WorldWideScience

Sample records for local brain morphology

  1. Brain morphology and immunohistochemical localization of the gonadotropin-releasing hormone in the bluefin tuna, Thunnus thynnus

    Directory of Open Access Journals (Sweden)

    G Palmieri

    2009-08-01

    Full Text Available The present study was focused on the morphology of the diencephalic nuclei (likely involved in reproductive functions as well as on the distribution of GnRH (gonadotropin-releasing hormone in the rhinencephalon, telencephalon and the diencephalon of the brain of bluefin tuna (Thunnus thynnus by means of immunohistochemistry. Bluefin tuna has an encephalization quotient (QE similar to that of other large pelagic fish. Its brain exhibits well-developed optic tecta and corpus cerebelli. The diencephalic neuron cell bodies involved in reproductive functions are grouped in two main nuclei: the nucleus preopticus-periventricularis and the nucleus lateralis tuberis. The nucleus preopticus-periventricularis consists of the nucleus periventricularis and the nucleus preopticus consisting of a few sparse multipolar neurons in the rostral part and numerous cells closely packed and arranged in several layers in its aboral part. The nucleus lateralis tuberis is located in the ventral-lateral area of the diencephalon and is made up of a number of large multipolar neurones. Four different polyclonal primary antibodies against salmon (sGnRH, chicken (cGnRH-II (cGnRH-II 675, cGnRH-II 6 and sea bream (sbGnRH were employed in the immunohistochemical experiments. No immunoreactive structures were found with anti sbGnRH serum. sGnRH and cGnRH-II antisera revealed immunoreactivity in the perikarya of the olfactory bulbs, preopticus-periventricular nucleus, oculomotor nucleus and midbrain tegmentum. The nucleus lateralis tuberis showed immunostaining only with anti-sGnRH serum. Nerve fibres immunoreactive to cGnRH and sGnRH sera were found in the olfactory bulbs, olfactory nerve and neurohypophysis. The significance of the distribution of the GnRHimmunoreactive neuronal structures is discussed.

  2. Morphological kinetics and localized corrosion

    International Nuclear Information System (INIS)

    Santarini, G.

    1992-01-01

    A phenomenological modeling is proposed for physicochemical systems that evolve by initiation and growth of well distinct defects. It consists in a mathematical treatment of data on the evolution of defect distribution, which leads to the knowledge of evolution parameters ultimately usable for behaviour predictions. A method is given for calculating a validity parameter which quantifies the pertinence of the choice for analytical representations. An example of application to localized corrosion is given with the intergranular stress corrosion cracking of Alloy 600 in high temperature water. (Author). 6 refs

  3. Morphological Computation: Synergy of Body and Brain

    Directory of Open Access Journals (Sweden)

    Keyan Ghazi-Zahedi

    2017-08-01

    Full Text Available There are numerous examples that show how the exploitation of the body’s physical properties can lift the burden of the brain. Examples include grasping, swimming, locomotion, and motion detection. The term Morphological Computation was originally coined to describe processes in the body that would otherwise have to be conducted by the brain. In this paper, we argue for a synergistic perspective, and by that we mean that Morphological Computation is a process which requires a close interaction of body and brain. Based on a model of the sensorimotor loop, we study a new measure of synergistic information and show that it is more reliable in cases in which there is no synergistic information, compared to previous results. Furthermore, we discuss an algorithm that allows the calculation of the measure in non-trivial (non-binary systems.

  4. Brain morphological signatures for chronic pain.

    Directory of Open Access Journals (Sweden)

    Marwan N Baliki

    Full Text Available Chronic pain can be understood not only as an altered functional state, but also as a consequence of neuronal plasticity. Here we use in vivo structural MRI to compare global, local, and architectural changes in gray matter properties in patients suffering from chronic back pain (CBP, complex regional pain syndrome (CRPS and knee osteoarthritis (OA, relative to healthy controls. We find that different chronic pain types exhibit unique anatomical 'brain signatures'. Only the CBP group showed altered whole-brain gray matter volume, while regional gray matter density was distinct for each group. Voxel-wise comparison of gray matter density showed that the impact on the extent of chronicity of pain was localized to a common set of regions across all conditions. When gray matter density was examined for large regions approximating Brodmann areas, it exhibited unique large-scale distributed networks for each group. We derived a barcode, summarized by a single index of within-subject co-variation of gray matter density, which enabled classification of individual brains to their conditions with high accuracy. This index also enabled calculating time constants and asymptotic amplitudes for an exponential increase in brain re-organization with pain chronicity, and showed that brain reorganization with pain chronicity was 6 times slower and twice as large in CBP in comparison to CRPS. The results show an exuberance of brain anatomical reorganization peculiar to each condition and as such reflecting the unique maladaptive physiology of different types of chronic pain.

  5. Modeling the brain morphology distribution in the general aging population

    Science.gov (United States)

    Huizinga, W.; Poot, D. H. J.; Roshchupkin, G.; Bron, E. E.; Ikram, M. A.; Vernooij, M. W.; Rueckert, D.; Niessen, W. J.; Klein, S.

    2016-03-01

    Both normal aging and neurodegenerative diseases such as Alzheimer's disease cause morphological changes of the brain. To better distinguish between normal and abnormal cases, it is necessary to model changes in brain morphology owing to normal aging. To this end, we developed a method for analyzing and visualizing these changes for the entire brain morphology distribution in the general aging population. The method is applied to 1000 subjects from a large population imaging study in the elderly, from which 900 were used to train the model and 100 were used for testing. The results of the 100 test subjects show that the model generalizes to subjects outside the model population. Smooth percentile curves showing the brain morphology changes as a function of age and spatiotemporal atlases derived from the model population are publicly available via an interactive web application at agingbrain.bigr.nl.

  6. Gyration of the feline brain: localization, terminology and variability.

    Science.gov (United States)

    Pakozdy, A; Angerer, C; Klang, A; König, E H; Probst, A

    2015-12-01

    The terminology of feline brain gyration is not consistent and individual variability has not been systematically examined. The aim of the study was to identify the gyri and sulci of cat brains and describe them using the current terminology. The brains of 15 cats including 10 European shorthairs, 2 Siamese, 2 Maine coons and one Norvegian forest cat without clinical evidence of brain disease were examined post-mortem and photographed for documentation. For description, the terms of the most recent Nomina Anatomica Veterinaria (NAV, 2012) were used, and comparisons with previous anatomical texts were also performed. In addition to the lack of comparative morphology in the NAV, veterinary and human nomenclature are used interchangeably and inconsistently in the literature. This presents a challenge for neurologists and anatomists in localizing gyri and sulci. A comparative analysis of brain gyration showed only minor individual variability among the cats. High-quality labelled figures are provided to facilitate the identification of cat brain gyration. Our work consolidates the current and more consistent gyration terminology for reporting the localization of a cortical lesion based on magnetic resonance imaging or histopathology. This will facilitate not only morphological but also functional research using accurate anatomical reporting. © 2014 Blackwell Verlag GmbH.

  7. Computerized emission transaxial tomography and determination of local brain function

    International Nuclear Information System (INIS)

    Kuhl, D.E.; Alavi, A.; Reivich, M.; Edwards, R.Q.; Fenton, C.A.; Zimmerman, R.A.

    1975-01-01

    Accurate knowledge of regional function in the brain would be of great value for the detection and localization of a wide variety of diseases and for assessment of patients under treatment. The management of patients would be greatly improved with a day-to-day knowledge of the status of blood flow, blood volume, metabolism, permeability, brain swelling, and other functions on a local basis throughout the brain. In the past this kind of information has not been available. Instead, function has usually been examined only for the organ as a whole and regional information has been restricted to morphology as determined by radiographic or radionuclide imaging studies. Three-dimensional radionuclide reconstruction imaging will become more important in the study of the brain, providing accurate measurement of radionuclide concentration within functional structural units of the brain. Measurement of local function with three-dimensional resolution throughout the brain and without the necessity for intracarotid injection of indicator could therefore provide a significant advance over presently available methods

  8. Genetic contributions to human brain morphology and intelligence

    DEFF Research Database (Denmark)

    Hulshoff Pol, HE; Schnack, HG; Posthuma, D

    2006-01-01

    Variation in gray matter (GM) and white matter (WM) volume of the adult human brain is primarily genetically determined. Moreover, total brain volume is positively correlated with general intelligence, and both share a common genetic origin. However, although genetic effects on morphology...... of specific GM areas in the brain have been studied, the heritability of focal WM is unknown. Similarly, it is unresolved whether there is a common genetic origin of focal GM and WM structures with intelligence. We explored the genetic influence on focal GM and WM densities in magnetic resonance brain images...

  9. Effect of childhood maltreatment and brain-derived neurotrophic factor on brain morphology

    NARCIS (Netherlands)

    van Velzen, Laura S.; Schmaal, Lianne; Jansen, Rick; Milaneschi, Yuri; Opmeer, Esther M.; Elzinga, Bernet M.; van der Wee, Nic J. A.; Veltman, Dick J.; Penninx, Brenda W. J. H.

    2016-01-01

    Childhood maltreatment (CM) has been associated with altered brain morphology, which may partly be due to a direct impact on neural growth, e.g. through the brain-derived neurotrophic factor (BDNF) pathway. Findings on CM, BDNF and brain volume are inconsistent and have never accounted for the

  10. Cannabis use disorders and brain morphology

    NARCIS (Netherlands)

    Lorenzetti, V.; Cousijn, J.; Preedy, V.R.

    2016-01-01

    Cannabis use disorders (CUDs) affect 13.1. million individuals worldwide and represent the most vulnerable portion of regular cannabis users. Neuroanatomical alterations in the brain may mediate the adverse outcomes of CUDs. We reviewed findings from 16 structural neuroimaging studies of gray matter

  11. An age estimation method using brain local features for T1-weighted images.

    Science.gov (United States)

    Kondo, Chihiro; Ito, Koichi; Kai Wu; Sato, Kazunori; Taki, Yasuyuki; Fukuda, Hiroshi; Aoki, Takafumi

    2015-08-01

    Previous statistical analysis studies using large-scale brain magnetic resonance (MR) image databases have examined that brain tissues have age-related morphological changes. This fact indicates that one can estimate the age of a subject from his/her brain MR image by evaluating morphological changes with healthy aging. This paper proposes an age estimation method using local features extracted from T1-weighted MR images. The brain local features are defined by volumes of brain tissues parcellated into local regions defined by the automated anatomical labeling atlas. The proposed method selects optimal local regions to improve the performance of age estimation. We evaluate performance of the proposed method using 1,146 T1-weighted images from a Japanese MR image database. We also discuss the medical implication of selected optimal local regions.

  12. Morphological features of the neonatal brain support development of subsequent cognitive, language, and motor abilities.

    Science.gov (United States)

    Spann, Marisa N; Bansal, Ravi; Rosen, Tove S; Peterson, Bradley S

    2014-09-01

    Knowledge of the role of brain maturation in the development of cognitive abilities derives primarily from studies of school-age children to adults. Little is known about the morphological features of the neonatal brain that support the subsequent development of abilities in early childhood, when maturation of the brain and these abilities are the most dynamic. The goal of our study was to determine whether brain morphology during the neonatal period supports early cognitive development through 2 years of age. We correlated morphological features of the cerebral surface assessed using deformation-based measures (surface distances) of high-resolution MRI scans for 33 healthy neonates, scanned between the first to sixth week of postmenstrual life, with subsequent measures of their motor, language, and cognitive abilities at ages 6, 12, 18, and 24 months. We found that morphological features of the cerebral surface of the frontal, mesial prefrontal, temporal, and occipital regions correlated with subsequent motor scores, posterior parietal regions correlated with subsequent language scores, and temporal and occipital regions correlated with subsequent cognitive scores. Measures of the anterior and middle portions of the cingulate gyrus correlated with scores across all three domains of ability. Most of the significant findings were inverse correlations located bilaterally in the brain. The inverse correlations may suggest either that a more protracted morphological maturation or smaller local volumes of neonatal brain tissue supports better performance on measures of subsequent motor, language, and cognitive abilities throughout the first 2 years of postnatal life. The correlations of morphological measures of the cingulate with measures of performance across all domains of ability suggest that the cingulate supports a broad range of skills in infancy and early childhood, similar to its functions in older children and adults. Copyright © 2014 Wiley Periodicals, Inc.

  13. Subcortical Brain Morphology in Schizophrenia : Descriptive analysis based on MRI findings of subcortical brain volumes

    OpenAIRE

    Gunleiksrud, Sindre

    2009-01-01

    The aim of this study was to investigate magnetic resonance images (MR) from patients with schizophrenia and healthy control subjects for difference in brain morphology with focus on subcortical brain volumes. Method: The study compared fourteen subcortical brain structure volumes of 96 patients diagnosed with schizophrenia (n=81) or schizoaffective disorder (n=15) with 106 healthy control subjects. Volume measures were obtained using voxel-based morphometry (FreeSurfer software suite) of ...

  14. 3-D brain image registration using optimal morphological processing

    International Nuclear Information System (INIS)

    Loncaric, S.; Dhawan, A.P.

    1994-01-01

    The three-dimensional (3-D) registration of Magnetic Resonance (MR) and Positron Emission Tomographic (PET) images of the brain is important for analysis of the human brain and its diseases. A procedure for optimization of (3-D) morphological structuring elements, based on a genetic algorithm, is presented in the paper. The registration of the MR and PET images is done by means of a registration procedure in two major phases. In the first phase, the Iterative Principal Axis Transform (IPAR) is used for initial registration. In the second phase, the optimal shape description method based on the Morphological Signature Transform (MST) is used for final registration. The morphological processing is used to improve the accuracy of the basic IPAR method. The brain ventricle is used as a landmark for MST registration. A near-optimal structuring element obtained by means of a genetic algorithm is used in MST to describe the shape of the ventricle. The method has been tested on the set of brain images demonstrating the feasibility of approach. (author). 11 refs., 3 figs

  15. Brain Volume Estimation Enhancement by Morphological Image Processing Tools

    Directory of Open Access Journals (Sweden)

    Zeinali R.

    2017-12-01

    Full Text Available Background: Volume estimation of brain is important for many neurological applications. It is necessary in measuring brain growth and changes in brain in normal/ abnormal patients. Thus, accurate brain volume measurement is very important. Magnetic resonance imaging (MRI is the method of choice for volume quantification due to excellent levels of image resolution and between-tissue contrast. Stereology method is a good method for estimating volume but it requires to segment enough MRI slices and have a good resolution. In this study, it is desired to enhance stereology method for volume estimation of brain using less MRI slices with less resolution. Methods: In this study, a program for calculating volume using stereology method has been introduced. After morphologic method, dilation was applied and the stereology method enhanced. For the evaluation of this method, we used T1-wighted MR images from digital phantom in BrainWeb which had ground truth. Results: The volume of 20 normal brain extracted from BrainWeb, was calculated. The volumes of white matter, gray matter and cerebrospinal fluid with given dimension were estimated correctly. Volume calculation from Stereology method in different cases was made. In three cases, Root Mean Square Error (RMSE was measured. Case I with T=5, d=5, Case II with T=10, D=10 and Case III with T=20, d=20 (T=slice thickness, d=resolution as stereology parameters. By comparing these results of two methods, it is obvious that RMSE values for our proposed method are smaller than Stereology method. Conclusion: Using morphological operation, dilation allows to enhance the estimation volume method, Stereology. In the case with less MRI slices and less test points, this method works much better compared to Stereology method.

  16. [An autopsy case of brain candidiasis in premature infant: morphology and intraparenchymal distribution of Candida foci].

    Science.gov (United States)

    Yamaguchi, K; Goto, N

    1993-07-01

    An autopsy case of brain candidiasis occurring in a premature infant is presented, and the morphology and intraparenchymal distribution of Candida foci are described in detail with the aid of serial sections of the affected brain. The patient was a boy, who was born after 25 weeks of gestation and died on day 15. Candida foci were composed of two infectious forms of Candida (yeasts and pseudohyphae) and various inflammatory reactions of the host. They were widely disseminated in the brain parenchyma, leptomeninges and ventricular system. In view of their morphology, they were classified into the acute and chronic inflammatory types. The acute type foci, characterized by microabscess of infiltration of neutrophils, were large and localized predominantly in the cerebral white matter, fiber tracts, central grey matter of the midbrain, reticular formation, floor of fourth ventricle and subependymal germinal layer; most of the acute type foci were found in the watershed zones where the blood supply was considered to be poorer than the other parts of the brain parenchyma. In contrast, the chronic type foci, characterized by nodular proliferation of astrocytes, were small and localized in the grey matter (the cerebral cortex, basal ganglia and brainstem nuclei) and the leptomeninges. This study suggests that Candida infection to the brain may occur by different two kinds of way correlating with the proper vasoarchitecture of brain. In addition, it is recommended to make a close examination of the maternal vagina, placenta and umbilical cord after delivery to detect the risk of Candida infection.

  17. Construction of Individual Morphological Brain Networks with Multiple Morphometric Features

    Directory of Open Access Journals (Sweden)

    Chunlan Yang

    2017-04-01

    Full Text Available In recent years, researchers have increased attentions to the morphological brain network, which is generally constructed by measuring the mathematical correlation across regions using a certain morphometric feature, such as regional cortical thickness and voxel intensity. However, cerebral structure can be characterized by various factors, such as regional volume, surface area, and curvature. Moreover, most of the morphological brain networks are population-based, which has limitations in the investigations of individual difference and clinical applications. Hence, we have extended previous studies by proposing a novel method for realizing the construction of an individual-based morphological brain network through a combination of multiple morphometric features. In particular, interregional connections are estimated using our newly introduced feature vectors, namely, the Pearson correlation coefficient of the concatenation of seven morphometric features. Experiments were performed on a healthy cohort of 55 subjects (24 males aged from 20 to 29 and 31 females aged from 20 to 28 each scanned twice, and reproducibility was evaluated through test–retest reliability. The robustness of morphometric features was measured firstly to select the more reproducible features to form the connectomes. Then the topological properties were analyzed and compared with previous reports of different modalities. Small-worldness was observed in all the subjects at the range of the entire network sparsity (20–40%, and configurations were comparable with previous findings at the sparsity of 23%. The spatial distributions of the hub were found to be significantly influenced by the individual variances, and the hubs obtained by averaging across subjects and sparsities showed correspondence with previous reports. The intraclass coefficient of graphic properties (clustering coefficient = 0.83, characteristic path length = 0.81, betweenness centrality = 0.78 indicates

  18. Neonatal Brain Tissue Classification with Morphological Adaptation and Unified Segmentation

    Directory of Open Access Journals (Sweden)

    Richard eBeare

    2016-03-01

    Full Text Available Measuring the distribution of brain tissue types (tissue classification in neonates is necessary for studying typical and atypical brain development, such as that associated with preterm birth, and may provide biomarkers for neurodevelopmental outcomes. Compared with magnetic resonance images of adults, neonatal images present specific challenges that require the development of specialized, population-specific methods. This paper introduces MANTiS (Morphologically Adaptive Neonatal Tissue Segmentation, which extends the unified segmentation approach to tissue classification implemented in Statistical Parametric Mapping (SPM software to neonates. MANTiS utilizes a combination of unified segmentation, template adaptation via morphological segmentation tools and topological filtering, to segment the neonatal brain into eight tissue classes: cortical gray matter, white matter, deep nuclear gray matter, cerebellum, brainstem, cerebrospinal fluid (CSF, hippocampus and amygdala. We evaluated the performance of MANTiS using two independent datasets. The first dataset, provided by the NeoBrainS12 challenge, consisted of coronal T2-weighted images of preterm infants (born ≤30 weeks’ gestation acquired at 30 weeks’ corrected gestational age (n= 5, coronal T2-weighted images of preterm infants acquired at 40 weeks’ corrected gestational age (n= 5 and axial T2-weighted images of preterm infants acquired at 40 weeks’ corrected gestational age (n= 5. The second dataset, provided by the Washington University NeuroDevelopmental Research (WUNDeR group, consisted of T2-weighted images of preterm infants (born <30 weeks’ gestation acquired shortly after birth (n= 12, preterm infants acquired at term-equivalent age (n= 12, and healthy term-born infants (born ≥38 weeks’ gestation acquired within the first nine days of life (n= 12. For the NeoBrainS12 dataset, mean Dice scores comparing MANTiS with manual segmentations were all above 0.7, except for

  19. Morphological and functional MRI, MRS, perfusion and diffusion changes after radiosurgery of brain metastasis

    International Nuclear Information System (INIS)

    Kang, Tae Wook; Kim, Sung Tae; Byun, Hong Sik; Jeon, Pyoung; Kim, Keonha; Kim, Hyungjin; Lee, Jung II

    2009-01-01

    Radiosurgery is a noninvasive procedure where spatially accurate and highly conformal doses of radiation are targeted at brain lesions with an ablative intent. Recently, radiosurgery has been established as an effective technique for local treatment of brain metastasis. After radiosurgery, magnetic resonance (MR) imaging plays an important role in the assessment of the therapeutic response and of any complications. The therapeutic approach depends on the imaging findings obtained after radiosurgery, which have a role in the decision making to perform additional invasive modalities (repeat resection, biopsy) to obtain a definite diagnosis and to improve the survival of patients. Conventional MR imaging findings are mainly based on morphological alterations of tumors. However, there are variable imaging findings of radiation-induced changes including radiation necrosis in the brain. Radiologists are sometimes confused by radiation-induced injuries, including radiation necrosis, that are seen on conventional MR imaging. The pattern of abnormal enhancement on follow-up conventional MR imaging closely mimics that of a recurrent brain metastasis. So, classifying newly developed abnormal enhancing lesions in follow-up of treated brain metastasis with correct diagnosis is one of the key goals in neuro-oncologic imaging. To overcome limitations of the use of morphology-based conventional MR imaging, several physiological-based functional MR imaging methods have been used, namely diffusion-weighted imaging, perfusion MR imaging, and proton MR spectroscopy, for the detection of hemodynamic, metabolic, and cellular alterations. These imaging modalities provide additional information to allow clinicians to make proper decisions regarding patient treatment.

  20. Local Kernel for Brains Classification in Schizophrenia

    Science.gov (United States)

    Castellani, U.; Rossato, E.; Murino, V.; Bellani, M.; Rambaldelli, G.; Tansella, M.; Brambilla, P.

    In this paper a novel framework for brain classification is proposed in the context of mental health research. A learning by example method is introduced by combining local measurements with non linear Support Vector Machine. Instead of considering a voxel-by-voxel comparison between patients and controls, we focus on landmark points which are characterized by local region descriptors, namely Scale Invariance Feature Transform (SIFT). Then, matching is obtained by introducing the local kernel for which the samples are represented by unordered set of features. Moreover, a new weighting approach is proposed to take into account the discriminative relevance of the detected groups of features. Experiments have been performed including a set of 54 patients with schizophrenia and 54 normal controls on which region of interest (ROI) have been manually traced by experts. Preliminary results on Dorso-lateral PreFrontal Cortex (DLPFC) region are promising since up to 75% of successful classification rate has been obtained with this technique and the performance has improved up to 85% when the subjects have been stratified by sex.

  1. Autonomic and Brain Morphological Predictors of Stress Resilience

    Directory of Open Access Journals (Sweden)

    Luca Carnevali

    2018-04-01

    Full Text Available Stressful life events are an important cause of psychopathology. Humans exposed to aversive or stressful experiences show considerable inter-individual heterogeneity in their responses. However, the majority does not develop stress-related psychiatric disorders. The dynamic processes encompassing positive and functional adaptation in the face of significant adversity have been broadly defined as resilience. Traditionally, the assessment of resilience has been confined to self-report measures, both within the general community and putative high-risk populations. Although this approach has value, it is highly susceptible to subjective bias and may not capture the dynamic nature of resilience, as underlying construct. Recognizing the obvious benefits of more objective measures of resilience, research in the field has just started investigating the predictive value of several potential biological markers. This review provides an overview of theoretical views and empirical evidence suggesting that individual differences in heart rate variability (HRV, a surrogate index of resting cardiac vagal outflow, may underlie different levels of resilience toward the development of stress-related psychiatric disorders. Following this line of thought, recent studies describing associations between regional brain morphometric characteristics and resting state vagally-mediated HRV are summarized. Existing studies suggest that the structural morphology of the anterior cingulated cortex (ACC, particularly its cortical thickness, is implicated in the expression of individual differences in HRV. These findings are discussed in light of emerging structural neuroimaging research, linking morphological characteristics of the ACC to psychological traits ascribed to a high-resilient profile and abnormal structural integrity of the ACC to the psychophysiological expression of stress-related mental health consequences. We conclude that a multidisciplinary approach

  2. Genetic contributions to human brain morphology and intelligence

    DEFF Research Database (Denmark)

    Hulshoff Pol, HE; Schnack, HG; Posthuma, D

    2006-01-01

    the focal GM and WM densities of each twin are correlated with the psychometric intelligence quotient of his/her cotwin. Genes influenced individual differences in left and right superior occipitofrontal fascicle (heritability up to 0.79 and 0.77), corpus callosum (0.82, 0.80), optic radiation (0.69, 0.......79), corticospinal tract (0.78, 0.79), medial frontal cortex (0.78, 0.83), superior frontal cortex (0.76, 0.80), superior temporal cortex (0.80, 0.77), left occipital cortex (0.85), left postcentral cortex (0.83), left posterior cingulate cortex (0.83), right parahippocampal cortex (0.69), and amygdala (0.80, 0......Variation in gray matter (GM) and white matter (WM) volume of the adult human brain is primarily genetically determined. Moreover, total brain volume is positively correlated with general intelligence, and both share a common genetic origin. However, although genetic effects on morphology...

  3. Relative brain size and morphology of some South African bats ...

    African Journals Online (AJOL)

    Measures of relative brain size and brain macromorphology are described for four species of Microchiroptera, two from the Vespertilionidae and two from the Rhinolophidae, and two species from the Pteropodidae (Megachiroptera). Four brain parameters (brain length, hemisphere length, brain width and brain height) were ...

  4. Physical activity, fitness, glucose homeostasis, and brain morphology in twins.

    Science.gov (United States)

    Rottensteiner, Mirva; Leskinen, Tuija; Niskanen, Eini; Aaltonen, Sari; Mutikainen, Sara; Wikgren, Jan; Heikkilä, Kauko; Kovanen, Vuokko; Kainulainen, Heikki; Kaprio, Jaakko; Tarkka, Ina M; Kujala, Urho M

    2015-03-01

    The main aim of the present study (FITFATTWIN) was to investigate how physical activity level is associated with body composition, glucose homeostasis, and brain morphology in young adult male monozygotic twin pairs discordant for physical activity. From a population-based twin cohort, we systematically selected 10 young adult male monozygotic twin pairs (age range, 32-36 yr) discordant for leisure time physical activity during the past 3 yr. On the basis of interviews, we calculated a mean sum index for leisure time and commuting activity during the past 3 yr (3-yr LTMET index expressed as MET-hours per day). We conducted extensive measurements on body composition (including fat percentage measured by dual-energy x-ray absorptiometry), glucose homeostasis including homeostatic model assessment index and insulin sensitivity index (Matsuda index, calculated from glucose and insulin values from an oral glucose tolerance test), and whole brain magnetic resonance imaging for regional volumetric analyses. According to pairwise analysis, the active twins had lower body fat percentage (P = 0.029) and homeostatic model assessment index (P = 0.031) and higher Matsuda index (P = 0.021) compared with their inactive co-twins. Striatal and prefrontal cortex (subgyral and inferior frontal gyrus) brain gray matter volumes were larger in the nondominant hemisphere in active twins compared with those in inactive co-twins, with a statistical threshold of P physical activity is associated with improved glucose homeostasis and modulation of striatum and prefrontal cortex gray matter volume, independent of genetic background. The findings may contribute to later reduced risk of type 2 diabetes and mobility limitations.

  5. Emission computerized-tomography and determination of local brain function

    International Nuclear Information System (INIS)

    Kuhl, D.E.; Alavi, A.; Reivich, M.; Edwards, R.Q.; Fenton, C.A.; Zimmerman, R.A.

    1975-01-01

    Methods for the three dimensional reconstruction of /sup 99m/Tc brain scans are described. The diagnostic advantages of computerized tomography in the localization of brain tumors and in measurements of local cerebral blood flow are discussed. (U.S.)

  6. Mapping how local perturbations influence systems-level brain dynamics.

    Science.gov (United States)

    Gollo, Leonardo L; Roberts, James A; Cocchi, Luca

    2017-10-15

    The human brain exhibits a distinct spatiotemporal organization that supports brain function and can be manipulated via local brain stimulation. Such perturbations to local cortical dynamics are globally integrated by distinct neural systems. However, it remains unclear how local changes in neural activity affect large-scale system dynamics. Here, we briefly review empirical and computational studies addressing how localized perturbations affect brain activity. We then systematically analyze a model of large-scale brain dynamics, assessing how localized changes in brain activity at the different sites affect whole-brain dynamics. We find that local stimulation induces changes in brain activity that can be summarized by relatively smooth tuning curves, which relate a region's effectiveness as a stimulation site to its position within the cortical hierarchy. Our results also support the notion that brain hubs, operating in a slower regime, are more resilient to focal perturbations and critically contribute to maintain stability in global brain dynamics. In contrast, perturbations of peripheral regions, characterized by faster activity, have greater impact on functional connectivity. As a parallel with this region-level result, we also find that peripheral systems such as the visual and sensorimotor networks were more affected by local perturbations than high-level systems such as the cingulo-opercular network. Our findings highlight the importance of a periphery-to-core hierarchy to determine the effect of local stimulation on the brain network. This study also provides novel resources to orient empirical work aiming at manipulating functional connectivity using non-invasive brain stimulation. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Differences in brain morphology and working memory capacity across childhood.

    Science.gov (United States)

    Bathelt, Joe; Gathercole, Susan E; Johnson, Amy; Astle, Duncan E

    2018-05-01

    Working memory (WM) skills are closely associated with learning progress in key areas such as reading and mathematics across childhood. As yet, however, little is known about how the brain systems underpinning WM develop over this critical developmental period. The current study investigated whether and how structural brain correlates of components of the working memory system change over development. Verbal and visuospatial short-term and working memory were assessed in 153 children between 5.58 and 15.92 years, and latent components of the working memory system were derived. Fractional anisotropy and cortical thickness maps were derived from T1-weighted and diffusion-weighted MRI and processed using eigenanatomy decomposition. There was a greater involvement of the corpus callosum and posterior temporal white matter in younger children for performance associated with the executive part of the working memory system. For older children, this was more closely linked with the thickness of the occipitotemporal cortex. These findings suggest that increasing specialization leads to shifts in the contribution of neural substrates over childhood, moving from an early dependence on a distributed system supported by long-range connections to later reliance on specialized local circuitry. Our findings demonstrate that despite the component factor structure being stable across childhood, the underlying brain systems supporting working memory change. Taking the age of the child into account, and not just their overall score, is likely to be critical for understanding the nature of the limitations on their working memory capacity. © 2017 The Authors. Developmental Science Published by John Wiley & Sons Ltd.

  8. Local biochemical and morphological differences in human Achilles tendinopathy

    DEFF Research Database (Denmark)

    Pingel, Jessica; Fredberg, U.; Qvortrup, Klaus

    2012-01-01

    The incidence of Achilles tendinopathy is high and underlying etiology as well as biochemical and morphological pathology associated with the disease is largely unknown. The aim of the present study was to describe biochemical and morphological differences in chronic Achilles tendinopathy....... The expressions of growth factors, inflammatory mediators and tendon morphology were determined in both chronically diseased and healthy tendon parts....

  9. Finer discrimination of brain activation with local multivariate distance

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The organization of human brain function is diverse on different spatial scales.Various cognitive states are alwavs represented as distinct activity patterns across the specific brain region on fine scales.Conventional univariate analysis of functional MRI data seeks to determine how a particular cognitive state is encoded in brain activity by analyzing each voxel separately without considering the fine-scale patterns information contained in the local brain regions.In this paper,a local multivariate distance mapping(LMDM)technique is proposed to detect the brain activation and to map the fine-scale brain activity patterns.LMDM directly represents the local brain activity with the patterns across multiple voxels rather than individual voxels,and it employs the multivariate distance between different patterns to discriminate the brain state on fine scales.Experiments with simulated and real fMRI data demonstrate that LMDM technique can dramatically increase the sensitivity of the detection for the fine-scale brain activity pettems which contain the subtle information of the experimental conditions.

  10. Insulin in the brain: sources, localization and functions.

    Science.gov (United States)

    Ghasemi, Rasoul; Haeri, Ali; Dargahi, Leila; Mohamed, Zahurin; Ahmadiani, Abolhassan

    2013-02-01

    Historically, insulin is best known for its role in peripheral glucose homeostasis, and insulin signaling in the brain has received less attention. Insulin-independent brain glucose uptake has been the main reason for considering the brain as an insulin-insensitive organ. However, recent findings showing a high concentration of insulin in brain extracts, and expression of insulin receptors (IRs) in central nervous system tissues have gathered considerable attention over the sources, localization, and functions of insulin in the brain. This review summarizes the current status of knowledge of the peripheral and central sources of insulin in the brain, site-specific expression of IRs, and also neurophysiological functions of insulin including the regulation of food intake, weight control, reproduction, and cognition and memory formation. This review also considers the neuromodulatory and neurotrophic effects of insulin, resulting in proliferation, differentiation, and neurite outgrowth, introducing insulin as an attractive tool for neuroprotection against apoptosis, oxidative stress, beta amyloid toxicity, and brain ischemia.

  11. Local recurrence of metastatic brain tumor after surgery

    International Nuclear Information System (INIS)

    Shinoura, Nobusada; Yamada, Ryoji; Okamoto, Koichiro; Nakamura, Osamu; Shitara, Nobuyuki; Karasawa, Katsuyuki

    2006-01-01

    We analyzed factors associated with the local recurrence of brain metastases after surgery. Forty-seven patients with 67 metastatic brain tumors underwent surgery between 1994 and 2001. The survival time in the ''no recurrence'' group (34.7 months) was significantly longer than that in the recurrence group (21.9 months) (p=0.0008; log rank test). The factors affecting the local recurrence of brain metastases after surgery were as follows: cyst (p=0.0156), dural invasion (p=0.0029) of tumors, failure to totally remove tumors (p=0.0040), and lack of post-surgical irradiation (p<0.0001). Sex, age, tumor histology, tumor size, pre-surgical radiation, dose (≥45 vs <45, ≥50 vs <50 Gy) and the method (local vs whole brain) of post-surgical radiation did not affect the local recurrence rate of brain metastases after surgery. To avoid early recurrences of metastatic brain tumors, the factors associated with local recurrence should be considered in providing optimal treatment of tumors by surgery. (author)

  12. Brain inflammatory cytokines and microglia morphology changes throughout hibernation phases in Syrian hamster

    NARCIS (Netherlands)

    Cogut, V.; Bruintjes, J. J.; Eggen, B. J. L.; van der Zee, E. A.; Henning, R. H.

    Hibernators tolerate low metabolism, reduced cerebral blood flow and hypothermia during torpor without noticeable neuronal or synaptic dysfunction upon arousal. Previous studies found extensive changes in brain during torpor, including synaptic rearrangements, documented both morphologically and

  13. Local anesthetics for brain tumor resection: Current perspectives

    NARCIS (Netherlands)

    J.W. Potters (Jan Willem); M. Klimek (Markus)

    2018-01-01

    textabstractThis review summarizes the added value of local anesthetics in patients undergoing craniotomy for brain tumor resection, which is a procedure that is carried out frequently in neurosurgical practice. The procedure can be carried out under general anesthesia, sedation with local

  14. Patterns of differences in brain morphology in humans as compared to extant apes.

    Science.gov (United States)

    Aldridge, Kristina

    2011-01-01

    Although human evolution is characterized by a vast increase in brain size, it is not clear whether or not certain regions of the brain are enlarged disproportionately in humans, or how this enlargement relates to differences in overall neural morphology. The aim of this study is to determine whether or not there are specific suites of features that distinguish the morphology of the human brain from that of apes. The study sample consists of whole brain, in vivo magnetic resonance images (MRIs) of anatomically modern humans (Homo sapiens sapiens) and five ape species (gibbons, orangutans, gorillas, chimpanzees, bonobos). Twenty-nine 3D landmarks, including surface and internal features of the brain were located on 3D MRI reconstructions of each individual using MEASURE software. Landmark coordinate data were scaled for differences in size and analyzed using Euclidean Distance Matrix Analysis (EDMA) to statistically compare the brains of each non-human ape species to the human sample. Results of analyses show both a pattern of brain morphology that is consistently different between all apes and humans, as well as patterns that differ among species. Further, both the consistent and species-specific patterns include cortical and subcortical features. The pattern that remains consistent across species indicates a morphological reorganization of 1) relationships between cortical and subcortical frontal structures, 2) expansion of the temporal lobe and location of the amygdala, and 3) expansion of the anterior parietal region. Additionally, results demonstrate that, although there is a pattern of morphology that uniquely defines the human brain, there are also patterns that uniquely differentiate human morphology from the morphology of each non-human ape species, indicating that reorganization of neural morphology occurred at the evolutionary divergence of each of these groups. Copyright © 2010 Elsevier Ltd. All rights reserved.

  15. Cannabis Use Disorders and Altered Brain Morphology : Where is the evidence?

    NARCIS (Netherlands)

    Lorenzetti, V; Batalla, A.; Cousijn, J.

    2016-01-01

    Cannabis use disorders (CUDs) affect 13.1 million individuals worldwide. Brain morphology specific to CUDs may mediate the adverse behavioral outcomes of CUDs. We reviewed findings from 20 human neuroimaging studies on grey and white matter morphology in cannabis users that specifically included CUD

  16. Three-dimensional morphology of the human embryonic brain

    Directory of Open Access Journals (Sweden)

    N. Shiraishi

    2015-09-01

    Full Text Available The morphogenesis of the cerebral vesicles and ventricles was visualized in 3D movies using images derived from human embryo specimens between Carnegie stage 13 and 23 from the Kyoto Collection. These images were acquired with a magnetic resonance microscope equipped with a 2.35-T superconducting magnet. Three-dimensional images using the same scale demonstrated brain development and growth effectively. The non-uniform thickness of the brain tissue, which may indicate brain differentiation, was visualized with thickness-based surface color mapping. A closer view was obtained of the unique and complicated differentiation of the rhombencephalon, especially with regard to the internal view and thickening of the brain tissue. The present data contribute to a better understanding of brain and cerebral ventricle development.

  17. Water diffusion reveals networks that modulate multiregional morphological plasticity after repetitive brain stimulation.

    Science.gov (United States)

    Abe, Mitsunari; Fukuyama, Hidenao; Mima, Tatsuya

    2014-03-25

    Repetitive brain stimulation protocols induce plasticity in the stimulated site in brain slice models. Recent evidence from network models has indicated that additional plasticity-related changes occur in nonstimulated remote regions. Despite increasing use of brain stimulation protocols in experimental and clinical settings, the neural substrates underlying the additional effects in remote regions are unknown. Diffusion-weighted MRI (DWI) probes water diffusion and can be used to estimate morphological changes in cortical tissue that occur with the induction of plasticity. Using DWI techniques, we estimated morphological changes induced by application of repetitive transcranial magnetic stimulation (rTMS) over the left primary motor cortex (M1). We found that rTMS altered water diffusion in multiple regions including the left M1. Notably, the change in water diffusion was retained longest in the left M1 and remote regions that had a correlation of baseline fluctuations in water diffusion before rTMS. We conclude that synchronization of water diffusion at rest between stimulated and remote regions ensures retention of rTMS-induced changes in water diffusion in remote regions. Synchronized fluctuations in the morphology of cortical microstructures between stimulated and remote regions might identify networks that allow retention of plasticity-related morphological changes in multiple regions after brain stimulation protocols. These results increase our understanding of the effects of brain stimulation-induced plasticity on multiregional brain networks. DWI techniques could provide a tool to evaluate treatment effects of brain stimulation protocols in patients with brain disorders.

  18. Extracting morphologies from third harmonic generation images of structurally normal human brain tissue

    NARCIS (Netherlands)

    Zhang, Zhiqing; Kuzmin, Nikolay V.; Groot, Marie Louise; de Munck, Jan C.

    2017-01-01

    Motivation: The morphologies contained in 3D third harmonic generation (THG) images of human brain tissue can report on the pathological state of the tissue. However, the complexity of THG brain images makes the usage of modern image processing tools, especially those of image filtering,

  19. Midbrain morphology reflects extent of brain damage in Krabbe disease

    Energy Technology Data Exchange (ETDEWEB)

    Zuccoli, Giulio; Narayanan, Srikala; Panigrahy, Ashok [Children' s Hospital of Pittsburgh of University of Pittsburgh Medical Center, Section of Neuroradiology, Pittsburgh, PA (United States); Poe, Michele D.; Escolar, Maria L. [University of Pittsburgh, Program for the Study of Neurodevelopment in Rare Disorders, Children' s Hospital of Pittsburgh of University of Pittsburgh Medical Center, Pittsburgh, PA (United States)

    2015-07-15

    To study the relationships between midbrain morphology, Loes score, gross motor function, and cognitive function in infantile Krabbe disease. Magnetic resonance imaging (MRI) scans were evaluated by two neuroradiologists blinded to clinical status and neurodevelopmental function of children with early or late infantile Krabbe disease. A simplified qualitative 3-point scoring system based on midbrain morphology on midsagittal MRI was used. A score of 0 represented normal convex morphology of the midbrain, a score of 1 represented flattening of the midbrain, and a score of 3 represented concave morphology of the midbrain (hummingbird sign). Spearman correlations were estimated between this simplified MRI scoring system and the Loes score, gross motor score, and cognitive score. Forty-two MRIs of 27 subjects were reviewed. Analysis of the 42 scans showed normal midbrain morphology in 3 (7.1 %) scans, midbrain flattening in 11 (26.2 %) scans, and concave midbrain morphology (hummingbird sign) in 28 (66.7 %) scans. Midbrain morphology scores were positively correlated with the Loes score (r = 0.81, p < 0.001) and negatively correlated with both gross motor and cognitive scores (r = -.84, p < 0.001; r = -0.87, p < 0.001, respectively). The inter-rater reliability for the midbrain morphology scale was κ =.95 (95 % CI: 0.86-1.0), and the inter-rater reliability for the Loes scale was κ =.58 (95 % CI: 0.42-0.73). Midbrain morphology scores of midsagittal MRI images correlates with cognition and gross motor function in children with Krabbe disease. This MRI scoring system represents a simple but reliable method to assess disease progression in patients with infantile Krabbe disease. (orig.)

  20. Midbrain morphology reflects extent of brain damage in Krabbe disease

    International Nuclear Information System (INIS)

    Zuccoli, Giulio; Narayanan, Srikala; Panigrahy, Ashok; Poe, Michele D.; Escolar, Maria L.

    2015-01-01

    To study the relationships between midbrain morphology, Loes score, gross motor function, and cognitive function in infantile Krabbe disease. Magnetic resonance imaging (MRI) scans were evaluated by two neuroradiologists blinded to clinical status and neurodevelopmental function of children with early or late infantile Krabbe disease. A simplified qualitative 3-point scoring system based on midbrain morphology on midsagittal MRI was used. A score of 0 represented normal convex morphology of the midbrain, a score of 1 represented flattening of the midbrain, and a score of 3 represented concave morphology of the midbrain (hummingbird sign). Spearman correlations were estimated between this simplified MRI scoring system and the Loes score, gross motor score, and cognitive score. Forty-two MRIs of 27 subjects were reviewed. Analysis of the 42 scans showed normal midbrain morphology in 3 (7.1 %) scans, midbrain flattening in 11 (26.2 %) scans, and concave midbrain morphology (hummingbird sign) in 28 (66.7 %) scans. Midbrain morphology scores were positively correlated with the Loes score (r = 0.81, p < 0.001) and negatively correlated with both gross motor and cognitive scores (r = -.84, p < 0.001; r = -0.87, p < 0.001, respectively). The inter-rater reliability for the midbrain morphology scale was κ =.95 (95 % CI: 0.86-1.0), and the inter-rater reliability for the Loes scale was κ =.58 (95 % CI: 0.42-0.73). Midbrain morphology scores of midsagittal MRI images correlates with cognition and gross motor function in children with Krabbe disease. This MRI scoring system represents a simple but reliable method to assess disease progression in patients with infantile Krabbe disease. (orig.)

  1. Local anesthetics for brain tumor resection: current perspectives

    Directory of Open Access Journals (Sweden)

    Potters JW

    2018-02-01

    Full Text Available Jan-Willem Potters, Markus Klimek Department of Anesthesiology, Erasmus MC, Rotterdam, The Netherlands Abstract: This review summarizes the added value of local anesthetics in patients undergoing craniotomy for brain tumor resection, which is a procedure that is carried out frequently in neurosurgical practice. The procedure can be carried out under general anesthesia, sedation with local anesthesia or under local anesthesia only. Literature shows a large variation in the postoperative pain intensity ranging from no postoperative analgesia requirement in two-thirds of the patients up to a rate of 96% of the patients suffering from severe postoperative pain. The only identified causative factor predicting higher postoperative pain scores is infratentorial surgery. Postoperative analgesia can be achieved with multimodal pain management where local anesthesia is associated with lower postoperative pain intensity, reduction in opioid requirement and prevention of development of chronic pain. In awake craniotomy patients, sufficient local anesthesia is a cornerstone of the procedure. An awake craniotomy and brain tumor resection can be carried out completely under local anesthesia only. However, the use of sedative drugs is common to improve patient comfort during craniotomy and closure. Local anesthesia for craniotomy can be performed by directly blocking the six different nerves that provide the sensory innervation of the scalp, or by local infiltration of the surgical site and the placement of the pins of the Mayfield clamp. Direct nerve block has potential complications and pitfalls and is technically more challenging, but mostly requires lower total doses of the local anesthetics than the doses required in surgical-site infiltration. Due to a lack of comparative studies, there is no evidence showing superiority of one technique versus the other. Besides the use of other local anesthetics for analgesia, intravenous lidocaine administration has

  2. Quantitative Machine Learning Analysis of Brain MRI Morphology throughout Aging.

    Science.gov (United States)

    Shamir, Lior; Long, Joe

    2016-01-01

    While cognition is clearly affected by aging, it is unclear whether the process of brain aging is driven solely by accumulation of environmental damage, or involves biological pathways. We applied quantitative image analysis to profile the alteration of brain tissues during aging. A dataset of 463 brain MRI images taken from a cohort of 416 subjects was analyzed using a large set of low-level numerical image content descriptors computed from the entire brain MRI images. The correlation between the numerical image content descriptors and the age was computed, and the alterations of the brain tissues during aging were quantified and profiled using machine learning. The comprehensive set of global image content descriptors provides high Pearson correlation of ~0.9822 with the chronological age, indicating that the machine learning analysis of global features is sensitive to the age of the subjects. Profiling of the predicted age shows several periods of mild changes, separated by shorter periods of more rapid alterations. The periods with the most rapid changes were around the age of 55, and around the age of 65. The results show that the process of brain aging of is not linear, and exhibit short periods of rapid aging separated by periods of milder change. These results are in agreement with patterns observed in cognitive decline, mental health status, and general human aging, suggesting that brain aging might not be driven solely by accumulation of environmental damage. Code and data used in the experiments are publicly available.

  3. Risk factors for local failure requiring salvage neurosurgery after radiosurgery for brain metastases

    International Nuclear Information System (INIS)

    Weltman, Eduardo; Hanriot, Rodrigo de Morais; Prisco, Flavio Eduardo; Nadalin, Wladimir; Brandt, Reynaldo Andre; Moreira, Frederico Rafael

    2004-01-01

    Objective: the aim of this study is to select the risk factors for local failure requiring salvage neurosurgery in patients with brain metastases treated with stereotactic radiosurgery in a single institution. Methods: the follow-up of 123 patients, with 255 brain metastases treated with radiosurgery at the Radiation Oncology Department of the Hospital Israelita Albert Einstein from July 1993 to August 2001, was retrospectively analyzed. The criteria for salvage neurosurgery were tumor volume enlargement, or tumor persistence leading to severe neurological symptoms, life threatening situation or critical steroid dependence. We considered the case as local failure when the histopathologic evaluation showed morphologically preserved cancer cells (tumor recurrence, persistence or progression). We applied the Fisher's exact test to evaluate the statistical correlation between local failure and primary tumor histology, volume of the brain metastases, prescribed radiosurgery dose, and whole brain radiotherapy. Results: fourteen of 123 patients (11%) underwent salvage neurosurgery. Histology showed preserved cancer cells with necrosis and/or bleeding in 11 cases (9% of the total accrual), and only necrosis with or without bleeding (without preserved cancer cells) in three cases. The primary tumor histology among the 11 patients considered with active neoplasia was malignant melanoma in five cases (21% of the patients with melanoma), breast adenocarcinoma in three (16% of the patients with breast cancer), and other histology in the remaining three. Breast cancer diagnosis, non-elective whole brain irradiation, volume of the brain metastases, and the prescribed radiosurgery dose did not correlate with the risk of local failure. Patients treated with elective whole brain radiotherapy showed fewer local failures, when compared to all patients receiving whole brain radiotherapy, and to the patients not receiving this treatment, with incidence of failure in 4%,7% and 14

  4. Relative brain size and morphology of some South African bats

    African Journals Online (AJOL)

    1987-04-03

    Apr 3, 1987 ... closely related to basal metabolic rate than ecological factors (Hofman 1983 .... CBS values for the two rhinolophid species, and a single value for the ..... Relative brain size and demographic strategies in didelphid marsupials.

  5. Autoradiographic localization of drug and neurotransmitter receptors in the brain

    International Nuclear Information System (INIS)

    Kuhar, M.J.

    1981-01-01

    By combining and adapting various methodologies, it is possible to develop radiohistochemical methods for the light microscopic localization of drug and neurotransmitter receptors in the brain. These methods are valuable complements to other histochemical methods for mapping neurotransmitters; they provide a unique view of neuroanatomy and they can be used to provide valuable new hypotheses about how drugs produce various effects. Interesting 'hot spots' of receptor localizations have been observed in some sensory and limbic areas of the brain. Because most available methods are light microscopic, the development of ultrastructural methods will be a necessary and important extension of this field. (Auth.)

  6. Morphology investigation of the mink’s brain (Mustela vison

    Directory of Open Access Journals (Sweden)

    Milanović Valentina

    2013-01-01

    Full Text Available The mink is a strict carnivore and a seasonal breeder, which may be used as an experimental model for other carnivores. Using anatomical methods, 32 brains of the N. American mink were examined. It was found that the brain consists of four ventricles. Also, it was noted that the posterior horn was missing and that the olfactory recess was present in the lateral ventricle, a large-size interthalamic connection was present in the third ventricle, and a flat, necklace like bottom in the fourth ventricle. Only recently, the ins and outs of the mink’s anatomical structure have begun to absorb the attention of anatomists. Apparently, it is related to the fact that fury animals, among them the mink, are being domesticated. For this reason and because of easy access to the material, the purpose of brain dissection is to familiarize with the three dimensional structure of the brain and teach one of the great methods of studying the brain: looking at its structure.

  7. Brain morphology imaging by 3D microscopy and fluorescent Nissl staining.

    Science.gov (United States)

    Lazutkin, A A; Komissarova, N V; Toptunov, D M; Anokhin, K V

    2013-07-01

    Modern optical methods (multiphoton and light-sheet fluorescent microscopy) allow 3D imaging of large specimens of the brain with cell resolution. It is therefore essential to refer the resultant 3D pictures of expression of transgene, protein, and other markers in the brain to the corresponding structures in the atlas. This implies counterstaining of specimens with morphological dyes. However, there are no methods for contrasting large samples of the brain without their preliminary slicing. We have developed a method for fluorescent Nissl staining of whole brain samples. 3D reconstructions of specimens of the hippocampus, olfactory bulbs, and cortex were created. The method can be used for morphological control and evaluation of the effects of various factors on the brain using 3D microscopy technique.

  8. Population differences in brain morphology and microstructure among Chinese, Malay, and Indian neonates.

    Science.gov (United States)

    Bai, Jordan; Abdul-Rahman, Muhammad Farid; Rifkin-Graboi, Anne; Chong, Yap-Seng; Kwek, Kenneth; Saw, Seang-Mei; Godfrey, Keith M; Gluckman, Peter D; Fortier, Marielle V; Meaney, Michael J; Qiu, Anqi

    2012-01-01

    We studied a sample of 75 Chinese, 73 Malay, and 29 Indian healthy neonates taking part in a cohort study to examine potential differences in neonatal brain morphology and white matter microstructure as a function of ethnicity using both structural T2-weighted magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI). We first examined the differences in global size and morphology of the brain among the three groups. We then constructed the T2-weighted MRI and DTI atlases and employed voxel-based analysis to investigate ethnic differences in morphological shape of the brain from the T2-weighted MRI, and white matter microstructure measured by fractional anisotropy derived from DTI. Compared with Malay neonates, the brains of Indian neonates' tended to be more elongated in anterior and posterior axis relative to the superior-inferior axis of the brain even though the total brain volume was similar among the three groups. Although most anatomical regions of the brain were similar among Chinese, Malay, and Indian neonates, there were anatomical variations in the spinal-cerebellar and cortical-striatal-thalamic neural circuits among the three populations. The population-related brain regions highlighted in our study are key anatomical substrates associated with sensorimotor functions.

  9. Brain signatures of early lexical and morphological learning of a new language.

    Science.gov (United States)

    Havas, Viktória; Laine, Matti; Rodríguez Fornells, Antoni

    2017-07-01

    Morphology is an important part of language processing but little is known about how adult second language learners acquire morphological rules. Using a word-picture associative learning task, we have previously shown that a brief exposure to novel words with embedded morphological structure (suffix for natural gender) is enough for language learners to acquire the hidden morphological rule. Here we used this paradigm to study the brain signatures of early morphological learning in a novel language in adults. Behavioural measures indicated successful lexical (word stem) and morphological (gender suffix) learning. A day after the learning phase, event-related brain potentials registered during a recognition memory task revealed enhanced N400 and P600 components for stem and suffix violations, respectively. An additional effect observed with combined suffix and stem violations was an enhancement of an early N2 component, most probably related to conflict-detection processes. Successful morphological learning was also evident in the ERP responses to the subsequent rule-generalization task with new stems, where violation of the morphological rule was associated with an early (250-400ms) and late positivity (750-900ms). Overall, these findings tend to converge with lexical and morphosyntactic violation effects observed in L1 processing, suggesting that even after a short exposure, adult language learners can acquire both novel words and novel morphological rules. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Antipsychotics, brain morphology and duration of untreated illness in schizophrenia

    NARCIS (Netherlands)

    Boonstra, G.

    2011-01-01

    Aims: This thesis addresses the necessity of prophylactic antipsychotic treatment in first-episode schizophrenia patients and the effect of discontinuation of antipsychotics on brain volume and side-effects as well as the usage of these medications in general practice. Furthermore, the influence of

  11. Thalamic and parietal brain morphology predicts auditory category learning.

    Science.gov (United States)

    Scharinger, Mathias; Henry, Molly J; Erb, Julia; Meyer, Lars; Obleser, Jonas

    2014-01-01

    Auditory categorization is a vital skill involving the attribution of meaning to acoustic events, engaging domain-specific (i.e., auditory) as well as domain-general (e.g., executive) brain networks. A listener's ability to categorize novel acoustic stimuli should therefore depend on both, with the domain-general network being particularly relevant for adaptively changing listening strategies and directing attention to relevant acoustic cues. Here we assessed adaptive listening behavior, using complex acoustic stimuli with an initially salient (but later degraded) spectral cue and a secondary, duration cue that remained nondegraded. We employed voxel-based morphometry (VBM) to identify cortical and subcortical brain structures whose individual neuroanatomy predicted task performance and the ability to optimally switch to making use of temporal cues after spectral degradation. Behavioral listening strategies were assessed by logistic regression and revealed mainly strategy switches in the expected direction, with considerable individual differences. Gray-matter probability in the left inferior parietal lobule (BA 40) and left precentral gyrus was predictive of "optimal" strategy switch, while gray-matter probability in thalamic areas, comprising the medial geniculate body, co-varied with overall performance. Taken together, our findings suggest that successful auditory categorization relies on domain-specific neural circuits in the ascending auditory pathway, while adaptive listening behavior depends more on brain structure in parietal cortex, enabling the (re)direction of attention to salient stimulus properties. © 2013 Published by Elsevier Ltd.

  12. Three-dimensional assessment of brain tissue morphology

    Science.gov (United States)

    Müller, Bert; Germann, Marco; Jeanmonod, Daniel; Morel, Anne

    2006-08-01

    The microstructure of brain tissues becomes visible using different types of optical microscopy after the tissue sectioning. This preparation procedure introduces stress and strain in the anisotropic and inhomogeneous soft tissue slices, which are several 10 μm thick. Consequently, the three-dimensional dataset, generated out of the two-dimensional images with lateral submicrometer resolution, needs algorithms to correct the deformations, which can be significant for mellow tissue such as brain segments. The spatial resolution perpendicular to the slices is much worse with respect to the lateral sub-micrometer resolution. Therefore, we propose as complementary method the synchrotron-radiation-based micro computed tomography (SRμCT), which avoids any kind of preparation artifacts due to sectioning and histological processing and yields true micrometer resolution in the three orthogonal directions. The visualization of soft matter by the use of SRμCT, however, is often based on elaborate staining protocols, since the tissue exhibits (almost) the same x-ray absorption as the surrounding medium. Therefore, it is unexpected that human tissue from the pons and the medulla oblongata in phosphate buffer show several features such as the blood vessels and the inferior olivary nucleus without staining. The value of these tomograms lies especially in the precise non-rigid registration of the different sets of histological slices. Applications of this method to larger pieces of brain tissue, such as the human thalamus are planned in the context of stereotactic functional neurosurgery.

  13. Restraint stress-induced morphological changes at the blood-brain barrier in adult rats

    Directory of Open Access Journals (Sweden)

    Petra eSántha

    2016-01-01

    Full Text Available Stress is well known to contribute to the development of both neurological and psychiatric diseases. While the role of the blood-brain barrier is increasingly recognised in the development of neurodegenerative disorders, such as Alzheimer’s disease, dysfunction of the blood-brain barrier has been linked to stress-related psychiatric diseases only recently. In the present study the effects of restraint stress with different duration (1, 3 and 21 days were investigated on the morphology of the blood-brain barrier in male adult Wistar rats. Frontal cortex and hippocampus sections were immunostained for markers of brain endothelial cells (claudin-5, occludin and glucose transporter-1 and astroglia (GFAP. Staining pattern and intensity were visualized by confocal microscopy and evaluated by several types of image analysis. The ultrastructure of brain capillaries was investigated by electron microscopy. Morphological changes and intensity alterations in brain endothelial tight junction proteins claudin-5 and occludin were induced by stress. Following restraint stress significant increases in the fluorescence intensity of glucose transporter-1 were detected in brain endothelial cells in the frontal cortex and hippocampus. Significant reductions in GFAP fluorescence intensity were observed in the frontal cortex in all stress groups. As observed by electron microscopy, one-day acute stress induced morphological changes indicating damage in capillary endothelial cells in both brain regions. After 21 days of stress thicker and irregular capillary basal membranes in the hippocampus and edema in astrocytes in both regions were seen. These findings indicate that stress exerts time-dependent changes in the staining pattern of tight junction proteins occludin, claudin-5 and glucose transporter-1 at the level of brain capillaries and in the ultrastructure of brain endothelial cells and astroglial endfeet, which may contribute to neurodegenerative processes

  14. Morphological characterization of local pigs in Ghana | Adjei ...

    African Journals Online (AJOL)

    67.48%), plain coat colour pattern, erect ear type (84.66%), projecting backwards (52.15%) and a short and cylindrical snout type (62.58%). A greater number of the local pigs (70.55%) showed aggressive temperament. The data gathered from this ...

  15. Morphological brain differences between adult stutterers and non-stutterers

    Directory of Open Access Journals (Sweden)

    Hänggi Jürgen

    2004-12-01

    Full Text Available Abstract Background The neurophysiological and neuroanatomical foundations of persistent developmental stuttering (PDS are still a matter of dispute. A main argument is that stutterers show atypical anatomical asymmetries of speech-relevant brain areas, which possibly affect speech fluency. The major aim of this study was to determine whether adults with PDS have anomalous anatomy in cortical speech-language areas. Methods Adults with PDS (n = 10 and controls (n = 10 matched for age, sex, hand preference, and education were studied using high-resolution MRI scans. Using a new variant of the voxel-based morphometry technique (augmented VBM the brains of stutterers and non-stutterers were compared with respect to white matter (WM and grey matter (GM differences. Results We found increased WM volumes in a right-hemispheric network comprising the superior temporal gyrus (including the planum temporale, the inferior frontal gyrus (including the pars triangularis, the precentral gyrus in the vicinity of the face and mouth representation, and the anterior middle frontal gyrus. In addition, we detected a leftward WM asymmetry in the auditory cortex in non-stutterers, while stutterers showed symmetric WM volumes. Conclusions These results provide strong evidence that adults with PDS have anomalous anatomy not only in perisylvian speech and language areas but also in prefrontal and sensorimotor areas. Whether this atypical asymmetry of WM is the cause or the consequence of stuttering is still an unanswered question.

  16. Exercises in Anatomy, Connectivity, and Morphology using Neuromorpho.org and the Allen Brain Atlas.

    Science.gov (United States)

    Chu, Philip; Peck, Joshua; Brumberg, Joshua C

    2015-01-01

    Laboratory instruction of neuroscience is often limited by the lack of physical resources and supplies (e.g., brains specimens, dissection kits, physiological equipment). Online databases can serve as supplements to material labs by providing professionally collected images of brain specimens and their underlying cellular populations with resolution and quality that is extremely difficult to access for strictly pedagogical purposes. We describe a method using two online databases, the Neuromorpho.org and the Allen Brain Atlas (ABA), that freely provide access to data from working brain scientists that can be modified for laboratory instruction/exercises. Neuromorpho.org is the first neuronal morphology database that provides qualitative and quantitative data from reconstructed cells analyzed in published scientific reports. The Neuromorpho.org database contains cross species and multiple neuronal phenotype datasets which allows for comparative examinations. The ABA provides modules that allow students to study the anatomy of the rodent brain, as well as observe the different cellular phenotypes that exist using histochemical labeling. Using these tools in conjunction, advanced students can ask questions about qualitative and quantitative neuronal morphology, then examine the distribution of the same cell types across the entire brain to gain a full appreciation of the magnitude of the brain's complexity.

  17. Grammatical categories in the brain: the role of morphological structure.

    Science.gov (United States)

    Longe, O; Randall, B; Stamatakis, E A; Tyler, L K

    2007-08-01

    The current study addresses the controversial issue of how different grammatical categories are neurally processed. Several lesion-deficit studies suggest that distinct neural substrates underlie the representation of nouns and verbs, with verb deficits associated with damage to left inferior frontal gyrus (LIFG) and noun deficits with damage to left temporal cortex. However, this view is not universally shared by neuropsychological and neuroimaging studies. We have suggested that these inconsistencies may reflect interactions between the morphological structure of nouns and verbs and the processing implications of this, rather than differences in their neural representations (Tyler et al. 2004). We tested this hypothesis using event-related functional magnetic resonance imaging, to scan subjects performing a valence judgment on unambiguous nouns and verbs, presented as stems ('snail, hear') and inflected forms ('snails, hears'). We predicted that activations for noun and verb stems would not differ, whereas inflected verbs would generate more activation in left frontotemporal areas than inflected nouns. Our findings supported this hypothesis, with greater activation of this network for inflected verbs compared with inflected nouns. These results support the claim that form class is not a first-order organizing principle underlying the representation of words but rather interacts with the processes that operate over lexical representations.

  18. Changes in brain morphology in albinism reflect reduced visual acuity.

    Science.gov (United States)

    Bridge, Holly; von dem Hagen, Elisabeth A H; Davies, George; Chambers, Claire; Gouws, Andre; Hoffmann, Michael; Morland, Antony B

    2014-07-01

    Albinism, in humans and many animal species, has a major impact on the visual system, leading to reduced acuity, lack of binocular function and nystagmus. In addition to the lack of a foveal pit, there is a disruption to the routing of the nerve fibers crossing at the optic chiasm, resulting in excessive crossing of fibers to the contralateral hemisphere. However, very little is known about the effect of this misrouting on the structure of the post-chiasmatic visual pathway, and the occipital lobes in particular. Whole-brain analyses of cortical thickness in a large cohort of subjects with albinism showed an increase in cortical thickness, relative to control subjects, particularly in posterior V1, corresponding to the foveal representation. Furthermore, mean cortical thickness across entire V1 was significantly greater in these subjects compared to controls and negatively correlated with visual acuity in albinism. Additionally, the group with albinism showed decreased gyrification in the left ventral occipital lobe. While the increase in cortical thickness in V1, also found in congenitally blind subjects, has been interpreted to reflect a lack of pruning, the decreased gyrification in the ventral extrastriate cortex may reflect the reduced input to the foveal regions of the ventral visual stream. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Morphological brain measures of cortico-limbic inhibition related to resilience.

    Science.gov (United States)

    Gupta, Arpana; Love, Aubrey; Kilpatrick, Lisa A; Labus, Jennifer S; Bhatt, Ravi; Chang, Lin; Tillisch, Kirsten; Naliboff, Bruce; Mayer, Emeran A

    2017-09-01

    Resilience is the ability to adequately adapt and respond to homeostatic perturbations. Although resilience has been associated with positive health outcomes, the neuro-biological basis of resilience is poorly understood. The aim of the study was to identify associations between regional brain morphology and trait resilience with a focus on resilience-related morphological differences in brain regions involved in cortico-limbic inhibition. The relationship between resilience and measures of affect were also investigated. Forty-eight healthy subjects completed structural MRI scans. Self-reported resilience was measured using the Connor and Davidson Resilience Scale. Segmentation and regional parcellation of images was performed to yield a total of 165 regions. Gray matter volume (GMV), cortical thickness, surface area, and mean curvature were calculated for each region. Regression models were used to identify associations between morphology of regions belonging to executive control and emotional arousal brain networks and trait resilience (total and subscales) while controlling for age, sex, and total GMV. Correlations were also conducted between resilience scores and affect scores. Significant associations were found between GM changes in hypothesized brain regions (subparietal sulcus, intraparietal sulcus, amygdala, anterior mid cingulate cortex, and subgenual cingulate cortex) and resilience scores. There were significant positive correlations between resilience and positive affect and negative correlations with negative affect. Resilience was associated with brain morphology of regions involved in cognitive and affective processes related to cortico-limbic inhibition. Brain signatures associated with resilience may be a biomarker of vulnerability to disease. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  20. A stereotaxic, population-averaged T1w ovine brain atlas including cerebral morphology and tissue volumes

    Directory of Open Access Journals (Sweden)

    Björn eNitzsche

    2015-06-01

    Full Text Available Standard stereotaxic reference systems play a key role in human brain studies. Stereotaxic coordinate systems have also been developed for experimental animals including non-human primates, dogs and rodents. However, they are lacking for other species being relevant in experimental neuroscience including sheep. Here, we present a spatial, unbiased ovine brain template with tissue probability maps (TPM that offer a detailed stereotaxic reference frame for anatomical features and localization of brain areas, thereby enabling inter-individual and cross-study comparability. Three-dimensional data sets from healthy adult Merino sheep (Ovis orientalis aries, 12 ewes and 26 neutered rams were acquired on a 1.5T Philips MRI using a T1w sequence. Data were averaged by linear and non-linear registration algorithms. Moreover, animals were subjected to detailed brain volume analysis including examinations with respect to body weight, age and sex. The created T1w brain template provides an appropriate population-averaged ovine brain anatomy in a spatial standard coordinate system. Additionally, TPM for gray (GM and white (WM matter as well as cerebrospinal fluid (CSF classification enabled automatic prior-based tissue segmentation using statistical parametric mapping (SPM. Overall, a positive correlation of GM volume and body weight explained about 15% of the variance of GM while a positive correlation between WM and age was found. Absolute tissue volume differences were not detected, indeed ewes showed significantly more GM per bodyweight as compared to neutered rams. The created framework including spatial brain template and TPM represent a useful tool for unbiased automatic image preprocessing and morphological characterization in sheep. Therefore, the reported results may serve as a starting point for further experimental and/or translational research aiming at in vivo analysis in this species.

  1. The research of morphological variations and sexual dimorphism of primary grooves on the medial side of brain hemispheres in humans

    Directory of Open Access Journals (Sweden)

    Spasojević Goran

    2012-01-01

    Full Text Available Morphological studies of the various parts of the brain show certain morphological and morphometric differences in correlation with sex, so-called sexual dimorphism of the brain. Our research has been done on the cerebral hemispheres, taken from cadavers of both sexes and different age without pathological processes in the brain. The sample comprised 26 male brains and 16 female brains. We studied three primary grooves (sulcus cinguli, sulcus parietooccipitalis and sulcus calcarinus of the medial surface of the human cerebral hemispheres. We conducted morphological typology of grooves and morphometric measurements of primary brain grooves length in relation to sex and side of hemisphere. The results showed a statistically significant sex difference in the cingulate sulcus length (p0,05. Determined morphometric sexual dimorphism in cingulate sulcus length is significant because it implies the correlation between morphology and function of the explored areas of the cerebral cortex.

  2. Localizing Brain Activity from Multiple Distinct Sources via EEG

    Directory of Open Access Journals (Sweden)

    George Dassios

    2014-01-01

    Full Text Available An important question arousing in the framework of electroencephalography (EEG is the possibility to recognize, by means of a recorded surface potential, the number of activated areas in the brain. In the present paper, employing a homogeneous spherical conductor serving as an approximation of the brain, we provide a criterion which determines whether the measured surface potential is evoked by a single or multiple localized neuronal excitations. We show that the uniqueness of the inverse problem for a single dipole is closely connected with attaining certain relations connecting the measured data. Further, we present the necessary and sufficient conditions which decide whether the collected data originates from a single dipole or from numerous dipoles. In the case where the EEG data arouses from multiple parallel dipoles, an isolation of the source is, in general, not possible.

  3. Interleukin-1 receptors in mouse brain: Characterization and neuronal localization

    International Nuclear Information System (INIS)

    Takao, T.; Tracey, D.E.; Mitchell, W.M.; De Souza, E.B.

    1990-01-01

    The cytokine interleukin-1 (IL-1) has a variety of effects in brain, including induction of fever, alteration of slow wave sleep, and alteration of neuroendocrine activity. To examine the potential sites of action of IL-1 in brain, we used iodine-125-labeled recombinant human interleukin-1 [( 125I]IL-1) to identify and characterize IL-1 receptors in crude membrane preparations of mouse (C57BL/6) hippocampus and to study the distribution of IL-1-binding sites in brain using autoradiography. In preliminary homogenate binding and autoradiographic studies, [125I]IL-1 alpha showed significantly higher specific binding than [125I]IL-1 beta. Thus, [125I]IL-1 alpha was used in all subsequent assays. The binding of [125I]IL-1 alpha was linear over a broad range of membrane protein concentrations, saturable, reversible, and of high affinity, with an equilibrium dissociation constant value of 114 +/- 35 pM and a maximum number of binding sites of 2.5 +/- 0.4 fmol/mg protein. In competition studies, recombinant human IL-1 alpha, recombinant human IL-1 beta, and a weak IL-1 beta analog. IL-1 beta +, inhibited [125I]IL-1 alpha binding to mouse hippocampus in parallel with their relative bioactivities in the T-cell comitogenesis assay, with inhibitory binding affinity constants of 55 +/- 18, 76 +/- 20, and 2940 +/- 742 pM, respectively; rat/human CRF and human tumor necrosis factor showed no effect on [125I]IL-1 alpha binding. Autoradiographic localization studies revealed very low densities of [125I]IL-1 alpha-binding sites throughout the brain, with highest densities present in the molecular and granular layers of the dentate gyrus of the hippocampus and in the choroid plexus. Quinolinic acid lesion studies demonstrated that the [125I]IL-1 alpha-binding sites in the hippocampus were localized to intrinsic neurons

  4. Nuclear localization of Annexin A7 during murine brain development

    Directory of Open Access Journals (Sweden)

    Noegel Angelika A

    2005-04-01

    Full Text Available Abstract Background Annexin A7 is a member of the annexin protein family, which is characterized by its ability to interact with phospholipids in the presence of Ca2+-ions and which is thought to function in Ca2+-homeostasis. Results from mutant mice showed altered Ca2+-wave propagation in astrocytes. As the appearance and distribution of Annexin A7 during brain development has not been investigated so far, we focused on the distribution of Annexin A7 protein during mouse embryogenesis in the developing central nervous system and in the adult mouse brain. Results Annexin A7 is expressed in cells of the developing brain where a change in its subcellular localization from cytoplasm to nucleus was observed. In the adult CNS, the subcellular distribution of Annexin A7 depends on the cell type. By immunohistochemistry analysis Annexin A7 was detected in the cytosol of undifferentiated cells at embryonic days E5–E8. At E11–E15 the protein is still present in the cytosol of cells predominantly located in the ventricular germinative zone surrounding the lateral ventricle. Later on, at embryonic day E16, Annexin A7 in cells of the intermediate and marginal zone of the neopallium translocates to the nucleus. Neuronal cells of all areas in the adult brain present Annexin A7 in the nucleus, whereas glial fibrillary acidic protein (GFAP-positive astrocytes exhibit both, a cytoplasmic and nuclear staining. The presence of nuclear Annexin A7 was confirmed by extraction of the nucleoplasm from isolated nuclei obtained from neuronal and astroglial cell lines. Conclusion We have demonstrated a translocation of Annexin A7 to nuclei of cells in early murine brain development and the presence of Annexin A7 in nuclei of neuronal cells in the adult animal. The role of Annexin A7 in nuclei of differentiating and mature neuronal cells remains elusive.

  5. The blind brain: how (lack of) vision shapes the morphological and functional architecture of the human brain.

    Science.gov (United States)

    Ricciardi, Emiliano; Handjaras, Giacomo; Pietrini, Pietro

    2014-11-01

    Since the early days, how we represent the world around us has been a matter of philosophical speculation. Over the last few decades, modern neuroscience, and specifically the development of methodologies for the structural and the functional exploration of the brain have made it possible to investigate old questions with an innovative approach. In this brief review, we discuss the main findings from a series of brain anatomical and functional studies conducted in sighted and congenitally blind individuals by our's and others' laboratories. Historically, research on the 'blind brain' has focused mainly on the cross-modal plastic changes that follow sensory deprivation. More recently, a novel line of research has been developed to determine to what extent visual experience is truly required to achieve a representation of the surrounding environment. Overall, the results of these studies indicate that most of the brain fine morphological and functional architecture is programmed to develop and function independently from any visual experience. Distinct cortical areas are able to process information in a supramodal fashion, that is, independently from the sensory modality that carries that information to the brain. These observations strongly support the hypothesis of a modality-independent, i.e. more abstract, cortical organization, and may contribute to explain how congenitally blind individuals may interact efficiently with an external world that they have never seen. © 2014 by the Society for Experimental Biology and Medicine.

  6. Autoradiographic localization of benzomorphan binding sites in rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Crain, B.J.; Kwenjen Chang; McNamara, J.O.; Valdes, F.

    1985-07-17

    The benzomorphan subpopulation of opiate binding sites was labeled by (TH)diprenorphine in the presence of unlabeled ligands selected to quench and delta opiate binding sites. The distribution of benzomorphan binding sites was then localized autoradiographically. The distribution differs from the distributions of , delta and kappa opiate binding and is quite similar to the distribution of US -endorphin immunoreactivity. These observations support the hypothesis, based on biochemical studies in brain membranes, that benzomorphan binding sites may represent the ligand recognition sites of putative epsilon receptors. (Auth.). 34 refs.; 3 figs.

