CHF subroutine calculates CHF phenomenon using arbitrary condition (Temperature, pressure, flow rate, power, etc). When safety analysis for nuclear power plant is performed using major factor, CHF parameter is one of the most important factor. But the subroutines used in most codes, such as Biasi method, etc., estimate some different values from experimental data. Most CHF subroutines in the codes could predict only in their specification area, such as pressure, mass flow, void fraction, etc. Even though the most accurate CHF subroutine is used in the high quality nuclear safety analysis code, it is not assured that the valued predicted values by the subroutine are acceptable out of their application area. To overcome this hardship, various approaches to estimate the CHF have been examined during the code developing stage of SPACE. And the six sigma technique was adopted for the examination as mentioned this study. The objective of this study is to improvement of CHF prediction accuracy for nuclear power plant safety analysis code using the CHF database and Six Sigma technique. Through the study, it was concluded that the six sigma technique was useful to quantify the deviation of prediction values to experimental data and the implemented CHF prediction method in SPACE code had well-predict capabilities compared with those from other methods

  9. Development of local TDC model in core thermal hydraulic analysis

    International Nuclear Information System (INIS)

    Kwon, H.S.; Park, J.R.; Hwang, D.H.; Lee, S.K.

    2004-01-01

    The local TDC model consisting of natural mixing and forced mixing part was developed to obtain more realistic local fluid properties in the core subchannel analysis. To evaluate the performance of local TDC model, the CHF prediction capability was tested with the various CHF correlations and local fluid properties at CHF location which are based on the local TDC model. The results show that the standard deviation of measured to predicted CHF ratio (M/P) based on local TDC model can be reduced by about 7% compared to those based on global TDC model when the CHF correlation has no term to account for distance from the spacer grid. (author)

  10. Comparison of BIASI and Columbia CHF correlations using BODYFIT-2PE

    International Nuclear Information System (INIS)

    Chen, B.C.J.; Chien, T.H.; Sha, W.T.; Kim, J.H.

    1984-01-01

    This paper compares the BIASI critical heat flux (CHF) correlation with the Columbia CHF correlation by using both the homogeneous equilibrium two-phase model with algebraic slip and the drift flux model in BODYFIT-2PE. All calculations were compared with the GE 3 x 3 CHF experiment. This comparison serves as a qualification process for the CHF correlations in the framework of BODYFIT-2PE

  11. Review of Available Data for Validation of Nuresim Two-Phase CFD Software Applied to CHF Investigations

    Directory of Open Access Journals (Sweden)

    D. Bestion

    2009-01-01

    Full Text Available The NURESIM Project of the 6th European Framework Program initiated the development of a new-generation common European Standard Software Platform for nuclear reactor simulation. The thermal-hydraulic subproject aims at improving the understanding and the predictive capabilities of the simulation tools for key two-phase flow thermal-hydraulic processes such as the critical heat flux (CHF. As part of a multi-scale analysis of reactor thermal-hydraulics, a two-phase CFD tool is developed to allow zooming on local processes. Current industrial methods for CHF mainly use the sub-channel analysis and empirical CHF correlations based on large scale experiments having the real geometry of a reactor assembly. Two-phase CFD is used here for understanding some boiling flow processes, for helping new fuel assembly design, and for developing better CHF predictions in both PWR and BWR. This paper presents a review of experimental data which can be used for validation of the two-phase CFD application to CHF investigations. The phenomenology of DNB and Dry-Out are detailed identifying all basic flow processes which require a specific modeling in CFD tool. The resulting modeling program of work is given and the current state-of-the-art of the modeling within the NURESIM project is presented.

  12. Limiting Factors for External Reactor Vessel Cooling

    International Nuclear Information System (INIS)

    Cheung, F.B.

    2005-01-01

    The method of external reactor vessel cooling (ERVC) that involves flooding of the reactor cavity during a severe accident has been considered a viable means for in-vessel retention (IVR). For high-power reactors, however, there are some limiting factors that might adversely affect the feasibility of using ERVC as a means for IVR. In this paper, the key limiting factors for ERVC have been identified and critically discussed. These factors include the choking limit for steam venting (CLSV) through the bottleneck of the vessel/insulation structure, the critical heat flux (CHF) for downward-facing boiling on the vessel outer surface, and the two-phase flow instabilities in the natural circulation loop within the flooded cavity. To enhance ERVC, it is necessary to eliminate or relax these limiting factors. Accordingly, methods to enhance ERVC and thus improve margins for IVR have been proposed and demonstrated, using the APR1400 as an example. The strategy is based on using two distinctly different methods to enhance ERVC. One involves the use of an enhanced vessel/insulation design to facilitate steam venting through the bottleneck of the annular channel. The other involves the use of an appropriate vessel coating to promote downward-facing boiling. It is found that the use of an enhanced vessel/insulation design with bottleneck enlargement could greatly facilitate the process of steam venting through the bottleneck region as well as streamline the resulting two-phase motions in the annular channel. By selecting a suitable enhanced vessel/insulation design, not only the CLSV but also the CHF limits could be significantly increased. In addition, the problem associated with two-phase flow instabilities and flow-induced mechanical vibration could be minimized. It is also found that the use of vessel coatings made of microporous metallic layers could greatly facilitate downward-facing boiling on the vessel outer surface. With vessel coatings, the local CHF limits at

  13. Flow boiling CHF enhancement in an external reactor vessel cooling (ERVC) channel using graphene oxide nanofluid

    Energy Technology Data Exchange (ETDEWEB)

    Park, Seong Dae; Bang, In Cheol, E-mail: icbang@unist.ac.kr

    2013-12-15

    Highlights: • We investigate CHF limits of graphene oxide nanofluid for IVR-ERVC. • Graphene oxide nanofluid enhanced CHF up to about 20%. • CHF enhancement can be explained by the improved thermal activity. - Abstract: External reactor vessel cooling for in-vessel retention of corium is an important concept to mitigate the consequences of a severe accident by flooding the reactor cavity. Although this system has some merits, it is restricted by the capacity of heat removal through the nucleate boiling on the outer surface of the reactor. In this study, the graphene oxide (GO) nanofluid at 0.0001 vol% was used to enhance the critical heat flux (CHF). The CHF tests were conducted with a closed-loop facility. Test section simulated the reactor vessel of APR-1400 with a small scale. The test results show about ∼20% enhancement of CHF at 50 and 100 kg/m{sup 2} s under a 10 K subcooling condition. It means that the additional thermal margin could be acquired by just adding the GO nanoparticles to the flooding water without severe economic concerns. It is also found that this CHF enhancement is caused by coating the graphene oxide nanoparticles on the heated surface. However, the sessile drop tests on the coated heater surface show that the wettability of GO coated surface is not improved. The results of IR thermography show that one of the promising reasons is the change of thermal activity due to the coated GO nanoparticles on the heated surface.

  14. Flow boiling CHF enhancement in an external reactor vessel cooling (ERVC) channel using graphene oxide nanofluid

    International Nuclear Information System (INIS)

    Park, Seong Dae; Bang, In Cheol

    2013-01-01

    Highlights: • We investigate CHF limits of graphene oxide nanofluid for IVR-ERVC. • Graphene oxide nanofluid enhanced CHF up to about 20%. • CHF enhancement can be explained by the improved thermal activity. - Abstract: External reactor vessel cooling for in-vessel retention of corium is an important concept to mitigate the consequences of a severe accident by flooding the reactor cavity. Although this system has some merits, it is restricted by the capacity of heat removal through the nucleate boiling on the outer surface of the reactor. In this study, the graphene oxide (GO) nanofluid at 0.0001 vol% was used to enhance the critical heat flux (CHF). The CHF tests were conducted with a closed-loop facility. Test section simulated the reactor vessel of APR-1400 with a small scale. The test results show about ∼20% enhancement of CHF at 50 and 100 kg/m 2 s under a 10 K subcooling condition. It means that the additional thermal margin could be acquired by just adding the GO nanoparticles to the flooding water without severe economic concerns. It is also found that this CHF enhancement is caused by coating the graphene oxide nanoparticles on the heated surface. However, the sessile drop tests on the coated heater surface show that the wettability of GO coated surface is not improved. The results of IR thermography show that one of the promising reasons is the change of thermal activity due to the coated GO nanoparticles on the heated surface

  15. An assessment of prediction methods of CHF in tubes with a large experimental data bank

    International Nuclear Information System (INIS)

    Leung, L.K.H.; Groeneveld, D.C.

    1993-01-01

    An assessment of prediction methods of CHF in tubes has been carried out using an expanded CHF data bank at Chalk River Laboratories (CRL). It includes eight different CHF look-up tables (two AECL versions and six USSR (or Russian) versions) and three empirical correlations. These prediction methods were developed from relatively large data bases and therefore have a wide range of application. Some limitations, however, were imposed in this study, to avoid any invalid predictions due to extrapolation of these methods. Therefore, these comparisons are limited to the specific data base that is tailored to suit the range of an individual method. This has resulted in a different number of data used in each case. The comparison of predictions against the experimental data is based on the constant inlet-condition approach (i.e., the pressure, mass flux, inlet fluid temperature and tube geometry are the primary parameters). Overall, the AECL tables have the widest range of application. They are assessed with 21 771 data points and the root-mean-square error is only 8.3%. About 60% of these data were used in the development of the AECL tables. The best version of the USSR/Russian CHF table is valid for 13 300 data points with a root-mean-square error of 8.8%. The USSR/Russian table that has the widest range of application covers a total of 18 800 data points, but the error increases to 9.3%. The range of application for empirical correlations, however, are generally much narrower than those covered by the CHF tables. The number of data used to assess these correlations is therefore further limited. Among the tested correlations, the Becker and Persson correlation covers the least amount of data (only 7 499 data points), but has the best accuracy (with a root-mean-square error of 9.71%). 33 refs., 2 figs., 3 tabs

  16. Comparison of CHF predictors obtained by the pseudo-cubic spline method from CEA's FLICA-3M and EDF's THYC computations

    International Nuclear Information System (INIS)

    Banner, D.; Crecy, F. de.

    1993-07-01

    Comparison of CHF predictors has been performed by using the same Critical Heat Flux (CHF) databases but by deriving local thermal-hydraulic conditions from different codes (THYC-V3 and FLICA-3M). Predictions have been obtained by the pseudo-cubic Spline method (PCSM). It is shown that the two codes yield similar results provided that equivalent turbulent mixing coefficients are chosen. (author), 6 figs., 5 refs

  17. Fundamental approach to TRIGA steady-state thermal-hydraulic CHF analysis

    International Nuclear Information System (INIS)

    Feldman, E.E.

    2008-01-01

    Methods are investigated for predicting the power at which critical heat flux (CHF) occurs in TRIGA reactors that rely on natural convection for primary flow. For a representative TRIGA reactor, two sets of functions are created. For the first set, the General Atomics STAT code and the more widely-used RELAP5-3D code are each employed to obtain reactor flow rate as a function of power. For the second set, the Bernath correlation, the 2006 Groeneveld table, the Hall and Mudawar outlet correlation, and each of the four PG-CHF correlations for rod bundles are used to predict the power at which CHF occurs as a function of channel flow rate. The two sets of functions are combined to yield predictions of the power at which CHF occurs in the reactor. A combination of the RELAP5-3D code and the 2006 Groeneveld table predicts 67% more CHF power than does a combination of the STAT code and the Bernath correlation. (author)

  18. CHF Enhancement by Surface Patterning based on Hydrodynamic Instability Model

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Han; Bang, In Cheol [UNIST, Ulsan (Korea, Republic of)

    2015-05-15

    If the power density of a device exceeds the CHF point, bubbles and vapor films will be covered on the whole heater surface. Because vapor films have much lower heat transfer capabilities compared to the liquid layer, the temperature of the heater surface will increase rapidly, and the device could be damaged due to the heater burnout. Therefore, the prediction and the enhancement of the CHF are essential to maximizing the efficient heat removal region. Numerous studies have been conducted to describe the CHF phenomenon, such as hydrodynamic instability theory, macrolayer dryout theory, hot/dry spot theory, and bubble interaction theory. The hydrodynamic instability model, proposed by Zuber, is the predominant CHF model that Helmholtz instability attributed to the CHF. Zuber assumed that the Rayleigh-Taylor (RT) instability wavelength is related to the Helmholtz wavelength. Lienhard and Dhir proposed a CHF model that Helmholtz instability wavelength is equal to the most dangerous RT wavelength. In addition, they showed the heater size effect using various heater surfaces. Lu et al. proposed a modified hydrodynamic theory that the Helmholtz instability was assumed to be the heater size and the area of the vapor column was used as a fitting factor. The modified hydrodynamic theories were based on the change of Helmholtz wavelength related to the RT instability wavelength. In the present study, the change of the RT instability wavelength, based on the heater surface modification, was conducted to show the CHF enhancement based on the heater surface patterning in a plate pool boiling. Sapphire glass was used as a base heater substrate, and the Pt film was used as a heating source. The patterning surface was based on the change of RT instability wavelength. In the present work the study of the CHF was conducted using bare Pt and patterned heating surfaces.

  19. Experimental study of flow instability and CHF in a natural circulation system with subcooled boiling

    International Nuclear Information System (INIS)

    Yang, R.C.; Shi, D.Q.; Lu, Z.Q.; Zheng, R.C.; Wang, Y.

    1996-01-01

    Experimental study has been performed to investigate flow instability and critical heat flux (CHF) in a natural circulation system with subcooled boiling. In the experiments three kinds of heated sections were used. Freon-12 was used as the working medium. The experiments show which one of the two phenomena, flow instability and CHF condition, may first occur in the system depends on not only the heat input power to the heated section and the parameters of the working medium, but also the construction of the heated section. The occurrence of the flow instability mainly depends on the total heat input power to the heated section and the CHF condition is mainly caused by the local heat flux of the heated section. In the experiments two kinds of flow instability, flow instability with high frequency and flow instability with low frequency, were found. But they all belong to density wave instability. The influence of the parameters of the working medium on the onset of the flow instability and CHF condition in the system were investigated. The stability boundaries were determined through the experiments. By means of dimensional analysis of integral equations, a common correlation describing the threshold condition of onset of the flow instability was obtained

  20. Experimental study on the CHF in uniformly and non-uniformly heated vertical annuli

    Energy Technology Data Exchange (ETDEWEB)

    Chun, Se Young; Moon, Sang Ki; Chung, Heung June; Park, Jong Kuk; Kim, Bok Deuk; Youn, Young Jung; Chung, Moon Ki

    2001-09-01

    Up to now, KAERI has performed critical heat flux experiments in water under zero-flow and low-flow conditions using a RCS CHF loop facility with uniformly and non-uniformly heated vertical annulus. Since the existing CHF experiments were mainly performed under low-pressure conditions, we performed the CHF experiment to investigate the pressure effect on the CHF under zero-flow and low-flow conditions for a wide range of system pressures. Also, two vertical annuli with the same geometry have been used to investigate the axial heat flux distributions on the CHF. This report summarizes the experimental results and provides the CHF data that can be used for the development for CHF correlation and a thermal hydraulic analysis code. The CHF data have been collected for system pressures ranging from 0.57 to 15.15 MPa, mass flux 0 and from 200 to 650 kg/m2s, inlet subcooling from 75 to 360 kJ/kg and exit quality from 0.07 to 0.57. At low-flow conditions, the total number of data are 242 and 290 with uniformly heated- and non-uniformly heated test sections, respectively. 41 and 94 CHF data are generated with uniformly heated- and non-uniformly heated test sections, respectively, in zero-flow CHF experiments that are performed by blocking test section bottoms. The CHF experiment result shows that the effects of system pressure, mass flux and inlet subcooling are consistent with conventional understandings and similar to those for round tubes. The behavior of the CHF is relatively complex at low pressures. Also, the effects of axial heat flux profile are large at low-pressure conditions.

  1. Experimental study on the CHF in uniformly and non-uniformly heated vertical annuli

    International Nuclear Information System (INIS)

    Chun, Se Young; Moon, Sang Ki; Chung, Heung June; Park, Jong Kuk; Kim, Bok Deuk; Youn, Young Jung; Chung, Moon Ki

    2001-09-01

    Up to now, KAERI has performed critical heat flux experiments in water under zero-flow and low-flow conditions using a RCS CHF loop facility with uniformly and non-uniformly heated vertical annulus. Since the existing CHF experiments were mainly performed under low-pressure conditions, we performed the CHF experiment to investigate the pressure effect on the CHF under zero-flow and low-flow conditions for a wide range of system pressures. Also, two vertical annuli with the same geometry have been used to investigate the axial heat flux distributions on the CHF. This report summarizes the experimental results and provides the CHF data that can be used for the development for CHF correlation and a thermal hydraulic analysis code. The CHF data have been collected for system pressures ranging from 0.57 to 15.15 MPa, mass flux 0 and from 200 to 650 kg/m2s, inlet subcooling from 75 to 360 kJ/kg and exit quality from 0.07 to 0.57. At low-flow conditions, the total number of data are 242 and 290 with uniformly heated- and non-uniformly heated test sections, respectively. 41 and 94 CHF data are generated with uniformly heated- and non-uniformly heated test sections, respectively, in zero-flow CHF experiments that are performed by blocking test section bottoms. The CHF experiment result shows that the effects of system pressure, mass flux and inlet subcooling are consistent with conventional understandings and similar to those for round tubes. The behavior of the CHF is relatively complex at low pressures. Also, the effects of axial heat flux profile are large at low-pressure conditions

  2. Pool boiling CHF enhancement by micro/nanoscale modification of zircaloy-4 surface

    International Nuclear Information System (INIS)

    Ahn, Ho Seon; Lee, Chan; Kim, Hyungdae; Jo, HangJin; Kang, SoonHo; Kim, Joonwon; Shin, Jeongseob; Kim, Moo Hwan

    2010-01-01

    Consideration of the critical heat flux (CHF) requires difficult compromises between economy and safety in many types of thermal systems, including nuclear power plants. Much research has been directed towards enhancing the CHF, and many recent studies have revealed that the significant CHF enhancement in nanofluids is due to surface deposition of nanoparticles. The surface deposition of nanoparticles influenced various surface characteristics. This fact indicated that the surface wettability is a key parameter for CHF enhancement and so is the surface morphology. In this study, surface wettability of zircaloy-4 used as cladding material of fuel rods in nuclear power plants was modified using surface treatment technique (i.e. anodization). Pool boiling experiments of distilled water on the prepared surfaces was conducted at atmospheric and saturated conditions to examine effects of the surface modification on CHF. The experimental results showed that CHF of zircaloy-4 can be significantly enhanced by the improvement in surface wettability using the surface modification, but only the wettability effect cannot explain the CHF increase on the treated zircaloy-4 surfaces completely. It was found that below a critical value of contact angle (10 o ), micro/nanostructures created by the surface treatment increased spreadability of liquid on the surface, which could lead to further increase in CHF even beyond the prediction caused only by the wettability improvement. These micro/nanostructures with multiscale on heated surface induced more significant CHF enhancement than it based on the wettability effect, due to liquid spreadability.

  3. Assessment of CHF characteristics at subcooled conditions for the CANDU CANFLEX bundle

    International Nuclear Information System (INIS)

    Onder, E.N.; Leung, L.K.H.

    2011-01-01

    An analysis has been performed to assess the Critical Heat Flux (CHF) characteristics for the CANFLEX bundle at subcooled conditions. CHF characteristics for CANDU bundles have been established from experiments using full-scale bundle simulators. These experiments covered flow conditions of interest to normal operation and postulated loss-of-flow and small break loss-of-coolant accidents. Experimental CHF values obtained from these experiments were applied to develop correlations for analyses of regional overpower protection and safety trips. These correlations are applicable to the saturated region in the reference uncrept channel and the slightly subcooled region in postulated high-creep channels. Expanding the CHF data to subcooled conditions facilitates the evaluation of the margin to dryout at upstream bundle locations, even though dryout occurrences are not anticipated there. In view of the lack of experimental data, the ASSERT-PV subchannel code has been applied to establish CHF values at low qualities and high subcoolings (thermodynamic qualities corresponding to -25%). These CHF values have been applied to extend the CHF correlation to the highly subcooled conditions. (author)

  4. Autosomal recessive polycystic kidney disease and congenital hepatic fibrosis (ARPKD/CHF)

    Energy Technology Data Exchange (ETDEWEB)

    Turkbey, Baris; Choyke, Peter L. [National Institutes of Health, Molecular Imaging Program, National Cancer Institute, Bethesda, MD (United States); Ocak, Iclal [National Institutes of Health, Molecular Imaging Program, National Cancer Institute, Bethesda, MD (United States); University of Pittsburgh Medical Center, Department of Radiology, Pittsburgh, PA (United States); Daryanani, Kailash [National Institutes of Health, Clinical Center, Department of Radiology, Bethesda, MD (United States); Font-Montgomery, Esperanza; Lukose, Linda; Bryant, Joy; Tuchman, Maya; Gahl, William A. [National Institutes of Health, National Human Genome Research Institute, Medical Genetics Branch, Bethesda, MD (United States); Mohan, Parvathi [George Washington University, Department of Pediatric Gastroenterology, Washington, DC (United States); Heller, Theo [National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD (United States); Gunay-Aygun, Meral [National Institutes of Health, National Human Genome Research Institute, Medical Genetics Branch, Bethesda, MD (United States); National Institutes of Health, Intramural Program, Office of Rare Diseases, Office of the Directors, Bethesda, MD (United States)

    2009-02-15

    ARPKD/CHF is an inherited disease characterized by non-obstructive fusiform dilatation of the renal collecting ducts leading to enlarged spongiform kidneys and ductal plate malformation of the liver resulting in congenital hepatic fibrosis. ARPKD/CHF has a broad spectrum of clinical presentations involving the kidney and liver. Imaging plays an important role in the diagnosis and follow-up of ARPKD/CHF. Combined use of conventional and high-resolution US with MR cholangiography in ARPKD/CHF patients allows detailed definition of the extent of kidney and hepatobiliary manifestations without requiring ionizing radiation and contrast agents. (orig.)

  5. CRT-D Therapy in Patients with Decompensated NYHA Class-Four CHF

    Directory of Open Access Journals (Sweden)

    Faisal Zaeem

    2012-01-01

    Full Text Available Background. ACC-HRS Guidelines for Cardiac Resynchronization Therapy ICD implantation (CRT-D do not include patients with advanced nonambulatory NYHA class-four CHF due to an expectation of limited survival. There is little data available from these large multicenter randomized studies to support or refute this claim. Purpose. We evaluated the outcomes of patients with advanced nonambulatory NYHA class-four CHF who received CRT-D devices as an attempt to improve the clinical status and promote hospital discharge. Methods. Sixteen (of our six hundred and seventy CRT-D patients were classified as advanced nonambulatory NYHA Class four inotrope/vasodilator/diuretic-dependent patients. These patients were analyzed retrospectively for weaning success to oral medications, hospital discharge, hemodynamic stability, and survival over eighteen months. Results. Thirteen of sixteen patients were discharged to home within two weeks of implantation. The survival to hospital discharge, as well as at six, twelve, and eighteen months was positive (ninety-four percent, seventy-five percent, sixty-nine percent, sixty-nine percent, resp.. The groups showed significant improvements in systolic blood pressure, renal function, left ventricular ejection fraction, and CHF class. Conclusion. CRT-D in advanced nonambulatory NYHA four patients proved feasible and beneficial. These findings suggest that the strategy merits further study.

  6. The PDE4 inhibitor CHF-6001 and LAMAs inhibit bronchoconstriction-induced remodeling in lung slices.

    Science.gov (United States)

    Kistemaker, Loes E M; Oenema, Tjitske A; Baarsma, Hoeke A; Bos, I Sophie T; Schmidt, Martina; Facchinetti, Fabrizio; Civelli, Maurizio; Villetti, Gino; Gosens, Reinoud

    2017-09-01

    Combination therapy of PDE4 inhibitors and anticholinergics induces bronchoprotection in COPD. Mechanical forces that arise during bronchoconstriction may contribute to airway remodeling. Therefore, we investigated the impact of PDE4 inhibitors and anticholinergics on bronchoconstriction-induced remodeling. Because of the different mechanism of action of PDE4 inhibitors and anticholinergics, we hypothesized functional interactions of these two drug classes. Guinea pig precision-cut lung slices were preincubated with the PDE4 inhibitors CHF-6001 or roflumilast and/or the anticholinergics tiotropium or glycopyorrolate, followed by stimulation with methacholine (10 μM) or TGF-β 1 (2 ng/ml) for 48 h. The inhibitory effects on airway smooth muscle remodeling, airway contraction, and TGF-β release were investigated. Methacholine-induced protein expression of smooth muscle-myosin was fully inhibited by CHF-6001 (0.3-100 nM), whereas roflumilast (1 µM) had smaller effects. Tiotropium and glycopyrrolate fully inhibited methacholine-induced airway remodeling (0.1-30 nM). The combination of CHF-6001 and tiotropium or glycopyrrolate, in concentrations partially effective by themselves, fully inhibited methacholine-induced remodeling in combination. CHF-6001 did not affect airway closure and had limited effects on TGF-β 1 -induced remodeling, but rather, it inhibited methacholine-induced TGF-β release. The PDE4 inhibitor CHF-6001, and to a lesser extent roflumilast, and the LAMAs tiotropium and glycopyrrolate inhibit bronchoconstriction-induced remodeling. The combination of CHF-6001 and anticholinergics was more effective than the individual compounds. This cooperativity might be explained by the distinct mechanisms of action inhibiting TGF-β release and bronchoconstriction. Copyright © 2017 the American Physiological Society.

  7. Local Heat Transfer and CHF for Subcooled Flow Boiling - Annual Report 1993

    International Nuclear Information System (INIS)

    Boyd, Ronald D.

    2000-01-01

    Subcooled flow boiling in heated coolant channels is an important heat transfer enhancement technique in the development of fusion reactor components, where high heat fluxes must be accommodated. As energy fluxes increase in magnitude, additional emphasis must be devoted to enhancing techniques such as sub cooling and enhanced surfaces. In addition to subcooling, other high heat flux alternatives such as high velocity helium and liquid metal cooling have been considered as serious contenders. Each technique has its advantages and disadvantages [1], which must be weighed as to reliability and reduced cost of fusion reactor components. Previous studies [2] have set the stage for the present work, which will concentrate on fundamental thermal hydraulic issues associated with the h-international Thermonuclear Experimental Reactor (ITER) and the Engineering Design Activity (EDA). This proposed work is intended to increase our understanding of high heat flux removal alternatives as well as our present capabilities by: (1) including single-side heating effects in models for local predictions of heat transfer and critical heat flux; (2) inspection of the US, Japanese, and other possible data sources for single-side heating, with the aim of exploring possible correlations for both CHF and local heat transfer; and (3) assessing the viability of various high heat flux removal techniques. The latter task includes: (a) sub-cooled water flow boiling with enhancements such as twisted tapes, and hypervapotrons, (b) high velocity helium cooling, and (c) other potential techniques such as liquid metal cooling. This assessment will increase our understanding of: (1) hypervapotron heat transfer via fins, flow recirculation, and flow oscillation, and (2) swirl flow. This progress report contains selective examples of ongoing work. Section II contains an extended abstract, which is part of and evolving technical paper on single-side f heating. Section III describes additional details

  8. CHF prediction in rod bundles using round tube data

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Wallen F.; Veloso, Maria A.F.; Pereira, Cláubia; Costa, Antonella L., E-mail: wallenfds@yahoo.com.br, E-mail: mdora@nuclear.ufmg.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Departamento de Engenharia Nuclear

    2017-07-01

    The present work concerns the use of 1995 CHF table for uniformly heated round tubes, developed jointly by Canadian and Russian researchers, for the prediction of critical heat fluxes in rod bundles geometries. Comparisons between measured and calculated critical heat fluxes indicate that this table could be applied to rod bundles provided that a suitable correction factor is employed. The tolerance limits associated with the departure from nucleate boiling ratio (DNBR) are evaluated by using statistical analysis. (author)

  9. A theoretical model for flow boiling CHF from short concave heaters

    International Nuclear Information System (INIS)

    Galloway, J.E.; Mudawar, I.

    1995-01-01

    Experiments were performed to enable the development of a new theoretical mode for the enhancement in CHF commonly observed with flow boiling on concave heater as compared to straight heaters. High-speed video imaging and photomicrography were employed to capture the trigger mechanism for CHF each type heater. A wavy vapor layer was observed to engulf the heater surface in each case, permitting liquid access to the surface only in regions where depressions (troughs) in the liquid vapor interface made contact with the surface. CHF in each case occurred when the pressure force exerted upon the wavy vapor-liquid inter ace in the contact region could no longer overcome the momentum of the vapor produced in these regional. Shorter interfacial wavelengths with greater curvature were measured on the curve, heater than on the straight heater, promoting a greater pressure force on the wave interface and a corresponding increase in CHF for the curved heater. A theoretics. CHF model is developed from these observations, based upon a new theory for hydrodynamic instability, along a curved interface. CHF data are predicted with good accuracy for both heaters. 23 refs., 9 figs

  10. Relationship between high quality CHF and boiling length in annulus geometry with uniformly heated rod

    International Nuclear Information System (INIS)

    Chun, S. Y.; Mun, S. K.; Park, J. K.; Yang, S. K.; Jung, M. K.

    1999-01-01

    The relationship between the boiling length and the CHF in annulus geometry with uniformly heated rod has been studied. In this study the CHF data under pressure of 0.57∼15.01 MPa, flow rate of 200∼650 kg/m 2 s, inlet subcooling of 85∼353 kJ/kg and exit quality of 0.106∼0.536 have been applied. As a result of examining the flow pattern over the heated section, all of the CHF data were the dryout type CHF in annular flow and the locations of the churn to annular flow transition moved down stream of the heated section with increasing the pressure. The effect of pressure on the boiling length under the CHF conditions showed the trends similar to the effect of pressure on the CHF. The relationship between the non-dimensional CHF, q CHF and mass flux taking into account of the boiling length, G ( L h / L B ) indicated the linear relationship without scatter and regardless of pressure and inlet subcooling. The CHF calculated by using the relationship between the non-dimensionless CHF, q CHF and mass flux, G ( L h / L B ) predicted very well the experimental CHF data with the pressure dependence

  11. Effect of the Aligned Flow Obstacles on Downward-Facing CHF in an Inclined Rectangular Channel

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Ui ju; Son, Hong Hyun; Seo, Gwang Hyeok; Jeun, Gyoo Dong; Kim, Sung Joong [Hanyang, Seoul (Korea, Republic of)

    2016-05-15

    The cooling channel consists of the inclined (10 .deg. ) portion of the downward facing heating channel and vertical portion of the heating channel. Features unique to flow boiling with the downward-facing heater surface in the inclined cooling channel where the studs are installed have drawn a considerable attention. That's because prior studies on boiling crisis indicate the orientation of the heated wall can exert substantial influence on CHF. Especially, the concentration of the vapor near the downward facing heater surface makes this region susceptible to premature boiling crisis when compared to vertical or upward-facing heated wall. Also, the installed studs could cause a partial flow blockage, and distort the flow streamline. Due to the distortion, stagnation points may occur in the cooling channel, promoting the concentration of the vapor near the heated wall. Then, the locally degraded heat transfer around the points may result in the formation of vapor pocket. The primary objective of this study is to make available experimental data on the CHF values varying the shape of studs and to improve understanding of the mechanism of flow boiling crisis associated with the aligned flow obstructions by means of visual experimental study. This study presents experimental data for subcooled flow boiling of water at atmospheric pressure and low mass flux conditions. The major outcomes from this investigation can be summarized as follows: (1) The CHF value from bare test section is -320kW/m{sup 2} , significantly lower than the values from the existing correlations even considering the uncertainty in the experiments. (2) The CHF value is remarkably decreased as columnar structures are installed in the channel. It is confirmed that formation and extinction of local dryout occurs repeatedly just behind the first stud at heat flux of -160 kW/m{sup 2}.

  12. Post-CHF heat transfer during steady-state and transient conditions

    International Nuclear Information System (INIS)

    Fung, K.K.

    1978-06-01

    This review extends previous reviews of steady-state post-CHF literature by Groeneveld, Gardiner, and Fung by including more recent data. A review of the literature on transient post-CHF data is also included by extending the work of Yadigaroglu

  13. A study on the CHF enhancement of pool boiling using nano-fluids

    International Nuclear Information System (INIS)

    Chang, Won Joon

    2009-02-01

    The understanding of CHF phenomenon and an accurate prediction of the CHF condition are important for safe and economic design of many heat transfer units including nuclear reactors, fossil fuel boilers, fusion reactors, electronic chips, etc. The phenomenon has been investigated extensively over the world since Nukiyama (1934) first characterized it. In particular, a large amount of significant work has been done during the last four decades with the development of water cooled nuclear reactors. The wettability of the heated surface under pool boiling of surfactant solutions and nano-fluids has been investigated. Tri-sodium phosphate (TSP, Na 3 PO 4 ) solutions and Aluminum oxide nano-fluids were prepared for experiments. Contact angles of pure water and the solutions on the quenched surface and fresh surface were measured. Surfaces deposited TSP and nano-particle could affect surface energy of the strips and enhance hydrophilicity of the surfaces. Several implications of the experimental results on the pool boiling CHF model and CHF enhancement using TSP and NF were discussed. A increase of CHF was observed with nano-fluid. The addition of nano-particle helped to increase the wettability by reducing the surface tension. This happens with the decrease in bubble diameter, breakup of bubbles and avoidance of bubble coalescence. CHF increase or decrease depends upon competition between high wettability and high instability. An optimum nano-fluid concentration is needed which must have high crystalline content. When the concentration reaches at a critical value, CHF will tend to a constant value. As the results of previous study, surface tension effect the results of CHF. And it is same to nano-fluids, because surface tension change the dynamics of mixture fluids at two phase and means the instability of thermal hydraulics. Contact angle which be in the limelight at recent research means wettability of heated surface. However, in case of nano-fluids, both are

  14. Application of artificial neural networks in analysis of CHF experimental data in round tubes

    International Nuclear Information System (INIS)

    Huang Yanping; Chen Bingde; Lang Xuemei; Wang Xiaojun; Shan Jianqiang; Jia Dounan

    2004-01-01

    Artificial neural networks (ANNs) are applied successfully to analyze the critical heat flux (CHF) experimental data from some round tubes in this paper. A set of software adopting artificial neural network method for predicting CHF in round tube and a set of CHF database are gotten. Comparing with common CHF correlations and CHF look-up table, ANN method has stronger ability of allow-wrong and nice robustness. The CHF predicting software adopting artificial neural network technology can improve the predicting accuracy in a wider parameter range, and is easier to update and to use. The artificial neural network method used in this paper can be applied to some similar physical problems. (authors)

  15. Prediction of sodium critical heat flux (CHF) in annular channel using grey systems theory

    International Nuclear Information System (INIS)

    Zhou Tao; Su Guanghui; Zhang Weizhong; Qiu Suizheng; Jia Dounan

    2001-01-01

    Using grey systems theory and experimental data obtained from sodium boiling test loop in China, the grey mutual analysis of some parameters influencing sodium CHF is carried out, and the CHF values are predicted by GM(1, 1) model. The GM(1, h) model is established for CHF prediction, and the predicted CHF values are good agreement with the experimental data

  16. Simulation of CHF Condition using an Electroplating System

    Energy Technology Data Exchange (ETDEWEB)

    Ohk, Seung-Min; Park, Hae-Kyun; Chung, Bum-Jin [Kyung Hee University, Yongin (Korea, Republic of)

    2016-10-15

    Heat transfer is enhanced when the bubbles are generated on the heated surface at the nucleate boiling regime since vigorous mixing of the liquid occurs near the heated surface due to the buoyancy force of the bubbles. As this phenomenon intensified, vapor film can be formed on the heated surface and it impairs heat transfer disturbing the heat exchange between the surface and the bulk liquid. And thus, the heat flux has the certain maximum value. This maximum value, Critical Heat Flux (CHF) is generally exhibits in the pool boiling condition in non-film boiling mode. Actually, the higher heat flux could be generated at the film boiling mode with extremely high surface temperature, which may unendurable for the system structure. CHF phenomena is simulated by hydrogen gas using electroplating system in mass transfer experiment. Vapor behavior on mass transfer experiment was visualized, and it was similar to that of on the heat transfer. CHF value was simulated by hydrogen gas with isovolumetric concept. Thus, virtual heat flux was estimated by mass flux, which is a non-heating process. Difference of gas density from heat transfer and mass transfer systems were considered and revised for the simulated heat flux. Despite of the simple parametric analysis, estimated CHF value of this study was 6.6 times smaller than Zuber's.

  17. An experimental study of flow boiling chf with porous surface coatings and surfactant solutions

    International Nuclear Information System (INIS)

    Sarwar, Mohammad Sohail

    2007-02-01

    The boiling crisis or critical heat flux (CHF) phenomenon is an enormously studied topic of the boiling heat transfer. The great interest in the CHF is due to practical motives, since it is desirable to design an equipment (heat exchanger or boiler, etc) to operate at as high a heat flux as possible with optimum heat transfer rates but without the risk of physical burnout. This study consists of two parts of flow boiling CHF experiment: with porous surface coated tubes and by using surfactant solutions as working fluid. In first part, the effect of micro- and nano-porous inside surface coated vertical tubes on the CHF was determined for flow boiling of water in vertical round tubes at atmospheric pressure. CHF was measured for a smooth and three different coated tubes, at mass fluxes of 100∼300 kg/m 2 s and two inlet subcooling temperatures (50 .deg. C and 75 .deg. C). Greater CHF enhancement was found with microporous coatings. Al 2 O 3 microporous coatings with particle size <10 μm and coating thickness of 50 μm showed the best CHF enhancement. The maximum increase in the CHF was about 25% for microporous Al 2 O 3 . A wettability test was performed to study the physical mechanism of increase of CHF with microporous coated surfaces and contact angle was measured for smooth and coated surfaces. Pressure drop measurements were also performed across the coated tubes using the DP-cell apparatus. In second part, surfactant effect on the CHF was determined for water flow boiling at atmospheric pressure in a closed loop filled with solution of tri-sodium phosphate (TSP, Na 3 PO 4 ·12H 2 O). The TSP is usually added to the containment sump water to adjust pH level during accident in nuclear power plants. The CHF was measured for four different surfactant solutions of water in vertical tubes, at different mass fluxes (100 ∼ 500 kg/m 2 s) and two inlet subcooling temperatures (50 .deg. C and 75 .deg. C). Surfactant solutions in the range of 0.05%∼0.2% at low mass

  18. CHF correlations related to the core cooling of a research reactor

    International Nuclear Information System (INIS)

    Mishima, K.; Nishihara, H.; Shibata, T.

    1984-01-01

    Critical heat flux (CHF) at low flow condition can become important in a research reactor under a number of accident conditions. Regardless of the initial stages of these accidents, a similar condition, which is basically the decay heat removal by natural convection boiling, can develop. Under such conditions, burnout may occur even at a very low heat flux. In view of this, the low-flow CHF has been studied to provide a better understanding of the dryout behavior. The experimental results under atmospheric pressure indicate that a CHF can occur at much lower heat flux than pool-boiling CHF or than predicted by the conventional correlations. This fact indicates that a special care should be taken in analyzing the boiling phenomenon which occurs when the coolant flow is very low in a low pressure system. (author)

  19. Evaluation of mechanistic DNB models using HCLWR CHF data

    International Nuclear Information System (INIS)

    Iwamura, Takamichi; Watanabe, Hironori; Okubo, Tsutomu; Araya, Fumimasa; Murao, Yoshio.

    1992-03-01

    An onset of departure from nucleate boiling (DNB) in light water reactor (LWR) has been generally predicted with empirical correlations. Since these correlations have less physical bases and contain adjustable empirical constants determined by best fitting of test data, applicable geometries and flow conditions are limited within the original experiment ranges. In order to obtain more universal prediction method, several mechanistic DNB models based on physical approaches have been proposed in recent years. However, the predictive capabilities of mechanistic DNB models have not been verified successfully especially for advanced LWR design purposes. In this report, typical DNB mechanistic models are reviewed and compared with critical heat flux (CHF) data for high conversion light water reactor (HCLWR). The experiments were performed using triangular 7-rods array with non-uniform axial heat flux distribution. Test pressure was 16 MPa, mass velocities ranged from 800 t0 3100 kg/s·m 2 and exit qualities from -0.07 to 0.19. The evaluated models are: 1) Wisman-Pei, 2) Chang-Lee, 3) Lee-Mudawwar, 4) Lin-Lee-Pei, and 5) Katto. The first two models are based on near-wall bubble crowding model and the other three models on sublayer dryout model. The comparison with experimental data indicated that the Weisman-Pei model agreed relatively well with the CHF data. Effects of empirical constants in each model on CHF calculation were clarified by sensitivity studies. It was also found that the magnitudes of physical quantities obtained in the course of calculation were significantly different for each model. Therefore, microscopic observation of the onset of DNB on heated surface is essential to clarify the DNB mechanism and establish a general DNB mechanistic model based on physical phenomenon. (author)

  20. Atmospheric chemistry of CH3CHF2 (HFC-152a)

    DEFF Research Database (Denmark)

    Taketani, Fumikazu; Nakayama, Tomoki; Takahashi, Kenshi

    2005-01-01

    Smog chamber/Fourier transform infrared (FTIR) and laser-induced fluorescence (LIF) spectroscopic techniques were used to study the atmospheric degradation of CH3CHF2. The kinetics and products of the Cl(2P(3/2)) (denoted Cl) atom- and the OH radical-initiated oxidation of CH3CHF2 in 700 Torr of ...

  1. Prediction of critical heat flux by a new local condition hypothesis

    International Nuclear Information System (INIS)

    Im, J. H.; Jun, K. D.; Sim, J. W.; Deng, Zhijian

    1998-01-01

    Critical Heat Flux(CHF) was predicted for uniformly heated vertical round tube by a new local condition hypothesis which incorporates a local true steam quality. This model successfully overcame the difficulties in predicted the subcooled and quality CHF by the thermodynamic equilibrium quality. The local true steam quality is a dependent variable of the thermodynamic equilibrium quality at the exit and the quality at the Onset of Significant Vaporization(OSV). The exit thermodynamic equilibrium quality was obtained from the heat balance, and the quality at OSV was obtained from the Saha-Zuber correlation. In the past CHF has been predicted by the experimental correlation based on local or non-local condition hypothesis. This preliminary study showed that all the available world data on uniform CHF could be predicted by the model based on the local condition hypothesis

  2. A critical heat flux approach for square rod bundles using the 1995 Groeneveld CHF table and bundle data of heat transfer research facility

    International Nuclear Information System (INIS)

    Lee, M.

    2000-01-01

    The critical heat flux (CHF) approach using CHF look-up tables has become a widely accepted CHF prediction technique. In these approaches, the CHF tables are developed based mostly on the data bank for flow in circular tubes. A set of correction factors was proposed by Groeneveld et al. [Groeneveld, D.C., Cheng, S.C., Doan, T. (1986)] to extend the application of the CHF table to other flow situations including flow in rod bundles. The proposed correction factors are based on a limited amount of data not specified in the original paper. The CHF approach of Groeneveld and co-workers is extensively used in the thermal hydraulic analysis of nuclear reactors. In 1996, Groeneveld et al. proposed a new CHF table to predict CHF in circular tubes [Groeneveld, D.C., et al., 1996. The 1995 look-up table for Critical Heat Flux. Nucl. Eng. Des. 163(1), 23]. In the present study, a set of correction factors is developed to extend the applicability of the new CHF table to flow in rod bundles of square array. The correction factors are developed by minimizing the statistical parameters of the ratio of the measured and predicted bundle CHF data from the Heat Transfer Research Facility. The proposed correction factors include: the hydraulic diameter factor (K hy ), the bundle factor (K bf ), the heated length factor (K hl ), the grid spacer factor (K sp ), the axial flux distribution factors (K nu ), the cold wall factor (K cw ) and the radial power distribution factor (K rp ). The value of constants in these correction factors is different when the heat balance method (HBM) and direct substitution method (DSM) are adopted to predict the experimental results of HTRF. With the 1995 Groeneveld CHF Table and the proposed correction factors, the average relative error is 0.1 and 0.0% for HBM and DSM, respectively, and the root mean square (RMS) error is 31.7% in DSM and 17.7% in HBM for 9852 square array data points of HTRF. (orig.)

  3. Experimental study on CHF characteristics of water-TiO2 nano-fluids

    International Nuclear Information System (INIS)

    Kim, Hyung Dae; Kim Moo Hwan; Kim, Jeong Bae

    2006-01-01

    CHF characteristics of nano-fluids were investigated with different volumetric concentrations of TiO 2 nanoparticles. Pool boiling experiments indicated that the application of nano-fluids, instead of pure water, as a cooling liquid significantly increased the CHF. SEM (Scanning Electron Microscope) observations subsequent to the pool boiling experiments revealed that nanoparticles were coated on the heating surface during pool boiling of nano-fluids. In order to investigate the roles of nanoparticles in CHF enhancement of nano-fluids, pool boiling experiments were performed using (a) a nanoparticle-coated heater, prepared by pool boiling of nano-fluids, immersed in pure water and (b) a nanoparticle-coated heater immersed in nano-fluids. The results demonstrated two different roles of nanoparticles in CHF enhancement using nano-fluids: the effect of nanoparticles coated on the heater surface and the effect of nanoparticles suspended in nano-fluids

  4. Experimental study of CHF enhancement using Fe{sub 3}O{sub 4} nanofluids in the subcooled boiling region

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Young Jae; Kam, Dong Hoon; Jeong, Yong Hoon [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2015-10-15

    This study may give overall trends of CHF enhancement in the subcooled boiling region. In our experiment, subcooled flow boiling CHF enhancement phenomena in water and nano-coated surface was investigated in mass flux from 1000 to 5000 kg/m{sup 2}s. CHF enhancement of nanoparticles coated tube in DI water increased as exit quality get bigger at same massflux. Various methods to improve CHF characteristics are introduced, especially nanofluids are used for enhancing the CHF. Nanofluids is a colloidal suspension that nanoparticles are mixed with basic fluid. Normally the use of nanofluids as working fluid improves the flow boiling CHF characteristics. Lee et al. already researched the CHF characteristics using nanofluids. As exit quality increased from 0.07 to 0.74, CHF enhancement gradually decreased and approached zero. CHF enhancement was observed when exit quality was low and a DNB-like thermal crisis occurred. But CHF enhancement didn't occur for high exit quality, but LFD-type thermal crisis occurred. Because LFD phenomena are nearly unaffected by the surface conditions, CHF enhancement is not expected for annular flow with high exit quality. Kim et al. performed flow boiling CHF enhancement at subcooled region using alumina-water, zinc-oxide-water and diamond-water nanofluids. The CHF was enhanced by increasing wettability from nanoparticle deposition. CHF enhancement occurred in high mass flux (2000-2500 kg/m{sup 2}s), but CHF enhancement didn't occur in low mass flux (1500 kg/m{sup 2}s). The amount of nanoparticle deposition on each tube can be different during experiments by the several conditions such as deposition time, mass flux and heat flux. So, before the nanofluid experiment conducted, all tube are deposited in same condition of heat flux, concentration and time.

  5. Interval and continuous exercise enhances aerobic capacity and hemodynamic function in CHF rats

    Directory of Open Access Journals (Sweden)

    Ramiro B. Nunes

    2015-08-01

    Full Text Available OBJECTIVE: The aim of the present study was to compare the effects of continuous versus interval aerobic exercise training on hemodynamic parameters, cardiac remodeling, and maximal exercise capacity (MEC in chronic heart failure (CHF rats.METHOD: Twenty-four male Wistar rats were subjected to myocardial infarction (MI surgery. Five weeks post MI, the animals were assigned to one of three groups: sedentary group (CHF-Sed, n=8, aerobic continuous training group (CHF-ACT, n=8, and aerobic interval training group (CHF-AIT, n=8. Treadmill training was performed five times a week for 8 weeks (ACT: 50 min/day at 15 m/min and AIT: 40 min/day with 8 min of warm-up at 10 m/min and exercise at 15 m/min 4×4 min interspersed with 4×4 min at 23 m/min. MEC was evaluated pre and post exercise program.RESULTS: Left ventricular end-diastolic pressure (LVEDP, left ventricular mass/body mass ratio (LVM:BM, and total collagen volume fraction were lower in the trained groups compared with the sedentary group, but no difference was found between the trained groups. Systolic ventricular pressure (SVP and maximum positive derivative of LV pressure (+dP/dtmax were higher in the trained groups, but CHF-ACT showed higher +dP/dtmax compared to CHF-AIT. Both training regimens were able to increase MEC. However, the aerobic interval training was superior for improving MEC.CONCLUSION: Aerobic training is an important intervention to improve cardiac function and remodeling and physical capacity in CHF rats. Interval training is a potential strategy to maximize the results, but exercise type and intensity are still topics to be explored.

  6. CHF enhancement in pool boiling of nanofluid : effect of nanoparticle-coating on heating surface

    International Nuclear Information System (INIS)

    Kim, Hyung Dae; Kim, Moo Hwan

    2005-01-01

    Recently researches to enhance CHF using the nanofluid, a new kind of heat transfer fluid in which nano-particles are uniformly and stably dispersed, were attempted. You showed that nanofluid, containing only 0.005 g/l of alumina nanoparticle, make the dramatic increase (∼200%) in CHF in pool boiling at the pressure of 2.89 psia (Tsat=60 .deg. C). They concluded that the abnormal CHF enhancement of nanofluid cannot be explained with any existing models of CHF. Vassallo performed the experimental studies on pool boiling heat transfer in water-SiO 2 nanofluid under atmospheric pressure. They showed a remarkable increase in CHF for nanofluid and also found that the stable film boiling at temperatures close to the melting point of the boiling surface are achievable with the nanofluid. After the experiments, they observed that the formation of the thin silica coating on the wire heater was occurred. This paper focuses on the experimental study of the effect of nanoparticle-coating on CHF enhancement in pool boiling of nanofluid. In this regard, pool boiling CHF values are measured and compared (a) from bare heater immersed in nanofluid and (b) from nanoparticle-coated heater, which is generated by deposition of suspended nanoparticles during pool boiling of nanofluid, immersed in pure water, and (c) from nanoparticle-coated heater immersed in nanofluid. And the microstructure of each heating surface is investigated from photography taken using SEM

  7. Assessment of correlations and models for prediction of CHF in subcooled flow boiling

    International Nuclear Information System (INIS)

    Celata, G.P.; Mariani, A.; Cumo, M.

    1992-01-01

    This paper provides an analysis of available correlations and models for the prediction of Critical Heat Flux (CHF) in subcooled flow boiling in the ranges of interest of fusion reactor thermal-hydraulic conditions, i.e., high inlet liquid subcooling and velocity and small channel diameter and length. The aim of the study was to establish the limits of validity of present predictive tools (most of them were proposed with reference to LWR thermal-hydraulic studies) in the above conditions. The reference data-set represents most of available data covering wide ranges of operating conditions in the framework of present interest (0.1 s ub, in < 230 K). Among the tens of predictive tools available in literature, four correlations (Levy, Westinghouse, modified-Tong and Tong-75) and three models (Weisman and Ileslamlou Lee and Mudawar and Katto) were selected. The modified-Tong correlation and the Katto model seem to be reliable predictive tools for the calculation of the CHF in subcooled flow boiling

  8. Experimental study on the effect of gap size to CCFL and CHF in a vertical of narrow rectangular channel during quenching process

    International Nuclear Information System (INIS)

    Juarsa, Mulya; Putra, Nandy; Septiadi, Wayan Nata; Antariksawan, Anhar Riza

    2014-01-01

    Highlights: • Quenching in narrow rectangular channel with gap sizes variation was investigated. • The mechanism of counter-current flow depends on gap sizes variation. • The results confirmed the existence of CCFL in narrow rectangular channels. • CHF and mass flux gradient in the quenching was about 0.22 times than steady state. • Modification of CHF and mass flow rate dimensionless correlation was established. - Abstract: The quenching process has become an important thermal management study to intensify the safety margin for the integrity of the reactor vessel under the core meltdown condition. The boiling heat transfer mechanism in the channel is one aspect that needs further examination. The present study aimed to investigate the effect of the differences in channel gap size to counter-current flow limitation (CCFL) and critical heat flux (CHF) during transient cooling in atmospheric pressure and quenching using two vertical plates with 1 mm, 2 mm, and 3 mm gap sizes and heated length of 1100 mm. The initial temperature of the plate was set at 600 °C. Cooling water mass flow rate and sib-cooled temperature were set at about 0.089 kg/s and 90 °C, respectively. Calculations were performed to obtain the CHF value through the boiling curve using transient temperature data. Non-dimensional correlations from other research study was used in this research. The influence of gap sizes on CCFL and CHF resulted in an increased value of CHF relative to gap size; additionally, the CHF for gap sizes of 2 mm and 3 mm increased about 34.4% and 140.5%, respectively, compared to the CHF for the 1 mm gap size. In this research, a curve map of the relationship between non-dimensional CHF and non-dimensional mass flux of water flowing downward shows that the correlation of this experimental study has a gradient number of about 0.22 similar to Mishima and Nishihara correlation. The results confirmed the existence of CCFL in the vertical narrow rectangular channels due

  9. Evaluation of subcooled critical heat flux correlations using the PU-BTPFL CHF database for vertical upflow of water in a uniformly heated round tube

    International Nuclear Information System (INIS)

    Hall, D.D.; Mudawar, I.

    1997-01-01

    A simple methodology for assessing the predictive ability of critical heat flux (CHF) correlations applicable to subcooled flow boiling in a uniformly heated vertical tube is developed. Popular correlations published in handbooks and review articles as well as the most recent correlations are analyzed with the PU-BTPFL CHF database, which contains 29,718 CHF data points. This database is the largest collection of CHF data (vertical upflow of water in a uniformly heated round tube) ever cited in the world literature. The parametric ranges of the CHF database are diameters from 0.3 to 45 mm, length-to-diameter ratios from 2 to 2484, mass velocities from 0.01 x 10 3 to 138 x 10 3 kg/m 2 ·s, pressures from 1 to 223 bars, inlet subcoolings from 0 to 347 C, inlet qualities from -2.63 to 0.00, outlet subcoolings from 0 to 305 C, outlet qualities from -2.13 to 1.00, and CHFs from 0.05 x 10 6 to 276 x 10 6 W/m 2 . The database contains 4,357 data points having a subcooled outlet condition at CHF. A correlation published elsewhere is the most accurate in both low- and high-mass velocity regions, having been developed with a larger database than most correlations. In general, CHF correlations developed from data covering a limited range of flow conditions cannot be extended to other flow conditions without much uncertainty

  10. Analytical prediction of CHF by FIDAS code based on three-fluid and film-dryout model

    International Nuclear Information System (INIS)

    Sugawara, Satoru

    1990-01-01

    Analytical prediction model of critical heat flux (CHF) has been developed on the basis of film dryout criterion due to droplets deposition and entrainment in annular mist flow. Critical heat flux in round tubes were analyzed by the Film Dryout Analysis Code in Subchannels (FIDAS) which is based on the three-fluid, three-field and newly developed film dryout model. Predictions by FIDAS were compared with the world-wide experimental data on CHF obtained in water and Freon for uniformly and non-uniformly heated tubes under vertical upward flow condition. Furthermore, CHF prediction capability of FIDAS was compared with those of other film dryout models for annular flow and Katto's CHF correlation. The predictions of FIDAS are in sufficient agreement with the experimental CHF data, and indicate better agreement than the other film dryout models and empirical correlation of Katto. (author)

  11. CHF predictor derived from a 3D thermal-hydraulic code and an advanced statistical method

    International Nuclear Information System (INIS)

    Banner, D.; Aubry, S.

    2004-01-01

    A rod bundle CHF predictor has been determined by using a 3D code (THYC) to compute local thermal-hydraulic conditions at the boiling crisis location. These local parameters have been correlated to the critical heat flux by using an advanced statistical method based on spline functions. The main characteristics of the predictor are presented in conjunction with a detailed analysis of predictions (P/M ratio) in order to prove that the usual safety methodology can be applied with such a predictor. A thermal-hydraulic design criterion is obtained (1.13) and the predictor is compared with the WRB-1 correlation. (author)

  12. Using text mining techniques to extract phenotypic information from the PhenoCHF corpus.

    Science.gov (United States)

    Alnazzawi, Noha; Thompson, Paul; Batista-Navarro, Riza; Ananiadou, Sophia

    2015-01-01

    Phenotypic information locked away in unstructured narrative text presents significant barriers to information accessibility, both for clinical practitioners and for computerised applications used for clinical research purposes. Text mining (TM) techniques have previously been applied successfully to extract different types of information from text in the biomedical domain. They have the potential to be extended to allow the extraction of information relating to phenotypes from free text. To stimulate the development of TM systems that are able to extract phenotypic information from text, we have created a new corpus (PhenoCHF) that is annotated by domain experts with several types of phenotypic information relating to congestive heart failure. To ensure that systems developed using the corpus are robust to multiple text types, it integrates text from heterogeneous sources, i.e., electronic health records (EHRs) and scientific articles from the literature. We have developed several different phenotype extraction methods to demonstrate the utility of the corpus, and tested these methods on a further corpus, i.e., ShARe/CLEF 2013. Evaluation of our automated methods showed that PhenoCHF can facilitate the training of reliable phenotype extraction systems, which are robust to variations in text type. These results have been reinforced by evaluating our trained systems on the ShARe/CLEF corpus, which contains clinical records of various types. Like other studies within the biomedical domain, we found that solutions based on conditional random fields produced the best results, when coupled with a rich feature set. PhenoCHF is the first annotated corpus aimed at encoding detailed phenotypic information. The unique heterogeneous composition of the corpus has been shown to be advantageous in the training of systems that can accurately extract phenotypic information from a range of different text types. Although the scope of our annotation is currently limited to a single

  13. An experimental study of forced convective flow boiling CHF in nanofluid

    International Nuclear Information System (INIS)

    Ahn, Hoseon; Kim, Seontae; Jo, Hangjin; Kim, Dongeok; Kang, Soonho; Kim, Moohwan

    2008-01-01

    Recently the enhancement of CHF (critical heat flux) in nanofluids under the pool boiling condition is known as a result of nanoparticle deposition on the heating surface. The deposition phenomenon of nanoparticles on the heating surface is induced dominantly by the vigorous boiling on the heating surface. Considering the importance of flow boiling conditions in various practical heat transfer applications, an experimental study was performed to verify whether or not the enhancement of CHF in nanofluids exists in a forced convective flow boiling condition. The nanofluid used in this research was Al 2 O 3 -water dispersed by the ultra-sonic vibration method in very low concentration (0.01% Vol). A heater specimen was made of a copper block easily detachable to look into the surface condition after the experiment. The heating method was a thermal-heating made with a conductive material. The flow channel took a rectangular type (10mm x 10mm) and had a length of 1.2 m to assure a hydrodynamically fully-developed region. In result, CHF in the nanofluid under the forced convective flow boiling condition has been enhanced distinctively along with the effect of flow rates. To reason the CHF increase in the nanofluids, the boiling surface was investigated thoroughly with the SEM image. (author)

  14. Impact of the New Generation Reconstituted Surfactant CHF5633 on Human CD4+ Lymphocytes.

    Directory of Open Access Journals (Sweden)

    Markus Fehrholz

    Full Text Available Natural surfactant preparations, commonly isolated from porcine or bovine lungs, are used to treat respiratory distress syndrome in preterm infants. Besides biophysical effectiveness, several studies have documented additional immunomodulatory properties. Within the near future, synthetic surfactant preparations may be a promising alternative. CHF5633 is a new generation reconstituted synthetic surfactant preparation with defined composition, containing dipalmitoyl-phosphatidylcholine, palmitoyl-oleoyl-phosphatidylglycerol and synthetic analogs of surfactant protein (SP- B and SP-C. While its biophysical effectiveness has been demonstrated in vitro and in vivo, possible immunomodulatory abilities are currently unknown.The aim of the current study was to define a potential impact of CHF5633 and its single components on pro- and anti-inflammatory cytokine responses in human CD4+ lymphocytes.Purified human CD4+ T cells were activated using anti CD3/CD28 antibodies and exposed to CHF5633, its components, or to the well-known animal-derived surfactant Poractant alfa (Curosurf®. Proliferative response and cell viability were assessed using flow cytometry and a methylthiazolyldiphenyltetrazolium bromide colorimetric assay. The mRNA expression of IFNγ, IL-2, IL-17A, IL-22, IL-4, and IL-10 was measured by quantitative PCR, while intracellular protein expression was assessed by means of flow cytometry.Neither CHF5633 nor any of its phospholipid components with or without SP-B or SP-C analogs had any influence on proliferative ability and viability of CD4+ lymphocytes under the given conditions. IFNγ, IL-2, IL-17A, IL-22, IL-4, and IL-10 mRNA as well as IFNγ, IL-2, IL-4 and IL-10 protein levels were unaffected in both non-activated and activated CD4+ lymphocytes after exposure to CHF5633 or its constituents compared to non-exposed controls. However, in comparison to Curosurf®, expression levels of anti-inflammatory IL-4 and IL-10 mRNA were

  15. Adaptation of a Freon-12 CHF correlation to apply for water in uniformly heated vertical tubes. Part 2: Based on CHF data for water at pressures in the range 6-20 MPa

    International Nuclear Information System (INIS)

    Green, W.J.

    1982-03-01

    An examination of more than 5000 sets of experimental data for critical heat flux (CHF) in uniformly heated vertical tubes internally cooled by high pressure water has shown that the CHF correlation proposed in Part 1 of this work is accurate for water at pressures up to approximately 17 MPa, provided that minor modifications are made to the Prandtl number index, and the saturation boiling length function. For pressures greater than 17 MPa, CHF values calculated from the correlation are increasingly lower than the experimental data, particularly at low saturation boiling length ratios ( -1 m -2 or thermal equilibrium exit qualities are less than 0.1

  16. The effect of flow direction and magnitude on CHF for low pressure water in thin rectangular channels

    International Nuclear Information System (INIS)

    Mishima, K.; Nishihara, H.

    1985-01-01

    Critical heat flow (CHF) at low flow condition can become important in an MTR-type research reactor under a number of accident conditions. Regardless of the initial stages of these accidents, a condition which is basically the decay heat removal by natural convention boiling can develop. Under such conditions, burnout may occur even at a very low heat flow. In view of this, the CHF at low-flow-rate and low-pressure conditions has been studied for water flowing in thin rectangular channels. Experiments were carried out with two types of rectangular test sections, namely, the one heated from one wide side and the other heated from two opposite sides. In order to observe the effects of gravity, CHF was measured both in upflow and downflow. The CHF at complete bottom blockage was also studied. The results indicate that burnout can occur at a much lower heat flux than pool-boiling CHF or than predicted by the conventional correlations. There was observed a minimum CHF at complete bottom blockage and at very low downflow. The low CHF at very low downflow appears to be due to the stagnation of the bubble in the heated section. This fact indicates that special care should be taken in analyzing the boiling phenomenon which occurs when the coolant flow is very low in a low pressure system. (author)

  17. Calculation study of nonequilibrium post-CHF heat transfer in rod bundle test using modified RELAP5/MOD2

    International Nuclear Information System (INIS)

    Hassan, Y.A.

    1987-01-01

    To date there is only very limited data for non-equilibrium convective film boiling in rod bundle geometries. A recent nine (3 x 3) rod bundle post-critical-flux (CHF) test from the Lehigh University test facility was simulated using RELAP5/MOD2, to assess its capabilities in predicting the overall convective mechanisms in post-CHF heat transfer in rod bundle geometries. The code calculations were compared with experimental data. The code predicted low vapor superheats and void fraction oscillations. A new interfacial heat transfer between the droplet/steam resulted in a reasonable prediction of vapor superheats. A revised dispersed flow film boiling correlation which accounts for the enhancement of steam convective cooling by droplet-induced turbulence was incorporated in the code. Comparison with the data showed a fair agreement

  18. Phenomenological modelling of CHF in annular flow in annuli using new models of droplet deposition and entrainment

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Haibin, E-mail: hb-zhang@xjtu.edu.cn [School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049 (China); Department of Chemical Engineering, Imperial College, London SW7 2BY (United Kingdom); Hewitt, G.F., E-mail: g.hewitt@imperial.ac.uk [Department of Chemical Engineering, Imperial College, London SW7 2BY (United Kingdom)

    2016-08-15

    Highlights: • A phenomenological model to predict the CHF for flows in annuli is described. • New correlations of droplet entrainment and deposition are used. • The present model has good predictive capability in predicting CHF in annuli. - Abstract: In this paper, we present a phenomenological model to predict the CHF (critical heat flux) for upward annular flow in heated vertical annuli. In present model, a new set of correlations of droplet deposition and entrainment in annuli was used which were verified by comparison with the data of Moeck (1970) for developing liquid films in adiabatic annuli. In the results presented here, these new correlations have been used to predict 2249 independent data on critical heat flux (CHF) obtained both regarding internal heating of the rod as well as simultaneous heating of the rod and the outer tube in six heated vertical annuli under various mass flow rate, pressure and inlet quality and where the conditions were such that (as is most common) the CHF condition occurred in the annular flow regime. The comparisons between the calculated and measured CHFs showed that the present model has good predictive capability in predicting CHF.

  19. Thermal electron attachment to CHF2CL in mixtures with CO2 and N2

    International Nuclear Information System (INIS)

    Szamrej, I.; Jowko, J.; Forys, M.

    1996-01-01

    Electron attachment to CHF 2 Cl in mixtures with nitrogen and carbon dioxide has been investigated using an electron swarm method. The attachment mechanism involving both two-body process and electron capture by van der Waals complexes ((CHF 2 Cl x N 2 ) and CHF 2 Cl) was found. The corresponding rate constants are equal to (1.1 ± 0.1) x 10- 13 cm 3 molec -1 s -1 , (2.0 ± 0.1) x 10 -33 cm 6 ) molec -2 s -1 and (1.1 ± 0.1) x 10- 50 cm 9 molec -3 ) s -1 , respectively. (Author)

  20. An empirical correlation for the entrainment fraction at the onset of annular flow based on 2006 CHF look-up table

    Energy Technology Data Exchange (ETDEWEB)

    Jiao, Bo; Yang, Dongyu [Department of Mechanical Engineering, Rongcheng Campus, Harbin University of Science and Technology, Rongcheng 264300, Shandong (China); Gan, Zhihua, E-mail: gan_zhihua@zju.edu.cn [Institute of Refrigeration and Cryogenics, Zhejiang University, Hangzhou (China); Key Laboratory of Refrigeration and Cryogenic Technology of Zhejiang Province, Hangzhou (China); National Quality Inspection Center of Refrigeration Equipment (Henan), Minquan (China)

    2017-06-15

    Highlights: • A parallel look-up table for the entrainment fraction at annular point was developed. • A correlation was given based on the selected database from 2006 CHF look-up table. • Its reliability on the other conditions in the look-up table was discussed. - Abstract: The critical heat flux (CHF) of gas-liquid flow plays an important role in the safety of industrial equipment. At present, the liquid film dryout model is widely used for predicting CHF in gas-liquid annular flow. Most parameters in this model can be determined by some empirical correlations which are valid under different conditions. However, up to now, the entrainment fraction at the onset of annular flow is always assumed due to the lack of relevant experimental data. In this paper, the normalized data of the 2006 CHF look-up table (LUT) which has been adopted widely, especially in the nuclear industry, were used. Firstly, the empirical correlations, provided for the onset of annular flow and the limiting quality, were employed. In the valid pressure and mass flux range of these correlations, the selected database from LUT was confirmed. Secondly, the liquid film model was built. The entrainment fraction at the onset of annular flow was obtained when the calculated CHF by the model agreed with the corresponding value in LUT. A parallel look-up table for it was developed. Its correlation including the Weber and the liquid Reynolds number at outlet was proposed. The errors are mostly within ±30%. Finally, its reliability on the other conditions in LUT, which are beyond the valid range of the empirical correlations used for determining the database, was discussed. All the conditions whose errors are outside ±30% of the predictions by the provided correlation were marked in the tables.

  1. CHF-KFK-3: A critical heat flux correlation for triangular arrays of rods with tight lattices

    International Nuclear Information System (INIS)

    Dalle Donne, M.