  7. Clinical application of synthesized brain surface imaging for preoperative simulation of brain biopsy under local anesthesia

    International Nuclear Information System (INIS)

    Ogura, Yuko; Katada, Kazuhiro; Imai, Fumihiro; Fujisawa, Kazuhisa; Takeshita, Gen; Kanno, Tetsuo; Koga, Sukehiko

    1994-01-01

    Surface anatomy scanning (SAS) is the technique which permits the direct visualization of brain surface structures, including cortical sulci, guri, subcortical lesions as well as skin markings for craniotomy. A synthesized brain surface image is a technique that combines MR angiography (MRA) with SAS, and it proposed by us for detecting cerebral superficial veins with these surface structures on the same image. The purpose of this report is to present the result of applying the synthesized brain surface image to the preoperative simulation of biopsy under local anesthesia in 2 cases of multiple metastatic brain tumors. The parameters for SAS were TR/TE=50/40 msec, flip angle=60deg by the fast T 2 technique using refocused FID in steady-state (STERF technique). SAS images were processed by gray scale reversal. The MRA data were acquired with two-dimensional time of flight (TOF) sequence after intravenous administration of Gd-DTPA. Before imaging, the water-filled plastic tubes were placed on the patients scalp as markings for craniotomy. Their positions were planned by the neurosurgeons. On SAS, the markings for burr-hole appeared located above the tumors. However on the synthesized brain surface images, the positions of burr-hole were considered to be inadequate, since superficial cerebral vein and sinus were also visualized in the area of the markings. From these results, the positions of burr-hole were reset to avoid the venous structures, and so as to include the lesions in operations. The biopsies were performed successfully and safely because the venous structure could be excluded from the operative field. By this technique it was easy to confirm the relationships among lesions, skin markings and venous structures. The technique described appears to be a useful method for preoperative simulation of biopsies for multiple metastatic brain tumors under local anesthesia. (author)

  8. Imaging local brain function with emission computed tomography

    International Nuclear Information System (INIS)

    Kuhl, D.E.

    1984-01-01

    Positron emission tomography (PET) using 18 F-fluorodeoxyglucose (FDG) was used to map local cerebral glucose utilization in the study of local cerebral function. This information differs fundamentally from structural assessment by means of computed tomography (CT). In normal human volunteers, the FDG scan was used to determine the cerebral metabolic response to conrolled sensory stimulation and the effects of aging. Cerebral metabolic patterns are distinctive among depressed and demented elderly patients. The FDG scan appears normal in the depressed patient, studded with multiple metabolic defects in patients with multiple infarct dementia, and in the patients with Alzheimer disease, metabolism is particularly reduced in the parietal cortex, but only slightly reduced in the caudate and thalamus. The interictal FDG scan effectively detects hypometabolic brain zones that are sites of onset for seizures in patients with partial epilepsy, even though these zones usually appear normal on CT scans. The future prospects of PET are discussed

  9. Discrimination of different brain metastases and primary CNS lymphomas using morphologic criteria and diffusion tensor imaging

    Energy Technology Data Exchange (ETDEWEB)

    Bette, S.; Wiestler, B.; Huber, T.; Boeckh-Behrens, T.; Zimmer, C.; Kirschke, J. [Technical University Munich, Klinikum rechts der Isar (Germany). Dept. of Neuroradiology; Delbridge, C. [Technical University Munich, Klinikum rechts der Isar (Germany). Dept. of Neuropathology; Meyer, B.; Gempt, J. [Technical University Munich, Klinikum rechts der Isar (Germany). Dept. of Neurosurgery

    2016-12-15

    Brain metastases are a common complication of cancer and occur in about 15-40% of patients with malignancies. The aim of this retrospective study was to differentiate between metastases from different primary tumors/CNS lymphyomas using morphologic criteria, fractional anisotropy (FA) and apparent diffusion coefficient (ADC). Morphologic criteria such as hemorrhage, cysts, pattern of contrast enhancement and location were reported in 200 consecutive patients with brain metastases/primary CNS lymphomas. FA and ADC values were measured in regions of interest (ROIs) placed in the contrast-enhancing tumor part, the necrosis and the non-enhancing peritumoral region (NEPTR). Differences between histopathological subtypes of metastases were analyzed using non-parametric tests, decision trees and hierarchical clustering analysis. Significant differences were found in morphologic criteria such as hemorrhage or pattern of contrast enhancement. In diffusion measurements, significant differences between the different tumor entities were only found in ADC analyzed in the contrast-enhancing tumor part. Among single tumor entities, primary CNS lymphomas showed significantly lower median ADC values in the contrast-enhancing tumor part (ADC{sub lymphoma} 0.92 [0.83-1.07] vs. ADC{sub no} {sub lymphoma} 1.35 [1.10-1.64] P=0.001). Further differentiation between types of metastases was not possible using FA and ADC. There were morphologic differences among the main subtypes of brain metastases/CNS lymphomas. However, due to a high variability of common types of metastases and low specificity, prospective differentiation remained challenging. DTI including FA and ADC was not a reliable tool for differentiation between different histopathological subtypes of brain metastases except for CNS lymphomas showing lower ADC values. Biopsy, surgery and staging remain essential for diagnosis.

  10. Three-dimensional morphologic description and visualization of brain anatomy from MR images

    International Nuclear Information System (INIS)

    Kraske, W.; George, F.W.; Zee, C.S.; Colletti, P.M.; Halls, J.M.; Boswell, W.O.

    1989-01-01

    The USC VOXAR-MRI system incorporates MR tissue classification algorithms to provide dynamic three- dimensional volumetric visualization and discrimination of brain anatomy and pathology for precision diagnosis, staging, and treatment planning. The VOXAR-MRI approach to tissue classification employs the three-dimensional reconstruction of various intracranial features from gray-scale morphologic erosion and dilation (GMED)-derived skeleton representation of the MR acquisition. Case presentations include an array of VOXAR-MRI-demonstrated tumors, abscesses, hematomas, and other lesions

  11. N-isopropyl-[123I]p-iodoamphetamine: single-pass brain uptake and washout; binding to brain synaptosomes; and localization in dog and monkey brain

    International Nuclear Information System (INIS)

    Winchell, H.S.; Horst, W.D.; Braun, L.; Oldendorf, W.H.; Hattner, R.; Parker, H.

    1980-01-01

    The kinetics of N-isopropyl-p-[ 123 I]iodoamphetamine in rat brains were determined by serial measurements of brain uptake index (BUI) after intracarotid injection; also studied were its effects on amine uptake and release in rat's brain cortical synaptosomes; and its in vivo distribution in the dog and monkey. No specific localization in brain nuclei of the dog was seen, but there was progressive accumulation in the eyes. Rapid initial brain uptake in the ketamine-sedated monkey was noted, and further slow brain uptake occurred during the next 20 min but without retinal localization. High levels of brain activity were maintained for several hours. The quantitative initial single-pass clearance of the agent in the brain suggests its use in evaluation of regional brain perfusion. Its interaction with brain amine-binding sites suggests its possible application in studies of cerebral amine metabolism

  12. Interactive effects of genetic polymorphisms and childhood adversity on brain morphologic changes in depression.

    Science.gov (United States)

    Kim, Yong-Ku; Ham, Byung-Joo; Han, Kyu-Man

    2018-03-10

    The etiology of depression is characterized by the interplay of genetic and environmental factors and brain structural alteration. Childhood adversity is a major contributing factor in the development of depression. Interactions between childhood adversity and candidate genes for depression could affect brain morphology via the modulation of neurotrophic factors, serotonergic neurotransmission, or the hypothalamus-pituitary-adrenal (HPA) axis, and this pathway may explain the subsequent onset of depression. Childhood adversity is associated with structural changes in the hippocampus, amygdala, anterior cingulate cortex (ACC), and prefrontal cortex (PFC), as well as white matter tracts such as the corpus callosum, cingulum, and uncinate fasciculus. Childhood adversity showed an interaction with the brain-derived neurotrophic factor (BDNF) gene Val66Met polymorphism, serotonin transporter-linked promoter region (5-HTTLPR), and FK506 binding protein 51 (FKBP5) gene rs1360780 in brain morphologic changes in patients with depression and in a non-clinical population. Individuals with the Met allele of BDNF Val66Met and a history of childhood adversity had reduced volume in the hippocampus and its subfields, amygdala, and PFC and thinner rostral ACC in a study of depressed patients and healthy controls. The S allele of 5-HTTLPR combined with exposure to childhood adversity or a poorer parenting environment was associated with a smaller hippocampal volume and subsequent onset of depression. The FKBP5 gene rs160780 had a significant interaction with childhood adversity in the white matter integrity of brain regions involved in emotion processing. This review identified that imaging genetic studies on childhood adversity may deepen our understanding on the neurobiological background of depression by scrutinizing complicated pathways of genetic factors, early psychosocial environments, and the accompanying morphologic changes in emotion-processing neural circuitry. Copyright

  13. Information properties of morphologically complex words modulate brain activity during word reading.

    Science.gov (United States)

    Hakala, Tero; Hultén, Annika; Lehtonen, Minna; Lagus, Krista; Salmelin, Riitta

    2018-06-01

    Neuroimaging studies of the reading process point to functionally distinct stages in word recognition. Yet, current understanding of the operations linked to those various stages is mainly descriptive in nature. Approaches developed in the field of computational linguistics may offer a more quantitative approach for understanding brain dynamics. Our aim was to evaluate whether a statistical model of morphology, with well-defined computational principles, can capture the neural dynamics of reading, using the concept of surprisal from information theory as the common measure. The Morfessor model, created for unsupervised discovery of morphemes, is based on the minimum description length principle and attempts to find optimal units of representation for complex words. In a word recognition task, we correlated brain responses to word surprisal values derived from Morfessor and from other psycholinguistic variables that have been linked with various levels of linguistic abstraction. The magnetoencephalography data analysis focused on spatially, temporally and functionally distinct components of cortical activation observed in reading tasks. The early occipital and occipito-temporal responses were correlated with parameters relating to visual complexity and orthographic properties, whereas the later bilateral superior temporal activation was correlated with whole-word based and morphological models. The results show that the word processing costs estimated by the statistical Morfessor model are relevant for brain dynamics of reading during late processing stages. © 2018 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.

  14. Novel active contour model based on multi-variate local Gaussian distribution for local segmentation of MR brain images

    Science.gov (United States)

    Zheng, Qiang; Li, Honglun; Fan, Baode; Wu, Shuanhu; Xu, Jindong

    2017-12-01

    Active contour model (ACM) has been one of the most widely utilized methods in magnetic resonance (MR) brain image segmentation because of its ability of capturing topology changes. However, most of the existing ACMs only consider single-slice information in MR brain image data, i.e., the information used in ACMs based segmentation method is extracted only from one slice of MR brain image, which cannot take full advantage of the adjacent slice images' information, and cannot satisfy the local segmentation of MR brain images. In this paper, a novel ACM is proposed to solve the problem discussed above, which is based on multi-variate local Gaussian distribution and combines the adjacent slice images' information in MR brain image data to satisfy segmentation. The segmentation is finally achieved through maximizing the likelihood estimation. Experiments demonstrate the advantages of the proposed ACM over the single-slice ACM in local segmentation of MR brain image series.

  15. Altered subcellular localization of ornithine decarboxylase in Alzheimer's disease brain

    International Nuclear Information System (INIS)

    Nilsson, Tatjana; Bogdanovic, Nenad; Volkman, Inga; Winblad, Bengt; Folkesson, Ronnie; Benedikz, Eirikur

    2006-01-01

    The amyloid precursor protein can through ligand-mimicking induce expression of ornithine decarboxylase (ODC), the initial and rate-limiting enzyme in polyamine biosynthesis. We report here the regional distribution and cellular localization of ODC immunoreactivity in Alzheimer's disease (AD) brains. In frontal cortex and hippocampus of control cases, the most pronounced ODC immunoreactivity was found in the nucleus. In possible and definite AD the immunoreactivity had shifted to the cytoplasm. In cerebellum of control cases, ODC staining was found in a small portion of Purkinje cells, mostly in the nucleus. In AD, both possible and definite, the number of stained Purkinje cells increased significantly and immunoreactivity was shifted to the cytoplasm, even though it was still prominent in the nucleus. In conclusion, our study reveals an early shift of the ODC immunoreactivity in AD from the nuclear compartment towards the cytoplasm

  16. Brain source localization using a fourth-order deflation scheme

    Science.gov (United States)

    Albera, Laurent; Ferréol, Anne; Cosandier-Rimélé, Delphine; Merlet, Isabel; Wendling, Fabrice

    2008-01-01

    A high resolution method for solving potentially ill-posed inverse problems is proposed. This method named FO-D-MUSIC allows for localization of brain current sources with unconstrained orientations from surface electro- or magnetoencephalographic data using spherical or realistic head geometries. The FO-D-MUSIC method is based on i) the separability of the data transfer matrix as a function of location and orientation parameters, ii) the Fourth Order (FO) virtual array theory, and iii) the deflation concept extended to FO statistics accounting for the presence of potentially but not completely statistically dependent sources. Computer results display the superiority of the FO-D-MUSIC approach in different situations (very closed sources, small number of electrodes, additive Gaussian noise with unknown spatial covariance, …) compared to classical algorithms. PMID:18269984

  17. Functional brain networks develop from a "local to distributed" organization.

    Directory of Open Access Journals (Sweden)

    Damien A Fair

    2009-05-01

    Full Text Available The mature human brain is organized into a collection of specialized functional networks that flexibly interact to support various cognitive functions. Studies of development often attempt to identify the organizing principles that guide the maturation of these functional networks. In this report, we combine resting state functional connectivity MRI (rs-fcMRI, graph analysis, community detection, and spring-embedding visualization techniques to analyze four separate networks defined in earlier studies. As we have previously reported, we find, across development, a trend toward 'segregation' (a general decrease in correlation strength between regions close in anatomical space and 'integration' (an increased correlation strength between selected regions distant in space. The generalization of these earlier trends across multiple networks suggests that this is a general developmental principle for changes in functional connectivity that would extend to large-scale graph theoretic analyses of large-scale brain networks. Communities in children are predominantly arranged by anatomical proximity, while communities in adults predominantly reflect functional relationships, as defined from adult fMRI studies. In sum, over development, the organization of multiple functional networks shifts from a local anatomical emphasis in children to a more "distributed" architecture in young adults. We argue that this "local to distributed" developmental characterization has important implications for understanding the development of neural systems underlying cognition. Further, graph metrics (e.g., clustering coefficients and average path lengths are similar in child and adult graphs, with both showing "small-world"-like properties, while community detection by modularity optimization reveals stable communities within the graphs that are clearly different between young children and young adults. These observations suggest that early school age children and adults

  18. Functional brain networks develop from a "local to distributed" organization.

    Science.gov (United States)

    Fair, Damien A; Cohen, Alexander L; Power, Jonathan D; Dosenbach, Nico U F; Church, Jessica A; Miezin, Francis M; Schlaggar, Bradley L; Petersen, Steven E

    2009-05-01

    The mature human brain is organized into a collection of specialized functional networks that flexibly interact to support various cognitive functions. Studies of development often attempt to identify the organizing principles that guide the maturation of these functional networks. In this report, we combine resting state functional connectivity MRI (rs-fcMRI), graph analysis, community detection, and spring-embedding visualization techniques to analyze four separate networks defined in earlier studies. As we have previously reported, we find, across development, a trend toward 'segregation' (a general decrease in correlation strength) between regions close in anatomical space and 'integration' (an increased correlation strength) between selected regions distant in space. The generalization of these earlier trends across multiple networks suggests that this is a general developmental principle for changes in functional connectivity that would extend to large-scale graph theoretic analyses of large-scale brain networks. Communities in children are predominantly arranged by anatomical proximity, while communities in adults predominantly reflect functional relationships, as defined from adult fMRI studies. In sum, over development, the organization of multiple functional networks shifts from a local anatomical emphasis in children to a more "distributed" architecture in young adults. We argue that this "local to distributed" developmental characterization has important implications for understanding the development of neural systems underlying cognition. Further, graph metrics (e.g., clustering coefficients and average path lengths) are similar in child and adult graphs, with both showing "small-world"-like properties, while community detection by modularity optimization reveals stable communities within the graphs that are clearly different between young children and young adults. These observations suggest that early school age children and adults both have

  19. Morphological Imaging in the Localization of Neuroendocrine Gastroenteropancreatic Tumors Found by Somatostatin Receptor Scintigraphy

    International Nuclear Information System (INIS)

    Saga, T.; Doi, R.; Endo, K.; Shimatsu, A.; Koizumi, K.; Ichikawa, T.; Yamamoto, K.; Noguchi, S.; Ishibashi, M.; Machinami, R.; Nakamura, K.; Sakahara, H.

    2005-01-01

    Purpose: To evaluate the necessity of morphological images (MI) in reading somatostatin receptor scintigraphy (SRS) in patients with suspected neuroendocrine gastroenteropancreatic (GEP) tumors. Material and Methods: A Japanese multicenter clinical trial of SRS was conducted in 40 patients with suspected GEP tumors. Three experienced radiologists interpreted the images in three separate sessions in a blinded manner (1: SRS images alone, 2: MI alone, 3: SRS and MI analyzed simultaneously), and the reading results of each session were compared. In addition, the diagnostic abilities of SRS, MI and SRS alone and simultaneous SRS and MI readings were compared for patients where final diagnosis was obtained. Results: SRS detected more suspected lesions (positive or inconclusive uptake) than morphological images did (51 vs 27 lesions), but included many physiological uptakes detected as positive or inconclusive uptakes. Combined reading of SRS and morphological images helped to correctly recognize these physiological uptakes, and also helped in determining the anatomical localization of the abnormal uptakes. Combined reading of SRS and morphological images gave the highest diagnostic impact. Conclusion: The sensitivity of SRS with regard to GEP is high. However the specificity is very low. Morphologic imaging is necessary for the exclusion of physiological uptake and correct anatomic location of an abnormal tracer uptake. The combined reading of SRS and morphologic imaging studies gives the highest diagnostic impact

  20. Fine-mapping the effects of Alzheimer's disease risk loci on brain morphology.

    Science.gov (United States)

    Roshchupkin, Gennady V; Adams, Hieab H; van der Lee, Sven J; Vernooij, Meike W; van Duijn, Cornelia M; Uitterlinden, Andre G; van der Lugt, Aad; Hofman, Albert; Niessen, Wiro J; Ikram, Mohammad A

    2016-12-01

    The neural substrate of genetic risk variants for Alzheimer's disease (AD) remains unknown. We studied their effect on healthy brain morphology to provide insight into disease etiology in the preclinical phase. We included 4071 nondemented, elderly participants of the population-based Rotterdam Study who underwent brain magnetic resonance imaging and genotyping. We performed voxel-based morphometry (VBM) on all gray-matter voxels for 19 previously identified, common AD risk variants. Whole-brain expression data from the Allen Human Brain Atlas was used to examine spatial overlap between VBM association results and expression of genes in AD risk loci regions. Brain regions most significantly associated with AD risk variants were the left postcentral gyrus with ABCA7 (rs4147929, p = 4.45 × 10 -6 ), right superior frontal gyrus by ZCWPW1 (rs1476679, p = 5.12 × 10 -6 ), and right postcentral gyrus by APOE (p = 6.91 × 10 -6 ). Although no individual voxel passed multiple-testing correction, we found significant spatial overlap between the effects of AD risk loci on VBM and the expression of genes (MEF2C, CLU, and SLC24A4) in the Allen Brain Atlas. Results are available online on www.imagene.nl/ADSNPs/. In this single largest imaging genetics data set worldwide, we found that AD risk loci affect cortical gray matter in several brain regions known to be involved in AD, as well as regions that have not been implicated before. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. The relationship between brain morphology and polysomnography in healthy good sleepers.

    Directory of Open Access Journals (Sweden)

    Matthias A Reinhard

    Full Text Available Normal sleep continuity and architecture show remarkable inter-individual variability. Previous studies suggest that brain morphology may explain inter-individual differences in sleep variables.Thirty-eight healthy subjects spent two consecutive nights at the sleep laboratory with polysomnographic monitoring. Furthermore, high-resolution T1-weighted MRI datasets were acquired in all participants. EEG sleep recordings were analyzed using standard sleep staging criteria and power spectral analysis. Using the FreeSurfer software for automated segmentation, 174 variables were determined representing the volume and thickness of cortical segments and the volume of subcortical brain areas. Regression analyses were performed to examine the relationship with polysomnographic and spectral EEG power variables.The analysis did not provide any support for the a-priori formulated hypotheses of an association between brain morphology and polysomnographic variables. Exploratory analyses revealed that the thickness of the left caudal anterior cingulate cortex was positively associated with EEG beta2 power (24-32 Hz during REM sleep. The volume of the left postcentral gyrus was positively associated with periodic leg movements during sleep (PLMS.The function of the anterior cingulate cortex as well as EEG beta power during REM sleep have been related to dreaming and sleep-related memory consolidation, which may explain the observed correlation. Increased volumes of the postcentral gyrus may be the result of increased sensory input associated with PLMS. However, due to the exploratory nature of the corresponding analyses, these results have to be replicated before drawing firm conclusions.

  2. The Performance of Ictal Brain SPECT Localizing for Epileptogenic Zone in Neocortical Epilepsy

    International Nuclear Information System (INIS)

    Kim, Eun Sik; Lee, Dong Soo; Hyun, In Young; Chung, June Key; Lee, Myung Chul; Koh, Chang Soon; Lee, Sang Kun; Chang, Kee Hyun

    1995-01-01

    The epileptogenic zones should be localized precisely before surgical resection of these zones in intractable epilepsy. The localization is more difficult in patients with neocortical epilepsy than in patients with temporal lobe epilepsy. This study aimed at evaluation of the usefulness of ictal brain perfusion SPECT for the localization of epileptogenic zones in neocortical epilepsy. We compared the performance of ictal SPECT with MRI referring to ictal scalp electroencephalography (sEEG). Ictal 99m Tc-HMPAO SPECT were done in twenty-one patients. Ictal EEG were also obtained during video monitoring. MRI were reviewed. According to the ictal sEEG and semiology, 8 patients were frontal lobe epilepsy, 7 patients were lateral temporal lobe epilepsy, 2 patients were parietal lobe epilepsy, and 4 patients were occipital lobe epilepsy. Ictal SPECT showed hyperperfusion in 14 patients(67%) in the zones which were suspected to be epileptogenic according to ictal EEG and semiology. MRI found morphologic abnormalities in 9 patients(43%). Among the 12 patients, in whom no epileptogenic zones were revealed by MR1, ictal SPECT found zones of hyperperfusion concordant with ictal sEEG in 9 patients(75%). However, no zones of hyperperfusion were found in 4 among 9 patients who were found to have cerebromalacia, abnormal calcification and migration anomaly in MRI. We thought that ictal SPECT was useful for localization of epileptogenic zones in neocortical epilepsy and especially in patients with negative findings in MRI.

  3. Presynaptic localization of histamine H3-receptors in rat brain

    International Nuclear Information System (INIS)

    Fujimoto, K.; Mizuguchi, H.; Fukui, H.; Wada, H.

    1991-01-01

    The localization of histamine H3-receptors in subcellular fractions from the rat brain was examined in a [3H] (R) alpha-methylhistamine binding assay and compared with those of histamine H1- and adrenaline alpha 1- and alpha 2-receptors. Major [3H](R) alpha-methylhistamine binding sites with increased specific activities ([3H]ligand binding vs. protein amount) were recovered from the P2 fraction by differential centrifugation. Minor [3H](R)alpha-methylhistamine binding sites with increased specific activities were also detected in the P3 fraction. Further subfractionation of the P2 fraction by discontinuous sucrose density gradient centrifugation showed major recoveries of [3H](R)alpha-methylhistamine binding in myelin (MYE) and synaptic plasma membrane (SPM) fractions. A further increase in specific activity was observed in the MYE fraction, but the SPM fraction showed no significant increase in specific activity. Adrenaline alpha 2-receptors, the pre-synaptic autoreceptors, in a [3H] yohimbine binding assay showed distribution patterns similar to histamine H3-receptors. On the other hand, post-synaptic histamine H1- and adrenaline alpha 1-receptors were closely localized and distributed mainly in the SPM fraction with increased specific activity. Only a negligible amount was recovered in the MYE fraction, unlike the histamine H3- and adrenaline alpha 2-receptors

  4. Brain Interaction during Cooperation: Evaluating Local Properties of Multiple-Brain Network.

    Science.gov (United States)

    Sciaraffa, Nicolina; Borghini, Gianluca; Aricò, Pietro; Di Flumeri, Gianluca; Colosimo, Alfredo; Bezerianos, Anastasios; Thakor, Nitish V; Babiloni, Fabio

    2017-07-21

    Subjects' interaction is the core of most human activities. This is the reason why a lack of coordination is often the cause of missing goals, more than individual failure. While there are different subjective and objective measures to assess the level of mental effort required by subjects while facing a situation that is getting harder, that is, mental workload, to define an objective measure based on how and if team members are interacting is not so straightforward. In this study, behavioral, subjective and synchronized electroencephalographic data were collected from couples involved in a cooperative task to describe the relationship between task difficulty and team coordination, in the sense of interaction aimed at cooperatively performing the assignment. Multiple-brain connectivity analysis provided information about the whole interacting system. The results showed that averaged local properties of a brain network were affected by task difficulty. In particular, strength changed significantly with task difficulty and clustering coefficients strongly correlated with the workload itself. In particular, a higher workload corresponded to lower clustering values over the central and parietal brain areas. Such results has been interpreted as less efficient organization of the network when the subjects' activities, due to high workload tendencies, were less coordinated.

  5. Loud Noise Exposure Produces DNA, Neurotransmitter and Morphological Damage within Specific Brain Areas

    Directory of Open Access Journals (Sweden)

    Giada Frenzilli

    2017-06-01

    Full Text Available Exposure to loud noise is a major environmental threat to public health. Loud noise exposure, apart from affecting the inner ear, is deleterious for cardiovascular, endocrine and nervous systems and it is associated with neuropsychiatric disorders. In this study we investigated DNA, neurotransmitters and immune-histochemical alterations induced by exposure to loud noise in three major brain areas (cerebellum, hippocampus, striatum of Wistar rats. Rats were exposed to loud noise (100 dBA for 12 h. The effects of noise on DNA integrity in all three brain areas were evaluated by using Comet assay. In parallel studies, brain monoamine levels and morphology of nigrostriatal pathways, hippocampus and cerebellum were analyzed at different time intervals (24 h and 7 days after noise exposure. Loud noise produced a sudden increase in DNA damage in all the brain areas under investigation. Monoamine levels detected at 7 days following exposure were differently affected depending on the specific brain area. Namely, striatal but not hippocampal dopamine (DA significantly decreased, whereas hippocampal and cerebellar noradrenaline (NA was significantly reduced. This is in line with pathological findings within striatum and hippocampus consisting of a decrease in striatal tyrosine hydroxylase (TH combined with increased Bax and glial fibrillary acidic protein (GFAP. Loud noise exposure lasting 12 h causes immediate DNA, and long-lasting neurotransmitter and immune-histochemical alterations within specific brain areas of the rat. These alterations may suggest an anatomical and functional link to explain the neurobiology of diseases which prevail in human subjects exposed to environmental noise.

  6. Relationship between symptom dimensions and brain morphology in obsessive-compulsive disorder.

    Science.gov (United States)

    Hirose, Motohisa; Hirano, Yoshiyuki; Nemoto, Kiyotaka; Sutoh, Chihiro; Asano, Kenichi; Miyata, Haruko; Matsumoto, Junko; Nakazato, Michiko; Matsumoto, Koji; Masuda, Yoshitada; Iyo, Masaomi; Shimizu, Eiji; Nakagawa, Akiko

    2017-10-01

    Obsessive-compulsive disorder (OCD) is known as a clinically heterogeneous disorder characterized by symptom dimensions. Although substantial numbers of neuroimaging studies have demonstrated the presence of brain abnormalities in OCD, their results are controversial. The clinical heterogeneity of OCD could be one of the reasons for this. It has been hypothesized that certain brain regions contributed to the respective obsessive-compulsive dimensions. In this study, we investigated the relationship between symptom dimensions of OCD and brain morphology using voxel-based morphometry to discover the specific regions showing alterations in the respective dimensions of obsessive-compulsive symptoms. The severities of symptom dimensions in thirty-three patients with OCD were assessed using Obsessive-Compulsive Inventory-Revised (OCI-R). Along with numerous MRI studies pointing out brain abnormalities in autistic spectrum disorder (ASD) patients, a previous study reported a positive correlation between ASD traits and regional gray matter volume in the left dorsolateral prefrontal cortex and amygdala in OCD patients. We investigated the correlation between gray and white matter volumes at the whole brain level and each symptom dimension score, treating all remaining dimension scores, age, gender, and ASD traits as confounding covariates. Our results revealed a significant negative correlation between washing symptom dimension score and gray matter volume in the right thalamus and a significant negative correlation between hoarding symptom dimension score and white matter volume in the left angular gyrus. Although our result was preliminary, our findings indicated that there were specific brain regions in gray and white matter that contributed to symptom dimensions in OCD patients.

  7. Morphological and functional alterations in the adenohypophysis in cases of brain death.

    Science.gov (United States)

    Ishikawa, Takaki; Michiue, Tomomi; Quan, Li; Zhao, Dong; Komatsu, Ayumi; Bessho, Yasumori; Maeda, Hitoshi

    2009-04-01

    In order to examine the function of the adenohypophysis during brain death, levels of adrenocorticotropic hormone (ACTH), growth hormone (GH), and thyroid stimulating hormone (TSH) were investigated during forensic autopsy. Cases examined were those of brain death (n=12; within 24h postmortem; time to cardiac death after cerebral death was diagnosed, approximately 4-25 days), including those in which the cause of death was head injury (subdural hematoma or brain contusion, n=10) and asphyxia (strangulation, n=2). The concentrations of ACTH and TSH were measured by enzyme chemiluminescent immunoassay (ECLIA), and that of GH by radioimmunoassay (RIA). The immunoreactivities of ACTH, GH, and TSH in the adenohypophysis were observed and analyzed with electron microscopy. Morphological studies revealed partial necrosis of the central anterior lobe, but preservation of its periphery. Immunohistochemical staining revealed the appearance of peripheral adenohypophysis with each hormone. Ultrastructural findings for the pituitary and hypothalamus indicated swelling of the mitochondria and dilation of both the smooth endoplasmic reticulum and Golgi apparatus. Furthermore, in most cases, concentrations of the anterior pituitary hormones in the serum and cerebrospinal fluid (CSF) were generally within the clinical reference range. These results indicate that the pituitary is partially preserved after brain death.

  8. Comparing CAT12 and VBM8 for Detecting Brain Morphological Abnormalities in Temporal Lobe Epilepsy

    Directory of Open Access Journals (Sweden)

    Farnaz Farokhian

    2017-08-01

    Full Text Available The identification of the brain morphological alterations that play important roles in neurodegenerative/neurological diseases will contribute to our understanding of the causes of these diseases. Various automated software programs are designed to provide an automatic framework to detect brain morphological changes in structural magnetic resonance imaging (MRI data. A voxel-based morphometry (VBM analysis can also be used for the detection of brain volumetric abnormalities. Here, we compared gray matter (GM and white matter (WM abnormality results obtained by a VBM analysis using the Computational Anatomy Toolbox (CAT12 via the current version of Statistical Parametric Mapping software (SPM12 with the results obtained by a VBM analysis using the VBM8 toolbox implemented in the older software SPM8, in adult temporal lobe epilepsy (TLE patients with (n = 51 and without (n = 57 hippocampus sclerosis (HS, compared to healthy adult controls (n = 28. The VBM analysis using CAT12 showed that compared to the healthy controls, significant GM and WM reductions were located in ipsilateral mesial temporal lobes in the TLE-HS patients, and slight GM amygdala swelling was present in the right TLE-no patients (n = 27. In contrast, the VBM analysis via the VBM8 toolbox showed significant GM and WM reductions only in the left TLE-HS patients (n = 25 compared to the healthy controls. Our findings thus demonstrate that compared to VBM8, a VBM analysis using CAT12 provides a more accurate volumetric analysis of the brain regions in TLE. Our results further indicate that a VBM analysis using CAT12 is more robust and accurate against volumetric alterations than the VBM8 toolbox.

  9. Morphology of subcortical brain nuclei is associated with autonomic function in healthy humans.

    Science.gov (United States)

    Ruffle, James K; Coen, Steven J; Giampietro, Vincent; Williams, Steven C R; Apkarian, A Vania; Farmer, Adam D; Aziz, Qasim

    2018-01-01

    The autonomic nervous system (ANS) is a brain body interface which serves to maintain homeostasis by influencing a plethora of physiological processes, including metabolism, cardiorespiratory regulation and nociception. Accumulating evidence suggests that ANS function is disturbed in numerous prevalent clinical disorders, including irritable bowel syndrome and fibromyalgia. While the brain is a central hub for regulating autonomic function, the association between resting autonomic activity and subcortical morphology has not been comprehensively studied and thus was our aim. In 27 healthy subjects [14 male and 13 female; mean age 30 years (range 22-53 years)], we quantified resting ANS function using validated indices of cardiac sympathetic index (CSI) and parasympathetic cardiac vagal tone (CVT). High resolution structural magnetic resonance imaging scans were acquired, and differences in subcortical nuclei shape, that is, 'deformation', contingent on resting ANS activity were investigated. CSI positively correlated with outward deformation of the brainstem, right nucleus accumbens, right amygdala and bilateral pallidum (all thresholded to corrected P right amygdala and pallidum (all thresholded to corrected P Left and right putamen volume positively correlated with CVT (r = 0.62, P = 0.0047 and r = 0.59, P = 0.008, respectively), as did the brainstem (r = 0.46, P = 0.049). These data provide novel evidence that resting autonomic state is associated with differences in the shape and volume of subcortical nuclei. Thus, subcortical morphological brain differences in various disorders may partly be attributable to perturbation in autonomic function. Further work is warranted to investigate these findings in clinical populations. Hum Brain Mapp 39:381-392, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  10. Development of I-123-labeled amines for brain studies: localization of I-123 iodophenylalkyl amines in rat brain

    International Nuclear Information System (INIS)

    Winchell, H.S.; Baldwin, R.M.; Lin, T.H.

    1980-01-01

    Localization in rat brain of forty iodophenylalkyl amines labeled with I-123 was evaluated in an attempt to develop I-123-labeled amines useful for brain studies. For the amines studied, the highest activity in brain and the brain-to-blood activity ratios ranked p > m > o as related to iodine position on the benzene ring: for alkyl groups the rank order was α-methylethyl > ethyl > methyl > none; for N additions it was single lipophilic group > H > two lipophilic groups. It is suggested that introduction of a halogen into the ring structure of many amines results in greater concentration of the agent in brain than is seen with the nonhalogenated parent compound. The agent N-isopropyl-p-iodoamphetamine was chosen for further study because, in the rat, it showed high brain activity (1.57%/g) and brain-blood ratio (12.6) at 5 min

  11. Early functional and morphological brain disturbances in late-onset intrauterine growth restriction.

    Science.gov (United States)

    Starčević, Mirta; Predojević, Maja; Butorac, Dražan; Tumbri, Jasna; Konjevoda, Paško; Kadić, Aida Salihagić

    2016-02-01

    To determine whether the brain disturbances develop in late-onset intrauterine growth restriction (IUGR) before blood flow redistribution towards the fetal brain (detected by Doppler measurements in the middle cerebral artery and umbilical artery). Further, to evaluate predictive values of Doppler arterial indices and umbilical cord blood gases and pH for early functional and/or morphological brain disturbances in late-onset IUGR. This cohort study included 60 singleton term pregnancies with placental insufficiency caused late-onset IUGR (IUGR occurring after 34 gestational weeks). Umbilical artery resistance index (URI), middle cerebral artery resistance index (CRI), and cerebroumbilical (C/U) ratio (CRI/URI) were monitored once weekly. Umbilical blood cord samples (arterial and venous) were collected for the analysis of pO2, pCO2 and pH. Morphological neurological outcome was evaluated by cranial ultrasound (cUS), whereas functional neurological outcome by Amiel-Tison Neurological Assessment at Term (ATNAT). 50 fetuses had C/U ratio>1, and 10 had C/U ratio≤1; among these 10 fetuses, 9 had abnormal neonatal cUS findings and all 10 had non-optimal ATNAT. However, the total number of abnormal neurological findings was much higher. 32 neonates had abnormal cUS (53.37%), and 42 (70.00%) had non-optimal ATNAT. Furthermore, Doppler indices had higher predictive validity for early brain disturbances than umbilical cord blood gases and pH. C/U ratio had the highest predictive validity with threshold for adverse neurological outcome at value 1.13 (ROC analysis), i.e., 1.18 (party machine learning algorithm). Adverse neurological outcome at average values of C/U ratios>1 confirmed that early functional and/or structural brain disturbances in late-onset IUGR develop even before activation of fetal cardiovascular compensatory mechanisms, i.e., before Doppler signs of blood flow redistribution between the fetal brain and the placenta. Copyright © 2015 Elsevier Ireland Ltd

  12. Correlation of glucose metabolism in brain cells and brain morphological changes with clinical typing in children with cerebral palsy

    Institute of Scientific and Technical Information of China (English)

    Qiongxiang Zhai; Huixian Qiao; Jiqing Liu

    2006-01-01

    .CONCLUSION: ①Multi-focal abnormality is the main pattem of PET abnormality among children with cerebral palsy.MRI contains various morphological abnormalities of brain,and characteristics of PET imagling of children with cerebral palsy are different.②PET imagling can reflect functional metabolism and active function of brain cells so as to reflect injured site and degree of brain calls.

  13. Localization of Brain Natriuretic Peptide Immunoreactivity in Rat Spinal Cord

    Directory of Open Access Journals (Sweden)

    Essam M Abdelalim

    2016-12-01

    Full Text Available Brain natriuretic peptide (BNP exerts its functions through natriuretic peptide receptors. Recently, BNP has been shown to be involved in a wide range of functions. Previous studies reported BNP expression in the sensory afferent fibers in the dorsal horn of the spinal cord. However, BNP expression and function in the neurons of the central nervous system are still controversial. Therefore, in this study, we investigated BNP expression in the rat spinal cord in detail using RT-PCR and immunohistochemistry. RT-PCR analysis showed that BNP mRNA was present in the spinal cord and DRG. BNP immunoreactivity was observed in different structures of the spinal cord, including the neuronal cell bodies and neuronal processes. BNP immunoreactivity was observed in the dorsal horn of the spinal cord and in the neurons of the intermediate column and ventral horn. Double-immunolabeling showed a high level of BNP expression in the afferent fibers (laminae I-II labeled with calcitonin gene-related peptide (CGRP, suggesting BNP involvement in sensory function. In addition, BNP was co-localized with CGRP and choline acetyltransferase in the motor neurons of the ventral horn. Together, these results indicate that BNP is expressed in sensory and motor systems of the spinal cord, suggesting its involvement in several biological actions on sensory and motor neurons via its binding to NPR-A and/or NPR-B in the DRG and spinal cord.

  14. Simultaneous morphological and functional imaging of the honeybee's brain by two-photon microscopy

    International Nuclear Information System (INIS)

    Haase, A.

    2011-01-01

    Thanks to its rather simply structured but highly performing brain, the honeybee (Apis mellifera) is an important model for neurobiological studies. Therefore there is a great need for new functional imaging modalities adapted to this species. Herein we give a detailed report on the development and performance of a platform for in vivo functional and morphological imaging of the honeybee's brain, focusing on its primary olfactory centres, the antennal lobes (ALs). The experimental setup consists of a two-photon microscope combined with a synchronized odour stimulus generator. Our imaging platform allows to simultaneously obtain both morphological measurements of the ALs functional units, the glomeruli, and in vivo calcium recording of their neural activity. We were able to record the characteristic glomerular response maps to odour stimuli applied to the bee's antennae. Our approach offers several advantages over the commonly used conventional fluorescence microscopy. Two-photon microscopy provides substantial enhancement in both spatial and temporal resolutions, while minimizing photo damage. Calcium recordings show a more than fourfold improvement in the functional signal with respect to the techniques available up to now. Finally, the extended penetration depth, thanks to the infrared excitation, allows the functional imaging of profound glomeruli which have not been optically accessible up to now.

  15. The Brain of the Black (Diceros bicornis and White (Ceratotherium simum African Rhinoceroses: Morphology and Volumetrics from Magnetic Resonance Imaging

    Directory of Open Access Journals (Sweden)

    Adhil Bhagwandin

    2017-08-01

    Full Text Available The morphology and volumetrics of the understudied brains of two iconic large terrestrial African mammals: the black (Diceros bicornis and white (Ceratotherium simum rhinoceroses are described. The black rhinoceros is typically solitary whereas the white rhinoceros is social, and both are members of the Perissodactyl order. Here, we provide descriptions of the surface of the brain of each rhinoceros. For both species, we use magnetic resonance images (MRI to develop a description of the internal anatomy of the rhinoceros brain and to calculate the volume of the amygdala, cerebellum, corpus callosum, hippocampus, and ventricular system as well as to determine the gyrencephalic index. The morphology of both black and white rhinoceros brains is very similar to each other, although certain minor differences, seemingly related to diet, were noted, and both brains evince the general anatomy of the mammalian brain. The rhinoceros brains display no obvious neuroanatomical specializations in comparison to other mammals previously studied. In addition, the volumetric analyses indicate that the size of the various regions of the rhinoceros brain measured, as well as the extent of gyrification, are what would be predicted for a mammal with their brain mass when compared allometrically to previously published data. We conclude that the brains of the black and white rhinoceros exhibit a typically mammalian organization at a superficial level, but histological studies may reveal specializations of interest in relation to rhinoceros behavior.

  16. Morphological variation, biogeography and local extinction of the northern New Zealand landsnail Placostylus hongii (Gastropoda : Bulimulidae)

    International Nuclear Information System (INIS)

    Brook, F.J.; McArdle, B.H.

    1999-01-01

    Placostylus hongii (Lesson) is recorded from sites between Whangaroa and Whangarei on the mainland Northland coast, and from the Poor Knights, Chicken, Mokohinau and Great Barrier islands offshore. There is considerable variation in shell morphology between the various populations, commonly with marked morphological divergence at a local scale but with overlapping variation overall across all populations of the taxon. Patterns of morphological variation show no clear geographic trends and are at least in part related to local environmental factors. Correlations are identified between shell shape and substratum type, and between shell size and vegetation type. Placostylus hongii has a very restricted stratigraphic distribution in mainland Northland, with most if not all of the few known fossil populations post-dating Polynesian settlement at c. 900-700 years BP. We suggest that P. hongii populations on the Poor Knights and possibly also those on the Mokohinau islands are endemic, whereas the mainland populations and those on Great Barier and the Chicken islands have originated from anthropic redistribution of snails in prehistoric time. A high proportion of the mainland P. hongii populations and some offshore island populations became extinct in the last few hundred years as a result of predation by introduced mammals and the modification and destruction of shrubland and forest habitat. (author). 54 refs., 9 figs., 1 tab

  17. The Designed Environment and How it Affects Brain Morphology and Mental Health.

    Science.gov (United States)

    Golembiewski, Jan A

    2016-01-01

    The environment is inextricably related to mental health. Recent research replicates findings of a significant, linear correlation between a childhood exposure to the urban environment and psychosis. Related studies also correlate the urban environment and aberrant brain morphologies. These findings challenge common beliefs that the mind and brain remain neutral in the face of worldly experience. There is a signature within these neurological findings that suggests that specific features of design cause and trigger mental illness. The objective in this article is to work backward from the molecular dynamics to identify features of the designed environment that may either trigger mental illness or protect against it. This review analyzes the discrete functions putatively assigned to the affected brain areas and a neurotransmitter called dopamine, which is the primary target of most antipsychotic medications. The intention is to establish what the correlations mean in functional terms, and more specifically, how this relates to the phenomenology of urban experience. In doing so, environmental mental illness risk factors are identified. Having established these relationships, the review makes practical recommendations for those in public health who wish to use the environment itself as a tool to improve the mental health of a community through design. © The Author(s) 2015.

  18. GROSS MORPHOLOGY AND ENCEPHALIZATION QUOTIENT OF BRAIN IN MALE AND FEMALE VANARAJA CHICKENS AT DIFFERENT AGES

    Directory of Open Access Journals (Sweden)

    Kuldeep Kumar Panigrahy

    2017-06-01

    Full Text Available One hundred fifty day-old sexed Vanaraja chicks (75 male + 75 female were taken as experimental birds. Dissection of cranium was performed carefully and study of gross morphology of brain was undertaken at different ages in male and female birds. The brain in situ appeared like a ‘spade’ symbol in playing card but it appeared rather wider and globular in both sexes. The cerebrum varied from pear to oval or even globular in shape in both sexes. On dorsal view, the cerebral hemispheres appeared moderately convex and smooth surfaced. On ventral surface, ill-developed olfactory lobes were observed anteriorly on either side of the median fissure in both male and female Vanaraja birds. The hippocampus was located transversely to the posterior one third parts of both cerebral hemispheres. Duncan’s EQ ranged from 5.801 ± 0.514 (T3-Male to 5.944 ± 0.451 (T1-Female on 21st day. There was significant decrease (p<0.05 in EQ from Day 21 to 42 across all the groups. On 84th day, the range of EQ was 1.346 ± 0.115 (T3-Male to 1.444 ± 0.114 (T1-Female. In case of Cuvier’s EQ, on 21st day the value ranged from 35.079 ± 0.288 (T2-Male to 36.531 ± 0.312 (T3-Female. There was significant reduction (p<0.05 in Cuvier’s EQ value from Trial-I (21st day to Trial-II (42nd day. Again, a significant decrease in EQ value was evident from Trial-III (63rd Day to Trial-IV (84th Day. On 84th day, the EQ ranged from 15.607 ± 0.123 (T3-Male to 16.038c ± 0.125 (T2-Male. Duncan’s formula had very high correlation coefficient with brain length (0.915. There was also very high degree correlation between brain weight and body weight (0.963. Brain weight and neuronal size are also highly correlated (0.902. Neuronal size and brain volume are also having a high correlation (0.902. The EQ values had medium correlation with neuronal size (0.701 for Cuvier’s Formula and 0.713 for Duncan’s formula. Duncan’s and Cuvier’s value had a very high degree of correlation

  19. A comparison of different models of stroke on behaviour and brain morphology.

    Science.gov (United States)

    Gonzalez, C L R; Kolb, B

    2003-10-01

    We compared the effects of three models of permanent ischemia, as well as cortical aspiration, on behaviour and brain morphology. Rats received a stroke either by devascularization or by two different procedures of medial cerebral artery occlusion (MCAO; small vs. large). Animals were trained in a reaching task, forepaw asymmetry, forepaw inhibition, sunflower seed task and tongue extension. Behaviour was assessed 1 week after the lesion and at 2-week intervals for a total of 9 weeks. One week after the surgery all animals were severely impaired on all tasks and although they improved over time they only reached preoperative base lines on tongue extension. Animals with small MCAOs performed better in reaching and sunflower tasks; no other behavioural differences were detected among the groups. Pyramidal cells in forelimb and cingulate areas as well as spiny neurons of the striatum were examined for dendritic branching and spine density using a Golgi-Cox procedure. Each lesion type had a different impact on cell morphology. Overall, different changes (atrophy or hypertrophy) were observed with each kind of lesion and these changes were specific for the region (forelimb, cingulate, striatum) and the condition (intact vs. damaged hemisphere). These results suggest that: (i) different lesions to the motor cortex produce subtle differences in behaviour, and (ii) the method used to induce the lesion produces striking differences in cortical and subcortical plasticity.

  20. The morphological and molecular changes of brain cells exposed to direct current electric field stimulation.

    Science.gov (United States)

    Pelletier, Simon J; Lagacé, Marie; St-Amour, Isabelle; Arsenault, Dany; Cisbani, Giulia; Chabrat, Audrey; Fecteau, Shirley; Lévesque, Martin; Cicchetti, Francesca

    2014-12-07

    The application of low-intensity direct current electric fields has been experimentally used in the clinic to treat a number of brain disorders, predominantly using transcranial direct current stimulation approaches. However, the cellular and molecular changes induced by such treatment remain largely unknown. Here, we tested various intensities of direct current electric fields (0, 25, 50, and 100V/m) in a well-controlled in vitro environment in order to investigate the responses of neurons, microglia, and astrocytes to this type of stimulation. This included morphological assessments of the cells, viability, as well as shape and fiber outgrowth relative to the orientation of the direct current electric field. We also undertook enzyme-linked immunosorbent assays and western immunoblotting to identify which molecular pathways were affected by direct current electric fields. In response to direct current electric field, neurons developed an elongated cell body shape with neurite outgrowth that was associated with a significant increase in growth associated protein-43. Fetal midbrain dopaminergic explants grown in a collagen gel matrix also showed a reorientation of their neurites towards the cathode. BV2 microglial cells adopted distinct morphological changes with an increase in cyclooxygenase-2 expression, but these were dependent on whether they had already been activated with lipopolysaccharide. Finally, astrocytes displayed elongated cell bodies with cellular filopodia that were oriented perpendicularly to the direct current electric field. We show that cells of the central nervous system can respond to direct current electric fields both in terms of their morphological shape and molecular expression of certain proteins, and this in turn can help us to begin understand the mechanisms underlying the clinical benefits of direct current electric field. © The Author 2015. Published by Oxford University Press on behalf of CINP.

  1. Evaluating the morphological changes of intracranial arteries and whole-brain perfusion in undetermined isolated vertigo.

    Science.gov (United States)

    Li, Wenxian; Feng, Youzhen; Lu, Weibiao; Xie, Xie; Xiong, Zhilin; Jing, Zhen; Cai, Xiangran; Huang, Li'an

    2016-11-15

    To determine the morphological changes of intracranial arteries and whole-brain perfusion in undetermined isolated vertigo (UIV) patients using 320-detector row computed tomography (CT). A total of 150 patients who underwent CT angiography (CTA) and CT perfusion (CTP) imaging were divided into UIV group and benign paroxysmal positional vertigo (BPPV) group. Sixty individuals with sex- and age-matched without vertigo and cerebral diseases served as the control. The morphological changes of intracranial arteries, perfusion parameters and vascular risk factors (VRFs) were analyzed, calculated and compared. In UIV patients, hypertension (HT), hyperlipidemia and number of VRFs≥3 occurred more commonly (P<0.0125, respectively). The incidence of vertebral artery dominance (VAD), vertebral artery stenosis (VAS) and basilar artery curvature (BAC) were significantly higher (P<0.0125, respectively). HT was an independent risk predictor of non-VAD (OR: 5.411, 95%CI: 1.401; 20.900, P=0.014). HT and VAD associated with BAC served as risk predictors (OR: 4.081, 95%CI: 1.056;15.775, P=0.041 and OR: 6.284, 95%CI: 1.848; 21.365, P=0.003, respectively). The absolute difference in relative values of CTP parameters from cerebellum and brainstem were significantly different (P<0.05), and hypoperfusion was found in the territories of the non-VAD side and the BAC cohort (P<0.05, respectively). On the basis of multiple VRFs, morphological changes of vertebrobasilar artery (VBA) and the unilateral hypoperfusion of the cerebellum and brainstem, that acts as a herald for IV occurrence, which should be paid cautious attention to UIV patients. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  2. Morphological and behavioral markers of environmentally induced retardation of brain development: an animal model

    International Nuclear Information System (INIS)

    Altman, J.

    1987-01-01

    In most neurotoxicological studies morphological assessment focuses on pathological effects, like degenerative changes in neuronal perikarya, axonopathy, demyelination, and glial and endothelial cell reactions. Similarly, the assessment of physiological and behavioral effects center on evident neurological symptoms, like EEG and EMG abnormalities, resting and intention tremor, abnormal gait, and abnormal reflexes. This paper reviews briefly another central nervous system target of harmful environmental agents, which results in behavioral abnormalities without any qualitatively evident neuropathology. This is called microneuronal hypoplasia, a retardation of brain development characterized by a quantitative reduction in the normal population of late-generated, short-axoned neurons in specific brain regions. Correlated descriptive and experimental neurogenetic studies in the rat have established that all the cerebellar granule cells and a very high proportion of hippocampal granule cells are produced postnatally, and that focal, low-dose X-irradiation either of the cerebellum or of the hippocampus after birth selectively interferes with the acquisition of the full complement of granule cells (microneuronal hypoplasia). Subsequent behavioral investigations showed that cerebellar microneuronal hypoplasia results in profound hyperactivity without motor abnormalities, while hippocampal microneuronal hypoplasia results in hyperactivity, as well as attentional and learning deficits. There is much indirect clinical evidence that various harmful environmental agents affecting the pregnant mother and/or the infant lead to such childhood disorders as hyperactivity and attentional and learning disorders. 109 references

  3. Morphological and histochemical changes in the brain stem in case of experimental hemispheric intracerebral hemorrhage

    Directory of Open Access Journals (Sweden)

    S. I. Tertishniy

    2015-10-01

    Full Text Available Aim. Investigation of the extent of morphological changes and activity of biogenic amines (according to the intensity of luminescence in the neurons of the brain stem in intracerebral hemorrhage (ICH. Methods and results. ICH was designed on 29 white rats of Vistar line by the administration of autologous blood in the cerebral hemisphere. It was revealed that increased luminescence intensity by 18.4±5.5% was registered in monoaminergic neurons in 1–6 hours after experimental ICH. After 12 hours – 1 day development of dislocation syndrome leads to mosaic focal ischemic neuronal injuries with maximum reduction in the level of catecholamines by 29.5±5.0% compared with control cases. Three–6 days after ICH on a background of selective neuronal necrosis in substantial number of neurons in the nuclei of the brainstem the level of catecholamines is significantly reduced. Conclusion. Disclosed observations reflect significant functional pathology of neurons responsible for the regulation of cardiorespiratory function and may underlie disturbances of integrative activity in the brain stem in general.

  4. Functional morphology of the brain of the African giant pouched rat (Cricetomys gambianus Waterhouse, 1840

    Directory of Open Access Journals (Sweden)

    Chikera S. Ibe

    2014-03-01

    Full Text Available A gross morphological study of the brain of the African giant pouched rat (Cricetomys gambianus Waterhouse, 1840 was undertaken in order to document its normal features and assess the structure-function paradigm. The study was conducted by direct observation of 29 adult African giant pouched rats’ brains. In the telencephalon, the cerebral cortex was devoid of prominent gyri and sulci, but the large olfactory bulb and tract relaying impulses to the olfactory cortex were very prominent. The large size of the olfactory bulb correlated with the established sharp olfactory acuity of the rodent. In the mesencephalic tectum, the caudal colliculi were bigger than the rostral colliculi, indicating a more acute sense of hearing than sight. In the metencephalon, the cerebellar vermis, the flocculus and the paraflocculus were highly coiled and, thus, well developed. The myelencephalon revealed a better organised ventral surface than dorsal surface; the cuneate fascicle, the intermediate sulcus and the lateral sulcus were not evident on the dorsal surface, but there were clearly visible pyramids and olivary prominence on the ventral surface. In conclusion, the highly coiled cerebellar vermis, flocculus and paraflocculus, as well as the conspicuous pyramids and olivary prominence are indicative of a good motor coordination and balance in the African giant pouched rat.

  5. The Developmental Course of Sleep Disturbances Across Childhood Relates to Brain Morphology at Age 7: The Generation R Study.

    Science.gov (United States)

    Kocevska, Desana; Muetzel, Ryan L; Luik, Annemarie I; Luijk, Maartje P C M; Jaddoe, Vincent W; Verhulst, Frank C; White, Tonya; Tiemeier, Henning

    2017-01-01

    Little is known about the impact of sleep disturbances on the structural properties of the developing brain. This study explored associations between childhood sleep disturbances and brain morphology at 7 years. Mothers from the Generation R cohort reported sleep disturbances in 720 children at ages 2 months, 1.5, 2, 3, and 6 years. T1-weighted Magnetic Resonance Imaging (MRI) images were used to assess brain structure at 7 years. Associations of sleep disturbances at each age and of sleep disturbance trajectories with brain volumes (total brain volume, cortical and subcortical grey matter, white matter) were tested with linear regressions. To assess regional differences, sleep disturbance trajectories were tested as determinants for cortical thickness in whole-brain analyses. Sleep disturbances followed a declining trend from toddlerhood onwards. Infant sleep was not associated with brain morphology at age 7. Per SD sleep disturbances (one frequent symptom or two less frequent symptoms) at 2 and 3 years of age, children had -6.3 (-11.7 to -0.8) cm3 and -6.4 (-11.7 to -1.7) cm3 smaller grey matter volumes, respectively. Sleep disturbances at age 6 years were associated with global brain morphology (grey matter: -7.3 (-12.1 to -2.6), p value = .01). Consistently, trajectory analyses showed that more adverse developmental course of childhood sleep disturbances are associated with smaller grey matter volumes and thinner dorsolateral prefrontal cortex. Sleep disturbances from age 2 years onwards are associated with smaller grey matter volumes. Thinner prefrontal cortex in children with adverse sleep disturbance trajectories may reflect effects of sleep disturbances on brain maturation. © Sleep Research Society 2016. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.

  6. Influence of silicon on local structure and morphology of γ-FeOOH and α-FeOOH particles

    International Nuclear Information System (INIS)

    Kwon, Sang-Koo; Shinoda, Kozo; Suzuki, Shigeru; Waseda, Yoshio

    2007-01-01

    The extended X-ray absorption fine structure (EXAFS) method was used for investigating the local structures of lepidocrocite and goethite with and without silicon. The structure and morphology of these particles were investigated using X-ray diffraction and transmission electron microscopy, respectively. The bonding structure was examined by Fourier transform infrared spectroscopy (FT-IR). When silicon species was added, the structure and morphology changed while the linkage of FeO 6 octahedral units was distorted. The FT-IR spectra revealed the formation of the Fe-O-Si bond in particles containing silicate ions, and the characteristic bond affects the local structure and morphology of the particles

  7. Studies of the macroscopic and microscopic morphology (hippocampus of brain in Vencobb broiler

    Directory of Open Access Journals (Sweden)

    Shailesh Kumar Gupta

    2016-05-01

    Full Text Available Aim: The aim of this study was to study the anatomy of different parts of brain and histology of hippocampus of Vencobb broiler chicken. Materials and Methods: A 12 adult experimental birds were sacrificed by cervical dislocation. After separation of the brain, gross anatomy features were studied. Brain tissue was fixed in 10% buffered neutral formalin for 2-3 days, and then routine dehydration process in ascending grades of ethyl alcohol was done. After xylene cleaning, paraffin impregnation was prepared. Paraffin blocks were cut, and slides were stained by Harris hematoxylin and eosin. Photography was carried out both under lower (×10 and higher (×40 magnifications. Results: The brain structure (dorsal view of Vencobb bird resembled the outline of a playing card symbol of a “spade.” The brain subdivisions are cerebrum, cerebellum, and medulla oblongata. Cerebrum was devoid of usual convolutions (elevations, gyri, depressions (grooves, and sulci. The cerebral hemispheres were tightly apposed along a median sulcus called interhemispheric fissure and cerebrum and cerebellum were separated by a small transverse fissure. The olfactory bulb was small structures, and the pineal body was clearly visible. The optic lobes were partially hidden under cerebral hemispheres, but laterally, it was large, prominent rounded or spherical bodies of the midbrain. The hippocampal area appeared as dorso-medial protrusion. Different types of neurons were distinguished in the hippocampus were pyramidal neurons, pyramidal-like neurons, and multipolar neurons, etc. There was rich vascularization in the form of blood capillaries throughout the hippocampus. Conclusion: Cerebrum was pear shaped and largest part of the brain. Cerebrum hemisphere was smooth devoid of convolutions, gyri, and depressions, but in the surface of cerebellum, there was the presence of a number of transverse depression (grooves and sulci subdividing into many folds. Olfactory bulb was poorly

  8. Studies of the macroscopic and microscopic morphology (hippocampus) of brain in Vencobb broiler

    Science.gov (United States)

    Gupta, Shailesh Kumar; Behera, Kumaresh; Pradhan, C. R.; Mandal, Arun Kumar; Sethy, Kamdev; Behera, Dayanidhi; Shinde, Kuladip Prakash

    2016-01-01

    Aim: The aim of this study was to study the anatomy of different parts of brain and histology of hippocampus of Vencobb broiler chicken. Materials and Methods: A 12 adult experimental birds were sacrificed by cervical dislocation. After separation of the brain, gross anatomy features were studied. Brain tissue was fixed in 10% buffered neutral formalin for 2-3 days, and then routine dehydration process in ascending grades of ethyl alcohol was done. After xylene cleaning, paraffin impregnation was prepared. Paraffin blocks were cut, and slides were stained by Harris hematoxylin and eosin. Photography was carried out both under lower (×10) and higher (×40) magnifications. Results: The brain structure (dorsal view) of Vencobb bird resembled the outline of a playing card symbol of a “spade.” The brain subdivisions are cerebrum, cerebellum, and medulla oblongata. Cerebrum was devoid of usual convolutions (elevations), gyri, depressions (grooves), and sulci. The cerebral hemispheres were tightly apposed along a median sulcus called interhemispheric fissure and cerebrum and cerebellum were separated by a small transverse fissure. The olfactory bulb was small structures, and the pineal body was clearly visible. The optic lobes were partially hidden under cerebral hemispheres, but laterally, it was large, prominent rounded or spherical bodies of the midbrain. The hippocampal area appeared as dorso-medial protrusion. Different types of neurons were distinguished in the hippocampus were pyramidal neurons, pyramidal-like neurons, and multipolar neurons, etc. There was rich vascularization in the form of blood capillaries throughout the hippocampus. Conclusion: Cerebrum was pear shaped and largest part of the brain. Cerebrum hemisphere was smooth devoid of convolutions, gyri, and depressions, but in the surface of cerebellum, there was the presence of a number of transverse depression (grooves) and sulci subdividing into many folds. Olfactory bulb was poorly developed

  9. Neuropeptide Y receptors in rat brain: autoradiographic localization

    International Nuclear Information System (INIS)

    Martel, J.C.; St-Pierre, S.; Quirion, R.

    1986-01-01

    Neuropeptide Y (NPY) receptor binding sites have been characterized in rat brain using both membrane preparations and receptor autoradiography. Radiolabelled NPY binds with high affinity and specificity to an apparent single class of sites in rat brain membrane preparations. The ligand selectivity pattern reveals strong similarities between central and peripheral NPY receptors. NPY receptors are discretely distributed in rat brain with high densities found in the olfactory bulb, superficial layers of the cortex, ventral hippocampus, lateral septum, various thalamic nuclei and area postrema. The presence of high densities of NPY and NPY receptors in such areas suggests that NPY could serve important functions as a major neurotransmitter/neuromodulator in the central nervous system

  10. A model of chronic local irradiation in the brain

    International Nuclear Information System (INIS)

    Sataev, M.M.

    1981-01-01

    Radionecrosis of tissues was detected after implantation of 90 S- 90 Y sources (0.5-0.2 Gy/h) to the rabbit brain. A repair inflammatory reaction developed around the point of affection which resulted, at a dose of 0.5 Gy/h, in the formation of the connective tissue capsules or gliomesencymal cicatrices, or in the diffuse, hyperplasia of cell elements of neuroglia, membranes and vessels of the brain at doses of 1.4 to 2.0 Gy/h. This is the reason for the appearance of focal epitheliocellular granulomas [ru

  11. Brain local and regional neuroglial alterations in Alzheimer's Disease: cell types, responses and implications.

    Science.gov (United States)

    Toledano, Adolfo; Álvarez, María-Isabel; Toledano-Díaz, Adolfo; Merino, José-Joaquín; Rodríguez, José Julio

    2016-01-01

    From birth to death, neurons are dynamically accompanied by neuroglial cells in a very close morphological and functional relationship. Three families have been classically considered within the CNS: astroglia, oligodendroglia and microglia. Many types/subtypes (including NGR2+ cells), with a wide variety of physiological and pathological effects on neurons, have been described using morphological and immunocytochemical criteria. Glio-glial, glio-neuronal and neuro-glial cell signaling and gliotransmission are phenomena that are essential to support brain functions. Morphofunctional changes resulting from the plasticity of all the glial cell types parallel the plastic neuronal changes that optimize the functionality of neuronal circuits. Moreover, neuroglia possesses the ability to adopt a reactive status (gliosis) in which, generally, new functions arise to improve and restore if needed the neural functionality. All these features make neuroglial cells elements of paramount importance when attempting to explain any physiological or pathological processes in the CNS, because they are involved in both, neuroprotection/neurorepair and neurodegeneration. There exist diverse and profound, regional and local, neuroglial changes in all involutive processes (physiological and pathological aging; neurodegenerative disorders, including Alzheimer ´s disease -AD-), but today, the exact meaning of such modifications (the modifications of the different neuroglial types, in time and place), is not well understood. In this review we consider the different neuroglial cells and their responses in order to understand the possible role they fulfill in pathogenesis, diagnosis and treatment (preventive or palliative) of AD. The existence of differentiated and/or concurrent pathogenic and neuro-protective/neuro-restorative astroglial and microglial responses is highlighted.

  12. Local morphologic scale: application to segmenting tumor infiltrating lymphocytes in ovarian cancer TMAs

    Science.gov (United States)

    Janowczyk, Andrew; Chandran, Sharat; Feldman, Michael; Madabhushi, Anant

    2011-03-01

    In this paper we present the concept and associated methodological framework for a novel locally adaptive scale notion called local morphological scale (LMS). Broadly speaking, the LMS at every spatial location is defined as the set of spatial locations, with associated morphological descriptors, which characterize the local structure or heterogeneity for the location under consideration. More specifically, the LMS is obtained as the union of all pixels in the polygon obtained by linking the final location of trajectories of particles emanating from the location under consideration, where the path traveled by originating particles is a function of the local gradients and heterogeneity that they encounter along the way. As these particles proceed on their trajectory away from the location under consideration, the velocity of each particle (i.e. do the particles stop, slow down, or simply continue around the object) is modeled using a physics based system. At some time point the particle velocity goes to zero (potentially on account of encountering (a) repeated obstructions, (b) an insurmountable image gradient, or (c) timing out) and comes to a halt. By using a Monte-Carlo sampling technique, LMS is efficiently determined through parallelized computations. LMS is different from previous local scale related formulations in that it is (a) not a locally connected sets of pixels satisfying some pre-defined intensity homogeneity criterion (generalized-scale), nor is it (b) constrained by any prior shape criterion (ball-scale, tensor-scale). Shape descriptors quantifying the morphology of the particle paths are used to define a tensor LMS signature associated with every spatial image location. These features include the number of object collisions per particle, average velocity of a particle, and the length of the individual particle paths. These features can be used in conjunction with a supervised classifier to correctly differentiate between two different object

  13. Subtle changes in myelination due to childhood experiences: label-free microscopy to infer nerve fibers morphology and myelination in brain (Conference Presentation)

    Science.gov (United States)

    Gasecka, Alicja; Tanti, Arnaud; Lutz, Pierre-Eric; Mechawar, Naguib; Cote, Daniel C.

    2017-02-01

    Adverse childhood experiences have lasting detrimental effects on mental health and are strongly associated with impaired cognition and increased risk of developing psychopathologies. Preclinical and neuroimaging studies have suggested that traumatic events during brain development can affect cerebral myelination particularly in areas and tracts implicated in mood and emotion. Although current neuroimaging techniques are quite powerful, they lack the resolution to infer myelin integrity at the cellular level. Recently demonstrated coherent Raman microscopy has accomplished cellular level imaging of myelin sheaths in the nervous system. However, a quantitative morphometric analysis of nerve fibers still remains a challenge. In particular, in brain, where fibres exhibit small diameters and varying local orientation. In this work, we developed an automated myelin identification and analysis method that is capable of providing a complete picture of axonal myelination and morphology in brain samples. This method performs three main procedures 1) detects molecular anisotropy of membrane phospholipids based on polarization resolved coherent Raman microscopy, 2) identifies regions of different molecular organization, 3) calculates morphometric features of myelinated axons (e.g. myelin thickness, g-ratio). We applied this method to monitor white matter areas from suicides adults that suffered from early live adversity and depression compared to depressed suicides adults and psychiatrically healthy controls. We demonstrate that our method allows for the rapid acquisition and automated analysis of neuronal networks morphology and myelination. This is especially useful for clinical and comparative studies, and may greatly enhance the understanding of processes underlying the neurobiological and psychopathological consequences of child abuse.

  14. Morphologic and Morphometric Analysis of Lingula in Localizing Mandibular Foramen with its Surgical Importance

    Directory of Open Access Journals (Sweden)

    Phalguni Srimani

    2017-10-01

    Full Text Available Introduction: Morphologic and morphometric evaluation of mandible is clinically important. Considering the close relationship of lingula with neurovascular structures entering through mandibular foramen, lingula is often used as an important bony landmark during oral and maxillofacial surgical approach and inferior alveolar nerve block anaesthesia. Inadequate anatomical knowledge may result various intra operative complications like haemorrhge, fractures and nerve injury. Also, structural variations of lingula followed by inaccurate localization of mandibular foramen have been implicated as causative factor for unsuccessful inferior alveolar nerve block anaesthesia. Aim: To determine morphological and morphometric variations related to lingula of mandible in localizing mandibular foramen and to compare the results with similar type of osteological studies performed earlier on different population group. Materials and Methods: The study was performed on 36 adult dry human mandibles on both sides to categorize lingula according to its various shapes and determine the location of lingula based on surrounding mandibular landmarks by using Vernier caliper as 5 distances from tip of lingula as follows: i to anterior border of ramus of mandible; ii to posterior border of ramus of mandible; iii to centre of mandibular notch; iv to the alveolar socket of second molar tooth; and v to the base of mandible. The present study also indicated bilingual distance between tips of lingula of both sides. Data collected were analyzed statistically. Results: The most common shape of lingula was observed as triangular (51.39% followed by truncated (23.61%, then nodular (20.83% and assimilated (4.17% as least prevalent type. The average distances of tip of lingula from anterior and posterior borders of ramus of mandible were 18.21±1.50 mm and 16.33±1.21 mm respectively. On average, the tip of lingula was situated at 18.17±1.51 mm, 33.40±2.11 mm and 32.07±2.68 mm

  15. Predator-induced morphological plasticity across local populations of a freshwater snail.

    Directory of Open Access Journals (Sweden)

    Christer Brönmark

    Full Text Available The expression of anti-predator adaptations may vary on a spatial scale, favouring traits that are advantageous in a given predation regime. Besides, evolution of different developmental strategies depends to a large extent on the grain of the environment and may result in locally canalized adaptations or, alternatively, the evolution of phenotypic plasticity as different predation regimes may vary across habitats. We investigated the potential for predator-driven variability in shell morphology in a freshwater snail, Radix balthica, and whether found differences were a specialized ecotype adaptation or a result of phenotypic plasticity. Shell shape was quantified in snails from geographically separated pond populations with and without molluscivorous fish. Subsequently, in a common garden experiment we investigated reaction norms of snails from populations' with/without fish when exposed to chemical cues from tench (Tinca tinca, a molluscivorous fish. We found that snails from fish-free ponds had a narrow shell with a well developed spire, whereas snails that coexisted with fish had more rotund shells with a low spire, a shell morphology known to increase survival rate from shell-crushing predators. The common garden experiment mirrored the results from the field survey and showed that snails had similar reaction norms in response to chemical predator cues, i.e. the expression of shell shape was independent of population origin. Finally, we found significant differences for the trait means among populations, within each pond category (fish/fish free, suggesting a genetic component in the determination of shell morphology that has evolved independently across ponds.

  16. Localization and mobility of glucose-coated gold nanoparticles within the brain.

    Science.gov (United States)

    Gromnicova, Radka; Yilmaz, Canan Ugur; Orhan, Nurcan; Kaya, Mehmet; Davies, Heather; Williams, Phil; Romero, Ignacio A; Sharrack, Basil; Male, David

    2016-03-01

    To identify the localization of glucose-coated gold nanoparticles within cells of the brain after intravascular infusion which may point to the mechanism by which they cross the blood-brain barrier. Tissue distribution of the nanoparticles was measured by inductively-coupled-mass spectrometry and localization within the brain by histochemistry and electron microscopy. Nanoparticles were identified within neurons and glial cells more than 10 μm from the nearest microvessel within 10 min of intracarotid infusion. Their distribution indicated movement across the endothelial cytosol, and direct transfer between cells of the brain. The rapid movement of this class of nanoparticle (brain demonstrates their potential to carry therapeutic biomolecules or imaging reagents.

  17. Impaired rich club and increased local connectivity in children with traumatic brain injury: Local support for the rich?

    Science.gov (United States)

    Verhelst, Helena; Vander Linden, Catharine; De Pauw, Toon; Vingerhoets, Guy; Caeyenberghs, Karen

    2018-03-12

    Recent evidence has shown the presence of a "rich club" in the brain, which constitutes a core network of highly interconnected and spatially distributed brain regions, important for high-order cognitive processes. This study aimed to map the rich club organization in 17 young patients with moderate to severe TBI (15.71 ± 1.75 years) in the chronic stage of recovery and 17 age- and gender-matched controls. Probabilistic tractography was performed on diffusion weighted imaging data to construct the edges of the structural connectomes using number of streamlines as edge weight. In addition, the whole-brain network was divided into a rich club network, a local network and a feeder network connecting the latter two. Functional outcome was measured with a parent questionnaire for executive functioning. Our results revealed a significantly decreased rich club organization (p values < .05) and impaired executive functioning (p < .001) in young patients with TBI compared with controls. Specifically, we observed reduced density values in all three subnetworks (p values < .005) and a reduced mean strength in the rich club network (p = .013) together with an increased mean strength in the local network (p = .002) in patients with TBI. This study provides new insights into the nature of TBI-induced brain network alterations and supports the hypothesis that the local subnetwork tries to compensate for the biologically costly subnetwork of rich club nodes after TBI. © 2018 Wiley Periodicals, Inc.

  18. Extraction of multi-scale landslide morphological features based on local Gi* using airborne LiDAR-derived DEM

    Science.gov (United States)

    Shi, Wenzhong; Deng, Susu; Xu, Wenbing

    2018-02-01

    For automatic landslide detection, landslide morphological features should be quantitatively expressed and extracted. High-resolution Digital Elevation Models (DEMs) derived from airborne Light Detection and Ranging (LiDAR) data allow fine-scale morphological features to be extracted, but noise in DEMs influences morphological feature extraction, and the multi-scale nature of landslide features should be considered. This paper proposes a method to extract landslide morphological features characterized by homogeneous spatial patterns. Both profile and tangential curvature are utilized to quantify land surface morphology, and a local Gi* statistic is calculated for each cell to identify significant patterns of clustering of similar morphometric values. The method was tested on both synthetic surfaces simulating natural terrain and airborne LiDAR data acquired over an area dominated by shallow debris slides and flows. The test results of the synthetic data indicate that the concave and convex morphologies of the simulated terrain features at different scales and distinctness could be recognized using the proposed method, even when random noise was added to the synthetic data. In the test area, cells with large local Gi* values were extracted at a specified significance level from the profile and the tangential curvature image generated from the LiDAR-derived 1-m DEM. The morphologies of landslide main scarps, source areas and trails were clearly indicated, and the morphological features were represented by clusters of extracted cells. A comparison with the morphological feature extraction method based on curvature thresholds proved the proposed method's robustness to DEM noise. When verified against a landslide inventory, the morphological features of almost all recent (historical (> 10 years) landslides were extracted. This finding indicates that the proposed method can facilitate landslide detection, although the cell clusters extracted from curvature images should

  19. Local sleep homeostasis in the avian brain: convergence of sleep function in mammals and birds?

    Science.gov (United States)

    Lesku, John A; Vyssotski, Alexei L; Martinez-Gonzalez, Dolores; Wilzeck, Christiane; Rattenborg, Niels C

    2011-08-22

    The function of the brain activity that defines slow wave sleep (SWS) and rapid eye movement (REM) sleep in mammals is unknown. During SWS, the level of electroencephalogram slow wave activity (SWA or 0.5-4.5 Hz power density) increases and decreases as a function of prior time spent awake and asleep, respectively. Such dynamics occur in response to waking brain use, as SWA increases locally in brain regions used more extensively during prior wakefulness. Thus, SWA is thought to reflect homeostatically regulated processes potentially tied to maintaining optimal brain functioning. Interestingly, birds also engage in SWS and REM sleep, a similarity that arose via convergent evolution, as sleeping reptiles and amphibians do not show similar brain activity. Although birds deprived of sleep show global increases in SWA during subsequent sleep, it is unclear whether avian sleep is likewise regulated locally. Here, we provide, to our knowledge, the first electrophysiological evidence for local sleep homeostasis in the avian brain. After staying awake watching David Attenborough's The Life of Birds with only one eye, SWA and the slope of slow waves (a purported marker of synaptic strength) increased only in the hyperpallium--a primary visual processing region--neurologically connected to the stimulated eye. Asymmetries were specific to the hyperpallium, as the non-visual mesopallium showed a symmetric increase in SWA and wave slope. Thus, hypotheses for the function of mammalian SWS that rely on local sleep homeostasis may apply also to birds.

  20. Altered subcellular localization of ornithine decarboxylase in Alzheimer's disease brain

    DEFF Research Database (Denmark)

    Nilsson, Tatjana; Bogdanovic, Nenad; Volkman, Inga

    2006-01-01

    The amyloid precursor protein can through ligand-mimicking induce expression of ornithine decarboxylase (ODC), the initial and rate-limiting enzyme in polyamine biosynthesis. We report here the regional distribution and cellular localization of ODC immunoreactivity in Alzheimer's disease (AD...