    1991-02-01

    High converting PWR's (HCPWR or APWR) are based on fuel elements with rods placed in a tight lattice triangular array. The CHF correlation development previously at KfK for such geometry (CHF-KFK-2 correlation) has been tested against recently performed experiments. The comparison with the Siemens-KWU experiments with rod clusters with spacer grid and six integral spiral ribs supports has allowed to improve and extended the previous correlation. A new correlation, called CHF-KFK-3, which accounts for these improvements, is presented in the paper. (orig.) [de

  2. Intelligent data analysis: the best approach for chronic heart failure (CHF) follow up management.

    Science.gov (United States)

    Mohammadzadeh, Niloofar; Safdari, Reza; Baraani, Alireza; Mohammadzadeh, Farshid

    2014-08-01

    Intelligent data analysis has ability to prepare and present complex relations between symptoms and diseases, medical and treatment consequences and definitely has significant role in improving follow-up management of chronic heart failure (CHF) patients, increasing speed ​​and accuracy in diagnosis and treatments; reducing costs, designing and implementation of clinical guidelines. The aim of this article is to describe intelligent data analysis methods in order to improve patient monitoring in follow and treatment of chronic heart failure patients as the best approach for CHF follow up management. Minimum data set (MDS) requirements for monitoring and follow up of CHF patient designed in checklist with six main parts. All CHF patients that discharged in 2013 from Tehran heart center have been selected. The MDS for monitoring CHF patient status were collected during 5 months in three different times of follow up. Gathered data was imported in RAPIDMINER 5 software. Modeling was based on decision trees methods such as C4.5, CHAID, ID3 and k-Nearest Neighbors algorithm (K-NN) with k=1. Final analysis was based on voting method. Decision trees and K-NN evaluate according to Cross-Validation. Creating and using standard terminologies and databases consistent with these terminologies help to meet the challenges related to data collection from various places and data application in intelligent data analysis. It should be noted that intelligent analysis of health data and intelligent system can never replace cardiologists. It can only act as a helpful tool for the cardiologist's decisions making.

  3. New models of droplet deposition and entrainment for prediction of CHF in cylindrical rod bundles

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Haibin, E-mail: hb-zhang@xjtu.edu.cn [School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049 (China); Department of Chemical Engineering, Imperial College, London SW7 2BY (United Kingdom); Hewitt, G.F. [Department of Chemical Engineering, Imperial College, London SW7 2BY (United Kingdom)

    2016-08-15

    Highlights: • New models of droplet deposition and entrainment in rod bundles is developed. • A new phenomenological model to predict the CHF in rod bundles is described. • The present model is well able to predict CHF in rod bundles. - Abstract: In this paper, we present a new set of model of droplet deposition and entrainment in cylindrical rod bundles based on the previously proposed model for annuli (effectively a “one-rod” bundle) (2016a). These models make it possible to evaluate the differences of the rates of droplet deposition and entrainment for the respective rods and for the outer tube by taking into account the geometrical characteristics of the rod bundles. Using these models, a phenomenological model to predict the CHF (critical heat flux) for upward annular flow in vertical rod bundles is described. The performance of the model is tested against the experimental data of Becker et al. (1964) for CHF in 3-rod and 7-rod bundles. These data include tests in which only the rods were heated and data for simultaneous uniform and non-uniform heating of the rods and the outer tube. It was shown that the predicted CHFs by the present model agree well with the experimental data and with the experimental observation that dryout occurred first on the outer rods in 7-rod bundles. It is expected that the methodology used will be generally applicable in the prediction of CHF in rod bundles.

  4. Preliminary Study on CHF Enhancement of Cellulose Nano Fiber (CNF) Fluid with Wire Pool Boiling Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Won Ki; Lee, Yun Seok; Lim, Dong Young; Song, Sub Lee; Lee, Jae Young; Lee, Kwon Yeong [Hanyang Global University, Pohang (Korea, Republic of); Hwang, Dong Soo [POSTECH, Pohang (Korea, Republic of)

    2016-05-15

    Critical heat flux (CHF) is enhancement of a boiling system will make more compact and effective cooling systems, for examples, nuclear reactors, and air conditioning units. For decades, researchers have been trying to develop more efficient working fluid for heat transfer. This is where nano-fluid could play a key role. There have been a lot of researches for CHF enhancements in nucleate boiling by using nano-fluid which are composed of metal such as copper, Al{sub 2}O{sub 3} and ceramic. And a critical factor of the enhancement is deposition of nano-particles on heating surface, although some results of recent studies are contrary. Also, previous nano-fluid are expensive and have a problem in mass production, so they are difficult to apply to practical industries. Therefore we chose a new material, cellulose nano fiber (CNF) as a solution. CNF can be applied to real situation because it has some advantages which are cost-effectiveness, easiness to get and to make it in nano scale. CHF performance of CNF fluid was different from that of distilled water. Compared to CHF of distilled water, CHF of the CNF fluid which had 0.001V%, 0.01V%, and 0.1V% volumetric concentrations were enhanced to 1%, 104%, and 13% respectively. Likewise other nano-fluid, deposition phenomena was observed in this CNF fluid boiling experiment.

  5. Preliminary Study on CHF Enhancement of Cellulose Nano Fiber (CNF) Fluid with Wire Pool Boiling Experiment

    International Nuclear Information System (INIS)

    Hwang, Won Ki; Lee, Yun Seok; Lim, Dong Young; Song, Sub Lee; Lee, Jae Young; Lee, Kwon Yeong; Hwang, Dong Soo

    2016-01-01

    Critical heat flux (CHF) is enhancement of a boiling system will make more compact and effective cooling systems, for examples, nuclear reactors, and air conditioning units. For decades, researchers have been trying to develop more efficient working fluid for heat transfer. This is where nano-fluid could play a key role. There have been a lot of researches for CHF enhancements in nucleate boiling by using nano-fluid which are composed of metal such as copper, Al_2O_3 and ceramic. And a critical factor of the enhancement is deposition of nano-particles on heating surface, although some results of recent studies are contrary. Also, previous nano-fluid are expensive and have a problem in mass production, so they are difficult to apply to practical industries. Therefore we chose a new material, cellulose nano fiber (CNF) as a solution. CNF can be applied to real situation because it has some advantages which are cost-effectiveness, easiness to get and to make it in nano scale. CHF performance of CNF fluid was different from that of distilled water. Compared to CHF of distilled water, CHF of the CNF fluid which had 0.001V%, 0.01V%, and 0.1V% volumetric concentrations were enhanced to 1%, 104%, and 13% respectively. Likewise other nano-fluid, deposition phenomena was observed in this CNF fluid boiling experiment.

  6. CHF Enhancement in Flow Boiling using Al2O3 Nano-Fluid and Al2O3 Nano-Particle Deposited Tube

    International Nuclear Information System (INIS)

    Kim, Tae Il; Chun, T. H.; Chang, S. H.

    2010-01-01

    Nano-fluids are considered to have strong ability to enhance CHF. Most CHF experiments using nano-fluids were conducted in pool boiling conditions. However there are very few CHF experiments with nano-fluids in flow boiling condition. In the present study, flow boiling CHF experiments using bare round tube with Al 2 O 3 nano-fluid and Al 2 O 3 nano-particle deposited tube with DI water were conducted under atmospheric pressure. CHFs were enhanced up to ∼ 80% with Al 2 O 3 nano-fluid and CHFs with Al 2 O 3 nano-particle deposited tube were also enhanced up to ∼ 80%. Inner surface of test section tube were observed by SEM and AFM after CHF experiments

  7. Effect of spacer grids on CHF in tube bundles

    International Nuclear Information System (INIS)

    Jayanti, Sreenivas; Valette, Michel

    2004-01-01

    Spacers grids are used to support tube bundles in steam generators and in nuclear reactor fuel assemblies. These grids interface with the flow and heat transfer in a number of ways and their effect has been studied by a number of researchers. It is known that generally they have a beneficial effect on critical heat flux (CHF) in typical nuclear reactor assemblies. However, the enhancement obtained depends on the geometric characteristics of the spacer grids as well as on the parameter range in terms of pressure, local mass velocity and quality. In the present study, the problem is approached in the context of a one-dimensional three-field model. Unlike in previous approaches, no specific modeling of the constitutive laws is made to account for spacer effects and only the geometric details such as the reduction in the cross-sectional area and the hydraulic diameter are included in the calculation which is otherwise the same as that for flow through a single tube. It is shown by comparison with literature data that this approach leads to satisfactory prediction of the thermal-hydraulic effects of spacers and that the beneficial effects of spacers on dry out can be manifested only when the entrainment rate is neither too high nor too low. Their effect on reducing the post-dry out wall temperature is also limited to certain cases. The present work has been performed as part of the EDF-CEA Neptune project also supported by the Institut de Radioprotection et de Surete Nucleaire (IRSN, France) and FRAMATOME-ANP. NEPTUNE is a new set of two phase thermalhydraulic computer codes devoted to safety analysis of nuclear power plants. (author)

  8. Anti-inflammatory effects of the new generation synthetic surfactant CHF5633 on Ureaplasma-induced cytokine responses in human monocytes.

    Science.gov (United States)

    Glaser, Kirsten; Fehrholz, Markus; Henrich, Birgit; Claus, Heike; Papsdorf, Michael; Speer, Christian P

    2017-02-01

    Synthetic surfactants represent a promising alternative to animal-derived preparations in the treatment of neonatal respiratory distress syndrome. The synthetic surfactant CHF5633 has proven biophysical effectiveness and, moreover, demonstrated anti-inflammatory effects in LPS-stimulated monocytes. With ureaplasmas being relevant pathogens in preterm lung inflammation, the present study addressed immunomodulatory features on Ureaplasma-induced monocyte cytokine responses. Ureaplasma parvum-stimulated monocytes were exposed to CHF5633. TNF-α, IL-1β, IL-8, IL-10, TLR2 and TLR4 expression were analyzed using qPCR and flow cytometry. CHF5633 did not induce pro-inflammation, and did not aggravate Ureaplasma-induced pro-inflammatory cytokine responses. It suppressed U. parvum-induced intracellular TNF-α (p Ureaplasma-induced TNF-α mRNA (p Ureaplasma-modulated IL-8, IL-10, TLR2 and TLR4 were unaffected. CHF5633 does neither act pro-apoptotic nor pro-inflammatory in native and Ureaplasma-infected monocytes. Suppression of Ureaplasma-induced TNF-α and IL-1β underlines anti-inflammatory features of CHF5633.

  9. Atmospheric Lifetime of CHF2Br, a Proposed Substitute for Halons.

    Science.gov (United States)

    Talukdar, R; Mellouki, A; Gierczak, T; Burkholder, J B; McKeen, S A; Ravishankara, A R

    1991-05-03

    The rate coefficients, k(1), for the reaction of OH with CHF(2)Br have been measured using pulsed photolysis and discharge flow techniques at temperatures (T) between 233 and 432 K to be k(1), = (7.4 +/- 1.6) x 10(-13) exp[-(1300 +/- 100)/T] cubic centimeters per molecule per second. The ultraviolet absorption cross sections, sigma, of this molecule between 190 and 280 nanometers were measured at 296 K. The k(1), and sigma values were used in a one-dimensional model to obtain an atmospheric lifetime of approximately 7 years for CHF(2)Br. This lifetime is shorter by approximately factors of 10 and 2 than those for CF(3)Br and CF(2)ClBr, respectively. The ozone depletion potentials of the three compounds will reflect these lifetimes.

  10. CHF: circulatory homeostasis gone awry.

    Science.gov (United States)

    Weber, Karl T; Burlew, Brad S; Davis, Richard C; Newman, Kevin P; D'Cruz, Ivan A; Hawkins, Ralph G; Wall, Barry M; Parker, Robert B

    2002-01-01

    The role of the renin-angiotensin-aldosterone system (RAAS) is integral to salt and water retention, particularly by the kidneys. Over time, positive sodium balance leads first to intra- and then to extravascular volume expansion, with subsequent symptomatic heart failure. This report examines the role of the RAAS in regulating a less well recognized component essential to circulatory homeostasis--central blood volume. The regulation of central blood volume draws on integrative cardiorenal physiology and a key role played by the RAAS in its regulation. In presenting insights into the role of the RAAS in regulating central blood volume, this review also addresses other sodium-retaining states with a predisposition to edema formation, such as cirrhosis and nephrosis. (c)2002 CHF, Inc

  11. Assessment of correlations and models for the prediction of CHF in water subcooled flow boiling

    Science.gov (United States)

    Celata, G. P.; Cumo, M.; Mariani, A.

    1994-01-01

    The present paper provides an analysis of available correlations and models for the prediction of Critical Heat Flux (CHF) in subcooled flow boiling in the range of interest of fusion reactors thermal-hydraulic conditions, i.e. high inlet liquid subcooling and velocity and small channel diameter and length. The aim of the study was to establish the limits of validity of present predictive tools (most of them were proposed with reference to light water reactors (LWR) thermal-hydraulic studies) in the above conditions. The reference dataset represents almost all available data (1865 data points) covering wide ranges of operating conditions in the frame of present interest (0.1 less than p less than 8.4 MPa; 0.3 less than D less than 25.4 mm; 0.1 less than L less than 0.61 m; 2 less than G less than 90.0 Mg/sq m/s; 90 less than delta T(sub sub,in) less than 230 K). Among the tens of predictive tools available in literature four correlations (Levy, Westinghouse, modified-Tong and Tong-75) and three models (Weisman and Ileslamlou, Lee and Mudawar and Katto) were selected. The modified-Tong correlation and the Katto model seem to be reliable predictive tools for the calculation of the CHF in subcooled flow boiling.

  12. Bridging the gap in heart failure prevention: rationale and design of the Nurse-led Intervention for Less Chronic Heart Failure (NIL-CHF) Study

    DEFF Research Database (Denmark)

    Carrington, Melinda J; Stewart, Simon; de Courten, Barbora

    2010-01-01

    AIMS: The primary objective of the Nurse-led Intervention for Less Chronic Heart Failure (NIL-CHF) Study is to develop a programme of care that cost-effectively prevents the development of chronic heart failure (CHF). Methods NIL-CHF is a randomized controlled trial of a hybrid, home- and clinic-...

  13. A Preliminary Experimental Study on Flow Boiling CHF Characteristics of Ballooned Channel

    International Nuclear Information System (INIS)

    Kim, Yong Jin; Song, Sub Lee; Chang, Soon Heung; Moon, Sang Ki

    2013-01-01

    The purpose of this research is to measure heat transfer characteristics experimentally and to develop correlation based on experimental data. Experiments are in progress. The result of preliminary experimental test of ballooned channel was reported. The trends of CHF value for deformed channel is not usual as normal smooth tube. The spot of CHF was moved by changing different experimental cases. The transition of flow pattern at neck of deformation is considered as main factor of changing CHF trends. More cases are under operation and analysis based on flow dynamics are developing. Cladding is one of the most important parts in nuclear power plant because it is second barrier of radiation leakage from nuclear fuel. Originally, cladding keeps its integrity in 1200 .deg. C and 150bar, which is normal operation state of nuclear power plant. However, integrity of cladding can be deformed by more severe conditions caused by accident. In case of LOCA, high temperature, oxidation and thermal shock induced by safety injection can deform cladding. Main problem of deformed cladding is blockage of cooled to prevent core melt accident. Change of flow path by blockage affects flow of safety coolant, heat transfer coefficient and critical heat flux of rod bundles. Until now, there are insufficient heat transfer data for deformed flow path compared to normal flow path. In order to enhance safety of nuclear power plant after accident, it should be clarified that how deformed cladding affects heat transfer

  14. Kinetics and mechanisms of reactions of CF, CHF, and CF2 radicals

    International Nuclear Information System (INIS)

    Hsu, D.S.Y.; Umstead, M.E.; Lin, M.C.

    1978-01-01

    This chapter reviews briefly methods for the production of CF, CHF and CF 2 , and inmore detail, the reactions of these interesting and important radicals. Although a considerable, but not extensive, amount of work has been done on the reactions of CF 2 , little of the chemistry of CF and CHF is known. This chapter also includes the preliminary results of some experiments carried out in this Laboratory on the dynamics of some of the reactions involving these radicals. These results were largely arrived at through investigations of the degree of vibrational excitation of the HF and CO reaction products, determined by HF and CO laser emission and CO laser resonance absorption measurements. The coverage of this review is restricted to the gas phase chemistry of these radicals, and does not include their addition reactions to olefins

  15. A comparison of the CHF between tubes and annuli under PWR thermal-hydraulic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Herer, C. [RRAMATOME EP/TC, Paris (France); Souyri, A. [EdF DER/RNE/TTA, Chatou (France); Garnier, J. [CEA DRN/DTP/STR/LETC, Grenoble (France)

    1995-09-01

    Critical Heat Flux (CHF) tests were carried out in three tubes with inside diameters of 8, 13, and 19.2 mm and in two annuli with an inner tube of 9.5 mm and an outer tube of 13 or 19.2 mm. All axial heat flux distributions in the test sections were uniform. The coolant fluid was Refrigerant 12 (Freon-12) under PWR thermal-hydraulic conditions (equivalent water conditions - Pressure: 7 to 20 MPa, Mass Velocity: 1000 to 6000 kg/m2/s, Local Quality: -75% to +45%). The effect of tube diameter is correlated for qualities under 15%. The change from the tube to the annulus configuration is correctly taken into account by the equivalent hydraulic diameter. Useful information is also provided concerning the effect of a cold wall in an annulus.

  16. UV absorption spectra, kinetics and mechanisms of the self-reaction of CHF2O2 radicals in the gas phase at 298-K

    DEFF Research Database (Denmark)

    Nielsen, O.J.; Ellermann, T.; Bartkiewicz, E.

    1992-01-01

    The ultraviolet-absorption spectrum and the self-reaction of CHF2O2 radicals have been studied in the gas phase at 298 K using the pulse radiolysis technique and long-pathlength Fourier transform infrared spectroscopy. Absorption cross sections were quantified over the wavelength range 220-280 nm....... The measured cross section near the absorption maximum was sigma(CHF2O2)(240 nm) = (2.66 +/- 0.46) x 10(-18) cm2 molecule-1. The absorption cross section data were used to derive the observed self-reaction rate constant for the reaction CHF2O2 + CHF2O2 --> products, defined as d[R]/dt = 2k(1obs)[CHF2O2]2, k(1......obs) = (5.0 +/- 0.7) x 10(-12) cm3 molecule-1 s-1 (+/- 2-sigma). The only carbon-containing product observed by FTIR spectroscopy was FC(O)F. These results are discussed with respect to previous studies of peroxy radicals....

  17. Exploring the Limits of Boiling and Evaporative Heat Transfer Using Micro/Nano Structures

    OpenAIRE

    Lu, Ming-Chang

    2010-01-01

    This dissertation presents a study exploring the limits of phase-change heat transfer with the aim of enhancing critical heat flux (CHF) in pool boiling and enhancing thermal conductance in heat pipes. The state-of-the-art values of the CHF in pool boiling and the thermal conductance in heat pipes are about two orders of magnitudes smaller than the limits predicted by kinetic theory. Consequently, there seems to be plenty of room for improvement. Pool boiling refers to boiling at a surface im...

  18. A technical basis for the flux corrected local conditions critical heat flux correlation

    International Nuclear Information System (INIS)

    Luxat, J.C.

    2008-01-01

    The so-called 'flux-corrected' local conditions CHF correlation was developed at Ontario Hydro in the 1980's and was demonstrated to successfully correlate the Onset of Intermittent Dryout (OID) CHF data for 37-element fuel with a downstream-skewed axial heat flux distribution. However, because the heat flux correction factor appeared to be an ad-hoc, albeit a successful modifying factor in the correlation, there was reluctance to accept the correlation more generally. This paper presents a thermalhydraulic basis, derived from two-phase flow considerations, that supports the appropriateness of the heat flux correction as a local effects modifying factor. (author)

  19. Data report of BWR post-CHF tests. Transient core thermal-hydraulic test program. Contract research

    International Nuclear Information System (INIS)

    Iguchi, Tadashi; Itoh, Hideo; Kiuchi, Toshio; Watanabe, Hironori; Kimura, Mamoru; Anoda, Yoshinari

    2001-03-01

    JAERI has been performing transient core thermal-hydraulic test program. In the program, authors performed BWR/ABWR DBE simulation tests with a test facility, which can simulate BWR/ABWR transients. The test facility has a 4 x 4 bundle core simulator with 15-rod heaters and one non-heated rod. Through the tests, authors quantified the thermal safety margin for core cooling. In order to quantify the thermal safety margin, authors collected experimental data on post-CHF. The data are essential for the evaluation of clad temperature transient when core heat-up occurs during DBEs. In comparison with previous post-CHF tests, present experiments were performed in much wider experimental condition, covering high clad temperature, low to high pressure and low to high mass flux. Further, data at wider elevation (lower to higher elevation of core) were obtained in the present experiments, which make possible to discuss the effect of axial position on thermal-hydraulics, while previous works usually discuss the thermal-hydraulics at the position where the first heat-up occurs. This data report describes test procedure, test condition and major experimental data of post-CHF tests. (author)

  20. Does Impaired O2 Delivery During Exercise Accentuate Central and Peripheral Fatigue in Patients with Coexistent COPD-CHF?

    Directory of Open Access Journals (Sweden)

    Mayron F. Oliveira

    2015-01-01

    Full Text Available Impairment in oxygen (O2 delivery to the central nervous system (brain and skeletal locomotor muscle during exercise has been associated with central and peripheral neuromuscular fatigue in healthy humans. From a clinical perspective, impaired tissue O2 transport is a key pathophysiological mechanism shared by cardiopulmonary diseases, such as chronic obstructive pulmonary disease (COPD and chronic heart failure (CHF. In addition to arterial hypoxemic conditions in COPD, there is growing evidence that cerebral and muscle blood flow and oxygenation can be reduced during exercise in both isolated COPD and CHF. Compromised cardiac output due to impaired cardiopulmonary function/interactions and blood flow redistribution to the overloaded respiratory muscles (i.e., ↑work of breathing may underpin these abnormalities. Unfortunately, COPD and CHF coexist in almost a third of elderly patients making these mechanisms potentially more relevant to exercise intolerance. In this context, it remains unknown whether decreased O2 delivery accentuates neuromuscular manifestations of central and peripheral fatigue in coexistent COPD-CHF. If this holds true, it is conceivable that delivering a low-density gas mixture (heliox through non-invasive positive pressure ventilation could ameliorate cardiopulmonary function/interactions and reduce the work of breathing during exercise in these patients. The major consequence would be increased O2 delivery to the brain and active muscles with potential benefits to exercise capacity (i.e., ↓central and peripheral neuromuscular fatigue, respectively. We therefore hypothesize that patients with coexistent COPD-CHF stop exercising prematurely due to impaired central motor drive and muscle contractility as the cardiorespiratory system fails to deliver sufficient O2 to simultaneously attend the metabolic demands of the brain and the active limb muscles.

  1. Measurement of pool boiling CHF for SUS 304 and SA 508 flat plate under downward-facing and atmospheric conditions

    International Nuclear Information System (INIS)

    Kam, Dong Hoon; Park, Hae Min; Choi, Young Jae; Jeong, Yong Hoon

    2015-01-01

    Heat transfer performance of downward-facing conditions are important especially in severe accident mitigation strategy (IVR-ERVC and Core-catcher). Heat transfer limit, in other word, critical heat flux (CHF) is important value in this basis to guarantee the integrity of the system. For the application point of view in nuclear power plant, carbon steel surface should also be considered since reactor pressure vessel (RPV) in IVR-ERVC strategy consists of carbon steel, and core-catcher in EU-APR1400 is also composed of carbon steel. In this perspective, carbon steel surface was used in previous studies. In this study, CHF of both stainless steel and carbon steel material were measured under pool boiling condition with various inclination angles and dimensions. There was a width effect as angle increases, but it disappeared as approached to horizontally downward condition. Besides, there was almost no length effect for both of the width since the size of coalesced bubble was far smaller than the length of short test section (100 mm). SA 508 showed enhanced results at high angles for 40 mm-width case even though no oxidation occurred on the surface during the experiments

  2. Measurement of pool boiling CHF for SUS 304 and SA 508 flat plate under downward-facing and atmospheric conditions

    Energy Technology Data Exchange (ETDEWEB)

    Kam, Dong Hoon; Park, Hae Min; Choi, Young Jae; Jeong, Yong Hoon [KAIST, Daejeon (Korea, Republic of)

    2015-05-15

    Heat transfer performance of downward-facing conditions are important especially in severe accident mitigation strategy (IVR-ERVC and Core-catcher). Heat transfer limit, in other word, critical heat flux (CHF) is important value in this basis to guarantee the integrity of the system. For the application point of view in nuclear power plant, carbon steel surface should also be considered since reactor pressure vessel (RPV) in IVR-ERVC strategy consists of carbon steel, and core-catcher in EU-APR1400 is also composed of carbon steel. In this perspective, carbon steel surface was used in previous studies. In this study, CHF of both stainless steel and carbon steel material were measured under pool boiling condition with various inclination angles and dimensions. There was a width effect as angle increases, but it disappeared as approached to horizontally downward condition. Besides, there was almost no length effect for both of the width since the size of coalesced bubble was far smaller than the length of short test section (100 mm). SA 508 showed enhanced results at high angles for 40 mm-width case even though no oxidation occurred on the surface during the experiments.

  3. Atmospheric Chemistry of cis-CF3CH=CHF: Kinetics of reactions with OH radicals and O3 and products of OH radical initiated oxidation

    DEFF Research Database (Denmark)

    Nilsson, Elna Johanna Kristina; Nielsen, Ole John; Johnson, Matthew Stanley

    2009-01-01

    Long path length FTIR-smog chamber techniques were used to measure k(OH + cis-CF3CH@CHF) = (1.20 ± 0.14) 1012 and k(O3 + cis-CF3CH@CHF) = (1.65 ± 0.16) 1021 cm3 molecule 1 s1 in 700 Torr of N2/O2 diluent at 296 K. The OH initiated oxidation of cis-CF3CH@CHF gives CF3CHO and HCOF in molar yields w...

  4. The role of heater thermal response in reactor thermal limits during oscillartory two-phase flows

    Energy Technology Data Exchange (ETDEWEB)

    Ruggles, A.E.; Brown, N.W. [Univ. of Tennessee, Knoxville, TN (United States); Vasil`ev, A.D. [Nuclear Safety Institute, Moscow, (Russian Federation); Wendel, M.W. [Oak Ridge National Lab., TN (United States)

    1995-09-01

    Analytical and numerical investigations of critical heat flux (CHF) and reactor thermal limits are conducted for oscillatory two-phase flows often associated with natural circulation conditions. It is shown that the CHF and associated thermal limits depend on the amplitude of the flow oscillations, the period of the flow oscillations, and the thermal properties and dimensions of the heater. The value of the thermal limit can be much lower in unsteady flow situations than would be expected using time average flow conditions. It is also shown that the properties of the heater strongly influence the thermal limit value in unsteady flow situations, which is very important to the design of experiments to evaluate thermal limits for reactor fuel systems.

  5. Mechanistic modeling of CHF in forced-convection subcooled boiling

    International Nuclear Information System (INIS)

    Podowski, M.Z.; Alajbegovic, A.; Kurul, N.; Drew, D.A.; Lahey, R.T. Jr.

    1997-05-01

    Because of the complexity of phenomena governing boiling heat transfer, the approach to solve practical problems has traditionally been based on experimental correlations rather than mechanistic models. The recent progress in computational fluid dynamics (CFD), combined with improved experimental techniques in two-phase flow and heat transfer, makes the use of rigorous physically-based models a realistic alternative to the current simplistic phenomenological approach. The objective of this paper is to present a new CFD model for critical heat flux (CHF) in low quality (in particular, in subcooled boiling) forced-convection flows in heated channels

  6. Syngas fermentation to biofuel: evaluation of carbon monoxide mass transfer and analytical modeling using a composite hollow fiber (CHF) membrane bioreactor.

    Science.gov (United States)

    Munasinghe, Pradeep Chaminda; Khanal, Samir Kumar

    2012-10-01

    In this study, the volumetric mass transfer coefficients (Ka) for CO were examined in a composite hollow fiber (CHF) membrane bioreactor. The mass transfer experiments were conducted at various inlet gas pressures (from 5 to 30 psig (34.5-206.8 kPa(g))) and recirculation flow rates (300, 600, 900, 1200 and 1500 mL/min) through CHF module. The highest Ka value of 946.6 1/h was observed at a recirculation rate of 1500 mL/min and at an inlet gas pressure of 30 psig(206.8 kPa(g)). The findings of this study confirm that the use of CHF membranes is effective and improves the efficiency CO mass transfer into the aqueous phase. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Impact of bundle deformation on CHF: ASSERT-PV assessment of extended burnup Bruce B bundle G85159W

    International Nuclear Information System (INIS)

    Rao, Y.F.; Manzer, A.M.

    2005-01-01

    This paper presents a subchannel thermalhydraulic analysis of the effect on critical heat flux (CHF) of bundle deformation such as element bow and diametral creep. The bundle geometry is based on the post-irradiation examination (PIE) data of a single bundle from the Bruce B Nuclear Generating Station, Bruce B bundle G85159W, which was irradiated for more than two years in the core during reactor commissioning. The subchannel code ASSERT-PV IST is used to assess changes in CHF and dryout power due to bundle deformation, compared to the reference, undeformed bundle. (author)

  8. Progression of Left Ventricular Dysfunction and Remodelling under Optimal Medical Therapy in CHF Patients: Role of Individual Genetic Background

    Directory of Open Access Journals (Sweden)

    Marzia Rigolli

    2011-01-01

    Full Text Available Background. Neurohormonal systems play an important role in chronic heart failure (CHF. Due to interindividual heterogeneity in the benefits of therapy, it may be hypothesized that polymorphisms of neurohormonal systems may affect left ventricular (LV remodelling and systolic function. We aimed to assess whether genetic background of maximally treated CHF patients predicts variations in LV systolic function and volumes. Methods and Results. We prospectively studied 131 CHF outpatients on optimal treatment for at least six months. Echocardiographic evaluations were performed at baseline and after 12 months. Genotype analysis for ACE I/D, β1adrenergic receptor (AR Arg389Gly, β2AR Arg16Gly, and β2AR Gln27Glu polymorphisms was performed. No differences in baseline characteristics were detected among subgroups. ACE II was a significant predictor of improvement of LV end-diastolic and end-systolic volume (=.003 and =.002, respectively but not of LV ejection fraction (LVEF; β1AR389 GlyGly was related to improvement of LVEF (=.02 and LV end-systolic volume (=.01. The predictive value of polymorphisms remained after adjustment for other clinically significant predictors (<.05 for all. Conclusions. ACE I/D and β1AR Arg389Gly polymorphisms are independent predictors of reverse remodeling and systolic function recovery in CHF patients under optimal treatment.

  9. Theoretical modeling of CHF for near-saturated pool boiling and flow boiling from short heaters using the interfacial lift-off criterion

    International Nuclear Information System (INIS)

    Mudawar, I.; Galloway, J.E.; Gersey, C.O.

    1995-01-01

    Pool boiling and flow boiling were examined for near-saturated bulk conditions in order to determine the critical heat flux (CHF) trigger mechanism for each. Photographic studies of the wall region revealed features common to both situations. At fluxes below CHF, the vapor coalesces into a wavy layer which permits wetting only in wetting fronts, the portions of the liquid-vapor interface which contact the wall as a result of the interfacial waviness. Close examination of the interfacial features revealed the waves are generated from the lower edge of the heater in pool boiling and the heater's upstream region in flow boiling. Wavelengths follow predictions based upon the Kelvin-Helmholtz instability criterion. Critical heat flux in both cases occurs when the pressure force exerted upon the interface due to interfacial curvature, which tends to preserve interfacial contact with the wall prior to CHF, is overcome by the momentum of vapor at the site of the first wetting front, causing the interface to lift away from the wall. It is shown this interfacial lift-off criterion facilitates accurate theoretical modeling of CHF in pool boiling and in flow boiling in both straight and curved channels

  10. Theoretical modeling of CHF for near-saturated pool boiling and flow boiling from short heaters using the interfacial lift-off criterion

    Energy Technology Data Exchange (ETDEWEB)

    Mudawar, I.; Galloway, J.E.; Gersey, C.O. [Purdue Univ., West Lafayette, IN (United States)] [and others

    1995-12-31

    Pool boiling and flow boiling were examined for near-saturated bulk conditions in order to determine the critical heat flux (CHF) trigger mechanism for each. Photographic studies of the wall region revealed features common to both situations. At fluxes below CHF, the vapor coalesces into a wavy layer which permits wetting only in wetting fronts, the portions of the liquid-vapor interface which contact the wall as a result of the interfacial waviness. Close examination of the interfacial features revealed the waves are generated from the lower edge of the heater in pool boiling and the heater`s upstream region in flow boiling. Wavelengths follow predictions based upon the Kelvin-Helmholtz instability criterion. Critical heat flux in both cases occurs when the pressure force exerted upon the interface due to interfacial curvature, which tends to preserve interfacial contact with the wall prior to CHF, is overcome by the momentum of vapor at the site of the first wetting front, causing the interface to lift away from the wall. It is shown this interfacial lift-off criterion facilitates accurate theoretical modeling of CHF in pool boiling and in flow boiling in both straight and curved channels.

  11. Atmospheric chemistry of CF3CF═CH2 and (Z)-CF3CF═CHF: Cl and NO3 rate coefficients, Cl reaction product yields, and thermochemical calculations.

    Science.gov (United States)

    Papadimitriou, Vassileios C; Lazarou, Yannis G; Talukdar, Ranajit K; Burkholder, James B

    2011-01-20

    Rate coefficients, k, for the gas-phase reactions of Cl atoms and NO(3) radicals with 2,3,3,3-tetrafluoropropene, CF(3)CF═CH(2) (HFO-1234yf), and 1,2,3,3,3-pentafluoropropene, (Z)-CF(3)CF═CHF (HFO-1225ye), are reported. Cl-atom rate coefficients were measured in the fall-off region as a function of temperature (220-380 K) and pressure (50-630 Torr; N(2), O(2), and synthetic air) using a relative rate method. The measured rate coefficients are well represented by the fall-off parameters k(0)(T) = 6.5 × 10(-28) (T/300)(-6.9) cm(6) molecule(-2) s(-1) and k(∞)(T) = 7.7 × 10(-11) (T/300)(-0.65) cm(3) molecule(-1) s(-1) for CF(3)CF═CH(2) and k(0)(T) = 3 × 10(-27) (T/300)(-6.5) cm(6) molecule(-2) s(-1) and k(∞)(T) = 4.15 × 10(-11) (T/300)(-0.5) cm(3) molecule(-1) s(-1) for (Z)-CF(3)C═CHF with F(c) = 0.6. Reaction product yields were measured in the presence of O(2) to be (98 ± 7)% for CF(3)C(O)F and (61 ± 4)% for HC(O)Cl in the CF(3)CF═CH(2) reaction and (108 ± 8)% for CF(3)C(O)F and (112 ± 8)% for HC(O)F in the (Z)-CF(3)CF═CHF reaction, where the quoted uncertainties are 2σ (95% confidence level) and include estimated systematic errors. NO(3) reaction rate coefficients were determined using absolute and relative rate methods. Absolute measurements yielded upper limits for both reactions between 233 and 353 K, while the relative rate measurements yielded k(3)(295 K) = (2.6 ± 0.25) × 10(-17) cm(3) molecule(-1) s(-1) and k(4)(295 K) = (4.2 ± 0.5) × 10(-18) cm(3) molecule(-1) s(-1) for CF(3)CF═CH(2) and (Z)-CF(3)CF═CHF, respectively. The Cl-atom reaction with CF(3)CF═CH(2) and (Z)-CF(3)CF═CHF leads to decreases in their atmospheric lifetimes and global warming potentials and formation of a chlorine-containing product, HC(O)Cl, for CF(3)CF═CH(2). The NO(3) reaction has been shown to have a negligible impact on the atmospheric lifetimes of CF(3)CF═CH(2) and (Z)-CF(3)CF═CHF. The energetics for the reaction of Cl, NO(3), and OH with CF

  12. An improved liquid film model to predict the CHF based on the influence of churn flow

    International Nuclear Information System (INIS)

    Wang, Ke; Bai, Bofeng; Ma, Weimin

    2014-01-01

    The critical heat flux (CHF) for boiling crisis is one of the most important parameters in thermal management and safe operation of many engineering systems. Traditionally, the liquid film flow model for “dryout” mechanism shows a good prediction in heated annular two-phase flow. However, a general assumption that the initial entrained fraction at the onset of annular flow shows a lack of reasonable physical interpretation. Since the droplets have great momentum and the length of churn flow is short, the droplets in churn flow show an inevitable effect on the downstream annular flow. To address this, we considered the effect of churn flow and developed the original liquid film flow model in vertical upward flow by suggesting that calculation starts from the onset of churn flow rather than annular flow. The results indicated satisfactory predictions with the experimental data and the developed model provided a better understanding about the effect of flow pattern on the CHF prediction. - Highlights: •The general assumption of initial entrained fraction is unreasonable. •The droplets in churn flow show an inevitable effect on downstream annular flow. •The original liquid film flow model for prediction of CHF was developed. •The integration process was modified to start from the onset of churn flow

  13. Enhancement of downward-facing saturated boiling heat transfer by the cold spray technique

    Energy Technology Data Exchange (ETDEWEB)

    Sohag, Frauk A.; Beck, Faith R.; Mohanta, Lokanath; Cheung, Fan Bill; Segall, Albert E.; Eden, Timothy J.; Potter, John K. [Pennsylvania State University, University Park (United States)

    2017-02-15

    In-vessel retention by passive external reactor vessel cooling under severe accident conditions is a viable approach for retention of radioactive core melt within the reactor vessel. In this study, a new and versatile coating technique known as 'cold spray' that can readily be applied to operating and advanced reactors was developed to form a microporous coating on the outer surface of a simulated reactor lower head. Quenching experiments were performed under simulated in-vessel retention by passive external reactor vessel cooling conditions using test vessels with and without cold spray coatings. Quantitative measurements show that for all angular locations on the vessel outer surface, the local critical heat flux (CHF) values for the coated vessel were consistently higher than the corresponding CHF values for the bare vessel. However, it was also observed for both coated and uncoated surfaces that the local rate of boiling and local CHF limit vary appreciably along the outer surface of the test vessel. Nonetheless, results of this intriguing study clearly show that the use of cold spray coatings could enhance the local CHF limit for downward-facing boiling by > 88%.

  14. Evaluating Small Sphere Limit of the Wang-Yau Quasi-Local Energy

    Science.gov (United States)

    Chen, Po-Ning; Wang, Mu-Tao; Yau, Shing-Tung

    2018-01-01

    In this article, we study the small sphere limit of the Wang-Yau quasi-local energy defined in Wang and Yau (Phys Rev Lett 102(2):021101, 2009, Commun Math Phys 288(3):919-942, 2009). Given a point p in a spacetime N, we consider a canonical family of surfaces approaching p along its future null cone and evaluate the limit of the Wang-Yau quasi-local energy. The evaluation relies on solving an "optimal embedding equation" whose solutions represent critical points of the quasi-local energy. For a spacetime with matter fields, the scenario is similar to that of the large sphere limit found in Chen et al. (Commun Math Phys 308(3):845-863, 2011). Namely, there is a natural solution which is a local minimum, and the limit of its quasi-local energy recovers the stress-energy tensor at p. For a vacuum spacetime, the quasi-local energy vanishes to higher order and the solution of the optimal embedding equation is more complicated. Nevertheless, we are able to show that there exists a solution that is a local minimum and that the limit of its quasi-local energy is related to the Bel-Robinson tensor. Together with earlier work (Chen et al. 2011), this completes the consistency verification of the Wang-Yau quasi-local energy with all classical limits.

  15. Experimental investigations of the post-CHF heat transfer of R-134a flow-boiling in an annulus with spacer grids

    International Nuclear Information System (INIS)

    Lee, Kwi Lim; Chang, Soon Heung

    2009-01-01

    An experimental study was performed in the post-CHF condition using R-134a to investigate the effect of spacer grids on post-CHF heat transfer in an annulus channel. The experiments were conducted under the outlet pressures of 1.1 - 2.0 MPa, the mass fluxes of 100 - 400 kg/m 2 s and the inlet temperatures of 25 - 51degC. About 300 data of post-CHF data were obtained in the annular geometry without spacer grids and compared with several post-CHF correlations. The results showed the large prediction uncertainty mainly caused by the cold wall effect, so the empirical correlation for an annulus geometry without spacer grids was developed with the present experimental results. The heat transfer coefficient was calculated based on the heater rod temperature and the saturated vapor property. The average and root-mean-square(RMS) errors of the predictions were 0.17 % and 3.4 %, respectively. The experiments related to the spacer grid effects were performed with an I-type spacer grid and split-swirl mixing vane (with blockage-area ratios of 4.0 and 5.8 %). The spacer grid and mixing vane test results showed the enhancing effect on the heat transfer at the downstream location of the spacers. The experimental results from the spilt-swirl-type grid tests were more effective than the I-type grid tests. This was attributed to enhance the turbulence and increase the heat transfer caused by the mixing vane. (author)

  16. Prognostic impact of peakVO2-changes in stable CHF on chronic beta-blocker treatment.

    Science.gov (United States)

    Frankenstein, L; Nelles, M; Hallerbach, M; Dukic, D; Fluegel, A; Schellberg, D; Katus, H A; Remppis, A; Zugck, C

    2007-11-15

    Peak oxygen uptake (pVO2) is used for risk stratification in chronic heart failure (CHF), but little is known about the prognostic impact of pVO2-changes in patients on chronic beta-blocker (BBL) therapy. We therefore prospectively evaluated individual pVO2-changes at a 6-month interval in patients all receiving BBL. 194 patients with stable CHF on stable medication were included (V1) and underwent clinical evaluation and exercise testing. Testing was repeated (V2) at 5.7+/-1.5 months after V1 and patients were followed >12 months after V2. Death or hospitalisation due to cardiac reasons was the predefined EP (EPP, end-point positive; n=62; EPN, end-point negative; n=113). Initial characteristics did not differ between EPP and EPN. Multivariate cox regression analysis revealed that change of pVO2 (EPP: -0.6+/-2.6 ml/kg min; EPN: +2.5+/-3.3 ml/kg min; p<0.001) was independent to pVO2, LVEF, NTproBNP and NYHA at V2 for prediction of the combined end-point during follow-up. An increase of pVO2 by 10% was identified as an adequate cut-off value for risk stratification and ROC-analysis showed the significant incremental prognostic value of the determination of pVO2 changes in combination with pVO2. Serial measurements of pVO2 yield additional information for risk stratification in clinically homogenous CHF patients receiving BBL. This is the first study demonstrating this fact within a narrow predefined interval with all patients on BBL.

  17. Dynamic CO₂ inhalation: a novel treatment for CSR-CSA associated with CHF.

    Science.gov (United States)

    Wan, Zhi Hui; Wen, Fang Jing; Hu, Ke

    2013-05-01

    Cheyne-Stokes respiration with central sleep apnea (CSR-CSA) is very common in patients with chronic congestive heart failure (CHF). A current concept of the key pathophysiological mechanism leading to CSR-CSA is a fluctuation of PaCO2 below and above the apneic threshold. A number of therapeutic approaches for CSR-CSA have been proposed-all with varying success, some of which include various modes of positive airway pressure among other strategies. However, CO2 oscillations seen in CSR-CSA have yet to be looked at as a specific therapeutic target by current treatments. Previous studies have shown that delivery of constant CO2 is efficacious in eliminating CSR-CSA by raising PaCO2, but there are serious concerns about the potential side effects, such as unwanted elevations in ventilation, work of breathing, and sympathetic nerve activity (SNA), and consequently CO2 inhalation therapy has not been recommended as a routine option for therapy. However, recent new studies into CO2 inhalation therapy have been made that may reshape its role as therapeutic. In this review, we will focus on the recent developments of administration of dynamic CO2 in the management of CSR-CSA in CHF patients.

  18. Tax Limitations and Revenue Shifting Strategies in Local Government

    DEFF Research Database (Denmark)

    Blom-Hansen, Jens; Bækgaard, Martin; Serritzlew, Søren

    2014-01-01

    subjected to tax limitations employ revenue-shifting strategies. In Denmark, however, these strategies are contingent on the specifics of the Danish intergovernmental system, which render central government grants an attractive object of revenue-shifting strategies. Our analysis thus helps identify......The literature on tax and expenditure limitations (TELs) shows how limiting the freedom of local governments to levy taxes may have considerable unexpected effects. Entities subjected to such limitations may, as their proponents hope, react by cutting expenditures and revenue, but they may also...... strategically change their revenue structure and increase reliance on income sources not subjected to limitations. However, these findings are overwhelmingly based on studies of state and local governments in the USA. Their relevance outside this empirical setting remains unclear. A study of Denmark, where...

  19. Effect of CHF3 Plasma Treatment on the Characteristics of SiCOH Low-k Film

    International Nuclear Information System (INIS)

    Xing Zhenyu; Ye Chao; Yuan Jing; Xu Yijun; Ning Zhaoyuan

    2009-01-01

    The characteristics of SiCOH low dielectric constant film treated by a trifluromethane (CHF 3 ) electron cyclotron resonance (ECR) plasma was investigated. The flat-band voltage V FB and leakage current of the Cu/SiCOH/Si structure, and the hydrophobic property of the SiCOH film were obtained by the measurements of capacitance-voltage, current-voltage and water contact angle. The structures of the SiCOH film were also analyzed by Fourier transform infrared spectroscopy and atomic force microscopy. The CHF 3 plasma treatment of the SiCOH film led to a reduction in both the flat-band voltage V FB shift and leakage current of the Cu/SiCOH/Si structure, a decrease in surface roughness, and a deterioration of the hydrophobic property. The changes in the film's characteristics were related to the formation of Si-F bond, the increase in Si-OH bond, and the C:F deposition at the surface of the SiCOH film.

  20. Analysis of in-R12 CHF data: influence of hydraulic diameter and heating length; test of Weisman boiling crisis model

    International Nuclear Information System (INIS)

    Czop, V.; Herer, C.; Souyri, A.; Garnier, J.

    1993-09-01

    In order to progress on the comprehensive modelling of the boiling crisis phenomenon, Electricite de France (EDF), Commissariat a l'Energie Atomique (CEA) and FRAMATOME have set up experimental programs involving in-R12 tests: the EDF APHRODITE program and the CEA-EDF-FRAMATOME DEBORA program. The first phase in these programs aims to acquire critical heat flux (CHF) data banks, within large thermal-hydraulic parameter ranges, both in cylindrical and annular configurations, and with different hydraulic diameters and heating lengths. Actually, three data banks have been considered in the analysis, all of them concerning in-R12 round tube tests: - the APHRODITE data bank, obtained at EDF with a 13 mn inside diameter, - the DEBORA data bank, obtained at CEA with a 19.2 mm inside diameter, - the KRISTA data bank, obtained at KfK with a 8 mm inside diameter. The analysis was conducted using CHF correlations and with the help of an advanced mathematical tool using pseudo-cubic thin plate type Spline functions. Two conclusions were drawn: -no influence of the heating length on our CHF results, - the influence of the diameter on the CHF cannot be simply expressed by an exponential function of this parameter, as thermal-hydraulic parameters also have an influence. Some calculations with Weisman and Pei theoretical boiling crisis model have been compared to experimental values: fairly good agreement was obtained, but further study must focus on improving the modelling of the influence of pressure and mass velocity. (authors). 12 figs., 4 tabs., 21 refs

  1. Where Would the EUR/CHF Exchange Rate be Without the SNB's Minimum Exchange Rate Policy?

    DEFF Research Database (Denmark)

    Hanke, Michael; Poulsen, Rolf; Weissensteiner, Alex

    2015-01-01

    Since its announcement made on September 6, 2011, the Swiss National Bank (SNB) has been pursuing the goal of a minimum EUR/CHF exchange rate of 1.20, promising to intervene on currency markets to prevent the exchange rate from falling below this level.We use a compound option pricing approach...

  2. Forced convective post CHF heat transfer and quenching

    International Nuclear Information System (INIS)

    Nelson, R.A.

    1980-01-01

    This paper discusses mechanisms in the post-CHF region which provide understanding and qualitative prediction capability for several current forced convective heat transfer problems. In the area of nuclear reactor safety, the mechanisms are important in the prediction of fuel rod quenches for the reflood phase, blowdown phase, and possibly some operational transients with dryout. Results using the mechanisms to investigate forced convective quenching are presented. Data reduction of quenching experiments is discussed, and the way in which the quenching transient may affect the results of different types of quenching experiments is investigated. This investigation provides an explanation of how minimum wall superheats greater than the homogeneous nucleation temperature result, as well as how these may appear to be either hydrodynamically or thermodynamically controlled. Finally, the results of a parametric study of the effects of the mechanisms upon the LOFT L2-3 hotpin calculation are presented

  3. Experimental investigation of thermal limits in parallel plate configuration for the Advanced Neutron Source Reactor

    International Nuclear Information System (INIS)

    Siman-Tov, M.; Felde, D.K.; Kaminaga, M.; Yoder, G.L.

    1993-01-01

    The Advanced Neutron Source Reactor (ANSR) is currently being designed to become the world's highest-flux, steady-state, thermal neutron source for scientific experiments. Highly subcooled, heavy-water coolant flows vertically upward at a very high velocity of 25 m/s through parallel aluminum fuel-plates. The core has average and peak heat fluxes of 5.9 and 12 MW/m 2 , respectively. In this configuration, both flow excursion (FE) and true critical heat flux (CHF), represent potential thermal limitations. The availability of experimental data for both FE and true CHF at the conditions applicable to the ANSR is very limited. A Thermal Hydraulic Test Loop (THTL) facility was designed and built to simulate a full-length coolant subchannel of the core, allowing experimental determination of both thermal limits under the expected ANSR T/H conditions. A series of FE tests with water flowing vertically upward was completed over a nominal heat flux range of 6 to 14 MW/m 2 and a corresponding velocity range of 8 to 21 m/s. Both the exit pressure (1.7 MPa) and inlet temperature (45 degrees C) were maintained constant for these tests, while the loop was operated in a ''stiff''(constant flow) mode. Limited experiments were also conducted at 12 MW/m 2 using a ''soft'' mode (near constant pressure-drop) for actual FE burnout tests and using a ''stiff' mode for true CHF tests, to compare with the original FE experiments

  4. Flow regimes and mechanistic modeling of critical heat flux under subcooled flow boiling conditions

    Science.gov (United States)

    Le Corre, Jean-Marie

    Thermal performance of heat flux controlled boiling heat exchangers are usually limited by the Critical Heat Flux (CHF) above which the heat transfer degrades quickly, possibly leading to heater overheating and destruction. In an effort to better understand the phenomena, a literature review of CHF experimental visualizations under subcooled flow boiling conditions was performed and systematically analyzed. Three major types of CHF flow regimes were identified (bubbly, vapor clot and slug flow regime) and a CHF flow regime map was developed, based on a dimensional analysis of the phenomena and available data. It was found that for similar geometric characteristics and pressure, a Weber number (We)/thermodynamic quality (x) map can be used to predict the CHF flow regime. Based on the experimental observations and the review of the available CHF mechanistic models under subcooled flow boiling conditions, hypothetical CHF mechanisms were selected for each CHF flow regime, all based on a concept of wall dry spot overheating, rewetting prevention and subsequent dry spot spreading. It is postulated that a high local wall superheat occurs locally in a dry area of the heated wall, due to a cyclical event inherent to the considered CHF two-phase flow regime, preventing rewetting (Leidenfrost effect). The selected modeling concept has the potential to span the CHF conditions from highly subcooled bubbly flow to early stage of annular flow. A numerical model using a two-dimensional transient thermal analysis of the heater undergoing nucleation was developed to mechanistically predict CHF in the case of a bubbly flow regime. In this type of CHF two-phase flow regime, the high local wall superheat occurs underneath a nucleating bubble at the time of bubble departure. The model simulates the spatial and temporal heater temperature variations during nucleation at the wall, accounting for the stochastic nature of the boiling phenomena. The model has also the potential to evaluate

  5. Limits to ductility set by plastic flow localization

    International Nuclear Information System (INIS)

    Needleman, A.; Rice, J.R.

    1977-11-01

    The theory of strain localization is reviewed with reference both to local necking in sheet metal forming processes and to more general three dimensional shear band localizations that sometimes mark the onset of ductile rupture. Both bifurcation behavior and the growth of initial imperfections are considered. In addition to analyses based on classical Mises-like constitutive laws, approaches to localization based on constitutive models that may more accurately model processes of slip and progressive rupturing on the microscale in structural alloys are discussed. Among these non-classical constitutive features are the destabilizing roles of yield surface vertices and of non-normality effects, arising, for example, from slight pressure sensitivity of yield. Analyses based on a constitutive model of a progressively cavitating dilational plastic material which is intended to model the process of ductile void growth in metals are also discussed. A variety of numerical results are presented. In the context of the three dimensional theory of localization, it is shown that a simple vertex model predicts ratios of ductility in plane strain tension to ductility in axisymmetric tension qualitatively consistent with experiment, and the destabilizing influence of a hydrostatic stress dependent void nucleation criterion is illustrated. In the sheet necking context, and focussing on positive biaxial stretching, it is shown that forming limit curves based on a simple vertex model and those based on a simple void growth model are qualitatively in accord, although attributing instability to very different physical mechanisms. These forming limit curves are compared with those obtained from the Mises material model and employing various material and geometric imperfections

  6. Phase space properties of local observables and structure of scaling limits

    International Nuclear Information System (INIS)

    Buchholz, D.

    1995-05-01

    For any given algebra of local observables in relativistic quantum field theory there exists an associated scaling algebra which permits one to introduce renormalization group transformations and to construct the scaling (short distance) limit of the theory. On the basis of this result it is discussed how the phase space properties of a theory determine the structure of its scaling limit. Bounds on the number of local degrees of freedom appearing in the scaling limit are given which allow one to distinguish between theories with classical and quantum scaling limits. The results can also be used to establish physically significant algebraic properties of the scaling limit theories, such as the split property. (orig.)

  7. Observation on the changes of plasma neuroendocrine hormones levels in patients with congestive heart failure (CHF)

    International Nuclear Information System (INIS)

    Rui Shibao; Xia Chaohoung; Cheng Guanghua

    2009-01-01

    Objective: To study the changes of plasma levels of endothelin (ET), calcitonin gene related peptide (CGRP), neuropeptide Y (NPY) and adrenomedullin (ADM) both before and after treatment in patients with CHF. Methods: Plasma levels of ET, CGRP, NPY and ADM were determined with RIA both before and after treatment in 79 patients with CHF and once in 31 controls. The 79 patients were of two groups: Group A cardiac function Grade III or better, n=45, Group B, cardiac function Grade IV, n=34 with 3 deaths. Results: Before treatment, the plasma levels of ET and CGRP were significantly higher in both groups of patients than those in controls, with higher values in more severe cases. After treatment,the levels dropped markedly but remained significantly higher than those in controls. Most remarkably was that in the three deaths: the CGRP levels before treatment, though higher than those in the controls, were significantly lower than the mean value in Group B patients as a whole, and dropped furthur to below those in controls as the patients deteriorated. With NPY and ADM, before treatment the plasma levels in both groups of patients were also significantly higher than those in controls. The levels also dropped markedly after treatment, but still remained significantly higher than those in controls. Again, in the 3 deaths, the plasma levels of ADM were significantly lower than the mean value of Group B patients and were not much different from those in controls (P>0.05) and dropped furthur to even below the levels of controls as the patients deteriorated. Conclusion: Changes of plasma levels of ET and NPY might reflect the severity of the disease process of CHF while changes of plasma CGRP and ADM levels might even be of prognostic value. (authors)

  8. Local magnetic divertor for control of the plasma--limiter interaction in a tokamak

    International Nuclear Information System (INIS)

    Zweben, S.J.; Liewer, P.C.; Gould, R.W.

    1984-01-01

    An experiment is described in which plasma flow to a tokamak limiter is controlled through the use of a local toroidal divertor coil mounted inside the limiter itself. This coil produces a local perturbed field B/sub C/ approximately equal to the local unperturbed toroidal field B/sub T/approx. =3 kG, such that when B/sub C/ adds to B/sub T/ the field lines move into the limiter and the local plasma flow to it increases by a factor as great as 1.6, and when B/sub C/ subtracts from B/sub T/ the field lines move away from the limiter and the local plasma flow to it decreases by as much as a factor of 4. A simple theoretical model is used to interpret these results. Since these changes occur without significantly affecting global plasma confinement, such a control scheme may be useful for optimizing the performance of pumped limiters

  9. Critical heat flux concerns during the flow instability phase of a DEGB LOCA

    International Nuclear Information System (INIS)

    Shadday, M.A. Jr.

    1990-08-01

    Arguments are presented that support the proposal that a separate burnout risk analysis, for the Flow Instability (FI) phase of a LOCA, not be required for reactor restart. With expected reactor power limits, flow instability will occur before critical heat flux (CHF). Since FI power limits preclude the occurrence of flow instability in a bounding accident, a DEGB LOCA, the risk of CHF and attendant burnout is negligible. A review of RDAP data revealed that in the past reactor assemblies operated at flow and power conditions similar to those expected in a LOCA without burnout occurring. This is strong bounding empirical evidence, without the scaling concerns of laboratory experiments. A bounding analysis of the influences of assembly non-idealities on CHF, power tilts, and channel eccentricity, is included. The margin between operating heat fluxes, during the postulated LOCA, and CHF was quantified by scoping calculations. Based on measured azimuthal power variations, the local heat flux would have to be more than 20 standard deviations above the calculated mean heat flux for CHF to occur

  10. Assessment of a Business-to-Consumer (B2C) model for Telemonitoring patients with Chronic Heart Failure (CHF)

    NARCIS (Netherlands)

    A.S. Grustam (Andrija); Vrijhoef, H.J.M. (Hubertus J. M.); R. Koymans (Ron); Hukal, P. (Philipp); J.L. Severens (Hans)

    2017-01-01

    textabstractBackground: The purpose of this study is to assess the Business-to-Consumer (B2C) model for telemonitoring patients with Chronic Heart Failure (CHF) by analysing the value it creates, both for organizations or ventures that provide telemonitoring services based on it, and for society.

  11. A heuristic application of critical power ratio to pressurized water reactor core design

    International Nuclear Information System (INIS)

    Ahn, Seung Hoon; Jeun, Gyoo Dong

    2002-01-01

    The approach for evaluating the critical heat flux (CHF) margin using the departure from nucleate boiling ratio (DNBR) concept has been widely applied to PWR core design, while DNBR in this approach does not indicate appropriately the CHF margin in terms of the attainable power margin-to-CHF against a reactor core condition. The CHF power margin must be calculated by increasing power until the minimum DNBR reaches a DNBR limit. The Critical Power Ratio (CPR), defined as the ratio of the predicted CHF power to the operating power, is considered more reasonable for indicating the CHF margin and can be calculated by a CPR correlation based on the heat balance of a test bundle. This approach yields directly the CHF power margin, but the calculated CPR must be corrected to compensate for many local effects of the actual core, which are not considered in the CHF test and analysis. In this paper, correction of the calculated CPR is made so that it may become equal to the DNB overpower margin. Exemplary calculations showed that the correction tends to be increased as power distribution is more distorted, but are not unduly large

  12. Reducing health care costs - potential and limitations of local ...

    African Journals Online (AJOL)

    Reducing health care costs - potential and limitations of local authority health services. ... both the quality and the cost-effectiveness of health care would be improved. ... LAs offer an appropriate structure for effective community control over the ...

  13. Evaluation of Forming Limit by the 3 Dimensional Local Bifurcation Theory

    International Nuclear Information System (INIS)

    Nishimura, Ryuichi; Nakazawa, Yoshiaki; Ito, Koichi; Uemura, Gen; Mori, Naomichi

    2007-01-01

    A theoretical prediction and evaluation method for the sheet metal formability is developed on the basis of the three-dimensional local bifurcation theory previously proposed by authors. The forming limit diagram represented on the plane defined by the ratio of stress component to work-hardening rate is perfectly independent of plastic strain history. The upper and the lower limit of the sheet formability are indicated by the 3D critical line and the Stoeren-Rice's critical line on this plane, respectively. In order to verify the above mentioned behavior of the proposed forming limit diagram, the experimental research is also conducted. From the standpoint of the mechanical instability theory, a new concept called instability factor is introduced. It represents a degree of acceleration by current stress for developing the local bifurcation mode toward a fracture. The instability factor provides a method to evaluate a forming allowance which is useful to appropriate identification for a forming limit and to optimize the forming condition. The proposed criterion provides not only the moment to initiate the necking but also the local bifurcation mode vector and the direction of necking line

  14. Limitations of skeletal muscle oxygen delivery and utilization during moderate-intensity exercise in moderately impaired patients with chronic heart failure

    NARCIS (Netherlands)

    Niemeijer, V.M.; Spee, R.F.; Schoots, T.; Wijn, P.F.F.; Kemps, H.M.C.

    2016-01-01

    The extent and speed of transient skeletal muscle deoxygenation during exercise onset in patients with chronic heart failure (CHF) are related to impairments of local O2 delivery and utilization. This study examined the physiological background of submaximal exercise performance in 19 moderately

  15. Barriers and facilitators to enrollment and re-enrollment into the community health funds/Tiba Kwa Kadi (CHF/TIKA) in Tanzania: a cross-sectional inquiry on the effects of socio-demographic factors and social marketing strategies.

    Science.gov (United States)

    Kapologwe, Ntuli A; Kagaruki, Gibson B; Kalolo, Albino; Ally, Mariam; Shao, Amani; Meshack, Manoris; Stoermer, Manfred; Briet, Amena; Wiedenmayer, Karin; Hoffman, Axel

    2017-04-27

    Introduction of a health insurance scheme is one of the ways to enhance access to health care services and to protect individuals from catastrophic health expenditures. Little is known on the influence of socio-demographic and social marketing strategies on enrollment and re-enrollment in the Community Health Fund/Tiba Kwa Kadi (CHF/TIKA) in Tanzania. This cross-sectional study employed quantitative methods for data collection between November 2014 and March 2015 in Singida and Shinyanga regions. Relationship between variables was obtained through Chi-square test and multivariate logistic regression. We recruited 496 participants in the study. Majority (92.7%) of participants consented to participate, with 229 (49.8%) and 231 (50.2%) members and non members of CHF/TIKA respectively. Majority (90.9%) were aware of CHF/TIKA. Majority of CHF/TIKA members and non-members (90% and 68.3% respectively) reported health facility-based sensitization as the most common social marketing approach employed to market the CHF/TIKA. The most popular marketing strategies in the country including traditional dances, football games, radio, television, news papers, and mosques/church were reported by few CHF and non CHF members. Multivariate Logistic regression models revealed no significant association between social marketing strategies and enrollment, but only socio-demographics; including marital status (AOR = 2.0, 95% CI 1.1-3.8) and family size (household with ≥ 6 members) (AOR = 1.5, 95% CI 1.0-2.5), were significant factors associated with enrollment/re-enrollment rate. This study indicated that low level of utilization of available social marketing strategies and socio-demographic factors are the barriers for attracting members to join the schemes. There is a need for applying various social marketing strategies and considering different facilitating and impending socio-demographic factors for the growth and sustainability of the scheme as we move towards

  16. Development of the Heated Length Correction Factor

    International Nuclear Information System (INIS)

    Park, Ho-Young; Kim, Kang-Hoon; Nahm, Kee-Yil; Jung, Yil-Sup; Park, Eung-Jun

    2008-01-01

    The Critical Heat Flux (CHF) on a nuclear fuel is defined by the function of flow channel geometry and flow condition. According to the selection of the explanatory variable, there are three hypotheses to explain CHF at uniformly heated vertical rod (inlet condition hypothesis, exit condition hypothesis, local condition hypothesis). For inlet condition hypothesis, CHF is characterized by function of system pressure, rod diameter, rod length, mass flow and inlet subcooling. For exit condition hypothesis, exit quality substitutes for inlet subcooling. Generally the heated length effect on CHF in exit condition hypothesis is smaller than that of other variables. Heated length is usually excluded in local condition hypothesis to describe the CHF with only local fluid conditions. Most of commercial plants currently use the empirical CHF correlation based on local condition hypothesis. Empirical CHF correlation is developed by the method of fitting the selected sensitive local variables to CHF test data using the multiple non-linear regression. Because this kind of method can not explain physical meaning, it is difficult to reflect the proper effect of complex geometry. So the recent CHF correlation development strategy of nuclear fuel vendor is making the basic CHF correlation which consists of basic flow variables (local fluid conditions) at first, and then the geometrical correction factors are compensated additionally. Because the functional forms of correction factors are determined from the independent test data which represent the corresponding geometry separately, it can be applied to other CHF correlation directly only with minor coefficient modification

  17. A phenomenological model of the thermal-hydraulics of convective boiling during the quenching of hot rod bundles: Part 2, Assessment of the model with steady-state and transient post-CHF data

    International Nuclear Information System (INIS)

    Unal, C.; Nelson, R.

    1991-01-01

    After completing the thermal-hydraulic model developed in a companion paper, we performed assessment calculations of the model using steady-state and transient post-critical heat flux (CHF) data. This paper discusses the results of those calculations. The hot-patch model, in conjunction with the other thermal-hydraulic models, was capable of modeling the Winfrith post-CHF hot-patch experiments. The hot-patch model kept the wall temperatures at the specified levels in the hot-patch regions and did not allow any quench-front propagation from either the bottom or the top of the test section. Among the four Winfrith runs selected to assess the hot-patch model, the average deviation in hot-patch power predictions was 15.4%, indicating reasonable predictions of the amount of energy transferred to the fluid by the hot patch. The interfacial heat-transfer model tended to slightly under-predict the vapor temperatures. The maximum difference between calculated and measured vapor superheats was 20%, with a 10% difference for the remainder of the runs considered. The wall-to-fluid heat transfer was predicted reasonably well, and the predicted wall superheats were in reasonable agreement with measured data with a maximum relative error of less than 13%. The effects of pressure, test section power, and flow rate on the axial variation of tube wall temperature are predicted reasonably well for a large range of operating parameters. A comparison of the predicted and measured local wall. The thermal-hydraulic model in TRAC/PF1-MOD2 was used to predict the axial variation of void fraction as measured in Winfrith post-CHF tests. The predictions for reflood calculations were reasonable. The model correctly predicted the trends in void fraction as a result of the effect of pressure and power, with the effect of pressure being more apparent than that of power. 13 refs

  18. Assessment of CHF enhancement mechanisms in a curved, rectangular channel subjected to concave heating

    International Nuclear Information System (INIS)

    Sturgis, J.C.; Mudawar, I.

    1999-01-01

    An experimental study was undertaken to examine the enhancement in critical heat flux (CHF) provided by streamwise curvature. Curved and straight rectangular flow channels were fabricated with identical 5.0 x 2.5 mm cross sections and heated lengths of 101.6 mm in which the heat was applied to only one wall--the concave wall (32.3 mm radius) in the curved channel and a side wall in the straight. Tests were conducted using FC-72 liquid with mean inlet velocity and outlet subcooling of 0.25 to 10 m s -1 and 3 to 29 C, respectively. Centripetal acceleration for curved flow reached 315 times earth's gravitational acceleration. Critical heat flux was enhanced due to flow curvature at all conditions but the enhancement decreased with increasing subcooling. For near-saturated conditions, the enhancement was approximately 60% while for highly subcooled flow it was only 20%. The causes for the enhancement were identified as (1) increased pressure on the liquid-vapor interface at wetting fronts, (2) buoyancy forces and (3) increased subcooling at the concave wall. Flow visualization tests were conducted in transparent channels to explore the role of buoyancy forces in enhancing the critical heat flux. These forces were observed to remove vapor from the concave wall and distribute it throughout the cross section. Vapor removal was only effective at near-saturated conditions, yielding the observed substantial enhancement in CHF relative to the straight channel

  19. Local central limit theorem for a Gibbs random field

    Energy Technology Data Exchange (ETDEWEB)

    Campanino, M; Capocaccia, D; Tirozzi, B [L' Aquila Univ. (Italy). Istituto di Matematica; Rome Univ. (Italy). Istituto di Matematica)

    1979-12-01

    The validity of the implication of a local limit theorem is extended from an integral one. The extension eliminates the finite range assumption present in the previous works by using the cluster expansion to analyze the contribution from the tail of the potential.

  20. Central Limit Theorem for Exponentially Quasi-local Statistics of Spin Models on Cayley Graphs

    Science.gov (United States)

    Reddy, Tulasi Ram; Vadlamani, Sreekar; Yogeshwaran, D.

    2018-04-01

    Central limit theorems for linear statistics of lattice random fields (including spin models) are usually proven under suitable mixing conditions or quasi-associativity. Many interesting examples of spin models do not satisfy mixing conditions, and on the other hand, it does not seem easy to show central limit theorem for local statistics via quasi-associativity. In this work, we prove general central limit theorems for local statistics and exponentially quasi-local statistics of spin models on discrete Cayley graphs with polynomial growth. Further, we supplement these results by proving similar central limit theorems for random fields on discrete Cayley graphs taking values in a countable space, but under the stronger assumptions of α -mixing (for local statistics) and exponential α -mixing (for exponentially quasi-local statistics). All our central limit theorems assume a suitable variance lower bound like many others in the literature. We illustrate our general central limit theorem with specific examples of lattice spin models and statistics arising in computational topology, statistical physics and random networks. Examples of clustering spin models include quasi-associated spin models with fast decaying covariances like the off-critical Ising model, level sets of Gaussian random fields with fast decaying covariances like the massive Gaussian free field and determinantal point processes with fast decaying kernels. Examples of local statistics include intrinsic volumes, face counts, component counts of random cubical complexes while exponentially quasi-local statistics include nearest neighbour distances in spin models and Betti numbers of sub-critical random cubical complexes.