  1. Correlation of Bulk Dielectric and Piezoelectric Properties to the Local Scale Phase Transformations, Domain Morphology, and Crystal Structure Modified

    Energy Technology Data Exchange (ETDEWEB)

    Priya, Shashank [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Viehland, Dwight [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States)

    2014-12-14

    Three year program entitled “Correlation of bulk dielectric and piezoelectric properties to the local scale phase transformations, domain morphology, and crystal structure in modified lead-free grain-textured ceramics and single crystals” was supported by the Department of Energy. This was a joint research program between D. Viehland and S. Priya at Virginia Tech. Single crystal and textured ceramics have been synthesized and characterized. Our goals have been (i) to conduct investigations of lead-free piezoelectric systems to establish the local structural and domain morphologies that result in enhanced properties, and (ii) to synthesize polycrystalline and grain oriented ceramics for understanding the role of composition, microstructure, and anisotropy

  2. Primary malignant melanoma of the vagina with repeated local recurrences and brain metastasis

    Directory of Open Access Journals (Sweden)

    Li-Te Lin

    2011-08-01

    Full Text Available Malignant melanoma of the vagina, a very rare malignancy, has a notoriously aggressive behavior associated with a high risk of local recurrence and distant metastasis. At present, there are various treatment options for this disease but no standard guideline. We describe a case of a 54-year-old woman with a locally advanced melanoma of the vagina, who underwent radical surgery, biochemotherapy with interferon-α-2b, chemotherapy, radiotherapy, and repeat excision of local recurrent lesions and brain metastasis. In conclusion, malignant melanoma of the vagina has a high risk for local recurrence. Repeated local excision followed by biochemotherapy is a tolerable treatment.

  3. Simultaneous in vivo recording of local brain temperature and electrophysiological signals with a novel neural probe

    Science.gov (United States)

    Fekete, Z.; Csernai, M.; Kocsis, K.; Horváth, Á. C.; Pongrácz, A.; Barthó, P.

    2017-06-01

    Objective. Temperature is an important factor for neural function both in normal and pathological states, nevertheless, simultaneous monitoring of local brain temperature and neuronal activity has not yet been undertaken. Approach. In our work, we propose an implantable, calibrated multimodal biosensor that facilitates the complex investigation of thermal changes in both cortical and deep brain regions, which records multiunit activity of neuronal populations in mice. The fabricated neural probe contains four electrical recording sites and a platinum temperature sensor filament integrated on the same probe shaft within a distance of 30 µm from the closest recording site. The feasibility of the simultaneous functionality is presented in in vivo studies. The probe was tested in the thalamus of anesthetized mice while manipulating the core temperature of the animals. Main results. We obtained multiunit and local field recordings along with measurement of local brain temperature with accuracy of 0.14 °C. Brain temperature generally followed core body temperature, but also showed superimposed fluctuations corresponding to epochs of increased local neural activity. With the application of higher currents, we increased the local temperature by several degrees without observable tissue damage between 34-39 °C. Significance. The proposed multifunctional tool is envisioned to broaden our knowledge on the role of the thermal modulation of neuronal activity in both cortical and deeper brain regions.

  4. Cystic Echinococcosis: A Rare Case of Brain Localization

    Directory of Open Access Journals (Sweden)

    Ali BARADAN BAGHERI

    2017-02-01

    Full Text Available Although Hydatid disease eradicated in many countries, it is still widespread in communities where agriculture is dominant. Cystic hydatidosis is significant public health problem in the regions with endemic echinococcosis. The hydatid cysts tend to form mostly in the liver or lung. Brain involvement is very rare. In the present report, we describe magnetic resonance imaging findings in an 18-yr-old male with cerebral echinococcosis, in Shahid Madani Hospital, Karaj, Iran in 2015. The patient, presented with headache, hemiparesis, impairment of speech, vomiting, and nausea. Computed tomography, magnetic resonance imaging, and surgical exploration proved a cyst in the superior portion of left temporal lobe. Pathological examination showed it to be a solitary primary cerebral hydatid cyst. 

  5. Impact of Chemotherapy for Childhood Leukemia on Brain Morphology and Function

    Science.gov (United States)

    Abolmaali, Nasreddin; Krone, Franziska; Hoffmann, Andre; Holfeld, Elisabeth; Vorwerk, Peter; Kramm, Christof; Gruhn, Bernd; Koustenis, Elisabeth; Hernaiz-Driever, Pablo; Mandal, Rakesh; Suttorp, Meinolf; Hummel, Thomas; Ikonomidou, Chrysanthy; Kirschbaum, Clemens; Smolka, Michael N.

    2013-01-01

    Objective Using multidisciplinary treatment modalities the majority of children with cancer can be cured but we are increasingly faced with therapy-related toxicities. We studied brain morphology and neurocognitive functions in adolescent and young adult survivors of childhood acute, low and standard risk lymphoblastic leukemia (ALL), which was successfully treated with chemotherapy. We expected that intravenous and intrathecal chemotherapy administered in childhood will affect grey matter structures, including hippocampus and olfactory bulbs, areas where postnatal neurogenesis is ongoing. Methods We examined 27 ALL-survivors and 27 age-matched healthy controls, ages 15–22 years. ALL-survivors developed disease prior to their 11th birthday without central nervous system involvement, were treated with intrathecal and systemic chemotherapy and received no radiation. Volumes of grey, white matter and olfactory bulbs were measured on T1 and T2 magnetic resonance images manually, using FIRST (FMRIB’s integrated Registration and Segmentation Tool) and voxel-based morphometry (VBM). Memory, executive functions, attention, intelligence and olfaction were assessed. Results Mean volumes of left hippocampus, amygdala, thalamus and nucleus accumbens were smaller in the ALL group. VBM analysis revealed significantly smaller volumes of the left calcarine gyrus, both lingual gyri and the left precuneus. DTI data analysis provided no evidence for white matter pathology. Lower scores in hippocampus-dependent memory were measured in ALL-subjects, while lower figural memory correlated with smaller hippocampal volumes. Interpretation Findings demonstrate that childhood ALL, treated with chemotherapy, is associated with smaller grey matter volumes of neocortical and subcortical grey matter and lower hippocampal memory performance in adolescence and adulthood. PMID:24265700

  6. Mapping brain morphological and functional conversion patterns in predementia late-onset bvFTD

    International Nuclear Information System (INIS)

    Morbelli, Silvia; Fiz, Francesco; Bossert, Irene; Buschiazzo, Ambra; Picori, Lorena; Sambuceti, Gianmario; Ferrara, Michela; Dessi, Barbara; Arnaldi, Dario; Picco, Agnese; Accardo, Jennifer; Nobili, Flavio; Girtler, Nicola; Mandich, Paola; Pagani, Marco

    2016-01-01

    The diagnosis of behavioural variant frontotemporal dementia (bvFTD) is challenging during the predementia stage when symptoms are subtle and confounding. Morphological and functional neuroimaging can be particularly helpful during this stage but few data are available. We retrospectively selected 25 patients with late-onset probable bvFTD. Brain structural MRI and FDG PET were performed during the predementia stage (mean MMSE score 27.1 ± 2.5) on average 2 years before. The findings with the two imaging modalities were compared (SPM8) with those in a group of 20 healthy subjects. The bvFTD patients were divided into two subgroups: those with predominant disinhibition (bvFTD+) and those with apathy (bvFTD-). Hypometabolism exceeded grey matter (GM) density reduction in terms of both extension and statistical significance in all comparisons. In the whole bvFTD group, hypometabolism involved the bilateral medial, inferior and superior lateral frontal cortex, anterior cingulate, left temporal and right parietal cortices and the caudate nuclei. GM density reduction was limited to the right frontal cortex and the left medial temporal lobe. In bvFTD+ patients hypometabolism was found in the bilateral medial and basal frontal cortex, while GM reduction involved the left anterior cingulate and left inferior frontal cortices, and the right insula. In bvFTD- patients, atrophy and mainly hypometabolism involved the lateral frontal cortex and the inferior parietal lobule. These findings suggest that hypometabolism is more extensive than, and thus probably precedes, atrophy in predementia late-onset bvFTD, underscoring different topographic involvement in disinhibited and apathetic presentations. If confirmed in a larger series, these results should prompt biomarker operationalization in bvFTD, especially for patient selection in therapeutic clinical trials. (orig.)

  7. Mapping brain morphological and functional conversion patterns in predementia late-onset bvFTD

    Energy Technology Data Exchange (ETDEWEB)

    Morbelli, Silvia; Fiz, Francesco; Bossert, Irene; Buschiazzo, Ambra; Picori, Lorena; Sambuceti, Gianmario [University of Genoa and IRCCS AOU San Martino-IST, Nuclear Medicine Unit, Department of Health Science (DISSAL), Genoa (Italy); Ferrara, Michela; Dessi, Barbara; Arnaldi, Dario; Picco, Agnese; Accardo, Jennifer; Nobili, Flavio [University of Genoa and IRCCS AOU San Martino-IST, Clinical Neurology, Department of Neuroscience (DINOGMI), Genoa (Italy); Girtler, Nicola [University of Genoa and IRCCS AOU San Martino-IST, Clinical Neurology, Department of Neuroscience (DINOGMI), Genoa (Italy); University of Genoa and IRCCS AOU San Martino-IST, Clinical Psychology, Department of Neuroscience (DINOGMI), Genoa (Italy); Mandich, Paola [University of Genoa and IRCCS AOU San Martino-IST, Medical Genetics, Department of Neuroscience (DINOGMI), Genoa (Italy); Pagani, Marco [Institute of Cognitive Sciences and Technologies, CNR, Rome (Italy); Karolinska Hospital, Department of Nuclear Medicine, Stockholm (Sweden)

    2016-07-15

    The diagnosis of behavioural variant frontotemporal dementia (bvFTD) is challenging during the predementia stage when symptoms are subtle and confounding. Morphological and functional neuroimaging can be particularly helpful during this stage but few data are available. We retrospectively selected 25 patients with late-onset probable bvFTD. Brain structural MRI and FDG PET were performed during the predementia stage (mean MMSE score 27.1 ± 2.5) on average 2 years before. The findings with the two imaging modalities were compared (SPM8) with those in a group of 20 healthy subjects. The bvFTD patients were divided into two subgroups: those with predominant disinhibition (bvFTD+) and those with apathy (bvFTD-). Hypometabolism exceeded grey matter (GM) density reduction in terms of both extension and statistical significance in all comparisons. In the whole bvFTD group, hypometabolism involved the bilateral medial, inferior and superior lateral frontal cortex, anterior cingulate, left temporal and right parietal cortices and the caudate nuclei. GM density reduction was limited to the right frontal cortex and the left medial temporal lobe. In bvFTD+ patients hypometabolism was found in the bilateral medial and basal frontal cortex, while GM reduction involved the left anterior cingulate and left inferior frontal cortices, and the right insula. In bvFTD- patients, atrophy and mainly hypometabolism involved the lateral frontal cortex and the inferior parietal lobule. These findings suggest that hypometabolism is more extensive than, and thus probably precedes, atrophy in predementia late-onset bvFTD, underscoring different topographic involvement in disinhibited and apathetic presentations. If confirmed in a larger series, these results should prompt biomarker operationalization in bvFTD, especially for patient selection in therapeutic clinical trials. (orig.)

  8. Examination of human brain tumors in situ with image-localized H-1 MR spectroscopy

    International Nuclear Information System (INIS)

    Luyten, P.R.; Segebarth, C.; Baleriaux, D.; Den Hollander, J.A.

    1987-01-01

    Human brain tumors were examined in situ by combined imaging and H-1 MR spectroscopy at 1.5 T. Water-suppressed localized H-1 MR spectra obtained from the brains of normal volunteers show resonances from lactate, N-acetyl aspartate (NAA), creatine, and choline. Several patients suffering from different brain tumors were examined, showing spectral changes in the region of 0.5-1.5 ppm; spectral editing showed that these changes were not due to lactic acid, but to lipid signals. The NAA signal was decreased in the tumors as compared with normal brain. This study shows that H-1 MR spectroscopy can monitor submillimolar changes in chemical composition of human brain tumors in situ

  9. Sex-specific differences in mitochondria biogenesis, morphology, respiratory function, and ROS homeostasis in young mouse heart and brain.

    Science.gov (United States)

    Khalifa, Abdel Rahman M; Abdel-Rahman, Engy A; Mahmoud, Ali M; Ali, Mohamed H; Noureldin, Maha; Saber, Saber H; Mohsen, Mahmoud; Ali, Sameh S

    2017-03-01

    Sex-specific differences in mitochondrial function and free radical homeostasis are reported in the context of aging but not well-established in pathogeneses occurring early in life. Here, we examine if sex disparity in mitochondria function, morphology, and redox status starts early and hence can be implicated in sexual dimorphism in cardiac as well as neurological disorders prevalent at young age. Although mitochondrial activity in the heart did not significantly vary between sexes, female brain exhibited enhanced respiration and higher reserve capacity. This was associated with lower H 2 O 2 production in female cardiac and brain tissues. Using transmission electron microscopy, we found that the number of female cardiac mitochondria is moderately greater (117 ± 3%, P  = 0.049, N  = 4) than male's, which increased significantly for cortical mitochondria (134 ± 4%, P  = 0.001, N  = 4). However, male's cardiac mitochondria exhibited fragmented, circular, and smaller mitochondria relative to female's mitochondria, while no morphologic sex-dependent differences were observed in cortical mitochondria. No sex differences were detected in Nox2 and Nox4 proteins or O 2 -consuming/H 2 O 2 -producing activities in brain homogenate or synaptosomes. However, a strong trend of increased EPR-detected NOX superoxide in male synaptosomes hinted at higher superoxide dismutase activity in female brains, which was confirmed by two independent protocols. We also provide direct evidence that respiring mitochondria generally produce an order-of-magnitude lower reactive oxygen species (ROS) proportions than currently estimated. Our results indicate that sex differences in mitochondrial biogenesis, bioenergetics, and morphology may start at young age and that sex-dependent SOD capacity may be responsible for differences in ROS homeostasis in heart and brain. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological

  10. Brain MRI Tumor Detection using Active Contour Model and Local Image Fitting Energy

    Science.gov (United States)

    Nabizadeh, Nooshin; John, Nigel

    2014-03-01

    Automatic abnormality detection in Magnetic Resonance Imaging (MRI) is an important issue in many diagnostic and therapeutic applications. Here an automatic brain tumor detection method is introduced that uses T1-weighted images and K. Zhang et. al.'s active contour model driven by local image fitting (LIF) energy. Local image fitting energy obtains the local image information, which enables the algorithm to segment images with intensity inhomogeneities. Advantage of this method is that the LIF energy functional has less computational complexity than the local binary fitting (LBF) energy functional; moreover, it maintains the sub-pixel accuracy and boundary regularization properties. In Zhang's algorithm, a new level set method based on Gaussian filtering is used to implement the variational formulation, which is not only vigorous to prevent the energy functional from being trapped into local minimum, but also effective in keeping the level set function regular. Experiments show that the proposed method achieves high accuracy brain tumor segmentation results.

  11. Morphological, nutritional and chemical description of "Vatikiotiko", an onion local landrace from Greece.

    Science.gov (United States)

    Petropoulos, Spyridon A; Fernandes, Ângela; Barros, Lillian; Ferreira, Isabel C F R; Ntatsi, Georgia

    2015-09-01

    "Vatikiotiko" is an onion local landrace from Greece with special quality features, such as strong and pungent taste and storability. In this study, we tried for the first time to describe this landrace and record its morphological traits and nutritional value in comparison with commercially cultivated genotypes ("Creamgold", "Red Cross F1" and "Sivan F1"). Nutritional value of "Vatikiotiko" was higher than commercial genotypes, whereas total sugars, fructose and glucose content were lower in "Vatikiotiko" and "Creamgold" onions. Fatty acids composed mostly from polyunsaturated fatty acids (linoleic and α-linolenic acid), whereas for "Vatikiotiko" saturated and monounsaturated fatty acids were detected in equal amounts (29.79% and 30.60%, respectively). "Vatikiotiko" and "Creamgold" had low antioxidant activity (DPPH radical scavenging activity), especially when comparing with "Sivan F1" and "Red Cross F1", whereas no flavonoids were detected in "Vatikiotiko". The overview of "Vatikiotiko" landrace supported its special character regarding its nutritional value (sugar content, mineral composition and fatty acids profile) and the necessity to revalorize and protect its traditional culture. The potential of introducing it as Protected Designation of Origin (PDO) or Protected Geographical Indication (PGI) product has also been discussed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Single spore isolation and morphological characterization of local Malaysian isolates of rice blast fungus Magnoporthe grisea

    Science.gov (United States)

    Mishra, Ankitta; Ratnam, Wickneswari; Bhuiyan, Md Atiqur Rahman; Ponaya, Ariane; Jena, Khisord K.

    2015-09-01

    Rice blast is a destructive disease, caused by the fungal pathogen Magnaporthe grisea. It causes considerable damage to rice and leads to crop loss in rice growing regions worldwide. Although fungicides can be used to control rice blast, they generate additional cost in rice production and contamination of environment and food. Therefore, the use of resistant varieties is thought to be one of the most economically and environmentally efficient ways of crop protection from the disease. Six new local Malaysian isolates of M. grisea were isolated using single spore isolation method. Five isolates were from infected leaf samples collected from Kompleks Latihan MADA, Kedah and one was from Kelantan. These isolates were identified using morphological characteristics and microscopic studies and later confirmed by ITSequences. These isolates were induced to sporulate and used for greenhouse screening on two differential rice varieties: Mahsuri (susceptible) and Pongsu Seribu 2 (resistant). Among the 6 isolates, isolate number 3 was found to be the most virulent showing high sporulation while isolate number 4 was very slow growing, and the least virulent.

  13. Estimation of effective brain connectivity with dual Kalman filter and EEG source localization methods.

    Science.gov (United States)

    Rajabioun, Mehdi; Nasrabadi, Ali Motie; Shamsollahi, Mohammad Bagher

    2017-09-01

    Effective connectivity is one of the most important considerations in brain functional mapping via EEG. It demonstrates the effects of a particular active brain region on others. In this paper, a new method is proposed which is based on dual Kalman filter. In this method, firstly by using a brain active localization method (standardized low resolution brain electromagnetic tomography) and applying it to EEG signal, active regions are extracted, and appropriate time model (multivariate autoregressive model) is fitted to extracted brain active sources for evaluating the activity and time dependence between sources. Then, dual Kalman filter is used to estimate model parameters or effective connectivity between active regions. The advantage of this method is the estimation of different brain parts activity simultaneously with the calculation of effective connectivity between active regions. By combining dual Kalman filter with brain source localization methods, in addition to the connectivity estimation between parts, source activity is updated during the time. The proposed method performance has been evaluated firstly by applying it to simulated EEG signals with interacting connectivity simulation between active parts. Noisy simulated signals with different signal to noise ratios are used for evaluating method sensitivity to noise and comparing proposed method performance with other methods. Then the method is applied to real signals and the estimation error during a sweeping window is calculated. By comparing proposed method results in different simulation (simulated and real signals), proposed method gives acceptable results with least mean square error in noisy or real conditions.

  14. Explicit verbal memory impairments associated with brain functional deficits and morphological alterations in patients with generalized anxiety disorder.

    Science.gov (United States)

    Moon, Chung-Man; Yang, Jong-Chul; Jeong, Gwang-Woo

    2015-11-01

    Generalized anxiety disorder (GAD) is associated with brain function and morphological alterations. This study investigated explicit verbal memory impairment in patients with GAD in terms of brain functional deficits in combination with morphologic changes. Seventeen patients with GAD and 17 healthy controls matched for age, sex, and education level underwent high-resolution T1-weighted MRI and fMR imaging at 3 T during explicit verbal memory tasks with emotionally neutral and anxiety-inducing words. In response to the neutral words, the patients showed significantly lower activities in the regions of the hippocampus (Hip), middle cingulate gyrus (MCG), putamen (Pu) and head of the caudate nucleus (HCd) compared with healthy controls. In response to the anxiety-inducing words, the patients showed significantly higher activities in the ventrolateral prefrontal cortex and precentral gyrus. However, they showed lower activities in the Hip, MCG, Pu and HCd. In addition, patients with GAD showed a significant reduction in gray matter volumes, especially in the regions of the Hip, midbrain, thalamus, insula and superior temporal gyrus, compared with healthy controls. This study examined a small sample sizes in each of the groups, and there was no consideration of a medication effect on brain activity and volume changes. This study provides evidence for the association between brain functional deficits and morphometric alterations in an explicit verbal memory task for patients with GAD. This finding is helpful for understanding explicit verbal memory impairment in connection with GAD symptoms. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Morphology and Composition of Localized Lunar Dark Mantle Deposits With LROC Data

    Science.gov (United States)

    Gustafson, O.; Bell, J. F.; Gaddis, L. R.; Hawke, B. R.; Robinson, M. S.; LROC Science Team

    2010-12-01

    Clementine color (ultraviolet, visible or UVVIS) and Lunar Reconnaissance Orbiter (LRO) Wide Angle (WAC) and Narrow Angle (NAC) camera data provide the means to investigate localized lunar dark-mantle deposits (DMDs) of potential pyroclastic origin. Our goals are to (1) examine the morphology and physical characteristics of these deposits with LROC WAC and NAC data; (2) extend methods used in earlier studies of lunar DMDs with Clementine spectral reflectance (CSR) data; (3) use LRO WAC multispectral data to complement and extend the CSR data for compositional analyses; and (4) apply these results to identify the likely mode of emplacement and study the diversity of compositions among these deposits. Pyroclastic deposits have been recognized all across the Moon, identified by their low albedo, smooth texture, and mantling relationship to underlying features. Gaddis et al. (2003) presented a compositional analysis of 75 potential lunar pyroclastic deposits (LPDs) based on CSR measurements. New LRO camera (LROC) data permit more extensive analyses of such deposits than previously possible. Our study began with six sites on the southeastern limb of the Moon that contain nine of the cataloged 75 potential pyroclastic deposits: Humboldt (4 deposits), Petavius, Barnard, Abel B, Abel C, and Titius. Our analysis found that some of the DMDs exhibit qualities characteristic of fluid emplacement, such as flat surfaces, sharp margins, embaying relationships, and flow textures. We conclude that the localized DMDs are a complex class of features, many of which may have formed by a combination of effusive and pyroclastic emplacement mechanisms. We have extended this analysis to include additional localized DMDs from the catalog of 75 potential pyroclastic deposits. We have examined high resolution (up to 0.5 m/p) NAC images as they become available to assess the mode of emplacement of the deposits, locate potential volcanic vents, and assess physical characteristics of the DMDs

  16. Effect of chronic hypoglycaemia on glucose concentration and glycogen content in rat brain: a localized 13C NMR study

    OpenAIRE

    Lei, Hongxia; Gruetter, Rolf

    2006-01-01

    While chronic hypoglycaemia has been reported to increase unidirectional glucose transport across the blood-brain barrier (BBB) and to increase GLUT1 expression at the endothelium, the effect on steady-state brain d-glucose and brain glycogen content is currently unknown. Brain glucose and glycogen concentrations were directly measured in vivo using localized 13C magnetic resonance spectroscopy (MRS) following 12-14 days of hypoglycaemia. Brain glucose content was significantly increased by 4...

  17. Brain Morphology of the Zhoukoudian H.erectus Half a Million Years Ago

    Institute of Scientific and Technical Information of China (English)

    WU Xiujie

    2010-01-01

    @@ In the process of human evolution,how has the brain changed? When did it happen? Why did it happen?These questions are some of the hottest topics in paleoanthropology today.The study of brain evolution falls into the sub-discipline of paleoneurology and is based on direct examination of the fossil record of humans and their closest hominid relatives.Unfortunately,brains are not preserved in the fossil record.The most direct evidence of ancestral brains is available,however,from endocasts.An endocast is the impression taken from the inside of a cranium retaining the surface features of the brain.

  18. Four cases with localized brain-stem lesion on CT scan following closed head injury

    International Nuclear Information System (INIS)

    Saeki, Naokatsu; Odaki, Masaru; Oka, Nobuo; Takase, Manabu; Ono, Junichi.

    1981-01-01

    Cases of primary brain-stem injury following closed head injury, verified by a CT scan, have been increasingly reported. However, most of them have other intracranial lesions in addition to the brain stem, resulting in a poor outcome. The CT scan of 200 cases with severe head injury-Araki's classification of types 3 and 4 - were analysed. Four cases out of them had localized brain-stem lesion without any other significant intracranial injury on a CT scan at the acute stage and had a better outcome than had previously been reported. In this analysis, these 4 cases were studied, and the CT findings, prognosis, and pathogenesis of the localized brain-stem injury were discussed. Follow-up CT of three cases, and taken one month or more later, showed diffuse cortical atrophy. This may indicate the presence of diffuse cerebral injury which could not be seen on CT scans at the acute stage. This atrophic change may also be related with the mechanism of posttraumatic conscious impairment and posttraumatic neurological deficits, such as mental symptoms and impairment of the higher cortical function. Shearing injury is a probable pathogenesis for this diffuse cortical injury. On the other hand, one case did not have any cortical atrophy on a follow-up CT scan. Therefore, this is a case with a localized primary brain-stem injury. Coup injury against the brain stem by a tentorial margin in a case with a small tentorial opening is a possible mechanism producing the localized brain-stem injury. (J.P.N.)

  19. Stereotactic radiotherapy following surgery for brain metastasis: Predictive factors for local control and radionecrosis.

    Science.gov (United States)

    Doré, M; Martin, S; Delpon, G; Clément, K; Campion, L; Thillays, F

    2017-02-01

    To evaluate local control and adverse effects after postoperative hypofractionated stereotactic radiosurgery in patients with brain metastasis. We reviewed patients who had hypofractionated stereotactic radiosurgery (7.7Gy×3 prescribed to the 70% isodose line, with 2mm planning target volume margin) following resection from March 2008 to January 2014. The primary endpoint was local failure defined as recurrence within the surgical cavity. Secondary endpoints were distant failure rates and the occurrence of radionecrosis. Out of 95 patients, 39.2% had metastatic lesions from a non-small cell lung cancer primary tumour. The median Graded Prognostic Assessment score was 3 (48% of patients). One-year local control rates were 84%. Factors associated with improved local control were no cavity enhancement on pre-radiation MRI (P<0.00001), planning target volume less than 12cm 3 (P=0.005), Graded Prognostic Assessment score 2 or above (P=0.009). One-year distant cerebral control rates were 56%. Thirty-three percent of patients received whole brain radiation therapy. Histologically proven radionecrosis of brain tissue occurred in 7.2% of cases. The size of the preoperative lesion and the volume of healthy brain tissue receiving 21Gy (V 21 ) were both predictive of the incidence of radionecrosis (P=0.010 and 0.036, respectively). Adjuvant hypofractionated stereotactic radiosurgery to the postoperative cavity in patients with brain metastases results in excellent local control in selected patients, helps delay the use of whole brain radiation, and is associated with a relatively low risk of radionecrosis. Copyright © 2016 Société française de radiothérapie oncologique (SFRO). Published by Elsevier SAS. All rights reserved.

  20. Morphological covariance in anatomical MRI scans can identify discrete neural pathways in the brain and their disturbances in persons with neuropsychiatric disorders.

    Science.gov (United States)

    Bansal, Ravi; Hao, Xuejun; Peterson, Bradley S

    2015-05-01

    We hypothesize that coordinated functional activity within discrete neural circuits induces morphological organization and plasticity within those circuits. Identifying regions of morphological covariation that are independent of morphological covariation in other regions therefore may therefore allow us to identify discrete neural systems within the brain. Comparing the magnitude of these variations in individuals who have psychiatric disorders with the magnitude of variations in healthy controls may allow us to identify aberrant neural pathways in psychiatric illnesses. We measured surface morphological features by applying nonlinear, high-dimensional warping algorithms to manually defined brain regions. We transferred those measures onto the surface of a unit sphere via conformal mapping and then used spherical wavelets and their scaling coefficients to simplify the data structure representing these surface morphological features of each brain region. We used principal component analysis (PCA) to calculate covariation in these morphological measures, as represented by their scaling coefficients, across several brain regions. We then assessed whether brain subregions that covaried in morphology, as identified by large eigenvalues in the PCA, identified specific neural pathways of the brain. To do so, we spatially registered the subnuclei for each eigenvector into the coordinate space of a Diffusion Tensor Imaging dataset; we used these subnuclei as seed regions to track and compare fiber pathways with known fiber pathways identified in neuroanatomical atlases. We applied these procedures to anatomical MRI data in a cohort of 82 healthy participants (42 children, 18 males, age 10.5 ± 2.43 years; 40 adults, 22 males, age 32.42 ± 10.7 years) and 107 participants with Tourette's Syndrome (TS) (71 children, 59 males, age 11.19 ± 2.2 years; 36 adults, 21 males, age 37.34 ± 10.9 years). We evaluated the construct validity of the identified covariation in morphology

  1. MR brain scan tissues and structures segmentation: local cooperative Markovian agents and Bayesian formulation

    International Nuclear Information System (INIS)

    Scherrer, B.

    2008-12-01

    Accurate magnetic resonance brain scan segmentation is critical in a number of clinical and neuroscience applications. This task is challenging due to artifacts, low contrast between tissues and inter-individual variability that inhibit the introduction of a priori knowledge. In this thesis, we propose a new MR brain scan segmentation approach. Unique features of this approach include (1) the coupling of tissue segmentation, structure segmentation and prior knowledge construction, and (2) the consideration of local image properties. Locality is modeled through a multi-agent framework: agents are distributed into the volume and perform a local Markovian segmentation. As an initial approach (LOCUS, Local Cooperative Unified Segmentation), intuitive cooperation and coupling mechanisms are proposed to ensure the consistency of local models. Structures are segmented via the introduction of spatial localization constraints based on fuzzy spatial relations between structures. In a second approach, (LOCUS-B, LOCUS in a Bayesian framework) we consider the introduction of a statistical atlas to describe structures. The problem is reformulated in a Bayesian framework, allowing a statistical formalization of coupling and cooperation. Tissue segmentation, local model regularization, structure segmentation and local affine atlas registration are then coupled in an EM framework and mutually improve. The evaluation on simulated and real images shows good results, and in particular, a robustness to non-uniformity and noise with low computational cost. Local distributed and cooperative MRF models then appear as a powerful and promising approach for medical image segmentation. (author)

  2. The mystery of gold's chemical activity: local bonding, morphology and reactivity of atomic oxygen.

    Science.gov (United States)

    Baker, Thomas A; Liu, Xiaoying; Friend, Cynthia M

    2011-01-07

    Recently, gold has been intensely studied as a catalyst for key synthetic reactions. Gold is an attractive catalyst because, surprisingly, it is highly active and very selective for partial oxidation processes suggesting promise for energy-efficient "green" chemistry. The underlying origin of the high activity of Au is a controversial subject since metallic gold is commonly thought to be inert. Herein, we establish that one origin of the high activity for gold catalysis is the extremely reactive nature of atomic oxygen bound in 3-fold coordination sites on metallic gold. This is the predominant form of O at low concentrations on the surface, which is a strong indication that it is most relevant to catalytic conditions. Atomic oxygen bound to metallic Au in 3-fold sites has high activity for CO oxidation, oxidation of olefins, and oxidative transformations of alcohols and amines. Among the factors identified as important in Au-O interaction are the morphology of the surface, the local binding site of oxygen, and the degree of order of the oxygen overlayer. In this Perspective, we present an overview of both theory and experiments that identify the reactive forms of O and their associated charge density distributions and bond strengths. We also analyze and model the release of Au atoms induced by O binding to the surface. This rough surface also has the potential for O(2) dissociation, which is a critical step if Au is to be activated catalytically. We further show the strong parallels between product distributions and reactivity for O-covered Au at low pressure (ultrahigh vacuum) and for nanoporous Au catalysts operating at atmospheric pressure as evidence that atomic O is the active species under working catalytic conditions when metallic Au is present. We briefly discuss the possible contributions of oxidants that may contain intact O-O bonds and of the Au-metal oxide support interface in Au catalysis. Finally, the challenges and future directions for fully

  3. Brain networks, structural realism, and local approaches to the scientific realism debate.

    Science.gov (United States)

    Yan, Karen; Hricko, Jonathon

    2017-08-01

    We examine recent work in cognitive neuroscience that investigates brain networks. Brain networks are characterized by the ways in which brain regions are functionally and anatomically connected to one another. Cognitive neuroscientists use various noninvasive techniques (e.g., fMRI) to investigate these networks. They represent them formally as graphs. And they use various graph theoretic techniques to analyze them further. We distinguish between knowledge of the graph theoretic structure of such networks (structural knowledge) and knowledge of what instantiates that structure (nonstructural knowledge). And we argue that this work provides structural knowledge of brain networks. We explore the significance of this conclusion for the scientific realism debate. We argue that our conclusion should not be understood as an instance of a global structural realist claim regarding the structure of the unobservable part of the world, but instead, as a local structural realist attitude towards brain networks in particular. And we argue that various local approaches to the realism debate, i.e., approaches that restrict realist commitments to particular theories and/or entities, are problematic insofar as they don't allow for the possibility of such a local structural realist attitude. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Enhanced-locality fiber-optic two-photon-fluorescence live-brain interrogation

    Energy Technology Data Exchange (ETDEWEB)

    Fedotov, I. V.; Doronina-Amitonova, L. V. [International Laser Center, Physics Department, M.V. Lomonosov Moscow State University, Moscow 119992 (Russian Federation); Russian Quantum Center, ul. Novaya 100, Skolkovo, Moscow Region 1430125 (Russian Federation); Kurchatov Institute National Research Center, Moscow (Russian Federation); Sidorov-Biryukov, D. A.; Fedotov, A. B. [International Laser Center, Physics Department, M.V. Lomonosov Moscow State University, Moscow 119992 (Russian Federation); Russian Quantum Center, ul. Novaya 100, Skolkovo, Moscow Region 1430125 (Russian Federation); Anokhin, K. V. [Kurchatov Institute National Research Center, Moscow (Russian Federation); P.K. Anokhin Institute of Normal Physiology, Russian Academy of Medical Sciences, Moscow (Russian Federation); Kilin, S. Ya. [B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk (Belarus); Sakoda, K. [National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044 (Japan); Zheltikov, A. M. [International Laser Center, Physics Department, M.V. Lomonosov Moscow State University, Moscow 119992 (Russian Federation); Russian Quantum Center, ul. Novaya 100, Skolkovo, Moscow Region 1430125 (Russian Federation); Department of Physics and Astronomy, Texas A and M University, College Station, Texas 77843 (United States); Center of Photochemistry, Russian Academy of Sciences, ul. Novatorov 7a, Moscow 117421 (Russian Federation)

    2014-02-24

    Two-photon excitation is shown to substantially enhance the locality of fiber-based optical interrogation of strongly scattering biotissues. In our experiments, a high-numerical-aperture, large-core-are fiber probe is used to deliver the 200-fs output of a 100-MHz mode-locked ytterbium fiber laser to samples of live mouse brain, induce two-photon fluorescence of nitrogen–vacancy centers in diamond markers in brain sample. Fiber probes with a high numerical aperture and a large core area are shown to enable locality enhancement in fiber-laser–fiber-probe two-photon brain excitation and interrogation without sacrificing the efficiency of fluorescence response collection.

  5. Local appearance features for robust MRI brain structure segmentation across scanning protocols

    DEFF Research Database (Denmark)

    Achterberg, H.C.; Poot, Dirk H. J.; van der Lijn, Fedde

    2013-01-01

    Segmentation of brain structures in magnetic resonance images is an important task in neuro image analysis. Several papers on this topic have shown the benefit of supervised classification based on local appearance features, often combined with atlas-based approaches. These methods require...... a representative annotated training set and therefore often do not perform well if the target image is acquired on a different scanner or with a different acquisition protocol than the training images. Assuming that the appearance of the brain is determined by the underlying brain tissue distribution...... with substantially different imaging protocols and on different scanners. While a combination of conventional appearance features trained on data from a different scanner with multiatlas segmentation performed poorly with an average Dice overlap of 0.698, the local appearance model based on the new acquisition...

  6. Radioautographic localization of somatostatin-14 and somatostatin-28 binding sites in the rat brain

    International Nuclear Information System (INIS)

    Leroux, P.; Pelletier, G.

    1984-01-01

    Somatostatin-14 (S14) and its precursor, somatostatin-28 (S28), are widely distributed throughout the rat brain, suggesting that they could act as neurotransmitter or neuromodulator in the central nervous system. The present study was undertaken to study the localization of S14 and S28 receptors in the rat brain determined by ''in vitro'' radioautography. The study performed on slide mounted frozen brain section with iodinated S14 and S28 analogs revealed an identical distribution of binding sites for the two forms of somatostatin. A good correlation could be observed between receptor distribution and immunohistologically localized neuropeptides except for striatum and hypothalamus. However, receptors were not detectable in the hypothalamus and were found in low concentration in the caudate-putamen nucleus, two regions containing high amounts of S28 and S14, suggesting a high occupancy of receptors in these areas by endogenous peptides or an inverse correlation between receptor and peptide concentrations

  7. Steroid Transport, Local Synthesis, and Signaling within the Brain: Roles in Neurogenesis, Neuroprotection, and Sexual Behaviors

    Directory of Open Access Journals (Sweden)

    Nicolas Diotel

    2018-02-01

    Full Text Available Sex steroid hormones are synthesized from cholesterol and exert pleiotropic effects notably in the central nervous system. Pioneering studies from Baulieu and colleagues have suggested that steroids are also locally-synthesized in the brain. Such steroids, called neurosteroids, can rapidly modulate neuronal excitability and functions, brain plasticity, and behavior. Accumulating data obtained on a wide variety of species demonstrate that neurosteroidogenesis is an evolutionary conserved feature across fish, birds, and mammals. In this review, we will first document neurosteroidogenesis and steroid signaling for estrogens, progestagens, and androgens in the brain of teleost fish, birds, and mammals. We will next consider the effects of sex steroids in homeostatic and regenerative neurogenesis, in neuroprotection, and in sexual behaviors. In a last part, we will discuss the transport of steroids and lipoproteins from the periphery within the brain (and vice-versa and document their effects on the blood-brain barrier (BBB permeability and on neuroprotection. We will emphasize the potential interaction between lipoproteins and sex steroids, addressing the beneficial effects of steroids and lipoproteins, particularly HDL-cholesterol, against the breakdown of the BBB reported to occur during brain ischemic stroke. We will consequently highlight the potential anti-inflammatory, anti-oxidant, and neuroprotective properties of sex steroid and lipoproteins, these latest improving cholesterol and steroid ester transport within the brain after insults.

  8. Age-dependent association of thyroid function with brain morphology and microstructural organization : Evidence from brain imaging

    NARCIS (Netherlands)

    Chaker, Layal; Cremers, Lotte G M; Korevaar, Tim I.M.; De Groot, Marius; Dehghan, Abbas; Franco, Oscar H.; Niessen, W.J.; Ikram, M. Arfan; Peeters, Robin P.; Vernooij, Meike W.

    2018-01-01

    Thyroid hormone (TH) is crucial during neurodevelopment, but high levels of TH have been linked to neurodegenerative disorders. No data on the association of thyroid function with brain imaging in the general population are available. We therefore investigated the association of

  9. Age-dependent association of thyroid function with brain morphology and microstructural organization: evidence from brain imaging.

    Science.gov (United States)

    Chaker, Layal; Cremers, Lotte G M; Korevaar, Tim I M; de Groot, Marius; Dehghan, Abbas; Franco, Oscar H; Niessen, Wiro J; Ikram, M Arfan; Peeters, Robin P; Vernooij, Meike W

    2018-01-01

    Thyroid hormone (TH) is crucial during neurodevelopment, but high levels of TH have been linked to neurodegenerative disorders. No data on the association of thyroid function with brain imaging in the general population are available. We therefore investigated the association of thyroid-stimulating hormone and free thyroxine (FT4) with magnetic resonance imaging (MRI)-derived total intracranial volume, brain tissue volumes, and diffusion tensor imaging measures of white matter microstructure in 4683 dementia- and stroke-free participants (mean age 60.2, range 45.6-89.9 years). Higher FT4 levels were associated with larger total intracranial volumes (β = 6.73 mL, 95% confidence interval = 2.94-9.80). Higher FT4 levels were also associated with larger total brain and white matter volumes in younger individuals, but with smaller total brain and white matter volume in older individuals (p-interaction 0.02). There was a similar interaction by age for the association of FT4 with mean diffusivity on diffusion tensor imaging (p-interaction 0.026). These results are in line with differential effects of TH during neurodevelopmental and neurodegenerative processes and can improve the understanding of the role of thyroid function in neurodegenerative disorders. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Theory of mind mediates the prospective relationship between abnormal social brain network morphology and chronic behavior problems after pediatric traumatic brain injury.

    Science.gov (United States)

    Ryan, Nicholas P; Catroppa, Cathy; Beare, Richard; Silk, Timothy J; Crossley, Louise; Beauchamp, Miriam H; Yeates, Keith Owen; Anderson, Vicki A

    2016-04-01

    Childhood and adolescence coincide with rapid maturation and synaptic reorganization of distributed neural networks that underlie complex cognitive-affective behaviors. These regions, referred to collectively as the 'social brain network' (SBN) are commonly vulnerable to disruption from pediatric traumatic brain injury (TBI); however, the mechanisms that link morphological changes in the SBN to behavior problems in this population remain unclear. In 98 children and adolescents with mild to severe TBI, we acquired 3D T1-weighted MRIs at 2-8 weeks post-injury. For comparison, 33 typically developing controls of similar age, sex and education were scanned. All participants were assessed on measures of Theory of Mind (ToM) at 6 months post-injury and parents provided ratings of behavior problems at 24-months post-injury. Severe TBI was associated with volumetric reductions in the overall SBN package, as well as regional gray matter structural change in multiple component regions of the SBN. When compared with TD controls and children with milder injuries, the severe TBI group had significantly poorer ToM, which was associated with more frequent behavior problems and abnormal SBN morphology. Mediation analysis indicated that impaired theory of mind mediated the prospective relationship between abnormal SBN morphology and more frequent chronic behavior problems. Our findings suggest that sub-acute alterations in SBN morphology indirectly contribute to long-term behavior problems via their influence on ToM. Volumetric change in the SBN and its putative hub regions may represent useful imaging biomarkers for prediction of post-acute social cognitive impairment, which may in turn elevate risk for chronic behavior problems. © The Author (2016). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  11. Brain Potentials for Derivational Morphology: An ERP Study of Deadjectival Nominalizations in Spanish

    Science.gov (United States)

    Havas, Viktoria; Rodriguez-Fornells, Antoni; Clahsen, Harald

    2012-01-01

    This study investigates brain potentials to derived word forms in Spanish. Two experiments were performed on derived nominals that differ in terms of their productivity and semantic properties but are otherwise similar, an acceptability judgment task and a reading experiment using event-related brain potentials (ERPs) in which correctly and…

  12. Abnormal functional global and local brain connectivity in female patients with anorexia nervosa

    Science.gov (United States)

    Geisler, Daniel; Borchardt, Viola; Lord, Anton R.; Boehm, Ilka; Ritschel, Franziska; Zwipp, Johannes; Clas, Sabine; King, Joseph A.; Wolff-Stephan, Silvia; Roessner, Veit; Walter, Martin; Ehrlich, Stefan

    2016-01-01

    Background Previous resting-state functional connectivity studies in patients with anorexia nervosa used independent component analysis or seed-based connectivity analysis to probe specific brain networks. Instead, modelling the entire brain as a complex network allows determination of graph-theoretical metrics, which describe global and local properties of how brain networks are organized and how they interact. Methods To determine differences in network properties between female patients with acute anorexia nervosa and pairwise matched healthy controls, we used resting-state fMRI and computed well-established global and local graph metrics across a range of network densities. Results Our analyses included 35 patients and 35 controls. We found that the global functional network structure in patients with anorexia nervosa is characterized by increases in both characteristic path length (longer average routes between nodes) and assortativity (more nodes with a similar connectedness link together). Accordingly, we found locally decreased connectivity strength and increased path length in the posterior insula and thalamus. Limitations The present results may be limited to the methods applied during preprocessing and network construction. Conclusion We demonstrated anorexia nervosa–related changes in the network configuration for, to our knowledge, the first time using resting-state fMRI and graph-theoretical measures. Our findings revealed an altered global brain network architecture accompanied by local degradations indicating wide-scale disturbance in information flow across brain networks in patients with acute anorexia nervosa. Reduced local network efficiency in the thalamus and posterior insula may reflect a mechanism that helps explain the impaired integration of visuospatial and homeostatic signals in patients with this disorder, which is thought to be linked to abnormal representations of body size and hunger. PMID:26252451

  13. The Morphology, Dynamics and Potential Hotspots of Land Surface Temperature at a Local Scale in Urban Areas

    Directory of Open Access Journals (Sweden)

    Jiong Wang

    2015-12-01

    Full Text Available Current characterization of the Urban Heat Island (UHI remains insufficient to support the effective mitigation and adaptation of increasing temperatures in urban areas. Planning and design strategies are restricted to the investigation of temperature anomalies at a city scale. By focusing on Land Surface Temperature of Wuhan, China, this research examines the temperature variations locally where mitigation and adaptation would be more feasible. It shows how local temperature anomalies can be identified morphologically. Technically, the MODerate-resolution Imaging Spectroradiometer satellite image products are used. They are first considered as noisy observations of the latent temperature patterns. The continuous latent patterns of the temperature are then recovered from these discrete observations by using the non-parametric Multi-Task Gaussian Process Modeling. The Multi-Scale Shape Index is then applied in the area of focus to extract the local morphological features. A triplet of shape, curvedness and temperature is formed as the criteria to extract local heat islands. The behavior of the local heat islands can thus be quantified morphologically. The places with critical deformations are identified as hotpots. The hotspots with certain yearly behavior are further associated with land surface composition to determine effective mitigation and adaptation strategies. This research can assist in the temperature and planning field on two levels: (1 the local land surface temperature patterns are characterized by decomposing the variations into fundamental deformation modes to allow a process-based understanding of the dynamics; and (2 the characterization at local scale conforms to planning and design conventions where mitigation and adaptation strategies are supposed to be more practical. The weaknesses and limitations of the study are addressed in the closing section.

  14. Gastrointestinal stromal tumor of large size, extragastrointestinal localization and different morphological features

    Directory of Open Access Journals (Sweden)

    Shpon’ka I.S.

    2015-09-01

    Full Text Available The problems of accurate verification of the gastro¬intestinal stromal tumor are relevant today for many reasons. Thus, the histological diagnosis is complicated by the morphological similarity of other gastrointestinal tract mesenchymal neoplasms and by histologicaly different zones within the same investigation. We present the situation with the above issues: the differential diagnosis includes an analysis of morphological criteria and received immunohisto-chemical reactions. Between immunophenotypes of histologicaly different zones principal difference is not revealed.

  15. Apc1 is required for maintenance of local brain organizers and dorsal midbrain survival.

    Science.gov (United States)

    Paridaen, Judith T M L; Danesin, Catherine; Elas, Abu Tufayal; van de Water, Sandra; Houart, Corinne; Zivkovic, Danica

    2009-07-15

    The tumor suppressor Apc1 is an intracellular antagonist of the Wnt/beta-catenin pathway, which is vital for induction and patterning of the early vertebrate brain. However, its role in later brain development is less clear. Here, we examined the mechanisms underlying effects of an Apc1 zygotic-effect mutation on late brain development in zebrafish. Apc1 is required for maintenance of established brain subdivisions and control of local organizers such as the isthmic organizer (IsO). Caudal expansion of Fgf8 from IsO into the cerebellum is accompanied by hyperproliferation and abnormal cerebellar morphogenesis. Loss of apc1 results in reduced proliferation and apoptosis in the dorsal midbrain. Mosaic analysis shows that Apc is required cell-autonomously for maintenance of dorsal midbrain cell fate. The tectal phenotype occurs independently of Fgf8-mediated IsO function and is predominantly caused by stabilization of beta-catenin and subsequent hyperactivation of Wnt/beta-catenin signalling, which is mainly mediated through LEF1 activity. Chemical activation of the Wnt/beta-catenin in wild-type embryos during late brain maintenance stages phenocopies the IsO and tectal phenotypes of the apc mutants. These data demonstrate that Apc1-mediated restriction of Wnt/beta-catenin signalling is required for maintenance of local organizers and tectal integrity.

  16. INVESTIGATING THE CORE MORPHOLOGY-SEYFERT CLASS RELATIONSHIP WITH HUBBLE SPACE TELESCOPE ARCHIVAL IMAGES OF LOCAL SEYFERT GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Rutkowski, M. J.; Hegel, P. R.; Kim, Hwihyun; Windhorst, R. A. [School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287-1404 (United States); Tamura, Kazuyuki [Naruto University of Education, Nakashima, Takashima, Naruto-cho, Naruto-shi 772-8502 (Japan)

    2013-07-01

    The unified model of active galactic nuclei (AGNs) has provided a successful explanation for the observed diversity of AGNs in the local universe. However, recent analysis of multi-wavelength spectral and image data suggests that the unified model is only a partial theory of AGNs, and may need to be augmented to remain consistent with all observations. Recent studies using high spatial resolution ground- and space-based observations of local AGNs show that Seyfert class and the ''core'' (r {approx}< 1 kpc) host-galaxy morphology are correlated. Currently, this relationship has only been established qualitatively, by visual inspection of the core morphologies of low-redshift (z < 0.035) Seyfert host galaxies. We re-establish this empirical relationship in Hubble Space Telescope optical imaging by visual inspection of a catalog of 85 local (D < 63 Mpc) Seyfert galaxies. We also attempt to re-establish the core morphology-Seyfert class relationship using an automated, non-parametric technique that combines both existing classification parameter methods (the adapted CAS and G-M {sub 20}) and a new method which implements the Source Extractor software for feature detection in unsharp-mask images. This new method is designed explicitly to detect dust features in the images. We use our automated approach to classify the morphology of the AGN cores and determine that Sy2 galaxies visually appear, on average, to have more dust features than Sy1. With the exception of this ''dustiness'' however, we do not measure a strong correlation between the dust morphology and the Seyfert class of the host galaxy using quantitative techniques. We discuss the implications of these results in the context of the unified model.

  17. Association of Perivascular Localization of Aquaporin-4 With Cognition and Alzheimer Disease in Aging Brains.

    Science.gov (United States)

    Zeppenfeld, Douglas M; Simon, Matthew; Haswell, J Douglas; D'Abreo, Daryl; Murchison, Charles; Quinn, Joseph F; Grafe, Marjorie R; Woltjer, Randall L; Kaye, Jeffrey; Iliff, Jeffrey J

    2017-01-01

    Cognitive impairment and dementia, including Alzheimer disease (AD), are common within the aging population, yet the factors that render the aging brain vulnerable to these processes are unknown. Perivascular localization of aquaporin-4 (AQP4) facilitates the clearance of interstitial solutes, including amyloid-β, through the brainwide network of perivascular pathways termed the glymphatic system, which may be compromised in the aging brain. To determine whether alterations in AQP4 expression or loss of perivascular AQP4 localization are features of the aging human brain and to define their association with AD pathology. Expression of AQP4 was analyzed in postmortem frontal cortex of cognitively healthy and histopathologically confirmed individuals with AD by Western blot or immunofluorescence for AQP4, amyloid-β 1-42, and glial fibrillary acidic protein. Postmortem tissue and clinical data were provided by the Oregon Health and Science University Layton Aging and Alzheimer Disease Center and Oregon Brain Bank. Postmortem tissue from 79 individuals was evaluated, including cognitively intact "young" individuals aged younger than 60 years (range, 33-57 years), cognitively intact "aged" individuals aged older than 60 years (range, 61-96 years) with no known neurological disease, and individuals older than 60 years (range, 61-105 years) of age with a clinical history of AD confirmed by histopathological evaluation. Forty-eight patient samples (10 young, 20 aged, and 18 with AD) underwent histological analysis. Sixty patient samples underwent Western blot analysis (15 young, 24 aged, and 21 with AD). Expression of AQP4 protein, AQP4 immunoreactivity, and perivascular AQP4 localization in the frontal cortex were evaluated. Expression of AQP4 was associated with advancing age among all individuals (R2 = 0.17; P = .003). Perivascular AQP4 localization was significantly associated with AD status independent of age (OR, 11.7 per 10% increase in localization; z

  18. (3H)-dihydrotestosterone in catecholamine neurons of rat brain stem: combined localization by autoradiography and formaldehyde-induced fluorescence

    International Nuclear Information System (INIS)

    Heritage, A.S.; Stumpf, W.E.; Sar, M.; Grant, L.D.

    1981-01-01

    A combined formaldehyde-induced fluorescence (FIF)-autoradiography procedure was used to determine how and where the androgen, dihydrotestosterone (DHT), is associated with catecholamine systems in the rat brain. With this dual localization method, ( 3 H)-DHT target sites can be visualized in relation to catecholamine perikarya and terminals. In the hindbrain, catecholamine neurons adjacent to the fourth ventricle (group A4), the nucleus (n.) olivaris superior (group A5), the n. parabranchialis medialis (group A7), and in the locus coeruleus (group A6) and subcoeruleal regions, as well as in the substantia grisea centralis, concentrate ( 3 H)-DHT in their nuclei. ( 3 H)-DHT target neurons appear to be innervated by numerous catecholamine terminals in the following hindbrain regions: n. motorius dorsalis nervi vagi, n. tractus solitarii, n. commissuralis, n. raphe pallidus, n. olivaris inferior, the ventrolateral portion of the substantia grisea centralis, n. cuneiformis, and the ventrolateral reticular formation in the caudal mesencephalon. In the forebrain, ( 3 H)-DHT concentrates in nuclei of catecholamine neurons located in the n. arcuatus and n. periventricularis (group A12). In addition, ( 3 H)-DHT target neurons appear to be innervated by numerous catecholamine terminals in the following forebrain regions: n. periventricularis rotundocellularis, n. paraventricularis, n. dorsomedialis, n. periventricularis, area retrochiasmatica, n. interstititalis striae terminalis (ventral portion), and n. amygdaloideus centralis. The disclosure of a morphologic association between ( 3 H)-DHT target sites and certain brain catecholamine systems suggests a close functional interdependence between androgens and catecholamines

  19. Distinct multivariate brain morphological patterns and their added predictive value with cognitive and polygenic risk scores in mental disorders

    Directory of Open Access Journals (Sweden)

    Nhat Trung Doan

    2017-01-01

    Full Text Available The brain underpinnings of schizophrenia and bipolar disorders are multidimensional, reflecting complex pathological processes and causal pathways, requiring multivariate techniques to disentangle. Furthermore, little is known about the complementary clinical value of brain structural phenotypes when combined with data on cognitive performance and genetic risk. Using data-driven fusion of cortical thickness, surface area, and gray matter density maps (GMD, we found six biologically meaningful patterns showing strong group effects, including four statistically independent multimodal patterns reflecting co-occurring alterations in thickness and GMD in patients, over and above two other independent patterns of widespread thickness and area reduction. Case-control classification using cognitive scores alone revealed high accuracy, and adding imaging features or polygenic risk scores increased performance, suggesting their complementary predictive value with cognitive scores being the most sensitive features. Multivariate pattern analyses reveal distinct patterns of brain morphology in mental disorders, provide insights on the relative importance between brain structure, cognitive and polygenetic risk score in classification of patients, and demonstrate the importance of multivariate approaches in studying the pathophysiological substrate of these complex disorders.

  20. Brain metabolite changes in alcoholism: Localized proton magnetic resonance spectroscopy study of the occipital lobe

    Energy Technology Data Exchange (ETDEWEB)

    Modi, Shilpi; Bhattacharya, Manisha; Kumar, Pawan [NMR Research Centre, Institute of Nuclear Medicine and Allied Sciences (DRDO), Lucknow Road, Timarpur, Delhi 110054 (India); Deshpande, Smita N. [Department of Psychiatry, Dr. Ram Manohar Lohia Hospital, New Delhi (India); Tripathi, Rajendra Prasad [NMR Research Centre, Institute of Nuclear Medicine and Allied Sciences (DRDO), Lucknow Road, Timarpur, Delhi 110054 (India); Khushu, Subash, E-mail: skhushu@yahoo.com [NMR Research Centre, Institute of Nuclear Medicine and Allied Sciences (DRDO), Lucknow Road, Timarpur, Delhi 110054 (India)

    2011-07-15

    Chronic alcoholism is associated with altered brain metabolism, morphology and cognitive abilities. Besides deficits in higher order cognitive functions, alcoholics also show a deficit in the processing of basic sensory information viz. visual stimulation. To assess the metabolic changes associated with this deficit, {sup 1}H MRS was carried out in the occipital lobe of alcohol dependents. A significant increase in Cho/Cr ratio (p < 0.015) was observed in occipital lobe in the alcoholic group indicating altered cell membrane metabolism, which may probably be associated with the alterations in the cognitive abilities associated with vision.

  1. Brain metabolite changes in alcoholism: Localized proton magnetic resonance spectroscopy study of the occipital lobe

    International Nuclear Information System (INIS)

    Modi, Shilpi; Bhattacharya, Manisha; Kumar, Pawan; Deshpande, Smita N.; Tripathi, Rajendra Prasad; Khushu, Subash

    2011-01-01

    Chronic alcoholism is associated with altered brain metabolism, morphology and cognitive abilities. Besides deficits in higher order cognitive functions, alcoholics also show a deficit in the processing of basic sensory information viz. visual stimulation. To assess the metabolic changes associated with this deficit, 1 H MRS was carried out in the occipital lobe of alcohol dependents. A significant increase in Cho/Cr ratio (p < 0.015) was observed in occipital lobe in the alcoholic group indicating altered cell membrane metabolism, which may probably be associated with the alterations in the cognitive abilities associated with vision.

  2. Functional Magnetic Resonance Study of Non-conventional Morphological Brains: malnourished rats

    Directory of Open Access Journals (Sweden)

    Martin R.

    2015-08-01

    Full Text Available Malnutrition during brain development can cause serious problems that can be irreversible. Dysfunctional patterns of brain activity can be detected with functional MRI. We used BOLD functional Magnetic Resonance Imaging (fMRI to investigate region differences of brain activity between control and malnourished rats. The food-competition method was applied to a rat model to induce malnutrition during lactation. A 7T magnet was used to detect changes of the BOLD signal associated with changes in brain activity caused by the trigeminal nerve stimulation in malnourished and control rats. Major neuronal activation was observed in malnourished rats in several brain regions, including cerebellum, somatosensory cortex, hippocampus, and hypothalamus. Statistical analysis of the BOLD signals from various brain areas revealed significant differences in somatosensory cortex between the control and experimental groups, as well as a significant difference between the cerebellum and other structures in the experimental group. This study, particularly in malnourished rats, demonstrates increased BOLD activation in the cerebellum.

  3. Preoperative localization of epileptic foci with SPECT brain perfusion imaging, electrocorticography, surgery and pathology

    International Nuclear Information System (INIS)

    Jia Shaowei; Xu Wengui; Chen Hongyan; Weng Yongmei; Yang Pinghua

    2002-01-01

    Objective: The value of preoperative localization of epileptic foci with SPECT brain perfusion imaging was investigated. Methods: The study population consisted of 23 patients with intractable partial seizures which was difficult to control with anticonvulsant for long period. In order to preoperatively locate the epileptic foci, double SPECT brain perfusion imaging was performed during interictal and ictal stage. The foci were confirmed with electrocorticography (EcoG), surgery and pathology. Results: The author checked with EcoG the foci shown by SPECT, 23 patients had all typical spike discharge. The regions of radioactivity increase in ictal matched with the abnormal electrical activity areas that EcoG showed. The spike wave originated in the corresponding cerebrum cortex instead of hyperplastic and adherent arachnoid or tumor itself. Conclusions: SPECT brain perfusion imaging contributes to distinguishing location, size, perfusion and functioning of epileptogenic foci, and has some directive function on to making out a treatment programme at preoperation

  4. Ketamine changes the local resting-state functional properties of anesthetized-monkey brain.

    Science.gov (United States)

    Rao, Jia-Sheng; Liu, Zuxiang; Zhao, Can; Wei, Rui-Han; Zhao, Wen; Tian, Peng-Yu; Zhou, Xia; Yang, Zhao-Yang; Li, Xiao-Guang

    2017-11-01

    Ketamine is a well-known anesthetic. 'Recreational' use of ketamine common induces psychosis-like symptoms and cognitive impairments. The acute and chronic effects of ketamine on relevant brain circuits have been studied, but the effects of single-dose ketamine administration on the local resting-state functional properties of the brain remain unknown. In this study, we aimed to assess the effects of single-dose ketamine administration on the brain local intrinsic properties. We used resting-state functional magnetic resonance imaging (rs-fMRI) to explore the ketamine-induced alterations of brain intrinsic properties. Seven adult rhesus monkeys were imaged with rs-fMRI to examine the fractional amplitude of low-frequency fluctuation (fALFF) and regional homogeneity (ReHo) in the brain before and after ketamine injection. Paired comparisons were used to detect the significantly altered regions. Results showed that the fALFF of the prefrontal cortex (p=0.046), caudate nucleus (left side, p=0.018; right side, p=0.025), and putamen (p=0.020) in post-injection stage significantly increased compared with those in pre-injection period. The ReHo of nucleus accumbens (p=0.049), caudate nucleus (p=0.037), and hippocampus (p=0.025) increased after ketamine injection, but that of prefrontal cortex decreased (pketamine administration can change the regional intensity and synchronism of brain activity, thereby providing evidence of ketamine-induced abnormal resting-state functional properties in primates. This evidence may help further elucidate the effects of ketamine on the cerebral resting status. Copyright © 2017. Published by Elsevier Inc.

  5. Impact of Diversity of Morphological Characteristics and Reynolds number on Local Hemodynamics in Basilar Aneurysms

    DEFF Research Database (Denmark)

    Rafat, Marjan; Dabagh, Mahsa; Heller, Martin

    2018-01-01

    management. Existing aneurysm hemodynamics studies generally evaluate limited geometries or Reynolds numbers (Re), which are difficult to apply to a wide range of patient-specific cases. We focused on the association between hemodynamic characteristics and morphology. We assessed several two-dimensional (2D...

  6. Variation in blade morphology of the kelp Eisenia arborea : incipient speciation due to local water motion?

    NARCIS (Netherlands)

    Roberson, L.M.; Coyer, J.A.

    2004-01-01

    The southern sea palm kelp Eisenia arborea produces wide, bullate (bumpy) blades in low-flow areas, whereas in adjacent high-flow areas blades are flat and narrow. Here we determine if morphological differences in these 2 closely associated populations are correlated with physical factors in the

  7. Autoradiographic localization of adenosine receptors in rat brain using [3H]cyclohexyladenosine

    International Nuclear Information System (INIS)

    Goodman, R.R.; Synder, S.H.

    1982-01-01

    Adenosine (A1) receptor binding sites have been localized in rat brain by an in vitro light microscopic autoradiographic method. The binding of [ 3 H]N6-cyclohexyladenosine to slide-mounted rat brain tissue sections has the characteristics of A1 receptors. It is saturable with high affinity and has appropriate pharmacology and stereospecificity. The highest densities of adenosine receptors occur in the molecular layer of the cerebellum, the molecular and polymorphic layers of the hippocampus and dentate gyrus, the medial geniculate body, certain thalamic nuclei, and the lateral septum. High densities also are observed in certain layers of the cerebral cortex, the piriform cortex, the caudate-putamen, the nucleus accumbens, and the granule cell layer of the cerebellum. Most white matter areas, as well as certain gray matter areas, such as the hypothalamus, have negligible receptor concentrations. These localizations suggest possible central nervous system sites of action of adenosine

  8. Vitellogenin in the honey bee brain: Atypical localization of a reproductive protein that promotes longevity.

    Science.gov (United States)

    Münch, Daniel; Ihle, Kate E; Salmela, Heli; Amdam, Gro V

    2015-11-01

    In comparative gerontology, highly social insects such as honey bees (Apis mellifera) receive much attention due to very different and flexible aging patterns among closely related siblings. While experimental strategies that manipulate socio-environmental factors suggest a causative link between aging and social signals and behaviors, the molecular underpinnings of this linkage are less well understood. Here we study the atypical localization of the egg-yolk protein vitellogenin (Vg) in the brain of the honey bee. Vg is known to influence honey bee social regulation and aging rate. Our findings suggest that Vg immunoreactivity in the brain is specifically localized within the class of non-neuronal glial cells. We discuss how these results can help explain the socially-dependent aging rate of honey bees. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Expression and localization of claudins-3 and -12 in transformed human brain endothelium

    Directory of Open Access Journals (Sweden)

    Schrade Anja

    2012-02-01

    Full Text Available Abstract Background The aim of this study was to characterize the hCMEC/D3 cell line, an in vitro model of the human Blood Brain Barrier (BBB for the expression of brain endothelial specific claudins-3 and -12. Findings hCMEC/D3 cells express claudins-3 and -12. Claudin-3 is distinctly localized to the TJ whereas claudin -12 is observed in the perinuclear region and completely absent from TJs. We show that the expression of both proteins is lost in cell passage numbers where the BBB properties are no longer fully conserved. Expression and localization of claudin-3 is not modulated by simvastatin shown to improve barrier function in vitro and also recommended for routine hCMEC/D3 culture. Conclusions These results support conservation of claudin-3 and -12 expression in the hCMEC/D3 cell line and make claudin-3 a potential marker for BBB characteristics in vitro.

  10. Expression and Localization of TRK-Fused Gene Products in the Rat Brain and Retina

    International Nuclear Information System (INIS)

    Maebayashi, Hisae; Takeuchi, Shigako; Masuda, Chiaki; Makino, Satoshi; Fukui, Kenji; Kimura, Hiroshi; Tooyama, Ikuo

    2012-01-01

    The TRK-fused gene (TFG in human, Tfg in rat) was originally identified in human papillary thyroid cancer as a chimeric form of the NTRK1 gene. It has been reported that the gene product (TFG) plays a role in regulating phosphotyrosine-specific phosphatase-1 activity. However, no information regarding the localization of Tfg in rat tissues is available. In this study, we investigated the expression of Tfg mRNA in normal rat tissues using reverse transcription-polymerase chain reaction (RT-PCR). We also produced an antibody against Tfg gene products and examined the localization of TFG in the rat brain and retina. The RT-PCR experiments demonstrated that two types of Tfg mRNA were expressed in rat tissues: the conventional form of Tfg (cTfg) and a novel variant form, retinal Tfg (rTfg). RT-PCR analyses demonstrated that cTfg was ubiquitously expressed in rat tissues, while rTfg was predominantly expressed in the brain and retina. Western blot analysis demonstrated two bands with molecular weights of about 30 kDa and 50 kDa in the rat brain. Immunohistochemistry indicated that TFG proteins were predominantly expressed by neurons in the brain. In the rat retina, intense TFG-immunoreactivity was detected in the layer of rods and cones and the outer plexiform layer

  11. Intracranial microcapsule chemotherapy delivery for the localized treatment of rodent metastatic breast adenocarcinoma in the brain.

    Science.gov (United States)

    Upadhyay, Urvashi M; Tyler, Betty; Patta, Yoda; Wicks, Robert; Spencer, Kevin; Scott, Alexander; Masi, Byron; Hwang, Lee; Grossman, Rachel; Cima, Michael; Brem, Henry; Langer, Robert

    2014-11-11

    Metastases represent the most common brain tumors in adults. Surgical resection alone results in 45% recurrence and is usually accompanied by radiation and chemotherapy. Adequate chemotherapy delivery to the CNS is hindered by the blood-brain barrier. Efforts at delivering chemotherapy locally to gliomas have shown modest increases in survival, likely limited by the infiltrative nature of the tumor. Temozolomide (TMZ) is first-line treatment for gliomas and recurrent brain metastases. Doxorubicin (DOX) is used in treating many types of breast cancer, although its use is limited by severe cardiac toxicity. Intracranially implanted DOX and TMZ microcapsules are compared with systemic administration of the same treatments in a rodent model of breast adenocarcinoma brain metastases. Outcomes were animal survival, quantified drug exposure, and distribution of cleaved caspase 3. Intracranial delivery of TMZ and systemic DOX administration prolong survival more than intracranial DOX or systemic TMZ. Intracranial TMZ generates the more robust induction of apoptotic pathways. We postulate that these differences may be explained by distribution profiles of each drug when administered intracranially: TMZ displays a broader distribution profile than DOX. These microcapsule devices provide a safe, reliable vehicle for intracranial chemotherapy delivery and have the capacity to be efficacious and superior to systemic delivery of chemotherapy. Future work should include strategies to improve the distribution profile. These findings also have broader implications in localized drug delivery to all tissue, because the efficacy of a drug will always be limited by its ability to diffuse into surrounding tissue past its delivery source.

  12. Beamspace fast fully adaptive brain source localization for limited data sequences

    International Nuclear Information System (INIS)

    Ravan, Maryam

    2017-01-01

    In the electroencephalogram (EEG) or magnetoencephalogram (MEG) context, brain source localization methods that rely on estimating second order statistics often fail when the observations are taken over a short time interval, especially when the number of electrodes is large. To address this issue, in previous study, we developed a multistage adaptive processing called fast fully adaptive (FFA) approach that can significantly reduce the required sample support while still processing all available degrees of freedom (DOFs). This approach processes the observed data in stages through a decimation procedure. In this study, we introduce a new form of FFA approach called beamspace FFA. We first divide the brain into smaller regions and transform the measured data from the source space to the beamspace in each region. The FFA approach is then applied to the beamspaced data of each region. The goal of this modification is to benefit the correlation sensitivity reduction between sources in different brain regions. To demonstrate the performance of the beamspace FFA approach in the limited data scenario, simulation results with multiple deep and cortical sources as well as experimental results are compared with regular FFA and widely used FINE approaches. Both simulation and experimental results demonstrate that the beamspace FFA method can localize different types of multiple correlated brain sources in low signal to noise ratios more accurately with limited data. (paper)

  13. Effect of Brain-to-Skull Conductivity Ratio on EEG Source Localization Accuracy

    OpenAIRE

    Gang Wang; Doutian Ren

    2013-01-01

    The goal of this study was to investigate the influence of the brain-to-skull conductivity ratio (BSCR) on EEG source localization accuracy. In this study, we evaluated four BSCRs: 15, 20, 25, and 80, which were mainly discussed according to the literature. The scalp EEG signals were generated by BSCR-related forward computation for each cortical dipole source. Then, for each scalp EEG measurement, the source reconstruction was performed to identify the estimated dipole sources by the actual ...

  14. LRP1 in brain vascular smooth muscle cells mediates local clearance of Alzheimer's amyloid-β.

    Science.gov (United States)

    Kanekiyo, Takahisa; Liu, Chia-Chen; Shinohara, Mitsuru; Li, Jie; Bu, Guojun

    2012-11-14

    Impaired clearance of amyloid-β (Aβ) is a major pathogenic event for Alzheimer's disease (AD). Aβ depositions in brain parenchyma as senile plaques and along cerebrovasculature as cerebral amyloid angiopathy (CAA) are hallmarks of AD. A major pathway that mediates brain Aβ clearance is the cerebrovascular system where Aβ is eliminated through the blood-brain barrier (BBB) and/or degraded by cerebrovascular cells along the interstitial fluid drainage pathway. An Aβ clearance receptor, the low-density lipoprotein receptor-related protein 1 (LRP1), is abundantly expressed in cerebrovasculature, in particular in vascular smooth muscle cells. Previous studies have indicated a role of LRP1 in endothelial cells in transcytosing Aβ out of the brain across the BBB; however, whether this represents a significant pathway for brain Aβ clearance remains controversial. Here, we demonstrate that Aβ can be cleared locally in the cerebrovasculature by an LRP1-dependent endocytic pathway in smooth muscle cells. The uptake and degradation of both endogenous and exogenous Aβ were significantly reduced in LRP1-suppressed human brain vascular smooth muscle cells. Conditional deletion of Lrp1 in vascular smooth muscle cell in amyloid model APP/PS1 mice accelerated brain Aβ accumulation and exacerbated Aβ deposition as amyloid plaques and CAA without affecting Aβ production. Our results demonstrate that LRP1 is a major Aβ clearance receptor in cerebral vascular smooth muscle cell and a disturbance of this pathway contributes to Aβ accumulation. These studies establish critical functions of the cerebrovasculature system in Aβ metabolism and identify a new pathway involved in the pathogenesis of both AD and CAA.

  15. Attentional Performance is Correlated with the Local Regional Efficiency of Intrinsic Brain Networks

    Directory of Open Access Journals (Sweden)

    Junhai eXu

    2015-07-01

    Full Text Available Attention is a crucial brain function for human beings. Using neuropsychological paradigms and task-based functional brain imaging, previous studies have indicated that widely distributed brain regions are engaged in three distinct attention subsystems: alerting, orienting and executive control (EC. Here, we explored the potential contribution of spontaneous brain activity to attention by examining whether resting-state activity could account for individual differences of the attentional performance in normal individuals. The resting-state functional images and behavioral data from attention network test (ANT task were collected in 59 healthy subjects. Graph analysis was conducted to obtain the characteristics of functional brain networks and linear regression analyses were used to explore their relationships with behavioral performances of the three attentional components. We found that there was no significant relationship between the attentional performance and the global measures, while the attentional performance was associated with specific local regional efficiency. These regions related to the scores of alerting, orienting and EC largely overlapped with the regions activated in previous task-related functional imaging studies, and were consistent with the intrinsic dorsal and ventral attention networks (DAN/VAN. In addition, the strong associations between the attentional performance and specific regional efficiency suggested that there was a possible relationship between the DAN/VAN and task performances in the ANT. We concluded that the intrinsic activity of the human brain could reflect the processing efficiency of the attention system. Our findings revealed a robust evidence for the functional significance of the efficiently organized intrinsic brain network for highly productive cognitions and the hypothesized role of the DAN/ VAN at rest.

  16. Whole brain radiotherapy after local treatment of brain metastases in melanoma patients - a randomised phase III trial

    International Nuclear Information System (INIS)

    Fogarty, Gerald; Shivalingam, Brindha; Dhillon, Haryana; Thompson, John F; Morton, Rachael L; Vardy, Janette; Nowak, Anna K; Mandel, Catherine; Forder, Peta M; Hong, Angela; Hruby, George; Burmeister, Bryan

    2011-01-01

    Cerebral metastases are a common cause of death in patients with melanoma. Systemic drug treatment of these metastases is rarely effective, and where possible surgical resection and/or stereotactic radiosurgery (SRS) are the preferred treatment options. Treatment with adjuvant whole brain radiotherapy (WBRT) following neurosurgery and/or SRS is controversial. Proponents of WBRT report prolongation of intracranial control with reduced neurological events and better palliation. Opponents state melanoma is radioresistant; that WBRT yields no survival benefit and may impair neurocognitive function. These opinions are based largely on studies in other tumour types in which assessment of neurocognitive function has been incomplete. This trial is an international, prospective multi-centre, open-label, phase III randomised controlled trial comparing WBRT to observation following local treatment of intracranial melanoma metastases with surgery and/or SRS. Patients aged 18 years or older with 1-3 brain metastases excised and/or stereotactically irradiated and an ECOG status of 0-2 are eligible. Patients with leptomeningeal disease, or who have had previous WBRT or localised treatment for brain metastases are ineligible. WBRT prescription is at least 30 Gy in 10 fractions commenced within 8 weeks of surgery and/or SRS. Randomisation is stratified by the number of cerebral metastases, presence or absence of extracranial disease, treatment centre, sex, radiotherapy dose and patient age. The primary endpoint is the proportion of patients with distant intracranial failure as determined by MRI assessment at 12 months. Secondary end points include: survival, quality of life, performance status and neurocognitive function. Accrual to previous trials for patients with brain metastases has been difficult, mainly due to referral bias for or against WBRT. This trial should provide the evidence that is currently lacking in treatment decision-making for patients with melanoma brain

  17. Coronal in vivo forward-imaging of rat brain morphology with an ultra-small optical coherence tomography fiber probe

    Science.gov (United States)

    Xie, Yijing; Bonin, Tim; Löffler, Susanne; Hüttmann, Gereon; Tronnier, Volker; Hofmann, Ulrich G.