  1. Development of heat transfer enhancement techniques for external cooling of an advanced reactor vessel

    Science.gov (United States)

    Yang, Jun

    coatings by comparing the measurements with those for a plain vessel without coatings. An overall enhancement in nucleate boiling rates and CHF limits up to 100% were observed. Moreover, combination of data from quenching experiments and steady-state experiments produced new sets of boiling curves, which covered both the nucleate and transient boiling regimes with much greater accuracy. Beside the experimental work, a theoretical CHF model has also been developed by considering the vapor dynamics and the boiling-induced two-phase motions in three separate regions adjacent to the heating surface. The CHF model is capable of predicting the performance of micro-porous coatings with given particle diameter, porosity, media permeability and thickness. It is found that the present CHF model agrees favorably with the experimental data. Effects of an enhanced vessel/insulation structure on the local nucleate boiling rate and CHF limit have also been investigated experimentally. It is observed that the local two-phase flow quantities such as the local void fraction, quality, mean vapor velocity, mean liquid velocity, and mean vapor and liquid mass flow rates could have great impact on the local surface heat flux as boiling of water takes place on the vessel surface. An upward co-current two-phase flow model has been developed to predict the local two-phase flow behavior for different flow channel geometries, which are set by the design of insulation structures. It is found from the two-phase flow visualization experiments and the two-phase flow model calculations that the enhanced vessel/insulation structure greatly improved the steam venting process at the minimum gap location compared to the performance of thermal insulation structures without enhancement. Moveover, depending on the angular location, steady-state boiling experiments with the enhanced insulation design showed an enhancement of 1.8 to 3.0 times in the local critical heat flux. Finally, nucleate boiling and CHF

  2. Electron and Negative Ion Densities in C2F6 and CHF3 Containing Inductively Coupled Discharges

    International Nuclear Information System (INIS)

    HEBNER, GREGORY A.; MILLER, PAUL A.

    1999-01-01

    Electron and negative ion densities have been measured in inductively coupled discharges containing C 2 F 6 and CHF 3 . Line integrated electron density was determined using a microwave interferometer, negative ion densities were inferred using laser photodetachment spectroscopy, and electron temperature was determined using a Langmuir probe. For the range of induction powers, pressures and bias power investigated, the electron density peaked at 9 x 10 12 cm -2 (line-integrated) or approximately 9 x 10 11 cm -3 . The negative ion density peaked at approximately 1.3 x 10 11 cm -3 . A maximum in the negative ion density as a function of induction coil power was observed. The maximum is attributed to a power dependent change in the density of one or more of the potential negative ion precursor species since the electron temperature did not depend strongly on power. The variation of photodetachment with laser wavelength indicated that the dominant negative ion was F - . Measurement of the decay of the negative ion density in the afterglow of a pulse modulated discharge was used to determine the ion-ion recombination rate for CF 4 , C 2 F 6 and CHF 3 discharges

  3. 28 CFR 29.6 - Limited participation by states and localities permitted.

    Science.gov (United States)

    2010-07-01

    ... 28 Judicial Administration 1 2010-07-01 2010-07-01 false Limited participation by states and localities permitted. 29.6 Section 29.6 Judicial Administration DEPARTMENT OF JUSTICE MOTOR VEHICLE THEFT... locality need not authorize the stopping of motor vehicles under all sets of conditions specified under the...

  4. Below regulatory concern standards: The limits of state and local authority

    International Nuclear Information System (INIS)

    Silverman, D.J.

    1990-01-01

    The paper discusses: (1) the scope of the Nuclear Regulatory Commission's authority to develop and implement below regulatory concern or BRC standards; and (2) the limitations on the legal authority of states and local governments to create impediments to full implementation of such standards. The paper demonstrates that the NRC is acting well within its statutory authority in developing BRC regulations and guidelines, and that the ability of state and local governments to impede generators' use of those regulations and guidelines on the basis of legal or regulatory initiatives is substantially circumscribed. While some generators may be reluctant, as a result of political factors, to utilize BRC standards, the decision whether or not to use such standards should not be made without careful consideration of the applicable legal and regulatory limitations on state and local authority

  5. Local government broadband policies for areas with limited Internet access

    Directory of Open Access Journals (Sweden)

    Yoshio Arai

    2014-03-01

    Full Text Available Despite their wide diffusion in developed countries, broadband services are still limited in areas where providing them is not profitable for private telecom carriers. To address this, many local governments in Japan have implemented broadband deployment projects subsidized by the national government. In this paper, we discuss local government broadband policies based on survey data collected from municipalities throughout the country. With the support of national promotion policies, broadband services were rapidly introduced to most local municipalities in Japan during the 2000s. Local government deployment policies helped to reduce the number of areas with no broadband access. A business model based on the Indefeasible Right of Use (IRU contract between a private telecom carrier and a local government has been developed in recent years. Even local governments without the technical capacity to operate a broadband business can introduce broadband services into their territory using the IRU business model.

  6. CHF during flow rate, pressure and power transients in heated channels

    International Nuclear Information System (INIS)

    Celata, G.P.; Cumo, M.

    1987-01-01

    The behaviour of forced two-phase flows following inlet flow rate, pressure and power transients is presented here with reference to experiments performed with a R-12 loop. A circular duct, vertical test section (L = 2300 mm; D = 7.5 mm) instrumented with fluid (six) and wall (twelve) thermocouples has been employed. Transients have been carried out performing several values of flow decays (exponential decrease), depressurization rates (exponential decrease) and power inputs (step-wise increase). Experimental data have shown the complete inadequacy of steady-state critical heat flux correlations in predicting the onset of boiling crisis during fast transients. Data analysis for a better theoretical prediction of CHF occurrence during transient conditions has been accomplished, and design correlations for critical heat flux and time-to-crisis predictions have been proposed for the different types of transients

  7. An independent assessment of Groeneveld et al.'s 1995 CHF look-up table

    International Nuclear Information System (INIS)

    Baek, W.-P.; Kim, H.-C.; Heung Chang, S.

    1997-01-01

    The prediction capability of the 1995 CHF look-up table (Groeneveld D.C., et al., Nucl. Eng. Des. 163 (1996) 1-23) is independently assessed based on the KAIST data base consisting of 10822 data for uniformly-heated, vertical, round tubes. This confirms the error statistics for the heat balance method reported by Groeneveld et al. and shows overall average and RMS errors of 4.2 and 36.7%, respectively, for the direct substitution method. The new 1995 table shows better prediction capability than the 1986 AECL-UO table (Groeneveld et al., 1986), especially for the low-pressure, low-flow region. The error analysis indicates the length effect even for significantly long tubes. (orig.)

  8. Effective theory of rotationally faulted multilayer graphene - the local limit

    International Nuclear Information System (INIS)

    Kindermann, M; First, P N

    2012-01-01

    Interlayer coupling in rotationally faulted graphene multilayers breaks the local sublattice-symmetry of the individual layers. Earlier we have presented a theory of this mechanism, which reduces to an effective Dirac model with space-dependent mass in an important limit. It thus makes a wealth of existing knowledge available for the study of rotationally faulted graphene multilayers. Agreement of this theory with a recent experiment in a strong magnetic field was demonstrated. Here we explore some of the predictions of this theory for the system in zero magnetic field at large interlayer bias, when it becomes local in space. We use that theory to illuminate the physics of localization and velocity renormalization in twisted graphene layers. (paper)

  9. Communication: Localized molecular orbital analysis of the effect of electron correlation on the anomalous isotope effect in the NMR spin-spin coupling constant in methane

    Energy Technology Data Exchange (ETDEWEB)

    Zarycz, M. Natalia C., E-mail: mnzarycz@gmail.com; Provasi, Patricio F., E-mail: patricio@unne.edu.ar [Department of Physics, University of Northeastern - CONICET, Av. Libertad 5500, Corrientes W3404AAS (Argentina); Sauer, Stephan P. A., E-mail: sauer@kiku.dk [Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø (Denmark)

    2014-10-21

    We discuss the effect of electron correlation on the unexpected differential sensitivity (UDS) in the {sup 1}J(C–H) coupling constant of CH{sub 4} using a decomposition into contributions from localized molecular orbitals and compare with the {sup 1}J(N–H) coupling constant in NH{sub 3}. In particular, we discuss the well known fact that uncorrelated coupled Hartree-Fock (CHF) calculations are not able to reproduce the UDS in methane. For this purpose we have implemented for the first time a localized molecular orbital analysis for the second order polarization propagator approximation with coupled cluster singles and doubles amplitudes—SOPPA(CCSD) in the DALTON program. Comparing the changes in the localized orbital contributions at the correlated SOPPA and SOPPA(CCSD) levels and at the uncorrelated CHF level, we find that the latter overestimates the effect of stretching the bond between the coupled atoms on the contribution to the coupling from the localized bonding orbital between these atoms. This disturbs the subtle balance between the molecular orbital contributions, which lead to the UDS in methane.

  10. High resolution FTIR spectroscopy of fluoroform 12CHF3 and critical analysis of the infrared spectrum from 25 to 1500 cm-1

    Science.gov (United States)

    Albert, S.; Bauerecker, S.; Bekhtereva, E. S.; Bolotova, I. B.; Hollenstein, H.; Quack, M.; Ulenikov, O. N.

    2018-05-01

    We report high-resolution (? 0.001 cm-1) Fourier Transform Infrared spectra of fluoroform (CHF3) including the pure rotational (far infrared or THz) range (28-65 cm-1), the ν3 fundamental (? = 700.099 cm-1), as well as the associated "hot' band 2ν3 - ν3 (? = 699.295 cm-1) and the 'atmospheric window' range 1100-1250 cm-1 containing the strongly coupled polyad of the levels ν2, ν5 and ν3 + ν6, at room temperature and at 120 K using the collisional cooling cell coupled to our Bruker IFS 125 HR prototype (ZP2001) spectrometer and Bruker IFS 125 HR ETH-SLS prototype at the Swiss Light Source providing intense synchrotron radiation. The pure rotational spectra provide new information about the vibrational ground state of CHF3, which is useful for further analysis of excited vibrational states. The ν3 fundamental band is re-investigated together with the corresponding 'hot' band 2ν3 - ν3 leading to an extension of the existing line lists up to 4430 transitions with ? = 66 for ν3 and 1040 transitions with ? = 43 for 2ν3 - ν3. About 6000 transitions were assigned to rovibrational levels in the polyad ν2/ν5/ν3 + ν6 with ? = 63 for ν2 (? = 1141.457 cm-1), ? = 63 for ν5 (? = 1157.335 cm-1) and ? = 59 for ν3 + ν6 (? = 1208.771 cm-1)(? = ? in each case). The resonance interactions between the ν2, ν5 and ν3 + ν6 states have been taken into account providing an accurate set of effective hamiltonian parameters, which reproduce the experimental results with an accuracy close to the experimental uncertainties (with a root mean square deviation drms = 0.00025 cm-1). The analysis is further extended to the ν4 fundamental (? = 1377.847 cm-1) interacting with 2ν3 (? = 1399.394 cm-1). The results are discussed in relation to the importance of understanding the spectra of CHF3 as a greenhouse gas and as part of our large effort to measure and understand the complete spectrum of CHF3 from the far-infrared to the near-infrared as a prototype for intramolecular

  11. D-particles and the localization limit in quantum gravity

    CERN Document Server

    Amelino-Camelia, G; Amelino-Camelia, Giovanni; Doplicher, Luisa

    2003-01-01

    Some recent studies of the properties of D-particles suggest that in string theory a rather conventional description of spacetime might be available up to scales that are significantly smaller than the Planck length. We test this expectation by analyzing the localization of a space-time event marked by the collision of two D-particles. We find that a spatial coordinate of the event can indeed be determined with better-than-Planckian accuracy, at the price of a rather large uncertainty in the time coordinate. We then explore the implications of these results for the popular quantum-gravity intuition which assigns to the Planck length the role of absolute limit on localization.

  12. Fluorocarbon assisted atomic layer etching of SiO{sub 2} and Si using cyclic Ar/C{sub 4}F{sub 8} and Ar/CHF{sub 3} plasma

    Energy Technology Data Exchange (ETDEWEB)

    Metzler, Dominik; Oehrlein, Gottlieb S., E-mail: oehrlein@umd.edu [Department of Materials Science and Engineering, and Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, Maryland 20740 (United States); Li, Chen [Department of Physics, and Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, Maryland 20740 (United States); Engelmann, Sebastian; Bruce, Robert L.; Joseph, Eric A. [IBM T. J. Watson Research Center, Yorktown Heights, New York 10598 (United States)

    2016-01-15

    The need for atomic layer etching (ALE) is steadily increasing as smaller critical dimensions and pitches are required in device patterning. A flux-control based cyclic Ar/C{sub 4}F{sub 8} ALE based on steady-state Ar plasma in conjunction with periodic, precise C{sub 4}F{sub 8} injection and synchronized plasma-based low energy Ar{sup +} ion bombardment has been established for SiO{sub 2} [Metzler et al., J. Vac. Sci. Technol. A 32, 020603 (2014)]. In this work, the cyclic process is further characterized and extended to ALE of silicon under similar process conditions. The use of CHF{sub 3} as a precursor is examined and compared to C{sub 4}F{sub 8}. CHF{sub 3} is shown to enable selective SiO{sub 2}/Si etching using a fluorocarbon (FC) film build up. Other critical process parameters investigated are the FC film thickness deposited per cycle, the ion energy, and the etch step length. Etching behavior and mechanisms are studied using in situ real time ellipsometry and x-ray photoelectron spectroscopy. Silicon ALE shows less self-limitation than silicon oxide due to higher physical sputtering rates for the maximum ion energies used in this work, ranged from 20 to 30 eV. The surface chemistry is found to contain fluorinated silicon oxide during the etching of silicon. Plasma parameters during ALE are studied using a Langmuir probe and establish the impact of precursor addition on plasma properties.

  13. Restructuring local distribution services: Possibilities and limitations

    Energy Technology Data Exchange (ETDEWEB)

    Duann, D.J.

    1994-08-01

    The restructuring of local distribution services is now the focus of the natural gas industry. It is the last major step in the ``reconstitution`` of the natural gas industry and a critical clement in realizing the full benefits of regulatory and market reforms that already have taken place in the wellhead and interstate markets. It could also be the most important regulatory initiative for most end-use customers because they are affected directly by the costs and reliability of distribution services. Several factors contribute to the current emphasis on distribution service restructuring. They include the unbundling and restructuring of upstream markets, a realization of the limitations of supply-side options (such as gas procurement oversight), and the increased diversity and volatility of gas demand facing local distribution companies. Local distribution service is not one but a series of activities that start with commodity gas procurement and extend to transportation, load balancing, storage, and metering and billing of services provided. There are also considerable differences in the economies of scale and scope associated with these various activities. Thus, a mixture of supply arrangements (such as a competitive market or a monopoly) is required for the most efficient delivery of local distribution services. A distinction must be made between the supply of commodity gas and the provision of a bundled distribution service. This distinction and identification of the best supply arrangements for various distribution service components are the most critical factors in developing appropriate restructuring policies. For most state public utility commissions the criteria for service restructuring should include pursuing the economies of scale and scope in gas distribution, differentiating and matching gas service reliability and quality with customer requirements, and controlling costs associated with the search, negotiation, and contracting of gas services.

  14. Computer Security: Do you have 30 kCHF pocket money?

    CERN Multimedia

    Stefan Lueders, Computer Security Team

    2015-01-01

    I am not kidding. Do you have 30,000 CHF to spare? Give it to me, so that I can lose it. It won’t even be well invested. We will just give it away by mistake. An easy mistake, some think. A “gentlemen’s” blunder. Unimportant and, really, not at all a big deal. But, of course, that's wrong - and expensive. Here is my story.   Recently, a student working at CERN was supposed to make a sophisticated simulation of thermal conductivity within a metallic structure, the resulting mechanic stress and the electromagnetic field variations within it. All of his teammates were using a commercial simulation package named - for the sake of brevity - “AllSIM”. But our student failed to download AllSIM from DFS onto his office PC, since that wasn’t where he wanted to use it. He wanted to install it on his laptop so that he could work on his simulation while travelling. However, the CERN AllSIM installation would not allow for this,...

  15. Critical heat flux and post-critical heat flux performance of a 6-m, 37-element fully segmented bundle cooled by Freon-12

    International Nuclear Information System (INIS)

    Nickerson, J.R.

    1982-05-01

    A 6-m, 37-element, electrically heated bundle with full end plate simulation, cooled by Freon-12, has been tested for CHF (critical heat flux) and post-CHF conditions in the MR-3 Freon loop. The bundle was tested in a horizontal attitude and had a uniform axial heat flux distribution and radial heat flux depression. A total of 110 CHF points have been collected over the following range of water equivalent conditions: exit pressure 8.27 - 11.03 MPa, mass flux 1.38 - 8.14 Mg.m -2 .s -1 , inlet subcooling 0 - 500 kJ.kg -1 , outlet quality 10% - 37%. The data have been correlated on both a systems and local conditions basis over a limited mass flux range to within 2.8% rms. Significant CHF increases over smooth bundle results have been observed along with significant CHF improvement over a two end plate bundle simulation in the lower mass flux ranges. A satisfactory axial drypatch spreading correlation has been determined and extensive drypatch wall superheat mapping has been performed

  16. The effects of transient conditions on the onset of intermittent dryout during blowdown

    Energy Technology Data Exchange (ETDEWEB)

    Statham, B.A., E-mail: stathaba@mcmaster.ca; Novog, D.R., E-mail: novog@mcmaster.ca

    2017-06-15

    Highlights: • This papers presents the results of an experimental investigation of transient critical heat flux in high quality and intermediate pressure water. • In existing literature conclusions vary from those showing no effect of transient conditions to results which show 30–40% improvement in CHF. • Along with new CHF data points in the liquid film dominated flow regime, the authors provide a methodology for producing bias free estimates of CHF based on existing correlations. • With these bias free CHF estimates, comparisons are made between transient and steady-state CHF at comparable local conditions. • The work concludes that based on consistently collected and analyzed data that quasi-steady CHF experiments adequately predict transient CHF using the same local thermalhydraulic conditions. - Abstract: For a given set of conditions in a boiling system the point of liquid film dryout or departure from nucleate boiling corresponds to the change from convective or nucleate boiling to transition or film boiling. This change is associated with a rapid deterioration of the heat transfer coefficient and the heat flux at this transition is denoted the critical heat flux (CHF). Computer models used to predict station transients and CHF rely heavily on empirical correlations to predict the CHF. Liquid film CHF data are usually obtained using a quasi-steady method wherein the heat flux is incremented in small steps with each step being allowed to reach a new equilibrium until an abnormal temperature increase is detected on the experimental surfaces. In applying a correlation derived from steady-state experiments to transient analyses these codes implicitly assume that dryout will occur for the same local conditions during transients as during steady state conditions. There is some disagreement in literature as to the validity of this hypothesis. This paper provides new steady-state and transient experimental data for CHF in water at intermediate pressures

  17. A 3-D CFD approach to the mechanistic prediction of forced convective critical heat flux at low quality

    International Nuclear Information System (INIS)

    Jean-Marie Le Corre; Cristina H Amon; Shi-Chune Yao

    2005-01-01

    Full text of publication follows: The prediction of the Critical Heat Flux (CHF) in a heat flux controlled boiling heat exchanger is important to assess the maximal thermal capability of the system. In the case of a nuclear reactor, CHF margin gain (using improved mixing vane grid design, for instance) can allow power up-rate and enhanced operating flexibility. In general, current nuclear core design procedures use quasi-1D approach to model the coolant thermal-hydraulic conditions within the fuel bundles coupled with fully empirical CHF prediction methods. In addition, several CHF mechanistic models have been developed in the past and coupled with 1D and quasi-1D thermal-hydraulic codes. These mechanistic models have demonstrated reasonable CHF prediction characteristics and, more remarkably, correct parametric trends over wide range of fluid conditions. However, since the phenomena leading to CHF are localized near the heater, models are needed to relate local quantities of interest to area-averaged quantities. As a consequence, large CHF prediction uncertainties may be introduced and 3D fluid characteristics (such as swirling flow) cannot be accounted properly. Therefore, a fully mechanistic approach to CHF prediction is, in general, not possible using the current approach. The development of CHF-enhanced fuel assembly designs requires the use of more advanced 3D coolant properties computations coupled with a CHF mechanistic modeling. In the present work, the commercial CFD code CFX-5 is used to compute 3D coolant conditions in a vertical heated tube with upward flow. Several CHF mechanistic models at low quality available in the literature are coupled with the CFD code by developing adequate models between local coolant properties and local parameters of interest to predict CHF. The prediction performances of these models are assessed using CHF databases available in the open literature and the 1995 CHF look-up table. Since CFD can reasonably capture 3D fluid

  18. Characteristics of SiO{sub 2} etching with a C{sub 4}F{sub 8}/Ar/CHF{sub 3}/O{sub 2} gas mixture in 60-MHz/2-MHz dual-frequency capacitively coupled plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, M. H.; Kang, S. K.; Park, J. Y.; Yeom, G. Y. [Sungkyunkwan University, Suwon (Korea, Republic of)

    2011-11-15

    Nanoscale SiO{sub 2} contact holes were etched by using C{sub 4}F{sub 8}/CHF{sub 3}/O{sub 2}/Ar gas mixtures in dual frequency capacitively coupled plasmas (DF-CCPs) where a 60-MHz source power was applied to the top electrode while a 2-MHz bias power was applied to the bottom electrode. The initial increase in the CHF{sub 3} gas flow rate at a fixed CHF{sub 3}+O{sub 2} flow rate increased the SiO{sub 2} etch rate as well as SiO{sub 2} etch selectivity over that of the amorphous carbon layer (ACL). When the high-frequency (HF) power was increased both SiO{sub 2} etch rate and the etch selectivity over ACL were increased. For a 300 W/500 W power ratio of 60-MHz HF power/ 2-MHz low-freqeuncy (LF) and a gas mixture of Ar (140 sccm) /C{sub 4}F{sub 8} (30 sccm) /CHF{sub 3} (25 sccm) /O{sub 2} (5 sccm) while maintaining 20 mTorr, an anisotropic etch profile with an SiO{sub 2} etch rate of 3350 A/min and an etch selectivity of higher than 6 over ACL could be obtained.

  19. Hydrogen effects in hydrofluorocarbon plasma etching of silicon nitride: Beam study with CF{sup +}, CF{sub 2}{sup +}, CHF{sub 2}{sup +}, and CH{sub 2}F{sup +} ions

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Tomoko; Karahashi, Kazuhiro; Fukasawa, Masanaga; Tatsumi, Tetsuya; Hamaguchi, Satoshi [Center for Atomic and Molecular Technologies, Osaka University, Osaka 565-0871 (Japan); Semiconductor Technology Development Division, SBG, CPDG, Sony Corporation, Atsugi, Kanagawa 243-0014 (Japan); Center for Atomic and Molecular Technologies, Osaka University, Osaka 565-0871 (Japan)

    2011-09-15

    Hydrogen in hydrofluorocarbon plasmas plays an important role in silicon nitride (Si{sub 3}N{sub 4}) reactive ion etching. This study focuses on the elementary reactions of energetic CHF{sub 2}{sup +} and CH{sub 2}F{sup +} ions with Si{sub 3}N{sub 4} surfaces. In the experiments, Si{sub 3}N{sub 4} surfaces were irradiated by monoenergetic (500-1500 eV) beams of CHF{sub 2}{sup +} and CH{sub 2}F{sup +} ions as well as hydrogen-free CF{sub 2}{sup +} and CF{sup +} ions generated by a mass-selected ion beam system and their etching yields and surface properties were examined. It has been found that, when etching takes place, the etching rates of Si{sub 3}N{sub 4} by hydrofluorocarbon ions, i.e., CHF{sub 2}{sup +} and CH{sub 2}F{sup +}, are higher than those by the corresponding fluorocarbon ions, i.e., CF{sub 2}{sup +} and CF{sup +}, respectively. When carbon film deposition takes place, it has been found that hydrogen of incident hydrofluorocarbon ions tends to scavenge fluorine of the deposited film, reducing its fluorine content.

  20. New upper limits on the local metagalactic ionizing radiation density

    Science.gov (United States)

    Vogel, Stuart N.; Weymann, Ray; Rauch, Michael; Hamilton, Tom

    1995-01-01

    We have obtained H-alpha observations with the Maryland-Caltech Fabry-Perot Spectrometer attached to the Cassegrain focus of the 1.5 m telescope at Palomer Observatory in order to set limits on the number of ionizing photons from the local metagalactic radiation field. We have observed the SW component of the Haynes-Giovanelli cloud H I 1225+01, an intergalactic cloud which should be optimum for measuring the metagalactic flux because it is nearly opaque to ionizing photons, it does not appear to be significantly shielded from the metagalactic radiation field, and the limits on embedded or nearby ionizing sources are unusually low. For the area of the cloud with an H I column density greater than 10(exp 19)/sq cm we set a 2 sigma limit of 1.1 x 10(exp -19) ergs/sq cm/s/sq arcsec (20 mR) for the surface brightness of diffuse H-alpha. This implies a 2 sigma upper limit on the incident one-sided ionizing flux of Phi(sub ex) is less than 3 x 10(exp 4)/sq cm/s. For a radiation field of the form J(sub nu) is approximately nu(exp -1.4), this yields a firm 2 sigma upper limit on the local metagalactic photoionization rate of Gamma is less than 2 x 10(exp -13)/s, and an upper limit for the radiation field J(sub nu) at the Lyman limit of J(sub nu0) is less than 8 x 10(exp -23) ergs/sq cm/Hz/sr. We discuss previous efforts to constrain the metagalactic ionizing flux using H-alpha surface brightness observations and also other methods, and conclude that our result places the firmest upper limit on this flux. We also observed the 7 min diameter region centered on 3C 273 in which H-alpha emission at a velocity of approximately 1700 km/s was initially reported by Williams and Schommer. In agreement with T. B. Williams (private communication) we find the initial detection was spurious. We obtain a 2 sigma upper limit of 1.8 x 10(exp -19) ergs/sq cm/s/sq arcsec (32 mR) for the mean surface brightness of diffuse H-alpha, about a factor of 6 below the published value.

  1. Application of ANNS in tube CHF prediction: effect on neuron number in hidden layer

    International Nuclear Information System (INIS)

    Han, L.; Shan, J.; Zhang, B.

    2004-01-01

    Prediction of the Critical Heat Flux (CHF) for upward flow of water in uniformly heated vertical round tube is studied with Artificial Neuron Networks (ANNs) method utilizing different neuron number in hidden layers. This study is based on thermal equilibrium conditions. The neuron number in hidden layers is chosen to vary from 5 to 30 with the step of 5. The effect due to the variety of the neuron number in hidden layers is analyzed. The analysis shows that the neuron number in hidden layers should be appropriate, too less will affect the prediction accuracy and too much may result in abnormal parametric trends. It is concluded that the appropriate neuron number in two hidden layers should be [15 15]. (authors)

  2. β-adrenergic ([3H] CGP-12177) receptors are elevated in slices of soleus muscle from CHF 147 dystrophic hamsters

    International Nuclear Information System (INIS)

    Watson-Wright, W.M.; Wilkinson, M.

    1987-01-01

    The authors utilized a muscle slice technique to compare the ontogeny of cell surface β-adrenergic receptor binding in soleus and extensor digitorum longus (EDL) muscles of male Golden Syrian (GS) and Canadian Hybrid Farms 147 (CHF 147) dystrophic hamsters. Binding of the β-adrenergic antagonist, [ 3 H] CGP-12177 (CGP), to GS muscle slices was reversible, saturable, stereospecific and of high affinity. Bmax was higher in the soleus (2.57+/-.12 fmol/mg wet wt) than in the EDL (1.61+/-.17 fmol/mg wet wt) of adult animals while affinities were similar (0.35+/-.06 and 0.24+/-.04 nM respectively). No differences in binding characteristics were seen in EDL of GS compared to CHF 147 animals. In soleus slices from GS hamsters, Bmax was highest at 16 days of age (5.72+/-0.26 fmol/mg), decreased between 16 and 29 days and remained constant until 300 days (2.51+/-0.52 fmol/mg). In dystrophic soleus slices, Bmax was also higher at 16 days than at any other age but receptor number decreased gradually, remaining higher than in GS until 90 days of age (p<0.05). The failure of β-adrenergic receptor number to decrease at a normal rate may be implicated in the pathogenesis of hamster polymyopathy. 21 references, 5 figures, 1 table

  3. Assessment of a Business-to-Consumer (B2C) model for Telemonitoring patients with Chronic Heart Failure (CHF).

    Science.gov (United States)

    Grustam, Andrija S; Vrijhoef, Hubertus J M; Koymans, Ron; Hukal, Philipp; Severens, Johan L

    2017-10-11

    The purpose of this study is to assess the Business-to-Consumer (B2C) model for telemonitoring patients with Chronic Heart Failure (CHF) by analysing the value it creates, both for organizations or ventures that provide telemonitoring services based on it, and for society. The business model assessment was based on the following categories: caveats, venture type, six-factor alignment, strategic market assessment, financial viability, valuation analysis, sustainability, societal impact, and technology assessment. The venture valuation was performed for three jurisdictions (countries) - Singapore, the Netherlands and the United States - in order to show the opportunities in a small, medium-sized, and large country (i.e. population). The business model assessment revealed that B2C telemonitoring is viable and profitable in the Innovating in Healthcare Framework. Analysis of the ecosystem revealed an average-to-excellent fit with the six factors. The structure and financing fit was average, public policy and technology alignment was good, while consumer alignment and accountability fit was deemed excellent. The financial prognosis revealed that the venture is viable and profitable in Singapore and the Netherlands but not in the United States due to relatively high salary inputs. The B2C model in telemonitoring CHF potentially creates value for patients, shareholders of the service provider, and society. However, the validity of the results could be improved, for instance by using a peer-reviewed framework, a systematic literature search, case-based cost/efficiency inputs, and varied scenario inputs.

  4. A study on the critical heat flux for annuli and round tubes under low pressure conditions

    International Nuclear Information System (INIS)

    Park, Jae Wook

    1997-02-01

    This study aims to reveal the characteristics of the critical heat flux (CHF) of internally heated concentric annuli and vertical round tubes in low-pressure and low-flow (LPLF) conditions. Although many efforts have been devote to the subject of the CHF during the last forty years, the information on the CHF phenomenon for LPLF conditions is still very limited. The applicable ranges of the CHF correlations for annuli and round tubes are concentrate on the operating conditions of nuclear power plant (NPP), namely high-pressure and high-flow (HPHF) conditions. these facts promoted to collect the reliable CHF data for LPLF conditions for both annuli and round tubes. The critical heat flux data for vertical flow boiling of water in annuli and round tubes at low pressures and low mass fluxes show the following trends: The observed CHF mechanism for annuli was changed in the order of flooding, churn-to-annular flow transition, and local dryout under a large bubble in churn flow as the flow rate was increased from zero to higher values. The observed parametric trends for annuli are consistent with the previous understanding except that the CHF for downward flow is considerably lower (up to 40%) than that for upward flow. The critical quality is much lower than that for round tubes at the same inlet conditions. The observed parametric trends for round tubes are generally consistent with the previous understanding except for system pressure an tube diameter effect. For the system pressure effect, it is observed that the pressure effect is complicated but not so large, whereas the existing CHF correlations do not present the parametric trend exactly. For tube diameter effect, the decreasing trends of CHF with respect to tube diameter was the general understanding so far, but in this region the CHF show a increasing trend of tube diameter. The prediction and the parametric trend analyses are performed by two view points, I.e., for fixed inlet conditions and for local

  5. Local intelligent electronic device (IED) rendering templates over limited bandwidth communication link to manage remote IED

    Science.gov (United States)

    Bradetich, Ryan; Dearien, Jason A; Grussling, Barry Jakob; Remaley, Gavin

    2013-11-05

    The present disclosure provides systems and methods for remote device management. According to various embodiments, a local intelligent electronic device (IED) may be in communication with a remote IED via a limited bandwidth communication link, such as a serial link. The limited bandwidth communication link may not support traditional remote management interfaces. According to one embodiment, a local IED may present an operator with a management interface for a remote IED by rendering locally stored templates. The local IED may render the locally stored templates using sparse data obtained from the remote IED. According to various embodiments, the management interface may be a web client interface and/or an HTML interface. The bandwidth required to present a remote management interface may be significantly reduced by rendering locally stored templates rather than requesting an entire management interface from the remote IED. According to various embodiments, an IED may comprise an encryption transceiver.

  6. Seizure semiology: its value and limitations in localizing the epileptogenic zone.

    Science.gov (United States)

    Tufenkjian, Krikor; Lüders, Hans O

    2012-12-01

    Epilepsy surgery has become an important treatment option in patients with medically refractory epilepsy. The ability to precisely localize the epileptogenic zone is crucial for surgical success. The tools available for localization of the epileptogenic zone are limited. Seizure semiology is a simple and cost effective tool that allows localization of the symptomatogenic zone which either overlaps or is in close proximity of the epileptogenic zone. This becomes particularly important in cases of MRI negative focal epilepsy. The ability to video record seizures made it possible to discover new localizing signs and quantify the sensitivity and specificity of others. Ideally the signs used for localization should fulfill these criteria; 1) Easy to identify and have a high inter-rater reliability, 2) It has to be the first or one of the earlier components of the seizure in order to have localizing value. Later symptoms or signs are more likely to be due to ictal spread and may have only a lateralizing value. 3) The symptomatogenic zone corresponding to the recorded ictal symptom has to be clearly defined and well documented. Reproducibility of the initial ictal symptoms with cortical stimulation identifies the corresponding symptomatogenic zone. Unfortunately, however, not all ictal symptoms can be reproduced by focal cortical stimulation. Therefore, the problem the clinician faces is trying to deduce the epileptogenic zone from the seizure semiology. The semiological classification system is particularly useful in this regard. We present the known localizing and lateralizing signs based on this system.

  7. Special offer

    CERN Multimedia

    Staff Association

    2010-01-01

    For members of the Staff Association Aquaparc is celebrating its 10th anniversary We have a limited number of Aquaparc tickets valid for the whole day at the following prices: adult: 28 CHF instead of 46 CHF child: 23 CHF instead of 38 CHF

  8. Critical heat flux prediction by using radial basis function and multilayer perceptron neural networks: A comparison study

    International Nuclear Information System (INIS)

    Vaziri, Nima; Hojabri, Alireza; Erfani, Ali; Monsefi, Mehrdad; Nilforooshan, Behnam

    2007-01-01

    Critical heat flux (CHF) is an important parameter for the design of nuclear reactors. Although many experimental and theoretical researches have been performed, there is not a single correlation to predict CHF because it is influenced by many parameters. These parameters are based on fixed inlet, local and fixed outlet conditions. Artificial neural networks (ANNs) have been applied to a wide variety of different areas such as prediction, approximation, modeling and classification. In this study, two types of neural networks, radial basis function (RBF) and multilayer perceptron (MLP), are trained with the experimental CHF data and their performances are compared. RBF predicts CHF with root mean square (RMS) errors of 0.24%, 7.9%, 0.16% and MLP predicts CHF with RMS errors of 1.29%, 8.31% and 2.71%, in fixed inlet conditions, local conditions and fixed outlet conditions, respectively. The results show that neural networks with RBF structure have superior performance in CHF data prediction over MLP neural networks. The parametric trends of CHF obtained by the trained ANNs are also evaluated and results reported

  9. Building local human resources to implement SLMTA with limited donor funding: The Ghana experience.

    Science.gov (United States)

    Nkrumah, Bernard; van der Puije, Beatrice; Bekoe, Veronica; Adukpo, Rowland; Kotey, Nii A; Yao, Katy; Fonjungo, Peter N; Luman, Elizabeth T; Duh, Samuel; Njukeng, Patrick A; Addo, Nii A; Khan, Fazle N; Woodfill, Celia J I

    2014-11-03

    In 2009, Ghana adopted the Strengthening Laboratory Management Toward Accreditation (SLMTA) programme in order to improve laboratory quality. The programme was implemented successfully with limited donor funding and local human resources. To demonstrate how Ghana, which received very limited PEPFAR funding, was able to achieve marked quality improvement using local human resources. Local partners led the SLMTA implementation and local mentors were embedded in each laboratory. An in-country training-of-trainers workshop was conducted in order to increase the pool of local SLMTA implementers. Three laboratory cohorts were enrolled in SLMTA in 2011, 2012 and 2013. Participants from each cohort attended in a series of three workshops interspersed with improvement projects and mentorship. Supplemental training on internal audit was provided. Baseline, exit and follow-up audits were conducted using the Stepwise Laboratory Quality Improvement Process Towards Accreditation (SLIPTA) checklist. In November 2013, four laboratories underwent official SLIPTA audits by the African Society for Laboratory Medicine (ASLM). The local SLMTA team successfully implemented three cohorts of SLMTA in 15 laboratories. Seven out of the nine laboratories that underwent follow-up audits have reached at least one star. Three out of the four laboratories that underwent official ASLM audits were awarded four stars. Patient satisfaction increased from 25% to 70% and sample rejection rates decreased from 32% to 10%. On average, $40 000 was spent per laboratory to cover mentors' salaries, SLMTA training and improvement project support. Building in-country capacity through local partners is a sustainable model for improving service quality in resource-constrained countries such as Ghana. Such models promote country ownership, capacity building and the use of local human resources for the expansion of SLMTA.

  10. D-particle-inspired analysis of localization limits in quantum gravity

    International Nuclear Information System (INIS)

    Amelino-Camelia, Giovanni; Doplicher, Luisa

    2004-01-01

    Some recent studies of the properties of D-particles suggest that in string theory a rather conventional description of spacetime might be available up to scales that are significantly smaller than the Planck length. We explore this possibility in the framework of a Heisenberg-microscope setup for the analysis of localization of a spacetime event marked by the collision of two D-particles. For the string-theory aspects of our analysis, which only concern some general properties of D-particles, we rely on previous works. The results confirm that a spatial coordinate of the event can indeed be determined with better-than-Planckian accuracy, but we stress that this comes at the price of a rather large uncertainty in the time coordinate. We comment on the implications of these results for the popular quantum-gravity intuition which assigns to the Planck length the role of absolute limit on localization

  11. Local melanoma recurrences in the scar after limited surgery for primary tumor

    DEFF Research Database (Denmark)

    Drzewiecki, K T; Andersson, A P

    1995-01-01

    The clinical and histologic records of 46 consecutive patients were reviewed who during the period 1980-1993 had recurrence from melanoma in the scar after limited surgery for a skin tumor. They constituted about 50% of all patients admitted with local recurrence from melanoma during this period....... At reexamination of the primary tumors, 16 were found to be malignant melanomas and 9 were nevi (four atypical and five benign). Twenty-one were missing, 11 of which had never been set for histologic examination. The median thickness of nine measurable melanomas was 0.66 mm. The recurrences in scar consisted of 34...... recurrences in the form of a new primary in a scar following limited surgery supports the theory of limited field change around a primary melanoma. Furthermore, limited procedures for primary melanoma, if followed by a recurrence in the scar, worsen the prognosis....

  12. Experiments of Pool Boiling Performance (Boiling Heat Transfer and Critical Heat Flux) on Designed Micro-Structures

    International Nuclear Information System (INIS)

    Kim, Seol Ha; Kang, Jun Young; Lee, Gi Chol; Kiyofumia, Moriyama; Kim, Moo Hwan; Park, Hyun Sun

    2015-01-01

    In general, the evaluation of the boiling performance mainly focuses on two physical parameters: boiling heat transfer (BHT) and critical heat flux (CHF). In the nuclear power plants, both BHT and CHF contribute the nuclear system efficiency and safety, respectively. In this study, BHT and CHF of the pool boiling on well-organized fabricated structured (micro scaled) surface has been evaluated. As a results, BHT change on microstructured surface shows strongly dependent on Pin-fin effect analysis. In terms of CHF, critical size of micro structure for CHF enhancement has been observed and analyzed based on the capillary wicking effect. In this study, BHT and CHF of the pool boiling on well-organized fabricated structured (micro scaled) surface has been evaluated. As a results, BHT change on microstructured surface shows strongly dependent on the roughness ratio. The extended heat transfer area contributes the boiling heat transfer increase on the structured surface, and its quantitative analysis has been performed. In terms of CHF, the critical size of micro structure for CHF enhancement has been observed and analyzed based on the capillary wicking effect. We suggested a capillary limit to CHF delay for modeling capillary induced liquid inflow through microstructured surfaces. The critical size of the capillary limit on the prepared structured surface, determined by a model, could be reasonable explanation points for the experimental results (optimal size for CHF delay). The present experimental results also showed clearly the critical size (10 - 20 μm) for CHF delay, predicted by capillary limit analysis. This study provides fundamental insight into BHT and CHF enhancement of structured surfaces, and an optimal design guide for the required CHF and boiling heat-transfer performance. Finally, this study can contribute the basic understanding of the boiling on designed microstructure surface, and it also suggest the optimal micro scaled structured surface of boiling

  13. Building local human resources to implement SLMTA with limited donor funding: The Ghana experience

    Directory of Open Access Journals (Sweden)

    Bernard Nkrumah

    2014-11-01

    Full Text Available Background: In 2009, Ghana adopted the Strengthening Laboratory Management Toward Accreditation (SLMTA programme in order to improve laboratory quality. The programme was implemented successfully with limited donor funding and local human resources. Objectives: To demonstrate how Ghana, which received very limited PEPFAR funding, was able to achieve marked quality improvement using local human resources. Method: Local partners led the SLMTA implementation and local mentors were embedded in each laboratory. An in-country training-of-trainers workshop was conducted in order to increase the pool of local SLMTA implementers. Three laboratory cohorts were enrolled in SLMTA in 2011, 2012 and 2013. Participants from each cohort attended in a series of three workshops interspersed with improvement projects and mentorship. Supplemental trainingon internal audit was provided. Baseline, exit and follow-up audits were conducted using the Stepwise Laboratory Quality Improvement Process Towards Accreditation (SLIPTA checklist. In November 2013, four laboratories underwent official SLIPTA audits by the African Society for Laboratory Medicine (ASLM. Results: The local SLMTA team successfully implemented three cohorts of SLMTA in 15 laboratories. Seven out of the nine laboratories that underwent follow-up audits have reached at least one star. Three out of the four laboratories that underwent official ASLM audits were awarded four stars. Patient satisfaction increased from 25% to 70% and sample rejection rates decreased from 32% to 10%. On average, $40 000 was spent per laboratory to cover mentors’salaries, SLMTA training and improvement project support. Conclusion: Building in-country capacity through local partners is a sustainable model for improving service quality in resource-constrained countries such as Ghana. Such modelspromote country ownership, capacity building and the use of local human resources for the expansion of SLMTA.

  14. Spontaneous condensation of CHF2Cl vapour at high reduced pressures

    International Nuclear Information System (INIS)

    Bier, K.; Ehrler, F.; Kissau, G.; Lippig, V.; Schorsch, R.

    1977-01-01

    Spontaneous condensation at high reduced pressures was investigated in stationary jets of difluoromonochlormethane vapour (refrigerant R 22) expanding within an annular Laval nozzle. The onset of condensation in the so-called Wilson point was determined by measuring the static pressure along the nozzle axis. For 33 expansions carried out with the same nozzle geometry at different stagnation conditions - with dew points ranging from 32 to 64 per cent of the critical pressure - the Wilson points can be represented by a common Wilson line, which can be extended to the critical point. Considering the real gas properties of the supersaturated vapour, one obtains nucleation rates for the states on the measured Wilson line, which are considerably lower than those resulting from the usual ideal-gas calculation, the difference amounting from 4 to 9 orders of magnitude in the investigated region. A comparison with the collision rate of single molecules shows that the nucleation rates calculated for the real gas according to the classical Volmer-Frenkel thoery are plausible. An adequate interpretation of the experimental results on CHF 2 Cl with the Lothe-Pound theory, however, seems not possible, since the nucleation rate due to that theory would nearly attain and - at higher densities - even exceed the molecular collision rate. (orig.) [de

  15. Validation of the ASSERT subchannel code: Prediction of critical heat flux in standard and nonstandard CANDU bundle geometries

    International Nuclear Information System (INIS)

    Carver, M.B.; Kiteley, J.C.; Zhou, R.Q.N.; Junop, S.V.; Rowe, D.S.

    1995-01-01

    The ASSERT code has been developed to address the three-dimensional computation of flow and phase distribution and fuel element surface temperatures within the horizontal subchannels of Canada uranium deuterium (CANDU) pressurized heavy water reactor fuel channels and to provide a detailed prediction of critical heat flux (CHF) distribution throughout the bundle. The ASSERT subchannel code has been validated extensively against a wide repertoire of experiments; its combination of three-dimensional prediction of local flow conditions with a comprehensive method of predicting CHF at these local conditions makes it a unique tool for predicting CHF for situations outside the existing experimental database. In particular, ASSERT is an appropriate tool to systematically investigate CHF under conditions of local geometric variations, such as pressure tube creep and fuel element strain. The numerical methodology used in ASSERT, the constitutive relationships incorporated, and the CHF assessment methodology are discussed. The evolutionary validation plan is also discussed and early validation exercises are summarized. More recent validation exercises in standard and nonstandard geometries are emphasized

  16. Clinical evaluation of enalapril maleate and furosemide usage in dogs with degenerative myxomatous mitral valve, CHF functional class Ib

    Directory of Open Access Journals (Sweden)

    Rodrigo P. Franco

    2011-09-01

    Full Text Available Degenerative myxomatous mitral valve (DMMV is a heart disease of high incidence in small animal clinical medicine, affecting mainly older dogs and small breeds. Thus, a scientific investigation was performed in order to evaluate the clinical use of the medicines furosemide and enalapril maleate in dogs with this disease in CHF functional class Ib before and after the treatment was established. For this purpose 16 dogs with the given valve disease were used, separated into two groups: the first received furosemide (n=8 and the second received enalapril maleate (n=8 throughout 56 days. The dogs were evaluated in four stages (T0, T14, T28 and T56 day in relation to clinical signs, hematological, biochemical and serum assessment, which included serum angiotensin converting enzyme (ACE and aldosterone, as well as radiography, electrocardiography, Doppler-echocardiography and blood pressure. The results regarding the clinical, hematological and serum chemistry evaluations revealed no significant changes in both groups, but significant reductions in the values of ACE and aldosterone in the group receiving enalapril maleate were verified. The radiographic examination revealed reductions of VHS values and variable Pms wave of the electrocardiogram in both groups, but no changes in blood pressure values were identified. The echocardiogram showed a significant decrease of the variables LVDd/s in the studied groups and the FS% in animals that received only enalapril. Therefore, analysis of results showed that monotherapy based on enalapril maleate showed better efficiency of symptoms control in patients with CHF functional class Ib.

  17. Use of local and global limit load solutions for plates with surface cracks under tension

    Energy Technology Data Exchange (ETDEWEB)

    Lei, Y. [British Energy Generation Ltd, Barnett Way, Bamwood, Gloucester GL4 3RS (United Kingdom)], E-mail: yuebao.lei@british-energy.com

    2007-09-15

    Some available experimental results for the ductile failure of plates with surface cracks under tension are reviewed. The response of crack driving force, J, and the ligament strain near the local and global limit loads are investigated by performing elastic-perfectly plastic finite element (FE) analysis of a plate with a semi-elliptical crack under tension. The results show that a ligament may survive until the global collapse load is reached when the average ligament strain at the global collapse load, which depends on the uniaxial strain corresponding to the flow stress of the material and the crack geometry, is less than the true fracture strain of the material obtained from uniaxial tension tests. The FE analysis shows that ligament yielding corresponding to the local limit load has little effect on J and the average ligament strain, whereas approach to global collapse corresponds to a sharp increase in both J and the average ligament strain. The prediction of the FE value of J using the reference stress method shows that the global limit load is more relevant to J-estimation than the local one.

  18. Use of local and global limit load solutions for plates with surface cracks under tension

    International Nuclear Information System (INIS)

    Lei, Y.

    2007-01-01

    Some available experimental results for the ductile failure of plates with surface cracks under tension are reviewed. The response of crack driving force, J, and the ligament strain near the local and global limit loads are investigated by performing elastic-perfectly plastic finite element (FE) analysis of a plate with a semi-elliptical crack under tension. The results show that a ligament may survive until the global collapse load is reached when the average ligament strain at the global collapse load, which depends on the uniaxial strain corresponding to the flow stress of the material and the crack geometry, is less than the true fracture strain of the material obtained from uniaxial tension tests. The FE analysis shows that ligament yielding corresponding to the local limit load has little effect on J and the average ligament strain, whereas approach to global collapse corresponds to a sharp increase in both J and the average ligament strain. The prediction of the FE value of J using the reference stress method shows that the global limit load is more relevant to J-estimation than the local one

  19. Gann Limit & Proposition 13: Negative Effects on Local Government Agencies, Inlcuding Schools & Community College Districts.

    Science.gov (United States)

    Rodda, Albert S.

    In fall 1978, Paul Gann, who worked with Howard Jarvis to pass California's Proposition 13 in June 1978, sought to qualify an intitiative placing a constitutional limit on state and local government expenditures. This initiative qualified and was approved by voters in November 1979 as Proposition 4. Gann's solicitation set the limitation's base…

  20. Analytical modeling of complete Nukiyama curves corresponding to expected low void fraction at high subcooling and flow rate

    International Nuclear Information System (INIS)

    Schroeder-Richter, D.

    1996-01-01

    On the basis of a new hypothesis of thermodynamic states (the superheated wall layer is not metastable but saturated at locally elevated pressure), an analytical estimation is presented of the whole boiling curve [except critical heat flux (CHF), but fixed at this point, known by experiments or correlation]. The curvature of the boiling curve (bubbly flow) is deduced from thermodynamics of irreversible processes. The wall temperature corresponding to departure from nucleate boiling is calculated from balances of momentum at the interfaces, based on the assumption that the speed of sound may be a limit for maximum evaporation mass flux and thereby heat flux, i.e., CHF. Heat flux during transition boiling is determined from balance of energy at the rewetting front. The Leidenfrost temperature, as well as wall temperature at CHF, can be calculated analytically without using empirical coefficients. Heat flux of bubbly flow and transition boiling can be matched at any empirical CHF point. All these results are determined from properties of state alone, i.e., the models can be verified for all fluids including water and liquid metals (so far at moderate heat fluxes). 52 refs., 11 figs., 2 tabs

  1. Development of classification and prediction methods of critical heat flux using fuzzy theory and artificial neural networks

    International Nuclear Information System (INIS)

    Moon, Sang Ki

    1995-02-01

    This thesis applies new information techniques, artificial neural networks, (ANNs) and fuzzy theory, to the investigation of the critical heat flux (CHF) phenomenon for water flow in vertical round tubes. The work performed are (a) classification and prediction of CHF based on fuzzy clustering and ANN, (b) prediction and parametric trends analysis of CHF using ANN with the introduction of dimensionless parameters, and (c) detection of CHF occurrence using fuzzy rule and spatiotemporal neural network (STN). Fuzzy clustering and ANN are used for classification and prediction of the CHF using primary system parameters. The fuzzy clustering classifies the experimental CHF data into a few data clusters (data groups) according to the data characteristics. After classification of the experimental data, the characteristics of the resulted clusters are discussed with emphasis on the distribution of the experimental conditions and physical mechanisms. The CHF data in each group are trained in an artificial neural network to predict the CHF. The artificial neural network adjusts the weight so as to minimize the prediction error within the corresponding cluster. Application of the proposed method to the KAIST CHF data bank shows good prediction capability of the CHF, better than other existing methods. Parametric trends of the CHF are analyzed by applying artificial neural networks to a CHF data base for water flow in uniformly heated vertical round tubes. The analyses are performed from three viewpoints, i.e., for fixed inlet conditions, for fixed exit conditions, and based on local conditions hypothesis. In order to remove the necessity of data classification, Katto and Groeneveld et al.'s dimensionless parameters are introduced in training the ANNs with the experimental CHF data. The trained ANNs predict the CHF better than any other conventional correlations, showing RMS error of 8.9%, 13.1%, and 19.3% for fixed inlet conditions, for fixed exit conditions, and for local

  2. Beamspace fast fully adaptive brain source localization for limited data sequences

    International Nuclear Information System (INIS)

    Ravan, Maryam

    2017-01-01

    In the electroencephalogram (EEG) or magnetoencephalogram (MEG) context, brain source localization methods that rely on estimating second order statistics often fail when the observations are taken over a short time interval, especially when the number of electrodes is large. To address this issue, in previous study, we developed a multistage adaptive processing called fast fully adaptive (FFA) approach that can significantly reduce the required sample support while still processing all available degrees of freedom (DOFs). This approach processes the observed data in stages through a decimation procedure. In this study, we introduce a new form of FFA approach called beamspace FFA. We first divide the brain into smaller regions and transform the measured data from the source space to the beamspace in each region. The FFA approach is then applied to the beamspaced data of each region. The goal of this modification is to benefit the correlation sensitivity reduction between sources in different brain regions. To demonstrate the performance of the beamspace FFA approach in the limited data scenario, simulation results with multiple deep and cortical sources as well as experimental results are compared with regular FFA and widely used FINE approaches. Both simulation and experimental results demonstrate that the beamspace FFA method can localize different types of multiple correlated brain sources in low signal to noise ratios more accurately with limited data. (paper)

  3. Limits on nonlocal correlations from the structure of the local state space

    International Nuclear Information System (INIS)

    Janotta, Peter; Gogolin, Christian; Barrett, Jonathan; Brunner, Nicolas

    2011-01-01

    The outcomes of measurements on entangled quantum systems can be nonlocally correlated. However, while it is easy to write down toy theories allowing arbitrary nonlocal correlations, those allowed in quantum mechanics are limited. Quantum correlations cannot, for example, violate a principle known as macroscopic locality, which implies that they cannot violate Tsirelson's bound. This paper shows that there is a connection between the strength of nonlocal correlations in a physical theory and the structure of the state spaces of individual systems. This is illustrated by a family of models in which local state spaces are regular polygons, where a natural analogue of a maximally entangled state of two systems exists. We characterize the nonlocal correlations obtainable from such states. The family allows us to study the transition between classical, quantum and super-quantum correlations by varying only the local state space. We show that the strength of nonlocal correlations - in particular whether the maximally entangled state violates Tsirelson's bound or not-depends crucially on a simple geometric property of the local state space, known as strong self-duality. This result is seen to be a special case of a general theorem, which states that a broad class of entangled states in probabilistic theories-including, by extension, all bipartite classical and quantum states-cannot violate macroscopic locality. Finally, our results show that models exist that are locally almost indistinguishable from quantum mechanics, but can nevertheless generate maximally nonlocal correlations.

  4. Local and global limits on visual processing in schizophrenia.

    Directory of Open Access Journals (Sweden)

    Marc S Tibber

    Full Text Available Schizophrenia has been linked to impaired performance on a range of visual processing tasks (e.g. detection of coherent motion and contour detection. It has been proposed that this is due to a general inability to integrate visual information at a global level. To test this theory, we assessed the performance of people with schizophrenia on a battery of tasks designed to probe voluntary averaging in different visual domains. Twenty-three outpatients with schizophrenia (mean age: 40±8 years; 3 female and 20 age-matched control participants (mean age 39±9 years; 3 female performed a motion coherence task and three equivalent noise (averaging tasks, the latter allowing independent quantification of local and global limits on visual processing of motion, orientation and size. All performance measures were indistinguishable between the two groups (ps>0.05, one-way ANCOVAs, with one exception: participants with schizophrenia pooled fewer estimates of local orientation than controls when estimating average orientation (p = 0.01, one-way ANCOVA. These data do not support the notion of a generalised visual integration deficit in schizophrenia. Instead, they suggest that distinct visual dimensions are differentially affected in schizophrenia, with a specific impairment in the integration of visual orientation information.

  5. Brain natriuretic peptide is a potent vasodilator in aged human microcirculation and shows a blunted response in heart failure patients

    DEFF Research Database (Denmark)

    Edvinsson, Marie-Louise; Uddman, Erik; Edvinsson, Lars

    2014-01-01

    in the forearm was measured by laser Doppler Flowmetry. Local heating (+44°C, 10 min) was used to evoke a maximum local dilator response. RESULTS: Non-invasive iontophoretic administration of either BNP or acetylcholine (ACh), a known endothelium-dependent dilator, elicited an increase in local flow. The nitric......, the vasodilator responses to ACh and to local heating were only somewhat attenuated in CHF patients. Thus, dilator capacity and nitric oxide signalling were not affected to the same extent as BNP-mediated dilation, indicating a specific downregulation of the latter response. CONCLUSIONS: The findings show...... for the first time that microvascular responses to BNP are markedly reduced in CHF patients. This is consistent with the hypothesis of BNP receptor function is downregulated in CHF....

  6. Vasopressin Receptor Antagonists for the Correction of Hyponatremia in Chronic Heart Failure: An Underutilized Therapeutic Option in Current Clinical Practice?

    Directory of Open Access Journals (Sweden)

    Renato De Vecchis

    2016-10-01

    Full Text Available In the congestive heart failure (CHF setting, chronic hyponatremia is very common. The present review aims at addressing topics relevant to the pathophysiology of hyponatremia in the course of CHF as well as its optimal treatment, including the main advantages and the limitations resulting from the use of the available dietary and pharmacological measures approved for the treatment of this electrolytic trouble. A narrative review is carried out in order to represent the main modalities of therapy for chronic hyponatremia that frequently complicates CHF. The limits of usual therapies implemented for CHF-related chronic hyponatremia are outlined, while an original analysis of the main advancements achieved with the use of vasopressin receptor antagonists (VRAs is also executed. The European regulatory restrictions that currently limit the use of VRAs in the management of CHF are substantially caused by financial concerns, i.e., the high costs of VRA therapy. A thoughtful reworking of current restrictions would be warranted in order to enable VRAs to be usefully associated to loop diuretics for decongestive treatment of CHF patients with hyponatremia.

  7. Flooding correlations in narrow channel

    International Nuclear Information System (INIS)

    Kim, S. H.; Baek, W. P.; Chang, S. H.

    1999-01-01

    Heat transfer in narrow gap is considered as important phenomena in severe accidents in nuclear power plants. Also in heat removal of electric chip. Critical heat flux(CHF) in narrow gap limits the maximum heat transfer rate in narrow channel. In case of closed bottom channel, flooding limited CHF occurrence is observed. Flooding correlations will be helpful to predict the CHF in closed bottom channel. In present study, flooding data for narrow channel geometry were collected and the work to recognize the effect of the span, w and gap size, s were performed. And new flooding correlations were suggested for high-aspect-ratio geometry. Also, flooding correlation was applied to flooding limited CHF data

  8. A note on the post-Newtonian limit of quasi-local energy expressions

    International Nuclear Information System (INIS)

    Frauendiener, Jörg; Szabados, László B

    2011-01-01

    An 'effective' quasi-local energy expression, motivated by the (relativistically corrected) Newtonian theory, is introduced in exact general relativity as the volume integral of all the source terms in the field equation for the Newtonian potential in static spacetimes. In particular, we exhibit a new post-Newtonian correction in the source term in the field equation for the Newtonian gravitational potential. In asymptotically flat spacetimes, this expression tends to the Arnowitt-Deser-Misner energy at spatial infinity as a monotonically decreasing set function. We prove its positivity in spherically symmetric spacetimes under certain energy conditions, and that its vanishing characterizes flatness. We argue that any physically acceptable quasi-local energy expression should behave qualitatively like this 'effective' energy expression in this limit. (paper)

  9. Anomalies and other concerns related to the critical heat flux

    International Nuclear Information System (INIS)

    Groeneveld, D.C.

    2009-01-01

    This paper summarizes various unusual trends in the critical heat flux (CHF) that have been observed experimentally in tubes. They include the following: Occurrence of a minimum in the CHF vs. quality (X) curve at high flows - leading to an initial upstream CHF occurrence in uniformly heated tubes. This phenomenon has been observed at high flows in both water and Freon. Occurrence of a limiting quality region on the CHF vs. X curve where the CHF drops by 30 - 90% for a nearly constant quality. This is thought to correspond to the boundary between the entrainment-controlled and the deposition-controlled region and causes problems for prediction methods of the form CHF=f(X). Impact of flow obstructions on the occurrence of upstream CHF and the limiting quality region. The additional mixing by grid spacers or bundle appendages results in a more homogeneous phase distribution, thus diminishing the effects of flow regime/heat transfer regime transitions responsible for the above unusual CHF trends. This will lead to a more gradually decreasing CHF vs. X curve. Absence of a CHF temperature excursion at high flows and high qualities - this is found to be caused by a change in slope of the transition boiling part of the boiling curve from a negative value (usual trend that results in a dryout temperature excursion) to a positive slope. Gradual disappearance of the sharp temperature excursion at CHF when increasing the pressure towards and beyond the critical pressure - no drastic change is observed in the shape of the axial temperature distribution of a heated tube experiencing CHF or heat transfer deterioration, when, for constant mass flux and inlet temperature, the pressure is gradually increased from subcritical to supercritical. CHF fluid-to-fluid modeling: differences in CHF behavior at certain conditions between refrigerants and water at equivalent conditions. The mechanisms responsible for these trends and the implications for predicting CHF for bundle geometries

  10. Suggestions for Christmas gifts.

    CERN Document Server

    Connie Potter; Markus Nordberg

    Have you been working long hours lately? Stuck in meetings too long to make it in time before the shops close? No need to worry. The ATLAS secretariat has plenty of items that will make great Christmas gifts for friends and family. Here are some of the items in stock. Note that you can negotiate a good price for bulk order. ATLAS caps (new item), 12 chf ATLAS t-shirts designed by Alan Alda, 20 chf ATLAS fleece jackets in several sizes and colors, 30 chf grey or dark blue in men's sizes pale blue for women's sizes (limited quantity) red for children (limited quantity) ATLAS puzzles with 500 pieces made by the Ravensburger company 15 chf for 1 box (price is less when purchasing more boxes) 50 chf for 5 boxes or more can also be purchased in boxes of 24, ready to ship to your institute ATLAS 3-D viewers, 5 chf ATLAS DVD, 5 chf CERN playing cards, 2 chf Make sure to get several boxes of the ATLAS puzzle for Christmas gifts. Offer hours of entertainement to friends and family! We tak...

  11. Study on tube critical heat flux data treatment with artificial neural networks

    International Nuclear Information System (INIS)

    Han Lang; Shan Jianqiang

    2005-01-01

    Prediction of the Critical Heat Flux (CHF) are analyzed by Artificial Neural Networks (ANN) to a CHF database for upward flow of water in uniformly heated vertical round tubes. The analysis is performed with three viewpoints hypothesis, i.e. for fixed inlet condition, fixed exit condition and local condition. Half of 6941 from CHF database data is trained through ANN, the trained ANN predicts the total CHF data better than any other conventional correlations, showing RMS error of 6.6%, 10.39% and 21.39%, respectively. (author)

  12. Offers for our members

    CERN Multimedia

    Staff Association

    2013-01-01

    The warm weather arrives, it's time to take advantage of our offers Walibi and Aquapark! Walibi : Tickets "Zone terrestre": 21 € instead of 26 € Access to Aqualibi: 5 € instead of 8 € on presentation of your SA member ticket. Free for children (3-11 years old) before 12 h 00. Free for children under 3, with limited access to the attractions. Car park free. * * * * * Aquaparc : Half-day ticket (5 hours): – Children: 26 CHF instead of 35 CHF – Adults : 32 CHF instead of 43 CHF Day ticket: – Children: 30 CHF instead of 39 CHF – Adults : 36 CHF instead of 49 CHF Free for children under 5.

  13. Anomalies and other concerns related to the critical heat flux

    Energy Technology Data Exchange (ETDEWEB)

    Groeneveld, D.C., E-mail: thermal@magma.ca [Researcher Emeritus, Chalk River Laboratories, Atomic Energy of Canada Ltd, Chalk River (Canada) and University of Ottawa, Department of Mechanical Engineering, Ottawa (Canada)

    2011-11-15

    This paper summarizes various unusual trends in the critical heat flux (CHF) that have been observed experimentally in tubes or bundle subassemblies. They include the following: Bullet Occurrence of a minimum in the CHF vs. quality (X) curve at high flows - leading to an initial upstream CHF occurrence in uniformly heated channels. This phenomenon has been observed at high flows in both water and Freon. Bullet Occurrence of a limiting quality region on the CHF vs. X curve where the CHF drops by 30-90% for a nearly constant quality. This is thought to correspond to the boundary between the entrainment controlled and the deposition controlled region and causes problems for prediction methods of the form CHF = f(X). Bullet Impact of flow obstructions on the occurrence of upstream CHF and the limiting quality region. The additional mixing by grid spacers or bundle appendages results in a more homogeneous phase distribution, and diminishes the effects of flow regime/heat transfer regime transitions responsible for some of the unusual CHF trends, and results in a more gradually decreasing CHF vs. X curve. Bullet Absence of a CHF temperature excursion at high flows and high qualities - this is found to be caused by a change in slope of the transition boiling part of the boiling curve from a negative value (usual trend that results in a temperature excursion) to a positive slope. Bullet Gradual disappearance of the sharp temperature excursion at CHF when increasing the pressure towards and beyond the critical pressure - no drastic change is observed in the axial temperature distribution of a heated tube experiencing CHF when, for constant mass flux and inlet temperature, the pressure is gradually increased from subcritical to supercritical. Bullet CHF fluid-to-fluid modelling: differences in CHF trends at certain conditions between refrigerants and water at equivalent conditions. The mechanisms responsible for these trends and the implications for bundle geometries are

  14. CFD simulation on critical heat flux of flow boiling in IVR-ERVC of a nuclear reactor

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiang, E-mail: zhangxiang3@snptc.com.cn [State Nuclear Power Technology Research & Development Center, South Area, Future Science and Technology Park, Chang Ping District, Beijing 102209 (China); Hu, Teng [State Nuclear Power Technology Research & Development Center, South Area, Future Science and Technology Park, Chang Ping District, Beijing 102209 (China); Chen, Deqi, E-mail: chendeqi@cqu.edu.cn [Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, 400044 (China); Zhong, Yunke; Gao, Hong [Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, 400044 (China)

    2016-08-01

    Highlights: • CFD simulation on CHF of boiling two-phase flow in ERVC is proposed. • CFD simulation result of CHF agrees well with that of experimental result. • The characteristics of boiling two-phase flow and boiling crisis are analyzed. - Abstract: The effectiveness of in-vessel retention (IVR) by external reactor vessel cooling (ERVC) strongly depends on the critical heat flux (CHF). As long as the local CHF does not exceed the local heat flux, the lower head of the pressure vessel can be cooled sufficiently to prevent from failure. In this paper, a CFD simulation is carried out to investigate the CHF of ERVC. This simulation is performed by a CFD code fluent couple with a boiling model by UDF (User-Defined Function). The experimental CHF of ERVC obtained by State Nuclear Power Technology Research and Development Center (SNPTRD) is used to validate this CFD simulation, and it is found that the simulation result agrees well with the experimental result. Based on the CFD simulation, detailed analysis focusing on the pressure distribution, velocity distribution, void fraction distribution, heating wall temperature distribution are proposed in this paper.

  15. An Experimental study of Fullerene (C60) Nano-fluids on Pool Boiling Conditions

    International Nuclear Information System (INIS)

    Melani, Ai; Shin, Byoong Su; Chang, Soon Heung

    2009-01-01

    Critical heat flux (CHF) is directly related to the performance of the system since CHF limits the heat transfer of a heat transfer system. Significant enhancement of CHF allows reliable operation of equipment with more margins to operational limit and more economic cost saving. The previous results show that the nano-fluids significantly enhanced pool boiling CHF compared to pure water. It was supposed that CHF enhancement was due to increased thermal conductivity of fluids, change of bubble shape and behavior, and nano-particle coating of the boiling surface. The previous researches also show that mainly the pool boiling experiment was employed metal particles. Fullerene (C 60 ) is a novel carbon allotrope that was first discovered in 1985 by a winner noble 'Sir Harold W.Kroto, Richard E. Smalley and Robert F.Curl Jr'. In this study we report the first CHF experiment in pool boiling conditions using Fullerene (C 60 ) nanofluids

  16. THE STORY OF CHF OR HOW TO LOSE YOUR SLEEP AND MONEY BY IGNORING THE FOREIGN CURRENCY RISK

    Directory of Open Access Journals (Sweden)

    Laurentiu-Mihai Treapat

    2015-05-01

    Full Text Available This paper represents an empiric research how The Central Bank of Switzerland gave up on sustaining the minimum exchange rate for CHF, as a result of a dramatic movement in the history of the FX market. The decision has equally affected companies or families that got loans (usually in another currency than their incomes. Due to the troubles that reached social dimensions in some ECE countries, we decided that it is worth making an academic X-ray upon the way the specialists succeeded in transmitting their experiences to the others. The lessons from history should be learnt, it is the scientists’ duty to use their ability to get into the essence of the phenomena and to reveal the conclusions to the ones around.