    2013-02-01

    A well-established navigation method is one of the key conditions for successful brain surgery: it should be accurate, safe and online operable. Recent research shows that optical coherence tomography (OCT) is a potential solution for this application by providing a high resolution and small probe dimension. In this study a fiber-based spectral-domain OCT system utilizing a super-luminescent-diode with the center wavelength of 840 nm providing 14.5 μm axial resolution was used. A composite 125 μm diameter detecting probe with a gradient index (GRIN) fiber fused to a single mode fiber was employed. Signals were reconstructed into grayscale images by horizontally aligning A-scans from the same trajectory with different depths. The reconstructed images can display brain morphology along the entire trajectory. For scans of typical white matter, the signals showed a higher reflection of light intensity with lower penetration depth as well as a steeper attenuation rate compared to the scans typical for gray matter. Micro-structures such as axon bundles (70 μm) in the caudate nucleus are visible in the reconstructed images. This study explores the potential of OCT to be a navigation modality in brain surgery.

  18. Development of cortical morphology evaluated with longitudinal MR brain images of preterm infants

    NARCIS (Netherlands)

    Moeskops, P.; Benders, M.J.N.L.; Kersbergen, K.J.; Groenendaal, F.; de Vries, L.S.; Viergever, M.A.; Išgum, I.

    2015-01-01

    INTRODUCTION: The cerebral cortex develops rapidly in the last trimester of pregnancy. In preterm infants, brain development is very vulnerable because of their often complicated extra-uterine conditions. The aim of this study was to quantitatively describe cortical development in a cohort of 85

  19. Sex differences in morphology of the brain stem and cerebellum with normal ageing

    International Nuclear Information System (INIS)

    Oguro, H.; Okada, K.; Yamaguchi, S.; Kobayashi, S.

    1998-01-01

    The cerebral hemispheres become atrophic with age. The sex of the individual may affect this process. There are few studies of the effects of age and sex on the brain stem and cerebellum. We used MRI morphometry to study changes in these structures in 152 normal subjects over 40 years of age. In the linear measurements, men showed significant age-associated atrophy in the tegmentum and pretectum of the midbrain and the base of the pons. In women, only the pretectum of the midbrain showed significant ageing effects after the age of 50 years, and thereafter remained rather constant. Only men had significant age-associated reduction in area of the crebellar vermis area after the age of 70 years. Both men and women showed supratentorial brain atrophy that progressed by decades. There were significant correlations between supratentorial brain atrophy and the diameter of the ventral midbrain, pretectum, and base of the pons in men, and between brain atrophy and the diameter of the fourth ventricle in women. (orig.)

  20. Opaque for the Reader but Transparent for the Brain: Neural Signatures of Morphological Complexity

    Science.gov (United States)

    Meinzer, Marcus; Lahiri, Aditi; Flaisch, Tobias; Hannemann, Ronny; Eulitz, Carsten

    2009-01-01

    Within linguistics, words with a complex internal structure are commonly assumed to be decomposed into their constituent morphemes (e.g., un-help-ful). Nevertheless, an ongoing debate concerns the brain structures that subserve this process. Using functional magnetic resonance imaging, the present study varied the internal complexity of derived…

  1. Computerized tomography and morphological findings in brain infarcts and intracerebral haematonous for identical image planes

    Energy Technology Data Exchange (ETDEWEB)

    Clar, H E; Bock, W J; Hahse, H C; Gerhard, L; Flossdorf, R [Essen Univ. (Gesamthochschule) (Germany, F.R.). Neurochirurgische Klinik; Duesseldorf Univ. (Germany, F.R.). Neurochirurgische Klinik; Essen Univ. (Gesamthochschule) (Germany, F.R.). Roentgendiagnostisches Zentralinstitut; Essen Univ. (Gesamthochschule) (Germany, F.R.). Neuropathologisches Inst.)

    1979-01-01

    Contrary to earlier, more optimistic publications, CT findings do not always agree with brain sections of the same image plane. For example, in spite of a clinically proved infrarot anamnesis, Huber was unable to detect a pathological CT finding in 20% of the cases. Still, CT is the method that yields the best information on cerebral ischaemios, haemorrhaegic infarcts, and haemorrhagies if purposefully applied.

  2. Sex differences in morphology of the brain stem and cerebellum with normal ageing

    Energy Technology Data Exchange (ETDEWEB)

    Oguro, H.; Okada, K.; Yamaguchi, S.; Kobayashi, S. [Internal Medicine III, Shimane Medical University, Izumo (Japan)

    1998-12-01

    The cerebral hemispheres become atrophic with age. The sex of the individual may affect this process. There are few studies of the effects of age and sex on the brain stem and cerebellum. We used MRI morphometry to study changes in these structures in 152 normal subjects over 40 years of age. In the linear measurements, men showed significant age-associated atrophy in the tegmentum and pretectum of the midbrain and the base of the pons. In women, only the pretectum of the midbrain showed significant ageing effects after the age of 50 years, and thereafter remained rather constant. Only men had significant age-associated reduction in area of the crebellar vermis area after the age of 70 years. Both men and women showed supratentorial brain atrophy that progressed by decades. There were significant correlations between supratentorial brain atrophy and the diameter of the ventral midbrain, pretectum, and base of the pons in men, and between brain atrophy and the diameter of the fourth ventricle in women. (orig.) With 4 figs., 3 tabs., 16 refs.

  3. Structural, morphological and local electric properties of TiO2 thin films grown by pulsed laser deposition

    International Nuclear Information System (INIS)

    Gyoergy, E; Pino, A Perez del; Sauthier, G; Figueras, A; Alsina, F; Pascual, J

    2007-01-01

    Titanium dioxide (TiO 2 ) thin films were synthesized on (1 0 0) Si substrates by reactive pulsed laser deposition (PLD) technique. A frequency quadrupled Nd : YAG (λ = 266 nm, τ FWHM ≅ 5 ns, ν = 10 Hz) laser source was used for the irradiations of metallic Ti targets. The experiments were performed in controlled oxygen atmosphere. Crystallinity, surface morphology and local electric properties of the obtained oxide thin films were investigated by x-ray diffractometry, micro-Raman spectroscopy and current sensing atomic force microscopy. An inter-relation was found between the surface morphology, the crystalline structure and the nano-scale electric properties which open the possibility of synthesizing by the PLD technique TiO 2 thin films with tunable functional properties for future applications such as photocatalysts, gas sensors or solar energy converters

  4. Quantifying Differences and Similarities in Whole-Brain White Matter Architecture Using Local Connectome Fingerprints.

    Directory of Open Access Journals (Sweden)

    Fang-Cheng Yeh

    2016-11-01

    Full Text Available Quantifying differences or similarities in connectomes has been a challenge due to the immense complexity of global brain networks. Here we introduce a noninvasive method that uses diffusion MRI to characterize whole-brain white matter architecture as a single local connectome fingerprint that allows for a direct comparison between structural connectomes. In four independently acquired data sets with repeated scans (total N = 213, we show that the local connectome fingerprint is highly specific to an individual, allowing for an accurate self-versus-others classification that achieved 100% accuracy across 17,398 identification tests. The estimated classification error was approximately one thousand times smaller than fingerprints derived from diffusivity-based measures or region-to-region connectivity patterns for repeat scans acquired within 3 months. The local connectome fingerprint also revealed neuroplasticity within an individual reflected as a decreasing trend in self-similarity across time, whereas this change was not observed in the diffusivity measures. Moreover, the local connectome fingerprint can be used as a phenotypic marker, revealing 12.51% similarity between monozygotic twins, 5.14% between dizygotic twins, and 4.51% between none-twin siblings, relative to differences between unrelated subjects. This novel approach opens a new door for probing the influence of pathological, genetic, social, or environmental factors on the unique configuration of the human connectome.

  5. Royal jelly-like protein localization reveals differences in hypopharyngeal glands buildup and conserved expression pattern in brains of bumblebees and honeybees

    Directory of Open Access Journals (Sweden)

    Štefan Albert

    2014-03-01

    Full Text Available Royal jelly proteins (MRJPs of the honeybee bear several open questions. One of them is their expression in tissues other than the hypopharyngeal glands (HGs, the site of royal jelly production. The sole MRJP-like gene of the bumblebee, Bombus terrestris (BtRJPL, represents a pre-diversification stage of the MRJP gene evolution in bees. Here we investigate the expression of BtRJPL in the HGs and the brain of bumblebees. Comparison of the HGs of bumblebees and honeybees revealed striking differences in their morphology with respect to sex- and caste-specific appearance, number of cells per acinus, and filamentous actin (F-actin rings. At the cellular level, we found a temporary F-actin-covered meshwork in the secretory cells, which suggests a role for actin in the biogenesis of the end apparatus in HGs. Using immunohistochemical localization, we show that BtRJPL is expressed in the bumblebee brain, predominantly in the Kenyon cells of the mushroom bodies, the site of sensory integration in insects, and in the optic lobes. Our data suggest that a dual gland-brain function preceded the multiplication of MRJPs in the honeybee lineage. In the course of the honeybee evolution, HGs dramatically changed their morphology in order to serve a food-producing function.

  6. Morphological characterization of local landraces of rapeseed (Brassica campestris L. var toria of Nepal

    Directory of Open Access Journals (Sweden)

    Salik Ram Gupta

    2015-12-01

    Full Text Available Rapeseed (Brassica campestris L. var toria is the main source of edible oil for Nepalese people. 54 rapeseed lines were collected from different hilly district of Nepal ranging from 987 m to 2550 m altitude. These lines were planted in augmented design for its traits characterization in Khumaltar 2013. Different traits of local rapeseed were characterized, and evaluated. NGRC 02778 performed better followed by SR-02 than local checks Morang-2, Chitwan Local and Unnati in terms of yield, days to maturity and pest infestation. Similarly, genotype SR-18 was late and SR-16 was earlier in terms of days to maturity. In conclusion, SR-02 was found better genotype based on different characteristics measured among all local rapeseeds planted in Khumaltar 2013. Thus SR-2 can be used as parents in crossing material for further breeding purposes and it can also be tested in further trial.

  7. Social networking sites use and the morphology of a social-semantic brain network.

    Science.gov (United States)

    Turel, Ofir; He, Qinghua; Brevers, Damien; Bechara, Antoine

    2017-09-30

    Social lives have shifted, at least in part, for large portions of the population to social networking sites. How such lifestyle changes may be associated with brain structures is still largely unknown. In this manuscript, we describe two preliminary studies aimed at exploring this issue. The first study (n = 276) showed that Facebook users reported on increased social-semantic and mentalizing demands, and that such increases were positively associated with people's level of Facebook use. The second study (n = 33) theorized on and examined likely anatomical correlates of such changes in demands on the brain. Findings indicated that the grey matter volumes of the posterior parts of the bilateral middle and superior temporal, and left fusiform gyri were positively associated with the level of Facebook use. These results provided preliminary evidence that grey matter volumes of brain structures involved in social-semantic and mentalizing tasks may be linked to the extent of social networking sites use.

  8. Morphological brain plasticity induced by musical expertise is accompanied by modulation of functional connectivity at rest.

    Science.gov (United States)

    Fauvel, Baptiste; Groussard, Mathilde; Chételat, Gaël; Fouquet, Marine; Landeau, Brigitte; Eustache, Francis; Desgranges, Béatrice; Platel, Hervé

    2014-04-15

    The aim of this study was to explore whether musical practice-related gray matter increases in brain regions are accompanied by modifications in their resting-state functional connectivity. 16 young musically experienced adults and 17 matched nonmusicians underwent an anatomical magnetic resonance imaging (MRI) and a resting-state functional MRI (rsfMRI). A whole-brain two-sample t test run on the T1-weighted structural images revealed four clusters exhibiting significant increases in gray matter (GM) volume in the musician group, located within the right posterior and middle cingulate gyrus, left superior temporal gyrus and right inferior orbitofrontal gyrus. Each cluster was used as a seed region to generate and compare whole-brain resting-state functional connectivity maps. The two clusters within the cingulate gyrus exhibited greater connectivity for musicians with the right prefrontal cortex and left temporal pole, which play a role in autobiographical and semantic memory, respectively. The cluster in the left superior temporal gyrus displayed enhanced connectivity with several language-related areas (e.g., left premotor cortex, bilateral supramarginal gyri). Finally, the cluster in the right inferior frontal gyrus displayed more synchronous activity at rest with claustrum, areas thought to play a role in binding sensory and motor information. We interpreted these findings as the consequence of repeated collaborative use in general networks supporting some of the memory, perceptual-motor and emotional features of musical practice. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Effect of the Mediterranean diet on cognition and brain morphology and function: a systematic review of randomized controlled trials.

    Science.gov (United States)

    Radd-Vagenas, Sue; Duffy, Shantel L; Naismith, Sharon L; Brew, Bruce J; Flood, Victoria M; Fiatarone Singh, Maria A

    2018-03-01

    Observational studies of the Mediterranean diet suggest cognitive benefits, potentially reducing dementia risk. We performed the first published review to our knowledge of randomized controlled trials (RCTs) investigating Mediterranean diet effects on cognition or brain morphology and function, with an additional focus on intervention diet quality and its relation to "traditional" Mediterranean dietary patterns. We searched 9 databases from inception (final update December 2017) for RCTs testing a Mediterranean compared with alternate diet for cognitive or brain morphology and function outcomes. Analyses were based on 66 cognitive tests and 1 brain function outcome from 5 included studies (n = 1888 participants). The prescribed Mediterranean diets varied considerably between studies, particularly with regards to quantitative food advice. Only 8/66 (12.1%) of individual cognitive outcomes at trial level significantly favored a Mediterranean diet for cognitive performance, with effect sizes (ESs) ranging from small (0.32) to large (1.66), whereas 2 outcomes favored controls. Data limitations precluded a meta-analysis. Of 8 domain composite cognitive scores from 2 studies, the 3 (Memory, Frontal, and Global function) from PREDIMED (PREvención con DIeta MEDiterránea) were significant, with ESs ranging from 0.39 to 1.29. A posttest comparison at a second PREDIMED site found that the Mediterranean diet modulates the effect of several genotypes associated with dementia risk for some cognitive outcomes, with mixed results. Finally, the risk of low-plasma brain-derived neurotrophic factor was reduced by 78% (OR = 0.22; 95% CI: 0.05, 0.90) in those who consumed a Mediterranean diet compared to control diet at 3 y in this trial. There was no benefit of the Mediterranean diet for incident cognitive impairment or dementia. Five RCTs of the Mediterranean diet and cognition have been published to date. The data are mostly nonsignificant, with small ESs. However, the

  10. Early and late effects of local high dose radiotherapy of the brain on memory and attention

    International Nuclear Information System (INIS)

    Duchstein, S.; Gademann, G.; Peters, B.

    2003-01-01

    Early and Late Effects of Local High Dose Radiotherapy of the Brain on Memory and Attention Background: Stereotactic radiotherapy of benign tumors of the base of skull shows excellent tumor control and long survival. Aim is to study the impact of high dose radiation therapy on functions of memory and attention over time. Patients and Methods: 21 patients (age 42 ± 11 years) with tumors of the base of skull (meningiomas, pituitary gland adenomas) were treated by fractionated stereotactic radiotherapy (mean total dose 56,6 Gy/1,8 Gy). Comprehensive neuropsychological tests and MRI brain scans were performed before, 3, 9 and 21 months after therapy. 14 healthy volunteers were tested in parallel at baseline. In the follow-ups patients were their own controls. Results: In pretreatment tests there were significantly worse test results in comparison to the control group in ten of 32 tests. In postradiation tests only few changes were found in the early-delayed period and not much difference was seen in comparison to the baseline tests. In MRI scans tumor recurrences or radiation induced changes were not found. Conclusion: Radiation with high local doses in target volume extremely close to sensitive brain structures like temporal lobes did not induce significant decline of cognitive functions. (orig.) [de

  11. Fast accurate MEG source localization using a multilayer perceptron trained with real brain noise

    International Nuclear Information System (INIS)

    Jun, Sung Chan; Pearlmutter, Barak A.; Nolte, Guido

    2002-01-01

    Iterative gradient methods such as Levenberg-Marquardt (LM) are in widespread use for source localization from electroencephalographic (EEG) and magnetoencephalographic (MEG) signals. Unfortunately, LM depends sensitively on the initial guess, necessitating repeated runs. This, combined with LM's high per-step cost, makes its computational burden quite high. To reduce this burden, we trained a multilayer perceptron (MLP) as a real-time localizer. We used an analytical model of quasistatic electromagnetic propagation through a spherical head to map randomly chosen dipoles to sensor activities according to the sensor geometry of a 4D Neuroimaging Neuromag-122 MEG system, and trained a MLP to invert this mapping in the absence of noise or in the presence of various sorts of noise such as white Gaussian noise, correlated noise, or real brain noise. A MLP structure was chosen to trade off computation and accuracy. This MLP was trained four times, with each type of noise. We measured the effects of initial guesses on LM performance, which motivated a hybrid MLP-start-LM method, in which the trained MLP initializes LM. We also compared the localization performance of LM, MLPs, and hybrid MLP-start-LMs for realistic brain signals. Trained MLPs are much faster than other methods, while the hybrid MLP-start-LMs are faster and more accurate than fixed-4-start-LM. In particular, the hybrid MLP-start-LM initialized by a MLP trained with the real brain noise dataset is 60 times faster and is comparable in accuracy to random-20-start-LM, and this hybrid system (localization error: 0.28 cm, computation time: 36 ms) shows almost as good performance as optimal-1-start-LM (localization error: 0.23 cm, computation time: 22 ms), which initializes LM with the correct dipole location. MLPs trained with noise perform better than the MLP trained without noise, and the MLP trained with real brain noise is almost as good an initial guesser for LM as the correct dipole location. (author) )

  12. Brain morphological changes in adolescent and adult patients with anorexia nervosa.

    Science.gov (United States)

    Seitz, J; Herpertz-Dahlmann, B; Konrad, K

    2016-08-01

    Gray matter (GM) and white matter (WM) volume loss occur in the brains of patients with acute anorexia nervosa (AN) and improve again upon weight restoration. Adolescence is an important time period for AN to begin. However, little is known about the differences between brain changes in adolescents vs adults. We used a meta-analysis and a qualitative review of all MRI studies regarding acute structural brain volume changes and their recovery in adolescents and adults with AN. 29 studies with 473 acute, 121 short-term weight-recovered and 255 long-term recovered patients with AN were included in the meta-analysis. In acute AN, GM and WM were reduced compared to healthy controls. Acute adolescent patients showed a significantly greater GM reduction than adults (-8.4 vs -3.1 %), the difference in WM (-4.0 vs -2.1 %) did not reach significance. Short-term weight-recovered patients showed a remaining GM deficit of 3.6 % and a non-significant WM reduction of 0.9 % with no age differences. Following 1.5-8 years of remission, GM and WM were no longer significantly reduced in adults (GM -0.4 %, WM -0.7 %); long-term studies for adolescents were scarce. The qualitative review showed that GM volume loss was correlated with cognitive deficits and three studies found GM regions, cerebellar deficits and WM to be predictive of outcome. GM and WM are strongly reduced in acute AN and even more pronounced in adolescence. Long-term recovery appears to be complete for adults while no conclusions can be drawn for adolescents, thus caution remains.

  13. Morphological and pathological evolution of the brain microcirculation in aging and Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Jesse M Hunter

    Full Text Available Key pathological hallmarks of Alzheimer's disease (AD, including amyloid plaques, cerebral amyloid angiopathy (CAA and neurofibrillary tangles do not completely account for cognitive impairment, therefore other factors such as cardiovascular and cerebrovascular pathologies, may contribute to AD. In order to elucidate the microvascular changes that contribute to aging and disease, direct neuropathological staining and immunohistochemistry, were used to quantify the structural integrity of the microvasculature and its innervation in three oldest-old cohorts: 1 nonagenarians with AD and a high amyloid plaque load; 2 nonagenarians with no dementia and a high amyloid plaque load; 3 nonagenarians without dementia or amyloid plaques. In addition, a non-demented (ND group (average age 71 years with no amyloid plaques was included for comparison. While gray matter thickness and overall brain mass were reduced in AD compared to ND control groups, overall capillary density was not different. However, degenerated string capillaries were elevated in AD, potentially suggesting greater microvascular "dysfunction" compared to ND groups. Intriguingly, apolipoprotein ε4 carriers had significantly higher string vessel counts relative to non-ε4 carriers. Taken together, these data suggest a concomitant loss of functional capillaries and brain volume in AD subjects. We also demonstrated a trend of decreasing vesicular acetylcholine transporter staining, a marker of cortical cholinergic afferents that contribute to arteriolar vasoregulation, in AD compared to ND control groups, suggesting impaired control of vasodilation in AD subjects. In addition, tyrosine hydroxylase, a marker of noradrenergic vascular innervation, was reduced which may also contribute to a loss of control of vasoconstriction. The data highlight the importance of the brain microcirculation in the pathogenesis and evolution of AD.

  14. Local Anesthesia at ST36 to Reveal Responding Brain Areas to deqi

    Directory of Open Access Journals (Sweden)

    Ling-min Jin

    2014-01-01

    Full Text Available Background. Development of non-deqi control is still a challenge. This study aims to set up a potential approach to non-deqi control by using lidocaine anesthesia at ST36. Methods. Forty healthy volunteers were recruited and they received two fMRI scans. One was accompanied with manual acupuncture at ST36 (DQ group, and another was associated with both local anesthesia and manual acupuncture at the same acupoint (LA group. Results. Comparing to DQ group, more than 90 percent deqi sensations were reduced by local anesthesia in LA group. The mainly activated regions in DQ group were bilateral IFG, S1, primary motor cortex, IPL, thalamus, insula, claustrum, cingulate gyrus, putamen, superior temporal gyrus, and cerebellum. Surprisingly only cerebellum showed significant activation in LA group. Compared to the two groups, bilateral S1, insula, ipsilateral IFG, IPL, claustrum, and contralateral ACC were remarkably activated. Conclusions. Local anesthesia at ST36 is able to block most of the deqi feelings and inhibit brain responses to deqi, which would be developed into a potential approach for non-deqi control. Bilateral S1, insula, ipsilateral IFG, IPL, claustrum, and contralateral ACC might be the key brain regions responding to deqi.

  15. Neuropsychological deficits and morphological MRI brain scan abnormalities in apparently health non-encephalopathic patients with cirrhosis; A controlled Study

    Energy Technology Data Exchange (ETDEWEB)

    Moore, J.W.; De Lacey, G.; Dunk, A.A.; Sinclair, T.S.; Mowat, M.A.G.; Brunt, P.W. (Royal Infirmary, Aberdeen (United Kingdom)); Deans, H. (Aberdeen Univ. (UK). Dept. of Medical Physics (United Kingdom)); Crawford, J.R. (Aberdeen University Medical School (United Kingdom). Department of Psychology (United Kingdom)); Besson, J.A.O. (Aberdeen University Medical School (United Kingdom). Department of Mental Health (United Kingdom))

    1989-11-01

    By means of psychometric testing, we have determined the frequency of latent hepatic encephalopathy in a group of 19 cirrhotics with no clinical evidence of encephalopathy. Magnetic resonance imaging (MRI) of the brain was performed in order to determine whether morphological cerebral abnormalities were associated with latent encephalopathy. Nineteen age and educationally matched patient with normal liver function acted as controls. Significant differences (P < 0.05) between cirrhotics and controls were found in tests of short-term visual memory and speed of reaction to light (cirrhotics 326 ( 132 ms vs. controls 225 ) 36 ms), sound (cirrhotics 361 ( 152 ms vs. controls 236 ) 52 ms) and choice (cirrhotics 651 ( 190 ms vs. controls 406 ) 101 ms) stimuli (all values mean S.D.). Reitan trail test performance, however, was similar in both groups. ( Trail A: cirrhotics 43 ( 19 s vs. controls 35 ) 13 s; Trail B: cirrhotics 105 ( 66 s vs. controls 93 ) 36 s.) In patients with cirrhosis, MRI revealed statistically significant increases in the maximum fissure width of right frontal sulci, light and left parietal sulci, inter-hemispheric fissure width and in bicaudafe index. These changes, indicating cerebral atrophy, were largely confined to alcoholics. There was poor correlation between measurements of cerebral morphology and neuropsychological performance, only 10% of associations achieving statistical significance. (author). 2 refs.; 3 figs.; 5 tabs.

  16. Neuropsychological deficits and morphological MRI brain scan abnormalities in apparently health non-encephalopathic patients with cirrhosis

    International Nuclear Information System (INIS)

    Moore, J.W.; De Lacey, G.; Dunk, A.A.; Sinclair, T.S.; Mowat, M.A.G.; Brunt, P.W.; Deans, H.; Crawford, J.R.; Besson, J.A.O.

    1989-01-01

    By means of psychometric testing, we have determined the frequency of latent hepatic encephalopathy in a group of 19 cirrhotics with no clinical evidence of encephalopathy. Magnetic resonance imaging (MRI) of the brain was performed in order to determine whether morphological cerebral abnormalities were associated with latent encephalopathy. Nineteen age and educationally matched patient with normal liver function acted as controls. Significant differences (P < 0.05) between cirrhotics and controls were found in tests of short-term visual memory and speed of reaction to light (cirrhotics 326 ] 132 ms vs. controls 225 ] 36 ms), sound (cirrhotics 361 ] 152 ms vs. controls 236 ] 52 ms) and choice (cirrhotics 651 ] 190 ms vs. controls 406 ] 101 ms) stimuli (all values mean ] S.D.). Reitan trail test performance, however, was similar in both groups. ( Trail A: cirrhotics 43 ] 19 s vs. controls 35 ] 13 s; Trail B: cirrhotics 105 ] 66 s vs. controls 93 ] 36 s.) In patients with cirrhosis, MRI revealed statistically significant increases in the maximum fissure width of right frontal sulci, light and left parietal sulci, inter-hemispheric fissure width and in bicaudafe index. These changes, indicating cerebral atrophy, were largely confined to alcoholics. There was poor correlation between measurements of cerebral morphology and neuropsychological performance, only 10% of associations achieving statistical significance. (author). 2 refs.; 3 figs.; 5 tabs

  17. Virtual endocranial cast of earliest Eocene Diacodexis (Artiodactyla, Mammalia) and morphological diversity of early artiodactyl brains

    Science.gov (United States)

    Orliac, M. J.; Gilissen, E.

    2012-01-01

    The study of brain evolution, particularly that of the neocortex, is of primary interest because it directly relates to how behavioural variations arose both between and within mammalian groups. Artiodactyla is one of the most diverse mammalian clades. However, the first 10 Myr of their brain evolution has remained undocumented so far. Here, we used high-resolution X-ray computed tomography to investigate the endocranial cast of Diacodexis ilicis of earliest Eocene age. Its virtual reconstruction provides unprecedented access to both metric parameters and fine anatomy of the most complete endocast of the earliest artiodactyl. This picture is assessed in a broad comparative context by reconstructing endocasts of 14 other Early and Middle Eocene representatives of basal artiodactyls, allowing the tracking of the neocortical structure of artiodactyls back to its simplest pattern. We show that the earliest artiodactyls share a simple neocortical pattern, so far never observed in other ungulates, with an almond-shaped gyrus instead of parallel sulci as previously hypothesized. Our results demonstrate that artiodactyls experienced a tardy pulse of encephalization during the Late Neogene, well after the onset of cortical complexity increase. Comparisons with Eocene perissodactyls show that the latter reached a high level of cortical complexity earlier than the artiodactyls. PMID:22764165

  18. Effect of the local morphology in the field emission properties of conducting polymer surfaces

    International Nuclear Information System (INIS)

    De Assis, T A; Borondo, F; Benito, R M; Losada, J C; Andrade, R F S; Miranda, J G V; De Souza, Nara C; De Castilho, C M C; De B Mota, F

    2013-01-01

    In this work, we present systematic theoretical evidence of a relationship between the point local roughness exponent (PLRE) (which quantifies the heterogeneity of an irregular surface) and the cold field emission properties (indicated by the local current density and the macroscopic current density) of real polyaniline (PANI) surfaces, considered nowadays as very good candidates in the design of field emission devices. The latter are obtained from atomic force microscopy data. The electric field and potential are calculated in a region bounded by the rough PANI surface and a distant plane, both boundaries held at distinct potential values. We numerically solve Laplace’s equation subject to appropriate Dirichlet’s condition. Our results show that local roughness reveals the presence of specific sharp emitting spots with a smooth geometry, which are the main ones responsible (but not the only) for the emission efficiency of such surfaces for larger deposition times. Moreover, we have found, with a proper choice of a scale interval encompassing the experimentally measurable average grain length, a highly structured dependence of local current density on PLRE, considering different ticks of PANI surfaces. (paper)

  19. The Effect of Phosphate on the Morphological and Spectroscopic Properties of Copper Pipes Experiencing Localized Corrosion

    Science.gov (United States)

    Extensive localized or pitting corrosion of copper pipes used in household drinking-water plumbing can eventually lead to pinhole water leaks that may result in water damage, mold growth, and costly repairs. A growing number of problems have been associated with high pH and low ...

  20. Interaction between Cities and Climate Change: Modelling Urban Morphology and Local Urban Planning Scenarios from Open Datasets across European Cities

    Science.gov (United States)

    Thomas, Bart; Stevens, Catherine; Grommen, Mart

    2015-04-01

    Cities are characterised by a large spatiotemporal diversity of local climates induced by a superposition of various factors and processes interacting at global and regional scales but also at the micro level such as the urban heat island effect. As urban areas are known as 'hot spots' prone to climate and its variability over time leading to changes in the severity and occurrence of extreme events such as heat waves, it is of crucial importance to capture the spatial heterogeneity resulting from variations in land use land cover (LULC) and urban morphology in an effective way to drive local urban climate simulations. The first part of the study conducted in the framework of the NACLIM FP7 project funded by the European Commission focusses on the extraction of land surface parameters linked to urban morphology characteristics from detailed 3D city models and their relationship with openly accessible European datasets such as the degree of soil sealing and disaggregated population densities from the European Environment Agency (EEA) and the Joint Research Centre (JRC). While it has been demonstrated that good correlations can be found between those datasets and the planar and frontal area indices, the present work has expanded the research to other urban morphology parameters including the average and variation of the building height and the sky view factor. Correlations up to 80% have been achieved depending on the considered parameter and the specific urban area including the cities of Antwerp (Belgium), Berlin (Germany) and Almada (Portugal) represented by different climate and urban characteristics. Moreover, the transferability of the established relations has been investigated across the various cities. Secondly, a flexible and scalable approach as a function of the required the level of detail has been elaborated to update the various morphology parameters in case of integration with urban planning data to analyse the local impact of future land use scenarios

  1. VP-Nets : Efficient automatic localization of key brain structures in 3D fetal neurosonography.

    Science.gov (United States)

    Huang, Ruobing; Xie, Weidi; Alison Noble, J

    2018-04-23

    Three-dimensional (3D) fetal neurosonography is used clinically to detect cerebral abnormalities and to assess growth in the developing brain. However, manual identification of key brain structures in 3D ultrasound images requires expertise to perform and even then is tedious. Inspired by how sonographers view and interact with volumes during real-time clinical scanning, we propose an efficient automatic method to simultaneously localize multiple brain structures in 3D fetal neurosonography. The proposed View-based Projection Networks (VP-Nets), uses three view-based Convolutional Neural Networks (CNNs), to simplify 3D localizations by directly predicting 2D projections of the key structures onto three anatomical views. While designed for efficient use of data and GPU memory, the proposed VP-Nets allows for full-resolution 3D prediction. We investigated parameters that influence the performance of VP-Nets, e.g. depth and number of feature channels. Moreover, we demonstrate that the model can pinpoint the structure in 3D space by visualizing the trained VP-Nets, despite only 2D supervision being provided for a single stream during training. For comparison, we implemented two other baseline solutions based on Random Forest and 3D U-Nets. In the reported experiments, VP-Nets consistently outperformed other methods on localization. To test the importance of loss function, two identical models are trained with binary corss-entropy and dice coefficient loss respectively. Our best VP-Net model achieved prediction center deviation: 1.8 ± 1.4 mm, size difference: 1.9 ± 1.5 mm, and 3D Intersection Over Union (IOU): 63.2 ± 14.7% when compared to the ground truth. To make the whole pipeline intervention free, we also implement a skull-stripping tool using 3D CNN, which achieves high segmentation accuracy. As a result, the proposed processing pipeline takes a raw ultrasound brain image as input, and output a skull-stripped image with five detected key brain

  2. INVESTIGATING THE CORE MORPHOLOGY-SEYFERT CLASS RELATIONSHIP WITH HUBBLE SPACE TELESCOPE ARCHIVAL IMAGES OF LOCAL SEYFERT GALAXIES

    International Nuclear Information System (INIS)

    Rutkowski, M. J.; Hegel, P. R.; Kim, Hwihyun; Windhorst, R. A.; Tamura, Kazuyuki

    2013-01-01

    The unified model of active galactic nuclei (AGNs) has provided a successful explanation for the observed diversity of AGNs in the local universe. However, recent analysis of multi-wavelength spectral and image data suggests that the unified model is only a partial theory of AGNs, and may need to be augmented to remain consistent with all observations. Recent studies using high spatial resolution ground- and space-based observations of local AGNs show that Seyfert class and the ''core'' (r ∼ 20 ) and a new method which implements the Source Extractor software for feature detection in unsharp-mask images. This new method is designed explicitly to detect dust features in the images. We use our automated approach to classify the morphology of the AGN cores and determine that Sy2 galaxies visually appear, on average, to have more dust features than Sy1. With the exception of this ''dustiness'' however, we do not measure a strong correlation between the dust morphology and the Seyfert class of the host galaxy using quantitative techniques. We discuss the implications of these results in the context of the unified model.

  3. The Endosome Localized Arf-GAP AGAP1 Modulates Dendritic Spine Morphology Downstream of the Neurodevelopmental Disorder Factor Dysbindin

    Directory of Open Access Journals (Sweden)

    Miranda Arnold

    2016-09-01

    Full Text Available AGAP1 is an Arf1 GTPase activating protein that interacts with the vesicle-associated protein complexes adaptor protein 3 (AP-3 and Biogenesis of Lysosome Related Organelles Complex-1 (BLOC-1. Overexpression of AGAP1 in non-neuronal cells results in an accumulation of endosomal cargoes, which suggests a role in endosome-dependent traffic. In addition, AGAP1 is a candidate susceptibility gene for two neurodevelopmental disorders, autism spectrum disorder (ASD and schizophrenia (SZ; yet its localization and function in neurons have not been described. Here, we describe that AGAP1 localizes to axons, dendrites, dendritic spines, and synapses, colocalizing preferentially with markers of early and recycling endosomes. Functional studies reveal overexpression and down-regulation of AGAP1 affects both neuronal endosomal trafficking and dendritic spine morphology, supporting a role for AGAP1 in the recycling endosomal trafficking involved in their morphogenesis. Finally, we determined the sensitivity of AGAP1 expression to mutations in the DTNBP1 gene, which is associated with neurodevelopmental disorder, and found that AGAP1 mRNA and protein levels are selectively reduced in the null allele of the mouse orthologue of DTNBP1. We postulate that endosomal trafficking contributes to the pathogenesis of neurodevelopmental disorders affecting dendritic spine morphology, and thus excitatory synapse structure and function.

  4. Localization of [18F]fluorodeoxyglucose in mouse brain neurons with micro-autoradiography

    International Nuclear Information System (INIS)

    Yamada, Susumu; Kubota, Roko; Kubota, Kazuo; Ishiwata, Kiichi; Ido, Tatsuo

    1990-01-01

    This is the first study of micro-autoradiography (micro-ARG) for [ 18 F]2-fluoro-2-deoxy-D-glucose ([ 18 F]FDG). The localization of [ 18 F]FDG was demonstrated in dendrites of neuron and also in the myelinated axon in mouse normal brain in vivo. The nucleolus was relatively free of label. The counted silver grain numbers in autoradiogram were linearly correlated to the 18 F radioactivities in the specimen. The micro-ARG using positron emitting 18 F is a very time-saving technique with 4 hours exposure compared with the conventional method using 3 H- or 14 C-labelled tracers. (author)

  5. The effect of brain lesions on sound localization in complex acoustic environments.

    Science.gov (United States)

    Zündorf, Ida C; Karnath, Hans-Otto; Lewald, Jörg

    2014-05-01

    Localizing sound sources of interest in cluttered acoustic environments--as in the 'cocktail-party' situation--is one of the most demanding challenges to the human auditory system in everyday life. In this study, stroke patients' ability to localize acoustic targets in a single-source and in a multi-source setup in the free sound field were directly compared. Subsequent voxel-based lesion-behaviour mapping analyses were computed to uncover the brain areas associated with a deficit in localization in the presence of multiple distracter sound sources rather than localization of individually presented sound sources. Analyses revealed a fundamental role of the right planum temporale in this task. The results from the left hemisphere were less straightforward, but suggested an involvement of inferior frontal and pre- and postcentral areas. These areas appear to be particularly involved in the spectrotemporal analyses crucial for effective segregation of multiple sound streams from various locations, beyond the currently known network for localization of isolated sound sources in otherwise silent surroundings.

  6. Selective probe of the morphology and local vibrations at carbon nanoasperities

    Energy Technology Data Exchange (ETDEWEB)

    Fujimori, Toshihiko; Endo, Morinobu; Kaneko, Katsumi [Research Center for Exotic Nanocarbons (JST), Shinshu University, 4-17-1, Wakasato, Nagano-city 380-8553 (Japan); Urita, Koki; Moriguchi, Isamu [Department of Applied Chemistry, Faculty of Engineering, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki-shi, Nagasaki 852-8521 (Japan); Tomanek, David [Physics and Astronomy Department, Michigan State University, East Lansing, Michigan 48824 (United States); Ohba, Tomonori [Department of Chemistry, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522 (Japan)

    2012-02-14

    We introduce a way to selectively probe local vibration modes at nanostructured asperities such as tips of carbon nanohorns. Our observations benefit from signal amplification in surface-enhanced Raman scattering (SERS) at sites near a silver surface. We observe nanohorn tip vibration modes in the range 200-500 cm{sup -1}, which are obscured in regular Raman spectra. Ab initio density functional calculations assign modes in this frequency range to local vibrations at the nanohorn cap resembling the radial breathing mode of fullerenes. Careful interpretation of our SERS spectra indicates presence of caps with 5 or 6 pentagons, which are chemically the most active sites. Changes in the peak intensities and frequencies with time indicate that exposure to laser irradiation may cause structural rearrangements at the cap.

  7. [Functional and morphological study of the local and systemic hypothermia on dog's liver].

    Science.gov (United States)

    Siqueira, Venilton José; Taha, Murched Omar; Fagundes, Djalma José; Gomes, Paulo de Oliveira; Juliano, Yara; Bruzzadelli, Renata Marcon zanelatto; Caputto, Lucélia Rita Galdino

    2005-01-01

    To compare hepatic lesions produced by two types of hypothermia; the systemic and the local or topic. Twenty dogs distributed in two groups were studied: the first submitted to local hypothermia and the second to systemic hypothermia. In all groups, biochemical dosages for alanina allytransferase (A.L.T.), aspartate aminotrasnferase (A.S.T.) and direct bilirubin (T.D.), conventional optical microscopy and electronic transmission microscopy were performed in times T0, Test, and T60, that is, before the hypothermia (T0), after temperature stabilization at 10 degrees lower than initial temperature (Test), and after sixty minutes of hypothermia (T60). The data analysis, both of the biochemical profile and of the microscopy showed that in the group of animals with selective hypothermia, the hepatic lesions were more intense when compared to the systemic hypothermia group. The selective hypothermia causes more lesions to the liver than the systemic.

  8. Studies of the correlations between morphological brain changes on MRI and computerized EEG changes in schizophrenics

    International Nuclear Information System (INIS)

    Takeuchi, Kouzou

    1992-01-01

    Twenty eight schizophrenic patients, who ranged in age from 21 to 39 years with a mean of 30.2, and 21 age- and sex-matched normal volunteers were studied by magnetic resonance (MR) imaging and electroencephalography (EEG). ALl subjects were given informed consent prior to the present study. They were all right-handed. Schizophrenic patients showed a significantly larger ventricular brain ratio (VBR) on the axial and coronal planes as compared with the control. The bilateral anterior horns, left body, left posterior horn of the lateral ventricle and the third ventricle were significantly larger in schizophrenic patients than the control. The middle half of the corpus callosum was smaller in schizophrenic patients than the control. Schizophrenia was more likely associated not only with delta and theta activities in the centro-parieto-occipital regions but also with beta 1 and beta 2 activities in the front-central regions. In schizophrenic patients, however, alpha 2 activity was markedly decreased in all regions. There were significant positive correlations between the total scores for brief psychiatric rating scale (BPRS) and the areas of the left anterior and posterior horns of the lateral ventricle. The total BPRS scores positively correlated with the area of the third ventricle. In addition, positive correlations were significant between delata activity and the area of the left anterior horn of the lateral ventricle, between delta activity and the area of the third ventricle, and between beta 1 activity and the area of left posteior horn of the lateral ventricle. These results suggest that a dilated third ventricle is associated with electrophysiological brain pathology and psychopathology in schizophrenic patients. (N.K.) 76 refs

  9. Localization, correlation, and visualization of electroencephalographic surface electrodes and brain anatomy in epilepsy studies

    Science.gov (United States)

    Brinkmann, Benjamin H.; O'Brien, Terence J.; Robb, Richard A.; Sharbrough, Frank W.

    1997-05-01

    Advances in neuroimaging have enhanced the clinician's ability to localize the epileptogenic zone in focal epilepsy, but 20-50 percent of these cases still remain unlocalized. Many sophisticated modalities have been used to study epilepsy, but scalp electrode recorded electroencephalography is particularly useful due to its noninvasive nature and excellent temporal resolution. This study is aimed at specific locations of scalp electrode EEG information for correlation with anatomical structures in the brain. 3D position localizing devices commonly used in virtual reality systems are used to digitize the coordinates of scalp electrodes in a standard clinical configuration. The electrode coordinates are registered with a high- resolution MRI dataset using a robust surface matching algorithm. Volume rendering can then be used to visualize the electrodes and electrode potentials interpolated over the scalp. The accuracy of the coordinate registration is assessed quantitatively with a realistic head phantom.

  10. Low-level x-irradiation of the brain during development: morphological, physiological, and behavioral consequences. Progress report, September 1, 1974--August 31, 1975

    International Nuclear Information System (INIS)

    Altman, J.

    1975-01-01

    Progress is reported on studies on the effects of exposure to low-dose x radiation on the developing brain of rats. Brief summaries of results of morphological, physiological, and behavioral studies on rats exposed using various x-irradiation schedules are included. A list of papers published and submitted for publication during the period is included. (U.S.)

  11. Autoradiographic localization of nicotinic acetylcholine receptors in the brain of the zebra finch (Poephila guttata)

    International Nuclear Information System (INIS)

    Watson, J.T.; Adkins-Regan, E.; Whiting, P.; Lindstrom, J.M.; Podleski, T.R.

    1988-01-01

    We have localized nicotinic acetylcholine receptors in the zebra finch brain by using three 125I-labelled ligands: alpha bungarotoxin and two monoclonal antibodies to neuronal nicotinic receptors. Unfixed brains from intact adult male and female zebra finches were prepared for in vitro autoradiography. Low-resolution film autoradiograms and high-resolution emulsion autoradiograms were prepared for each of the three ligands. The major brain structures that bind all three of the ligands are hippocampus; hyperstriatum dorsalis; hyperstriatum ventralis; nucleus lentiformis mesencephali; nucleus pretectalis, some layers of the optic tectum; nucleus mesencephalicus lateralis; pars dorsalis; locus ceruleus; and all cranial motor nuclei except nucleus nervi hypoglossi. The major structures labelled only by [125I]-alpha bungarotoxin binding included hyperstriatum accessorium and the nuclei: preopticus medialis, medialis hypothalami posterioris, semilunaris, olivarius inferior, and the periventricular organ. Of the song control nuclei, nucleus magnocellularis of the anterior neostriatum; hyperstriatum ventralis, pars caudalis; nucleus intercollicularis; and nucleus hypoglossus were labelled. The binding patterns of the two antibodies were similar to one another but not identical. Both labelled nucleus spiriformis lateralis and nucleus geniculatus lateralis, pars ventralis especially heavily and also labelled the nucleus habenula medialis; nucleus subpretectalis; nucleus isthmi, pars magnocellularis; nucleus reticularis gigantocellularis; nucleus reticularis lateralis; nucleus tractus solitarii; nucleus vestibularis dorsolateralis; nucleus vestibularis lateralis; nucleus descendens nervi trigemini; and the deep cerebellar nuclei

  12. Histological and elemental changes in the rat brain after local irradiation with carbon ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Sentaro; Sun, Xue-Zhi; Kubota, Yoshihisa; Takai, Nobuhiko; Nojima, Kumie [National Inst. of Radiological Sciences, Chiba (Japan)

    2002-06-01

    The left cerebral hemispheres of adult Sprague-Dawley rat brains were irradiated at doses of 30, 50, or 100 Gy with charged carbon particles (290 MeV/nucleon; 5 mm spread-out Bragg peak). The spread-out Bragg peak used here successfully and satisfactorily retained its high-dose localization in the defined region. A histological examination showed that necrotic tissue damage, hemorrhage in the thalamus, and vasodilatations around the necrotic region were induced at 8 weeks after 100 Gy irradiation. The regions with tissue damage correlated well with those expected from the radiation-dose distribution, indicating an advantage of charged carbon particles for irradiating restricted brain regions. An X-ray fluorescent analysis demonstrated a decrease in the concentrations of K and P, and an increase in the concentrations of Cl, Fe, Zn in the damaged region at 8 weeks post-irradiation, though no significant changes were observed before 4 weeks of post-irradiation. This may indicate that even the very high radiation doses used here did not induce acute and immediate neuronal cell death, in contrast with ischemic brain injury where acute neuronal cell death occurred and the elemental concentrations changed within a day after the induction of ischemia. (author)

  13. Decoding of Human Movements Based on Deep Brain Local Field Potentials Using Ensemble Neural Networks

    Directory of Open Access Journals (Sweden)

    Mohammad S. Islam

    2017-01-01

    Full Text Available Decoding neural activities related to voluntary and involuntary movements is fundamental to understanding human brain motor circuits and neuromotor disorders and can lead to the development of neuromotor prosthetic devices for neurorehabilitation. This study explores using recorded deep brain local field potentials (LFPs for robust movement decoding of Parkinson’s disease (PD and Dystonia patients. The LFP data from voluntary movement activities such as left and right hand index finger clicking were recorded from patients who underwent surgeries for implantation of deep brain stimulation electrodes. Movement-related LFP signal features were extracted by computing instantaneous power related to motor response in different neural frequency bands. An innovative neural network ensemble classifier has been proposed and developed for accurate prediction of finger movement and its forthcoming laterality. The ensemble classifier contains three base neural network classifiers, namely, feedforward, radial basis, and probabilistic neural networks. The majority voting rule is used to fuse the decisions of the three base classifiers to generate the final decision of the ensemble classifier. The overall decoding performance reaches a level of agreement (kappa value at about 0.729±0.16 for decoding movement from the resting state and about 0.671±0.14 for decoding left and right visually cued movements.

  14. Localized 31P magnetic resonance spectroscopy of large pediatric brain tumors

    International Nuclear Information System (INIS)

    Sutton, L.N.; Lenkinski, R.E.; Cohen, B.H.; Packer, R.J.; Zimmerman, R.A.

    1990-01-01

    Fourteen children aged 1 week to 16 years, with a variety of large or superficial brain tumors, underwent localized in vivo 31 P magnetic resonance spectroscopy of their tumor. Quantitative spectral analysis was performed by measuring the area under individual peaks using a computer algorithm. In eight patients with histologically benign tumors the spectra were considered to be qualitatively indistinguishable from normal brain. The phosphocreatine/inorganic phosphate ratio (PCr/Pi) averaged 2.0. Five patients had histologically malignant tumors; qualitatively, four of these were considered to have abnormal spectra, showing a decrease in the PCr peak. The PCr/Pi ratio for this group averaged 0.85, which was significantly lower than that seen in the benign tumor group (p less than 0.05). No difference between the two groups was seen in adenosine triphosphate or phosphomonoesters. It is concluded that a specific metabolic fingerprint for childhood brain tumors may not exist, but that some malignant tumors show a pattern suggestive of ischemia

  15. Characterization and localization of arginine vasotocin receptors in the brain and kidney of an amphibian

    International Nuclear Information System (INIS)

    Boyd, S.K.

    1987-01-01

    Because arginine vasotocin (AVT) activates male sexual behaviors in the rough-skinned newt (Taricha granulosa), quantitative autoradiography with radiolabeled arginine vasopressin ( 3 H-AVP) was used to localize and characterize putative AVT receptors in the brain of this amphibian. Binding of 3 H-AVP to sites within the medial pallium was saturable, specific, reversible, of high affinity and low capacity. These binding sites appear to represent authentic central nervous system receptors for AVT. Furthermore, ligand specificity for the binding sites in this amphibian differs from that reported for AVP binding sites in rat brains. Dense concentrations of specific binding sites were located in the olfactory nerve as it entered the olfactory bulb within the medial pallium, dorsal pallium, and amygdala pars lateralis of the telencephalon, and in the tegmental region of the medulla. Concentrations of binding sites differed significantly among various brain regions. A comparison of male and female newts collected during the breeding season revealed no sexual dimorphism. These areas may represent site(s) of action where AVT elicits sexual behaviors in male T. granulosa

  16. How Localized are Language Brain Areas? A Review of Brodmann Areas Involvement in Oral Language.

    Science.gov (United States)

    Ardila, Alfredo; Bernal, Byron; Rosselli, Monica

    2016-02-01

    The interest in understanding how language is "localized" in the brain has existed for centuries. Departing from seven meta-analytic studies of functional magnetic resonance imaging activity during the performance of different language activities, it is proposed here that there are two different language networks in the brain: first, a language reception/understanding system, including a "core Wernicke's area" involved in word recognition (BA21, BA22, BA41, and BA42), and a fringe or peripheral area ("extended Wernicke's area:" BA20, BA37, BA38, BA39, and BA40) involved in language associations (associating words with other information); second, a language production system ("Broca's complex:" BA44, BA45, and also BA46, BA47, partially BA6-mainly its mesial supplementary motor area-and extending toward the basal ganglia and the thalamus). This paper additionally proposes that the insula (BA13) plays a certain coordinating role in interconnecting these two brain language systems. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  17. Spatially localized 1H NMR spectra of metabolites in the human brain

    International Nuclear Information System (INIS)

    Hanstock, C.C.; Rothman, D.L.; Jue, T.; Shulman, R.G.; Prichard, J.W.

    1988-01-01

    Using a surface coil, the authors have obtained 1 H NMR spectra from metabolites in the human brain. Localization was achieved by combining depth pulses with image-selected in vivo spectroscopy magnetic field gradient methods. 1 H spectra in which total creatine (3.03 ppm) has a signal/noise ratio of 95:1 were obtained in 4 min from 14 ml of brain. A resonance at 2.02 ppm consisting predominantly of N-acetylaspartate was measured relative to the creatine peak in gray and white matter, and the ratio was lower in the white matter. The spin-spin relaxation times of N-acetylaspartate and creatine were measured in white and gray matter and while creatine relaxation times were the same in both, the N-acetylaspartate relaxation time was longer in white matter. Lactate was detected in the normoxic brain and the average of three measurements was ∼0.5 mM from comparison with the creatine plus phosphocreatine peak, which was assumed to be 10.5 mM

  18. Niebla ceruchis from Laguna Figueroa: dimorphic spore morphology and secondary compounds localized in pycnidia and apothecia

    Science.gov (United States)

    Enzien, M.; Margulis, L.

    1988-01-01

    During and after the floods of 1979-80 Niebla ceruchis growing epiphytically on Lycium brevipes was one of the dominant aspects of the vegetation in the coastal dunal complex bordering the microbial mats at Laguna Figueroa, Baja California Norte, Mexico. The lichen on denuded branches of Lycium was far more extensively distributed than Lycium lacking lichen. Unusual traits of this Niebla ceruchis strain, namely localization of lichen compounds in the mycobiont reproductive structures (pycnidia and apothecia) and simultaneous presence of bilocular and quadrilocular ascospores, are reported. The abundance of this coastal lichen cover at the microbial mat site has persisted through April 1988.

  19. Local progression and pseudo progression after single fraction or fractionated stereotactic radiotherapy for large brain metastases. A single centre study

    Energy Technology Data Exchange (ETDEWEB)

    Wiggenraad, R.; Verbeek-de Kanter, A.; Mast, M. [Radiotherapy Centre West, The Hague (Netherlands); Molenaar, R. [Diaconessenhuis, Leiden (Netherlands). Dept. of Neurology; Lycklama a Nijeholt, G. [Medical Centre Haagladen, The Hague (Netherlands). Dept. of Radiology; Vecht, C. [Medical Centre Haagladen, The Hague (Netherlands). Dept. of Neurology; Struikmans, H. [Radiotherapy Centre West, The Hague (Netherlands); Leiden Univ. Medical Centre (Netherlands). Dept. of Radiotherapy; Kal, H.B.

    2012-08-15

    Purpose: The 1-year local control rates after single-fraction stereotactic radiotherapy (SRT) for brain metastases > 3 cm diameter are less than 70%, but with fractionated SRT (FSRT) higher local control rates have been reported. The purpose of this study was to compare our treatment results with SRT and FSRT for large brain metastases. Materials and methods: In two consecutive periods, 41 patients with 46 brain metastases received SRT with 1 fraction of 15 Gy, while 51 patients with 65 brain metastases received FSRT with 3 fractions of 8 Gy. We included patients with brain metastases with a planning target volume of > 13 cm{sup 3} or metastases in the brainstem. Results: The minimum follow-up of patients still alive was 22 months. Comparing 1 fraction of 15 Gy with 3 fractions of 8 Gy, the 1-year rates of freedom from any local progression (54% and 61%, p = 0.93) and pseudo progression (85% and 75%, p = 0.25) were not significantly different. Overall survival rates were also not different. Conclusion: The 1-year local progression and pseudo progression rates after 1 fraction of 15 Gy or 3 fractions of 8 Gy for large brain metastases and metastases in the brainstem are similar. For better local control rates, FSRT schemes with a higher biological equivalent dose may be necessary. (orig.)

  20. Local progression and pseudo progression after single fraction or fractionated stereotactic radiotherapy for large brain metastases. A single centre study

    International Nuclear Information System (INIS)

    Wiggenraad, R.; Verbeek-de Kanter, A.; Mast, M.; Molenaar, R.; Lycklama a Nijeholt, G.; Vecht, C.; Struikmans, H.; Leiden Univ. Medical Centre; Kal, H.B.

    2012-01-01

    Purpose: The 1-year local control rates after single-fraction stereotactic radiotherapy (SRT) for brain metastases > 3 cm diameter are less than 70%, but with fractionated SRT (FSRT) higher local control rates have been reported. The purpose of this study was to compare our treatment results with SRT and FSRT for large brain metastases. Materials and methods: In two consecutive periods, 41 patients with 46 brain metastases received SRT with 1 fraction of 15 Gy, while 51 patients with 65 brain metastases received FSRT with 3 fractions of 8 Gy. We included patients with brain metastases with a planning target volume of > 13 cm 3 or metastases in the brainstem. Results: The minimum follow-up of patients still alive was 22 months. Comparing 1 fraction of 15 Gy with 3 fractions of 8 Gy, the 1-year rates of freedom from any local progression (54% and 61%, p = 0.93) and pseudo progression (85% and 75%, p = 0.25) were not significantly different. Overall survival rates were also not different. Conclusion: The 1-year local progression and pseudo progression rates after 1 fraction of 15 Gy or 3 fractions of 8 Gy for large brain metastases and metastases in the brainstem are similar. For better local control rates, FSRT schemes with a higher biological equivalent dose may be necessary. (orig.)

  1. Microglia show altered morphology and reduced arborization in human brain during aging and Alzheimer's disease.

    Science.gov (United States)

    Davies, Danielle S; Ma, Jolande; Jegathees, Thuvarahan; Goldsbury, Claire

    2017-11-01

    Changes in microglia function are involved in Alzheimer's disease (AD) for which ageing is the major risk factor. We evaluated microglial cell process morphologies and their gray matter coverage (arborized area) during ageing and in the presence and absence of AD pathology in autopsied human neocortex. Microglial cell processes were reduced in length, showed less branching and reduced arborized area with aging (case range 52-98 years). This occurred during normal ageing and without microglia dystrophy or changes in cell density. There was a larger reduction in process length and arborized area in AD compared to aged-matched control microglia. In AD cases, on average, 49%-64% of microglia had discontinuous and/or punctate Iba1 labeled processes instead of continuous Iba1 distribution. Up to 16% of aged-matched control microglia displayed discontinuous or punctate features. There was no change in the density of microglial cell bodies in gray matter during ageing or AD. This demonstrates that human microglia show progressive cell process retraction without cell loss during ageing. Additional changes in microglia occur with AD including Iba1 protein puncta and discontinuity. We suggest that reduced microglial arborized area may be an aging-related correlate of AD in humans. These variations in microglial cells during ageing and in AD could reflect changes in neural-glial interactions which are emerging as key to mechanisms involved in ageing and neurodegenerative disease. © 2016 International Society of Neuropathology.

  2. Morphological Variation of Six Pigmented Rice Local Varieties Grown in Organic Rice Field in Sengguruh Village, Kepanjen District, Malang Regency

    Directory of Open Access Journals (Sweden)

    Shinta

    2014-05-01

    Full Text Available Indonesia is the third richest country for pigmented rice source such as Wojalaka black rice of East Nusa Tenggara (NTT, Manggarai of NTT, Toraja of South Sulawesi, Cempo Ireng of Central Java and red rice of Aek Sibundong (leading variety and Baubau of Southeast Sulawesi. However, the morphological character of pigmented rice in Indonesia is less reported. The objective of research was to compare the morphological variation of root, stem, leaf, panicle, floret and the colour of milk mature grain and mature grain by observing the vegetative and generative parts of six local rice varieties. Research had been conducted from February 2012 to February 2014 in Sengguruh Village, Kepanjen District, Malang Regency. This study type was quasi-experiment with eleven replications. Group Random Design was used. The observation was given upon vegetative, reproductive and maturity phases as groups. Independent variables in this study were six rice varieties, while the dependent variable was morphological variation (root, stem, leaf, panicle, floret, milk mature grain and mature grain. The analysis of multivariate data in cluster and bip lot was carried out with PAST. The result of the study indicated that there was morphological difference on stem, leaf, panicle, floret, milk mature grain and mature grain. The colour of the stem in Aek Sibundong variety was purple, while that of other varieties was green. Toraja and Manggarai varieties had the highest height with 163-168 cm, followed by Cempo Ireng with 139 cm, Wojalaka and Baubau with 110-112 cm. Aek Sibundong Variety had the lowest height with 99 cm. Aek Sibundong and Wojalaka varieties had 6-7 internodes which were the greatest number of internode, while other varieties only had 4-5 internodes. Some varieties, such as Aek Sibundong, Wojalaka and Baubau had short and small leaf. The leaflet angle of Aek Sibundong and Baubau were 14o and it might be said as upright, while that of Wojalaka was 43o or moderate

  3. [Local brain activity in different motor subtypes of Parkinson's disease with fMRI].

    Science.gov (United States)

    Hou, Ya'nan; Zhang, Jiarong; Chen, Biao; Wu, Tao

    2015-02-17

    To explore the changes of local brain activity in motor subtypes of Parkinson's disease (PD) with functional magnetic resonance imaging (fMRI). A total of 60 idiopathic PD and 30 age- and gender-matched normal controls were examined with resting-state fMRI from January 2013 to March 2014. All subjects gave their written informed consent for the study. The amplitude of low-frequency fluctuation (ALFF) was calculated to measure local brain activity. The PD patients were divided into two groups of tremor dominant (TD) and postural instability/gait difficulty (PIGD) (n = 30 each). All subjects gave their written in formed consent for the study.One-way ANOVA and post-hoc t-test were performed to detect the differences of local brain activity between PD and normal subjects. And the correlations were examined between ALFF, scores and levodopa dose. Compared with normal subjects, the TD group showed increased activity in bilateral cerebellums (-37, -47, -38), thalamus (-18, -17,0), pons (-3, -23, -37) and left precentral gyrus (-41, -30, 46) versus decreased activity in bilateral frontal lobes (-13, 69, 6), temporal lobes (-42, 18, -21), left insula (-32, 22, 2) and left anterior cingulated (-7, 32, -5). The PIGD group showed increased activity in right postcentral gyrus (63, -18, 39) and decreased activity in bilateral putamens (-24, 12, 3), pre-supplementary motor area (10, 10, 58), frontal lobes (15, -15, 57), temporal lobes (-39, 18, -3) and left insula (-29, 20, 11). Compared with PIGD, the TD group showed increased activity in temporal lobes, but decreased activity in frontal lobes. Additionally, ALFF in bilateral cerebellums and frontal lobes was positively correlated with TD scores while ALFF in left precentral gyrus, bilateral putamens and temporal lobes negatively correlated with TD scores. ALFF in bilateral frontal lobes and left temporal lobe was positively correlated with PIGD scores.However, in right postcentral gyrus and bilateral putamens, ALFF was

  4. PRENATAL EXPOSURE TO MATERNAL AND PATERNAL DEPRESSIVE SYMPTOMS AND BRAIN MORPHOLOGY: A POPULATION-BASED PROSPECTIVE NEUROIMAGING STUDY IN YOUNG CHILDREN.

    Science.gov (United States)

    El Marroun, Hanan; Tiemeier, Henning; Muetzel, Ryan L; Thijssen, Sandra; van der Knaap, Noortje J F; Jaddoe, Vincent W V; Fernández, Guillén; Verhulst, Frank C; White, Tonya J H

    2016-07-01

    Prenatal depressive symptoms have been associated with multiple adverse outcomes. Previously, we demonstrated that prenatal depressive symptoms were associated with impaired growth of the fetus and increased behavioral problems in children aged between 1.5 and 6 years. In this prospective study, we aimed to assess whether prenatal maternal depressive symptoms at 3 years have long-term consequences on brain development in a cohort of children aged 6-10 years. As a contrast, the association of paternal depressive symptoms during pregnancy and brain morphology was assessed to serve as a marker of background confounding due to shared genetic and environmental family factors. We assessed parental depressive symptoms during pregnancy with the Brief Symptom Inventory. At approximately 8 years of age, we collected structural neuroimaging data, using cortical thickness, surface area, and gyrification as outcomes (n = 654). We found that exposure to prenatal maternal depressive symptoms during pregnancy was associated with a thinner superior frontal cortex in the left hemisphere. Additionally, prenatal maternal depressive symptoms were related to larger caudal middle frontal area in the left hemisphere. Maternal depressive symptoms at 3 years were not associated with cortical thickness, surface area, or gyrification in the left and right hemispheres. No effects of paternal depressive symptoms on brain morphology were observed. Prenatal maternal depressive symptoms were associated with differences in brain morphology in children. It is important to prevent, identify, and treat depressive symptoms during pregnancy as it may have long-term consequences on child brain development. © 2016 Wiley Periodicals, Inc.

  5. Noninvasive, localized, and transient brain drug delivery using focused ultrasound and microbubbles

    Science.gov (United States)

    Choi, James J.

    In the United States, Alzheimer's disease (AD), Parkinson's disease (PD), and brain cancer caused 72,432, 19,566 and 12,886 deaths in 2006, respectively. Whereas the number of deaths due to major disorders such as heart disease, stroke, and prostate cancer have decreased since 2006, deaths attributed to AD, PD, and brain cancer have not. Treatment options for patients with CNS disorders remain limited despite significant advances in knowledge of CNS disease pathways and development of neurologically potent agents. One of the major obstacles is that the cerebral microvasculature is lined by a specialized and highly regulated blood-brain barrier (BBB) that prevents large agents from entering the brain extracellular space. The purpose of this dissertation is to design a noninvasive, localized, and transient BBB opening system using focused ultrasound (FUS) and determine ultrasound and microbubble conditions that can effectively and safely deliver large pharmacologically-relevant-sized agents to the brain. To meet this end, an in vivo mouse brain drug delivery system using a stereotactic-based targeting method was developed. FUS was applied noninvasively through the intact skin and skull, which allowed for long-term and high-throughput studies. With this system, more than 150 mice were exposed to one of 31 distinct acoustic and microbubble conditions. The feasibility of delivering a large MRI contrast agent was first demonstrated in vivo in both wild-type and transgenic Alzheimer's disease model (APP/PS1) mice. A wide range of acoustic and microbubble conditions were then evaluated for their ability to deliver agents to a target region. Interestingly, the possible design space of parameters was found to be vast and different conditions resulted in distinct spatial distributions and doses delivered. In particular, BBB opening was shown to be dependent on the microbubble diameter, acoustic pressure, pulse repetition frequency (PRF), and pulse length (PL). Each set of

  6. Morphology and structure of Homo erectus humeri from Zhoukoudian, Locality 1

    Directory of Open Access Journals (Sweden)

    Song Xing

    2018-01-01

    Full Text Available Background Regional diversity in the morphology of the H. erectus postcranium is not broadly documented, in part, because of the paucity of Asian sites preserving postcranial fossils. Yet, such an understanding of the initial hominin taxon to spread throughout multiple regions of the world is fundamental to documenting the adaptive responses to selective forces operating during this period of human evolution. Methods The current study reports the first humeral rigidity and strength properties of East Asian H. erectus and places its diaphyseal robusticity into broader regional and temporal contexts. We estimate true cross-sectional properties of Zhoukoudian Humerus II and quantify new diaphyseal properties of Humerus III using high resolution computed tomography. Comparative data for African H. erectus and Eurasian Late Pleistocene H. sapiens were assembled, and new data were generated from two modern Chinese populations. Results Differences between East Asian and African H. erectus were inconsistently expressed in humeral cortical thickness. In contrast, East Asian H. erectus appears to exhibit greater humeral robusticity compared to African H. erectus when standardizing diaphyseal properties by the product of estimated body mass and humeral length. East Asian H. erectus humeri typically differed less in standardized properties from those of side-matched Late Pleistocene hominins (e.g., Neanderthals and more recent Upper Paleolithic modern humans than did African H. erectus, and often fell in the lower range of Late Pleistocene humeral rigidity or strength properties. Discussion Quantitative comparisons indicate that regional variability in humeral midshaft robusticity may characterize H. erectus to a greater extent than presently recognized. This may suggest a temporal difference within H. erectus, or possibly different ecogeographical trends and/or upper limb loading patterns across the taxon. Both discovery and analysis of more adult H

  7. Influence of obstetric complication severity on brain morphology in schizophrenia: an MR study

    International Nuclear Information System (INIS)

    Bersani, G.; Quartini, A.; Manuali, G.; Iannitelli, A.; Pucci, D.; Conforti, F.; Di Biasi, C.; Gualdi, G.

    2009-01-01

    The purpose of this study was to determine if a causal relationship exists between obstetric complications (OCs) severity and linear magnetic resonance (MR) measurements of brain atrophy in patients with schizophrenia. Linear measurements of ventricular enlargement (bifrontal span, Evans ratio, and bicaudate ratio) and hippocampal atrophy (interuncal distance) were completed on MR images obtained in 47 patients with schizophrenia. Regression analysis was used to look at association with OCs severity, assessed by the ''Midwife protocol'' of Parnas and colleagues. The relationship between MR measurements and phenomenologic variables such as age at onset, illness duration, and exposure to antipsychotic medications was explored. The relationship between MR measurements, OCs severity, and symptom presentation was also investigated. OCs severity was significantly associated with MR measurements of ventricular enlargement (bifrontal span, Evans ratio). As the severity of OCs increased, bifrontal span and Evans ratio increased. This effect was independent of age at onset, illness duration, or even antipsychotic treatment. Interestingly, bifrontal span, Evans ratio, and OCs severity score all showed a significant positive correlation with hallucinatory symptomatology. Although confirmatory studies are needed, our findings would support the idea that environmental factors, in this case severe OCs, might partly contribute to ventricular abnormalities in schizophrenia. (orig.)

  8. Influence of obstetric complication severity on brain morphology in schizophrenia: an MR study

    Energy Technology Data Exchange (ETDEWEB)

    Bersani, G.; Quartini, A.; Manuali, G.; Iannitelli, A. [University of Rome, Polo Pontino, Department of Psychiatric Sciences and Psychological Medicine, Rome (Italy); Pucci, D. [University of Rome, Department of Public Health ' ' G. Sanarelli' ' , Rome (Italy); Conforti, F. [University of Rome, I Medical Clinic, Magnetic Resonance Imaging Unit, Rome (Italy); Di Biasi, C.; Gualdi, G.

    2009-06-15

    The purpose of this study was to determine if a causal relationship exists between obstetric complications (OCs) severity and linear magnetic resonance (MR) measurements of brain atrophy in patients with schizophrenia. Linear measurements of ventricular enlargement (bifrontal span, Evans ratio, and bicaudate ratio) and hippocampal atrophy (interuncal distance) were completed on MR images obtained in 47 patients with schizophrenia. Regression analysis was used to look at association with OCs severity, assessed by the ''Midwife protocol'' of Parnas and colleagues. The relationship between MR measurements and phenomenologic variables such as age at onset, illness duration, and exposure to antipsychotic medications was explored. The relationship between MR measurements, OCs severity, and symptom presentation was also investigated. OCs severity was significantly associated with MR measurements of ventricular enlargement (bifrontal span, Evans ratio). As the severity of OCs increased, bifrontal span and Evans ratio increased. This effect was independent of age at onset, illness duration, or even antipsychotic treatment. Interestingly, bifrontal span, Evans ratio, and OCs severity score all showed a significant positive correlation with hallucinatory symptomatology. Although confirmatory studies are needed, our findings would support the idea that environmental factors, in this case severe OCs, might partly contribute to ventricular abnormalities in schizophrenia. (orig.)

  9. A roentgenographical study of the morphology of ventricles of the brain using computed tomography (CT)

    International Nuclear Information System (INIS)

    Inugami, Atsushi

    1981-01-01

    A basic experiment using an experimental model for the ventricles of the brain was made of the reproductivity of CT images using a whole body CT scanner, and the dimensions of the ventricles of 450 children on CT images were measured, to study changes in dimensions of the ventricles with the method for providing the sectional planes, or with the type of the CT scanner used, and the children with ventricular abnormalities were further studied. The sectional plane at OM-0 0 clinically gave a better reproductivity of the ventricles than at OM-15 0 . The measurements of the ventricles proved to vary with the mean value and also with the window width. In measuring the dimensions of the ventricles on the CT image, the ratio of widths of the anterior horn, third ventricle, corpus and posterior horn to that of the cerebral parenchyma was found to be correlated to the dimensions of the ventricles. No particular changes with the age structure of each cerebroventricular index (CVI) were noted. Apparent differences in the measurement were noted between each CVI of the abnormal group and the normal. CT scanning is a safe, easy non-invasive method for screening and observing the couse of ventricular diseases, accompanied by less risk. (author)

  10. Beta-secretase-cleaved amyloid precursor protein in Alzheimer brain: a morphologic study

    DEFF Research Database (Denmark)

    Sennvik, Kristina; Bogdanovic, N; Volkmann, Inga

    2004-01-01

    beta-amyloid (Abeta) is the main constituent of senile plaques seen in Alzheimer's disease. Abeta is derived from the amyloid precursor protein (APP) via proteolytic cleavage by proteases beta- and gamma-secretase. In this study, we examined content and localization of beta-secretase-cleaved APP...... the beta-sAPP immunostaining to be stronger and more extensive in gray matter in Alzheimer disease (AD) cases than controls. The axonal beta-sAPP staining was patchy and unevenly distributed for the AD cases, indicating impaired axonal transport. beta-sAPP was also found surrounding senile plaques...

  11. Immuno-localization of galanin receptor-1 (GALR1) in rat brain

    International Nuclear Information System (INIS)

    Larm, J.M.; Gundlach, A.L.

    2002-01-01

    Full text: Galanin is expressed in discrete areas throughout the central nervous system and has several putative physiological actions including effects on hormone secretion, reproduction and cognition, via actions at multiple G-protein-coupled receptors. Currently, three galanin receptors - GalR1, -R2, -R3 - have been identified that differ in pharmacology, signalling and distribution. The distribution of [ 125 I]-galanin binding sites presumably represents multiple receptors and so the precise regional and cellular localization of each receptor subtype is unknown. This study examined the distribution in rat brain of GalR1 receptors by immunohistochemistry, using polyclonal antibodies raised against short peptide sequences from the third intracellular loop and the proximal C-terminal. Adult rats were deeply anaesthetized (pentobarbitone 60 mg/kg, ip.) and perfusion-fixed with 4% paraformaldehyde. Specific GalR1 immunoreactivity (IR) was detected in neurons in various brain regions including cells within the olfactory bulb, piriform cortex, dorsomedial thalamus, hypothalamus (PVN, SON, ARC), midbrain/pons (intense staining in ventrolateral/medial PAG) and medulla. The localization pattern was qualitatively similar with both antisera and was consistent with that observed for GalR1 mRNA in normal rat brain. Recent evidence also reveals that GalR1- mRNA and -IR levels are coordinately altered after neuronal stimulation. These studies demonstrate a method for the identification of GalR1-containing cells that should assist in better differentiating the phenotype of galanin-receptive neurons. Copyright (2002) Australian Neuroscience Society

  12. Radiosurgery for brain metastases: relationship of dose and pattern of enhancement to local control

    International Nuclear Information System (INIS)

    Shiau, C.-Y.; Sneed, Penny K.; Shu, H.-K.G.; Lamborn, Kathleen R.; McDermott, Michael W.; Chang, Susan; Nowak, Peter; Petti, Paula L.; Smith, Vernon; Verhey, Lynn J.; Ho, Maria; Park, Elaine; Wara, William M.; Gutin, Philip H.; Larson, David A.

    1997-01-01

    Purpose: This study aimed to analyze dose, initial pattern of enhancement, and other factors associated with freedom from progression (FFP) of brain metastases after radiosurgery (RS). Methods and Materials: All brain metastases treated with gamma-knife RS at the University of California, San Francisco, from 1991 to 1994 were reviewed. Evaluable lesions were those with follow-up magnetic resonance or computed tomographic imaging. Actuarial FFP was calculated using the Kaplan-Meier method, measuring FFP from the date of RS to the first imaging study showing tumor progression. Controlled lesions were censored at the time of the last imaging study. Multivariate analyses were performed using a stepwise Cox proportional hazards model. Results: Of 261 lesions treated in 119 patients, 219 lesions in 100 patients were evaluable. Major histologies included adenocarcinoma (86 lesions), melanoma (77), renal cell carcinoma (21), and carcinoma not otherwise specified (17). The median prescribed RS dose was 18.5 Gy (range, 10-22) and the median tumor volume was 1.3 ml (range, 0.02-30.9). The initial pattern of contrast enhancement was homogeneous in 68% of lesions, heterogeneous in 12%, and ring-enhancing in 19%. The actuarial FFP was 82% at 6 months and 77% at 1 year for all lesions, and 93 and 90%, respectively, for 145 lesions receiving ≥ 18 Gy. Multivariate analysis showed that longer FFP was significantly associated with higher prescribed RS dose, a homogeneous pattern of contrast enhancement, and a longer interval between primary diagnosis and RS. Adjusted for these factors, adenocarcinomas had longer FFP than melanomas. No significant differences in FFP were noted among lesions undergoing RS for recurrence after prior radiotherapy (119 lesions), RS alone as initial treatment (45), or RS boost (55). Conclusion: A minimum prescribed radiosurgical dose ≥ 18 Gy yields excellent local control of brain metastases. The influence of pattern of enhancement on local control, a

  13. BIOCHEMICAL AND MORPHOLOGICAL EVALUTION OF LOCAL ACCESSIONES OF CHICKPEA (CICER ARIETINUM L. FROM EX SITU COLLECTION OF IPGR – SADOVO

    Directory of Open Access Journals (Sweden)

    Sofia Petrova

    2017-12-01

    Full Text Available In the last decades an increased interest has been observed to chickpea and its role in the healthy diet. The seeds from chickpea are food of great biological value for human because they are rich in protein, carbohydrates, fats, minerals and vitamins. The aim of the present study is to make biochemical and morphological evaluation of local chickpea accessiones from the National Collection. A complex biochemical evaluation of the studied accessiones of chickpea by indicators is made - crude protein, crude fiber, crude ash and absolute dry substance. Nine accessiones - six Bulgarian varieties and three local populations, are distinguished with a proven positive difference to standard by indicators crude protein and crude fiber. All of them have erect growth habit, normal leaf type, rhombic form of pods and the plants do not lay down. Two old varieties and two local populations are stood out with minimal and not proven differences by the indicator crude ash. All accessiones are close to the standard by indicator absolute dry substance. Many of the materials have erect habitats, the plant do not lay down and have no anthocyanin pigment on it, with a cream-colored and "kabuli" shape of the seeds and are with no shattering pods.

  14. Preliminary morphological and morphometric study of rat cerebellum following sodium arsenite exposure during rapid brain growth (RBG) period

    International Nuclear Information System (INIS)

    Dhar, Pushpa; Mohari, Nivedita; Mehra, Raj D.

    2007-01-01

    The effects of arsenic exposure during rapid brain growth (RBG) period were studied in rat brains with emphasis on the Purkinje cells of the cerebellum. The RBG period in rats extends from postnatal day 4 (PND 4) to postnatal day 10 (PND 10) and is reported to be highly vulnerable to environmental insults. Mother reared Wistar rat pups were administered intraperitoneal injections (i.p.) of sodium arsenite (aqueous solution) in doses of 1.0, 1.5 and 2.0 mg/kg body weight (bw) to groups II, III and IV (n = 6 animals/group) from PND 4 to 10 (sub acute). Control animals (group I) received distilled water by the same route. On PND 11, the animals were perfusion fixed with 4% paraformaldehyde in 0.1 M phosphate buffer (PB) with pH 7.4. The cerebellum obtained from these animals was post-fixed and processed for paraffin embedding. Besides studying the morphological characteristics of Purkinje cells in cresyl violet (CV) stained paraffin sections (10 μm), morphometric analysis of Purkinje cells was carried out using Image Analysis System (Image Proplus software version 4.5) attached to Nikon Microphot-FX microscope. The results showed that on PND 11, the Purkinje cells were arranged in multiple layers extending from Purkinje cell layer (PL) to outer part of granule cell layer (GL) in experimental animals (contrary to monolayer arrangement within PL in control animals). Also, delayed maturation (well defined apical cytoplasmic cones and intense basal basophilia) was evident in Purkinje cells of experimental animals on PND 11. The mean Purkinje cell nuclear area was significantly increased in the arsenic treated animals compared to the control animals. The observations of the present study (faulty migration, delayed maturation and alteration in nuclear area measurements of Purkinje cells subsequent to arsenic exposure) thus provided the morphological evidence of structural alterations subsequent to arsenite induced developmental neurotoxicity which could be presumed to be

  15. Multichannel brain recordings in behaving Drosophila reveal oscillatory activity and local coherence in response to sensory stimulation and circuit activation.

    Science.gov (United States)

    Paulk, Angelique C; Zhou, Yanqiong; Stratton, Peter; Liu, Li; van Swinderen, Bruno

    2013-10-01

    Neural networks in vertebrates exhibit endogenous oscillations that have been associated with functions ranging from sensory processing to locomotion. It remains unclear whether oscillations may play a similar role in the insect brain. We describe a novel "whole brain" readout for Drosophila melanogaster using a simple multichannel recording preparation to study electrical activity across the brain of flies exposed to different sensory stimuli. We recorded local field potential (LFP) activity from >2,000 registered recording sites across the fly brain in >200 wild-type and transgenic animals to uncover specific LFP frequency bands that correlate with: 1) brain region; 2) sensory modality (olfactory, visual, or mechanosensory); and 3) activity in specific neural circuits. We found endogenous and stimulus-specific oscillations throughout the fly brain. Central (higher-order) brain regions exhibited sensory modality-specific increases in power within narrow frequency bands. Conversely, in sensory brain regions such as the optic or antennal lobes, LFP coherence, rather than power, best defined sensory responses across modalities. By transiently activating specific circuits via expression of TrpA1, we found that several circuits in the fly brain modulate LFP power and coherence across brain regions and frequency domains. However, activation of a neuromodulatory octopaminergic circuit specifically increased neuronal coherence in the optic lobes during visual stimulation while decreasing coherence in central brain regions. Our multichannel recording and brain registration approach provides an effective way to track activity simultaneously across the fly brain in vivo, allowing investigation of functional roles for oscillations in processing sensory stimuli and modulating behavior.

  16. Whole brain irradiation with hippocampal sparing and dose escalation on multiple brain metastases. Local tumour control and survival

    Energy Technology Data Exchange (ETDEWEB)

    Oehlke, Oliver; Wucherpfennig, David; Prokic, Vesna [University Medical Center Freiburg, Department of Radiation Oncology, Freiburg (Germany); Fels, Franziska [University Medical Center Freiburg, Department of Radiation Oncology, Freiburg (Germany); St. Josefs Hospital, Department of Radiation Oncology, Offenburg (Germany); Frings, Lars [University Medical Center Freiburg, Department of Radiation Oncology, Freiburg (Germany); University Hospital Freiburg, Department of Geriatrics and Gerontology, Freiburg (Germany); University Medical Center Freiburg, Department of Nuclear Medicine, Freiburg (Germany); Egger, Karl [University Medical Center Freiburg, Department of Neuroradiology, Freiburg (Germany); Weyerbrock, Astrid [University Medical Center Freiburg, Department of Neurosurgery, Freiburg (Germany); Nieder, Carsten [Nordland Hospital, Department of Oncology and Palliative Medicine, Bodoe (Norway); University of Tromsoe, Institute of Clinical Medicine, Faculty of Health Sciences, Tromsoe (Norway); Grosu, Anca-Ligia [University Medical Center Freiburg, Department of Radiation Oncology, Freiburg (Germany); German Cancer Consortium (DKTK), Freiburg (Germany); German Cancer Research Center (DKFZ), Heidelberg (Germany)

    2015-01-16

    Hippocampal-avoidance whole brain radiotherapy (HA-WBRT) for multiple brain metastases may prevent treatment-related cognitive decline, compared to standard WBRT. Additionally, simultaneous integrated boost (SIB) on individual metastases may further improve the outcome. Here, we present initial data concerning local tumour control (LTC), intracranial progression-free survival (PFS), overall survival (OS), toxicity and safety for this new irradiation technique. Twenty patients, enrolled between 2011 and 2013, were treated with HA-WBRT (30 Gy in 12 fractions, D{sub 98} {sub %} to hippocampus ≤ 9 Gy) and a SIB (51 Gy) on multiple (2-13) metastases using a volumetric modulated arc therapy (VMAT) approach based on 2-4 arcs. Metastases were evaluated bidimensionally along the two largest diameters in contrast-enhanced three-dimensional T1-weighed MRI. Median follow-up was 40 weeks. The median time to progression of boosted metastases has not been reached yet, corresponding to a LTC rate of 73 %. Median intracranial PFS was 40 weeks, corresponding to a 1-year PFS of 45.3 %. Median OS was 71.5 weeks, corresponding to a 1-year OS of 60 %. No obvious acute or late toxicities grade > 2 (NCI CTCAE v4.03) were observed. D{sub mean} to the bilateral hippocampi was 6.585 Gy ± 0.847 (α/β = 2 Gy). Two patients developed a new metastasis in the area of hippocampal avoidance. HA-WBRT (simultaneous integrated protection, SIP) with SIB to metastases is a safe and tolerable regime that shows favorable LTC for patients with multiple brain metastases, while it has the potential to minimize the side-effect of cognitive deterioration. (orig.) [German] Die Hippocampus-schonende Ganzhirnbestrahlung (HS-GHB) kann im Vergleich zur Standard-GHB die Verschlechterung der neurokognitiven Funktion verhindern. Zusaetzlich vermag ein simultan integrierter Boost (SIB) auf die Metastasen die Prognose der betroffenen Patienten weiter zu verbessern. In dieser Studie praesentieren wir erste Ergebnisse

  17. Mapping brain morphological and functional conversion patterns in amnestic MCI: a voxel-based MRI and FDG-PET study

    Energy Technology Data Exchange (ETDEWEB)

    Morbelli, Silvia [University of Genoa, Nuclear Medicine Unit, Department of Internal Medicine, Genoa (Italy); Piccardo, Arnoldo; Villavecchia, Giampiero [Galliera Hospital, Nuclear Medicine Unit, Department of Radiology, Genoa (Italy); Dessi, Barbara; Brugnolo, Andrea; Rodriguez, Guido; Nobili, Flavio [University of Genoa, Clinical Neurophysiology Unit, Department of Neurosciences, Ophthalmology and Genetics, Genoa (Italy); Piccini, Alessandra [Cell Biology Unit, National Cancer Research Institute, Genoa (Italy); Caroli, Anna [LENITEM - Laboratory of Epidemiology Neuroimaging and Telemedicine, Brescia (Italy); Mario Negri Institute, Medical Imaging Unit, Biomedical Engineering Department, Bergamo (Italy); Frisoni, Giovanni [LENITEM - Laboratory of Epidemiology Neuroimaging and Telemedicine, Brescia (Italy)

    2010-01-15

    To reveal the morphological and functional substrates of memory impairment and conversion to Alzheimer disease (AD) from the stage of amnestic mild cognitive impairment (aMCI). Brain MRI and FDG-PET were performed in 20 patients with aMCI and 12 controls at baseline. During a mean follow-up of about 2 years, 9 patients developed AD (converters), and 11 did not (nonconverters). All images were processed with SPM2. FDG-PET and segmented grey matter (GM) images were compared in: (1) converters versus controls, (2) nonconverters versus controls, and (3) converters versus nonconverters. As compared to controls, converters showed lower GM density in the left parahippocampal gyrus and both thalami, and hypometabolism in the precuneus, posterior cingulate and superior parietal lobule in the left hemisphere. Hypometabolism was found in nonconverters as compared to controls in the left precuneus and posterior cingulated gyrus. As compared to nonconverters, converters showed significant hypometabolism in the left middle and superior temporal gyri. The discordant topography between atrophy and hypometabolism reported in AD is already present at the aMCI stage. Posterior cingulate-precuneus hypometabolism seemed to be an early sign of memory deficit, whereas hypometabolism in the left temporal cortex marked the conversion to AD. (orig.)

  18. Evolution of posterior fossa and brain morphology after in utero repair of open neural tube defects assessed by MRI

    Energy Technology Data Exchange (ETDEWEB)

    Rethmann, Christin; Scheer, Ianina; Kellenberger, Christian Johannes [University Children' s Hospital Zurich, Department of Diagnostic Imaging, Zurich (Switzerland); University of Zurich, The Zurich Center for Fetal Diagnosis and Therapy, Zurich (Switzerland); Children' s Research Center (CRC), Zurich (Switzerland); Meuli, Martin; Mazzone, Luca; Moehrlen, Ueli [University of Zurich, The Zurich Center for Fetal Diagnosis and Therapy, Zurich (Switzerland); Children' s Research Center (CRC), Zurich (Switzerland); University Children' s Hospital Zurich, Department of Pediatric Surgery, Zurich (Switzerland)

    2017-11-15

    To describe characteristics of foetuses undergoing in utero repair of open neural tube defects (ONTD) and assess postoperative evolution of posterior fossa and brain morphology. Analysis of pre- and postoperative foetal as well as neonatal MRI of 27 foetuses who underwent in utero repair of ONTD. Type and level of ONTD, hindbrain configuration, posterior fossa and liquor space dimensions, and detection of associated findings were compared between MRI studies and to age-matched controls. Level of bony spinal defect was defined with exactness of ± one vertebral body. Of surgically confirmed 18 myelomeningoceles (MMC) and 9 myeloschisis (MS), 3 MMC were misdiagnosed as MS due to non-visualisation of a flat membrane on MRI. Hindbrain herniation was more severe in MS than MMC (p < 0.001). After repair, hindbrain herniation resolved in 25/27 cases at 4 weeks and liquor spaces increased. While posterior fossa remained small (p < 0.001), its configuration normalised. Lateral ventricle diameter indexed to cerebral width decreased in 48% and increased in 12% of cases, implying a low rate of progressive obstructive hydrocephalus. Neonatally evident subependymal heterotopias were detected in 33% at preoperative and 50% at postoperative foetal MRI. MRI demonstrates change of Chiari malformation type II (CM-II) features. (orig.)

  19. Mapping brain morphological and functional conversion patterns in amnestic MCI: a voxel-based MRI and FDG-PET study

    International Nuclear Information System (INIS)

    Morbelli, Silvia; Piccardo, Arnoldo; Villavecchia, Giampiero; Dessi, Barbara; Brugnolo, Andrea; Rodriguez, Guido; Nobili, Flavio; Piccini, Alessandra; Caroli, Anna; Frisoni, Giovanni

    2010-01-01

    To reveal the morphological and functional substrates of memory impairment and conversion to Alzheimer disease (AD) from the stage of amnestic mild cognitive impairment (aMCI). Brain MRI and FDG-PET were performed in 20 patients with aMCI and 12 controls at baseline. During a mean follow-up of about 2 years, 9 patients developed AD (converters), and 11 did not (nonconverters). All images were processed with SPM2. FDG-PET and segmented grey matter (GM) images were compared in: (1) converters versus controls, (2) nonconverters versus controls, and (3) converters versus nonconverters. As compared to controls, converters showed lower GM density in the left parahippocampal gyrus and both thalami, and hypometabolism in the precuneus, posterior cingulate and superior parietal lobule in the left hemisphere. Hypometabolism was found in nonconverters as compared to controls in the left precuneus and posterior cingulated gyrus. As compared to nonconverters, converters showed significant hypometabolism in the left middle and superior temporal gyri. The discordant topography between atrophy and hypometabolism reported in AD is already present at the aMCI stage. Posterior cingulate-precuneus hypometabolism seemed to be an early sign of memory deficit, whereas hypometabolism in the left temporal cortex marked the conversion to AD. (orig.)

  20. Evolution of posterior fossa and brain morphology after in utero repair of open neural tube defects assessed by MRI

    International Nuclear Information System (INIS)

    Rethmann, Christin; Scheer, Ianina; Kellenberger, Christian Johannes; Meuli, Martin; Mazzone, Luca; Moehrlen, Ueli

    2017-01-01

    To describe characteristics of foetuses undergoing in utero repair of open neural tube defects (ONTD) and assess postoperative evolution of posterior fossa and brain morphology. Analysis of pre- and postoperative foetal as well as neonatal MRI of 27 foetuses who underwent in utero repair of ONTD. Type and level of ONTD, hindbrain configuration, posterior fossa and liquor space dimensions, and detection of associated findings were compared between MRI studies and to age-matched controls. Level of bony spinal defect was defined with exactness of ± one vertebral body. Of surgically confirmed 18 myelomeningoceles (MMC) and 9 myeloschisis (MS), 3 MMC were misdiagnosed as MS due to non-visualisation of a flat membrane on MRI. Hindbrain herniation was more severe in MS than MMC (p < 0.001). After repair, hindbrain herniation resolved in 25/27 cases at 4 weeks and liquor spaces increased. While posterior fossa remained small (p < 0.001), its configuration normalised. Lateral ventricle diameter indexed to cerebral width decreased in 48% and increased in 12% of cases, implying a low rate of progressive obstructive hydrocephalus. Neonatally evident subependymal heterotopias were detected in 33% at preoperative and 50% at postoperative foetal MRI. MRI demonstrates change of Chiari malformation type II (CM-II) features. (orig.)

  1. Study on cognition disorder and morphologic change of neurons in hippocampus area following traumatic brain injury in rats

    Institute of Scientific and Technical Information of China (English)

    洪军; 崔建忠; 周云涛; 高俊玲

    2002-01-01

    Objective: To explore the correlation between cognition disorder and morphologic change of hippocampal neurons after traumatic brain injury (TBI).   Methods: Wistar rat models with severe TBI were made by Marmarous method. The histopathological change of the neurons in the hippocampus area were studied with hematoxylin-eosin (HE) staining and terminal deoxynucleotidyl transferase-mediated X-dUPT nick end labeling (TUNEL), respectively. The cognitive function was evaluated with the Morris water maze test.   Results: The comprehensive neuronal degeneration and necrosis could be observed in CA2-3 regions of hippocampus at 3 days after injury. Apoptotic positive neurons in CA2-4 regions of hippocampus and dentate gyrus increased in the injured group at 24 hours following TBI. They peaked at 7 days and then declined. Significant impairment of spatial learning and memory was observed after injury in the rats.   Conclusions: The rats have obvious disorders in spatial learning and memory after severe TBI. Meanwhile, delayed neuronal necrosis and apoptosis can be observed in the neurons in the hippocampus area. It suggests that delayed hippocampal cell death may contribute to the functional deficit.

  2. Theoretical analysis of the local field potential in deep brain stimulation applications.

    Directory of Open Access Journals (Sweden)

    Scott F Lempka

    Full Text Available Deep brain stimulation (DBS is a common therapy for treating movement disorders, such as Parkinson's disease (PD, and provides a unique opportunity to study the neural activity of various subcortical structures in human patients. Local field potential (LFP recordings are often performed with either intraoperative microelectrodes or DBS leads and reflect oscillatory activity within nuclei of the basal ganglia. These LFP recordings have numerous clinical implications and might someday be used to optimize DBS outcomes in closed-loop systems. However, the origin of the recorded LFP is poorly understood. Therefore, the goal of this study was to theoretically analyze LFP recordings within the context of clinical DBS applications. This goal was achieved with a detailed recording model of beta oscillations (∼20 Hz in the subthalamic nucleus. The recording model consisted of finite element models of intraoperative microelectrodes and DBS macroelectrodes implanted in the brain along with multi-compartment cable models of STN projection neurons. Model analysis permitted systematic investigation into a number of variables that can affect the composition of the recorded LFP (e.g. electrode size, electrode impedance, recording configuration, and filtering effects of the brain, electrode-electrolyte interface, and recording electronics. The results of the study suggest that the spatial reach of the LFP can extend several millimeters. Model analysis also showed that variables such as electrode geometry and recording configuration can have a significant effect on LFP amplitude and spatial reach, while the effects of other variables, such as electrode impedance, are often negligible. The results of this study provide insight into the origin of the LFP and identify variables that need to be considered when analyzing LFP recordings in clinical DBS applications.

  3. Dynamic Neural State Identification in Deep Brain Local Field Potentials of Neuropathic Pain.

    Science.gov (United States)

    Luo, Huichun; Huang, Yongzhi; Du, Xueying; Zhang, Yunpeng; Green, Alexander L; Aziz, Tipu Z; Wang, Shouyan

    2018-01-01

    In neuropathic pain, the neurophysiological and neuropathological function of the ventro-posterolateral nucleus of the thalamus (VPL) and the periventricular gray/periaqueductal gray area (PVAG) involves multiple frequency oscillations. Moreover, oscillations related to pain perception and modulation change dynamically over time. Fluctuations in these neural oscillations reflect the dynamic neural states of the nucleus. In this study, an approach to classifying the synchronization level was developed to dynamically identify the neural states. An oscillation extraction model based on windowed wavelet packet transform was designed to characterize the activity level of oscillations. The wavelet packet coefficients sparsely represented the activity level of theta and alpha oscillations in local field potentials (LFPs). Then, a state discrimination model was designed to calculate an adaptive threshold to determine the activity level of oscillations. Finally, the neural state was represented by the activity levels of both theta and alpha oscillations. The relationship between neural states and pain relief was further evaluated. The performance of the state identification approach achieved sensitivity and specificity beyond 80% in simulation signals. Neural states of the PVAG and VPL were dynamically identified from LFPs of neuropathic pain patients. The occurrence of neural states based on theta and alpha oscillations were correlated to the degree of pain relief by deep brain stimulation. In the PVAG LFPs, the occurrence of the state with high activity levels of theta oscillations independent of alpha and the state with low-level alpha and high-level theta oscillations were significantly correlated with pain relief by deep brain stimulation. This study provides a reliable approach to identifying the dynamic neural states in LFPs with a low signal-to-noise ratio by using sparse representation based on wavelet packet transform. Furthermore, it may advance closed-loop deep

  4. The crystal structure and morphology of NiO-YSZ composite that prepared from local zircon concentrate of Bangka Island

    Energy Technology Data Exchange (ETDEWEB)

    Rahmawati, F., E-mail: fitria@mipa.uns.ac.id; Apriyani, K.; Heraldy, E. [Research Group of Solid State Chemistry & Catalysis, Department of Chemistry, Sebelas Maret University, Jl. Ir. Sutami 36A Kentingan Surakarta (Indonesia); Soepriyanto, S. [Department of Metallurgical Engineering, Faculty of Mining and Petroleum Engineering, Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132 (Indonesia)

    2016-03-29

    In order to increase the economic value of local zircon concentrate from Bangka Island, NiO-YSZ was synthesized from Zirconia, ZrO{sub 2} that was prepared from local zircon concentrate. The NiO-YSZ composite was synthesized by solid state reaction method. XRD analysis equipped with Le Bail refinement was carried out to analyze the crystal structure and cell parameters of the prepared materials. The result showed that zirconia was crystallized in tetragonal structure with a space group of P42/NMC. Yttria-Stabilized-Zirconia (YSZ) was prepared by doping 8% mol yttrium oxide into zirconia and then sintered at 1250°C for 3 hours. Doping of 8% mol Yttria allowed phase transformation of zirconia from tetragonal into the cubic structure. Meanwhile, the composite of NiO-YSZ consists of two crystalline phases, i.e. the NiO with cubic structure and the YSZ with cubic structure. SEM analysis of the prepared materials shows that the addition of NiO into YSZ allows the morphology to become more roughness with larger grain size.

  5. Localization of ( sup 18 F)fluorodeoxyglucose in mouse brain neurons with micro-autoradiography

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, Susumu; Kubota, Roko; Kubota, Kazuo [Department of Radiology and Nuclear Medicine, The Research Institute for Tuberculosis and Cancer (Japan); Ishiwata, Kiichi; Ido, Tatsuo [Tohoku Univ., Sendai (Japan). Cyclotron and Radioisotope Center

    1990-12-11

    This is the first study of micro-autoradiography (micro-ARG) for ({sup 18}F)2-fluoro-2-deoxy-D-glucose (({sup 18}F)FDG). The localization of ({sup 18}F)FDG was demonstrated in dendrites of neuron and also in the myelinated axon in mouse normal brain in vivo. The nucleolus was relatively free of label. The counted silver grain numbers in autoradiogram were linearly correlated to the {sup 18}F radioactivities in the specimen. The micro-ARG using positron emitting {sup 18}F is a very time-saving technique with 4 hours exposure compared with the conventional method using {sup 3}H- or {sup 14}C-labelled tracers. (author).

  6. The analysis of solutions behaviour of Van der Pol Duffing equation describing local brain hemodynamics

    Science.gov (United States)

    Cherevko, A. A.; Bord, E. E.; Khe, A. K.; Panarin, V. A.; Orlov, K. J.

    2017-10-01

    This article proposes the generalized model of Van der Pol — Duffing equation for describing the relaxation oscillations in local brain hemodynamics. This equation connects the velocity and pressure of blood flow in cerebral vessels. The equation is individual for each patient, since the coefficients are unique. Each set of coefficients is built based on clinical data obtained during neurosurgical operation in Siberian Federal Biomedical Research Center named after Academician E. N. Meshalkin. The equation has solutions of different structure defined by the coefficients and right side. We investigate the equations for different patients considering peculiarities of their vessel systems. The properties of approximate analytical solutions are studied. Amplitude-frequency and phase-frequency characteristics are built for the small-dimensional solution approximations.

  7. Localization of glucocorticoid receptor mRNA in the male rat brain by in situ hybridization

    International Nuclear Information System (INIS)

    Aronsson, M.; Fuxe, K.; Dong, Y.; Agnati, L.F.; Okret, S.; Gustafsson, J.A.

    1988-01-01

    The localization and distribution of mRNA encoding the glucocorticoid receptor (GR) was investigated in tissue sections of the adult male rat brain by in situ hybridization and RNA blot analysis. GR mRNA levels were measured by quantitative autoradiography with 35S- and 32P-labeled RNA probes, respectively. Strong labeling was observed within the pyramidal nerve cells of the CA1 and CA2 areas of the hippocampal formation, in the granular cells of the dentate gyrus, in the parvocellular nerve cells of the paraventricular hypothalamic nucleus, and in the cells of the arcuate nucleus, especially the parvocellular part. Moderate labeling of a large number of nerve cells was observed within layers II, III, and VI of the neocortex and in many thalamic nuclei, especially the anterior and ventral nuclear groups as well as several midline nuclei. Within the cerebellar cortex, strong labeling was observed all over the granular layer. In the lower brainstem, strong labeling was found within the entire locus coeruleus and within the mesencephalic raphe nuclei rich in noradrenaline and 5-hydroxytryptamine cell bodies, respectively. A close correlation was found between the distribution of GR mRNA and the distribution of previously described GR immunoreactivity. These studies open the possibility of obtaining additional information on in vivo regulation of GR synthesis and how the brain may alter its sensitivity to circulating glucocorticoids

  8. Quantitative localization of (/sup 3/H)TCP binding in rat brain by light microscopy autoradiography

    Energy Technology Data Exchange (ETDEWEB)

    Sircar, R; Zukin, S R

    1985-09-30

    The anatomical localization of phencyclidine (PCP)/sigma-opiate receptors in rat brain was determined by quantitative light microscopy autoradiography using the new ligand N-(1-(2-thienyl) cyclohexyl(/sup 3/H) piperidine ((/sup 3/H)TCP). TCP is a potent analog of PCP which possesses a higher affinity for PCP/sigma-opiate receptor than does PCP itself. The highest level of (/sup 3/H)TCP binding was detected in the hippocampus. Intermediate levels were found in frontal cortex, striatum, amygdala and cerebellum. Specific (/sup 3/H)TCP binding was undetectable in anterior commissure and corpus callosum. The distribution pattern of (/sup 3/H)TCP binding sites is similar to the pattern obtained with (/sup 3/H)PCP but more sharply defined. On the basis of its greater potency and specificity, (/sup 3/H)TCP may prove superior to (/sup 3/H)PCP as a molecular probe for the study of brain sigma opiate/phencyclidine receptors. 13 refs.; 1 figure; 1 table.

  9. Multichannel brain recordings in behaving Drosophila reveal oscillatory activity and local coherence in response to sensory stimulation and circuit activation

    Science.gov (United States)

    Paulk, Angelique C.; Zhou, Yanqiong; Stratton, Peter; Liu, Li

    2013-01-01

    Neural networks in vertebrates exhibit endogenous oscillations that have been associated with functions ranging from sensory processing to locomotion. It remains unclear whether oscillations may play a similar role in the insect brain. We describe a novel “whole brain” readout for Drosophila melanogaster using a simple multichannel recording preparation to study electrical activity across the brain of flies exposed to different sensory stimuli. We recorded local field potential (LFP) activity from >2,000 registered recording sites across the fly brain in >200 wild-type and transgenic animals to uncover specific LFP frequency bands that correlate with: 1) brain region; 2) sensory modality (olfactory, visual, or mechanosensory); and 3) activity in specific neural circuits. We found endogenous and stimulus-specific oscillations throughout the fly brain. Central (higher-order) brain regions exhibited sensory modality-specific increases in power within narrow frequency bands. Conversely, in sensory brain regions such as the optic or antennal lobes, LFP coherence, rather than power, best defined sensory responses across modalities. By transiently activating specific circuits via expression of TrpA1, we found that several circuits in the fly brain modulate LFP power and coherence across brain regions and frequency domains. However, activation of a neuromodulatory octopaminergic circuit specifically increased neuronal coherence in the optic lobes during visual stimulation while decreasing coherence in central brain regions. Our multichannel recording and brain registration approach provides an effective way to track activity simultaneously across the fly brain in vivo, allowing investigation of functional roles for oscillations in processing sensory stimuli and modulating behavior. PMID:23864378

  10. Voxel Scale Complex Networks of Functional Connectivity in the Rat Brain: Neurochemical State Dependence of Global and Local Topological Properties

    Directory of Open Access Journals (Sweden)

    Adam J. Schwarz

    2012-01-01

    Full Text Available Network analysis of functional imaging data reveals emergent features of the brain as a function of its topological properties. However, the brain is not a homogeneous network, and the dependence of functional connectivity parameters on neuroanatomical substrate and parcellation scale is a key issue. Moreover, the extent to which these topological properties depend on underlying neurochemical changes remains unclear. In the present study, we investigated both global statistical properties and the local, voxel-scale distribution of connectivity parameters of the rat brain. Different neurotransmitter systems were stimulated by pharmacological challenge (d-amphetamine, fluoxetine, and nicotine to discriminate between stimulus-specific functional connectivity and more general features of the rat brain architecture. Although global connectivity parameters were similar, mapping of local connectivity parameters at high spatial resolution revealed strong neuroanatomical dependence of functional connectivity in the rat brain, with clear differentiation between the neocortex and older brain regions. Localized foci of high functional connectivity independent of drug challenge were found in the sensorimotor cortices, consistent with the high neuronal connectivity in these regions. Conversely, the topological properties and node roles in subcortical regions varied with neurochemical state and were dependent on the specific dynamics of the different functional processes elicited.

  11. Localization of oxidized low-density lipoprotein and its relation to plaque morphology in human coronary artery.

    Directory of Open Access Journals (Sweden)

    Yasumi Uchida

    Full Text Available OBJECTIVES: Oxidized low-density lipoprotein (oxLDL plays a key role in the formation of atherosclerotic plaques. However, its localization in human coronary arterial wall is not well understood. The present study was performed to visualize deposition sites and patterns of native oxLDL and their relation to plaque morphology in human coronary artery. METHODS: Evans blue dye (EB elicits a violet fluorescence by excitation at 345-nm and emission at 420-nm, and a reddish-brown fluorescence by excitation at 470-nm and emission at 515-nm characteristic of oxLDL only. Therefore, native oxLDL in excised human coronary artery were investigated by color fluorescent microscopy (CFM using EB as a biomarker. RESULTS: (1 By luminal surface scan with CFM, the % incidence of oxLDL in 38 normal segments, 41 white plaques and 32 yellow plaques that were classified by conventional angioscopy, was respectively 26, 44 and 94, indicating significantly (p<0.05 higher incidence in the latter than the former two groups. Distribution pattern was classified as patchy, diffuse and web-like. Web-like pattern was observed only in yellow plaques with necrotic core. (2 By transected surface scan, oxLDL deposited within superficial layer in normal segments and diffusely within both superficial and deep layers in white and yellow plaques. In yellow plaques with necrotic core, oxLDL deposited not only in the marginal zone of the necrotic core but also in the fibrous cap. CONCLUSION: Taken into consideration of the well-known process of coronary plaque growth, the results suggest that oxLDL begins to deposit in human coronary artery wall before plaque formation and increasingly deposits with plaque growth, exhibiting different deposition sites and patterns depending on morphological changes.

  12. Brain morphological and microstructural features in cryptogenic late-onset temporal lobe epilepsy: a structural and diffusion MRI study.

    Science.gov (United States)

    Sone, Daichi; Sato, Noriko; Kimura, Yukio; Watanabe, Yutaka; Okazaki, Mitsutoshi; Matsuda, Hiroshi

    2018-04-13

    Although epilepsy in the elderly has attracted attention recently, there are few systematic studies of neuroimaging in such patients. In this study, we used structural MRI and diffusion tensor imaging (DTI) to investigate the morphological and microstructural features of the brain in late-onset temporal lobe epilepsy (TLE). We recruited patients with TLE and an age of onset > 50 years (late-TLE group) and age- and sex-matched healthy volunteers (control group). 3-Tesla MRI scans, including 3D T1-weighted images and 15-direction DTI, showed normal findings on visual assessment in both groups. We used Statistical Parametric Mapping 12 (SPM12) for gray and white matter structural normalization and comparison and used Tract-Based Spatial Statistics (TBSS) for fractional anisotropy and mean diffusivity comparisons of DTI. In both methods, p < 0.05 (family-wise error) was considered statistically significant. In total, 30 patients with late-onset TLE (mean ± SD age, 66.8 ± 8.4; mean ± SD age of onset, 63.0 ± 7.6 years) and 40 healthy controls (mean ± SD age, 66.6 ± 8.5 years) were enrolled. The late-onset TLE group showed significant gray matter volume increases in the bilateral amygdala and anterior hippocampus and significantly reduced mean diffusivity in the left temporofrontal lobe, internal capsule, and brainstem. No significant changes were evident in white matter volume or fractional anisotropy. Our findings may reflect some characteristics or mechanisms of cryptogenic TLE in the elderly, such as inflammatory processes.

  13. Local transport properties, morphology and microstructure of ZnO decorated SiO{sub 2} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Van Nostrand, Joseph E [Air Force Research Laboratory, Information Directorate, Rome, NY (United States); Cortez, Rebecca [Union College, Schenectady, NY (United States); Rice, Zachary P; Cady, Nathaniel C; Bergkvist, Magnus, E-mail: Joseph.VanNostrand@rl.af.mil [Albany College of Nanoscale Science and Engineering, Albany, NY (United States)

    2010-10-15

    We report on a novel, surfactant free method for achieving nanocrystalline ZnO decoration of an SiO{sub 2} nanoparticle at ambient temperature. The size distributions of the naked and decorated SiO{sub 2} nanoparticles are measured by means of dynamic light scattering, and a monodisperse distribution is observed for each. The morphology and microstructure of the nanoparticles are explored using atomic force microscopy and high resolution transmission electron microscopy. Investigation of the optical properties of the ZnO decorated SiO{sub 2} nanoparticles shows absorption at 350 nm. This blue shift in absorption as compared to bulk ZnO is shown to be consistent with quantum confinement effects due to the small size of the ZnO nanocrystals. Finally, the local electronic transport properties of the nanoparticles are explored by scanning conductance atomic force microscopy. A memristive hysteresis in the transport properties of the individual ZnO decorated SiO{sub 2} nanoparticles is observed. Optical absorption measurements suggest the presence of oxygen vacancies, whose migration and annihilation appear to contribute to the dynamic conduction properties of the ZnO decorated nanoparticles. We believe this to be the first demonstration of a ZnO decorated SiO{sub 2} nanoparticle, and this represents a simple yet powerful way of achieving the optical and electrical properties of ZnO in combination with the simplicity of SiO{sub 2} synthesis.

  14. Brain vascular image segmentation based on fuzzy local information C-means clustering

    Science.gov (United States)

    Hu, Chaoen; Liu, Xia; Liang, Xiao; Hui, Hui; Yang, Xin; Tian, Jie

    2017-02-01

    Light sheet fluorescence microscopy (LSFM) is a powerful optical resolution fluorescence microscopy technique which enables to observe the mouse brain vascular network in cellular resolution. However, micro-vessel structures are intensity inhomogeneity in LSFM images, which make an inconvenience for extracting line structures. In this work, we developed a vascular image segmentation method by enhancing vessel details which should be useful for estimating statistics like micro-vessel density. Since the eigenvalues of hessian matrix and its sign describes different geometric structure in images, which enable to construct vascular similarity function and enhance line signals, the main idea of our method is to cluster the pixel values of the enhanced image. Our method contained three steps: 1) calculate the multiscale gradients and the differences between eigenvalues of Hessian matrix. 2) In order to generate the enhanced microvessels structures, a feed forward neural network was trained by 2.26 million pixels for dealing with the correlations between multi-scale gradients and the differences between eigenvalues. 3) The fuzzy local information c-means clustering (FLICM) was used to cluster the pixel values in enhance line signals. To verify the feasibility and effectiveness of this method, mouse brain vascular images have been acquired by a commercial light-sheet microscope in our lab. The experiment of the segmentation method showed that dice similarity coefficient can reach up to 85%. The results illustrated that our approach extracting line structures of blood vessels dramatically improves the vascular image and enable to accurately extract blood vessels in LSFM images.

  15. Comparison of two treatments for coxarthrosis: local hyperthermia versus radio electric asymmetrical brain stimulation

    Directory of Open Access Journals (Sweden)

    Castagna A

    2011-07-01

    Full Text Available Alessandro Castagna1, Salvatore Rinaldi1,2, Vania Fontani1, Piero Mannu1, Matteo Lotti Margotti11Rinaldi Fontani Institute, Department of Neuro Psycho Physio Pathology, 2Medical School of Occupational Medicine, University of Florence, Florence, ItalyBackground: It is well known that psychological components are very important in the aging process and may also manifest in psychogenic movement disorders, such as coxarthrosis. This study analyzed the medical records of two similar groups of patients with coxarthrosis (n = 15 in each who were treated in two different clinics for rehabilitation therapy.Methods: Patients in Group A were treated with a course of traditional physiotherapy, including sessions of local hyperthermia. Group B patients were treated with only a course of radioelectric asymmetrical brain stimulation (REAC to improve their motor behavior.Results: Group A showed a significant decrease in symptoms of pain and stiffness, and an insignificant improvement in range of motion and muscle bulk. A single patient in this group developed worsened symptoms, and pain did not resolve completely in any patient. The patients in Group B had significantly decreased levels of pain and stiffness, and a significant improvement in range of motion and muscle bulk. No patients worsened in Group B, and the pain resolved completely in one patient.Conclusion: Both treatments were shown to be tolerable and safe. Patients who underwent REAC treatment appeared to have slightly better outcomes, with an appreciable improvement in both their physical and mental states. These aspects are particularly important in the elderly, in whom functional limitation is often associated with or exacerbated by a psychogenic component.Keywords: coxarthrosis, anti-aging, motor behavior, radioelectric asymmetric brain stimulation

  16. Autoradiographic localization of 3H-paroxetine-labeled serotonin uptake sites in rat brain

    International Nuclear Information System (INIS)

    De Souza, E.B.; Kuyatt, B.L.

    1987-01-01

    Paroxetine is a potent and selective inhibitor of serotonin uptake into neurons. Serotonin uptake sites have been identified, localized, and quantified in rat brain by autoradiography with 3H-paroxetine; 3H-paroxetine binding in slide-mounted sections of rat forebrain was of high affinity (KD = 10 pM) and the inhibition affinity constant (Ki) values of various drugs in competing 3H-paroxetine binding significantly correlated with their reported potencies in inhibiting synaptosomal serotonin uptake. Serotonin uptake sites labeled by 3H-paroxetine were highly concentrated in the dorsal and median raphe nuclei, central gray, superficial layer of the superior colliculus, lateral septal nucleus, paraventricular nucleus of the thalamus, and the islands of Calleja. High concentrations of 3H-paroxetine binding sites were found in brainstem areas containing dopamine (substantia nigra and ventral tegmental area) and norepinephrine (locus coeruleus) cell bodies. Moderate concentrations of 3H-paroxetine binding sites were present in laminae I and IV of the frontal parietal cortex, primary olfactory cortex, olfactory tubercle, regions of the basal ganglia, septum, amygdala, thalamus, hypothalamus, hippocampus, and some brainstem areas including the interpeduncular, trigeminal, and parabrachial nuclei. Lower densities of 3H-paroxetine binding sites were found in other regions of the neocortex and very low to nonsignificant levels of binding were present in white matter tracts and in the cerebellum. Lesioning of serotonin neurons with 3,4-methylenedioxyamphetamine caused large decreases in 3H-paroxetine binding. The autoradiographic distribution of 3H-paroxetine binding sites in rat brain corresponds extremely well to the distribution of serotonin terminals and cell bodies as well as with the pharmacological sites of action of serotonin

  17. Time and frequency-dependent modulation of local field potential synchronization by deep brain stimulation.

    Directory of Open Access Journals (Sweden)

    Clinton B McCracken

    Full Text Available High-frequency electrical stimulation of specific brain structures, known as deep brain stimulation (DBS, is an effective treatment for movement disorders, but mechanisms of action remain unclear. We examined the time-dependent effects of DBS applied to the entopeduncular nucleus (EP, the rat homolog of the internal globus pallidus, a target used for treatment of both dystonia and Parkinson's disease (PD. We performed simultaneous multi-site local field potential (LFP recordings in urethane-anesthetized rats to assess the effects of high-frequency (HF, 130 Hz; clinically effective, low-frequency (LF, 15 Hz; ineffective and sham DBS delivered to EP. LFP activity was recorded from dorsal striatum (STR, ventroanterior thalamus (VA, primary motor cortex (M1, and the stimulation site in EP. Spontaneous and acute stimulation-induced LFP oscillation power and functional connectivity were assessed at baseline, and after 30, 60, and 90 minutes of stimulation. HF EP DBS produced widespread alterations in spontaneous and stimulus-induced LFP oscillations, with some effects similar across regions and others occurring in a region- and frequency band-specific manner. Many of these changes evolved over time. HF EP DBS produced an initial transient reduction in power in the low beta band in M1 and STR; however, phase synchronization between these regions in the low beta band was markedly suppressed at all time points. DBS also enhanced low gamma synchronization throughout the circuit. With sustained stimulation, there were significant reductions in low beta synchronization between M1-VA and STR-VA, and increases in power within regions in the faster frequency bands. HF DBS also suppressed the ability of acute EP stimulation to induce beta oscillations in all regions along the circuit. This dynamic pattern of synchronizing and desynchronizing effects of EP DBS suggests a complex modulation of activity along cortico-BG-thalamic circuits underlying the therapeutic

  18. Mild Cognitive Impairment as a single sign of brain hemiatrophy in patient with Localized Scleroderma and Parry-Romberg Syndrome.

    Science.gov (United States)

    Klimiec, Elzbieta; Klimkowicz-Mrowiec, Aleksandra

    2016-01-01

    Neurologic involvement is well recognized in Systemic Scleroderma and increasingly reported in Localized Scleroderma. MRI brain abnormalities are often associated with symptoms such as seizures or headaches. In some cases they may be clinically silent. We describe a 23 years old female with head, trunk and limbs scleroderma who developed Parry-Romberg Syndrome. Brain MRI showed ipsilateral temporal lobe atrophy without any prominent neurologic symptoms. Neuropsychological examination revealed Mild Cognitive Impairment. During the 7 years of follow up we have noticed progression of face atrophy but no progression of brain atrophy. Cognitive functions have been stable. This case highlight that major MRI brain abnormalities in LS may occur with only subtle clinical manifestation such as Mild Cognitive Impairment. Copyright © 2016 Polish Neurological Society. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  19. Defining Face Perception Areas in the Human Brain: A Large-Scale Factorial fMRI Face Localizer Analysis

    Science.gov (United States)

    Rossion, Bruno; Hanseeuw, Bernard; Dricot, Laurence

    2012-01-01

    A number of human brain areas showing a larger response to faces than to objects from different categories, or to scrambled faces, have been identified in neuroimaging studies. Depending on the statistical criteria used, the set of areas can be overextended or minimized, both at the local (size of areas) and global (number of areas) levels. Here…

  20. Localization and Expression of the Proto-Oncoprotein BRX in the Mouse Brain and Pituitary

    National Research Council Canada - National Science Library

    Eddington, David

    2003-01-01

    .... Results indicated that Brx is expressed in specific regions of the brain and pituitary. Furthermore, the results indicate that differences exist in both brain and pituitary tissue of male and female mice with greater expression in the female...

  1. Modeling localized delivery of Doxorubicin to the brain following focused ultrasound enhanced blood-brain barrier permeability

    International Nuclear Information System (INIS)

    Nhan, Tam; Burgess, Alison; Hynynen, Kullervo; Lilge, Lothar

    2014-01-01

    Doxorubicin (Dox) is a well-established chemotherapeutic agent, however it has limited efficacy in treating brain malignancies due to the presence of the blood-brain barrier (BBB). Recent preclinical studies have demonstrated that focused ultrasound induced BBB disruption (BBBD) enables efficient delivery of Dox to the brain. For future treatment planning of BBBD-based drug delivery, it is crucial to establish a mathematical framework to predict the effect of transient BBB permeability enhancement on the spatiotemporal distribution of Dox at the targeted area. The constructed model considers Dox concentrations within three compartments (plasma, extracellular, intracellular) that are governed by various transport processes (e.g. diffusion in interstitial space, exchange across vessel wall, clearance by cerebral spinal fluid, uptake by brain cells). By examining several clinical treatment aspects (e.g. sonication scheme, permeability enhancement, injection mode), our simulation results support the experimental findings of optimal interval delay between two consecutive sonications and therapeutically-sufficient intracellular concentration with respect to transfer constant K trans range of 0.01–0.03 min −1 . Finally, the model suggests that infusion over a short duration (20–60 min) should be employed along with single-sonication or multiple-sonication at 10 min interval to ensure maximum delivery to the intracellular compartment while attaining minimal cardiotoxicity via suppressing peak plasma concentration. (paper)

  2. Whole-brain structural topology in adult attention-deficit/hyperactivity disorder: Preserved global – disturbed local network organization

    Directory of Open Access Journals (Sweden)

    Justina Sidlauskaite

    2015-01-01

    Full Text Available Prior studies demonstrate altered organization of functional brain networks in attention-deficit/hyperactivity disorder (ADHD. However, the structural underpinnings of these functional disturbances are poorly understood. In the current study, we applied a graph-theoretic approach to whole-brain diffusion magnetic resonance imaging data to investigate the organization of structural brain networks in adults with ADHD and unaffected controls using deterministic fiber tractography. Groups did not differ in terms of global network metrics — small-worldness, global efficiency and clustering coefficient. However, there were widespread ADHD-related effects at the nodal level in relation to local efficiency and clustering. The affected nodes included superior occipital, supramarginal, superior temporal, inferior parietal, angular and inferior frontal gyri, as well as putamen, thalamus and posterior cerebellum. Lower local efficiency of left superior temporal and supramarginal gyri was associated with higher ADHD symptom scores. Also greater local clustering of right putamen and lower local clustering of left supramarginal gyrus correlated with ADHD symptom severity. Overall, the findings indicate preserved global but altered local network organization in adult ADHD implicating regions underpinning putative ADHD-related neuropsychological deficits.

  3. Whole-brain structural topology in adult attention-deficit/hyperactivity disorder: Preserved global - disturbed local network organization.

    Science.gov (United States)

    Sidlauskaite, Justina; Caeyenberghs, Karen; Sonuga-Barke, Edmund; Roeyers, Herbert; Wiersema, Jan R

    2015-01-01

    Prior studies demonstrate altered organization of functional brain networks in attention-deficit/hyperactivity disorder (ADHD). However, the structural underpinnings of these functional disturbances are poorly understood. In the current study, we applied a graph-theoretic approach to whole-brain diffusion magnetic resonance imaging data to investigate the organization of structural brain networks in adults with ADHD and unaffected controls using deterministic fiber tractography. Groups did not differ in terms of global network metrics - small-worldness, global efficiency and clustering coefficient. However, there were widespread ADHD-related effects at the nodal level in relation to local efficiency and clustering. The affected nodes included superior occipital, supramarginal, superior temporal, inferior parietal, angular and inferior frontal gyri, as well as putamen, thalamus and posterior cerebellum. Lower local efficiency of left superior temporal and supramarginal gyri was associated with higher ADHD symptom scores. Also greater local clustering of right putamen and lower local clustering of left supramarginal gyrus correlated with ADHD symptom severity. Overall, the findings indicate preserved global but altered local network organization in adult ADHD implicating regions underpinning putative ADHD-related neuropsychological deficits.

  4. Association of acute adverse effects with high local SAR induced in the brain from prolonged RF head and neck hyperthermia

    International Nuclear Information System (INIS)

    Adibzadeh, F; Verhaart, R F; Rijnen, Z; Franckena, M; Van Rhoon, G C; Paulides, M M; Verduijn, G M; Fortunati, V

    2015-01-01

    To provide an adequate level of protection for humans from exposure to radio-frequency (RF) electromagnetic fields (EMF) and to assure that any adverse health effects are avoided. The basic restrictions in terms of the specific energy absorption rate (SAR) were prescribed by IEEE and ICNIRP. An example of a therapeutic application of non-ionizing EMF is hyperthermia (HT), in which intense RF energy is focused at a target region. Deep HT in the head and neck (H and N) region involves inducing energy at 434 MHz for 60 min on target. Still, stray exposure of the brain is considerable, but to date only very limited side-effects were observed. The objective of this study is to investigate the stringency of the current basic restrictions by relating the induced EM dose in the brain of patients treated with deep head and neck (H and N) HT to the scored acute health effects. We performed a simulation study to calculate the induced peak 10 g spatial-averaged SAR (psSAR 10g ) in the brains of 16 selected H and N patients who received the highest SAR exposure in the brain, i.e. who had the minimum brain-target distance and received high forwarded power during treatment. The results show that the maximum induced SAR in the brain of the patients can exceed the current basic restrictions (IEEE and ICNIRP) on psSAR 10g for occupational environments by 14 times. Even considering the high local SAR in the brain, evaluation of acute effects by the common toxicity criteria (CTC) scores revealed no indication of a serious acute neurological effect. In addition, this study provides pioneering quantitative human data on the association between maximum brain SAR level and acute adverse effects when brains are exposed to prolonged RF EMF. (paper)

  5. Local ATP generation by brain-type creatine kinase (CK-B facilitates cell motility.

    Directory of Open Access Journals (Sweden)

    Jan W P Kuiper

    Full Text Available BACKGROUND: Creatine Kinases (CK catalyze the reversible transfer of high-energy phosphate groups between ATP and phosphocreatine, thereby playing a storage and distribution role in cellular energetics. Brain-type CK (CK-B deficiency is coupled to loss of function in neural cell circuits, altered bone-remodeling by osteoclasts and complement-mediated phagocytotic activity of macrophages, processes sharing dependency on actomyosin dynamics. METHODOLOGY/PRINCIPAL FINDINGS: Here, we provide evidence for direct coupling between CK-B and actomyosin activities in cortical microdomains of astrocytes and fibroblasts during spreading and migration. CK-B transiently accumulates in membrane ruffles and ablation of CK-B activity affects spreading and migration performance. Complementation experiments in CK-B-deficient fibroblasts, using new strategies to force protein relocalization from cytosol to cortical sites at membranes, confirmed the contribution of compartmentalized CK-B to cell morphogenetic dynamics. CONCLUSION/SIGNIFICANCE: Our results provide evidence that local cytoskeletal dynamics during cell motility is coupled to on-site availability of ATP generated by CK-B.

  6. The cosmic web of the Local Universe: cosmic variance, matter content and its relation to galaxy morphology

    Science.gov (United States)

    Nuza, Sebastián E.; Kitaura, Francisco-Shu; Heß, Steffen; Libeskind, Noam I.; Müller, Volker

    2014-11-01

    We present, for the first time, a Local Universe (LU) characterization using high-precision constrained N-body simulations based on self-consistent phase-space reconstructions of the large-scale structure in the Two-Micron All-Sky Galaxy Redshift Survey. We analyse whether we live in a special cosmic web environment by estimating cosmic variance from a set of unconstrained ΛCDM simulations as a function of distance to random observers. By computing volume and mass filling fractions for voids, sheets, filaments and knots, we find that the LU displays a typical scatter of about 1σ at scales r ≳ 15 h-1 Mpc, in agreement with ΛCDM, converging to a fair unbiased sample when considering spheres of about 60 h-1 Mpc radius. Additionally, we compute the matter density profile of the LU and we have found a reasonable agreement with the estimates of Karachentsev only when considering the contribution of dark haloes. This indicates that observational estimates might be biased towards low-density values. As a first application of our reconstruction, we investigate the likelihood that different galaxy morphological types inhabit certain cosmic web environments. In particular, we find that, irrespective of the method used to define the web, either based on the density or the peculiar velocity field, elliptical galaxies show a clear tendency to preferentially reside in clusters as opposed to voids (up to levels of 5.3σ and 9.8σ, respectively) and conversely for spiral galaxies (up to levels of 5.6σ and 5.4σ, respectively). These findings are compatible with previous works, albeit at higher confidence levels.

  7. The effect of local hydrodynamics on the spatial extent and morphology of cold-water coral habitats at Tisler Reef, Norway

    Science.gov (United States)

    De Clippele, L. H.; Huvenne, V. A. I.; Orejas, C.; Lundälv, T.; Fox, A.; Hennige, S. J.; Roberts, J. M.

    2018-03-01

    This study demonstrates how cold-water coral morphology and habitat distribution are shaped by local hydrodynamics, using high-definition video from Tisler Reef, an inshore reef in Norway. A total of 334 video frames collected on the north-west (NW) and south-east (SE) side of the reef were investigated for Lophelia pertusa coral cover and morphology and for the cover of the associated sponges Mycale lingua and Geodia sp. Our results showed that the SE side was a better habitat for L. pertusa (including live and dead colonies). Low cover of Geodia sp. was found on both sides of Tisler Reef. In contrast, Mycale lingua had higher percentage cover, especially on the NW side of the reef. Bush-shaped colonies of L. pertusa with elongated branches were the most abundant coral morphology on Tisler Reef. The highest abundance and density of this morphology were found on the SE side of the reef, while a higher proportion of cauliflower-shaped corals with short branches were found on the NW side. The proportion of very small L. pertusa colonies was also significantly higher on the SE side of the reef. The patterns in coral spatial distribution and morphology were related to local hydrodynamics—there were more frequent periods of downwelling currents on the SE side—and to the availability of suitable settling substrates. These factors make the SE region of Tisler Reef more suitable for coral growth. Understanding the impact of local hydrodynamics on the spatial extent and morphology of coral, and their relation to associated organisms such as sponges, is key to understanding the past and future development of the reef.

  8. Assessment of Blood-Brain Barrier Permeability by Dynamic Contrast-Enhanced MRI in Transient Middle Cerebral Artery Occlusion Model after Localized Brain Cooling in Rats

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eun Soo [Department of Radiology, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang 14068 (Korea, Republic of); Lee, Seung-Koo [Department of Radiology, Yonsei University College of Medicine, Seoul 03722 (Korea, Republic of); Kwon, Mi Jung [Department of Pathology, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang 14068 (Korea, Republic of); Lee, Phil Hye [Department of Neurology, Yonsei University College of Medicine, Seoul 03722 (Korea, Republic of); Ju, Young-Su [Department of Industrial Medicine, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang 14068 (Korea, Republic of); Yoon, Dae Young [Department of Radiology, Hallym University Kangdong Sacred Heart Hospital, Hallym University College of Medicine, Seoul 05355 (Korea, Republic of); Kim, Hye Jeong [Department of Radiology, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul 07441 (Korea, Republic of); Lee, Kwan Seop [Department of Radiology, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang 14068 (Korea, Republic of)

    2016-11-01

    The purpose of this study was to evaluate the effects of localized brain cooling on blood-brain barrier (BBB) permeability following transient middle cerebral artery occlusion (tMCAO) in rats, by using dynamic contrast-enhanced (DCE)-MRI. Thirty rats were divided into 3 groups of 10 rats each: control group, localized cold-saline (20℃) infusion group, and localized warm-saline (37℃) infusion group. The left middle cerebral artery (MCA) was occluded for 1 hour in anesthetized rats, followed by 3 hours of reperfusion. In the localized saline infusion group, 6 mL of cold or warm saline was infused through the hollow filament for 10 minutes after MCA occlusion. DCE-MRI investigations were performed after 3 hours and 24 hours of reperfusion. Pharmacokinetic parameters of the extended Tofts-Kety model were calculated for each DCE-MRI. In addition, rotarod testing was performed before tMCAO, and on days 1-9 after tMCAO. Myeloperoxidase (MPO) immunohisto-chemistry was performed to identify infiltrating neutrophils associated with the inflammatory response in the rat brain. Permeability parameters showed no statistical significance between cold and warm saline infusion groups after 3-hour reperfusion 0.09 ± 0.01 min{sup -1} vs. 0.07 ± 0.02 min{sup -1}, p = 0.661 for K{sup trans}; 0.30 ± 0.05 min{sup -1} vs. 0.37 ± 0.11 min{sup -1}, p = 0.394 for kep, respectively. Behavioral testing revealed no significant difference among the three groups. However, the percentage of MPO-positive cells in the cold-saline group was significantly lower than those in the control and warm-saline groups (p < 0.05). Localized brain cooling (20℃) does not confer a benefit to inhibit the increase in BBB permeability that follows transient cerebral ischemia and reperfusion in an animal model, as compared with localized warm-saline (37℃) infusion group.

  9. Assessment of Blood-Brain Barrier Permeability by Dynamic Contrast-Enhanced MRI in Transient Middle Cerebral Artery Occlusion Model after Localized Brain Cooling in Rats

    International Nuclear Information System (INIS)

    Kim, Eun Soo; Lee, Seung-Koo; Kwon, Mi Jung; Lee, Phil Hye; Ju, Young-Su; Yoon, Dae Young; Kim, Hye Jeong; Lee, Kwan Seop

    2016-01-01

    The purpose of this study was to evaluate the effects of localized brain cooling on blood-brain barrier (BBB) permeability following transient middle cerebral artery occlusion (tMCAO) in rats, by using dynamic contrast-enhanced (DCE)-MRI. Thirty rats were divided into 3 groups of 10 rats each: control group, localized cold-saline (20℃) infusion group, and localized warm-saline (37℃) infusion group. The left middle cerebral artery (MCA) was occluded for 1 hour in anesthetized rats, followed by 3 hours of reperfusion. In the localized saline infusion group, 6 mL of cold or warm saline was infused through the hollow filament for 10 minutes after MCA occlusion. DCE-MRI investigations were performed after 3 hours and 24 hours of reperfusion. Pharmacokinetic parameters of the extended Tofts-Kety model were calculated for each DCE-MRI. In addition, rotarod testing was performed before tMCAO, and on days 1-9 after tMCAO. Myeloperoxidase (MPO) immunohisto-chemistry was performed to identify infiltrating neutrophils associated with the inflammatory response in the rat brain. Permeability parameters showed no statistical significance between cold and warm saline infusion groups after 3-hour reperfusion 0.09 ± 0.01 min -1 vs. 0.07 ± 0.02 min -1 , p = 0.661 for K trans ; 0.30 ± 0.05 min -1 vs. 0.37 ± 0.11 min -1 , p = 0.394 for kep, respectively. Behavioral testing revealed no significant difference among the three groups. However, the percentage of MPO-positive cells in the cold-saline group was significantly lower than those in the control and warm-saline groups (p < 0.05). Localized brain cooling (20℃) does not confer a benefit to inhibit the increase in BBB permeability that follows transient cerebral ischemia and reperfusion in an animal model, as compared with localized warm-saline (37℃) infusion group

  10. Assessment of blood-brain barrier permeability by dynamic contrast-enhanced MRI in transient middle cerebral artery occlusion model after localized brain cooling in rats

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eun Soo; Lee, Kwan Seop; Kwon, Mi Jung; Ju, Young Su [Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang (Korea, Republic of); Lee, Seung Koo; Lee, Phil Hye [Yonsei University College of Medicine, Seoul (Korea, Republic of); Yoon, Dae Young [Dept. of Radiology, Hallym University Kangdong Sacred Heart Hospital, Hallym University College of Medicine, Seoul (Korea, Republic of); Kim, Hye Jeong [Dept. of Radiology, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul (Korea, Republic of)

    2016-09-15

    The purpose of this study was to evaluate the effects of localized brain cooling on blood-brain barrier (BBB) permeability following transient middle cerebral artery occlusion (tMCAO) in rats, by using dynamic contrast-enhanced (DCE)-MRI. Thirty rats were divided into 3 groups of 10 rats each: control group, localized cold-saline (20 .deg. ) infusion group, and localized warm-saline (37 .deg. ) infusion group. The left middle cerebral artery (MCA) was occluded for 1 hour in anesthetized rats, followed by 3 hours of reperfusion. In the localized saline infusion group, 6 mL of cold or warm saline was infused through the hollow filament for 10 minutes after MCA occlusion. DCE-MRI investigations were performed after 3 hours and 24 hours of reperfusion. Pharmacokinetic parameters of the extended Tofts-Kety model were calculated for each DCE-MRI. In addition, rotarod testing was performed before tMCAO, and on days 1-9 after tMCAO. Myeloperoxidase (MPO) immunohisto-chemistry was performed to identify infiltrating neutrophils associated with the inflammatory response in the rat brain. Permeability parameters showed no statistical significance between cold and warm saline infusion groups after 3-hour reperfusion 0.09 ± 0.01 min{sup -1} vs. 0.07 ± 0.02 min{sup -1},p = 0.661 for K{sup trans}; 0.30 ± 0.05 min{sup -1} vs. 0.37 ± 0.11 min{sup -1},p = 0.394 for kep, respectively. Behavioral testing revealed no significant difference among the three groups. However, the percentage of MPO-positive cells in the cold-saline group was significantly lower than those in the control and warm-saline groups (p < 0.05). Localized brain cooling (20 .deg. ) does not confer a benefit to inhibit the increase in BBB permeability that follows transient cerebral ischemia and reperfusion in an animal model, as compared with localized warm-saline (37 .deg. ) infusion group.

  11. Assessment of blood-brain barrier permeability by dynamic contrast-enhanced MRI in transient middle cerebral artery occlusion model after localized brain cooling in rats

    International Nuclear Information System (INIS)

    Kim, Eun Soo; Lee, Kwan Seop; Kwon, Mi Jung; Ju, Young Su; Lee, Seung Koo; Lee, Phil Hye; Yoon, Dae Young; Kim, Hye Jeong

    2016-01-01

    The purpose of this study was to evaluate the effects of localized brain cooling on blood-brain barrier (BBB) permeability following transient middle cerebral artery occlusion (tMCAO) in rats, by using dynamic contrast-enhanced (DCE)-MRI. Thirty rats were divided into 3 groups of 10 rats each: control group, localized cold-saline (20 .deg. ) infusion group, and localized warm-saline (37 .deg. ) infusion group. The left middle cerebral artery (MCA) was occluded for 1 hour in anesthetized rats, followed by 3 hours of reperfusion. In the localized saline infusion group, 6 mL of cold or warm saline was infused through the hollow filament for 10 minutes after MCA occlusion. DCE-MRI investigations were performed after 3 hours and 24 hours of reperfusion. Pharmacokinetic parameters of the extended Tofts-Kety model were calculated for each DCE-MRI. In addition, rotarod testing was performed before tMCAO, and on days 1-9 after tMCAO. Myeloperoxidase (MPO) immunohisto-chemistry was performed to identify infiltrating neutrophils associated with the inflammatory response in the rat brain. Permeability parameters showed no statistical significance between cold and warm saline infusion groups after 3-hour reperfusion 0.09 ± 0.01 min -1 vs. 0.07 ± 0.02 min -1 ,p = 0.661 for K trans ; 0.30 ± 0.05 min -1 vs. 0.37 ± 0.11 min -1 ,p = 0.394 for kep, respectively. Behavioral testing revealed no significant difference among the three groups. However, the percentage of MPO-positive cells in the cold-saline group was significantly lower than those in the control and warm-saline groups (p < 0.05). Localized brain cooling (20 .deg. ) does not confer a benefit to inhibit the increase in BBB permeability that follows transient cerebral ischemia and reperfusion in an animal model, as compared with localized warm-saline (37 .deg. ) infusion group

  12. The value of whole lesion ADC histogram profiling to differentiate between morphologically indistinguishable ring enhancing lesions–comparison of glioblastomas and brain abscesses

    Science.gov (United States)

    Hoffmann, Karl-Titus; Garnov, Nikita; Vörkel, Cathrin; Kohlhof-Meinecke, Patricia; Ganslandt, Oliver; Bäzner, Hansjörg; Gihr, Georg Alexander; Kalman, Marcell; Henkes, Elina; Henkes, Hans; Schob, Stefan

    2018-01-01

    Background Morphologically similar appearing ring enhancing lesions in the brain parenchyma can be caused by a number of distinct pathologies, however, they consistently represent life-threatening conditions. The two most frequently encountered diseases manifesting as such are glioblastoma multiforme (GBM) and brain abscess (BA), each requiring disparate therapeutical approaches. As a result of their morphological resemblance, essential treatment might be significantly delayed or even ommited, in case results of conventional imaging remain inconclusive. Therefore, our study aimed to investigate, whether ADC histogram profiling reliably can distinguish between both entities, thus enhancing the differential diagnostic process and preventing treatment failure in this highly critical context. Methods 103 patients (51 BA, 52 GBM) with histopathologically confirmed diagnosis were enrolled. Pretreatment diffusion weighted imaging (DWI) was obtained in a 1.5T system using b values of 0, 500, and 1000 s/mm2. Whole lesion ADC volumes were analyzed using a histogram-based approach. Statistical analysis was performed using SPSS version 23. Results All investigated parameters were statistically different in comparison of both groups. Most importantly, ADCp10 was able to differentiate reliably between BA and GBM with excellent accuracy (0.948) using a cutpoint value of 70 × 10−5 mm2 × s−1. Conclusions ADC whole lesion histogram profiling provides a valuable tool to differentiate between morphologically indistinguishable mass lesions. Among the investigated parameters, the 10th percentile of the ADC volume distinguished best between GBM and BA. PMID:29719596

  13. The value of whole lesion ADC histogram profiling to differentiate between morphologically indistinguishable ring enhancing lesions-comparison of glioblastomas and brain abscesses.

    Science.gov (United States)

    Horvath-Rizea, Diana; Surov, Alexey; Hoffmann, Karl-Titus; Garnov, Nikita; Vörkel, Cathrin; Kohlhof-Meinecke, Patricia; Ganslandt, Oliver; Bäzner, Hansjörg; Gihr, Georg Alexander; Kalman, Marcell; Henkes, Elina; Henkes, Hans; Schob, Stefan

    2018-04-06

    Morphologically similar appearing ring enhancing lesions in the brain parenchyma can be caused by a number of distinct pathologies, however, they consistently represent life-threatening conditions. The two most frequently encountered diseases manifesting as such are glioblastoma multiforme (GBM) and brain abscess (BA), each requiring disparate therapeutical approaches. As a result of their morphological resemblance, essential treatment might be significantly delayed or even ommited, in case results of conventional imaging remain inconclusive. Therefore, our study aimed to investigate, whether ADC histogram profiling reliably can distinguish between both entities, thus enhancing the differential diagnostic process and preventing treatment failure in this highly critical context. 103 patients (51 BA, 52 GBM) with histopathologically confirmed diagnosis were enrolled. Pretreatment diffusion weighted imaging (DWI) was obtained in a 1.5T system using b values of 0, 500, and 1000 s/mm 2 . Whole lesion ADC volumes were analyzed using a histogram-based approach. Statistical analysis was performed using SPSS version 23. All investigated parameters were statistically different in comparison of both groups. Most importantly, ADCp10 was able to differentiate reliably between BA and GBM with excellent accuracy (0.948) using a cutpoint value of 70 × 10 -5 mm 2 × s -1 . ADC whole lesion histogram profiling provides a valuable tool to differentiate between morphologically indistinguishable mass lesions. Among the investigated parameters, the 10th percentile of the ADC volume distinguished best between GBM and BA.

  14. LRP1 in Brain Vascular Smooth Muscle Cells Mediates Local Clearance of Alzheimer's Amyloid-β

    OpenAIRE

    Kanekiyo, Takahisa; Liu, Chia-Chen; Shinohara, Mitsuru; Li, Jie; Bu, Guojun

    2012-01-01

    Impaired clearance of amyloid-β (Aβ) is a major pathogenic event for Alzheimer’s disease (AD). Aβ depositions in brain parenchyma as senile plaques and along cerebrovasculature as cerebral amyloid angiopathy (CAA) are hallmarks of AD. A major pathway that mediates brain Aβ clearance is the cerebrovascular system where Aβ is eliminated through the blood-brain barrier (BBB) and/or degraded by cerebrovascular cells along the interstitial fluid drainage pathway. An Aβ clearance receptor, the low-...

  15. Overlapping trisomies for human chromosome 21 orthologs produce similar effects on skull and brain morphology of Dp(16)1Yey and Ts65Dn mice.

    Science.gov (United States)

    Starbuck, John M; Dutka, Tara; Ratliff, Tabetha S; Reeves, Roger H; Richtsmeier, Joan T

    2014-08-01

    Trisomy 21 results in gene-dosage imbalance during embryogenesis and throughout life, ultimately causing multiple anomalies that contribute to the clinical manifestations of Down syndrome. Down syndrome is associated with manifestations of variable severity (e.g., heart anomalies, reduced growth, dental anomalies, shortened life-span). Craniofacial dysmorphology and cognitive dysfunction are consistently observed in all people with Down syndrome. Mouse models are useful for studying the effects of gene-dosage imbalance on development. We investigated quantitative changes in the skull and brain of the Dp(16)1Yey Down syndrome mouse model and compared these mice to Ts65Dn and Ts1Cje mouse models. Three-dimensional micro-computed tomography images of Dp(16)1Yey and euploid mouse crania were morphometrically evaluated. Cerebellar cross-sectional area, Purkinje cell linear density, and granule cell density were evaluated relative to euploid littermates. Skulls of Dp(16)1Yey and Ts65Dn mice displayed similar changes in craniofacial morphology relative to their respective euploid littermates. Trisomy-based differences in brain morphology were also similar in Dp(16)1Yey and Ts65Dn mice. These results validate examination of the genetic basis for craniofacial and brain phenotypes in Dp(16)1Yey mice and suggest that they, like Ts65Dn mice, are valuable tools for modeling the effects of trisomy 21 on development. © 2014 Wiley Periodicals, Inc.

  16. Cholecystokinin receptors: Biochemical demonstration and autoradiographical localization in rat brain and pancreas using [3H] cholecystokinin8 as radioligand

    International Nuclear Information System (INIS)

    Van Dijk, A.; Richards, J.G.; Trzeciak, A.; Gillessen, D.; Moehler, H.

    1984-01-01

    Since cholecystokinin8 (CCK8) seems to be the physiological ligand of CCK receptors in the brain, it would be the most suitable probe for the characterization of CCK receptors in radioligand binding studies. [ 3 H]CCK8 was synthetized with a specific radioactivity sufficient for the detection of high affinity binding sites. [ 3 H]CCK8 binds saturably and reversibly to distinct sites in rat brain and pancreas with nanomolar affinity. While the C-terminal tetrapeptide of CCK is the minimal structure required for nanomolar affinity in the brain, the entire octapeptide sequence is required for binding affinity in pancreas. Desulfated CCK8 and several gastrin-I peptides, which are likewise unsulfated, show virtually no affinity to the binding sites in pancreas but high affinity in cerebral cortex. The ligand specificity of the CCK peptides corresponds to their electrophysiological potency in the brain and their stimulation of secretion in pancreas, respectively. Autoradiographically, high densities of [ 3 H]CCK8 binding sites were found in cerebral cortex and olfactory bulb, medium levels in nucleus accumbens, hippocampus, dentate gyrus, and striatum with virtually no labeling in cerebellum. This pattern is similar to the distribution of CCK-like immunoreactivity in the brain. In pancreas, equally high levels of [ 3 H]CCK8 labeling were found in the exocrine and endocrine region. [ 3 H]CCK8 binding sites differ from those identified previously with [ 125 I]Bolton-Hunter-CCK33 by their sensitivity to guanyl nucleotides in the brain, their ion dependency in the brain, and pancreas, and their different autoradiographical localization in some parts of the brain. The distribution of CCK binding sites labeled with [ 3 H]CCK8 appears to correlate better with the CCK immunoreactivity than those labeled with [ 125 I]Bolton-Hunter-CCK33. Thus, [ 3 H]CCK8 appears to be the radioligand of choice for the investigation of CCK receptors

  17. Optimal and Local Connectivity Between Neuron and Synapse Array in the Quantum Dot/Silicon Brain

    Science.gov (United States)

    Duong, Tuan A.; Assad, Christopher; Thakoor, Anikumar P.

    2010-01-01

    This innovation is used to connect between synapse and neuron arrays using nanowire in quantum dot and metal in CMOS (complementary metal oxide semiconductor) technology to enable the density of a brain-like connection in hardware. The hardware implementation combines three technologies: 1. Quantum dot and nanowire-based compact synaptic cell (50x50 sq nm) with inherently low parasitic capacitance (hence, low dynamic power approx.l0(exp -11) watts/synapse), 2. Neuron and learning circuits implemented in 50-nm CMOS technology, to be integrated with quantum dot and nanowire synapse, and 3. 3D stacking approach to achieve the overall numbers of high density O(10(exp 12)) synapses and O(10(exp 8)) neurons in the overall system. In a 1-sq cm of quantum dot layer sitting on a 50-nm CMOS layer, innovators were able to pack a 10(exp 6)-neuron and 10(exp 10)-synapse array; however, the constraint for the connection scheme is that each neuron will receive a non-identical 10(exp 4)-synapse set, including itself, via its efficacy of the connection. This is not a fully connected system where the 100x100 synapse array only has a 100-input data bus and 100-output data bus. Due to the data bus sharing, it poses a great challenge to have a complete connected system, and its constraint within the quantum dot and silicon wafer layer. For an effective connection scheme, there are three conditions to be met: 1. Local connection. 2. The nanowire should be connected locally, not globally from which it helps to maximize the data flow by sharing the same wire space location. 3. Each synapse can have an alternate summation line if needed (this option is doable based on the simple mask creation). The 10(exp 3)x10(exp 3)-neuron array was partitioned into a 10-block, 10(exp 2)x10(exp 3)-neuron array. This building block can be completely mapped within itself (10,000 synapses to a neuron).

  18. Using Fractal and Local Binary Pattern Features for Classification of ECOG Motor Imagery Tasks Obtained from the Right Brain Hemisphere.

    Science.gov (United States)

    Xu, Fangzhou; Zhou, Weidong; Zhen, Yilin; Yuan, Qi; Wu, Qi

    2016-09-01

    The feature extraction and classification of brain signal is very significant in brain-computer interface (BCI). In this study, we describe an algorithm for motor imagery (MI) classification of electrocorticogram (ECoG)-based BCI. The proposed approach employs multi-resolution fractal measures and local binary pattern (LBP) operators to form a combined feature for characterizing an ECoG epoch recording from the right hemisphere of the brain. A classifier is trained by using the gradient boosting in conjunction with ordinary least squares (OLS) method. The fractal intercept, lacunarity and LBP features are extracted to classify imagined movements of either the left small finger or the tongue. Experimental results on dataset I of BCI competition III demonstrate the superior performance of our method. The cross-validation accuracy and accuracy is 90.6% and 95%, respectively. Furthermore, the low computational burden of this method makes it a promising candidate for real-time BCI systems.

  19. Ageing and chronic intermittent hypoxia mimicking sleep apnea do not modify local brain tissue stiffness in healthy mice.

    Science.gov (United States)

    Jorba, Ignasi; Menal, Maria José; Torres, Marta; Gozal, David; Piñol-Ripoll, Gerard; Colell, Anna; Montserrat, Josep M; Navajas, Daniel; Farré, Ramon; Almendros, Isaac

    2017-07-01

    Recent evidence suggests that obstructive sleep apnea (OSA) may increase the risk of Alzheimer´s disease (AD), with the latter promoting alterations in brain tissue stiffness, a feature of ageing. Here, we assessed the effects of age and intermittent hypoxia (IH) on brain tissue stiffness in a mouse model of OSA. Two-month-old and 18-month-old mice (N=10 each) were subjected to IH (20% O 2 40s - 6% O 2 20s) for 8 weeks (6h/day). Corresponding control groups for each age were kept under normoxic conditions in room air (RA). After sacrifice, the brain was excised and 200-micron coronal slices were cut with a vibratome. Local stiffness of the cortex and hippocampus were assessed in brain slices placed in an Atomic Force Microscope. For both brain regions, the Young's modulus (E) in each animal was computed as the average values from 9 force-indentation curves. Cortex E mean (±SE) values were 442±122Pa (RA) and 455±120 (IH) for young mice and 433±44 (RA) and 405±101 (IH) for old mice. Hippocampal E values were 376±62 (RA) and 474±94 (IH) for young mice and 486±93 (RA) and 521±210 (IH) for old mice. For both cortex and hippocampus, 2-way ANOVA indicated no statistically significant effects of age or challenge (IH vs. RA) on E values. Thus, neither chronic IH mimicking OSA nor ageing up to late middle age appear to modify local brain tissue stiffness in otherwise healthy mice. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Apc1 is required for maintenance of local brain organizers and dorsal midbrain survival.

    NARCIS (Netherlands)

    Paridaen, J.T.M.; Danesin, C.; Elas, A.T.; van de Water, S.G.P.; Houart, C.; Zivkovic, D.

    2009-01-01

    The tumor suppressor Apc1 is an intracellular antagonist of the Wnt/beta-catenin pathway, which is vital for induction and patterning of the early vertebrate brain. However, its role in later brain development is less clear. Here, we examined the mechanisms underlying effects of an Apc1

  1. Expression and cellular localization of hepcidin mRNA and protein in normal rat brain

    Czech Academy of Sciences Publication Activity Database

    Raha-Chowdhury, R.; Raha, A.A.; Forostyak, Serhiy; Zhao, J.W.; Stott, S.R.W.; Bomford, A.