  17. Critical heat flux experiments in a circular tube with heavy water and light water. (AWBA Development Program)

    International Nuclear Information System (INIS)

    Williams, C.L.; Beus, S.G.

    1980-05-01

    Experiments were performed to establish the critical heat flux (CHF) characteristics of heavy water and light water. Testing was performed with the up-flow of heavy and of light water within a 0.3744 inch inside diameter circular tube with 72.3 inches of heated length. Comparisons were made between heavy water and light water critical heat flux levels for the same local equilibrium quality at CHF, operating pressure, and nominal mass velocity. Results showed that heavy water CHF values were, on the average, 8 percent below the light water CHF values

  18. Critical heat flux in tubes and tight hexagonal rod lattices

    International Nuclear Information System (INIS)

    Erbacher, F.J.; Cheng Xu; Zeggel, W.

    1994-01-01

    The critical heat flux (CHF) in small-diameter tubes and in tight hexagonal 7-rod and 37-rod bundles was investigated in the KRISTA test facility, using Freon 12 as the working fluid. The measurements in tubes showed that the influence of the tube diameter on CHF cannot be described as suggested by earlier publications with sufficient accuracy. CHF in bundles is lower than in tubes under comparable conditions. The influence of spacers (grid spacers, wire wraps) on CHF was found to be governed by local steam qualities. A comparison of the test results with some CHF prediction methods showed that the look-up table method reproduces the test results in circular tubes most accurately. Combined with CHF look-up tables, subchannel analysis and Ahmad's fluid-to-fluid scaling law, Freon experiments have proven to be a suitable tool for CHF prediction in water-cooled rod bundles. (orig.) [de

  19. Analyses of HANARO bundle experiment data using MATRA-h: revision

    Energy Technology Data Exchange (ETDEWEB)

    Lim, In Cheol; Park, Cheol; Chae, Hee Taek; Lee, Choong Sung

    1999-08-01

    When the construction and operation license for HANARO was renewed in 1995, imposed was a condition that the safety limit CHFR should have the margin of 25 percent. The reason for this were that the number of bundle CHF experiment data was not enough for the validation of the prediction of CHF in bundle geometry and that the ability of COBRA/KMRR to prediction the local coolant condition was not fully validated. For the resolution of this imposition, more bundle CHF data were gathered and the subchannel exit temperature distribution was obtained during the in-core irradiation test of instrumented bundle (Type-B bundle). also, for these experimental data, subchannel analyses were performed by using MATRA-h code which is the modified version of MATRA-a which is a modified version of KAERI's MATRA-a for the application to HANARO. By comparing the analysis results with the experimental results, it was found that the HANARO subchannel analysis method would give the conservative or best-estimated predictions for the CHF in bundle geometry. This report is the revision of KAERI/TR-1090/98 on the analysis of bundle experiment data using MATRA-h. (Author). 16 refs., 16 tabs., 25 figs.

  20. Asymptotic expansion in the local limit theorem for the particle number in the grand canonical ensemble

    International Nuclear Information System (INIS)

    Pogosian, S.

    1981-01-01

    It is known that in the grand canonical ensemble (for the case of small density of particles) the fluctuations (approximately mod(Λ)sup(1/2)) in the particle number have an asymptotic normal distribution as Λ→infinity. A similar statement holds for the distribution of the particle number in a bounded domain evaluated with respect to the limiting Gibbs distribution. The author obtains an asymptotic expansion in the local limit theorem for the particle number in the grand canonical ensemble, by using the asymptotic expansion of the grand canonical partition function. The coefficients of this expansion are not constants but depend on the form of the domain Λ. More precisely, they are constant up to a correction which is small (for large Λ). The author obtains an explicit form for the second term of the asymptotic expansion in the local limit theorem for the particle number, and also gets the first correction terms for the coefficients of this expansion. (Auth.)

  1. Correlation of critical heat flux data for uniform tubes

    Energy Technology Data Exchange (ETDEWEB)

    Jafri, T.; Dougherty, T.J.; Yang, B.W. [Columbia Univ., New York, NY (United States)

    1995-09-01

    A data base of more than 10,000 critical heat flux (CHF) data points has been compiled and analyzed. Two regimes of CHF are observed which will be referred to as the high CHF regime and the low CHF regime. In the high CHF regime, for pressures less than 110 bar, CHF (q{sub c}) is a determined by local conditions and is adequately represented by q{sub c} = (1.2/D{sup 1/2}) exp[-{gamma}(GX{sub t}){sup 1/2}] where the parameter {gamma} is an increasing function of pressure only, X{sub t} the true mass fraction of steam, and all units are metric but the heat flux is in MWm{sup -2}. A simple kinetic model has been developed to estimate X{sub t} as a function of G, X, X{sub i}, and X{sub O}, where X{sub i} is the inlet quality and X{sub O} represents the quality at the Onset of Significant Vaporization (OSV) which is estimated from the Saha-Zuber (S-Z) correlation. The model is based on a rate equation for vaporization suggested by, and consistent with, the S-Z correlation and contains no adjustable parameters. When X{sub i}local variables only. For X{sub i}>X{sub O}, X{sub t} depends on X{sub i}, a nonlocal variable, and, in this case, CHF, although determined by local conditions, obeys a nonlocal correlation. This model appears to be satisfactory for pressures less than 110 bar, where the S-Z correlation is known to be reliable. Above 110 bar the method of calculating X{sub O}, and consequently X{sub t}, appears to fail, so this approach can not be applied to high pressure CHF data. Above 35 bar, the bulk of the available data lies in the high CHF regime while, at pressures less than 35 bar, almost all of the available data lie in the low CHF regime and appear to be nonlocal.

  2. OVII and Temperature Limits on the Local Hot Bubble

    Science.gov (United States)

    Pirtle, Robert; Petre, N.; McCammon, D.; Morgan, K.; Sauter, P.; Clavadetscher, K.; Fujimoto, R.; Hagihara, T.; Masui, K.; Mitsuda, K.; Takei, Y.; Wang, Q. D.; Yamasaki, N. Y.; Yao, Y.; Yoshino, T.

    2013-01-01

    The observed ¼-keV (ROSAT R12 band) X-ray background originates largely in a region of hot ionized gas roughly 100 pc in extent surrounding the Sun known as the Local Hot Bubble (LHB). The observed flux is quite uniform at low latitudes (|b| factors of 2 - 3. Charge exchange between highly charged ions in the Solar wind and interstellar neutral H and He moving through interplanetary space might provide a very roughly isotropic contribution about equal to the low- latitude flux (Koutroumpa et al. 2008), but cannot produce the enhancements. Correlations with the interstellar absorbing column show that some of these bright regions are apparently due to clumps of hot gas in the Galactic halo, while many of them show no correlation and must be due to extensions of the LHB (Kuntz & Snowden 2000, Bellm & Vaillancourt 2005). Global fits of simple plasma emission spectra give temperatures near 1.0 x 106 K for both LHB and halo emission, but the possibility of a substantial contamination by charge exchange could distort this result in unknown ways. Thermal excitation of O VII is strongly temperature dependent in this range, so we have tried to correlate O VII fluxes measured with Suzaku with variations in ¼-keV intensity from the ROSAT R12 band map to determine the temperature. We take eleven O VII intensity measurements from Yoshino et al. (2009), one from Masui et al. (2009), and an additional eighteen from archival Suzaku pointings and correlate these with the R12 band local and halo intensities as separated by Kunzt & Snowden (2000). The lack of detectable correlation in both cases strongly limits any O VII production by the material producing the enhancements, and upper limits to the temperatures are set. This work was supported in part by the National Science Foundation's REU program through NSF Award AST-1004881 and by NASA grant NNX09AF09G. *present address: Department of Physics, Lewis & Clark College, Portland, OR. This work was supported in part by the National

  3. Prediction of critical heat flux using ANFIS

    Energy Technology Data Exchange (ETDEWEB)

    Zaferanlouei, Salman, E-mail: zaferanlouei@gmail.co [Nuclear Engineering and Physics Department, Faculty of Nuclear Engineering, Center of Excellence in Nuclear Engineering, Amirkabir University of Technology (Tehran Polytechnic), 424 Hafez Avenue, Tehran (Iran, Islamic Republic of); Rostamifard, Dariush; Setayeshi, Saeed [Nuclear Engineering and Physics Department, Faculty of Nuclear Engineering, Center of Excellence in Nuclear Engineering, Amirkabir University of Technology (Tehran Polytechnic), 424 Hafez Avenue, Tehran (Iran, Islamic Republic of)

    2010-06-15

    The prediction of Critical Heat Flux (CHF) is essential for water cooled nuclear reactors since it is an important parameter for the economic efficiency and safety of nuclear power plants. Therefore, in this study using Adaptive Neuro-Fuzzy Inference System (ANFIS), a new flexible tool is developed to predict CHF. The process of training and testing in this model is done by using a set of available published field data. The CHF values predicted by the ANFIS model are acceptable compared with the other prediction methods. We improve the ANN model that is proposed by to avoid overfitting. The obtained new ANN test errors are compared with ANFIS model test errors, subsequently. It is found that the ANFIS model with root mean square (RMS) test errors of 4.79%, 5.04% and 11.39%, in fixed inlet conditions and local conditions and fixed outlet conditions, respectively, has superior performance in predicting the CHF than the test error obtained from MLP Neural Network in fixed inlet and outlet conditions, however, ANFIS also has acceptable result to predict CHF in fixed local conditions.

  4. Prediction of critical heat flux using ANFIS

    International Nuclear Information System (INIS)

    Zaferanlouei, Salman; Rostamifard, Dariush; Setayeshi, Saeed

    2010-01-01

    The prediction of Critical Heat Flux (CHF) is essential for water cooled nuclear reactors since it is an important parameter for the economic efficiency and safety of nuclear power plants. Therefore, in this study using Adaptive Neuro-Fuzzy Inference System (ANFIS), a new flexible tool is developed to predict CHF. The process of training and testing in this model is done by using a set of available published field data. The CHF values predicted by the ANFIS model are acceptable compared with the other prediction methods. We improve the ANN model that is proposed by to avoid overfitting. The obtained new ANN test errors are compared with ANFIS model test errors, subsequently. It is found that the ANFIS model with root mean square (RMS) test errors of 4.79%, 5.04% and 11.39%, in fixed inlet conditions and local conditions and fixed outlet conditions, respectively, has superior performance in predicting the CHF than the test error obtained from MLP Neural Network in fixed inlet and outlet conditions, however, ANFIS also has acceptable result to predict CHF in fixed local conditions.

  5. Parametric trends analysis of the critical heat flux based on artificial neural networks

    International Nuclear Information System (INIS)

    Moon, S.K.; Baek, W.P.; Chang, S.H.

    1996-01-01

    Parametric trends of the critical heat flux (CHF) are analyzed by applying artificial neural networks (ANNs) to a CHF data base for upward flow of water in uniformly heated vertical round tubes. The analyses are performed from three viewpoints, i.e., for fixed inlet conditions, for fixed exit conditions, and based on local conditions hypothesis. Katto's and Groeneveld et al. dimensionless parameters are used to train the ANNs with the experimental CHF data. The trained ANNs predict the CHF better than any other conventional correlations, showing RMS errors of 8.9%, 13.1% and 19.3% for fixed inlet conditions, for fixed exit conditions, and for local conditions hypothesis, respectively. The parametric trends of the CHF obtained from those trained ANNs show a general agreement with previous understanding. In addition, this study provides more comprehensive information and indicates interesting points for the effects of the tube diameter, the heated length, and the mass flux. It is expected that better understanding of the parametric trends is feasible with an extended data base. (orig.)

  6. Analysis of in-R12 CHF data: influence of hydraulic diameter and heating length; test of Weisman boiling crisis model; Analyse de donnees de flux critique en R12: influence du diametre hydraulique et de la longueur chauffante; test du modele de Weisman

    Energy Technology Data Exchange (ETDEWEB)

    Czop, V; Herer, C; Souyri, A; Garnier, J

    1993-09-01

    In order to progress on the comprehensive modelling of the boiling crisis phenomenon, Electricite de France (EDF), Commissariat a l`Energie Atomique (CEA) and FRAMATOME have set up experimental programs involving in-R12 tests: the EDF APHRODITE program and the CEA-EDF-FRAMATOME DEBORA program. The first phase in these programs aims to acquire critical heat flux (CHF) data banks, within large thermal-hydraulic parameter ranges, both in cylindrical and annular configurations, and with different hydraulic diameters and heating lengths. Actually, three data banks have been considered in the analysis, all of them concerning in-R12 round tube tests: - the APHRODITE data bank, obtained at EDF with a 13 mn inside diameter, - the DEBORA data bank, obtained at CEA with a 19.2 mm inside diameter, - the KRISTA data bank, obtained at KfK with a 8 mm inside diameter. The analysis was conducted using CHF correlations and with the help of an advanced mathematical tool using pseudo-cubic thin plate type Spline functions. Two conclusions were drawn: -no influence of the heating length on our CHF results, - the influence of the diameter on the CHF cannot be simply expressed by an exponential function of this parameter, as thermal-hydraulic parameters also have an influence. Some calculations with Weisman and Pei theoretical boiling crisis model have been compared to experimental values: fairly good agreement was obtained, but further study must focus on improving the modelling of the influence of pressure and mass velocity. (authors). 12 figs., 4 tabs., 21 refs.

  7. Field theories on supermanifolds: general formalism, local supersymmetry, and the limit of global supersymmetry

    International Nuclear Information System (INIS)

    Bruzzo, V.

    1986-01-01

    This paper reports briefly on recent investigations concerning the formulation of field theories on supermanifolds. The usual formulations are unsatisfactory from a mathematical viewpoint, hence, this report. A variational theory for fields on a supermanifold is described where the action is a map between Banach spaces. The relationship between the field theory on the supermanifold and a suitably constructed field theory on space-time is also discussed. On-shell local supersymmetry are examined and the limit of global (rigid) supersymmetry is considered. A specific example is given which shows that the limit reproduces the known results

  8. Renal and Cardiovascular Effects of sodium–glucose cotransporter 2 (SGLT2) inhibition in combination with loop Diuretics in diabetic patients with Chronic Heart Failure (RECEDE-CHF): protocol for a randomised controlled double-blind cross-over trial

    Science.gov (United States)

    Mordi, Natalie A; Mordi, Ify R; Singh, Jagdeep S; Baig, Fatima; Choy, Anna-Maria; McCrimmon, Rory J; Struthers, Allan D; Lang, Chim C

    2017-01-01

    Introduction Type 2 diabetes (T2D) and heart failure (HF) are a frequent combination, where treatment options remain limited. There has been increasing interest around the sodium–glucose cotransporter 2 (SGLT2) inhibitors and their use in patients with HF. Data on the effect of SGLT2 inhibitor use with diuretics are limited. We hypothesise that SGLT2 inhibition may augment the effects of loop diuretics and the benefits of SGLT2 inhibitors may extend beyond those of their metabolic (glycaemic parameters and weight loss) and haemodynamic parameters. The effects of SGLT2 inhibitors as an osmotic diuretic and on natriuresis may underlie the cardiovascular and renal benefits demonstrated in the recent EMPA-REG study. Methods and analysis To assess the effect of SGLT2 inhibitors when used in combination with a loop diuretic, the RECEDE-CHF (Renal and Cardiovascular Effects of SGLT2 inhibition in combination with loop Diuretics in diabetic patients with Chronic Heart Failure) trial is a single-centre, randomised, double-blind, placebo-controlled, cross-over trial conducted in a secondary care setting within NHS Tayside, Scotland. 34 eligible participants, aged between 18 and 80 years, with stable T2D and CHF will be recruited. Renal physiological testing will be performed at two points (week 1 and week 6) on each arm to assess the effect of 25 mg empagliflozin, on the primary and secondary outcomes. Participants will be enrolled in the trial for a total period between 14 and 16 weeks. The primary outcome will assess the effect of empagliflozin versus placebo on urine output. The secondary outcomes are to assess the effect of empagliflozin on glomerular filtration rate, cystatin C, urinary sodium excretion, urinary protein/creatinine ratio and urinary albumin/creatinine ratio when compared with placebo. Ethics and dissemination Ethics approval was obtained by the East of Scotland Research Ethics Service. Results of the trial will be submitted for publication in a peer

  9. Increasing Restorability for Local-to-Egress Restoration in GMPLS Controlled Networks with Limited Wavelength Conversion

    DEFF Research Database (Denmark)

    Ruepp, Sarah Renée; Buron, Jakob Due; Andriolli, N.

    2006-01-01

    We study the performance of the local-to-egress restoration method in GMPLS controlled optical networks, when a limited number of wavelength converters are available. We evaluate the recovery percentage for a converter-saving label assignment scheme and compare its performance to a simple scheme...

  10. Flow-Boiling Critical Heat Flux Experiments Performed in Reduced Gravity

    Science.gov (United States)

    Hasan, Mohammad M.; Mudawar, Issam

    2005-01-01

    Poor understanding of flow boiling in microgravity has recently emerged as a key obstacle to the development of many types of power generation and advanced life support systems intended for space exploration. The critical heat flux (CHF) is perhaps the most important thermal design parameter for boiling systems involving both heatflux-controlled devices and intense heat removal. Exceeding the CHF limit can lead to permanent damage, including physical burnout of the heat-dissipating device. The importance of the CHF limit creates an urgent need to develop predictive design tools to ensure both the safe and reliable operation of a two-phase thermal management system under the reduced-gravity (like that on the Moon and Mars) and microgravity environments of space. At present, very limited information is available on flow-boiling heat transfer and the CHF under these conditions.

  11. The Aphrodite boiling crisis program. Analysis of CHF tests performed on a vertical tube

    International Nuclear Information System (INIS)

    Souyri, A.; Conan, S.; Portesse, A.; Tremblay, D.

    1992-09-01

    In order to develop a comprehensive modelling of the boiling crisis phenomenon, the APHRODITE experimental program has been set up at ELECTRICITE DE FRANCE. Aiming at a better mechanistic understanding of this phenomenon, this program will investigate the influence of the experimental conditions (among which the mockup geometry and the boundary conditions) and the two-phase flow patterns via void fraction distributions. It has involved the construction of a R12 test loop, which can deliver a large thermal-hydraulic parameter ranges, and the development of a gamma-ray tomograph. The first experiments have been carried out on a vertical Inconel tube, 6 meters long with a bore diameter of 13 mm and a thickness of 0.5 mm. This electrically heated test section is heavily instrumented with 168 thermocouples welded along the tube, on its outer surface. After a refined calibration of the experimental procedure, a critical heat flux data bank has been collected within large pressure, mass velocity and critical steam quality ranges. These results are firstly compared with other CHF data obtained in similar conditions. Then several empirical correlations and a theoretical model for similar prediction in tubes are tested against these data

  12. SULTAN test facility for large-scale vessel coolability in natural convection at low pressure

    International Nuclear Information System (INIS)

    Rouge, S.

    1997-01-01

    The SULTAN facility (France/CEA/CENG) was designed to study large-scale structure coolability by water in boiling natural convection. The objectives are to measure the main characteristics of two-dimensional, two-phase flow, in order to evaluate the recirculation mass flow in large systems, and the limits of the critical heat flux (CHF) for a wide range of thermo-hydraulic (pressure, 0.1-0.5 MPa; inlet temperature, 50-150 C; mass flow velocity, 5-4400 kg s -1 m -2 ; flux, 100-1000 kW m -2 ) and geometric (gap, 3-15 cm; inclination, 0-90 ) parameters. This paper makes available the experimental data obtained during the first two campaigns (90 , 3 cm; 10 , 15 cm): pressure drop differential pressure (DP) = f(G), CHF limits, local profiles of temperature and void fraction in the gap, visualizations. Other campaigns should confirm these first results, indicating a favourable possibility of the coolability of large surfaces under natural convection. (orig.)

  13. Effects of ionizing scrape-off layers on local recycling in Tore Supra pump limiter experiments

    International Nuclear Information System (INIS)

    Owen, L.W.; Hogan, J.T.; Klepper, C.C.; Mioduszewski, P.K.; Uckan, T.; Chatelier, M.; Loarer, T.

    1992-01-01

    A series of ohmic discharges with active pumping in the Tore Supra outboard pump limiter has been analyzed with the DEGAS neutrals transport code and an analysis scrape-off layer (SOL) plasma model. Pumping speed and plenum pressure measurements indicated 5--10 torr-L/s throughput with only modest effects on density (dN core /dt + source rate from ionization and dissociation of wall-desorbed molecules is seen to peak very near the radial position of the limiter throat. Consequently, a strong recycling vortex is created in the region of the limiter, with the ion flux amplified by factors of ∼2 at the outer limiter surfaces and >3 within the limiter throat. The calculations indicate that less than 30% of the pump throughput is due to first-generation ions from the core efflux, with the balance from local recycling in the strongly ionizing scrape-off layer

  14. Limited Margin Radiation Therapy for Children and Young Adults With Ewing Sarcoma Achieves High Rates of Local Tumor Control

    Energy Technology Data Exchange (ETDEWEB)

    Talleur, Aimee C.; Navid, Fariba [Department of Oncology, St. Jude Children' s Research Hospital, Memphis, Tennessee (United States); Spunt, Sheri L. [Department of Pediatrics, Stanford University School of Medicine, Stanford, California (United States); McCarville, M. Beth [Department of Diagnostic Imaging, St. Jude Children' s Research Hospital, Memphis, Tennessee (United States); Wu, John; Mao, Shenghua [Department of Biostatistics, St. Jude Children' s Research Hospital, Memphis, Tennessee (United States); Davidoff, Andrew M. [Department of Surgery, St. Jude Children' s Research Hospital, Memphis, Tennessee (United States); Department of Surgery, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee (United States); Neel, Michael D. [Department of Surgery, St. Jude Children' s Research Hospital, Memphis, Tennessee (United States); Krasin, Matthew J., E-mail: matthew.krasin@stjude.org [Department of Radiation Oncology, St. Jude Children' s Research Hospital, Memphis, Tennessee (United States)

    2016-09-01

    Purpose: To determine the rate of local failure using focal conformal, limited margin radiation therapy (RT) and dose escalation for tumors ≥8 cm (greatest dimension at diagnosis) in children and young adults with Ewing sarcoma (EWS). Methods and Materials: Eligible patients with EWS were treated on a phase 2 institutional trial of focal conformal, limited margin RT using conformal or intensity modulated techniques. The treatment volume incorporated a 1-cm constrained margin around the gross tumor. Unresected tumors, <8 cm at diagnosis, received a standard dose of 55.8 Gy and tumors ≥8 cm, an escalated dose to 64.8 Gy. Patients with microscopic residual disease after resection received adjuvant RT to 50.4 Gy. Adjuvant brachytherapy was permitted in selected patients. Results: Forty-five patients were enrolled: 26 with localized and 19 with metastatic disease. Median (range) age, tumor size, and follow-up were 13.0 years (2.9-24.7 years), 9.0 cm (2.4-17.0 cm), and 54.5 months (1.9-122.2 months), respectively. All patients received systemic chemotherapy. The median (range) RT dose for all patients was 56.1 Gy (45-65.5 Gy). Seventeen patients received adjuvant, 16 standard-dose, and 12 escalated-dose RT. Failures included 1 local, 10 distant, and 1 local/distant. The estimated 10-year cumulative incidence of local failure was 4.4% ± 3.1%, with no statistical difference seen between RT treatment groups and no local failures in the escalated-dose RT treatment group. Conclusions: Treatment with focal conformal, limited margin RT, including dose escalation for larger tumors, provides favorable local tumor control in EWS.

  15. Limited Margin Radiation Therapy for Children and Young Adults With Ewing Sarcoma Achieves High Rates of Local Tumor Control

    International Nuclear Information System (INIS)

    Talleur, Aimee C.; Navid, Fariba; Spunt, Sheri L.; McCarville, M. Beth; Wu, John; Mao, Shenghua; Davidoff, Andrew M.; Neel, Michael D.; Krasin, Matthew J.

    2016-01-01

    Purpose: To determine the rate of local failure using focal conformal, limited margin radiation therapy (RT) and dose escalation for tumors ≥8 cm (greatest dimension at diagnosis) in children and young adults with Ewing sarcoma (EWS). Methods and Materials: Eligible patients with EWS were treated on a phase 2 institutional trial of focal conformal, limited margin RT using conformal or intensity modulated techniques. The treatment volume incorporated a 1-cm constrained margin around the gross tumor. Unresected tumors, <8 cm at diagnosis, received a standard dose of 55.8 Gy and tumors ≥8 cm, an escalated dose to 64.8 Gy. Patients with microscopic residual disease after resection received adjuvant RT to 50.4 Gy. Adjuvant brachytherapy was permitted in selected patients. Results: Forty-five patients were enrolled: 26 with localized and 19 with metastatic disease. Median (range) age, tumor size, and follow-up were 13.0 years (2.9-24.7 years), 9.0 cm (2.4-17.0 cm), and 54.5 months (1.9-122.2 months), respectively. All patients received systemic chemotherapy. The median (range) RT dose for all patients was 56.1 Gy (45-65.5 Gy). Seventeen patients received adjuvant, 16 standard-dose, and 12 escalated-dose RT. Failures included 1 local, 10 distant, and 1 local/distant. The estimated 10-year cumulative incidence of local failure was 4.4% ± 3.1%, with no statistical difference seen between RT treatment groups and no local failures in the escalated-dose RT treatment group. Conclusions: Treatment with focal conformal, limited margin RT, including dose escalation for larger tumors, provides favorable local tumor control in EWS.

  16. Critical heat flux tests for a 12 finned-element assembly

    Energy Technology Data Exchange (ETDEWEB)

    Yang, J., E-mail: Jun.Yang@cnl.ca; Groeneveld, D.C.; Yuan, L.Q.

    2017-03-15

    Highlights: • CHF tests for a 12 finned-fuel-element assembly at highly subcooled conditions. • Test approach to maximize experimental information and minimize heater failures. • Three series of tests were completed in vertical upward light water flow. • Bundle simulators of two axial power profiles and three heated lengths were tested. • Results confirm that the prediction method predicts lower CHF values than measured. - Abstract: An experimental study was undertaken to provide relevant data to validate the current critical heat flux (CHF) prediction method of the NRU driver fuel for safety analysis, i.e., to confirm no CHF occurrence below the predicted values. The NRU driver fuel assembly consists of twelve finned fuel elements arranged in two rings – three in the inner ring and nine in the outer ring. To satisfy the experimental objective tests at very high heat fluxes, very high mass velocities, and high subcoolings were conducted where the CHF mechanism is the departure from nucleate boiling (DNB). Such a CHF experiment can be very difficult, costly and time consuming since failure of the heating surface due to rupture or melting (physical burnout) is expected when the DNB type of CHF is reached. A novel experimental approach has been developed to maximize the amount of relevant experimental information on safe operating conditions in the tests, and to minimize any possible heater failures that inherently accompany the CHF occurrence at these conditions. Three series of tests using electrically heated NRU driver fuel simulators with three heated lengths and two axial power profiles (or axial heat flux distribution (AFD)) were completed in vertical upward light water flow. Each series of tests covered two mass flow rates, several heat flux levels, and local subcoolings that bound the ranges of interest for the analysis of postulated slow loss-of-regulation accident (LORA) and loss-of-flow accident (LOFA) scenarios. Tests for each mass flow rate of

  17. Local land-atmosphere feedbacks limit irrigation demand

    Science.gov (United States)

    Decker, Mark; Ma, Shaoxiu; Pitman, Andy

    2017-05-01

    Irrigation is known to influence regional climate but most studies forecast and simulate irrigation with offline (i.e. land only) models. Using south eastern Australia as a test bed, we demonstrate that irrigation demand is fundamentally different between land only and land-atmosphere simulations. While irrigation only has a small impact on maximum temperature, the semi-arid environment experiences near surface moistening in coupled simulations over the irrigated regions, a feedback that is prevented in offline simulations. In land only simulations that neglect the local feedbacks, the simulated irrigation demand is 25% higher and the standard deviation of the mean irrigation rate is 60% smaller. These local-scale irrigation-driven feedbacks are not resolved in coarse-resolution climate models implying that use of these tools will overestimate irrigation demand. Future studies of irrigation demand must therefore account for the local land-atmosphere interactions by using coupled frameworks, at a spatial resolution that captures the key feedbacks.

  18. Prediction of critical heat flux in narrow rectangular channels using an artificial neural network

    International Nuclear Information System (INIS)

    Zhou Lei; Yan Xiao; Huang Yanping; Xiao Zejun; Yu Jiyang

    2011-01-01

    The concept of Critical heat flux (CHF) and its importance are introduced and the meaning to research CHF in narrow rectangular channels independently is emphasized. This paper is the first effort to predict CHF in NRCs using aritificial neural network. The mathematical structure of the artificial neural network and the error back-propagation algorithm are introduced. To predict CHF, the four dimensionless groups are inputted to the neural network and the output is the dimensionless CHF. As the hidden nodes increased, the training error decreases while the testing error decreases firstly and then transition occurs. Based on this, the hidden nodes are set as 5 and the trained network predicts all of the training and testing data points with RMS=0.0016 and μ=1.0003, which is better than several well-known existing correlations. Based on the trained network, the effect of several parameters on CHF are simulated and discussed. CHF increases almost linearly as the inlet subcooling increases. And larger mass flux enhances the effect of the inlet subcooling. CHF increases with the mass flux increasing. And the effect seems to be a little stronger for relatively low system pressure. CHF decreases almost linearly as the system pressure increases for the fixed inlet condition. The slope of the curve also increases with higher mass flux. This observation is limited to the ranges of the experimental database. CHF decreases as the heated length is increased and the gradients of the curves become very sharp for relatively short channel. CHF increases slightly with the diameter increasing with the variance of the gap limited within 1 to 3 mm. For relatively low mass flux, the effect of the equivalent diameter on CHF is insignificant. As the width of the channel is large enough, the effect of the gap is quite the same as that of the equivalent diameter. A BPNN is successfully trained based on near 500 CHF data points in NRCs, which has much better performances than the

  19. The effect of grid assembly mixing vanes on critical heat flux values and azimuthal location in fuel assemblies

    International Nuclear Information System (INIS)

    De Crecy, F.

    1994-01-01

    Critical heat flux (CHF) is one of the limiting phenomena for a PWR. It has been widely studied for years, but many facts are still not satisfactorily understood. This paper deals with the effect of the grid assembly mixing vanes on both the value of the CHF and the azimuthal location of the departure from nucleate boiling (DNB). A series of experimental studies was performed on electrically heated, 5x5 square pitched, vertical rod bundles. Two specific grid assembly designs were used: with and without mixing vanes. DNB was detected by eight thermocouples welded internally in each rod at the same level in order to determine the azimuthal location. The coolant was Freon-12 flowing upwards to simulate high pressure water (as defined by Stevens). Single-phase flow experiments were also conducted to measure the exit temperature field in order to obtain the mixing coefficients for subchannel analysis.The results show very clearly that the mixing vanes have a significant effect on both the DNB azimuthal location and the CHF value. - Without mixing vanes, DNB occurs mainly on the most central rod and preferentially at the azimuthal location facing the adjacent rod. - With mixing vanes, DNB can occur on any of the nine central rods and is distributed in an apparently random way around the rod. -The effect of the mixing vanes on CHF is dramatic and depends a great deal on the parameter range (pressure, local mass velocity and local quality). Generally speaking, CHF with mixing vanes is significantly higher than without mixing vanes, but this effect can be inverted in some cases.In order to understand this fact more clearly, it is necessary to perform detailed analysis of subchannel behavior. Indeed, the analyses show that the magnitude of this effect is closely related to the mixing coefficients used. These mixing coefficients, estimated from the single-phase flow experiments, are subject to large uncertainties in two-phase flow. ((orig.))

  20. Global and regional emissions estimates of 1,1-difluoroethane (HFC-152a, CH[subscript 3]CHF[subscript 2]) from in situ and air archive observations

    OpenAIRE

    Prinn, Ronald G.

    2015-01-01

    High frequency, in situ observations from 11 globally distributed sites for the period 1994–2014 and archived air measurements dating from 1978 onward have been used to determine the global growth rate of 1,1-difluoroethane (HFC-152a, CH[subscript 3]CHF[subscript 2]). These observations have been combined with a range of atmospheric transport models to derive global emission estimates in a top-down approach. HFC-152a is a greenhouse gas with a short atmospheric lifetime of about 1.5 years. Si...

  1. Effect of Ambient Air Pollution on Hospitalization for Heart Failure in 26 of China's Largest Cities.

    Science.gov (United States)

    Liu, Hui; Tian, Yaohua; Song, Jing; Cao, Yaying; Xiang, Xiao; Huang, Chao; Li, Man; Hu, Yonghua

    2018-03-01

    There is growing interest in the association between ambient air pollution and congestive heart failure (CHF), but research data from developing countries are very limited. The primary aim of this study was to examine the association between short-term exposure to air pollution and hospital admission for CHF in China. A time-stratified case-crossover study was conducted between 2014 and 2015 in 26 large Chinese cities among 105,501 CHF hospitalizations. Conditional logistic regression models were applied to estimate the percentage changes in CHF admissions in relation to per interquartile range increases in air pollutant concentrations. Air pollution was positively associated with CHF hospitalizations. An interquartile range increase in fine particulate, particulate matter less than 10 µm in aerodynamic diameter, sulfur dioxide, nitrogen dioxide, carbon monoxide, and ozone concentrations on the current day corresponded to 1.2% (95% confidence interval [CI] 0.5%, 1.8%), 1.3% (95% CI 0.5%, 2.0%), 1.0% (95% CI 0.2%, 1.7%), 1.6% (95% CI 0.6%, 2.5%), 1.2% (95% CI 0.5%, 1.9%), and 0.4% (95% CI -0.9%, 1.7%) increases in CHF admissions, respectively. In conclusion, our findings contribute to the limited scientific literature concerning the effects of air pollution on CHF risk for high-exposure settings typical in developing countries, which may have significant public health implications for prevention of CHF in China. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. A health impact assessment of a proposed bill to decrease speed limits on local roads in Massachusetts (U.S.A.).

    Science.gov (United States)

    James, Peter; Ito, Kate; Banay, Rachel F; Buonocore, Jonathan J; Wood, Benjamin; Arcaya, Mariana C

    2014-10-02

    Decreasing traffic speeds increases the amount of time drivers have to react to road hazards, potentially averting collisions, and makes crashes that do happen less severe. Boston's regional planning agency, the Metropolitan Area Planning Council (MAPC), in partnership with the Massachusetts Department of Public Health (MDPH), conducted a Health Impact Assessment (HIA) that examined the potential health impacts of a proposed bill in the state legislature to lower the default speed limits on local roads from 30 miles per hour (mph) to 25 mph. The aim was to reduce vehicle speeds on local roads to a limit that is safer for pedestrians, cyclists, and children. The passage of this proposed legislation could have had far-reaching and potentially important public health impacts. Lower default speed limits may prevent around 18 fatalities and 1200 serious injuries to motorists, cyclists and pedestrians each year, as well as promote active transportation by making local roads feel more hospitable to cyclists and pedestrians. While a lower speed limit would increase congestion and slightly worsen air quality, the benefits outweigh the costs from both a health and economic perspective and would save the state approximately $62 million annually from prevented fatalities and injuries.

  3. Analysis of relations for heat transfer at the post-CHF regime

    Energy Technology Data Exchange (ETDEWEB)

    Dorokhovich, S. L. [Obninsk State Techical Univ., Obninsk (Russian Federation); Kirillov, P. L. [Institute of Physics and Power Engineering, Obninsk (Russian Federation)

    2003-07-01

    Information about heat transfer rates in two-fluid flow at the post-CHF regime is important for analysis of accidents of water-cooled nuclear reactors as well as calculations of steam generators (liquid metal-water). It is complicate to create analytical methods because there is a variety of two-fluid flow regimes dictated by channel size, pressure, mass flow rate, heat flux, droplet spectrum, flow quality, other factors and, finally, by crisis type. At crisis in subcooled liquid or low quality two-phase flows Inverted Annular Film Boiling (IAFB) takes place when liquid flow is separated from the wall by a thin superheated vapor film. For dispersed flow crisis is usually related to drying a liquid film moving along the heated surface (wall). In both cases two-phase flow is thermodynamically nonequilibrium since the temperatures of phases (liquid and vapor) are different. The mean (at the rate of heat content) flow temperature is not the determining parameter. Different boundary conditions of experiment s uniform heat fluxes or 'hot' spots, are able to lead to different relations for the heat transfer coefficient. Last years the great number of semiempirical models were elaborated, that become more and more complicate. It is difficult to examine many parameters of the models. An agreement between final results and separate experimental data is not yet the evidence for the verity of extension while prerequisites taken in the models are often doubtful and hardly examined. Thus the correlations obtained from experimental data, for example, are used in practice. The analysis of relations for heat transfer at the Deteriorated Heat Transfer (DHT) regime, the comparison of relations with the data of look up tables made on the basis of the Institute of Physics and Power Engineering and Chalk River Laboratories experimental data banks are the objective of current report.

  4. Analysis of relations for heat transfer at the post-CHF regime

    International Nuclear Information System (INIS)

    Dorokhovich, S. L.; Kirillov, P. L.

    2003-01-01

    Information about heat transfer rates in two-fluid flow at the post-CHF regime is important for analysis of accidents of water-cooled nuclear reactors as well as calculations of steam generators (liquid metal-water). It is complicate to create analytical methods because there is a variety of two-fluid flow regimes dictated by channel size, pressure, mass flow rate, heat flux, droplet spectrum, flow quality, other factors and, finally, by crisis type. At crisis in subcooled liquid or low quality two-phase flows Inverted Annular Film Boiling (IAFB) takes place when liquid flow is separated from the wall by a thin superheated vapor film. For dispersed flow crisis is usually related to drying a liquid film moving along the heated surface (wall). In both cases two-phase flow is thermodynamically nonequilibrium since the temperatures of phases (liquid and vapor) are different. The mean (at the rate of heat content) flow temperature is not the determining parameter. Different boundary conditions of experiment s uniform heat fluxes or 'hot' spots, are able to lead to different relations for the heat transfer coefficient. Last years the great number of semiempirical models were elaborated, that become more and more complicate. It is difficult to examine many parameters of the models. An agreement between final results and separate experimental data is not yet the evidence for the verity of extension while prerequisites taken in the models are often doubtful and hardly examined. Thus the correlations obtained from experimental data, for example, are used in practice. The analysis of relations for heat transfer at the Deteriorated Heat Transfer (DHT) regime, the comparison of relations with the data of look up tables made on the basis of the Institute of Physics and Power Engineering and Chalk River Laboratories experimental data banks are the objective of current report

  5. Bubble induced flow field modulation for pool boiling enhancement over a tubular surface

    Science.gov (United States)

    Raghupathi, P. A.; Joshi, I. M.; Jaikumar, A.; Emery, T. S.; Kandlikar, S. G.

    2017-06-01

    We demonstrate the efficacy of using a strategically placed enhancement feature to modify the trajectory of bubbles nucleating on a horizontal tubular surface to increase both the critical heat flux (CHF) and the heat transfer coefficient (HTC). The CHF on a plain tube is shown to be triggered by a local dryout at the bottom of the tube due to vapor agglomeration. To mitigate this effect and delay CHF, the nucleating bubble trajectory is modified by incorporating a bubble diverter placed axially at the bottom of the tube. The nucleating bubble at the base of the diverter experiences a tangential evaporation momentum force (EMF) which causes the bubble to grow sideways away from the tube and avoid localized bubble patches that are responsible for CHF initiation. High speed imaging confirmed the lateral displacement of the bubbles away from the diverter closely matched with the theoretical predictions using EMF and buoyancy forces. Since the EMF is stronger at higher heat fluxes, bubble displacement increases with heat flux and results in the formation of separate liquid-vapor pathways wherein the liquid enters almost unobstructed at the bottom and the vapor bubble leaves sideways. Experimental results yielded CHF and HTC enhancements of ˜60% and ˜75%, respectively, with the diverter configuration when compared to a plain tube. This work can be used for guidance in developing enhancement strategies to effectively modulate the liquid-vapor flow around the heater surface at various locations to enhance HTC and CHF.

  6. A new mechanistic model of critical heat flux in forced-convection subcooled boiling

    International Nuclear Information System (INIS)

    Alajbegovic, A.; Kurul, N.; Podowski, M.Z.; Drew, D.A.; Lahey, R.T. Jr.

    1997-10-01

    Because of its practical importance and various industrial applications, the process of subcooled flow boiling has attracted a lot of attention in the research community in the past. However, the existing models are primarily phenomenological and are based on correlating experimental data rather than on a first-principle analysis of the governing physical phenomena. Even though the mechanisms leading to critical heat flux (CHF) are very complex, the recent progress in the understanding of local phenomena of multiphase flow and heat transfer, combined with the development of mathematical models and advanced Computational Fluid Dynamics (CFD) methods, makes analytical predictions of CHF quite feasible. Various mechanisms leading to CHF in subcooled boiling have been investigated. A new model for the predictions of the onset of CHF has been developed. This new model has been coupled with the overall boiling channel model, numerically implemented in the CFX 4 computer code, tested and validated against the experimental data of Hino and Ueda. The predicted critical heat flux for various channel operating conditions shows good agreement with the measurements using the aforementioned closure laws for the various local phenomena governing nucleation and bubble departure from the wall. The observed differences are consistent with typical uncertainties associated with CHF data

  7. Post-CHF low-void heat transfer of water: measurements in the complete transition boiling region at atmospheric pressure

    International Nuclear Information System (INIS)

    Johannsen, K.; Meinen, W.

    1984-01-01

    An experimental investigation of low-void heat transfer of water has been performed in the range of CHF and the minimum stable film boiling temperature. The heat transfer system used consists of a vertically mounted copper tube of 1 cm I.D. and 5 cm length with surface-temperature controlled, indirect Joule heating. Results are presented for upflowing water at inverted annular flow conditions in the inlet subcooling range of 2.5 - 40 0 C and mass flux range of 137-600 kg/m 2 s in terms of boiling curves and heat transfer coefficients versus wall temperature. Heat transfer in the stationary rewetting front, which occurs within the test section during operation in the transition boiling mode, is also dealt with. At high mass flux, occurrence of an inverse rewetting front has been observed. It is also noted that, at fixed location, minimum heat flux observed is usually not associated with the minimum stable film boiling temperature

  8. Chlorophyll fluorescence response to water and nitrogen deficit

    Science.gov (United States)

    Cendrero Mateo, Maria del Pilar

    The increasing food demand as well as the need to predict the impact of warming climate on vegetation makes it critical to find the best tools to assess crop production and carbon dioxide (CO2) exchange between the land and atmosphere. Photosynthesis is a good indicator of crop production and CO2 exchange. Chlorophyll fluorescence (ChF) is directly related to photosynthesis. ChF can be measured at leaf-scale using active techniques and at field-scales using passive techniques. The measurement principles of both techniques are different. In this study, three overarching questions about ChF were addressed: Q1) How water, nutrient and ambient light conditions determine the relationships between photosynthesis and ChF? Which is the optimum irradiance level for detecting water and nutrient deficit conditions with ChF? ; Q2) which are the limits within which active and passive techniques are comparable?; and Q3) What is the seasonal relationship between photosynthesis and ChF when nitrogen is the limiting factor? To address these questions, two main experiments were conducted: Exp1) Concurrent photosynthesis and ChF light-response curves were measured in camelina and wheat plants growing under (i) intermediate-light and (ii) high-light conditions respectively. Plant stress was induced by (i) withdrawing water, and (ii) applying different nitrogen levels; and Exp2) coincident active and passive ChF measurements were made in a wheat field under different nitrogen treatments. The results indicated ChF has a direct relationship with photosynthesis when water or nitrogen drives the relationship. This study demonstrates that the light level at which plants were grown was optimum for detecting water and nutrient deficit with ChF. Also, the results showed that for leaf-average-values, active measurements can be used to better understand the daily and seasonal behavior of passive ChF. Further, the seasonal relation between photosynthesis and ChF with nitrogen stress was not a

  9. A theoretical critical heat flux model for low-pressure, low-mass-flux, and low-steam quality conditions

    International Nuclear Information System (INIS)

    Weihsiao Ho; Kuanchywan Tu; Baushei Pei; Chinjang Chang

    1993-01-01

    The critical heat flux (CHF) is the maximum heat flux just before a boiling crisis; its importance as a measurement of nuclear reactor power capability design as well as in the safety of reactors has been recognized. With emphasis on CHF behavior under subcooled and low-quality (i.e., 2 ·s), an improved model that uses the sublayer dry out theory has been developed. Based on experimental observations of CHF, the model assumes that CHF under such conditions is of the departure from nucleate boiling type. Based on the postulation that CHF is triggered by Helmholtz instability in the sublayer steam-liquid system, the model was developed by a simple energy balance of liquid sublayer evaporation as the vapor blanket tends to disturb the balance between the buoyancy force and the drag force exerted upon it. The model is compared with the well-known Biasi et al. correlation as well as the Atomic Energy of Canada Limited lookup table against 102 uniformly heated round tube CHF data and 34 nonuniformly heated round tube CHF data. The comparison shows that the model provides better accuracy and a reasonable agreement between the predicted values and experimental CHF data

  10. Approaching the theoretical limit in periodic local MP2 calculations with atomic-orbital basis sets: the case of LiH.

    Science.gov (United States)

    Usvyat, Denis; Civalleri, Bartolomeo; Maschio, Lorenzo; Dovesi, Roberto; Pisani, Cesare; Schütz, Martin

    2011-06-07

    The atomic orbital basis set limit is approached in periodic correlated calculations for solid LiH. The valence correlation energy is evaluated at the level of the local periodic second order Møller-Plesset perturbation theory (MP2), using basis sets of progressively increasing size, and also employing "bond"-centered basis functions in addition to the standard atom-centered ones. Extended basis sets, which contain linear dependencies, are processed only at the MP2 stage via a dual basis set scheme. The local approximation (domain) error has been consistently eliminated by expanding the orbital excitation domains. As a final result, it is demonstrated that the complete basis set limit can be reached for both HF and local MP2 periodic calculations, and a general scheme is outlined for the definition of high-quality atomic-orbital basis sets for solids. © 2011 American Institute of Physics

  11. Effects of ionizing scrape-off layers on local recycling in Tore Supra pump limiter experiments

    International Nuclear Information System (INIS)

    Chatelier, M.; Loarer, T.

    1992-01-01

    A series of ohmic discharges with active pumping in the Tore Supra outboard pump limiter has been analyzed with the DEGAS neutrals transport code and an analytic scrape-off layer (SOL) plasma model. Pumping speed and plenum pressure measurements indicated 5-10 torr.L/s throughput with only modest effects on density. A model is developed in which large exhaust fluxes, with little attendant effect on core plasma density, are explained in terms of SOL ionization of recycled and wall-desorbed neutrals. Particle balance with active pumping and constant line density requires that the wall return flux exceed the incident flux by approximately the pump throughput in the absence of external fueling. The radial profile of the H + source rate from ionization and dissociation of wall-desorbed molecules is seen to peak very near the radial position of the limiter throat. Consequently, a strong recycling vortex is created in the region of the limiter, with the ion flux amplified by factors of 2 at the outer limiter surfaces and > 3 within the limiter throat. The calculations indicate that less than 30% of the pump throughput is due to first-generation ions from the core efflux, with the balance from local recycling in the strongly ionizing SOL

  12. Journal of Genetics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    carboxylate synthetase (P5CS) is the rate-limiting enzyme in proline biosynthesis in plants. Plasmid DNA (pCHF3-PvP5CS1 and pCHF3-PvP5CS2) containing the selectable neomycin phosphotransferase gene for kanamycin resistance and ...

  13. A preliminary study on the etching behavior of SiO sub 2 aerogel film with CHF sub 3 gas

    CERN Document Server

    Wang, S J; Yeom, G Y

    1998-01-01

    Etching behavior of SiO sub 2 aerogel film has been investigated in order to examine the feasibility of its application to an interlevel dielectric material. Low dielectric property of SiO sub 2 aerogel film is simply originated from its highly porous structure, but interconnected particles are covered with surface chemical bondings (-OH, -OC sub 2 H sub 5 , etc). Etching experiments have been performed with high density inductively coupled CHF sub 3 plasma. The effects of porous structure and surface chemical bondings on the etching of SiO sub 2 aerogel film have been analyzed. The changes of surface morphology were observed using scanning electron microscopy. X-ray photoelectron spectroscopic analyses revealed compositions and chemical bonding states of reaction layer. From the analyses, 3-dimensional etching was not feasible macroscopically in SiO sub 2 aerogel film even with its porous nature because network structure was maintained through the etching process. Internal surface chemicals seemed to act an ...

  14. Fitness declines towards range limits and local adaptation to climate affect dispersal evolution during climate‐induced range shifts

    DEFF Research Database (Denmark)

    Hargreaves, Anna; Bailey, Susan; Laird, Robert

    2015-01-01

    Dispersal ability will largely determine whether species track their climatic niches during climate change, a process especially important for populations at contracting (low-latitude/low-elevation) range limits that otherwise risk extinction. We investigate whether dispersal evolution....... We simulate a species distributed continuously along a temperature gradient using a spatially explicit, individual-based model. We compare range-wide dispersal evolution during climate stability vs. directional climate change, with uniform fitness vs. fitness that declines towards range limits (RLs...... at contracting range limits is facilitated by two processes that potentially enable edge populations to experience and adjust to the effects of climate deterioration before they cause extinction: (i) climate-induced fitness declines towards range limits and (ii) local adaptation to a shifting climate gradient...

  15. Critical heat flux evaluation

    International Nuclear Information System (INIS)

    Banner, D.

    1995-01-01

    Critical heat flux (CHF) is of importance for nuclear safety and represents the major limiting factors for reactor cores. Critical heat flux is caused by a sharp reduction in the heat transfer coefficient located at the outer surface of fuel rods. Safety requires that this phenomenon also called the boiling crisis should be precluded under nominal or incidental conditions (Class I and II events). CHF evaluation in reactor cores is basically a two-step approach. Fuel assemblies are first tested in experimental loops in order to determine CHF limits under various flow conditions. Then, core thermal-hydraulic calculations are performed for safety evaluation. The paper will go into more details about the boiling crisis in order to pinpoint complexity and lack of fundamental understanding in many areas. Experimental test sections needed to collect data over wide thermal-hydraulic and geometric ranges are described CHF safety margin evaluation in reactors cores is discussed by presenting how uncertainties are mentioned. From basic considerations to current concerns, the following topics are discussed; knowledge of the boiling crisis, CHF predictors, and advances thermal-hydraulic codes. (authors). 15 refs., 4 figs

  16. A prediction method of the effect of radial heat flux distribution on critical heat flux in CANDU fuel bundles

    International Nuclear Information System (INIS)

    Yuan, Lan Qin; Yang, Jun; Harrison, Noel

    2014-01-01

    Fuel irradiation experiments to study fuel behaviors have been performed in the experimental loops of the National Research Universal (NRU) Reactor at Atomic Energy of Canada Limited (AECL) Chalk River Laboratories (CRL) in support of the development of new fuel technologies. Before initiating a fuel irradiation experiment, the experimental proposal must be approved to ensure that the test fuel strings put into the NRU loops meet safety margin requirements in critical heat flux (CHF). The fuel strings in irradiation experiments can have varying degrees of fuel enrichment and burnup, resulting in large variations in radial heat flux distribution (RFD). CHF experiments performed in Freon flow at CRL for full-scale bundle strings with a number of RFDs showed a strong effect of RFD on CHF. A prediction method was derived based on experimental CHF data to account for the RFD effect on CHF. It provides good CHF predictions for various RFDs as compared to the data. However, the range of the tested RFDs in the CHF experiments is not as wide as that required in the fuel irradiation experiments. The applicability of the prediction method needs to be examined for the RFDs beyond the range tested by the CHF experiments. The Canadian subchannel code ASSERT-PV was employed to simulate the CHF behavior for RFDs that would be encountered in fuel irradiation experiments. The CHF predictions using the derived method were compared with the ASSERT simulations. It was observed that the CHF predictions agree well with the ASSERT simulations in terms of CHF, confirming the applicability of the prediction method in fuel irradiation experiments. (author)

  17. Influence of the Particle Length of Carbon Nanotube for Pool Boiling Critical Heat Flux Enhancement of Nanofluids

    International Nuclear Information System (INIS)

    Park, Sung Seek; Kim, Yong Hwan; Kim, Nam Jin

    2013-01-01

    The results of this experiment were that the CHF of the two nanofluids increased along with the volumetric fraction until 0.001 vol%, and the two types of nanofluids are the highest CHF at 0.001 vol%. Also, the results show clearly that the rate of CHF increase of the CM-100 MWCNT nanofluid with longer-length nanoparticles is higher than that of the CM-95 MWNCT nanofluid. These results indicate that the length of carbon nanotube influences the pool boiling CHF of carbon nanotube nanofluid and that long-length MWCNT, as above-noted, offers a superior effect in this regard. Boiling heat transfer is used in a variety of industrial processes and applications, such as refrigeration, power generation, heat exchangers, cooling of high-power electronics components and cooling of nuclear reactors. The critical heat flux (CHF) phenomenon is the thermal limit during a boiling heat transfer phase change; at the CHF point the heat transfer is maximised, followed by a drastic degradation after the CHF point. The consequence is a substantial increase in wall temperature which may result in physical failure phenomenon of heat transfer systems. Therefore, the CHF is important being considered in the cooling device design, such as nuclear reactor and nuclear fuels, steam generators, high-density electronic component, etc. And, CHF enhancement is essential for safety of heat transfer system. Recently, CHF reported increased when applied to the nanofluids, with its high (higher-than-base-fluid) thermal characteristic in the nuclear power plant system. Therefore, in this study, carried out the pool boiling CHF experiments by the particle length using carbon nanotube nanofluids, and the results are compared and analyzed for the CHF enhancement. The pool boiling CHF of experiments of carbon nanotube nanofluids carried out by the length of particles and the various concentrations

  18. Investigation of Critical Heat Flux in Reduced Gravity Using Photomicrographic Techniques

    Science.gov (United States)

    Mudawar, Issam; Zhang, Hui

    2003-01-01

    Experiments were performed to examine the effects of body force on flow boiling critical heat flux (CHF). FC-72 was boiled along one wall of a transparent rectangular flow channel that permitted photographic study of the vapor-liquid interface just prior to CHF. High-speed video imaging techniques were used to identify dominant CHF mechanisms corresponding to different flow orientations and liquid velocities. Six different CHF regimes were identified: Wavy Vapor Layer, Pool Boiling, Stratification, Vapor Counterflow, Vapor Stagnation, and Separated Concurrent Vapor Flow. CHF showed significant sensitivity to orientation for flow velocities below 0.2 m/s, where extremely low CHF values where measured, especially with downward-facing heated wall and downflow orientations. High flow velocities dampened the effects of orientation considerably. The CHF data were used to assess the suitability of previous CHF models and correlations. It is shown the Interfacial Lift-off Model is very effective at predicting CHF for high velocities at all orientations. The flooding limit, on the other hand, is useful at estimating CHF at low velocities and for downflow orientations. A new method consisting of three dimensionless criteria is developed for determining the minimum flow velocity required to overcome body force effects on near-saturated flow boiling CHF. Vertical upflow boiling experiments were performed in pursuit of identifying the trigger mechanism for subcooled flow boiling CHF. While virtually all prior studies on flow boiling CHF concern the prediction or measurement of conditions that lead to CHF, this study was focused on events that take place during the CHF transient. High-speed video imaging and photomicrographic techniques were used to record the transient behavior of interfacial features from the last steady-state power level before CHF until the moment of power cut-off following CHF. The video records show the development of a wavy vapor layer which propagates

  19. Effect of angiotensin II on voltage-gated sodium currents in aortic baroreceptor neurons and arterial baroreflex sensitivity in heart failure rats.

    Science.gov (United States)

    Zhang, Dongze; Liu, Jinxu; Zheng, Hong; Tu, Huiyin; Muelleman, Robert L; Li, Yu-Long

    2015-07-01

    Impairment of arterial baroreflex sensitivity is associated with mortality in patients with chronic heart failure (CHF). Elevation of plasma angiotension II (Ang II) contributes to arterial baroreflex dysfunction in CHF. A reduced number of voltage-gated sodium (Nav) channels in aortic baroreceptor neurons are involved in CHF-blunted arterial baroreflex. In this study, we investigated acute effect of Ang II on Nav currents in the aortic baroreceptor neuron and on arterial baroreflex in sham and coronary artery ligation-induced CHF rats. Using Ang II I radioimmunoassay, real-time reverse transcription-PCR and western blot, we found that Ang II levels, and mRNA and protein expression of angiotension II type 1 receptor in nodose ganglia from CHF rats were higher than that from sham rats. Local microinjection of Ang II (0.2  nmol) into the nodose ganglia decreased the arterial baroreflex sensitivity in sham rats, whereas losartan (1  nmol, an angiotension II type 1 receptor antagonist) improved the arterial baroreflex sensitivity in CHF rats. Data from patch-clamp recording showed that Ang II (100  nmol/l) acutely inhibited Nav currents in the aortic baroreceptor neurons from sham and CHF rats. In particular, inhibitory effect of Ang II on Nav currents in the aortic baroreceptor neurons was larger in CHF rats than that in sham rats. Losartan (1  μmol/l) totally abolished the inhibitory effect of Ang II on Nav currents in sham and CHF aortic baroreceptor neurons. These results suggest that elevation of endogenous Ang II in the nodose ganglia contributes to impairment of the arterial baroreflex function in CHF rats through inhibiting Nav channels.

  20. Estimating the snowfall limit in alpine and pre-alpine valleys: A local evaluation of operational approaches

    Science.gov (United States)

    Fehlmann, Michael; Gascón, Estíbaliz; Rohrer, Mario; Schwarb, Manfred; Stoffel, Markus

    2018-05-01

    The snowfall limit has important implications for different hazardous processes associated with prolonged or heavy precipitation such as flash floods, rain-on-snow events and freezing precipitation. To increase preparedness and to reduce risk in such situations, early warning systems are frequently used to monitor and predict precipitation events at different temporal and spatial scales. However, in alpine and pre-alpine valleys, the estimation of the snowfall limit remains rather challenging. In this study, we characterize uncertainties related to snowfall limit for different lead times based on local measurements of a vertically pointing micro rain radar (MRR) and a disdrometer in the Zulg valley, Switzerland. Regarding the monitoring, we show that the interpolation of surface temperatures tends to overestimate the altitude of the snowfall limit and can thus lead to highly uncertain estimates of liquid precipitation in the catchment. This bias is much smaller in the Integrated Nowcasting through Comprehensive Analysis (INCA) system, which integrates surface station and remotely sensed data as well as outputs of a numerical weather prediction model. To reduce systematic error, we perform a bias correction based on local MRR measurements and thereby demonstrate the added value of such measurements for the estimation of liquid precipitation in the catchment. Regarding the nowcasting, we show that the INCA system provides good estimates up to 6 h ahead and is thus considered promising for operational hydrological applications. Finally, we explore the medium-range forecasting of precipitation type, especially with respect to rain-on-snow events. We show for a selected case study that the probability for a certain precipitation type in an ensemble-based forecast is more persistent than the respective type in the high-resolution forecast (HRES) of the European Centre for Medium Range Weather Forecasts Integrated Forecasting System (ECMWF IFS). In this case study, the

  1. Influence of heart failure on resting lung volumes in patients with COPD

    Science.gov (United States)

    de Souza, Aline Soares; Sperandio, Priscila Abreu; Mazzuco, Adriana; Alencar, Maria Clara; Arbex, Flávio Ferlin; de Oliveira, Mayron Faria; O'Donnell, Denis Eunan; Neder, José Alberto

    2016-01-01

    ABSTRACT Objective: To evaluate the influence of chronic heart failure (CHF) on resting lung volumes in patients with COPD, i.e., inspiratory fraction-inspiratory capacity (IC)/TLC-and relative inspiratory reserve-[1 − (end-inspiratory lung volume/TLC)]. Methods: This was a prospective study involving 56 patients with COPD-24 (23 males/1 female) with COPD+CHF and 32 (28 males/4 females) with COPD only-who, after careful clinical stabilization, underwent spirometry (with forced and slow maneuvers) and whole-body plethysmography. Results: Although FEV1, as well as the FEV1/FVC and FEV1/slow vital capacity ratios, were higher in the COPD+CHF group than in the COPD group, all major "static" volumes-RV, functional residual capacity (FRC), and TLC-were lower in the former group (p < 0.05). There was a greater reduction in FRC than in RV, resulting in the expiratory reserve volume being lower in the COPD+CHF group than in the COPD group. There were relatively proportional reductions in FRC and TLC in the two groups; therefore, IC was also comparable. Consequently, the inspiratory fraction was higher in the COPD+CHF group than in the COPD group (0.42 ± 0.10 vs. 0.36 ± 0.10; p < 0.05). Although the tidal volume/IC ratio was higher in the COPD+CHF group, the relative inspiratory reserve was remarkably similar between the two groups (0.35 ± 0.09 vs. 0.44 ± 0.14; p < 0.05). Conclusions: Despite the restrictive effects of CHF, patients with COPD+CHF have relatively higher inspiratory limits (a greater inspiratory fraction). However, those patients use only a part of those limits, probably in order to avoid critical reductions in inspiratory reserve and increases in elastic recoil. PMID:27832235

  2. Health-related quality of life in a multicenter randomized controlled comparison of telephonic disease management and automated home monitoring in patients recently hospitalized with heart failure: SPAN-CHF II trial.

    Science.gov (United States)

    Konstam, Varda; Gregory, Douglas; Chen, Jie; Weintraub, Andrew; Patel, Ayan; Levine, Daniel; Venesy, David; Perry, Kathleen; Delano, Christine; Konstam, Marvin A

    2011-02-01

    Although disease management programs have been shown to provide a number of clinical benefits to patients with heart failure (HF), the incremental impact of an automated home monitoring (AHM) system on health-related quality of life (HRQL) is unknown. We performed a prospective randomized investigation, examining the additive value of AHM to a previously described nurse-directed HF disease management program (SPAN-CHF), with attention to HRQL, in patients with a recent history of decompensated HF. A total of 188 patients were randomized to receive the SPAN-CHF intervention for 90 days, either with (AHM group) or without (NAHM, standard-care group) AHM, with a 1:1 randomization ratio after HF-related hospitalization. HRQL, measured by the Minnesota Living With Heart Failure Questionnaire (MLHFQ) (Physical, Emotional, and Total scores on MLHFQ) was assessed at 3 time points: baseline, 45 days, and 90 days. Although both treatments (AHM and NAHM) improved HRQL at 45 and 90 days compared with baseline with respect to Physical, Emotional, and Total domain scales, no significant difference emerged between AHM and NAHM groups. AHM and NAHM treatments demonstrated improved HRQL scores at 45 and 90 days after baseline assessment. When comparing 2 state-of the-art disease management programs regarding HRQL outcomes, our results did not support the added value of AHM. Copyright © 2011. Published by Elsevier Inc.

  3. Critical heat flux predictions for the Sandia Annular Core Research Reactor

    International Nuclear Information System (INIS)

    Rao, D.V.; El-Genk, M.S.

    1994-08-01

    This study provides best estimate predictions of the Critical Heat Flux (CHF) and the Critical Heat Flux Ratio (CHFR) to support the proposed upgrade of the Annual Core Research Reactor (ACRR) at Sandia National Laboratories (SNL) from its present value of 2 MWt to 4 MWt. These predictions are based on the University of New Mexico (UNM) - CHF correlation, originally developed for uniformly heated vertical annuli. The UNM-CHF correlation is applicable to low-flow and low-pressure conditions, which are typical of those in the ACRR. The three hypotheses that examined the effect of the nonuniform axial heat flux distribution in the ACRR core are (1) the local conditions hypotheses, (2) the total power hypothesis, and (3) the global conditions hypothesis. These hypotheses, in conjunction with the UNM-CHF correlation, are used to estimate the CHF and CHFR in the ACRR. Because the total power hypothesis predictions of power per rod at CHF are approximately 15%-20% lower than those corresponding to saturation exit conditions, it can be concluded that the total power hypothesis considerably underestimates the CHF for nonuniformly heated geometries. This conclusion is in agreement with previous experimental results. The global conditions hypothesis, which is more conservative and more accurate of the other two, provides the most reliable predictions of CHF/CHFR for the ACRR. The global conditions hypothesis predictions of CHFR varied between 2.1 and 3.9, with the higher value corresponding to the lower water inlet temperature of 20 degrees C

  4. 76 FR 45254 - Report and Recommendations on the Usefulness and Limitations of the Murine Local Lymph Node Assay...

    Science.gov (United States)

    2011-07-28

    ... includes recommendations on the usefulness and limitations of the local lymph node assay (LLNA) for... testing using the LLNA can be used to further categorize some chemicals and products as strong skin... In 1999, ICCVAM evaluated the validation status of the LLNA as a stand-alone alternative test method...

  5. Dynamic Response of Plant Chlorophyll Fluorescence to Light, Water and Nutrient Availability

    Science.gov (United States)

    Cendrero Mateo, M. D. P.; Moran, S. M.; Porcar-Castell, A.; Carmo-Silva, A. E.; Papuga, S. A.; Matveeva, M.; Wieneke, S.; Rascher, U.

    2014-12-01

    Photosynthesis is the most important exchange process of CO2 between the atmosphere and the land-surface. Spatial and temporal patterns of photosynthesis depend on dynamic plant-specific adaptation strategies to highly variable environmental conditions e.g. light, water, and nutrient availability. Chlorophyll fluorescence (ChF) has been proposed as a direct indicator of photosynthesis, and several studies have demonstrated its relationship with vegetation functioning at leaf and canopy level. In this study, two overarching questions about ChF were addressed: Q1) How water, nutrient and ambient light conditions determine the relationships between photosynthesis and ChF? Which is the optimum irradiance level for detecting water and nutrient deficit conditions with ChF?; Q2) What is the seasonal relationship between photosynthesis and ChF when nitrogen is the limiting factor? The results of this study indicated that when the differences between treatments (water or nitrogen) drive the relationship between photosynthesis and ChF, ChF has a direct relationship with photosynthesis. This study demonstrates that the light level at which plants were grown was optimum for detecting water and nutrient deficit with ChF. Further, the seasonal relation between photosynthesis and ChF with nitrogen stress was not a simple linear function due to the complex physiological relation between photosynthesis and ChF. Our study showed that at times in the season when nitrogen was sufficient and photosynthesis was highest, ChF decreased because these two processes compete for available energy. The results from this study demonstrated that ChF is a reliable indicator of plant stress and has great potential as a tool for better understand where, when, and how CO2 is exchanged between the land and atmosphere.

  6. Sympathetic reflex control of skeletal muscle blood flow in patients with congestive heart failure: evidence for beta-adrenergic circulatory control

    International Nuclear Information System (INIS)

    Kassis, E.; Jacobsen, T.N.; Mogensen, F.; Amtorp, O.

    1986-01-01

    Mechanisms controlling forearm muscle vascular resistance (FMVR) during postural changes were investigated in seven patients with severe congestive heart failure (CHF) and in seven control subjects with unimpaired left ventricular function. Relative brachioradial muscle blood flow was determined by the local 133 Xe-washout technique. Unloading of baroreceptors with use of 45 degree upright tilt was comparably obtained in the patients with CHF and control subjects. Control subjects had substantially increased FMVR and heart rate to maintain arterial pressure whereas patients with CHF had decreased FMVR by 51 +/- 11% and had no increase in heart rate despite a fall in arterial pressure during upright tilt. The autoregulatory and local vasoconstrictor reflex responsiveness during postural changes in forearm vascular pressures were intact in both groups. In the patients with CHF, the left axillary nerve plexus was blocked by local anesthesia. No alterations in forearm vascular pressures were observed. This blockade preserved the local regulation of FMVR but reversed the vasodilator response to upright tilt as FMVR increased by 30 +/- 7% (p less than .02). Blockade of central neural impulses to this limb combined with brachial arterial infusions of phentolamine completely abolished the humoral vasoconstriction in the tilted position. Infusions of propranolol to the contralateral brachial artery that did not affect baseline values of heart rate, arterial pressure, or the local reflex regulation of FMVR reversed the abnormal vasodilator response to upright tilt as FMVR increased by 42 +/- 12% (p less than .02). Despite augmented baseline values, forearm venous but not arterial plasma levels of epinephrine increased in the tilted position, as did arteri rather than venous plasma concentrations of norepinephrine in these patients

  7. Perceived factors limiting rice production in Pategi Local ...

    African Journals Online (AJOL)

    user

    perceived limiting factors in rice production include lack of rice processing ... This production increase has not been enough to meet the consumption demand of ... of Kwara State, Nigeria seeks to determine some of the factors limiting rice ...