    2015-01-01

    Roč. 16, APR 21 (2015), s. 24 ISSN 1471-2202 Institutional support: RVO:68378041 Keywords : hepcidin * ferroportin * defensin * inflammatory cytokines * brain iron homeostasis * blood brain barrier * pericytes * sub-ventricular zone * neurogenesis Subject RIV: FH - Neurology Impact factor: 2.304, year: 2015

  2. Predictors of Individual Tumor Local Control After Stereotactic Radiosurgery for Non-Small Cell Lung Cancer Brain Metastases

    International Nuclear Information System (INIS)

    Garsa, Adam A.; Badiyan, Shahed N.; DeWees, Todd; Simpson, Joseph R.; Huang, Jiayi; Drzymala, Robert E.; Barani, Igor J.; Dowling, Joshua L.; Rich, Keith M.; Chicoine, Michael R.; Kim, Albert H.; Leuthardt, Eric C.; Robinson, Clifford G.

    2014-01-01

    Purpose: To evaluate local control rates and predictors of individual tumor local control for brain metastases from non-small cell lung cancer (NSCLC) treated with stereotactic radiosurgery (SRS). Methods and Materials: Between June 1998 and May 2011, 401 brain metastases in 228 patients were treated with Gamma Knife single-fraction SRS. Local failure was defined as an increase in lesion size after SRS. Local control was estimated using the Kaplan-Meier method. The Cox proportional hazards model was used for univariate and multivariate analysis. Receiver operating characteristic analysis was used to identify an optimal cutpoint for conformality index relative to local control. A P value <.05 was considered statistically significant. Results: Median age was 60 years (range, 27-84 years). There were 66 cerebellar metastases (16%) and 335 supratentorial metastases (84%). The median prescription dose was 20 Gy (range, 14-24 Gy). Median overall survival from time of SRS was 12.1 months. The estimated local control at 12 months was 74%. On multivariate analysis, cerebellar location (hazard ratio [HR] 1.94, P=.009), larger tumor volume (HR 1.09, P<.001), and lower conformality (HR 0.700, P=.044) were significant independent predictors of local failure. Conformality index cutpoints of 1.4-1.9 were predictive of local control, whereas a cutpoint of 1.75 was the most predictive (P=.001). The adjusted Kaplan-Meier 1-year local control for conformality index ≥1.75 was 84% versus 69% for conformality index <1.75, controlling for tumor volume and location. The 1-year adjusted local control for cerebellar lesions was 60%, compared with 77% for supratentorial lesions, controlling for tumor volume and conformality index. Conclusions: Cerebellar tumor location, lower conformality index, and larger tumor volume were significant independent predictors of local failure after SRS for brain metastases from NSCLC. These results warrant further investigation in a prospective

  3. Hypothetical high-level cognitive functions cannot be localized in the brain: another argument for a revitalized behaviorism.

    Science.gov (United States)

    Uttal, William R

    2004-01-01

    A key epistemological difference between behaviorism and cognitivism concerns their respective attitudes toward the analysis of so-called cognitive processes into functional modules. Behaviorists generally say it is not possible. Cognitivists argue that this is an achievable goal. The question has been concretized by recent developments in brain imaging technology. A consideration of the matter suggests that technical and conceptual difficulties abound in the effort to localize "high-level cognitive functions" in narrowly circumscribed regions of the brain. Some of the most serious involve the ambiguous definition of the putative mental components that are to be localized and the generally unacknowledged nonlinear complexity of both psychological processes and the brain. In addition, the imaging techniques themselves are replete with technical difficulties that raise additional questions about this particular application, even though these wonderful machines can make extraordinary contributions to our knowledge of brain anatomy and physiology. The cumulative implication of these difficulties is that the cognitive approach to the study of scientific psychology has once again set out on a search for a chimera. New approaches to behaviorism may be required to set psychology back on the correct track.

  4. The significance of morphological changes in the brain-tumor interface for the pathogenesis of brain edema in meningioma: Magnetic resonance tomography and intraoperative findings

    International Nuclear Information System (INIS)

    Bitzer, M.; Klose, U.; Naegele, T.; Mundinger, P.; Voigt, K.; Freudenstein, D.; Heiss, E.

    1999-01-01

    Purpose: The aim of the study was to verify a possible correlation between macroscopic changes of the brain-tumor interface (BTI) and the development of a peritumoral brain edema in meningiomas. Methods: 27 meningiomas were investigated in this prospective study using an optimized inversion-recovery (IR) sequence. After i.v. administration of 0.2 mmol Gd-DTPA/kg axial and coronary images were acquired (slice thickness=2 mm). The distances of signal altered cortex and obliterations of the subarachnoid space (SAS) were measured at the BTI and related to the pial tumor circumference (cortical-index and SAS-index). Intraoperatively the BTI was divided into the following categories: 0: SAS not obliterated, 1: SAS partially obliterated, 2: Direct contact between tumor and white matter, 3: Tumor infiltration into brain. Results: Edema-associated meningiomas showed a significantly (p=0.0001) increased SAS-index (0.47 vs. 0.07) and cortical index (0.45 vs. 0.0) compared to cases without edema. Intraoperatively 95% of meningiomas with brain edema showed SAS-obliterations, compared to 50% of cases without an edema. Conclusions: Arachnoid adhesions at the BTI with obliteration of the SAS seem to play an essential role in the induction of brain edema in meningiomas. (orig.) [de

  5. Long-term oral methylphenidate treatment in adolescent and adult rats: differential effects on brain morphology and function

    NARCIS (Netherlands)

    Marel, K. van der; Klomp, A.; Meerhoff, G.F.; Schipper, P.; Lucassen, P.J.; Homberg, J.R.; Dijkhuizen, R.M.; Reneman, L.

    2014-01-01

    Methylphenidate is a widely prescribed psychostimulant for treatment of attention deficit hyperactivity disorder (ADHD) in children and adolescents, which raises questions regarding its potential interference with the developing brain. In the present study, we investigated effects of 3 weeks oral

  6. Local-learning-based neuron selection for grasping gesture prediction in motor brain machine interfaces

    Science.gov (United States)

    Xu, Kai; Wang, Yiwen; Wang, Yueming; Wang, Fang; Hao, Yaoyao; Zhang, Shaomin; Zhang, Qiaosheng; Chen, Weidong; Zheng, Xiaoxiang

    2013-04-01

    Objective. The high-dimensional neural recordings bring computational challenges to movement decoding in motor brain machine interfaces (mBMI), especially for portable applications. However, not all recorded neural activities relate to the execution of a certain movement task. This paper proposes to use a local-learning-based method to perform neuron selection for the gesture prediction in a reaching and grasping task. Approach. Nonlinear neural activities are decomposed into a set of linear ones in a weighted feature space. A margin is defined to measure the distance between inter-class and intra-class neural patterns. The weights, reflecting the importance of neurons, are obtained by minimizing a margin-based exponential error function. To find the most dominant neurons in the task, 1-norm regularization is introduced to the objective function for sparse weights, where near-zero weights indicate irrelevant neurons. Main results. The signals of only 10 neurons out of 70 selected by the proposed method could achieve over 95% of the full recording's decoding accuracy of gesture predictions, no matter which different decoding methods are used (support vector machine and K-nearest neighbor). The temporal activities of the selected neurons show visually distinguishable patterns associated with various hand states. Compared with other algorithms, the proposed method can better eliminate the irrelevant neurons with near-zero weights and provides the important neuron subset with the best decoding performance in statistics. The weights of important neurons converge usually within 10-20 iterations. In addition, we study the temporal and spatial variation of neuron importance along a period of one and a half months in the same task. A high decoding performance can be maintained by updating the neuron subset. Significance. The proposed algorithm effectively ascertains the neuronal importance without assuming any coding model and provides a high performance with different

  7. Local brain herniation after partial membranectomy for organized chronic subdural hematoma in an adult patient: case report and review of the literature.

    Science.gov (United States)

    Kusano, Yoshikazu; Horiuchi, Tetsuyoshi; Seguchi, Tatsuya; Kakizawa, Yukinari; Tanaka, Yuichiro; Hongo, Kazuhiro

    2010-01-01

    Local brain herniation after removal of chronic subdural haematoma is extremely rare, especially in adult patients. This study reports a case of local brain herniation after partial membranectomy for organized chronic subdural haematoma. A 77-year-old man presented with dysarthria and dysphasia caused by local brain herniation of the right frontal lobe through a defect of the inner membrane. The herniated brain was detected by magnetic resonance (MR) imaging. The patient underwent a craniotomy to release the herniated and strangulated brain, which were consistent with the MR imaging findings. The patient recovered fully within 1 month after surgery. To date, five cases of brain herniation through the internal subdural membrane have been reported as complications of chronic subdural haematomas. All but one case occurred in the paediatric population. Urgent surgery should be performed, even if an adult patient suffers from local brain herniation, for preservation of brain function. This is the sixth reported case of brain herniation through a defect of the inner membrane and the second reported case in the adult population.

  8. Not only in the brain: Cabanis and the Montpellierian tradition of localization.

    Science.gov (United States)

    Kaitaro, T

    2000-01-01

    Antonio Damasio (1995) has recently presented evidence to the effect that we are perhaps wrong in thinking that it is only the brain that thinks. Rational decision making involves emotional reactions as a necessary condition and background. And since emotions involve bodily reactions which are not limited to the brain but which embrace the autonomous nervous system and the viscera, one could say that we actually think with our bodies and not merely with our brains. According to Damasio the incapacity of patients with frontal lobe pathology in decision making could be explained by a disturbance in emotional reactions involving the whole organism. Philosophical discussions concerning brains in a vat have completely forgotten these aspects of our mental life. Despite the fact that the idea that we think exclusively with our brains has during the modern age been a rather widely held "received view," there is a physiological and philosophical tradition which regarded mental functions as the result of the interaction of several organs, instead of seeing them as the result of the activity of the brain alone.

  9. Localization of deformed wing virus (DWV) in the brains of the honeybee, Apis mellifera Linnaeus.

    Science.gov (United States)

    Shah, Karan S; Evans, Elizabeth C; Pizzorno, Marie C

    2009-10-30

    Deformed wing virus (DWV) is a positive-strand RNA virus that infects European honeybees (Apis mellifera L.) and has been isolated from the brains of aggressive bees in Japan. DWV is known to be transmitted both vertically and horizontally between bees in a colony and can lead to both symptomatic and asymptomatic infections in bees. In environmentally stressful conditions, DWV can contribute to the demise of a honeybee colony. The purpose of the current study is to identify regions within the brains of honeybees where DWV replicates using in-situ hybridization. In-situ hybridizations were conducted with both sense and antisense probes on the brains of honeybees that were positive for DWV as measured by real-time RT-PCR. The visual neuropils demonstrated detectable levels of the DWV positive-strand genome. The mushroom bodies and antenna lobe neuropils also showed the presence of the viral genome. Weaker staining with the sense probe in the same regions demonstrates that the antigenome is also present and that the virus is actively replicating in these regions of the brain. These results demonstrate that in bees infected with DWV the virus is replicating in critical regions of the brain, including the neuropils responsible for vision and olfaction. Therefore DWV infection of the brain could adversely affect critical sensory functions and alter normal bee behavior.

  10. Localization of deformed wing virus (DWV in the brains of the honeybee, Apis mellifera Linnaeus

    Directory of Open Access Journals (Sweden)

    Evans Elizabeth C

    2009-10-01

    Full Text Available Abstract Background Deformed wing virus (DWV is a positive-strand RNA virus that infects European honeybees (Apis mellifera L. and has been isolated from the brains of aggressive bees in Japan. DWV is known to be transmitted both vertically and horizontally between bees in a colony and can lead to both symptomatic and asymptomatic infections in bees. In environmentally stressful conditions, DWV can contribute to the demise of a honeybee colony. The purpose of the current study is to identify regions within the brains of honeybees where DWV replicates using in-situ hybridization. Results In-situ hybridizations were conducted with both sense and antisense probes on the brains of honeybees that were positive for DWV as measured by real-time RT-PCR. The visual neuropils demonstrated detectable levels of the DWV positive-strand genome. The mushroom bodies and antenna lobe neuropils also showed the presence of the viral genome. Weaker staining with the sense probe in the same regions demonstrates that the antigenome is also present and that the virus is actively replicating in these regions of the brain. Conclusion These results demonstrate that in bees infected with DWV the virus is replicating in critical regions of the brain, including the neuropils responsible for vision and olfaction. Therefore DWV infection of the brain could adversely affect critical sensory functions and alter normal bee behavior.

  11. Radiation effects on the parotid gland of mammals. Pt. 4. Biochemical and morphological changes after local irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Becciolini, A; Balzi, M; Cremonini, D; Tomassi, I; Giannardi, G [Florence Univ. (Italy). Istituto di Radiologia; Pelu, G

    1980-01-01

    A morphological and biochemical study was done on rat parotids to evaluate the modifications after 2400 rad in the parotid area only. As previously observed, whole-body irradiation with lower doses produced only slight effects on the gland. The enzymes peculiar to glandular function decreased significantly 3 days after irradiation, later they fluctuated on control values. Increase in alkaline phosphatase, LAP, and decrease in protein content was a constant result, ..beta..-glucuronidase only among lysosomal enzymes increased significantly at some intervals. Morphological alterations in the glandular sections of the sacrificed animals appeared modest and mostly consisted of progressive fibrosis.

  12. Association of maternal thyroid function during early pregnancy with offspring IQ and brain morphology in childhood: a population-based prospective cohort study.

    Science.gov (United States)

    Korevaar, Tim I M; Muetzel, Ryan; Medici, Marco; Chaker, Layal; Jaddoe, Vincent W V; de Rijke, Yolanda B; Steegers, Eric A P; Visser, Theo J; White, Tonya; Tiemeier, Henning; Peeters, Robin P

    2016-01-01

    Thyroid hormone is involved in the regulation of early brain development. Since the fetal thyroid gland is not fully functional until week 18-20 of pregnancy, neuronal migration and other crucial early stages of intrauterine brain development largely depend on the supply of maternal thyroid hormone. Current clinical practice mostly focuses on preventing the negative consequences of low thyroid hormone concentrations, but data from animal studies have shown that both low and high concentrations of thyroid hormone have negative effects on offspring brain development. We aimed to investigate the association of maternal thyroid function with child intelligence quotient (IQ) and brain morphology. In this population-based prospective cohort study, embedded within the Generation R Study (Rotterdam, Netherlands), we investigated the association of maternal thyroid function with child IQ (assessed by non-verbal intelligence tests) and brain morphology (assessed on brain MRI scans). Eligible women were those living in the study area at their delivery date, which had to be between April 1, 2002, and Jan 1, 2006. For this study, women with available serum samples who presented in early pregnancy (brain MRI scans (done at a median of 8·0 years of age [6·2-10·0]) were obtained. Analyses were adjusted for potential confounders including concentrations of human chorionic gonadotropin and child thyroid-stimulating hormone and free thyroxine. Data for child IQ were available for 3839 mother-child pairs, and MRI scans were available from 646 children. Maternal free thyroxine concentrations showed an inverted U-shaped association with child IQ (p=0·0044), child grey matter volume (p=0·0062), and cortex volume (p=0·0011). For both low and high maternal free thyroxine concentrations, this association corresponded to a 1·4-3·8 points reduction in mean child IQ. Maternal thyroid-stimulating hormone was not associated with child IQ or brain morphology. All associations remained

  13. Segmentation of Brain Lesions in MRI and CT Scan Images: A Hybrid Approach Using k-Means Clustering and Image Morphology

    Science.gov (United States)

    Agrawal, Ritu; Sharma, Manisha; Singh, Bikesh Kumar

    2018-04-01

    Manual segmentation and analysis of lesions in medical images is time consuming and subjected to human errors. Automated segmentation has thus gained significant attention in recent years. This article presents a hybrid approach for brain lesion segmentation in different imaging modalities by combining median filter, k means clustering, Sobel edge detection and morphological operations. Median filter is an essential pre-processing step and is used to remove impulsive noise from the acquired brain images followed by k-means segmentation, Sobel edge detection and morphological processing. The performance of proposed automated system is tested on standard datasets using performance measures such as segmentation accuracy and execution time. The proposed method achieves a high accuracy of 94% when compared with manual delineation performed by an expert radiologist. Furthermore, the statistical significance test between lesion segmented using automated approach and that by expert delineation using ANOVA and correlation coefficient achieved high significance values of 0.986 and 1 respectively. The experimental results obtained are discussed in lieu of some recently reported studies.

  14. Localization of Coronary High-Intensity Signals on T1-Weighted MR Imaging: Relation to Plaque Morphology and Clinical Severity of Angina Pectoris.

    Science.gov (United States)

    Matsumoto, Kenji; Ehara, Shoichi; Hasegawa, Takao; Sakaguchi, Mikumo; Otsuka, Kenichiro; Yoshikawa, Junichi; Shimada, Kenei

    2015-10-01

    This study sought to investigate the relationship between localization of high-intensity signals (HISs) on T1-weighted imaging (T1WI) with the noncontrast magnetic resonance technique and plaque morphology detected on optical coherence tomography, and the clinical severity of angina pectoris. Since the introduction of the T1WI noncontrast magnetic resonance technique for plaque imaging, some groups have reported that HISs in the coronary artery on T1WI are associated with a vulnerable morphology and future cardiac events. However, the association between the localization of HISs, such as coronary intrawall or intraluminal, and plaque morphology has not been investigated. One hundred lesions with either stable or unstable angina were included and divided into 3 groups according to the following criteria using T1WI. First, the plaques with the ratio between the signal intensities of coronary plaque and cardiac muscle ≤1.0 were classified as non-HISs (n = 39). Then, HISs with the ratio between the signal intensities of coronary plaque and cardiac muscle >1.0 were classified into 2 types by using cross-sectional T1WI. Those localized within the coronary wall when the lumen was identified were defined as intrawall HISs (n = 37), whereas those occupying the lumen when the lumen was not, or even if only partly, identified, were defined as intraluminal HISs (n = 24). Multivariate analysis revealed that intrawall HISs were associated with macrophage accumulation and the absence of calcification assessed by using optical coherence tomography. In contrast, thrombus and intimal vasculature were independent factors associated with intraluminal HISs. Furthermore, 50% of patients with intraluminal HISs experienced rest angina, such as Braunwald class II or III. This study shows that intrawall and intraluminal HISs on T1WI in patients with angina are related to the different types of vulnerable plaque morphology and the clinical severity. Copyright © 2015 American College of

  15. Localized proton 1H MR spectroscopy in different regions of the human brain

    International Nuclear Information System (INIS)

    Fang Hong; Guo Qinglin; Zhang Guixiang

    1997-01-01

    To study the 1 H MR spectrum of normal human brain and the concentration and distribution of main metabolites using 1 H MR spectroscopy eighteen healthy human brains were examined by conventional 1.5 T MRI system. Volume of interest (VOI) included temporal lobe (mainly gray matter), thalamus, cerebellum as well as white matter. Proton MR spectroscopy can detect a variety of metabolites in human brain in vivo. The main detectable metabolites were N-acetyl-aspartate (NAA: at 2.02 ppm), cholineontaining compounds (Cho: at 3.2 ppm), phospho-creating and creatine (PCr + Cr: at 3.0 ppm), glutamine and glutamate (Gln + Glu: at 2.34-2.45 ppm), lipids (Lip: at 1.0 ppm) and lactate (Lac: at 1.3 ppm). the metabolite concentration varied in different parts of the brain. The relative signal intensity calculation showed that: NAA/Cho ratio is the highest in gray matter and lowest in cerebellun. Cr/Cho is the highest in cerebellum and lowest in white matter. The assumed creatine concentration is 10 mmol/L for gray matter and cerebellum, 11 mmol/L for white matter and thalanmus, the absolute concentration of NAA in the brain is about 13-23 mmol/L, and is higher in gray matter than in cerebellum and thalamus. Proton MR spectroscopy is a new noninvasive method which can be used to detect a number of chemical compounds pertaining to energy metabolism, free amino acids, fatty acids and neurotransmitters in the brain. It is useful to assess the cerebral biochemical changes in vivo both in healthy subjects and in patients with various brain disease

  16. Fasting and Systemic Insulin Signaling Regulate Phosphorylation of Brain Proteins That Modulate Cell Morphology and Link to Neurological Disorders*

    Science.gov (United States)

    Li, Min; Quan, Chao; Toth, Rachel; Campbell, David G.; MacKintosh, Carol; Wang, Hong Yu; Chen, Shuai

    2015-01-01

    Diabetes is strongly associated with cognitive decline, but the molecular reasons are unknown. We found that fasting and peripheral insulin promote phosphorylation and dephosphorylation, respectively, of specific residues on brain proteins including cytoskeletal regulators such as slit-robo GTPase-activating protein 3 (srGAP3) and microtubule affinity-regulating protein kinases (MARKs), in which deficiency or dysregulation is linked to neurological disorders. Fasting activates protein kinase A (PKA) but not PKB/Akt signaling in the brain, and PKA can phosphorylate the purified srGAP3. The phosphorylation of srGAP3 and MARKs were increased when PKA signaling was activated in primary neurons. Knockdown of PKA decreased the phosphorylation of srGAP3. Furthermore, WAVE1, a protein kinase A-anchoring protein, formed a complex with srGAP3 and PKA in the brain of fasted mice to facilitate the phosphorylation of srGAP3 by PKA. Although brain cells have insulin receptors, our findings are inconsistent with the down-regulation of phosphorylation of target proteins being mediated by insulin signaling within the brain. Rather, our findings infer that systemic insulin, through a yet unknown mechanism, inhibits PKA or protein kinase(s) with similar specificity and/or activates an unknown phosphatase in the brain. Ser858 of srGAP3 was identified as a key regulatory residue in which phosphorylation by PKA enhanced the GAP activity of srGAP3 toward its substrate, Rac1, in cells, thereby inhibiting the action of this GTPase in cytoskeletal regulation. Our findings reveal novel mechanisms linking peripheral insulin sensitivity with cytoskeletal remodeling in neurons, which may help to explain the association of diabetes with neurological disorders such as Alzheimer disease. PMID:26499801

  17. Fasting and Systemic Insulin Signaling Regulate Phosphorylation of Brain Proteins That Modulate Cell Morphology and Link to Neurological Disorders.

    Science.gov (United States)

    Li, Min; Quan, Chao; Toth, Rachel; Campbell, David G; MacKintosh, Carol; Wang, Hong Yu; Chen, Shuai

    2015-12-11

    Diabetes is strongly associated with cognitive decline, but the molecular reasons are unknown. We found that fasting and peripheral insulin promote phosphorylation and dephosphorylation, respectively, of specific residues on brain proteins including cytoskeletal regulators such as slit-robo GTPase-activating protein 3 (srGAP3) and microtubule affinity-regulating protein kinases (MARKs), in which deficiency or dysregulation is linked to neurological disorders. Fasting activates protein kinase A (PKA) but not PKB/Akt signaling in the brain, and PKA can phosphorylate the purified srGAP3. The phosphorylation of srGAP3 and MARKs were increased when PKA signaling was activated in primary neurons. Knockdown of PKA decreased the phosphorylation of srGAP3. Furthermore, WAVE1, a protein kinase A-anchoring protein, formed a complex with srGAP3 and PKA in the brain of fasted mice to facilitate the phosphorylation of srGAP3 by PKA. Although brain cells have insulin receptors, our findings are inconsistent with the down-regulation of phosphorylation of target proteins being mediated by insulin signaling within the brain. Rather, our findings infer that systemic insulin, through a yet unknown mechanism, inhibits PKA or protein kinase(s) with similar specificity and/or activates an unknown phosphatase in the brain. Ser(858) of srGAP3 was identified as a key regulatory residue in which phosphorylation by PKA enhanced the GAP activity of srGAP3 toward its substrate, Rac1, in cells, thereby inhibiting the action of this GTPase in cytoskeletal regulation. Our findings reveal novel mechanisms linking peripheral insulin sensitivity with cytoskeletal remodeling in neurons, which may help to explain the association of diabetes with neurological disorders such as Alzheimer disease. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. A comparative antibody analysis of Pannexin1 expression in four rat brain regions reveals varying subcellular localizations

    Directory of Open Access Journals (Sweden)

    Angela C Cone

    2013-02-01

    Full Text Available Pannexin1 (Panx1 channels release cytosolic ATP in response to signaling pathways. Panx1 is highly expressed in the central nervous system. We used four antibodies with different Panx1 anti-peptide epitopes to analyze four regions of rat brain. These antibodies labeled the same bands in Western blots and had highly similar patterns of immunofluorescence in tissue culture cells expressing Panx1, but Western blots of brain lysates from Panx1 knockout and control mice showed different banding patterns. Localizations of Panx1 in brain slices were generated using automated wide-field mosaic confocal microscopy for imaging large regions of interest while retaining maximum resolution for examining cell populations and compartments. We compared Panx1 expression over the cerebellum, hippocampus with adjacent cortex, thalamus and olfactory bulb. While Panx1 localizes to the same neuronal cell types, subcellular localizations differ. Two antibodies with epitopes against the intracellular loop and one against the carboxy terminus preferentially labeled cell bodies, while an antibody raised against an N-terminal peptide highlighted neuronal processes more than cell bodies. These labeling patterns may be a reflection of different cellular and subcellular localizations of full-length and/or modified Panx1 channels where each antibody is highlighting unique or differentially accessible Panx1 populations. However, we cannot rule out that one or more of these antibodies have specificity issues. All data associated with experiments from these four antibodies are presented in a manner that allows them to be compared and our claims thoroughly evaluated, rather than eliminating results that were questionable. Each antibody is given a unique identifier through the NIF Antibody Registry that can be used to track usage of individual antibodies across papers and all image and metadata are made available in the public repository, the Cell Centered Database, for on

  19. Characterization and localization of 3H-arginine8-vasopressin binding to rat kidney and brain tissue

    International Nuclear Information System (INIS)

    Dorsa, D.M.; Majumdar, L.A.; Petracca, F.M.; Baskin, D.G.; Cornett, L.E.

    1983-01-01

    Anatomic, behavioral and pharmacologic evidence suggests that arginine8-vasopressin (AVP) serves as a CNS neurotransmitter or neuromodulator. AVP binding to membrane and tissue slice preparations from brain and kidney was characterized, and the anatomical distribution of these binding sites was examined. Conditions for the binding assay were optimized using kidney medullary tissue. Binding of 3 H-AVP (S.A. . 30-51 Ci/mmol, NEN) to brain and kidney membranes and tissue slices was saturable, temperature dependent, linearly related to protein concentration (or number of tissue slices), reversible, and specific since the ability of cold AVP to displace 3 H-AVP from binding was greater than oxytocin and other related peptide fragments. Autoradiographic localization of 3 H-AVP binding was restricted to kidney medullary tissue. In brain tissue, 3 H-AVP binding was found to occur in concentrated foci. Brainstem areas such as the nucleus tractus solitarius (NTS) showed a high density of AVP binding sites. Since local injections of AVP into the NTS have been shown to influence blood pressure, the present study presents the first anatomical evidence for the presence of AVP specific binding sites which might mediate this effect

  20. Complex treatment of primary brain neuroblastoma with four local recurrences for period of 5 years -clinical case from our practice

    International Nuclear Information System (INIS)

    Marinova, L.; Georgiev, R.; Mihaylova, I.; Belcheva, M.

    2017-01-01

    We present a clinical case of 17 years old girl with primary brain neuroblastoma (supratentorial primitive neuro-ectodermal tumor - PNET in right temporo-parietal brain region). Complex treatment has been applied, including subtotal operation, standard fractioned cranio-spinal external beam radiotherapy with boost up to 56 Gy in the locus of the tumor remnant and 6 courses of adjuvant chemotherapy with Carboplatin and Etoposide. Despite the applied local treatment methods (radical surgery, standard fractioned cranio-spinal external beam radiotherapy and radio-surgery with single total dose of 14 Gy), four recurrences have appeared for period of 5 years in the locus of the primary tumor. The risk of appearance of local recurrences, necessitating re-operations, chemotherapy, bone marrow transplantation of stem cells and radio-surgery was discussed. We are also discussing the radio sensitivity of the PNET and the possibilities for overcoming it with implementation of hyper fractioned cranio-spinal external beam radiotherapy in combination with chemotherapy, followed by bone marrow transplantation of stem cells. Key words: Primary Brain Neuroblastoma. Radio Sensitivity. Cranio-Spinal External Beam Radiotherapy. Adjuvant Chemotherapy [bg

  1. Use of diffusion-weighted MRI to modify radiosurgery planning in brain metastases may reduce local recurrence.

    Science.gov (United States)

    Zakaria, Rasheed; Pomschar, Andreas; Jenkinson, Michael D; Tonn, Jörg-Christian; Belka, Claus; Ertl-Wagner, Birgit; Niyazi, Maximilian

    2017-02-01

    Stereotactic radiosurgery (SRS) is an effective and well tolerated treatment for selected brain metastases; however, local recurrence still occurs. We investigated the use of diffusion weighted MRI (DWI) as an adjunct for SRS treatment planning in brain metastases. Seventeen consecutive patients undergoing complete surgical resection of a solitary brain metastasis underwent image analysis retrospectively. SRS treatment plans were generated based on standard 3D post-contrast T1-weighted sequences at 1.5T and then separately using apparent diffusion coefficient (ADC) maps in a blinded fashion. Control scans immediately post operation confirmed complete tumour resection. Treatment plans were compared to one another and with volume of local recurrence at progression quantitatively and qualitatively by calculating the conformity index (CI), the overlapping volume as a proportion of the total combined volume, where 1 = identical plans and 0 = no conformation whatsoever. Gross tumour volumes (GTVs) using ADC and post-contrast T1-weighted sequences were quantitatively the same (related samples Wilcoxon signed rank test = -0.45, p = 0.653) but showed differing conformations (CI 0.53, p recurrence than the standard plan (median 3.53 cm 3 vs. 3.84 cm 3 , p = 0.002). ADC maps may be a useful tool in addition to the standard post-contrast T1-weighted sequence used for SRS planning.

  2. Biofabrication of morphology improved cadmium sulfide nanoparticles using Shewanella oneidensis bacterial cells and ionic liquid: For toxicity against brain cancer cell lines.

    Science.gov (United States)

    Wang, Li; Chen, Siyuan; Ding, Yiming; Zhu, Qiang; Zhang, Nijia; Yu, Shuqing

    2018-01-01

    The present work determines the anticancer activity of bio-mediated synthesized cadmium sulfide nanoparticles using the ionic liquid and bacterial cells (Shewanella oneidensis). Bacterial cells have been exposed to be important resources that hold huge potential as ecofriendly, cost-effective, evading toxic of dangerous chemicals and the alternative of conventional physiochemical synthesis. The Shewanella oneidensis is an important kind of metal reducing bacterium, known as its special anaerobic respiratory and sulfate reducing capacity. The crystalline nature, phase purity and surface morphology of biosynthesized cadmium sulfide nanoparticles were analyzed by Fourier transform infrared spectroscopy, X-ray diffraction, Field emission scanning electron microscopy, Energy dispersive spectroscopy and Transmission electron microscopy. The use of imidazolium based ionic liquids as soft templating agent for controlling self-assembly and crystal growth direction of metal sulfide nanoparticles has also advanced as an important method. The microscopic techniques showed that the nanoparticles are designed on the nano form and have an excellent spherical morphology, due to the self-assembled mechanism of ionic liquid assistance. The antitumor efficiency of the cadmium sulfide nanoparticles was investigated against brain cancer cell lines using rat glioma cell lines. The effectively improved nano-crystalline and morphological structure of CdS nanoparticles in the presence of IL exhibit excellent cytotoxicity and dispersion ability on the cell shape is completely spread out showing a nice toxic environment against cancer cells. The cytotoxicity effect of cadmium sulfide nanoparticles was discussed with a diagrammatic representation. Copyright © 2017. Published by Elsevier B.V.

  3. Linked alterations in gray and white matter morphology in adults with high-functioning autism spectrum disorder: A multimodal brain imaging study

    Directory of Open Access Journals (Sweden)

    Takashi Itahashi

    2015-01-01

    Full Text Available Growing evidence suggests that a broad range of behavioral anomalies in people with autism spectrum disorder (ASD can be linked with morphological and functional alterations in the brain. However, the neuroanatomical underpinnings of ASD have been investigated using either structural magnetic resonance imaging (MRI or diffusion tensor imaging (DTI, and the relationships between abnormalities revealed by these two modalities remain unclear. This study applied a multimodal data-fusion method, known as linked independent component analysis (ICA, to a set of structural MRI and DTI data acquired from 46 adult males with ASD and 46 matched controls in order to elucidate associations between different aspects of atypical neuroanatomy of ASD. Linked ICA identified two composite components that showed significant between-group differences, one of which was significantly correlated with age. In the other component, participants with ASD showed decreased gray matter (GM volumes in multiple regions, including the bilateral fusiform gyri, bilateral orbitofrontal cortices, and bilateral pre- and post-central gyri. These GM changes were linked with a pattern of decreased fractional anisotropy (FA in several white matter tracts, such as the bilateral inferior longitudinal fasciculi, bilateral inferior fronto-occipital fasciculi, and bilateral corticospinal tracts. Furthermore, unimodal analysis for DTI data revealed significant reductions of FA along with increased mean diffusivity in those tracts for ASD, providing further evidence of disrupted anatomical connectivity. Taken together, our findings suggest that, in ASD, alterations in different aspects of brain morphology may co-occur in specific brain networks, providing a comprehensive view for understanding the neuroanatomy of this disorder.

  4. Study on the Property Change of Rhizoma Coptidis and Its Ginger Juice Processed Products Based on 5-Ht Level and Brain Tissues Morphology of Rats

    Science.gov (United States)

    Zhong, Lingyun; Tong, Hengli; Lv, Mu; Deng, Yufen

    2017-09-01

    According to the theory of traditional Chinese Medicine (TCM), all Chinese materia medica need to be processed using Pao zhi which is a processing technology before being used in clinic. Ginger juice, made from dried or fresh ginger, is one of the main TCM processing accessories and always used to help change some Chinese materia medica’s properties for its warm or hot nature. The purpose of this paper is to discuss the influence of ginger juice on Rhizoma Coptidis (RC) by determining 5-hydroxytryptamine (5-HT) content and observing morphological changes in the harns tissue of rats. Raw Rhizoma Coptidis (RRC), fresh ginger juice processed Rhizoma Coptidis (FGJPRC), dried juice processed Rhizoma Coptidis (DGJPRC), dried ginger juice (DGJ) and fresh ginger juice (FGJ) were prepared using appropriate methods. Immunohistochemical staining was used to observe the distribution of 5-HT and fluorescence spectrophotometry was applied to determine 5-hydroxytryptamine content in the brain tissue of rats. 5 - HT in brain tissue of the rats of RRC group was distributed most densely, with the highest content. Compared to the blank group, RRC and different ginger processed RC groups could lead to increasing content of 5-HT in rat encephalon, and significant differences in RRC. Compared with the RRC, the 5-HT content in rat encephalon in DGJPRC, FGJPRC, FGJ and DGJ groups reduced, and DGJPRC, FGJPRC groups showed significant difference, FGJ and DGJ groups showed extreme significant differences. The research showed that processing with hot, warm accessories would moderate the cold nature of RC. The cold and hot nature of Traditional Chinese Materia Medica could be expressed by the difference of 5-HT contents and morphological changes of rats’ brain tissue. Simultaneously, the research showed the different excipient of ginger juice would have different effects on the processing of RC.

  5. EVALUATING THE MORPHOLOGY OF THE LOCAL INTERSTELLAR MEDIUM: USING NEW DATA TO DISTINGUISH BETWEEN MULTIPLE DISCRETE CLOUDS AND A CONTINUOUS MEDIUM

    Energy Technology Data Exchange (ETDEWEB)

    Redfield, Seth [Astronomy Department and Van Vleck Observatory, Wesleyan University, Middletown, CT 06459-0123 (United States); Linsky, Jeffrey L., E-mail: sredfield@wesleyan.edu, E-mail: jlinsky@jila.colorado.edu [JILA, University of Colorado and NIST, Boulder, CO 80309-0440 (United States)

    2015-10-20

    Ultraviolet and optical spectra of interstellar gas along the lines of sight to nearby stars have been interpreted by Redfield and Linsky and previous studies as a set of discrete warm, partially ionized clouds each with a different flow vector, temperature, and metal depletion. Recently, Gry and Jenkins proposed a fundamentally different model consisting of a single cloud with nonrigid flows filling space out to 9 pc from the Sun that they propose better describes the local ISM. Here we test these fundamentally different morphological models against the spatially unbiased Malamut et al. spectroscopic data set, and find that the multiple cloud morphology model provides a better fit to both the new and old data sets. The detection of three or more velocity components along the lines of sight to many nearby stars, the presence of nearby scattering screens, the observed thin elongated structures of warm interstellar gas, and the likely presence of strong interstellar magnetic fields also support the multiple cloud model. The detection and identification of intercloud gas and the measurement of neutral hydrogen density in clouds beyond the Local Interstellar Cloud could provide future morphological tests.

  6. How Can It Be More Real? A Case Study to Present the Authenticity of a Local Heritage District from the Perspective of Regional Spatial Morphology

    Directory of Open Access Journals (Sweden)

    Huanxi Zhao

    2018-05-01

    Full Text Available The discussion of authenticity has become an academic theme of great interest to scholars in the tourism and heritage fields. However, there have been relatively few studies related to the authenticity of the spatial morphology of a historical urban area. This paper is based on the approach of the theory of “constructive authenticity”, and takes a local historical district heritage in Beijing as an example to analyze the authenticity of the spatial morphology of a particular heritage site. This paper takes into account three aspects: (1 overall layout; (2 street landscape; and (3 the pattern inside the courtyards. It then analyzes the Nanluo area from the perspective of the change in spatial patterns from the past to the present, as an aspect of research on the protection and sustainable development of local historic districts. Through the analysis, it can be seen that from the point of view of spatial morphology, the Nanluo area is distant from its shape in the past, and the main differences are reflected in the above three aspects. It also can be seen that in today’s Nanluo area, the authenticity of the layout that is perceived by tourists is a “constructive authenticity” that has been developed over years.

  7. Tuning the processability, morphology and biodegradability of clay incorporated PLA/LLDPE blends via selective localization of nanoclay induced by melt mixing sequence

    Directory of Open Access Journals (Sweden)

    S. H. Jafari

    2013-01-01

    Full Text Available Polylactic acid (PLA/linear low density polyethylene (LLDPE blend nanocomposites based on two different commercial-grade nanoclays, Cloisite® 30B and Cloisite® 15A, were produced via different melt mixing procedures in a counter-rotating twin screw extruder. The effects of mixing sequence and clay type on morphological and rheological behaviors as well as degradation properties of the blends were investigated. The X-ray diffraction (XRD results showed that generally the level of exfoliation in 30B based nanocomposites was better than 15A based nanocomposites. In addition, due to difference in hydrophilicity and kind of modifiers in these two clays, the effect of 30B on refinement of dispersed phase and enhancement of biodegradability of PLA/LLDPE blend was much more remarkable than that of 15A nanoclay. Unlike the one step mixing process, preparation of nanocomposites via a two steps mixing process improved the morphology. Based on the XRD and TEM (transmission electron microscopic results, it is found that the mixing sequence has a remarkable influence on dispersion and localization of the major part of 30B nanoclay in the PLA matrix. Owing to the induced selective localization of nanoclays in PLA phase, the nanocomposites prepared through a two steps mixing sequence exhibited extraordinary biodegradability, refiner morphology and better melt elasticity.

  8. Feasibility of studying brain morphology in major depressive disorder with structural magnetic resonance imaging and clinical data from the electronic medical record: A pilot study

    Science.gov (United States)

    Hoogenboom, Wouter S.; Perlis, Roy H.; Smoller, Jordan W.; Zeng-Treitler, Qing; Gainer, Vivian S.; Murphy, Shawn N.; Churchill, Susanne E.; Kohane, Isaac S.; Shenton, Martha E.; Iosifescu, Dan V.

    2012-01-01

    For certain research questions related to long-term outcomes or to rare disorders, designing prospective studies is impractical or prohibitively expensive. Such studies could instead utilize clinical and magnetic resonance imaging data (MRI) collected as part of routine clinical care, stored in the electronic medical record (EMR). Using major depressive disorder (MDD) as a disease model, we examined the feasibility of studying brain morphology and associations with remission using clinical and MRI data exclusively drawn from the EMR. Advanced automated tools were used to select MDD patients and controls from the EMR who had brain MRI data, but no diagnosed brain pathology. MDD patients were further assessed for remission status by review of clinical charts. Twenty MDD patients (eight full-remitters, six partial-remitters, and six non-remitters), and fifteen healthy control subjects met all study criteria for advanced morphometric analyses. Compared to controls, MDD patients had significantly smaller right rostral-anterior cingulate volume, and level of non-remission was associated with smaller left hippocampus and left rostral-middle frontal gyrus volume. The use of EMR data for psychiatric research may provide a timely and cost-effective approach with the potential to generate large study samples reflective of the real population with the illness studied. PMID:23149041

  9. Morphology and Ultrastructure of Brain Tissue and Fat Body from the Flesh Fly, Sarcophaga bullata Parker (Diptera: Sarcophagidae, Envenomated by the Ectoparasitic Wasp Nasonia vitripennis (Walker (Hymenoptera: Pteromalidae

    Directory of Open Access Journals (Sweden)

    David B. Rivers

    2011-01-01

    Full Text Available This study tested the hypothesis that venom from the ectoparasitic wasp Nasonia vitripennis targets brain tissue and fat body from its flesh fly host, Sarcophaga bullata. By 1 h postenvenomation, some brain neurons began to show irregularities in nuclear shape, and though they were predominately euchromatic, there was evidence of heterochromatin formation. Irregularity in the nuclear envelope became more prominent by 3 h after envenomation, as did the condensation of heterochromatin. The severity of ultrastructural changes continued to increase until at least 24 h after parasitoid attack. At this point, cellular swelling and extensive heterochromatic inclusions were evident, multivesicular bodies occurred in the cytoplasm of some cells, and the rough endoplasmic reticulum was dilated in many of the cells. Immunohistochemical staining revealed significant apoptosis in neurons located in brain tissues. By contrast, there was no evidence of any morphological or ultrastructural disturbances in fat body tissues up to 24 h after envenomation, nor did any of the cells display signs of cell death.

  10. Tic related local field potentials in the thalamus and the effect of deep brain stimulation in Tourette syndrome : Report of three cases

    NARCIS (Netherlands)

    Bour, L. J.; Ackermans, L.; Foncke, E. M. J.; Cath, D.; van der Linden, C.; Vandewalle, V. Visser; Tijssen, M. A.

    Objective: Three patients with intractable Tourette syndrome (TS) underwent thalamic deep brain stimulation (DBS). To investigate the role of thalamic electrical activity in tic generation, local field potentials (LFP), EEG and EMG simultaneously were recorded. Methods: Event related potentials and

  11. Selective localization of IgG from cerebrospinal fluid to brain parenchyma

    DEFF Research Database (Denmark)

    Mørch, Marlene Thorsen; Forsberg Sørensen, Sofie; Khorooshi, Reza M. H.

    2018-01-01

    the cerebrospinal fluid and induce subpial and periventricular NMO-like lesions and blood-brain barrier breakdown, in a complement-dependent manner. To investigate how IgG trafficking from cerebrospinal fluid to brain parenchyma can be influenced by injury. IgG from healthy donors was intrathecally injected...... into the cerebrospinal fluid via cisterna magna at 1, 2, 4, or 7 days after a distal stereotactic sterile needle insertion to the striatum. Antibody deposition, detected by staining for human IgG, peaked 1 day after the intrathecal injection and was selectively seen close to the needle insertion. When NMO...

  12. Characterization of the Distance Relationship Between Localized Serotonin Receptors and Glia Cells on Fluorescence Microscopy Images of Brain Tissue.

    Science.gov (United States)

    Jacak, Jaroslaw; Schaller, Susanne; Borgmann, Daniela; Winkler, Stephan M

    2015-08-01

    We here present two new methods for the characterization of fluorescent localization microscopy images obtained from immunostained brain tissue sections. Direct stochastic optical reconstruction microscopy images of 5-HT1A serotonin receptors and glial fibrillary acidic proteins in healthy cryopreserved brain tissues are analyzed. In detail, we here present two image processing methods for characterizing differences in receptor distribution on glial cells and their distribution on neural cells: One variant relies on skeleton extraction and adaptive thresholding, the other on k-means based discrete layer segmentation. Experimental results show that both methods can be applied for distinguishing classes of images with respect to serotonin receptor distribution. Quantification of nanoscopic changes in relative protein expression on particular cell types can be used to analyze degeneration in tissues caused by diseases or medical treatment.

  13. Combined effects of moderately elevated blood glucose and locally produced TGF-beta1 on glomerular morphology and renal collagen production

    DEFF Research Database (Denmark)

    Krag, Søren; Nyengaard, Jens R; Wogensen, Lise

    2007-01-01

    BACKGROUND: There is a correlation between renal graft rejection and blood glucose (BG) levels. Furthermore, diabetic patients may develop non-diabetic renal diseases, which in some circumstances progress rapidly. Since transforming growth factor-beta1 (TGF-beta) levels are elevated in many renal...... diseases, the accelerated progression may be due to interactions between glucose and locally produced TGF-beta1. Therefore, we investigated the effect of mild hyperglycaemia on glomerular morphology and collagen production in TGF-beta1 transgenic mice. METHODS: To achieve BG concentrations of approximately...... 15 mmol/l in TGF-beta1 transgenic and non-transgenic mice, we used multiple streptozotocin (STZ) injections, and after 8 weeks, we measured the changes in glomerular morphology and total collagen content. We also analysed extracellular matrix (ECM) and protease mRNA levels using real-time polymerase...

  14. Noninvasive brain stimulation in neurorehabilitation: Local and distant effects for motor recovery

    Directory of Open Access Journals (Sweden)

    Sook-Lei eLiew

    2014-06-01

    Full Text Available Noninvasive brain stimulation (NIBS may enhance motor recovery after neurological injury through the causal induction of plasticity processes. Neurological injury, such as stroke, often results in serious long-term physical disabilities, and despite intensive therapy, a large majority of brain injury survivors fail to regain full motor function. Emerging research suggests that NIBS techniques, such as transcranial magnetic (TMS and direct current (tDCS stimulation, in association with customarily used neurorehabilitative treatments, may enhance motor recovery. This paper provides a general review on TMS and tDCS paradigms, the mechanisms by which they operate and the stimulation techniques used in neurorehabilitation, specifically stroke. TMS and tDCS influence regional neural activity underlying the stimulation location and also distant interconnected network activity throughout the brain. We discuss recent studies that document NIBS effects on global brain activity measured with various neuroimaging techniques, which help to characterize better strategies for more accurate NIBS stimulation. These rapidly growing areas of inquiry may hold potential for improving the effectiveness of NIBS-based interventions for clinical rehabilitation.

  15. Postmortem diffusion MRI of the human brainstem and thalamus for deep brain stimulator electrode localization

    Science.gov (United States)

    Calabrese, Evan; Hickey, Patrick; Hulette, Christine; Zhang, Jingxian; Parente, Beth; Lad, Shivanand P.; Johnson, G. Allan

    2015-01-01

    Deep brain stimulation (DBS) is an established surgical therapy for medically refractory tremor disorders including essential tremor (ET) and is currently under investigation for use in a variety of other neurologic and psychiatric disorders. There is growing evidence that the anti-tremor effects of DBS for ET are directly related to modulation of the dentatorubrothalamic tract (DRT), a white matter pathway that connects the cerebellum, red nucleus, and ventral intermediate nucleus of the thalamus. Emerging white matter targets for DBS, like the DRT, will require improved 3D reference maps of deep brain anatomy and structural connectivity for accurate electrode targeting. High-resolution diffusion MRI of postmortem brain specimens can provide detailed volumetric images of important deep brain nuclei and 3D reconstructions of white matter pathways with probabilistic tractography techniques. We present a high spatial and angular resolution diffusion MRI template of the postmortem human brainstem and thalamus with 3D reconstructions of the nuclei and white matter tracts involved in ET circuitry. We demonstrate accurate registration of these data to in vivo, clinical images from patients receiving DBS therapy, and correlate electrode proximity to tractography of the DRT with improvement of ET symptoms. PMID:26043869

  16. Local vascular CO2 reactivity in the infant brain assessed by functional MRI

    DEFF Research Database (Denmark)

    Toft, P.B.; Leth, H; Lou, H.C.

    1995-01-01

    of the brain slice investigated decreased by 1.2-2.6% per kPa change in PCO2 as a reflection of decreased cerebral blood flow during hyperventilation. Pixel-wise analysis revealed absence of vascular response in the basal ganglia, the thalamus or in the occipital region. In two adult controls, who...

  17. Local activity determines functional connectivity in the resting human brain: a simultaneous FDG-PET/fMRI study.

    Science.gov (United States)

    Riedl, Valentin; Bienkowska, Katarzyna; Strobel, Carola; Tahmasian, Masoud; Grimmer, Timo; Förster, Stefan; Friston, Karl J; Sorg, Christian; Drzezga, Alexander

    2014-04-30

    Over the last decade, synchronized resting-state fluctuations of blood oxygenation level-dependent (BOLD) signals between remote brain areas [so-called BOLD resting-state functional connectivity (rs-FC)] have gained enormous relevance in systems and clinical neuroscience. However, the neural underpinnings of rs-FC are still incompletely understood. Using simultaneous positron emission tomography/magnetic resonance imaging we here directly investigated the relationship between rs-FC and local neuronal activity in humans. Computational models suggest a mechanistic link between the dynamics of local neuronal activity and the functional coupling among distributed brain regions. Therefore, we hypothesized that the local activity (LA) of a region at rest determines its rs-FC. To test this hypothesis, we simultaneously measured both LA (glucose metabolism) and rs-FC (via synchronized BOLD fluctuations) during conditions of eyes closed or eyes open. During eyes open, LA increased in the visual system, and the salience network (i.e., cingulate and insular cortices) and the pattern of elevated LA coincided almost exactly with the spatial pattern of increased rs-FC. Specifically, the voxelwise regional profile of LA in these areas strongly correlated with the regional pattern of rs-FC among the same regions (e.g., LA in primary visual cortex accounts for ∼ 50%, and LA in anterior cingulate accounts for ∼ 20% of rs-FC with the visual system). These data provide the first direct evidence in humans that local neuronal activity determines BOLD FC at rest. Beyond its relevance for the neuronal basis of coherent BOLD signal fluctuations, our procedure may translate into clinical research particularly to investigate potentially aberrant links between local dynamics and remote functional coupling in patients with neuropsychiatric disorders.

  18. Switching of localized surface plasmon resonance of gold nanoparticles on a GeSbTe film mediated by nanoscale phase change and modification of surface morphology

    Energy Technology Data Exchange (ETDEWEB)

    Hira, T.; Homma, T.; Uchiyama, T.; Kuwamura, K.; Saiki, T. [Graduate School of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku, Yokohama, Kanagawa 223-8522 (Japan)

    2013-12-09

    As a platform for active nanophotonics, localized surface plasmon resonance (LSPR) switching via interaction with a chalcogenide phase change material (GeSbTe) was investigated. We performed single-particle spectroscopy of gold nanoparticles placed on a GeSbTe thin film. By irradiation with a femtosecond pulsed laser for amorphization and a continuous wave laser for crystallization, significant switching behavior of the LSPR band due to the interaction of GeSbTe was observed. The switching mechanism was explained in terms of both a change in the refractive index and a modification of surface morphology accompanying volume expansion and reduction of GeSbTe.

  19. Quantification of brain metabolites in amyotrophic lateral sclerosis by localized proton magnetic resonance spectroscopy

    DEFF Research Database (Denmark)

    Gredal, O; Rosenbaum, S; Topp, S

    1997-01-01

    We performed proton magnetic resonance spectroscopy (1H-MRS) in patients with motor neuron disease (MND) to determine the absolute in vivo concentrations in the brain of the metabolites N-acetyl aspartate (NAA), choline (Cho), and creatine (Cr/PCr). We examined the spectra acquired from a 20 x 20 x...... subjects. We estimated the concentrations of the metabolites using the water signal as an internal standard. The concentrations of Cho and Cr/PCr in both brain regions, as well as the concentration of NAA in the cerebellum, were unaltered in the MND patients compared with the controls. Only MND patients...... with both upper and lower motor neuron signs had a significantly decreased concentration of NAA (9.13 +/- 0.28 mM, mean +/- SEM) in the primary motor cortex when compared with healthy controls (10.03 +/- 0.22 mM). In conclusion, the slightly decreased concentration of NAA in the primary motor cortex from...

  20. Nerve growth factor mRNA in brain: localization by in situ hybridization

    International Nuclear Information System (INIS)

    Rennert, P.D.; Heinrich, G.

    1986-01-01

    Nerve Growth Factor is a 118 amino acid polypeptide that plays an important role in the differentiation and survival of neurons. The recent discovery that a mRNA that encodes beta Nerve Growth Factor is present in brain suggests that the Nerve Growth Factor gene may not only regulate gene expression of peripheral but also of central neurons. To identify the site(s) of Nerve Growth Factor mRNA production in the brain and to determine which cells express the Nerve Growth Factor gene, the technique of in situ hybridization was employed. A 32P-labeled RNA probe complementary to Nerve Growth Factor mRNA hybridized to cells in the stratum granulosum of the dentate gyrus and the stratum pyramidale of the hippocampus. These observations identify for the first time cellular sites of Nerve Growth Factor gene expression in the central nervous system, and suggest that Nerve Growth Factor mRNA is produced by neurons

  1. Localization of Brain Electrical Activity Sources and Hemodynamic Activity Foci during Motor Imagery

    Czech Academy of Sciences Publication Activity Database

    Frolov, A. A.; Húsek, Dušan; Mokienko, O.; Bobrov, P.; Chernikova, L.; Konovalov, R.

    2014-01-01

    Roč. 40, č. 3 (2014), s. 273-283 ISSN 0362-1197 Grant - others:GA MŠk(CZ) ED1.1.00/02.0070; GA MŠk(CZ) EE.2.3.20.0073 Program:ED Institutional support: RVO:67985807 Keywords : brain computer interface * independent component analysis * EEG pattern classification * motor imagery * inverse EEG problem Subject RIV: IN - Informatics, Computer Science

  2. Autoradiographic localization of putative nicotinic receptors in the rat brain using 125I-neuronal bungarotoxin

    International Nuclear Information System (INIS)

    Schulz, D.W.; Loring, R.H.; Aizenman, E.; Zigmond, R.E.

    1991-01-01

    Neuronal bungarotoxin (NBT), a snake venom neurotoxin, selectively blocks nicotinic receptors in many peripheral and central neuronal preparations. alpha-Bungarotoxin (alpha BT), on the other hand, a second toxin isolated from the venom of the same snake, is an ineffective nicotinic antagonist in most vertebrate neuronal preparations studied thus far. To examine central nicotinic receptors recognized by NBT, we have characterized the binding of 125I-labeled NBT (125I-NBT) to rat brain membranes and have mapped the distribution of 125I-NBT binding in brain sections using quantitative light microscopic autoradiography. The binding of 125I-NBT was found to be saturable, of high affinity, and heterogeneously distributed in the brain. Pharmacological studies suggested that more than one population of sites is labeled by 125I-NBT. For example, one component of 125I-NBT binding was also recognized by alpha BT, while a second component, not recognized by alpha BT, was recognized by the nicotinic agonist nicotine. The highest densities of these alpha BT-insensitive, nicotine-sensitive sites were found in the fasciculus retroflexus, the lateral geniculate nucleus, the medial terminal nucleus of the accessory optic tract, and the olivary pretectal nucleus. alpha BT-sensitive NBT binding sites were found in highest density in the lateral geniculate nucleus, the subthalamic nucleus, the dorsal tegmental nucleus, and the medial mammillary nucleus (lateral part). The number of brain regions with a high density of 125I-NBT binding sites, blocked either by alpha BT or by nicotine, is low when compared with results obtained using other approaches to studying the central distribution of nicotinic receptors, such as labeling with 3H-nicotine or labeling with cDNA probes to mRNAs coding for putative receptor subunits

  3. Vasoactive intestinal peptide is a local mediator in a gut-brain neural axis activating intestinal gluconeogenesis.

    Science.gov (United States)

    De Vadder, F; Plessier, F; Gautier-Stein, A; Mithieux, G

    2015-03-01

    Intestinal gluconeogenesis (IGN) promotes metabolic benefits through activation of a gut-brain neural axis. However, the local mediator activating gluconeogenic genes in the enterocytes remains unknown. We show that (i) vasoactive intestinal peptide (VIP) signaling through VPAC1 receptor activates the intestinal glucose-6-phosphatase gene in vivo, (ii) the activation of IGN by propionate is counteracted by VPAC1 antagonism, and (iii) VIP-positive intrinsic neurons in the submucosal plexus are increased under the action of propionate. These data support the role of VIP as a local neuromodulator released by intrinsic enteric neurons and responsible for the induction of IGN through a VPAC1 receptor-dependent mechanism in enterocytes. © 2015 John Wiley & Sons Ltd.

  4. Autoradiographic localization of (125I-Tyr4)bombesin-binding sites in rat brain

    International Nuclear Information System (INIS)

    Zarbin, M.A.; Kuhar, M.J.; O'Donohue, T.L.; Wolf, S.S.; Moody, T.W.

    1985-01-01

    The binding of ( 125 I-Tyr 4 )bombesin to rat brain slices was investigated. Radiolabeled (Tyr 4 )bombesin bound with high affinity (K/sub d/ . 4 nM) to a single class of sites (B/sub max/ . 130 fmol/mg of protein); the ratio of specific to nonspecific binding was 6/1. Also, pharmacology studies indicated that the C-terminal of bombesin was important for the high affinity binding activity. Autoradiographic studies indicated that the ( 125 I-Tyr4)bombesin-binding sites were discretely distributed in certain gray but not white matter regions of rat brain. Highest grain densities were present in the olfactory bulb and tubercle, nucleus accumbens, suprachiasmatic and periventricular nuclei of the hypothalamus, central medial thalamic nucleus, medial amygdaloid nucleus, hippocampus, dentate gyrus, subiculum, nucleus of the solitary tract, and substantia gelatinosa. Moderate grain densities were present in the parietal cortex, deep layers of the neocortex, rhinal cortex, caudate putamen, stria terminalis, locus ceruleus, parabrachial nucleus, and facial nucleus. Low grain densities were present in the globus pallidus, lateral thalamus, and midbrain. Negligible grain densities were present in the cerebellum, corpus callosum, and all regions treated with 1 microM unlabeled bombesin. The discrete regional distribution of binding suggests that endogenous bombesin-like peptides may function as important regulatory agents in certain brain loci

  5. Pharmacological characterization and autoradiographic localization of substance P receptors in guinea pig brain

    International Nuclear Information System (INIS)

    Dam, T.V.; Quirion, R.

    1986-01-01

    [ 3 H]Substance P ([ 3 H]SP) was used to characterize substance P (SP) receptor binding sites in guinea pig brain using membrane preparations and in vitro receptor autoradiography. Curvilinear Scatchard analysis shows that [ 3 H]SP binds to a high affinity site (Kd = 0.5 nM) with a Bmax of 16.4 fmol/mg protein and a low affinity site (Kd = 29.6 nM) with a Bmax of 189.1 fmol/mg protein. Monovalent cations generally inhibit [ 3 H]SP binding while divalent cations substantially increased it. The ligand selectivity pattern is generally similar to the one observed in rat brain membrane preparation with SP being more potent than SP fragments and other tachykinins. However, the potency of various nucleotides is different with GMP-PNP greater than GDP greater than GTP. The autoradiographic distribution of [ 3 H]SP binding sites shows that high amounts of sites are present in the hippocampus, striatum, olfactory bulb, central nucleus of the amygdala, certain thalamic nuclei and superior colliculus. The cortex is moderately enriched in [ 3 H]SP binding sites while the substantia nigra contains only very low amounts of sites. Thus, the autoradiographic distribution of SP binding sites is fairly similar in both rat and guinea pig brain

  6. Deep brain stimulation results in local glutamate and adenosine release: investigation into the role of astrocytes.

    Science.gov (United States)

    Tawfik, Vivianne L; Chang, Su-Youne; Hitti, Frederick L; Roberts, David W; Leiter, James C; Jovanovic, Svetlana; Lee, Kendall H

    2010-08-01

    Several neurological disorders are treated with deep brain stimulation; however, the mechanism underlying its ability to abolish oscillatory phenomena associated with diseases as diverse as Parkinson's disease and epilepsy remain largely unknown. To investigate the role of specific neurotransmitters in deep brain stimulation and determine the role of non-neuronal cells in its mechanism of action. We used the ferret thalamic slice preparation in vitro, which exhibits spontaneous spindle oscillations, to determine the effect of high-frequency stimulation on neurotransmitter release. We then performed experiments using an in vitro astrocyte culture to investigate the role of glial transmitter release in high-frequency stimulation-mediated abolishment of spindle oscillations. In this series of experiments, we demonstrated that glutamate and adenosine release in ferret slices was able to abolish spontaneous spindle oscillations. The glutamate release was still evoked in the presence of the Na channel blocker tetrodotoxin, but was eliminated with the vesicular H-ATPase inhibitor bafilomycin and the calcium chelator 2-bis(2-aminophenoxy)-ethane-N,N,N',N'-tetraacetic acid tetrakis acetoxymethyl ester. Furthermore, electrical stimulation of purified primary astrocytic cultures was able to evoke intracellular calcium transients and glutamate release, and bath application of 2-bis (2-aminophenoxy)-ethane-N,N,N',N'-tetraacetic acid tetrakis acetoxymethyl ester inhibited glutamate release in this setting. Vesicular astrocytic neurotransmitter release may be an important mechanism by which deep brain stimulation is able to achieve clinical benefits.

  7. Localization and functional analysis of the insect-specific RabX4 in the brain of Bombyx mori.

    Science.gov (United States)

    Uno, Tomohide; Furutani, Masayuki; Sakamoto, Katsuhiko; Uno, Yuichi; Kanamaru, Kengo; Mizoguchi, Akira; Hiragaki, Susumu; Takeda, Makio

    2017-09-01

    Rab proteins are small monomeric GTPases/GTP-binding proteins, which form the largest branch of the Ras superfamily. The different Rab GTPases are localized to the cytosolic face of specific intracellular membranes, where they function as regulators of distinct steps in membrane trafficking. RabX4 is an insect-specific Rab protein that has no close homolog in vertebrates. There is little information about insect-specific Rab proteins. RabX4 was expressed in Escherichia coli and subsequently purified. Antibodies against Bombyx mori RabX4 were produced in rabbits for western immunoblotting and immunohistochemistry. Western blotting of neural tissues revealed a single band, at approximately 26 kD. RabX4-like immunohistochemical reactivity was restricted to neurons of the pars intercerebralis and dorsolateral protocerebrum in the brain. Further immunohistochemical analysis revealed that RabX4 colocalized with Rab6 and bombyxin in the corpus allatum, a neuronal organ that secretes neuropeptides synthesized in the brain into the hemolymph. RabX4 expression in the frontal ganglion, part of the insect stomatogastric nervous system that is found in most insect orders, was restricted to two neurons on the outer region and did not colocalize with allatotropin or Rab6. Furthermore, RNA interference of RabX4 decreased bombyxin expression levels in the brain. These findings suggest that RabX4 is involved in the neurosecretion of a secretory organ in Bombyx mori. © 2017 Wiley Periodicals, Inc.

  8. Automatic Mapping Extraction from Multiecho T2-Star Weighted Magnetic Resonance Images for Improving Morphological Evaluations in Human Brain

    Directory of Open Access Journals (Sweden)

    Shaode Yu

    2013-01-01

    Full Text Available Mapping extraction is useful in medical image analysis. Similarity coefficient mapping (SCM replaced signal response to time course in tissue similarity mapping with signal response to TE changes in multiecho T2-star weighted magnetic resonance imaging without contrast agent. Since different tissues are with different sensitivities to reference signals, a new algorithm is proposed by adding a sensitivity index to SCM. It generates two mappings. One measures relative signal strength (SSM and the other depicts fluctuation magnitude (FMM. Meanwhile, the new method is adaptive to generate a proper reference signal by maximizing the sum of contrast index (CI from SSM and FMM without manual delineation. Based on four groups of images from multiecho T2-star weighted magnetic resonance imaging, the capacity of SSM and FMM in enhancing image contrast and morphological evaluation is validated. Average contrast improvement index (CII of SSM is 1.57, 1.38, 1.34, and 1.41. Average CII of FMM is 2.42, 2.30, 2.24, and 2.35. Visual analysis of regions of interest demonstrates that SSM and FMM show better morphological structures than original images, T2-star mapping and SCM. These extracted mappings can be further applied in information fusion, signal investigation, and tissue segmentation.

  9. Detecting Large-Scale Brain Networks Using EEG: Impact of Electrode Density, Head Modeling and Source Localization

    Science.gov (United States)

    Liu, Quanying; Ganzetti, Marco; Wenderoth, Nicole; Mantini, Dante

    2018-01-01

    Resting state networks (RSNs) in the human brain were recently detected using high-density electroencephalography (hdEEG). This was done by using an advanced analysis workflow to estimate neural signals in the cortex and to assess functional connectivity (FC) between distant cortical regions. FC analyses were conducted either using temporal (tICA) or spatial independent component analysis (sICA). Notably, EEG-RSNs obtained with sICA were very similar to RSNs retrieved with sICA from functional magnetic resonance imaging data. It still remains to be clarified, however, what technological aspects of hdEEG acquisition and analysis primarily influence this correspondence. Here we examined to what extent the detection of EEG-RSN maps by sICA depends on the electrode density, the accuracy of the head model, and the source localization algorithm employed. Our analyses revealed that the collection of EEG data using a high-density montage is crucial for RSN detection by sICA, but also the use of appropriate methods for head modeling and source localization have a substantial effect on RSN reconstruction. Overall, our results confirm the potential of hdEEG for mapping the functional architecture of the human brain, and highlight at the same time the interplay between acquisition technology and innovative solutions in data analysis. PMID:29551969

  10. Tritiated 2-deoxy-D-glucose: a high-resolution marker for autoradiographic localization of brain metabolism

    International Nuclear Information System (INIS)

    Hammer, R.P. Jr.; Herkenham, M.

    1984-01-01

    The technique for autoradiographic localization of 2-deoxy-D-glucose (2DG) uptake has become a useful method for observing alterations of functional brain activity resulting from experimental manipulation. Autoradiographic resolution is improved using tritiated ([3H]) rather than carbon-14 ([14C)]2DG, due to the lower energy and shorter path of tritium emissions. In addition, lower 2DG uptake by white matter relative to gray matter is exaggerated in the [3H]2DG autoradiographs due to the greater absorption of tritium emissions by lipids. Using [3H]2DG, it is possible to observe differential metabolic labeling in various individual nuclei or portions of nuclei that is unresolvable using [14C]2DG in the awake, normal animal. Heterogeneous patterns of 2DG uptake seen only with [3H]2DG are found in the nucleus accumbens, the anterior portion of the basolateral nucleus of the amygdala, specific nuclei of the inferior olivary complex, various hypothalamic regions, and a region straddling the border of the medial and lateral habenular nuclei. The lamination of differential 2DG uptake in the hippocampus is better localized using [3H]2DG. Autoradiographic resolution of labeled 2DG is further improved when the brain is perfused prior to frozen sectioning, due perhaps to selective fixation and retention of intracellular labeled 2-deoxy-glycogen. A series of [3H]2DG autoradiographs are presented together with views of the Nissl-stained sections that produced the autoradiographs

  11. Risk factors for brain metastases after definitive chemoradiation for locally advanced non-small cell lung cancer

    Directory of Open Access Journals (Sweden)

    Petrović Marina

    2009-01-01

    Full Text Available Background/Aim. As therapy for locally advanced nonsmall cell lung carcinoma (NSCLC improves, brain metastases (BM still remain a great problem. The aim of the study was to analyze risk factors for BM in patients with locally advanced NSCLC after chemoradiation therapy. Methods. Records for 150 patients with non-resectable stage IIIA/IIIB NSCLC treated with combined chemoradiation therapy were analyzed. All of them had negative brain metastases imaging result before the treatment. Incidence of BM was examined in relation to age, sex, histological type, stage, performance status scale of wellbeing of cancer patients, weight loss, chemotherapy regimen and chemotherapy timing. Results. One- and 2-year incidence rates of BM were 19 and 31%, respectively. Among pretreatment parameters, stage IIIB was associated with a higher risk of BM (p < 0.004 vs stage IIIA. Histologically, the patients with nonsquamous tumors had an exceptionally high 2-year BM risk rate of 32% (p < 0.02. Examining treatment-related parameters, 1-year and 2-year actuarial risk of BM were 27 and 39%, respectively, in the patients receiving chemotherapy before radiotherapy and 15 and 20%, respectively, when radiotherapy was not delayed (p < 0.03. On multivariate analysis, timing of chemotherapy (p < 0.05 and stage IIIA vs IIIB (p < 0.01 remained statistically significant. Conclusion. Patients with IIIB stage, nonsquamous NSCLC, particularly those receiving sequential chemotherapy, had significantly high BM rates.

  12. Glucose hypometabolism is highly localized, but lower cortical thickness and brain atrophy are widespread in cognitively normal older adults.

    Science.gov (United States)

    Nugent, Scott; Castellano, Christian-Alexandre; Goffaux, Philippe; Whittingstall, Kevin; Lepage, Martin; Paquet, Nancy; Bocti, Christian; Fulop, Tamas; Cunnane, Stephen C

    2014-06-01

    Several studies have suggested that glucose hypometabolism may be present in specific brain regions in cognitively normal older adults and could contribute to the risk of subsequent cognitive decline. However, certain methodological shortcomings, including a lack of partial volume effect (PVE) correction or insufficient cognitive testing, confound the interpretation of most studies on this topic. We combined [(18)F]fluorodeoxyglucose ([(18)F]FDG) positron emission tomography (PET) and magnetic resonance (MR) imaging to quantify cerebral metabolic rate of glucose (CMRg) as well as cortical volume and thickness in 43 anatomically defined brain regions from a group of cognitively normal younger (25 ± 3 yr old; n = 25) and older adults (71 ± 9 yr old; n = 31). After correcting for PVE, we observed 11-17% lower CMRg in three specific brain regions of the older group: the superior frontal cortex, the caudal middle frontal cortex, and the caudate (P ≤ 0.01 false discovery rate-corrected). In the older group, cortical volumes and cortical thickness were 13-33 and 7-18% lower, respectively, in multiple brain regions (P ≤ 0.01 FDR correction). There were no differences in CMRg between individuals who were or were not prescribed antihypertensive medication. There were no significant correlations between CMRg and cognitive performance or metabolic parameters measured in fasting plasma. We conclude that highly localized glucose hypometabolism and widespread cortical thinning and atrophy can be present in older adults who are cognitively normal, as assessed using age-normed neuropsychological testing measures. Copyright © 2014 the American Physiological Society.

  13. Systemic, local and imaging biomarkers of brain injury: more needed, and better use of those already established?

    Directory of Open Access Journals (Sweden)

    Keri Linda Carpenter

    2015-02-01

    Full Text Available Much progress has been made over the past two decades in the treatment of severe acute brain injury, including traumatic brain injury and subarachnoid haemorrhage, resulting in a higher proportion of patients surviving with better outcomes. This has arisen from a combination of factors. These include improvements in procedures at the scene (pre-hospital and in the hospital emergency department, advances in neuromonitoring in the intensive care unit, both continuously at the bedside and intermittently in scans, evolution and refinement of protocol-driven therapy for better management of patients, and advances in surgical procedures and rehabilitation. Nevertheless, many patients still experience varying degrees of long-term disabilities post-injury with consequent demands on carers and resources, and there is room for improvement. Biomarkers are a key aspect of neuromonitoring. A broad definition of a biomarker is any observable feature that can be used to inform on the state of the patient, e.g. a molecular species, a feature on a scan, or a monitoring characteristic e.g. cerebrovascular pressure reactivity index. Biomarkers are usually quantitative measures, which can be utilised in diagnosis and monitoring of response to treatment. They are thus crucial to the development of therapies and may be utilised as surrogate endpoints in Phase II clinical trials. To date, there is no specific drug treatment for acute brain injury, and many seemingly promising agents emerging from pre-clinical animal models have failed in clinical trials. Large Phase III studies of clinical outcomes are costly, consuming time and resources. It is therefore important that adequate Phase II clinical studies with informative surrogate endpoints are performed employing appropriate biomarkers. In this article we review some of the available systemic, local and imaging biomarkers and technologies relevant in acute brain injury patients, and highlight gaps in the current

  14. local

    Directory of Open Access Journals (Sweden)

    Abílio Amiguinho

    2005-01-01

    Full Text Available The process of socio-educational territorialisation in rural contexts is the topic of this text. The theme corresponds to a challenge to address it having as main axis of discussion either the problem of social exclusion or that of local development. The reasons to locate the discussion in this last field of analysis are discussed in the first part of the text. Theoretical and political reasons are there articulated because the question is about projects whose intentions and practices call for the political both in the theoretical debate and in the choices that anticipate intervention. From research conducted for several years, I use contributions that aim at discuss and enlighten how school can be a potential locus of local development. Its identification and recognition as local institution (either because of those that work and live in it or because of those that act in the surrounding context are crucial steps to progressively constitute school as a partner for development. The promotion of the local values and roots, the reconstruction of socio-personal and local identities, the production of sociabilities and the equation and solution of shared problems were the dimensions of a socio-educative intervention, markedly globalising. This scenario, as it is argued, was also, intentionally, one of transformation and of deliberate change of school and of the administration of the educative territoires.

  15. Effects of early focal brain injury on memory for visuospatial patterns: selective deficits of global-local processing.

    Science.gov (United States)

    Stiles, Joan; Stern, Catherine; Appelbaum, Mark; Nass, Ruth; Trauner, Doris; Hesselink, John

    2008-01-01

    Selective deficits in visuospatial processing are present early in development among children with perinatal focal brain lesions (PL). Children with right hemisphere PL (RPL) are impaired in configural processing, while children with left hemisphere PL (LPL) are impaired in featural processing. Deficits associated with LPL are less pervasive than those observed with RPL, but this difference may reflect the structure of the tasks used for assessment. Many of the tasks used to date may place greater demands on configural processing, thus highlighting this deficit in the RPL group. This study employed a task designed to place comparable demands on configural and featural processing, providing the opportunity to obtain within-task evidence of differential deficit. Sixty-two 5- to 14-year-old children (19 RPL, 19 LPL, and 24 matched controls) reproduced from memory a series of hierarchical forms (large forms composed of small forms). Global- and local-level reproduction accuracy was scored. Controls were equally accurate on global- and local-level reproduction. Children with RPL were selectively impaired on global accuracy, and children with LPL on local accuracy, thus documenting a double dissociation in global-local processing.

  16. THE EFFECT OF PHOSPHATE ON THE MORPHOLOGICAL AND SPECTROSCOPIC PROPERTIES OF COPPER DRINKING WATER PIPES EXPERIENCING LOCALIZED CORROSION

    Science.gov (United States)

    Extensive localized or pitting corrosion of copper pipes used in household drinking-water plumbing can eventually lead to pinhole water leaks that may result in water damage, mold growth, and costly repairs. A large water system in Florida has been addressing a widespread pinhole...

  17. Effects of Locally Applied Glycerol and Xylitol on the Hydration, Barrier Function and Morphological Parameters of the Skin.

    Science.gov (United States)

    Korponyai, Csilla; Szél, Edit; Behány, Zoltán; Varga, Erika; Mohos, Gábor; Dura, Ágnes; Dikstein, Shabtay; Kemény, Lajos; Erős, Gábor

    2017-02-08

    Glycerol and xylitol hydrate the skin and improve its barrier function over a short period. We studied the effects of glycerol and xylitol on the physiological properties and morphology of the skin after longer-term application. Twelve volunteers with dry skin were examined. Three areas on the arms were determined. Area 1 served as untreated control. The vehicle was applied to area 2, while area 3 was treated twice daily with a formulation containing glycerol (5%) and xylitol (5%) for 14 days. Transepidermal water loss (TEWL), hydration and biomechanical properties of the skin were monitored. Biopsies were taken for routine histology and immunohistochemistry for filaggrin and matrix metalloproteinase-1 (MMP-1). The polyols increased the skin hydration and protein quantity of filaggrin, elevated the interdigitation index, decreased the TEWL and improved the biomechanical properties of the skin, but did not change the protein expression of MMP-1. A combination of glycerol and xylitol can be useful additional therapy for dry skin.