  8. Local zoning ordinances -- how they limit or restrict mining

    International Nuclear Information System (INIS)

    Ingram, H.

    1991-01-01

    Local regulation of mining by zoning has taken place for a long period of time. The delegation to local municipalities of land use planning, zoning and nuisance abatement authority which may affect mining by state governments has been consistently upheld by appellate courts as valid exercises of the police power. Recently, mine operators and mineral owners have been confronted by efforts of local municipalities, often initiated by anti-mining citizen's groups, to impose more stringent restrictions on mining activities within their borders. In some situations, existing ordinances are being enforced for the first time, in others, new ordinances have been adopted without much awareness or involvement by the public. Enforced to the letter, these ordinances can sterilize large blocks of mineable reserves open-quotes operatingclose quotes or performance standards in excess of SMCRA-based regulatory requirements. It is fair to say that investigation of the potential impacts of local zoning and other related ordinances is essential in the planning for the expansion of existing operations or for new operations. There may be new rules in the game. This paper identifies problem areas in typical open-quotes modernclose quotes ordinances and discusses legal and constitutional issues which may arise by their enforcement in coal producing regions

  9. Localization of metastable atom beams with optical standing waves: nanolithography at the heisenberg limit

    Science.gov (United States)

    Johnson; Thywissen; Dekker; Berggren; Chu; Younkin; Prentiss

    1998-06-05

    The spatially dependent de-excitation of a beam of metastable argon atoms, traveling through an optical standing wave, produced a periodic array of localized metastable atoms with position and momentum spreads approaching the limit stated by the Heisenberg uncertainty principle. Silicon and silicon dioxide substrates placed in the path of the atom beam were patterned by the metastable atoms. The de-excitation of metastable atoms upon collision with the surface promoted the deposition of a carbonaceous film from a vapor-phase hydrocarbon precursor. The resulting patterns were imaged both directly and after chemical etching. Thus, quantum-mechanical steady-state atom distributions can be used for sub-0.1-micrometer lithography.

  10. Downregulation of aquaporin-1 in alveolar microvessels in lungs adapted to chronic heart failure

    DEFF Research Database (Denmark)

    Müllertz, Katrine M; Strøm, Claes; Trautner, Simon

    2011-01-01

    The threshold pressure for lung edema formation is increased in severe chronic heart failure (CHF) due to reduced microvascular permeability. The water channel aquaporin-1 (AQP1) is present in the pulmonary microvascular endothelium, and a number of studies suggest the importance of AQP1 as a mol......The threshold pressure for lung edema formation is increased in severe chronic heart failure (CHF) due to reduced microvascular permeability. The water channel aquaporin-1 (AQP1) is present in the pulmonary microvascular endothelium, and a number of studies suggest the importance of AQP1...... as a molecular determinant of pulmonary microvascular water transport. The present study examined the abundance and localization of AQP1 in lungs from rats with CHF. We used two different models of CHF: ligation of the left anterior descending coronary artery (LAD ligation) and aorta-banding (AB). Sham......-operated rats served as controls. Echocardiographic verification of left ventricular dysfunction, enhanced left ventricular end-diastolic pressure, and right ventricular hypertrophy confirmed the presence of CHF. Western blotting of whole-lung homogenates revealed significant downregulation of AQP1 in LAD...

  11. Offers for our members

    CERN Multimedia

    Staff Association

    2013-01-01

    Summer is here, enjoy our offers for the aquatic parcs! Walibi : Tickets "Zone terrestre": 21 € instead of 26 €. Access to Aqualibi: 5 € instead of 8 € on presentation of your SA member ticket. Free for children (3-11 years old) before 12 h 00. Free for children under 3, with limited access to the attractions. Car park free. * * * * * Aquaparc : Day ticket: – Children: 30 CHF instead of 39 CHF – Adults : 36 CHF instead of 49 CHF Bonus! Free for children under 5.

  12. Offers for our members

    CERN Multimedia

    Staff Association

    2015-01-01

    Summer is here, enjoy our offers for the aquatic parcs! Walibi : Tickets "Zone terrestre": 21,50 € instead of 27 €. Access to Aqualibi: 5 € instead of 6 € on presentation of your SA member ticket. Free for children (3-11 years old) before 12:00 p.m. Free for children under 3, with limited access to the attractions. Car park free. * * * * * Aquaparc : Day ticket: – Children: 33 CHF instead of 39 CHF – Adults : 33 CHF instead of 49 CHF Bonus! Free for children under 5.

  13. Offers for our members

    CERN Multimedia

    Staff Association

    2016-01-01

    Summer is here, enjoy our offers for the aquatic parcs! Walibi : Tickets "Zone terrestre": 23 € instead of 29 €. Access to Aqualibi: 5 € instead of 6 € on presentation of your SA member ticket. Free for children (3-11 years old) before 12:00 p.m. Free for children under 3, with limited access to the attractions. Car park free. * * * * * Aquaparc : Day ticket: – Children: 33 CHF instead of 39 CHF – Adults : 33 CHF instead of 49 CHF Bonus! Free for children under 5.

  14. Offers for our members

    CERN Multimedia

    Staff Association

    2017-01-01

    Summer is here, enjoy our offers for the water parks! Walibi: Tickets "Zone terrestre": 24 € instead of 30 €. Access to Aqualibi: 5 € instead of 6 € on presentation of your ticket purchased at the Staff Association. Bonus! Free for children under 100 cm, with limited access to the attractions. Free car park. *  *  *  *  *  *  *  * Aquaparc: Day ticket: -  Children: 33 CHF instead of 39 CHF -  Adults : 33 CHF instead of 49 CHF Bonus! Free for children under 5 years old.

  15. Critical heat flux for free convection boiling in thin rectangular channels

    International Nuclear Information System (INIS)

    Cheng, Lap Y.; Tichler, P.R.

    1991-01-01

    A review of the experimental data on free convection boiling critical heat flux (CHF) in vertical rectangular channels reveals three mechanisms of burnout. They are the pool boiling limit, the circulation limit, and the flooding limit associated with a transition in flow regime from churn to annular flow. The dominance of a particular mechanism depends on the dimensions of the channel. Analytical models were developed for each free convection boiling limit. Limited agreement with data is observed. A CHF correlation, which is valid for a wide range of gap sizes, was constructed from the CHFs calculated according to the three mechanisms of burnout. 17 refs., 7 figs

  16. Subclinical Hypothyroidism and Survival: The Effects of Heart Failure and Race

    Science.gov (United States)

    Curhan, Gary C.; Alexander, Erik K.; Bhan, Ishir; Brunelli, Steven M.

    2013-01-01

    Context: Studies examining the association between subclinical hypothyroidism and mortality have yielded conflicting results. Emerging data suggest these associations may depend upon underlying congestive heart failure (CHF) and/or race, but this has not been empirically determined. Objective: Our objective was to examine the association between subclinical hypothyroidism and hypothyroidism overall with mortality according to pre-existing CHF and race. Design and Participants: We examined the associations of subclinical hypothyroidism (TSH higher than assay upper limit of normal; total T4 within reference) and hypothyroidism overall (TSH higher than assay upper limit of normal; total T4 below lower limit of normal or within reference) with all-cause mortality among Third National Health and Nutrition Examination Survey participants stratified by CHF and race using multivariable Cox models. To confirm whether differences between strata were statistically significant, we tested for interaction on the basis of CHF (separately) and race by likelihood ratio testing. Results: There were 14 130 (95.0%) euthyroid controls and 749 (5.0%) participants with hypothyroidism, 691 (4.6%) of whom had subclinical disease. Subclinical hypothyroidism vs euthyroidism was associated with greater mortality in those with CHF but not in those without: adjusted hazard ratios (HRs) (95% confidence intervals [CIs]) = 1.44 (1.01–2.06) and 0.97 (0.85–1.11), respectively (P interaction = .03). Similar findings were observed for hypothyroidism overall. Hypothyroidism overall vs euthyroidism was associated with greater mortality in Black participants (HR = 1.44 [95% CI = 1.03–2.03]) but not in non-Blacks (HR = 0.95 [95% CI = 0.83–1.08]) (P interaction = .03). Conclusion: Among participants with CHF, subclinical hypothyroidism and hypothyroidism overall are associated with greater death risk. Additional studies are needed to confirm findings and explore possible mechanisms for the

  17. Assessment of ASSERT-PV for prediction of critical heat flux in CANDU bundles

    International Nuclear Information System (INIS)

    Rao, Y.F.; Cheng, Z.; Waddington, G.M.

    2014-01-01

    Highlights: • Assessment of the new Canadian subchannel code ASSERT-PV 3.2 for CHF prediction. • CANDU 28-, 37- and 43-element bundle CHF experiments. • Prediction improvement of ASSERT-PV 3.2 over previous code versions. • Sensitivity study of the effect of CHF model options. - Abstract: Atomic Energy of Canada Limited (AECL) has developed the subchannel thermalhydraulics code ASSERT-PV for the Canadian nuclear industry. The recently released ASSERT-PV 3.2 provides enhanced models for improved predictions of flow distribution, critical heat flux (CHF), and post-dryout (PDO) heat transfer in horizontal CANDU fuel channels. This paper presents results of an assessment of the new code version against five full-scale CANDU bundle experiments conducted in 1990s and in 2009 by Stern Laboratories (SL), using 28-, 37- and 43-element (CANFLEX) bundles. A total of 15 CHF test series with varying pressure-tube creep and/or bearing-pad height were analyzed. The SL experiments encompassed the bundle geometries and range of flow conditions for the intended ASSERT-PV applications for CANDU reactors. Code predictions of channel dryout power and axial and radial CHF locations were compared against measurements from the SL CHF tests to quantify the code prediction accuracy. The prediction statistics using the recommended model set of ASSERT-PV 3.2 were compared to those from previous code versions. Furthermore, the sensitivity studies evaluated the contribution of each CHF model change or enhancement to the improvement in CHF prediction. Overall, the assessment demonstrated significant improvement in prediction of channel dryout power and axial and radial CHF locations in horizontal fuel channels containing CANDU bundles

  18. A numerical study of the influence of the void drift model on the predictions of the assert subchannel code

    International Nuclear Information System (INIS)

    Tye, P.; Teyssedou, A.; Troche, N.; Kiteley, J.

    1996-01-01

    One of the factors which is important in order to ensure the continued safe operation of nuclear reactors is the ability to accurately predict the 'Critical Heat Flux' (CHF) throughout the rod bundles in the fuel channel. One method currently used by the Canadian nuclear industry to predict the CHF in the fuel bundles of CANDU reactors is to use the ASSERT subchannel code to predict the local thermal-hydraulic conditions prevailing at each axial location in each subchannel in conjunction with appropriate correlations or the CHF look-up table. The successful application of the above methods depends greatly on the ability of ASSERT to accurately predict the local flow conditions throughout the fuel channel. In this paper, full range qualitative verification tests, using the ASSERT subchannel code are presented which show the influence of the void drift model on the predictions of the local subchannel quality. For typical cases using a 7 rod subset of a full 37 element rod bundle taken from the ASSERT validation database, it will be shown that the void drift term can significantly influence the calculated distribution of the quality in the rod bundle. In order to isolate, as much as possible, the influence of the void drift term this first numerical study is carried out with the rod bundle oriented both vertically and horizontally. Subsequently, additional numerical experiments will be presented which show the influence that the void drift model has on the predicted CHF locations. (author)

  19. Jumps of the local magnetic field near CICC during external magnetic field ramp and their connection with the ramp rate limitation

    International Nuclear Information System (INIS)

    Vysotsky, V.S.; Takayasu, M.; Minervini, J.V.

    1997-01-01

    A new method has been developed to study Ramp Rate Limitation (RRL) phenomena. Samples of ITER-type cable-in-conduit (CICC) subcable were instrumented with local field sensors such as Hall probes and pick-up coils and then subjected to rapidly changing external magnetic field. The authors found that during fast field sweeps some discontinuous changes, or jumps occur in the local field. They believe that these jumps indicate a fast current redistribution processes inside CICC. Detailed information about local magnetic field jumps during changing field is presented. Possible origin of the jumps and their connection with RRL are discussed

  20. Coherent density fluctuation model as a local-scale limit to ATDHF

    International Nuclear Information System (INIS)

    Antonov, A.N.; Petkov, I.Zh.; Stoitsov, M.V.

    1985-04-01

    The local scale transformation method is used for the construction of an Adiabatic Time-Dependent Hartree-Fock approach in terms of the local density distribution. The coherent density fluctuation relations of the model result in a particular case when the ''flucton'' local density is connected with the plane wave determinant model function be means of the local-scale coordinate transformation. The collective potential energy expression is obtained and its relation to the nuclear matter energy saturation curve is revealed. (author)

  1. Critical heat-flux experiments under low-flow conditions in a vertical annulus

    International Nuclear Information System (INIS)

    Mishima, K.; Ishii, M.

    1982-03-01

    An experimental study was performed on critical heat flux (CHF) at low flow conditions for low pressure steam-water upward flow in an annulus. The test section was transparent, therefore, visual observations of dryout as well as various instrumentations were made. The data indicated that a premature CHF occurred due to flow regime transition from churn-turbulent to annular flow. It is shown that the critical heat flux observed in the experiment is essentially similar to a flooding-limited burnout and the critical heat flux can be well reproduced by a nondimensional correlation derived from the previously obtained criterion for flow regime transition. The observed CHF values are much smaller than the standard high quality CHF criteria at low flow, corresponding to the annular flow film dryout. This result is very significant, because the coolability of a heater surface at low flow rates can be drastically reduced by the occurrence of this mode of CHF

  2. Adaptation of a Freon-12 critical heat flux correlation to correlate water data from uniformly heated vertical tubes. Part I: Based on critical heat flux data for water at pressures of 3 to 14 MPa

    International Nuclear Information System (INIS)

    Green, W.J.

    1981-12-01

    Comparisons have been made between experimental critical heat flux (CHF) data for upflow of water in uniformly heated vertical tubes and values calculated from an empirical CHF correlation developed from Freon-12 data. When this correlation is re-evaluated to account for vapour Prandtl number effects, very good agreement is obtained between experimental data and calculated values over a wide range of coolant conditions. Comparison of values calculated from the revised correlation with 2063 sets of CHF data obtained from experiments with water in vertical, uniformly heated tubes shows a mean ratio of the calculated to experimental CHF of 0.82 and an r.m.s. error of 5.8 per cent for the following coolant conditions: (1) local pressure of 3.4 to 12 MPa; (2) mass flux greater than approx. 300 kg s -1 m -2 , and (3) thermal equilibrium value of exit quality greater than 0.1

  3. Development of an artificial neural network to predict critical heat flux based on the look up tables

    Energy Technology Data Exchange (ETDEWEB)

    Terng, Nilton; Carajilescov, Pedro, E-mail: Nil.terng@gmail.com, E-mail: pedro.carajilescov@ufabc.edu.br [Universidade Federal do ABC (UFABC), Santo Andre, SP (Brazil). Centro de Engenharia, Modelagem e Ciencias Sociais

    2015-07-01

    The critical heat flux (CHF) is one of the principal thermal hydraulic limits of PWR type nuclear reactors. The present work consists in the development of an artificial neural network (ANN) to estimate the CHF, based on Look Up Table CHF data, published by Groeneveld (2006). Three parameters were considered in the development of the ANN: the pressure in the range of 1 to 21 MPa, the mass flux in the range of 50 to 8000 kg m{sup -2} s{sup -1} and the thermodynamic quality in the range of - 0.5 to 0.9. The ANN model considered was a multi feed forward net, which have two feedforward ANN. The first one, called main neural network, is used to calculate the result of CHF, and the second, denominated spacenet, is responsible to modify the main neural network according to the input. Comparing the ANN predictions with the data of the Look Up Table, it was observed an average of the ratio of 0.993 and a root mean square error of 13.3%. With the developed ANN, a parametric study of CHF was performed to observe the influence of each parameter in the CHF. It was possible to note that the CHF decreases with the increase of pressure and thermodynamic quality, while CHF increases with the mass flow rate, as expected. However, some erratic trends were also observed which can be attributed to either unknown aspect of the CHF phenomenon or uncertainties in the data. (author)

  4. Improvement of critical heat flux correlation for research reactors using plate-type fuel

    International Nuclear Information System (INIS)

    Kaminaga, Masanori; Yamamoto, Kazuyoshi; Sudo, Yukio

    1998-01-01

    In research reactors, plate-type fuel elements are generally adopted so as to produce high power densities and are cooled by a downward flow. A core flow reversal from a steady-state forced downward flow to an upward flow due to natural convection should occur during operational transients such as Loss of the primary coolant flow'. Therefore, in the thermal hydraulic design of research reactors, critical heat flux (CHF) under a counter-current flow limitation (CCFL) or a flooding condition are important to determine safety margins of fuel against CHF during a core flow reversal. The authors have proposed a CHF correlation scheme for the thermal hydraulic design of research reactors, based on CHF experiments for both upward and downward flows including CCFL condition. When the CHF correlation scheme was proposed, a subcooling effect for CHF correlation under CCFL condition had not been considered because of a conservative evaluation and a lack of enough CHF data to determine the subcooling effect on CHF. A too conservative evaluation is not appropriate for the design of research reactors because of construction costs etc. Also, conservativeness of the design must be determined precisely. In this study, therefore, the subcooling effect on CHF under the CCFL conditions in vertical rectangular channels heated from both sides were investigated quantitatively based on CHF experimental results obtained under uniform and non-uniform heat flux conditions. As a result, it was made clear that CHF in this region increase linearly with an increase of the channel inlet subcooling and a new CHF correlation including the effect of channel inlet subcooling was proposed. The new correlation could be adopted under the conditions of the atmospheric pressure, the inlet subcooling less than 78K, the channel gap size between 2.25 to 5.0mm, the axial peaking factor between 1.0 to 1.6 and L/De between 71 to 174 which were the ranges investigated in this study. (author)

  5. Critical heat flux experimental facility using Freon R-134a fluid

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Sung Deok; Chung, C. H.; Kim, B. D. [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2000-02-01

    A CHF experimental loop using Freon R-134a as a working fluid has been designed and built to facilitate modeling of high pressure/temperature water CHF experiments. This loop was designed to operate at 4 MPa, 100 deg C with the maximum flow rate of 2.5 kg/s. The detailed technical specification and operating procedure of the loop are described together with comments on the performance and limitations of the loop. A series of CHF experiment was carried out in a vertical round tube and the fluid-to-fluid modeling techniques are applied for it's validity for the high temperature/pressure reactor conditions. The experimental range covered all the application ranges of CHF correlations developed for both PWR and PHWR. 28 refs., 9 figs., 5 tabs. (Author)

  6. Spatial resolution limits for the localization of noise sources using direct sound mapping

    DEFF Research Database (Denmark)

    Comesana, D. Fernandez; Holland, K. R.; Fernandez Grande, Efren

    2016-01-01

    the relationship between spatial resolution, noise level and geometry. The proposed expressions are validated via simulations and experiments. It is shown that particle velocity mapping yields better results for identifying closely spaced sound sources than sound pressure or sound intensity, especially...... extensively been used for many years to locate sound sources. However, it is not yet well defined when two sources should be regarded as resolved by means of direct sound mapping. This paper derives the limits of the direct representation of sound pressure, particle velocity and sound intensity by exploring......One of the main challenges arising from noise and vibration problems is how to identify the areas of a device, machine or structure that produce significant acoustic excitation, i.e. the localization of main noise sources. The direct visualization of sound, in particular sound intensity, has...

  7. The film boiling look-up table: an improvement in predicting post-chf temperatures

    International Nuclear Information System (INIS)

    Groeneveld, D.C.; Leung, L.K.H.; Vasic, A.Z.; Guo, Y.J.; El Nakla, M.; Cheng, S.C.

    2002-01-01

    During the past 50 years more than 60 film boiling prediction methods have been proposed (Groeneveld and Leung, 2000). These prediction methods generally are applicable over limited ranges of flow conditions and do not provide reasonable predictions when extrapolated well outside the range of their respective database. Leung et al. (1996, 1997) and Kirillov et al. (1996) have proposed the use of a film-boiling look-up table as an alternative to the many models, equations and correlations for the inverted annular film boiling (IAFB) and the dispersed flow film-boiling (DFFB) regime. The film-boiling look-up table is a logical follow-up to the development of the successful CHF look-up table (Groeneveld et al., 1996). It is basically a normalized data bank of heat-transfer coefficients for discrete values of pressure, mass flux, quality and heat flux or surface-temperature. The look-up table proposed by Leung et al. (1996, 1997), and referred to as PDO-LW-96, was based on 14,687 data and predicted the surface temperature with an average error of 1.2% and an rms error of 6.73%. The heat-transfer coefficient was predicted with an average error of -4.93% and an rms error of 16.87%. Leung et al. clearly showed that the look-up table approach, as a general predictive tool for film-boiling heat transfer, was superior to the correlation or model approach. Error statistics were not provided for the look-up table proposed by Kirillov et al. (1996). This paper reviews the look-up table approach and describes improvements to the derivation of the film-boiling look-up table. These improvements include: (i) a larger data base, (ii) a wider range of thermodynamic qualities, (iii) use of the wall temperature instead of the heat flux as an independent parameter, (iv) employment of fully-developed film-boiling data only for the derivation of the look-up table, (v) a finer subdivision and thus more table entries, (vi) smoother table, and (vii) use of the best of five prediction methods

  8. Thermal-hydraulic analysis of PWR core including intermediate flow mixers with the THYC code

    International Nuclear Information System (INIS)

    Mur, J.; Meignin, J.C.

    1997-07-01

    Departure from nucleate boiling (DNB) is one of the major limiting factors of pressurized water reactors (PWRs). Safety requires that occurrence of DNB should be precluded under normal or incidental operating conditions. The thermal-hydraulic THYC code developed by EDF is described. The code is devoted to heat and mass transfer in nuclear components. Critical Heat Flux (CHF) is predicted from local thermal-hydraulic parameters such as pressure, mass flow rate, and quality. A three stage methodology to evaluate thermal margins in order to perform standard core design is described. (K.A.)

  9. Thermal-hydraulic analysis of PWR core including intermediate flow mixers with the THYC code

    Energy Technology Data Exchange (ETDEWEB)

    Mur, J. [Electricite de France (EDF), 78 - Chatou (France); Meignin, J.C. [Electricite de France (EDF), 69 - Villeurbanne (France)

    1997-07-01

    Departure from nucleate boiling (DNB) is one of the major limiting factors of pressurized water reactors (PWRs). Safety requires that occurrence of DNB should be precluded under normal or incidental operating conditions. The thermal-hydraulic THYC code developed by EDF is described. The code is devoted to heat and mass transfer in nuclear components. Critical Heat Flux (CHF) is predicted from local thermal-hydraulic parameters such as pressure, mass flow rate, and quality. A three stage methodology to evaluate thermal margins in order to perform standard core design is described. (K.A.) 8 refs.

  10. Doubling of critical heat flux using a grapheme oxide nanofluid and its repeatabiltiy

    International Nuclear Information System (INIS)

    Moon, Sung Bo; Bang, In Cheol

    2013-01-01

    CHF(Critical Heat Flux : heat flux which makes dramatic increase of temperature on heater surface) is one of the most important phenomena in the thermal hydraulic system. High CHF makes more thermal margin of heat transfer. This makes high efficiency and safety of power plant especially in nuclear power plant. Much smaller danger can be concerned to public society like radioactive material leakage in the accidents. Graphene Oxide which can be deposited on the heater surface makes nano-scale structures with enhancing thermal limit of heater. Three major models of enhancing limit of heater have been concerned in many heat transfer studies. In this study, wettability that is about ability to wet on surface and thermal activity which is about thermal property of coated layer are concerned to analyze the mechanism of CHF enhancing. Also, chemical reduction of Graphene Oxide(GO) to Reduced Graphene Oxide(RGO) on the surface will be concerned with one reason of changing wettability of nano-scale structure on the heater surface. We used GO nanofluid 0.001 volume percent. Two models are compared to explain how CHF is enhanced. Results show wettability increased with slightly reduced GO and structure. And in thermal activity model, the most powerful term, thickness of layer, is too small to affect thermal activity. It has low ability to explain how GO nanofluid can enhance CHF

  11. Development of the heated length to diameter correction factor on critical heat flux using the artificial neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yong Ho; Baek, Won Pil; Chang, Soon Heung [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of); Chun, Tae Hyun [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1999-12-31

    With using artificial neural networks (ANNs), an analytical study related to the heated length effect on critical heat flux (CHF) has been carried out to make an improvement of the CHF prediction accuracy based on local condition correlations or table. It has been carried out to suggest a feasible criterion of the threshold length-to-diameter (L/D) value in which heated length could affect CHF. And within the criterion, a L/D correction factor has been developed through conventional regression. In order to validate the developed L/D correction factor, CHF experiments for various heated lengths have been carried out under low and intermediate pressure conditions. The developed threshold L/D correlation provides a new feasible criterion of L/D threshold value. The developed correction factor gives a reasonable accuracy for the original database, showing the error of -2.18% for average and 27.75% for RMS, and promising results for new experimental data. 7 refs., 12 figs., 1 tab. (Author)

  12. Critical heat flux and flow pattern for water flow in annular geometry

    International Nuclear Information System (INIS)

    Park, Jae Wook; Baek, Won Pil; Chang, Soon Heung

    1996-01-01

    An experimental study on critical heat flux (CHF) and two-phase flow visualization has been performed for water flow in internally-heated, vertical, concentric annuli under near atmospheric pressure. Tests have been done under stable forced-circulation, upward and downward flow conditions with three test sections of relatively large gap widths (heated length = 0.6 m, inner diameter = 19 mm, outer diameter = 29, 35 and 51 mm). The outer wall of the test section was made up of the transparent Pyrex tube to allow the observation of flow patterns near the CHF occurrence. The CHF mechanism was changed in the order of flooding, churn-to-annular flow transition, and local dryout under a large bubble in churn flow as the flow rate was increased from zero to higher values. Observed parametric trends are consistent with the previous understanding except that the CHF for downward flow is considerably lower than that for upward flow

  13. Development of the heated length to diameter correction factor on critical heat flux using the artificial neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yong Ho; Baek, Won Pil; Chang, Soon Heung [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of); Chun, Tae Hyun [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1998-12-31

    With using artificial neural networks (ANNs), an analytical study related to the heated length effect on critical heat flux (CHF) has been carried out to make an improvement of the CHF prediction accuracy based on local condition correlations or table. It has been carried out to suggest a feasible criterion of the threshold length-to-diameter (L/D) value in which heated length could affect CHF. And within the criterion, a L/D correction factor has been developed through conventional regression. In order to validate the developed L/D correction factor, CHF experiments for various heated lengths have been carried out under low and intermediate pressure conditions. The developed threshold L/D correlation provides a new feasible criterion of L/D threshold value. The developed correction factor gives a reasonable accuracy for the original database, showing the error of -2.18% for average and 27.75% for RMS, and promising results for new experimental data. 7 refs., 12 figs., 1 tab. (Author)

  14. Inlet effect induced ''upstream'' critical heat flux in smooth tubes

    International Nuclear Information System (INIS)

    Kitto, J.B. Jr.

    1986-01-01

    An unusual form of ''upstream'' critical heat flux (CHF) has been observed and directly linked to the inlet flow pattern during an experimental study of high pressure (17 - 20 MPa) water flowing through a vertical 38.1 mm ID smooth bore tube with uniform axial and nonuniform circumferential heating. These upstream CHF data were characterized by temperature excursions which initially occurred at a relatively fixed axial location in the middle of the test section while the outlet and inlet heated lengths experienced no change. A rifled tube inlet flow conditioner could be substituted for a smooth tube section to generate the desired swirling inlet flow pattern. The upstream CHF data were found to match data from a uniformly heated smooth bore tube when the comparison was made using the peak local heat flux. The mechanism proposed to account for the upstream CHF observations involves the destructive interference between the decaying swirl flow and the secondary circumferential liquid flow field resulting from the one-sided heating

  15. An analysis of critical heat flux on the external surface of the reactor vessel lower head

    International Nuclear Information System (INIS)

    Yang, Soo Hyung; Baek, Won Pil; Chang, Soon Heung

    1999-01-01

    CHF (Critical heat flux) on the external surface of the reactor vessel lower head is major key in the evaluation on the feasibility of IVR-EVC (In-Vessel Retention through External Vessel Cooling) concept. To identify the CHF on the external surface, considerable works have been performed. Through the review on the previous works related to the CHF on the external surface, liquid subcooling, induced flow along the external surface, ICI (In-Core Instrument) nozzle and minimum gap are identified as major parameters. According to the present analysis, the effects of the ICI nozzle and minimum gap on CHF are pronounced at the upstream of test vessel: on the other hand, the induced flow considerably affects the CHF at downstream of test vessel. In addition, the subcooling effect is shown at all of test vessel, and decreases with the increase in the elevation of test vessel. In the real application of the IVR-EVC concept, vertical position is known as a limiting position, at which thermal margin is the minimum. So, it is very important to precisely predict the CHF at vertical position in a viewpoint of gaining more thermal margins. However, the effects of the liquid subcooling and induced flow do not seem to be adequately included in the CHF correlations suggested by previous works, especially at the downstream positions

  16. Critical heat flux and flow pattern for water flow in annular geometry

    International Nuclear Information System (INIS)

    Park, J.-W.; Baek, W.-P.; Chang, S.H.

    1997-01-01

    An experimental study on critical heat flux (CHF) and two-phase flow visualization has been performed for water flow in internally-heated, vertical, concentric annuli under near atmospheric pressure. Tests have been done under stable forced-circulation, upward and downward flow conditions with three test sections of relatively large gap widths (heated length = 0.6 m, inner diameter 19 mm, outer diameter = 29, 35 and 51 mm). The outer wall of the test section was made up of the transparent Pyrex tube to allow the observation of flow patterns near the CHF occurrence. The CHF mechanism was changed in the order of flooding, churn-to-annular flow transition and local dryout under a large bubble in churn flow as the flow rate was increased from zero to higher values. Observed parametric trends are consistent with the previous understanding except that the CHF for downward flow is considerably lower than that for the upward flow. In addition to the experiment, selected CHF correlations for annuli are assessed based on 1156 experimental data from various sources. The Doerffer et al. (1994); Barnett (1966); Jannsen and Kervinen (1963); Levitan and Lantsman (1977) correlations show reasonable predictions for wide parameter ranges, among which the Doerffer et al. (1994) correlation shows the widest parameter ranges and a possibility of further improvement. However, there is no correlation predicting the low-pressure, low-flow CHF satisfactorily. (orig.)

  17. Critical Heat Flux Experiments on the Reactor Vessel Wall Using 2-D Slice Test Section

    International Nuclear Information System (INIS)

    Jeong, Yong Hoon; Chang, Soon Heung; Baek, Won-Pil

    2005-01-01

    The critical heat flux (CHF) on the reactor vessel outer wall was measured using the two-dimensional slice test section. The radius and the channel area of the test section were 2.5 m and 10 cm x 15 cm, respectively. The flow channel area and the heater width were smaller than those of the ULPU experiments, but the radius was greater than that of the ULPU. The CHF data under the inlet subcooling of 2 to 25 deg. C and the mass flux 0 to 300 kg/m 2 .s had been acquired. The measured CHF value was generally slightly lower than that of the ULPU. The difference possibly comes from the difference of the test section material and the thickness. However, the general trend of CHF according to the mass flux was similar with that of the ULPU. The experimental CHF data were compared with the predicted values by SULTAN correlation. The SULTAN correlation predicted well this study's data only for the mass flux higher than 200 kg/m 2 .s, and for the exit quality lower than 0.05. The local condition-based correlation was developed, and it showed good prediction capability for broad quality (-0.01 to 0.5) and mass flux ( 2 .s) conditions with a root-mean-square error of 2.4%. There were increases in the CHF with trisodium phosphate-added water

  18. Overview PWR-Blowdown Heat Transfer Separate-Effects Program

    International Nuclear Information System (INIS)

    White, J.D.

    1978-01-01

    The ORNL Pressurized Water Reactor Blowdown Heat Transfer Program (PWR-BDHT) is a separate-effects experimental study of thermal-hydraulic phenomena occurring during the first 20 sec of a hypothetical LOCA. Specific objectives include the determination, for a wide range of parameters, of time to CHF and the following variables for both pre- and post-CHF: heat fluxes, ΔT (temperature difference between pin surface and fluid), heat transfer coefficients, and local fluid properties. A summary of the most interesting results from the program obtained during the past year is presented. These results are in the area of: (1) RELAP verification, (2) electric pin calibration, (3) time to critical heat flux (CHF), (4) heat transfer coefficient comparisons, and (5) nuclear fuel pin simulation

  19. Moderate hypofractionated image-guided thoracic radiotherapy for locally advanced node-positive non-small cell lung cancer patients with very limited lung function: a case report

    International Nuclear Information System (INIS)

    Manapov, Farkhad; Roengvoraphoj, Olarn; Li, Ming Lun; Eze, Chukwuka

    2017-01-01

    Patients with locally advanced lung cancer and very limited pulmonary function (forced expiratory volume in 1 second [FEV1] ≤ 1 L) have dismal prognosis and undergo palliative treatment or best supportive care. We describe two cases of locally advanced node-positive non-small cell lung cancer (NSCLC) patients with very limited lung function treated with induction chemotherapy and moderate hypofractionated image-guided radiotherapy (Hypo-IGRT). Hypo-IGRT was delivered to a total dose of 45 Gy to the primary tumor and involved lymph nodes. Planning was based on positron emission tomography-computed tomography (PET/ CT) and four-dimensional computed tomography (4D-CT). Internal target volume (ITV) was defined as the overlap of gross tumor volume delineated on 10 phases of 4D-CT. ITV to planning target volume margin was 5 mm in all directions. Both patients showed good clinical and radiological response. No relevant toxicity was documented. Hypo-IGRT is feasible treatment option in locally advanced node-positive NSCLC patients with very limited lung function (FEV1 ≤ 1 L)

  20. Moderate hypofractionated image-guided thoracic radiotherapy for locally advanced node-positive non-small cell lung cancer patients with very limited lung function: a case report

    Energy Technology Data Exchange (ETDEWEB)

    Manapov, Farkhad; Roengvoraphoj, Olarn; Li, Ming Lun; Eze, Chukwuka [Dept. of Radiation Oncology, Ludwig-Maximilian University of Munich, Munich (Germany)

    2017-06-15

    Patients with locally advanced lung cancer and very limited pulmonary function (forced expiratory volume in 1 second [FEV1] ≤ 1 L) have dismal prognosis and undergo palliative treatment or best supportive care. We describe two cases of locally advanced node-positive non-small cell lung cancer (NSCLC) patients with very limited lung function treated with induction chemotherapy and moderate hypofractionated image-guided radiotherapy (Hypo-IGRT). Hypo-IGRT was delivered to a total dose of 45 Gy to the primary tumor and involved lymph nodes. Planning was based on positron emission tomography-computed tomography (PET/ CT) and four-dimensional computed tomography (4D-CT). Internal target volume (ITV) was defined as the overlap of gross tumor volume delineated on 10 phases of 4D-CT. ITV to planning target volume margin was 5 mm in all directions. Both patients showed good clinical and radiological response. No relevant toxicity was documented. Hypo-IGRT is feasible treatment option in locally advanced node-positive NSCLC patients with very limited lung function (FEV1 ≤ 1 L)

  1. Presentation and comparison of experimental critical heat flux data at conditions prototypical of light water small modular reactors

    Energy Technology Data Exchange (ETDEWEB)

    Greenwood, M.S., E-mail: 1greenwoodms@ornl.gov; Duarte, J.P.; Corradini, M.

    2017-06-15

    Highlights: • Low mass flux and moderate to high pressure CHF experimental results are presented. • Facility uses chopped-cosine heater profile in a 2 × 2 square bundle geometry. • The EPRI, CISE-GE, and W-3 CHF correlations provide reasonable average CHF prediction. • Neural network analysis predicts experimental data and demonstrates utility of method. - Abstract: The critical heat flux (CHF) is a two-phase flow phenomenon which rapidly decreases the efficiency of the heat transfer performance at a heated surface. This phenomenon is one of the limiting criteria in the design and operation of light water reactors. Deviations of operating parameters greatly alters the CHF condition and must be experimentally determined for any new parameters such as those proposed in small modular reactors (SMR) (e.g. moderate to high pressure and low mass fluxes). Current open literature provides too little data for functional use at the proposed conditions of prototypical SMRs. This paper presents a brief summary of CHF data acquired from an experimental facility at the University of Wisconsin-Madison designed and built to study CHF at high pressure and low mass flux ranges in a 2 × 2 chopped cosine rod bundle prototypical of conceptual SMR designs. The experimental CHF test inlet conditions range from pressures of 8–16 MPa, mass fluxes of 500–1600 kg/m2 s, and inlet water subcooling from 250 to 650 kJ/kg. The experimental data is also compared against several accepted prediction methods whose application ranges are most similar to the test conditions.

  2. Improvement of boiling heat transfer by radiation induced boiling enhancement

    International Nuclear Information System (INIS)

    Imai, Yasuyuki; Okamoto, Koji; Madarame, Haruki; Takamasa, Tomoji

    2003-01-01

    For nuclear reactor systems, the critical heat flux (CHF) data is very important because it limits reactor efficiency. Improvement of CHF requires that the cooling liquid can contact the heating surface, or a high-wettability, highly hydrophilic heating surface, even if a vapor bubble layer is generated on the surface. In our previous study, we confirmed that the surface wettability changed significantly or that highly hydrophilic conditions were achieved, after irradiation of 60 Co gamma ray, by the Radiation Induced Surface Activation (RISA) phenomenon. To delineate the effect of RISA on boiling phenomena, surface wettability in a high-temperature environment and critical heat flux (CHF) of metal oxides irradiated by gamma rays were investigated. A CHF experiment in the pool boiling condition was carried out under atmospheric pressure. The heating test section made of titanium was 0.2 mm in thickness, 3 mm in height, and 60 mm in length. Oxidation of the surface was carried out by plasma jetting for 40 seconds. The test section was irradiated by 60 Co gamma ray with predetermined radiation intensity and period. The CHF of oxidized titanium was improved up to 100 percent after 800 kGy 60 Co gamma ray irradiation. We call this effect Radiation Induced Boiling Enhancement (RIBE). Before we conducted the CHF experiment, contact angles of the test pieces were measured to show the relationship between wettability and CHF. The CHF in the present experiment increases will surface wettability in the same manner as shown by Liaw and Dhir's results. (author)

  3. Improvement of boiling heat transfer by radiation induced boiling enhancement

    International Nuclear Information System (INIS)

    Imai, Y.; Okamoto, K.; Madarame, H.; Takamasa, T.

    2003-01-01

    For nuclear reactor systems, the Critical Heat Flux (CHF) data is very important because it limits reactor efficiency. Improvement of CHF requires that the cooling liquid can contact the heating surface, or a high-wettability, highly hydrophilic heating surface, even if a vapor bubble layer is generated on the surface. In our previous study, we confirmed that the surface wettability changed significantly or that highly hydrophilic conditions were achieved, after irradiation of 60Co gamma ray, by the Radiation Induced Surface Activation (RISA) phenomenon. To delineate the effect of RISA on boiling phenomena, surface wettability in a high-temperature environment and Critical Heat Flux (CHF) of metal oxides irradiated by gamma rays were investigated. A CHF experiment in the pool boiling condition was carried out under atmospheric pressure. The heating test section made of titanium was 0.2mm in thickness, 3mm in height, and 60mm in length. Oxidation of the surfaces was carried out by plasma jetting for 40 seconds. The test section was irradiated by 60Co gamma ray with predetermined radiation intensity and period. The CHF of oxidized titanium was improved up to 100 percent after 800kGy 60Co gamma ray irradiation. We call this effect Radiation Induced Boiling Enhancement (RIBE). Before we conducted the CHF experiment, contact angles of the test pieces were measured to show the relationship between wettability and CHF. The CHF in the present experiment increases with surface wettability in the same manner as shown by Liaw and Dhir's results

  4. CHF experiments of tight pitch lattice rod bundles under PWR pressure condition for development of reduced moderation water reactor

    International Nuclear Information System (INIS)

    Araya, Fumimasa; Nakatsuka, Toru; Yoritsune, Tsutomu

    2002-10-01

    In order to improve plutonium utilization, design studies of reduced moderation water reactors which have hard neutron energy spectrum have been carried out at Division of Energy System Research of Japan Atomic Energy Research Institute (JAERI). At present, triangle, tight pitch lattice cores with about 1 mm gap width between fuel rods have been focused in the neutronic core design. Since a degradation of the heat removal from the fuel rods is worried, an evaluation of heat removal capability i.e. critical heat flux becomes one of important evaluation items in the feasibility study. However, any of published data base, which can be applicable to the evaluation on such narrow gap width cores, does not exist. Therefore, in the present study, in order to accumulate applicable data and to confirm applicability of an evaluation methodology of critical heat flux, basic experiments on the critical heat flux were performed using the test sections consisted of 7 heater rods bundles with the gap widths of 1.5, 1.0 and 0.6 mm under the PWR pressure conditions. The present report describes the experimental apparatus, experimental conditions and accumulated data. Analysis results of the data and the applicability of the evaluation methodology used for the design work are also discussed in this report. As the results of the experiment, it was found that the critical heat flux increased as the mass flux and the inlet subcooling increased. In the region of the mass flux less than about 2,000 kg/m 2 /s, the critical heat flux decreased as the gap width decreased. In the larger mass flux region, obvious trend of effects of the gap width on critical heat flux were not observed due to data scatterings. The flow-area-averaged thermal-equilibrium quality at the CHF position was in the higher ranges from 0.3 to 0.8 in the cases of gap widths of 1.0 and 0.6 mm, and 0.1 to 0.3 in the 1.5 mm case. Based on the experimental results such that the CHFs occurred in the higher quality range and

  5. Powerful Swirl Generation of Flow-driven Rotating Mixing Vane for Enhancing CHF

    International Nuclear Information System (INIS)

    Seo, Han; Seo, Seok Bin; Heo, Hyo; Bang, In Cheol

    2014-01-01

    Mixing vanes are utilized to improve CHF and heat transfer performance in the rod bundle during normal operation. Experimental measurement of the swirling flow from a split vane pair was conducted using particle image velocimetry (PIV) and boroscope. The lateral velocity fields show that the swirling flow was initially centered in the subchannel and the computational fluid dynamics (CFD) analysis was performed based on the experiment. To visualize flow patterns in the 5Χ5 subchannel using PIV, matching the refraction between the working fluid and the structure was considered and the experiment aimed to develop the experimental data for providing fundamental information of the CFD analysis. The fixed split vane is the main mixing inducer in the fuel assembly. In a heat exchanger research, propeller type swirl generates at several pitch ratios and different blades angles were used to enhance heat transfer rate. Significant improvements of the heat transfer rate using the propellers were confirmed due to creation of tangential flow. In the present study, the mixing effect of rotation vane which has a shape of propeller was studied using PIV. A split vane was considered in the experiment to show the effect of rotation vane. Vertical and horizontal flow analyses were conducted to show the possible use of rotation vane in a subchannel. In the present work, the study of flow visualization using three types of vanes is conducted to show the mixing effect. The vertical flow and the horizontal flow distributions were analyzed in the two experimental facilities. For the vertical flow facility, flow distributions, flow profiles, and the turbulence kinetic energy are analyzed at the centerline of the channel. The results show that the rotation vane has the highest flow and turbulence kinetic intensity at the centerline of the channel. For the horizontal flow facility, the results indicate that lateral flow of the rotation vane is generated and maintained along with the flow

  6. Pharmacogenetic Risk Stratification in Angiotensin-Converting Enzyme Inhibitor-Treated Patients with Congestive Heart Failure

    DEFF Research Database (Denmark)

    Nelveg-Kristensen, Karl Emil; Busk Madsen, Majbritt; Torp-Pedersen, Christian

    2015-01-01

    BACKGROUND: Evidence for pharmacogenetic risk stratification of angiotensin-converting enzyme inhibitor (ACEI) treatment is limited. Therefore, in a cohort of ACEI-treated patients with congestive heart failure (CHF), we investigated the predictive value of two pharmacogenetic scores...... SNPs of the angiotensin-converting enzyme gene (rs4343) and ABO blood group genes (rs495828 and rs8176746). METHODS: Danish patients with CHF enrolled in the previously reported Echocardiography and Heart Outcome Study were included. Subjects were genotyped and categorized according to pharmacogenetic.......05 [95% CI 0.79-1.40]), respectively. CONCLUSIONS: We found no association between either of the analyzed pharmacogenetic scores and fatal outcomes in ACEI-treated patients with CHF....

  7. Fast weighted centroid algorithm for single particle localization near the information limit.

    Science.gov (United States)

    Fish, Jeremie; Scrimgeour, Jan

    2015-07-10

    A simple weighting scheme that enhances the localization precision of center of mass calculations for radially symmetric intensity distributions is presented. The algorithm effectively removes the biasing that is common in such center of mass calculations. Localization precision compares favorably with other localization algorithms used in super-resolution microscopy and particle tracking, while significantly reducing the processing time and memory usage. We expect that the algorithm presented will be of significant utility when fast computationally lightweight particle localization or tracking is desired.

  8. Flow induced vibration characteristics in 2X3 bundle critical heat flux experiment

    International Nuclear Information System (INIS)

    Kim, Dae Hun; Chang, Soon Heung

    2005-01-01

    Above a certain heat flux, the liquid can no longer permanently wet the heater surface. This situation leads to an inordinate decrease in the surface heat transfer. This heat flux is commonly referred to as the critical heat flux (CHF). The CHF in nuclear reactors is one of the important thermal hydraulic parameters limiting the available power. Flow induced vibration (FIV) is the vibration caused by a fluid flowing around a body. In the fluid flowing system, FIV occurred by structures and flow condition. Many structures in nuclear power plant system are designed to prevent from structure failure due to FIV. Recently, Hibiki and Ishii (1998) carried out an experimental investigation on the effect of flow-induced vibration (FIV) on two-phase flow structure in vertical tube and reported that the FIV drastically changed the void fraction profiles. The void fraction profiles is one of the important parameter for determining CHF. Therefore, the investigation on the effect of FIV on CHF are needed. The research on FIV characteristics detection during CHF experiment in 2X3 bundle using R-134a has been carried out in KAIST. Using the results new FIV correlation in 2-pahse turbulent flow are suggested after finding out relation between CHF and dynamic pressure fluctuation value

  9. Critical heat flux for flow boiling of water in mini-channels

    International Nuclear Information System (INIS)

    Zhang, Weizhong; Mishima, Kaichiro; Hibiki, Takashi

    2007-01-01

    Critical heat flux (CHF) is a limiting factor when flow boiling is applied to dissipate high heat flux in mini-channels. In view of practical importance of critical heat flux correlations in engineering design and prediction, this study presents an evaluation of existing CHF correlations for flow boiling of water with available databases taken from small-diameter tubes, and then develops a new, simple CHF correlation for flow boiling in mini-channel. Three correlations by Bowring, Katto and Shah are evaluated with available CHF data in the literature for saturated flow boiling, and three correlations by Inasaka-Nariai, Celata et al. and Hall-Mudawar evaluated with the CHF data for subcooled flow boiling. The Hall-Mudawar correlation and the Shah correlation appear to be the most reliable tools for CHF prediction in the subcooled and saturated flow boiling regions, respectively. In order to avoid the defect of predictive discontinuities often encountered when applying previous correlations, a simple, nondimensional, inlet conditions dependent CHF correlation for saturated flow boiling has been formulated. Its functional form is determined by application of the artificial neural network and parametric trend analyses to the collected database. Superiority of this new correlation has been verified by the collected database. It has a mean deviation of 16.8% for this collected databank, smallest among all tested correlations. Compared to many inordinately complex correlations, this new correlation consists only of one single equation. (author)

  10. An application of zeta potential method for the selection of nano-fluids to enhance IVR capability

    International Nuclear Information System (INIS)

    Pham Quynh Trang; Kim, Tae Il; Chang, Soon Heung

    2009-01-01

    In-vessel Retention (IVR) is one of the key severe accident management strategies that have been applied currently for advanced light water reactors such as APR1000 or APR1400. The concept of IVR consists of external cooling of the reactor vessel by flooding the reactor cavity to remove the decay heat from the molten core through the lower head of the vessel. However, the heat removal process is limited by the occurrence of critical heat flux (CHF) at the reactor vessel outer surface that may lead to a sharp increase of local temperature, damaging the integrity of the reactor vessel. In order to obtain higher power of nuclear reactors and to assure the achievement of the IVR capability during accident conditions, an enhancement of CHF at the outer surface of the vessel is required. The potential use of nano-fluids to increase the CHF is among the main IVR enhancing approaches. In this study, Al 2 O 3 and CNT nano-fluids with different concentrations have been used as the potential coolant to enhance IVR capabilities. The dispersion stability of the nano-fluids was verified by zeta potential measurements. The results showed effects of time, concentration and pH on the stability of nanofluids. Three types of nano-fluids were selected as the candidates to apply for the IVR. A series of experiments have been performed in this study to understand the pool-boiling critical heat flux behavior on downward facing surfaces submerged in a pool of nano-fluids at very low concentration. The inclination angle was changed from horizontal to vertical to investigate the effect of orientation on CHF enhancement which is needed for the application in IVR

  11. Distinct domains within the NITROGEN LIMITATION ADAPTATION protein mediate its subcellular localization and function in the nitrate-dependent phosphate homeostasis pathway

    Science.gov (United States)

    The NITROGEN LIMITATION ADAPTATION (NLA) protein is a RING-type E3 ubiquitin ligase that plays an essential role in the regulation of nitrogen and phosphate homeostasis. NLA is localized to two distinct subcellular sites, the plasma membrane and nucleus, and contains four distinct domains: i) a RING...

  12. Heat transfer phenomena related to the boiling crisis

    International Nuclear Information System (INIS)

    Groenveld, D.C.

    1981-03-01

    This report contains a state-of-the-art review of critical heat flux (CHF) and post-CHF heat transfer. Part I reviews the mechanisms controlling the boiling crisis. The observed parametric trends of the CHF in a heat flux controlled system are discussed in detail, paying special attention to parameters pertaining to nuclear fuel. The various methods of predicting the critical power are described. Part II reviews the published information on transition boiling and film boiling heat transfer under forced convective conditions. Transition boiling data were found to be available only within limited ranges of conditions. The data did not permit the derivation of a correlation; however, the parametric trends were isolated from these data. (author)

  13. Experimental investigation of heat transfer in the transition region

    International Nuclear Information System (INIS)

    Johannsen, K.; Weber, P.; Feng, Q.

    1990-10-01

    An experimental study of forced convective boiling heat transfer for upflow of water in a circular tube has been performed using a heat transfer system with temperature-controlled indirect Joule heating. By this way, complete boiling curves from incipience of boiling to fully established film boiling could be measured including the transition boiling regime. The boiling curves were traversed in a quasi-steady mode, usually by increasing the set-point wall temperature average at a constant time rate of 3.5 K/min. The vast majority of results covers the pressure range from 0.1 to 1.0 MPa, mass flux range from 25 to 200 kg/(m 2 s) and inlet subcooling from 5 to 30 K. The experimental results of transition boiling heat transfer obtained in the centre of the test section were correlated in terms of a heat flux/surface superheat relationship that was normalized by the maximum heat flux (local CHF) and its associated wall superheat, respectively, to anchor the transition boiling curve to its low temperature limit. The upper surface temperature limit of the transition boiling regime was determined by inspection of measured axial distributions of surface heat flux and corresponding wall temperature. The critical heat flux (CHF) and its corresponding wall superheat has been measured, too. These temperature-controlled results were compared also with power-controlled experiments. The data are presented in terms of a table and accurate empirical correlations following Katto's generalized correlation scheme. Taking into account previous CHF data at L/D ≤ 100 and same range of flow conditions the length effect was found to further depend on pressure and mass flux. The data for the critical wall superheat show a distinct dependence upon pressure, mass flux and inlet quality that has not been observed before with comparable clarity

  14. Direct and indirect assessment of skeletal muscle blood flow in chronic congestive heart failure

    International Nuclear Information System (INIS)

    LeJemtel, T.H.; Scortichini, D.; Katz, S.

    1988-01-01

    In patients with chronic congestive heart failure (CHF), skeletal muscle blood flow can be measured directly by the continuous thermodilution technique and by the xenon-133 clearance method. The continuous thermodilution technique requires retrograde catheterization of the femoral vein and, thus, cannot be repeated conveniently in patients during evaluation of pharmacologic interventions. The xenon-133 clearance, which requires only an intramuscular injection, allows repeated determination of skeletal muscle blood flow. In patients with severe CHF, a fixed capacity of the skeletal muscle vasculature to dilate appears to limit maximal exercise performance. Moreover, the changes in peak skeletal muscle blood flow noted during long-term administration of captopril, an angiotensin-converting enzyme inhibitor, appears to correlate with the changes in aerobic capacity. In patients with CHF, resting supine deep femoral vein oxygen content can be used as an indirect measurement of resting skeletal muscle blood flow. The absence of a steady state complicates the determination of peak skeletal muscle blood flow reached during graded bicycle or treadmill exercise in patients with chronic CHF. Indirect assessments of skeletal muscle blood flow and metabolism during exercise performed at submaximal work loads are currently developed in patients with chronic CHF

  15. Critical heat flux enhancement regarding to the thickness of graphene films under pool boiling

    International Nuclear Information System (INIS)

    Kim, Jin Man; Park, Hyun Sun; Park, Youngjae; Kim, Hyungdae; Kim, Dong Eok; Kim, Moo Hwan; Ahn, Ho Seon

    2014-01-01

    The large thermal conductivity of the graphene films inhibits the formation of hot spots, thereby increasing the CHF. An infrared high-speed visualization showed graphene effect on boiling characteristics during operation. The graphene-coated heater showed an increase in BHT and CHF. As the thickness of the graphene films increased, the CHF also increased up to an asymptotic limit when the graphene layer was approximately 150 nm thick. The increased BHT was explained by the slight decrease in the wettability and the folded edges of the RGO flakes, which led to a decrease in the diameter of the departing bubbles, a larger bubble generation frequency, and an increase in the areal density of the bubble nucleation sites. The increase in the CHF was explained by considering the thermal activity of the graphene films, and the dependence thereof on the thickness and thermal properties of the layer, which was calculated based on high-speed IR visualization data

  16. Air-water flow measurement for ERVC conditions by LIF/PIV

    International Nuclear Information System (INIS)

    Yoon, Jong Woong; Jeong, Yong Hoon

    2016-01-01

    Critical heat flux (CHF) of the external reactor vessel wall is a safety limit that indicate the integrity of the reactor vessel during the situation. Many research conducted CHF experiments in the IVR-ERVC conditions. However, the flow velocity field which is an important factor in the CHF mechanism were not studied enough in the IVR-ERVC situations. In this study, flow measurements including velocity vector field and the liquid velocity in the IVR-ERVC conditions were studied. The air-water two phase flow loop simulating IVRERVC conditions was set up and liquid velocity field was measured by LIF/PIV technique in this study. The experiment was conducted with and without air injection conditions. For the air-water flow experiment, liquid velocity at the outside of two phase boundary layer became higher and the two phase boundary layer thickness became smaller when the mass flux increases. The velocity data obtained in this study are expected to improve the CHF correlation in the IVR-ERVC situations.

  17. Air-water flow measurement for ERVC conditions by LIF/PIV

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Jong Woong; Jeong, Yong Hoon [KAIST, Daejeon (Korea, Republic of)

    2016-05-15

    Critical heat flux (CHF) of the external reactor vessel wall is a safety limit that indicate the integrity of the reactor vessel during the situation. Many research conducted CHF experiments in the IVR-ERVC conditions. However, the flow velocity field which is an important factor in the CHF mechanism were not studied enough in the IVR-ERVC situations. In this study, flow measurements including velocity vector field and the liquid velocity in the IVR-ERVC conditions were studied. The air-water two phase flow loop simulating IVRERVC conditions was set up and liquid velocity field was measured by LIF/PIV technique in this study. The experiment was conducted with and without air injection conditions. For the air-water flow experiment, liquid velocity at the outside of two phase boundary layer became higher and the two phase boundary layer thickness became smaller when the mass flux increases. The velocity data obtained in this study are expected to improve the CHF correlation in the IVR-ERVC situations.

  18. Local Heat Transfer and CHF for Subcooled Flow Boiling - Annual Report 1996

    International Nuclear Information System (INIS)

    Boyd, Ronald D.

    2000-01-01

    For the past decade, efforts have been growing in the development of high heat flux (HHF) components for many applications, including fusion and fission reactor components, advanced electronic components, synchrotrons and optical components, and other advanced HHF engineering applications. From a thermal prospective, work in the fusion reactor development arena has been underway in a number of areas including: (1) Plasma thermal, and electro-magnetics, and particle transport, (2) Fusion material, rheology, development, and expansion and selection; (3) High heat flux removal; and (4) Energy production and efficiency

  19. Effect of flow obstacles with various leading and trailing edges on critical heat flux

    International Nuclear Information System (INIS)

    Pioro, I.L.; Groeneveld, D.C.; Groeneveld, D.C.; Cheng, S.C.; Antoshko, Y.V.

    2001-01-01

    A joint investigation has been performed by the University of Ottawa and Chalk River Laboratories that examined the effect of the shape of the leading and trailing edges of the turbulence enhancing devices ('flow obstacles') on critical heat flux (CHF). The objective of this study was to gain a better overall understanding of the limit of CHF improvement for various obstacle designs and the impact of flow conditions on the improvements. (author)

  20. Review of IVR-ERVC and using flooding concept for application to high power reactor

    International Nuclear Information System (INIS)

    Lee, Min ho; Heo, Hyo; Bang, In Cheol

    2016-01-01

    Accident scope will be limited in the RPV. For example, in case of Fukushima, they have difficulties for cleanup the accident and even catching the location of the melt-through corium. Therefore, IVR-ERVC is the right strategy for mitigation of the severe accident. However, in case of high power reactors, there is a Critical Heat Flux (CHF) problem in its application to high power reactor. If CHF occurred, boiling regime changes from effective nucleate boiling to ineffective film boiling, so temperature of the RPV goes up and finally the RPV fails. To solve the CHF problem, here have been a lot of works for IVR-ERVC. In the point of in-vessel heat transfer, Theofanous suggested risk oriented accident analysis methodology which is a combination of probabilistic and deterministic approach. A lot of experiments have been done using simulants of corium in various experimental apparatus. Their simulants were usually water due to simulate large Rayleigh number and natural circulation of corium. IVR-ERVC concept has been researched for a long time. For in-vessel heat transfer, simulants or real corium was used to get a heat flux distribution to the outer wall. And based on those results, ex-vessel cooling has been researched in various geometry to get cooling limit as CHF. Material flooding is suggested as improvement of ERVC in APR 1400 to secure safety margin for CHF. Regardless of Prandtl number of the flooding material, the focusing effect of heat flux was mitigated; the maximum heat flux was reduced less than half of the maximum heat flux in bare condition

  1. Low skeletal muscle mass is a predictive factor for chemotherapy dose-limiting toxicity in patients with locally advanced head and neck cancer

    NARCIS (Netherlands)

    Wendrich, Anne W; Swartz, Justin E; Bril, Sandra I; Wegner, Inge; de Graeff, Alexander; Smid, Ernst J; de Bree, Remco; Pothen, Ajit J

    OBJECTIVES: Low skeletal muscle mass (SMM) or sarcopenia is emerging as an adverse prognostic factor for chemotherapy dose-limiting toxicity (CLDT) and survival in cancer patients. Our aim was to determine the impact of low SMM on CDLT in patients with locally advanced head and neck squamous cell

  2. A predictive model for the tokamak density limit

    International Nuclear Information System (INIS)

    Teng, Q.; Brennan, D. P.; Delgado-Aparicio, L.; Gates, D. A.; Swerdlow, J.; White, R. B.

    2016-01-01

    We reproduce the Greenwald density limit, in all tokamak experiments by using a phenomenologically correct model with parameters in the range of experiments. A simple model of equilibrium evolution and local power balance inside the island has been implemented to calculate the radiation-driven thermo-resistive tearing mode growth and explain the density limit. Strong destabilization of the tearing mode due to an imbalance of local Ohmic heating and radiative cooling in the island predicts the density limit within a few percent. Furthermore, we found the density limit and it is a local edge limit and weakly dependent on impurity densities. Our results are robust to a substantial variation in model parameters within the range of experiments.

  3. Localization of atomic excitation beyond the diffraction limit using electromagnetically induced transparency

    Science.gov (United States)

    Miles, J. A.; Das, Diptaranjan; Simmons, Z. J.; Yavuz, D. D.

    2015-09-01

    We experimentally demonstrate the localization of excitation between hyperfine ground states of 87Rb atoms to as small as λ /13 -wide spatial regions. We use ultracold atoms trapped in a dipole trap and utilize electromagnetically induced transparency (EIT) for the atomic excitation. The localization is achieved by combining a spatially varying coupling laser (standing wave) with the intensity dependence of EIT. The excitation is fast (150 ns laser pulses) and the dark-state fidelity can be made higher than 94% throughout the standing wave. Because the width of the localized regions is much smaller than the wavelength of the driving light, traditional optical imaging techniques cannot resolve the localized features. Therefore, to measure the excitation profile, we use an autocorrelation-like method where we perform two EIT sequences separated by a time delay, during which we move the standing wave.

  4. Multidisciplinary management of chronic heart failure: principles and future trends.

    Science.gov (United States)

    Davidson, Patricia M; Newton, Phillip J; Tankumpuan, Thitipong; Paull, G; Dennison-Himmelfarb, Cheryl

    2015-10-01

    Globally, the management of chronic heart failure (CHF) challenges health systems. The high burden of disease and the costs associated with hospitalization adversely affect individuals, families, and society. Improved quality, access, efficiency, and equity of CHF care can be achieved by using multidisciplinary care approaches if there is adherence and fidelity to the program's elements. The goal of this article was to summarize evidence and make recommendations for advancing practice, education, research, and policy in the multidisciplinary management of patients with CHF. Essential elements of multidisciplinary management of CHF were identified from meta-analyses and clinical practice guidelines. The study factors were discussed from the perspective of the health care system, providers, patients, and their caregivers. Identified gaps in evidence were used to identify areas for future focus in CHF multidisciplinary management. Although there is high-level evidence (including several meta-analyses) for the efficacy of management programs for CHF, less evidence exists to determine the benefit attributable to individual program components or to identify the specific content of effective components and the manner of their delivery. Health care system, provider, and patient factors influence health care models and the effective management of CHF and require focus and attention. Extrapolating trial findings to clinical practice settings is limited by the heterogeneity of study populations and the implementation of models of intervention beyond academic health centers, where practice environments differ considerably. Ensuring that individual programs are both developed and assessed that consider these factors is integral to ensuring adherence and fidelity with the core dimensions of disease management necessary to optimize patient and organizational outcomes. Recognizing the complexity of the multidisciplinary CHF interventions will be important in advancing the design

  5. Application of a statistical thermal design procedure to evaluate the PWR DNBR safety analysis limits

    International Nuclear Information System (INIS)

    Robeyns, J.; Parmentier, F.; Peeters, G.

    2001-01-01

    In the framework of safety analysis for the Belgian nuclear power plants and for the reload compatibility studies, Tractebel Energy Engineering (TEE) has developed, to define a 95/95 DNBR criterion, a statistical thermal design method based on the analytical full statistical approach: the Statistical Thermal Design Procedure (STDP). In that methodology, each DNBR value in the core assemblies is calculated with an adapted CHF (Critical Heat Flux) correlation implemented in the sub-channel code Cobra for core thermal hydraulic analysis. The uncertainties of the correlation are represented by the statistical parameters calculated from an experimental database. The main objective of a sub-channel analysis is to prove that in all class 1 and class 2 situations, the minimum DNBR (Departure from Nucleate Boiling Ratio) remains higher than the Safety Analysis Limit (SAL). The SAL value is calculated from the Statistical Design Limit (SDL) value adjusted with some penalties and deterministic factors. The search of a realistic value for the SDL is the objective of the statistical thermal design methods. In this report, we apply a full statistical approach to define the DNBR criterion or SDL (Statistical Design Limit) with the strict observance of the design criteria defined in the Standard Review Plan. The same statistical approach is used to define the expected number of rods experiencing DNB. (author)

  6. Limits of commutative triangular systems on locally compact groups

    Indian Academy of Sciences (India)

    Commutative triangular systems of probability measures on locally compact groups have been studied extensively and ... in [S3,S4], we extend our earlier result to some particular triangular systems on algebraic groups. We also discuss ..... Now G can be embedded as a closed subgroup in. G2 ¼ G1=D and G0. 2 ¼ ًG0 آ ...

  7. A review on critical heat flux in horizontal tubes

    International Nuclear Information System (INIS)

    Baburajan, P.K.; Gaikwad, Avinash; Prabhu, S.V.

    2015-01-01

    Coolant channels of PHWR during accident similar to loss of coolant accident (LOCA) may experience different flow transients with low pressure and low flow conditions. In the advanced PHWRs it is desired to have small amount of positive quality at the exit of the coolant channel to increase the thermal efficiency. Investigation on pressure drop and heat transfer coefficient under subcooled boiling condition is important in the design and operation of the PHWRs. Understanding of thermal hydraulic phenomena associated with horizontal flow is also important in the safety and accident management in these reactors. A detailed experimental investigation on the important thermal hydraulic phenomena of horizontal tubes under low pressure and low flow conditions is carried out. The phenomena covered in this work are measurement of diabatic single phase and subcooled boiling pressure drop and local heat transfer coefficients, steady state CHF, effect of upstream flow restrictions on flow transients and CHF, CHF under oscillatory flow and flow decreasing transients. A detailed literature review is carried out on CHF in horizontal channels to take stock of the works being carried out along with current state of the art and to justify the motivation for the experimental study. This paper presents the review of available literature on horizontal CHF with the results of the experimental work. (author)

  8. A better approach to the MDNBR concept

    International Nuclear Information System (INIS)

    Crecy, F. de.

    1993-01-01

    This paper recalls the statistical origins of the MDNBR concept and Owen's coefficients, as used in CHF studies. The way in which they are currently used may be incorrect and we shall present a better approach, in which the lower tolerance interval limit depends on parameters. Use with least-square regressions and smoothing splines is explained. We also include an example, based on a CHF EPRI test, from the Columbia University data bank. (author). 1 fig., 6 refs

  9. On compactoid and limited sets in non-Archimedean locally convex ...

    African Journals Online (AJOL)

    In [2] and [3] spaces in which every bounded subset is a compactoid was studied. Every compactoid set is limited but the converse is not true [3]. In this paper, we shall study some spaces in which every limited set is compactoid. Journal of the Nigerian Association of Mathematical Physics Vol. 10 2006: pp. 571-574.

  10. Characterization of exercise limitations by evaluating individual cardiac output patterns : A prospective cohort study in patients with chronic heart failure

    NARCIS (Netherlands)

    Spee, R.F.; Niemeijer, V.M.; Wessels, B.; Jansen, J.P.; Wijn, P.F.F.; Doevendans, P.A.F.M.; Kemps, H.M.C.