  18. Localization of brain functions by dipole tracing method using individually measured tissue conductivities

    International Nuclear Information System (INIS)

    Furuya, Hajime; Kanamaru, Arata; Homma, Ikuo; Matsumoto, Kiyoshi; Okamoto, Yoshio

    2000-01-01

    The dipole tracing method (DT) has permitted calculations of source locations using a Scalp-Skull-Brain (SSB) real-shaped three-shell model of the head because bone conductivity is lower than the skin and the brain. The SSB/DT method utilizes standard conductivities of the three layers: scalp, skull, and brain. These conductivities are not calculated for each individual. We have previously used a realistic three-shell head model using realistic individually calculated conductivities of the scalp and skull layers with the SSB/DT method for current location mapping. The individual conductivities of the scalp and the skull were calculated from electrical stimulation through surface electrodes. Individual conductivities were used to calculate the source locations of SEP based upon surface EEG recordings using the SSB/DT method. A current square-wave pulse (0.1 mA and 10 msec duration) was applied through a pair of EEG electrodes; four different pairs were usually selected. The voltage change during the stimulation was recorded with the remaining surface electrodes and the conductivities of the skin and skull were calculated from the recorded signals. In nine healthy men, the mean skin conductivity was 0.61441±0.30128 [S/m], while the skull conductivity mean 0.00576±0.00397 [S/m]. Simulation for dipole current movement indicated lower bone conductivity in the inner location and high bone conductivity in the outer location. The conductivity ratios of bone and skin were 0.0125 in standard model and 0.00956 (mean) in realistic individually calculated conductivities. We compared the locations of the SEP estimated with the standard conductivity and realistic individually calculated conductivities; the dipole location was not significantly different. (author)

  19. Localization of receptors for bombesin-like peptides in the rat brain

    International Nuclear Information System (INIS)

    Moody, T.W.; Getz, R.; O'Donohue, T.L.; Rosenstein, J.M.

    1988-01-01

    BN-like peptides and receptors are present in discrete areas of the mammalian brain. By radioimmunoassay, endogenous BN/GRP, neuromedin B, and ranatensin-like peptides are present in the rat brain. High-to-moderate concentrations of BN/GRP are present in the rat hypothalamus and thalamus, whereas moderate-to-high densities of neuromedin B and ranatensin-like peptides are present in the olfactory bulb and hippocampus, as well as in the hypothalamus and thalamus. While the distribution of neuromedin B and ranatensin-like peptides appears similar, it is distinct from that of BN/GRP. When released from CNS neurons, these peptides may interact with receptors for BN-like peptides. BN, GRP, ranatensin, and neuromedin B inhibit specific [ 125 I-Tyr4]BN binding with high affinity. By use of in vitro autoradiographic techniques to detect binding of [ 125 I-Tyr4]BN to receptors for BN-like peptides, high grain densities were found in the olfactory bulb and tubercle, the nucleus accumbens, the suprachiasmatic and paraventricular nucleus of the hypothalamus, the central medial and paraventricular thalamic nuclei, the hippocampus, the dentate gyrus, and the amygdala of the rat brain. Some of these receptors may be biologically active and mediate the biological effects of BN-like peptides. For example, when BN is directly injected into the nucleus accumbens, pronounced grooming results and the effects caused by BN are reversed by spantide and [D-Phe12]BN. Thus, the putative BN receptor antagonists may serve as useful agents to investigate the biological significance of BN-like peptides in the CNS

  20. A novel passive paradigm for functional magnetic resonance imaging (fMRI) to localize brain functions

    International Nuclear Information System (INIS)

    Gasser, T.; Sandalcioglu, I.E.; Skwarek, V.; Gizewski, E.; Stolke, D.; Hans, V.

    2003-01-01

    The design of a shielded stimulation-device for electrical stimulation of peripheral nerves in the MRI-environment as passive fMRI-paradigm is content of this study. Especially the technical aspects and selection criteria of the stimulation-parameters are discussed. The clinical value for neurosurgical patients is outlined by supplying data from clinical studies, evaluating this novel paradigm. Thus neurosurgeons are supplied with superior information about functional anatomy, therefore being able to preserve functionally relevant brain-structures. (orig.) [de

  1. Local blood-brain barrier penetration following systemic contrast medium administration

    International Nuclear Information System (INIS)

    Utz, R.; Ekholm, S.E.; Isaac, L.; Sands, M.; Fonte, D.

    1988-01-01

    The present study was initiated by a severe complication in a patient with renal dysfunction who developed cortical blindness and weakness of her left extremities 30 hours following renal and abdominal angiography. To evaluate the impact of prolonged high serum concentrations of contrast medium (CM) this clinical situation was simulated in a laboratory model using sheep with elevated serum levels of contrast medium maintained for 48 hours. The experimental data did not support the theory that the prolonged exposure to high circulating levels of contrast medium (4 ml/kg body weight of meglumine diatrizoate 60%) is sufficient alone to cause penetration of the blood-brain barrier. (orig.)

  2. START-GAP3/DLC3 is a GAP for RhoA and Cdc42 and is localized in focal adhesions regulating cell morphology

    International Nuclear Information System (INIS)

    Kawai, Katsuhisa; Kiyota, Minoru; Seike, Junichi; Deki, Yuko; Yagisawa, Hitoshi

    2007-01-01

    In the human genome there are three genes encoding RhoGAPs that contain the START (steroidogenic acute regulatory protein (StAR)-related lipid transfer)-domain. START-GAP3/DLC3 is a tumor suppressor gene similar to two other human START-GAPs known as DLC1 or DLC2. Although expression of START-GAP3/DLC3 inhibits the proliferation of cancer cells, its molecular function is not well understood. In this study we carried out biochemical characterization of START-GAP3/DLC3, and explored the effects of its expression on cell morphology and intracellular localization. We found that START-GAP3/DLC3 serves as a stimulator of PLCδ1 and as a GAP for both RhoA and Cdc42 in vitro. Moreover, we found that the GAP activity is responsible for morphological changes. The intracellular localization of endogenous START-GAP3/DLC3 was explored by immunocytochemistry and was revealed in focal adhesions. These results indicate that START-GAP3/DLC3 has characteristics similar to other START-GAPs and the START-GAP family seems to share common characteristics

  3. Brain omega-3 polyunsaturated fatty acids modulate microglia cell number and morphology in response to intracerebroventricular amyloid-β 1-40 in mice.

    Science.gov (United States)

    Hopperton, Kathryn E; Trépanier, Marc-Olivier; Giuliano, Vanessa; Bazinet, Richard P

    2016-09-29

    Neuroinflammation is a proposed mechanism by which Alzheimer's disease (AD) pathology potentiates neuronal death and cognitive decline. Consumption of omega-3 polyunsaturated fatty acids (PUFA) is associated with a decreased risk of AD in human observational studies and exerts protective effects on cognition and pathology in animal models. These fatty acids and molecules derived from them are known to have anti-inflammatory and pro-resolving properties, presenting a potential mechanism for these protective effects. Here, we explore this mechanism using fat-1 transgenic mice and their wild type littermates weaned onto either a fish oil diet (high in n-3 PUFA) or a safflower oil diet (negligible n-3 PUFA). The fat-1 mouse carries a transgene that enables it to convert omega-6 to omega-3 PUFA. At 12 weeks of age, mice underwent intracerebroventricular (icv) infusion of amyloid-β 1-40. Brains were collected between 1 and 28 days post-icv, and hippocampal microglia, astrocytes, and degenerating neurons were quantified by immunohistochemistry with epifluorescence microscopy, while microglia morphology was assessed with confocal microscopy and skeleton analysis. Fat-1 mice fed with the safflower oil diet and wild type mice fed with the fish oil diet had higher brain DHA in comparison with the wild type mice fed with the safflower oil diet. Relative to the wild type mice fed with the safflower oil diet, fat-1 mice exhibited a lower peak in the number of labelled microglia, wild type mice fed with fish oil had fewer degenerating neurons, and both exhibited alterations in microglia morphology at 10 days post-surgery. There were no differences in astrocyte number at any time point and no differences in the time course of microglia or astrocyte activation following infusion of amyloid-β 1-40. Increasing brain DHA, through either dietary or transgenic means, decreases some elements of the inflammatory response to amyloid-β in a mouse model of AD. This supports the

  4. Localized brain activation related to the strength of auditory learning in a parrot.

    Directory of Open Access Journals (Sweden)

    Hiroko Eda-Fujiwara

    Full Text Available Parrots and songbirds learn their vocalizations from a conspecific tutor, much like human infants acquire spoken language. Parrots can learn human words and it has been suggested that they can use them to communicate with humans. The caudomedial pallium in the parrot brain is homologous with that of songbirds, and analogous to the human auditory association cortex, involved in speech processing. Here we investigated neuronal activation, measured as expression of the protein product of the immediate early gene ZENK, in relation to auditory learning in the budgerigar (Melopsittacus undulatus, a parrot. Budgerigar males successfully learned to discriminate two Japanese words spoken by another male conspecific. Re-exposure to the two discriminanda led to increased neuronal activation in the caudomedial pallium, but not in the hippocampus, compared to untrained birds that were exposed to the same words, or were not exposed to words. Neuronal activation in the caudomedial pallium of the experimental birds was correlated significantly and positively with the percentage of correct responses in the discrimination task. These results suggest that in a parrot, the caudomedial pallium is involved in auditory learning. Thus, in parrots, songbirds and humans, analogous brain regions may contain the neural substrate for auditory learning and memory.

  5. Prediction of CT Substitutes from MR Images Based on Local Diffeomorphic Mapping for Brain PET Attenuation Correction.

    Science.gov (United States)

    Wu, Yao; Yang, Wei; Lu, Lijun; Lu, Zhentai; Zhong, Liming; Huang, Meiyan; Feng, Yanqiu; Feng, Qianjin; Chen, Wufan

    2016-10-01

    Attenuation correction is important for PET reconstruction. In PET/MR, MR intensities are not directly related to attenuation coefficients that are needed in PET imaging. The attenuation coefficient map can be derived from CT images. Therefore, prediction of CT substitutes from MR images is desired for attenuation correction in PET/MR. This study presents a patch-based method for CT prediction from MR images, generating attenuation maps for PET reconstruction. Because no global relation exists between MR and CT intensities, we propose local diffeomorphic mapping (LDM) for CT prediction. In LDM, we assume that MR and CT patches are located on 2 nonlinear manifolds, and the mapping from the MR manifold to the CT manifold approximates a diffeomorphism under a local constraint. Locality is important in LDM and is constrained by the following techniques. The first is local dictionary construction, wherein, for each patch in the testing MR image, a local search window is used to extract patches from training MR/CT pairs to construct MR and CT dictionaries. The k-nearest neighbors and an outlier detection strategy are then used to constrain the locality in MR and CT dictionaries. Second is local linear representation, wherein, local anchor embedding is used to solve MR dictionary coefficients when representing the MR testing sample. Under these local constraints, dictionary coefficients are linearly transferred from the MR manifold to the CT manifold and used to combine CT training samples to generate CT predictions. Our dataset contains 13 healthy subjects, each with T1- and T2-weighted MR and CT brain images. This method provides CT predictions with a mean absolute error of 110.1 Hounsfield units, Pearson linear correlation of 0.82, peak signal-to-noise ratio of 24.81 dB, and Dice in bone regions of 0.84 as compared with real CTs. CT substitute-based PET reconstruction has a regression slope of 1.0084 and R 2 of 0.9903 compared with real CT-based PET. In this method, no

  6. PDE2A2 regulates mitochondria morphology and apoptotic cell death via local modulation of cAMP/PKA signalling.

    Science.gov (United States)

    Monterisi, Stefania; Lobo, Miguel J; Livie, Craig; Castle, John C; Weinberger, Michael; Baillie, George; Surdo, Nicoletta C; Musheshe, Nshunge; Stangherlin, Alessandra; Gottlieb, Eyal; Maizels, Rory; Bortolozzi, Mario; Micaroni, Massimo; Zaccolo, Manuela

    2017-05-02

    cAMP/PKA signalling is compartmentalised with tight spatial and temporal control of signal propagation underpinning specificity of response. The cAMP-degrading enzymes, phosphodiesterases (PDEs), localise to specific subcellular domains within which they control local cAMP levels and are key regulators of signal compartmentalisation. Several components of the cAMP/PKA cascade are located to different mitochondrial sub-compartments, suggesting the presence of multiple cAMP/PKA signalling domains within the organelle. The function and regulation of these domains remain largely unknown. Here, we describe a novel cAMP/PKA signalling domain localised at mitochondrial membranes and regulated by PDE2A2. Using pharmacological and genetic approaches combined with real-time FRET imaging and high resolution microscopy, we demonstrate that in rat cardiac myocytes and other cell types mitochondrial PDE2A2 regulates local cAMP levels and PKA-dependent phosphorylation of Drp1. We further demonstrate that inhibition of PDE2A, by enhancing the hormone-dependent cAMP response locally, affects mitochondria dynamics and protects from apoptotic cell death.

  7. Morphological variation of freshwater crabs Zilchiopsis collastinensis and Trichodactylus borellianus (Decapoda, Trichodactylidae among localities from the middle Paraná River basin during different hydrological periods

    Directory of Open Access Journals (Sweden)

    María Victoria Torres

    2014-11-01

    Full Text Available Measures of hydrologic connectivity have been used extensively to describe spatial connections in riverine landscapes. Hydrologic fluctuations constitute an important macrofactor that regulates other environmental variables and can explain the distribution and abundance of organisms. We analysed morphological variations among individuals of two freshwater crab species, Zilchiopsis collastinensis and Trichodactylus borellianus, from localities of the middle Paraná River basin during two phases of the local hydrological regime. Specimens were sampled at sites (localities of Paraná River, Saladillo Stream, Salado River and Coronda River when water levels were falling and rising. The conductivity, pH, temperature and geographical coordinates were recorded at each site. The dorsal cephalothorax of each crab was represented using 16 landmarks for Z. collastinensis and 14 landmarks for T. borellianus. The Canonical Variate Analyses showed differences in shape (for both species among the crabs collected from the Paraná and Salado Rivers during the two hydrologic phases. We did not find a general distribution pattern for shape among the crab localities. During falling water, the shapes of Z. collastinensis were not related to latitude-longitude gradient (i.e., showing greater overlap in shape, while during rising water the shapes were ordered along a distributional gradient according to geographical location. Contrary, shapes of T. borellianus were related to latitude-longitude during falling water and were not related to distributional gradient during rising water. The cephalothorax shape showed, in general, no statistically significant covariations with environmental variables for either species. These results show that each freshwater crab species, from different localities of the middle Paraná River, remain connected; however, these connections change throughout the hydrologic regime of the floodplain system. This study was useful for delineating

  8. Controlled Low-Pressure Blast-Wave Exposure Causes Distinct Behavioral and Morphological Responses Modelling Mild Traumatic Brain Injury, Post-Traumatic Stress Disorder, and Comorbid Mild Traumatic Brain Injury-Post-Traumatic Stress Disorder.

    Science.gov (United States)

    Zuckerman, Amitai; Ram, Omri; Ifergane, Gal; Matar, Michael A; Sagi, Ram; Ostfeld, Ishay; Hoffman, Jay R; Kaplan, Zeev; Sadot, Oren; Cohen, Hagit

    2017-01-01

    The intense focus in the clinical literature on the mental and neurocognitive sequelae of explosive blast-wave exposure, especially when comorbid with post-traumatic stress-related disorders (PTSD) is justified, and warrants the design of translationally valid animal studies to provide valid complementary basic data. We employed a controlled experimental blast-wave paradigm in which unanesthetized animals were exposed to visual, auditory, olfactory, and tactile effects of an explosive blast-wave produced by exploding a thin copper wire. By combining cognitive-behavioral paradigms and ex vivo brain MRI to assess mild traumatic brain injury (mTBI) phenotype with a validated behavioral model for PTSD, complemented by morphological assessments, this study sought to examine our ability to evaluate the biobehavioral effects of low-intensity blast overpressure on rats, in a translationally valid manner. There were no significant differences between blast- and sham-exposed rats on motor coordination and strength, or sensory function. Whereas most male rats exposed to the blast-wave displayed normal behavioral and cognitive responses, 23.6% of the rats displayed a significant retardation of spatial learning acquisition, fulfilling criteria for mTBI-like responses. In addition, 5.4% of the blast-exposed animals displayed an extreme response in the behavioral tasks used to define PTSD-like criteria, whereas 10.9% of the rats developed both long-lasting and progressively worsening behavioral and cognitive "symptoms," suggesting comorbid PTSD-mTBI-like behavioral and cognitive response patterns. Neither group displayed changes on MRI. Exposure to experimental blast-wave elicited distinct behavioral and morphological responses modelling mTBI-like, PTSD-like, and comorbid mTBI-PTSD-like responses. This experimental animal model can be a useful tool for elucidating neurobiological mechanisms underlying the effects of blast-wave-induced mTBI and PTSD and comorbid mTBI-PTSD.

  9. Gross Morphology and Localization of Adenohypophyseal Cells in Camel (Camelus dromedarius Using A New Combination of Stains

    Directory of Open Access Journals (Sweden)

    S. A. S. Jaspal, Z. U. Rahman* and A. M. Cheema

    2011-01-01

    Full Text Available Thirty normal camels (Camelus dromedarius were selected for gross morphological and modified staining of anterior pituitary. Camels were divided in three age groups viz 2-4, 5-10 and above 10 years. Pituitary weight, length, width and circumference were recorded before preservation and at midsegittal cutting. Pituitary weight increased significantly as these animals grew older. Male had heavier pituitary as compared to female. Higher pituitary weight was observed in old as compared to young camel. Sections (4m of camel pituitary gland were stained with “Phosphotungstic acid haematoxylin-Orange G-Acid fuchsin-Light green” combination of dyes. This combination of acidic and basic dyes showed affinity to their respective adenohypophyseal cells and proved a suitable combination for differentiation of adenohypophyseal cells and architectural pattern of pituitary gland. Use of Lugol’s Iodine and sodium thiosulphate solution caused mercury fixation which ultimately enhanced the staining of camel adenohypophysis. The whole pituitary presented a brilliant appearance of clarity, enabling cell counts to be performed easily, purely with reference to the colors of adenohypophyseal cell types. This method can be applied for differential staining of adenohypophysis and with good cytology results to the hypophysis of many mammals. The method also provides a sharp contrast between cellular and connective tissue components. With this staining technique, the quantitative and qualitative characteristics of different adenohypophyseal cell types at various functional and hormonal stages, under certain physiological and pathological conditions can also be studied.

  10. Localization of insulin receptor mRNA in rat brain by in situ hybridization

    International Nuclear Information System (INIS)

    Marks, J.L.; Porte, D. Jr.; Stahl, W.L.; Baskin, D.G.

    1990-01-01

    Insulin receptor mRNA was demonstrated in rat brain slices by in situ hybridization with three 35 S-oligonucleotide probes and contact film autoradiography. Specificity was confirmed by showing that (a) excess unlabeled probe abolished the signal, (b) an oligonucleotide probe for rat neuropeptide Y mRNA showed a different distribution of hybridization signal, and (c) the distribution of insulin receptor binding was consistent with the distribution of insulin receptor mRNA. Insulin receptor mRNA was most abundant in the granule cell layers of the olfactory bulb, cerebellum and dentate gyrus, in the pyramidal cell body layers of the pyriform cortex and hippocampus, in the choroid plexus and in the arcuate nucleus of the hypothalamus

  11. Prediction of individual differences in risky behavior in young adults via variations in local brain structure

    Science.gov (United States)

    Nasiriavanaki, Zahra; ArianNik, Mohsen; Abbassian, Abdolhosein; Mahmoudi, Elham; Roufigari, Neda; Shahzadi, Sohrab; Nasiriavanaki, Mohammadreza; Bahrami, Bahador

    2015-01-01

    In recent years the problem of how inter-individual differences play a role in risk-taking behavior has become a much debated issue. We investigated this problem based on the well-known balloon analog risk task (BART) in 48 healthy subjects in which participants inflate a virtual balloon opting for a higher score in the face of a riskier chance of the balloon explosion. In this study, based on a structural Voxel Based Morphometry (VBM) technique we demonstrate a significant positive correlation between BART score and size of the gray matter volume in the anterior insula in riskier subjects. Although the anterior insula is among the candidate brain areas that were involved in the risk taking behavior in fMRI studies, here based on our structural data it is the only area that was significantly related to structural variation among different subjects. PMID:26500482

  12. Distribution of oxytocin and co-localization with arginine vasopressin in the brain of mice.

    Science.gov (United States)

    Otero-García, Marcos; Agustín-Pavón, Carmen; Lanuza, Enrique; Martínez-García, Fernando

    2016-09-01

    Oxytocin (OT) and vasopressin (AVP) play a major role in social behaviours. Mice have become the species of choice for neurobiology of social behaviour due to identification of mouse pheromones and the advantage of genetically modified mice. However, neuroanatomical data on nonapeptidergic systems in mice are fragmentary, especially concerning the central distribution of OT. Therefore, we analyse the immunoreactivity for OT and its neurophysin in the brain of male and female mice (strain CD1). Further, we combine immunofluorescent detection of OT and AVP to locate cells co-expressing both peptides and their putative axonal processes. The results indicate that OT is present in cells of the neurosecretory paraventricular (Pa) and supraoptic hypothalamic nuclei (SON). From the anterior SON, OTergic cells extend into the medial amygdala, where a sparse cell population occupies its ventral anterior and posterior divisions. Co-expression of OT and AVP in these nuclei is rare. Moreover, a remarkable OTergic cell group is found near the ventral bed nucleus of the stria terminalis (BST), distributed between the anterodorsal preoptic nucleus and the nucleus of anterior commissure (ADP/AC). This cell group, the rostral edge of the Pa and the periventricular hypothalamus display frequent OT + AVP double labelling, with a general dominance of OT over AVP immunoreactivity. Fibres with similar immunoreactivity profile innervate the accumbens shell and core, central amygdala and portions of the intervening BST. These data, together with data in the literature on rats, suggest that the projections of ADP/AC nonapeptidergic cells onto these brain centres could promote pup-motivated behaviours and inhibit pup avoidance during motherhood.

  13. Cellular localization of 2-[3H]deoxy-D-glucose from paraffin-embedded brains

    International Nuclear Information System (INIS)

    Durham, D.; Woolsey, T.A.; Kruger, L.

    1981-01-01

    Results of experiments in which regional neuronal activity is revealed by a 2-[ 3 H]deoxy-D-glucose ( 3 H-2-DG)-paraffin section-emulsion autoradiography method are described. The trigeminal pathway of freely behaving mice was activated differentially by selective patterns of whisker removal. One hour after injection of concentrated 3 H-2-DG, the animals were perfused systemically with a periodate/lysine/paraformaldehyde mixture the brains were embedded in paraffin, and serial sections were taken and coated with emulsion for autoradiography. Diffusion of the isotope out of the tissue was assessed visually and by liquid scintillation counting. While substantial loss of 3 H isotope into the embedding fluids (about 95%) was found, the scintillation counts and the autoradiograms showed good fixation of the isotope in situ, no evidence of isotope movement into the emulsion, and no gradients of diffusion in the sectioned material. Patterns of regional labeling were similar to those reported from brains prepared by conventional 2-[ 14 C]deoxy-D-glucose ( 14 C-2-DG) autoradiography; Trigeminal structures associated with the intact (stimulated) whiskers were labeled relatively heavily, indicating that label uptake is specific with respect to neuronal activity. In the cortex, the patterns of label corresponded directly and precisely to those barrels known to receive inputs from the intact whiskers. Distribution of silver grains in the cortex and in the brainstem was correlated directly with neuronal profiles. Clearly, this approach offers considerable technical advantages, in particular, the ease with which the histological material is prepared. The resolution of the autoradiograms and the quality of the histology are excellent

  14. Expression and Localization of Brain-Derived Neurotrophic Factor (BDNF) mRNA and Protein in Human Submandibular Gland

    International Nuclear Information System (INIS)

    Saruta, Juri; Fujino, Kazuhiro; To, Masahiro; Tsukinoki, Keiichi

    2012-01-01

    Brain-derived neurotrophic factor (BDNF) promotes cell survival and differentiation in the central and peripheral nervous systems. Previously, we reported that BDNF is produced by salivary glands under acute immobilization stress in rats. However, expression of BDNF is poorly understood in humans, although salivary gland localization of BDNF in rodents has been demonstrated. In the present study, we investigated the expression and localization of BDNF in the human submandibular gland (HSG) using reverse transcription-polymerase chain reaction, western blot analysis, in situ hybridization (ISH), immunohistochemistry (IHC), and ELISA. BDNF was consistently localized in HSG serous and ductal cells, as detected by ISH and IHC, with reactivity being stronger in serous cells. In addition, immunoreactivity for BDNF was observed in the saliva matrix of ductal cavities. Western blotting detected one significant immunoreactive 14 kDa band in the HSG and saliva. Immunoreactivities for salivary BDNF measured by ELISA in humans were 40.76±4.83 pg/mL and 52.64±8.42 pg/mL, in men and women, respectively. Although salivary BDNF concentrations in females tended to be higher than in males, the concentrations were not significantly different. In conclusion, human salivary BDNF may originate from salivary glands, as the HSG appears to produce BDNF

  15. [Localization of NADPH-diaphorase in the brain of the shore crab Hemigrapsus sanguineus].

    Science.gov (United States)

    Kotsiuba, E P

    2005-01-01

    The presence and localization of NADPH-diaphorase in the cerebral ganglion of the shore crab Hemigrapsus sanguineus was investigated with histochemical and electron histochemical methods. The reactivity of this enzyme was found in the deutrocerebrum, mainly in neuropils of olfactory lobes, the lateral antennular neuropil, a laterodorsal group of cells, and in the oculomotor nerve nucleus. Ultrastructural localization of the enzyme was detected in neurons on the perinuclear membrane, and in membranes of endoplasmic reticulum, in mitochondria and cytosol. The enzyme was found in axons of the antennular nerve, and in terminals of receptor axons in the glomerulus. The obtained data testify to participation of NO in perception and processing of the olfactory information.

  16. (/sup 3/H)Spiperone binding sites in brain: autoradiographic localization of multiple receptors

    Energy Technology Data Exchange (ETDEWEB)

    Palacios, J M; Niehoff, D L; Kuhar, M J [Johns Hopkins Univ., Baltimore, MD (USA). School of Medicine

    1981-01-01

    (/sup 3/H)Spiperone ((/sup 3/H)SP) binding sites were localized by light microscopic autoradiography, after in vitro labelling. The kinetic and pharmacological characteristics of these binding sites were studied in slide-mounted sections of rat forebrain, and optimal labeling conditions were defined. Autoradiograms were obtained by apposing emulsion-coated coverslips to labeled sections. Differential drug sensitivity allowed the selective displacement of (/sup 3/H)SP from dopamine receptors by ADTN, from serotonin receptors by cinanserin, from both by haloperidol and from unique spiperone sites by unlabeled spiperone. The various sites presented a differential anatomical localization. For example, only dopaminergic sites were found in the glomerular layer of the olfactory bulb; only serotonergic sites were found in lamina IV of the neocortex, and a high concentration of unique spiperone sites were found in parts of the hippocampus.

  17. The Performance of Ictal Brain SPECT for Localizing Epileptogenic Foci in Temporal Lobe epilepsies

    International Nuclear Information System (INIS)

    Kim, Eun Sil; Lee, Dong Soo; Chung, June Key; Lee, Myung Chul; Koh, Chang Soon; Chang, Kee Hyun; Lee, Sang Kun; Chung, Chun Kee

    1995-01-01

    Anterior temporal lobectomy has become a widely used respective surgery in patients with medically intractable temporal lobe epilepsies. Prerequisites of this resection include the accurate localization of the epileptogenic focus and the determination that the proposed resection would not result in unacceptable postoperative memory or language deficits. The purpose of this study was to evaluate the performance of ictal SPECT compared to MRI findings for localization of epileptogenic foci in this group of patients. 11 patients who had been anterior temporal oral lobectomy were evaluated with ictal 99m Tc-HMPAO SPECT and MRI. MRI showed 8/11(73%) concordant lesion to the side of surgery and ictal SPECT also showed 8/11(73%) concordant hyperperfusion. In 3 cases with incorrect or nonlocalizing findings of MRI, ictal SPECT showed concordant hyperperfusion. In 2 cases confirmed by pre-resectional invasive EEG, MRI showed bilateral and contralateral lesion but ictal SPECT showed concordant hyperperfusion. 3 delayed injection of ictal SPECT showed discordant hyperperfusion. Thus, ictal SPECT was a useful method for localizing epileptogenic foci in temporal lobe epilepsies and appeared complementay to MRI.

  18. [Morphological changes of neurons and neuroglial cells in the brain of senescence-accelerated prone 1 (SAMP1) mice].

    Science.gov (United States)

    Khudoerkov, R M; Sal'kov, V N; Sal'nikova, O V; Sobolev, V B

    2014-01-01

    Computerized morphometry was used to examine the sizes of neuronal bodies and the compactness of arrangement of neurons and neuroglial cells in layers III and V of the sensorimotor cortex in senescence-accelerated prone 1 (SAMP1) mice (an experimental group) and senescence-accelerated-resistant strain 1 (SAMR1) ones (a control group). In the SAMP1 mice as compared to the SAMR1 ones, the neuronal body sizes were significantly unchanged; the compactness of their arrangement decreased by 17 and 20% in layers III and V, respectively; that of neuroglial cells significantly increased by 14% in layer III only. In the SAMP1 mice versus the SAMR1 ones, the glial index rose by 36% in layer III and by 24% in layer V. During simulation of physiological aging, the sizes of neuronal bodies were shown to be virtually unchanged in the cerebral cortex; the compactness of their arrangement (cell counts) moderately reduced and that of neuroglial cells increased, which caused a rise in the glioneuronal index that was indicative of the enhanced supporting function of neuroglial cells during the physiological aging of brain structures.

  19. PET with F-18 fluorodeoxyglucose measures of local brain activity and memory in schizophrenia and in depression

    International Nuclear Information System (INIS)

    Riege, W.H.; Metter, E.J.; Kuhl, D.E.; Phelps, M.E.; Kling, A.

    1984-01-01

    Positron emission tomography with [F-18] fluorodeoxyglucose (FDG) scan has provided non-invasive measures of regional cerebral glucose utilization which are directly related with levels of functional activity in regions of the brain. The FDG technique was applied to the study of brain activity thought to be impaired in 6 chronic schizophrenics (SCH) and 6 depressed (D) patients in comparison with 6 healthy age-matched controls (C). Local cerebral metabolic rates of glucose utilization LCMRglc were determined for 8 regions in both left and right hemispheres and were expressed in reference to a person's mean CMRglc. Multivariate comparisons of the 16 measures showed no significant differences between the 3 groups; follow-up step-down analyses and t-tests failed to specify any regional or global LCMRglc reliable to separate patients from controls. They also did not differ in any of 18 multidimensional tests of memory and decision, except for lower delayed verbal recall in D patients. When both SCH and D were classified into those with CT large and those with CT small ventricles, there were no multivariate differences. Only partial LCMRglc separated large from small ventricle patients (F(1,7) = 6.12, p<0.042), but finding no multivariate significance makes this result questionable. The ventricular grouping of SCH alone may reveal a marginal difference in global CMRglc t(4) = 2.58, p<0.06, given a larger patient sample. In contrast to recent reports, indices to brain activity in schizophrenic and depressed patients do not seem to be abnormal

  20. Clinical Outcome in Gamma Knife Radiosurgery for Metastatic Brain Tumors from the Primary Breast Cancer : Prognostic Factors in Local Treatment Failure and Survival

    OpenAIRE

    Choi, Seung Won; Kwon, Do Hoon; Kim, Chang Jin

    2013-01-01

    Objective Brain metastases in primary breast cancer patients are considerable sources of morbidity and mortality. Gamma knife radiosurgery (GKRS) has gained popularity as an up-front therapy in treating such metastases over traditional radiation therapy due to better neurocognitive function preservation. The aim of this study was to clarify the prognostic factors for local tumor control and survival in radiosurgery for brain metastases from primary breast cancer. Methods From March 2001 to Ma...

  1. Localization of cellular retinol-binding protein and retinol-binding protein in cells comprising the blood-brain barrier of rat and human

    International Nuclear Information System (INIS)

    MacDonald, P.N.; Ong, D.E.; Bok, D.

    1990-01-01

    Brain is not generally recognized as an organ that requires vitamin A, perhaps because no obvious histologic lesions have been observed in severely vitamin A-deficient animals. However, brain tissue does contain cellular vitamin A-binding proteins and a nuclear receptor protein for retinoic acid. In the present study, immunohistochemical techniques were used to determine the cell-specific location of cellular retinol-binding protein in human and rat brain tissue. Cellular retinol-binding protein was localized specifically within the cuboidal epithelial cells of the choroid plexus, two primary sites of the mammalian blood-brain barrier. In addition, autoradiographic procedures demonstrated binding sites for serum retinol-binding protein in the choroidal epithelium. These observations suggest that a significant movement of retinol across the blood-brain barrier may occur

  2. Measurement of Local Partial Pressure of Oxygen in the Brain Tissue under Normoxia and Epilepsy with Phosphorescence Lifetime Microscopy

    Science.gov (United States)

    Zhang, Cong; Bélanger, Samuel; Pouliot, Philippe; Lesage, Frédéric

    2015-01-01

    In this work a method for measuring brain oxygen partial pressure with confocal phosphorescence lifetime microscopy system is reported. When used in conjunction with a dendritic phosphorescent probe, Oxyphor G4, this system enabled minimally invasive measurements of oxygen partial pressure (pO2) in cerebral tissue with high spatial and temporal resolution during 4-AP induced epileptic seizures. Investigating epileptic events, we characterized the spatio-temporal distribution of the "initial dip" in pO2 near the probe injection site and along nearby arterioles. Our results reveal a correlation between the percent change in the pO2 signal during the "initial dip" and the duration of seizure-like activity, which can help localize the epileptic focus and predict the length of seizure. PMID:26305777

  3. Measurement of Local Partial Pressure of Oxygen in the Brain Tissue under Normoxia and Epilepsy with Phosphorescence Lifetime Microscopy.

    Science.gov (United States)

    Zhang, Cong; Bélanger, Samuel; Pouliot, Philippe; Lesage, Frédéric

    2015-01-01

    In this work a method for measuring brain oxygen partial pressure with confocal phosphorescence lifetime microscopy system is reported. When used in conjunction with a dendritic phosphorescent probe, Oxyphor G4, this system enabled minimally invasive measurements of oxygen partial pressure (pO2) in cerebral tissue with high spatial and temporal resolution during 4-AP induced epileptic seizures. Investigating epileptic events, we characterized the spatio-temporal distribution of the "initial dip" in pO2 near the probe injection site and along nearby arterioles. Our results reveal a correlation between the percent change in the pO2 signal during the "initial dip" and the duration of seizure-like activity, which can help localize the epileptic focus and predict the length of seizure.

  4. Issues in Localization of brain function: The case of lateralized frontal cortex in cognition, emotion, and psychopathology

    Directory of Open Access Journals (Sweden)

    Gregory A. Miller

    2013-01-01

    Full Text Available The appeal of simple, sweeping portraits of large-scale brain mechanisms relevant to psychological phenomena competes with a rich, complex research base. As a prominent example, two views of frontal brain organization have emphasized dichotomous lateralization as a function of either emotional valence (positive/negative or approach/avoidance motivation. Compelling findings support each. The literature has struggled to choose between them for three decades, without success. Both views are proving untenable as comprehensive models. Recent evidence indicates that positive valence and approach motivation are associated with different areas in the left hemisphere. Evidence of other frontal lateralizations, involving distinctions among dimensions of depression and anxiety, make a dichotomous view even more problematic. Hemodynamic and electromagnetic neuroimaging studies suggest considerable functional differentiation, in specialization and activation, of subregions of frontal cortex, including their connectivity to each other and to other regions. Such findings contribute to a more nuanced understanding of functional localization that accommodates aspects of multiple theoretical perspectives.

  5. Quantitative autoradiographic localization of cholecystokinin receptors in rat and guinea pig brain using 125I-Bolton-Hunter-CCK8

    International Nuclear Information System (INIS)

    Niehoff, D.L.

    1989-01-01

    The autoradiographic localization of receptors for the brain-gut peptide cholecystokinin (CCK) has shown differences in receptor distribution between rat and guinea pig brain. However the full anatomical extent of the differences has not been determined quantitatively. In the present study, 125 I-Bolton-Hunter-CCK8 ( 125 I-BH-CCK8) was employed in a comparative quantitative autoradiographic analysis of the distribution of CCK receptors in these two species. The pharmacological profile of 125 I-BH-CCK8 binding in guinea pig forebrain sections was comparable to those previously reported for rat and human. Statistically significant differences in receptor binding between rat and guinea pig occurred in olfactory bulb, caudate-putamen, amygdala, several cortical areas, ventromedial hypothalamus, cerebellum, and a number of midbrain and brainstem nuclei. The results of this study confirm the presence of extensive species-specific variation in the distribution of CCK receptors, suggesting possible differences in the physiological roles of this peptide in different mammalian species

  6. Issues in localization of brain function: The case of lateralized frontal cortex in cognition, emotion, and psychopathology.

    Science.gov (United States)

    Miller, Gregory A; Crocker, Laura D; Spielberg, Jeffrey M; Infantolino, Zachary P; Heller, Wendy

    2013-01-01

    The appeal of simple, sweeping portraits of large-scale brain mechanisms relevant to psychological phenomena competes with a rich, complex research base. As a prominent example, two views of frontal brain organization have emphasized dichotomous lateralization as a function of either emotional valence (positive/negative) or approach/avoidance motivation. Compelling findings support each. The literature has struggled to choose between them for three decades, without success. Both views are proving untenable as comprehensive models. Evidence of other frontal lateralizations, involving distinctions among dimensions of depression and anxiety, make a dichotomous view even more problematic. Recent evidence indicates that positive valence and approach motivation are associated with different areas in the left-hemisphere. Findings that appear contradictory at the level of frontal lobes as the units of analysis can be accommodated because hemodynamic and electromagnetic neuroimaging studies suggest considerable functional differentiation, in specialization and activation, of subregions of frontal cortex, including their connectivity to each other and to other regions. Such findings contribute to a more nuanced understanding of functional localization that accommodates aspects of multiple theoretical perspectives.

  7. A 15oxygen positron study of relative local perfusion and oxygen extraction of the brain in lacunar hemiparesis

    International Nuclear Information System (INIS)

    Rougemont, D.; Baron, J.C.; Lebrun-Grandie, P.; Comar, D.; Bousser, M.G.; Soisson, T.

    1982-01-01

    The oxygen-15 non invasive continuous inhalation technique coupled with positron emission tomography (PET) allows the local study of cerebral blood flow and oxygen metabolism. Recent PET studies have demonstrated the frequent occurrence of widespread metabolic depression remote from the site of middle cerebral artery territory infarct per se, especially over the cortical mantle and thalamus ipsilaterally, and over the cerebellar hemisphere contralaterally. We thought interesting to study the possible occurrence of such abnormalities in patients with lacunar syndromes. We have applied the 15 O technique to seven patients in whom no large causal ischemic lesion could be demonstrated on CT Scans; in only one patient was a lacunar lesion, presumably responsable for the clinical deficit, evidenced. Compared to a set of 19 patients without brain disease, the semi-quantitative results (analyzed in terms of asymmetry indices between homologous brain regions) in our patients did not disclose any pathophysiologically significant abnormality. More specifically no evidence of physiological dysfunction similar to that reported in internal carotid artery territory infarcts, was detected over the cerebral or the cerebellar cortices. These original findings are commented upon in view of the presumably small size and the uncertain topography of the causal lesion [fr

  8. AUTOMATIC LUNG NODULE SEGMENTATION USING AUTOSEED REGION GROWING WITH MORPHOLOGICAL MASKING (ARGMM AND FEATURE EX-TRACTION THROUGH COMPLETE LOCAL BINARY PATTERN AND MICROSCOPIC INFORMATION PATTERN

    Directory of Open Access Journals (Sweden)

    Senthil Kumar

    2015-04-01

    Full Text Available An efficient Autoseed Region Growing with Morphological Masking(ARGMM is imple-mented in this paper on the Lung CT Slice to segment the 'Lung Nodules',which may be the potential indicator for the Lung Cancer. The segmentation of lung nodules car-ried out in this paper through Multi-Thresholding, ARGMM and Level Set Evolution. ARGMM takes twice the time compared to Level Set, but still the number of suspected segmented nodules are doubled, which make sure that no potential cancerous nodules go unnoticed at the earlier stages of diagnosis. It is very important not to panic the patient by finding the presence of nodules from Lung CT scan. Only 40 percent of nod-ules can be cancerous. Hence, in this paper an efficient Shape and Texture analysis is computed to quantitatively describe the segmented lung nodules. The Frequency spectrum of the lung nodules is developed and its frequency domain features are com-puted. The Complete Local binary pattern of lung nodules is computed in this paper by constructing the combine histogram of Sign and Magnitude Local Binary Patterns. Lo-cal Configuration Pattern is also determined in this work for lung nodules to numeri-cally model the microscopic information of nodules pattern.

  9. A New Treatment Paradigm: Neoadjuvant Radiosurgery Before Surgical Resection of Brain Metastases With Analysis of Local Tumor Recurrence

    International Nuclear Information System (INIS)

    Asher, Anthony L.; Burri, Stuart H.; Wiggins, Walter F.; Kelly, Renee P.; Boltes, Margaret O.; Mehrlich, Melissa; Norton, H. James; Fraser, Robert W.

    2014-01-01

    Purpose: Resected brain metastases (BM) require radiation therapy to reduce local recurrence. Whole brain radiation therapy (WBRT) reduces recurrence, but with potential toxicity. Postoperative stereotactic radiosurgery (SRS) is a strategy without prospective data and problematic target delineation. SRS delivered in the preoperative setting (neoadjuvant, or NaSRS) allows clear target definition and reduction of intraoperative dissemination of tumor cells. Methods and Materials: Our treatment of resectable BM with NaSRS was begun in 2005. Subsequently, a prospective trial of NaSRS was undertaken. A total of 47 consecutively treated patients (23 database and 24 prospective trial) with a total of 51 lesions were reviewed. No statistical difference was observed between the 2 cohorts, and they were combined for analysis. The median follow-up time was 12 months (range, 1-58 months), and the median age was 57. A median of 1 day elapsed between NaSRS and resection. The median diameter of lesions was 3.04 cm (range, 1.34-5.21 cm), and the median volume was 8.49 cc (range, 0.89-46.7 cc). A dose reduction strategy was used, with a median dose of 14 Gy (range, 11.6-18 Gy) prescribed to 80% isodose. Results: Kaplan-Meier overall survival was 77.8% and 60.0% at 6 and 12 months. Kaplan-Meier local control was 97.8%, 85.6%, and 71.8% at 6, 12, and 24 months, respectively. Five of 8 failures were proved pathologically without radiation necrosis. There were no perioperative adverse events. Ultimately, 14.8% of the patients were treated with WBRT. Local failure was more likely with lesions >10 cc (P=.01), >3.4 cm (P=.014), with a trend in surface lesions (P=.066) and eloquent areas (P=.052). Six of the 8 failures had an obvious dural attachment or proximity to draining veins. Conclusions: NaSRS can be performed safely and effectively with excellent results without documented radiation necrosis. Local control was excellent even in the setting of large (>3 cm) lesions. The strong

  10. A new treatment paradigm: neoadjuvant radiosurgery before surgical resection of brain metastases with analysis of local tumor recurrence.

    Science.gov (United States)

    Asher, Anthony L; Burri, Stuart H; Wiggins, Walter F; Kelly, Renee P; Boltes, Margaret O; Mehrlich, Melissa; Norton, H James; Fraser, Robert W

    2014-03-15

    Resected brain metastases (BM) require radiation therapy to reduce local recurrence. Whole brain radiation therapy (WBRT) reduces recurrence, but with potential toxicity. Postoperative stereotactic radiosurgery (SRS) is a strategy without prospective data and problematic target delineation. SRS delivered in the preoperative setting (neoadjuvant, or NaSRS) allows clear target definition and reduction of intraoperative dissemination of tumor cells. Our treatment of resectable BM with NaSRS was begun in 2005. Subsequently, a prospective trial of NaSRS was undertaken. A total of 47 consecutively treated patients (23 database and 24 prospective trial) with a total of 51 lesions were reviewed. No statistical difference was observed between the 2 cohorts, and they were combined for analysis. The median follow-up time was 12 months (range, 1-58 months), and the median age was 57. A median of 1 day elapsed between NaSRS and resection. The median diameter of lesions was 3.04 cm (range, 1.34-5.21 cm), and the median volume was 8.49 cc (range, 0.89-46.7 cc). A dose reduction strategy was used, with a median dose of 14 Gy (range, 11.6-18 Gy) prescribed to 80% isodose. Kaplan-Meier overall survival was 77.8% and 60.0% at 6 and 12 months. Kaplan-Meier local control was 97.8%, 85.6%, and 71.8% at 6, 12, and 24 months, respectively. Five of 8 failures were proved pathologically without radiation necrosis. There were no perioperative adverse events. Ultimately, 14.8% of the patients were treated with WBRT. Local failure was more likely with lesions >10 cc (P=.01), >3.4 cm (P=.014), with a trend in surface lesions (P=.066) and eloquent areas (P=.052). Six of the 8 failures had an obvious dural attachment or proximity to draining veins. NaSRS can be performed safely and effectively with excellent results without documented radiation necrosis. Local control was excellent even in the setting of large (>3 cm) lesions. The strong majority of patients were able to avoid WBRT. NaSRS merits

  11. A New Treatment Paradigm: Neoadjuvant Radiosurgery Before Surgical Resection of Brain Metastases With Analysis of Local Tumor Recurrence

    Energy Technology Data Exchange (ETDEWEB)

    Asher, Anthony L., E-mail: asher@cnsa.com [Department of Neurosurgery, Levine Cancer Institute and Carolinas Medical Center, Charlotte, North Carolina (United States); Carolina Neurosurgery and Spine Associates, Charlotte, North Carolina (United States); Burri, Stuart H. [Department of Radiation Oncology, Levine Cancer Institute and Carolinas Medical Center, Charlotte, North Carolina (United States); Wiggins, Walter F. [Wake Forest School of Medicine MD/PhD Program, Winston-Salem, North Carolina (United States); Kelly, Renee P. [Brain Tumor Fund for the Carolinas, Charlotte, North Carolina (United States); Boltes, Margaret O.; Mehrlich, Melissa [Carolina Neurosurgery and Spine Associates, Charlotte, North Carolina (United States); Norton, H. James [Department of Biostatistics, Carolinas Medical Center, Charlotte, North Carolina (United States); Fraser, Robert W. [Department of Radiation Oncology, Levine Cancer Institute and Carolinas Medical Center, Charlotte, North Carolina (United States)

    2014-03-15

    Purpose: Resected brain metastases (BM) require radiation therapy to reduce local recurrence. Whole brain radiation therapy (WBRT) reduces recurrence, but with potential toxicity. Postoperative stereotactic radiosurgery (SRS) is a strategy without prospective data and problematic target delineation. SRS delivered in the preoperative setting (neoadjuvant, or NaSRS) allows clear target definition and reduction of intraoperative dissemination of tumor cells. Methods and Materials: Our treatment of resectable BM with NaSRS was begun in 2005. Subsequently, a prospective trial of NaSRS was undertaken. A total of 47 consecutively treated patients (23 database and 24 prospective trial) with a total of 51 lesions were reviewed. No statistical difference was observed between the 2 cohorts, and they were combined for analysis. The median follow-up time was 12 months (range, 1-58 months), and the median age was 57. A median of 1 day elapsed between NaSRS and resection. The median diameter of lesions was 3.04 cm (range, 1.34-5.21 cm), and the median volume was 8.49 cc (range, 0.89-46.7 cc). A dose reduction strategy was used, with a median dose of 14 Gy (range, 11.6-18 Gy) prescribed to 80% isodose. Results: Kaplan-Meier overall survival was 77.8% and 60.0% at 6 and 12 months. Kaplan-Meier local control was 97.8%, 85.6%, and 71.8% at 6, 12, and 24 months, respectively. Five of 8 failures were proved pathologically without radiation necrosis. There were no perioperative adverse events. Ultimately, 14.8% of the patients were treated with WBRT. Local failure was more likely with lesions >10 cc (P=.01), >3.4 cm (P=.014), with a trend in surface lesions (P=.066) and eloquent areas (P=.052). Six of the 8 failures had an obvious dural attachment or proximity to draining veins. Conclusions: NaSRS can be performed safely and effectively with excellent results without documented radiation necrosis. Local control was excellent even in the setting of large (>3 cm) lesions. The strong

  12. Histograms of Oriented 3D Gradients for Fully Automated Fetal Brain Localization and Robust Motion Correction in 3 T Magnetic Resonance Images.

    Science.gov (United States)

    Serag, Ahmed; Macnaught, Gillian; Denison, Fiona C; Reynolds, Rebecca M; Semple, Scott I; Boardman, James P

    2017-01-01

    Fetal brain magnetic resonance imaging (MRI) is a rapidly emerging diagnostic imaging tool. However, automated fetal brain localization is one of the biggest obstacles in expediting and fully automating large-scale fetal MRI processing. We propose a method for automatic localization of fetal brain in 3 T MRI when the images are acquired as a stack of 2D slices that are misaligned due to fetal motion. First, the Histogram of Oriented Gradients (HOG) feature descriptor is extended from 2D to 3D images. Then, a sliding window is used to assign a score to all possible windows in an image, depending on the likelihood of it containing a brain, and the window with the highest score is selected. In our evaluation experiments using a leave-one-out cross-validation strategy, we achieved 96% of complete brain localization using a database of 104 MRI scans at gestational ages between 34 and 38 weeks. We carried out comparisons against template matching and random forest based regression methods and the proposed method showed superior performance. We also showed the application of the proposed method in the optimization of fetal motion correction and how it is essential for the reconstruction process. The method is robust and does not rely on any prior knowledge of fetal brain development.

  13. Histograms of Oriented 3D Gradients for Fully Automated Fetal Brain Localization and Robust Motion Correction in 3 T Magnetic Resonance Images

    Directory of Open Access Journals (Sweden)

    Ahmed Serag

    2017-01-01

    Full Text Available Fetal brain magnetic resonance imaging (MRI is a rapidly emerging diagnostic imaging tool. However, automated fetal brain localization is one of the biggest obstacles in expediting and fully automating large-scale fetal MRI processing. We propose a method for automatic localization of fetal brain in 3 T MRI when the images are acquired as a stack of 2D slices that are misaligned due to fetal motion. First, the Histogram of Oriented Gradients (HOG feature descriptor is extended from 2D to 3D images. Then, a sliding window is used to assign a score to all possible windows in an image, depending on the likelihood of it containing a brain, and the window with the highest score is selected. In our evaluation experiments using a leave-one-out cross-validation strategy, we achieved 96% of complete brain localization using a database of 104 MRI scans at gestational ages between 34 and 38 weeks. We carried out comparisons against template matching and random forest based regression methods and the proposed method showed superior performance. We also showed the application of the proposed method in the optimization of fetal motion correction and how it is essential for the reconstruction process. The method is robust and does not rely on any prior knowledge of fetal brain development.

  14. Localizing Age-Related Changes in Brain Structure Using Voxel-Based Morphometry

    Directory of Open Access Journals (Sweden)

    Shu Hua Mu

    2017-01-01

    Full Text Available Aim. We report the dynamic anatomical sequence of human cortical gray matter development from late childhood to young adults using VBM and ROI-based methods. Method. The structural MRI of 91 normal individuals ranging in age from 6 to 26 years was obtained and the GMV for each region was measured. Results. Our results showed that the earliest loss of GMV occurred in left olfactory, right precuneus, caudate, left putamen, pallidum, and left middle temporal gyrus. In addition, the trajectory of maturational and aging showed a linear decline in GMV on both cortical lobes and subcortical regions. The most loss of gray matter was observed in the parietal lobe and basal ganglia, whereas the less loss occurred in the temporal lobe and hippocampus, especially in the left middle temporal pole, which showed no decline until 26 years old. Moreover, the volumes of GM, WM, and CSF were also assessed for linear age effects, showing a significant linear decline in GM with age and a significant linear increase in both WM and CSF with age. Interpretation. Overall, our findings lend support to previous findings of the normal brain development of regional cortex, and they may help in understanding of neurodevelopmental disorders.

  15. Localization and expression of putative circadian clock transcripts in the brain of the nudibranch Melibe leonina.

    Science.gov (United States)

    Duback, Victoria E; Sabrina Pankey, M; Thomas, Rachel I; Huyck, Taylor L; Mbarani, Izhar M; Bernier, Kyle R; Cook, Geoffrey M; O'Dowd, Colleen A; Newcomb, James M; Watson, Winsor H

    2018-09-01

    The nudibranch, Melibe leonina, expresses a circadian rhythm of locomotion, and we recently determined the sequences of multiple circadian clock transcripts that may play a role in controlling these daily patterns of behavior. In this study, we used these genomic data to help us: 1) identify putative clock neurons using fluorescent in situ hybridization (FISH); and 2) determine if there is a daily rhythm of expression of clock transcripts in the M. leonina brain, using quantitative PCR. FISH indicated the presence of the clock-related transcripts clock, period, and photoreceptive and non-photoreceptive cryptochrome (pcry and npcry, respectively) in two bilateral neurons in each cerebropleural ganglion and a group of <10 neurons in the anterolateral region of each pedal ganglion. Double-label experiments confirmed colocalization of all four clock transcripts with each other. Quantitative PCR demonstrated that the genes clock, period, pcry and npcry exhibited significant differences in expression levels over 24 h. These data suggest that the putative circadian clock network in M. leonina consists of a small number of identifiable neurons that express circadian genes with a daily rhythm. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Localization of extended brain sources from EEG/MEG: the ExSo-MUSIC approach.

    Science.gov (United States)

    Birot, Gwénaël; Albera, Laurent; Wendling, Fabrice; Merlet, Isabelle

    2011-05-01

    We propose a new MUSIC-like method, called 2q-ExSo-MUSIC (q ≥ 1). This method is an extension of the 2q-MUSIC (q ≥ 1) approach for solving the EEG/MEG inverse problem, when spatially-extended neocortical sources ("ExSo") are considered. It introduces a novel ExSo-MUSIC principle. The novelty is two-fold: i) the parameterization of the spatial source distribution that leads to an appropriate metric in the context of distributed brain sources and ii) the introduction of an original, efficient and low-cost way of optimizing this metric. In 2q-ExSo-MUSIC, the possible use of higher order statistics (q ≥ 2) offers a better robustness with respect to Gaussian noise of unknown spatial coherence and modeling errors. As a result we reduced the penalizing effects of both the background cerebral activity that can be seen as a Gaussian and spatially correlated noise, and the modeling errors induced by the non-exact resolution of the forward problem. Computer results on simulated EEG signals obtained with physiologically-relevant models of both the sources and the volume conductor show a highly increased performance of our 2q-ExSo-MUSIC method as compared to the classical 2q-MUSIC algorithms. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. Breast MRI in the Evaluation of Locally Recurrent or New Breast Cancer in the Postoperative Patient: Correlation of Morphology and Enhancement Features with the BI-RADS Category

    International Nuclear Information System (INIS)

    Seely, J.M.; Nguyen, E.T.; Jaffey, J.

    2007-01-01

    Background: While breast magnetic resonance imaging (MRI) is a highly sensitive test for detecting breast carcinoma, its specificity is lower, and several methods have been described on how to optimize specificity. Purpose: To compare the specificity and sensitivity of the BI-RADS category with the Fischer score in breast MRI for diagnosing cancer in women previously treated for breast cancer. Material and Methods: Women referred for evaluation of possible local recurrence or new breast cancer underwent breast MRI examination. Morphologic and kinetic enhancement characteristics were evaluated. BI-RADS category and Fischer score were assigned for each enhancing lesion and compared using a chi-square test. Sensitivity, specificity, and positive predictive values for 27 morphologic and enhancement characteristics were calculated. Pathologic diagnosis was obtained in all patients with enhancing lesions who had ultrasound or mammographic correlation. In those without correlate, 6-, 12-, and 24-month follow-up breast MRIs were obtained. Interobserver kappa correlation was determined for each variable studied. Results: 34 benign and 32 malignant lesions were identified in 26 of 30 patients. BI-RADS category yielded a specificity of 77.1% and a sensitivity of 81.8%. Fischer score had a lower specificity and sensitivity (62.9% and 72.7%, respectively) (P 100% enhancement was more sensitive than BI-RADS for malignant lesions. Specificity was highest for rim enhancement (97.1%), but sensitivity was low (24.2%). Interobserver kappa correlation was good for all 27 characteristics ( = 0.84), and highest for BI-RADS assessment ( 0.91). Conclusion: BI-RADS category in breast MRI had the highest combination of specificity and sensitivity, and the highest interobserver correlation. Fischer score and other morphologic and enhancement features lack sensitivity or specificity and do not have high positive predictive values when analyzed as single independent variables

  18. Method for automatic localization of MR-visible markers using morphological image processing and conventional pulse sequences: feasibility for image-guided procedures.

    Science.gov (United States)

    Busse, Harald; Trampel, Robert; Gründer, Wilfried; Moche, Michael; Kahn, Thomas

    2007-10-01

    To evaluate the feasibility and accuracy of an automated method to determine the 3D position of MR-visible markers. Inductively coupled RF coils were imaged in a whole-body 1.5T scanner using the body coil and two conventional gradient echo sequences (FLASH and TrueFISP) and large imaging volumes up to (300 mm(3)). To minimize background signals, a flip angle of approximately 1 degrees was used. Morphological 2D image processing in orthogonal scan planes was used to determine the 3D positions of a configuration of three fiducial markers (FMC). The accuracies of the marker positions and of the orientation of the plane defined by the FMC were evaluated at various distances r(M) from the isocenter. Fiducial marker detection with conventional equipment (pulse sequences, imaging coils) was very reliable and highly reproducible over a wide range of experimental conditions. For r(M) localization of MR-visible markers by morphological image processing is feasible, simple, and very accurate. In combination with safe wireless markers, the method is found to be useful for image-guided procedures. (c) 2007 Wiley-Liss, Inc.

  19. Knowledge of Mild Traumatic Brain Injury: Effects of age, locality, occupation, media and sports participation

    Directory of Open Access Journals (Sweden)

    2015-09-01

    Results: Misconceptions about TBI were reported by participants, irrespective of gender, locality, occupation, or history of sports participation. There were no significant differences in knowledge scores across these demographic groups. In particular, healthcare and education workers did not score any higher than other occupations. At least 40% of respondents answered either incorrectly or “I don’t know” on items related to gender differences, the utility of neuroimaging, and patient insight into their impairments. For those in non-medical, professional occupations, the older they were the less they knew about TBI (r = -.299, p = 0.009. In contrast, a positive correlation (r = 0.268, p = 0.018 was found between age and TBI knowledge for workers in healthcare or education. Conclusions: Misconceptions about TBI are present in Australia and are consistent across genders, localities, occupations and sport participation groups. A concern is that risk for misconceptions is not lower in healthcare or education professions. This suggests that professional development for groups most likely to be the frontline referral resources and supports for head injured children and adults may require further training.

  20. Risk Factors for Brain Metastases in Locally Advanced Non-Small Cell Lung Cancer With Definitive Chest Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Zhe; Bi, Nan; Wang, Jingbo; Hui, Zhouguang; Xiao, Zefen; Feng, Qinfu; Zhou, Zongmei; Chen, Dongfu; Lv, Jima; Liang, Jun; Fan, Chengcheng; Liu, Lipin; Wang, Luhua, E-mail: wlhwq@yahoo.com

    2014-06-01

    Purpose: We intended to identify risk factors that affect brain metastases (BM) in patients with locally advanced non-small cell lung cancer (LA-NSCLC) receiving definitive radiation therapy, which may guide the choice of selective prevention strategies. Methods and Materials: The characteristics of 346 patients with stage III NSCLC treated with thoracic radiation therapy from January 2008 to December 2010 in our institution were retrospectively reviewed. BM rates were analyzed by the Kaplan-Meier method. Multivariate Cox regression analysis was performed to determine independent risk factors for BM. Results: The median follow-up time was 48.3 months in surviving patients. A total of 74 patients (21.4%) experienced BM at the time of analysis, and for 40 (11.7%) of them, the brain was the first site of failure. The 1-year and 3-year brain metastasis rates were 15% and 28.1%, respectively. In univariate analysis, female sex, age ≤60 years, non-squamous cell carcinoma, T3-4, N3, >3 areas of lymph node metastasis, high lactate dehydrogenase and serum levels of tumor markers (CEA, NSE, CA125) before treatment were significantly associated with BM (P<.05). In multivariate analysis, age ≤60 years (P=.004, hazard ratio [HR] = 0.491), non-squamous cell carcinoma (P=.000, HR=3.726), NSE >18 ng/mL (P=.008, HR=1.968) and CA125 ≥ 35 U/mL (P=.002, HR=2.129) were independent risk factors for BM. For patients with 0, 1, 2, and 3 to 4 risk factors, the 3-year BM rates were 7.3%, 18.9%, 35.8%, and 70.3%, respectively (P<.001). Conclusions: Age ≤60 years, non-squamous cell carcinoma, serum NSE >18 ng/mL, and CA125 ≥ 35 U/mL were independent risk factors for brain metastasis. The possibilities of selectively using prophylactic cranial irradiation in higher-risk patients with LA-NSCLC should be further explored in the future.

  1. Dynein and EFF-1 control dendrite morphology by regulating the localization pattern of SAX-7 in epidermal cells.

    Science.gov (United States)

    Zhu, Ting; Liang, Xing; Wang, Xiang-Ming; Shen, Kang

    2017-12-01

    Our previous work showed that the cell adhesion molecule SAX-7 forms an elaborate pattern in Caenorhabditis elegans epidermal cells, which instructs PVD dendrite branching. However, the molecular mechanism forming the SAX-7 pattern in the epidermis is not fully understood. Here, we report that the dynein light intermediate chain DLI-1 and the fusogen EFF-1 are required in epidermal cells to pattern SAX-7. While previous reports suggest that these two molecules act cell-autonomously in the PVD, our results show that the disorganized PVD dendritic arbors in these mutants are due to the abnormal SAX-7 localization patterns in epidermal cells. Three lines of evidence support this notion. First, the epidermal SAX-7 pattern was severely affected in dli-1 and eff-1 mutants. Second, the abnormal SAX-7 pattern was predictive of the ectopic PVD dendrites. Third, expression of DLI-1 or EFF-1 in the epidermis rescued both the SAX-7 pattern and the disorganized PVD dendrite phenotypes, whereas expression of these molecules in the PVD did not. We also show that DLI-1 functions cell-autonomously in the PVD to promote distal branch formation. These results demonstrate the unexpected roles of DLI-1 and EFF-1 in the epidermis in the control of PVD dendrite morphogenesis. © 2017. Published by The Company of Biologists Ltd.

  2. Stereotactically-guided Ablation of the Rat Auditory Cortex, and Localization of the Lesion in the Brain.

    Science.gov (United States)

    Lamas, Verónica; Estévez, Sheila; Pernía, Marianni; Plaza, Ignacio; Merchán, Miguel A

    2017-10-11

    The rat auditory cortex (AC) is becoming popular among auditory neuroscience investigators who are interested in experience-dependence plasticity, auditory perceptual processes, and cortical control of sound processing in the subcortical auditory nuclei. To address new challenges, a procedure to accurately locate and surgically expose the auditory cortex would expedite this research effort. Stereotactic neurosurgery is routinely used in pre-clinical research in animal models to engraft a needle or electrode at a pre-defined location within the auditory cortex. In the following protocol, we use stereotactic methods in a novel way. We identify four coordinate points over the surface of the temporal bone of the rat to define a window that, once opened, accurately exposes both the primary (A1) and secondary (Dorsal and Ventral) cortices of the AC. Using this method, we then perform a surgical ablation of the AC. After such a manipulation is performed, it is necessary to assess the localization, size, and extension of the lesions made in the cortex. Thus, we also describe a method to easily locate the AC ablation postmortem using a coordinate map constructed by transferring the cytoarchitectural limits of the AC to the surface of the brain.The combination of the stereotactically-guided location and ablation of the AC with the localization of the injured area in a coordinate map postmortem facilitates the validation of information obtained from the animal, and leads to a better analysis and comprehension of the data.

  3. Development of receptors for insulin and insulin-like growth factor-I in head and brain of chick embryos: Autoradiographic localization

    International Nuclear Information System (INIS)

    Bassas, L.; Girbau, M.; Lesniak, M.A.; Roth, J.; de Pablo, F.

    1989-01-01

    In whole brain of chick embryos insulin receptors are highest at the end of embryonic development, while insulin-like growth factor-I (IGF-I) receptors dominate in the early stages. These studies provided evidence for developmental regulation of both types of receptors, but they did not provide information on possible differences between brain regions at each developmental stage or within one region at different embryonic ages. We have now localized the specific binding of [125I]insulin and [125I]IGF-I in sections of head and brain using autoradiography and computer-assisted densitometric analysis. Embryos have been studied from the latter part of organogenesis (days 6 and 12) through late development (day 18, i.e. 3 days before hatching), and the binding patterns have been compared with those in the adult brain. At all ages the binding of both ligands was to discrete anatomical regions. Interestingly, while in late embryos and adult brain the patterns of [125I]insulin and [125I] IGF-I binding were quite distinct, in young embryos both ligands showed very similar localization of binding. In young embryos the retina and lateral wall of the growing encephalic vesicles had the highest binding of both [125I]insulin and [125I]IGF-I. In older embryos, as in the adult brain, insulin binding was high in the paleostriatum augmentatum and molecular layer of the cerebellum, while IGF-I binding was prominent in the hippocampus and neostriatum. The mapping of receptors in a vertebrate embryo model from early prenatal development until adulthood predicts great overlap in any possible function of insulin and IGF-I in brain development, while it anticipates differential localized actions of the peptides in the mature brain

  4. Morphological and Functional Characterization of IL-12Rβ2 Chain on Intestinal Epithelial Cells: Implications for Local and Systemic Immunoregulation.

    Science.gov (United States)

    Regoli, Mari; Man, Angela; Gicheva, Nadhezda; Dumont, Antonio; Ivory, Kamal; Pacini, Alessandra; Morucci, Gabriele; Branca, Jacopo J V; Lucattelli, Monica; Santosuosso, Ugo; Narbad, Arjan; Gulisano, Massimo; Bertelli, Eugenio; Nicoletti, Claudio

    2018-01-01

    Interaction between intestinal epithelial cells (IECs) and the underlying immune systems is critical for maintaining intestinal immune homeostasis and mounting appropriate immune responses. We have previously showed that the T helper type 1 (T H 1) cytokine IL-12 plays a key role in the delicate immunological balance in the gut and the lack of appropriate levels of IL-12 had important consequences for health and disease, particularly with regard to food allergy. Here, we sought to understand the role of IL-12 in the regulation of lymphoepithelial cross talk and how this interaction affects immune responses locally and systemically. Using a combination of microscopy and flow cytometry techniques we observed that freshly isolated IECs expressed an incomplete, yet functional IL-12 receptor (IL-12R) formed solely by the IL-12Rβ2 chain that albeit the lack of the complementary IL-12β1 chain responded to ex vivo challenge with IL-12. Furthermore, the expression of IL-12Rβ2 on IECs is strategically located at the interface between epithelial and immune cells of the lamina propria and using in vitro coculture models and primary intestinal organoids we showed that immune-derived signals were required for the expression of IL-12Rβ2 on IECs. The biological relevance of the IEC-associated IL-12Rβ2 was assessed in vivo in a mouse model of food allergy characterized by allergy-associated diminished intestinal levels of IL-12 and in chimeric mice that lack the IL-12Rβ2 chain on IECs. These experimental models enabled us to show that the antiallergic properties of orally delivered recombinant Lactococcus lactis secreting bioactive IL-12 (rLc-IL12) were reduced in mice lacking the IL-12β2 chain on IECs. Finally, we observed that the oral delivery of IL-12 was accompanied by the downregulation of the production of the IEC-derived proallergic cytokine thymic stromal lymphopoietin (TSLP). However, further analysis of intestinal levels of TSLP in IL-12Rβ2 -/- mice suggested

  5. Morphological transitions of brain sphingomyelin are determined by the hydration protocol: ripples re-arrange in plane, and sponge-like networks disintegrate into small vesicles.

    Science.gov (United States)

    Meyer, H W; Bunjes, H; Ulrich, A S

    1999-06-01

    The phase transition of hydrated brain sphingomyelin occurs at around 35 degrees C, which is close to the physiological temperature. Freeze-fracture electron microscopy is used to characterize different gel state morphologies in terms of solid-ordered and liquid-ordered phase states, according to the occurrence of ripples and other higher-dimensional bilayer deformations. Evidently, the natural mixed-chain sphingomyelin does not assume the flat L beta, phase but instead the rippled P beta, phase, with symmetric and asymmetric ripples as well as macroripples and an egg-carton pattern, depending on the incubation conditions. An unexpected difference was observed between samples that are hydrated above and below the phase transition temperature. When the lipid is hydrated at low temperature, a sponge-like network of bilayers is formed in the gel state, next to some normal lamellae. The network loses its ripples during cold-incubation, which indicates the formation of a liquid-ordered (lo) gel phase. Ripples re-appear upon warming and the sponge-like network disintegrates spontaneously and irreversibly into small vesicles above the phase transition.

  6. Morphological, Phenological And Agronomical Characterisation Of Variability Among Common Bean (Phaseolus Vulgaris L. Local Populations From The National Centre For Plant Genetic Resources: Polish Genebank

    Directory of Open Access Journals (Sweden)

    Boros Lech

    2014-12-01

    Full Text Available The main purpose of this work was to analyse the morphological, phenological and agronomical variability among common bean local populations from The National Centre for Plant Genetic Resources, Polish Genebank, in order to know the relation among them, and to identify potentially useful accessions for future production and breeding. A considerable genotypic variation for number of seeds per plant, number of pods per plant and weight of seeds per plant were found. Studied bean accessions differed significantly in terms of thousand seeds weight (TSW as well as severity of bacterial halo blight and anthracnose, the major bean diseases. The lowest genotypic diversity was found for the percentage of protein in the seeds, the length of the vegetation period and lodging. The cluster analysis allowed identification of five groups of bean accessions. Genotypes from the first cluster (POLPOD 98-77, KOS 002 and Raba cv. and from the second cluster (WUKR 06-573a, KRA 4, WUKR 06-0534 together with Prosna cv. are of the highest usefulness for breeding purposes. There was no grouping of local populations depending on region of origin.

  7. Net-based data transfer and automatic image fusion of metabolic (PET) and morphologic (CT/MRI) images for radiosurgical planning of brain tumors

    International Nuclear Information System (INIS)

    Baum, R.P.; Przetak, C.; Schmuecking, M.; Klener, G.; Surber, G.; Hamm, K.

    2002-01-01

    Aim: The main purpose of radiosurgery in comparison to conventional radiotherapy of brain tumors is to reach a higher radiation dose in the tumor and sparing normal brain tissue as much as possible. To reach this aim it is crucial to define the target volume extremely accurately. For this purpose, MRI and CT examinations are used for radiotherapy planning. In certain cases, however, metabolic information obtained by positron emission tomography (PET) may be useful to achieve a higher therapeutic accuracy by sparing important brain structures. This can be the case, i.e. in low grade astrocytomas for exact delineation of vital tumor as well as in differentiating scaring tissue from tumor recurrence and edema after operation. For this purpose, radiolabeled aminoacid analogues (e.g. C-11 methionine) and recently O-2-[ 18 F] Fluorethyl-L-Tyrosin (F-18 FET) have been introduced as PET tracers to detect the area of highest tumor metabolism which allows to obtain additional information as compared to FDG-PET that reflects the local glucose metabolism. In these cases, anatomical and metabolic data have to be combined with the technique of digital image fusion to exactly determine the target volume, the isodoses and the area where the highest dose has to be applied. Materials: We have set up a data transfer from the PET Center of the Zentralklinik Bad Berka with the Department of Stereotactic Radiation at the Helios Klinik Erfurt (distance approx. 25 km) to enable this kind of image fusion. PET data (ECAT EXACT 47, Siemens/CTI) are transferred to a workstation (NOVALIS) in the Dept. of Stereotactic Radiation to be co-registered with the CT or MRI data of the patient. All PET images are in DICOM format (obtained by using a HERMES computer, Nuclear Diagnostics, Sweden) and can easily be introduced into the NOVALIS workstation. The software uses the optimation of mutual information to achieve a good fusion quality. Sometimes manual corrections have to be performed to get an

  8. Combination of systemic chemotherapy with local stem cell delivered S-TRAIL in resected brain tumors.

    Science.gov (United States)

    Redjal, Navid; Zhu, Yanni; Shah, Khalid

    2015-01-01

    Despite advances in standard therapies, the survival of glioblastoma multiforme (GBM) patients has not improved. Limitations to successful translation of new therapies include poor delivery of systemic therapies and use of simplified preclinical models which fail to reflect the clinical complexity of GBMs. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) induces apoptosis specifically in tumor cells and we have tested its efficacy by on-site delivery via engineered stem cells (SC) in mouse models of GBM that mimic the clinical scenario of tumor aggressiveness and resection. However, about half of tumor lines are resistant to TRAIL and overcoming TRAIL-resistance in GBM by combining therapeutic agents that are currently in clinical trials with SC-TRAIL and understanding the molecular dynamics of these combination therapies are critical to the broad use of TRAIL as a therapeutic agent in clinics. In this study, we screened clinically relevant chemotherapeutic agents for their ability to sensitize resistant GBM cell lines to TRAIL induced apoptosis. We show that low dose cisplatin increases surface receptor expression of death receptor 4/5 post G2 cycle arrest and sensitizes GBM cells to TRAIL induced apoptosis. In vivo, using an intracranial resection model of resistant primary human-derived GBM and real-time optical imaging, we show that a low dose of cisplatin in combination with synthetic extracellular matrix encapsulated SC-TRAIL significantly decreases tumor regrowth and increases survival in mice bearing GBM. This study has the potential to help expedite effective translation of local stem cell-based delivery of TRAIL into the clinical setting to target a broad spectrum of GBMs. © 2014 AlphaMed Press.

  9. Glucose transporter 1 and monocarboxylate transporters 1, 2, and 4 localization within the glial cells of shark blood-brain-barriers.

    Directory of Open Access Journals (Sweden)

    Carolina Balmaceda-Aguilera

    Full Text Available Although previous studies showed that glucose is used to support the metabolic activity of the cartilaginous fish brain, the distribution and expression levels of glucose transporter (GLUT isoforms remained undetermined. Optic/ultrastructural immunohistochemistry approaches were used to determine the expression of GLUT1 in the glial blood-brain barrier (gBBB. GLUT1 was observed solely in glial cells; it was primarily located in end-feet processes of the gBBB. Western blot analysis showed a protein with a molecular mass of 50 kDa, and partial sequencing confirmed GLUT1 identity. Similar approaches were used to demonstrate increased GLUT1 polarization to both apical and basolateral membranes in choroid plexus epithelial cells. To explore monocarboxylate transporter (MCT involvement in shark brain metabolism, the expression of MCTs was analyzed. MCT1, 2 and 4 were expressed in endothelial cells; however, only MCT1 and MCT4 were present in glial cells. In neurons, MCT2 was localized at the cell membrane whereas MCT1 was detected within mitochondria. Previous studies demonstrated that hypoxia modified GLUT and MCT expression in mammalian brain cells, which was mediated by the transcription factor, hypoxia inducible factor-1. Similarly, we observed that hypoxia modified MCT1 cellular distribution and MCT4 expression in shark telencephalic area and brain stem, confirming the role of these transporters in hypoxia adaptation. Finally, using three-dimensional ultrastructural microscopy, the interaction between glial end-feet and leaky blood vessels of shark brain was assessed in the present study. These data suggested that the brains of shark may take up glucose from blood using a different mechanism than that used by mammalian brains, which may induce astrocyte-neuron lactate shuttling and metabolic coupling as observed in mammalian brain. Our data suggested that the structural conditions and expression patterns of GLUT1, MCT1, MCT2 and MCT4 in shark

  10. Brain anatomical networks in early human brain development.

    Science.gov (United States)

    Fan, Yong; Shi, Feng; Smith, Jeffrey Keith; Lin, Weili; Gilmore, John H; Shen, Dinggang

    2011-02-01

    Recent neuroimaging studies have demonstrated that human brain networks have economic small-world topology and modular organization, enabling efficient information transfer among brain regions. However, it remains largely unknown how the small-world topology and modular organization of human brain networks emerge and develop. Using longitudinal MRI data of 28 healthy pediatric subjects, collected at their ages of 1 month, 1 year, and 2 years, we analyzed development patterns of brain anatomical networks derived from morphological correlations of brain regional volumes. The results show that the brain network of 1-month-olds has the characteristically economic small-world topology and nonrandom modular organization. The network's cost efficiency increases with the brain development to 1 year and 2 years, so does the modularity, providing supportive evidence for the hypothesis that the small-world topology and the modular organization of brain networks are established during early brain development to support rapid synchronization and information transfer with minimal rewiring cost, as well as to balance between local processing and global integration of information. Copyright © 2010. Published by Elsevier Inc.