    2015-01-01

    Background: Patients with chronic heart failure (CHF) suffer from exercise intolerance due to impaired central hemodynamics and subsequent alterations in peripheral skeletal muscle function and structure. The relative contribution of central versus peripheral factors in the reduced exercise capacity

  11. Single-phase CFD applicability for estimating fluid hot-spot locations in a 5 x 5 fuel rod bundle

    International Nuclear Information System (INIS)

    Ikeda, Kazuo; Makino, Yasushi; Hoshi, Masaya

    2006-01-01

    High-thermal performance PWR spacer grids require both of low pressure loss and high critical heat flux (CHF) properties. Therefore, a numerical study using computational fluid dynamics (CFD) was carried out to estimate pressure loss in strap and mixing vane structures. Moreover, a CFD simulation under single-phase flow condition was conducted for one specific condition in a water departure from nucleate boiling (DNB) test to examine the applicability of the CFD model for predicting the CHF rod position. Energy flux around the rod surface in a water DNB test is the sum of the intrinsic energy flux from a rod and the extrinsic energy flux from other rods, and increments of the enthalpy and decrements of flow velocity near the rod surface are assumed to affect CHF performance. CFD makes it possible to model the complicated flow field consisting of a spacer grid and a rod bundle and evaluate the local velocity and enthalpy distribution around the rod surface, which are assumed to determine the initial conditions for the two-phase structure. The results of this study indicate that single-phase CFD can play a significant role in designing PWR spacer grids for improved CHF performance

  12. Thermal hydraulic test for reactor safety system - Critical heat flux experiment and development of prediction models

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Soon Heung; Baek, Won Pil; Yang, Soo Hyung; No, Chang Hyun [Korea Advanced Institute of Science and Technology, Taejon (Korea)

    2000-04-01

    To acquire CHF data through the experiments and develop prediction models, research was conducted. Final objectives of research are as follows: 1) Production of tube CHF data for low and middle pressure and mass flux and Flow Boiling Visualization. 2) Modification and suggestion of tube CHF prediction models. 3) Development of fuel bundle CHF prediction methodology base on tube CHF prediction models. The major results of research are as follows: 1) Production of the CHF data for low and middle pressure and mass flux. - Acquisition of CHF data (764) for low and middle pressure and flow conditions - Analysis of CHF trends based on the CHF data - Assessment of existing CHF prediction methods with the CHF data 2) Modification and suggestion of tube CHF prediction models. - Development of a unified CHF model applicable for a wide parametric range - Development of a threshold length correlation - Improvement of CHF look-up table using the threshold length correlation 3) Development of fuel bundle CHF prediction methodology base on tube CHF prediction models. - Development of bundle CHF prediction methodology using correction factor. 11 refs., 134 figs., 25 tabs. (Author)

  13. Concentration and limit behaviors of stationary measures

    Science.gov (United States)

    Huang, Wen; Ji, Min; Liu, Zhenxin; Yi, Yingfei

    2018-04-01

    In this paper, we study limit behaviors of stationary measures of the Fokker-Planck equations associated with a system of ordinary differential equations perturbed by a class of multiplicative noise including additive white noise case. As the noises are vanishing, various results on the invariance and concentration of the limit measures are obtained. In particular, we show that if the noise perturbed systems admit a uniform Lyapunov function, then the stationary measures form a relatively sequentially compact set whose weak∗-limits are invariant measures of the unperturbed system concentrated on its global attractor. In the case that the global attractor contains a strong local attractor, we further show that there exists a family of admissible multiplicative noises with respect to which all limit measures are actually concentrated on the local attractor; and on the contrary, in the presence of a strong local repeller in the global attractor, there exists a family of admissible multiplicative noises with respect to which no limit measure can be concentrated on the local repeller. Moreover, we show that if there is a strongly repelling equilibrium in the global attractor, then limit measures with respect to typical families of multiplicative noises are always concentrated away from the equilibrium. As applications of these results, an example of stochastic Hopf bifurcation and an example with non-decomposable ω-limit sets are provided. Our study is closely related to the problem of noise stability of compact invariant sets and invariant measures of the unperturbed system.

  14. Multi-scale modeling and analysis of convective boiling: towards the prediction of CHF in rod bundles

    International Nuclear Information System (INIS)

    Niceno, B.; Sato, Y.; Badillo, A.; Andreani, M.

    2010-01-01

    In this paper we describe current activities on the project Multi-Scale Modeling and Analysis of convective boiling (MSMA), conducted jointly by the Paul Scherrer Institute (PSI) and the Swiss Nuclear Utilities (Swissnuclear). The long-term aim of the MSMA project is to formulate improved closure laws for Computational Fluid Dynamics (CFD) simulations for prediction of convective boiling and eventually of the Critical Heat Flux (CHF). As boiling is controlled by the competition of numerous phenomena at various length and time scales, a multi-scale approach is employed to tackle the problem at different scales. In the MSMA project, the scales on which we focus range from the CFD scale (macro-scale), bubble size scale (meso-scale), liquid micro-layer and triple interline scale (micro-scale), and molecular scale (nano-scale). The current focus of the project is on micro- and meso- scales modeling. The numerical framework comprises a highly efficient, parallel DNS solver, the PSI-BOIL code. The code has incorporated an Immersed Boundary Method (IBM) to tackle complex geometries. For simulation of meso-scales (bubbles), we use the Constrained Interpolation Profile method: Conservative Semi-Lagrangian 2nd order (CIP-CSL2). The phase change is described either by applying conventional jump conditions at the interface, or by using the Phase Field (PF) approach. In this work, we present selected results for flows in complex geometry using the IBM, selected bubbly flow simulations using the CIP-CSL2 method and results for phase change using the PF approach. In the subsequent stage of the project, the importance of effects of nano-scale processes on the global boiling heat transfer will be evaluated. To validate the models, more experimental information will be needed in the future, so it is expected that the MSMA project will become the seed for a long-term, combined theoretical and experimental program

  15. Offers

    CERN Multimedia

    Staff Association

    2013-01-01

    Do not hesitate to benefit of our offers in our partners: Théâtre de Carouge Discount of 5 CHF for all shows (30 CHF instead of 35 CHF) and on season tickets « first performance » ( 132 CHF instead 162 CHF) and also on « classical » ( 150 CHF instead of 180 CHF) upon presentation of your Staff Association membership card before payment. Théâtre La Comédie de Genève  20% off on tickets (full price – also available for partner): from 24 to 32 CHF a ticket instead of 30 to 40 CHF depending on the shows. 40% off on annual subscriptions (access to the best seats, pick up tickets at the last minute): 200 CHF for 9 shows (about 22 CHF a ticket instead of 30 to 40 CHF. Discounted card: 60 CHF and single price ticket of 16 CHF.

  16. Locally analytic vectors in representations of locally

    CERN Document Server

    Emerton, Matthew J

    2017-01-01

    The goal of this memoir is to provide the foundations for the locally analytic representation theory that is required in three of the author's other papers on this topic. In the course of writing those papers the author found it useful to adopt a particular point of view on locally analytic representation theory: namely, regarding a locally analytic representation as being the inductive limit of its subspaces of analytic vectors (of various "radii of analyticity"). The author uses the analysis of these subspaces as one of the basic tools in his study of such representations. Thus in this memoir he presents a development of locally analytic representation theory built around this point of view. The author has made a deliberate effort to keep the exposition reasonably self-contained and hopes that this will be of some benefit to the reader.

  17. Localized tip enhanced Raman spectroscopic study of impurity incorporated single GaN nanowire in the sub-diffraction limit

    International Nuclear Information System (INIS)

    Patsha, Avinash; Dhara, Sandip; Tyagi, A. K.

    2015-01-01

    The localized effect of impurities in single GaN nanowires in the sub-diffraction limit is reported using the study of lattice vibrational modes in the evanescent field of Au nanoparticle assisted tip enhanced Raman spectroscopy (TERS). GaN nanowires with the O impurity and the Mg dopants were grown by the chemical vapor deposition technique in the catalyst assisted vapor-liquid-solid process. Symmetry allowed Raman modes of wurtzite GaN are observed for undoped and doped nanowires. Unusually very strong intensity of the non-zone center zone boundary mode is observed for the TERS studies of both the undoped and the Mg doped GaN single nanowires. Surface optical mode of A 1 symmetry is also observed for both the undoped and the Mg doped GaN samples. A strong coupling of longitudinal optical (LO) phonons with free electrons, however, is reported only in the O rich single nanowires with the asymmetric A 1 (LO) mode. Study of the local vibration mode shows the presence of Mg as dopant in the single GaN nanowires

  18. Localized tip enhanced Raman spectroscopic study of impurity incorporated single GaN nanowire in the sub-diffraction limit

    Energy Technology Data Exchange (ETDEWEB)

    Patsha, Avinash, E-mail: avinash.phy@gmail.com, E-mail: dhara@igcar.gov.in; Dhara, Sandip; Tyagi, A. K. [Surface and Nanoscience Division, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India)

    2015-09-21

    The localized effect of impurities in single GaN nanowires in the sub-diffraction limit is reported using the study of lattice vibrational modes in the evanescent field of Au nanoparticle assisted tip enhanced Raman spectroscopy (TERS). GaN nanowires with the O impurity and the Mg dopants were grown by the chemical vapor deposition technique in the catalyst assisted vapor-liquid-solid process. Symmetry allowed Raman modes of wurtzite GaN are observed for undoped and doped nanowires. Unusually very strong intensity of the non-zone center zone boundary mode is observed for the TERS studies of both the undoped and the Mg doped GaN single nanowires. Surface optical mode of A{sub 1} symmetry is also observed for both the undoped and the Mg doped GaN samples. A strong coupling of longitudinal optical (LO) phonons with free electrons, however, is reported only in the O rich single nanowires with the asymmetric A{sub 1}(LO) mode. Study of the local vibration mode shows the presence of Mg as dopant in the single GaN nanowires.

  19. From global to local statistical shape priors novel methods to obtain accurate reconstruction results with a limited amount of training shapes

    CERN Document Server

    Last, Carsten

    2017-01-01

    This book proposes a new approach to handle the problem of limited training data. Common approaches to cope with this problem are to model the shape variability independently across predefined segments or to allow artificial shape variations that cannot be explained through the training data, both of which have their drawbacks. The approach presented uses a local shape prior in each element of the underlying data domain and couples all local shape priors via smoothness constraints. The book provides a sound mathematical foundation in order to embed this new shape prior formulation into the well-known variational image segmentation framework. The new segmentation approach so obtained allows accurate reconstruction of even complex object classes with only a few training shapes at hand.

  20. Characterization of exercise limitations by evaluating individual cardiac output patterns: a prospective cohort study in patients with chronic heart failure

    NARCIS (Netherlands)

    Spee, Ruud F.; Niemeijer, Victor M.; Wessels, Bart; Jansen, Jasper P.; Wijn, Pieter F. F.; Doevendans, Pieter A. F. M.; Kemps, Hareld M. C.

    2015-01-01

    Patients with chronic heart failure (CHF) suffer from exercise intolerance due to impaired central hemodynamics and subsequent alterations in peripheral skeletal muscle function and structure. The relative contribution of central versus peripheral factors in the reduced exercise capacity is still

  1. Experimental study of falling water limitation under counter-current flow in the vertical rectangular channel

    International Nuclear Information System (INIS)

    Usui, Tohru; Kaminaga, Masanori; Sudo, Yukio.

    1988-07-01

    Quantitative understanding of critical heat flux (CHF) in the narrow vertical rectangular channel is required for the thermo-hydroulic design and the safety analysis of research reactors in which flat-plate-type fuel is adopted. Especially, critical heat flux under low downward velocity has a close relation with falling water limitation under counter-current flow. Accordingly, CCFL (Counter-current Flow Limitation) experiments were carried out for both vertical rectangular channels and vertical circular tubes varried in their size and configuration of their cross sections, to make clear CCFL characteristics in the vertical rectangular channels. In the experiments, l/de of the rectangular channel was changed from 3.5 to 180. As the results, it was clear that different equivalent hydraulic diameter de, namely width or water gap of channel, gave different CCFL characteristics of rectangular channel. But the influence of channel length l on CCFL characteristics was not observed. Besides, a dimensionless correlation to estimate a relation between upward air velocity and downward water velocity was proposed based on the present experimental results. The difference of CCFL characteristics between rectangular channels and circular tubes was also investigated. Especially for the rectangular channels, dry-patches appearing condition was made clear as a flow-map. (author)

  2. Providing Limited Local Electric Service During a Major Grid Outage: A First Assessment Based on Customer Willingness to Pay.

    Science.gov (United States)

    Baik, Sunhee; Morgan, M Granger; Davis, Alexander L

    2018-02-01

    While they are rare, widespread blackouts of the bulk power system can result in large costs to individuals and society. If local distribution circuits remain intact, it is possible to use new technologies including smart meters, intelligent switches that can change the topology of distribution circuits, and distributed generation owned by customers and the power company, to provide limited local electric power service. Many utilities are already making investments that would make this possible. We use customers' measured willingness to pay to explore when the incremental investments needed to implement these capabilities would be justified. Under many circumstances, upgrades in advanced distribution systems could be justified for a customer charge of less than a dollar a month (plus the cost of electricity used during outages), and would be less expensive and safer than the proliferation of small portable backup generators. We also discuss issues of social equity, extreme events, and various sources of underlying uncertainty. © 2017 Society for Risk Analysis.

  3. New Communication Technologies, Local Journalism and the Perception of Locality

    Directory of Open Access Journals (Sweden)

    Ali ÖZCAN

    2016-12-01

    Full Text Available Studies on local journalism as an important element of participatory democracy generally focus on the history of the local press, the financial insufficiencies of local newspapers as well as technical/ technological incompetency that occurs as a result of these factors. This research analyzes local newspapers with a new scientific point of view by focusing on the perception of locality as a mental projection of geographical constraint. Perspectives regarding the transformations on perceptions of locality as a result of the disappearance of time and space constraints due to new communication technologies, and the opportunities that new communication environments offer to local newspapers will be provided. Moreover, the ways in which local newspapers reflect on locality with their printed versions under time and space constraints will be analyzed. The research scope of the study has been limited to 15 newspapers in Konya. Structured interviews and content analysis methods were used for data collection and analysis.

  4. Special discount to the members of the Staff Association

    CERN Multimedia

    Association du personnel

    2012-01-01

    FNAC 5% discount on gifts card available in four Swiss shops without any restriction. Gifts card on sale to the Staff Association Secretariat. TPG 50 CHF discount on annual subscriptions. Subscription « tout Genève » for adult: 650 CHF; for junior: 400 CHF. On sale to the Staff Association Secretariat. Théâtre de Carouge Discount of 5.-CHF for all shows (30.– CHF instead of 35.-CHF) and on season tickets « first performance » ( 132.– CHF instead 162.– CHF) and also on « classical » ( 150.– CHF instead of 180.– CHF) upon presentation of your Staff Association membership card before payment. Aquaparc Discounted prices on admission of whole day. Children from 5 to 15 years: 30.-CHF instead of 39.-CHF; Adults from 16 years: 36.-CHF instead of 49.-CHF. Tickets on sale to the Staff Association Secretariat. Go Sport 15% off on all purchases in the whole shop upon present...

  5. Multiple-copy state discrimination: Thinking globally, acting locally

    International Nuclear Information System (INIS)

    Higgins, B. L.; Pryde, G. J.; Wiseman, H. M.; Doherty, A. C.; Bartlett, S. D.

    2011-01-01

    We theoretically investigate schemes to discriminate between two nonorthogonal quantum states given multiple copies. We consider a number of state discrimination schemes as applied to nonorthogonal, mixed states of a qubit. In particular, we examine the difference that local and global optimization of local measurements makes to the probability of obtaining an erroneous result, in the regime of finite numbers of copies N, and in the asymptotic limit as N→∞. Five schemes are considered: optimal collective measurements over all copies, locally optimal local measurements in a fixed single-qubit measurement basis, globally optimal fixed local measurements, locally optimal adaptive local measurements, and globally optimal adaptive local measurements. Here an adaptive measurement is one in which the measurement basis can depend on prior measurement results. For each of these measurement schemes we determine the probability of error (for finite N) and the scaling of this error in the asymptotic limit. In the asymptotic limit, it is known analytically (and we verify numerically) that adaptive schemes have no advantage over the optimal fixed local scheme. Here we show moreover that, in this limit, the most naive scheme (locally optimal fixed local measurements) is as good as any noncollective scheme except for states with less than 2% mixture. For finite N, however, the most sophisticated local scheme (globally optimal adaptive local measurements) is better than any other noncollective scheme for any degree of mixture.

  6. Foreign English Language Teachers' Local Pedagogy

    Science.gov (United States)

    Eusafzai, Hamid Ali Khan

    2015-01-01

    ELT methods have been criticized for being limited and inadequate. Postmethod pedagogy has been offered as an alternate to these methods. The postmethod pedagogy emphasises localization of pedagogy and celebrates local culture, teachers and knowledge. Localizing pedagogy is easy for local teachers as knowledge and understanding of the local comes…

  7. Special offer

    CERN Multimedia

    Staff Association

    2011-01-01

    Adults: 31 CHF instead of 42 CHF Children: 25 CHF instead of 34 CHF Aquaparc Les Caraïbes sur Léman 1807 Le Bouveret (VS) Tickets are valid for both the inside and outside areas. Les billets sont valables pour les espaces intérieurs et extérieurs Adultes : 31 CHF au lieu de 42 CHF Enfants : 25 CHF au lieu de 34 CHF  

  8. On thermodynamic limits of entropy densities

    NARCIS (Netherlands)

    Moriya, H; Van Enter, A

    We give some sufficient conditions which guarantee that the entropy density in the thermodynamic limit is equal to the thermodynamic limit of the entropy densities of finite-volume (local) Gibbs states.

  9. Tolvaptan in Patients Hospitalized With Acute Heart Failure: Rationale and Design of the TACTICS and the SECRET of CHF Trials.

    Science.gov (United States)

    Felker, G Michael; Mentz, Robert J; Adams, Kirkwood F; Cole, Robert T; Egnaczyk, Gregory F; Patel, Chetan B; Fiuzat, Mona; Gregory, Douglas; Wedge, Patricia; O'Connor, Christopher M; Udelson, James E; Konstam, Marvin A

    2015-09-01

    Congestion is a primary reason for hospitalization in patients with acute heart failure (AHF). Despite inpatient diuretics and vasodilators targeting decongestion, persistent congestion is present in many AHF patients at discharge and more severe congestion is associated with increased morbidity and mortality. Moreover, hospitalized AHF patients may have renal insufficiency, hyponatremia, or an inadequate response to traditional diuretic therapy despite dose escalation. Current alternative treatment strategies to relieve congestion, such as ultrafiltration, may also result in renal dysfunction to a greater extent than medical therapy in certain AHF populations. Truly novel approaches to volume management would be advantageous to improve dyspnea and clinical outcomes while minimizing the risks of worsening renal function and electrolyte abnormalities. One effective new strategy may be utilization of aquaretic vasopressin antagonists. A member of this class, the oral vasopressin-2 receptor antagonist tolvaptan, provides benefits related to decongestion and symptom relief in AHF patients. Tolvaptan may allow for less intensification of loop diuretic therapy and a lower incidence of worsening renal function during decongestion. In this article, we summarize evidence for decongestion benefits with tolvaptan in AHF and describe the design of the Targeting Acute Congestion With Tolvaptan in Congestive Heart Failure Study (TACTICS) and Study to Evaluate Challenging Responses to Therapy in Congestive Heart Failure (SECRET of CHF) trials. © 2015 American Heart Association, Inc.

  10. Offers for our members

    CERN Multimedia

    Staff Association

    2013-01-01

    The Courir shops propose the following offer: 15% discount on all articles (not on sales) in the Courir shops (Val Thoiry, Annemasse and Neydens) and 5% discount on sales upon presentation of your Staff Association membership card and an identity card before payment. Summer is here, enjoy our offers for the aquatic parcs! Walibi : Tickets "Zone terrestre": 21 € instead of 26 €. Access to Aqualibi: 5 € instead of 8 € on presentation of your SA member ticket. Free for children (3-11 years old) before 12 h 00. Free for children under 3, with limited access to the attractions. Car park free. * * * * * Aquaparc : Day ticket: – Children: 30 CHF instead of 39 CHF – Adults : 36 CHF instead of 49 CHF Bonus! Free for children under 5.

  11. A theoretical prediction of critical heat flux in subcooled pool boiling during power transients

    International Nuclear Information System (INIS)

    Pasamehmetoglu, K.O.; Nelson, R.A.; Gunnerson, F.S.

    1988-01-01

    Understanding and predicting critical heat flux (CHF) behavior during steady-state and transient conditions are of fundamenatal interest in the design, operation, safety of boiling and two-phase flow devices. This paper discusses the results of a comprehensive theoretical study made specifically to model transient CHF behavior in subcooled pool boiling. This study is based upon a simplified steady-state CHF model in terms of the vapor mass growth period. The results obtained from this theory indicate favorable agreement with the experimental data from cylindrical heaters with small radii. The statistical nature of the vapor mass behavior in transient boiling also is considered and upper and lower limits for the current theory are established. Various factors that affect the discrepancy between the data and the theory are discussed

  12. Evaluation of chronic kidney disease in chronic heart failure: From biomarkers to arterial renal resistances

    Science.gov (United States)

    Iacoviello, Massimo; Leone, Marta; Antoncecchi, Valeria; Ciccone, Marco Matteo

    2015-01-01

    Chronic kidney disease and its worsening are recurring conditions in chronic heart failure (CHF) which are independently associated with poor patient outcome. The heart and kidney share many pathophysiological mechanisms which can determine dysfunction in each organ. Cardiorenal syndrome is the condition in which these two organs negatively affect each other, therefore an accurate evaluation of renal function in the clinical setting of CHF is essential. This review aims to revise the parameters currently used to evaluate renal dysfunction in CHF with particular reference to the usefulness and the limitations of biomarkers in evaluating glomerular dysfunction and tubular damage. Moreover, it is reported the possible utility of renal arterial resistance index (a parameter associated with abnormalities in renal vascular bed) for a better assesment of kidney disfunction. PMID:25610846

  13. Limits to Decentralization in Mozambique: Leadership, Politics and Local Government Capacities for Service Delivery

    NARCIS (Netherlands)

    A.P.J. Machohe (Antonio)

    2011-01-01

    textabstractMozambique has been a centralized State since its independence in 1975. During this time, local government has depended on the Central Government and has lacked autonomy in both local policy decisions and resource management in addition to the complete failure of effective local services

  14. 3D conformal radiation therapy and hormonal therapy for localized prostate cancer: Is age a limiting factor?

    International Nuclear Information System (INIS)

    Faure, A.; Negrea, T.; Lechevallier, E.; Coulange, C.; Murraciole, X.; Jouvea, E.; Sambuca, R.; Cowen, D.

    2011-01-01

    No study on side effects had showed that conformal radiation therapy for prostate cancer is more harmful in patients older than 70 years to patients younger. The aim of this study was to evaluate acute and late toxicities of conformal radiotherapy, with high dose for localized prostate cancer in patients older than 70 years and compared to patients younger than 70 years. Between 1996 and 2009, 104 patients were treated with radiation therapy and hormonal therapy for localized cancer prostate. Median follow-up was 105 months (9 300). Acute (occurred at ≤ three months) and late side effects of 55 patients older than 70 years (median age: 75 [71 92]) were graded according to the CTCAE 3.0 criteria and compared to the younger population. Median dose to the prostate was 75.6 Gy (67 80) in both groups. There were no significant differences in acute and late side effects between age groups. For patients above 70 years, the incidence of grade II or higher acute and late side effects were respectively 27 and 22% for urologic symptoms and 13 and 16% for rectal symptoms. The frequency of grade III late symptoms was low and ranged between 0 and 6% for the evaluated symptoms, irrespective of age group. Older patients had a better biochemical recurrence-free survival than younger patients (86 versus 77% at four years, P ≡ ns). High dose 3D conformal radiotherapy for localized prostate cancer was well tolerated in patients older than 70 years. Age is not a limiting factor for conformal radiation therapy and hormonotherapy for older patients. (authors)

  15. Effects of Microencapsulated Phase Change Material (MPCM) on Critical Heat Flux in Pool Boiling

    International Nuclear Information System (INIS)

    Park, Sung Dae; Kim, Seong Man; Kang, Sarah; Lee, Seung Won; Seo, Han; Bang, In Cheol

    2011-01-01

    Thermal power is limited by critical heat flux (CHF) in the nuclear power plant. And the in-vessel retention by external reactor vessel cooling (IVR-ERVC) is applied in some nuclear power plants; AP600, AP1000, Loviisa and APR1400. The heat removal capacity of IVR-ERVC is also restricted by CHF. So, it is essential to get CHF margin to improve an economics and a safety of the plant. There are some typical approaches to enhance CHF: vibrating the heater or fluid, coating with porous media on the heater surface, applying an electric field. The recent study related to the CHF is focus on using the nanofluid. In this paper, the new approach was investigated by using the microencapsulated phase change material (MPCM). MPCM is the particles whose diameter is from 0.1μm to 1000μm. The MPCM consists of the core material and the shell material. The core material can be solid, liquid, gas or even the mixture. The solid paraffin is the best candidate as the core material due to its stable chemical and thermal properties. And the shell material is generally synthesized polymer of about several micrometers in thickness. The most interesting feature of the MPCM is that the latent heat associated with the solid-liquid phase change is related to the heat transfer. When the MPCM is dispersed into the carrier fluid, a kind of suspension named as microencapsulated phase change slurry (MPCS) is formed. The study on the MPCS was conducted in field of both the heat transfer fluids and energy storage media. It is inspired by the fact that the latent heat can serve distribution to the additional CHF margin. The purpose of this work is to confirm whether or not the CHF is enhanced

  16. Experimental study on in-vessel debris coolability; experiments on heat transfer in downward-facing hemicircular gap

    Energy Technology Data Exchange (ETDEWEB)

    Suh, Kune Yull; Kim, Yong Hoon; Kim, Seong Joong; Lee, Seung Dong [Seoul National University, Seoul (Korea)

    2002-03-01

    Experiments were performed to measure the CHF and the critical power and to investigate the heat transfer mechanism in the narrow gap with 2D slice test sections. Test parameters in this study included the gap size of 1, 2, 5, and 10mm and the system pressure from 0.1 to 1.0 MPa. The CHF was measured for the distilled water. Results of this study may be summarized as follows. 1) In the narrow gap size of 1 and 2mm, the CHF occurs at the bottom and propagates upwards as the inclination angle relative to gravitational force increases. 2) Dryout is the limiting heat transfer mechanism in the 2D sliced experiments, and the CHF reaches 80-90% of the 3D CHFG value. 3) In the narrow gap size of 1 and 2mm the CHF values lie on the order of 104 kW/m2, while in the gap sizes of 5 and 10mm the CHF values have an order of 105 kW/m2. 4) The flow visualization study revealed that the shape of bubble is elliptic and the hydrodynamic bubble diameter exceeds the size of 20mm. 5) In analyzing the CHF with the inclination angle of the heated surface in the narrow gap size of 1 and 2mm, there exists a transition angle in the vicinity of 20-30 .deg.. From the region of the inclination angle of 0 .deg. C to 20 .deg. C or 30 .deg. C, the dryout mechanism may be directly applicable. On the contrary the transition angle is not conspicuously seen in the gap sizes of 5 and 10mm in which dominant mechanism is closer to pool boiling. 27 refs., 29 figs., 8 tabs. (Author)

  17. Qtc interval as a guide to select those patients with congestive heart failure and reduced left ventricular systolic function who will benefit from antiarrhythmic treatment with dofetilide

    DEFF Research Database (Denmark)

    Brendorp, B; Elming, H; Jun, L

    2001-01-01

    BACKGROUND: A prolonged QTc interval is considered a contraindication for class III antiarrhythmic drugs, but the influence of a normal or a slightly increased baseline QTc interval on the risk or benefit of treatment with a class III antiarrhythmic drug is not sufficiently clarified. METHODS...... limits is associated with a marked reduction of mortality in patients with CHF and left ventricular systolic dysfunction treated with dofetilide. This is a potentially important indication of which patients with CHF might benefit from prophylactic treatment with an antiarrhythmic drug....

  18. Effects of Liquid Metal Fin on Critical Heat Flux under IVR-ERVC Condition

    Energy Technology Data Exchange (ETDEWEB)

    Park, Seong Dae; Bang, In Cheol [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)

    2014-05-15

    The molten fuel is relocated to bottom of reactor vessel after core is damaged and not cooled continuously. In-vessel retention through external reactor vessel cooling (IVR-ERVC) is presented to terminate the progression of accidents by removing the decay heat. IVR-ERVC is suitable for small size reactors like AR-600, AP-1000. There is uncertainty for high power reactor like APR-1400 and CAP-1400. This uncertainty originates from the thermal margin between the CHF value and real heat flux on the reactor vessel under severe accidents. The main mechanism of heat removal on IVR-ERVC strategy is boiling on the outer wall of reactor vessel. The boiling heat transfer is limited due to the CHF phenomenon. There should be an enough margin for preventing the CHF in boiling heat transfer systems. The CHF tests for IVR-ERVC system were conducted to confirm or increase the thermal margin. The design of thermal insulator was changed to vent the vapor smoothly. Forming the coating layer on the vessel surface was proposed to enhance the CHF margin. The liquid metal was designed to flood the space around the reactor vessel. The liquid metal has high boiling point and superb thermal conductivity in comparison with the coolant. In this work, experimental tests were conducted to validate the CFD results about the IVR-ERVC system with liquid metal. The behavior of vapor was observed to predict the tendency of CHF increase with small-scaled facility to simulate the IVR-ERVC system.

  19. Limiting values of large deviation probabilities of quadratic statistics

    NARCIS (Netherlands)

    Jeurnink, Gerardus A.M.; Kallenberg, W.C.M.

    1990-01-01

    Application of exact Bahadur efficiencies in testing theory or exact inaccuracy rates in estimation theory needs evaluation of large deviation probabilities. Because of the complexity of the expressions, frequently a local limit of the nonlocal measure is considered. Local limits of large deviation

  20. Continuous spin mean-field models : Limiting kernels and Gibbs properties of local transforms

    NARCIS (Netherlands)

    Kulske, Christof; Opoku, Alex A.

    2008-01-01

    We extend the notion of Gibbsianness for mean-field systems to the setup of general (possibly continuous) local state spaces. We investigate the Gibbs properties of systems arising from an initial mean-field Gibbs measure by application of given local transition kernels. This generalizes previous

  1. Spatial distribution of nanoparticles in PWR nanofluid coolant subjected to local nucleate boiling

    Energy Technology Data Exchange (ETDEWEB)

    Mirghaffari, Reza; Jahanfarnia, Gholamreza [Islamic Azad Univ., Tehran (Iran, Islamic Republic of). Dept. of Nuclear Engineering

    2016-12-15

    Nanofluids have shown to be promising as an alternative for a PWR reactor coolant or as a safety system coolant to cover the core in the event of a loss of coolant accident. The nanoparticles distribution and neutronic parameters are intensively affected by the local boiling of nanofluid coolant. The main goal of this study was the physical-mathematical modeling of the nanoparticles distribution in the nucleate boiling of nanofluids within the viscous sublayer. Nanoparticles concentration, especially near the heat transfer surfaces, plays a significant role in the enhancement of thermal conductivity of nanofluids and prediction of CHF, Hide Out and Return phenomena. By solving the equation of convection-diffusion for the liquid phase near the heating surface and the bulk stream, the effect of heat flux on the distribution of nanoparticles was studied. The steady state mass conservation equations for liquids, vapors and nanoparticles were written for the flow boiling within the viscous sublayer adjacent the fuel cladding surface. The derived differential equations were discretized by the finite difference method and were solved numerically. It was found out that by increasing the surface heat flux, the concentration of nanoparticles increased.

  2. Band alignment of HfO{sub 2}/multilayer MoS{sub 2} interface determined by x-ray photoelectron spectroscopy: Effect of CHF{sub 3} treatment

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xinke; He, Jiazhu; Tang, Dan; Jia, Fang; Lu, Youming, E-mail: ymlu@szu.edu.cn; Zhu, Deliang; Liu, Wenjun; Cao, Peijiang; Han, Sun [College of Materials Science and Engineering, Shenzhen Engineering Laboratory for Advanced Technology of Ceramics, Nanshan District Key Lab for Biopolymer and Safety Evaluation, Shenzhen University, 3688 Nanhai Ave, Shenzhen 518060 (China); Liu, Qiang; Wen, Jiao; Yu, Wenjie, E-mail: casan@mail.sim.ac.cn [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, CAS,865 Chang Ning Road, Shanghai 200050 (China); Pan, Jisheng [Institute of Materials Research and Engineering, Agency for Science Technology and Research, Singapore 117602 (Singapore); He, Zhubing [Department of Materials Science and Engineering, South University of Science and Technology of China, 1088 Xueyuan Road, Shenzhen 518055 (China); Ang, Kah-Wee [Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583 (Singapore)

    2015-09-07

    The energy band alignment between HfO{sub 2}/multilayer (ML)-MoS{sub 2} was characterized using high-resolution x-ray photoelectron spectroscopy. The HfO{sub 2} was deposited using an atomic layer deposition tool, and ML-MoS{sub 2} was grown by chemical vapor deposition. A valence band offset (VBO) of 1.98 eV and a conduction band offset (CBO) of 2.72 eV were obtained for the HfO{sub 2}/ML-MoS{sub 2} interface without any treatment. With CHF{sub 3} plasma treatment, a VBO and a CBO across the HfO{sub 2}/ML-MoS{sub 2} interface were found to be 2.47 eV and 2.23 eV, respectively. The band alignment difference is believed to be dominated by the down-shift in the core level of Hf 4d and up-shift in the core level of Mo 3d, or the interface dipoles, which caused by the interfacial layer in rich of F.

  3. Research on optical applications in nuclear industry

    International Nuclear Information System (INIS)

    Kim, Cheol Jung; Shin, Jang Soo; Lee, Sang Mock; Baik, Sung Hoon; Kwon, Seong Ouk; Hong, Suc Kyoung; Kim, Duk Hyeon

    1988-12-01

    The laser fluorometer developed in 1987 has been modified to compensate the inner filter and quenching effects. The signal processing electronic circuit was redesigned and a computer interface was introduced for data processing. It has been already used in routine chemical analysis in the chemical analysis division. Its application to uranium monitoring in conversion plant is being investigated. Also, we found that it can be used in trace analysis of samarium and europium with detection limit of 1 ppb and 0.1 ppb, respectively. The IRMPA/D process of CDF 3 and CHF 3 have been studied. The pressure effects of CDF 3 ,CHF 3 and added buffer gas were investigated. Mainly, the change in reaction rate was examined while varying the pressure of CDF 3 , CHF 3 and buffer gas. The IRMPD reaction ratio of CDF 3 and CHF 3 from below 0.1 torr up to a few torr was studied and the buffer gas pressure effect was investigated at constant pressure of CDF 3 or CHF 3 of 1 torr. Several kinds of buffer gas, Ar, N 2 , and SF 6 , were used to investigate the buffer gas pressure effect. We applied double exposure holographic interferometry, and analyzed qualitatively the distortion due to thermal heat and vibration. The research on holographic remote inspection will be achieved to apply this technique to the nuclear fuel cycle facilities. (Author)

  4. The development and application of overheating failure model of FBR steam generator tubes. 2

    International Nuclear Information System (INIS)

    Miyake, Osamu; Hamada, Hirotsugu; Tanabe, Hiromi

    2001-11-01

    The JNC technical report 'The Development and Application of Overheating Failure Model of FBR Steam Generator Tubes' summarized the assessment method and its application for the overheating tube failure in an event of sodium-water reaction accident of fast breeder reactor's steam generators (SGs). This report describes the following items studied after the publication of the above technical report. 1. On the basis of the SWAT-3 experimental data, realistic local heating conditions (reaction zone temperature and related heat transfer conditions) for the sodium-water reaction were proposed. New correlations are cosine-shaped temperature profiles with 1,170 C maximum for the 100% and 40% Monju operating conditions, and those with 1,110 C maximum for the 10% condition. 2. For the cooling effects inside of target tubes, LWR's studies of critical heat flux (CHF) and post-CHF heat transfer correlations have been examined and considered in the assessment. The revised assessment adopts the Katto's correlation for CHF, and the Condie-Bengston IV correlation for post-CHF. 3. Other additional examination for the assessment includes treatments of the whole heating effect (other than the local reaction zone) due to the sodium-water reaction, and the temperature-dependent thermal properties of the heat transfer tube material (2.25Cr-1Mo steel). The revised overheating tube failure assessment method has been applied to the Monju SG studies. It is revealed consequently that no tube failure occurs in 100%, 40%, and 10% operating conditions when an initial leak is detected by the cover gas pressure detection system. The assessment for the SG system improved for the detection and blowdown systems shows even better safety margins against the overheating tube failure. (author)

  5. Changes in cardiac aldosterone and its synthase in rats with chronic heart failure: an intervention study of long-term treatment with recombinant human brain natriuretic peptide

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, X.Q. [Fujian Medical University Union Hospital, Fuzhou, Fujian (China); Department of Cardiology, The Central Hospital of Enshi Autonomous Prefecture, Enshi, Hubei (China); Hong, H.S. [Department of Geriatrics, Fujian Medical University Union Hospital, Fuzhou, Fujian (China); Lin, X.H. [Department of Emergency Medicine, Fujian Medical University Union Hospital, Fuzhou, Fujian (China); Chen, L.L. [Department of Cardiology, Fujian Medical University Union Hospital, Fuzhou, Fujian (China); Li, Y.H. [Department of Cardiology, The Central Hospital of Enshi Autonomous Prefecture, Enshi, Hubei (China)

    2014-07-11

    The physiological mechanisms involved in isoproterenol (ISO)-induced chronic heart failure (CHF) are not fully understood. In this study, we investigated local changes in cardiac aldosterone and its synthase in rats with ISO-induced CHF, and evaluated the effects of treatment with recombinant human brain natriuretic peptide (rhBNP). Sprague-Dawley rats were divided into 4 different groups. Fifty rats received subcutaneous ISO injections to induce CHF and the control group (n=10) received equal volumes of saline. After establishing the rat model, 9 CHF rats received no further treatment, rats in the low-dose group (n=8) received 22.5 μg/kg rhBNP and those in the high-dose group (n=8) received 45 μg/kg rhBNP daily for 1 month. Cardiac function was assessed by echocardiographic and hemodynamic analysis. Collagen volume fraction (CVF) was determined. Plasma and myocardial aldosterone concentrations were determined using radioimmunoassay. Myocardial aldosterone synthase (CYP11B2) was detected by quantitative real-time PCR. Cardiac function was significantly lower in the CHF group than in the control group (P<0.01), whereas CVF, plasma and myocardial aldosterone, and CYP11B2 transcription were significantly higher than in the control group (P<0.05). Low and high doses of rhBNP significantly improved hemodynamics (P<0.01) and cardiac function (P<0.05) and reduced CVF, plasma and myocardial aldosterone, and CYP11B2 transcription (P<0.05). There were no significant differences between the rhBNP dose groups (P>0.05). Elevated cardiac aldosterone and upregulation of aldosterone synthase expression were detected in rats with ISO-induced CHF. Administration of rhBNP improved hemodynamics and ventricular remodeling and reduced myocardial fibrosis, possibly by downregulating CYP11B2 transcription and reducing myocardial aldosterone synthesis.

  6. Hijacked organic, limited local, faulty fair trade: what's a radical to eat?

    Science.gov (United States)

    Engler, Mark

    2012-01-01

    Organic farming has been hijacked by big business. Local food can have a larger carbon footprint than products shipped in from overseas. Fair trade doesn't address the real concerns of farmers in the global South. As the food movement has moved from the countercultural fringe to become a mainstream phenomenon, organic, local, and fair trade advocates have been beset by criticism from overt foes and erstwhile allies alike. Now that Starbucks advertises fair trade coffee and Kraft owns Boca soy burgers, it's fair to ask, "What's a radical to eat?"

  7. Excursion to Milan with Cisalpino and Carlson Wagonlit Travel

    CERN Multimedia

    2009-01-01

    Special offer for CERN staff and their family. Offer valid: - from 20th May to 12th July 2009 (last return) - only in first class - on direct trains from Geneva or Lausanne Return price per person: CHF 146.00 from Geneva CHF 130.00 from Lausanne Conditions : - reservation only via Carlson Wagonlit Travel, CERN - return reservation compulsory - reservation at least 3 days before departure - tickets are not changeable and not refundable - CWT agency fee not included: CHF 25.00 per order - maximum 4 persons per order - no other reduction possible - limited number of seats Enjoy your lunch in an exclusive and traditional place : in the 1st floor of "Zucca in Galleria" http://www.caffemiani.it EUR 44.00 per person (instead of about 80 Euros) Included: Aperitif, antipasti, main dish, dessert, wine/water, coffee. (Closed on Mondays) Reservation: mailto:business@cisalpino.com

  8. Local confidence limits for IMRT and VMAT techniques: a study based on TG119 test suite

    International Nuclear Information System (INIS)

    Thomas, M.; Chandroth, M.

    2014-01-01

    The aim of this study was to generate a local confidence limit (CL) for intensity modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT) techniques used at Waikato Regional Cancer Centre. This work was carried out based on the American Association of Physicists in Medicine (AAPM) Task Group (TG) 119 report. The AAPM TG 119 report recommends CLs as a bench mark for IMRT commissioning and delivery based on its multiple institutions planning and dosimetry comparisons. In this study the locally obtained CLs were compared to TG119 benchmarks. Furthermore, the same bench mark was used to test the capabilities and quality of the VMAT technique in our clinic. The TG 119 test suite consists of two primary and four clinical tests for evaluating the accuracy of IMRT planning and dose delivery systems. Pre defined structure sets contoured on computed tomography images were downloaded from AAPM website and were transferred to a locally designed phantom. For each test case two plans were generated using IMRT and VMAT optimisation. Dose prescriptions and planning objectives recommended by TG119 report were followed to generate the test plans in Eclipse Treatment Planning System. For each plan the point dose measurements were done using an ion chamber at high dose and low dose regions. The planar dose distribution was analysed for percentage of points passing the gamma criteria of 3 %/3 mm, for both the composite plan and individual fields of each plan. The CLs were generated based on the results from the gamma analysis and point dose measurements. For IMRT plans, the CLs obtained were (1) from point dose measurements: 2.49 % at high dose region and 2.95 % for the low dose region (2) from gamma analysis: 2.12 % for individual fields and 5.9 % for the composite plan. For VMAT plans, the CLs obtained were (1) from point dose measurements: 2.56 % at high dose region and 2.6 % for the low dose region (2) from gamma analysis: 1.46 % for individual fields and 0

  9. Region effects influence local tree species diversity.

    Science.gov (United States)

    Ricklefs, Robert E; He, Fangliang

    2016-01-19

    Global patterns of biodiversity reflect both regional and local processes, but the relative importance of local ecological limits to species coexistence, as influenced by the physical environment, in contrast to regional processes including species production, dispersal, and extinction, is poorly understood. Failure to distinguish regional influences from local effects has been due, in part, to sampling limitations at small scales, environmental heterogeneity within local or regional samples, and incomplete geographic sampling of species. Here, we use a global dataset comprising 47 forest plots to demonstrate significant region effects on diversity, beyond the influence of local climate, which together explain more than 92% of the global variation in local forest tree species richness. Significant region effects imply that large-scale processes shaping the regional diversity of forest trees exert influence down to the local scale, where they interact with local processes to determine the number of coexisting species.

  10. A local isotropic/global orthotropic finite element technique for modeling the crush of wood in impact limiters

    International Nuclear Information System (INIS)

    Attaway, S.W.; Yoshimura, H.R.

    1989-01-01

    Wood is often used as the energy absorbing material in impact limiters, because it begins to crush at low strains, then maintains a near constant crush stress up to nearly 60% volume reduction, and then locks up. Hill (Hill and Joseph, 1974) has performed tests that show that wood is an excellent absorber. However, wood's orthotropic behavior for large crush is difficult to model. In the past, analysts have used isotropic foam-like material models for modeling wood. A new finite element technique is presented in this paper that gives a better model of wood crush than the model currently in use. The orthotropic technique is based on locally isotropic, but globally orthotropic (LIGO) (Attaway, 1988) assumptions in which alternating layers of hard and soft crushable material are used. Each layer is isotropic; however, by alternating hard and soft thin layers, the resulting global behavior is orthotropic. In the remainder of this paper, the new technique for modeling orthotropic wood crush will be presented. The model is used to predict the crush behavior for different grain orientations of balsa wood. As an example problem, an impact limiter containing balsa wood as the crushable material is analyzed using both an isotropic model and the LIGO model

  11. Critical heat flux correlation for thin rectangular channels

    International Nuclear Information System (INIS)

    Tanaka, Futoshi; Mishima, Kaichiro; Hibiki, Takashi

    2007-01-01

    The effect of heated length on Critical heat flux (CHF) in thin rectangular channels was studied based on CHF data obtained under atmospheric pressure. CHF in small channels has been widely studied in the past decades but most of the studies are related to CHF in round tubes. Although basic mechanisms of burnout in thin rectangular channels are similar to tubes, applicability of CHF correlations for tubes to rectangular channels are questionable since CHF in rectangular channels are affected by the existence of non-heated walls and the non-circular geometry of channel circumference. Several studies of CHF in thin rectangular channels have been reported in relation to thermal hydraulic design of research reactors and neutron source targets and CHF correlations have been proposed, but the studies mostly focus on CHFs under geometrical conditions of the application of interest. In his study, existing CHF data obtained in thin rectangular channels were collected and the effect of heated length on CHF was examined. Existing CHF correlations were verified with positive quality flow CHF data but none of the correlations successfully reproduced the CHF for a wide range of heated length. A new CHF correlation for qualify region applicable to a wide range of heated length was developed based on the collected data. (author)

  12. New Westinghouse correlation WRB-1 for predicting critical heat flux in rod bundles with mixing vane grids

    International Nuclear Information System (INIS)

    Motley, F.E.; Hill, K.W.; Cadek, F.F.; Shefcheck, J.

    1976-07-01

    A new critical heat flux (CHF) correlation, based on local fluid conditions, has been developed from Westinghouse rod bundle data. This correlation applies to both 0.422 inch and 0.374 inch rod O.D. geometries. It accounts for typical cell and thimble cell effects, uniform and non-uniform heat flux profiles, variations in rod heated length and in grid spacing. The correlation predicts CHF for 1147 data points with a sample mean and standard deviation of measured-to-predicted heat flux ratio of 1.0043 and 0.0873, respectively. It was concluded that to meet the reactor design criterion the minimum DNBR should be 1.17

  13. Locality of correlation in density functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Burke, Kieron [Department of Chemistry, University of California, Irvine, California 92697 (United States); Cancio, Antonio [Department of Physics and Astronomy, Ball State University, Muncie, Indiana 47306 (United States); Gould, Tim [Qld Micro- and Nanotechnology Centre, Griffith University, Nathan, Qld 4111 (Australia); Pittalis, Stefano [CNR-Istituto di Nanoscienze, Via Campi 213A, I-41125 Modena (Italy)

    2016-08-07

    The Hohenberg-Kohn density functional was long ago shown to reduce to the Thomas-Fermi (TF) approximation in the non-relativistic semiclassical (or large-Z) limit for all matter, i.e., the kinetic energy becomes local. Exchange also becomes local in this limit. Numerical data on the correlation energy of atoms support the conjecture that this is also true for correlation, but much less relevant to atoms. We illustrate how expansions around a large particle number are equivalent to local density approximations and their strong relevance to density functional approximations. Analyzing highly accurate atomic correlation energies, we show that E{sub C} → −A{sub C} ZlnZ + B{sub C}Z as Z → ∞, where Z is the atomic number, A{sub C} is known, and we estimate B{sub C} to be about 37 mhartree. The local density approximation yields A{sub C} exactly, but a very incorrect value for B{sub C}, showing that the local approximation is less relevant for the correlation alone. This limit is a benchmark for the non-empirical construction of density functional approximations. We conjecture that, beyond atoms, the leading correction to the local density approximation in the large-Z limit generally takes this form, but with B{sub C} a functional of the TF density for the system. The implications for the construction of approximate density functionals are discussed.

  14. Fragile X Mental Retardation Protein Is Required to Maintain Visual Conditioning-Induced Behavioral Plasticity by Limiting Local Protein Synthesis.

    Science.gov (United States)

    Liu, Han-Hsuan; Cline, Hollis T

    2016-07-06

    Fragile X mental retardation protein (FMRP) is thought to regulate neuronal plasticity by limiting dendritic protein synthesis, but direct demonstration of a requirement for FMRP control of local protein synthesis during behavioral plasticity is lacking. Here we tested whether FMRP knockdown in Xenopus optic tectum affects local protein synthesis in vivo and whether FMRP knockdown affects protein synthesis-dependent visual avoidance behavioral plasticity. We tagged newly synthesized proteins by incorporation of the noncanonical amino acid azidohomoalanine and visualized them with fluorescent noncanonical amino acid tagging (FUNCAT). Visual conditioning and FMRP knockdown produce similar increases in FUNCAT in tectal neuropil. Induction of visual conditioning-dependent behavioral plasticity occurs normally in FMRP knockdown animals, but plasticity degrades over 24 h. These results indicate that FMRP affects visual conditioning-induced local protein synthesis and is required to maintain the visual conditioning-induced behavioral plasticity. Fragile X syndrome (FXS) is the most common form of inherited intellectual disability. Exaggerated dendritic protein synthesis resulting from loss of fragile X mental retardation protein (FMRP) is thought to underlie cognitive deficits in FXS, but no direct evidence has demonstrated that FMRP-regulated dendritic protein synthesis affects behavioral plasticity in intact animals. Xenopus tadpoles exhibit a visual avoidance behavior that improves with visual conditioning in a protein synthesis-dependent manner. We showed that FMRP knockdown and visual conditioning dramatically increase protein synthesis in neuronal processes. Furthermore, induction of visual conditioning-dependent behavioral plasticity occurs normally after FMRP knockdown, but performance rapidly deteriorated in the absence of FMRP. These studies show that FMRP negatively regulates local protein synthesis and is required to maintain visual conditioning

  15. Limited Pollen Dispersal Contributes to Population Genetic Structure but Not Local Adaptation in Quercus oleoides Forests of Costa Rica.

    Directory of Open Access Journals (Sweden)

    Nicholas John Deacon

    Full Text Available Quercus oleoides Cham. and Schlect., tropical live oak, is a species of conservation importance in its southern range limit of northwestern Costa Rica. It occurs in high-density stands across a fragmented landscape spanning a contrasting elevation and precipitation gradient. We examined genetic diversity and spatial genetic structure in this geographically isolated and genetically distinct population. We characterized population genetic diversity at 11 nuclear microsatellite loci in 260 individuals from 13 sites. We monitored flowering time at 10 sites, and characterized the local environment in order to compare observed spatial genetic structure to hypotheses of isolation-by-distance and isolation-by-environment. Finally, we quantified pollen dispersal distances and tested for local adaptation through a reciprocal transplant experiment in order to experimentally address these hypotheses.High genetic diversity is maintained in the population and the genetic variation is significantly structured among sampled sites. We identified 5 distinct genetic clusters and average pollen dispersal predominately occurred over short distances. Differences among sites in flowering phenology and environmental factors, however, were not strictly associated with genetic differentiation. Growth and survival of upland and lowland progeny in their native and foreign environments was expected to exhibit evidence of local adaptation due to the more extreme dry season in the lowlands. Seedlings planted in the lowland garden experienced much higher mortality than seedlings in the upland garden, but we did not identify evidence for local adaptation.Overall, this study indicates that the Costa Rican Q. oleoides population has a rich population genetic history. Despite environmental heterogeneity and habitat fragmentation, isolation-by-distance and isolation-by-environment alone do not explain spatial genetic structure. These results add to studies of genetic structure by

  16. Limited Pollen Dispersal Contributes to Population Genetic Structure but Not Local Adaptation in Quercus oleoides Forests of Costa Rica.

    Science.gov (United States)

    Deacon, Nicholas John; Cavender-Bares, Jeannine

    2015-01-01

    Quercus oleoides Cham. and Schlect., tropical live oak, is a species of conservation importance in its southern range limit of northwestern Costa Rica. It occurs in high-density stands across a fragmented landscape spanning a contrasting elevation and precipitation gradient. We examined genetic diversity and spatial genetic structure in this geographically isolated and genetically distinct population. We characterized population genetic diversity at 11 nuclear microsatellite loci in 260 individuals from 13 sites. We monitored flowering time at 10 sites, and characterized the local environment in order to compare observed spatial genetic structure to hypotheses of isolation-by-distance and isolation-by-environment. Finally, we quantified pollen dispersal distances and tested for local adaptation through a reciprocal transplant experiment in order to experimentally address these hypotheses. High genetic diversity is maintained in the population and the genetic variation is significantly structured among sampled sites. We identified 5 distinct genetic clusters and average pollen dispersal predominately occurred over short distances. Differences among sites in flowering phenology and environmental factors, however, were not strictly associated with genetic differentiation. Growth and survival of upland and lowland progeny in their native and foreign environments was expected to exhibit evidence of local adaptation due to the more extreme dry season in the lowlands. Seedlings planted in the lowland garden experienced much higher mortality than seedlings in the upland garden, but we did not identify evidence for local adaptation. Overall, this study indicates that the Costa Rican Q. oleoides population has a rich population genetic history. Despite environmental heterogeneity and habitat fragmentation, isolation-by-distance and isolation-by-environment alone do not explain spatial genetic structure. These results add to studies of genetic structure by examining a common

  17. Magnetic shielding of a limiter

    International Nuclear Information System (INIS)

    Brevnov, N.N.; Stepanov, S.B.; Khimchenko, L.N.; Matthews, G.F.; Goodal, D.H.J.

    1991-01-01

    Localization of plasma interaction with material surfaces in a separate chamber, from where the escape of impurities is hardly realized, i.e. application of magnetic divertors or pump limiters, is the main technique for reduction of the impurity content in a plasma. In this case, the production of a divertor configuration requires a considerable power consumption and results in a less effective utilization of the magnetic field volume. Utilization of a pump limiter, for example the ICL-type, under tokamak-reactor conditions would result in the extremely high and forbidden local heat loadings onto the limiter surface. Moreover, the magnetically-shielded pump limiter (MSL) was proposed to combine positive properties of the divertor and the pump limiter. The idea of magnetic shielding is to locate the winding with current inside the limiter head so that the field lines of the resultant magnetic field do not intercept the limiter surface. In this case the plasma flows around the limiter leading edges and penetrates into the space under the limiter. The shielding magnetic field can be directed either counter the toroidal field or counter the poloidal one of a tokamak, dependent on the concrete diagram of the device. Such a limiter has a number of advantages: -opportunity to control over the particle and impurity recycling without practical influence upon the plasma column geometry, - perturbation of a plasma column magnetic configuration from the side of such a limiter is less than that from the side of the divertor coils. The main deficiency is the necessity to locate active windings inside the discharge chamber. (author) 5 refs., 3 figs

  18. ASSERT-PV 3.2: Advanced subchannel thermalhydraulics code for CANDU fuel bundles

    International Nuclear Information System (INIS)

    Rao, Y.F.; Cheng, Z.; Waddington, G.M.; Nava-Dominguez, A.

    2014-01-01

    Highlights: • Introduction to a new version of the Canadian subchannel code, ASSERT-PV 3.2. • Enhanced models for flow-distribution, CHF and post-dryout heat transfer prediction. • Model changes focused on unique features of horizontal CANDU bundles. • Detailed description of model changes for all major thermalhydraulics models. • Discussion on rationale and limitation of the model changes. - Abstract: Atomic Energy of Canada Limited (AECL) has developed the subchannel thermalhydraulics code ASSERT-PV for the Canadian nuclear industry. The most recent release version, ASSERT-PV 3.2 has enhanced phenomenon models for improved predictions of flow distribution, dryout power and CHF location, and post-dryout (PDO) sheath temperature in horizontal CANDU fuel bundles. The focus of the improvements is mainly on modeling considerations for the unique features of CANDU bundles such as horizontal flows, small pitch to diameter ratios, high mass fluxes, and mixed and irregular subchannel geometries, compared to PWR/BWR fuel assemblies. This paper provides a general introduction to ASSERT-PV 3.2, and describes the model changes or additions in the new version to improve predictions of flow distribution, dryout power and CHF location, and PDO sheath temperatures in CANDU fuel bundles

  19. ASSERT-PV 3.2: Advanced subchannel thermalhydraulics code for CANDU fuel bundles

    Energy Technology Data Exchange (ETDEWEB)

    Rao, Y.F., E-mail: raoy@aecl.ca; Cheng, Z., E-mail: chengz@aecl.ca; Waddington, G.M., E-mail: waddingg@aecl.ca; Nava-Dominguez, A., E-mail: navadoma@aecl.ca

    2014-08-15

    Highlights: • Introduction to a new version of the Canadian subchannel code, ASSERT-PV 3.2. • Enhanced models for flow-distribution, CHF and post-dryout heat transfer prediction. • Model changes focused on unique features of horizontal CANDU bundles. • Detailed description of model changes for all major thermalhydraulics models. • Discussion on rationale and limitation of the model changes. - Abstract: Atomic Energy of Canada Limited (AECL) has developed the subchannel thermalhydraulics code ASSERT-PV for the Canadian nuclear industry. The most recent release version, ASSERT-PV 3.2 has enhanced phenomenon models for improved predictions of flow distribution, dryout power and CHF location, and post-dryout (PDO) sheath temperature in horizontal CANDU fuel bundles. The focus of the improvements is mainly on modeling considerations for the unique features of CANDU bundles such as horizontal flows, small pitch to diameter ratios, high mass fluxes, and mixed and irregular subchannel geometries, compared to PWR/BWR fuel assemblies. This paper provides a general introduction to ASSERT-PV 3.2, and describes the model changes or additions in the new version to improve predictions of flow distribution, dryout power and CHF location, and PDO sheath temperatures in CANDU fuel bundles.

  20. The reliability and validity of Chinese version of SF36 v2 in aging patients with chronic heart failure.

    Science.gov (United States)

    Dong, Aishu; Chen, Sisi; Zhu, Lianlian; Shi, Lingmin; Cai, Yueli; Zeng, Jingni; Guo, Wenjian

    2017-08-01

    Chronic heart failure (CHF), a major public health problem worldwide, seriously limits health-related quality of life (HRQOL). How to evaluate HRQOL in older patients with CHF remains a problem. To evaluate the reliability and validity of the Chinese version of the Medical Outcomes Study Short Form version 2 (SF-36v2) in CHF patients. From September 2012 to June 2014, we assessed QOL using the SF-36v2 in 171 aging participants with CHF in four cardiology departments. Convergent and discriminant validity, factorial validity, sensitivity among different NYHA classes and between different age groups, and reliability were determined using standard measurement methods. A total of 150 participants completed a structured questionnaire including general information and the Chinese SF-36v2; 132 questionnaires were considered valid, while 21 patients refused to take part. 25 of the 50 participants invited to complete the 2-week test-retest questionnaires returned completed questionnaires. The internal consistency reliability (Cronbach's α) of the total SF-36v2 was 0.92 (range 0.74-0.93). All hypothesized item-subscale correlations showed satisfactory convergent and discriminant validity. Sensitivity was measured in different NYHA classes and age groups. Comparison of different NYHA classes showed statistical significance, but there was no significant difference between age groups. We confirmed the SF-36v2 as a valid instrument for evaluating HRQOL Chinese CHF patients. Both reliability and validity were strongly satisfactory, but there was divergence in understanding subscales such as "social functioning" because of differing cultural background. The reliability, validity, and sensitivity of SF-36v2 in aging patients with CHF were acceptable.

  1. Survival trends of US dialysis patients with heart failure: 1995 to 2005.

    LENUS (Irish Health Repository)

    Stack, Austin G

    2012-01-31

    BACKGROUND AND OBJECTIVES: Congestive heart failure (CHF) is a major risk factor for death in end-stage kidney disease; however, data on prevalence and survival trends are limited. The objective of this study was to determine the prevalence and mortality effect of CHF in successive incident dialysis cohorts. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS: This was a population-based cohort of incident US dialysis patients (n = 926,298) from 1995 to 2005. Age- and gender-specific prevalence of CHF was determined by incident year, whereas temporal trends in mortality were compared using multivariable Cox regression. RESULTS: The prevalence of CHF was significantly higher in women than men and in older than younger patients, but it did not change over time in men (range 28% to 33%) or women (range 33% to 36%). From 1995 to 2005, incident death rates decreased for younger men (<\\/=70 years) and increased for older men (>70 years). For women, the pattern was similar but less impressive. During this period, the adjusted mortality risks (relative risk [RR]) from CHF decreased in men (from RR = 1.06 95% Confidence intervals (CI) 1.02-1.11 in 1995 to 0.91 95% CI 0.87-0.96 in 2005) and women (from RR = 1.06 95% CI 1.01-1.10 in 1995 to 0.90 95% CI 0.85-0.95 in 2005 compared with referent year 2000; RR = 1.00). The reduction in mortality over time was greater for younger than older patients (20% to 30% versus 5% to 10% decrease per decade). CONCLUSIONS: Although CHF remains a common condition at dialysis initiation, mortality risks in US patients have declined from 1995 to 2005.

  2. Local and Global Distinguishability in Quantum Interferometry

    International Nuclear Information System (INIS)

    Durkin, Gabriel A.; Dowling, Jonathan P.

    2007-01-01

    A statistical distinguishability based on relative entropy characterizes the fitness of quantum states for phase estimation. This criterion is employed in the context of a Mach-Zehnder interferometer and used to interpolate between two regimes of local and global phase distinguishability. The scaling of distinguishability in these regimes with photon number is explored for various quantum states. It emerges that local distinguishability is dependent on a discrepancy between quantum and classical rotational energy. Our analysis demonstrates that the Heisenberg limit is the true upper limit for local phase sensitivity. Only the ''NOON'' states share this bound, but other states exhibit a better trade-off when comparing local and global phase regimes

  3. Electron and Nucleon Localization Functions of Oganesson: Approaching the Thomas-Fermi Limit

    Science.gov (United States)

    Jerabek, Paul; Schuetrumpf, Bastian; Schwerdtfeger, Peter; Nazarewicz, Witold

    2018-02-01

    Fermion localization functions are used to discuss electronic and nucleonic shell structure effects in the superheavy element oganesson, the heaviest element discovered to date. Spin-orbit splitting in the 7 p electronic shell becomes so large (˜10 eV ) that Og is expected to show uniform-gas-like behavior in the valence region with a rather large dipole polarizability compared to the lighter rare gas elements. The nucleon localization in Og is also predicted to undergo a transition to the Thomas-Fermi gas behavior in the valence region. This effect, particularly strong for neutrons, is due to the high density of single-particle orbitals.

  4. A look at local economic impacts

    International Nuclear Information System (INIS)

    Bradfield, M.

    1998-01-01

    The benefits of mega-projects such as Hibernia and the Sable Offshore Energy Project on the local economies in Newfoundland and Nova Scotia were discussed. It was argued that most of the spin-off activities of such mega-projects are realized externally because the projects are driven by external interests and external funding, and are designed for external markets. Few of the short-term activities that can be done locally provide opportunities for sustained economic growth. Studies have shown that the impact of mega-projects on smaller economies is mainly on the construction sector and related supplies industries. Another reason why mega-projects have limited real effects on the local economy is that foreign investors have traditional supply sources, often with affiliated companies. Local availability of appropriate skills is yet another potential limiting factor. Moreover, most mega-projects have social, environmental and political consequences that are often under-estimated and ignored. In this author's view, most mega-projects have limited long-term domestic spin-offs. The challenge is to maximize the net benefits, and to minimize the social and environmental costs

  5. Ultrahigh Flux Thin Film Boiling Heat Transfer Through Nanoporous Membranes.

    Science.gov (United States)

    Wang, Qingyang; Chen, Renkun

    2018-05-09

    Phase change heat transfer is fundamentally important for thermal energy conversion and management, such as in electronics with power density over 1 kW/cm 2 . The critical heat flux (CHF) of phase change heat transfer, either evaporation or boiling, is limited by vapor flux from the liquid-vapor interface, known as the upper limit of heat flux. This limit could in theory be greater than 1 kW/cm 2 on a planar surface, but its experimental realization has remained elusive. Here, we utilized nanoporous membranes to realize a new "thin film boiling" regime that resulted in an unprecedentedly high CHF of over 1.2 kW/cm 2 on a planar surface, which is within a factor of 4 of the theoretical limit, and can be increased to a higher value if mechanical strength of the membranes can be improved (demonstrated with 1.85 kW/cm 2 CHF in this work). The liquid supply is achieved through a simple nanoporous membrane that supports the liquid film where its thickness automatically decreases as heat flux increases. The thin film configuration reduces the conductive thermal resistance, leads to high frequency bubble departure, and provides separate liquid-vapor pathways, therefore significantly enhances the heat transfer. Our work provides a new nanostructuring approach to achieve ultrahigh heat flux in phase change heat transfer and will benefit both theoretical understanding and application in thermal management of high power devices of boiling heat transfer.

  6. The Potential Feed Value, Mode of Use and Limitations of Locally Produced Spent Brewers' Grains Fed to Dairy Cattle

    International Nuclear Information System (INIS)

    Owango, M.O.; Sanda, I.A.; Lukuyu, B.A.; Omolo, J.O.; Masibili, M.

    1999-01-01

    A diagnostic survey and participatory rural appraisal were conducted to determine the potential feed value, mode of and constraints to the use of locally produced wet spent brewers' grains fed to dairy cattle. Structured questionnaire instruments, covering, household characteristics, dairy production, feeds and feeding and extension services were used. The survey was conducted by trained enumerators. The tools used in participatory rural appraisal were; semi-structured interview, ranking seasonal calendars labour profile and gender responsibilities.The main feed resources were Napier grass, green and dry maize stover, public land grasses and supplements consisting of Dairy meal, milling and agroindustrial by-products.Wet spent brewers' grain is one of the by-products.The main sources were Kenya Breweries Limited, Kuguru Food Processors and 'Busaa' dregs from the traditional brews. It was fed to dairy cows by (96.8%) of the households interviewed, either at milking in the mornings or evenings. Spent brewers grains was stored after collection from the sources by (87.2%) and (12.8%) of the households for one or more weeks respectively. Households interviewed perceived spent brewers grains to be comparable to available dairy meal and other energy feeds, and all the households feeding spent brewers grains reported that it increased milk yield in lactating cows. The farmers therefore, preferentially fed spent brewers grains to lactating and dry cows, heifers, calves and bulls respectively. However, only (1.7%)of the households interviewed received extension advice on the use of spent brewers' grains. The perception of the farmers/household was that spent brewers' grains is a valuable feed for dairy cattle and increased milk yield production, and maintained good body condition. However,limited information is available on the potential, mode of and constraints to the use of locally produced spent brewers' grains

  7. Experimental Study on Boiling Crisis in Pool Boiling

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Satbyoul; Kim, Hyungdae [Kyung Hee University, Yongin (Korea, Republic of)

    2016-10-15

    They postulated that failure in re-wetting of a dry patch by a cooling liquid is governed by microhydrodynamics near the wall. Chu et al. commonly observed that active coalescence of newly generated bubbles with preexisting bubbles results in a residual dry patch and prevents the complete rewetting of the dry patch, leading to CHF. In this work, to reveal the key physical mechanism of CHF during the rewetting process of a dry patch, dynamics of dry patches and thermal pattern of a boiling surface are simultaneously observed using TR and IR thermometry techniques. Local dynamics of dry patch and thermal pattern on a boiling surface in synchronized manner for both space and time using TR and IR thermometry were measured during pool boiling of water. Observation and quantitative examination of CHF was performed. - The hydrodynamic and thermal behaviors of irreversible dry patch were observed. The dry patches coalesce into a large dry patch and it locally dried out. Due to the failure of liquid rewetting, the dry patch is not completely rewetted, resulting in the burn out at which temperature is -140°C. - When temperature of a dry patch rises beyond the instantaneous nucleation temperature, several bubbles nucleate at the head of the advancing liquid meniscus and prevents the liquid front, and eventually the overheated dry patch remains alive after the departure of the massive bubble.

  8. Mechanism of subcooled water flow boiling critical heat flux in a circular tube at high liquid Reynolds number

    International Nuclear Information System (INIS)

    Hata, K.; Fukuda, K.; Masuzaki, S.

    2014-01-01

    The subcooled boiling heat transfer and the steady state critical heat flux (CHF) in a vertical circular tube for the flow velocities (u=3.95 to 30.80 m/s) are systematically measured by the experimental water loop comprised of a multistage canned-type circulation pump with high pump head. The SUS304 test tube of inner diameter (d=6 mm) and heated length (L=59.5 mm) is used in this work. The outer surface temperatures of the SUS304 test tube with heating are observed by an infrared thermal imaging camera and a video camera. The subcooled boiling heat transfers for SUS304 test tube are compared with the values calculated by other workers' correlations for the subcooled boiling heat transfer. The influence of flow velocity on the subcooled boiling heat transfer and the CHF is investigated into details based on the experimental data. Nucleate boiling surface superheats at the CHF are close to the lower limit of the heterogeneous spontaneous nucleation temperature and the homogeneous spontaneous nucleation temperature. The dominant mechanism of the subcooled flow boiling CHF on the SUS304 circular tube is discussed at high liquid Reynolds number. On the other hand, theoretical equations for k-ε turbulence model in a circular tube of a 3 mm in diameter and a 526 mm long are numerically solved for heating of water on heated section of a 3 mm in diameter and a 67 mm long with various thicknesses of conductive sub-layer by using PHOENICS code under the same conditions as the experimental ones previously obtained considering the temperature dependence of thermo-physical properties concerned. The Platinum (Pt) test tube of inner diameter (d=3 mm) and heated length (L=66.5 mm) was used in this experiment. The thicknesses of conductive sub-layer from non-boiling regime to CHF are clarified. The thicknesses of conductive sub-layer at the CHF point are evaluated for various flow velocities. The experimental values of the CHF are also compared with the corresponding

  9. Recruitment pattern of sympathetic muscle neurons during premature ventricular contractions in heart failure patients and controls.

    Science.gov (United States)

    Maslov, Petra Zubin; Breskovic, Toni; Brewer, Danielle N; Shoemaker, J Kevin; Dujic, Zeljko

    2012-12-01

    Premature ventricular contractions (PVC) elicit larger bursts of multiunit muscle sympathetic nerve activity (MSNA), reflecting the ability to increase postganglionic axonal recruitment. We tested the hypothesis that chronic heart failure (CHF) limits the ability to recruit postganglionic sympathetic neurons as a response to PVC due to the excessive sympathetic activation in these patients. Sympathetic neurograms of sufficient signal-to-noise ratio were obtained from six CHF patients and from six similarly aged control individuals. Action potentials (APs) were extracted from the multiunit sympathetic neurograms during sinus rhythm bursts and during the post-PVC bursts. These APs were classified on the basis of the frequency per second, the content per burst, and the peak-to-peak amplitude, which formed the basis of binning the APs into active clusters. Compared with controls, CHF had higher APs per burst and higher number of active clusters per sinus rhythm burst (P < 0.05). Compared with sinus rhythm bursts, both groups increased AP frequency and the number of active clusters in the post-PVC burst (P < 0.05). However, compared with controls, the increase in burst integral, AP frequency, and APs per burst during the post-PVC burst was less in CHF patients. Nonetheless, the PVC-induced increase in active clusters per burst was similar between the groups. Thus, these CHF patients retained the ability to recruit larger APs but had a diminished ability to increase overall AP content.

  10. Exercise training attenuates chemoreflex-mediated reductions of renal blood flow in heart failure.

    Science.gov (United States)

    Marcus, Noah J; Pügge, Carolin; Mediratta, Jai; Schiller, Alicia M; Del Rio, Rodrigo; Zucker, Irving H; Schultz, Harold D

    2015-07-15

    In chronic heart failure (CHF), carotid body chemoreceptor (CBC) activity is increased and contributes to increased tonic and hypoxia-evoked elevation in renal sympathetic nerve activity (RSNA). Elevated RSNA and reduced renal perfusion may contribute to development of the cardio-renal syndrome in CHF. Exercise training (EXT) has been shown to abrogate CBC-mediated increases in RSNA in experimental heart failure; however, the effect of EXT on CBC control of renal blood flow (RBF) is undetermined. We hypothesized that CBCs contribute to tonic reductions in RBF in CHF, that stimulation of the CBC with hypoxia would result in exaggerated reductions in RBF, and that these responses would be attenuated with EXT. RBF was measured in CHF-sedentary (SED), CHF-EXT, CHF-carotid body denervation (CBD), and CHF-renal denervation (RDNX) groups. We measured RBF at rest and in response to hypoxia (FiO2 10%). All animals exhibited similar reductions in ejection fraction and fractional shortening as well as increases in ventricular systolic and diastolic volumes. Resting RBF was lower in CHF-SED (29 ± 2 ml/min) than in CHF-EXT animals (46 ± 2 ml/min, P < 0.05) or in CHF-CBD animals (42 ± 6 ml/min, P < 0.05). In CHF-SED, RBF decreased during hypoxia, and this was prevented in CHF-EXT animals. Both CBD and RDNX abolished the RBF response to hypoxia in CHF. Mean arterial pressure increased in response to hypoxia in CHF-SED, but was prevented by EXT, CBD, and RDNX. EXT is effective in attenuating chemoreflex-mediated tonic and hypoxia-evoked reductions in RBF in CHF. Copyright © 2015 the American Physiological Society.

  11. Implementation of a workplace smoking ban in bars: The limits of local discretion

    Directory of Open Access Journals (Sweden)

    Bero Lisa A

    2008-12-01

    Full Text Available Abstract Background In January 1998, the California state legislature extended a workplace smoking ban to bars. The purpose of this study was to explore the conditions that facilitate or hinder compliance with a smoking ban in bars. Methods We studied the implementation of the smoking ban in bars by interviewing three sets of policy participants: bar employers responsible for complying with the law; local government officials responsible for enforcing the law; and tobacco control activists who facilitated implementation. We transcribed the interviews and did a qualitative analysis of the text. Results The conditions that facilitated bar owners' compliance with a smoking ban in bars included: if the cost to comply was minimal; if the bars with which they were in competition were in compliance with the smoking ban; and if there was authoritative, consistent, coordinated, and uniform enforcement. Conversely, the conditions that hindered compliance included: if the law had minimal sanctions; if competing bars in the area allowed smoking; and if enforcement was delayed or inadequate. Conclusion Many local enforcers wished to forfeit their local discretion and believed the workplace smoking ban in bars would be best implemented by a state agency. The potential implication of this study is that, given the complex nature of local politics, smoking bans in bars are best implemented at a broader provincial or national level.

  12. Implementation of a workplace smoking ban in bars: the limits of local discretion.

    Science.gov (United States)

    Montini, Theresa; Bero, Lisa A

    2008-12-08

    In January 1998, the California state legislature extended a workplace smoking ban to bars. The purpose of this study was to explore the conditions that facilitate or hinder compliance with a smoking ban in bars. We studied the implementation of the smoking ban in bars by interviewing three sets of policy participants: bar employers responsible for complying with the law; local government officials responsible for enforcing the law; and tobacco control activists who facilitated implementation. We transcribed the interviews and did a qualitative analysis of the text. The conditions that facilitated bar owners' compliance with a smoking ban in bars included: if the cost to comply was minimal; if the bars with which they were in competition were in compliance with the smoking ban; and if there was authoritative, consistent, coordinated, and uniform enforcement. Conversely, the conditions that hindered compliance included: if the law had minimal sanctions; if competing bars in the area allowed smoking; and if enforcement was delayed or inadequate. Many local enforcers wished to forfeit their local discretion and believed the workplace smoking ban in bars would be best implemented by a state agency. The potential implication of this study is that, given the complex nature of local politics, smoking bans in bars are best implemented at a broader provincial or national level.

  13. Angular dependence of SiO2 etch rate at various bias voltages in a high density CHF3 plasma

    International Nuclear Information System (INIS)

    Lee, Gyeo-Re; Hwang, Sung-Wook; Min, Jae-Ho; Moon, Sang Heup

    2002-01-01

    The dependence of the SiO 2 etch rate on the angle of ions incident on the substrate surface was studied over a bias voltage range from -20 to -600 V in a high-density CHF 3 plasma using a Faraday cage to control the ion incident angle. The effect of the bottom plane on the sidewall etching was also examined. Differences in the characteristics of the etch rate as a function of the ion angle were observed for different bias voltage regions. When the absolute value of the bias voltage was smaller than 200 V, the normalized etch rate (NER) defined as the etch rate normalized by the rate on the horizontal surface, changed following a cosine curve with respect to the ion incident angle, defined as the angle between the ion direction and the normal of the substrate surface. When the magnitude of the bias voltage was larger than 200 V, the NER was deviated to higher values from those given by a cosine curve at ion angles between 30 deg. and 70 deg. , and then drastically decreased at angles higher than 70 deg. until a net deposition was observed at angles near 90 deg. . The characteristic etch-rate patterns at ion angles below 70 deg. were determined by the ion energy transferred to the surface, which affected the SiO 2 etch rate and, simultaneously, the rate of removal of a fluorocarbon polymer film formed on the substrate surface. At high ion angles, particles emitted from the bottom plane contributed to polymer formation on and affected the etching characteristics of the substrate

  14. Isothermal vapour-liquid equilibrium data for the binary systems of (CHF3 or C2F6) and n-heptane

    International Nuclear Information System (INIS)

    Williams-Wynn, Mark D.; Naidoo, Paramespri; Ramjugernath, Deresh

    2016-01-01

    Highlights: • Isothermal static-analytic and static-synthetic phase equilibrium measurements. • Binary VLE data for (CHF3 or C 2 F 6 ) + n-heptane. • Thermodynamic models were fitted to the experimental data. • Critical locus estimation for the systems. - Abstract: Isothermal vapour-liquid equilibrium (VLE) values for two binary systems; trifluoromethane and n-heptane at temperatures between T = (272.9 and 313.2) K, and hexafluoroethane and n-heptane at temperatures between T = (293.0 and 313.2) K were measured with a static-analytic apparatus. Bubble pressures at temperatures between T = (293.0 and 313.2) K, at several compositions, were also measured with a variable-volume static-synthetic apparatus. Vapour-liquid-liquid equilibrium (VLLE) was found to occur for certain isotherms for both of the systems. The PR EOS, with the Mathias-Copeman (MC) alpha function, combined with either the classical mixing rule or the Wong-Sandler (WS) mixing rule was used to correlate the experimental results. Either the NRTL or the UNIQUAC activity coefficient model was used within the WS mixing rule. The indirect extended scaling laws of Ungerer et al. were used to extrapolate critical loci from the experimental coexistence data, and the calculation procedure of Heidemann and Khalil was employed to calculate the mixture critical locus curves at temperatures close to the refrigerant critical temperatures. At lower temperatures on the mixture critical curve, gas-liquid critical points occurred, whereas, at higher temperatures, the critical points occurred along a liquid-liquid locus curve. The two systems were categorised according to the van Konynenburg and Scott classification.

  15. Sub-diffraction limit localization of proteins in volumetric space using Bayesian restoration of fluorescence images from ultrathin specimens.

    Directory of Open Access Journals (Sweden)

    Gordon Wang

    Full Text Available Photon diffraction limits the resolution of conventional light microscopy at the lateral focal plane to 0.61λ/NA (λ = wavelength of light, NA = numerical aperture of the objective and at the axial plane to 1.4nλ/NA(2 (n = refractive index of the imaging medium, 1.51 for oil immersion, which with visible wavelengths and a 1.4NA oil immersion objective is -220 nm and -600 nm in the lateral plane and axial plane respectively. This volumetric resolution is too large for the proper localization of protein clustering in subcellular structures. Here we combine the newly developed proteomic imaging technique, Array Tomography (AT, with its native 50-100 nm axial resolution achieved by physical sectioning of resin embedded tissue, and a 2D maximum likelihood deconvolution method, based on Bayes' rule, which significantly improves the resolution of protein puncta in the lateral plane to allow accurate and fast computational segmentation and analysis of labeled proteins. The physical sectioning of AT allows tissue specimens to be imaged at the physical optimum of modern high NA plan-apochormatic objectives. This translates to images that have little out of focus light, minimal aberrations and wave-front distortions. Thus, AT is able to provide images with truly invariant point spread functions (PSF, a property critical for accurate deconvolution. We show that AT with deconvolution increases the volumetric analytical fidelity of protein localization by significantly improving the modulation of high spatial frequencies up to and potentially beyond the spatial frequency cut-off of the objective. Moreover, we are able to achieve this improvement with no noticeable introduction of noise or artifacts and arrive at object segmentation and localization accuracies on par with image volumes captured using commercial implementations of super-resolution microscopes.

  16. The Unimolecular Reactions of CF3CHF2 Studied by Chemical Activation: Assignment of Rate Constants and Threshold Energies to the 1,2-H Atom Transfer, 1,1-HF and 1,2-HF Elimination Reactions, and the Dependence of Threshold Energies on the Number of F-Atom Substituents in the Fluoroethane Molecules.

    Science.gov (United States)

    Smith, Caleb A; Gillespie, Blanton R; Heard, George L; Setser, D W; Holmes, Bert E

    2017-11-22

    The recombination of CF 3 and CHF 2 radicals in a room-temperature bath gas was used to prepare vibrationally excited CF 3 CHF 2 * molecules with 101 kcal mol -1 of vibrational energy. The subsequent 1,2-H atom transfer and 1,1-HF and 1,2-HF elimination reactions were observed as a function of bath gas pressure by following the CHF 3 , CF 3 (F)C: and C 2 F 4 product concentrations by gas chromatography using a mass spectrometer as the detector. The singlet CF 3 (F)C: concentration was measured by trapping the carbene with trans-2-butene. The experimental rate constants are 3.6 × 10 4 , 4.7 × 10 4 , and 1.1 × 10 4 s -1 for the 1,2-H atom transfer and 1,1-HF and 1,2-HF elimination reactions, respectively. These experimental rate constants were matched to statistical RRKM calculated rate constants to assign threshold energies (E 0 ) of 88 ± 2, 88 ± 2, and 87 ± 2 kcal mol -1 to the three reactions. Pentafluoroethane is the only fluoroethane that has a competitive H atom transfer decomposition reaction, and it is the only example with 1,1-HF elimination being more important than 1,2-HF elimination. The trend of increasing threshold energies for both 1,1-HF and 1,2-HF processes with the number of F atoms in the fluoroethane molecule is summarized and investigated with electronic-structure calculations. Examination of the intrinsic reaction coordinate associated with the 1,1-HF elimination reaction found an adduct between CF 3 (F)C: and HF in the exit channel with a dissociation energy of ∼5 kcal mol -1 . Hydrogen-bonded complexes between HF and the H atom migration transition state of CH 3 (F)C: and the F atom migration transition state of CF 3 (F)C: also were found by the calculations. The role that these carbene-HF complexes could play in 1,1-HF elimination reactions is discussed.

  17. A comparison of critical heat flux in tubes and bilaterally heated annuli

    Energy Technology Data Exchange (ETDEWEB)

    Doerffer, S.; Groeneveld, D.C.; Cheng, S.C. [Univ. of Ottawa (Canada)

    1995-09-01

    This paper examines the critical heat flux (CHF) behaviour for annular flow in bilaterally heated annuli and compares it to that in tubes and unilaterally heated annuli. It was found that the differences in CHF between bilaterally and unilaterally heated annuli or tubes strongly depend on pressure and quality. the CHF in bilaterally heated annuli can be predicted by tube CHF prediction methods for the simultaneous CHF occurrence at both surfaces, and the following flow conditions: pressure 7-10 MPa, mass flux 0.5-4.0 Mg/m{sup 2}s and critical quality 0.23-0.9. The effect on CHF of the outer-to-inner surface heat flux ratio, was also examined. The prediction of CHF for bilaterally heated annuli was based on the droplet-diffusion model proposed by Kirillov and Smogalev. While their model refers only to CHF occurrence at the inner surface, we extended it to cases where CHF occurs at the outer surface, and simultaneously at both surfaces, thus covering all cases of CHF occurrence in bilaterally heated annuli. From the annuli CHF data of Becker and Letzter, we derived empirical functions required by the model. the proposed equations provide good accuracy for the CHF data used in this study. Moreover, the equations can predict conditions at which CHF occurs simultaneously at both surfaces. Also, this method can be used for cases with only one heated surface.

  18. Localized superconductors

    International Nuclear Information System (INIS)

    Ma, M.; Lee, P.A.

    1985-01-01

    We study the effects of Anderson localization on superconductivity by using a Bardeen-Cooper-Schrieffer (BCS)-type trial wave function which pairs electrons in exact time-reversed eigenstates of the single-particle Hamiltonian. Within this approximation, and neglecting localization effects on the effective Coulomb repulsion and the electron-phonon coupling, we find that superconductivity persists below the mobility edge. In fact, Anderson's theorem is valid in the localized phase as long as rhoΔ 0 L/sup d/ > 1 (rho is the density of states averaged over +- Δ 0 of the Fermi energy, Δ 0 the BCS gap parameter, and L the localization length). Hence the gap order parameter Δ(r) remains uniform in space at the BCS value Δ 0 . The superfluid density and response to electromagnetic perturbations, however, show marked differences from the ''dirty superconductor'' regime. For rhoΔ 0 L/sup d/ < 1, Δ(r) fluctuates spatially and eventually drops to zero. In the limit when states are site localized, the system crosses over into the ''Anderson negative-U glass.'' Considerations beyond the trial wave-function approximation will speed up the destruction of superconductivity. The superconductor formed from localized states has the property that its quasiparticle excitations are also localized. Such excitations can be probed by observing the normal current in a tunneling junction

  19. Extended release formulations for local anaesthetic agents.

    Science.gov (United States)

    Weiniger, C F; Golovanevski, L; Domb, A J; Ickowicz, D

    2012-08-01

    Systemic toxicity through overdose of local anaesthetic agents is a real concern. By encapsulating local anaesthetics in biodegradable carriers to produce a system for prolonged release, their duration of action can be extended. This encapsulation should also improve the safety profile of the local anaesthetic as it is released at a slower rate. Work with naturally occurring local anaestheticss has also shown promise in the area of reducing systemic and neurotoxicity. Extended duration local anaesthetic formulations in current development or clinical use include liposomes, hydrophobic based polymer particles such as Poly(lactic-co-glycolic acid) microspheres, pasty injectable and solid polymers like Poly(sebacic-co-ricinoleic acid) P(SA:RA) and their combination with synthetic and natural local anaesthetic. Their duration of action, rationale and limitations are reviewed. Direct comparison of the different agents is limited by their chemical properties, the drug doses encapsulated and the details of in vivo models described. Anaesthesia © 2012 The Association of Anaesthetists of Great Britain and Ireland.

  20. An utilization of liquid sublayer dryout mechanism in predicting critical heat flux under low pressure and low velocity conditions in round tubes

    International Nuclear Information System (INIS)

    Lee, Kwang-Won; Baik, Se-Jin; Ro, Tae-Sun

    2000-01-01

    From a theoretical assessment of extensive critical heat flux (CHF) data under low pressure and low velocity (LPLV) conditions, it was found out that lots of CHF data would not be well predicted by a normal annular film dryout (AFD) mechanism, although their flow patterns were identified as annular-mist flow. To predict these CHF data, a liquid sublayer dryout (LSD) mechanism has been newly utilized in developing the mechanistic CHF model based on each identified CHF mechanism. This mechanism postulates that the CHF occurrence is caused by dryout of the thin liquid sublayer resulting from the annular film separation or breaking down due to nucleate boiling in annular film or hydrodynamic fluctuation. In principle, this mechanism well supports the experimental evidence of residual film flow rate at the CHF location, which can not be explained by the AFD mechanism. For a comparative assessment of each mechanism, the CHF model based on the LSD mechanism is developed together with that based on the AFD mechanism. The validation of these models is performed on the 1406 CHF data points ranging over P=0.1-2 MPa, G=4-499 kg m -2 s -1 , L/D=4-402. This model validation shows that 1055 and 231 CHF data are predicted within ±30 error bound by the LSD mechanism and the AFD mechanism, respectively. However, some CHF data whose critical qualities are <0.4 or whose tube length-to-diameter ratios are <70 are considerably overestimated by the CHF model based on the LSD mechanism. These overestimations seem to be caused by an inadequate CHF mechanism classification and an insufficient consideration of the flow instability effect on CHF. Further studies for a new classification criterion screening the CHF data affected by flow instabilities as well as a new bubble detachment model for LPLV conditions, are needed to improve the model accuracy.

  1. RELAP5/MOD2 benchmarking study: Critical heat flux under low-flow conditions

    International Nuclear Information System (INIS)

    Ruggles, E.; Williams, P.T.

    1990-01-01

    Experimental studies by Mishima and Ishii performed at Argonne National Laboratory and subsequent experimental studies performed by Mishima and Nishihara have investigated the critical heat flux (CHF) for low-pressure low-mass flux situations where low-quality burnout may occur. These flow situations are relevant to long-term decay heat removal after a loss of forced flow. The transition from burnout at high quality to burnout at low quality causes very low burnout heat flux values. Mishima and Ishii postulated a model for the low-quality burnout based on flow regime transition from churn turbulent to annular flow. This model was validated by both flow visualization and burnout measurements. Griffith et al. also studied CHF in low mass flux, low-pressure situations and correlated data for upflows, counter-current flows, and downflows with the local fluid conditions. A RELAP5/MOD2 CHF benchmarking study was carried out investigating the performance of the code for low-flow conditions. Data from the experimental study by Mishima and Ishii were the basis for the benchmark comparisons

  2. Myocardial remodeling in chronic heart failure with overweight and obesity taking into account the levels of total cholesterol and triglycerides

    Directory of Open Access Journals (Sweden)

    P. P. Bidzilya

    2016-12-01

    Full Text Available It has been demonstrated that high lipid content is accompanied with better course and surviving in chronic heart failure (CHF, which was called “the lipids paradox”. There are a very limited number of investigations which studied the relationship of lipid levels and indices of myocardial remodeling. Aim. To study the features of myocardial remodeling in patients with CHF with overweight and obesity depending on the total cholesterol (TCL and triglyceride (TG levels. Materials and methods. 230 patients were examined and analyzed 101 case histories of patients of with CHF of I–III functional class on the background of overweight and obesity I–III degree. CHF FC was determined by the classification of the New York Heart Association (NYHA. Normal, excess body weight and degree of abdominal obesity were detected by calculating the body mass index. Biochemical method was used to determine the blood levels of TCL and TG. The condition of myocardial remodeling was investigated by echocardiography. Results. It has been established, that smallest manifestation of myocardial remodeling was observed in patients with CHF on the background of overweight and obesity with high TCL level. The most severe manifestations of the heart chambers dilatation, left ventricle hypertrophy (LVH, and valvular functional changes characterized the patients with a low TCL concentration. High content of TG was also accompanied by a less pronounced cardiac remodeling, and the normal value of TG was characterized by more profound structural changes of theLV and valvular regurgitation. Conclusion. At CHF with overweight and obesity, lower TCL and TG levels are accompanied by more severe dilatation of the heart chambers and LVH, the prevalence of LVH eccentric type frequency, deeper functional valve disorders.

  3. Long-term changes of renal function in relation to ace inhibitor/angiotensin receptor blocker dosing in patients with heart failure and chronic kidney disease.

    Science.gov (United States)

    Fröhlich, Hanna; Nelges, Christoph; Täger, Tobias; Schwenger, Vedat; Cebola, Rita; Schnorbach, Johannes; Goode, Kevin M; Kazmi, Syed; Katus, Hugo A; Cleland, John G F; Clark, Andrew L; Frankenstein, Lutz

    2016-08-01

    Angiotensin-converting enzyme inhibitors (ACEIs) and angiotensin receptor blockers (ARBs) have become cornerstones of therapy for chronic heart failure (CHF). Guidelines advise high target doses for ACEIs/ARBs, but fear of worsening renal function may limit dose titration in patients with concomitant chronic kidney disease (CKD). In this retrospective observational study, we identified 722 consecutive patients with systolic CHF, stable CKD stage III/IV (estimated glomerular filtration rate [eGFR] 15-60 mL min(-1) 1.73 m(-2)) and chronic ACEI/ARB treatment from the outpatient heart failure clinics at the Universities of Hull, UK, and Heidelberg, Germany. Change of renal function, worsening CHF, and hyperkalemia at 12-month follow-up were analyzed as a function of both baseline ACEI/ARB dose and dose change from baseline. ΔeGFR was not related to baseline dose of ACEI/ARB (P = .58), or to relative (P = .18) or absolute change of ACEI/ARB dose (P = .21) during follow-up. Expressing change of renal function as a categorical variable (improved/stable/decreased) as well as subgroup analyses with respect to age, sex, New York Heart Association functional class, left ventricular ejection fraction, diabetes, concomitant aldosterone antagonists, CKD stage, hypertension, ACEI vs ARB, and congestion status yielded similar results. There was no association of dose/dose change with incidence of either worsening CHF or hyperkalemia. In patients with systolic CHF and stable CKD stage III/IV, neither continuation of high doses of ACEI/ARB nor up-titration was related to adverse changes in longer-term renal function. Conversely, down-titration was not associated with improvement in eGFR. Use of high doses of ACEI/ARB and their up-titration in patients with CHF and CKD III/IV may be appropriate provided that the patient is adequately monitored. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Tailoring consumer resources to enhance self-care in chronic heart failure.

    Science.gov (United States)

    Driscoll, Andrea; Davidson, Patricia; Clark, Robyn; Huang, Nancy; Aho, Zoe

    2009-08-01

    Chronic heart failure (CHF) is associated with high hospitalisation and mortality rates and debilitating symptoms. In an effort to reduce hospitalisations and improve symptoms individuals must be supported in managing their condition. Patients who can effectively self-manage their symptoms through lifestyle modification and adherence to complex medication regimens will experience less hospitalisations and other adverse events. The purpose of this paper is to explain how providing evidence-based information, using patient education resources, can support self-care. Self-care relates to the activities that individuals engage in relation to health seeking behaviours. Supporting self-care practices through tailored and relevant information can provide patients with resources and advice on strategies to manage their condition. Evidence-based approaches to improve adherence to self-care practices in patients with heart failure are not often reported. Low health literacy can result in poor understanding of the information about CHF and is related to adverse health outcomes. Also a lack of knowledge can lead to non-adherence with self-care practices such as following fluid restriction, low sodium diet and daily weighing routines. However these issues need to be addressed to improve self-management skills. Recently the Heart Foundation CHF consumer resource was updated based on evidence-based national clinical guidelines. The aim of this resource is to help consumers improve understanding of the disease, reduce uncertainty and anxiety about what to do when symptoms appear, encourage discussions with local doctors, and build confidence in self-care management. Evidence-based CHF patient education resources promote self-care practices and early detection of symptom change that may reduce hospitalisations and improve the quality of life for people with CHF.

  5. Offers

    CERN Multimedia

    Staff Association

    2013-01-01

    The « Théâtre de Carouge » offers a 5.- CHF discount for all shows (30.- CHF instead of 35.- CHF) and for the season tickets "Premières représentations" (132.- CHF instead of 162.- CHF) and "Classique" (150.- CHF instead of 180.- CHF). Please send your reservation by email to smills@tcag.ch via your professional email address. Please indicate the date of your reservation, your name and firstname and your telephone number A confirmation will be sent by email. Your membership card will be asked when you collect the tickets. More information on www.tcag.ch and www.tcag.ch/blog/

  6. Assessing landscape constraints on species abundance: Does the neighborhood limit species response to local habitat conservation programs?

    Science.gov (United States)

    Jorgensen, Christopher F.; Powell, Larkin A.; Lusk, Jeffrey J.; Bishop, Andrew A.; Fontaine, Joseph J.

    2014-01-01

    Landscapes in agricultural systems continue to undergo significant change, and the loss of biodiversity is an ever-increasing threat. Although habitat restoration is beneficial, management actions do not always result in the desired outcome. Managers must understand why management actions fail; yet, past studies have focused on assessing habitat attributes at a single spatial scale, and often fail to consider the importance of ecological mechanisms that act across spatial scales. We located survey sites across southern Nebraska, USA and conducted point counts to estimate Ring-necked Pheasant abundance, an economically important species to the region, while simultaneously quantifying landscape effects using a geographic information system. To identify suitable areas for allocating limited management resources, we assessed land cover relationships to our counts using a Bayesian binomial-Poisson hierarchical model to construct predictive Species Distribution Models of relative abundance. Our results indicated that landscape scale land cover variables severely constrained or, alternatively, facilitated the positive effects of local land management for Ring-necked Pheasants.

  7. An experimental study on critical heat flux in a hemispherical narrow gap

    International Nuclear Information System (INIS)

    Park, R.J.; Lee, S.J.; Kang, K.H.; Kim, J.H.; Kim, S.B.; Kim, H.D.; Jeong, J.H.

    2000-01-01

    An experimental study of CHFG (Critical Heat Flux in Gap) has been performed to investigate the inherent cooling mechanism using distilled water and Freon R-113 in hemispherical narrow gaps. As a separate effect test of the CHFG test, a CCFL (Counter Current Flow Limit) test has been also performed to confirm the mechanism of the CHF in narrow annular gaps with large diameter. The CHFG test results have shown that an increase in the gap thickness leads to an increase in critical power. The pressure effect on the critical power was found to be much milder than predictions by CHF correlations of other studies. In the CCFL experiment, the occurrence of CCFL was correlated with the Wallis parameter, which was assumed to correspond to the critical power in the CHFG experiment. The measured values of critical power in the CHFG tests are much lower than CCFL experimental data and the predictions made by empirical CHF correlations. (author)

  8. Locally limited inhibition of bone resorption and orthodontic relapse by recombinant osteoprotegerin protein.

    Science.gov (United States)

    Schneider, D A; Smith, S M; Campbell, C; Hayami, T; Kapila, S; Hatch, N E

    2015-04-01

    To determine minimal dose levels required for local inhibition of orthodontic relapse by recombinant OPG protein (OPG-Fc), while also determining effects of injected OPG-Fc on alveolar bone and long bone. The Department of Orthodontics and Pediatric Dentistry at the University of Michigan. Eighteen male Sprague Dawley rats. Maxillary molars were moved with nickel-titanium springs and then allowed to relapse in Sprague Dawley rats. Upon appliance removal, animals were injected with a single dose of 1.0 mg/kg OPG-Fc, 0.1 mg/kg OPG-Fc, or phosphate-buffered saline (vehicle) just distal to the molar teeth. Tooth movement measurements were made from stone casts, which were scanned and digitally measured. Alveolar tissues were examined by histology. Micro-computed tomography was used to quantify changes in alveolar and femur bone. Local injection of OPG-Fc inhibited molar but not incisor relapse, when compared to vehicle-injected animals. No significant differences in alveolar or femur bone were seen between the three treatment groups after 24 days of relapse. Our results demonstrate that a single local injection of OPG-Fc effectively inhibits orthodontic relapse, with minimal systemic bone metabolic effects. Our results also show that a single injection of OPG-Fc will influence tooth movement only in teeth close to the injection site. These findings indicate that OPG-Fc has potential as a safe and effective pharmacological means to locally control osteoclasts, for uses such as maintaining anchorage during orthodontic tooth movement and preventing orthodontic relapse in humans. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Local quantum thermal susceptibility

    Science.gov (United States)

    de Pasquale, Antonella; Rossini, Davide; Fazio, Rosario; Giovannetti, Vittorio

    2016-09-01

    Thermodynamics relies on the possibility to describe systems composed of a large number of constituents in terms of few macroscopic variables. Its foundations are rooted into the paradigm of statistical mechanics, where thermal properties originate from averaging procedures which smoothen out local details. While undoubtedly successful, elegant and formally correct, this approach carries over an operational problem, namely determining the precision at which such variables are inferred, when technical/practical limitations restrict our capabilities to local probing. Here we introduce the local quantum thermal susceptibility, a quantifier for the best achievable accuracy for temperature estimation via local measurements. Our method relies on basic concepts of quantum estimation theory, providing an operative strategy to address the local thermal response of arbitrary quantum systems at equilibrium. At low temperatures, it highlights the local distinguishability of the ground state from the excited sub-manifolds, thus providing a method to locate quantum phase transitions.

  10. Delivering Chronic Heart Failure Telemanagement via Multiple Interactive Platforms

    Directory of Open Access Journals (Sweden)

    Joseph Finkelstein

    2013-06-01

    Full Text Available Existing telemonitoring systems provide limited support in implementing personalized treatment plans. We developed a Home Automated Telemanagement (HAT system for patients with congestive heart failure (CHF to provide support in following individualized treatment plans as well as to monitor symptoms, weight changes, and quality of life, while educating the patient on their disease. The system was developed for both a laptop computer and a Nintendo Wii. The system is designed to be placed in the patient's home and to communicate all patient data to a central server implementing real-time clinical decision support. The system questions the patient daily on their condition, monitors their weight, and provides the patient with instant feedback on their condition in the form of a 3-zone CHF action plan. Their medication regimen and suggested actions are determined by their care management team and integrated into the system, keeping a personalized approach to disease management while taking advantage of the technology available. The systems are designed to be as simple as possible, making it usable by patients with no prior computer or videogame experience. A feasibility assessment in African American patients with CHF and without prior computer or videogame experience demonstrated high level of acceptance of the CHF HAT laptop and Wii systems. Keywords: telem

  11. Correlation of Ventricular Arrhythmogenesis with Neuronal Remodeling of Cardiac Postganglionic Parasympathetic Neurons in the Late Stage of Heart Failure after Myocardial Infarction.

    Science.gov (United States)

    Zhang, Dongze; Tu, Huiyin; Wang, Chaojun; Cao, Liang; Muelleman, Robert L; Wadman, Michael C; Li, Yu-Long

    2017-01-01

    Introduction: Ventricular arrhythmia is a major cause of sudden cardiac death in patients with chronic heart failure (CHF). Our recent study demonstrates that N-type Ca 2+ currents in intracardiac ganglionic neurons are reduced in the late stage of CHF rats. Rat intracardiac ganglia are divided into the atrioventricular ganglion (AVG) and sinoatrial ganglion. Only AVG nerve terminals innervate the ventricular myocardium. In this study, we tested the correlation of electrical remodeling in AVG neurons with ventricular arrhythmogenesis in CHF rats. Methods and Results: CHF was induced in male Sprague-Dawley rats by surgical ligation of the left coronary artery. The data from 24-h continuous radiotelemetry ECG recording in conscious rats showed that ventricular tachycardia/fibrillation (VT/VF) occurred in 3 and 14-week CHF rats but not 8-week CHF rats. Additionally, as an index for vagal control of ventricular function, changes of left ventricular systolic pressure (LVSP) and the maximum rate of left ventricular pressure rise (LV dP/dt max ) in response to vagal efferent nerve stimulation were blunted in 14-week CHF rats but not 3 or 8-week CHF rats. Results from whole-cell patch clamp recording demonstrated that N-type Ca 2+ currents in AVG neurons began to decrease in 8-week CHF rats, and that there was also a significant decrease in 14-week CHF rats. Correlation analysis revealed that N-type Ca 2+ currents in AVG neurons negatively correlated with the cumulative duration of VT/VF in 14-week CHF rats, whereas there was no correlation between N-type Ca 2+ currents in AVG neurons and the cumulative duration of VT/VF in 3-week CHF. Conclusion: Malignant ventricular arrhythmias mainly occur in the early and late stages of CHF. Electrical remodeling of AVG neurons highly correlates with the occurrence of ventricular arrhythmias in the late stage of CHF.

  12. Chitin Fiber and Chitosan 3D Composite Rods

    International Nuclear Information System (INIS)

    Wang, Z.; Hu, Q.; Cai, L.

    2010-01-01

    Chitin fiber (CHF) and chitosan (CS) 3D composite rods with layer-by-layer structure were constructed by in situ precipitation method. CHF could not be dissolved in acetic acid aqueous solution, but CS could be dissolved due to the different deacetylation degree (D.D) between CHF and CS. CHF with undulate surfaces could be observed using SEM to demonstrate that the sufficiently rough surfaces and edges of the fiber could enhance the mechanical combining stress between fiber and matrix. XRD indicated that the crystallinity of CHF/CS composites decreased and CS crystal plane d-spacing of CHF/CS composites became larger than that of pure CS rod. TG analysis showed that mixing a little amount of CHF could enhance thermal stability of CS rod, but when the content of CHF was higher than the optimum amount, its thermal stability decreased. When 0.5% CHF was added into CS matrix, the bending strength and bending modulus of the composite rods arrived at 114.2 MPa and 5.2 GPa, respectively, increased by 23.6% and 26.8% compared with pure CS rods, indicating that CHF/CS composite rods could be a better candidate for bone fracture internal fixation.

  13. On the look-up tables for the critical heat flux in tubes (history and problems)

    Energy Technology Data Exchange (ETDEWEB)

    Kirillov, P.L.; Smogalev, I.P. [Institute of Physics and Power Engineering, Kaluga (Russian Federation)

    1995-09-01

    The complication of critical heat flux (CHF) problem for boiling in channels is caused by the large number of variable factors and the variety of two-phase flows. The existence of several hundreds of correlations for the prediction of CHF demonstrates the unsatisfactory state of this problem. The phenomenological CHF models can provide only the qualitative predictions of CHF primarily in annular-dispersed flow. The CHF look-up tables covered the results of numerous experiments received more recognition in the last 15 years. These tables are based on the statistical averaging of CHF values for each range of pressure, mass flux and quality. The CHF values for regions, where no experimental data is available, are obtained by extrapolation. The correction of these tables to account for the diameter effect is a complicated problem. There are ranges of conditions where the simple correlations cannot produce the reliable results. Therefore, diameter effect on CHF needs additional study. The modification of look-up table data for CHF in tubes to predict CHF in rod bundles must include a method which to take into account the nonuniformity of quality in a rod bundle cross section.

  14. Expression of endogenous ALV antigens and susceptibility to subgroup E ALV in three strains of chickens (Endogenous avian C. type virus)

    International Nuclear Information System (INIS)

    Robinson, H.L.; Lamoreux, W.F.

    1976-01-01

    Cells from three strains of Kimber Farms chickens, K16, K18, and K28, have been characterized for the expression of endogenous avian C-type virus (ALV) antigens and for susceptibility to subgroup E ALV. In K16 the coordinate dominant expression of chick helper factor (chf ), the type specific antigen of endogenous subgroup E ALV, and the group specific (gs) antigen of ALV was observed. The expression of chf and gs antigen in K16 chf + gs + cells was similar to that observed in SPAFAS and H and N gs + cells. In K18 chf but not gs antigen was expressed. The expression of chf in K18 chf + gs + cells was distinct from that observed for the chf + gs + pedigrees but similar to that found in SPAFAS chf + gs - helper extremely high (h/sub E/) cells. Cells from K16 and K18 chickens were uniformly resistant to subgroup E ALV. In cells from K28 chickens, susceptibility to subgroup B virus correlated with susceptibility to subgroup E virus. The efficiency of plating of subgroup E virus on susceptible K28 cells with 10 3 --10 4 -fold lower on chf + cells than on chf - cells

  15. On the look-up tables for the critical heat flux in tubes (history and problems)

    International Nuclear Information System (INIS)

    Kirillov, P.L.; Smogalev, I.P.

    1995-01-01

    The complication of critical heat flux (CHF) problem for boiling in channels is caused by the large number of variable factors and the variety of two-phase flows. The existence of several hundreds of correlations for the prediction of CHF demonstrates the unsatisfactory state of this problem. The phenomenological CHF models can provide only the qualitative predictions of CHF primarily in annular-dispersed flow. The CHF look-up tables covered the results of numerous experiments received more recognition in the last 15 years. These tables are based on the statistical averaging of CHF values for each range of pressure, mass flux and quality. The CHF values for regions, where no experimental data is available, are obtained by extrapolation. The correction of these tables to account for the diameter effect is a complicated problem. There are ranges of conditions where the simple correlations cannot produce the reliable results. Therefore, diameter effect on CHF needs additional study. The modification of look-up table data for CHF in tubes to predict CHF in rod bundles must include a method which to take into account the nonuniformity of quality in a rod bundle cross section

  16. Effects of Al{sub 2}O{sub 3} nanoparticles deposition on critical heat flux of R-123 in flow boiling heat transfer

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Seok Bin; Bang, In Cheol [School of Mechanical and Nuclear Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan (Korea, Republic of)

    2015-06-15

    In this study, R-123 flow boiling experiments were carried out to investigate the effects of nanoparticle deposition on heater surfaces on flow critical heat flux (CHF) and boiling heat transfer. It is known that CHF enhancement by nanoparticles results from porous structures that are very similar to layers of Chalk River unidentified deposit formed on nuclear fuel rod surfaces during the reactor operation period. Although previous studies have investigated the surface effects through surface modifications, most studies are limited to pool boiling conditions, and therefore, the effects of porous surfaces on flow boiling heat transfer are still unclear. In addition, there have been only few reports on suppression of wetting for decoupled approaches of reasoning. In this study, bare and Al{sub 2}O{sub 3} nanoparticle-coated surfaces were prepared for the study experiments. The CHF of each surface was measured with different mass fluxes of 1,600 kg/m{sup 2}s, 1,800 kg/m{sup 2}s, 2,100 kg/m{sup 2}s, 2,400 kg/m{sup 2}s, and 2,600 kg/m{sup 2}s. The nanoparticle-coated tube showed CHF enhancement up to 17% at a mass flux of 2,400 kg/m{sup 2}s compared with the bare tube. The factors for CHF enhancement are related to the enhanced rewetting process derived from capillary action through porous structures built-up by nanoparticles while suppressing relative wettability effects between two sample surfaces as a highly wettable R-123 refrigerant was used as a working fluid.

  17. Photonic limiters with enhanced dynamic range

    Science.gov (United States)

    Kononchuk, Rodion; Limberopoulos, Nicholaos; Anisimov, Igor; Vitebskiy, Ilya; Chabanov, Andrey

    2018-02-01

    Optical limiters transmit low intensity input light while blocking input light with the intensity exceeding certain limiting threshold. Conventional passive limiters utilize nonlinear optical materials, which are transparent at low light intensity and turn absorptive at high intensity. Strong nonlinear absorption, though, can result in over- heating and destruction of the limiter. Another problem is that the limiting threshold provided by the available optical material with nonlinear absorption is too high for many applications. To address the above problems, the nonlinear material can be incorporated in a photonic structure with engineered dispersion. At low intensity, the photonic structure can display resonant transmission via localized mode(s), while at high intensity the resonant transmission can disappear, and the entire stack can become highly re ective (not absorptive) within a broad frequency range. In the proposed design, the transition from the resonant transmission at low intensity to nearly total re ectivity at high intensity does not rely on nonlinear absorption; instead, it requires only a modest change in the refractive index of the nonlinear material. The latter implies a dramatic increase in the dynamic range of the limiter. The main idea is to eliminate the high-intensity resonant transmission by decoupling the localized (resonant) modes from the input light, rather than suppressing those modes using nonlinear absorption. Similar approach can be used for light modulation and switching.

  18. Localized corrosion of Alloy C22 nuclear waste canister material under limiting conditions

    International Nuclear Information System (INIS)

    Lee, S.G.; Solomon, A.A.

    2006-01-01

    Localized corrosion behavior of Alloy C22 in simulated Yucca Mountain (YM) repository environments was studied at the highest achievable but realistic temperatures under boiling and dripping scenarios. Temperatures measured in concentrated boiling solutions of KCl and NaNO 3 were found to be stable at 140 deg. C, although transient boiling before dryout was observed at temperatures as high as 160 deg. C, as the electrolyte became progressively more concentrated. Experiments that simulated a dripping scenario with simulated J13 well water confirmed the existence of concentrated solutions stable at 142 ± 3 deg. C under controlled drip conditions leading to pit initiation in Alloy C22 after only a few hours. The polarization experiments conducted at 140 deg. C in a solution with 0.5 mol L -1 chloride concentration showed that the critical potential for localized corrosion was 250 mV (versus Ag/AgCl). Potentiostatic tests confirmed that active metal dissolution occurred only in the crevice region at this potential. The crevice corrosion of Alloy C22 required an incubation time to develop a critical crevice solution, and it was triggered by severe local chemistry (enrichment of Cl - and H + ) aided by the high temperature

  19. Effects of exercise training on circulating and skeletal muscle renin-angiotensin system in chronic heart failure rats.

    Science.gov (United States)

    Gomes-Santos, Igor Lucas; Fernandes, Tiago; Couto, Gisele Kruger; Ferreira-Filho, Julio César Ayres; Salemi, Vera Maria Cury; Fernandes, Fernanda Barrinha; Casarini, Dulce Elena; Brum, Patricia Chakur; Rossoni, Luciana Venturini; de Oliveira, Edilamar Menezes; Negrao, Carlos Eduardo

    2014-01-01

    Accumulated evidence shows that the ACE-AngII-AT1 axis of the renin-angiotensin system (RAS) is markedly activated in chronic heart failure (CHF). Recent studies provide information that Angiotensin (Ang)-(1-7), a metabolite of AngII, counteracts the effects of AngII. However, this balance between AngII and Ang-(1-7) is still little understood in CHF. We investigated the effects of exercise training on circulating and skeletal muscle RAS in the ischemic model of CHF. Male Wistar rats underwent left coronary artery ligation or a Sham operation. They were divided into four groups: 1) Sedentary Sham (Sham-S), 2) exercise-trained Sham (Sham-Ex), sedentary CHF (CHF-S), and exercise-trained CHF (CHF-Ex). Angiotensin concentrations and ACE and ACE2 activity in the circulation and skeletal muscle (soleus and plantaris) were quantified. Skeletal muscle ACE and ACE2 protein expression, and AT1, AT2, and Mas receptor gene expression were also evaluated. CHF reduced ACE2 serum activity. Exercise training restored ACE2 and reduced ACE activity in CHF. Exercise training reduced plasma AngII concentration in both Sham and CHF rats and increased the Ang-(1-7)/AngII ratio in CHF rats. CHF and exercise training did not change skeletal muscle ACE and ACE2 activity and protein expression. CHF increased AngII levels in both soleus and plantaris muscle, and exercise training normalized them. Exercise training increased Ang-(1-7) in the plantaris muscle of CHF rats. The AT1 receptor was only increased in the soleus muscle of CHF rats, and exercise training normalized it. Exercise training increased the expression of the Mas receptor in the soleus muscle of both exercise-trained groups, and normalized it in plantaris muscle. Exercise training causes a shift in RAS towards the Ang-(1-7)-Mas axis in skeletal muscle, which can be influenced by skeletal muscle metabolic characteristics. The changes in RAS circulation do not necessarily reflect the changes occurring in the RAS of skeletal

  20. CORRELATION BETWEEN GROUP LOCAL DENSITY AND GROUP LUMINOSITY

    Energy Technology Data Exchange (ETDEWEB)

    Deng Xinfa [School of Science, Nanchang University, Jiangxi 330031 (China); Yu Guisheng [Department of Natural Science, Nanchang Teachers College, Jiangxi 330103 (China)

    2012-11-10

    In this study, we investigate the correlation between group local number density and total luminosity of groups. In four volume-limited group catalogs, we can conclude that groups with high luminosity exist preferentially in high-density regions, while groups with low luminosity are located preferentially in low-density regions, and that in a volume-limited group sample with absolute magnitude limit M{sub r} = -18, the correlation between group local number density and total luminosity of groups is the weakest. These results basically are consistent with the environmental dependence of galaxy luminosity.

  1. Local quantum thermal susceptibility

    Science.gov (United States)

    De Pasquale, Antonella; Rossini, Davide; Fazio, Rosario; Giovannetti, Vittorio

    2016-01-01

    Thermodynamics relies on the possibility to describe systems composed of a large number of constituents in terms of few macroscopic variables. Its foundations are rooted into the paradigm of statistical mechanics, where thermal properties originate from averaging procedures which smoothen out local details. While undoubtedly successful, elegant and formally correct, this approach carries over an operational problem, namely determining the precision at which such variables are inferred, when technical/practical limitations restrict our capabilities to local probing. Here we introduce the local quantum thermal susceptibility, a quantifier for the best achievable accuracy for temperature estimation via local measurements. Our method relies on basic concepts of quantum estimation theory, providing an operative strategy to address the local thermal response of arbitrary quantum systems at equilibrium. At low temperatures, it highlights the local distinguishability of the ground state from the excited sub-manifolds, thus providing a method to locate quantum phase transitions. PMID:27681458

  2. Limitations of transient power loads on DEMO and analysis of mitigation techniques

    Energy Technology Data Exchange (ETDEWEB)

    Maviglia, F., E-mail: francesco.maviglia@euro-fusion.org [EUROfusion Consortium, PPPT Department, Boltzmannstr. 2, Garching (Germany); Consorzio CREATE, University Napoli Federico II – DIETI, 80125 Napoli (Italy); Federici, G. [EUROfusion Consortium, PPPT Department, Boltzmannstr. 2, Garching (Germany); Strohmayer, G. [Max-Planck-Institut fur Plasmaphysik, Boltzmannstr. 2, Garching (Germany); Wenninger, R. [EUROfusion Consortium, PPPT Department, Boltzmannstr. 2, Garching (Germany); Max-Planck-Institut fur Plasmaphysik, Boltzmannstr. 2, Garching (Germany); Bachmann, C. [EUROfusion Consortium, PPPT Department, Boltzmannstr. 2, Garching (Germany); Albanese, R. [Consorzio CREATE, University Napoli Federico II – DIETI, 80125 Napoli (Italy); Ambrosino, R. [Consorzio CREATE University Napoli Parthenope, Naples (Italy); Li, M. [Max-Planck-Institut fur Plasmaphysik, Boltzmannstr. 2, Garching (Germany); Loschiavo, V.P. [Consorzio CREATE, University Napoli Federico II – DIETI, 80125 Napoli (Italy); You, J.H. [Max-Planck-Institut fur Plasmaphysik, Boltzmannstr. 2, Garching (Germany); Zani, L. [CEA, IRFM, F-13108 St Paul-Lez-Durance (France)

    2016-11-01

    Highlights: • A parametric thermo-hydraulic analysis of the candidate DEMO divertor is presented. • The operational space assessment is presented under static and transient heat loads. • Strike points sweeping is analyzed as a divertor power exhaust mitigation technique. • Results are presented on sweeping installed power required, AC losses and thermal fatigue. - Abstract: The present European standard DEMO divertor target technology is based on a water-cooled tungsten mono-block with a copper alloy heat sink. This paper presents the assessment of the operational space of this technology under static and transient heat loads. A transient thermo-hydraulic analysis was performed using the code RACLETTE, which allowed a broad parametric scan of the target geometry and coolant conditions. The limiting factors considered were the coolant critical heat flux (CHF), and the temperature limits of the materials. The second part of the work is devoted to the study of the plasma strike point sweeping as a mitigation technique for the divertor power exhaust. The RACLETTE code was used to evaluate the impact of a large range of sweeping frequencies and amplitudes. A reduced subset of cases, which complied with the constraints, was benchmarked with a 3D FEM model. A reduction of the heat flux to the coolant, up to a factor ∼4, and lower material temperatures were found for an incident heat flux in the range (15–30) MW/m{sup 2}. Finally, preliminary assessments were performed on the installed power required for the sweeping, the AC losses in the superconductors and thermal fatigue analysis. No evident show stoppers were found.

  3. Premature and stable critical heat flux for downward flow in a narrow rectangular channel

    International Nuclear Information System (INIS)

    Lee, Juhyung; Chang, Soon Heung; Jeong, Yong Hoon; Jo, Daeseong

    2014-01-01

    It has been recommended that RRs and MTRs be designed to have sufficient margins for CHF and the onset of FI as well, since unstable flow could leads to premature CHF under very low wall heat flux in comparison to stable CHF. Even the fact and previous studies, however, the understanding of relationship among FI, premature CHF and stable CHF is not sufficient to date. In this regards, subcooled flow boiling in a vertical rectangular channel was experimentally investigated to enhance the understanding of the CHF and the effect of the two-phase flow instability on it under low pressure conditions, especially for downward flow which was adopted for Jordan Research and Training Reactor (JRTR) and Kijang research reactor (KJRR) to achieve easier fuel and irradiation rig loading. In this study, CHF for downward flow of water under low pressure in narrow rectangular channel was experimentally investigated. For conditions such as downward flow, narrow rectangular channel and low pressure, it has been deduced from literature that flow instability could largely influence on triggering CHF at lower heat flux, i. e. premature CHF. Total 54 CHF data, which includes premature and stable data was obtained for various fluid conditions and system configurations including inlet stiffness. The upper and lower boundaries of CHF were newly proposed based on the experiment

  4. Developmental Local Government as a Model for Grassroots Socio ...

    African Journals Online (AJOL)

    In the past five decades of political independence in Nigeria, local ... governments places a strong limitation on local autonomy and governance at the local level. ... negatively affecting grassroots socio-economic development in the Country.

  5. Cyro Power and Heat Transfer

    National Research Council Canada - National Science Library

    Chow, L

    1998-01-01

    .... The heat generated from a 9x9-heater array was removed by liquid nitrogen pool boiling. The orientation and space limitation of the array were varied to explore their effects on the critical heat flux (CHF) value...

  6. Thermal-Hydraulic Effects of Stud Shape and Size on the Safety Margin of Core Catcher System

    Energy Technology Data Exchange (ETDEWEB)

    Song, Kyusang; Son, Hong Hyun; Jeong, Uiju; Kim, Sung Joong [Hanyang University, Seoul (Korea, Republic of)

    2015-10-15

    With the ERVC strategy, an additional system (core catcher system) to catch molten core penetrating the reactor pressure vessel (RPV) was proposed for advanced light water reactor. The newly engineered corium cooling system, that is, an ex-vessel core catcher system has been designed and adapted in some nuclear power plants such as VVER-1000, EPR, ESBWR, EU-APR1400 to mention a few. For example, Russia adopted a crucible-type core catcher for VVER-1000. On the other hand, a way to catch melt spreading is adopted by several countries, such as EPR in France, ESBWR in USA, ABWR in japan, and EU-APR1400 in Korea In Korea, the core catcher system has been designed and implemented for the European Advanced Power Reactor 1400 (EU-APR1400) to acquire a European license certificate. It is to confine molten materials in the reactor cavity while maintaining a coolable geometry in case that RPV failure occurs. The core catcher system consists of a carbon steel body, sacrificial material, protection material and engineered cooling channel. While installation of the studs is unavoidable, the studs tend to interfere in the smooth streamline of the core catcher channel. The distorted streamline could affect the overall thermal-hydraulic performance including two-phase heat transfer coefficient and critical heat flux (CHF) of the system. Thus, it is of importance to investigate the thermal-hydraulic effects of studs on the coolability, especially the CHF of the core catcher system. With aforementioned importance, pool boiling experiments were carried out with stud shape of, rectangular, cylinder, and elliptic and for stud sizes of 10, 15, 20, and 25 mm under the condition of atmospheric saturated water. A particular attention was focused on observing local vapor behavior around the studs and finding any hot spots, where the vapors are accumulated. The occurrence of the CHF is anticipated at the back side of the studs. The visual observation and CHF measurements indicate that the

  7. Thermal-Hydraulic Effects of Stud Shape and Size on the Safety Margin of Core Catcher System

    International Nuclear Information System (INIS)

    Song, Kyusang; Son, Hong Hyun; Jeong, Uiju; Kim, Sung Joong

    2015-01-01

    With the ERVC strategy, an additional system (core catcher system) to catch molten core penetrating the reactor pressure vessel (RPV) was proposed for advanced light water reactor. The newly engineered corium cooling system, that is, an ex-vessel core catcher system has been designed and adapted in some nuclear power plants such as VVER-1000, EPR, ESBWR, EU-APR1400 to mention a few. For example, Russia adopted a crucible-type core catcher for VVER-1000. On the other hand, a way to catch melt spreading is adopted by several countries, such as EPR in France, ESBWR in USA, ABWR in japan, and EU-APR1400 in Korea In Korea, the core catcher system has been designed and implemented for the European Advanced Power Reactor 1400 (EU-APR1400) to acquire a European license certificate. It is to confine molten materials in the reactor cavity while maintaining a coolable geometry in case that RPV failure occurs. The core catcher system consists of a carbon steel body, sacrificial material, protection material and engineered cooling channel. While installation of the studs is unavoidable, the studs tend to interfere in the smooth streamline of the core catcher channel. The distorted streamline could affect the overall thermal-hydraulic performance including two-phase heat transfer coefficient and critical heat flux (CHF) of the system. Thus, it is of importance to investigate the thermal-hydraulic effects of studs on the coolability, especially the CHF of the core catcher system. With aforementioned importance, pool boiling experiments were carried out with stud shape of, rectangular, cylinder, and elliptic and for stud sizes of 10, 15, 20, and 25 mm under the condition of atmospheric saturated water. A particular attention was focused on observing local vapor behavior around the studs and finding any hot spots, where the vapors are accumulated. The occurrence of the CHF is anticipated at the back side of the studs. The visual observation and CHF measurements indicate that the

  8. Hydrogen and carbon vapour pressure isotope effects in liquid fluoroform studied by density functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Oi, Takao; Mitome, Ryota; Yanase, Satoshi [Sophia Univ., Tokyo (Japan). Faculty of Science and Technology

    2017-06-01

    H/D and {sup 12}C/{sup 13}C vapour pressure isotope effects (VPIEs) in liquid fluoroform (CHF{sub 3}) were studied at the MPW1PW91/6-31 ++ G(d) level of theory. The CHF{sub 3} monomer and CHF{sub 3} molecules surrounded by other CHF{sub 3} molecules in every direction in CHF{sub 3} clusters were used as model molecules of vapour and liquid CHF{sub 3}. Although experimental results in which the vapour pressure of liquid {sup 12}CHF{sub 3} is higher than that of liquid {sup 12}CDF{sub 3} and the vapour pressure of liquid {sup 13}CHF{sub 3} is higher than that of liquid {sup 12}CHF{sub 3} between 125 and 212 K were qualitatively reproduced, the present calculations overestimated the H/D VPIE and underestimated the {sup 12}C/{sup 13}C VPIE. Temperature-dependent intermolecular interactions between hydrogen and fluorine atoms of neighbouring molecules were required to explain the temperature dependences of both H/D and {sup 12}C/{sup 13}C VPIEs.

  9. Special offer

    CERN Multimedia

    Staff Association

    2011-01-01

    Aquaparc           Adults: 31 CHF instead of 42 CHF Children: 25 CHF instead of 34 CHF Aquaparc Les Caraïbes sur Léman 1807 Le Bouveret (VS) Tickets are valid for both the inside and outside areas.

  10. Exercise training in older patients with systolic heart failure

    DEFF Research Database (Denmark)

    Prescott, Eva; Hjardem-Hansen, Rasmus; Dela, Flemming

    2009-01-01

    Training improves exercise capacity in patients with heart failure (CHF) but most evidence is on selected younger patients with systolic CHF.......Training improves exercise capacity in patients with heart failure (CHF) but most evidence is on selected younger patients with systolic CHF....

  11. An assessment of the critical heat flux approaches of thermal-hydraulic system analysis codes using bundle data from the Heat Transfer Research Facility

    International Nuclear Information System (INIS)

    Min Lee

    1994-01-01

    Critical heat flux (CHF) bundle data from the Heat Transfer Research Facility of Columbia University are used to check the validity of the CHF approaches used in thermal-hydraulic system analysis codes for light water reactors. The CHF approaches assessed include the Biasi et al. correlation of TRAC, the Groeneveld et al. CHF table lookup approach of RELAP5/MOD3, the CHF table lookup approach of CATHARE, and the CHF approach of RETRAN. Depending on system pressure, RETRAN uses the B and W2, Barnett, and modified Barnett correlations and a linear interpolation scheme to predict CHF. Results show that among these CHF approaches, the Groeneveld et al. approach has the best prediction accuracy and the smallest uncertainty in the estimation of the HTRF bundle data. On the average, the Groeneveld et al. approach overpredicts the uniform axial heat flux distribution by 3.6% and the nonuniform axial heat flux distribution by 0.9%. The performance of the RETRAN approach is comparable with that of the Groenevel et al. Approach for uniform axial heat flux. In general, the accuracy and the uncertainty of all the approaches, except that of CATHARE, are worse under a nonuniform axial heat distribution than under a uniform axial heat distribution. All the CHF approaches assessed have a tendency to overpredict the HTRF bundle data at low pressure, low measured CHF, and high CHF quality. The performance of the Groenevel et al. approach is improved through a CHF table update and modification of the bundle correction factor using the HTRF bundle data

  12. Chronic Heart Failure and Comorbid Renal Dysfunction - A Focus on Type 2 Cardiorenal Syndrome

    Science.gov (United States)

    Preeti, Jois; Alexandre, Mebazaa; Pupalan, Iyngkaran; Merlin, Thomas C.; Claudio, Ronco

    2016-01-01

    The most important advancements in the Cardiorenal syndrome (CRS) are its definition and subsequent classifications. When the predominant pathology and pathophysiology is the heart, i.e. chronic heart failure (CHF), and where any renal impairment (RI) subsequent to this is secondary, the classification is type 2 CRS. There are unique differences in the pathophysiology and progression of individual subclasses. It is important to understand the evolution of CHF and consequences of subsequent RI as they are becoming increasingly prevalent, aggravate morbidity and mortality and limit many therapeutic options. In this paper we discuss the significance of the type 2 CRS patients in the context of the thematic series. PMID:27280302

  13. Critical heat flux of water in vertical tubes with an upper plenum and a closed bottom

    International Nuclear Information System (INIS)

    Kim, Hong Chae; Baek, Won Pil; Chang, Soon Heung

    2000-01-01

    An experimental study is conducted for vertical round tubes with an upper plenum and a closed bottom to investigate CHF behavior and CHF onset location under the counter-current condition. The measured CHF values are well predicted by general Wallis type flooding correlations. A 1-D steady state analytical flooding model for thermosyphon by El-Genk and Saber was assessed with the data and the liquid film thickness at the liquid entrance was calculated. The CHF onset position becomes different with L/D and D, and liquid entrance geometry affects only CHF values not CHF onset positions

  14. Offers

    CERN Multimedia

    Staff Association

    2014-01-01

    Passeport Gourmand   Are you dying for a nice meal? The “Passeport Gourmand” offers discounted prices to the members of the Staff Association (available until April 2015 and on sale in the Staff Association Secretariat): Passeport gourmand Ain / Savoie/ Haute Savoie: 56 CHF instead of 79 CHF. Passeport gourmand Geneva / neighbouring France:72 CHF instead of 95 CHF. To the members of the Staff Association: Benefit of reduced tickets: CHF 10 (instead of  18 CHF at the desk) on sale to the secretariat of the Staff Association, Building 510-R010 (in front of the Printshop).

  15. Chitin Fiber and Chitosan 3D Composite Rods

    Directory of Open Access Journals (Sweden)

    Zhengke Wang

    2010-01-01

    Full Text Available Chitin fiber (CHF and chitosan (CS 3D composite rods with layer-by-layer structure were constructed by in situ precipitation method. CHF could not be dissolved in acetic acid aqueous solution, but CS could be dissolved due to the different deacetylation degree (D.D between CHF and CS. CHF with undulate surfaces could be observed using SEM to demonstrate that the sufficiently rough surfaces and edges of the fiber could enhance the mechanical combining stress between fiber and matrix. XRD indicated that the crystallinity of CHF/CS composites decreased and CS crystal plane d-spacing of CHF/CS composites became larger than that of pure CS rod. TG analysis showed that mixing a little amount of CHF could enhance thermal stability of CS rod, but when the content of CHF was higher than the optimum amount, its thermal stability decreased. When 0.5% CHF was added into CS matrix, the bending strength and bending modulus of the composite rods arrived at 114.2 MPa and 5.2 GPa, respectively, increased by 23.6% and 26.8% compared with pure CS rods, indicating that CHF/CS composite rods could be a better candidate for bone fracture internal fixation.

  16. Local linear heat rate ramps in the WWER-440 transient regimes

    International Nuclear Information System (INIS)

    Brik, A.N.; Bibilashvili, Ju.L.; Bogatyr, S.M.; Medvedev, A.V.

    1998-01-01

    The operation of the WWER-440 reactors must be accomplished in such a way that the fuel rods durability would be high enough during the whole operation period. The important factors determining the absence of fuel rod failures are the criteria limiting the core characteristics (fuel rod and fuel assembly power, local linear heat rate, etc.). For the transient and load follow conditions the limitations on the permissible local linear rate ramp are also introduced. This limitation is the result of design limit of stress corrosion cracking of the fuel cladding and depends on the local fuel burn-up. The control rod motion is accompanied by power redistribution, which, in principle, can result in violating the design and operation limitations. Consequently, this motion have to be such as the core parameters, including the local ramps of the linear heat generation rates would not exceed the permissible ones.The paper considers the problem of WWER-440 reactor control under transient and load follow conditions and the associated optimisation of local linear heat generation rate ramps. The main factors affecting the solution of the problem under consideration are discussed. Some recommendations for a more optimal reactor operation are given.(Author)

  17. Critical heat flux experiments for high conversion light water reactor, (3)

    International Nuclear Information System (INIS)

    Iwamura, Takamichi; Okubo, Tsutomu; Suemura, Takayuki; Hiraga, Fujio; Murao, Yoshio

    1990-03-01

    As a part of the thermal-hydraulic feasibility study of a high conversion light water reactor (HCLWR), critical heat flux (CHF) experiments were performed using triangular array rod bundles under steady-state and flow reduction transient conditions. The geometries of test sections were: rod outer diameter 9.5 mm, number of rods 4∼7, heated length 0.5∼1.0 m, and pitch to diameter ratio (P/D) 1.126∼1.2. The simulated fuel rod was a stainless steel tube and uniformly heated electrically with direct current. In the steady-state tests, pressures ranged: 1.0∼3.9 Mpa, mass velocities: 460∼4270 kg/s·m 2 , and exit qualities: 0.02∼0.35. In the transient tests, the times to CHF detection ranged from 0.5 to 25.4 s. The steady-state CHF's for the 4-rod test sections were higher than those for the 7-rod test sections with respect to the bundle averaged flow conditions. The measured CHF's increased with decreasing the heated length and decreased with decreasing the P/D. Based on the local flow conditions obtained with the subchannel analysis code COBRA-IV-I, KfK correlation agreed with the CHF data within 20 %, while WSC-2, EPRI-B and W, EPRI-Columbia and Kattor correlations failed to give satisfactory agreements. Under flow reduction rates less than 6 %/s, no significant difference in the onset conditions of DNB (departure from nucleate boiling) was recognized between the steady-state and transient conditions. At flow reduction rates higher than 6 %/s, on the other hand, the DNB occurred earlier than the DNB time predicted with the steady-state experiments. (author)

  18. A dry-spot model of critical heat flux and transition boiling in pool and subcooled forced convection boiling

    International Nuclear Information System (INIS)

    Ha, Sang Jun

    1998-02-01

    boiling from given boiling conditions with the pool CHF data measured by Dhir and Liaw and Paul and Abdel-Khalik and the subcooled flow CHF data measured by Del Valle M. and Kenning and with the heat flux data in transition boiling measured by Dhir and Liaw. The predictions show good agreement with the existing data. To use the present phenomenological model as a prediction tool, a study has been performed to predict CHF in pool and subcooled forced convection boiling using existing correlations for active site density, maximum bubble diameter, and heat transfer coefficients in nucleate boiling. Comparison of the model predictions with experimental data for pool boiling of water and upward flow boiling of water in vertical, uniformly-heated round tubes is performed. The data set (2438 data points) for CHF in subcooled forced convection boiling covers wide ranges of operating conditions (0.1≤P≤14.0 MPa, 0.00033≤D≤0.0375 m: 0.002≤L≤2 m: 660 ≤G≤90000 kg/m 2 s: 70≤Δh,≤1456 kJ/kg). Without any tuning factor, 1492 data points out of 2438 (61.2%) are calculated with a r.m.s. error of 41.3% and about 80% of the calculated data points are predicted within ±50%. It is also shown that by a modification of suppression factor in subcooled boiling, the predictive capability of the present model can be improved, i.e., 2421 data points (99.3%) are calculated with a r.m.s. error of 20.5% and 82.3% of the calculated data points are predicted within ±25%. In addition, the parametric trends of CHF in subcooled forced convection boiling have been investigated under local conditions hypothesis

  19. [Symptoms. Localizations: knee, hip, hands, spine, other localizations].

    Science.gov (United States)

    Pérez Martín, Álvaro

    2014-01-01

    The symptoms of osteoarthritis vary widely from patient to patient, depending especially on the localization on the disease. There is a poor correlation between radiological involvement and pain. In general, symptom onset is gradual and symptoms increase slowly but progressively. The most commonly affected joints are the knees, hips, hands, and spine. The main signs and symptoms are pain, stiffness, joint deformity, and crepitus. Pain is mechanical and its causes are multifactorial; in the initial phases, pain usually manifests in self-limiting episodes but may subsequently be almost constant. The criteria of the American college of Rheumatology for the classification of osteoarthritis of the knee, hip and hands are an aid to classification and standardization but are not useful for diagnosis. Hip osteoarthritis usually produces inguinal pain in the internal and anterior sections of the muscle extending to the knee and, with progression, tends to limit mobility. Knee osteoarthritis is more frequent in women and is usually associated with hand osteoarthritis and obesity. In hand osteoarthritis, the most commonly affected joints are the distal interphalangeal joints, followed by the proximal interphalangeal joints and the trapeziometacarpal joints; the development of Heberden and Bouchard nodes is common; involvement of the trapeziometacarpal joint is called rhizarthrosis and is one of the forms of osteoarthritis that produces the greatest limitation on hand function. Osteoarthritis of the spine affects the facet joints and the vertebral bodies. Other, less frequent, localizations are the foot, elbow and shoulder, which are generally secondary forms of osteoarthritis. Copyright © 2014 Elsevier España, S.L. All rights reserved.