  11. Non-parametric cell-based photometric proxies for galaxy morphology: methodology and application to the morphologically defined star formation-stellar mass relation of spiral galaxies in the local universe

    Science.gov (United States)

    Grootes, M. W.; Tuffs, R. J.; Popescu, C. C.; Robotham, A. S. G.; Seibert, M.; Kelvin, L. S.

    2014-02-01

    We present a non-parametric cell-based method of selecting highly pure and largely complete samples of spiral galaxies using photometric and structural parameters as provided by standard photometric pipelines and simple shape fitting algorithms. The performance of the method is quantified for different parameter combinations, using purely human-based classifications as a benchmark. The discretization of the parameter space allows a markedly superior selection than commonly used proxies relying on a fixed curve or surface of separation. Moreover, we find structural parameters derived using passbands longwards of the g band and linked to older stellar populations, especially the stellar mass surface density μ* and the r-band effective radius re, to perform at least equally well as parameters more traditionally linked to the identification of spirals by means of their young stellar populations, e.g. UV/optical colours. In particular, the distinct bimodality in the parameter μ*, consistent with expectations of different evolutionary paths for spirals and ellipticals, represents an often overlooked yet powerful parameter in differentiating between spiral and non-spiral/elliptical galaxies. We use the cell-based method for the optical parameter set including re in combination with the Sérsic index n and the i-band magnitude to investigate the intrinsic specific star formation rate-stellar mass relation (ψ*-M*) for a morphologically defined volume-limited sample of local Universe spiral galaxies. The relation is found to be well described by ψ _* ∝ M_*^{-0.5} over the range of 109.5 ≤ M* ≤ 1011 M⊙ with a mean interquartile range of 0.4 dex. This is somewhat steeper than previous determinations based on colour-selected samples of star-forming galaxies, primarily due to the inclusion in the sample of red quiescent discs.

  12. Cloning, localization and differential expression of Neuropeptide-Y during early brain development and gonadal recrudescence in the catfish, Clarias gariepinus.

    Science.gov (United States)

    Sudhakumari, Cheni-Chery; Anitha, Arumugam; Murugananthkumar, Raju; Tiwari, Dinesh Kumar; Bhasker, Dharavath; Senthilkumaran, Balasubramanian; Dutta-Gupta, Aparna

    2017-09-15

    Neuropeptide-Y (NPY) has diverse physiological functions which are extensively studied in vertebrates. However, regulatory role of NPY in relation to brain ontogeny and recrudescence with reference to reproduction is less understood in fish. Present report for the first time evaluated the significance of NPY by transient esiRNA silencing and also analyzed its expression during brain development and gonadal recrudescence in the catfish, Clarias gariepinus. As a first step, full-length cDNA of NPY was cloned from adult catfish brain, which shared high homology with its counterparts from other teleosts upon phylogenetic analysis. Tissue distribution revealed dominant expression of NPY in brain and testis. NPY expression increased during brain development wherein the levels were higher in 100 and 150days post hatch females than the respective age-matched males. Seasonal cycle analysis showed high expression of NPY in brain during pre-spawning phase in comparison with other reproductive phases. Localization studies exhibited the presence of NPY, abundantly, in the regions of preoptic area, hypothalamus and pituitary. Transient silencing of NPY-esiRNA directly into the brain significantly decreased NPY expression in both the male and female brain of catfish which further resulted in significant decrease of transcripts of tryptophan hydroxylase 2, catfish gonadotropin-releasing hormone (cfGnRH), tyrosine hydroxylase and 3β-hydroxysteroid dehydrogenase in brain and luteinizing hormone-β/gonadotropin-II (lh-β/GTH-II) in pituitary exhibiting its influence on gonadal axis. In addition, significant decrease of several ovary-related transcripts was observed in NPY-esiRNA silenced female catfish, indicating the plausible role of NPY in ovary through cfGnRH-GTH axis. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Acute Sleep Deprivation Induces a Local Brain Transfer Information Increase in the Frontal Cortex in a Widespread Decrease Context.

    Science.gov (United States)

    Alonso, Joan F; Romero, Sergio; Mañanas, Miguel A; Alcalá, Marta; Antonijoan, Rosa M; Giménez, Sandra

    2016-04-14

    Sleep deprivation (SD) has adverse effects on mental and physical health, affecting the cognitive abilities and emotional states. Specifically, cognitive functions and alertness are known to decrease after SD. The aim of this work was to identify the directional information transfer after SD on scalp EEG signals using transfer entropy (TE). Using a robust methodology based on EEG recordings of 18 volunteers deprived from sleep for 36 h, TE and spectral analysis were performed to characterize EEG data acquired every 2 h. Correlation between connectivity measures and subjective somnolence was assessed. In general, TE showed medium- and long-range significant decreases originated at the occipital areas and directed towards different regions, which could be interpreted as the transfer of predictive information from parieto-occipital activity to the rest of the head. Simultaneously, short-range increases were obtained for the frontal areas, following a consistent and robust time course with significant maps after 20 h of sleep deprivation. Changes during sleep deprivation in brain network were measured effectively by TE, which showed increased local connectivity and diminished global integration. TE is an objective measure that could be used as a potential measure of sleep pressure and somnolence with the additional property of directed relationships.

  14. Effects of concurrent caffeine and mobile phone exposure on local target probability processing in the human brain.

    Science.gov (United States)

    Trunk, Attila; Stefanics, Gábor; Zentai, Norbert; Bacskay, Ivett; Felinger, Attila; Thuróczy, György; Hernádi, István

    2015-09-23

    Millions of people use mobile phones (MP) while drinking coffee or other caffeine containing beverages. Little is known about the potential combined effects of MP irradiation and caffeine on cognitive functions. Here we investigated whether caffeine intake and concurrent exposure to Universal Mobile Telecommunications System (UMTS) MP-like irradiation may interactively influence neuro-cognitive function in an active visual oddball paradigm. In a full factorial experimental design, 25 participants performed a simple visual target detection task while reaction time (RT) and electroencephalogram (EEG) was recorded. Target trials were divided into Low and High probability sets based on target-to-target distance. We analyzed single trial RT and alpha-band power (amplitude) in the pre-target interval. We found that RT was shorter in High vs. Low local probability trials, and caffeine further shortened RT in High probability trials relative to the baseline condition suggesting that caffeine improves the efficiency of implicit short-term memory. Caffeine also decreased pre-target alpha amplitude resulting in higher arousal level. Furthermore, pre-target gamma power positively correlated with RT, which may have facilitated target detection. However, in the present pharmacologically validated study UMTS exposure either alone or in combination with caffeine did not alter RT or pre-stimulus oscillatory brain activity.

  15. Acute Sleep Deprivation Induces a Local Brain Transfer Information Increase in the Frontal Cortex in a Widespread Decrease Context

    Directory of Open Access Journals (Sweden)

    Joan F. Alonso

    2016-04-01

    Full Text Available Sleep deprivation (SD has adverse effects on mental and physical health, affecting the cognitive abilities and emotional states. Specifically, cognitive functions and alertness are known to decrease after SD. The aim of this work was to identify the directional information transfer after SD on scalp EEG signals using transfer entropy (TE. Using a robust methodology based on EEG recordings of 18 volunteers deprived from sleep for 36 h, TE and spectral analysis were performed to characterize EEG data acquired every 2 h. Correlation between connectivity measures and subjective somnolence was assessed. In general, TE showed medium- and long-range significant decreases originated at the occipital areas and directed towards different regions, which could be interpreted as the transfer of predictive information from parieto-occipital activity to the rest of the head. Simultaneously, short-range increases were obtained for the frontal areas, following a consistent and robust time course with significant maps after 20 h of sleep deprivation. Changes during sleep deprivation in brain network were measured effectively by TE, which showed increased local connectivity and diminished global integration. TE is an objective measure that could be used as a potential measure of sleep pressure and somnolence with the additional property of directed relationships.

  16. A multi-site array for combined local electrochemistry and electrophysiology in the non-human primate brain.

    Science.gov (United States)

    Disney, Anita A; McKinney, Collin; Grissom, Larry; Lu, Xuekun; Reynolds, John H

    2015-11-30

    Currently, the primary technique employed in circuit-level study of the brain is electrophysiology, recording local field or action potentials (LFPs or APs). However most communication between neurons is chemical and the relationship between electrical activity within neurons and chemical signaling between them is not well understood in vivo, particularly for molecules that signal at least in part by non-synaptic transmission. We describe a multi-contact array and accompanying head stage circuit that together enable concurrent electrophysiological and electrochemical recording. The array is small (electrochemistry) recording. This system is designed for concurrent, dual-mode recording. It is also the only system designed explicitly to meet the challenges of recording in non-human primates. Our system offers the possibility for conducting in vivo studies in a range of species that examine the relationship between the electrical activity of neurons and their chemical environment, with exquisite spatial and temporal precision. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  17. Deformed Skull Morphology Is Caused by the Combined Effects of the Maldevelopment of Calvarias, Cranial Base and Brain in FGFR2-P253R Mice Mimicking Human Apert Syndrome.

    Science.gov (United States)

    Luo, Fengtao; Xie, Yangli; Xu, Wei; Huang, Junlan; Zhou, Siru; Wang, Zuqiang; Luo, Xiaoqing; Liu, Mi; Chen, Lin; Du, Xiaolan

    2017-01-01

    Apert syndrome (AS) is a common genetic syndrome in humans characterized with craniosynostosis. Apert patients and mouse models showed abnormalities in sutures, cranial base and brain, that may all be involved in the pathogenesis of skull malformation of Apert syndrome. To distinguish the differential roles of these components of head in the pathogenesis of the abnormal skull morphology of AS, we generated mouse strains specifically expressing mutant FGFR2 in chondrocytes, osteoblasts, and progenitor cells of central nervous system (CNS) by crossing Fgfr2 +/P253R-Neo mice with Col2a1-Cre, Osteocalcin-Cre (OC-Cre), and Nestin-Cre mice, respectively. We then quantitatively analyzed the skull and brain morphology of these mutant mice by micro-CT and micro-MRI using Euclidean distance matrix analysis (EDMA). Skulls of Col2a1-Fgfr2 +/P253R mice showed Apert syndrome-like dysmorphology, such as shortened skull dimensions along the rostrocaudal axis, shortened nasal bone, and evidently advanced ossification of cranial base synchondroses. The OC-Fgfr2 +/P253R mice showed malformation in face at 8-week stage. Nestin-Fgfr2 +/P253R mice exhibited increased dorsoventral height and rostrocaudal length on the caudal skull and brain at 8 weeks. Our study indicates that the abnormal skull morphology of AS is caused by the combined effects of the maldevelopment in calvarias, cranial base, and brain tissue. These findings further deepen our knowledge about the pathogenesis of the abnormal skull morphology of AS, and provide new clues for the further analyses of skull phenotypes and clinical management of AS.

  18. Morphology of the Local Supercluster

    International Nuclear Information System (INIS)

    Tully, R.B.

    1983-01-01

    The intent of this brief note is to summarize some of the fundamental properties of the region, rich in galaxies, in which we live. A more complete account can be found in Astrophys. J., 257, p. 389, 1982. (Auth.)

  19. Land use and urban morphology parameters for Vienna required for initialisation of the urban canopy model TEB derived via the concept of "local climate zones"

    Science.gov (United States)

    Trimmel, Heidelinde; Weihs, Philipp; Oswald, Sandro M.; Masson, Valéry; Schoetter, Robert

    2017-04-01

    Urban settlements are generally known for their high fractions of impermeable surfaces, large heat capacity and low humidity compared to rural areas which results in the well known phenomena of urban heat islands. The urbanized areas are growing which can amplify the intensity and frequency of situations with heat stress. The distribution of the urban heat island is not uniform though, because the urban environment is highly diverse regarding its morphology as building heights, building contiguity and configuration of open spaces and trees vary, which cause changes in the aerodynamic resistance for heat transfers and drag coefficients for momentum. Furthermore cities are characterized by highly variable physical surface properties as albedo, emissivity, heat capacity and thermal conductivity. The distribution of the urban heat island is influenced by these morphological and physical parameters as well as the distribution of unsealed soil and vegetation. These aspects influence the urban climate on micro- and mesoscale. For larger Vienna high resolution vector and raster geodatasets were processed to derive land use surface fractions and building morphology parameters on block scale following the methodology of Cordeau (2016). A dataset of building age and typology was cross checked and extended using satellite visual and thermal bands and linked to a database joining building age and typology with typical physical building parameters obtained from different studies (Berger et al. 2012 and Amtmann M and Altmann-Mavaddat N (2014)) and the OIB (Österreichisches Institut für Bautechnik). Using dominant parameters obtained using this high resolution mainly ground based data sets (building height, built area fraction, unsealed fraction, sky view factor) a local climate zone classification was produced using an algorithm. The threshold values were chosen according to Stewart and Oke (2012). This approach is compared to results obtained with the methodology of Bechtel et

  20. Comparison of two brain tumor-localizing MRI agent. GD-BOPTA and GD-DTPA. MRI and ICP study of rat brain tumor model

    International Nuclear Information System (INIS)

    Zhang, T.; Matsumura, A.; Yamamoto, T.; Yoshida, F.; Nose, T.

    2000-01-01

    In this study, we compared the behavior of Gd-BOPTA as a brain tumor selective contrast agent with Gd-DTPA in a common dose of 0.1 mmol/kg. We performed a MRI study using those two agent as contrast material, and we measured tissue Gd-concentrations by ICP-AES. As a result, Gd-BOPTA showed a better MRI enhancement in brain tumor. ICP showed significantly greater uptake of Gd-BOPTA in tumor samples, at all time course peaked at 5 minutes after administration, Gd being retained for a longer time in brain tumor till 2 hours, without rapid elimination as Gd-DTPA. We conclude that Gd-BOPTA is a new useful contrast material for MR imaging in brain tumor and an effective absorption agent for neutron capture therapy for further research. (author)

  1. Morphologies and elemental compositions of local biomass burning particles at urban and glacier sites in southeastern Tibetan Plateau: Results from an expedition in 2010.

    Science.gov (United States)

    Hu, Tafeng; Cao, Junji; Zhu, Chongshu; Zhao, Zhuzi; Liu, Suixin; Zhang, Daizhou

    2018-07-01

    Many studies indicate that the atmospheric environment over the southern part of the Tibetan Plateau is influenced by aged biomass burning particles that are transported over long distances from South Asia. However, our knowledge of the particles emitted locally (within the plateau region) is poor. We collected aerosol particles at four urban sites and one remote glacier site during a scientific expedition to the southeastern Tibetan Plateau in spring 2010. Weather and backward trajectory analyses indicated that the particles we collected were more likely dominated by particles emitted within the plateau. The particles were examined using an electron microscope and identified according to their sizes, shapes and elemental compositions. At three urban sites where the anthropogenic particles were produced mainly by the burning of firewood, soot aggregates were in the majority and made up >40% of the particles by number. At Lhasa, the largest city on the Tibetan Plateau, tar balls and mineral particles were also frequently observed because of the use of coal and natural gas, in addition to biofuel. In contrast, at the glacier site, large numbers of chain-like soot aggregates (~25% by number) were noted. The morphologies of these aggregates were similar to those of freshly emitted ones at the urban sites; moreover, physically or chemically processed ageing was rarely confirmed. These limited observations suggest that the biomass burning particles age slowly in the cold, dry plateau air. Anthropogenic particles emitted locally within the elevated plateau region may thus affect the environment within glaciated areas in Tibet differently than anthropogenic particles transported from South Asia. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Analysing the spatial patterns of livestock anthrax in Kazakhstan in relation to environmental factors: a comparison of local (Gi* and morphology cluster statistics

    Directory of Open Access Journals (Sweden)

    Ian T. Kracalik

    2012-11-01

    Full Text Available We compared a local clustering and a cluster morphology statistic using anthrax outbreaks in large (cattle and small (sheep and goats domestic ruminants across Kazakhstan. The Getis-Ord (Gi* statistic and a multidirectional optimal ecotope algorithm (AMOEBA were compared using 1st, 2nd and 3rd order Rook contiguity matrices. Multivariate statistical tests were used to evaluate the environmental signatures between clusters and non-clusters from the AMOEBA and Gi* tests. A logistic regression was used to define a risk surface for anthrax outbreaks and to compare agreement between clustering methodologies. Tests revealed differences in the spatial distribution of clusters as well as the total number of clusters in large ruminants for AMOEBA (n = 149 and for small ruminants (n = 9. In contrast, Gi* revealed fewer large ruminant clusters (n = 122 and more small ruminant clusters (n = 61. Significant environmental differences were found between groups using the Kruskall-Wallis and Mann- Whitney U tests. Logistic regression was used to model the presence/absence of anthrax outbreaks and define a risk surface for large ruminants to compare with cluster analyses. The model predicted 32.2% of the landscape as high risk. Approximately 75% of AMOEBA clusters corresponded to predicted high risk, compared with ~64% of Gi* clusters. In general, AMOEBA predicted more irregularly shaped clusters of outbreaks in both livestock groups, while Gi* tended to predict larger, circular clusters. Here we provide an evaluation of both tests and a discussion of the use of each to detect environmental conditions associated with anthrax outbreak clusters in domestic livestock. These findings illustrate important differences in spatial statistical methods for defining local clusters and highlight the importance of selecting appropriate levels of data aggregation.

  3. Comparative studies of '18F-FDG PET/CT brain imaging and EEG in preoperative localization of temporal lobe epileptic focus

    International Nuclear Information System (INIS)

    Chen Ziqian; Zhao Chunlei; Liu Yao; Ni Ping; Zhong Qun; Bai Wei; Peng Dexin

    2012-01-01

    Objective: To compare the value of 18 F-FDG PET/CT brain imaging and EEG in preoperative localization of the epileptic focus at the temporal lobe. Methods: A total of 152 patients (108 males, 44 females, age ranged from 3 to 59 years old) with past history of temporal lobe epilepsy were included.All patients underwent 18 F-FDG PET/CT brain imaging and long-range or video EEG, and 29 patients underwent intracranial electrode EEG due to the failure to localize the disease focus by non-invasive methods.Histopathologic findings after operative treatment were considered the gold standard for disease localization. All patients were followed up for at least six months after the operation. The accuracy of the 18 F-FDG PET/CT brain imaging and long-range or video EEG examination were compared using χ 2 test. Results: The accuracy of locating the epileptic focus was 80.92% (123/152) for 18 F-FDG PET/CT brain imaging and 43.42% (66/152) for long-range or video EEG (χ 2 =22.72, P<0.01). The accuracy of locating the epileptic focus for the 29 cases with intracranial electrode EEG was 100%. Conclusions: Interictal 18 F-FDG PET/CT brain imaging is a sensitive and effective method to locate the temporal lobe epileptic focus and is better than long-range or video EEG. The combination of 18 F-FDG PET/CT brain imaging and intracranial electrode EEG examination can further improve the accuracy of locating the epileptic focus. (authors)

  4. Ictal 99mTc-ECD brain SPECT imaging: localization of seizure foci and correlation with semiology in temporal lobe epilepsy

    International Nuclear Information System (INIS)

    Kang, Do Young; Ryu, Jin Sook; Lee, Hee Kyung; Ma, Hyeo Il; Lee, Sang Ahm; Lee, Jung Kyo; Kang, Joong Koo

    1997-01-01

    The purpose of this study was to evaluate the usefulness of ictal 99m Tc-ECD brain SPECT in temporal lobe epilepsy (TLE) patients for presurgical localization of seizure foci, and to correlate ictal SPECT patterns with the semiology of seizure. ictal 99m Tc-ECD Brain SPECT was performed in 23 TLE patients whose MRI showed unilateral hippocampal atrophy (18 patients), other focal temporal lesions (4 patients) and normal finding (1 patient). Under CCTV monitoring, injection was done during ictal period in all patients with the mean delay of 38.5±17.3 sec (mean seizure duration : 90.5±35.9 sec). Ictal 99m Tc-ECD Brain SPECT was visually analysed by three blinded observers. All patients underwent temporal lobectomy with a minimum 3 months follow-up (range 3-29 months) ; all had good post-surgical seizure control (Engel's calssification class I). Ictal 99m Tc-ECD Brain SPECT showed unilateral temporal hyperperfusion concordant with epileptic foci in 22/23 (95.7%), whereas non-lateralization in 1/23 (4.3%). The hyperperfusion of the ipsilateral basal ganglia was present in 72.7% (16/22) of patients with dystonic/tonic posture of the contralateral hand. The contralateral cerebellar hyperperfusion was observed in the 7/22 (32%). The group with secondary generalized tonic clonic seizure (GTC) had brain stem and bilateral thalamic hyperperfusion in 4/7 (57.1%) while the group without secondary GTC had the same hyperperfusion in 1/16 (6.3%). There was statistically significant difference in brain stem and bilateral thalamic perfusion between two groups. Ictal 99m Tc-ECD Brain SPECT is a useful modality in pre-surgical localization of the epileptic foci and well correlated with the semiology of seizure

  5. Changes in nucleoid morphology and origin localization upon inhibition or alteration of the actin homolog, MreB, of Vibrio cholerae.

    Science.gov (United States)

    Srivastava, Preeti; Demarre, Gäelle; Karpova, Tatiana S; McNally, James; Chattoraj, Dhruba K

    2007-10-01

    MreB is an actin homolog required for the morphogenesis of most rod-shaped bacteria and for other functions, including chromosome segregation. In Caulobacter crescentus and Escherichia coli, the protein seems to play a role in the segregation of sister origins, but its role in Bacillus subtilis chromosome segregation is less clear. To help clarify its role in segregation, we have here studied the protein in Vibrio cholerae, whose chromosome I segregates like the one in C. crescentus and whose chromosome II like the one in E. coli or B. subtilis. The properties of Vibrio MreB were similar to those of its homologs in other bacteria in that it formed dynamic helical filaments, was essential for viability, and was inhibited by the drug A22. Wild-type (WT) cells exposed to A22 became spherical and larger. The nucleoids enlarged correspondingly, and the origin positions for both the chromosomes no longer followed any fixed pattern. However, the sister origins separated, unlike the situation in other bacteria. In mutants isolated as A22 resistant, the nucleoids in some cases appeared compacted even when the cell shape was nearly normal. In these cells, the origins of chromosome I were at the distal edges of the nucleoid but not all the way to the poles where they normally reside. The sister origins of chromosome II also separated less. Thus, it appears that the inhibition or alteration of Vibrio MreB can affect both the nucleoid morphology and origin localization.

  6. Investigation of Resonance Effect Caused by Local Exposure of Extremely Low Frequency Magnetic Field on Brain Signals: A Randomize Clinical Trial

    Directory of Open Access Journals (Sweden)

    Rasul Zadeh Tabataba’ei K

    2011-03-01

    Full Text Available Background and Objectives: Some studies have investigated the effects of extremely low frequency magnetic fields (ELF-MFs on brain signals, but only few of them have reported that humans exposed to magnetic fields exhibit changes in brain signals at the frequency of stimulation, i.e. resonance effect. In most investigations, researchers usually take advantage of a uniform field which encompasses the head. The aim of present study was to expose different parts of the brain to ELF-MFs locally and to investigate variation of brain signal and resonance effect.Methods: The subjects consisting of 19 male-students with the mean age of 25.6±1.6 years participated in this study. Local ELF-MFs with 3, 5, 10, 17 and 45Hz frequencies and 240 μT intensity was applied on five points (T3, T4, Cz, F3 and F4 of participants scalp Separately in 10-20 system. In the end, relative power over this points in common frequency bands and at the frequency of magnetic fields was evaluated by paired t-test.Results: Exposure of Central area by local magnetic field caused significant change (p<0.05 in the forehead alpha band. Reduction in the alpha band over central area was observed when temporal area was exposed to ELF MF.Conclusion: The results showed that resonance effect in the brain signals caused by local magnetic field exposure was not observed and change in every part of the relative power spectrum might occur. The changes in the EEG bands were not limited necessarily to the exposure point.

  7. Microspectroscopy (μFTIR) reveals co-localization of lipid oxidation and amyloid plaques in human Alzheimer disease brains.

    Science.gov (United States)

    Benseny-Cases, Núria; Klementieva, Oxana; Cotte, Marine; Ferrer, Isidre; Cladera, Josep

    2014-12-16

    Amyloid peptides are the main component of one of the characteristic pathological hallmarks of Alzheimer's disease (AD): senile plaques. According to the amyloid cascade hypothesis, amyloid peptides may play a central role in the sequence of events that leads to neurodegeneration. However, there are other factors, such as oxidative stress, that may be crucial for the development of the disease. In the present paper, we show that it is possible, by using Fourier tranform infrared (FTIR) microscopy, to co-localize amyloid deposits and lipid peroxidation in tissue slides from patients affected by Alzheimer's disease. Plaques and lipids can be analyzed in the same sample, making use of the characteristic infrared bands for peptide aggregation and lipid oxidation. The results show that, in samples from patients diagnosed with AD, the plaques and their immediate surroundings are always characterized by the presence of oxidized lipids. As for samples from non-AD individuals, those without amyloid plaques show a lower level of lipid oxidation than AD individuals. However, it is known that plaques can be detected in the brains of some non-AD individuals. Our results show that, in such cases, the lipid in the plaques and their surroundings display oxidation levels that are similar to those of tissues with no plaques. These results point to lipid oxidation as a possible key factor in the path that goes from showing the typical neurophatological hallmarks to suffering from dementia. In this process, the oxidative power of the amyloid peptide, possibly in the form of nonfibrillar aggregates, could play a central role.

  8. Presurgery resting-state local graph-theory measures predict neurocognitive outcomes after brain surgery in temporal lobe epilepsy.

    Science.gov (United States)

    Doucet, Gaelle E; Rider, Robert; Taylor, Nathan; Skidmore, Christopher; Sharan, Ashwini; Sperling, Michael; Tracy, Joseph I

    2015-04-01

    This study determined the ability of resting-state functional connectivity (rsFC) graph-theory measures to predict neurocognitive status postsurgery in patients with temporal lobe epilepsy (TLE) who underwent anterior temporal lobectomy (ATL). A presurgical resting-state functional magnetic resonance imaging (fMRI) condition was collected in 16 left and 16 right TLE patients who underwent ATL. In addition, patients received neuropsychological testing pre- and postsurgery in verbal and nonverbal episodic memory, language, working memory, and attention domains. Regarding the functional data, we investigated three graph-theory properties (local efficiency, distance, and participation), measuring segregation, integration and centrality, respectively. These measures were only computed in regions of functional relevance to the ictal pathology, or the cognitive domain. Linear regression analyses were computed to predict the change in each neurocognitive domain. Our analyses revealed that cognitive outcome was successfully predicted with at least 68% of the variance explained in each model, for both TLE groups. The only model not significantly predictive involved nonverbal episodic memory outcome in right TLE. Measures involving the healthy hippocampus were the most common among the predictors, suggesting that enhanced integration of this structure with the rest of the brain may improve cognitive outcomes. Regardless of TLE group, left inferior frontal regions were the best predictors of language outcome. Working memory outcome was predicted mostly by right-sided regions, in both groups. Overall, the results indicated our integration measure was the most predictive of neurocognitive outcome. In contrast, our segregation measure was the least predictive. This study provides evidence that presurgery rsFC measures may help determine neurocognitive outcomes following ATL. The results have implications for refining our understanding of compensatory reorganization and predicting

  9. Mid-sagittal plane and mid-sagittal surface optimization in brain MRI using a local symmetry measure

    DEFF Research Database (Denmark)

    Stegmann, Mikkel Bille; Skoglund, Karl; Ryberg, Charlotte

    2005-01-01

    , the mid-sagittal plane is not always planar, but a curved surface resulting in poor partitioning of the brain hemispheres. To account for this, this paper also investigates an optimization strategy which fits a thin-plate spline surface to the brain data using a robust least median of squares estimator...

  10. Histamine Induces Alzheimer’s Disease-Like Blood Brain Barrier Breach and Local Cellular Responses in Mouse Brain Organotypic Cultures

    Directory of Open Access Journals (Sweden)

    Jonathan C. Sedeyn

    2015-01-01

    Full Text Available Among the top ten causes of death in the United States, Alzheimer’s disease (AD is the only one that cannot be cured, prevented, or even slowed down at present. Significant efforts have been exerted in generating model systems to delineate the mechanism as well as establishing platforms for drug screening. In this study, a promising candidate model utilizing primary mouse brain organotypic (MBO cultures is reported. For the first time, we have demonstrated that the MBO cultures exhibit increased blood brain barrier (BBB permeability as shown by IgG leakage into the brain parenchyma, astrocyte activation as evidenced by increased expression of glial fibrillary acidic protein (GFAP, and neuronal damage-response as suggested by increased vimentin-positive neurons occur upon histamine treatment. Identical responses—a breakdown of the BBB, astrocyte activation, and neuronal expression of vimentin—were then demonstrated in brains from AD patients compared to age-matched controls, consistent with other reports. Thus, the histamine-treated MBO culture system may provide a valuable tool in combating AD.

  11. Identification and Quantitation of Phenylalanine in the Brain of Patients with Phenylketonuria by Means of Localized in Vivo1H Magnetic-Resonance Spectroscopy

    Science.gov (United States)

    Kreis, R.; Pietz, J.; Penzien, J.; Herschkowitz, N.; Boesch, C.

    Localized proton MR spectroscopy was used to identify phenylalanine (PHE) and to quantitate its cerebral concentration in patients with type I phenylketonuria (PKU). Data acquisition was optimized for the detection of low-concentration metabolites, using a short TE (20 ms) double Hahn-echo localization sequence for large volumes within the head coil and for smaller volumes using a surface coil, Previously described methods to quantitate localized MR spectra were extended to cover the case of low-concentration metabolites, unevenly distributed in three brain compartments and measured in difference spectra only. PHE content was determined in difference spectra of four PKU patients with respect to normals and in one patient before and after an oral load of L-PHE, PHE concentrations of 0.3 to 0.6 mmol/kg brain tissue were obtained, resulting in a concentration gradient for PHE between blood and brain tissue of 2.4 to 3.0, No significant changes were found for the abundant metabolites in gray or white matter. Previously reported MRI changes were confirmed to be due to increased cerebro-spinal-fluid-like spaces.

  12. Simultaneous estimations of blood brain barrier (BBB) permeability and local cerebral blood volume (CBV) in human brain tumors with positron tomography and Ga-68 EDTA

    International Nuclear Information System (INIS)

    Hawkins, R.A.; Phelps, M.E.; Huang, S.C.; Wapenski, J.A.; Grimm, P.D.; Greenberg, P.; Parker, R.G.; Juillard, G.; Kuhl, D.E.

    1984-01-01

    Using Ga-68 EDTA and a two compartment model for diffusion across the BBB that includes a weighted subtraction term for determination of the relative CBV (compared to a normal region of brain with an intact BBB) or the absolute value of CBV (using measurements of Ga-68 concentrations in the blood: the input function), the authors determined values for the forward and reverse rate constants (k1 and k2) for diffusion across the BBB as well as values of CBV in 12 subjects with primary or metastatic brain tumors. Patients were studied on a NeuroECAT tomograph; imaging times were 1 to 10 minutes per scan for a total of about 2 hours. Measurements of Ga-68 concentrations were made on plasma arterial samples. Four direct measurements (in 3 subjects) of CBV using C(15-0) were also obtained. Values of k1 (the transfer constant which numerically approximates the capillary permeability surface area (PS) product) averaged 0.0030 (+- 0.0017) ml/min/gm while k2 averaged 0.0308 (+- 0.0157)/min. Linear regression analysis of the relative CBV in 7 tumor deposits in 4 paired Ga-68 EDTA/C(15-0) studies compared to normal brain tissues resulted in a correlation coefficient of 0.97 for the two methods. The estimates of k1 and k2 were insensitive to changes in the location of the control regions (although CBV estimates changed appropriately) as well as to substituting the input function for a normal brain region when determining the absolute CBV of the lesions

  13. Survival prognostic factors for patients with synchronous brain oligometastatic non-small-cell lung carcinoma receiving local therapy

    Science.gov (United States)

    Bai, Hao; Xu, Jianlin; Yang, Haitang; Jin, Bo; Lou, Yuqing; Wu, Dan; Han, Baohui

    2016-01-01

    Introduction Clinical evidence for patients with synchronous brain oligometastatic non-small-cell lung carcinoma is limited. We aimed to summarize the clinical data of these patients to explore the survival prognostic factors for this population. Methods From September 1995 to July 2011, patients with 1–3 synchronous brain oligometastases, who were treated with stereotactic radiosurgery (SRS) or surgical resection as the primary treatment, were identified at Shanghai Chest Hospital. Results A total of 76 patients (22 patients underwent brain surgery as primary treatment and 54 patients received SRS) were available for survival analysis. The overall survival (OS) for patients treated with SRS and brain surgery as the primary treatment were 12.6 months (95% confidence interval [CI] 10.3–14.9) and 16.4 months (95% CI 8.8–24.1), respectively (adjusted hazard ratio =0.59, 95% CI 0.33–1.07, P=0.08). Among 76 patients treated with SRS or brain surgery, 21 patients who underwent primary tumor resection did not experience a significantly improved OS (16.4 months, 95% CI 9.6–23.2), compared with those who did not undergo resection (11.9 months, 95% CI 9.7–14.0; adjusted hazard ratio =0.81, 95% CI 0.46–1.44, P=0.46). Factors associated with survival benefits included stage I–II of primary lung tumor and solitary brain metastasis. Conclusion There was no significant difference in OS for patients with synchronous brain oligometastasis receiving SRS or surgical resection. Among this population, the number of brain metastases and stage of primary lung disease were the factors associated with a survival benefit. PMID:27471395

  14. From link-prediction in brain connectomes and protein interactomes to the local-community-paradigm in complex networks.

    KAUST Repository

    Cannistraci, C.V.; Alanis-Lobato, G.; Ravasi, Timothy

    2013-01-01

    for the singular topology of several real networks organised in multiple local communities - a tendency here named local-community-paradigm (LCP). We observe that LCP networks are mainly formed by weak interactions and characterise heterogeneous and dynamic systems

  15. Attending to global versus local stimulus features modulates neural processing of low versus high spatial frequencies: An analysis with event-related brain potentials.

    Directory of Open Access Journals (Sweden)

    Anastasia V Flevaris

    2014-04-01

    Full Text Available Spatial frequency (SF selection has long been recognized to play a role in global and local processing, though the nature of the relationship between SF processing and global/local perception is debated. Previous studies have shown that attention to relatively lower SFs facilitates global perception, and that attention to relatively higher SFs facilitates local perception. Here we recorded event-related brain potentials (ERPs to investigate whether processing of low versus high SFs is modulated automatically during global and local perception, and to examine the time course of any such effects. Participants compared bilaterally presented hierarchical letter stimuli and attended to either the global or local levels. Irrelevant SF grating probes flashed at the center of the display 200 ms after the onset of the hierarchical letter stimuli could either be low or high in SF. It was found that ERPs elicited by the SF grating probes differed as a function of attended level (global vs. local. ERPs elicited by low SF grating probes were more positive in the interval 196-236 ms during global than local attention, and this difference was greater over the right occipital scalp. In contrast, ERPs elicited by the high SF gratings were more positive in the interval 250-290 ms during local than global attention, and this difference was bilaterally distributed over the occipital scalp. These results indicate that directing attention to global versus local levels of a hierarchical display facilitates automatic perceptual processing of low versus high SFs, respectively, and this facilitation is not limited to the locations occupied by the hierarchical display. The relatively long latency of these attention-related ERP modulations suggests that initial (early SF processing is not affected by attention to hierarchical level, lending support to theories positing a higher level mechanism to underlie the relationship between SF processing and global versus local

  16. Survival prognostic factors for patients with synchronous brain oligometastatic non-small-cell lung carcinoma receiving local therapy

    Directory of Open Access Journals (Sweden)

    Bai H

    2016-07-01

    Full Text Available Hao Bai,1,* Jianlin Xu,1,* Haitang Yang,2,* Bo Jin,1 Yuqing Lou,1 Dan Wu,3 Baohui Han1 1Department of Pulmonary, 2Department of Pathology, 3Central Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, People’s Republic of China *These authors contributed equally to this work Introduction: Clinical evidence for patients with synchronous brain oligometastatic non-small-cell lung carcinoma is limited. We aimed to summarize the clinical data of these patients to explore the survival prognostic factors for this population. Methods: From September 1995 to July 2011, patients with 1–3 synchronous brain oligometastases, who were treated with stereotactic radiosurgery (SRS or surgical resection as the primary treatment, were identified at Shanghai Chest Hospital.Results: A total of 76 patients (22 patients underwent brain surgery as primary treatment and 54 patients received SRS were available for survival analysis. The overall survival (OS for patients treated with SRS and brain surgery as the primary treatment were 12.6 months (95% confidence interval [CI] 10.3–14.9 and 16.4 months (95% CI 8.8–24.1, respectively (adjusted hazard ratio =0.59, 95% CI 0.33–1.07, P=0.08. Among 76 patients treated with SRS or brain surgery, 21 patients who underwent primary tumor resection did not experience a significantly improved OS (16.4 months, 95% CI 9.6–23.2, compared with those who did not undergo resection (11.9 months, 95% CI 9.7–14.0; adjusted hazard ratio =0.81, 95% CI 0.46–1.44, P=0.46. Factors associated with survival benefits included stage I–II of primary lung tumor and solitary brain metastasis. Conclusion: There was no significant difference in OS for patients with synchronous brain oligometastasis receiving SRS or surgical resection. Among this population, the number of brain metastases and stage of primary lung disease were the factors associated with a survival benefit. Keywords: non-small-cell lung carcinoma

  17. Cortex and amygdala morphology in psychopathy.

    Science.gov (United States)

    Boccardi, Marina; Frisoni, Giovanni B; Hare, Robert D; Cavedo, Enrica; Najt, Pablo; Pievani, Michela; Rasser, Paul E; Laakso, Mikko P; Aronen, Hannu J; Repo-Tiihonen, Eila; Vaurio, Olli; Thompson, Paul M; Tiihonen, Jari

    2011-08-30

    Psychopathy is characterized by abnormal emotional processes, but only recent neuroimaging studies have investigated its cerebral correlates. The study aim was to map local differences of cortical and amygdalar morphology. Cortical pattern matching and radial distance mapping techniques were used to analyze the magnetic resonance images of 26 violent male offenders (age: 32±8) with psychopathy diagnosed using the Psychopathy Checklist-Revised (PCL-R) and no schizophrenia spectrum disorders, and in matched controls (age: 35± sp="0.12"/>11). The cortex displayed up to 20% reduction in the orbitofrontal and midline structures (corrected pamygdala (corrected p=0.05 on the right; and symmetrical pattern on the left). Psychopathy features specific morphology of the main cerebral structures involved in cognitive and emotional processing, consistent with clinical and functional data, and with a hypothesis of an alternative evolutionary brain development. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  18. Large scale serial two-photon microscopy to investigate local vascular changes in whole rodent brain models of Alzheimer's disease

    Science.gov (United States)

    Delafontaine-Martel, P.; Lefebvre, J.; Damseh, R.; Castonguay, A.; Tardif, P.; Lesage, F.

    2018-02-01

    In this study, an automated serial two-photon microscope was used to image a fluorescent gelatin filled rodent's brain in 3D. A method to compute vascular density using automatic segmentation was combined with coregistration techniques to build group-level vasculature metrics. By studying the medial prefrontal cortex and the hippocampal formation of 3 age groups (2, 4.5 and 8 months old), we compared vascular density for both WT and an Alzheimer model transgenic brain (APP/PS1). We observe a loss of vascular density caused by the ageing process and we propose further analysis to confirm our results.

  19. Effects of gender, digit ratio, and menstrual cycle on intrinsic brain functional connectivity: A whole-brain, voxel-wise exploratory study using simultaneous local and global functional connectivity mapping.

    Science.gov (United States)

    Donishi, Tomohiro; Terada, Masaki; Kaneoke, Yoshiki

    2018-01-01

    Gender and sex hormones influence brain function, but their effects on functional network organization within the brain are not yet understood. We investigated the influence of gender, prenatal sex hormones (estimated by the 2D:4D digit ratio), and the menstrual cycle on the intrinsic functional network organization of the brain (as measured by 3T resting-state functional MRI (rs-fMRI)) using right-handed, age-matched university students (100 males and 100 females). The mean (± SD ) age was 20.9 ± 1.5 (range: 18-24) years and 20.8 ± 1.3 (range: 18-24) years for males and females, respectively. Using two parameters derived from the normalized alpha centrality analysis (one for local and another for global connectivity strength), we created mean functional connectivity strength maps. There was a significant difference between the male mean map and female mean map in the distributions of network properties in almost all cortical regions and the basal ganglia but not in the medial parietal, limbic, and temporal regions and the thalamus. A comparison between the mean map for the low 2D:4D digit ratio group (indicative of high exposure to testosterone during the prenatal period) and that for the high 2D:4D digit ratio group revealed a significant difference in the network properties of the medial parietal region for males and in the temporal region for females. The menstrual cycle affected network organization in the brain, which varied with the 2D:4D digit ratio. Most of these findings were reproduced with our other datasets created with different preprocessing steps. The results suggest that differences in gender, prenatal sex hormone exposure, and the menstrual cycle are useful for understanding the normal brain and investigating the mechanisms underlying the variable prevalence and symptoms of neurological and psychiatric diseases.

  20. The Circadian Clock of the Ant Camponotus floridanus Is Localized in Dorsal and Lateral Neurons of the Brain.

    Science.gov (United States)

    Kay, Janina; Menegazzi, Pamela; Mildner, Stephanie; Roces, Flavio; Helfrich-Förster, Charlotte

    2018-06-01

    The circadian clock of social insects has become a focal point of interest for research, as social insects show complex forms of timed behavior and organization within their colonies. These behaviors include brood care, nest maintenance, foraging, swarming, defense, and many other tasks, of which several require social synchronization and accurate timing. Ants of the genus Camponotus have been shown to display a variety of daily timed behaviors such as the emergence of males from the nest, foraging, and relocation of brood. Nevertheless, circadian rhythms of isolated individuals have been studied in few ant species, and the circadian clock network in the brain that governs such behaviors remains completely uncharacterized. Here we show that isolated minor workers of Camponotus floridanus exhibit temperature overcompensated free-running locomotor activity rhythms under constant darkness. Under light-dark cycles, most animals are active during day and night, with a slight preference for the night. On the neurobiological level, we show that distinct cell groups in the lateral and dorsal brain of minor workers of C. floridanus are immunostained with an antibody against the clock protein Period (PER) and a lateral group additionally with an antibody against the neuropeptide pigment-dispersing factor (PDF). PER abundance oscillates in a daily manner, and PDF-positive neurites invade most parts of the brain, suggesting that the PER/PDF-positive neurons are bona fide clock neurons that transfer rhythmic signals into the relevant brain areas controlling rhythmic behavior.

  1. Hitting the right target : noninvasive localization of the subthalamic nucleus motor part for specific deep brain stimulation

    NARCIS (Netherlands)

    Brunenberg, E.J.L.

    2011-01-01

    Deep brain stimulation of the subthalamic nucleus (STN) has gained momentum as a therapy for advanced Parkinson’s disease. The stimulation effectively alleviates the patients’ typical motor symptoms on a long term, but can give rise to cognitive and psychiatric adverse effects as well. Based on

  2. AGE-INDEPENDENT, GREY-MATTER-LOCALIZED, BRAIN ENHANCED OXIDATIVE STRESS IN MALE FISCHER 344 RATS,1,2

    Science.gov (United States)

    While studies showed that aging is accompanied by increased exposure of the brain to oxidative stress, others have not detected any age-correlated differences in levels of markers of oxidative stress. Use of conventional markers of oxidative damage in vivo, which may be formed ex...

  3. Kv2 Ion Channels Determine the Expression and Localization of the Associated AMIGO-1 Cell Adhesion Molecule in Adult Brain Neurons

    Directory of Open Access Journals (Sweden)

    Hannah I. Bishop

    2018-01-01

    Full Text Available Voltage-gated K+ (Kv channels play important roles in regulating neuronal excitability. Kv channels comprise four principal α subunits, and transmembrane and/or cytoplasmic auxiliary subunits that modify diverse aspects of channel function. AMIGO-1, which mediates homophilic cell adhesion underlying neurite outgrowth and fasciculation during development, has recently been shown to be an auxiliary subunit of adult brain Kv2.1-containing Kv channels. We show that AMIGO-1 is extensively colocalized with both Kv2.1 and its paralog Kv2.2 in brain neurons across diverse mammals, and that in adult brain, there is no apparent population of AMIGO-1 outside of that colocalized with these Kv2 α subunits. AMIGO-1 is coclustered with Kv2 α subunits at specific plasma membrane (PM sites associated with hypolemmal subsurface cisternae at neuronal ER:PM junctions. This distinct PM clustering of AMIGO-1 is not observed in brain neurons of mice lacking Kv2 α subunit expression. Moreover, in heterologous cells, coexpression of either Kv2.1 or Kv2.2 is sufficient to drive clustering of the otherwise uniformly expressed AMIGO-1. Kv2 α subunit coexpression also increases biosynthetic intracellular trafficking and PM expression of AMIGO-1 in heterologous cells, and analyses of Kv2.1 and Kv2.2 knockout mice show selective loss of AMIGO-1 expression and localization in neurons lacking the respective Kv2 α subunit. Together, these data suggest that in mammalian brain neurons, AMIGO-1 is exclusively associated with Kv2 α subunits, and that Kv2 α subunits are obligatory in determining the correct pattern of AMIGO-1 expression, PM trafficking and clustering.

  4. Co-localization patterns of neurotensin receptor 1 and tyrosine hydroxylase in brain regions involved in motivation and social behavior in male European starlings.

    Science.gov (United States)

    Merullo, Devin P; Spool, Jeremy A; Zhao, Changjiu; Riters, Lauren V

    2018-04-01

    Animals communicate in distinct social contexts to convey information specific to those contexts, such as sexual or agonistic motivation. In seasonally-breeding male songbirds, seasonal changes in day length and increases in testosterone stimulate sexually-motivated song directed at females for courtship and reproduction. Dopamine and testosterone may act in the same brain regions to stimulate sexually-motivated singing. The neuropeptide neurotensin, acting at the neurotensin receptor 1 (NTR1), can strongly influence dopamine transmission. The goal of this study was to gain insight into the degree to which seasonal changes in physiology modify interactions between neurotensin and dopamine to adjust context-appropriate communication. Male European starlings were examined in physiological conditions that stimulate season-typical forms of communication: late summer/early fall non-breeding condition (low testosterone; birds sing infrequently), late fall non-breeding condition (low testosterone; birds produce non-sexually motivated song), and spring breeding condition (high testosterone; males produce sexually-motivated song). Double fluorescent immunolabeling was performed to detect co-localization patterns between tyrosine hydroxylase (TH; the rate-limiting enzyme in dopamine synthesis) and NTR1 in brain regions implicated in motivation and song production (the ventral tegmental area, medial preoptic nucleus, periaqueductal gray, and lateral septum). Co-localization between TH and NTR1 was present in the ventral tegmental area for all physiological conditions, and the number of co-localized cells did not differ across conditions. Immunolabeling for TH and NTR1 was also present in the other examined regions, although no co-localization was seen. These results support the hypothesis that interactions between NTR1 and dopamine in the ventral tegmental area may modulate vocalizations, but suggest that testosterone- or photoperiod-induced changes in NTR1/TH co-localization

  5. Preventive sparing of spinal cord and brain stem in the initial irradiation of locally advanced head and neck cancers.

    Science.gov (United States)

    Farace, Paolo; Piras, Sara; Porru, Sergio; Massazza, Federica; Fadda, Giuseppina; Solla, Ignazio; Piras, Denise; Deidda, Maria Assunta; Amichetti, Maurizio; Possanzini, Marco

    2014-01-06

    Since reirradiation in recurrent head and neck patients is limited by previous treatment, a marked reduction of maximum doses to spinal cord and brain stem was investigated in the initial irradiation of stage III/IV head and neck cancers. Eighteen patients were planned by simultaneous integrated boost, prescribing 69.3 Gy to PTV1 and 56.1 Gy to PTV2. Nine 6 MV coplanar photon beams at equispaced gantry angles were chosen for each patient. Step-and-shoot IMRT was calculated by direct machine parameter optimization, with the maximum number of segments limited to 80. In the standard plan, optimization considered organs at risk (OAR), dose conformity, maximum dose < 45 Gy to spinal cord and < 50 Gy to brain stem. In the sparing plans, a marked reduction to spinal cord and brain stem were investigated, with/without changes in dose conformity. In the sparing plans, the maximum doses to spinal cord and brain stem were reduced from the initial values (43.5 ± 2.2 Gy and 36.7 ± 14.0 Gy), without significant changes on the other OARs. A marked difference (-15.9 ± 1.9 Gy and -10.1 ± 5.7 Gy) was obtained at the expense of a small difference (-1.3% ± 0.9%) from initial PTV195% coverage (96.6% ± 0.9%). Similar difference (-15.7 ± 2.2 Gy and -10.2 ± 6.1 Gy) was obtained compromising dose conformity, but unaffecting PTV195% and with negligible decrease in PTV295% (-0.3% ± 0.3% from the initial 98.3% ± 0.8%). A marked spinal cord and brain stem preventive sparing was feasible at the expense of a decrease in dose conformity or slightly compromising target coverage. A sparing should be recommended in highly recurrent tumors, to make potential reirradiation safer.

  6. SU-G-JeP1-01: A Combination of Real Time Electromagnetic Localization and Tracking with Cone Beam Computed Tomography in Stereotactic Radiosurgery for Brain Tumors

    International Nuclear Information System (INIS)

    Muralidhar, K Raja; Pangam, Suresh; Ponaganti, Srinivas; Krishna, Jayarama; Sujana, Kolla V; Komanduri, Priya K

    2016-01-01

    Purpose: 1. online verification of patient position during treatment using calypso electromagnetic localization and tracking system. 2. Verification and comparison of positional accuracy between cone beam computed tomography and calypso system. 3. Presenting the advantage of continuation localization in Stereotactic radiosurgery treatments. Methods: Ten brain tumor cases were taken for this study. Patients with head mask were under gone Computed Tomography (CT). Before scanning, mask was cut on the fore head area to keep surface beacons on the skin. Slice thickness of 0.65 mm were taken for this study. x, y, z coordinates of these beacons in TPS were entered into tracking station. Varian True Beam accelerator, equipped with On Board Imager was used to take Cone beam Computed Tomography (CBCT) to localize the patient. Simultaneously Surface beacons were used to localize and track the patient throughout the treatment. The localization values were compared in both systems. For localization CBCT considered as reference. Tracking was done throughout the treatment using Calypso tracking system using electromagnetic array. This array was in tracking position during imaging and treatment. Flattening Filter free beams of 6MV photons along with Volumetric Modulated Arc Therapy was used for the treatment. The patient movement was observed throughout the treatment ranging from 2 min to 4 min. Results: The average variation observed between calypso system and CBCT localization was less than 0.5 mm. These variations were due to manual errors while keeping beacon on the patient. Less than 0.05 cm intra-fraction motion was observed throughout the treatment with the help of continuous tracking. Conclusion: Calypso target localization system is one of the finest tools to perform radiosurgery in combination with CBCT. This non radiographic method of tracking is a real beneficial method to treat patients confidently while observing real-time motion information of the patient.

  7. SU-G-JeP1-01: A Combination of Real Time Electromagnetic Localization and Tracking with Cone Beam Computed Tomography in Stereotactic Radiosurgery for Brain Tumors

    Energy Technology Data Exchange (ETDEWEB)

    Muralidhar, K Raja; Pangam, Suresh; Ponaganti, Srinivas; Krishna, Jayarama; Sujana, Kolla V; Komanduri, Priya K [American Oncology Institute, Hyderabad, Telangana (India)

    2016-06-15

    Purpose: 1. online verification of patient position during treatment using calypso electromagnetic localization and tracking system. 2. Verification and comparison of positional accuracy between cone beam computed tomography and calypso system. 3. Presenting the advantage of continuation localization in Stereotactic radiosurgery treatments. Methods: Ten brain tumor cases were taken for this study. Patients with head mask were under gone Computed Tomography (CT). Before scanning, mask was cut on the fore head area to keep surface beacons on the skin. Slice thickness of 0.65 mm were taken for this study. x, y, z coordinates of these beacons in TPS were entered into tracking station. Varian True Beam accelerator, equipped with On Board Imager was used to take Cone beam Computed Tomography (CBCT) to localize the patient. Simultaneously Surface beacons were used to localize and track the patient throughout the treatment. The localization values were compared in both systems. For localization CBCT considered as reference. Tracking was done throughout the treatment using Calypso tracking system using electromagnetic array. This array was in tracking position during imaging and treatment. Flattening Filter free beams of 6MV photons along with Volumetric Modulated Arc Therapy was used for the treatment. The patient movement was observed throughout the treatment ranging from 2 min to 4 min. Results: The average variation observed between calypso system and CBCT localization was less than 0.5 mm. These variations were due to manual errors while keeping beacon on the patient. Less than 0.05 cm intra-fraction motion was observed throughout the treatment with the help of continuous tracking. Conclusion: Calypso target localization system is one of the finest tools to perform radiosurgery in combination with CBCT. This non radiographic method of tracking is a real beneficial method to treat patients confidently while observing real-time motion information of the patient.

  8. Effects of an overload of animal protein on the rat: brain DNA alterations and tissue morphological modifications during fetal and post-natal stage.

    Science.gov (United States)

    Greco, A M; Sticchi, R; Boschi, G; Vetrani, A; Salvatore, G

    1985-01-01

    On account of many literature reports about the definite correlation between high animal protein intake and cardiovascular diseases, we have studied the effect of a hyperproteic purified diet (casein 40%, lactalbumin 20%) on fetal and post-natal (not further than 40th day) stage of the rat, when cell subdivision process is faster and therefore damage by nutritional imbalance is certainly more serious. Litters of rats were grouped according to mother's (either hyperproteic or common basic) and rat's (after lactation) diet. Brain DNA and histology of various organs were studied. Hyperproteic diet during fetal stage and lactation would inhibit brain cell subdivision since overall content of brain DNA would be decreased on autoptic finding. Structural changes were also shown in liver, heart, kidney and adrenal cortex, especially when hyperproteic diet was continued even after lactation.

  9. Comparison of L-lysine aescinat and Kontrikal blood flow and morphology of the vessel in the brain is awake rabbits general vibration

    Directory of Open Access Journals (Sweden)

    A. G. Belyakova

    2013-02-01

    Full Text Available Chronic experiments on conscious rabbits with needle-shaped platinum electrodes implanted into the brain cortex, thalamus and hypothalamus were made. The modeling of wide-frequency vibration causes slowing down of cerebral blood flow. L-lysine aescinat prevents changing of blood flow in hypothalamus, causes growth into the brain cortex and not significant lowering in thalamus. Contrykal provides absolute growth of a blood circulation in all structures that were studied. In acute experiments on conscious rabbits wide-frequency vibration causes spasm arterioles and dilation of veins. According to histologic dates L-lysine aescinat prevents changes in the bloodstream better than Contrykal.

  10. Effects of chronic stress on the brain – the evidence from morphological examinations of hippocampus in a chronic unpredictable stress (CUS model in rats

    Directory of Open Access Journals (Sweden)

    Joanna Sekita-Krzak

    2016-12-01

        Abstract Background. Chronic stress exposure deteriorates memory and increases the risk of psychiatric disorders, including depression. Objectives. The objective of this study was to perform morphological studies in experimental model of neuropsychiatric disorder and to assess histologically the effect of chronic unpredictable stress procedure (CUS influence on hippocampus. Material and methods. Chronic unpredictable stress procedure (CUS was applied for 8 weeks in rats by the modified method described by Katz et al. Experimental model of neuropsychiatric disorder was used based on morphological studies of hippocampal formation. Results. Stress-induced alterations were observed in the hippocampus. Nerve cell changes included  neuron shrinkage and dendritic remodeling. The most vulnerable hippocampal cells to chronic stress were CA3 and CA4 pyramidal neurons. In dentate gyrus chronic stress led to granule neuron shrinkage and slight exacerbation of apoptosis in the polygonal cell layer. CUS led to statistically significant changes in quantitative characteristics of the CA3 and CA4 neuron size and nuclei diameter. Conclusions. Chronic stress induces degeneration of hippocampal neurons. The observed neuronal changes indicate the damage of the neurons did not involve neither apoptosis nor necrosis Similarity between histological changes obtained in 8-week long CUS procedure applied in our research and morphological changes described in depressed patients confirms the usefulness of the applied stress procedure as the experimental model of depression.   Key words: stress, depression, hippocampus, chronic unpredictable stress procedure (CUS, animal model, morphology.

  11. Localization of spontaneous bursting neuronal activity in the preterm human brain with simultaneous EEG-fMRI.

    Science.gov (United States)

    Arichi, Tomoki; Whitehead, Kimberley; Barone, Giovanni; Pressler, Ronit; Padormo, Francesco; Edwards, A David; Fabrizi, Lorenzo

    2017-09-12

    Electroencephalographic recordings from the developing human brain are characterized by spontaneous neuronal bursts, the most common of which is the delta brush. Although similar events in animal models are known to occur in areas of immature cortex and drive their development, their origin in humans has not yet been identified. Here, we use simultaneous EEG-fMRI to localise the source of delta brush events in 10 preterm infants aged 32-36 postmenstrual weeks. The most frequent patterns were left and right posterior-temporal delta brushes which were associated in the left hemisphere with ipsilateral BOLD activation in the insula only; and in the right hemisphere in both the insular and temporal cortices. This direct measure of neural and hemodynamic activity shows that the insula, one of the most densely connected hubs in the developing cortex, is a major source of the transient bursting events that are critical for brain maturation.

  12. Autoradiographic localization of glucocorticosteriod binding sites in rat brain after in vivo injection of [3H]RU 28362

    International Nuclear Information System (INIS)

    Sarrieau, Alain; Dussaillant, Monique; Rostene, William

    1988-01-01

    The autoradiographic distribution of glucocorticosteriod binding sites in the brain of adrenalectomized rats was studied following in vivo injection of a potent synthetic glucocorticosteriod agonist [ 3 H]RU 28362. Analysis of the autoradiograms revealed a specific and dense labelling in the pyramidal cell layer of the Ammon's horn and in the granular cell layer of the dentate gyrus of the hippocampus. In the hypothalmus, the labelling was particularly high in the paraventricular nucleus (site of CRF synthesis), the arcuate, periventricular and the supraoptic nuclei as well as in the median eminence. Autoradiograms also revealed the presence of[ 3 H]RU 28362 binding sites in several brain regions including the amygdala, the pineal gland, the entorhinal cortex, the interpeduncular, interfascicular and dorsal raphe nuclei, the central grey and the substantia nigra suggesting possible effects of glucocorticosteriods in these structures (author)

  13. Docosahexaenoic Acid Conjugation Enhances Distribution and Safety of siRNA upon Local Administration in Mouse Brain

    Directory of Open Access Journals (Sweden)

    Mehran Nikan

    2016-01-01

    Full Text Available The use of siRNA-based therapies for the treatment of neurodegenerative disease requires efficient, nontoxic distribution to the affected brain parenchyma, notably the striatum and cortex. Here, we describe the synthesis and activity of a fully chemically modified siRNA that is directly conjugated to docosahexaenoic acid (DHA, the most abundant polyunsaturated fatty acid in the mammalian brain. DHA conjugation enables enhanced siRNA retention throughout both the ipsilateral striatum and cortex following a single, intrastriatal injection (ranging from 6–60 μg. Within these tissues, DHA conjugation promotes internalization by both neurons and astrocytes. We demonstrate efficient and specific silencing of Huntingtin mRNA expression in both the ipsilateral striatum (up to 73% and cortex (up to 51% after 1 week. Moreover, following a bilateral intrastriatal injection (60 μg, we achieve up to 80% silencing of a secondary target, Cyclophilin B, at both the mRNA and protein level. Importantly, DHA-hsiRNAs do not induce neural cell death or measurable innate immune activation following administration of concentrations over 20 times above the efficacious dose. Thus, DHA conjugation is a novel strategy for improving siRNA activity in mouse brain, with potential to act as a new therapeutic platform for the treatment of neurodegenerative disorders.

  14. Immunohistochemical Localization of AT1a, AT1b, and AT2 Angiotensin II Receptor Subtypes in the Rat Adrenal, Pituitary, and Brain with a Perspective Commentary

    Directory of Open Access Journals (Sweden)

    Courtney Premer

    2013-01-01

    Full Text Available Angiotensin II increases blood pressure and stimulates thirst and sodium appetite in the brain. It also stimulates secretion of aldosterone from the adrenal zona glomerulosa and epinephrine from the adrenal medulla. The rat has 3 subtypes of angiotensin II receptors: AT1a, AT1b, and AT2. mRNAs for all three subtypes occur in the adrenal and brain. To immunohistochemically differentiate these receptor subtypes, rabbits were immunized with C-terminal fragments of these subtypes to generate receptor subtype-specific antibodies. Immunofluorescence revealed AT1a and AT2 receptors in adrenal zona glomerulosa and medulla. AT1b immunofluorescence was present in the zona glomerulosa, but not the medulla. Ultrastructural immunogold labeling for the AT1a receptor in glomerulosa and medullary cells localized it to plasma membrane, endocytic vesicles, multivesicular bodies, and the nucleus. AT1b and AT2, but not AT1a, immunofluorescence was observed in the anterior pituitary. Stellate cells were AT1b positive while ovoid cells were AT2 positive. In the brain, neurons were AT1a, AT1b, and AT2 positive, but glia was only AT1b positive. Highest levels of AT1a, AT1b, and AT2 receptor immunofluorescence were in the subfornical organ, median eminence, area postrema, paraventricular nucleus, and solitary tract nucleus. These studies complement those employing different techniques to characterize Ang II receptors.

  15. Aquaporin-11 (AQP11 Expression in the Mouse Brain

    Directory of Open Access Journals (Sweden)

    Shin Koike

    2016-06-01

    Full Text Available Aquaporin-11 (AQP11 is an intracellular aquaporin expressed in various tissues, including brain tissues in mammals. While AQP11-deficient mice have developed fatal polycystic kidneys at one month old, the role of AQP11 in the brain was not well appreciated. In this study, we examined the AQP11 expression in the mouse brain and the brain phenotype of AQP11-deficient mice. AQP11 messenger ribonucleic acid (mRNA and protein were expressed in the brain, but much less than in the thymus and kidney. Immunostaining showed that AQP11 was localized at the epithelium of the choroid plexus and at the endothelium of the brain capillary, suggesting that AQP11 may be involved in water transport at the choroid plexus and blood-brain barrier (BBB in the brain. The expression of AQP4, another brain AQP expressed at the BBB, was decreased by half in AQP11-deficient mice, thereby suggesting the presence of the interaction between AQP11 and AQP4. The brain of AQP11-deficient mice, however, did not show any morphological abnormalities and the function of the BBB was intact. Our findings provide a novel insight into a water transport mechanism mediated by AQPs in the brain, which may lead to a new therapy for brain edema.

  16. Analysis of local perfusion rate (LPR) and local glucose transport rate (LGTR) in brain and heart in man by means of C-11-methyl-D-glucose (CMG) and dynamic positron emission tomography (dPET)

    International Nuclear Information System (INIS)

    Vyska, K.; Freundlieb, C.; Hoeck, A.; Becker, V.; Schmidt, A.; Feinendegen, L.E.; Kloster, G.; Stoecklin, G.; Heiss, W.D.

    1982-01-01

    A method has been developed to measure simultaneously the LPR and LGTR. CMG is used as an indicator. The transaxial distribution of activity in organism is registered with dPET. On the basis of a mathematical model, the LPR and LGTR can be calculated in terms of parameters of the time activity curves registered over different brain or heart regions and over the sup. long. sinus (brain) or the ventricular cavity (heart) (blood activity). The method was used in 10 normal subjects and 20 patients with ischemic brain or heart disease. The values of LGTR range from 0.43 to 0.6 μmol/min g in normal cortex and from 0.09 to 0.12 μmol/min g in normal white matter. The LPR was 0.9-098 ml/min g for the cortex and 0.3-0.4 ml/min g for the white matter. In patients with stroke the ischemic defects appeared to be larger in CMG scans than in CT. The results obtained in a patient with left homonymous hemianopia, caused by infarctions in the distribution area of RMCA, and in a patient with TIA, demonstrate that the inactivation of morphologically intact, cerebral cortex, observed in stroke patients, may be caused by undercutting of cortical fiber tracts as well as by the impairment of the glucose transport systems in the inactivated area. In myocardial studies the LPR in normal left myocardium was 0.68 ml/min g (subendocardium 0.74 ml/min g; subepicardiuim 0.65 ml/min g). In patients with old myocardial infarction, the infarcted areas could be easily recognized as accumulation defects. The results obtained in a patient with narrowing of the RCA indicate that repeated exposure of myocardial tissue to transient ischemia produces an irreversible damage of the glucose transport system. We conclude from the data that for diagnostic evaluation of ultimate brain or heart damage simultaneous quantitative assessment of both LPR and LGTR is of basic importance. (Author)

  17. Brain glycogen

    DEFF Research Database (Denmark)

    Obel, Linea Lykke Frimodt; Müller, Margit S; Walls, Anne B

    2012-01-01

    Glycogen is a complex glucose polymer found in a variety of tissues, including brain, where it is localized primarily in astrocytes. The small quantity found in brain compared to e.g., liver has led to the understanding that brain glycogen is merely used during hypoglycemia or ischemia....... In this review evidence is brought forward highlighting what has been an emerging understanding in brain energy metabolism: that glycogen is more than just a convenient way to store energy for use in emergencies-it is a highly dynamic molecule with versatile implications in brain function, i.e., synaptic...... activity and memory formation. In line with the great spatiotemporal complexity of the brain and thereof derived focus on the basis for ensuring the availability of the right amount of energy at the right time and place, we here encourage a closer look into the molecular and subcellular mechanisms...

  18. Longitudinal MRI studies of brain morphometry

    DEFF Research Database (Denmark)

    Skimminge, Arnold Jesper Møller

    High resolution MR images acquired at multiple time points of the brain allow quantification of localized changes induced by external factors such as maturation, ageing or disease progression/recovery. High-dimensional warping of such MR images incorporates changes induced by external factors...... into the accompanying deformation field. Deformation fields from high dimensional warping founds tensor based morphometry (TBM), and provides unique opportunities to study human brain morphology and plasticity. In this thesis, specially adapted image processing streams utilizing several image registration techniques...... to characterize differences between brains, demonstrate the versatility and specificity of the employed voxel-wise morphometric methods. More specifically TBM is used to study neurodegenerative changes following severe traumatic brain injuries. Such injuries progress for months, perhaps even years postinjury...

  19. From link-prediction in brain connectomes and protein interactomes to the local-community-paradigm in complex networks.

    KAUST Repository

    Cannistraci, C.V.

    2013-04-08

    Growth and remodelling impact the network topology of complex systems, yet a general theory explaining how new links arise between existing nodes has been lacking, and little is known about the topological properties that facilitate link-prediction. Here we investigate the extent to which the connectivity evolution of a network might be predicted by mere topological features. We show how a link/community-based strategy triggers substantial prediction improvements because it accounts for the singular topology of several real networks organised in multiple local communities - a tendency here named local-community-paradigm (LCP). We observe that LCP networks are mainly formed by weak interactions and characterise heterogeneous and dynamic systems that use self-organisation as a major adaptation strategy. These systems seem designed for global delivery of information and processing via multiple local modules. Conversely, non-LCP networks have steady architectures formed by strong interactions, and seem designed for systems in which information/energy storage is crucial.

  20. The study on morphologic alteration of fetal mice and the change of MeCP2 in fetal brain induced by ionizing radiation

    International Nuclear Information System (INIS)

    Chen Feng; Zhang Fengxiang; Tu Yu

    2012-01-01

    Objective: In order to investigate the effect and the possible mechanism of γ-rays on neuro development of fetal brain tissue as bystander effect organ. Methods: pregnant kunming mice were randomly divided into blank control group, 0.5 Gy whole-body exposed group, 0.5 Gy head exposed group, 1.0 Gy whole-body exposed group, 1.0 Gy head exposed group, 2.0 Gy whole-body exposed group and 2.0 Gy head exposed group. The exposed mice were exposed with a vertical single acute dose using 60 Co therapy apparatus on the 9 th day of pregnancy, and cesarean operation were performed to gain fetal mice on the 18 th day of pregnancy. The number, the size, stillbirth, birth defects and abortion, and get fetal brains from live births were observed. Western-blot assay was used to detect the expression of MeCP2 protein. Results: Compared with the blank control group, the rates of stillbirth, birth defects and abortion ascended as the increase of doses; the expression of MeCP2 were upregulated except 0.5 Gy whole-body exposed group, there were no significant differences between groups. Conclusion: When the pregnant mice were exposed to ionizing radiation in the first trimester, bystander effect in fetal brain tissue was induced, within a certain range, the incidence of deterministic effects and stochastic effects ascended as the increase of doses. (authors)

  1. Detailed Dayside Auroral Morphology as a Function of Local Time for southeast IMF Orientation: Implications for Solar Wind-Magnetosphere Coupling

    National Research Council Canada - National Science Library

    Sandholt, P. E; Farrugia, C. J; Denig, W. F

    2004-01-01

    ...:00 magnetic local time (MLT) and discuss the relationship of this structure to solar wind-magnetosphere interconnection topology and the different stages of evolution of open field lines in the Dungey convection cycle...

  2. Comparison of imaging modalities and source-localization algorithms in locating the induced activity during deep brain stimulation of the STN.

    Science.gov (United States)

    Mideksa, K G; Singh, A; Hoogenboom, N; Hellriegel, H; Krause, H; Schnitzler, A; Deuschl, G; Raethjen, J; Schmidt, G; Muthuraman, M

    2016-08-01

    One of the most commonly used therapy to treat patients with Parkinson's disease (PD) is deep brain stimulation (DBS) of the subthalamic nucleus (STN). Identifying the most optimal target area for the placement of the DBS electrodes have become one of the intensive research area. In this study, the first aim is to investigate the capabilities of different source-analysis techniques in detecting deep sources located at the sub-cortical level and validating it using the a-priori information about the location of the source, that is, the STN. Secondly, we aim at an investigation of whether EEG or MEG is best suited in mapping the DBS-induced brain activity. To do this, simultaneous EEG and MEG measurement were used to record the DBS-induced electromagnetic potentials and fields. The boundary-element method (BEM) have been used to solve the forward problem. The position of the DBS electrodes was then estimated using the dipole (moving, rotating, and fixed MUSIC), and current-density-reconstruction (CDR) (minimum-norm and sLORETA) approaches. The source-localization results from the dipole approaches demonstrated that the fixed MUSIC algorithm best localizes deep focal sources, whereas the moving dipole detects not only the region of interest but also neighboring regions that are affected by stimulating the STN. The results from the CDR approaches validated the capability of sLORETA in detecting the STN compared to minimum-norm. Moreover, the source-localization results using the EEG modality outperformed that of the MEG by locating the DBS-induced activity in the STN.

  3. Neuromythology of Einstein's brain.

    Science.gov (United States)

    Hines, Terence

    2014-07-01

    The idea that the brain of the great physicist Albert Einstein is different from "average" brains in both cellular structure and external shape is widespread. This belief is based on several studies examining Einstein's brain both histologically and morphologically. This paper reviews these studies and finds them wanting. Their results do not, in fact, provide support for the claim that the structure of Einstein's brain reflects his intellectual abilities. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Effects of simulated acid rain on the morphology, phenology and dry biomass of a local variety of maize (Suwan-1) in Southwestern Nigeria.

    Science.gov (United States)

    Macaulay, Babajide Milton; Enahoro, Gloria Ebarunosen

    2015-10-01

    Effects of acid rain on the morphology, phenology and dry biomass of maize (Suwan-1 variety) were investigated. The maize seedlings were subjected to different pH treatments (1.0, 2.0, 3.0, 4.0, 5.0 and 6.0) of simulated acid rain (SAR) with pH 7.0 as the control for a period of 90 days. The common morphological defects due to SAR application were necrosis and chlorosis. It was observed that necrosis increased in severity as the acidity increased whilst chlorosis was dominant as the acidity decreased. SAR encouraged rapid floral and cob growth but with the consequence of poor floral and cob development in pH 1.0 to 3.0 treatments. The result for the dry biomass indicates that pH treatments 2.0 to 7.0 for total plant biomass were not significantly different (P > 0.05) from one another, but were all significantly higher (P pH 1.0. Therefore, it may be deduced that Suwan-1 has the potential to withstand acid rain but with pronounced morphological and phenological defects which, however, have the capacity to reduce drastically the market value of the crop. Therefore, it may be concluded that Suwan-1 tolerated acid rain in terms of the parameters studied at pH 4.0 to 7.0 which makes it a suitable crop in acid rain-stricken climes. This research could also serve as a good reference for further SAR studies on maize or other important cereals.

  5. P16INK4a Positive Cells in Human Skin Are Indicative of Local Elastic Fiber Morphology, Facial Wrinkling, and Perceived Age

    DEFF Research Database (Denmark)

    Waaijer, Mariëtte E C; Gunn, David A; Adams, Peter D

    2016-01-01

    Senescent cells are more prevalent in aged human skin compared to young, but evidence that senescent cells are linked to other biomarkers of aging is scarce. We counted cells positive for the tumor suppressor and senescence associated protein p16INK4a in sun-protected upper-inner arm skin biopsies...... wrinkles and a higher perceived age. Participants in the lowest tertile of epidermal p16INK4a counts looked 3 years younger than those in the highest tertile, independently of chronological age and elastic fiber morphology. In conclusion, p16INK4a positive cell numbers in sun-protected human arm skin...

  6. Brain source localization: A new method based on MUltiple SIgnal Classification algorithm and spatial sparsity of the field signal for electroencephalogram measurements

    Science.gov (United States)

    Vergallo, P.; Lay-Ekuakille, A.

    2013-08-01

    Brain activity can be recorded by means of EEG (Electroencephalogram) electrodes placed on the scalp of the patient. The EEG reflects the activity of groups of neurons located in the head, and the fundamental problem in neurophysiology is the identification of the sources responsible of brain activity, especially if a seizure occurs and in this case it is important to identify it. The studies conducted in order to formalize the relationship between the electromagnetic activity in the head and the recording of the generated external field allow to know pattern of brain activity. The inverse problem, that is given the sampling field at different electrodes the underlying asset must be determined, is more difficult because the problem may not have a unique solution, or the search for the solution is made difficult by a low spatial resolution which may not allow to distinguish between activities involving sources close to each other. Thus, sources of interest may be obscured or not detected and known method in source localization problem as MUSIC (MUltiple SIgnal Classification) could fail. Many advanced source localization techniques achieve a best resolution by exploiting sparsity: if the number of sources is small as a result, the neural power vs. location is sparse. In this work a solution based on the spatial sparsity of the field signal is presented and analyzed to improve MUSIC method. For this purpose, it is necessary to set a priori information of the sparsity in the signal. The problem is formulated and solved using a regularization method as Tikhonov, which calculates a solution that is the better compromise between two cost functions to minimize, one related to the fitting of the data, and another concerning the maintenance of the sparsity of the signal. At the first, the method is tested on simulated EEG signals obtained by the solution of the forward problem. Relatively to the model considered for the head and brain sources, the result obtained allows to

  7. Ontogenetic Shape Change in the Chicken Brain: Implications for Paleontology

    OpenAIRE

    Kawabe, Soichiro; Matsuda, Seiji; Tsunekawa, Naoki; Endo, Hideki

    2015-01-01

    Paleontologists have investigated brain morphology of extinct birds with little information on post-hatching changes in avian brain morphology. Without the knowledge of ontogenesis, assessing brain morphology in fossil taxa could lead to misinterpretation of the phylogeny or neurosensory development of extinct species. Hence, it is imperative to determine how avian brain morphology changes during post-hatching growth. In this study, chicken brain shape was compared at various developmental st...

  8. A comparison of rapid-scanning X-ray fluorescence mapping and magnetic resonance imaging to localize brain iron distribution

    International Nuclear Information System (INIS)

    McCrea, Richard P.E.; Harder, Sheri L.; Martin, Melanie; Buist, Richard;