  20. Localized solutions for a nonlocal discrete NLS equation

    International Nuclear Information System (INIS)

    Ben, Roberto I.; Cisneros Ake, Luís; Minzoni, A.A.; Panayotaros, Panayotis

    2015-01-01

    We study spatially localized time-periodic solutions of breather type for a cubic discrete NLS equation with a nonlocal nonlinearity that models light propagation in a liquid crystal waveguide array. We show the existence of breather solutions in the limit where both linear and nonlinear intersite couplings vanish, and in the limit where the linear coupling vanishes with arbitrary nonlinear intersite coupling. Breathers of this nonlocal regime exhibit some interesting features that depart from what is seen in the NLS breathers with power nonlinearity. One property we see theoretically is the presence of higher amplitude at interfaces between sites with zero and nonzero amplitude in the vanishing linear coupling limit. A numerical study also suggests the presence of internal modes of orbitally stable localized modes. - Highlights: • Show existence of spatially localized solutions in nonlocal discrete NLS model. • Study spatial properties of localized solutions for arbitrary nonlinear nonlocal coupling. • Present numerical evidence that nonlocality leads to internal modes around stable breathers. • Present theoretical and numerical evidence for amplitude maxima at interfaces

  1. Localized solutions for a nonlocal discrete NLS equation

    Energy Technology Data Exchange (ETDEWEB)

    Ben, Roberto I. [Instituto de Desarrollo Humano, Universidad Nacional de General Sarmiento, J.M. Gutiérrez 1150, 1613 Los Polvorines (Argentina); Cisneros Ake, Luís [Department of Mathematics, ESFM, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos Edificio 9, 07738 México D.F. (Mexico); Minzoni, A.A. [Depto. Matemáticas y Mecánica, I.I.M.A.S.-U.N.A.M., Apdo. Postal 20-726, 01000 México D.F. (Mexico); Panayotaros, Panayotis, E-mail: panos@mym.iimas.unam.mx [Depto. Matemáticas y Mecánica, I.I.M.A.S.-U.N.A.M., Apdo. Postal 20-726, 01000 México D.F. (Mexico)

    2015-09-04

    We study spatially localized time-periodic solutions of breather type for a cubic discrete NLS equation with a nonlocal nonlinearity that models light propagation in a liquid crystal waveguide array. We show the existence of breather solutions in the limit where both linear and nonlinear intersite couplings vanish, and in the limit where the linear coupling vanishes with arbitrary nonlinear intersite coupling. Breathers of this nonlocal regime exhibit some interesting features that depart from what is seen in the NLS breathers with power nonlinearity. One property we see theoretically is the presence of higher amplitude at interfaces between sites with zero and nonzero amplitude in the vanishing linear coupling limit. A numerical study also suggests the presence of internal modes of orbitally stable localized modes. - Highlights: • Show existence of spatially localized solutions in nonlocal discrete NLS model. • Study spatial properties of localized solutions for arbitrary nonlinear nonlocal coupling. • Present numerical evidence that nonlocality leads to internal modes around stable breathers. • Present theoretical and numerical evidence for amplitude maxima at interfaces.

  2. Analysis of heat transfer mechanism on in-vessel corium coolability in severe accidents

    International Nuclear Information System (INIS)

    Park, Rae Joon; Jeong, Ji Whan; Kim, Sang Baik; Kang, Kyung Ho; Kim, Jong Whan

    1998-04-01

    When the molten core material relocates to the lower plenum of the reactor vessel, the cooling process of corium and the related heat transfer mechanism have been analyzed. The critical heat flux in gap (CHFG) test is being performed as a part of simulation of naturally arrested thermal attack in (SONATA-IV) project and the state of art on CHF has been reviewed. A series of complex heat transfer mechanism of molten pool formation, natural convection in the molten pool, solidification and remelting of the corium, conduction in the solidified crust, and boiling heat transfer to surroundings can be occurred in the lower plenum. Many studies are needed to investigate the complex heat transfer mechanism in the lower plenum, because these phenomena have not been clearly understand until now. The SONATA-IV/CHFG experiments are being carried out to develop CHF correlation in a hemispherical gap, which is the upper limit of heat transfer. There is no experimental or analytical CHF correlation applicable to a hemispherical gap. So lots of analytical and experimental correlations developed using the similar experimental condition were gathered and compared with each other. According to the experimental work that was carried out with pool boiling condition, CHF in a parallel gap was reduced by 1/30 compared with the value measured without gap. A basic form of a CHF correlation has been developed to correlate measurements that will be made in the SONATA-IV/CHFG experiments. That correlation is based on the fact that the CHF in a hemispherical gap is enhanced by CCFL and a Kutateladze type CCFL correlation develops CCFL date will in geometry like this. The experimental facility consists of a heater, a pressure vessel, a heat exchanger and lots of sensors. The heater capacity is 40 kw and the maximum heat flux at the surface is 100 kw/m 2 . The experiments will be carried out in the range of 1 to 10 atm and the gap size of 0.5, 1, 2 mm. The CHF will be detected using 66 type

  3. Totally Asymmetric Limit for Models of Heat Conduction

    Science.gov (United States)

    De Carlo, Leonardo; Gabrielli, Davide

    2017-08-01

    We consider one dimensional weakly asymmetric boundary driven models of heat conduction. In the cases of a constant diffusion coefficient and of a quadratic mobility we compute the quasi-potential that is a non local functional obtained by the solution of a variational problem. This is done using the dynamic variational approach of the macroscopic fluctuation theory (Bertini et al. in Rev Mod Phys 87:593, 2015). The case of a concave mobility corresponds essentially to the exclusion model that has been discussed in Bertini et al. (J Stat Mech L11001, 2010; Pure Appl Math 64(5):649-696, 2011; Commun Math Phys 289(1):311-334, 2009) and Enaud and Derrida (J Stat Phys 114:537-562, 2004). We consider here the convex case that includes for example the Kipnis-Marchioro-Presutti (KMP) model and its dual (KMPd) (Kipnis et al. in J Stat Phys 27:6574, 1982). This extends to the weakly asymmetric regime the computations in Bertini et al. (J Stat Phys 121(5/6):843-885, 2005). We consider then, both microscopically and macroscopically, the limit of large externalfields. Microscopically we discuss some possible totally asymmetric limits of the KMP model. In one case the totally asymmetric dynamics has a product invariant measure. Another possible limit dynamics has instead a non trivial invariant measure for which we give a duality representation. Macroscopically we show that the quasi-potentials of KMP and KMPd, which are non local for any value of the external field, become local in the limit. Moreover the dependence on one of the external reservoirs disappears. For models having strictly positive quadratic mobilities we obtain instead in the limit a non local functional having a structure similar to the one of the boundary driven asymmetric exclusion process.

  4. Loop quantization as a continuum limit

    International Nuclear Information System (INIS)

    Manrique, Elisa; Oeckl, Robert; Weber, Axel; Zapata, Jose A

    2006-01-01

    We present an implementation of Wilson's renormalization group and a continuum limit tailored for loop quantization. The dynamics of loop-quantized theories is constructed as a continuum limit of the dynamics of effective theories. After presenting the general formalism we show as a first explicit example the 2D Ising field theory, an interacting relativistic quantum field theory with local degrees of freedom quantized by loop quantization techniques

  5. Object localization in handheld thermal images for fireground understanding

    Science.gov (United States)

    Vandecasteele, Florian; Merci, Bart; Jalalvand, Azarakhsh; Verstockt, Steven

    2017-05-01

    Despite the broad application of the handheld thermal imaging cameras in firefighting, its usage is mostly limited to subjective interpretation by the person carrying the device. As remedies to overcome this limitation, object localization and classification mechanisms could assist the fireground understanding and help with the automated localization, characterization and spatio-temporal (spreading) analysis of the fire. An automated understanding of thermal images can enrich the conventional knowledge-based firefighting techniques by providing the information from the data and sensing-driven approaches. In this work, transfer learning is applied on multi-labeling convolutional neural network architectures for object localization and recognition in monocular visual, infrared and multispectral dynamic images. Furthermore, the possibility of analyzing fire scene images is studied and their current limitations are discussed. Finally, the understanding of the room configuration (i.e., objects location) for indoor localization in reduced visibility environments and the linking with Building Information Models (BIM) are investigated.

  6. The local limit of the uniform spanning tree on dense graphs

    Czech Academy of Sciences Publication Activity Database

    Hladký, Jan; Nachmias, A.; Tran, Tuan

    First Online: 10 January (2018) ISSN 0022-4715 R&D Projects: GA ČR GJ16-07822Y Keywords : uniform spanning tree * graph limits * Benjamini-Schramm convergence * graphon * branching process Subject RIV: BA - General Mathematics Impact factor: 1.349, year: 2016

  7. Experience, limits of and prospects for quick local analysis of harmful organic substances

    International Nuclear Information System (INIS)

    Matz, G.

    1993-01-01

    In the area of cleaning up old loads, both in exploration and also for concrete measures such as removing layers or cleaning the soil, the three-dimensionality and non-homogeneousness of the distribution of the harmful substances underground leads to very large numbers of samples, which must be analysed to describe the problem. If the analyses can be carried out directly locally and quickly, then based on the analysis results, the effect on the sample grid and on the course of the work can be estimated. The exploration and cleaning up cases carried out with the quick GC-MS analysis have shown that local analysis, firstly, represents a reasonably priced alternative to conventional laboratory analysis and, secondly, has advantages which very greatly accelerate work on old loads. (orig.) [de

  8. Critical heat flux performance of hypervapotrons proposed for use in the ITER divertor vertical target

    International Nuclear Information System (INIS)

    Youchison, D.L.; Marshall, T.D.; McDonald, J.M.; Lutz, T.J.; Watson, R.D.; Driemeyer, D.E.; Kubik, D.L.; Slattery, K.T.; Hellwig, T.H.

    1997-09-01

    Task T-222 of the International Thermonuclear Experimental Reactor (ITER) program addresses the manufacturing and testing of permanent components for use in the ITER divertor. Thermalhydraulic and critical heat flux performance of the heat sinks proposed for use in the divertor vertical target are part of subtask T-222.4. As part of this effort, two single channel, medium scale, bare copper alloy, hypervapotron mockups were designed, fabricated, and tested using the EB-1200 electron beam system. The objectives of the effort were to develop the design and manufacturing procedures required for construction of robust high heat flux (HHF) components, verify thermalhydraulic, thermomechanical and critical heat flux (CHF) performance under ITER relevant conditions, and perform analyses of HHF data to identify design guidelines and failure criteria and possibly modify any applicable CHF correlations. The design, fabrication, and finite element modeling of two types of hypervapotrons are described; a common version already in use at the Joint European Torus (JET) and a new attached fin design. HHF test data on the attached fin hypervapotron will be used to compare the CHF performance under uniform heating profiles on long heated lengths with that of localized, highly peaked, off nominal profiles

  9. Critical heat flux performance of hypervapotrons proposed for use in the ITER divertor vertical target

    Energy Technology Data Exchange (ETDEWEB)

    Youchison, D.L.; Marshall, T.D.; McDonald, J.M.; Lutz, T.J.; Watson, R.D. [Sandia National Labs., Albuquerque, NM (United States); Driemeyer, D.E. Kubik, D.L.; Slattery, K.T.; Hellwig, T.H. [McDonnell Douglas Aerospace, St. Louis, MO (United States)

    1997-09-01

    Task T-222 of the International Thermonuclear Experimental Reactor (ITER) program addresses the manufacturing and testing of permanent components for use in the ITER divertor. Thermalhydraulic and critical heat flux performance of the heat sinks proposed for use in the divertor vertical target are part of subtask T-222.4. As part of this effort, two single channel, medium scale, bare copper alloy, hypervapotron mockups were designed, fabricated, and tested using the EB-1200 electron beam system. The objectives of the effort were to develop the design and manufacturing procedures required for construction of robust high heat flux (HHF) components, verify thermalhydraulic, thermomechanical and critical heat flux (CHF) performance under ITER relevant conditions, and perform analyses of HHF data to identify design guidelines and failure criteria and possibly modify any applicable CHF correlations. The design, fabrication, and finite element modeling of two types of hypervapotrons are described; a common version already in use at the Joint European Torus (JET) and a new attached fin design. HHF test data on the attached fin hypervapotron will be used to compare the CHF performance under uniform heating profiles on long heated lengths with that of localized, highly peaked, off nominal profiles.

  10. RNA Localization in Astrocytes

    DEFF Research Database (Denmark)

    Thomsen, Rune

    2012-01-01

    , regulation of the blood brain barrier and glial scar tissue formation. Despite the involvement in various CNS functions only a limited number of studies have addressed mRNA localization in astrocytes. This PhD project was initially focused on developing and implementing methods that could be used to asses mRNA......Messenger RNA (mRNA) localization is a mechanism by which polarized cells can regulate protein synthesis to specific subcellular compartments in a spatial and temporal manner, and plays a pivotal role in multiple physiological processes from embryonic development to cell differentiation...... localization in astrocyte protrusions, and following look into the subcellular localization pattern of specific mRNA species of both primary astrocytes isolated from cortical hemispheres of newborn mice, and the mouse astrocyte cell line, C8S. The Boyden chamber cell fractionation assay was optimized, in a way...

  11. Transient critical heat flux under flow coast-down in vertical annulus with non-uniform heat flux distribution

    International Nuclear Information System (INIS)

    Moon, S.K.; Chun, S.Y.; Choi, K.Y.; Yang, S.K.

    2001-01-01

    An experimental study on transient critical heat flux (CHF) under flow coast-down has been performed for water flow in a non-uniformly heated vertical annulus under low flow and a wide range of pressure conditions. The objectives of this study are to systematically investigate the effect of the flow transient on the CHF and to compare the transient CHF with steady state CHF. The transient CHF experiments have been performed for three kinds of flow transient modes based on the coast-down data of the Kori 3/4 nuclear power plant reactor coolant pump. Most of the CHFs occurred in the annular-mist flow regime. Thus, it means that the possible CHF mechanism might be the liquid film dryout in the annular-mist flow regime. For flow transient mode with the smallest flow reduction rate, the time-to-CHF is the largest. At the same inlet subcooling, system pressure and heat flux, the effect of the initial mass flux on the critical mass flux can be negligible. However, the effect of the initial mass flux on the time-to-CHF becomes large as the heat flux decreases. Usually, the critical mass flux is large for slow flow reduction. There is a pressure effect on the ratio of the transient CHF data to steady state CHF data. Some conventional correlations show relatively better CHF prediction results for high system pressure, high quality and slow transient modes than for low system pressure, low quality and fast transient modes. (author)

  12. Experimental heart failure causes depression-like behavior together with differential regulation of inflammatory and structural genes in the brain

    Directory of Open Access Journals (Sweden)

    Anna eFrey

    2014-10-01

    Full Text Available Background-Depression and anxiety are common and independent outcome predictors in patients with chronic heart failure (CHF. However, it is unclear whether CHF causes depression. Thus, we investigated whether mice develop anxiety- and depression-like behavior after induction of ischemic CHF by myocardial infarction (MI.Methods and Results- In order to assess depression-like behavior, anhedonia was investigated by repeatedly testing sucrose preference for 8 weeks after coronary artery ligation or sham operation. Mice with large MI and increased left ventricular dimensions on echocardiography (termed CHF mice showed reduced preference for sucrose, indicating depression-like behavior. 6 weeks after MI, mice were tested for exploratory activity, anxiety-like behavior and cognitive function using the elevated plus maze (EPM, light-dark box (LDB, open field (OF and object recognition (OR tests. In the EPM and OF, CHF mice exhibited diminished exploratory behavior and motivation despite similar movement capability. In the OR, CHF mice had reduced preference for novelty and impaired short-term memory. On histology, CHF mice had unaltered overall cerebral morphology. However, analysis of gene expression by RNA-sequencing in prefrontal cortical, hippocampal, and left ventricular tissue revealed changes in genes related to inflammation and cofactors of neuronal signal transduction in CHF mice, with Nr4a1 being dysregulated both in prefrontal cortex and myocardium after MI. Conclusions-After induction of ischemic CHF, mice exhibited anhedonic behavior, decreased exploratory activity and interest in novelty, and cognitive impairment. Thus, ischemic CHF leads to distinct behavioral changes in mice analogous to symptoms observed in humans with CHF and comorbid depression.

  13. Critical heat flux tests for self-spaced square finned 7 fuel rod bundle

    International Nuclear Information System (INIS)

    Moon, Sang Ki; Chun, Se Young; Choi, Ki Young; Park, Jong Kuk; Hwang, Dae Hyun; Zee, Sung Quun; Kim, Keung Koo

    2001-09-01

    Now, KAERI is developing a new advanced reactor aimed at achieving highly enhanced safety and reliability, and improved economics. SSF (Self-Spaced Square Finned) fuel rod bundle is considered as a suitable one for the new advanced reactor. The SSF fuel rods have rectangular shapes and four fins at the corners, and are arranged in triangular geometry. While the SSF fuel rod bundle is considered to have enhanced cooling efficiency, the correlations used for commercial PWR might be able to be applied. The application results of some conventional correlations show that the SSF fuel rod bundle show an enhanced CHF performance about 10 to 40 %. When some conventional CHF correlations are applied to CHF data with a similar geometry to the SSF fuel rod bundle, conventional CHF correlations including a correlation developed in Russia are judged not to be suitable for the development of SSF fuel rod bundle and for the use in a safety analysis code. From CHF experiments for SSF 7 fuel rod bundle performed in KAERI, the following results are obtained: the CHF increases with increasing mass flux, and the CHF increasing rate decreases at high mass flux conditions. The exit quality decreases with increasing mass flux. The overall effect of the mass flux on the CHF and exit quality coincides with previous understanding. Compared to the CHF data of IPPE with the same system pressure and inlet temperature, the CHF data of KAERI show the similar values. Thus, the reliability of IPPE CHF data can be confirmed indirectly

  14. Mixed-method exploratory study of general practitioner and nurse perceptions of a new community based nurse-led heart failure service.

    Science.gov (United States)

    MacKenzie, Emma; Smith, Amanda; Angus, Neil; Menzies, Sue; Brulisauer, Franz; Leslie, Stephen J

    2010-01-01

    The treatment of patients with chronic heart failure (CHF) remains sub-optimal. Specialist CHF nurses are proven to improve care and reduce admission but developing such services, especially in remote areas, can be difficult. This study aimed: first, to assess the perceived acceptability and effectiveness of a new community based nurse-led heart failure service by general practitioners (GPs) in an area with a dispersed population; second, to assess the knowledge and learning needs of GPs; and third, to assess perceptions of the use of national guidelines and telehealth on heart failure management. The study was conducted in the Scottish Highlands, a large geographical area in the north of the UK which includes both rural and urban populations. The area has a total population of 240 000, approximately 60% of whom are within 1 hour travel time of the largest urban centre. A postal survey of all GPs (n = 260) and structured email survey of all CHF specialist nurses (n = 3) was performed. All responses were entered into a Microsoft Excel spreadsheet, summarised and subjected to thematic analysis. Differences between GPs in 'rural', 'urban' or both 'urban & rural' was investigated using an F-test for continuous variables and a three-sample test for equality of proportions for nominal data. Questionnaires were returned from 83 GPs (32%) and all three CHF specialist nurses. In this sample there were only a few differences between GPs from 'rural', 'urban' and 'urban & rural'. There also appeared to be little difference in responses between those who had the experience of the CHF nurse service and those who had not. Overall, 32 GPs (39%) wished better, local access to echocardiography, while 63 (76%) wished access to testing for brain natriuretic peptide (BNP). Only 27 GPs (33%) referred all patients with CHF to hospital. A number of GPs stated that this was dependant on individual circumstances and the patient's ability to travel. The GPs were confident to initiate

  15. Challenges facing local communities in Tanzania in realising locally-managed marine areas

    NARCIS (Netherlands)

    Katikiro, R.E.; Macusi, E.D.; Ashoka Deepananda, K.H.M.

    2015-01-01

    This study explores how the history and process of establishing a marine protected area (MPA) under the control of the state has led to limited interest in community-based management amongst local stakeholders. The study contributes to the understanding of historical events that have discouraged

  16. Health care system delay and heart failure in patients with ST-segment elevation myocardial infarction treated with primary percutaneous coronary intervention: follow-up of population-based medical registry data

    DEFF Research Database (Denmark)

    Terkelsen, Christian Juhl; Jensen, Lisette Okkels; Hansen, Hans-Henrik Tilsted

    2011-01-01

    In patients with ST-segment elevation myocardial infarction (STEMI), delay between contact with the health care system and initiation of reperfusion therapy (system delay) is associated with mortality, but data on the associated risk for congestive heart failure (CHF) among survivors are limited....

  17. The geometrically averaged density of states calculated from the local Green's function as a measure of localization

    International Nuclear Information System (INIS)

    Wortis, R.; Song Yun; Atkinson, W.A.

    2008-01-01

    With the goal of measuring localization in disordered interacting systems, we examine the finite-size scaling of the geometrically averaged density of states calculated from the local Green's function with finite energy resolution. Our results show that, unlike in a simple energy binning procedure, there is no limit in which the finite energy resolution is irrelevant

  18. Congestive heart failure effects on atrial fibroblast phenotype: differences between freshly-isolated and cultured cells.

    Directory of Open Access Journals (Sweden)

    Kristin Dawson

    Full Text Available Fibroblasts are important in the atrial fibrillation (AF substrate resulting from congestive heart failure (CHF. We previously noted changes in in vivo indices of fibroblast function in a CHF dog model, but could not detect changes in isolated cells. This study assessed CHF-induced changes in the phenotype of fibroblasts freshly isolated from control versus CHF dogs, and examined effects of cell culture on these differences.Left-atrial fibroblasts were isolated from control and CHF dogs (ventricular tachypacing 240 bpm × 2 weeks. Freshly-isolated fibroblasts were compared to fibroblasts in primary culture. Extracellular-matrix (ECM gene-expression was assessed by qPCR, protein by Western blot, fibroblast morphology with immunocytochemistry, and K(+-current with patch-clamp. Freshly-isolated CHF fibroblasts had increased expression-levels of collagen-1 (10-fold, collagen-3 (5-fold, and fibronectin-1 (3-fold vs. control, along with increased cell diameter (13.4 ± 0.4 µm vs control 8.4 ± 0.3 µm and cell spreading (shape factor 0.81 ± 0.02 vs. control 0.87 ± 0.02, consistent with an activated phenotype. Freshly-isolated control fibroblasts displayed robust tetraethylammonium (TEA-sensitive K(+-currents that were strongly downregulated in CHF. The TEA-sensitive K(+-current differences between control and CHF fibroblasts were attenuated after 2-day culture and eliminated after 7 days. Similarly, cell-culture eliminated the ECM protein-expression and shape differences between control and CHF fibroblasts.Freshly-isolated CHF and control atrial fibroblasts display distinct ECM-gene and morphological differences consistent with in vivo pathology. Culture for as little as 48 hours activates fibroblasts and obscures the effects of CHF. These results demonstrate potentially-important atrial-fibroblast phenotype changes in CHF and emphasize the need for caution in relating properties of cultured fibroblasts to in vivo systems.

  19. GRACE score predicts heart failure admission following acute coronary syndrome.

    Science.gov (United States)

    McAllister, David A; Halbesma, Nynke; Carruthers, Kathryn; Denvir, Martin; Fox, Keith A

    2015-04-01

    Congestive heart failure (CHF) is a common and preventable complication of acute coronary syndrome (ACS). Nevertheless, ACS risk scores have not been shown to predict CHF risk. We investigated whether the at-discharge Global Registry of Acute Coronary Events (GRACE) score predicts heart failure admission following ACS. Five-year mortality and hospitalization data were obtained for patients admitted with ACS from June 1999 to September 2009 to a single centre of the GRACE registry. CHF was defined as any admission assigned WHO International Classification of Diseases 10 diagnostic code I50. The hazard ratio (HR) for CHF according to GRACE score was estimated in Cox models adjusting for age, gender and the presence of CHF on index admission. Among 1,956 patients, CHF was recorded on index admission in 141 patients (7%), and 243 (12%) were admitted with CHF over 3.8 median years of follow-up. Compared to the lowest quintile, patients in the highest GRACE score quintile had more CHF admissions (116 vs 17) and a shorter time to first admission (1.2 vs 2.0 years, HR 9.87, 95% CI 5.93-16.43). Per standard deviation increment in GRACE score, the instantaneous risk was more than two-fold higher (HR 2.28; 95% CI 2.02-2.57), including after adjustment for CHF on index admission, age and gender (HR 2.49; 95% CI 2.06-3.02). The C-statistic for CHF admission at 1-year was 0.74 (95% CI 0.70-0.79). The GRACE score predicts CHF admission, and may therefore be used to target ACS patients at high risk of CHF with clinical monitoring and therapies. © The European Society of Cardiology 2014.

  20. 29 CFR 553.202 - Limitations.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 3 2010-07-01 2010-07-01 false Limitations. 553.202 Section 553.202 Labor Regulations Relating to Labor (Continued) WAGE AND HOUR DIVISION, DEPARTMENT OF LABOR REGULATIONS APPLICATION OF THE FAIR LABOR STANDARDS ACT TO EMPLOYEES OF STATE AND LOCAL GOVERNMENTS Fire Protection and Law...

  1. Offer - La Comédie theatre

    CERN Multimedia

    Staff Association

    2017-01-01

    The “La Comédie” theatre unveiled its programme for the season 2017–2018. We are delighted to share this brand new, rich and varied programme with you. The “La Comédie” theatre has various discounts for our members Buy 2 subscriptions for the price of 1 : 2 cards “Libertà” for CHF 240.- instead of CHF 480.- Cruise freely through the season with an 8-entry card valid for the shows of your choice. These cards are transferable and can be shared with one or more accompanying persons. 2 cards “Piccolo” for CHF 120 instead of CHF 240.- This card lets you discover 4 shows which are suitable for all audiences (offers valid while stock lasts) Benefit from a reduction of 20 % on a full price ticket during all the season: from CHF 40.- to CHF 24.- ticket instead of CHF 50.- to CHF 30.- depending on the show (Also valid for one accompanying person). Interested in one of these offers? Create an ac...

  2. Offers

    CERN Multimedia

    Staff Association

    2015-01-01

    New season 2015-2016 The new season was revealed in May, and was warmly welcomed by the press, which is especially enthusiastic about the exceptional arrival of Fanny Ardand in September in the framework of Cassandre show. Discover the programme 2015-2016. The theatre La Comédie proposes different offers to our members Benefit from a reduction of 20 % on a full price ticket during all the season: from 38 CHF to 23 CHF ticket instead of 50 CHF to 30 CHF depending on the show. Buy two seasonal tickets at the price of one (offers valid upon availability, and until 30 september 2015) 2 Cards Libertà for 240 CHF instead of 480 CHF. Cruise freely through the season with 8 perfomances of your choice per season. These cards are transferrable, and can be shared with one or more accompanying persons. 2 Abo Piccolo for 120 CHF instead of 240 CHF. Let yourself be surprised a theatre performance with our discovery seasonal tickets, which includes 4 flagship perfomances for the season. ...

  3. HEART FAILURE AND DIABETES MELLITUS: SELECTED ISSUES OF ETIOLOGY AND PATHOGENESIS, PROGNOSIS AND TREATMENT

    Directory of Open Access Journals (Sweden)

    B. U. Mardanov

    2016-01-01

    Full Text Available This review is devoted to the study of issues relating to the features of associated course of chronic heart failure (CHF and diabetes mellitus (DM. The modern views on the epidemiology, pathogenesis of DM and CHF are systematized. The pathogenesis of diabetic cardiomyopathy is described in details. The results of the well-known studies that show the negative impact of DM on CHF prognosis are presented. The principles of CHF pathogenetic therapy in patients with DM including the role of neurohormonal modulators are analyzed. The results of multicenter studies in patients with CHF and concomitant DM type 2 show that almost all first-line drugs recommended for CHF treatment are effective in patients with DM.

  4. Characteristics of Core Thermal-Hydraulic Design of SMART-P

    International Nuclear Information System (INIS)

    Hwang, Dae-Hyun; Seo, Kyong-Won; Kim, Tae-Wan; Lee, Chung-Chan

    2006-01-01

    The SMART (System-Integrated Modular Advanced ReacTor) is an integral-type advanced light water reactor which is purposed to be utilized as an energy source for sea water desalination as well as a small scale power generation. A prototype of this reactor, named SMART-P, has been studied at KAERI in order to demonstrate the relevant technologies incorporated in the SMART design. Due to the closed-channel type fuel assemblies and low mass velocity in the reactor core, the thermal hydraulic design features of SMART-P revealed fairly different characteristics in comparison with existing PWRs. The allowable operating region of the core, from the aspect of the thermal integrity of the fuel, should be primarily limited by two design parameters; critical heat flux (CHF) and fuel temperature. The occurrence of CHF may cause a sudden increase of the cladding temperature which eventually results in the fuel failure. The fuel temperature limit is relevant to a fuel failure mechanism such as a fuel centerline melting or a phase change of metallic fuels. Two phase flow instability is also an important design parameter since a flow oscillation may trigger a CHF or mechanical vibration of the channel. The characteristics of important thermal-hydraulic design parameters have been investigated for the SMART-P core with the closed-channel type fuel assemblies which contained non-square arrayed SSF (Self-sustained Square Finned) fuel rods

  5. Potential of vehicle-to-grid ancillary services considering the uncertainties in plug-in electric vehicle availability and service/localization limitations in distribution grids

    International Nuclear Information System (INIS)

    Sarabi, Siyamak; Davigny, Arnaud; Courtecuisse, Vincent; Riffonneau, Yann; Robyns, Benoît

    2016-01-01

    Highlights: • The availability uncertainty of PEVs are modelled using Gaussian mixture model. • Interdependency of stochastic variables are modelled using copula function. • V2G bidding capacity is calculated using Free Pattern search optimization method. • Localization limitation is considered for V2G service potential assessment. • Competitive services for fleet of V2G-enabled PEVs are identified using fuzzy sets. - Abstract: The aim of the paper is to propose an approach for statistical assessment of the potential of plug-in electric vehicles (PEV) for vehicle-to-grid (V2G) ancillary services, where it focuses on PEVs doing daily home-work commuting. In this approach, the possible ancillary services (A/S) for each PEV fleet in terms of its available V2G power (AVP) and flexible intervals are identified. The flexible interval is calculated using a powerful stochastic global optimization technique so-called “Free Pattern Search” (FPS). A probabilistic method is also proposed to quantify the impacts of PEV’s availability uncertainty using the Gaussian mixture model (GMM), and interdependency of stochastic variables on AVP of each fleet thanks to a multivariate modeling with Copula function. Each fleet is analyzed based on its aggregated PEV numbers at different level of distribution grid, in order to satisfy the ancillary services localization limitation. A case study using the proposed approach evaluates the real potential in Niort, a city in west of France. In fact, by using the proposed approach an aggregator can analyze the V2G potential of PEVs under its contract.

  6. Offers

    CERN Multimedia

    Staff Association

    2013-01-01

    SPECIAL OFFER FOR OUR MEMBERS Prices Spring and Summer 2013 Day ticket: same price weekends, public holidays and weekdays: Children from 5 to 15 years old: 30 CHF instead of 39 CHF Adults from 16 years old: 36 CHF instead of 49 CHF Bonus! Free for children under 5 Tickets available at the Staff Association Secretariat.

  7. Offers

    CERN Multimedia

    Association du personnel

    2013-01-01

    SPECIAL OFFER FOR OUR MEMBERS Prices Spring and Summer 2013 Day ticket: same price weekends, public holidays and weekdays: – Children from 5 to 15 years old: 30 CHF instead of 39 CHF – Adults from 16 years old: 36 CHF instead of 49 CHF – Bonus! Free for children under 5 Tickets available at the Staff Association Secretariat.

  8. TREATMENT OF CHRONIC HEART FAILURE: FOCUS ON METOPROLOL SUCCINATE

    Directory of Open Access Journals (Sweden)

    O. D. Ostroumova

    2012-01-01

    Full Text Available Advantages of metoprolol succinate in patients with chronic heart failure (CHF are covered. Results of MERIT-HF study are taken as the main evidences. Patterns of the metoprolol succinate use in the treatment of different categories of patients with CHF (women, the elderly , severe CHF forms, CHF with concomitant hypertension or diabetes are considered.

  9. TREATMENT OF CHRONIC HEART FAILURE: FOCUS ON METOPROLOL SUCCINATE

    Directory of Open Access Journals (Sweden)

    O. D. Ostroumova

    2015-12-01

    Full Text Available Advantages of metoprolol succinate in patients with chronic heart failure (CHF are covered. Results of MERIT-HF study are taken as the main evidences. Patterns of the metoprolol succinate use in the treatment of different categories of patients with CHF (women, the elderly , severe CHF forms, CHF with concomitant hypertension or diabetes are considered.

  10. TVP1022 attenuates cardiac remodeling and kidney dysfunction in experimental volume overload-induced congestive heart failure.

    Science.gov (United States)

    Abassi, Zaid A; Barac, Yaron D; Kostin, Sawa; Roguin, Ariel; Ovcharenko, Elena; Awad, Hoda; Blank, Ayelet; Bar-Am, Orit; Amit, Tamar; Schaper, Jutta; Youdim, Moussa; Binah, Ofer

    2011-07-01

    Despite the availability of many pharmacological and mechanical therapies, the mortality rate among patients with congestive heart failure (CHF) remains high. We tested the hypothesis that TVP1022 (the S-isomer of rasagiline; Azilect), a neuroprotective and cytoprotective molecule, is also cardioprotective in the settings of experimental CHF in rats. In rats with volume overload-induced CHF, we investigated the therapeutic efficacy of TVP1022 (7.5 mg/kg) on cardiac function, structure, biomarkers, and kidney function. Treatment with TVP1022 for 7 days before CHF induction prevented the increase in left ventricular end-diastolic area and end-systolic area, and the decrease in fractional shortening measured 14 days after CHF induction. Additionally, TVP1022 pretreatment attenuated CHF-induced cardiomyocyte hypertrophy, fibrosis, plasma and ventricular B-type natriuretic peptide levels, and reactive oxygen species expression. Further, in CHF rats, TVP1022 decreased cytochrome c and caspase 3 expression, thereby contributing to the cardioprotective efficacy of the drug. TVP1022 also enhanced the urinary Na(+) excretion and improved the glomerular filtration rate. Similar cardioprotective effects were obtained when TVP1022 was given to rats after CHF induction. TVP1022 attenuated the adverse functional, structural, and molecular alterations in CHF, rendering this drug a promising candidate for improving cardiac and renal function in this disease state.

  11. Post-CHF heat transfer: a non-equilibrium, relaxation model

    International Nuclear Information System (INIS)

    Jones, O.C. Jr.; Zuber, N.

    1977-01-01

    Existing phenomenological models of heat transfer in the non-equilibrium, liquid-deficient, dispersed flow regime can sometimes predict the thermal behavior fairly well but are quite complex, requiring coupled simultaneous differential equations to describe the axial gradients of mass and energy along with those of droplet acceleration and size. In addition, empirical relations are required to express the droplet breakup and increased effective heat transfer due to holdup. This report describes the development of a different approach to the problem. It is shown that the non-equilibrium component of the total energy can be expressed as a first order, inhomogeneous relaxation equation in terms of one variable coefficient termed the Superheat Relaxation number. A demonstration is provided to show that this relaxation number can be correlated using local variables in such a manner to allow the single non-equilibrium equation to accurately calculate the effects of mass velocity and heat flux along with tube length, diameter, and critical quality for equilibrium qualities from 0.13 to over 3.0

  12. CERN Holiday Gift Guide

    CERN Multimedia

    2013-01-01

    Do you have last-minute gifts to get? Stuck for ideas? The CERN Shop and the ATLAS and CMS secretariats have some wonderfully unique gifts and stocking-fillers for sale this year - perfect for the physics fanatics in your life. Let's take a look...   1. CERN Notebook, 10 CHF - 2. CERN Pop-up book, 30 CHF - 3. USB Stick 8GB, 25 CHF - 4. CERN Tumbler, 12 CHF 5. ATLAS 3D Viewer, 5 CHF - 6. ATLAS Puzzle, 15 CHF - 7. CMS Umbrella, 25 CHF   These gifts are all available at the CERN Shop, with the exception of the ATLAS 3D Viewer and the CMS umbrella, which are only available from the respective secretariats. Don’t forget! If you’re from CERN, you still have time to take advantage of a 10% off discount at the CERN shop. Offer ends 20 December.

  13. Importance of congestive heart failure and interaction of congestive heart failure and left ventricular systolic function on prognosis in patients with acute myocardial infarction

    DEFF Research Database (Denmark)

    Køber, L; Torp-Pedersen, C; Pedersen, O D

    1996-01-01

    or persistent. Wall motion index and CHF are correlated. Furthermore, there is an interaction between wall motion index and CHF. The prognostic importance of wall motion index depends on whether patients have CHF or not: the risk ratio associated with decreasing 1 wall motion index unit is 3.0 (2.6 to 3......Left ventricular (LV) systolic function and congestive heart failure (CHF) are important predictors of long-term mortality after acute myocardial infarction. The importance of transient CHF and the interaction of CHF and LV function on prognosis has not been studied in detail previously....... In the TRAndolapril Cardiac Evaluation Study, 6,676 consecutive patients with acute myocardial infarction 1 to 6 days earlier had LV systolic function quantified as wall motion index (echocardiography), which is closely correlated to LV ejection fraction. To study the interaction of CHF and wall motion index on long...

  14. Local variances in biomonitoring

    International Nuclear Information System (INIS)

    Wolterbeek, H.Th; Verburg, T.G.

    2001-01-01

    The present study was undertaken to explore possibilities to judge survey quality on basis of a limited and restricted number of a-priori observations. Here, quality is defined as the ratio between survey and local variance (signal-to-noise ratio). The results indicate that the presented surveys do not permit such judgement; the discussion also suggests that the 5-fold local sampling strategies do not merit any sound judgement. As it stands, uncertainties in local determinations may largely obscure possibilities to judge survey quality. The results further imply that surveys will benefit from procedures, controls and approaches in sampling and sample handling, to assess both average, variance and the nature of the distribution of elemental concentrations in local sites. This reasoning is compatible with the idea of the site as a basic homogeneous survey unit, which is implicitly and conceptually underlying any survey performed. (author)

  15. Flow visualization study of post critical heat flux region for inverted bubbly, slug and annular flow regimes

    International Nuclear Information System (INIS)

    Denten, J.G.; Ishii, M.

    1988-11-01

    A visual study of film boiling using still photographic and high- speed motion picture methods was carried out in order to analyze the post-CHF hydrodynamics for steady-state inlet pre-CHF two-phase flow regimes. Pre-CHF two-phase flow regimes were established by introducing Freon 113 liquid and nitrogen gas into a jet core injection nozzle. An idealized, post-CHF two-phase core initial flow geometry (cylindrical multiphase jet core surrounded by a coaxial annulus of gas) was established at the nozzle exit by introducing nitrogen gas into the annular gap between the jet nozzle two-phase effluent and the heated test section inlet. For the present study three basic post-CHF flow regimes have been observed: the rough wavy regime (inverted annular flow preliminary break down), the agitated regime (transition between inverted annular and dispersed droplet flow), and the dispersed ligament/droplet regime. For pre-CHF bubbly flow in the jet nozzle, the post-CHF flow (beginning from jet nozzle exit/heated test section inlet) consists of the rough wavy regime, followed by the agitated and then the dispersed ligament/droplet regime. In the same way, for pre-CHF slug flow in the jet core, the post-CHF flow is comprised of the agitated regime at the nozzle exit, followed by the dispersed regime. Pre-CHF annular jet core flow results in a small, depleted post-CHF agitated flow regime at the nozzle exit, immediately followed by the dispersed ligament/droplet regime. Observed post dryout hydrodynamic behavior is reported, with particular attention given to the transition flow pattern between inverted annular and dispersed droplet flow. 43 refs., 20 figs., 5 tabs

  16. Hemodynamic and neurochemical determinates of renal function in chronic heart failure.

    Science.gov (United States)

    Gilbert, Cameron; Cherney, David Z I; Parker, Andrea B; Mak, Susanna; Floras, John S; Al-Hesayen, Abdul; Parker, John D

    2016-01-15

    Abnormal renal function is common in acute and chronic congestive heart failure (CHF) and is related to the severity of congestion. However, treatment of congestion often leads to worsening renal function. Our objective was to explore basal determinants of renal function and their response to hemodynamic interventions. Thirty-seven patients without CHF and 59 patients with chronic CHF (ejection fraction; 23 ± 8%) underwent right heart catheterization, measurements of glomerular filtration rate (GFR; inulin) and renal plasma flow (RPF; para-aminohippurate), and radiotracer estimates of renal sympathetic activity. A subset (26 without, 36 with CHF) underwent acute pharmacological intervention with dobutamine or nitroprusside. We explored the relationship between baseline and drug-induced hemodynamic changes and changes in renal function. In CHF, there was an inverse relationship among right atrial mean pressure (RAM) pressure, RPF, and GFR. By contrast, mean arterial pressure (MAP), cardiac index (CI), and measures of renal sympathetic activity were not significant predictors. In those with CHF there was also an inverse relationship among the drug-induced changes in RAM as well as pulmonary artery mean pressure and the change in GFR. Changes in MAP and CI did not predict the change in GFR in those with CHF. Baseline values and changes in RAM pressure did not correlate with GFR in those without CHF. In the CHF group there was a positive correlation between RAM pressure and renal sympathetic activity. There was also an inverse relationship among RAM pressure, GFR, and RPF in patients with chronic CHF. The observation that acute reductions in RAM pressure is associated with an increase in GFR in patients with CHF has important clinical implications. Copyright © 2016 the American Physiological Society.

  17. The Limits to Giving Back

    Directory of Open Access Journals (Sweden)

    Jade S. Sasser

    2014-07-01

    Full Text Available In this thematic section, authors consider the limitations on giving back that they faced in field research, or saw others face. For some authors, their attempts at giving back were severely limited by the scope of their projects, or their understandings of local cultures or histories. For others, very specific circumstances and historical interventions of foreigners in certain places can limit how and to what extent a researcher is able to have a reciprocal relationship with the participating community. Some authors, by virtue of their lesser positions of power relative to those that they were studying, simply decided not to give back to those communities. In each article it becomes apparent that how and in what ways people give back is unique (and limited both to their personal values and the contexts in which they do research.

  18. IT benefits management in local government

    DEFF Research Database (Denmark)

    Nielsen, Kenneth Møller Porto; Nielsen, Peter Axel; Persson, John Stouby

    2012-01-01

    Information technology (IT) is increasingly presented as a driving force for service and efficiency improvement in local governments. However, achieving these goals in creating value from IT investments is a significant challenge for local government organizations. Practitioners and researchers...... have proposed numerous approaches to IT benefits management, but our knowledge of current practices and capabilities in local government IT management is still limited. Thus, in this paper we resent an investigation of what characterizes IT benefits management in local government in order to understand...... and improve current practices. Through a comparative case study of two Danish municipalities, we have analyzed the different characteristics of benefits management. Based on this analysis we propose an initial framework for understanding IT benefits management in local government....

  19. Classification and prediction of the critical heat flux using fuzzy theory and artificial neural networks

    International Nuclear Information System (INIS)

    Moon, Sang Ki; Chang, Soon Heung

    1994-01-01

    A new method to predict the critical heat flux (CHF) is proposed, based on the fuzzy clustering and artificial neural network. The fuzzy clustering classifies the experimental CHF data into a few data clusters (data groups) according to the data characteristics. After classification of the experimental data, the characteristics of the resulting clusters are discussed with emphasis on the distribution of the experimental conditions and physical mechanism. The CHF data in each group are trained in an artificial neural network to predict the CHF. The artificial neural network adjusts the weight so as to minimize the prediction error within the corresponding cluster. Application of the proposed method to the KAIST CHF data bank shows good prediction capability of the CHF, better than other existing methods. ((orig.))

  20. Critical heat flux in bottom heated two-phase thermosyphon. Improvement in critical heat flux due to concentric tube; Katan shuchu kanetsugata niso netsu syphon no genkai netsu ryusoku. Nijukan ni yoru genkai netsu ryusoku no kaizen

    Energy Technology Data Exchange (ETDEWEB)

    Monde, M.; Mitsutake, Y. [Saga University, Saga (Japan). Faculty of Science and Engineering

    2000-02-25

    An experiment has been carried out to elucidate the critical heat flux (CHF) of an open two-phase thermosyphon with a bottom heated chamber in which heat is absorbed by evaporation of liquid. Another objective is to enhance the CHF using a concentric-tube by which counter-current flow of vapor and liquid in the throat of the chamber can be controlled well. The CHF data are measured for the saturated liquid of R 113 at a different pressure and different configuration of concentric tubes. The CHF data without the inner tube are in good agreement with the existing correlation and analytical result. The CHF increases by as much as several times of the CHF without the inner tube with an increase in the inner tube diameter up to a certain diameter of the inner tube and then decreases continuously as the inner tube diameter approaches the outer tube diameter. The optimum diameter of inner tube exists at which the CHF is maximum. (author)

  1. Prevalence of cachexia in chronic heart failure and characteristics of body composition and metabolic status

    DEFF Research Database (Denmark)

    Christensen, Heidi Marie; Kistorp, Caroline Michaela Nervil; Schou, Morten

    2012-01-01

    The prevalence of cardiac cachexia has previously been estimated to 8-42 %. However, novel treatment strategies for chronic heart failure (CHF) have improved and decreased morbidity and mortality. Therefore, we aimed to reassess the prevalence of cachexia in an outpatient CHF clinic...... and to characterize a CHF population with and without cachexia with respect to body composition and related biomarkers. From 2008 to 2011, we screened 238 optimally treated, non-diabetic CHF patients for cardiac cachexia, defined as unintentional non-oedematous weight loss of >5 % over ≥6 months. CHF patients (LVEF...... 45 % (n = 19). The groups were matched for age, sex, and kidney function. Body composition was assessed by dual energy X-ray absorptiometry. The prevalence of cachexia was 10.5 %. Abdominal fat ± SD (%) was reduced in cachectic CHF: 27.4 ± 10.0 versus 37.5 ± 10.6 % (CHF, no cachexia) and 40...

  2. Critical heat flux of water in vertical round tubes at low-pressure and low-flow conditions

    International Nuclear Information System (INIS)

    Park, Jae-Wook; Kim, Hong-Chae; Beak, Won-Pil; Chang, Soon Heung

    1997-01-01

    A series of critical heat flux (CHF) tests have been performed to provide a reliable set of CHF data for water flow in vertical round tubes at low pressure and low flow (LPLF) conditions. The range of experimental conditions is as follows: diameter 8, 10 mm; heated length 0.5, 1 m; pressure 2-9 bar, mass flux 50-200 kg/m 2 s; inlet subcooling 350, 450 kJ/kg. The observed parametric trends are generally consistent with the previous understanding except for the effects of system pressure and tube diameter. The pressure effect is small but very complicated; existing CHF correlations do not represent this parametric trend properly. CHF increases with the increase in diameter at fixed exit conditions, contrary to the general understanding. The artificial neural networks are applied to the round tube CHF data base at LPLF (P = 110-1100 kPa, G = 0-500 kg/m 2 s) conditions. The trained backpropagation networks (BPNs) predict CHF better than any other CHF correlations. Parametric trends of CHF based on the BPN for fixed inlet conditions generally agree well with our experimental results. (author)

  3. The SMART personalised self-management system for congestive heart failure: results of a realist evaluation.

    Science.gov (United States)

    Bartlett, Yvonne K; Haywood, Annette; Bentley, Claire L; Parker, Jack; Hawley, Mark S; Mountain, Gail A; Mawson, Susan

    2014-11-25

    Technology has the potential to provide support for self-management to people with congestive heart failure (CHF). This paper describes the results of a realist evaluation of the SMART Personalised Self-Management System (PSMS) for CHF. The PSMS was used, at home, by seven people with CHF. Data describing system usage and usability as well as questionnaire and interview data were evaluated in terms of the context, mechanism and outcome hypotheses (CMOs) integral to realist evaluation. The CHF PSMS improved heart failure related knowledge in those with low levels of knowledge at baseline, through providing information and quizzes. Furthermore, participants perceived the self-regulatory aspects of the CHF PSMS as being useful in encouraging daily walking. The CMOs were revised to describe the context of use, and how this influences both the mechanisms and the outcomes. Participants with CHF engaged with the PSMS despite some technological problems. Some positive effects on knowledge were observed as well as the potential to assist with changing physical activity behaviour. Knowledge of CHF and physical activity behaviour change are important self-management targets for CHF, and this study provides evidence to direct the further development of a technology to support these targets.

  4. Fitness Club

    CERN Multimedia

    Fitness Club

    2010-01-01

    Nordic Walking Nordic Walking Outings/Sorties Nordic Walking Mondays/Les lundis (1 hour/heure) RDV 12.20 parking des baraques, départ/departure 12.30 les 3, 10, 17 et 31 mai les 7, 14, 21 et 28 juin Saturdays/Les samedis (2 hours/heures) RDV 13.30 Mont Mourex, départ/departure 14.00 1er et 22 mai Nordic Walking Classes/Cours Nordic Walking Thursdays/Les jeudis (1 hour/heure) RDV 12.20 parking des baraques, depart/departure 12.30 Session 2 = 29.04, 06.05, 20.05, 27.05 Session 3 = 10.06, 17.06, 24.06, 01.07 Saturdays/les samedis cours (2 hours/heures) Session 4 = 08.05. + 15.05. Session 5 = 05.06. + 12.06. Prix Nordic walking outings/Les sorties nordic walking: 15 chf for 5 outings of 1 hour + 10 chf club membership 15 chf pour 5 sorties de 1 heure + 10 chf pour l’adhésion club. Nordic Walking Classes/Cours 1 session 40 chf + 10 chf pour l’adhésion club. 1 session 40 chf + 10 chf club membership Subscr...

  5. Incremental artificial bee colony with local search to economic dispatch problem with ramp rate limits and prohibited operating zones

    International Nuclear Information System (INIS)

    Özyön, Serdar; Aydin, Doğan

    2013-01-01

    Highlights: ► Prohibited operating zone economic dispatch problem has been solved by IABC-LS. ► The losses used in the solution of the problem have been computed by B-loss matrix. ► IABC-LS method has been applied to three test systems in literature. ► The values obtained by IABC and IABC-LS are better than the results in literature. - Abstract: In this study, prohibited operating zone economic power dispatch problem which considers ramp rate limit, has been solved by incremental artificial bee colony algorithm (IABC) and incremental artificial bee colony algorithm with local search (IABC-LS) methods. The transmission line losses used in the solution of the problem have been computed by B-loss matrix. IABC, IABC-LS methods have been applied to three different test systems in literature which consist of 6, 15 and 40 generators. The attained optimum solution values have been compared with the optimum results in literature and have been discussed.

  6. Crackle pitch and rate do not vary significantly during a single automated-auscultation session in patients with pneumonia, congestive heart failure, or interstitial pulmonary fibrosis.

    Science.gov (United States)

    Vyshedskiy, Andrey; Ishikawa, Sadamu; Murphy, Raymond L H

    2011-06-01

    To determine the variability of crackle pitch and crackle rate during a single automated-auscultation session with a computerized 16-channel lung-sound analyzer. Forty-nine patients with pneumonia, 52 with congestive heart failure (CHF), and 18 with interstitial pulmonary fibrosis (IPF) performed breathing maneuvers in the following sequence: normal breathing, deep breathing, cough several times; deep breathing, vital-capacity maneuver, and deep breathing. From the auscultation recordings we measured the crackle pitch and crackle rate. Crackle pitch variability, expressed as a percentage of the average crackle pitch, was small in all patients and in all maneuvers: pneumonia 11%, CHF 11%, pulmonary fibrosis 7%. Crackle rate variability was also small: pneumonia 31%, CHF 32%, IPF 24%. Compared to the first deep-breathing maneuver (100%), the average crackle pitch did not significantly change following coughing (pneumonia 100%, CHF 103%, IPF 100%), the vital-capacity maneuver (pneumonia 100%, CHF 92%, IPF 104%), or during quiet breathing (pneumonia 97%, CHF 100%, IPF 104%). Similarly, the average crackle rate did not change significantly following coughing (pneumonia 105%, CHF 110%, IPF 90%) or the vital-capacity maneuver (pneumonia 102%, CHF 101%, IPF 99%). However, during normal breathing the crackle rate was significantly lower in the patients with pneumonia (74%, P auscultation session suggests that crackle rate can be used to follow the course of cardiopulmonary illnesses such as pneumonia, IPF, and CHF.

  7. Transient localization in the kicked Rydberg atom

    OpenAIRE

    Persson, E.; Fürthauer, S.; Wimberger, S.; Burgdörfer, J.

    2006-01-01

    We investigate the long-time limit of quantum localization of the kicked Rydberg atom. The kicked Rydberg atom is shown to possess in addition to the quantum localization time $\\tau_L$ a second cross-over time $t_D$ where quantum dynamics diverges from classical dynamics towards increased instability. The quantum localization is shown to vanish as either the strength of the kicks at fixed principal quantum number or the quantum number at fixed kick strength increases. The survival probability...

  8. Local electrochemical behaviour of 7xxx aluminium alloys

    NARCIS (Netherlands)

    Andreatta, F.

    2004-01-01

    Aluminium alloys of the 7xxx series (Al-Zn-Mg-Cu) are susceptible to localized types of corrosion like pitting, intergranular corrosion and exfoliation corrosion. This represents a limitation for the application of these alloys in the aerospace components because localized corrosion might have a

  9. Urinary Proteolytic Activation of Renal Epithelial Na+ Channels in Chronic Heart Failure.

    Science.gov (United States)

    Zheng, Hong; Liu, Xuefei; Sharma, Neeru M; Li, Yulong; Pliquett, Rainer U; Patel, Kaushik P

    2016-01-01

    One of the key mechanisms involved in renal Na(+) retention in chronic heart failure (CHF) is activation of epithelial Na(+) channels (ENaC) in collecting tubules. Proteolytic cleavage has an important role in activating ENaC. We hypothesized that enhanced levels of proteases in renal tubular fluid activate ENaC, resulting in renal Na(+) retention in rats with CHF. CHF was produced by left coronary artery ligation in rats. By immunoblotting, we found that several urinary serine proteases were significantly increased in CHF rats compared with sham rats (fold increases: furin 6.7, prostasin 23.6, plasminogen 2.06, and plasmin 3.57 versus sham). Similar increases were observed in urinary samples from patients with CHF. Whole-cell patch clamp was conducted in cultured renal collecting duct M-1 cells to record Na(+) currents. Protease-rich urine (from rats and patients with CHF) significantly increased the Na(+) inward current in M-1 cells. Two weeks of protease inhibitor treatment significantly abrogated the enhanced diuretic and natriuretic responses to ENaC inhibitor benzamil in rats with CHF. Increased podocyte lesions were observed in the kidneys of rats with CHF by transmission electron microscopy. Consistent with these results, podocyte damage markers desmin and podocin expressions were also increased in rats with CHF (increased ≈2-folds). These findings suggest that podocyte damage may lead to increased proteases in the tubular fluid, which in turn contributes to the enhanced renal ENaC activity, providing a novel mechanistic insight for Na(+) retention commonly observed in CHF. © 2015 American Heart Association, Inc.

  10. Urinary proteolytic activation of renal epithelial Na+ channels in chronic heart failure

    Science.gov (United States)

    Zheng, Hong; Liu, Xuefei; Sharma, Neeru M.; Li, Yulong; Pliquett, Rainer U; Patel, Kaushik P.

    2015-01-01

    One of the key mechanisms involved in renal Na+ retention in chronic heart failure (CHF) is activation of epithelial Na+ channels (ENaC) in collecting tubules. Proteolytic cleavage has an important role in activating ENaC. We hypothesized that enhanced levels of proteases in renal tubular fluid activate ENaC resulting in renal Na+ retention in rats with CHF. CHF was produced by left coronary artery ligation in rats. By immunoblotting, we found that several urinary serine proteases were significantly increased in CHF rats compared to sham rats (fold increases: furin 6.7, prostasin 23.6, plasminogen 2.06 and plasmin 3.57 vs. sham). Similar increases were observed in urinary samples from patients with CHF. Whole-cell patch-clamp was conducted in cultured renal collecting duct M-1 cells to record Na+ currents. Protease-rich urine (from rats and patients with CHF) significantly increased the Na+ inward current in M-1 cells. Two weeks of protease inhibitor treatment significantly abrogated the enhanced diuretic and natriuretic responses to ENaC inhibitor benzamil in rats with CHF. Increased podocyte lesions were observed in the kidneys of rats with CHF by transmission electron microscopy. Consistent with these results, podocyte damage markers desmin and podocin expressions were also increased in rats with CHF (increased ~2 folds). These findings suggest that podocyte damage may lead to increased proteases in the tubular fluid which in turn contributes to the enhanced renal ENaC activity, providing a novel mechanistic insight for Na+ retention commonly observed in CHF. PMID:26628676

  11. Advanced design of local ventilation systems

    Energy Technology Data Exchange (ETDEWEB)

    Kulmala, I. [VTT Manufacturing Technology, Espoo (Finland). Safety Technology

    1997-12-31

    Local ventilation is widely used in industry for controlling airborne contaminants. However, the present design practices of local ventilation systems are mainly based on empirical equations and do not take quantitatively into account the various factors affecting the performance of these systems. The aim of this study was to determine the applicability and limitations of more advanced fluid mechanical methods to the design and development of local ventilation systems. The most important factors affecting the performance of local ventilation systems were determined and their effect was studied in a systematic manner. The numerical calculations were made with the FLUENT computer code and they were verified by laboratory experiments, previous measurements or analytical solutions. The results proved that the numerical calculations can provide a realistic simulation of exhaust openings, effects of ambient air flows and wake regions. The experiences with the low-velocity local supply air showed that these systems can also be modelled fairly well. The results were used to improve the efficiency and thermal comfort of a local ventilation unit and to increase the effective control range of exhaust hoods. In the simulation of the interaction of a hot buoyant source and local exhaust, the predicted capture efficiencies were clearly higher than those observed experimentally. The deviations between measurements and non-isothermal flow calculations may have partly been caused by the inability to achieve grid independent solutions. CFD simulations is an advanced and flexible tool for designing and developing local ventilation. The simulations can provide insight into the time-averaged flow field which may assist us in understanding the observed phenomena and to explain experimental results. However, for successful calculations the applicability and limitations of the models must be known. (orig.) 78 refs.

  12. Offers

    CERN Multimedia

    Staff Association

    2012-01-01

    SPECIAL OFFER FOR OUR MEMBERS Prices Spring and Summer 2012 Half-day ticket: 5 hours, same price weekends, public holidays and weekdays. Children from 5 to 15 years old: 26 CHF instead of 35 CHF Adults from 16 years old: 32 CHF instead of 43 CHF Bonus! Free for children under 5. Aquaparc Les Caraïbes sur Léman 1807 Le Bouveret (VS)

  13. Prediction of Critical Heat Flux under Rolling Motion

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Jinseok; Lee, Yeongun; Park, Gooncherl [Seoul National Univ., Seoul (Korea, Republic of)

    2013-05-15

    The aim to this paper may be summarized as follows: identify the flow regime compare with existing void-quality relationship and void fraction at OAF derived from the vapor superficial velocity obtained by the churn-to annular flow criterion, develop and evaluate the correlation for accurate prediction of CHF ratio under rolling motion. Experimentally measured CHF results from the previous study were not well-predicted by existing CHF correlations developed for wide range of pressure under rolling motion in vertical tube. Specifically, existing correlations do not account for the dynamic motion parameter, such as tangential and centrifugal force. This study reviewed some existing correlation and experimental studies related to reduction and enhancement of CHF and heat transfer and flow behavior under heaving and rolling motion, and developed a CHF ratio correlation for upward flow vertical tube under rolling motion. Based upon dimensionless groups, equations and interpolation factor, an empirical CHF correlation has been developed which is consistent with experimental data for uniformly heated tubes internally cooled by R-134 under rolling motion. Flow regime was determined through the prediction method for annular flow. Non-dimensional number and function were decided by CHF mechanism of each region. Interaction of LFD and DNB regions is taken into account by means of power interpolation which is reflected void fraction at OAF. The suggested correlation predicted the CHF Ratio with reasonable accuracy, showing an average error of -0.59 and 2.51% for RMS. Rolling motion can affect bubble motion and liquid film behavior complexly by combination of tangential and centrifugal forces and mass flow than heaving motion. Through a search of literature and a comparison of previous CHF ratio results, this work can contribute to the study of boiling heat transfer and CHF for the purpose of enhancement or reduction the CHF of dynamic motion system, such as marine reactor.

  14. Local Support Mechanisms for Entrepreneurship: The Approach of Local Development and Innovation Institutions

    Directory of Open Access Journals (Sweden)

    Katimertzopoulos, F.

    2017-03-01

    Full Text Available Purpose: The growth potential of SMEs entrepreneurship is examined at regional and local level, initially on a Global scale and then for the case of Greece. Additionally, the possibility of an economic development policy beyond the macroeconomic approach is examined, focusing on business growth and competitiveness in the light of meso and micro-economic policy approach. Design/methodology/approach: This research leads to the proposal of building knowledge mechanisms and direct and efficient systematic development and innovation at the local level, particularity during a time of economic crisis. The establishment of Institutes of Local Development and Innovation (ITAK is primarily geared towards promoting innovative entrepreneurship and extroversion of locally installed businesses. As part of the proposal for the establishment of ITAK, a questionnaire was developed - a tool to initially measure companies' opinions on the need for outside help in the macro, meso and micro environment, in order to demonstrate that ITAK local-level structures could be developed. Findings: The survey results were accrued via the analysis of questionnaires distributed to companies. The results of the questionnaires in the micro-environment in relation to those in the macro-environment shows a lower tendency to change business, which may be because managers perceive economics several times more in macroeconomic terms rather than in meso and micro economic (terms. Research limitations/implications: The restrictions of this particular research are the small sample of study of businesses in one country (Greece; this is because the approach of study, which is quantitative-qualitative, limits analysis to small data sets in the current phase. Originality/value: The results in the micro-environment, in relation to those at macro-environmental, shows a lower tendency to change business, something which may be because managers perceive economics several times more in

  15. A study on the development of advanced models to predict the critical heat flux for water and liquid metals

    International Nuclear Information System (INIS)

    Lee, Yong Bum

    1994-02-01

    The critical heat flux (CHF) phenomenon in the two-phase convective flows has been an important issue in the fields of design and safety analysis of light water reactor (LWR) as well as sodium cooled liquid metal fast breeder reactor (LMFBR). Especially in the LWR application many physical aspects of the CHF phenomenon are understood and reliable correlations and mechanistic models to predict the CHF condition have been proposed. However, there are few correlations and models which are applicable to liquid metals. Compared with water, liquid metals show a divergent picture for boiling pattern. Therefore, the CHF conditions obtained from investigations with water cannot be applied to liquid metals. In this work a mechanistic model to predict the CHF of water and a correlation for liquid metals are developed. First, a mechanistic model to predict the CHF in flow boiling at low quality was developed based on the liquid sublayer dryout mechanism. In this approach the CHF is assumed to occur when a vapor blanket isolates the liquid sublayer from bulk liquid and then the liquid entering the sublayer falls short of balancing the rate of sublayer dryout by vaporization. Therefore, the vapor blanket velocity is the key parameter. In this work the vapor blanket velocity is theoretically determined based on mass, energy, and momentum balance and finally the mechanistic model to predict the CHF in flow boiling at low quality is developed. The accuracy of the present model is evaluated by comparing model predictions with the experimental data and tabular data of look-up tables. The predictions of the present model agree well with extensive CHF data. In the latter part a correlation to predict the CHF for liquid metals is developed based on the flow excursion mechanism. By using Baroczy two-phase frictional pressure drop correlation and Ledinegg instability criterion, the relationship between the CHF of liquid metals and the principal parameters is derived and finally the

  16. LAIT: a local ancestry inference toolkit.

    Science.gov (United States)

    Hui, Daniel; Fang, Zhou; Lin, Jerome; Duan, Qing; Li, Yun; Hu, Ming; Chen, Wei

    2017-09-06

    Inferring local ancestry in individuals of mixed ancestry has many applications, most notably in identifying disease-susceptible loci that vary among different ethnic groups. Many software packages are available for inferring local ancestry in admixed individuals. However, most of these existing software packages require specific formatted input files and generate output files in various types, yielding practical inconvenience. We developed a tool set, Local Ancestry Inference Toolkit (LAIT), which can convert standardized files into software-specific input file formats as well as standardize and summarize inference results for four popular local ancestry inference software: HAPMIX, LAMP, LAMP-LD, and ELAI. We tested LAIT using both simulated and real data sets and demonstrated that LAIT provides convenience to run multiple local ancestry inference software. In addition, we evaluated the performance of local ancestry software among different supported software packages, mainly focusing on inference accuracy and computational resources used. We provided a toolkit to facilitate the use of local ancestry inference software, especially for users with limited bioinformatics background.

  17. Indoor localization using unsupervised manifold alignment with geometry perturbation

    KAUST Repository

    Majeed, Khaqan

    2014-04-01

    The main limitation of deploying/updating Received Signal Strength (RSS) based indoor localization is the construction of fingerprinted radio map, which is quite a hectic and time-consuming process especially when the indoor area is enormous and/or dynamic. Different approaches have been undertaken to reduce such deployment/update efforts, but the performance degrades when the fingerprinting load is reduced below a certain level. In this paper, we propose an indoor localization scheme that requires as low as 1% fingerprinting load. This scheme employs unsupervised manifold alignment that takes crowd sourced RSS readings and localization requests as source data set and the environment\\'s plan coordinates as destination data set. The 1% fingerprinting load is only used to perturb the local geometries in the destination data set. Our proposed algorithm was shown to achieve less than 5 m mean localization error with 1% fingerprinting load and a limited number of crowd sourced readings, when other learning based localization schemes pass the 10 m mean error with the same information.

  18. Indoor localization using unsupervised manifold alignment with geometry perturbation

    KAUST Repository

    Majeed, Khaqan; Sorour, Sameh; Al-Naffouri, Tareq Y.; Valaee, Shahrokh

    2014-01-01

    The main limitation of deploying/updating Received Signal Strength (RSS) based indoor localization is the construction of fingerprinted radio map, which is quite a hectic and time-consuming process especially when the indoor area is enormous and/or dynamic. Different approaches have been undertaken to reduce such deployment/update efforts, but the performance degrades when the fingerprinting load is reduced below a certain level. In this paper, we propose an indoor localization scheme that requires as low as 1% fingerprinting load. This scheme employs unsupervised manifold alignment that takes crowd sourced RSS readings and localization requests as source data set and the environment's plan coordinates as destination data set. The 1% fingerprinting load is only used to perturb the local geometries in the destination data set. Our proposed algorithm was shown to achieve less than 5 m mean localization error with 1% fingerprinting load and a limited number of crowd sourced readings, when other learning based localization schemes pass the 10 m mean error with the same information.

  19. Localization noise in deep subwavelength plasmonic devices

    Science.gov (United States)

    Ghoreyshi, Ali; Victora, R. H.

    2018-05-01

    The grain shape dependence of absorption has been investigated in metal-insulator thin films. We demonstrate that randomness in the size and shape of plasmonic particles can lead to Anderson localization of polarization modes in the deep subwavelength regime. These localized modes can contribute to significant variation in the local field. In the case of plasmonic nanodevices, the effects of the localized modes have been investigated by mapping an electrostatic Hamiltonian onto the Anderson Hamiltonian in the presence of a random vector potential. We show that local behavior of the optical beam can be understood in terms of the weighted local density of the localized modes of the depolarization field. Optical nanodevices that operate on a length scale with high variation in the density of states of localized modes will experience a previously unidentified localized noise. This localization noise contributes uncertainty to the output of plasmonic nanodevices and limits their scalability. In particular, the resulting impact on heat-assisted magnetic recording is discussed.

  20. Development of heat transfer models for gap cooling

    Energy Technology Data Exchange (ETDEWEB)

    Kohriyama, Tamio; Murase, Michio; Tamaki, Tomohiko [Institute of Nuclear Safety System Inc., Mihama, Fukui (Japan)

    2001-09-01

    In a severe accident of a light water reactor (LWR), heat transfer models in a narrow annular gap between superheated core debris and a reactor pressure vessel (RPV) are important to evaluate the integrity of RPV and emergency procedures. This paper discusses the effects of superheat on the heat flux based on existing data. In low superheat conditions, the heat flux in the narrow gap is higher than the heat flux in pool nucleate boiling due to restricted flow area. It approaches the nucleate boiling heat flux as superheat increasing and reaches a critical value subject to the counter-current flow limiting (CCFL) at the top end of the gap. A heat transfer correlation was derived as a function of dimensionless superheat and a Kutateladze-type CCFL correlation was deduced for critical heat flux (CHF) restricted by CCFL, which gave good prediction for a wide range of the CHF data. Effect of an angle of inclination of the gap could also be incorporated in the CCFL correlation. In high superheat conditions, the heat flux in the narrow gap maintains a similar shape to the pool boiling curve but shifts the position to a higher superheated side than the pool boiling except film boiling, which could be expressed by the typical pool film boiling correlation. Incorporating quench test data, the heat flux correlation was derived as a function of dimensionless superheat using the same formula for the low superheat and the Kutateladze-type CCFL correlation was deduced for CHF. The CHF at the high superheat was 3-4 times as large as CHF at the low superheat and this difference was well predicted by different flow patterns in the gap and the balance of pressure gradients between gas and liquid phases. (author)